@@ -1,712 +1,727 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Classes to plot Spectra data |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import numpy |
|
11 | 11 | |
|
12 | 12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class SpectraPlot(Plot): |
|
16 | 16 | ''' |
|
17 | 17 | Plot for Spectra data |
|
18 | 18 | ''' |
|
19 | 19 | |
|
20 | 20 | CODE = 'spc' |
|
21 | 21 | colormap = 'jet' |
|
22 | 22 | plot_type = 'pcolor' |
|
23 | 23 | buffering = False |
|
24 | 24 | channelList = [] |
|
25 | 25 | |
|
26 | 26 | def setup(self): |
|
27 | 27 | self.nplots = len(self.data.channels) |
|
28 | 28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
29 | 29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
30 | 30 | self.height = 2.6 * self.nrows |
|
31 | 31 | |
|
32 | 32 | self.cb_label = 'dB' |
|
33 | 33 | if self.showprofile: |
|
34 | 34 | self.width = 4 * self.ncols |
|
35 | 35 | else: |
|
36 | 36 | self.width = 3.5 * self.ncols |
|
37 | 37 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
38 | 38 | self.ylabel = 'Range [km]' |
|
39 | 39 | |
|
40 | 40 | def update(self, dataOut): |
|
41 | 41 | if self.channelList == None: |
|
42 | 42 | self.channelList = dataOut.channelList |
|
43 | 43 | data = {} |
|
44 | 44 | meta = {} |
|
45 | 45 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
46 | 46 | data['spc'] = spc |
|
47 | 47 | data['rti'] = dataOut.getPower() |
|
48 | 48 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
49 | 49 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
50 | 50 | if self.CODE == 'spc_moments': |
|
51 | 51 | data['moments'] = dataOut.moments |
|
52 | 52 | |
|
53 | 53 | return data, meta |
|
54 | 54 | |
|
55 | 55 | def plot(self): |
|
56 | 56 | if self.xaxis == "frequency": |
|
57 | 57 | x = self.data.xrange[0] |
|
58 | 58 | self.xlabel = "Frequency (kHz)" |
|
59 | 59 | elif self.xaxis == "time": |
|
60 | 60 | x = self.data.xrange[1] |
|
61 | 61 | self.xlabel = "Time (ms)" |
|
62 | 62 | else: |
|
63 | 63 | x = self.data.xrange[2] |
|
64 | 64 | self.xlabel = "Velocity (m/s)" |
|
65 | 65 | |
|
66 | 66 | if self.CODE == 'spc_moments': |
|
67 | 67 | x = self.data.xrange[2] |
|
68 | 68 | self.xlabel = "Velocity (m/s)" |
|
69 | 69 | |
|
70 | 70 | self.titles = [] |
|
71 | 71 | |
|
72 | 72 | y = self.data.yrange |
|
73 | 73 | self.y = y |
|
74 | 74 | |
|
75 | 75 | data = self.data[-1] |
|
76 | 76 | z = data['spc'] |
|
77 | 77 | |
|
78 | 78 | for n, ax in enumerate(self.axes): |
|
79 | 79 | noise = data['noise'][n] |
|
80 | 80 | if self.CODE == 'spc_moments': |
|
81 | 81 | mean = data['moments'][n, 1] |
|
82 | 82 | if ax.firsttime: |
|
83 | 83 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
84 | 84 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
85 | 85 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
86 | 86 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
87 | 87 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
88 | 88 | vmin=self.zmin, |
|
89 | 89 | vmax=self.zmax, |
|
90 | 90 | cmap=plt.get_cmap(self.colormap) |
|
91 | 91 | ) |
|
92 | 92 | |
|
93 | 93 | if self.showprofile: |
|
94 | 94 | ax.plt_profile = self.pf_axes[n].plot( |
|
95 | 95 | data['rti'][n], y)[0] |
|
96 | 96 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
97 | 97 | color="k", linestyle="dashed", lw=1)[0] |
|
98 | 98 | if self.CODE == 'spc_moments': |
|
99 | 99 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
100 | 100 | else: |
|
101 | 101 | ax.plt.set_array(z[n].T.ravel()) |
|
102 | 102 | if self.showprofile: |
|
103 | 103 | ax.plt_profile.set_data(data['rti'][n], y) |
|
104 | 104 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
105 | 105 | if self.CODE == 'spc_moments': |
|
106 | 106 | ax.plt_mean.set_data(mean, y) |
|
107 | 107 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
108 | 108 | |
|
109 | 109 | |
|
110 | 110 | class CrossSpectraPlot(Plot): |
|
111 | 111 | |
|
112 | 112 | CODE = 'cspc' |
|
113 | 113 | colormap = 'jet' |
|
114 | 114 | plot_type = 'pcolor' |
|
115 | 115 | zmin_coh = None |
|
116 | 116 | zmax_coh = None |
|
117 | 117 | zmin_phase = None |
|
118 | 118 | zmax_phase = None |
|
119 | realChannels = None | |
|
120 | crossPairs = None | |
|
119 | 121 | |
|
120 | 122 | def setup(self): |
|
121 | 123 | |
|
122 | 124 | self.ncols = 4 |
|
123 | 125 | self.nplots = len(self.data.pairs) * 2 |
|
124 | 126 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
125 | 127 | self.width = 3.1 * self.ncols |
|
126 | 128 | self.height = 2.6 * self.nrows |
|
127 | 129 | self.ylabel = 'Range [km]' |
|
128 | 130 | self.showprofile = False |
|
129 | 131 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
130 | 132 | |
|
131 | 133 | def update(self, dataOut): |
|
132 | 134 | |
|
133 | 135 | data = {} |
|
134 | 136 | meta = {} |
|
135 | 137 | |
|
136 | 138 | spc = dataOut.data_spc |
|
137 | 139 | cspc = dataOut.data_cspc |
|
138 | 140 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
139 | meta['pairs'] = dataOut.pairsList | |
|
141 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) | |
|
142 | #print(rawPairs) | |
|
143 | meta['pairs'] = rawPairs | |
|
144 | ||
|
145 | if self.crossPairs == None: | |
|
146 | self.crossPairs = dataOut.pairsList | |
|
140 | 147 | |
|
141 | 148 | tmp = [] |
|
142 | 149 | |
|
143 | 150 | for n, pair in enumerate(meta['pairs']): |
|
151 | ||
|
144 | 152 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
145 | 153 | coh = numpy.abs(out) |
|
146 | 154 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
147 | 155 | tmp.append(coh) |
|
148 | 156 | tmp.append(phase) |
|
149 | 157 | |
|
150 | 158 | data['cspc'] = numpy.array(tmp) |
|
151 | 159 | |
|
152 | 160 | return data, meta |
|
153 | 161 | |
|
154 | 162 | def plot(self): |
|
155 | 163 | |
|
156 | 164 | if self.xaxis == "frequency": |
|
157 | 165 | x = self.data.xrange[0] |
|
158 | 166 | self.xlabel = "Frequency (kHz)" |
|
159 | 167 | elif self.xaxis == "time": |
|
160 | 168 | x = self.data.xrange[1] |
|
161 | 169 | self.xlabel = "Time (ms)" |
|
162 | 170 | else: |
|
163 | 171 | x = self.data.xrange[2] |
|
164 | 172 | self.xlabel = "Velocity (m/s)" |
|
165 | 173 | |
|
166 | 174 | self.titles = [] |
|
167 | 175 | |
|
168 | 176 | y = self.data.yrange |
|
169 | 177 | self.y = y |
|
170 | 178 | |
|
171 | 179 | data = self.data[-1] |
|
172 | 180 | cspc = data['cspc'] |
|
173 | ||
|
181 | #print(self.crossPairs) | |
|
174 | 182 | for n in range(len(self.data.pairs)): |
|
175 | pair = self.data.pairs[n] | |
|
183 | #pair = self.data.pairs[n] | |
|
184 | pair = self.crossPairs[n] | |
|
185 | ||
|
176 | 186 | coh = cspc[n*2] |
|
177 | 187 | phase = cspc[n*2+1] |
|
178 | 188 | ax = self.axes[2 * n] |
|
189 | ||
|
179 | 190 | if ax.firsttime: |
|
180 | 191 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
181 | 192 | vmin=0, |
|
182 | 193 | vmax=1, |
|
183 | 194 | cmap=plt.get_cmap(self.colormap_coh) |
|
184 | 195 | ) |
|
185 | 196 | else: |
|
186 | 197 | ax.plt.set_array(coh.T.ravel()) |
|
187 | 198 | self.titles.append( |
|
188 | 199 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
189 | 200 | |
|
190 | 201 | ax = self.axes[2 * n + 1] |
|
191 | 202 | if ax.firsttime: |
|
192 | 203 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
193 | 204 | vmin=-180, |
|
194 | 205 | vmax=180, |
|
195 | 206 | cmap=plt.get_cmap(self.colormap_phase) |
|
196 | 207 | ) |
|
197 | 208 | else: |
|
198 | 209 | ax.plt.set_array(phase.T.ravel()) |
|
199 | 210 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
200 | 211 | |
|
201 | 212 | |
|
202 | 213 | class RTIPlot(Plot): |
|
203 | 214 | ''' |
|
204 | 215 | Plot for RTI data |
|
205 | 216 | ''' |
|
206 | 217 | |
|
207 | 218 | CODE = 'rti' |
|
208 | 219 | colormap = 'jet' |
|
209 | 220 | plot_type = 'pcolorbuffer' |
|
210 | 221 | titles = None |
|
211 | 222 | channelList = [] |
|
212 | 223 | |
|
213 | 224 | def setup(self): |
|
214 | 225 | self.xaxis = 'time' |
|
215 | 226 | self.ncols = 1 |
|
216 | 227 | print("dataChannels ",self.data.channels) |
|
217 | 228 | self.nrows = len(self.data.channels) |
|
218 | 229 | self.nplots = len(self.data.channels) |
|
219 | 230 | self.ylabel = 'Range [km]' |
|
220 | 231 | self.xlabel = 'Time' |
|
221 | 232 | self.cb_label = 'dB' |
|
222 | 233 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
223 | 234 | self.titles = ['{} Channel {}'.format( |
|
224 | 235 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
225 | 236 | print("SETUP") |
|
226 | 237 | def update(self, dataOut): |
|
227 | 238 | if len(self.channelList) == 0: |
|
228 | 239 | self.channelList = dataOut.channelList |
|
229 | 240 | data = {} |
|
230 | 241 | meta = {} |
|
231 | 242 | data['rti'] = dataOut.getPower() |
|
232 | 243 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
233 | 244 | |
|
234 | 245 | return data, meta |
|
235 | 246 | |
|
236 | 247 | def plot(self): |
|
237 | 248 | self.x = self.data.times |
|
238 | 249 | self.y = self.data.yrange |
|
239 | 250 | self.z = self.data[self.CODE] |
|
240 | 251 | self.z = numpy.ma.masked_invalid(self.z) |
|
241 | if self.channelList != None: | |
|
242 | self.titles = ['{} Channel {}'.format( | |
|
243 | self.CODE.upper(), x) for x in self.channelList] | |
|
244 | ||
|
252 | try: | |
|
253 | if self.channelList != None: | |
|
254 | self.titles = ['{} Channel {}'.format( | |
|
255 | self.CODE.upper(), x) for x in self.channelList] | |
|
256 | except: | |
|
257 | if self.channelList.any() != None: | |
|
258 | self.titles = ['{} Channel {}'.format( | |
|
259 | self.CODE.upper(), x) for x in self.channelList] | |
|
245 | 260 | if self.decimation is None: |
|
246 | 261 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
247 | 262 | else: |
|
248 | 263 | x, y, z = self.fill_gaps(*self.decimate()) |
|
249 | 264 | |
|
250 | 265 | for n, ax in enumerate(self.axes): |
|
251 | 266 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
252 | 267 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
253 | 268 | data = self.data[-1] |
|
254 | 269 | if ax.firsttime: |
|
255 | 270 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
256 | 271 | vmin=self.zmin, |
|
257 | 272 | vmax=self.zmax, |
|
258 | 273 | cmap=plt.get_cmap(self.colormap) |
|
259 | 274 | ) |
|
260 | 275 | if self.showprofile: |
|
261 | 276 | ax.plot_profile = self.pf_axes[n].plot( |
|
262 | 277 | data['rti'][n], self.y)[0] |
|
263 | 278 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
264 | 279 | color="k", linestyle="dashed", lw=1)[0] |
|
265 | 280 | else: |
|
266 | 281 | ax.collections.remove(ax.collections[0]) |
|
267 | 282 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
268 | 283 | vmin=self.zmin, |
|
269 | 284 | vmax=self.zmax, |
|
270 | 285 | cmap=plt.get_cmap(self.colormap) |
|
271 | 286 | ) |
|
272 | 287 | if self.showprofile: |
|
273 | 288 | ax.plot_profile.set_data(data['rti'][n], self.y) |
|
274 | 289 | ax.plot_noise.set_data(numpy.repeat( |
|
275 | 290 | data['noise'][n], len(self.y)), self.y) |
|
276 | 291 | |
|
277 | 292 | |
|
278 | 293 | class CoherencePlot(RTIPlot): |
|
279 | 294 | ''' |
|
280 | 295 | Plot for Coherence data |
|
281 | 296 | ''' |
|
282 | 297 | |
|
283 | 298 | CODE = 'coh' |
|
284 | 299 | |
|
