@@ -1,82 +1,82 | |||
|
1 | 1 | #include <Python.h> |
|
2 | 2 | #include <numpy/arrayobject.h> |
|
3 | 3 | #include <math.h> |
|
4 | 4 | |
|
5 | 5 | |
|
6 | 6 | static PyObject *hildebrand_sekhon(PyObject *self, PyObject *args) { |
|
7 | 7 | double navg; |
|
8 | 8 | PyObject *data_obj, *data_array; |
|
9 | 9 | |
|
10 | 10 | if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg)) { |
|
11 | 11 | return NULL; |
|
12 | 12 | } |
|
13 | 13 | |
|
14 | 14 | data_array = PyArray_FROM_OTF(data_obj, NPY_FLOAT64, NPY_IN_ARRAY); |
|
15 | 15 | |
|
16 | 16 | if (data_array == NULL) { |
|
17 | 17 | Py_XDECREF(data_array); |
|
18 | 18 | Py_XDECREF(data_obj); |
|
19 | 19 | return NULL; |
|
20 | 20 | } |
|
21 | 21 | double *sortdata = (double*)PyArray_DATA(data_array); |
|
22 | 22 | int lenOfData = (int)PyArray_SIZE(data_array) ; |
|
23 | 23 | double nums_min = lenOfData*0.2; |
|
24 | 24 | if (nums_min <= 5) nums_min = 5; |
|
25 | 25 | double sump = 0; |
|
26 | 26 | double sumq = 0; |
|
27 |
|
|
|
27 | long j = 0; | |
|
28 | 28 | int cont = 1; |
|
29 | 29 | double rtest = 0; |
|
30 | 30 | while ((cont == 1) && (j < lenOfData)) { |
|
31 | 31 | sump = sump + sortdata[j]; |
|
32 | 32 | sumq = sumq + pow(sortdata[j], 2); |
|
33 | 33 | if (j > nums_min) { |
|
34 | 34 | rtest = (double)j/(j-1) + 1/navg; |
|
35 | 35 | if ((sumq*j) > (rtest*pow(sump, 2))) { |
|
36 | 36 | j = j - 1; |
|
37 | 37 | sump = sump - sortdata[j]; |
|
38 | 38 | sumq = sumq - pow(sortdata[j],2); |
|
39 | 39 | cont = 0; |
|
40 | 40 | } |
|
41 | 41 | } |
|
42 | 42 | j = j + 1; |
|
43 | 43 | } |
|
44 | 44 | |
|
45 | 45 | double lnoise = sump / j; |
|
46 | 46 | |
|
47 | 47 | Py_DECREF(data_array); |
|
48 | 48 | |
|
49 | return PyLong_FromLong(lnoise); | |
|
50 |
|
|
|
49 | // return PyLong_FromLong(lnoise); | |
|
50 | return PyFloat_FromDouble(lnoise); | |
|
51 | 51 | } |
|
52 | 52 | |
|
53 | 53 | |
|
54 | 54 | static PyMethodDef noiseMethods[] = { |
|
55 | 55 | { "hildebrand_sekhon", hildebrand_sekhon, METH_VARARGS, "Get noise with hildebrand_sekhon algorithm" }, |
|
56 | 56 | { NULL, NULL, 0, NULL } |
|
57 | 57 | }; |
|
58 | 58 | |
|
59 | 59 | #if PY_MAJOR_VERSION >= 3 |
|
60 | 60 | |
|
61 | 61 | static struct PyModuleDef noisemodule = { |
|
62 | 62 | PyModuleDef_HEAD_INIT, |
|
63 | 63 | "_noise", |
|
64 | 64 | "Get noise with hildebrand_sekhon algorithm", |
|
65 | 65 | -1, |
|
66 | 66 | noiseMethods |
|
67 | 67 | }; |
|
68 | 68 | |
|
69 | 69 | #endif |
|
70 | 70 | |
|
71 | 71 | #if PY_MAJOR_VERSION >= 3 |
|
72 | 72 | PyMODINIT_FUNC PyInit__noise(void) { |
|
73 | 73 | Py_Initialize(); |
|
74 | 74 | import_array(); |
|
75 | 75 | return PyModule_Create(&noisemodule); |
|
76 | 76 | } |
|
77 | 77 | #else |
|
78 | 78 | PyMODINIT_FUNC init_noise() { |
|
79 | 79 | Py_InitModule("_noise", noiseMethods); |
|
80 | 80 | import_array(); |
|
81 | 81 | } |
|
82 | 82 | #endif |
@@ -1,1066 +1,1069 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Definition of diferent Data objects for different types of data |
|
6 | 6 | |
|
7 | 7 | Here you will find the diferent data objects for the different types |
|
8 | 8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
9 | 9 | processing units and operations. Currently the supported data objects are: |
|
10 | 10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
11 | 11 | """ |
|
12 | 12 | |
|
13 | 13 | import copy |
|
14 | 14 | import numpy |
|
15 | 15 | import datetime |
|
16 | 16 | import json |
|
17 | 17 | |
|
18 | 18 | import schainpy.admin |
|
19 | 19 | from schainpy.utils import log |
|
20 | 20 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
21 | 21 | from schainpy.model.data import _noise |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def getNumpyDtype(dataTypeCode): |
|
25 | 25 | |
|
26 | 26 | if dataTypeCode == 0: |
|
27 | 27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
28 | 28 | elif dataTypeCode == 1: |
|
29 | 29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
30 | 30 | elif dataTypeCode == 2: |
|
31 | 31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
32 | 32 | elif dataTypeCode == 3: |
|
33 | 33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
34 | 34 | elif dataTypeCode == 4: |
|
35 | 35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
36 | 36 | elif dataTypeCode == 5: |
|
37 | 37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
38 | 38 | else: |
|
39 | 39 | raise ValueError('dataTypeCode was not defined') |
|
40 | 40 | |
|
41 | 41 | return numpyDtype |
|
42 | 42 | |
|
43 | 43 | |
|
44 | 44 | def getDataTypeCode(numpyDtype): |
|
45 | 45 | |
|
46 | 46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
47 | 47 | datatype = 0 |
|
48 | 48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
49 | 49 | datatype = 1 |
|
50 | 50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
51 | 51 | datatype = 2 |
|
52 | 52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
53 | 53 | datatype = 3 |
|
54 | 54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
55 | 55 | datatype = 4 |
|
