@@ -1,305 +1,305 | |||
|
1 | 1 | import numpy |
|
2 | 2 | import datetime |
|
3 | 3 | import matplotlib |
|
4 | 4 | matplotlib.use("TKAgg") |
|
5 | 5 | import matplotlib.pyplot |
|
6 | 6 | import matplotlib.dates |
|
7 | 7 | #import scitools.numpyutils |
|
8 | 8 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
9 | 9 | |
|
10 | 10 | from matplotlib.dates import DayLocator, HourLocator, MinuteLocator, SecondLocator, DateFormatter |
|
11 | 11 | from matplotlib.ticker import FuncFormatter |
|
12 | 12 | from matplotlib.ticker import * |
|
13 | 13 | |
|
14 | def init(idfigure, wintitle, width, height, facecolor="w"): | |
|
15 | ||
|
16 | matplotlib.pyplot.ioff() | |
|
17 | fig = matplotlib.pyplot.matplotlib.pyplot.figure(num=idfigure, facecolor=facecolor) | |
|
18 | fig.canvas.manager.set_window_title(wintitle) | |
|
19 | fig.canvas.manager.resize(width, height) | |
|
20 | matplotlib.pyplot.ion() | |
|
21 | ||
|
22 | return fig | |
|
23 | ||
|
24 | def setWinTitle(fig, title): | |
|
25 | ||
|
26 | fig.canvas.manager.set_window_title(title) | |
|
27 | ||
|
28 | def setTitle(idfigure, title): | |
|
29 | fig = matplotlib.pyplot.figure(idfigure) | |
|
30 | fig.suptitle(title) | |
|
31 | ||
|
32 | def makeAxes(idfigure, nrow, ncol, xpos, ypos, colspan, rowspan): | |
|
33 | fig = matplotlib.pyplot.figure(idfigure) | |
|
34 | ax = matplotlib.pyplot.subplot2grid((nrow, ncol), (xpos, ypos), colspan=colspan, rowspan=rowspan) | |
|
35 | return ax | |
|
36 | ||
|
37 | def setTextFromAxes(idfigure, ax, title): | |
|
38 | fig = matplotlib.pyplot.figure(idfigure) | |
|
39 | ax.annotate(title, xy=(.1, .99), | |
|
40 | xycoords='figure fraction', | |
|
41 | horizontalalignment='left', verticalalignment='top', | |
|
42 | fontsize=10) | |
|
43 | ||
|
44 | def pline(ax, x, y, xmin, xmax, ymin, ymax, xlabel, ylabel, title, firsttime): | |
|
45 | ||
|
46 | if firsttime: | |
|
47 | ax.plot(x, y) | |
|
48 | ax.set_xlim([xmin,xmax]) | |
|
49 | ax.set_ylim([ymin,ymax]) | |
|
50 | ax.set_xlabel(xlabel, size=8) | |
|
51 | ax.set_ylabel(ylabel, size=8) | |
|
52 | ax.set_title(title, size=10) | |
|
53 | matplotlib.pyplot.tight_layout() | |
|
54 | else: | |
|
55 | ax.lines[0].set_data(x,y) | |
|
56 | ||
|
57 | def draw(idfigure): | |
|
58 | ||
|
59 | fig = matplotlib.pyplot.figure(idfigure) | |
|
60 | fig.canvas.draw() | |
|
61 | ||
|
62 | def pcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax, xlabel, ylabel, title, firsttime, mesh): | |
|
63 | ||
|
64 | if firsttime: | |
|
65 | divider = make_axes_locatable(ax) | |
|
66 | ax_cb = divider.new_horizontal(size="4%", pad=0.05) | |
|
67 | fig1 = ax.get_figure() | |
|
68 | fig1.add_axes(ax_cb) | |
|
69 | ||
|
70 | ax.set_xlim([xmin,xmax]) | |
|
71 | ax.set_ylim([ymin,ymax]) | |
|
72 | ax.set_xlabel(xlabel) | |
|
73 | ax.set_ylabel(ylabel) | |
|
74 | ax.set_title(title) | |
|
75 | print x | |
|
76 | imesh=ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax) | |
|
77 | matplotlib.pyplot.colorbar(imesh, cax=ax_cb) | |
|
78 | ax_cb.yaxis.tick_right() | |
|
79 | for tl in ax_cb.get_yticklabels(): | |
|
80 | tl.set_visible(True) | |
|
81 | ax_cb.yaxis.tick_right() | |
|
82 | matplotlib.pyplot.tight_layout() | |
|
83 | return imesh | |
|
84 | else: | |
|
14 | #def init(idfigure, wintitle, width, height, facecolor="w"): | |
|
15 | # | |
|
16 | # matplotlib.pyplot.ioff() | |
|
17 | # fig = matplotlib.pyplot.matplotlib.pyplot.figure(num=idfigure, facecolor=facecolor) | |
|
18 | # fig.canvas.manager.set_window_title(wintitle) | |
|
19 | # fig.canvas.manager.resize(width, height) | |
|
20 | # matplotlib.pyplot.ion() | |
|
21 | # | |
|
22 | # return fig | |
|
23 | # | |
|
24 | #def setWinTitle(fig, title): | |
|
25 | # | |
|
26 | # fig.canvas.manager.set_window_title(title) | |
|
27 | # | |
|
28 | #def setTitle(idfigure, title): | |
|
29 | # fig = matplotlib.pyplot.figure(idfigure) | |
|
30 | # fig.suptitle(title) | |
|
31 | # | |
|
32 | #def makeAxes(idfigure, nrow, ncol, xpos, ypos, colspan, rowspan): | |
|
33 | # fig = matplotlib.pyplot.figure(idfigure) | |
|
34 | # ax = matplotlib.pyplot.subplot2grid((nrow, ncol), (xpos, ypos), colspan=colspan, rowspan=rowspan) | |
|
35 | # return ax | |
|
36 | # | |
|
37 | #def setTextFromAxes(idfigure, ax, title): | |
|
38 | # fig = matplotlib.pyplot.figure(idfigure) | |
|
39 | # ax.annotate(title, xy=(.1, .99), | |
|
40 | # xycoords='figure fraction', | |
|
41 | # horizontalalignment='left', verticalalignment='top', | |
|
42 | # fontsize=10) | |
|
43 | # | |
|
44 | #def pline(ax, x, y, xmin, xmax, ymin, ymax, xlabel, ylabel, title, firsttime): | |
|
45 | # | |
|
46 | # if firsttime: | |
|
47 | # ax.plot(x, y) | |
|
85 | 48 | # ax.set_xlim([xmin,xmax]) |
|
86 | 49 | # ax.set_ylim([ymin,ymax]) |
|
87 | ax.set_xlabel(xlabel) | |
|
88 | ax.set_ylabel(ylabel) | |
|
89 | ax.set_title(title) | |
|
90 | ||
|
91 | z = z.T | |
|
92 | # z = z[0:-1,0:-1] | |
|
93 | mesh.set_array(z.ravel()) | |
|
94 | ||
|
95 | return mesh | |
|
50 | # ax.set_xlabel(xlabel, size=8) | |
|
51 | # ax.set_ylabel(ylabel, size=8) | |
|
52 | # ax.set_title(title, size=10) | |
|
53 | # matplotlib.pyplot.tight_layout() | |
|
54 | # else: | |
|
55 | # ax.lines[0].set_data(x,y) | |
|
56 | # | |
|
57 | #def draw(idfigure): | |
|
58 | # | |
|
59 | # fig = matplotlib.pyplot.figure(idfigure) | |
|
60 | # fig.canvas.draw() | |
|
61 | # | |
|
62 | #def pcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax, xlabel, ylabel, title, firsttime, mesh): | |
|
63 | # | |
|
64 | # if firsttime: | |
|
65 | # divider = make_axes_locatable(ax) | |
|
66 | # ax_cb = divider.new_horizontal(size="4%", pad=0.05) | |
|
67 | # fig1 = ax.get_figure() | |
|
68 | # fig1.add_axes(ax_cb) | |
|
69 | # | |
|
70 | # ax.set_xlim([xmin,xmax]) | |
|
71 | # ax.set_ylim([ymin,ymax]) | |
|
72 | # ax.set_xlabel(xlabel) | |
|
73 | # ax.set_ylabel(ylabel) | |
|
74 | # ax.set_title(title) | |
|
75 | # print x | |
|
76 | # imesh=ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax) | |
|
77 | # matplotlib.pyplot.colorbar(imesh, cax=ax_cb) | |
|
78 | # ax_cb.yaxis.tick_right() | |
|
79 | # for tl in ax_cb.get_yticklabels(): | |
|
80 | # tl.set_visible(True) | |
|
81 | # ax_cb.yaxis.tick_right() | |
|
82 | # matplotlib.pyplot.tight_layout() | |
|
83 | # return imesh | |
|
84 | # else: | |
|
85 | ## ax.set_xlim([xmin,xmax]) | |
|
86 | ## ax.set_ylim([ymin,ymax]) | |
|
87 | # ax.set_xlabel(xlabel) | |
|
88 | # ax.set_ylabel(ylabel) | |
|
89 | # ax.set_title(title) | |
|
90 | # | |
|
91 | # z = z.T | |
|