285 | 300 | def setup(self): |
|
286 | 301 | self.xaxis = 'time' |
|
287 | 302 | self.ncols = 1 |
|
288 | 303 | self.nrows = len(self.data.pairs) |
|
289 | 304 | self.nplots = len(self.data.pairs) |
|
290 | 305 | self.ylabel = 'Range [km]' |
|
291 | 306 | self.xlabel = 'Time' |
|
292 | 307 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
293 | 308 | if self.CODE == 'coh': |
|
294 | 309 | self.cb_label = '' |
|
295 | 310 | self.titles = [ |
|
296 | 311 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
297 | 312 | else: |
|
298 | 313 | self.cb_label = 'Degrees' |
|
299 | 314 | self.titles = [ |
|
300 | 315 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
301 | 316 | |
|
302 | 317 | def update(self, dataOut): |
|
303 | 318 | |
|
304 | 319 | data = {} |
|
305 | 320 | meta = {} |
|
306 | 321 | data['coh'] = dataOut.getCoherence() |
|
307 | 322 | meta['pairs'] = dataOut.pairsList |
|
308 | 323 | |
|
309 | 324 | return data, meta |
|
310 | 325 | |
|
311 | 326 | class PhasePlot(CoherencePlot): |
|
312 | 327 | ''' |
|
313 | 328 | Plot for Phase map data |
|
314 | 329 | ''' |
|
315 | 330 | |
|
316 | 331 | CODE = 'phase' |
|
317 | 332 | colormap = 'seismic' |
|
318 | 333 | |
|
319 | 334 | def update(self, dataOut): |
|
320 | 335 | |
|
321 | 336 | data = {} |
|
322 | 337 | meta = {} |
|
323 | 338 | data['phase'] = dataOut.getCoherence(phase=True) |
|
324 | 339 | meta['pairs'] = dataOut.pairsList |
|
325 | 340 | |
|
326 | 341 | return data, meta |
|
327 | 342 | |
|
328 | 343 | class NoisePlot(Plot): |
|
329 | 344 | ''' |
|
330 | 345 | Plot for noise |
|
331 | 346 | ''' |
|
332 | 347 | |
|
333 | 348 | CODE = 'noise' |
|
334 | 349 | plot_type = 'scatterbuffer' |
|
335 | 350 | |
|
336 | 351 | def setup(self): |
|
337 | 352 | self.xaxis = 'time' |
|
338 | 353 | self.ncols = 1 |
|
339 | 354 | self.nrows = 1 |
|
340 | 355 | self.nplots = 1 |
|
341 | 356 | self.ylabel = 'Intensity [dB]' |
|
342 | 357 | self.xlabel = 'Time' |
|
343 | 358 | self.titles = ['Noise'] |
|
344 | 359 | self.colorbar = False |
|
345 | 360 | self.plots_adjust.update({'right': 0.85 }) |
|
346 | 361 | |
|
347 | 362 | def update(self, dataOut): |
|
348 | 363 | |
|
349 | 364 | data = {} |
|
350 | 365 | meta = {} |
|
351 | 366 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
352 | 367 | meta['yrange'] = numpy.array([]) |
|
353 | 368 | |
|
354 | 369 | return data, meta |
|
355 | 370 | |
|
356 | 371 | def plot(self): |
|
357 | 372 | |
|
358 | 373 | x = self.data.times |
|
359 | 374 | xmin = self.data.min_time |
|
360 | 375 | xmax = xmin + self.xrange * 60 * 60 |
|
361 | 376 | Y = self.data['noise'] |
|
362 | 377 | |
|
363 | 378 | if self.axes[0].firsttime: |
|
364 | 379 | self.ymin = numpy.nanmin(Y) - 5 |
|
365 | 380 | self.ymax = numpy.nanmax(Y) + 5 |
|
366 | 381 | for ch in self.data.channels: |
|
367 | 382 | y = Y[ch] |
|
368 | 383 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
369 | 384 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
370 | 385 | else: |
|
371 | 386 | for ch in self.data.channels: |
|
372 | 387 | y = Y[ch] |
|
373 | 388 | self.axes[0].lines[ch].set_data(x, y) |
|
374 | 389 | |
|
375 | 390 | |
|
376 | 391 | class PowerProfilePlot(Plot): |
|
377 | 392 | |
|
378 | 393 | CODE = 'pow_profile' |
|
379 | 394 | plot_type = 'scatter' |
|
380 | 395 | |
|
381 | 396 | def setup(self): |
|
382 | 397 | |
|
383 | 398 | self.ncols = 1 |
|
384 | 399 | self.nrows = 1 |
|
385 | 400 | self.nplots = 1 |
|
386 | 401 | self.height = 4 |
|
387 | 402 | self.width = 3 |
|
388 | 403 | self.ylabel = 'Range [km]' |
|
389 | 404 | self.xlabel = 'Intensity [dB]' |
|
390 | 405 | self.titles = ['Power Profile'] |
|
391 | 406 | self.colorbar = False |
|
392 | 407 | |
|
393 | 408 | def update(self, dataOut): |
|
394 | 409 | |
|
395 | 410 | data = {} |
|
396 | 411 | meta = {} |
|
397 | 412 | data[self.CODE] = dataOut.getPower() |
|
398 | 413 | |
|
399 | 414 | return data, meta |
|
400 | 415 | |
|
401 | 416 | def plot(self): |
|
402 | 417 | |
|
403 | 418 | y = self.data.yrange |
|
404 | 419 | self.y = y |
|
405 | 420 | |
|
406 | 421 | x = self.data[-1][self.CODE] |
|
407 | 422 | |
|
408 | 423 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
409 | 424 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
410 | 425 | |
|
411 | 426 | if self.axes[0].firsttime: |
|
412 | 427 | for ch in self.data.channels: |
|
413 | 428 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
414 | 429 | plt.legend() |
|
415 | 430 | else: |
|
416 | 431 | for ch in self.data.channels: |
|
417 | 432 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
418 | 433 | |
|
419 | 434 | |
|
420 | 435 | class SpectraCutPlot(Plot): |
|
421 | 436 | |
|
422 | 437 | CODE = 'spc_cut' |
|
423 | 438 | plot_type = 'scatter' |
|
424 | 439 | buffering = False |
|
425 | 440 | |
|
426 | 441 | def setup(self): |
|
427 | 442 | |
|
428 | 443 | self.nplots = len(self.data.channels) |
|
429 | 444 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
430 | 445 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
431 | 446 | self.width = 3.4 * self.ncols + 1.5 |
|
432 | 447 | self.height = 3 * self.nrows |
|
433 | 448 | self.ylabel = 'Power [dB]' |
|
434 | 449 | self.colorbar = False |
|
435 | 450 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
436 | 451 | |
|
437 | 452 | def update(self, dataOut): |
|
438 | 453 | |
|
439 | 454 | data = {} |
|
440 | 455 | meta = {} |
|
441 | 456 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
442 | 457 | data['spc'] = spc |
|
443 | 458 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
444 | 459 | |
|
445 | 460 | return data, meta |
|
446 | 461 | |
|
447 | 462 | def plot(self): |
|
448 | 463 | if self.xaxis == "frequency": |
|
449 | 464 | x = self.data.xrange[0][1:] |
|
450 | 465 | self.xlabel = "Frequency (kHz)" |
|
451 | 466 | elif self.xaxis == "time": |
|
452 | 467 | x = self.data.xrange[1] |
|
453 | 468 | self.xlabel = "Time (ms)" |
|
454 | 469 | else: |
|
455 | 470 | x = self.data.xrange[2] |
|
456 | 471 | self.xlabel = "Velocity (m/s)" |
|
457 | 472 | |
|
458 | 473 | self.titles = [] |
|
459 | 474 | |
|
460 | 475 | y = self.data.yrange |
|
461 | 476 | z = self.data[-1]['spc'] |
|
462 | 477 | |
|
463 | 478 | if self.height_index: |
|
464 | 479 | index = numpy.array(self.height_index) |
|
465 | 480 | else: |
|
466 | 481 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
467 | 482 | |
|
468 | 483 | for n, ax in enumerate(self.axes): |
|
469 | 484 | if ax.firsttime: |
|
470 | 485 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
471 | 486 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
472 | 487 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
473 | 488 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
474 | 489 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
475 | 490 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
476 | 491 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
477 | 492 | else: |
|
478 | 493 | for i, line in enumerate(ax.plt): |
|
479 | 494 | line.set_data(x, z[n, :, index[i]]) |
|
480 | 495 | self.titles.append('CH {}'.format(n)) |
|
481 | 496 | |
|
482 | 497 | |
|
483 | 498 | class BeaconPhase(Plot): |
|
484 | 499 | |
|
485 | 500 | __isConfig = None |
|
486 | 501 | __nsubplots = None |
|
487 | 502 | |
|
488 | 503 | PREFIX = 'beacon_phase' |
|
489 | 504 | |
|
490 | 505 | def __init__(self): |
|
491 | 506 | Plot.__init__(self) |
|
492 | 507 | self.timerange = 24*60*60 |
|
493 | 508 | self.isConfig = False |
|
494 | 509 | self.__nsubplots = 1 |
|
495 | 510 | self.counter_imagwr = 0 |
|
496 | 511 | self.WIDTH = 800 |
|
497 | 512 | self.HEIGHT = 400 |
|
498 | 513 | self.WIDTHPROF = 120 |
|
499 | 514 | self.HEIGHTPROF = 0 |
|
500 | 515 | self.xdata = None |
|
501 | 516 | self.ydata = None |
|
502 | 517 | |
|
503 | 518 | self.PLOT_CODE = BEACON_CODE |
|
504 | 519 | |
|
505 | 520 | self.FTP_WEI = None |
|
506 | 521 | self.EXP_CODE = None |
|
507 | 522 | self.SUB_EXP_CODE = None |
|
508 | 523 | self.PLOT_POS = None |
|
509 | 524 | |
|
510 | 525 | self.filename_phase = None |
|
511 | 526 | |
|
512 | 527 | self.figfile = None |
|
513 | 528 | |
|
514 | 529 | self.xmin = None |
|
515 | 530 | self.xmax = None |
|
516 | 531 | |
|
517 | 532 | def getSubplots(self): |
|
518 | 533 | |
|
519 | 534 | ncol = 1 |
|
520 | 535 | nrow = 1 |
|
521 | 536 | |
|
522 | 537 | return nrow, ncol |
|
523 | 538 | |
|
524 | 539 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
525 | 540 | |
|
526 | 541 | self.__showprofile = showprofile |
|
527 | 542 | self.nplots = nplots |
|
528 | 543 | |
|
529 | 544 | ncolspan = 7 |
|
530 | 545 | colspan = 6 |
|
531 | 546 | self.__nsubplots = 2 |
|
532 | 547 | |
|
533 | 548 | self.createFigure(id = id, |
|
534 | 549 | wintitle = wintitle, |
|
535 | 550 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
536 | 551 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
537 | 552 | show=show) |
|
538 | 553 | |
|
539 | 554 | nrow, ncol = self.getSubplots() |
|
540 | 555 | |
|
541 | 556 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
542 | 557 | |
|
543 | 558 | def save_phase(self, filename_phase): |
|
544 | 559 | f = open(filename_phase,'w+') |
|
545 | 560 | f.write('\n\n') |
|
546 | 561 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
547 | 562 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
548 | 563 | f.close() |
|
549 | 564 | |
|
550 | 565 | def save_data(self, filename_phase, data, data_datetime): |
|
551 | 566 | f=open(filename_phase,'a') |
|
552 | 567 | timetuple_data = data_datetime.timetuple() |
|
553 | 568 | day = str(timetuple_data.tm_mday) |
|
554 | 569 | month = str(timetuple_data.tm_mon) |
|
555 | 570 | year = str(timetuple_data.tm_year) |
|
556 | 571 | hour = str(timetuple_data.tm_hour) |
|
557 | 572 | minute = str(timetuple_data.tm_min) |
|
558 | 573 | second = str(timetuple_data.tm_sec) |
|
559 | 574 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
560 | 575 | f.close() |
|
561 | 576 | |
|
562 | 577 | def plot(self): |
|
563 | 578 | log.warning('TODO: Not yet implemented...') |
|
564 | 579 | |
|
565 | 580 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
566 | 581 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
567 | 582 | timerange=None, |
|
568 | 583 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
569 | 584 | server=None, folder=None, username=None, password=None, |
|
570 | 585 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
571 | 586 | |
|
572 | 587 | if dataOut.flagNoData: |
|
573 | 588 | return dataOut |
|
574 | 589 | |
|
575 | 590 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
576 | 591 | return |
|
577 | 592 | |
|
578 | 593 | if pairsList == None: |
|
579 | 594 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
580 | 595 | else: |
|
581 | 596 | pairsIndexList = [] |
|
582 | 597 | for pair in pairsList: |
|
583 | 598 | if pair not in dataOut.pairsList: |
|
584 | 599 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
585 | 600 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
586 | 601 | |
|
587 | 602 | if pairsIndexList == []: |
|
588 | 603 | return |
|
589 | 604 | |
|
590 | 605 | # if len(pairsIndexList) > 4: |
|