56 | 56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
57 | 57 | datatype = 5 |
|
58 | 58 | else: |
|
59 | 59 | datatype = None |
|
60 | 60 | |
|
61 | 61 | return datatype |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | def hildebrand_sekhon(data, navg): |
|
65 | 65 | """ |
|
66 | 66 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
67 | 67 | implementation technique is based on the fact that the standard deviation of the spectral |
|
68 | 68 | densities is equal to the mean spectral density for white Gaussian noise |
|
69 | 69 | |
|
70 | 70 | Inputs: |
|
71 | 71 | Data : heights |
|
72 | 72 | navg : numbers of averages |
|
73 | 73 | |
|
74 | 74 | Return: |
|
75 | 75 | mean : noise's level |
|
76 | 76 | """ |
|
77 | 77 | |
|
78 | 78 | sortdata = numpy.sort(data, axis=None) |
|
79 | 79 | ''' |
|
80 | 80 | lenOfData = len(sortdata) |
|
81 | 81 | nums_min = lenOfData*0.2 |
|
82 | 82 | |
|
83 | 83 | if nums_min <= 5: |
|
84 | 84 | |
|
85 | 85 | nums_min = 5 |
|
86 | 86 | |
|
87 | 87 | sump = 0. |
|
88 | 88 | sumq = 0. |
|
89 | 89 | |
|
90 | 90 | j = 0 |
|
91 | 91 | cont = 1 |
|
92 | 92 | |
|
93 | 93 | while((cont == 1)and(j < lenOfData)): |
|
94 | 94 | |
|
95 | 95 | sump += sortdata[j] |
|
96 | 96 | sumq += sortdata[j]**2 |
|
97 | 97 | |
|
98 | 98 | if j > nums_min: |
|
99 | 99 | rtest = float(j)/(j-1) + 1.0/navg |
|
100 | 100 | if ((sumq*j) > (rtest*sump**2)): |
|
101 | 101 | j = j - 1 |
|
102 | 102 | sump = sump - sortdata[j] |
|
103 | 103 | sumq = sumq - sortdata[j]**2 |
|
104 | 104 | cont = 0 |
|
105 | 105 | |
|
106 | 106 | j += 1 |
|
107 | 107 | |
|
108 | 108 | lnoise = sump / j |
|
109 | 109 | ''' |
|
110 | 110 | return _noise.hildebrand_sekhon(sortdata, navg) |
|
111 | 111 | |
|
112 | 112 | |
|
113 | 113 | class Beam: |
|
114 | 114 | |
|
115 | 115 | def __init__(self): |
|
116 | 116 | self.codeList = [] |
|
117 | 117 | self.azimuthList = [] |
|
118 | 118 | self.zenithList = [] |
|
119 | 119 | |
|
120 | 120 | |
|
121 | 121 | class GenericData(object): |
|
122 | 122 | |
|
123 | 123 | flagNoData = True |
|
124 | 124 | |
|
125 | 125 | def copy(self, inputObj=None): |
|
126 | 126 | |
|
127 | 127 | if inputObj == None: |
|
128 | 128 | return copy.deepcopy(self) |
|
129 | 129 | |
|
130 | 130 | for key in list(inputObj.__dict__.keys()): |
|
131 | 131 | |
|
132 | 132 | attribute = inputObj.__dict__[key] |
|
133 | 133 | |
|
134 | 134 | # If this attribute is a tuple or list |
|
135 | 135 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
136 | 136 | self.__dict__[key] = attribute[:] |
|
137 | 137 | continue |
|
138 | 138 | |
|
139 | 139 | # If this attribute is another object or instance |
|
140 | 140 | if hasattr(attribute, '__dict__'): |
|
141 | 141 | self.__dict__[key] = attribute.copy() |
|
142 | 142 | continue |
|
143 | 143 | |
|
144 | 144 | self.__dict__[key] = inputObj.__dict__[key] |
|
145 | 145 | |
|
146 | 146 | def deepcopy(self): |
|
147 | 147 | |
|
148 | 148 | return copy.deepcopy(self) |
|
149 | 149 | |
|
150 | 150 | def isEmpty(self): |
|
151 | 151 | |
|
152 | 152 | return self.flagNoData |
|
153 | 153 | |
|
154 | 154 | def isReady(self): |
|
155 | 155 | |
|
156 | 156 | return not self.flagNoData |
|
157 | 157 | |
|
158 | 158 | |
|
159 | 159 | class JROData(GenericData): |
|
160 | 160 | |
|
161 | 161 | systemHeaderObj = SystemHeader() |
|
162 | 162 | radarControllerHeaderObj = RadarControllerHeader() |
|
163 | 163 | type = None |
|
164 | 164 | datatype = None # dtype but in string |
|
165 | 165 | nProfiles = None |
|
166 | 166 | heightList = None |
|
167 | 167 | channelList = None |
|
168 | 168 | flagDiscontinuousBlock = False |
|
169 | 169 | useLocalTime = False |
|
170 | 170 | utctime = None |
|
171 | 171 | timeZone = None |
|
172 | 172 | dstFlag = None |
|
173 | 173 | errorCount = None |
|
174 | 174 | blocksize = None |
|
175 | 175 | flagDecodeData = False # asumo q la data no esta decodificada |
|
176 | 176 | flagDeflipData = False # asumo q la data no esta sin flip |
|
177 | 177 | flagShiftFFT = False |
|
178 | 178 | nCohInt = None |
|
179 | 179 | windowOfFilter = 1 |
|
180 | 180 | C = 3e8 |
|
181 | 181 | frequency = 49.92e6 |
|
182 | 182 | realtime = False |
|
183 | 183 | beacon_heiIndexList = None |
|
184 | 184 | last_block = None |
|
185 | 185 | blocknow = None |
|
186 | 186 | azimuth = None |
|
187 | 187 | zenith = None |
|
188 | 188 | beam = Beam() |
|
189 | 189 | profileIndex = None |
|
190 | 190 | error = None |
|
191 | 191 | data = None |
|
192 | 192 | nmodes = None |
|
193 | 193 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
194 | 194 | |
|
195 | 195 | def __str__(self): |
|
196 | 196 | |
|
197 | 197 | return '{} - {}'.format(self.type, self.datatime()) |
|
198 | 198 | |
|
199 | 199 | def getNoise(self): |
|
200 | 200 | |
|
201 | 201 | raise NotImplementedError |
|
202 | 202 | |
|
203 | 203 | @property |
|
204 | 204 | def nChannels(self): |
|
205 | 205 | |
|
206 | 206 | return len(self.channelList) |
|
207 | 207 | |
|
208 | 208 | @property |
|
209 | 209 | def channelIndexList(self): |
|
210 | 210 | |