92 | ## z = z[0:-1,0:-1] | |
|
93 | # mesh.set_array(z.ravel()) | |
|
94 | # | |
|
95 | # return mesh | |
|
96 | 96 | |
|
97 | 97 | ########################################### |
|
98 | 98 | #Actualizacion de las funciones del driver |
|
99 | 99 | ########################################### |
|
100 | 100 | |
|
101 | 101 | def createFigure(idfigure, wintitle, width, height, facecolor="w"): |
|
102 | 102 | |
|
103 | 103 | matplotlib.pyplot.ioff() |
|
104 | 104 | fig = matplotlib.pyplot.matplotlib.pyplot.figure(num=idfigure, facecolor=facecolor) |
|
105 | 105 | fig.canvas.manager.set_window_title(wintitle) |
|
106 | 106 | fig.canvas.manager.resize(width, height) |
|
107 | 107 | matplotlib.pyplot.ion() |
|
108 | 108 | |
|
109 | 109 | return fig |
|
110 | 110 | |
|
111 | 111 | def closeFigure(): |
|
112 | 112 | |
|
113 | 113 | matplotlib.pyplot.ioff() |
|
114 | 114 | matplotlib.pyplot.show() |
|
115 | 115 | |
|
116 | 116 | return |
|
117 | 117 | |
|
118 | 118 | def saveFigure(fig, filename): |
|
119 | 119 | fig.savefig(filename) |
|
120 | 120 | |
|
121 | 121 | def setWinTitle(fig, title): |
|
122 | 122 | |
|
123 | 123 | fig.canvas.manager.set_window_title(title) |
|
124 | 124 | |
|
125 | 125 | def setTitle(fig, title): |
|
126 | 126 | |
|
127 | 127 | fig.suptitle(title) |
|
128 | 128 | |
|
129 | 129 | def createAxes(fig, nrow, ncol, xpos, ypos, colspan, rowspan): |
|
130 | 130 | |
|
131 | 131 | matplotlib.pyplot.figure(fig.number) |
|
132 | 132 | axes = matplotlib.pyplot.subplot2grid((nrow, ncol), |
|
133 | 133 | (xpos, ypos), |
|
134 | 134 | colspan=colspan, |
|
135 | 135 | rowspan=rowspan) |
|
136 | 136 | return axes |
|
137 | 137 | |
|
138 | 138 | def setAxesText(ax, text): |
|
139 | 139 | |
|
140 | 140 | ax.annotate(text, |
|
141 | 141 | xy = (.1, .99), |
|
142 | 142 | xycoords = 'figure fraction', |
|
143 | 143 | horizontalalignment = 'left', |
|
144 | 144 | verticalalignment = 'top', |
|
145 | 145 | fontsize = 10) |
|
146 | 146 | |
|
147 | 147 | def printLabels(ax, xlabel, ylabel, title): |
|
148 | 148 | |
|
149 | 149 | ax.set_xlabel(xlabel, size=11) |
|
150 | 150 | ax.set_ylabel(ylabel, size=11) |
|
151 | 151 | ax.set_title(title, size=12) |
|
152 | 152 | |
|
153 | 153 | def createPline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', |
|
154 | 154 | ticksize=9, xtick_visible=True, ytick_visible=True, |
|
155 | 155 | nxticks=4, nyticks=10, |
|
156 | 156 | grid=None): |
|
157 | 157 | |
|
158 | 158 | """ |
|
159 | 159 | |
|
160 | 160 | Input: |
|
161 | 161 | grid : None, 'both', 'x', 'y' |
|
162 | 162 | """ |
|
163 | 163 | |
|
164 | 164 | ax.plot(x, y) |
|
165 | 165 | ax.set_xlim([xmin,xmax]) |
|
166 | 166 | ax.set_ylim([ymin,ymax]) |
|
167 | 167 | |
|
168 | 168 | printLabels(ax, xlabel, ylabel, title) |
|
169 | 169 | |
|
170 | 170 | ###################################################### |
|
171 | 171 | xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/nxticks) + int(xmin) |
|
172 | 172 | ax.set_xticks(xtickspos) |
|
173 | 173 | |
|
174 | 174 | for tick in ax.get_xticklabels(): |
|
175 | 175 | tick.set_visible(xtick_visible) |
|
176 | 176 | |
|
177 | 177 | for tick in ax.xaxis.get_major_ticks(): |
|
178 | 178 | tick.label.set_fontsize(ticksize) |
|
179 | 179 | |
|
180 | 180 | ###################################################### |
|
181 | 181 | for tick in ax.get_yticklabels(): |
|
182 | 182 | tick.set_visible(ytick_visible) |
|
183 | 183 | |
|
184 | 184 | for tick in ax.yaxis.get_major_ticks(): |
|
185 | 185 | tick.label.set_fontsize(ticksize) |
|
186 | 186 | |
|
187 | 187 | iplot = ax.lines[-1] |
|
188 | 188 | |
|
189 | 189 | ###################################################### |
|
190 | 190 | if '0.' in matplotlib.__version__[0:2]: |
|
191 | 191 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
192 | 192 | return iplot |
|
193 | 193 | |
|
194 | 194 | if '1.0.' in matplotlib.__version__[0:4]: |
|
195 | 195 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
196 | 196 | return iplot |
|
197 | 197 | |
|
198 | 198 | if grid != None: |
|
199 | 199 | ax.grid(b=True, which='major', axis=grid) |
|
200 | 200 | |
|
201 | 201 | matplotlib.pyplot.tight_layout() |
|
202 | 202 | |
|
203 | 203 | return iplot |
|
204 | 204 | |
|
205 | 205 | def pline(iplot, x, y, xlabel='', ylabel='', title=''): |
|
206 | 206 | |
|
207 | 207 | ax = iplot.get_axes() |
|
208 | 208 | |
|
209 | 209 | printLabels(ax, xlabel, ylabel, title) |
|
210 | 210 | |
|
211 | 211 | iplot.set_data(x, y) |
|
212 | 212 | |
|
213 | 213 | def createPcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax, |
|
214 | 214 | xlabel='', ylabel='', title='', ticksize = 9, |
|
215 | 215 | cblabel='', cbsize="5%", |
|
216 | 216 | XAxisAsTime=False): |
|
217 | 217 | |
|
218 | 218 | divider = make_axes_locatable(ax) |
|
219 | 219 | ax_cb = divider.new_horizontal(size=cbsize, pad=0.05) |
|
220 | 220 | fig = ax.get_figure() |
|
221 | 221 | fig.add_axes(ax_cb) |
|
222 | 222 | |
|
223 | 223 | ax.set_xlim([xmin,xmax]) |
|
224 | 224 | ax.set_ylim([ymin,ymax]) |
|
225 | 225 | |
|
226 | 226 | printLabels(ax, xlabel, ylabel, title) |
|
227 | 227 | |
|
228 | 228 | imesh = ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax) |
|
229 | 229 | cb = matplotlib.pyplot.colorbar(imesh, cax=ax_cb) |
|
230 | 230 | cb.set_label(cblabel) |
|
231 | 231 | |
|
232 | 232 | # for tl in ax_cb.get_yticklabels(): |
|
233 | 233 | # tl.set_visible(True) |
|
234 | 234 | |
|
235 | 235 | for tick in ax.yaxis.get_major_ticks(): |
|
236 | 236 | tick.label.set_fontsize(ticksize) |
|
237 | 237 | |
|
238 | 238 | for tick in ax.xaxis.get_major_ticks(): |
|
239 | 239 | tick.label.set_fontsize(ticksize) |
|
240 | 240 | |
|
241 | 241 | for tick in cb.ax.get_yticklabels(): |
|
242 | 242 | tick.set_fontsize(ticksize) |
|
243 | 243 | |
|
244 | 244 | ax_cb.yaxis.tick_right() |
|
245 | 245 | |
|
246 | 246 | if '0.' in matplotlib.__version__[0:2]: |
|
247 | 247 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
248 | 248 | return imesh |
|
249 | 249 | |
|
250 | 250 | if '1.0.' in matplotlib.__version__[0:4]: |
|
251 | 251 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
252 | 252 | return imesh |
|
253 | 253 | |
|
254 | 254 | matplotlib.pyplot.tight_layout() |
|
255 | 255 | |
|
256 | 256 | if XAxisAsTime: |
|
257 | 257 | |
|
258 | 258 | func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime("%H:%M:%S")) |
|
259 | 259 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
260 | 260 | ax.xaxis.set_major_locator(LinearLocator(7)) |
|
261 | 261 | |
|