591 | 606 | # pairsIndexList = pairsIndexList[0:4] |
|
592 | 607 | |
|
593 | 608 | hmin_index = None |
|
594 | 609 | hmax_index = None |
|
595 | 610 | |
|
596 | 611 | if hmin != None and hmax != None: |
|
597 | 612 | indexes = numpy.arange(dataOut.nHeights) |
|
598 | 613 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
599 | 614 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
600 | 615 | |
|
601 | 616 | if hmin_list.any(): |
|
602 | 617 | hmin_index = hmin_list[0] |
|
603 | 618 | |
|
604 | 619 | if hmax_list.any(): |
|
605 | 620 | hmax_index = hmax_list[-1]+1 |
|
606 | 621 | |
|
607 | 622 | x = dataOut.getTimeRange() |
|
608 | 623 | |
|
609 | 624 | thisDatetime = dataOut.datatime |
|
610 | 625 | |
|
611 | 626 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
612 | 627 | xlabel = "Local Time" |
|
613 | 628 | ylabel = "Phase (degrees)" |
|
614 | 629 | |
|
615 | 630 | update_figfile = False |
|
616 | 631 | |
|
617 | 632 | nplots = len(pairsIndexList) |
|
618 | 633 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
619 | 634 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
620 | 635 | for i in range(nplots): |
|
621 | 636 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
622 | 637 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
623 | 638 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
624 | 639 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
625 | 640 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
626 | 641 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
627 | 642 | |
|
628 | 643 | if dataOut.beacon_heiIndexList: |
|
629 | 644 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
630 | 645 | else: |
|
631 | 646 | phase_beacon[i] = numpy.average(phase) |
|
632 | 647 | |
|
633 | 648 | if not self.isConfig: |
|
634 | 649 | |
|
635 | 650 | nplots = len(pairsIndexList) |
|
636 | 651 | |
|
637 | 652 | self.setup(id=id, |
|
638 | 653 | nplots=nplots, |
|
639 | 654 | wintitle=wintitle, |
|
640 | 655 | showprofile=showprofile, |
|
641 | 656 | show=show) |
|
642 | 657 | |
|
643 | 658 | if timerange != None: |
|
644 | 659 | self.timerange = timerange |
|
645 | 660 | |
|
646 | 661 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
647 | 662 | |
|
648 | 663 | if ymin == None: ymin = 0 |
|
649 | 664 | if ymax == None: ymax = 360 |
|
650 | 665 | |
|
651 | 666 | self.FTP_WEI = ftp_wei |
|
652 | 667 | self.EXP_CODE = exp_code |
|
653 | 668 | self.SUB_EXP_CODE = sub_exp_code |
|
654 | 669 | self.PLOT_POS = plot_pos |
|
655 | 670 | |
|
656 | 671 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
657 | 672 | self.isConfig = True |
|
658 | 673 | self.figfile = figfile |
|
659 | 674 | self.xdata = numpy.array([]) |
|
660 | 675 | self.ydata = numpy.array([]) |
|
661 | 676 | |
|
662 | 677 | update_figfile = True |
|
663 | 678 | |
|
664 | 679 | #open file beacon phase |
|
665 | 680 | path = '%s%03d' %(self.PREFIX, self.id) |
|
666 | 681 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
667 | 682 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
668 | 683 | #self.save_phase(self.filename_phase) |
|
669 | 684 | |
|
670 | 685 | |
|
671 | 686 | #store data beacon phase |
|
672 | 687 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
673 | 688 | |
|
674 | 689 | self.setWinTitle(title) |
|
675 | 690 | |
|
676 | 691 | |
|
677 | 692 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
678 | 693 | |
|
679 | 694 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
680 | 695 | |
|
681 | 696 | axes = self.axesList[0] |
|
682 | 697 | |
|
683 | 698 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
684 | 699 | |
|
685 | 700 | if len(self.ydata)==0: |
|
686 | 701 | self.ydata = phase_beacon.reshape(-1,1) |
|
687 | 702 | else: |
|
688 | 703 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
689 | 704 | |
|
690 | 705 | |
|
691 | 706 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
692 | 707 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
693 | 708 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
694 | 709 | XAxisAsTime=True, grid='both' |
|
695 | 710 | ) |
|
696 | 711 | |
|
697 | 712 | self.draw() |
|
698 | 713 | |
|
699 | 714 | if dataOut.ltctime >= self.xmax: |
|
700 | 715 | self.counter_imagwr = wr_period |
|
701 | 716 | self.isConfig = False |
|
702 | 717 | update_figfile = True |
|
703 | 718 | |
|
704 | 719 | self.save(figpath=figpath, |
|
705 | 720 | figfile=figfile, |
|
706 | 721 | save=save, |
|
707 | 722 | ftp=ftp, |
|
708 | 723 | wr_period=wr_period, |
|
709 | 724 | thisDatetime=thisDatetime, |
|
710 | 725 | update_figfile=update_figfile) |
|
711 | 726 | |
|
712 | 727 | return dataOut |
@@ -1,1411 +1,1439 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Spectra processing Unit and operations |
|
6 | 6 | |
|
7 | 7 | Here you will find the processing unit `SpectraProc` and several operations |
|
8 | 8 | to work with Spectra data type |
|
9 | 9 | """ |
|
10 | 10 | |
|
11 | 11 | import time |
|
12 | 12 | import itertools |
|
13 | 13 | |
|
14 | 14 | import numpy |
|
15 | 15 | import math |
|
16 | 16 | |
|
17 | 17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
18 | 18 | from schainpy.model.data.jrodata import Spectra |
|
19 | 19 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
20 | 20 | from schainpy.utils import log |
|
21 | 21 | |
|
22 | 22 | from scipy.optimize import curve_fit |
|
23 | 23 | |
|
24 | 24 | |
|
25 | 25 | class SpectraProc(ProcessingUnit): |
|
26 | 26 | |
|
27 | 27 | def __init__(self): |
|
28 | 28 | |
|
29 | 29 | ProcessingUnit.__init__(self) |
|
30 | 30 | |
|
31 | 31 | self.buffer = None |
|
32 | 32 | self.firstdatatime = None |
|
33 | 33 | self.profIndex = 0 |
|
34 | 34 | self.dataOut = Spectra() |
|
35 | 35 | self.id_min = None |
|
36 | 36 | self.id_max = None |
|
37 | 37 | self.setupReq = False #Agregar a todas las unidades de proc |
|
38 | 38 | |
|
39 | 39 | def __updateSpecFromVoltage(self): |
|
40 | 40 | |
|
41 | 41 | self.dataOut.timeZone = self.dataIn.timeZone |
|
42 | 42 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
43 | 43 | self.dataOut.errorCount = self.dataIn.errorCount |
|
44 | 44 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
45 | 45 | try: |
|
46 | 46 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
47 | 47 | except: |
|
48 | 48 | pass |
|
49 | 49 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
50 | 50 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
51 | 51 | self.dataOut.channelList = self.dataIn.channelList |
|
52 | 52 | self.dataOut.heightList = self.dataIn.heightList |
|
53 | 53 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
54 | 54 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
55 | 55 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
56 | 56 | self.dataOut.utctime = self.firstdatatime |
|
57 | 57 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
58 | 58 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
59 | 59 | self.dataOut.flagShiftFFT = False |
|
60 | 60 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
61 | 61 | self.dataOut.nIncohInt = 1 |
|
62 | 62 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
63 | 63 | self.dataOut.frequency = self.dataIn.frequency |
|
64 | 64 | self.dataOut.realtime = self.dataIn.realtime |
|
65 | 65 | self.dataOut.azimuth = self.dataIn.azimuth |
|
66 | 66 | self.dataOut.zenith = self.dataIn.zenith |
|
67 | 67 | self.dataOut.codeList = self.dataIn.codeList |
|
68 | 68 | self.dataOut.azimuthList = self.dataIn.azimuthList |
|
69 | 69 | self.dataOut.elevationList = self.dataIn.elevationList |
|
70 | 70 | |
|
71 | 71 | def __getFft(self): |
|
72 | 72 | """ |
|
73 | 73 | Convierte valores de Voltaje a Spectra |
|
74 | 74 | |
|
75 | 75 | Affected: |
|
76 | 76 | self.dataOut.data_spc |
|
77 | 77 | self.dataOut.data_cspc |
|
78 | 78 | self.dataOut.data_dc |
|
79 | 79 | self.dataOut.heightList |
|
80 | 80 | self.profIndex |
|
81 | 81 | self.buffer |
|
82 | 82 | self.dataOut.flagNoData |
|
83 | 83 | """ |
|
84 | 84 | fft_volt = numpy.fft.fft( |
|
85 | 85 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
86 | 86 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
87 | 87 | dc = fft_volt[:, 0, :] |
|
88 | 88 | |
|
89 | 89 | # calculo de self-spectra |
|
90 | 90 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
91 | 91 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
92 | 92 | spc = spc.real |
|
93 | 93 | |
|
94 | 94 | blocksize = 0 |
|
95 | 95 | blocksize += dc.size |
|
96 | 96 | blocksize += spc.size |
|
97 | 97 | |
|
98 | 98 | cspc = None |
|
99 | 99 | pairIndex = 0 |
|
100 | 100 | if self.dataOut.pairsList != None: |
|
101 | 101 | # calculo de cross-spectra |
|
102 | 102 | cspc = numpy.zeros( |
|
103 | 103 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
104 | 104 | for pair in self.dataOut.pairsList: |
|
105 | 105 | if pair[0] not in self.dataOut.channelList: |
|
106 | 106 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
107 | 107 | str(pair), str(self.dataOut.channelList))) |
|
108 | 108 | if pair[1] not in self.dataOut.channelList: |
|
109 | 109 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
110 | 110 | str(pair), str(self.dataOut.channelList))) |
|
111 | 111 | |
|
112 | 112 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
113 | 113 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
114 | 114 | pairIndex += 1 |
|
115 | 115 | blocksize += cspc.size |
|
116 | 116 | |
|
117 | 117 | self.dataOut.data_spc = spc |
|
118 | 118 | self.dataOut.data_cspc = cspc |
|
119 | 119 | self.dataOut.data_dc = dc |
|
120 | 120 | self.dataOut.blockSize = blocksize |
|
121 | 121 | self.dataOut.flagShiftFFT = False |
|
122 | 122 | |
|
123 | 123 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): |
|
124 | 124 | |
|
125 | 125 | if self.dataIn.type == "Spectra": |
|
126 | 126 | self.dataOut.copy(self.dataIn) |
|
127 | 127 | if shift_fft: |
|
128 | 128 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
129 | 129 | shift = int(self.dataOut.nFFTPoints/2) |
|
130 | 130 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
131 | 131 | |
|
132 | 132 | if self.dataOut.data_cspc is not None: |
|
133 | 133 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
134 | 134 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
135 | 135 | if pairsList: |
|
136 | 136 | self.__selectPairs(pairsList) |
|
137 | 137 | |
|
138 | 138 | elif self.dataIn.type == "Voltage": |
|
139 | 139 | |
|
140 | 140 | self.dataOut.flagNoData = True |
|
141 | 141 | |
|
142 | 142 | if nFFTPoints == None: |
|
143 | 143 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
144 | 144 | |
|
145 | 145 | if nProfiles == None: |
|
146 | 146 | nProfiles = nFFTPoints |
|
147 | 147 | |
|
148 | 148 | if ippFactor == None: |
|
149 | 149 | self.dataOut.ippFactor = 1 |
|
150 | 150 | |
|
151 | 151 | self.dataOut.nFFTPoints = nFFTPoints |
|
152 | 152 | |
|
153 | 153 | if self.buffer is None: |
|
154 | 154 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
155 | 155 | nProfiles, |
|
156 | 156 | self.dataIn.nHeights), |
|
157 | 157 | dtype='complex') |
|
158 | 158 | |
|
159 | 159 | if self.dataIn.flagDataAsBlock: |
|
160 | 160 | nVoltProfiles = self.dataIn.data.shape[1] |
|