|
211 | 211 | return list(range(self.nChannels)) |
|
212 | 212 | |
|
213 | 213 | @property |
|
214 | 214 | def nHeights(self): |
|
215 | 215 | |
|
216 | 216 | return len(self.heightList) |
|
217 | 217 | |
|
218 | 218 | def getDeltaH(self): |
|
219 | 219 | |
|
220 | 220 | return self.heightList[1] - self.heightList[0] |
|
221 | 221 | |
|
222 | 222 | @property |
|
223 | 223 | def ltctime(self): |
|
224 | 224 | |
|
225 | 225 | if self.useLocalTime: |
|
226 | 226 | return self.utctime - self.timeZone * 60 |
|
227 | 227 | |
|
228 | 228 | return self.utctime |
|
229 | 229 | |
|
230 | 230 | @property |
|
231 | 231 | def datatime(self): |
|
232 | 232 | |
|
233 | 233 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
234 | 234 | return datatimeValue |
|
235 | 235 | |
|
236 | 236 | def getTimeRange(self): |
|
237 | 237 | |
|
238 | 238 | datatime = [] |
|
239 | 239 | |
|
240 | 240 | datatime.append(self.ltctime) |
|
241 | 241 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
242 | 242 | |
|
243 | 243 | datatime = numpy.array(datatime) |
|
244 | 244 | |
|
245 | 245 | return datatime |
|
246 | 246 | |
|
247 | 247 | def getFmaxTimeResponse(self): |
|
248 | 248 | |
|
249 | 249 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
250 | 250 | |
|
251 | 251 | PRF = 1. / (period * self.nCohInt) |
|
252 | 252 | |
|
253 | 253 | fmax = PRF |
|
254 | 254 | |
|
255 | 255 | return fmax |
|
256 | 256 | |
|
257 | 257 | def getFmax(self): |
|
258 | 258 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
259 | 259 | |
|
260 | 260 | fmax = PRF |
|
261 | 261 | return fmax |
|
262 | 262 | |
|
263 | 263 | def getVmax(self): |
|
264 | 264 | |
|
265 | 265 | _lambda = self.C / self.frequency |
|
266 | 266 | |
|
267 | 267 | vmax = self.getFmax() * _lambda / 2 |
|
268 | 268 | |
|
269 | 269 | return vmax |
|
270 | 270 | |
|
271 | 271 | @property |
|
272 | 272 | def ippSeconds(self): |
|
273 | 273 | ''' |
|
274 | 274 | ''' |
|
275 | 275 | return self.radarControllerHeaderObj.ippSeconds |
|
276 | 276 | |
|
277 | 277 | @ippSeconds.setter |
|
278 | 278 | def ippSeconds(self, ippSeconds): |
|
279 | 279 | ''' |
|
280 | 280 | ''' |
|
281 | 281 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
282 | 282 | |
|
283 | 283 | @property |
|
284 | 284 | def code(self): |
|
285 | 285 | ''' |
|
286 | 286 | ''' |
|
287 | 287 | return self.radarControllerHeaderObj.code |
|
288 | 288 | |
|
289 | 289 | @code.setter |
|
290 | 290 | def code(self, code): |
|
291 | 291 | ''' |
|
292 | 292 | ''' |
|
293 | 293 | self.radarControllerHeaderObj.code = code |
|
294 | 294 | |
|
295 | 295 | @property |
|
296 | 296 | def nCode(self): |
|
297 | 297 | ''' |
|
298 | 298 | ''' |
|
299 | 299 | return self.radarControllerHeaderObj.nCode |
|
300 | 300 | |
|
301 | 301 | @nCode.setter |
|
302 | 302 | def nCode(self, ncode): |
|
303 | 303 | ''' |
|
304 | 304 | ''' |
|
305 | 305 | self.radarControllerHeaderObj.nCode = ncode |
|
306 | 306 | |
|
307 | 307 | @property |
|
308 | 308 | def nBaud(self): |
|
309 | 309 | ''' |
|
310 | 310 | ''' |
|
311 | 311 | return self.radarControllerHeaderObj.nBaud |
|
312 | 312 | |
|
313 | 313 | @nBaud.setter |
|
314 | 314 | def nBaud(self, nbaud): |
|
315 | 315 | ''' |
|
316 | 316 | ''' |
|
317 | 317 | self.radarControllerHeaderObj.nBaud = nbaud |
|
318 | 318 | |
|
319 | 319 | @property |
|
320 | 320 | def ipp(self): |
|
321 | 321 | ''' |
|
322 | 322 | ''' |
|
323 | 323 | return self.radarControllerHeaderObj.ipp |
|
324 | 324 | |
|
325 | 325 | @ipp.setter |
|
326 | 326 | def ipp(self, ipp): |
|
327 | 327 | ''' |
|
328 | 328 | ''' |
|
329 | 329 | self.radarControllerHeaderObj.ipp = ipp |
|
330 | 330 | |
|
331 | 331 | @property |
|
332 | 332 | def metadata(self): |
|
333 | 333 | ''' |
|
334 | 334 | ''' |
|
335 | 335 | |
|
336 | 336 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
337 | 337 | |
|
338 | 338 | |
|
339 | 339 | class Voltage(JROData): |
|
340 | 340 | |
|
341 | 341 | dataPP_POW = None |
|
342 | 342 | dataPP_DOP = None |
|
343 | 343 | dataPP_WIDTH = None |
|
344 | 344 | dataPP_SNR = None |
|
345 | 345 | |
|
346 | 346 | def __init__(self): |
|
347 | 347 | ''' |
|
348 | 348 | Constructor |
|
349 | 349 | ''' |
|
350 | 350 | |
|
351 | 351 | self.useLocalTime = True |
|
352 | 352 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
353 | 353 | self.systemHeaderObj = SystemHeader() |
|
354 | 354 | self.type = "Voltage" |
|
355 | 355 | self.data = None |
|
356 | 356 | self.nProfiles = None |
|
357 | 357 | self.heightList = None |
|
358 | 358 | self.channelList = None |
|
359 | 359 | self.flagNoData = True |
|
360 | 360 | self.flagDiscontinuousBlock = False |
|
361 | 361 | self.utctime = None |
|
362 | 362 | self.timeZone = 0 |
|
363 | 363 | self.dstFlag = None |
|
364 | 364 | self.errorCount = None |
|
365 | 365 | self.nCohInt = None |
|
366 | 366 | self.blocksize = None |
|
367 | 367 | self.flagCohInt = False |
|
368 | 368 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
369 | 369 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