262 | 262 | # seconds = numpy.array([xmin, xmax]) |
|
263 | 263 | # datesList = map(datetime.datetime.fromtimestamp, seconds) |
|
264 | 264 | # ax.set_xlim([datesList[0],datesList[-1]]) |
|
265 | 265 | # ax.xaxis.set_major_locator(MinuteLocator(numpy.arange(0,61,10))) |
|
266 | 266 | # ax.xaxis.set_minor_locator(SecondLocator(numpy.arange(0,61,60))) |
|
267 | 267 | # ax.xaxis.set_major_formatter(DateFormatter("%H:%M:%S")) |
|
268 | 268 | # xdateList = map(datetime.datetime.fromtimestamp, x) |
|
269 | 269 | # xdate = matplotlib.dates.date2num(xdateList) |
|
270 | 270 | # x = xdate |
|
271 | 271 | |
|
272 | 272 | # labels = [] |
|
273 | 273 | # for item in ax.xaxis.get_ticklabels(): |
|
274 | 274 | # stri = item.get_text() |
|
275 | 275 | # text = datetime.datetime.fromtimestamp(float(stri)) |
|
276 | 276 | # labels.append(text) |
|
277 | 277 | # |
|
278 | 278 | # ax.xaxis.set_ticklabels(labels) |
|
279 | 279 | return imesh |
|
280 | 280 | |
|
281 | 281 | def pcolor(imesh, z, xlabel='', ylabel='', title=''): |
|
282 | 282 | |
|
283 | 283 | z = z.T |
|
284 | 284 | |
|
285 | 285 | ax = imesh.get_axes() |
|
286 | 286 | |
|
287 | 287 | printLabels(ax, xlabel, ylabel, title) |
|
288 | 288 | |
|
289 | 289 | imesh.set_array(z.ravel()) |
|
290 | 290 | |
|
291 | 291 | def addpcolor(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title=''): |
|
292 | 292 | |
|
293 | 293 | # xdateList = map(datetime.datetime.fromtimestamp, x) |
|
294 | 294 | # xdate = matplotlib.dates.date2num(xdateList) |
|
295 | 295 | |
|
296 | 296 | printLabels(ax, xlabel, ylabel, title) |
|
297 | 297 | |
|
298 | 298 | imesh = ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax) |
|
299 | 299 | |
|
300 | 300 | def draw(fig): |
|
301 | 301 | |
|
302 | 302 | if type(fig) == 'int': |
|
303 | 303 | raise ValueError, "This parameter should be of tpye matplotlib figure" |
|
304 | 304 | |
|
305 | 305 | fig.canvas.draw() No newline at end of file |
@@ -1,494 +1,506 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import os, sys |
|
8 | 8 | import copy |
|
9 | 9 | import numpy |
|
10 | 10 | |
|
11 | 11 | from jroheaderIO import SystemHeader, RadarControllerHeader |
|
12 | 12 | |
|
13 | 13 | def hildebrand_sekhon(data, navg): |
|
14 | 14 | """ |
|
15 | 15 | This method is for the objective determination of de noise level in Doppler spectra. This |
|
16 | 16 | implementation technique is based on the fact that the standard deviation of the spectral |
|
17 | 17 | densities is equal to the mean spectral density for white Gaussian noise |
|
18 | 18 | |
|
19 | 19 | Inputs: |
|
20 | 20 | Data : heights |
|
21 | 21 | navg : numbers of averages |
|
22 | 22 | |
|
23 | 23 | Return: |
|
24 | 24 | -1 : any error |
|
25 | 25 | anoise : noise's level |
|
26 | 26 | """ |
|
27 | 27 | |
|
28 | 28 | dataflat = data.copy().reshape(-1) |
|
29 | 29 | dataflat.sort() |
|
30 | 30 | npts = dataflat.size #numbers of points of the data |
|
31 | 31 | |
|
32 | 32 | if npts < 32: |
|
33 | 33 | print "error in noise - requires at least 32 points" |
|
34 | 34 | return -1.0 |
|
35 | 35 | |
|
36 | 36 | dataflat2 = numpy.power(dataflat,2) |
|
37 | 37 | |
|
38 | 38 | cs = numpy.cumsum(dataflat) |
|
39 | 39 | cs2 = numpy.cumsum(dataflat2) |
|
40 | 40 | |
|
41 | 41 | # data sorted in ascending order |
|
42 | 42 | nmin = int((npts + 7.)/8) |
|
43 | 43 | |
|
44 | 44 | for i in range(nmin, npts): |
|
45 | 45 | s = cs[i] |
|
46 | 46 | s2 = cs2[i] |
|
47 | 47 | p = s / float(i); |
|
48 | 48 | p2 = p**2; |
|
49 | 49 | q = s2 / float(i) - p2; |
|
50 | 50 | leftc = p2; |
|
51 | 51 | rightc = q * float(navg); |
|
52 | 52 | R2 = leftc/rightc |
|
53 | 53 | |
|
54 | 54 | # Signal detect: R2 < 1 (R2 = leftc/rightc) |
|
55 | 55 | if R2 < 1: |
|
56 | 56 | npts_noise = i |
|
57 | 57 | break |
|
58 | 58 | |
|
59 | 59 | |
|
60 | 60 | anoise = numpy.average(dataflat[0:npts_noise]) |
|
61 | 61 | |
|
62 | 62 | return anoise; |
|
63 | 63 | |
|
64 | 64 | def sorting_bruce(data, navg): |
|
65 | 65 | |
|
66 | 66 | data = data.copy() |
|
67 | 67 | |
|
68 | 68 | sortdata = numpy.sort(data) |
|
69 | 69 | lenOfData = len(data) |
|
70 | 70 | nums_min = lenOfData/10 |
|
71 | 71 | |
|
72 | 72 | if (lenOfData/10) > 0: |
|
73 | 73 | nums_min = lenOfData/10 |
|
74 | 74 | else: |
|
75 | 75 | nums_min = 0 |
|
76 | 76 | |
|
77 | 77 | rtest = 1.0 + 1.0/navg |
|
78 | 78 | |
|
79 | 79 | sum = 0. |
|
80 | 80 | |
|
81 | 81 | sumq = 0. |
|
82 | 82 | |
|
83 | 83 | j = 0 |
|
84 | 84 | |
|
85 | 85 | cont = 1 |
|
86 | 86 | |
|
87 | 87 | while((cont==1)and(j<lenOfData)): |
|
88 | 88 | |
|
89 | 89 | sum += sortdata[j] |
|
90 | 90 | |
|
91 | 91 | sumq += sortdata[j]**2 |
|
92 | 92 | |
|
93 | 93 | j += 1 |
|
94 | 94 | |
|
95 | 95 | if j > nums_min: |
|
96 | 96 | if ((sumq*j) <= (rtest*sum**2)): |
|
97 | 97 | lnoise = sum / j |
|
98 | 98 | else: |
|
99 | 99 | j = j - 1 |
|
100 | 100 | sum = sum - sordata[j] |
|
101 | 101 | sumq = sumq - sordata[j]**2 |
|
102 | 102 | cont = 0 |
|
103 | 103 | |
|
104 | 104 | if j == nums_min: |
|
105 | 105 | lnoise = sum /j |
|
106 | 106 | |
|
107 | 107 | return lnoise |
|
108 | 108 | |
|
109 | 109 | class JROData: |
|
110 | 110 | |
|
111 | 111 | # m_BasicHeader = BasicHeader() |
|
112 | 112 | # m_ProcessingHeader = ProcessingHeader() |
|
113 | 113 | |
|
114 | 114 | systemHeaderObj = SystemHeader() |
|
115 | 115 | |
|
116 | 116 | radarControllerHeaderObj = RadarControllerHeader() |
|
117 | 117 | |
|
118 | 118 | # data = None |
|
119 | 119 | |
|
120 | 120 | type = None |
|
121 | 121 | |
|
122 | 122 | dtype = None |
|
123 | 123 | |
|
124 | 124 | # nChannels = None |
|
125 | 125 | |
|
126 | 126 | # nHeights = None |
|
127 | 127 | |
|
128 | 128 | nProfiles = None |
|
129 | 129 | |
|
130 | 130 | heightList = None |
|
131 | 131 | |
|
132 | 132 | channelList = None |
|
133 | 133 | |
|
134 | 134 | flagNoData = True |
|
135 | 135 | |
|
136 | 136 | flagTimeBlock = False |
|
137 | 137 | |
|
138 | 138 | utctime = None |
|
139 | 139 | |
|
140 | 140 | blocksize = None |
|
141 | 141 | |
|
142 | 142 | nCode = None |
|
143 | 143 | |
|
144 | 144 | nBaud = None |
|
145 | 145 | |
|
146 | 146 | code = None |
|
147 | 147 | |
|
148 | 148 | flagDecodeData = True #asumo q la data esta decodificada |
|
149 | 149 | |
|
150 | 150 | flagDeflipData = True #asumo q la data esta sin flip |
|
151 | 151 | |
|
152 | 152 | flagShiftFFT = False |
|
153 | 153 | |
|
154 | 154 | ippSeconds = None |
|
155 | 155 | |
|
156 | 156 | timeInterval = None |
|
157 | 157 | |
|
158 | 158 | nCohInt = None |
|
159 | 159 | |
|
160 | 160 | noise = None |
|