161 | 161 | |
|
162 | 162 | if nVoltProfiles == nProfiles: |
|
163 | 163 | self.buffer = self.dataIn.data.copy() |
|
164 | 164 | self.profIndex = nVoltProfiles |
|
165 | 165 | |
|
166 | 166 | elif nVoltProfiles < nProfiles: |
|
167 | 167 | |
|
168 | 168 | if self.profIndex == 0: |
|
169 | 169 | self.id_min = 0 |
|
170 | 170 | self.id_max = nVoltProfiles |
|
171 | 171 | |
|
172 | 172 | self.buffer[:, self.id_min:self.id_max, |
|
173 | 173 | :] = self.dataIn.data |
|
174 | 174 | self.profIndex += nVoltProfiles |
|
175 | 175 | self.id_min += nVoltProfiles |
|
176 | 176 | self.id_max += nVoltProfiles |
|
177 | 177 | else: |
|
178 | 178 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
179 | 179 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
180 | 180 | self.dataOut.flagNoData = True |
|
181 | 181 | else: |
|
182 | 182 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
183 | 183 | self.profIndex += 1 |
|
184 | 184 | |
|
185 | 185 | if self.firstdatatime == None: |
|
186 | 186 | self.firstdatatime = self.dataIn.utctime |
|
187 | 187 | |
|
188 | 188 | if self.profIndex == nProfiles: |
|
189 | 189 | self.__updateSpecFromVoltage() |
|
190 | 190 | if pairsList == None: |
|
191 | 191 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
192 | 192 | else: |
|
193 | 193 | self.dataOut.pairsList = pairsList |
|
194 | 194 | self.__getFft() |
|
195 | 195 | self.dataOut.flagNoData = False |
|
196 | 196 | self.firstdatatime = None |
|
197 | 197 | self.profIndex = 0 |
|
198 | 198 | else: |
|
199 | 199 | raise ValueError("The type of input object '%s' is not valid".format( |
|
200 | 200 | self.dataIn.type)) |
|
201 | 201 | |
|
202 | 202 | def __selectPairs(self, pairsList): |
|
203 | 203 | |
|
204 | 204 | if not pairsList: |
|
205 | 205 | return |
|
206 | 206 | |
|
207 | 207 | pairs = [] |
|
208 | 208 | pairsIndex = [] |
|
209 | 209 | |
|
210 | 210 | for pair in pairsList: |
|
211 | 211 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
212 | 212 | continue |
|
213 | 213 | pairs.append(pair) |
|
214 | 214 | pairsIndex.append(pairs.index(pair)) |
|
215 | 215 | |
|
216 | 216 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
217 | 217 | self.dataOut.pairsList = pairs |
|
218 | 218 | |
|
219 | 219 | return |
|
220 | 220 | |
|
221 | 221 | def selectFFTs(self, minFFT, maxFFT ): |
|
222 | 222 | """ |
|
223 | 223 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
224 | 224 | minFFT<= FFT <= maxFFT |
|
225 | 225 | """ |
|
226 | 226 | |
|
227 | 227 | if (minFFT > maxFFT): |
|
228 | 228 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
229 | 229 | |
|
230 | 230 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
231 | 231 | minFFT = self.dataOut.getFreqRange()[0] |
|
232 | 232 | |
|
233 | 233 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
234 | 234 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
235 | 235 | |
|
236 | 236 | minIndex = 0 |
|
237 | 237 | maxIndex = 0 |
|
238 | 238 | FFTs = self.dataOut.getFreqRange() |
|
239 | 239 | |
|
240 | 240 | inda = numpy.where(FFTs >= minFFT) |
|
241 | 241 | indb = numpy.where(FFTs <= maxFFT) |
|
242 | 242 | |
|
243 | 243 | try: |
|
244 | 244 | minIndex = inda[0][0] |
|
245 | 245 | except: |
|
246 | 246 | minIndex = 0 |
|
247 | 247 | |
|
248 | 248 | try: |
|
249 | 249 | maxIndex = indb[0][-1] |
|
250 | 250 | except: |
|
251 | 251 | maxIndex = len(FFTs) |
|
252 | 252 | |
|
253 | 253 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
254 | 254 | |
|
255 | 255 | return 1 |
|
256 | 256 | |
|
257 | 257 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
258 | 258 | newheis = numpy.where( |
|
259 | 259 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
260 | 260 | |
|
261 | 261 | if hei_ref != None: |
|
262 | 262 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
263 | 263 | |
|
264 | 264 | minIndex = min(newheis[0]) |
|
265 | 265 | maxIndex = max(newheis[0]) |
|
266 | 266 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
267 | 267 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
268 | 268 | |
|
269 | 269 | # determina indices |
|
270 | 270 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
271 | 271 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
272 | 272 | avg_dB = 10 * \ |
|
273 | 273 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
274 | 274 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
275 | 275 | beacon_heiIndexList = [] |
|
276 | 276 | for val in avg_dB.tolist(): |
|
277 | 277 | if val >= beacon_dB[0]: |
|
278 | 278 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
279 | 279 | |
|
280 | 280 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
281 | 281 | data_cspc = None |
|
282 | 282 | if self.dataOut.data_cspc is not None: |
|
283 | 283 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
284 | 284 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
285 | 285 | |
|
286 | 286 | data_dc = None |
|
287 | 287 | if self.dataOut.data_dc is not None: |
|
288 | 288 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
289 | 289 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
290 | 290 | |
|
291 | 291 | self.dataOut.data_spc = data_spc |
|
292 | 292 | self.dataOut.data_cspc = data_cspc |
|
293 | 293 | self.dataOut.data_dc = data_dc |
|
294 | 294 | self.dataOut.heightList = heightList |
|
295 | 295 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
296 | 296 | |
|
297 | 297 | return 1 |
|
298 | 298 | |
|
299 | 299 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
300 | 300 | """ |
|
301 | 301 | |
|
302 | 302 | """ |
|
303 | 303 | |
|
304 | 304 | if (minIndex < 0) or (minIndex > maxIndex): |
|
305 | 305 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
306 | 306 | |
|
307 | 307 | if (maxIndex >= self.dataOut.nProfiles): |
|
308 | 308 | maxIndex = self.dataOut.nProfiles-1 |
|
309 | 309 | |
|
310 | 310 | #Spectra |
|
311 | 311 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
312 | 312 | |
|
313 | 313 | data_cspc = None |
|
314 | 314 | if self.dataOut.data_cspc is not None: |
|
315 | 315 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
316 | 316 | |
|
317 | 317 | data_dc = None |
|
318 | 318 | if self.dataOut.data_dc is not None: |
|
319 | 319 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
320 | 320 | |
|
321 | 321 | self.dataOut.data_spc = data_spc |
|
322 | 322 | self.dataOut.data_cspc = data_cspc |
|
323 | 323 | self.dataOut.data_dc = data_dc |
|
324 | 324 | |
|
325 | 325 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
326 | 326 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
327 | 327 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
328 | 328 | |
|
329 | 329 | return 1 |
|
330 | 330 | |
|
331 | 331 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
332 | 332 | # validacion de rango |
|
333 | 333 | if minHei == None: |
|
334 | 334 | minHei = self.dataOut.heightList[0] |
|
335 | 335 | |
|
336 | 336 | if maxHei == None: |
|
337 | 337 | maxHei = self.dataOut.heightList[-1] |
|
338 | 338 | |
|
339 | 339 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
340 | 340 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
341 | 341 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
342 | 342 | minHei = self.dataOut.heightList[0] |
|
343 | 343 | |
|
344 | 344 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
345 | 345 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
346 | 346 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
347 | 347 | maxHei = self.dataOut.heightList[-1] |
|
348 | 348 | |
|
349 | 349 | # validacion de velocidades |
|
350 | 350 | velrange = self.dataOut.getVelRange(1) |
|
351 | 351 | |
|
352 | 352 | if minVel == None: |
|
353 | 353 | minVel = velrange[0] |
|
354 | 354 | |
|
355 | 355 | if maxVel == None: |
|
356 | 356 | maxVel = velrange[-1] |
|
357 | 357 | |
|
358 | 358 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
359 | 359 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
360 | 360 | print('minVel is setting to %.2f' % (velrange[0])) |
|
361 | 361 | minVel = velrange[0] |
|
362 | 362 | |
|
363 | 363 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
364 | 364 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
365 | 365 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
366 | 366 | maxVel = velrange[-1] |
|
367 | 367 | |
|
368 | 368 | # seleccion de indices para rango |
|
369 | 369 | minIndex = 0 |
|
370 | 370 | maxIndex = 0 |
|
371 | 371 | heights = self.dataOut.heightList |
|
372 | 372 | |
|
373 | 373 | inda = numpy.where(heights >= minHei) |
|
374 | 374 | indb = numpy.where(heights <= maxHei) |
|
375 | 375 | |
|
376 | 376 | try: |
|
377 | 377 | minIndex = inda[0][0] |
|
378 | 378 | except: |
|
379 | 379 | minIndex = 0 |
|
380 | 380 | |
|
381 | 381 | try: |
|
382 | 382 | maxIndex = indb[0][-1] |
|
383 | 383 | except: |
|
384 | 384 | maxIndex = len(heights) |
|
385 | 385 | |
|
386 | 386 | if (minIndex < 0) or (minIndex > maxIndex): |
|
387 | 387 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
388 | 388 | minIndex, maxIndex)) |
|
389 | 389 | |
|
390 | 390 | if (maxIndex >= self.dataOut.nHeights): |
|
391 | 391 | maxIndex = self.dataOut.nHeights - 1 |
|
392 | 392 | |
|
393 | 393 | # seleccion de indices para velocidades |
|
394 | 394 | indminvel = numpy.where(velrange >= minVel) |
|
395 | 395 | indmaxvel = numpy.where(velrange <= maxVel) |
|
396 | 396 | try: |
|
397 | 397 | minIndexVel = indminvel[0][0] |
|
398 | 398 | except: |
|
399 | 399 | minIndexVel = 0 |
|
400 | 400 | |
|
401 | 401 | try: |
|
402 | 402 | maxIndexVel = indmaxvel[0][-1] |
|
403 | 403 | except: |
|
404 | 404 | maxIndexVel = len(velrange) |
|
405 | 405 | |
|
406 | 406 | # seleccion del espectro |
|
407 | 407 | data_spc = self.dataOut.data_spc[:, |
|
408 | 408 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
409 | 409 | # estimacion de ruido |
|
410 | 410 | noise = numpy.zeros(self.dataOut.nChannels) |
|
411 | 411 | |
|
412 | 412 | for channel in range(self.dataOut.nChannels): |
|
413 | 413 | daux = data_spc[channel, :, :] |
|
414 | 414 | sortdata = numpy.sort(daux, axis=None) |
|
415 | 415 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
416 | 416 | |
|
417 | 417 | self.dataOut.noise_estimation = noise.copy() |
|
418 | 418 | |
|
419 | 419 | return 1 |
|
420 | 420 | |
|
421 | 421 | class removeDC(Operation): |
|
422 | 422 | |
|
423 | 423 | def run(self, dataOut, mode=2): |
|
424 | 424 | self.dataOut = dataOut |
|
425 | 425 | jspectra = self.dataOut.data_spc |
|
426 | 426 | jcspectra = self.dataOut.data_cspc |
|
427 | 427 | |
|
428 | 428 | num_chan = jspectra.shape[0] |
|
429 | 429 | num_hei = jspectra.shape[2] |
|
430 | 430 | |
|
431 | 431 | if jcspectra is not None: |
|
432 | 432 | jcspectraExist = True |
|
433 | 433 | num_pairs = jcspectra.shape[0] |
|
434 | 434 | else: |
|
435 | 435 | jcspectraExist = False |
|
436 | 436 | |
|
437 | 437 | freq_dc = int(jspectra.shape[1] / 2) |
|
438 | 438 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
439 | 439 | ind_vel = ind_vel.astype(int) |
|
440 | 440 | |
|
441 | 441 | if ind_vel[0] < 0: |
|
442 | 442 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
443 | 443 | |
|
444 | 444 | if mode == 1: |
|