370 | 370 | self.flagShiftFFT = False |
|
371 | 371 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
372 | 372 | self.profileIndex = 0 |
|
373 | 373 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
374 | 374 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
375 | 375 | |
|
376 | 376 | def getNoisebyHildebrand(self, channel=None): |
|
377 | 377 | """ |
|
378 | 378 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
379 | 379 | |
|
380 | 380 | Return: |
|
381 | 381 | noiselevel |
|
382 | 382 | """ |
|
383 | 383 | |
|
384 | 384 | if channel != None: |
|
385 | 385 | data = self.data[channel] |
|
386 | 386 | nChannels = 1 |
|
387 | 387 | else: |
|
388 | 388 | data = self.data |
|
389 | 389 | nChannels = self.nChannels |
|
390 | 390 | |
|
391 | 391 | noise = numpy.zeros(nChannels) |
|
392 | 392 | power = data * numpy.conjugate(data) |
|
393 | 393 | |
|
394 | 394 | for thisChannel in range(nChannels): |
|
395 | 395 | if nChannels == 1: |
|
396 | 396 | daux = power[:].real |
|
397 | 397 | else: |
|
398 | 398 | daux = power[thisChannel, :].real |
|
399 | 399 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
400 | 400 | |
|
401 | 401 | return noise |
|
402 | 402 | |
|
403 | 403 | def getNoise(self, type=1, channel=None): |
|
404 | 404 | |
|
405 | 405 | if type == 1: |
|
406 | 406 | noise = self.getNoisebyHildebrand(channel) |
|
407 | 407 | |
|
408 | 408 | return noise |
|
409 | 409 | |
|
410 | 410 | def getPower(self, channel=None): |
|
411 | 411 | |
|
412 | 412 | if channel != None: |
|
413 | 413 | data = self.data[channel] |
|
414 | 414 | else: |
|
415 | 415 | data = self.data |
|
416 | 416 | |
|
417 | 417 | power = data * numpy.conjugate(data) |
|
418 | 418 | powerdB = 10 * numpy.log10(power.real) |
|
419 | 419 | powerdB = numpy.squeeze(powerdB) |
|
420 | 420 | |
|
421 | 421 | return powerdB |
|
422 | 422 | |
|
423 | 423 | @property |
|
424 | 424 | def timeInterval(self): |
|
425 | 425 | |
|
426 | 426 | return self.ippSeconds * self.nCohInt |
|
427 | 427 | |
|
428 | 428 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
429 | 429 | |
|
430 | 430 | |
|
431 | 431 | class Spectra(JROData): |
|
432 | 432 | |
|
433 | 433 | def __init__(self): |
|
434 | 434 | ''' |
|
435 | 435 | Constructor |
|
436 | 436 | ''' |
|
437 | 437 | |
|
438 | self.data_dc = None | |
|
439 | self.data_spc = None | |
|
440 | self.data_cspc = None | |
|
438 | 441 | self.useLocalTime = True |
|
439 | 442 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
440 | 443 | self.systemHeaderObj = SystemHeader() |
|
441 | 444 | self.type = "Spectra" |
|
442 | 445 | self.timeZone = 0 |
|
443 | 446 | self.nProfiles = None |
|
444 | 447 | self.heightList = None |
|
445 | 448 | self.channelList = None |
|
446 | 449 | self.pairsList = None |
|
447 | 450 | self.flagNoData = True |
|
448 | 451 | self.flagDiscontinuousBlock = False |
|
449 | 452 | self.utctime = None |
|
450 | 453 | self.nCohInt = None |
|
451 | 454 | self.nIncohInt = None |
|
452 | 455 | self.blocksize = None |
|
453 | 456 | self.nFFTPoints = None |
|
454 | 457 | self.wavelength = None |
|
455 | 458 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
456 | 459 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
457 | 460 | self.flagShiftFFT = False |
|
458 | 461 | self.ippFactor = 1 |
|
459 | 462 | self.beacon_heiIndexList = [] |
|
460 | 463 | self.noise_estimation = None |
|
461 | 464 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
462 | 465 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] |
|
463 | 466 | |
|
464 | 467 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
465 | 468 | """ |
|
466 | 469 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
467 | 470 | |
|
468 | 471 | Return: |
|
469 | 472 | noiselevel |
|
470 | 473 | """ |
|
471 | 474 | |
|
472 | 475 | noise = numpy.zeros(self.nChannels) |
|
473 | 476 | |
|
474 | 477 | for channel in range(self.nChannels): |
|
475 | 478 | daux = self.data_spc[channel, |
|
476 | 479 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
477 | 480 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
478 | 481 | |
|
479 | 482 | return noise |
|
480 | 483 | |
|
481 | 484 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
482 | 485 | |
|
483 | 486 | if self.noise_estimation is not None: |
|
484 | 487 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
485 | 488 | return self.noise_estimation |
|
486 | 489 | else: |
|
487 | 490 | noise = self.getNoisebyHildebrand( |
|
488 | 491 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
489 | 492 | return noise |
|
490 | 493 | |
|
491 | 494 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
492 | 495 | |
|
493 | 496 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
494 | 497 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
495 | 498 | |
|
496 | 499 | return freqrange |
|
497 | 500 | |
|
498 | 501 | def getAcfRange(self, extrapoints=0): |
|
499 | 502 | |
|
500 | 503 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
501 | 504 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
502 | 505 | |
