@@ -1,712 +1,727 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Classes to plot Spectra data |
|
5 | """Classes to plot Spectra data | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import numpy |
|
10 | import numpy | |
11 |
|
11 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | class SpectraPlot(Plot): |
|
15 | class SpectraPlot(Plot): | |
16 | ''' |
|
16 | ''' | |
17 | Plot for Spectra data |
|
17 | Plot for Spectra data | |
18 | ''' |
|
18 | ''' | |
19 |
|
19 | |||
20 | CODE = 'spc' |
|
20 | CODE = 'spc' | |
21 | colormap = 'jet' |
|
21 | colormap = 'jet' | |
22 | plot_type = 'pcolor' |
|
22 | plot_type = 'pcolor' | |
23 | buffering = False |
|
23 | buffering = False | |
24 | channelList = [] |
|
24 | channelList = [] | |
25 |
|
25 | |||
26 | def setup(self): |
|
26 | def setup(self): | |
27 | self.nplots = len(self.data.channels) |
|
27 | self.nplots = len(self.data.channels) | |
28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
30 | self.height = 2.6 * self.nrows |
|
30 | self.height = 2.6 * self.nrows | |
31 |
|
31 | |||
32 | self.cb_label = 'dB' |
|
32 | self.cb_label = 'dB' | |
33 | if self.showprofile: |
|
33 | if self.showprofile: | |
34 | self.width = 4 * self.ncols |
|
34 | self.width = 4 * self.ncols | |
35 | else: |
|
35 | else: | |
36 | self.width = 3.5 * self.ncols |
|
36 | self.width = 3.5 * self.ncols | |
37 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
37 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
38 | self.ylabel = 'Range [km]' |
|
38 | self.ylabel = 'Range [km]' | |
39 |
|
39 | |||
40 | def update(self, dataOut): |
|
40 | def update(self, dataOut): | |
41 | if self.channelList == None: |
|
41 | if self.channelList == None: | |
42 | self.channelList = dataOut.channelList |
|
42 | self.channelList = dataOut.channelList | |
43 | data = {} |
|
43 | data = {} | |
44 | meta = {} |
|
44 | meta = {} | |
45 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
45 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
46 | data['spc'] = spc |
|
46 | data['spc'] = spc | |
47 | data['rti'] = dataOut.getPower() |
|
47 | data['rti'] = dataOut.getPower() | |
48 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
48 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
49 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
49 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
50 | if self.CODE == 'spc_moments': |
|
50 | if self.CODE == 'spc_moments': | |
51 | data['moments'] = dataOut.moments |
|
51 | data['moments'] = dataOut.moments | |
52 |
|
52 | |||
53 | return data, meta |
|
53 | return data, meta | |
54 |
|
54 | |||
55 | def plot(self): |
|
55 | def plot(self): | |
56 | if self.xaxis == "frequency": |
|
56 | if self.xaxis == "frequency": | |
57 | x = self.data.xrange[0] |
|
57 | x = self.data.xrange[0] | |
58 | self.xlabel = "Frequency (kHz)" |
|
58 | self.xlabel = "Frequency (kHz)" | |
59 | elif self.xaxis == "time": |
|
59 | elif self.xaxis == "time": | |
60 | x = self.data.xrange[1] |
|
60 | x = self.data.xrange[1] | |
61 | self.xlabel = "Time (ms)" |
|
61 | self.xlabel = "Time (ms)" | |
62 | else: |
|
62 | else: | |
63 | x = self.data.xrange[2] |
|
63 | x = self.data.xrange[2] | |
64 | self.xlabel = "Velocity (m/s)" |
|
64 | self.xlabel = "Velocity (m/s)" | |
65 |
|
65 | |||
66 | if self.CODE == 'spc_moments': |
|
66 | if self.CODE == 'spc_moments': | |
67 | x = self.data.xrange[2] |
|
67 | x = self.data.xrange[2] | |
68 | self.xlabel = "Velocity (m/s)" |
|
68 | self.xlabel = "Velocity (m/s)" | |
69 |
|
69 | |||
70 | self.titles = [] |
|
70 | self.titles = [] | |
71 |
|
71 | |||
72 | y = self.data.yrange |
|
72 | y = self.data.yrange | |
73 | self.y = y |
|
73 | self.y = y | |
74 |
|
74 | |||
75 | data = self.data[-1] |
|
75 | data = self.data[-1] | |
76 | z = data['spc'] |
|
76 | z = data['spc'] | |
77 |
|
77 | |||
78 | for n, ax in enumerate(self.axes): |
|
78 | for n, ax in enumerate(self.axes): | |
79 | noise = data['noise'][n] |
|
79 | noise = data['noise'][n] | |
80 | if self.CODE == 'spc_moments': |
|
80 | if self.CODE == 'spc_moments': | |
81 | mean = data['moments'][n, 1] |
|
81 | mean = data['moments'][n, 1] | |
82 | if ax.firsttime: |
|
82 | if ax.firsttime: | |
83 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
83 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
84 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
84 | self.xmin = self.xmin if self.xmin else -self.xmax | |
85 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
85 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
86 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
86 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
87 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
87 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
88 | vmin=self.zmin, |
|
88 | vmin=self.zmin, | |
89 | vmax=self.zmax, |
|
89 | vmax=self.zmax, | |
90 | cmap=plt.get_cmap(self.colormap) |
|
90 | cmap=plt.get_cmap(self.colormap) | |
91 | ) |
|
91 | ) | |
92 |
|
92 | |||
93 | if self.showprofile: |
|
93 | if self.showprofile: | |
94 | ax.plt_profile = self.pf_axes[n].plot( |
|
94 | ax.plt_profile = self.pf_axes[n].plot( | |
95 | data['rti'][n], y)[0] |
|
95 | data['rti'][n], y)[0] | |
96 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
96 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
97 | color="k", linestyle="dashed", lw=1)[0] |
|
97 | color="k", linestyle="dashed", lw=1)[0] | |
98 | if self.CODE == 'spc_moments': |
|
98 | if self.CODE == 'spc_moments': | |
99 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
99 | ax.plt_mean = ax.plot(mean, y, color='k')[0] | |
100 | else: |
|
100 | else: | |
101 | ax.plt.set_array(z[n].T.ravel()) |
|
101 | ax.plt.set_array(z[n].T.ravel()) | |
102 | if self.showprofile: |
|
102 | if self.showprofile: | |
103 | ax.plt_profile.set_data(data['rti'][n], y) |
|
103 | ax.plt_profile.set_data(data['rti'][n], y) | |
104 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
104 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
105 | if self.CODE == 'spc_moments': |
|
105 | if self.CODE == 'spc_moments': | |
106 | ax.plt_mean.set_data(mean, y) |
|
106 | ax.plt_mean.set_data(mean, y) | |
107 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
107 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) | |
108 |
|
108 | |||
109 |
|
109 | |||
110 | class CrossSpectraPlot(Plot): |
|
110 | class CrossSpectraPlot(Plot): | |
111 |
|
111 | |||
112 | CODE = 'cspc' |
|
112 | CODE = 'cspc' | |
113 | colormap = 'jet' |
|
113 | colormap = 'jet' | |
114 | plot_type = 'pcolor' |
|
114 | plot_type = 'pcolor' | |
115 | zmin_coh = None |
|
115 | zmin_coh = None | |
116 | zmax_coh = None |
|
116 | zmax_coh = None | |
117 | zmin_phase = None |
|
117 | zmin_phase = None | |
118 | zmax_phase = None |
|
118 | zmax_phase = None | |
|
119 | realChannels = None | |||
|
120 | crossPairs = None | |||
119 |
|
121 | |||
120 | def setup(self): |
|
122 | def setup(self): | |
121 |
|
123 | |||
122 | self.ncols = 4 |
|
124 | self.ncols = 4 | |
123 | self.nplots = len(self.data.pairs) * 2 |
|
125 | self.nplots = len(self.data.pairs) * 2 | |
124 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
126 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
125 | self.width = 3.1 * self.ncols |
|
127 | self.width = 3.1 * self.ncols | |
126 | self.height = 2.6 * self.nrows |
|
128 | self.height = 2.6 * self.nrows | |
127 | self.ylabel = 'Range [km]' |
|
129 | self.ylabel = 'Range [km]' | |
128 | self.showprofile = False |
|
130 | self.showprofile = False | |
129 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
131 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
130 |
|
132 | |||
131 | def update(self, dataOut): |
|
133 | def update(self, dataOut): | |
132 |
|
134 | |||
133 | data = {} |
|
135 | data = {} | |
134 | meta = {} |
|
136 | meta = {} | |
135 |
|
137 | |||
136 | spc = dataOut.data_spc |
|
138 | spc = dataOut.data_spc | |
137 | cspc = dataOut.data_cspc |
|
139 | cspc = dataOut.data_cspc | |
138 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
140 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
139 | meta['pairs'] = dataOut.pairsList |
|
141 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) | |
|
142 | #print(rawPairs) | |||
|
143 | meta['pairs'] = rawPairs | |||
|
144 | ||||
|
145 | if self.crossPairs == None: | |||
|
146 | self.crossPairs = dataOut.pairsList | |||
140 |
|
147 | |||
141 | tmp = [] |
|
148 | tmp = [] | |
142 |
|
149 | |||
143 | for n, pair in enumerate(meta['pairs']): |
|
150 | for n, pair in enumerate(meta['pairs']): | |
|
151 | ||||
144 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
152 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
145 | coh = numpy.abs(out) |
|
153 | coh = numpy.abs(out) | |
146 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
154 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
147 | tmp.append(coh) |
|
155 | tmp.append(coh) | |
148 | tmp.append(phase) |
|
156 | tmp.append(phase) | |
149 |
|
157 | |||
150 | data['cspc'] = numpy.array(tmp) |
|
158 | data['cspc'] = numpy.array(tmp) | |
151 |
|
159 | |||
152 | return data, meta |
|
160 | return data, meta | |
153 |
|
161 | |||
154 | def plot(self): |
|
162 | def plot(self): | |
155 |
|
163 | |||
156 | if self.xaxis == "frequency": |
|
164 | if self.xaxis == "frequency": | |
157 | x = self.data.xrange[0] |
|
165 | x = self.data.xrange[0] | |
158 | self.xlabel = "Frequency (kHz)" |
|
166 | self.xlabel = "Frequency (kHz)" | |
159 | elif self.xaxis == "time": |
|
167 | elif self.xaxis == "time": | |
160 | x = self.data.xrange[1] |
|
168 | x = self.data.xrange[1] | |
161 | self.xlabel = "Time (ms)" |
|
169 | self.xlabel = "Time (ms)" | |
162 | else: |
|
170 | else: | |
163 | x = self.data.xrange[2] |
|
171 | x = self.data.xrange[2] | |
164 | self.xlabel = "Velocity (m/s)" |
|
172 | self.xlabel = "Velocity (m/s)" | |
165 |
|
173 | |||
166 | self.titles = [] |
|
174 | self.titles = [] | |
167 |
|
175 | |||
168 | y = self.data.yrange |
|
176 | y = self.data.yrange | |
169 | self.y = y |
|
177 | self.y = y | |
170 |
|
178 | |||
171 | data = self.data[-1] |
|
179 | data = self.data[-1] | |
172 | cspc = data['cspc'] |
|
180 | cspc = data['cspc'] | |
173 |
|
181 | #print(self.crossPairs) | ||
174 | for n in range(len(self.data.pairs)): |
|
182 | for n in range(len(self.data.pairs)): | |
175 | pair = self.data.pairs[n] |
|
183 | #pair = self.data.pairs[n] | |
|
184 | pair = self.crossPairs[n] | |||
|
185 | ||||
176 | coh = cspc[n*2] |
|
186 | coh = cspc[n*2] | |
177 | phase = cspc[n*2+1] |
|
187 | phase = cspc[n*2+1] | |
178 | ax = self.axes[2 * n] |
|
188 | ax = self.axes[2 * n] | |
|
189 | ||||
179 | if ax.firsttime: |
|
190 | if ax.firsttime: | |
180 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
191 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
181 | vmin=0, |
|
192 | vmin=0, | |
182 | vmax=1, |
|
193 | vmax=1, | |
183 | cmap=plt.get_cmap(self.colormap_coh) |
|
194 | cmap=plt.get_cmap(self.colormap_coh) | |
184 | ) |
|
195 | ) | |
185 | else: |
|
196 | else: | |
186 | ax.plt.set_array(coh.T.ravel()) |
|
197 | ax.plt.set_array(coh.T.ravel()) | |
187 | self.titles.append( |
|
198 | self.titles.append( | |
188 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
199 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
189 |
|
200 | |||
190 | ax = self.axes[2 * n + 1] |
|
201 | ax = self.axes[2 * n + 1] | |
191 | if ax.firsttime: |
|
202 | if ax.firsttime: | |
192 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
203 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
193 | vmin=-180, |
|
204 | vmin=-180, | |
194 | vmax=180, |
|
205 | vmax=180, | |
195 | cmap=plt.get_cmap(self.colormap_phase) |
|
206 | cmap=plt.get_cmap(self.colormap_phase) | |
196 | ) |
|
207 | ) | |
197 | else: |
|
208 | else: | |
198 | ax.plt.set_array(phase.T.ravel()) |
|
209 | ax.plt.set_array(phase.T.ravel()) | |
199 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
210 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
200 |
|
211 | |||
201 |
|
212 | |||
202 | class RTIPlot(Plot): |
|
213 | class RTIPlot(Plot): | |
203 | ''' |
|
214 | ''' | |
204 | Plot for RTI data |
|
215 | Plot for RTI data | |
205 | ''' |
|
216 | ''' | |
206 |
|
217 | |||
207 | CODE = 'rti' |
|
218 | CODE = 'rti' | |
208 | colormap = 'jet' |
|
219 | colormap = 'jet' | |
209 | plot_type = 'pcolorbuffer' |
|
220 | plot_type = 'pcolorbuffer' | |
210 | titles = None |
|
221 | titles = None | |
211 | channelList = [] |
|
222 | channelList = [] | |
212 |
|
223 | |||
213 | def setup(self): |
|
224 | def setup(self): | |
214 | self.xaxis = 'time' |
|
225 | self.xaxis = 'time' | |
215 | self.ncols = 1 |
|
226 | self.ncols = 1 | |
216 | print("dataChannels ",self.data.channels) |
|
227 | print("dataChannels ",self.data.channels) | |
217 | self.nrows = len(self.data.channels) |
|
228 | self.nrows = len(self.data.channels) | |
218 | self.nplots = len(self.data.channels) |
|
229 | self.nplots = len(self.data.channels) | |
219 | self.ylabel = 'Range [km]' |
|
230 | self.ylabel = 'Range [km]' | |
220 | self.xlabel = 'Time' |
|
231 | self.xlabel = 'Time' | |
221 | self.cb_label = 'dB' |
|
232 | self.cb_label = 'dB' | |
222 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
233 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) | |
223 | self.titles = ['{} Channel {}'.format( |
|
234 | self.titles = ['{} Channel {}'.format( | |
224 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
235 | self.CODE.upper(), x) for x in range(self.nplots)] | |
225 | print("SETUP") |
|
236 | print("SETUP") | |
226 | def update(self, dataOut): |
|
237 | def update(self, dataOut): | |
227 | if len(self.channelList) == 0: |
|
238 | if len(self.channelList) == 0: | |
228 | self.channelList = dataOut.channelList |
|
239 | self.channelList = dataOut.channelList | |
229 | data = {} |
|
240 | data = {} | |
230 | meta = {} |
|
241 | meta = {} | |
231 | data['rti'] = dataOut.getPower() |
|
242 | data['rti'] = dataOut.getPower() | |
232 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
243 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
233 |
|
244 | |||
234 | return data, meta |
|
245 | return data, meta | |
235 |
|
246 | |||
236 | def plot(self): |
|
247 | def plot(self): | |
237 | self.x = self.data.times |
|
248 | self.x = self.data.times | |
238 | self.y = self.data.yrange |
|
249 | self.y = self.data.yrange | |
239 | self.z = self.data[self.CODE] |
|
250 | self.z = self.data[self.CODE] | |
240 | self.z = numpy.ma.masked_invalid(self.z) |
|
251 | self.z = numpy.ma.masked_invalid(self.z) | |
241 | if self.channelList != None: |
|
252 | try: | |
242 | self.titles = ['{} Channel {}'.format( |
|
253 | if self.channelList != None: | |
243 | self.CODE.upper(), x) for x in self.channelList] |
|
254 | self.titles = ['{} Channel {}'.format( | |
244 |
|
255 | self.CODE.upper(), x) for x in self.channelList] | ||
|
256 | except: | |||
|
257 | if self.channelList.any() != None: | |||
|
258 | self.titles = ['{} Channel {}'.format( | |||
|
259 | self.CODE.upper(), x) for x in self.channelList] | |||
245 | if self.decimation is None: |
|
260 | if self.decimation is None: | |