445 | 445 | jspectra[:, freq_dc, :] = ( |
|
446 | 446 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
447 | 447 | |
|
448 | 448 | if jcspectraExist: |
|
449 | 449 | jcspectra[:, freq_dc, :] = ( |
|
450 | 450 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
451 | 451 | |
|
452 | 452 | if mode == 2: |
|
453 | 453 | |
|
454 | 454 | vel = numpy.array([-2, -1, 1, 2]) |
|
455 | 455 | xx = numpy.zeros([4, 4]) |
|
456 | 456 | |
|
457 | 457 | for fil in range(4): |
|
458 | 458 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
459 | 459 | |
|
460 | 460 | xx_inv = numpy.linalg.inv(xx) |
|
461 | 461 | xx_aux = xx_inv[0, :] |
|
462 | 462 | |
|
463 | 463 | for ich in range(num_chan): |
|
464 | 464 | yy = jspectra[ich, ind_vel, :] |
|
465 | 465 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
466 | 466 | |
|
467 | 467 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
468 | 468 | cjunkid = sum(junkid) |
|
469 | 469 | |
|
470 | 470 | if cjunkid.any(): |
|
471 | 471 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
472 | 472 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
473 | 473 | |
|
474 | 474 | if jcspectraExist: |
|
475 | 475 | for ip in range(num_pairs): |
|
476 | 476 | yy = jcspectra[ip, ind_vel, :] |
|
477 | 477 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
478 | 478 | |
|
479 | 479 | self.dataOut.data_spc = jspectra |
|
480 | 480 | self.dataOut.data_cspc = jcspectra |
|
481 | 481 | |
|
482 | 482 | return self.dataOut |
|
483 | 483 | |
|
484 | 484 | # import matplotlib.pyplot as plt |
|
485 | 485 | |
|
486 | 486 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): |
|
487 | 487 | z = (x - a1) / a2 |
|
488 | 488 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 |
|
489 | 489 | return y |
|
490 | ||
|
491 | ||
|
490 | 492 | class CleanRayleigh(Operation): |
|
491 | 493 | |
|
492 | 494 | def __init__(self): |
|
493 | 495 | |
|
494 | 496 | Operation.__init__(self) |
|
495 | 497 | self.i=0 |
|
496 | 498 | self.isConfig = False |
|
497 | 499 | self.__dataReady = False |
|
498 | 500 | self.__profIndex = 0 |
|
499 | 501 | self.byTime = False |
|
500 | 502 | self.byProfiles = False |
|
501 | 503 | |
|
502 | 504 | self.bloques = None |
|
503 | 505 | self.bloque0 = None |
|
504 | 506 | |
|
505 | 507 | self.index = 0 |
|
506 | 508 | |
|
507 | 509 | self.buffer = 0 |
|
508 | 510 | self.buffer2 = 0 |
|
509 | 511 | self.buffer3 = 0 |
|
510 | 512 | |
|
511 | 513 | |
|
512 | 514 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): |
|
513 | 515 | |
|
514 | 516 | self.nChannels = dataOut.nChannels |
|
515 | 517 | self.nProf = dataOut.nProfiles |
|
516 | 518 | self.nPairs = dataOut.data_cspc.shape[0] |
|
517 | 519 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
518 | 520 | self.spectra = dataOut.data_spc |
|
519 | 521 | self.cspectra = dataOut.data_cspc |
|
520 | 522 | self.heights = dataOut.heightList #alturas totales |
|
521 | 523 | self.nHeights = len(self.heights) |
|
522 | 524 | self.min_hei = min_hei |
|
523 | 525 | self.max_hei = max_hei |
|
524 | 526 | if (self.min_hei == None): |
|
525 | 527 | self.min_hei = 0 |
|
526 | 528 | if (self.max_hei == None): |
|
527 | 529 | self.max_hei = dataOut.heightList[-1] |
|
528 | 530 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() |
|
529 | 531 | self.heightsClean = self.heights[self.hval] #alturas filtradas |
|
530 | 532 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas |
|
531 | 533 | self.nHeightsClean = len(self.heightsClean) |
|
532 | 534 | self.channels = dataOut.channelList |
|
533 | 535 | self.nChan = len(self.channels) |
|
534 | 536 | self.nIncohInt = dataOut.nIncohInt |
|
535 | 537 | self.__initime = dataOut.utctime |
|
536 | 538 | self.maxAltInd = self.hval[-1]+1 |
|
537 | 539 | self.minAltInd = self.hval[0] |
|
538 | 540 | |
|
539 | 541 | self.crosspairs = dataOut.pairsList |
|
540 | 542 | self.nPairs = len(self.crosspairs) |
|
541 | 543 | self.normFactor = dataOut.normFactor |
|
542 | 544 | self.nFFTPoints = dataOut.nFFTPoints |
|
543 | 545 | self.ippSeconds = dataOut.ippSeconds |
|
544 | 546 | self.currentTime = self.__initime |
|
545 | 547 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
546 | 548 | self.factor_stdv = factor_stdv |
|
547 | 549 | #print("CHANNELS: ",[x for x in self.channels]) |
|
548 | 550 | |
|
549 | 551 | if n != None : |
|
550 | 552 | self.byProfiles = True |
|
551 | 553 | self.nIntProfiles = n |
|
552 | 554 | else: |
|
553 | 555 | self.__integrationtime = timeInterval |
|
554 | 556 | |
|
555 | 557 | self.__dataReady = False |
|
556 | 558 | self.isConfig = True |
|
557 | 559 | |
|
558 | 560 | |
|
559 | 561 | |
|
560 | 562 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): |
|
561 | 563 | #print (dataOut.utctime) |
|
562 | 564 | if not self.isConfig : |
|
563 | 565 | #print("Setting config") |
|
564 | 566 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) |
|
565 | 567 | #print("Config Done") |
|
566 | 568 | tini=dataOut.utctime |
|
567 | 569 | |
|
568 | 570 | if self.byProfiles: |
|
569 | 571 | if self.__profIndex == self.nIntProfiles: |
|
570 | 572 | self.__dataReady = True |
|
571 | 573 | else: |
|
572 | 574 | if (tini - self.__initime) >= self.__integrationtime: |
|
573 | 575 | #print(tini - self.__initime,self.__profIndex) |
|
574 | 576 | self.__dataReady = True |
|
575 | 577 | self.__initime = tini |
|
576 | 578 | |
|
577 | 579 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): |
|
578 | 580 | |
|
579 | 581 | if self.__dataReady: |
|
580 | 582 | #print("Data ready",self.__profIndex) |
|
581 | 583 | self.__profIndex = 0 |
|
582 | 584 | jspc = self.buffer |
|
583 | 585 | jcspc = self.buffer2 |
|
584 | 586 | #jnoise = self.buffer3 |
|
585 | 587 | self.buffer = dataOut.data_spc |
|
586 | 588 | self.buffer2 = dataOut.data_cspc |
|
587 | 589 | #self.buffer3 = dataOut.noise |
|
588 | 590 | self.currentTime = dataOut.utctime |
|
589 | 591 | if numpy.any(jspc) : |
|
590 | 592 | #print( jspc.shape, jcspc.shape) |
|
591 | 593 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) |
|
592 | 594 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) |
|
593 | 595 | self.__dataReady = False |
|
594 | 596 | #print( jspc.shape, jcspc.shape) |
|
595 | 597 | dataOut.flagNoData = False |
|
596 | 598 | else: |
|
597 | 599 | dataOut.flagNoData = True |
|
598 | 600 | self.__dataReady = False |
|
599 | 601 | return dataOut |
|
600 | 602 | else: |
|
601 | 603 | #print( len(self.buffer)) |
|
602 | 604 | if numpy.any(self.buffer): |
|
603 | 605 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) |
|
604 | 606 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) |
|
605 | 607 | self.buffer3 += dataOut.data_dc |
|
606 | 608 | else: |
|
607 | 609 | self.buffer = dataOut.data_spc |
|
608 | 610 | self.buffer2 = dataOut.data_cspc |
|
609 | 611 | self.buffer3 = dataOut.data_dc |
|
610 | 612 | #print self.index, self.fint |
|
611 | 613 | #print self.buffer2.shape |
|
612 | 614 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO |
|
613 | 615 | self.__profIndex += 1 |
|
614 | 616 | return dataOut ## NOTE: REV |
|
615 | 617 | |
|
616 | 618 | |
|
617 | 619 | #index = tini.tm_hour*12+tini.tm_min/5 |
|
618 | 620 | '''REVISAR''' |
|
619 | 621 | # jspc = jspc/self.nFFTPoints/self.normFactor |
|
620 | 622 | # jcspc = jcspc/self.nFFTPoints/self.normFactor |
|
621 | 623 | |
|
622 | 624 | |
|
623 | 625 | |
|
624 | 626 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
625 | 627 | dataOut.data_spc = tmp_spectra |
|
626 | 628 | dataOut.data_cspc = tmp_cspectra |
|
627 | 629 | |
|
628 | 630 | #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
629 | 631 | |
|
630 | 632 | dataOut.data_dc = self.buffer3 |
|
631 | 633 | dataOut.nIncohInt *= self.nIntProfiles |
|
632 | 634 | dataOut.utctime = self.currentTime #tiempo promediado |
|
633 | 635 | #print("Time: ",time.localtime(dataOut.utctime)) |
|
634 | 636 | # dataOut.data_spc = sat_spectra |
|
635 | 637 | # dataOut.data_cspc = sat_cspectra |
|
636 | 638 | self.buffer = 0 |
|
637 | 639 | self.buffer2 = 0 |
|
638 | 640 | self.buffer3 = 0 |
|
639 | 641 | |
|
640 | 642 | return dataOut |
|
641 | 643 | |
|
642 | 644 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): |
|
643 | 645 | #print("OP cleanRayleigh") |
|
644 |
|
|
|
646 | import matplotlib.pyplot as plt | |
|
645 | 647 | #for k in range(149): |
|
646 | ||
|
648 | channelsProcssd = [] | |
|
649 | channelA_ok = False | |
|
647 | 650 | rfunc = cspectra.copy() #self.bloques |
|
648 | 651 | #rfunc = cspectra |
|
649 | 652 | #val_spc = spectra*0.0 #self.bloque0*0.0 |
|
650 | 653 | #val_cspc = cspectra*0.0 #self.bloques*0.0 |
|
651 | 654 | #in_sat_spectra = spectra.copy() #self.bloque0 |
|
652 | 655 | #in_sat_cspectra = cspectra.copy() #self.bloques |
|
653 | 656 | |
|
654 | #raxs = math.ceil(math.sqrt(self.nPairs)) | |
|
655 | #caxs = math.ceil(self.nPairs/raxs) | |
|
656 | 657 | |
|
657 | #print(self.hval) | |
|
658 | ###ONLY FOR TEST: | |
|
659 | raxs = math.ceil(math.sqrt(self.nPairs)) | |
|
660 | caxs = math.ceil(self.nPairs/raxs) | |
|
661 | if self.nPairs <4: | |
|
662 | raxs = 2 | |
|
663 | caxs = 2 | |
|
664 | #print(raxs, caxs) | |
|
665 | fft_rev = 14 #nFFT to plot | |
|
666 | hei_rev = ((self.heights >= 550) & (self.heights <= 551)).nonzero() #hei to plot | |
|
667 | hei_rev = hei_rev[0] | |
|
668 | #print(hei_rev) | |
|
669 | ||
|
658 | 670 | #print numpy.absolute(rfunc[:,0,0,14]) |
|
671 | ||
|
659 | 672 | gauss_fit, covariance = None, None |
|
660 | 673 | for ih in range(self.minAltInd,self.maxAltInd): |
|
661 | 674 | for ifreq in range(self.nFFTPoints): |
|
662 | # fig, axs = plt.subplots(raxs, caxs) | |
|
663 | # fig2, axs2 = plt.subplots(raxs, caxs) | |
|
664 | # col_ax = 0 | |
|
665 | # row_ax = 0 | |
|
666 | #print(len(self.nPairs)) | |
|
667 | for ii in range(self.nPairs): #PARES DE CANALES SELF y CROSS | |
|
668 |
|
|
|
669 | # if (col_ax%caxs==0 and col_ax!=0): | |
|
670 | # col_ax = 0 | |
|
671 |
|
|
|
675 | ###ONLY FOR TEST: | |
|
676 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
|
677 | fig, axs = plt.subplots(raxs, caxs) | |
|
678 | fig2, axs2 = plt.subplots(raxs, caxs) | |
|
679 | col_ax = 0 | |
|
680 | row_ax = 0 | |
|
681 | #print(self.nPairs) | |
|
682 | for ii in range(self.nPairs): #PARES DE CANALES SELF y CROSS | |
|
683 | if self.crosspairs[ii][1]-self.crosspairs[ii][0] > 1: # APLICAR SOLO EN PARES CONTIGUOS | |
|
684 | continue | |
|
685 | if not self.crosspairs[ii][0] in channelsProcssd: | |
|
686 | channelA_ok = True | |
|
687 | #print("pair: ",self.crosspairs[ii]) | |
|
688 | if (col_ax%caxs==0 and col_ax!=0 and self.nPairs !=1): ###ONLY FOR TEST: | |
|
689 | col_ax = 0 | |
|
690 | row_ax += 1 | |
|
672 | 691 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? |
|
673 | 692 | #print(func2clean.shape) |
|
674 | 693 | val = (numpy.isfinite(func2clean)==True).nonzero() |
|
675 | 694 | |
|
676 | 695 | if len(val)>0: #limitador |
|
677 | 696 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) |
|
678 | 697 | if min_val <= -40 : |
|
679 | 698 | min_val = -40 |
|
680 | 699 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 |
|
681 | 700 | if max_val >= 200 : |
|
682 | 701 | max_val = 200 |