161 | 161 | |
|
162 | 162 | #Speed of ligth |
|
163 | 163 | C = 3e8 |
|
164 | 164 | |
|
165 | 165 | frequency = 49.92e6 |
|
166 | 166 | |
|
167 | 167 | def __init__(self): |
|
168 | 168 | |
|
169 | 169 | raise ValueError, "This class has not been implemented" |
|
170 | 170 | |
|
171 | 171 | def copy(self, inputObj=None): |
|
172 | 172 | |
|
173 | 173 | if inputObj == None: |
|
174 | 174 | return copy.deepcopy(self) |
|
175 | 175 | |
|
176 | 176 | for key in inputObj.__dict__.keys(): |
|
177 | 177 | self.__dict__[key] = inputObj.__dict__[key] |
|
178 | 178 | |
|
179 | 179 | def deepcopy(self): |
|
180 | 180 | |
|
181 | 181 | return copy.deepcopy(self) |
|
182 | 182 | |
|
183 | 183 | def isEmpty(self): |
|
184 | 184 | |
|
185 | 185 | return self.flagNoData |
|
186 | 186 | |
|
187 | 187 | def getNoise(self): |
|
188 | 188 | |
|
189 | 189 | raise ValueError, "Not implemented" |
|
190 | 190 | |
|
191 | 191 | def getNChannels(self): |
|
192 | 192 | |
|
193 | 193 | return len(self.channelList) |
|
194 | 194 | |
|
195 | 195 | def getChannelIndexList(self): |
|
196 | 196 | |
|
197 | 197 | return range(self.nChannels) |
|
198 | 198 | |
|
199 | 199 | def getNHeights(self): |
|
200 | 200 | |
|
201 | 201 | return len(self.heightList) |
|
202 | 202 | |
|
203 | 203 | def getHeiRange(self, extrapoints=0): |
|
204 | 204 | |
|
205 | 205 | heis = self.heightList |
|
206 | 206 | # deltah = self.heightList[1] - self.heightList[0] |
|
207 | 207 | # |
|
208 | 208 | # heis.append(self.heightList[-1]) |
|
209 | 209 | |
|
210 | 210 | return heis |
|
211 | 211 | |
|
212 | 212 | def getDatatime(self): |
|
213 | 213 | |
|
214 | 214 | datatime = [] |
|
215 | 215 | |
|
216 | 216 | datatime.append(self.utctime) |
|
217 | 217 | datatime.append(self.utctime + 2*self.timeInterval) |
|
218 | 218 | |
|
219 | 219 | datatime = numpy.array(datatime) |
|
220 | 220 | |
|
221 | 221 | return datatime |
|
222 | 222 | |
|
223 | 223 | def getFmax(self): |
|
224 | 224 | |
|
225 | 225 | PRF = 1./(self.ippSeconds * self.nCohInt) |
|
226 | 226 | |
|
227 | 227 | fmax = PRF/2. |
|
228 | 228 | |
|
229 | 229 | return fmax |
|
230 | 230 | |
|
231 | 231 | def getVmax(self): |
|
232 | 232 | |
|
233 | 233 | _lambda = self.C/self.frequency |
|
234 | 234 | |
|
235 | 235 | vmax = self.getFmax() * _lambda / 2. |
|
236 | 236 | |
|
237 | 237 | return vmax |
|
238 | 238 | |
|
239 | 239 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
240 | 240 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
241 | 241 | |
|
242 | 242 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
243 | 243 | |
|
244 | 244 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
245 | 245 | |
|
246 | 246 | class Voltage(JROData): |
|
247 | 247 | |
|
248 | 248 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
249 | 249 | data = None |
|
250 | 250 | |
|
251 | 251 | def __init__(self): |
|
252 | 252 | ''' |
|
253 | 253 | Constructor |
|
254 | 254 | ''' |
|
255 | 255 | |
|
256 | 256 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
257 | 257 | |
|
258 | 258 | self.systemHeaderObj = SystemHeader() |
|
259 | 259 | |
|
260 | 260 | self.type = "Voltage" |
|
261 | 261 | |
|
262 | 262 | self.data = None |
|
263 | 263 | |
|
264 | 264 | self.dtype = None |
|
265 | 265 | |
|
266 | 266 | # self.nChannels = 0 |
|
267 | 267 | |
|
268 | 268 | # self.nHeights = 0 |
|
269 | 269 | |
|
270 | 270 | self.nProfiles = None |
|
271 | 271 | |
|
272 | 272 | self.heightList = None |
|
273 | 273 | |
|
274 | 274 | self.channelList = None |
|
275 | 275 | |
|
276 | 276 | # self.channelIndexList = None |
|
277 | 277 | |
|
278 | 278 | self.flagNoData = True |
|
279 | 279 | |
|
280 | 280 | self.flagTimeBlock = False |
|
281 | 281 | |
|
282 | 282 | self.utctime = None |
|
283 | 283 | |
|
284 | 284 | self.nCohInt = None |
|
285 | 285 | |
|
286 | 286 | self.blocksize = None |
|
287 | 287 | |
|
288 | 288 | def getNoisebyHildebrand(self): |
|
289 | 289 | """ |
|
290 | 290 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
291 | 291 | |
|
292 | 292 | Return: |
|
293 | 293 | noiselevel |
|
294 | 294 | """ |
|
295 | 295 | |
|
296 | 296 | for channel in range(self.nChannels): |
|
297 | 297 | daux = self.data_spc[channel,:,:] |
|
298 | 298 | self.noise[channel] = hildebrand_sekhon(daux, self.nCohInt) |
|
299 | 299 | |
|
300 | 300 | return self.noise |
|
301 | 301 | |
|
302 | 302 | def getNoise(self, type = 1): |
|
303 | 303 | |
|
304 | 304 | self.noise = numpy.zeros(self.nChannels) |
|
305 | 305 | |
|
306 | 306 | if type == 1: |
|
307 | 307 | noise = self.getNoisebyHildebrand() |
|
308 | 308 | |
|
309 | 309 | return 10*numpy.log10(noise) |
|
310 | 310 | |
|
311 | 311 | class Spectra(JROData): |
|
312 | 312 | |
|
313 | 313 | #data es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
314 | 314 | data_spc = None |
|
315 | 315 | |
|
316 | 316 | #data es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
317 | 317 | data_cspc = None |
|
318 | 318 | |
|
319 | 319 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
320 | 320 | data_dc = None |
|
321 | 321 | |
|
322 | 322 | nFFTPoints = None |
|
323 | 323 | |
|
324 | 324 | nPairs = None |
|
325 | 325 | |
|
326 | 326 | pairsList = None |
|
327 | 327 | |
|
328 | 328 | nIncohInt = None |
|
329 | 329 | |
|
330 | 330 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia |
|
331 | 331 | |
|
332 | 332 | nCohInt = None #se requiere para determinar el valor de timeInterval |
|
333 | 333 | |
|
334 | 334 | def __init__(self): |
|
335 | 335 | ''' |
|
336 | 336 | Constructor |
|
337 | 337 | ''' |
|
338 | 338 | |
|
339 | 339 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
340 | 340 | |
|
341 | 341 | self.systemHeaderObj = SystemHeader() |
|
342 | 342 | |
|
343 | 343 | self.type = "Spectra" |
|
344 | 344 | |
|
345 | 345 | # self.data = None |
|
346 | 346 | |
|
347 | 347 | self.dtype = None |
|
348 | 348 | |
|
349 | 349 | # self.nChannels = 0 |
|
350 | 350 | |
|
351 | 351 | # self.nHeights = 0 |
|
352 | 352 | |
|
353 | 353 | self.nProfiles = None |
|
354 | 354 | |
|
355 | 355 | self.heightList = None |
|
356 | 356 | |
|
357 | 357 | self.channelList = None |
|
358 | 358 | |
|
359 | 359 | # self.channelIndexList = None |
|
360 | 360 | |
|
361 | 361 | self.flagNoData = True |
|
362 | 362 | |
|
363 | 363 | self.flagTimeBlock = False |
|
364 | 364 | |
|
365 | 365 | self.utctime = None |
|
366 | 366 | |
|
367 | 367 | self.nCohInt = None |
|
368 | 368 | |
|
369 | 369 | self.nIncohInt = None |
|
370 | 370 | |
|
371 | 371 | self.blocksize = None |
|
372 | 372 | |
|