246 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
261 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
247 | else: |
|
262 | else: | |
248 | x, y, z = self.fill_gaps(*self.decimate()) |
|
263 | x, y, z = self.fill_gaps(*self.decimate()) | |
249 |
|
264 | |||
250 | for n, ax in enumerate(self.axes): |
|
265 | for n, ax in enumerate(self.axes): | |
251 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
266 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
252 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
267 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
253 | data = self.data[-1] |
|
268 | data = self.data[-1] | |
254 | if ax.firsttime: |
|
269 | if ax.firsttime: | |
255 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
270 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
256 | vmin=self.zmin, |
|
271 | vmin=self.zmin, | |
257 | vmax=self.zmax, |
|
272 | vmax=self.zmax, | |
258 | cmap=plt.get_cmap(self.colormap) |
|
273 | cmap=plt.get_cmap(self.colormap) | |
259 | ) |
|
274 | ) | |
260 | if self.showprofile: |
|
275 | if self.showprofile: | |
261 | ax.plot_profile = self.pf_axes[n].plot( |
|
276 | ax.plot_profile = self.pf_axes[n].plot( | |
262 | data['rti'][n], self.y)[0] |
|
277 | data['rti'][n], self.y)[0] | |
263 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
278 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, | |
264 | color="k", linestyle="dashed", lw=1)[0] |
|
279 | color="k", linestyle="dashed", lw=1)[0] | |
265 | else: |
|
280 | else: | |
266 | ax.collections.remove(ax.collections[0]) |
|
281 | ax.collections.remove(ax.collections[0]) | |
267 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
282 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
268 | vmin=self.zmin, |
|
283 | vmin=self.zmin, | |
269 | vmax=self.zmax, |
|
284 | vmax=self.zmax, | |
270 | cmap=plt.get_cmap(self.colormap) |
|
285 | cmap=plt.get_cmap(self.colormap) | |
271 | ) |
|
286 | ) | |
272 | if self.showprofile: |
|
287 | if self.showprofile: | |
273 | ax.plot_profile.set_data(data['rti'][n], self.y) |
|
288 | ax.plot_profile.set_data(data['rti'][n], self.y) | |
274 | ax.plot_noise.set_data(numpy.repeat( |
|
289 | ax.plot_noise.set_data(numpy.repeat( | |
275 | data['noise'][n], len(self.y)), self.y) |
|
290 | data['noise'][n], len(self.y)), self.y) | |
276 |
|
291 | |||
277 |
|
292 | |||
278 | class CoherencePlot(RTIPlot): |
|
293 | class CoherencePlot(RTIPlot): | |
279 | ''' |
|
294 | ''' | |
280 | Plot for Coherence data |
|
295 | Plot for Coherence data | |
281 | ''' |
|
296 | ''' | |
282 |
|
297 | |||
283 | CODE = 'coh' |
|
298 | CODE = 'coh' | |
284 |
|
299 | |||
285 | def setup(self): |
|
300 | def setup(self): | |
286 | self.xaxis = 'time' |
|
301 | self.xaxis = 'time' | |
287 | self.ncols = 1 |
|
302 | self.ncols = 1 | |
288 | self.nrows = len(self.data.pairs) |
|
303 | self.nrows = len(self.data.pairs) | |
289 | self.nplots = len(self.data.pairs) |
|
304 | self.nplots = len(self.data.pairs) | |
290 | self.ylabel = 'Range [km]' |
|
305 | self.ylabel = 'Range [km]' | |
291 | self.xlabel = 'Time' |
|
306 | self.xlabel = 'Time' | |
292 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
307 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) | |
293 | if self.CODE == 'coh': |
|
308 | if self.CODE == 'coh': | |
294 | self.cb_label = '' |
|
309 | self.cb_label = '' | |
295 | self.titles = [ |
|
310 | self.titles = [ | |
296 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
311 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
297 | else: |
|
312 | else: | |
298 | self.cb_label = 'Degrees' |
|
313 | self.cb_label = 'Degrees' | |
299 | self.titles = [ |
|
314 | self.titles = [ | |
300 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
315 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
301 |
|
316 | |||
302 | def update(self, dataOut): |
|
317 | def update(self, dataOut): | |
303 |
|
318 | |||
304 | data = {} |
|
319 | data = {} | |
305 | meta = {} |
|
320 | meta = {} | |
306 | data['coh'] = dataOut.getCoherence() |
|
321 | data['coh'] = dataOut.getCoherence() | |
307 | meta['pairs'] = dataOut.pairsList |
|
322 | meta['pairs'] = dataOut.pairsList | |
308 |
|
323 | |||
309 | return data, meta |
|
324 | return data, meta | |
310 |
|
325 | |||
311 | class PhasePlot(CoherencePlot): |
|
326 | class PhasePlot(CoherencePlot): | |
312 | ''' |
|
327 | ''' | |
313 | Plot for Phase map data |
|
328 | Plot for Phase map data | |
314 | ''' |
|
329 | ''' | |
315 |
|
330 | |||
316 | CODE = 'phase' |
|
331 | CODE = 'phase' | |
317 | colormap = 'seismic' |
|
332 | colormap = 'seismic' | |
318 |
|
333 | |||
319 | def update(self, dataOut): |
|
334 | def update(self, dataOut): | |
320 |
|
335 | |||
321 | data = {} |
|
336 | data = {} | |
322 | meta = {} |
|
337 | meta = {} | |
323 | data['phase'] = dataOut.getCoherence(phase=True) |
|
338 | data['phase'] = dataOut.getCoherence(phase=True) | |
324 | meta['pairs'] = dataOut.pairsList |
|
339 | meta['pairs'] = dataOut.pairsList | |
325 |
|
340 | |||
326 | return data, meta |
|
341 | return data, meta | |
327 |
|
342 | |||
328 | class NoisePlot(Plot): |
|
343 | class NoisePlot(Plot): | |
329 | ''' |
|
344 | ''' | |
330 | Plot for noise |
|
345 | Plot for noise | |
331 | ''' |
|
346 | ''' | |
332 |
|
347 | |||
333 | CODE = 'noise' |
|
348 | CODE = 'noise' | |
334 | plot_type = 'scatterbuffer' |
|
349 | plot_type = 'scatterbuffer' | |
335 |
|
350 | |||
336 | def setup(self): |
|
351 | def setup(self): | |
337 | self.xaxis = 'time' |
|
352 | self.xaxis = 'time' | |
338 | self.ncols = 1 |
|
353 | self.ncols = 1 | |
339 | self.nrows = 1 |
|
354 | self.nrows = 1 | |
340 | self.nplots = 1 |
|
355 | self.nplots = 1 | |
341 | self.ylabel = 'Intensity [dB]' |
|
356 | self.ylabel = 'Intensity [dB]' | |
342 | self.xlabel = 'Time' |
|
357 | self.xlabel = 'Time' | |
343 | self.titles = ['Noise'] |
|
358 | self.titles = ['Noise'] | |
344 | self.colorbar = False |
|
359 | self.colorbar = False | |
345 | self.plots_adjust.update({'right': 0.85 }) |
|
360 | self.plots_adjust.update({'right': 0.85 }) | |
346 |
|
361 | |||
347 | def update(self, dataOut): |
|
362 | def update(self, dataOut): | |
348 |
|
363 | |||
349 | data = {} |
|
364 | data = {} | |
350 | meta = {} |
|
365 | meta = {} | |
351 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
366 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) | |
352 | meta['yrange'] = numpy.array([]) |
|
367 | meta['yrange'] = numpy.array([]) | |
353 |
|
368 | |||
354 | return data, meta |
|
369 | return data, meta | |
355 |
|
370 | |||
356 | def plot(self): |
|
371 | def plot(self): | |
357 |
|
372 | |||
358 | x = self.data.times |
|
373 | x = self.data.times | |
359 | xmin = self.data.min_time |
|
374 | xmin = self.data.min_time | |
360 | xmax = xmin + self.xrange * 60 * 60 |
|
375 | xmax = xmin + self.xrange * 60 * 60 | |
361 | Y = self.data['noise'] |
|
376 | Y = self.data['noise'] | |
362 |
|
377 | |||
363 | if self.axes[0].firsttime: |
|
378 | if self.axes[0].firsttime: | |
364 | self.ymin = numpy.nanmin(Y) - 5 |
|
379 | self.ymin = numpy.nanmin(Y) - 5 | |
365 | self.ymax = numpy.nanmax(Y) + 5 |
|
380 | self.ymax = numpy.nanmax(Y) + 5 | |
366 | for ch in self.data.channels: |
|
381 | for ch in self.data.channels: | |
367 | y = Y[ch] |
|
382 | y = Y[ch] | |
368 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
383 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
369 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
384 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
370 | else: |
|
385 | else: | |
371 | for ch in self.data.channels: |
|
386 | for ch in self.data.channels: | |
372 | y = Y[ch] |
|
387 | y = Y[ch] | |
373 | self.axes[0].lines[ch].set_data(x, y) |
|
388 | self.axes[0].lines[ch].set_data(x, y) | |
374 |
|
389 | |||
375 |
|
390 | |||
376 | class PowerProfilePlot(Plot): |
|
391 | class PowerProfilePlot(Plot): | |
377 |
|
392 | |||
378 | CODE = 'pow_profile' |
|
393 | CODE = 'pow_profile' | |
379 | plot_type = 'scatter' |
|
394 | plot_type = 'scatter' | |
380 |
|
395 | |||
381 | def setup(self): |
|
396 | def setup(self): | |
382 |
|
397 | |||
383 | self.ncols = 1 |
|
398 | self.ncols = 1 | |
384 | self.nrows = 1 |
|
399 | self.nrows = 1 | |
385 | self.nplots = 1 |
|
400 | self.nplots = 1 | |
386 | self.height = 4 |
|
401 | self.height = 4 | |
387 | self.width = 3 |
|
402 | self.width = 3 | |
388 | self.ylabel = 'Range [km]' |
|
403 | self.ylabel = 'Range [km]' | |
389 | self.xlabel = 'Intensity [dB]' |
|
404 | self.xlabel = 'Intensity [dB]' | |
390 | self.titles = ['Power Profile'] |
|
405 | self.titles = ['Power Profile'] | |
391 | self.colorbar = False |
|
406 | self.colorbar = False | |
392 |
|
407 | |||
393 | def update(self, dataOut): |
|
408 | def update(self, dataOut): | |
394 |
|
409 | |||
395 | data = {} |
|
410 | data = {} | |
396 | meta = {} |
|
411 | meta = {} | |
397 | data[self.CODE] = dataOut.getPower() |
|
412 | data[self.CODE] = dataOut.getPower() | |
398 |
|
413 | |||
399 | return data, meta |
|
414 | return data, meta | |
400 |
|
415 | |||
401 | def plot(self): |
|
416 | def plot(self): | |
402 |
|
417 | |||
403 | y = self.data.yrange |
|
418 | y = self.data.yrange | |
404 | self.y = y |
|
419 | self.y = y | |
405 |
|
420 | |||
406 | x = self.data[-1][self.CODE] |
|
421 | x = self.data[-1][self.CODE] | |
407 |
|
422 | |||
408 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
423 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 | |
409 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
424 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 | |
410 |
|
425 | |||
411 | if self.axes[0].firsttime: |
|
426 | if self.axes[0].firsttime: | |
412 | for ch in self.data.channels: |
|
427 | for ch in self.data.channels: | |
413 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
428 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) | |
414 | plt.legend() |
|
429 | plt.legend() | |
415 | else: |
|
430 | else: | |
416 | for ch in self.data.channels: |
|
431 | for ch in self.data.channels: | |
417 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
432 | self.axes[0].lines[ch].set_data(x[ch], y) | |
418 |
|
433 | |||
419 |
|
434 | |||
420 | class SpectraCutPlot(Plot): |
|
435 | class SpectraCutPlot(Plot): | |
421 |
|
436 | |||
422 | CODE = 'spc_cut' |
|
437 | CODE = 'spc_cut' | |
423 | plot_type = 'scatter' |
|
438 | plot_type = 'scatter' | |
424 | buffering = False |
|
439 | buffering = False | |
425 |
|
440 | |||
426 | def setup(self): |
|
441 | def setup(self): | |
427 |
|
442 | |||
428 | self.nplots = len(self.data.channels) |
|
443 | self.nplots = len(self.data.channels) | |
429 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
444 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
430 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
445 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
431 | self.width = 3.4 * self.ncols + 1.5 |
|
446 | self.width = 3.4 * self.ncols + 1.5 | |
432 | self.height = 3 * self.nrows |
|
447 | self.height = 3 * self.nrows | |
433 | self.ylabel = 'Power [dB]' |
|
448 | self.ylabel = 'Power [dB]' | |
434 | self.colorbar = False |
|
449 | self.colorbar = False | |
435 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
450 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) | |
436 |
|
451 | |||
437 | def update(self, dataOut): |
|
452 | def update(self, dataOut): | |
438 |
|
453 | |||
439 | data = {} |
|
454 | data = {} | |
440 | meta = {} |
|
455 | meta = {} | |
441 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
456 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
442 | data['spc'] = spc |
|
457 | data['spc'] = spc | |
443 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
458 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
444 |
|
459 | |||
445 | return data, meta |
|
460 | return data, meta | |
446 |
|
461 | |||
447 | def plot(self): |
|
462 | def plot(self): | |
448 | if self.xaxis == "frequency": |
|
463 | if self.xaxis == "frequency": | |
449 | x = self.data.xrange[0][1:] |
|
464 | x = self.data.xrange[0][1:] | |
450 | self.xlabel = "Frequency (kHz)" |
|
465 | self.xlabel = "Frequency (kHz)" | |
451 | elif self.xaxis == "time": |
|
466 | elif self.xaxis == "time": | |
452 | x = self.data.xrange[1] |
|
467 | x = self.data.xrange[1] | |
453 | self.xlabel = "Time (ms)" |
|
468 | self.xlabel = "Time (ms)" | |
454 | else: |
|
469 | else: | |
455 | x = self.data.xrange[2] |
|
470 | x = self.data.xrange[2] | |
456 | self.xlabel = "Velocity (m/s)" |
|
471 | self.xlabel = "Velocity (m/s)" | |
457 |
|
472 | |||
458 | self.titles = [] |
|
473 | self.titles = [] | |
459 |
|
474 | |||
460 | y = self.data.yrange |
|
475 | y = self.data.yrange | |
461 | z = self.data[-1]['spc'] |
|
476 | z = self.data[-1]['spc'] | |
462 |
|
477 | |||
463 | if self.height_index: |
|
478 | if self.height_index: | |
464 | index = numpy.array(self.height_index) |
|
479 | index = numpy.array(self.height_index) | |
465 | else: |
|
480 | else: | |
466 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
481 | index = numpy.arange(0, len(y), int((len(y))/9)) | |
467 |
|
482 | |||
468 | for n, ax in enumerate(self.axes): |
|
483 | for n, ax in enumerate(self.axes): | |
469 | if ax.firsttime: |
|
484 | if ax.firsttime: | |
470 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
485 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
471 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
486 | self.xmin = self.xmin if self.xmin else -self.xmax | |
472 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
487 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) | |
473 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
488 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) | |
474 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
489 | ax.plt = ax.plot(x, z[n, :, index].T) | |
475 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
490 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] | |
476 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
491 | self.figures[0].legend(ax.plt, labels, loc='center right') | |
477 | else: |
|
492 | else: | |
478 | for i, line in enumerate(ax.plt): |
|
493 | for i, line in enumerate(ax.plt): | |
479 | line.set_data(x, z[n, :, index[i]]) |
|
494 | line.set_data(x, z[n, :, index[i]]) | |
480 | self.titles.append('CH {}'.format(n)) |
|
495 | self.titles.append('CH {}'.format(n)) | |
481 |
|
496 | |||
482 |
|
497 | |||
483 | class BeaconPhase(Plot): |
|
498 | class BeaconPhase(Plot): | |
484 |
|
499 | |||
485 | __isConfig = None |
|
500 | __isConfig = None | |
486 | __nsubplots = None |
|
501 | __nsubplots = None | |
487 |
|
502 | |||
488 | PREFIX = 'beacon_phase' |
|
503 | PREFIX = 'beacon_phase' | |
489 |
|
504 | |||
490 | def __init__(self): |
|
505 | def __init__(self): | |
491 | Plot.__init__(self) |
|
506 | Plot.__init__(self) | |
492 | self.timerange = 24*60*60 |
|
507 | self.timerange = 24*60*60 | |
493 | self.isConfig = False |
|
508 | self.isConfig = False | |
494 | self.__nsubplots = 1 |
|
509 | self.__nsubplots = 1 | |
495 | self.counter_imagwr = 0 |
|
510 | self.counter_imagwr = 0 | |
496 | self.WIDTH = 800 |