|
683 | 702 | #print min_val, max_val |
|
684 | 703 | step = 1 |
|
685 | 704 | #print("Getting bins and the histogram") |
|
686 | 705 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step |
|
687 | 706 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
688 | 707 | #print(len(y_dist),len(binstep[:-1])) |
|
689 | 708 | #print(row_ax,col_ax, " ..") |
|
690 | 709 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) |
|
691 | 710 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) |
|
692 | 711 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) |
|
693 | 712 | parg = [numpy.amax(y_dist),mean,sigma] |
|
694 | 713 | |
|
695 |
|
|
|
714 | newY = None | |
|
696 | 715 | |
|
697 | 716 | try : |
|
698 | 717 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) |
|
699 | 718 | mode = gauss_fit[1] |
|
700 | 719 | stdv = gauss_fit[2] |
|
701 | 720 | #print(" FIT OK",gauss_fit) |
|
702 | ''' | |
|
703 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) | |
|
704 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
|
705 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
|
706 | axs[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii]))''' | |
|
721 | ||
|
722 | ###ONLY FOR TEST: | |
|
723 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
|
724 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) | |
|
725 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
|
726 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
|
727 | axs[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii])) | |
|
728 | ||
|
707 | 729 | except: |
|
708 | 730 | mode = mean |
|
709 | 731 | stdv = sigma |
|
710 | 732 | #print("FIT FAIL") |
|
733 | continue | |
|
711 | 734 | |
|
712 | 735 | |
|
713 | 736 | #print(mode,stdv) |
|
714 | 737 | #Removing echoes greater than mode + std_factor*stdv |
|
715 | 738 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() |
|
716 | 739 | #noval tiene los indices que se van a remover |
|
717 | 740 | #print("Pair ",ii," novals: ",len(noval[0])) |
|
718 | 741 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) |
|
719 | 742 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() |
|
720 | 743 | #print(novall) |
|
721 | 744 | #print(" ",self.pairsArray[ii]) |
|
722 | 745 | cross_pairs = self.pairsArray[ii] |
|
723 | 746 | #Getting coherent echoes which are removed. |
|
724 | 747 | # if len(novall[0]) > 0: |
|
725 | 748 | # |
|
726 | 749 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 |
|
727 | 750 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 |
|
728 | 751 | # val_cspc[novall[0],ii,ifreq,ih] = 1 |
|
729 | 752 | #print("OUT NOVALL 1") |
|
730 | #Removing coherent from ISR data | |
|
731 | chA = self.channels.index(cross_pairs[0]) | |
|
732 | chB = self.channels.index(cross_pairs[1]) | |
|
733 | 753 | |
|
734 | 754 | new_a = numpy.delete(cspectra[:,ii,ifreq,ih], noval[0]) |
|
735 | 755 | cspectra[noval,ii,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra |
|
736 | new_b = numpy.delete(spectra[:,chA,ifreq,ih], noval[0]) | |
|
737 | spectra[noval,chA,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A | |
|
756 | ||
|
757 | if channelA_ok: | |
|
758 | chA = self.channels.index(cross_pairs[0]) | |
|
759 | new_b = numpy.delete(spectra[:,chA,ifreq,ih], noval[0]) | |
|
760 | spectra[noval,chA,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A | |
|
761 | channelA_ok = False | |
|
762 | chB = self.channels.index(cross_pairs[1]) | |
|
738 | 763 | new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) |
|
739 | 764 | spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B |
|
740 | 765 | |
|
766 | channelsProcssd.append(self.crosspairs[ii][0]) # save channel A | |
|
767 | channelsProcssd.append(self.crosspairs[ii][1]) # save channel B | |
|
741 | 768 | |
|
742 |
|
|
|
743 | func2clean = 10*numpy.log10(numpy.absolute(cspectra[:,ii,ifreq,ih])) | |
|
744 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
|
745 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
|
746 |
axs2[row_ax,col_ax].plot(binstep[:-1], |
|
|
747 | axs2[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii])) | |
|
748 | ''' | |
|
769 | ###ONLY FOR TEST: | |
|
770 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
|
771 | func2clean = 10*numpy.log10(numpy.absolute(cspectra[:,ii,ifreq,ih])) | |
|
772 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
|
773 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
|
774 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
|
775 | axs2[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii])) | |
|
749 | 776 | |
|
750 | #col_ax += 1 #contador de ploteo columnas | |
|
777 | ###ONLY FOR TEST: | |
|
778 | col_ax += 1 #contador de ploteo columnas | |
|
751 | 779 | ##print(col_ax) |
|
752 |
|
|
|
753 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" | |
|
754 |
title |
|
|
755 | fig.suptitle(title) | |
|
756 |
fig |
|
|
757 | plt.show()''' | |
|
758 | ||
|
759 | ''' channels = channels | |
|
780 | ###ONLY FOR TEST: | |
|
781 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
|
782 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" | |
|
783 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" | |
|
784 | fig.suptitle(title) | |
|
785 | fig2.suptitle(title2) | |
|
786 | plt.show() | |
|
787 | ||
|
788 | ||
|
789 | ''' | |
|
790 | ||
|
791 | channels = channels | |
|
760 | 792 | cross_pairs = cross_pairs |
|
761 | 793 | #print("OUT NOVALL 2") |
|
762 | 794 | |
|
763 | 795 | vcross0 = (cross_pairs[0] == channels[ii]).nonzero() |
|
764 | 796 | vcross1 = (cross_pairs[1] == channels[ii]).nonzero() |
|
765 | 797 | vcross = numpy.concatenate((vcross0,vcross1),axis=None) |
|
766 | 798 | #print('vcros =', vcross) |
|
767 | 799 | |
|
768 | 800 | #Getting coherent echoes which are removed. |
|
769 | 801 | if len(novall) > 0: |
|
770 | 802 | #val_spc[novall,ii,ifreq,ih] = 1 |
|
771 | 803 | val_spc[ii,ifreq,ih,novall] = 1 |
|
772 | 804 | if len(vcross) > 0: |
|
773 | 805 | val_cspc[vcross,ifreq,ih,novall] = 1 |
|
774 | 806 | |
|
775 | 807 | #Removing coherent from ISR data. |
|
776 | 808 | self.bloque0[ii,ifreq,ih,noval] = numpy.nan |
|
777 | 809 | if len(vcross) > 0: |
|
778 | 810 | self.bloques[vcross,ifreq,ih,noval] = numpy.nan |
|
779 | 811 | ''' |
|
780 | 812 | |
|
781 | 813 | #print("Getting average of the spectra and cross-spectra from incoherent echoes.") |
|
782 | 814 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan |
|
783 | 815 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan |
|
784 | 816 | for ih in range(self.nHeights): |
|
785 | 817 | for ifreq in range(self.nFFTPoints): |
|
786 | 818 | for ich in range(self.nChan): |
|
787 | 819 | tmp = spectra[:,ich,ifreq,ih] |
|
788 | 820 | valid = (numpy.isfinite(tmp[:])==True).nonzero() |
|
789 | # if ich == 0 and ifreq == 0 and ih == 17 : | |
|
790 | # print tmp | |
|
791 | # print valid | |
|
792 | # print len(valid[0]) | |
|
793 | #print('TMP',tmp) | |
|
821 | ||
|
794 | 822 | if len(valid[0]) >0 : |
|
795 | 823 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
796 | #for icr in range(nPairs): | |
|
824 | ||
|
797 | 825 | for icr in range(self.nPairs): |
|
798 | 826 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) |
|
799 | 827 | valid = (numpy.isfinite(tmp)==True).nonzero() |
|
800 | 828 | if len(valid[0]) > 0: |
|
801 | 829 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
802 | 830 | ''' |
|
803 | 831 | # print('##########################################################') |
|
804 | 832 | print("Removing fake coherent echoes (at least 4 points around the point)") |
|
805 | 833 | |
|
806 | 834 | val_spectra = numpy.sum(val_spc,0) |
|
807 | 835 | val_cspectra = numpy.sum(val_cspc,0) |
|
808 | 836 | |
|
809 | 837 | val_spectra = self.REM_ISOLATED_POINTS(val_spectra,4) |
|
810 | 838 | val_cspectra = self.REM_ISOLATED_POINTS(val_cspectra,4) |
|
811 | 839 | |
|
812 | 840 | for i in range(nChan): |
|
813 | 841 | for j in range(nProf): |
|
814 | 842 | for k in range(nHeights): |
|
815 | 843 | if numpy.isfinite(val_spectra[i,j,k]) and val_spectra[i,j,k] < 1 : |
|
816 | 844 | val_spc[:,i,j,k] = 0.0 |
|
817 | 845 | for i in range(nPairs): |
|
818 | 846 | for j in range(nProf): |
|
819 | 847 | for k in range(nHeights): |
|
820 | 848 | if numpy.isfinite(val_cspectra[i,j,k]) and val_cspectra[i,j,k] < 1 : |
|
821 | 849 | val_cspc[:,i,j,k] = 0.0 |
|
822 | 850 | |
|
823 | 851 | # val_spc = numpy.reshape(val_spc, (len(spectra[:,0,0,0]),nProf*nHeights*nChan)) |
|
824 | 852 | # if numpy.isfinite(val_spectra)==str(True): |
|
825 | 853 | # noval = (val_spectra<1).nonzero() |
|
826 | 854 | # if len(noval) > 0: |
|
827 | 855 | # val_spc[:,noval] = 0.0 |
|
828 | 856 | # val_spc = numpy.reshape(val_spc, (149,nChan,nProf,nHeights)) |
|
829 | 857 | |
|
830 | 858 | #val_cspc = numpy.reshape(val_spc, (149,nChan*nHeights*nProf)) |
|
831 | 859 | #if numpy.isfinite(val_cspectra)==str(True): |
|
832 | 860 | # noval = (val_cspectra<1).nonzero() |
|
833 | 861 | # if len(noval) > 0: |
|
834 | 862 | # val_cspc[:,noval] = 0.0 |
|
835 | 863 | # val_cspc = numpy.reshape(val_cspc, (149,nChan,nProf,nHeights)) |
|
836 | 864 | tmp_sat_spectra = spectra.copy() |
|
837 | 865 | tmp_sat_spectra = tmp_sat_spectra*numpy.nan |
|
838 | 866 | tmp_sat_cspectra = cspectra.copy() |
|
839 | 867 | tmp_sat_cspectra = tmp_sat_cspectra*numpy.nan |
|
840 | 868 | ''' |
|
841 | 869 | # fig = plt.figure(figsize=(6,5)) |
|
842 | 870 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
843 | 871 | # ax = fig.add_axes([left, bottom, width, height]) |
|
844 | 872 | # cp = ax.contour(10*numpy.log10(numpy.absolute(spectra[0,0,:,:]))) |
|
845 | 873 | # ax.clabel(cp, inline=True,fontsize=10) |
|
846 | 874 | # plt.show() |
|
847 | 875 | ''' |
|
848 | 876 | val = (val_spc > 0).nonzero() |
|
849 | 877 | if len(val[0]) > 0: |
|
850 | 878 | tmp_sat_spectra[val] = in_sat_spectra[val] |
|
851 | 879 | val = (val_cspc > 0).nonzero() |
|
852 | 880 | if len(val[0]) > 0: |
|
853 | 881 | tmp_sat_cspectra[val] = in_sat_cspectra[val] |
|
854 | 882 | |
|
855 | 883 | print("Getting average of the spectra and cross-spectra from incoherent echoes 2") |
|
856 | 884 | sat_spectra = numpy.zeros((nChan,nProf,nHeights), dtype=float) |
|
857 | 885 | sat_cspectra = numpy.zeros((nPairs,nProf,nHeights), dtype=complex) |
|
858 | 886 | for ih in range(nHeights): |
|
859 | 887 | for ifreq in range(nProf): |
|
860 | 888 | for ich in range(nChan): |
|
861 | 889 | tmp = numpy.squeeze(tmp_sat_spectra[:,ich,ifreq,ih]) |
|
862 | 890 | valid = (numpy.isfinite(tmp)).nonzero() |
|
863 | 891 | if len(valid[0]) > 0: |
|
864 | 892 | sat_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
865 | 893 | |
|
866 | 894 | for icr in range(nPairs): |
|
867 | 895 | tmp = numpy.squeeze(tmp_sat_cspectra[:,icr,ifreq,ih]) |
|
868 | 896 | valid = (numpy.isfinite(tmp)).nonzero() |
|
869 | 897 | if len(valid[0]) > 0: |
|
870 | 898 | sat_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
871 | 899 | ''' |
|
872 | 900 | #self.__dataReady= True |
|
873 | 901 | #sat_spectra, sat_cspectra= sat_spectra, sat_cspectra |
|
874 | 902 | #if not self.__dataReady: |
|
875 | 903 | #return None, None |
|