373 | 373 | self.nFFTPoints = None |
|
374 | 374 | |
|
375 | 375 | self.wavelength = None |
|
376 | ||
|
377 | def getFreqRange(self, extrapoints=0): | |
|
378 | ||
|
379 | delfreq = 2 * self.getFmax() / self.nFFTPoints | |
|
380 | freqrange = deltafreqs*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 | |
|
381 | ||
|
382 | return freqrange | |
|
383 | ||
|
384 | def getVelRange(self, extrapoints=0): | |
|
385 | ||
|
386 | deltav = 2 * self.getVmax() / self.nFFTPoints | |
|
387 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltav/2 | |
|
388 | ||
|
389 | return velrange | |
|
390 | 376 | |
|
391 | 377 | def getNoisebyHildebrand(self): |
|
392 | 378 | """ |
|
393 | 379 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
394 | 380 | |
|
395 | 381 | Return: |
|
396 | 382 | noiselevel |
|
397 | 383 | """ |
|
398 | 384 | |
|
399 | 385 | for channel in range(self.nChannels): |
|
400 | 386 | daux = self.data_spc[channel,:,:] |
|
401 | 387 | self.noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
402 | 388 | |
|
403 | 389 | return self.noise |
|
404 | 390 | |
|
405 | 391 | def getNoisebyWindow(self, heiIndexMin=0, heiIndexMax=-1, freqIndexMin=0, freqIndexMax=-1): |
|
406 | 392 | """ |
|
407 | 393 | Determina el ruido del canal utilizando la ventana indicada con las coordenadas: |
|
408 | 394 | (heiIndexMIn, freqIndexMin) hasta (heiIndexMax, freqIndexMAx) |
|
409 | 395 | |
|
410 | 396 | Inputs: |
|
411 | 397 | heiIndexMin: Limite inferior del eje de alturas |
|
412 | 398 | heiIndexMax: Limite superior del eje de alturas |
|
413 | 399 | freqIndexMin: Limite inferior del eje de frecuencia |
|
414 | 400 | freqIndexMax: Limite supoerior del eje de frecuencia |
|
415 | 401 | """ |
|
416 | 402 | |
|
417 | 403 | data = self.data_spc[:, heiIndexMin:heiIndexMax, freqIndexMin:freqIndexMax] |
|
418 | 404 | |
|
419 | 405 | for channel in range(self.nChannels): |
|
420 | 406 | daux = data[channel,:,:] |
|
421 | 407 | self.noise[channel] = numpy.average(daux) |
|
422 | 408 | |
|
423 | 409 | return self.noise |
|
424 | 410 | |
|
425 | 411 | def getNoisebySort(self): |
|
426 | 412 | |
|
427 | 413 | for channel in range(self.nChannels): |
|
428 | 414 | daux = self.data_spc[channel,:,:] |
|
429 | 415 | self.noise[channel] = sorting_bruce(daux, self.nIncohInt) |
|
430 | 416 | |
|
431 | 417 | return self.noise |
|
432 | 418 | |
|
433 | 419 | def getNoise(self, type = 1): |
|
434 | 420 | |
|
435 | 421 | self.noise = numpy.zeros(self.nChannels) |
|
436 | 422 | |
|
437 | 423 | if type == 1: |
|
438 | 424 | noise = self.getNoisebyHildebrand() |
|
439 | 425 | |
|
440 | 426 | if type == 2: |
|
441 | 427 | noise = self.getNoisebySort() |
|
442 | 428 | |
|
443 | 429 | if type == 3: |
|
444 | 430 | noise = self.getNoisebyWindow() |
|
445 | 431 | |
|
446 | 432 | return 10*numpy.log10(noise) |
|
433 | ||
|
434 | ||
|
435 | def getFreqRange(self, extrapoints=0): | |
|
436 | ||
|
437 | delfreq = 2 * self.getFmax() / self.nFFTPoints | |
|
438 | freqrange = deltafreqs*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 | |
|
439 | ||
|
440 | return freqrange | |
|
441 | ||
|
442 | def getVelRange(self, extrapoints=0): | |
|
443 | ||
|
444 | deltav = 2 * self.getVmax() / self.nFFTPoints | |
|
445 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltav/2 | |
|
446 | ||
|
447 | return velrange | |
|
448 | ||
|
449 | def getNPairs(self): | |
|
450 | ||
|
451 | return len(self.pairsList) | |
|
452 | ||
|
453 | def getPairsIndexList(self): | |
|
454 | ||
|
455 | return range(self.nPairs) | |
|
456 | ||
|
457 | nPairs = property(getNPairs, "I'm the 'nPairs' property.") | |
|
458 | pairsIndexList = property(getPairsIndexList, "I'm the 'pairsIndexList' property.") | |
|
447 | 459 | |
|
448 | 460 | class SpectraHeis(JROData): |
|
449 | 461 | |
|
450 | 462 | data_spc = None |
|
451 | 463 | |
|
452 | 464 | data_cspc = None |
|
453 | 465 | |
|
454 | 466 | data_dc = None |
|
455 | 467 | |
|
456 | 468 | nFFTPoints = None |
|
457 | 469 | |
|
458 | 470 | nPairs = None |
|
459 | 471 | |
|
460 | 472 | pairsList = None |
|
461 | 473 | |
|
462 | 474 | nIncohInt = None |
|
463 | 475 | |
|
464 | 476 | def __init__(self): |
|
465 | 477 | |
|
466 | 478 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
467 | 479 | |
|
468 | 480 | self.systemHeaderObj = SystemHeader() |
|
469 | 481 | |
|
470 | 482 | self.type = "SpectraHeis" |
|
471 | 483 | |
|
472 | 484 | self.dtype = None |
|
473 | 485 | |
|
474 | 486 | # self.nChannels = 0 |
|
475 | 487 | |
|
476 | 488 | # self.nHeights = 0 |
|
477 | 489 | |
|
478 | 490 | self.nProfiles = None |
|
479 | 491 | |
|
480 | 492 | self.heightList = None |
|
481 | 493 | |
|
482 | 494 | self.channelList = None |
|
483 | 495 | |
|
484 | 496 | # self.channelIndexList = None |
|
485 | 497 | |
|
486 | 498 | self.flagNoData = True |
|
487 | 499 | |
|
488 | 500 | self.flagTimeBlock = False |
|
489 | 501 | |
|
490 | 502 | self.nPairs = 0 |
|
491 | 503 | |
|
492 | 504 | self.utctime = None |
|
493 | 505 | |
|
494 | 506 | self.blocksize = None |
@@ -1,427 +1,586 | |||
|
1 | 1 | import numpy |
|
2 | 2 | import time, datetime |
|
3 | 3 | from graphics.figure import * |
|
4 | 4 | |
|
5 | class CrossSpectraPlot(Figure): | |
|
6 | ||
|
7 | __isConfig = None | |
|
8 | __nsubplots = None | |
|
9 | ||
|
10 | WIDTHPROF = None | |
|
11 | HEIGHTPROF = None | |
|
12 | PREFIX = 'spc' | |
|
13 | ||
|
14 | def __init__(self): | |
|
15 | ||
|
16 | self.__isConfig = False | |
|
17 | self.__nsubplots = 4 | |
|
18 | ||
|
19 | self.WIDTH = 300 | |
|
20 | self.HEIGHT = 400 | |
|
21 | self.WIDTHPROF = 0 | |
|
22 | self.HEIGHTPROF = 0 | |
|
23 | ||
|
24 | def getSubplots(self): | |
|
25 | ||
|
26 | ncol = 4 | |
|
27 | nrow = self.nplots | |
|
28 | ||
|
29 | return nrow, ncol | |
|
30 | ||
|
31 | def setup(self, idfigure, nplots, wintitle, showprofile=True): | |
|
32 | ||
|
33 | self.__showprofile = showprofile | |
|
34 | self.nplots = nplots | |
|
35 | ||
|
36 | ncolspan = 1 | |
|
37 | colspan = 1 | |
|
38 | ||
|
39 | self.createFigure(idfigure = idfigure, | |
|
40 | wintitle = wintitle, | |
|
41 | widthplot = self.WIDTH + self.WIDTHPROF, | |
|
42 | heightplot = self.HEIGHT + self.HEIGHTPROF) | |
|
43 | ||
|
44 | nrow, ncol = self.getSubplots() | |
|
45 | ||
|
46 | counter = 0 | |
|
47 | for y in range(nrow): | |
|
48 | for x in range(ncol): | |
|
49 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
|
50 | ||
|
51 | counter += 1 | |
|
52 | ||
|
53 | def run(self, dataOut, idfigure, wintitle="", pairsList=None, showprofile='True', | |
|