|
511 | self.WIDTH = 800 | |
497 | self.HEIGHT = 400 |
|
512 | self.HEIGHT = 400 | |
498 | self.WIDTHPROF = 120 |
|
513 | self.WIDTHPROF = 120 | |
499 | self.HEIGHTPROF = 0 |
|
514 | self.HEIGHTPROF = 0 | |
500 | self.xdata = None |
|
515 | self.xdata = None | |
501 | self.ydata = None |
|
516 | self.ydata = None | |
502 |
|
517 | |||
503 | self.PLOT_CODE = BEACON_CODE |
|
518 | self.PLOT_CODE = BEACON_CODE | |
504 |
|
519 | |||
505 | self.FTP_WEI = None |
|
520 | self.FTP_WEI = None | |
506 | self.EXP_CODE = None |
|
521 | self.EXP_CODE = None | |
507 | self.SUB_EXP_CODE = None |
|
522 | self.SUB_EXP_CODE = None | |
508 | self.PLOT_POS = None |
|
523 | self.PLOT_POS = None | |
509 |
|
524 | |||
510 | self.filename_phase = None |
|
525 | self.filename_phase = None | |
511 |
|
526 | |||
512 | self.figfile = None |
|
527 | self.figfile = None | |
513 |
|
528 | |||
514 | self.xmin = None |
|
529 | self.xmin = None | |
515 | self.xmax = None |
|
530 | self.xmax = None | |
516 |
|
531 | |||
517 | def getSubplots(self): |
|
532 | def getSubplots(self): | |
518 |
|
533 | |||
519 | ncol = 1 |
|
534 | ncol = 1 | |
520 | nrow = 1 |
|
535 | nrow = 1 | |
521 |
|
536 | |||
522 | return nrow, ncol |
|
537 | return nrow, ncol | |
523 |
|
538 | |||
524 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
539 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
525 |
|
540 | |||
526 | self.__showprofile = showprofile |
|
541 | self.__showprofile = showprofile | |
527 | self.nplots = nplots |
|
542 | self.nplots = nplots | |
528 |
|
543 | |||
529 | ncolspan = 7 |
|
544 | ncolspan = 7 | |
530 | colspan = 6 |
|
545 | colspan = 6 | |
531 | self.__nsubplots = 2 |
|
546 | self.__nsubplots = 2 | |
532 |
|
547 | |||
533 | self.createFigure(id = id, |
|
548 | self.createFigure(id = id, | |
534 | wintitle = wintitle, |
|
549 | wintitle = wintitle, | |
535 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
550 | widthplot = self.WIDTH+self.WIDTHPROF, | |
536 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
551 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
537 | show=show) |
|
552 | show=show) | |
538 |
|
553 | |||
539 | nrow, ncol = self.getSubplots() |
|
554 | nrow, ncol = self.getSubplots() | |
540 |
|
555 | |||
541 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
556 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
542 |
|
557 | |||
543 | def save_phase(self, filename_phase): |
|
558 | def save_phase(self, filename_phase): | |
544 | f = open(filename_phase,'w+') |
|
559 | f = open(filename_phase,'w+') | |
545 | f.write('\n\n') |
|
560 | f.write('\n\n') | |
546 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
561 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
547 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
562 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
548 | f.close() |
|
563 | f.close() | |
549 |
|
564 | |||
550 | def save_data(self, filename_phase, data, data_datetime): |
|
565 | def save_data(self, filename_phase, data, data_datetime): | |
551 | f=open(filename_phase,'a') |
|
566 | f=open(filename_phase,'a') | |
552 | timetuple_data = data_datetime.timetuple() |
|
567 | timetuple_data = data_datetime.timetuple() | |
553 | day = str(timetuple_data.tm_mday) |
|
568 | day = str(timetuple_data.tm_mday) | |
554 | month = str(timetuple_data.tm_mon) |
|
569 | month = str(timetuple_data.tm_mon) | |
555 | year = str(timetuple_data.tm_year) |
|
570 | year = str(timetuple_data.tm_year) | |
556 | hour = str(timetuple_data.tm_hour) |
|
571 | hour = str(timetuple_data.tm_hour) | |
557 | minute = str(timetuple_data.tm_min) |
|
572 | minute = str(timetuple_data.tm_min) | |
558 | second = str(timetuple_data.tm_sec) |
|
573 | second = str(timetuple_data.tm_sec) | |
559 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
574 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
560 | f.close() |
|
575 | f.close() | |
561 |
|
576 | |||
562 | def plot(self): |
|
577 | def plot(self): | |
563 | log.warning('TODO: Not yet implemented...') |
|
578 | log.warning('TODO: Not yet implemented...') | |
564 |
|
579 | |||
565 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
580 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
566 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
581 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
567 | timerange=None, |
|
582 | timerange=None, | |
568 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
583 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
569 | server=None, folder=None, username=None, password=None, |
|
584 | server=None, folder=None, username=None, password=None, | |
570 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
585 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
571 |
|
586 | |||
572 | if dataOut.flagNoData: |
|
587 | if dataOut.flagNoData: | |
573 | return dataOut |
|
588 | return dataOut | |
574 |
|
589 | |||
575 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
590 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
576 | return |
|
591 | return | |
577 |
|
592 | |||
578 | if pairsList == None: |
|
593 | if pairsList == None: | |
579 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
594 | pairsIndexList = dataOut.pairsIndexList[:10] | |
580 | else: |
|
595 | else: | |
581 | pairsIndexList = [] |
|
596 | pairsIndexList = [] | |
582 | for pair in pairsList: |
|
597 | for pair in pairsList: | |
583 | if pair not in dataOut.pairsList: |
|
598 | if pair not in dataOut.pairsList: | |
584 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
599 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) | |
585 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
600 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
586 |
|
601 | |||
587 | if pairsIndexList == []: |
|
602 | if pairsIndexList == []: | |
588 | return |
|
603 | return | |
589 |
|
604 | |||
590 | # if len(pairsIndexList) > 4: |
|
605 | # if len(pairsIndexList) > 4: | |
591 | # pairsIndexList = pairsIndexList[0:4] |
|
606 | # pairsIndexList = pairsIndexList[0:4] | |
592 |
|
607 | |||
593 | hmin_index = None |
|
608 | hmin_index = None | |
594 | hmax_index = None |
|
609 | hmax_index = None | |
595 |
|
610 | |||
596 | if hmin != None and hmax != None: |
|
611 | if hmin != None and hmax != None: | |
597 | indexes = numpy.arange(dataOut.nHeights) |
|
612 | indexes = numpy.arange(dataOut.nHeights) | |
598 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
613 | hmin_list = indexes[dataOut.heightList >= hmin] | |
599 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
614 | hmax_list = indexes[dataOut.heightList <= hmax] | |
600 |
|
615 | |||
601 | if hmin_list.any(): |
|
616 | if hmin_list.any(): | |
602 | hmin_index = hmin_list[0] |
|
617 | hmin_index = hmin_list[0] | |
603 |
|
618 | |||
604 | if hmax_list.any(): |
|
619 | if hmax_list.any(): | |
605 | hmax_index = hmax_list[-1]+1 |
|
620 | hmax_index = hmax_list[-1]+1 | |
606 |
|
621 | |||
607 | x = dataOut.getTimeRange() |
|
622 | x = dataOut.getTimeRange() | |
608 |
|
623 | |||
609 | thisDatetime = dataOut.datatime |
|
624 | thisDatetime = dataOut.datatime | |
610 |
|
625 | |||
611 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
626 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
612 | xlabel = "Local Time" |
|
627 | xlabel = "Local Time" | |
613 | ylabel = "Phase (degrees)" |
|
628 | ylabel = "Phase (degrees)" | |
614 |
|
629 | |||
615 | update_figfile = False |
|
630 | update_figfile = False | |
616 |
|
631 | |||
617 | nplots = len(pairsIndexList) |
|
632 | nplots = len(pairsIndexList) | |
618 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
633 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
619 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
634 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
620 | for i in range(nplots): |
|
635 | for i in range(nplots): | |
621 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
636 | pair = dataOut.pairsList[pairsIndexList[i]] | |
622 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
637 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
623 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
638 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
624 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
639 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
625 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
640 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
626 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
641 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
627 |
|
642 | |||
628 | if dataOut.beacon_heiIndexList: |
|
643 | if dataOut.beacon_heiIndexList: | |
629 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
644 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
630 | else: |
|
645 | else: | |
631 | phase_beacon[i] = numpy.average(phase) |
|
646 | phase_beacon[i] = numpy.average(phase) | |
632 |
|
647 | |||
633 | if not self.isConfig: |
|
648 | if not self.isConfig: | |
634 |
|
649 | |||
635 | nplots = len(pairsIndexList) |
|
650 | nplots = len(pairsIndexList) | |
636 |
|
651 | |||
637 | self.setup(id=id, |
|
652 | self.setup(id=id, | |
638 | nplots=nplots, |
|
653 | nplots=nplots, | |
639 | wintitle=wintitle, |
|
654 | wintitle=wintitle, | |
640 | showprofile=showprofile, |
|
655 | showprofile=showprofile, | |
641 | show=show) |
|
656 | show=show) | |
642 |
|
657 | |||
643 | if timerange != None: |
|
658 | if timerange != None: | |
644 | self.timerange = timerange |
|
659 | self.timerange = timerange | |
645 |
|
660 | |||
646 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
661 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
647 |
|
662 | |||
648 | if ymin == None: ymin = 0 |
|
663 | if ymin == None: ymin = 0 | |
649 | if ymax == None: ymax = 360 |
|
664 | if ymax == None: ymax = 360 | |
650 |
|
665 | |||
651 | self.FTP_WEI = ftp_wei |
|
666 | self.FTP_WEI = ftp_wei | |
652 | self.EXP_CODE = exp_code |
|
667 | self.EXP_CODE = exp_code | |
653 | self.SUB_EXP_CODE = sub_exp_code |
|
668 | self.SUB_EXP_CODE = sub_exp_code | |
654 | self.PLOT_POS = plot_pos |
|
669 | self.PLOT_POS = plot_pos | |
655 |
|
670 | |||
656 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
671 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
657 | self.isConfig = True |
|
672 | self.isConfig = True | |
658 | self.figfile = figfile |
|
673 | self.figfile = figfile | |
659 | self.xdata = numpy.array([]) |
|
674 | self.xdata = numpy.array([]) | |
660 | self.ydata = numpy.array([]) |
|
675 | self.ydata = numpy.array([]) | |
661 |
|
676 | |||
662 | update_figfile = True |
|
677 | update_figfile = True | |
663 |
|
678 | |||
664 | #open file beacon phase |
|
679 | #open file beacon phase | |
665 | path = '%s%03d' %(self.PREFIX, self.id) |
|
680 | path = '%s%03d' %(self.PREFIX, self.id) | |
666 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
681 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
667 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
682 | self.filename_phase = os.path.join(figpath,beacon_file) | |
668 | #self.save_phase(self.filename_phase) |
|
683 | #self.save_phase(self.filename_phase) | |
669 |
|
684 | |||
670 |
|
685 | |||
671 | #store data beacon phase |
|
686 | #store data beacon phase | |
672 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
687 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
673 |
|
688 | |||
674 | self.setWinTitle(title) |
|
689 | self.setWinTitle(title) | |
675 |
|
690 | |||
676 |
|
691 | |||
677 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
692 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
678 |
|
693 | |||
679 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
694 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
680 |
|
695 | |||
681 | axes = self.axesList[0] |
|
696 | axes = self.axesList[0] | |
682 |
|
697 | |||
683 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
698 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
684 |
|
699 | |||
685 | if len(self.ydata)==0: |
|
700 | if len(self.ydata)==0: | |
686 | self.ydata = phase_beacon.reshape(-1,1) |
|
701 | self.ydata = phase_beacon.reshape(-1,1) | |
687 | else: |
|
702 | else: | |
688 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
703 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
689 |
|
704 | |||
690 |
|
705 | |||
691 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
706 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
692 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
707 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
693 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
708 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
694 | XAxisAsTime=True, grid='both' |
|
709 | XAxisAsTime=True, grid='both' | |
695 | ) |
|
710 | ) | |
696 |
|
711 | |||
697 | self.draw() |
|
712 | self.draw() | |
698 |
|
713 | |||
699 | if dataOut.ltctime >= self.xmax: |
|
714 | if dataOut.ltctime >= self.xmax: | |
700 | self.counter_imagwr = wr_period |
|
715 | self.counter_imagwr = wr_period | |
701 | self.isConfig = False |
|
716 | self.isConfig = False | |
702 | update_figfile = True |
|
717 | update_figfile = True | |
703 |
|
718 | |||
704 | self.save(figpath=figpath, |
|
719 | self.save(figpath=figpath, | |
705 | figfile=figfile, |
|
720 | figfile=figfile, | |
706 | save=save, |
|
721 | save=save, | |
707 | ftp=ftp, |
|
722 | ftp=ftp, | |
708 | wr_period=wr_period, |
|
723 | wr_period=wr_period, | |
709 | thisDatetime=thisDatetime, |
|
724 | thisDatetime=thisDatetime, | |
710 | update_figfile=update_figfile) |
|
725 | update_figfile=update_figfile) | |
711 |
|
726 | |||
712 | return dataOut |
|
727 | return dataOut |
@@ -1,1411 +1,1439 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Spectra processing Unit and operations |
|
5 | """Spectra processing Unit and operations | |
6 |
|
6 | |||
7 | Here you will find the processing unit `SpectraProc` and several operations |
|
7 | Here you will find the processing unit `SpectraProc` and several operations | |
8 | to work with Spectra data type |
|
8 | to work with Spectra data type | |
9 | """ |
|
9 | """ | |
10 |
|
10 | |||
11 | import time |
|
11 | import time | |
12 | import itertools |
|
12 | import itertools | |
13 |
|
13 | |||
14 | import numpy |
|
14 | import numpy | |
15 | import math |
|
15 | import math | |
16 |
|
16 | |||
17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation | |
18 | from schainpy.model.data.jrodata import Spectra |
|
18 | from schainpy.model.data.jrodata import Spectra | |
19 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
19 | from schainpy.model.data.jrodata import hildebrand_sekhon | |
20 | from schainpy.utils import log |
|
20 | from schainpy.utils import log | |
21 |
|
21 | |||
22 | from scipy.optimize import curve_fit |
|
22 | from scipy.optimize import curve_fit | |
23 |
|
23 | |||
24 |
|
24 | |||
25 | class SpectraProc(ProcessingUnit): |
|
25 | class SpectraProc(ProcessingUnit): | |
26 |
|
26 | |||
27 | def __init__(self): |
|
27 | def __init__(self): | |
28 |
|
28 | |||
29 | ProcessingUnit.__init__(self) |
|
29 | ProcessingUnit.__init__(self) | |
30 |
|
30 | |||