876 | 904 | #return out_spectra, out_cspectra ,sat_spectra,sat_cspectra |
|
877 | 905 | return out_spectra, out_cspectra |
|
878 | 906 | |
|
879 | 907 | def REM_ISOLATED_POINTS(self,array,rth): |
|
880 | 908 | # import matplotlib.pyplot as plt |
|
881 | 909 | if rth == None : |
|
882 | 910 | rth = 4 |
|
883 | 911 | print("REM ISO") |
|
884 | 912 | num_prof = len(array[0,:,0]) |
|
885 | 913 | num_hei = len(array[0,0,:]) |
|
886 | 914 | n2d = len(array[:,0,0]) |
|
887 | 915 | |
|
888 | 916 | for ii in range(n2d) : |
|
889 | 917 | #print ii,n2d |
|
890 | 918 | tmp = array[ii,:,:] |
|
891 | 919 | #print tmp.shape, array[ii,101,:],array[ii,102,:] |
|
892 | 920 | |
|
893 | 921 | # fig = plt.figure(figsize=(6,5)) |
|
894 | 922 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
895 | 923 | # ax = fig.add_axes([left, bottom, width, height]) |
|
896 | 924 | # x = range(num_prof) |
|
897 | 925 | # y = range(num_hei) |
|
898 | 926 | # cp = ax.contour(y,x,tmp) |
|
899 | 927 | # ax.clabel(cp, inline=True,fontsize=10) |
|
900 | 928 | # plt.show() |
|
901 | 929 | |
|
902 | 930 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) |
|
903 | 931 | tmp = numpy.reshape(tmp,num_prof*num_hei) |
|
904 | 932 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() |
|
905 | 933 | indxs2 = (tmp > 0).nonzero() |
|
906 | 934 | |
|
907 | 935 | indxs1 = (indxs1[0]) |
|
908 | 936 | indxs2 = indxs2[0] |
|
909 | 937 | #indxs1 = numpy.array(indxs1[0]) |
|
910 | 938 | #indxs2 = numpy.array(indxs2[0]) |
|
911 | 939 | indxs = None |
|
912 | 940 | #print indxs1 , indxs2 |
|
913 | 941 | for iv in range(len(indxs2)): |
|
914 | 942 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) |
|
915 | 943 | #print len(indxs2), indv |
|
916 | 944 | if len(indv[0]) > 0 : |
|
917 | 945 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) |
|
918 | 946 | # print indxs |
|
919 | 947 | indxs = indxs[1:] |
|
920 | 948 | #print(indxs, len(indxs)) |
|
921 | 949 | if len(indxs) < 4 : |
|
922 | 950 | array[ii,:,:] = 0. |
|
923 | 951 | return |
|
924 | 952 | |
|
925 | 953 | xpos = numpy.mod(indxs ,num_hei) |
|
926 | 954 | ypos = (indxs / num_hei) |
|
927 | 955 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) |
|
928 | 956 | #print sx |
|
929 | 957 | xpos = xpos[sx] |
|
930 | 958 | ypos = ypos[sx] |
|
931 | 959 | |
|
932 | 960 | # *********************************** Cleaning isolated points ********************************** |
|
933 | 961 | ic = 0 |
|
934 | 962 | while True : |
|
935 | 963 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) |
|
936 | 964 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) |
|
937 | 965 | #plt.plot(r) |
|
938 | 966 | #plt.show() |
|
939 | 967 | no_coh1 = (numpy.isfinite(r)==True).nonzero() |
|
940 | 968 | no_coh2 = (r <= rth).nonzero() |
|
941 | 969 | #print r, no_coh1, no_coh2 |
|
942 | 970 | no_coh1 = numpy.array(no_coh1[0]) |
|
943 | 971 | no_coh2 = numpy.array(no_coh2[0]) |
|
944 | 972 | no_coh = None |
|
945 | 973 | #print valid1 , valid2 |
|
946 | 974 | for iv in range(len(no_coh2)): |
|
947 | 975 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) |
|
948 | 976 | if len(indv[0]) > 0 : |
|
949 | 977 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) |
|
950 | 978 | no_coh = no_coh[1:] |
|
951 | 979 | #print len(no_coh), no_coh |
|
952 | 980 | if len(no_coh) < 4 : |
|
953 | 981 | #print xpos[ic], ypos[ic], ic |
|
954 | 982 | # plt.plot(r) |
|
955 | 983 | # plt.show() |
|
956 | 984 | xpos[ic] = numpy.nan |
|
957 | 985 | ypos[ic] = numpy.nan |
|
958 | 986 | |
|
959 | 987 | ic = ic + 1 |
|
960 | 988 | if (ic == len(indxs)) : |
|
961 | 989 | break |
|
962 | 990 | #print( xpos, ypos) |
|
963 | 991 | |
|
964 | 992 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() |
|
965 | 993 | #print indxs[0] |
|
966 | 994 | if len(indxs[0]) < 4 : |
|
967 | 995 | array[ii,:,:] = 0. |
|
968 | 996 | return |
|
969 | 997 | |
|
970 | 998 | xpos = xpos[indxs[0]] |
|
971 | 999 | ypos = ypos[indxs[0]] |
|
972 | 1000 | for i in range(0,len(ypos)): |
|
973 | 1001 | ypos[i]=int(ypos[i]) |
|
974 | 1002 | junk = tmp |
|
975 | 1003 | tmp = junk*0.0 |
|
976 | 1004 | |
|
977 | 1005 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] |
|
978 | 1006 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) |
|
979 | 1007 | |
|
980 | 1008 | #print array.shape |
|
981 | 1009 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) |
|
982 | 1010 | #print tmp.shape |
|
983 | 1011 | |
|
984 | 1012 | # fig = plt.figure(figsize=(6,5)) |
|
985 | 1013 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
986 | 1014 | # ax = fig.add_axes([left, bottom, width, height]) |
|
987 | 1015 | # x = range(num_prof) |
|
988 | 1016 | # y = range(num_hei) |
|
989 | 1017 | # cp = ax.contour(y,x,array[ii,:,:]) |
|
990 | 1018 | # ax.clabel(cp, inline=True,fontsize=10) |
|
991 | 1019 | # plt.show() |
|
992 | 1020 | return array |
|
993 | 1021 | |
|
994 | 1022 | class removeInterference(Operation): |
|
995 | 1023 | |
|
996 | 1024 | def removeInterference2(self): |
|
997 | 1025 | |
|
998 | 1026 | cspc = self.dataOut.data_cspc |
|
999 | 1027 | spc = self.dataOut.data_spc |
|
1000 | 1028 | Heights = numpy.arange(cspc.shape[2]) |
|
1001 | 1029 | realCspc = numpy.abs(cspc) |
|
1002 | 1030 | |
|
1003 | 1031 | for i in range(cspc.shape[0]): |
|
1004 | 1032 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
1005 | 1033 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
1006 | 1034 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
1007 | 1035 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
1008 | 1036 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
1009 | 1037 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
1010 | 1038 | |
|
1011 | 1039 | |
|
1012 | 1040 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
1013 | 1041 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
1014 | 1042 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
1015 | 1043 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
1016 | 1044 | |
|
1017 | 1045 | self.dataOut.data_cspc = cspc |
|
1018 | 1046 | |
|
1019 | 1047 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
1020 | 1048 | |
|
1021 | 1049 | jspectra = self.dataOut.data_spc |
|
1022 | 1050 | jcspectra = self.dataOut.data_cspc |
|
1023 | 1051 | jnoise = self.dataOut.getNoise() |
|
1024 | 1052 | num_incoh = self.dataOut.nIncohInt |
|
1025 | 1053 | |
|
1026 | 1054 | num_channel = jspectra.shape[0] |
|
1027 | 1055 | num_prof = jspectra.shape[1] |
|
1028 | 1056 | num_hei = jspectra.shape[2] |
|
1029 | 1057 | |
|
1030 | 1058 | # hei_interf |
|
1031 | 1059 | if hei_interf is None: |
|
1032 | 1060 | count_hei = int(num_hei / 2) |
|
1033 | 1061 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
1034 | 1062 | hei_interf = numpy.asarray(hei_interf)[0] |
|
1035 | 1063 | # nhei_interf |
|
1036 | 1064 | if (nhei_interf == None): |
|
1037 | 1065 | nhei_interf = 5 |
|
1038 | 1066 | if (nhei_interf < 1): |
|
1039 | 1067 | nhei_interf = 1 |
|
1040 | 1068 | if (nhei_interf > count_hei): |
|
1041 | 1069 | nhei_interf = count_hei |
|
1042 | 1070 | if (offhei_interf == None): |
|
1043 | 1071 | offhei_interf = 0 |
|
1044 | 1072 | |
|
1045 | 1073 | ind_hei = list(range(num_hei)) |
|
1046 | 1074 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
1047 | 1075 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
1048 | 1076 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
1049 | 1077 | num_mask_prof = mask_prof.size |
|
1050 | 1078 | comp_mask_prof = [0, num_prof / 2] |
|
1051 | 1079 | |
|
1052 | 1080 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
1053 | 1081 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
1054 | 1082 | jnoise = numpy.nan |
|
1055 | 1083 | noise_exist = jnoise[0] < numpy.Inf |
|
1056 | 1084 | |
|
1057 | 1085 | # Subrutina de Remocion de la Interferencia |
|
1058 | 1086 | for ich in range(num_channel): |
|
1059 | 1087 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1060 | 1088 | power = jspectra[ich, mask_prof, :] |
|
1061 | 1089 | power = power[:, hei_interf] |
|
1062 | 1090 | power = power.sum(axis=0) |
|
1063 | 1091 | psort = power.ravel().argsort() |
|
1064 | 1092 | |
|
1065 | 1093 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
1066 | 1094 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
1067 | 1095 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1068 | 1096 | |
|
1069 | 1097 | if noise_exist: |
|
1070 | 1098 | # tmp_noise = jnoise[ich] / num_prof |
|
1071 | 1099 | tmp_noise = jnoise[ich] |
|
1072 | 1100 | junkspc_interf = junkspc_interf - tmp_noise |
|
1073 | 1101 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
1074 | 1102 | |
|
1075 | 1103 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
1076 | 1104 | jspc_interf = jspc_interf.transpose() |
|
1077 | 1105 | # Calculando el espectro de interferencia promedio |
|
1078 | 1106 | noiseid = numpy.where( |
|
1079 | 1107 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
1080 | 1108 | noiseid = noiseid[0] |
|
1081 | 1109 | cnoiseid = noiseid.size |
|
1082 | 1110 | interfid = numpy.where( |
|
1083 | 1111 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
1084 | 1112 | interfid = interfid[0] |
|
1085 | 1113 | cinterfid = interfid.size |
|
1086 | 1114 | |
|
1087 | 1115 | if (cnoiseid > 0): |
|
1088 | 1116 | jspc_interf[noiseid] = 0 |
|
1089 | 1117 | |
|
1090 | 1118 | # Expandiendo los perfiles a limpiar |
|
1091 | 1119 | if (cinterfid > 0): |
|
1092 | 1120 | new_interfid = ( |
|
1093 | 1121 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
1094 | 1122 | new_interfid = numpy.asarray(new_interfid) |
|
1095 | 1123 | new_interfid = {x for x in new_interfid} |
|
1096 | 1124 | new_interfid = numpy.array(list(new_interfid)) |
|
1097 | 1125 | new_cinterfid = new_interfid.size |
|
1098 | 1126 | else: |
|
1099 | 1127 | new_cinterfid = 0 |
|
1100 | 1128 | |
|
1101 | 1129 | for ip in range(new_cinterfid): |
|
1102 | 1130 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
1103 | 1131 | jspc_interf[new_interfid[ip] |
|
1104 | 1132 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
1105 | 1133 | |
|
1106 | 1134 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
1107 | 1135 | ind_hei] - jspc_interf # Corregir indices |
|
1108 | 1136 | |
|
1109 | 1137 | # Removiendo la interferencia del punto de mayor interferencia |
|
1110 | 1138 | ListAux = jspc_interf[mask_prof].tolist() |
|
1111 | 1139 | maxid = ListAux.index(max(ListAux)) |
|
1112 | 1140 | |
|
1113 | 1141 | if cinterfid > 0: |
|
1114 | 1142 | for ip in range(cinterfid * (interf == 2) - 1): |
|
1115 | 1143 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
1116 | 1144 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1117 | 1145 | cind = len(ind) |
|
1118 | 1146 | |
|
1119 | 1147 | if (cind > 0): |
|
1120 | 1148 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
1121 | 1149 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
1122 | 1150 | numpy.sqrt(num_incoh)) |
|
1123 | 1151 | |
|
1124 | 1152 | ind = numpy.array([-2, -1, 1, 2]) |
|
1125 | 1153 | xx = numpy.zeros([4, 4]) |
|
1126 | 1154 | |
|
1127 | 1155 | for id1 in range(4): |
|
1128 | 1156 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1129 | 1157 | |