54 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
|
55 | save=False, figpath='./', figfile=None): | |
|
56 | ||
|
57 | """ | |
|
58 | ||
|
59 | Input: | |
|
60 | dataOut : | |
|
61 | idfigure : | |
|
62 | wintitle : | |
|
63 | channelList : | |
|
64 | showProfile : | |
|
65 | xmin : None, | |
|
66 | xmax : None, | |
|
67 | ymin : None, | |
|
68 | ymax : None, | |
|
69 | zmin : None, | |
|
70 | zmax : None | |
|
71 | """ | |
|
72 | ||
|
73 | if pairsList == None: | |
|
74 | pairsIndexList = dataOut.pairsIndexList | |
|
75 | else: | |
|
76 | pairsIndexList = [] | |
|
77 | for pair in pairsList: | |
|
78 | if pair not in dataOut.pairsList: | |
|
79 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) | |
|
80 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
|
81 | ||
|
82 | x = dataOut.getVelRange(1) | |
|
83 | y = dataOut.getHeiRange() | |
|
84 | z = 10.*numpy.log10(dataOut.data_spc[:,:,:]) | |
|
85 | avg = numpy.average(numpy.abs(z), axis=1) | |
|
86 | ||
|
87 | noise = dataOut.getNoise() | |
|
88 | ||
|
89 | if not self.__isConfig: | |
|
90 | ||
|
91 | nplots = len(pairsIndexList) | |
|
92 | ||
|
93 | self.setup(idfigure=idfigure, | |
|
94 | nplots=nplots, | |
|
95 | wintitle=wintitle, | |
|
96 | showprofile=showprofile) | |
|
97 | ||
|
98 | if xmin == None: xmin = numpy.nanmin(x) | |
|
99 | if xmax == None: xmax = numpy.nanmax(x) | |
|
100 | if ymin == None: ymin = numpy.nanmin(y) | |
|
101 | if ymax == None: ymax = numpy.nanmax(y) | |
|
102 | if zmin == None: zmin = numpy.nanmin(avg)*0.9 | |
|
103 | if zmax == None: zmax = numpy.nanmax(avg)*0.9 | |
|
104 | ||
|
105 | self.__isConfig = True | |
|
106 | ||
|
107 | thisDatetime = datetime.datetime.fromtimestamp(dataOut.utctime) | |
|
108 | title = "Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
|
109 | xlabel = "Velocity (m/s)" | |
|
110 | ylabel = "Range (Km)" | |
|
111 | ||
|
112 | self.setWinTitle(title) | |
|
113 | ||
|
114 | for i in range(self.nplots): | |
|
115 | pair = dataOut.pairsList[pairsIndexList[i]] | |
|
116 | ||
|
117 | title = "Channel %d: %4.2fdB" %(pair[0], noise[pair[0]]) | |
|
118 | z = 10.*numpy.log10(dataOut.data_spc[pair[0],:,:]) | |
|
119 | axes0 = self.axesList[i*self.__nsubplots] | |
|
120 | axes0.pcolor(x, y, z, | |
|
121 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
|
122 | xlabel=xlabel, ylabel=ylabel, title=title, | |
|
123 | ticksize=9, cblabel='') | |
|
124 | ||
|
125 | title = "Channel %d: %4.2fdB" %(pair[1], noise[pair[1]]) | |
|
126 | z = 10.*numpy.log10(dataOut.data_spc[pair[1],:,:]) | |
|
127 | axes0 = self.axesList[i*self.__nsubplots+1] | |
|
128 | axes0.pcolor(x, y, z, | |
|
129 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
|
130 | xlabel=xlabel, ylabel=ylabel, title=title, | |
|
131 | ticksize=9, cblabel='') | |
|
132 | ||
|
133 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:]) | |
|
134 | coherence = numpy.abs(coherenceComplex) | |
|
135 | phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi | |
|
136 | ||
|
137 | ||
|
138 | title = "Coherence %d%d" %(pair[0], pair[1]) | |
|
139 | axes0 = self.axesList[i*self.__nsubplots+2] | |
|
140 | axes0.pcolor(x, y, coherence, | |
|
141 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=-1, zmax=1, | |
|
142 | xlabel=xlabel, ylabel=ylabel, title=title, | |
|
143 | ticksize=9, cblabel='') | |
|
144 | ||
|
145 | title = "Phase %d%d" %(pair[0], pair[1]) | |
|
146 | axes0 = self.axesList[i*self.__nsubplots+3] | |
|
147 | axes0.pcolor(x, y, phase, | |
|
148 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=-180, zmax=180, | |
|
149 | xlabel=xlabel, ylabel=ylabel, title=title, | |
|
150 | ticksize=9, cblabel='') | |
|
151 | ||
|
152 | ||
|
153 | ||
|
154 | self.draw() | |
|
155 | ||
|
156 | if save: | |
|
157 | date = thisDatetime.strftime("%Y%m%d") | |
|
158 | if figfile == None: | |
|
159 | figfile = self.getFilename(name = date) | |
|
160 | ||
|
161 | self.saveFigure(figpath, figfile) | |
|
162 | ||
|
163 | ||
|
5 | 164 | class RTIPlot(Figure): |
|
6 | 165 | |
|
7 | 166 | __isConfig = None |
|
8 | 167 | __nsubplots = None |
|
9 | 168 | |
|
10 | 169 | WIDTHPROF = None |
|
11 | 170 | HEIGHTPROF = None |
|
12 | 171 | PREFIX = 'rti' |
|
13 | 172 | |
|
14 | 173 | def __init__(self): |
|
15 | 174 | |
|
16 | 175 | self.__timerange = 24*60*60 |
|
17 | 176 | self.__isConfig = False |
|
18 | 177 | self.__nsubplots = 1 |
|
19 | 178 | |
|
20 | 179 | self.WIDTH = 800 |
|
21 | 180 | self.HEIGHT = 200 |
|
22 | 181 | self.WIDTHPROF = 120 |
|
23 | 182 | self.HEIGHTPROF = 0 |
|
24 | 183 | |
|
25 | 184 | def getSubplots(self): |
|
26 | 185 | |
|
27 | 186 | ncol = 1 |
|
28 | 187 | nrow = self.nplots |
|
29 | 188 | |
|
30 | 189 | return nrow, ncol |
|
31 | 190 | |
|
32 | 191 | def setup(self, idfigure, nplots, wintitle, showprofile=True): |
|
33 | 192 | |
|
34 | 193 | self.__showprofile = showprofile |
|
35 | 194 | self.nplots = nplots |
|
36 | 195 | |
|
37 | 196 | ncolspan = 1 |
|
38 | 197 | colspan = 1 |
|
39 | 198 | if showprofile: |
|
40 | 199 | ncolspan = 7 |
|
41 | 200 | colspan = 6 |
|
42 | 201 | self.__nsubplots = 2 |
|
43 | 202 | |
|
44 | 203 | self.createFigure(idfigure = idfigure, |
|
45 | 204 | wintitle = wintitle, |
|
46 | 205 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
47 | 206 | heightplot = self.HEIGHT + self.HEIGHTPROF) |
|
48 | 207 | |
|
49 | 208 | nrow, ncol = self.getSubplots() |
|
50 | 209 | |
|
51 | 210 | counter = 0 |
|
52 | 211 | for y in range(nrow): |
|
53 | 212 | for x in range(ncol): |
|
54 | 213 | |
|
55 | 214 | if counter >= self.nplots: |
|
56 | 215 | break |
|
57 | 216 | |
|
58 | 217 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
59 | 218 | |
|
60 | 219 | if showprofile: |
|
61 | 220 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
62 | 221 | |
|
63 | 222 | counter += 1 |
|
64 | 223 | |
|
65 | 224 | def __getTimeLim(self, x, xmin, xmax): |
|
66 | 225 | |
|
67 | 226 | thisdatetime = datetime.datetime.fromtimestamp(numpy.min(x)) |
|
68 | 227 | thisdate = datetime.datetime.combine(thisdatetime.date(), datetime.time(0,0,0)) |
|
69 | 228 | |
|
70 | 229 | #################################################### |
|
71 | 230 | #If the x is out of xrange |
|
72 | 231 | if xmax < (thisdatetime - thisdate).seconds/(60*60.): |
|
73 | 232 | xmin = None |
|
74 | 233 | xmax = None |
|
75 | 234 | |
|
76 | 235 | if xmin == None: |
|
77 | 236 | td = thisdatetime - thisdate |
|
78 | 237 | xmin = td.seconds/(60*60.) |
|
79 | 238 | |
|
80 | 239 | if xmax == None: |
|
81 | 240 | xmax = xmin + self.__timerange/(60*60.) |