31 | self.buffer = None |
|
31 | self.buffer = None | |
32 | self.firstdatatime = None |
|
32 | self.firstdatatime = None | |
33 | self.profIndex = 0 |
|
33 | self.profIndex = 0 | |
34 | self.dataOut = Spectra() |
|
34 | self.dataOut = Spectra() | |
35 | self.id_min = None |
|
35 | self.id_min = None | |
36 | self.id_max = None |
|
36 | self.id_max = None | |
37 | self.setupReq = False #Agregar a todas las unidades de proc |
|
37 | self.setupReq = False #Agregar a todas las unidades de proc | |
38 |
|
38 | |||
39 | def __updateSpecFromVoltage(self): |
|
39 | def __updateSpecFromVoltage(self): | |
40 |
|
40 | |||
41 | self.dataOut.timeZone = self.dataIn.timeZone |
|
41 | self.dataOut.timeZone = self.dataIn.timeZone | |
42 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
42 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
43 | self.dataOut.errorCount = self.dataIn.errorCount |
|
43 | self.dataOut.errorCount = self.dataIn.errorCount | |
44 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
44 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
45 | try: |
|
45 | try: | |
46 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
46 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
47 | except: |
|
47 | except: | |
48 | pass |
|
48 | pass | |
49 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
49 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
50 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
50 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
51 | self.dataOut.channelList = self.dataIn.channelList |
|
51 | self.dataOut.channelList = self.dataIn.channelList | |
52 | self.dataOut.heightList = self.dataIn.heightList |
|
52 | self.dataOut.heightList = self.dataIn.heightList | |
53 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
53 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
54 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
54 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
55 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
55 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
56 | self.dataOut.utctime = self.firstdatatime |
|
56 | self.dataOut.utctime = self.firstdatatime | |
57 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
57 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData | |
58 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
58 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData | |
59 | self.dataOut.flagShiftFFT = False |
|
59 | self.dataOut.flagShiftFFT = False | |
60 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
60 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
61 | self.dataOut.nIncohInt = 1 |
|
61 | self.dataOut.nIncohInt = 1 | |
62 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
62 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
63 | self.dataOut.frequency = self.dataIn.frequency |
|
63 | self.dataOut.frequency = self.dataIn.frequency | |
64 | self.dataOut.realtime = self.dataIn.realtime |
|
64 | self.dataOut.realtime = self.dataIn.realtime | |
65 | self.dataOut.azimuth = self.dataIn.azimuth |
|
65 | self.dataOut.azimuth = self.dataIn.azimuth | |
66 | self.dataOut.zenith = self.dataIn.zenith |
|
66 | self.dataOut.zenith = self.dataIn.zenith | |
67 | self.dataOut.codeList = self.dataIn.codeList |
|
67 | self.dataOut.codeList = self.dataIn.codeList | |
68 | self.dataOut.azimuthList = self.dataIn.azimuthList |
|
68 | self.dataOut.azimuthList = self.dataIn.azimuthList | |
69 | self.dataOut.elevationList = self.dataIn.elevationList |
|
69 | self.dataOut.elevationList = self.dataIn.elevationList | |
70 |
|
70 | |||
71 | def __getFft(self): |
|
71 | def __getFft(self): | |
72 | """ |
|
72 | """ | |
73 | Convierte valores de Voltaje a Spectra |
|
73 | Convierte valores de Voltaje a Spectra | |
74 |
|
74 | |||
75 | Affected: |
|
75 | Affected: | |
76 | self.dataOut.data_spc |
|
76 | self.dataOut.data_spc | |
77 | self.dataOut.data_cspc |
|
77 | self.dataOut.data_cspc | |
78 | self.dataOut.data_dc |
|
78 | self.dataOut.data_dc | |
79 | self.dataOut.heightList |
|
79 | self.dataOut.heightList | |
80 | self.profIndex |
|
80 | self.profIndex | |
81 | self.buffer |
|
81 | self.buffer | |
82 | self.dataOut.flagNoData |
|
82 | self.dataOut.flagNoData | |
83 | """ |
|
83 | """ | |
84 | fft_volt = numpy.fft.fft( |
|
84 | fft_volt = numpy.fft.fft( | |
85 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
85 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) | |
86 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
86 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |
87 | dc = fft_volt[:, 0, :] |
|
87 | dc = fft_volt[:, 0, :] | |
88 |
|
88 | |||
89 | # calculo de self-spectra |
|
89 | # calculo de self-spectra | |
90 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
90 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) | |
91 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
91 | spc = fft_volt * numpy.conjugate(fft_volt) | |
92 | spc = spc.real |
|
92 | spc = spc.real | |
93 |
|
93 | |||
94 | blocksize = 0 |
|
94 | blocksize = 0 | |
95 | blocksize += dc.size |
|
95 | blocksize += dc.size | |
96 | blocksize += spc.size |
|
96 | blocksize += spc.size | |
97 |
|
97 | |||
98 | cspc = None |
|
98 | cspc = None | |
99 | pairIndex = 0 |
|
99 | pairIndex = 0 | |
100 | if self.dataOut.pairsList != None: |
|
100 | if self.dataOut.pairsList != None: | |
101 | # calculo de cross-spectra |
|
101 | # calculo de cross-spectra | |
102 | cspc = numpy.zeros( |
|
102 | cspc = numpy.zeros( | |
103 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
103 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |
104 | for pair in self.dataOut.pairsList: |
|
104 | for pair in self.dataOut.pairsList: | |
105 | if pair[0] not in self.dataOut.channelList: |
|
105 | if pair[0] not in self.dataOut.channelList: | |
106 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
106 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( | |
107 | str(pair), str(self.dataOut.channelList))) |
|
107 | str(pair), str(self.dataOut.channelList))) | |
108 | if pair[1] not in self.dataOut.channelList: |
|
108 | if pair[1] not in self.dataOut.channelList: | |
109 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
109 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( | |
110 | str(pair), str(self.dataOut.channelList))) |
|
110 | str(pair), str(self.dataOut.channelList))) | |
111 |
|
111 | |||
112 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
112 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ | |
113 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
113 | numpy.conjugate(fft_volt[pair[1], :, :]) | |
114 | pairIndex += 1 |
|
114 | pairIndex += 1 | |
115 | blocksize += cspc.size |
|
115 | blocksize += cspc.size | |
116 |
|
116 | |||
117 | self.dataOut.data_spc = spc |
|
117 | self.dataOut.data_spc = spc | |
118 | self.dataOut.data_cspc = cspc |
|
118 | self.dataOut.data_cspc = cspc | |
119 | self.dataOut.data_dc = dc |
|
119 | self.dataOut.data_dc = dc | |
120 | self.dataOut.blockSize = blocksize |
|
120 | self.dataOut.blockSize = blocksize | |
121 | self.dataOut.flagShiftFFT = False |
|
121 | self.dataOut.flagShiftFFT = False | |
122 |
|
122 | |||
123 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): |
|
123 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): | |
124 |
|
124 | |||
125 | if self.dataIn.type == "Spectra": |
|
125 | if self.dataIn.type == "Spectra": | |
126 | self.dataOut.copy(self.dataIn) |
|
126 | self.dataOut.copy(self.dataIn) | |
127 | if shift_fft: |
|
127 | if shift_fft: | |
128 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
128 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
129 | shift = int(self.dataOut.nFFTPoints/2) |
|
129 | shift = int(self.dataOut.nFFTPoints/2) | |
130 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
130 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) | |
131 |
|
131 | |||
132 | if self.dataOut.data_cspc is not None: |
|
132 | if self.dataOut.data_cspc is not None: | |
133 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
133 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
134 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
134 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) | |
135 | if pairsList: |
|
135 | if pairsList: | |
136 | self.__selectPairs(pairsList) |
|
136 | self.__selectPairs(pairsList) | |
137 |
|
137 | |||
138 | elif self.dataIn.type == "Voltage": |
|
138 | elif self.dataIn.type == "Voltage": | |
139 |
|
139 | |||
140 | self.dataOut.flagNoData = True |
|
140 | self.dataOut.flagNoData = True | |
141 |
|
141 | |||
142 | if nFFTPoints == None: |
|
142 | if nFFTPoints == None: | |
143 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
143 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") | |
144 |
|
144 | |||
145 | if nProfiles == None: |
|
145 | if nProfiles == None: | |
146 | nProfiles = nFFTPoints |
|
146 | nProfiles = nFFTPoints | |
147 |
|
147 | |||
148 | if ippFactor == None: |
|
148 | if ippFactor == None: | |
149 | self.dataOut.ippFactor = 1 |
|
149 | self.dataOut.ippFactor = 1 | |
150 |
|
150 | |||
151 | self.dataOut.nFFTPoints = nFFTPoints |
|
151 | self.dataOut.nFFTPoints = nFFTPoints | |
152 |
|
152 | |||
153 | if self.buffer is None: |
|
153 | if self.buffer is None: | |
154 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
154 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
155 | nProfiles, |
|
155 | nProfiles, | |
156 | self.dataIn.nHeights), |
|
156 | self.dataIn.nHeights), | |
157 | dtype='complex') |
|
157 | dtype='complex') | |
158 |
|
158 | |||
159 | if self.dataIn.flagDataAsBlock: |
|
159 | if self.dataIn.flagDataAsBlock: | |
160 | nVoltProfiles = self.dataIn.data.shape[1] |
|
160 | nVoltProfiles = self.dataIn.data.shape[1] | |
161 |
|
161 | |||
162 | if nVoltProfiles == nProfiles: |
|
162 | if nVoltProfiles == nProfiles: | |
163 | self.buffer = self.dataIn.data.copy() |
|
163 | self.buffer = self.dataIn.data.copy() | |
164 | self.profIndex = nVoltProfiles |
|
164 | self.profIndex = nVoltProfiles | |
165 |
|
165 | |||
166 | elif nVoltProfiles < nProfiles: |
|
166 | elif nVoltProfiles < nProfiles: | |
167 |
|
167 | |||
168 | if self.profIndex == 0: |
|
168 | if self.profIndex == 0: | |
169 | self.id_min = 0 |
|
169 | self.id_min = 0 | |
170 | self.id_max = nVoltProfiles |
|
170 | self.id_max = nVoltProfiles | |
171 |
|
171 | |||
172 | self.buffer[:, self.id_min:self.id_max, |
|
172 | self.buffer[:, self.id_min:self.id_max, | |
173 | :] = self.dataIn.data |
|
173 | :] = self.dataIn.data | |
174 | self.profIndex += nVoltProfiles |
|
174 | self.profIndex += nVoltProfiles | |
175 | self.id_min += nVoltProfiles |
|
175 | self.id_min += nVoltProfiles | |
176 | self.id_max += nVoltProfiles |
|
176 | self.id_max += nVoltProfiles | |
177 | else: |
|
177 | else: | |
178 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
178 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( | |
179 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
179 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) | |
180 | self.dataOut.flagNoData = True |
|
180 | self.dataOut.flagNoData = True | |
181 | else: |
|
181 | else: | |
182 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
182 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() | |
183 | self.profIndex += 1 |
|
183 | self.profIndex += 1 | |
184 |
|
184 | |||
185 | if self.firstdatatime == None: |
|
185 | if self.firstdatatime == None: | |
186 | self.firstdatatime = self.dataIn.utctime |
|
186 | self.firstdatatime = self.dataIn.utctime | |
187 |
|
187 | |||
188 | if self.profIndex == nProfiles: |
|
188 | if self.profIndex == nProfiles: | |
189 | self.__updateSpecFromVoltage() |
|
189 | self.__updateSpecFromVoltage() | |
190 | if pairsList == None: |
|
190 | if pairsList == None: | |
191 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
191 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] | |
192 | else: |
|
192 | else: | |
193 | self.dataOut.pairsList = pairsList |
|
193 | self.dataOut.pairsList = pairsList | |
194 | self.__getFft() |
|
194 | self.__getFft() | |
195 | self.dataOut.flagNoData = False |
|
195 | self.dataOut.flagNoData = False | |
196 | self.firstdatatime = None |
|
196 | self.firstdatatime = None | |
197 | self.profIndex = 0 |
|
197 | self.profIndex = 0 | |
198 | else: |
|
198 | else: | |
199 | raise ValueError("The type of input object '%s' is not valid".format( |
|
199 | raise ValueError("The type of input object '%s' is not valid".format( | |
200 | self.dataIn.type)) |
|
200 | self.dataIn.type)) | |
201 |
|
201 | |||
202 | def __selectPairs(self, pairsList): |
|
202 | def __selectPairs(self, pairsList): | |
203 |
|
203 | |||
204 | if not pairsList: |
|
204 | if not pairsList: | |
205 | return |
|
205 | return | |
206 |
|
206 | |||
207 | pairs = [] |
|
207 | pairs = [] | |
208 | pairsIndex = [] |
|
208 | pairsIndex = [] | |
209 |
|
209 | |||
210 | for pair in pairsList: |
|
210 | for pair in pairsList: | |
211 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
211 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: | |
212 | continue |
|
212 | continue | |
213 | pairs.append(pair) |
|
213 | pairs.append(pair) | |
214 | pairsIndex.append(pairs.index(pair)) |
|
214 | pairsIndex.append(pairs.index(pair)) | |
215 |
|
215 | |||
216 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
216 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] | |
217 | self.dataOut.pairsList = pairs |
|
217 | self.dataOut.pairsList = pairs | |
218 |
|
218 | |||
219 | return |
|
219 | return | |
220 |
|
220 | |||
221 | def selectFFTs(self, minFFT, maxFFT ): |
|
221 | def selectFFTs(self, minFFT, maxFFT ): | |
222 | """ |
|
222 | """ | |
223 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
223 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |
224 | minFFT<= FFT <= maxFFT |
|
224 | minFFT<= FFT <= maxFFT | |
225 | """ |
|
225 | """ | |
226 |
|
226 | |||
227 | if (minFFT > maxFFT): |
|
227 | if (minFFT > maxFFT): | |
228 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
228 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) | |
229 |
|
229 | |||
230 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
230 | if (minFFT < self.dataOut.getFreqRange()[0]): | |
231 | minFFT = self.dataOut.getFreqRange()[0] |
|
231 | minFFT = self.dataOut.getFreqRange()[0] | |
232 |
|
232 | |||
233 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
233 | if (maxFFT > self.dataOut.getFreqRange()[-1]): | |
234 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
234 | maxFFT = self.dataOut.getFreqRange()[-1] | |
235 |
|
235 | |||
236 | minIndex = 0 |
|
236 | minIndex = 0 | |
237 | maxIndex = 0 |
|
237 | maxIndex = 0 | |
238 | FFTs = self.dataOut.getFreqRange() |
|
238 | FFTs = self.dataOut.getFreqRange() | |
239 |
|
239 | |||
240 | inda = numpy.where(FFTs >= minFFT) |
|
240 | inda = numpy.where(FFTs >= minFFT) | |
241 | indb = numpy.where(FFTs <= maxFFT) |
|
241 | indb = numpy.where(FFTs <= maxFFT) | |
242 |
|
242 | |||
243 | try: |
|
243 | try: | |
244 | minIndex = inda[0][0] |
|
244 | minIndex = inda[0][0] | |
245 | except: |
|
245 | except: | |
246 | minIndex = 0 |
|