|
1130 | 1158 | xx_inv = numpy.linalg.inv(xx) |
|
1131 | 1159 | xx = xx_inv[:, 0] |
|
1132 | 1160 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1133 | 1161 | yy = jspectra[ich, mask_prof[ind], :] |
|
1134 | 1162 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
1135 | 1163 | yy.transpose(), xx) |
|
1136 | 1164 | |
|
1137 | 1165 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
1138 | 1166 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1139 | 1167 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
1140 | 1168 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
1141 | 1169 | |
|
1142 | 1170 | # Remocion de Interferencia en el Cross Spectra |
|
1143 | 1171 | if jcspectra is None: |
|
1144 | 1172 | return jspectra, jcspectra |
|
1145 | 1173 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
1146 | 1174 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
1147 | 1175 | |
|
1148 | 1176 | for ip in range(num_pairs): |
|
1149 | 1177 | |
|
1150 | 1178 | #------------------------------------------- |
|
1151 | 1179 | |
|
1152 | 1180 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
1153 | 1181 | cspower = cspower[:, hei_interf] |
|
1154 | 1182 | cspower = cspower.sum(axis=0) |
|
1155 | 1183 | |
|
1156 | 1184 | cspsort = cspower.ravel().argsort() |
|
1157 | 1185 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
1158 | 1186 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1159 | 1187 | junkcspc_interf = junkcspc_interf.transpose() |
|
1160 | 1188 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
1161 | 1189 | |
|
1162 | 1190 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1163 | 1191 | |
|
1164 | 1192 | median_real = int(numpy.median(numpy.real( |
|
1165 | 1193 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1166 | 1194 | median_imag = int(numpy.median(numpy.imag( |
|
1167 | 1195 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1168 | 1196 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
1169 | 1197 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
1170 | 1198 | median_real, median_imag) |
|
1171 | 1199 | |
|
1172 | 1200 | for iprof in range(num_prof): |
|
1173 | 1201 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
1174 | 1202 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
1175 | 1203 | |
|
1176 | 1204 | # Removiendo la Interferencia |
|
1177 | 1205 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
1178 | 1206 | :, ind_hei] - jcspc_interf |
|
1179 | 1207 | |
|
1180 | 1208 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1181 | 1209 | maxid = ListAux.index(max(ListAux)) |
|
1182 | 1210 | |
|
1183 | 1211 | ind = numpy.array([-2, -1, 1, 2]) |
|
1184 | 1212 | xx = numpy.zeros([4, 4]) |
|
1185 | 1213 | |
|
1186 | 1214 | for id1 in range(4): |
|
1187 | 1215 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1188 | 1216 | |
|
1189 | 1217 | xx_inv = numpy.linalg.inv(xx) |
|
1190 | 1218 | xx = xx_inv[:, 0] |
|
1191 | 1219 | |
|
1192 | 1220 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1193 | 1221 | yy = jcspectra[ip, mask_prof[ind], :] |
|
1194 | 1222 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1195 | 1223 | |
|
1196 | 1224 | # Guardar Resultados |
|
1197 | 1225 | self.dataOut.data_spc = jspectra |
|
1198 | 1226 | self.dataOut.data_cspc = jcspectra |
|
1199 | 1227 | |
|
1200 | 1228 | return 1 |
|
1201 | 1229 | |
|
1202 | 1230 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): |
|
1203 | 1231 | |
|
1204 | 1232 | self.dataOut = dataOut |
|
1205 | 1233 | |
|
1206 | 1234 | if mode == 1: |
|
1207 | 1235 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
1208 | 1236 | elif mode == 2: |
|
1209 | 1237 | self.removeInterference2() |
|
1210 | 1238 | |
|
1211 | 1239 | return self.dataOut |
|
1212 | 1240 | |
|
1213 | 1241 | |
|
1214 | 1242 | class IncohInt(Operation): |
|
1215 | 1243 | |
|
1216 | 1244 | __profIndex = 0 |
|
1217 | 1245 | __withOverapping = False |
|
1218 | 1246 | |
|
1219 | 1247 | __byTime = False |
|
1220 | 1248 | __initime = None |
|
1221 | 1249 | __lastdatatime = None |
|
1222 | 1250 | __integrationtime = None |
|
1223 | 1251 | |
|
1224 | 1252 | __buffer_spc = None |
|
1225 | 1253 | __buffer_cspc = None |
|
1226 | 1254 | __buffer_dc = None |
|
1227 | 1255 | |
|
1228 | 1256 | __dataReady = False |
|
1229 | 1257 | |
|
1230 | 1258 | __timeInterval = None |
|
1231 | 1259 | |
|
1232 | 1260 | n = None |
|
1233 | 1261 | |
|
1234 | 1262 | def __init__(self): |
|
1235 | 1263 | |
|
1236 | 1264 | Operation.__init__(self) |
|
1237 | 1265 | |
|
1238 | 1266 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1239 | 1267 | """ |
|
1240 | 1268 | Set the parameters of the integration class. |
|
1241 | 1269 | |
|
1242 | 1270 | Inputs: |
|
1243 | 1271 | |
|
1244 | 1272 | n : Number of coherent integrations |
|
1245 | 1273 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1246 | 1274 | overlapping : |
|
1247 | 1275 | |
|
1248 | 1276 | """ |
|
1249 | 1277 | |
|
1250 | 1278 | self.__initime = None |
|
1251 | 1279 | self.__lastdatatime = 0 |
|
1252 | 1280 | |
|
1253 | 1281 | self.__buffer_spc = 0 |
|
1254 | 1282 | self.__buffer_cspc = 0 |
|
1255 | 1283 | self.__buffer_dc = 0 |
|
1256 | 1284 | |
|
1257 | 1285 | self.__profIndex = 0 |
|
1258 | 1286 | self.__dataReady = False |
|
1259 | 1287 | self.__byTime = False |
|
1260 | 1288 | |
|
1261 | 1289 | if n is None and timeInterval is None: |
|
1262 | 1290 | raise ValueError("n or timeInterval should be specified ...") |
|
1263 | 1291 | |
|
1264 | 1292 | if n is not None: |
|
1265 | 1293 | self.n = int(n) |
|
1266 | 1294 | else: |
|
1267 | 1295 | |
|
1268 | 1296 | self.__integrationtime = int(timeInterval) |
|
1269 | 1297 | self.n = None |
|
1270 | 1298 | self.__byTime = True |
|
1271 | 1299 | |
|
1272 | 1300 | def putData(self, data_spc, data_cspc, data_dc): |
|
1273 | 1301 | """ |
|
1274 | 1302 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1275 | 1303 | |
|
1276 | 1304 | """ |
|
1277 | 1305 | |
|
1278 | 1306 | self.__buffer_spc += data_spc |
|
1279 | 1307 | |
|
1280 | 1308 | if data_cspc is None: |
|
1281 | 1309 | self.__buffer_cspc = None |
|
1282 | 1310 | else: |
|
1283 | 1311 | self.__buffer_cspc += data_cspc |
|
1284 | 1312 | |
|
1285 | 1313 | if data_dc is None: |
|
1286 | 1314 | self.__buffer_dc = None |
|
1287 | 1315 | else: |
|
1288 | 1316 | self.__buffer_dc += data_dc |
|
1289 | 1317 | |
|
1290 | 1318 | self.__profIndex += 1 |
|
1291 | 1319 | |
|
1292 | 1320 | return |
|
1293 | 1321 | |
|
1294 | 1322 | def pushData(self): |
|
1295 | 1323 | """ |
|
1296 | 1324 | Return the sum of the last profiles and the profiles used in the sum. |
|
1297 | 1325 | |
|
1298 | 1326 | Affected: |
|
1299 | 1327 | |
|
1300 | 1328 | self.__profileIndex |
|
1301 | 1329 | |
|
1302 | 1330 | """ |
|
1303 | 1331 | |
|
1304 | 1332 | data_spc = self.__buffer_spc |
|
1305 | 1333 | data_cspc = self.__buffer_cspc |
|
1306 | 1334 | data_dc = self.__buffer_dc |
|
1307 | 1335 | n = self.__profIndex |
|
1308 | 1336 | |
|
1309 | 1337 | self.__buffer_spc = 0 |
|
1310 | 1338 | self.__buffer_cspc = 0 |
|
1311 | 1339 | self.__buffer_dc = 0 |
|
1312 | 1340 | self.__profIndex = 0 |
|
1313 | 1341 | |
|
1314 | 1342 | return data_spc, data_cspc, data_dc, n |
|
1315 | 1343 | |
|
1316 | 1344 | def byProfiles(self, *args): |
|
1317 | 1345 | |
|
1318 | 1346 | self.__dataReady = False |
|
1319 | 1347 | avgdata_spc = None |
|
1320 | 1348 | avgdata_cspc = None |
|
1321 | 1349 | avgdata_dc = None |
|
1322 | 1350 | |
|
1323 | 1351 | self.putData(*args) |
|
1324 | 1352 | |
|
1325 | 1353 | if self.__profIndex == self.n: |
|
1326 | 1354 | |
|
1327 | 1355 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1328 | 1356 | self.n = n |
|
1329 | 1357 | self.__dataReady = True |
|
1330 | 1358 | |
|
1331 | 1359 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1332 | 1360 | |
|
1333 | 1361 | def byTime(self, datatime, *args): |
|
1334 | 1362 | |
|
1335 | 1363 | self.__dataReady = False |
|
1336 | 1364 | avgdata_spc = None |
|
1337 | 1365 | avgdata_cspc = None |
|
1338 | 1366 | avgdata_dc = None |
|
1339 | 1367 | |
|
1340 | 1368 | self.putData(*args) |
|
1341 | 1369 | |
|
1342 | 1370 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1343 | 1371 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1344 | 1372 | self.n = n |
|
1345 | 1373 | self.__dataReady = True |
|
1346 | 1374 | |
|
1347 | 1375 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1348 | 1376 | |
|
1349 | 1377 | def integrate(self, datatime, *args): |
|
1350 | 1378 | |
|
1351 | 1379 | if self.__profIndex == 0: |
|
1352 | 1380 | self.__initime = datatime |
|
1353 | 1381 | |
|
1354 | 1382 | if self.__byTime: |
|
1355 | 1383 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1356 | 1384 | datatime, *args) |
|
1357 | 1385 | else: |
|
1358 | 1386 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1359 | 1387 | |
|
1360 | 1388 | if not self.__dataReady: |
|
1361 | 1389 | return None, None, None, None |
|
1362 | 1390 | |
|
1363 | 1391 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1364 | 1392 | |
|
1365 | 1393 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1366 | 1394 | if n == 1: |
|
1367 | 1395 | return dataOut |
|
1368 | 1396 | |
|
1369 | 1397 | dataOut.flagNoData = True |
|
1370 | 1398 | |
|
1371 | 1399 | if not self.isConfig: |
|
1372 | 1400 | self.setup(n, timeInterval, overlapping) |
|
1373 | 1401 | self.isConfig = True |
|
1374 | 1402 | |
|
1375 | 1403 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1376 | 1404 | dataOut.data_spc, |
|
1377 | 1405 | dataOut.data_cspc, |
|
1378 | 1406 | dataOut.data_dc) |
|
1379 | 1407 | |
|
1380 | 1408 | if self.__dataReady: |
|
1381 | 1409 | |
|
1382 | 1410 | dataOut.data_spc = avgdata_spc |
|
1383 | 1411 | dataOut.data_cspc = avgdata_cspc |
|
1384 | 1412 | dataOut.data_dc = avgdata_dc |
|
1385 | 1413 | dataOut.nIncohInt *= self.n |
|
1386 | 1414 | dataOut.utctime = avgdatatime |
|
1387 | 1415 | dataOut.flagNoData = False |
|
1388 | 1416 | |
|
1389 | 1417 | return dataOut |
|
1390 | 1418 | |
|
1391 | 1419 | class dopplerFlip(Operation): |
|
1392 | 1420 | |
|
1393 | 1421 | def run(self, dataOut): |
|
1394 | 1422 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1395 | 1423 | self.dataOut = dataOut |
|
1396 | 1424 | # JULIA-oblicua, indice 2 |
|
1397 | 1425 | # arreglo 2: (num_profiles, num_heights) |
|
1398 | 1426 | jspectra = self.dataOut.data_spc[2] |
|
1399 | 1427 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
1400 | 1428 | num_profiles = jspectra.shape[0] |
|
1401 | 1429 | freq_dc = int(num_profiles / 2) |
|
1402 | 1430 | # Flip con for |
|
1403 | 1431 | for j in range(num_profiles): |
|
1404 | 1432 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1405 | 1433 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1406 | 1434 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1407 | 1435 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1408 | 1436 | # canal modificado es re-escrito en el arreglo de canales |
|
1409 | 1437 | self.dataOut.data_spc[2] = jspectra_tmp |
|
1410 | 1438 | |
|
1411 | 1439 | return self.dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now