|
82 | 241 | |
|
83 | 242 | mindt = thisdate + datetime.timedelta(0,0,0,0,0, xmin) |
|
84 | 243 | tmin = time.mktime(mindt.timetuple()) |
|
85 | 244 | |
|
86 | 245 | maxdt = thisdate + datetime.timedelta(0,0,0,0,0, xmax) |
|
87 | 246 | tmax = time.mktime(maxdt.timetuple()) |
|
88 | 247 | |
|
89 | 248 | self.__timerange = tmax - tmin |
|
90 | 249 | |
|
91 | 250 | return tmin, tmax |
|
92 | 251 | |
|
93 | 252 | def run(self, dataOut, idfigure, wintitle="", channelList=None, showprofile='True', |
|
94 | 253 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
95 | 254 | timerange=None, |
|
96 | 255 | save=False, figpath='./', figfile=None): |
|
97 | 256 | |
|
98 | 257 | """ |
|
99 | 258 | |
|
100 | 259 | Input: |
|
101 | 260 | dataOut : |
|
102 | 261 | idfigure : |
|
103 | 262 | wintitle : |
|
104 | 263 | channelList : |
|
105 | 264 | showProfile : |
|
106 | 265 | xmin : None, |
|
107 | 266 | xmax : None, |
|
108 | 267 | ymin : None, |
|
109 | 268 | ymax : None, |
|
110 | 269 | zmin : None, |
|
111 | 270 | zmax : None |
|
112 | 271 | """ |
|
113 | 272 | |
|
114 | 273 | if channelList == None: |
|
115 | 274 | channelIndexList = dataOut.channelIndexList |
|
116 | 275 | else: |
|
117 | 276 | channelIndexList = [] |
|
118 | 277 | for channel in channelList: |
|
119 | 278 | if channel not in dataOut.channelList: |
|
120 | 279 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
121 |
channelIndexList.append(dataOut.channelList.index( |
|
|
280 | channelIndexList.append(dataOut.channelList.index(channel)) | |
|
122 | 281 | |
|
123 | 282 | if timerange != None: |
|
124 | 283 | self.__timerange = timerange |
|
125 | 284 | |
|
126 | 285 | tmin = None |
|
127 | 286 | tmax = None |
|
128 | 287 | x = dataOut.getDatatime() |
|
129 | 288 | y = dataOut.getHeiRange() |
|
130 | 289 | z = 10.*numpy.log10(dataOut.data_spc[channelIndexList,:,:]) |
|
131 | 290 | avg = numpy.average(z, axis=1) |
|
132 | 291 | |
|
133 | 292 | noise = dataOut.getNoise() |
|
134 | 293 | |
|
135 | 294 | if not self.__isConfig: |
|
136 | 295 | |
|
137 | 296 | nplots = len(channelIndexList) |
|
138 | 297 | |
|
139 | 298 | self.setup(idfigure=idfigure, |
|
140 | 299 | nplots=nplots, |
|
141 | 300 | wintitle=wintitle, |
|
142 | 301 | showprofile=showprofile) |
|
143 | 302 | |
|
144 | 303 | tmin, tmax = self.__getTimeLim(x, xmin, xmax) |
|
145 | 304 | if ymin == None: ymin = numpy.nanmin(y) |
|
146 | 305 | if ymax == None: ymax = numpy.nanmax(y) |
|
147 | 306 | if zmin == None: zmin = numpy.nanmin(avg)*0.9 |
|
148 | 307 | if zmax == None: zmax = numpy.nanmax(avg)*0.9 |
|
149 | 308 | |
|
150 | 309 | self.__isConfig = True |
|
151 | 310 | |
|
152 | 311 | thisDatetime = datetime.datetime.fromtimestamp(dataOut.utctime) |
|
153 | 312 | title = "RTI: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
154 | 313 | xlabel = "Velocity (m/s)" |
|
155 | 314 | ylabel = "Range (Km)" |
|
156 | 315 | |
|
157 | 316 | self.setWinTitle(title) |
|
158 | 317 | |
|
159 | 318 | for i in range(self.nplots): |
|
160 | 319 | title = "Channel %d: %s" %(dataOut.channelList[i], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
161 | 320 | axes = self.axesList[i*self.__nsubplots] |
|
162 | 321 | z = avg[i].reshape((1,-1)) |
|
163 | 322 | axes.pcolor(x, y, z, |
|
164 | 323 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
165 | 324 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
166 | 325 | ticksize=9, cblabel='', cbsize="1%") |
|
167 | 326 | |
|
168 | 327 | if self.__showprofile: |
|
169 | 328 | axes = self.axesList[i*self.__nsubplots +1] |
|
170 | 329 | axes.pline(avg[i], y, |
|
171 | 330 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
172 | 331 | xlabel='dB', ylabel='', title='', |
|
173 | 332 | ytick_visible=False, |
|
174 | 333 | grid='x') |
|
175 | 334 | |
|
176 | 335 | self.draw() |
|
177 | 336 | |
|
178 | 337 | if save: |
|
179 | 338 | date = thisDatetime.strftime("%Y%m%d") |
|
180 | 339 | if figfile == None: |
|
181 | 340 | figfile = self.getFilename(name = date) |
|
182 | 341 | |
|
183 | 342 | self.saveFigure(figpath, figfile) |
|
184 | 343 | |
|
185 | 344 | if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax: |
|
186 | 345 | self.__isConfig = False |
|
187 | 346 | |
|
188 | 347 | class SpectraPlot(Figure): |
|
189 | 348 | |
|
190 | 349 | __isConfig = None |
|
191 | 350 | __nsubplots = None |
|
192 | 351 | |
|
193 | 352 | WIDTHPROF = None |
|
194 | 353 | HEIGHTPROF = None |
|
195 | 354 | PREFIX = 'spc' |
|
196 | 355 | |
|
197 | 356 | def __init__(self): |
|
198 | 357 | |
|
199 | 358 | self.__isConfig = False |
|
200 | 359 | self.__nsubplots = 1 |
|
201 | 360 | |
|
202 | 361 | self.WIDTH = 300 |
|
203 | 362 | self.HEIGHT = 400 |
|
204 | 363 | self.WIDTHPROF = 120 |
|
205 | 364 | self.HEIGHTPROF = 0 |
|
206 | 365 | |
|
207 | 366 | def getSubplots(self): |
|
208 | 367 | |
|
209 | 368 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
210 | 369 | nrow = int(self.nplots*1./ncol + 0.9) |
|
211 | 370 | |
|
212 | 371 | return nrow, ncol |
|
213 | 372 | |
|
214 | 373 | def setup(self, idfigure, nplots, wintitle, showprofile=True): |
|
215 | 374 | |
|
216 | 375 | self.__showprofile = showprofile |
|
217 | 376 | self.nplots = nplots |
|
218 | 377 | |
|
219 | 378 | ncolspan = 1 |
|
220 | 379 | colspan = 1 |
|
221 | 380 | if showprofile: |
|
222 | 381 | ncolspan = 3 |
|
223 | 382 | colspan = 2 |
|
224 | 383 | self.__nsubplots = 2 |
|
225 | 384 | |
|
226 | 385 | self.createFigure(idfigure = idfigure, |
|
227 | 386 | wintitle = wintitle, |
|
228 | 387 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
229 | 388 | heightplot = self.HEIGHT + self.HEIGHTPROF) |
|
230 | 389 | |
|
231 | 390 | nrow, ncol = self.getSubplots() |
|
232 | 391 | |
|
233 | 392 | counter = 0 |
|
234 | 393 | for y in range(nrow): |
|
235 | 394 | for x in range(ncol): |
|
236 | 395 | |
|
237 | 396 | if counter >= self.nplots: |
|
238 | 397 | break |
|
239 | 398 | |
|
240 | 399 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
241 | 400 | |
|
242 | 401 | if showprofile: |
|
243 | 402 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
244 | 403 | |
|
245 | 404 | counter += 1 |
|
246 | 405 | |
|
247 | 406 | def run(self, dataOut, idfigure, wintitle="", channelList=None, showprofile='True', |
|
248 | 407 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
249 | 408 | save=False, figpath='./', figfile=None): |
|
250 | 409 | |
|
251 | 410 | """ |
|
252 | 411 | |
|
253 | 412 | Input: |
|
254 | 413 | dataOut : |
|
255 | 414 | idfigure : |
|