246 | minIndex = 0 | |
247 |
|
247 | |||
248 | try: |
|
248 | try: | |
249 | maxIndex = indb[0][-1] |
|
249 | maxIndex = indb[0][-1] | |
250 | except: |
|
250 | except: | |
251 | maxIndex = len(FFTs) |
|
251 | maxIndex = len(FFTs) | |
252 |
|
252 | |||
253 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
253 | self.selectFFTsByIndex(minIndex, maxIndex) | |
254 |
|
254 | |||
255 | return 1 |
|
255 | return 1 | |
256 |
|
256 | |||
257 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
257 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): | |
258 | newheis = numpy.where( |
|
258 | newheis = numpy.where( | |
259 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
259 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
260 |
|
260 | |||
261 | if hei_ref != None: |
|
261 | if hei_ref != None: | |
262 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
262 | newheis = numpy.where(self.dataOut.heightList > hei_ref) | |
263 |
|
263 | |||
264 | minIndex = min(newheis[0]) |
|
264 | minIndex = min(newheis[0]) | |
265 | maxIndex = max(newheis[0]) |
|
265 | maxIndex = max(newheis[0]) | |
266 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
266 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
267 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
267 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
268 |
|
268 | |||
269 | # determina indices |
|
269 | # determina indices | |
270 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
270 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / | |
271 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
271 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) | |
272 | avg_dB = 10 * \ |
|
272 | avg_dB = 10 * \ | |
273 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
273 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) | |
274 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
274 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |
275 | beacon_heiIndexList = [] |
|
275 | beacon_heiIndexList = [] | |
276 | for val in avg_dB.tolist(): |
|
276 | for val in avg_dB.tolist(): | |
277 | if val >= beacon_dB[0]: |
|
277 | if val >= beacon_dB[0]: | |
278 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
278 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |
279 |
|
279 | |||
280 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
280 | #data_spc = data_spc[:,:,beacon_heiIndexList] | |
281 | data_cspc = None |
|
281 | data_cspc = None | |
282 | if self.dataOut.data_cspc is not None: |
|
282 | if self.dataOut.data_cspc is not None: | |
283 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
283 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
284 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
284 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] | |
285 |
|
285 | |||
286 | data_dc = None |
|
286 | data_dc = None | |
287 | if self.dataOut.data_dc is not None: |
|
287 | if self.dataOut.data_dc is not None: | |
288 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
288 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
289 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
289 | #data_dc = data_dc[:,beacon_heiIndexList] | |
290 |
|
290 | |||
291 | self.dataOut.data_spc = data_spc |
|
291 | self.dataOut.data_spc = data_spc | |
292 | self.dataOut.data_cspc = data_cspc |
|
292 | self.dataOut.data_cspc = data_cspc | |
293 | self.dataOut.data_dc = data_dc |
|
293 | self.dataOut.data_dc = data_dc | |
294 | self.dataOut.heightList = heightList |
|
294 | self.dataOut.heightList = heightList | |
295 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
295 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |
296 |
|
296 | |||
297 | return 1 |
|
297 | return 1 | |
298 |
|
298 | |||
299 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
299 | def selectFFTsByIndex(self, minIndex, maxIndex): | |
300 | """ |
|
300 | """ | |
301 |
|
301 | |||
302 | """ |
|
302 | """ | |
303 |
|
303 | |||
304 | if (minIndex < 0) or (minIndex > maxIndex): |
|
304 | if (minIndex < 0) or (minIndex > maxIndex): | |
305 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
305 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
306 |
|
306 | |||
307 | if (maxIndex >= self.dataOut.nProfiles): |
|
307 | if (maxIndex >= self.dataOut.nProfiles): | |
308 | maxIndex = self.dataOut.nProfiles-1 |
|
308 | maxIndex = self.dataOut.nProfiles-1 | |
309 |
|
309 | |||
310 | #Spectra |
|
310 | #Spectra | |
311 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
311 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] | |
312 |
|
312 | |||
313 | data_cspc = None |
|
313 | data_cspc = None | |
314 | if self.dataOut.data_cspc is not None: |
|
314 | if self.dataOut.data_cspc is not None: | |
315 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
315 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] | |
316 |
|
316 | |||
317 | data_dc = None |
|
317 | data_dc = None | |
318 | if self.dataOut.data_dc is not None: |
|
318 | if self.dataOut.data_dc is not None: | |
319 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
319 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] | |
320 |
|
320 | |||
321 | self.dataOut.data_spc = data_spc |
|
321 | self.dataOut.data_spc = data_spc | |
322 | self.dataOut.data_cspc = data_cspc |
|
322 | self.dataOut.data_cspc = data_cspc | |
323 | self.dataOut.data_dc = data_dc |
|
323 | self.dataOut.data_dc = data_dc | |
324 |
|
324 | |||
325 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
325 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) | |
326 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
326 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] | |
327 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
327 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] | |
328 |
|
328 | |||
329 | return 1 |
|
329 | return 1 | |
330 |
|
330 | |||
331 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
331 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |
332 | # validacion de rango |
|
332 | # validacion de rango | |
333 | if minHei == None: |
|
333 | if minHei == None: | |
334 | minHei = self.dataOut.heightList[0] |
|
334 | minHei = self.dataOut.heightList[0] | |
335 |
|
335 | |||
336 | if maxHei == None: |
|
336 | if maxHei == None: | |
337 | maxHei = self.dataOut.heightList[-1] |
|
337 | maxHei = self.dataOut.heightList[-1] | |
338 |
|
338 | |||
339 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
339 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
340 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
340 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
341 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
341 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
342 | minHei = self.dataOut.heightList[0] |
|
342 | minHei = self.dataOut.heightList[0] | |
343 |
|
343 | |||
344 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
344 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
345 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
345 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
346 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
346 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
347 | maxHei = self.dataOut.heightList[-1] |
|
347 | maxHei = self.dataOut.heightList[-1] | |
348 |
|
348 | |||
349 | # validacion de velocidades |
|
349 | # validacion de velocidades | |
350 | velrange = self.dataOut.getVelRange(1) |
|
350 | velrange = self.dataOut.getVelRange(1) | |
351 |
|
351 | |||
352 | if minVel == None: |
|
352 | if minVel == None: | |
353 | minVel = velrange[0] |
|
353 | minVel = velrange[0] | |
354 |
|
354 | |||
355 | if maxVel == None: |
|
355 | if maxVel == None: | |
356 | maxVel = velrange[-1] |
|
356 | maxVel = velrange[-1] | |
357 |
|
357 | |||
358 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
358 | if (minVel < velrange[0]) or (minVel > maxVel): | |
359 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
359 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |
360 | print('minVel is setting to %.2f' % (velrange[0])) |
|
360 | print('minVel is setting to %.2f' % (velrange[0])) | |
361 | minVel = velrange[0] |
|
361 | minVel = velrange[0] | |
362 |
|
362 | |||
363 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
363 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
364 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
364 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |
365 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
365 | print('maxVel is setting to %.2f' % (velrange[-1])) | |
366 | maxVel = velrange[-1] |
|
366 | maxVel = velrange[-1] | |
367 |
|
367 | |||
368 | # seleccion de indices para rango |
|
368 | # seleccion de indices para rango | |
369 | minIndex = 0 |
|
369 | minIndex = 0 | |
370 | maxIndex = 0 |
|
370 | maxIndex = 0 | |
371 | heights = self.dataOut.heightList |
|
371 | heights = self.dataOut.heightList | |
372 |
|
372 | |||
373 | inda = numpy.where(heights >= minHei) |
|
373 | inda = numpy.where(heights >= minHei) | |
374 | indb = numpy.where(heights <= maxHei) |
|
374 | indb = numpy.where(heights <= maxHei) | |
375 |
|
375 | |||
376 | try: |
|
376 | try: | |
377 | minIndex = inda[0][0] |
|
377 | minIndex = inda[0][0] | |
378 | except: |
|
378 | except: | |
379 | minIndex = 0 |
|
379 | minIndex = 0 | |
380 |
|
380 | |||
381 | try: |
|
381 | try: | |
382 | maxIndex = indb[0][-1] |
|
382 | maxIndex = indb[0][-1] | |
383 | except: |
|
383 | except: | |
384 | maxIndex = len(heights) |
|
384 | maxIndex = len(heights) | |
385 |
|
385 | |||
386 | if (minIndex < 0) or (minIndex > maxIndex): |
|
386 | if (minIndex < 0) or (minIndex > maxIndex): | |
387 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
387 | raise ValueError("some value in (%d,%d) is not valid" % ( | |
388 | minIndex, maxIndex)) |
|
388 | minIndex, maxIndex)) | |
389 |
|
389 | |||
390 | if (maxIndex >= self.dataOut.nHeights): |
|
390 | if (maxIndex >= self.dataOut.nHeights): | |
391 | maxIndex = self.dataOut.nHeights - 1 |
|
391 | maxIndex = self.dataOut.nHeights - 1 | |
392 |
|
392 | |||
393 | # seleccion de indices para velocidades |
|
393 | # seleccion de indices para velocidades | |
394 | indminvel = numpy.where(velrange >= minVel) |
|
394 | indminvel = numpy.where(velrange >= minVel) | |
395 | indmaxvel = numpy.where(velrange <= maxVel) |
|
395 | indmaxvel = numpy.where(velrange <= maxVel) | |
396 | try: |
|
396 | try: | |
397 | minIndexVel = indminvel[0][0] |
|
397 | minIndexVel = indminvel[0][0] | |
398 | except: |
|
398 | except: | |
399 | minIndexVel = 0 |
|
399 | minIndexVel = 0 | |
400 |
|
400 | |||
401 | try: |
|
401 | try: | |
402 | maxIndexVel = indmaxvel[0][-1] |
|
402 | maxIndexVel = indmaxvel[0][-1] | |
403 | except: |
|
403 | except: | |
404 | maxIndexVel = len(velrange) |
|
404 | maxIndexVel = len(velrange) | |
405 |
|
405 | |||
406 | # seleccion del espectro |
|
406 | # seleccion del espectro | |
407 | data_spc = self.dataOut.data_spc[:, |
|
407 | data_spc = self.dataOut.data_spc[:, | |
408 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
408 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] | |
409 | # estimacion de ruido |
|
409 | # estimacion de ruido | |
410 | noise = numpy.zeros(self.dataOut.nChannels) |
|
410 | noise = numpy.zeros(self.dataOut.nChannels) | |
411 |
|
411 | |||
412 | for channel in range(self.dataOut.nChannels): |
|
412 | for channel in range(self.dataOut.nChannels): | |
413 | daux = data_spc[channel, :, :] |
|
413 | daux = data_spc[channel, :, :] | |
414 | sortdata = numpy.sort(daux, axis=None) |
|
414 | sortdata = numpy.sort(daux, axis=None) | |
415 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
415 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) | |
416 |
|
416 | |||
417 | self.dataOut.noise_estimation = noise.copy() |
|
417 | self.dataOut.noise_estimation = noise.copy() | |
418 |
|
418 | |||
419 | return 1 |
|
419 | return 1 | |
420 |
|
420 | |||
421 | class removeDC(Operation): |
|
421 | class removeDC(Operation): | |
422 |
|
422 | |||
423 | def run(self, dataOut, mode=2): |
|
423 | def run(self, dataOut, mode=2): | |
424 | self.dataOut = dataOut |
|
424 | self.dataOut = dataOut | |
425 | jspectra = self.dataOut.data_spc |
|
425 | jspectra = self.dataOut.data_spc | |
426 | jcspectra = self.dataOut.data_cspc |
|
426 | jcspectra = self.dataOut.data_cspc | |
427 |
|
427 | |||
428 | num_chan = jspectra.shape[0] |
|
428 | num_chan = jspectra.shape[0] | |
429 | num_hei = jspectra.shape[2] |
|
429 | num_hei = jspectra.shape[2] | |
430 |
|
430 | |||
431 | if jcspectra is not None: |
|
431 | if jcspectra is not None: | |
432 | jcspectraExist = True |
|
432 | jcspectraExist = True | |
433 | num_pairs = jcspectra.shape[0] |
|
433 | num_pairs = jcspectra.shape[0] | |
434 | else: |
|
434 | else: | |
435 | jcspectraExist = False |
|
435 | jcspectraExist = False | |
436 |
|
436 | |||
437 | freq_dc = int(jspectra.shape[1] / 2) |
|
437 | freq_dc = int(jspectra.shape[1] / 2) | |
438 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
438 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
439 | ind_vel = ind_vel.astype(int) |
|
439 | ind_vel = ind_vel.astype(int) | |
440 |
|
440 | |||
441 | if ind_vel[0] < 0: |
|
441 | if ind_vel[0] < 0: | |
442 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
442 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof | |
443 |
|
443 | |||
444 | if mode == 1: |
|
444 | if mode == 1: | |
445 | jspectra[:, freq_dc, :] = ( |
|
445 | jspectra[:, freq_dc, :] = ( | |
446 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
446 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
447 |
|
447 | |||
448 | if jcspectraExist: |
|
448 | if jcspectraExist: | |
449 | jcspectra[:, freq_dc, :] = ( |
|
449 | jcspectra[:, freq_dc, :] = ( | |
450 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
450 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 | |
451 |
|
451 | |||
452 | if mode == 2: |
|
452 | if mode == 2: | |
453 |
|
453 | |||
454 | vel = numpy.array([-2, -1, 1, 2]) |
|
454 | vel = numpy.array([-2, -1, 1, 2]) | |
455 | xx = numpy.zeros([4, 4]) |
|
455 | xx = numpy.zeros([4, 4]) | |
456 |
|
456 | |||
457 | for fil in range(4): |
|
457 | for fil in range(4): | |
458 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
458 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
459 |
|
459 | |||
460 | xx_inv = numpy.linalg.inv(xx) |
|
460 | xx_inv = numpy.linalg.inv(xx) | |
461 | xx_aux = xx_inv[0, :] |
|
461 | xx_aux = xx_inv[0, :] | |
462 |
|
462 | |||
463 | for ich in range(num_chan): |
|
463 | for ich in range(num_chan): | |
464 | yy = jspectra[ich, ind_vel, :] |
|
464 | yy = jspectra[ich, ind_vel, :] | |
465 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
465 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
466 |
|
466 | |||
467 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
467 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
468 | cjunkid = sum(junkid) |
|
468 | cjunkid = sum(junkid) | |
469 |
|
469 | |||
470 | if cjunkid.any(): |
|
470 | if cjunkid.any(): | |
471 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
471 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