|
503 | 506 | return freqrange |
|
504 | 507 | |
|
505 | 508 | def getFreqRange(self, extrapoints=0): |
|
506 | 509 | |
|
507 | 510 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
508 | 511 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
509 | 512 | |
|
510 | 513 | return freqrange |
|
511 | 514 | |
|
512 | 515 | def getVelRange(self, extrapoints=0): |
|
513 | 516 | |
|
514 | 517 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
515 | 518 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
516 | 519 | |
|
517 | 520 | if self.nmodes: |
|
518 | 521 | return velrange/self.nmodes |
|
519 | 522 | else: |
|
520 | 523 | return velrange |
|
521 | 524 | |
|
522 | 525 | @property |
|
523 | 526 | def nPairs(self): |
|
524 | 527 | |
|
525 | 528 | return len(self.pairsList) |
|
526 | 529 | |
|
527 | 530 | @property |
|
528 | 531 | def pairsIndexList(self): |
|
529 | 532 | |
|
530 | 533 | return list(range(self.nPairs)) |
|
531 | 534 | |
|
532 | 535 | @property |
|
533 | 536 | def normFactor(self): |
|
534 | 537 | |
|
535 | 538 | pwcode = 1 |
|
536 | 539 | |
|
537 | 540 | if self.flagDecodeData: |
|
538 | 541 | pwcode = numpy.sum(self.code[0]**2) |
|
539 | 542 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
540 | 543 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
541 | 544 | |
|
542 | 545 | return normFactor |
|
543 | 546 | |
|
544 | 547 | @property |
|
545 | 548 | def flag_cspc(self): |
|
546 | 549 | |
|
547 | 550 | if self.data_cspc is None: |
|
548 | 551 | return True |
|
549 | 552 | |
|
550 | 553 | return False |
|
551 | 554 | |
|
552 | 555 | @property |
|
553 | 556 | def flag_dc(self): |
|
554 | 557 | |
|
555 | 558 | if self.data_dc is None: |
|
556 | 559 | return True |
|
557 | 560 | |
|
558 | 561 | return False |
|
559 | 562 | |
|
560 | 563 | @property |
|
561 | 564 | def timeInterval(self): |
|
562 | 565 | |
|
563 | 566 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
564 | 567 | if self.nmodes: |
|
565 | 568 | return self.nmodes*timeInterval |
|
566 | 569 | else: |
|
567 | 570 | return timeInterval |
|
568 | 571 | |
|
569 | 572 | def getPower(self): |
|
570 | 573 | |
|
571 | 574 | factor = self.normFactor |
|
572 | 575 | z = self.data_spc / factor |
|
573 | 576 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
574 | 577 | avg = numpy.average(z, axis=1) |
|
575 | 578 | |
|
576 | 579 | return 10 * numpy.log10(avg) |
|
577 | 580 | |
|
578 | 581 | def getCoherence(self, pairsList=None, phase=False): |
|
579 | 582 | |
|
580 | 583 | z = [] |
|
581 | 584 | if pairsList is None: |
|
582 | 585 | pairsIndexList = self.pairsIndexList |
|
583 | 586 | else: |
|
584 | 587 | pairsIndexList = [] |
|
585 | 588 | for pair in pairsList: |
|
586 | 589 | if pair not in self.pairsList: |
|
587 | 590 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
588 | 591 | pair)) |
|
589 | 592 | pairsIndexList.append(self.pairsList.index(pair)) |
|
590 | 593 | for i in range(len(pairsIndexList)): |
|
591 | 594 | pair = self.pairsList[pairsIndexList[i]] |
|
592 | 595 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
593 | 596 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
594 | 597 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
595 | 598 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
596 | 599 | if phase: |
|
597 | 600 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
598 | 601 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
599 | 602 | else: |
|
600 | 603 | data = numpy.abs(avgcoherenceComplex) |
|
601 | 604 | |
|
602 | 605 | z.append(data) |
|
603 | 606 | |
|
604 | 607 | return numpy.array(z) |
|
605 | 608 | |
|
606 | 609 | def setValue(self, value): |
|
607 | 610 | |
|
608 | 611 | print("This property should not be initialized") |
|
609 | 612 | |
|
610 | 613 | return |
|
611 | 614 | |
|
612 | 615 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
613 | 616 | |
|
614 | 617 | |
|
615 | 618 | class SpectraHeis(Spectra): |
|
616 | 619 | |
|
617 | 620 | def __init__(self): |
|
618 | 621 | |
|
619 | 622 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
620 | 623 | self.systemHeaderObj = SystemHeader() |
|
621 | 624 | self.type = "SpectraHeis" |
|
622 | 625 | self.nProfiles = None |
|
623 | 626 | self.heightList = None |
|
624 | 627 | self.channelList = None |
|
625 | 628 | self.flagNoData = True |
|
626 | 629 | self.flagDiscontinuousBlock = False |
|
627 | 630 | self.utctime = None |
|
628 | 631 | self.blocksize = None |
|
629 | 632 | self.profileIndex = 0 |
|
630 | 633 | self.nCohInt = 1 |
|
631 | 634 | self.nIncohInt = 1 |
|
632 | 635 | |
|
633 | 636 | @property |
|
634 | 637 | def normFactor(self): |
|
635 | 638 | pwcode = 1 |
|
636 | 639 | if self.flagDecodeData: |
|
637 | 640 | pwcode = numpy.sum(self.code[0]**2) |
|
638 | 641 | |
|
639 | 642 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
640 | 643 | |
|
641 | 644 | return normFactor |
|
642 | 645 | |
|
643 | 646 | @property |
|
644 | 647 | def timeInterval(self): |
|
645 | 648 | |
|
646 | 649 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