256 | 415 | wintitle : |
|
257 | 416 | channelList : |
|
258 | 417 | showProfile : |
|
259 | 418 | xmin : None, |
|
260 | 419 | xmax : None, |
|
261 | 420 | ymin : None, |
|
262 | 421 | ymax : None, |
|
263 | 422 | zmin : None, |
|
264 | 423 | zmax : None |
|
265 | 424 | """ |
|
266 | 425 | |
|
267 | 426 | if channelList == None: |
|
268 | 427 | channelIndexList = dataOut.channelIndexList |
|
269 | 428 | else: |
|
270 | 429 | channelIndexList = [] |
|
271 | 430 | for channel in channelList: |
|
272 | 431 | if channel not in dataOut.channelList: |
|
273 | 432 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
274 | 433 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
275 | 434 | |
|
276 | 435 | x = dataOut.getVelRange(1) |
|
277 | 436 | y = dataOut.getHeiRange() |
|
278 | 437 | z = 10.*numpy.log10(dataOut.data_spc[channelIndexList,:,:]) |
|
279 | 438 | avg = numpy.average(z, axis=1) |
|
280 | 439 | |
|
281 | 440 | noise = dataOut.getNoise() |
|
282 | 441 | |
|
283 | 442 | if not self.__isConfig: |
|
284 | 443 | |
|
285 | 444 | nplots = len(channelIndexList) |
|
286 | 445 | |
|
287 | 446 | self.setup(idfigure=idfigure, |
|
288 | 447 | nplots=nplots, |
|
289 | 448 | wintitle=wintitle, |
|
290 | 449 | showprofile=showprofile) |
|
291 | 450 | |
|
292 | 451 | if xmin == None: xmin = numpy.nanmin(x) |
|
293 | 452 | if xmax == None: xmax = numpy.nanmax(x) |
|
294 | 453 | if ymin == None: ymin = numpy.nanmin(y) |
|
295 | 454 | if ymax == None: ymax = numpy.nanmax(y) |
|
296 | 455 | if zmin == None: zmin = numpy.nanmin(avg)*0.9 |
|
297 | 456 | if zmax == None: zmax = numpy.nanmax(avg)*0.9 |
|
298 | 457 | |
|
299 | 458 | self.__isConfig = True |
|
300 | 459 | |
|
301 | 460 | thisDatetime = datetime.datetime.fromtimestamp(dataOut.utctime) |
|
302 | 461 | title = "Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
303 | 462 | xlabel = "Velocity (m/s)" |
|
304 | 463 | ylabel = "Range (Km)" |
|
305 | 464 | |
|
306 | 465 | self.setWinTitle(title) |
|
307 | 466 | |
|
308 | 467 | for i in range(self.nplots): |
|
309 | 468 | title = "Channel %d: %4.2fdB" %(dataOut.channelList[i], noise[i]) |
|
310 | 469 | axes = self.axesList[i*self.__nsubplots] |
|
311 | 470 | axes.pcolor(x, y, z[i,:,:], |
|
312 | 471 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
313 | 472 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
314 | 473 | ticksize=9, cblabel='') |
|
315 | 474 | |
|
316 | 475 | if self.__showprofile: |
|
317 | 476 | axes = self.axesList[i*self.__nsubplots +1] |
|
318 | 477 | axes.pline(avg[i], y, |
|
319 | 478 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
320 | 479 | xlabel='dB', ylabel='', title='', |
|
321 | 480 | ytick_visible=False, |
|
322 | 481 | grid='x') |
|
323 | 482 | |
|
324 | 483 | self.draw() |
|
325 | 484 | |
|
326 | 485 | if save: |
|
327 | 486 | date = thisDatetime.strftime("%Y%m%d") |
|
328 | 487 | if figfile == None: |
|
329 | 488 | figfile = self.getFilename(name = date) |
|
330 | 489 | |
|
331 | 490 | self.saveFigure(figpath, figfile) |
|
332 | 491 | |
|
333 | 492 | class Scope(Figure): |
|
334 | 493 | |
|
335 | 494 | __isConfig = None |
|
336 | 495 | |
|
337 | 496 | def __init__(self): |
|
338 | 497 | |
|
339 | 498 | self.__isConfig = False |
|
340 | 499 | self.WIDTH = 600 |
|
341 | 500 | self.HEIGHT = 200 |
|
342 | 501 | |
|
343 | 502 | def getSubplots(self): |
|
344 | 503 | |
|
345 | 504 | nrow = self.nplots |
|
346 | 505 | ncol = 3 |
|
347 | 506 | return nrow, ncol |
|
348 | 507 | |
|
349 | 508 | def setup(self, idfigure, nplots, wintitle): |
|
350 | 509 | |
|
351 | 510 | self.createFigure(idfigure, wintitle) |
|
352 | 511 | |
|
353 | 512 | nrow,ncol = self.getSubplots() |
|
354 | 513 | colspan = 3 |
|
355 | 514 | rowspan = 1 |
|
356 | 515 | |
|
357 | 516 | for i in range(nplots): |
|
358 | 517 | self.addAxes(nrow, ncol, i, 0, colspan, rowspan) |
|
359 | 518 | |
|
360 | 519 | self.nplots = nplots |
|
361 | 520 | |
|
362 | 521 | def run(self, dataOut, idfigure, wintitle="", channelList=None, |
|
363 | 522 | xmin=None, xmax=None, ymin=None, ymax=None, save=False, filename=None): |
|
364 | 523 | |
|
365 | 524 | """ |
|
366 | 525 | |
|
367 | 526 | Input: |
|
368 | 527 | dataOut : |
|
369 | 528 | idfigure : |
|
370 | 529 | wintitle : |
|
371 | 530 | channelList : |
|
372 | 531 | xmin : None, |
|
373 | 532 | xmax : None, |
|
374 | 533 | ymin : None, |
|
375 | 534 | ymax : None, |
|
376 | 535 | """ |
|
377 | 536 | |
|
378 | 537 | if channelList == None: |
|
379 | 538 | channelIndexList = dataOut.channelIndexList |
|
380 | 539 | else: |
|
381 | 540 | channelIndexList = [] |
|
382 | 541 | for channel in channelList: |
|
383 | 542 | if channel not in dataOut.channelList: |
|
384 | 543 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
385 |
channelIndexList.append(dataOut.channelList.index( |
|
|
544 | channelIndexList.append(dataOut.channelList.index(channel)) | |
|
386 | 545 | |
|
387 | 546 | x = dataOut.heightList |
|
388 | 547 | y = dataOut.data[channelList,:] * numpy.conjugate(dataOut.data[channelList,:]) |
|
389 | 548 | y = y.real |
|
390 | 549 | |
|
391 | 550 | noise = dataOut.getNoise() |
|
392 | 551 | |
|
393 | 552 | if not self.__isConfig: |
|
394 | 553 | nplots = len(channelList) |
|
395 | 554 | |
|
396 | 555 | self.setup(idfigure=idfigure, |
|
397 | 556 | nplots=nplots, |
|
398 | 557 | wintitle=wintitle) |
|
399 | 558 | |
|
400 | 559 | if xmin == None: xmin = numpy.nanmin(x) |
|
401 | 560 | if xmax == None: xmax = numpy.nanmax(x) |
|
402 | 561 | if ymin == None: ymin = numpy.nanmin(y) |
|
403 | 562 | if ymax == None: ymax = numpy.nanmax(y) |
|
404 | 563 | |
|
405 | 564 | self.__isConfig = True |
|
406 | 565 | |
|
407 | 566 | |
|
408 | 567 | thisDatetime = datetime.datetime.fromtimestamp(dataOut.utctime) |
|
409 | 568 | title = "Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
410 | 569 | xlabel = "Range (Km)" |
|
411 | 570 | ylabel = "Intensity" |
|
412 | 571 | |
|
413 | 572 | self.setWinTitle(title) |
|
414 | 573 | |
|
415 | 574 | for i in range(len(self.axesList)): |
|
416 | 575 | title = "Channel %d: %4.2fdB" %(i, noise[i]) |
|
417 | 576 | axes = self.axesList[i] |
|
418 | 577 | ychannel = y[i,:] |
|
419 | 578 | axes.pline(x, ychannel, |
|
420 | 579 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
421 | 580 | xlabel=xlabel, ylabel=ylabel, title=title) |
|
422 | 581 | |
|
423 | 582 | self.draw() |
|
424 | 583 | |
|
425 | 584 | if save: |
|
426 | 585 | self.saveFigure(filename) |
|
427 | 586 | No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now