472 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
472 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
473 |
|
473 | |||
474 | if jcspectraExist: |
|
474 | if jcspectraExist: | |
475 | for ip in range(num_pairs): |
|
475 | for ip in range(num_pairs): | |
476 | yy = jcspectra[ip, ind_vel, :] |
|
476 | yy = jcspectra[ip, ind_vel, :] | |
477 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
477 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) | |
478 |
|
478 | |||
479 | self.dataOut.data_spc = jspectra |
|
479 | self.dataOut.data_spc = jspectra | |
480 | self.dataOut.data_cspc = jcspectra |
|
480 | self.dataOut.data_cspc = jcspectra | |
481 |
|
481 | |||
482 | return self.dataOut |
|
482 | return self.dataOut | |
483 |
|
483 | |||
484 | # import matplotlib.pyplot as plt |
|
484 | # import matplotlib.pyplot as plt | |
485 |
|
485 | |||
486 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): |
|
486 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): | |
487 | z = (x - a1) / a2 |
|
487 | z = (x - a1) / a2 | |
488 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 |
|
488 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 | |
489 | return y |
|
489 | return y | |
|
490 | ||||
|
491 | ||||
490 | class CleanRayleigh(Operation): |
|
492 | class CleanRayleigh(Operation): | |
491 |
|
493 | |||
492 | def __init__(self): |
|
494 | def __init__(self): | |
493 |
|
495 | |||
494 | Operation.__init__(self) |
|
496 | Operation.__init__(self) | |
495 | self.i=0 |
|
497 | self.i=0 | |
496 | self.isConfig = False |
|
498 | self.isConfig = False | |
497 | self.__dataReady = False |
|
499 | self.__dataReady = False | |
498 | self.__profIndex = 0 |
|
500 | self.__profIndex = 0 | |
499 | self.byTime = False |
|
501 | self.byTime = False | |
500 | self.byProfiles = False |
|
502 | self.byProfiles = False | |
501 |
|
503 | |||
502 | self.bloques = None |
|
504 | self.bloques = None | |
503 | self.bloque0 = None |
|
505 | self.bloque0 = None | |
504 |
|
506 | |||
505 | self.index = 0 |
|
507 | self.index = 0 | |
506 |
|
508 | |||
507 | self.buffer = 0 |
|
509 | self.buffer = 0 | |
508 | self.buffer2 = 0 |
|
510 | self.buffer2 = 0 | |
509 | self.buffer3 = 0 |
|
511 | self.buffer3 = 0 | |
510 |
|
512 | |||
511 |
|
513 | |||
512 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): |
|
514 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): | |
513 |
|
515 | |||
514 | self.nChannels = dataOut.nChannels |
|
516 | self.nChannels = dataOut.nChannels | |
515 | self.nProf = dataOut.nProfiles |
|
517 | self.nProf = dataOut.nProfiles | |
516 | self.nPairs = dataOut.data_cspc.shape[0] |
|
518 | self.nPairs = dataOut.data_cspc.shape[0] | |
517 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
519 | self.pairsArray = numpy.array(dataOut.pairsList) | |
518 | self.spectra = dataOut.data_spc |
|
520 | self.spectra = dataOut.data_spc | |
519 | self.cspectra = dataOut.data_cspc |
|
521 | self.cspectra = dataOut.data_cspc | |
520 | self.heights = dataOut.heightList #alturas totales |
|
522 | self.heights = dataOut.heightList #alturas totales | |
521 | self.nHeights = len(self.heights) |
|
523 | self.nHeights = len(self.heights) | |
522 | self.min_hei = min_hei |
|
524 | self.min_hei = min_hei | |
523 | self.max_hei = max_hei |
|
525 | self.max_hei = max_hei | |
524 | if (self.min_hei == None): |
|
526 | if (self.min_hei == None): | |
525 | self.min_hei = 0 |
|
527 | self.min_hei = 0 | |
526 | if (self.max_hei == None): |
|
528 | if (self.max_hei == None): | |
527 | self.max_hei = dataOut.heightList[-1] |
|
529 | self.max_hei = dataOut.heightList[-1] | |
528 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() |
|
530 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() | |
529 | self.heightsClean = self.heights[self.hval] #alturas filtradas |
|
531 | self.heightsClean = self.heights[self.hval] #alturas filtradas | |
530 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas |
|
532 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas | |
531 | self.nHeightsClean = len(self.heightsClean) |
|
533 | self.nHeightsClean = len(self.heightsClean) | |
532 | self.channels = dataOut.channelList |
|
534 | self.channels = dataOut.channelList | |
533 | self.nChan = len(self.channels) |
|
535 | self.nChan = len(self.channels) | |
534 | self.nIncohInt = dataOut.nIncohInt |
|
536 | self.nIncohInt = dataOut.nIncohInt | |
535 | self.__initime = dataOut.utctime |
|
537 | self.__initime = dataOut.utctime | |
536 | self.maxAltInd = self.hval[-1]+1 |
|
538 | self.maxAltInd = self.hval[-1]+1 | |
537 | self.minAltInd = self.hval[0] |
|
539 | self.minAltInd = self.hval[0] | |
538 |
|
540 | |||
539 | self.crosspairs = dataOut.pairsList |
|
541 | self.crosspairs = dataOut.pairsList | |
540 | self.nPairs = len(self.crosspairs) |
|
542 | self.nPairs = len(self.crosspairs) | |
541 | self.normFactor = dataOut.normFactor |
|
543 | self.normFactor = dataOut.normFactor | |
542 | self.nFFTPoints = dataOut.nFFTPoints |
|
544 | self.nFFTPoints = dataOut.nFFTPoints | |
543 | self.ippSeconds = dataOut.ippSeconds |
|
545 | self.ippSeconds = dataOut.ippSeconds | |
544 | self.currentTime = self.__initime |
|
546 | self.currentTime = self.__initime | |
545 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
547 | self.pairsArray = numpy.array(dataOut.pairsList) | |
546 | self.factor_stdv = factor_stdv |
|
548 | self.factor_stdv = factor_stdv | |
547 | #print("CHANNELS: ",[x for x in self.channels]) |
|
549 | #print("CHANNELS: ",[x for x in self.channels]) | |
548 |
|
550 | |||
549 | if n != None : |
|
551 | if n != None : | |
550 | self.byProfiles = True |
|
552 | self.byProfiles = True | |
551 | self.nIntProfiles = n |
|
553 | self.nIntProfiles = n | |
552 | else: |
|
554 | else: | |
553 | self.__integrationtime = timeInterval |
|
555 | self.__integrationtime = timeInterval | |
554 |
|
556 | |||
555 | self.__dataReady = False |
|
557 | self.__dataReady = False | |
556 | self.isConfig = True |
|
558 | self.isConfig = True | |
557 |
|
559 | |||
558 |
|
560 | |||
559 |
|
561 | |||
560 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): |
|
562 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): | |
561 | #print (dataOut.utctime) |
|
563 | #print (dataOut.utctime) | |
562 | if not self.isConfig : |
|
564 | if not self.isConfig : | |
563 | #print("Setting config") |
|
565 | #print("Setting config") | |
564 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) |
|
566 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) | |
565 | #print("Config Done") |
|
567 | #print("Config Done") | |
566 | tini=dataOut.utctime |
|
568 | tini=dataOut.utctime | |
567 |
|
569 | |||
568 | if self.byProfiles: |
|
570 | if self.byProfiles: | |
569 | if self.__profIndex == self.nIntProfiles: |
|
571 | if self.__profIndex == self.nIntProfiles: | |
570 | self.__dataReady = True |
|
572 | self.__dataReady = True | |
571 | else: |
|
573 | else: | |
572 | if (tini - self.__initime) >= self.__integrationtime: |
|
574 | if (tini - self.__initime) >= self.__integrationtime: | |
573 | #print(tini - self.__initime,self.__profIndex) |
|
575 | #print(tini - self.__initime,self.__profIndex) | |
574 | self.__dataReady = True |
|
576 | self.__dataReady = True | |
575 | self.__initime = tini |
|
577 | self.__initime = tini | |
576 |
|
578 | |||
577 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): |
|
579 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): | |
578 |
|
580 | |||
579 | if self.__dataReady: |
|
581 | if self.__dataReady: | |
580 | #print("Data ready",self.__profIndex) |
|
582 | #print("Data ready",self.__profIndex) | |
581 | self.__profIndex = 0 |
|
583 | self.__profIndex = 0 | |
582 | jspc = self.buffer |
|
584 | jspc = self.buffer | |
583 | jcspc = self.buffer2 |
|
585 | jcspc = self.buffer2 | |
584 | #jnoise = self.buffer3 |
|
586 | #jnoise = self.buffer3 | |
585 | self.buffer = dataOut.data_spc |
|
587 | self.buffer = dataOut.data_spc | |
586 | self.buffer2 = dataOut.data_cspc |
|
588 | self.buffer2 = dataOut.data_cspc | |
587 | #self.buffer3 = dataOut.noise |
|
589 | #self.buffer3 = dataOut.noise | |
588 | self.currentTime = dataOut.utctime |
|
590 | self.currentTime = dataOut.utctime | |
589 | if numpy.any(jspc) : |
|
591 | if numpy.any(jspc) : | |
590 | #print( jspc.shape, jcspc.shape) |
|
592 | #print( jspc.shape, jcspc.shape) | |
591 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) |
|
593 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) | |
592 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) |
|
594 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) | |
593 | self.__dataReady = False |
|
595 | self.__dataReady = False | |
594 | #print( jspc.shape, jcspc.shape) |
|
596 | #print( jspc.shape, jcspc.shape) | |
595 | dataOut.flagNoData = False |
|
597 | dataOut.flagNoData = False | |
596 | else: |
|
598 | else: | |
597 | dataOut.flagNoData = True |
|
599 | dataOut.flagNoData = True | |
598 | self.__dataReady = False |
|
600 | self.__dataReady = False | |
599 | return dataOut |
|
601 | return dataOut | |
600 | else: |
|
602 | else: | |
601 | #print( len(self.buffer)) |
|
603 | #print( len(self.buffer)) | |
602 | if numpy.any(self.buffer): |
|
604 | if numpy.any(self.buffer): | |
603 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) |
|
605 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) | |
604 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) |
|
606 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) | |
605 | self.buffer3 += dataOut.data_dc |
|
607 | self.buffer3 += dataOut.data_dc | |
606 | else: |
|
608 | else: | |
607 | self.buffer = dataOut.data_spc |
|
609 | self.buffer = dataOut.data_spc | |
608 | self.buffer2 = dataOut.data_cspc |
|
610 | self.buffer2 = dataOut.data_cspc | |
609 | self.buffer3 = dataOut.data_dc |
|
611 | self.buffer3 = dataOut.data_dc | |
610 | #print self.index, self.fint |
|
612 | #print self.index, self.fint | |
611 | #print self.buffer2.shape |
|
613 | #print self.buffer2.shape | |
612 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO |
|
614 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO | |
613 | self.__profIndex += 1 |
|
615 | self.__profIndex += 1 | |
614 | return dataOut ## NOTE: REV |
|
616 | return dataOut ## NOTE: REV | |
615 |
|
617 | |||
616 |
|
618 | |||
617 | #index = tini.tm_hour*12+tini.tm_min/5 |
|
619 | #index = tini.tm_hour*12+tini.tm_min/5 | |
618 | '''REVISAR''' |
|
620 | '''REVISAR''' | |
619 | # jspc = jspc/self.nFFTPoints/self.normFactor |
|
621 | # jspc = jspc/self.nFFTPoints/self.normFactor | |
620 | # jcspc = jcspc/self.nFFTPoints/self.normFactor |
|
622 | # jcspc = jcspc/self.nFFTPoints/self.normFactor | |
621 |
|
623 | |||
622 |
|
624 | |||
623 |
|
625 | |||
624 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
626 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) | |
625 | dataOut.data_spc = tmp_spectra |
|
627 | dataOut.data_spc = tmp_spectra | |
626 | dataOut.data_cspc = tmp_cspectra |
|
628 | dataOut.data_cspc = tmp_cspectra | |
627 |
|
629 | |||
628 | #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
630 | #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) | |
629 |
|
631 | |||
630 | dataOut.data_dc = self.buffer3 |
|
632 | dataOut.data_dc = self.buffer3 | |
631 | dataOut.nIncohInt *= self.nIntProfiles |
|
633 | dataOut.nIncohInt *= self.nIntProfiles | |
632 | dataOut.utctime = self.currentTime #tiempo promediado |
|
634 | dataOut.utctime = self.currentTime #tiempo promediado | |
633 | #print("Time: ",time.localtime(dataOut.utctime)) |
|
635 | #print("Time: ",time.localtime(dataOut.utctime)) | |
634 | # dataOut.data_spc = sat_spectra |
|
636 | # dataOut.data_spc = sat_spectra | |
635 | # dataOut.data_cspc = sat_cspectra |
|
637 | # dataOut.data_cspc = sat_cspectra | |
636 | self.buffer = 0 |
|
638 | self.buffer = 0 | |
637 | self.buffer2 = 0 |
|
639 | self.buffer2 = 0 | |
638 | self.buffer3 = 0 |
|
640 | self.buffer3 = 0 | |
639 |
|
641 | |||
640 | return dataOut |
|
642 | return dataOut | |
641 |
|
643 | |||
642 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): |
|
644 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): | |
643 | #print("OP cleanRayleigh") |
|
645 | #print("OP cleanRayleigh") | |
644 |
|
|
646 | import matplotlib.pyplot as plt | |
645 | #for k in range(149): |
|
647 | #for k in range(149): | |
646 |
|
648 | channelsProcssd = [] | ||
|
649 | channelA_ok = False | |||
647 | rfunc = cspectra.copy() #self.bloques |
|
650 | rfunc = cspectra.copy() #self.bloques | |
648 | #rfunc = cspectra |
|
651 | #rfunc = cspectra | |
649 | #val_spc = spectra*0.0 #self.bloque0*0.0 |
|
652 | #val_spc = spectra*0.0 #self.bloque0*0.0 | |
650 | #val_cspc = cspectra*0.0 #self.bloques*0.0 |
|
653 | #val_cspc = cspectra*0.0 #self.bloques*0.0 | |
651 | #in_sat_spectra = spectra.copy() #self.bloque0 |
|
654 | #in_sat_spectra = spectra.copy() #self.bloque0 | |
652 | #in_sat_cspectra = cspectra.copy() #self.bloques |
|
655 | #in_sat_cspectra = cspectra.copy() #self.bloques | |
653 |
|
656 | |||
654 | #raxs = math.ceil(math.sqrt(self.nPairs)) |
|
|||
655 | #caxs = math.ceil(self.nPairs/raxs) |
|
|||
656 |
|
657 | |||
657 | #print(self.hval) |
|
658 | ###ONLY FOR TEST: | |
|
659 | raxs = math.ceil(math.sqrt(self.nPairs)) | |||
|
660 | caxs = math.ceil(self.nPairs/raxs) | |||
|
661 | if self.nPairs <4: | |||
|
662 | raxs = 2 | |||
|
663 | caxs = 2 | |||
|
664 | #print(raxs, caxs) | |||
|
665 | fft_rev = 14 #nFFT to plot | |||
|
666 | hei_rev = ((self.heights >= 550) & (self.heights <= 551)).nonzero() #hei to plot | |||
|
667 | hei_rev = hei_rev[0] | |||
|
668 | #print(hei_rev) | |||
|
669 | ||||
658 | #print numpy.absolute(rfunc[:,0,0,14]) |
|
670 | #print numpy.absolute(rfunc[:,0,0,14]) | |
|
671 | ||||
659 | gauss_fit, covariance = None, None |
|
672 | gauss_fit, covariance = None, None | |
660 | for ih in range(self.minAltInd,self.maxAltInd): |
|
673 | for ih in range(self.minAltInd,self.maxAltInd): | |
661 | for ifreq in range(self.nFFTPoints): |
|
674 | for ifreq in range(self.nFFTPoints): | |
662 | # fig, axs = plt.subplots(raxs, caxs) |
|
675 | ###ONLY FOR TEST: | |
663 | # fig2, axs2 = plt.subplots(raxs, caxs) |
|
676 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
664 | # col_ax = 0 |
|
677 | fig, axs = plt.subplots(raxs, caxs) | |
665 | # row_ax = 0 |
|
678 | fig2, axs2 = plt.subplots(raxs, caxs) | |
666 | #print(len(self.nPairs)) |
|
679 | col_ax = 0 | |
667 | for ii in range(self.nPairs): #PARES DE CANALES SELF y CROSS |
|
680 | row_ax = 0 | |
668 |
|
|
681 | #print(self.nPairs) | |
669 | # if (col_ax%caxs==0 and col_ax!=0): |
|
682 | for ii in range(self.nPairs): #PARES DE CANALES SELF y CROSS | |
670 | # col_ax = 0 |
|
683 | if self.crosspairs[ii][1]-self.crosspairs[ii][0] > 1: # APLICAR SOLO EN PARES CONTIGUOS | |
671 |
|
|
684 | continue | |
|
685 | if not self.crosspairs[ii][0] in channelsProcssd: | |||
|
686 | channelA_ok = True | |||
|
687 | #print("pair: ",self.crosspairs[ii]) | |||
|
688 | if (col_ax%caxs==0 and col_ax!=0 and self.nPairs !=1): ###ONLY FOR TEST: | |||
|
689 | col_ax = 0 | |||
|
690 | row_ax += 1 | |||
672 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? |