647 | 650 | |
|
648 | 651 | |
|
649 | 652 | class Fits(JROData): |
|
650 | 653 | |
|
651 | 654 | def __init__(self): |
|
652 | 655 | |
|
653 | 656 | self.type = "Fits" |
|
654 | 657 | self.nProfiles = None |
|
655 | 658 | self.heightList = None |
|
656 | 659 | self.channelList = None |
|
657 | 660 | self.flagNoData = True |
|
658 | 661 | self.utctime = None |
|
659 | 662 | self.nCohInt = 1 |
|
660 | 663 | self.nIncohInt = 1 |
|
661 | 664 | self.useLocalTime = True |
|
662 | 665 | self.profileIndex = 0 |
|
663 | 666 | self.timeZone = 0 |
|
664 | 667 | |
|
665 | 668 | def getTimeRange(self): |
|
666 | 669 | |
|
667 | 670 | datatime = [] |
|
668 | 671 | |
|
669 | 672 | datatime.append(self.ltctime) |
|
670 | 673 | datatime.append(self.ltctime + self.timeInterval) |
|
671 | 674 | |
|
672 | 675 | datatime = numpy.array(datatime) |
|
673 | 676 | |
|
674 | 677 | return datatime |
|
675 | 678 | |
|
676 | 679 | def getChannelIndexList(self): |
|
677 | 680 | |
|
678 | 681 | return list(range(self.nChannels)) |
|
679 | 682 | |
|
680 | 683 | def getNoise(self, type=1): |
|
681 | 684 | |
|
682 | 685 | |
|
683 | 686 | if type == 1: |
|
684 | 687 | noise = self.getNoisebyHildebrand() |
|
685 | 688 | |
|
686 | 689 | if type == 2: |
|
687 | 690 | noise = self.getNoisebySort() |
|
688 | 691 | |
|
689 | 692 | if type == 3: |
|
690 | 693 | noise = self.getNoisebyWindow() |
|
691 | 694 | |
|
692 | 695 | return noise |
|
693 | 696 | |
|
694 | 697 | @property |
|
695 | 698 | def timeInterval(self): |
|
696 | 699 | |
|
697 | 700 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
698 | 701 | |
|
699 | 702 | return timeInterval |
|
700 | 703 | |
|
701 | 704 | @property |
|
702 | 705 | def ippSeconds(self): |
|
703 | 706 | ''' |
|
704 | 707 | ''' |
|
705 | 708 | return self.ipp_sec |
|
706 | 709 | |
|
707 | 710 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
708 | 711 | |
|
709 | 712 | |
|
710 | 713 | class Correlation(JROData): |
|
711 | 714 | |
|
712 | 715 | def __init__(self): |
|
713 | 716 | ''' |
|
714 | 717 | Constructor |
|
715 | 718 | ''' |
|
716 | 719 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
717 | 720 | self.systemHeaderObj = SystemHeader() |
|
718 | 721 | self.type = "Correlation" |
|
719 | 722 | self.data = None |
|
720 | 723 | self.dtype = None |
|
721 | 724 | self.nProfiles = None |
|
722 | 725 | self.heightList = None |
|
723 | 726 | self.channelList = None |
|
724 | 727 | self.flagNoData = True |
|
725 | 728 | self.flagDiscontinuousBlock = False |
|
726 | 729 | self.utctime = None |
|
727 | 730 | self.timeZone = 0 |
|
728 | 731 | self.dstFlag = None |
|
729 | 732 | self.errorCount = None |
|
730 | 733 | self.blocksize = None |
|
731 | 734 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
732 | 735 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
733 | 736 | self.pairsList = None |
|
734 | 737 | self.nPoints = None |
|
735 | 738 | |
|
736 | 739 | def getPairsList(self): |
|
737 | 740 | |
|
738 | 741 | return self.pairsList |
|
739 | 742 | |
|
740 | 743 | def getNoise(self, mode=2): |
|
741 | 744 | |
|
742 | 745 | indR = numpy.where(self.lagR == 0)[0][0] |
|
743 | 746 | indT = numpy.where(self.lagT == 0)[0][0] |
|
744 | 747 | |
|
745 | 748 | jspectra0 = self.data_corr[:, :, indR, :] |
|
746 | 749 | jspectra = copy.copy(jspectra0) |
|
747 | 750 | |
|
748 | 751 | num_chan = jspectra.shape[0] |
|
749 | 752 | num_hei = jspectra.shape[2] |
|
750 | 753 | |
|
751 | 754 | freq_dc = jspectra.shape[1] / 2 |
|
752 | 755 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
753 | 756 | |
|
754 | 757 | if ind_vel[0] < 0: |
|
755 | 758 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
756 | 759 | range(0, 1))] + self.num_prof |
|
757 | 760 | |
|
758 | 761 | if mode == 1: |
|
759 | 762 | jspectra[:, freq_dc, :] = ( |
|
760 | 763 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
761 | 764 | |
|
762 | 765 | if mode == 2: |
|
763 | 766 | |
|
764 | 767 | vel = numpy.array([-2, -1, 1, 2]) |
|
765 | 768 | xx = numpy.zeros([4, 4]) |
|
766 | 769 | |
|
767 | 770 | for fil in range(4): |
|
768 | 771 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
769 | 772 | |
|
770 | 773 | xx_inv = numpy.linalg.inv(xx) |
|
771 | 774 | xx_aux = xx_inv[0, :] |
|
772 | 775 | |
|
773 | 776 | for ich in range(num_chan): |
|
774 | 777 | yy = jspectra[ich, ind_vel, :] |
|
775 | 778 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
776 | 779 | |
|
777 | 780 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
778 | 781 | cjunkid = sum(junkid) |
|
779 | 782 | |
|
780 | 783 | if cjunkid.any(): |
|
781 | 784 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
782 | 785 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
783 | 786 | |
|
784 | 787 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
785 | 788 | |
|
786 | 789 | return noise |
|
787 | 790 | |
|
788 | 791 | @property |
|
789 | 792 | def timeInterval(self): |
|
790 | 793 | |
|
791 | 794 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
792 | 795 | |
|
793 | 796 | def splitFunctions(self): |
|
794 | 797 | |
|
795 | 798 | pairsList = self.pairsList |
|
796 | 799 | ccf_pairs = [] |
|
797 | 800 | acf_pairs = [] |
|
798 | 801 | ccf_ind = [] |
|
799 | 802 | acf_ind = [] |
|
800 | 803 | for l in range(len(pairsList)): |
|
801 | 804 | chan0 = pairsList[l][0] |
|
802 | 805 | chan1 = pairsList[l][1] |
|
803 | 806 | |
|
804 | 807 | # Obteniendo pares de Autocorrelacion |
|
805 | 808 | if chan0 == chan1: |
|
806 | 809 | acf_pairs.append(chan0) |
|
807 | 810 | acf_ind.append(l) |
|
808 | 811 | else: |
|
809 | 812 | ccf_pairs.append(pairsList[l]) |
|
810 | 813 | ccf_ind.append(l) |
|
811 | 814 | |
|
812 | 815 | data_acf = self.data_cf[acf_ind] |
|
813 | 816 | data_ccf = self.data_cf[ccf_ind] |
|
814 | 817 | |
|
815 | 818 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
816 | 819 | |
|
817 | 820 | @property |
|
818 | 821 | def normFactor(self): |
|
819 | 822 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
820 | 823 | acf_pairs = numpy.array(acf_pairs) |
|
821 | 824 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
822 | 825 | |
|
823 | 826 | for p in range(self.nPairs): |
|
824 | 827 | pair = self.pairsList[p] |
|
825 | 828 | |
|
826 | 829 | ch0 = pair[0] |
|
827 | 830 | ch1 = pair[1] |
|
828 | 831 | |
|
829 | 832 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
830 | 833 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
831 | 834 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
832 | 835 | |
|
833 | 836 | return normFactor |
|
834 | 837 | |
|
835 | 838 | |
|
836 | 839 | class Parameters(Spectra): |
|
837 | 840 | |
|
838 | 841 | groupList = None # List of Pairs, Groups, etc |
|
839 | 842 | data_param = None # Parameters obtained |
|
840 | 843 | data_pre = None # Data Pre Parametrization |
|
841 | 844 | data_SNR = None # Signal to Noise Ratio |
|
842 | 845 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
843 | 846 | utctimeInit = None # Initial UTC time |
|
844 | 847 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
845 | 848 | useLocalTime = True |
|
846 | 849 | # Fitting |
|
847 | 850 | data_error = None # Error of the estimation |
|
848 | 851 | constants = None |
|
849 | 852 | library = None |
|
850 | 853 | # Output signal |
|
851 | 854 | outputInterval = None # Time interval to calculate output signal in seconds |
|
852 | 855 | data_output = None # Out signal |
|
853 | 856 | nAvg = None |
|
854 | 857 | noise_estimation = None |
|
855 | 858 | GauSPC = None # Fit gaussian SPC |
|
856 | 859 | |
|
857 | 860 | def __init__(self): |
|
858 | 861 | ''' |
|
859 | 862 | Constructor |
|
860 | 863 | ''' |
|
861 | 864 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
862 | 865 | self.systemHeaderObj = SystemHeader() |
|
863 | 866 | self.type = "Parameters" |
|
864 | 867 | self.timeZone = 0 |
|
865 | 868 | |
|
866 | 869 | def getTimeRange1(self, interval): |
|
867 | 870 | |
|
868 | 871 | datatime = [] |
|
869 | 872 | |
|
870 | 873 | if self.useLocalTime: |
|
871 | 874 | time1 = self.utctimeInit - self.timeZone * 60 |
|
872 | 875 | else: |
|
873 | 876 | time1 = self.utctimeInit |
|
874 | 877 | |
|
875 | 878 | datatime.append(time1) |
|
876 | 879 | datatime.append(time1 + interval) |
|
877 | 880 | datatime = numpy.array(datatime) |
|
878 | 881 | |
|
879 | 882 | return datatime |
|
880 | 883 | |
|
881 | 884 | @property |
|
882 | 885 | def timeInterval(self): |
|
883 | 886 | |
|
884 | 887 | if hasattr(self, 'timeInterval1'): |
|
885 | 888 | return self.timeInterval1 |
|
886 | 889 | else: |
|
887 | 890 | return self.paramInterval |
|
888 | 891 | |
|
889 | 892 | def setValue(self, value): |
|
890 | 893 | |
|
891 | 894 | print("This property should not be initialized") |
|
892 | 895 | |
|
893 | 896 | return |
|
894 | 897 | |
|
895 | 898 | def getNoise(self): |
|
896 | 899 | |
|
897 | 900 | return self.spc_noise |
|
898 | 901 | |
|
899 | 902 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
900 | 903 | |
|
901 | 904 | |
|
902 | 905 | class PlotterData(object): |
|
903 | 906 | ''' |
|
904 | 907 | Object to hold data to be plotted |
|
905 | 908 | ''' |
|
906 | 909 | |
|
907 | 910 | MAXNUMX = 200 |
|
908 | 911 | MAXNUMY = 200 |
|
909 | 912 | |
|
910 | 913 | def __init__(self, code, exp_code, localtime=True): |
|
911 | 914 | |
|
912 | 915 | self.key = code |
|
913 | 916 | self.exp_code = exp_code |
|
914 | 917 | self.ready = False |
|
915 | 918 | self.flagNoData = False |
|
916 | 919 | self.localtime = localtime |
|
917 | 920 | self.data = {} |
|
918 | 921 | self.meta = {} |
|
919 | 922 | self.__heights = [] |
|
920 | 923 | |
|
921 | 924 | def __str__(self): |
|
922 | 925 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
923 | 926 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
924 | 927 | |
|
925 | 928 | def __len__(self): |
|
926 | 929 | return len(self.data) |
|
927 | 930 | |
|
928 | 931 | def __getitem__(self, key): |
|
929 | 932 | if isinstance(key, int): |
|
930 | 933 | return self.data[self.times[key]] |
|
931 | 934 | elif isinstance(key, str): |