|
691 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? | |
673 | #print(func2clean.shape) |
|
692 | #print(func2clean.shape) | |
674 | val = (numpy.isfinite(func2clean)==True).nonzero() |
|
693 | val = (numpy.isfinite(func2clean)==True).nonzero() | |
675 |
|
694 | |||
676 | if len(val)>0: #limitador |
|
695 | if len(val)>0: #limitador | |
677 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) |
|
696 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) | |
678 | if min_val <= -40 : |
|
697 | if min_val <= -40 : | |
679 | min_val = -40 |
|
698 | min_val = -40 | |
680 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 |
|
699 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 | |
681 | if max_val >= 200 : |
|
700 | if max_val >= 200 : | |
682 | max_val = 200 |
|
701 | max_val = 200 | |
683 | #print min_val, max_val |
|
702 | #print min_val, max_val | |
684 | step = 1 |
|
703 | step = 1 | |
685 | #print("Getting bins and the histogram") |
|
704 | #print("Getting bins and the histogram") | |
686 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step |
|
705 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step | |
687 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
706 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
688 | #print(len(y_dist),len(binstep[:-1])) |
|
707 | #print(len(y_dist),len(binstep[:-1])) | |
689 | #print(row_ax,col_ax, " ..") |
|
708 | #print(row_ax,col_ax, " ..") | |
690 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) |
|
709 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) | |
691 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) |
|
710 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) | |
692 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) |
|
711 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) | |
693 | parg = [numpy.amax(y_dist),mean,sigma] |
|
712 | parg = [numpy.amax(y_dist),mean,sigma] | |
694 |
|
713 | |||
695 |
|
|
714 | newY = None | |
696 |
|
715 | |||
697 | try : |
|
716 | try : | |
698 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) |
|
717 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) | |
699 | mode = gauss_fit[1] |
|
718 | mode = gauss_fit[1] | |
700 | stdv = gauss_fit[2] |
|
719 | stdv = gauss_fit[2] | |
701 | #print(" FIT OK",gauss_fit) |
|
720 | #print(" FIT OK",gauss_fit) | |
702 | ''' |
|
721 | ||
703 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) |
|
722 | ###ONLY FOR TEST: | |
704 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
723 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
705 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
724 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) | |
706 | axs[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii]))''' |
|
725 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
|
726 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |||
|
727 | axs[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii])) | |||
|
728 | ||||
707 | except: |
|
729 | except: | |
708 | mode = mean |
|
730 | mode = mean | |
709 | stdv = sigma |
|
731 | stdv = sigma | |
710 | #print("FIT FAIL") |
|
732 | #print("FIT FAIL") | |
|
733 | continue | |||
711 |
|
734 | |||
712 |
|
735 | |||
713 | #print(mode,stdv) |
|
736 | #print(mode,stdv) | |
714 | #Removing echoes greater than mode + std_factor*stdv |
|
737 | #Removing echoes greater than mode + std_factor*stdv | |
715 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() |
|
738 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() | |
716 | #noval tiene los indices que se van a remover |
|
739 | #noval tiene los indices que se van a remover | |
717 | #print("Pair ",ii," novals: ",len(noval[0])) |
|
740 | #print("Pair ",ii," novals: ",len(noval[0])) | |
718 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) |
|
741 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) | |
719 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() |
|
742 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() | |
720 | #print(novall) |
|
743 | #print(novall) | |
721 | #print(" ",self.pairsArray[ii]) |
|
744 | #print(" ",self.pairsArray[ii]) | |
722 | cross_pairs = self.pairsArray[ii] |
|
745 | cross_pairs = self.pairsArray[ii] | |
723 | #Getting coherent echoes which are removed. |
|
746 | #Getting coherent echoes which are removed. | |
724 | # if len(novall[0]) > 0: |
|
747 | # if len(novall[0]) > 0: | |
725 | # |
|
748 | # | |
726 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 |
|
749 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 | |
727 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 |
|
750 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 | |
728 | # val_cspc[novall[0],ii,ifreq,ih] = 1 |
|
751 | # val_cspc[novall[0],ii,ifreq,ih] = 1 | |
729 | #print("OUT NOVALL 1") |
|
752 | #print("OUT NOVALL 1") | |
730 | #Removing coherent from ISR data |
|
|||
731 | chA = self.channels.index(cross_pairs[0]) |
|
|||
732 | chB = self.channels.index(cross_pairs[1]) |
|
|||
733 |
|
753 | |||
734 | new_a = numpy.delete(cspectra[:,ii,ifreq,ih], noval[0]) |
|
754 | new_a = numpy.delete(cspectra[:,ii,ifreq,ih], noval[0]) | |
735 | cspectra[noval,ii,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra |
|
755 | cspectra[noval,ii,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra | |
736 | new_b = numpy.delete(spectra[:,chA,ifreq,ih], noval[0]) |
|
756 | ||
737 | spectra[noval,chA,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A |
|
757 | if channelA_ok: | |
|
758 | chA = self.channels.index(cross_pairs[0]) | |||
|
759 | new_b = numpy.delete(spectra[:,chA,ifreq,ih], noval[0]) | |||
|
760 | spectra[noval,chA,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A | |||
|
761 | channelA_ok = False | |||
|
762 | chB = self.channels.index(cross_pairs[1]) | |||
738 | new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) |
|
763 | new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) | |
739 | spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B |
|
764 | spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B | |
740 |
|
765 | |||
|
766 | channelsProcssd.append(self.crosspairs[ii][0]) # save channel A | |||
|
767 | channelsProcssd.append(self.crosspairs[ii][1]) # save channel B | |||
741 |
|
768 | |||
742 |
|
|
769 | ###ONLY FOR TEST: | |
743 | func2clean = 10*numpy.log10(numpy.absolute(cspectra[:,ii,ifreq,ih])) |
|
770 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
744 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
771 | func2clean = 10*numpy.log10(numpy.absolute(cspectra[:,ii,ifreq,ih])) | |
745 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
772 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
746 |
axs2[row_ax,col_ax].plot(binstep[:-1], |
|
773 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
747 | axs2[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii])) |
|
774 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
748 | ''' |
|
775 | axs2[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii])) | |
749 |
|
776 | |||
750 | #col_ax += 1 #contador de ploteo columnas |
|
777 | ###ONLY FOR TEST: | |
|
778 | col_ax += 1 #contador de ploteo columnas | |||
751 | ##print(col_ax) |
|
779 | ##print(col_ax) | |
752 |
|
|
780 | ###ONLY FOR TEST: | |
753 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" |
|
781 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
754 |
title |
|
782 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" | |
755 | fig.suptitle(title) |
|
783 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" | |
756 |
fig |
|
784 | fig.suptitle(title) | |
757 | plt.show()''' |
|
785 | fig2.suptitle(title2) | |
758 |
|
786 | plt.show() | ||
759 | ''' channels = channels |
|
787 | ||
|
788 | ||||
|
789 | ''' | |||
|
790 | ||||
|
791 | channels = channels | |||
760 | cross_pairs = cross_pairs |
|
792 | cross_pairs = cross_pairs | |
761 | #print("OUT NOVALL 2") |
|
793 | #print("OUT NOVALL 2") | |
762 |
|
794 | |||
763 | vcross0 = (cross_pairs[0] == channels[ii]).nonzero() |
|
795 | vcross0 = (cross_pairs[0] == channels[ii]).nonzero() | |
764 | vcross1 = (cross_pairs[1] == channels[ii]).nonzero() |
|
796 | vcross1 = (cross_pairs[1] == channels[ii]).nonzero() | |
765 | vcross = numpy.concatenate((vcross0,vcross1),axis=None) |
|
797 | vcross = numpy.concatenate((vcross0,vcross1),axis=None) | |
766 | #print('vcros =', vcross) |
|
798 | #print('vcros =', vcross) | |
767 |
|
799 | |||
768 | #Getting coherent echoes which are removed. |
|
800 | #Getting coherent echoes which are removed. | |
769 | if len(novall) > 0: |
|
801 | if len(novall) > 0: | |
770 | #val_spc[novall,ii,ifreq,ih] = 1 |
|
802 | #val_spc[novall,ii,ifreq,ih] = 1 | |
771 | val_spc[ii,ifreq,ih,novall] = 1 |
|
803 | val_spc[ii,ifreq,ih,novall] = 1 | |
772 | if len(vcross) > 0: |
|
804 | if len(vcross) > 0: | |
773 | val_cspc[vcross,ifreq,ih,novall] = 1 |
|
805 | val_cspc[vcross,ifreq,ih,novall] = 1 | |
774 |
|
806 | |||
775 | #Removing coherent from ISR data. |
|
807 | #Removing coherent from ISR data. | |
776 | self.bloque0[ii,ifreq,ih,noval] = numpy.nan |
|
808 | self.bloque0[ii,ifreq,ih,noval] = numpy.nan | |
777 | if len(vcross) > 0: |
|
809 | if len(vcross) > 0: | |
778 | self.bloques[vcross,ifreq,ih,noval] = numpy.nan |
|
810 | self.bloques[vcross,ifreq,ih,noval] = numpy.nan | |
779 | ''' |
|
811 | ''' | |
780 |
|
812 | |||
781 | #print("Getting average of the spectra and cross-spectra from incoherent echoes.") |
|
813 | #print("Getting average of the spectra and cross-spectra from incoherent echoes.") | |
782 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan |
|
814 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan | |
783 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan |
|
815 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan | |
784 | for ih in range(self.nHeights): |
|
816 | for ih in range(self.nHeights): | |
785 | for ifreq in range(self.nFFTPoints): |
|
817 | for ifreq in range(self.nFFTPoints): | |
786 | for ich in range(self.nChan): |
|
818 | for ich in range(self.nChan): | |
787 | tmp = spectra[:,ich,ifreq,ih] |
|
819 | tmp = spectra[:,ich,ifreq,ih] | |
788 | valid = (numpy.isfinite(tmp[:])==True).nonzero() |
|
820 | valid = (numpy.isfinite(tmp[:])==True).nonzero() | |
789 | # if ich == 0 and ifreq == 0 and ih == 17 : |
|
821 | ||
790 | # print tmp |
|
|||
791 | # print valid |
|
|||
792 | # print len(valid[0]) |
|
|||
793 | #print('TMP',tmp) |
|
|||
794 | if len(valid[0]) >0 : |
|
822 | if len(valid[0]) >0 : | |
795 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
823 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) | |
796 | #for icr in range(nPairs): |
|
824 | ||
797 | for icr in range(self.nPairs): |
|
825 | for icr in range(self.nPairs): | |
798 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) |
|
826 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) | |
799 | valid = (numpy.isfinite(tmp)==True).nonzero() |
|
827 | valid = (numpy.isfinite(tmp)==True).nonzero() | |
800 | if len(valid[0]) > 0: |
|
828 | if len(valid[0]) > 0: | |
801 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
829 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) | |
802 | ''' |
|
830 | ''' | |
803 | # print('##########################################################') |
|
831 | # print('##########################################################') | |
804 | print("Removing fake coherent echoes (at least 4 points around the point)") |
|
832 | print("Removing fake coherent echoes (at least 4 points around the point)") | |
805 |
|
833 | |||
806 | val_spectra = numpy.sum(val_spc,0) |
|
834 | val_spectra = numpy.sum(val_spc,0) | |
807 | val_cspectra = numpy.sum(val_cspc,0) |
|
835 | val_cspectra = numpy.sum(val_cspc,0) | |
808 |
|
836 | |||
809 | val_spectra = self.REM_ISOLATED_POINTS(val_spectra,4) |
|
837 | val_spectra = self.REM_ISOLATED_POINTS(val_spectra,4) | |
810 | val_cspectra = self.REM_ISOLATED_POINTS(val_cspectra,4) |
|
838 | val_cspectra = self.REM_ISOLATED_POINTS(val_cspectra,4) | |
811 |
|
839 | |||
812 | for i in range(nChan): |
|
840 | for i in range(nChan): | |
813 | for j in range(nProf): |
|
841 | for j in range(nProf): | |
814 | for k in range(nHeights): |
|
842 | for k in range(nHeights): | |
815 | if numpy.isfinite(val_spectra[i,j,k]) and val_spectra[i,j,k] < 1 : |
|
843 | if numpy.isfinite(val_spectra[i,j,k]) and val_spectra[i,j,k] < 1 : | |
816 | val_spc[:,i,j,k] = 0.0 |
|
844 | val_spc[:,i,j,k] = 0.0 | |
817 | for i in range(nPairs): |
|
845 | for i in range(nPairs): | |
818 | for j in range(nProf): |
|
846 | for j in range(nProf): | |
819 | for k in range(nHeights): |
|
847 | for k in range(nHeights): | |
820 | if numpy.isfinite(val_cspectra[i,j,k]) and val_cspectra[i,j,k] < 1 : |
|
848 | if numpy.isfinite(val_cspectra[i,j,k]) and val_cspectra[i,j,k] < 1 : | |
821 | val_cspc[:,i,j,k] = 0.0 |
|
849 | val_cspc[:,i,j,k] = 0.0 | |
822 |
|
850 | |||
823 | # val_spc = numpy.reshape(val_spc, (len(spectra[:,0,0,0]),nProf*nHeights*nChan)) |
|
851 | # val_spc = numpy.reshape(val_spc, (len(spectra[:,0,0,0]),nProf*nHeights*nChan)) | |
824 | # if numpy.isfinite(val_spectra)==str(True): |
|
852 | # if numpy.isfinite(val_spectra)==str(True): | |
825 | # noval = (val_spectra<1).nonzero() |
|
853 | # noval = (val_spectra<1).nonzero() | |
826 | # if len(noval) > 0: |
|
854 | # if len(noval) > 0: | |
827 | # val_spc[:,noval] = 0.0 |
|
855 | # val_spc[:,noval] = 0.0 | |
828 | # val_spc = numpy.reshape(val_spc, (149,nChan,nProf,nHeights)) |
|
856 | # val_spc = numpy.reshape(val_spc, (149,nChan,nProf,nHeights)) | |
829 |
|
857 | |||
830 | #val_cspc = numpy.reshape(val_spc, (149,nChan*nHeights*nProf)) |
|
858 | #val_cspc = numpy.reshape(val_spc, (149,nChan*nHeights*nProf)) | |
831 | #if numpy.isfinite(val_cspectra)==str(True): |
|
859 | #if numpy.isfinite(val_cspectra)==str(True): | |
832 | # noval = (val_cspectra<1).nonzero() |
|
860 | # noval = (val_cspectra<1).nonzero() | |
833 | # if len(noval) > 0: |
|
861 | # if len(noval) > 0: | |
834 | # val_cspc[:,noval] = 0.0 |
|
862 | # val_cspc[:,noval] = 0.0 | |
835 | # val_cspc = numpy.reshape(val_cspc, (149,nChan,nProf,nHeights)) |
|
863 | # val_cspc = numpy.reshape(val_cspc, (149,nChan,nProf,nHeights)) | |
836 | tmp_sat_spectra = spectra.copy() |
|
864 | tmp_sat_spectra = spectra.copy() | |
837 | tmp_sat_spectra = tmp_sat_spectra*numpy.nan |
|
865 | tmp_sat_spectra = tmp_sat_spectra*numpy.nan | |
838 | tmp_sat_cspectra = cspectra.copy() |
|
866 | tmp_sat_cspectra = cspectra.copy() | |
839 | tmp_sat_cspectra = tmp_sat_cspectra*numpy.nan |
|
867 | tmp_sat_cspectra = tmp_sat_cspectra*numpy.nan | |
840 | ''' |
|
868 | ''' | |
841 | # fig = plt.figure(figsize=(6,5)) |
|
869 | # fig = plt.figure(figsize=(6,5)) | |
842 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
870 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
843 | # ax = fig.add_axes([left, bottom, width, height]) |
|
871 | # ax = fig.add_axes([left, bottom, width, height]) | |
844 | # cp = ax.contour(10*numpy.log10(numpy.absolute(spectra[0,0,:,:]))) |
|
872 | # cp = ax.contour(10*numpy.log10(numpy.absolute(spectra[0,0,:,:]))) | |
845 | # ax.clabel(cp, inline=True,fontsize=10) |