|
932 | 935 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
933 | 936 | if ret.ndim > 1: |
|
934 | 937 | ret = numpy.swapaxes(ret, 0, 1) |
|
935 | 938 | return ret |
|
936 | 939 | |
|
937 | 940 | def __contains__(self, key): |
|
938 | 941 | return key in self.data[self.min_time] |
|
939 | 942 | |
|
940 | 943 | def setup(self): |
|
941 | 944 | ''' |
|
942 | 945 | Configure object |
|
943 | 946 | ''' |
|
944 | 947 | self.type = '' |
|
945 | 948 | self.ready = False |
|
946 | 949 | del self.data |
|
947 | 950 | self.data = {} |
|
948 | 951 | self.__heights = [] |
|
949 | 952 | self.__all_heights = set() |
|
950 | 953 | |
|
951 | 954 | def shape(self, key): |
|
952 | 955 | ''' |
|
953 | 956 | Get the shape of the one-element data for the given key |
|
954 | 957 | ''' |
|
955 | 958 | |
|
956 | 959 | if len(self.data[self.min_time][key]): |
|
957 | 960 | return self.data[self.min_time][key].shape |
|
958 | 961 | return (0,) |
|
959 | 962 | |
|
960 | 963 | def update(self, data, tm, meta={}): |
|
961 | 964 | ''' |
|
962 | 965 | Update data object with new dataOut |
|
963 | 966 | ''' |
|
964 | 967 | |
|
965 | 968 | self.data[tm] = data |
|
966 | 969 | |
|
967 | 970 | for key, value in meta.items(): |
|
968 | 971 | setattr(self, key, value) |
|
969 | 972 | |
|
970 | 973 | def normalize_heights(self): |
|
971 | 974 | ''' |
|
972 | 975 | Ensure same-dimension of the data for different heighList |
|
973 | 976 | ''' |
|
974 | 977 | |
|
975 | 978 | H = numpy.array(list(self.__all_heights)) |
|
976 | 979 | H.sort() |
|
977 | 980 | for key in self.data: |
|
978 | 981 | shape = self.shape(key)[:-1] + H.shape |
|
979 | 982 | for tm, obj in list(self.data[key].items()): |
|
980 | 983 | h = self.__heights[self.times.tolist().index(tm)] |
|
981 | 984 | if H.size == h.size: |
|
982 | 985 | continue |
|
983 | 986 | index = numpy.where(numpy.in1d(H, h))[0] |
|
984 | 987 | dummy = numpy.zeros(shape) + numpy.nan |
|
985 | 988 | if len(shape) == 2: |
|
986 | 989 | dummy[:, index] = obj |
|
987 | 990 | else: |
|
988 | 991 | dummy[index] = obj |
|
989 | 992 | self.data[key][tm] = dummy |
|
990 | 993 | |
|
991 | 994 | self.__heights = [H for tm in self.times] |
|
992 | 995 | |
|
993 | 996 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
994 | 997 | ''' |
|
995 | 998 | Convert data to json |
|
996 | 999 | ''' |
|
997 | 1000 | |
|
998 | 1001 | meta = {} |
|
999 | 1002 | meta['xrange'] = [] |
|
1000 | 1003 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 |
|
1001 | 1004 | tmp = self.data[tm][self.key] |
|
1002 | 1005 | shape = tmp.shape |
|
1003 | 1006 | if len(shape) == 2: |
|
1004 | 1007 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1005 | 1008 | elif len(shape) == 3: |
|
1006 | 1009 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 |
|
1007 | 1010 | data = self.roundFloats( |
|
1008 | 1011 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1009 | 1012 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1010 | 1013 | else: |
|
1011 | 1014 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1012 | 1015 | |
|
1013 | 1016 | ret = { |
|
1014 | 1017 | 'plot': plot_name, |
|
1015 | 1018 | 'code': self.exp_code, |
|
1016 | 1019 | 'time': float(tm), |
|
1017 | 1020 | 'data': data, |
|
1018 | 1021 | } |
|
1019 | 1022 | meta['type'] = plot_type |
|
1020 | 1023 | meta['interval'] = float(self.interval) |
|
1021 | 1024 | meta['localtime'] = self.localtime |
|
1022 | 1025 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1023 | 1026 | meta.update(self.meta) |
|
1024 | 1027 | ret['metadata'] = meta |
|
1025 | 1028 | return json.dumps(ret) |
|
1026 | 1029 | |
|
1027 | 1030 | @property |
|
1028 | 1031 | def times(self): |
|
1029 | 1032 | ''' |
|
1030 | 1033 | Return the list of times of the current data |
|
1031 | 1034 | ''' |
|
1032 | 1035 | |
|
1033 | 1036 | ret = [t for t in self.data] |
|
1034 | 1037 | ret.sort() |
|
1035 | 1038 | return numpy.array(ret) |
|
1036 | 1039 | |
|
1037 | 1040 | @property |
|
1038 | 1041 | def min_time(self): |
|
1039 | 1042 | ''' |
|
1040 | 1043 | Return the minimun time value |
|
1041 | 1044 | ''' |
|
1042 | 1045 | |
|
1043 | 1046 | return self.times[0] |
|
1044 | 1047 | |
|
1045 | 1048 | @property |
|
1046 | 1049 | def max_time(self): |
|
1047 | 1050 | ''' |
|
1048 | 1051 | Return the maximun time value |
|
1049 | 1052 | ''' |
|
1050 | 1053 | |
|
1051 | 1054 | return self.times[-1] |
|
1052 | 1055 | |
|
1053 | 1056 | # @property |
|
1054 | 1057 | # def heights(self): |
|
1055 | 1058 | # ''' |
|
1056 | 1059 | # Return the list of heights of the current data |
|
1057 | 1060 | # ''' |
|
1058 | 1061 | |
|
1059 | 1062 | # return numpy.array(self.__heights[-1]) |
|
1060 | 1063 | |
|
1061 | 1064 | @staticmethod |
|
1062 | 1065 | def roundFloats(obj): |
|
1063 | 1066 | if isinstance(obj, list): |
|
1064 | 1067 | return list(map(PlotterData.roundFloats, obj)) |
|
1065 | 1068 | elif isinstance(obj, float): |
|
1066 | 1069 | return round(obj, 2) |
General Comments 0
You need to be logged in to leave comments.
Login now