|
873 | # ax.clabel(cp, inline=True,fontsize=10) | |
846 | # plt.show() |
|
874 | # plt.show() | |
847 | ''' |
|
875 | ''' | |
848 | val = (val_spc > 0).nonzero() |
|
876 | val = (val_spc > 0).nonzero() | |
849 | if len(val[0]) > 0: |
|
877 | if len(val[0]) > 0: | |
850 | tmp_sat_spectra[val] = in_sat_spectra[val] |
|
878 | tmp_sat_spectra[val] = in_sat_spectra[val] | |
851 | val = (val_cspc > 0).nonzero() |
|
879 | val = (val_cspc > 0).nonzero() | |
852 | if len(val[0]) > 0: |
|
880 | if len(val[0]) > 0: | |
853 | tmp_sat_cspectra[val] = in_sat_cspectra[val] |
|
881 | tmp_sat_cspectra[val] = in_sat_cspectra[val] | |
854 |
|
882 | |||
855 | print("Getting average of the spectra and cross-spectra from incoherent echoes 2") |
|
883 | print("Getting average of the spectra and cross-spectra from incoherent echoes 2") | |
856 | sat_spectra = numpy.zeros((nChan,nProf,nHeights), dtype=float) |
|
884 | sat_spectra = numpy.zeros((nChan,nProf,nHeights), dtype=float) | |
857 | sat_cspectra = numpy.zeros((nPairs,nProf,nHeights), dtype=complex) |
|
885 | sat_cspectra = numpy.zeros((nPairs,nProf,nHeights), dtype=complex) | |
858 | for ih in range(nHeights): |
|
886 | for ih in range(nHeights): | |
859 | for ifreq in range(nProf): |
|
887 | for ifreq in range(nProf): | |
860 | for ich in range(nChan): |
|
888 | for ich in range(nChan): | |
861 | tmp = numpy.squeeze(tmp_sat_spectra[:,ich,ifreq,ih]) |
|
889 | tmp = numpy.squeeze(tmp_sat_spectra[:,ich,ifreq,ih]) | |
862 | valid = (numpy.isfinite(tmp)).nonzero() |
|
890 | valid = (numpy.isfinite(tmp)).nonzero() | |
863 | if len(valid[0]) > 0: |
|
891 | if len(valid[0]) > 0: | |
864 | sat_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
892 | sat_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |
865 |
|
893 | |||
866 | for icr in range(nPairs): |
|
894 | for icr in range(nPairs): | |
867 | tmp = numpy.squeeze(tmp_sat_cspectra[:,icr,ifreq,ih]) |
|
895 | tmp = numpy.squeeze(tmp_sat_cspectra[:,icr,ifreq,ih]) | |
868 | valid = (numpy.isfinite(tmp)).nonzero() |
|
896 | valid = (numpy.isfinite(tmp)).nonzero() | |
869 | if len(valid[0]) > 0: |
|
897 | if len(valid[0]) > 0: | |
870 | sat_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
898 | sat_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |
871 | ''' |
|
899 | ''' | |
872 | #self.__dataReady= True |
|
900 | #self.__dataReady= True | |
873 | #sat_spectra, sat_cspectra= sat_spectra, sat_cspectra |
|
901 | #sat_spectra, sat_cspectra= sat_spectra, sat_cspectra | |
874 | #if not self.__dataReady: |
|
902 | #if not self.__dataReady: | |
875 | #return None, None |
|
903 | #return None, None | |
876 | #return out_spectra, out_cspectra ,sat_spectra,sat_cspectra |
|
904 | #return out_spectra, out_cspectra ,sat_spectra,sat_cspectra | |
877 | return out_spectra, out_cspectra |
|
905 | return out_spectra, out_cspectra | |
878 |
|
906 | |||
879 | def REM_ISOLATED_POINTS(self,array,rth): |
|
907 | def REM_ISOLATED_POINTS(self,array,rth): | |
880 | # import matplotlib.pyplot as plt |
|
908 | # import matplotlib.pyplot as plt | |
881 | if rth == None : |
|
909 | if rth == None : | |
882 | rth = 4 |
|
910 | rth = 4 | |
883 | print("REM ISO") |
|
911 | print("REM ISO") | |
884 | num_prof = len(array[0,:,0]) |
|
912 | num_prof = len(array[0,:,0]) | |
885 | num_hei = len(array[0,0,:]) |
|
913 | num_hei = len(array[0,0,:]) | |
886 | n2d = len(array[:,0,0]) |
|
914 | n2d = len(array[:,0,0]) | |
887 |
|
915 | |||
888 | for ii in range(n2d) : |
|
916 | for ii in range(n2d) : | |
889 | #print ii,n2d |
|
917 | #print ii,n2d | |
890 | tmp = array[ii,:,:] |
|
918 | tmp = array[ii,:,:] | |
891 | #print tmp.shape, array[ii,101,:],array[ii,102,:] |
|
919 | #print tmp.shape, array[ii,101,:],array[ii,102,:] | |
892 |
|
920 | |||
893 | # fig = plt.figure(figsize=(6,5)) |
|
921 | # fig = plt.figure(figsize=(6,5)) | |
894 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
922 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
895 | # ax = fig.add_axes([left, bottom, width, height]) |
|
923 | # ax = fig.add_axes([left, bottom, width, height]) | |
896 | # x = range(num_prof) |
|
924 | # x = range(num_prof) | |
897 | # y = range(num_hei) |
|
925 | # y = range(num_hei) | |
898 | # cp = ax.contour(y,x,tmp) |
|
926 | # cp = ax.contour(y,x,tmp) | |
899 | # ax.clabel(cp, inline=True,fontsize=10) |
|
927 | # ax.clabel(cp, inline=True,fontsize=10) | |
900 | # plt.show() |
|
928 | # plt.show() | |
901 |
|
929 | |||
902 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) |
|
930 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) | |
903 | tmp = numpy.reshape(tmp,num_prof*num_hei) |
|
931 | tmp = numpy.reshape(tmp,num_prof*num_hei) | |
904 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() |
|
932 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() | |
905 | indxs2 = (tmp > 0).nonzero() |
|
933 | indxs2 = (tmp > 0).nonzero() | |
906 |
|
934 | |||
907 | indxs1 = (indxs1[0]) |
|
935 | indxs1 = (indxs1[0]) | |
908 | indxs2 = indxs2[0] |
|
936 | indxs2 = indxs2[0] | |
909 | #indxs1 = numpy.array(indxs1[0]) |
|
937 | #indxs1 = numpy.array(indxs1[0]) | |
910 | #indxs2 = numpy.array(indxs2[0]) |
|
938 | #indxs2 = numpy.array(indxs2[0]) | |
911 | indxs = None |
|
939 | indxs = None | |
912 | #print indxs1 , indxs2 |
|
940 | #print indxs1 , indxs2 | |
913 | for iv in range(len(indxs2)): |
|
941 | for iv in range(len(indxs2)): | |
914 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) |
|
942 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) | |
915 | #print len(indxs2), indv |
|
943 | #print len(indxs2), indv | |
916 | if len(indv[0]) > 0 : |
|
944 | if len(indv[0]) > 0 : | |
917 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) |
|
945 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) | |
918 | # print indxs |
|
946 | # print indxs | |
919 | indxs = indxs[1:] |
|
947 | indxs = indxs[1:] | |
920 | #print(indxs, len(indxs)) |
|
948 | #print(indxs, len(indxs)) | |
921 | if len(indxs) < 4 : |
|
949 | if len(indxs) < 4 : | |
922 | array[ii,:,:] = 0. |
|
950 | array[ii,:,:] = 0. | |
923 | return |
|
951 | return | |
924 |
|
952 | |||
925 | xpos = numpy.mod(indxs ,num_hei) |
|
953 | xpos = numpy.mod(indxs ,num_hei) | |
926 | ypos = (indxs / num_hei) |
|
954 | ypos = (indxs / num_hei) | |
927 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) |
|
955 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) | |
928 | #print sx |
|
956 | #print sx | |
929 | xpos = xpos[sx] |
|
957 | xpos = xpos[sx] | |
930 | ypos = ypos[sx] |
|
958 | ypos = ypos[sx] | |
931 |
|
959 | |||
932 | # *********************************** Cleaning isolated points ********************************** |
|
960 | # *********************************** Cleaning isolated points ********************************** | |
933 | ic = 0 |
|
961 | ic = 0 | |
934 | while True : |
|
962 | while True : | |
935 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) |
|
963 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) | |
936 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) |
|
964 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) | |
937 | #plt.plot(r) |
|
965 | #plt.plot(r) | |
938 | #plt.show() |
|
966 | #plt.show() | |
939 | no_coh1 = (numpy.isfinite(r)==True).nonzero() |
|
967 | no_coh1 = (numpy.isfinite(r)==True).nonzero() | |
940 | no_coh2 = (r <= rth).nonzero() |
|
968 | no_coh2 = (r <= rth).nonzero() | |
941 | #print r, no_coh1, no_coh2 |
|
969 | #print r, no_coh1, no_coh2 | |
942 | no_coh1 = numpy.array(no_coh1[0]) |
|
970 | no_coh1 = numpy.array(no_coh1[0]) | |
943 | no_coh2 = numpy.array(no_coh2[0]) |
|
971 | no_coh2 = numpy.array(no_coh2[0]) | |
944 | no_coh = None |
|
972 | no_coh = None | |
945 | #print valid1 , valid2 |
|
973 | #print valid1 , valid2 | |
946 | for iv in range(len(no_coh2)): |
|
974 | for iv in range(len(no_coh2)): | |
947 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) |
|
975 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) | |
948 | if len(indv[0]) > 0 : |
|
976 | if len(indv[0]) > 0 : | |
949 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) |
|
977 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) | |
950 | no_coh = no_coh[1:] |
|
978 | no_coh = no_coh[1:] | |
951 | #print len(no_coh), no_coh |
|
979 | #print len(no_coh), no_coh | |
952 | if len(no_coh) < 4 : |
|
980 | if len(no_coh) < 4 : | |
953 | #print xpos[ic], ypos[ic], ic |
|
981 | #print xpos[ic], ypos[ic], ic | |
954 | # plt.plot(r) |
|
982 | # plt.plot(r) | |
955 | # plt.show() |
|
983 | # plt.show() | |
956 | xpos[ic] = numpy.nan |
|
984 | xpos[ic] = numpy.nan | |
957 | ypos[ic] = numpy.nan |
|
985 | ypos[ic] = numpy.nan | |
958 |
|
986 | |||
959 | ic = ic + 1 |
|
987 | ic = ic + 1 | |
960 | if (ic == len(indxs)) : |
|
988 | if (ic == len(indxs)) : | |
961 | break |
|
989 | break | |
962 | #print( xpos, ypos) |
|
990 | #print( xpos, ypos) | |
963 |
|
991 | |||
964 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() |
|
992 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() | |
965 | #print indxs[0] |
|
993 | #print indxs[0] | |
966 | if len(indxs[0]) < 4 : |
|
994 | if len(indxs[0]) < 4 : | |
967 | array[ii,:,:] = 0. |
|
995 | array[ii,:,:] = 0. | |
968 | return |
|
996 | return | |
969 |
|
997 | |||
970 | xpos = xpos[indxs[0]] |
|
998 | xpos = xpos[indxs[0]] | |
971 | ypos = ypos[indxs[0]] |
|
999 | ypos = ypos[indxs[0]] | |
972 | for i in range(0,len(ypos)): |
|
1000 | for i in range(0,len(ypos)): | |
973 | ypos[i]=int(ypos[i]) |
|
1001 | ypos[i]=int(ypos[i]) | |
974 | junk = tmp |
|
1002 | junk = tmp | |
975 | tmp = junk*0.0 |
|
1003 | tmp = junk*0.0 | |
976 |
|
1004 | |||
977 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] |
|
1005 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] | |
978 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1006 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) | |
979 |
|
1007 | |||
980 | #print array.shape |
|
1008 | #print array.shape | |
981 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1009 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) | |
982 | #print tmp.shape |
|
1010 | #print tmp.shape | |
983 |
|
1011 | |||
984 | # fig = plt.figure(figsize=(6,5)) |
|
1012 | # fig = plt.figure(figsize=(6,5)) | |
985 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
1013 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
986 | # ax = fig.add_axes([left, bottom, width, height]) |
|
1014 | # ax = fig.add_axes([left, bottom, width, height]) | |
987 | # x = range(num_prof) |
|
1015 | # x = range(num_prof) | |
988 | # y = range(num_hei) |
|
1016 | # y = range(num_hei) | |
989 | # cp = ax.contour(y,x,array[ii,:,:]) |
|
1017 | # cp = ax.contour(y,x,array[ii,:,:]) | |
990 | # ax.clabel(cp, inline=True,fontsize=10) |
|
1018 | # ax.clabel(cp, inline=True,fontsize=10) | |
991 | # plt.show() |
|
1019 | # plt.show() | |
992 | return array |
|
1020 | return array | |
993 |
|
1021 | |||
994 | class removeInterference(Operation): |
|
1022 | class removeInterference(Operation): | |
995 |
|
1023 | |||
996 | def removeInterference2(self): |
|
1024 | def removeInterference2(self): | |
997 |
|
1025 | |||
998 | cspc = self.dataOut.data_cspc |
|
1026 | cspc = self.dataOut.data_cspc | |
999 | spc = self.dataOut.data_spc |
|
1027 | spc = self.dataOut.data_spc | |
1000 | Heights = numpy.arange(cspc.shape[2]) |
|
1028 | Heights = numpy.arange(cspc.shape[2]) | |
1001 | realCspc = numpy.abs(cspc) |
|
1029 | realCspc = numpy.abs(cspc) | |
1002 |
|
1030 | |||
1003 | for i in range(cspc.shape[0]): |
|
1031 | for i in range(cspc.shape[0]): | |
1004 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
1032 | LinePower= numpy.sum(realCspc[i], axis=0) | |
1005 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
1033 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] | |
1006 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
1034 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] | |
1007 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
1035 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) | |
1008 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
1036 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] | |
1009 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
1037 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] | |
1010 |
|
1038 | |||
1011 |
|
1039 | |||
1012 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
1040 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) | |
1013 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
1041 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) | |
1014 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
1042 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): | |
1015 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
1043 | cspc[i,InterferenceRange,:] = numpy.NaN | |
1016 |
|
1044 | |||
1017 | self.dataOut.data_cspc = cspc |
|
1045 | self.dataOut.data_cspc = cspc | |
1018 |
|
1046 | |||
1019 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
1047 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): | |
1020 |
|
1048 | |||
1021 | jspectra = self.dataOut.data_spc |
|
1049 | jspectra = self.dataOut.data_spc | |
1022 | jcspectra = self.dataOut.data_cspc |
|
1050 | jcspectra = self.dataOut.data_cspc | |
1023 | jnoise = self.dataOut.getNoise() |
|
1051 | jnoise = self.dataOut.getNoise() | |
1024 | num_incoh = self.dataOut.nIncohInt |
|
1052 | num_incoh = self.dataOut.nIncohInt | |
1025 |
|
1053 | |||
1026 | num_channel = jspectra.shape[0] |
|
1054 | num_channel = jspectra.shape[0] | |
1027 | num_prof = jspectra.shape[1] |
|
1055 | num_prof = jspectra.shape[1] | |
1028 | num_hei = jspectra.shape[2] |
|
1056 | num_hei = jspectra.shape[2] | |
1029 |
|
1057 | |||
1030 | # hei_interf |
|
1058 | # hei_interf | |
1031 | if hei_interf is None: |
|
1059 | if hei_interf is None: | |
1032 | count_hei = int(num_hei / 2) |
|
1060 | count_hei = int(num_hei / 2) | |
1033 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
1061 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei | |
1034 | hei_interf = numpy.asarray(hei_interf)[0] |
|
1062 | hei_interf = numpy.asarray(hei_interf)[0] | |
1035 | # nhei_interf |
|
1063 | # nhei_interf | |
1036 | if (nhei_interf == None): |
|
1064 | if (nhei_interf == None): | |
1037 | nhei_interf = 5 |
|
1065 | nhei_interf = 5 | |
1038 | if (nhei_interf < 1): |
|
1066 | if (nhei_interf < 1): | |
1039 | nhei_interf = 1 |
|
1067 | nhei_interf = 1 | |
1040 | if (nhei_interf > count_hei): |
|
1068 | if (nhei_interf > count_hei): | |
1041 | nhei_interf = count_hei |
|
1069 | nhei_interf = count_hei | |
1042 | if (offhei_interf == None): |
|
1070 | if (offhei_interf == None): | |
1043 | offhei_interf = 0 |
|
1071 | offhei_interf = 0 | |
1044 |
|
1072 | |||
1045 | ind_hei = list(range(num_hei)) |
|
1073 | ind_hei = list(range(num_hei)) | |
1046 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
1074 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |
1047 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
1075 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |
1048 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
1076 | mask_prof = numpy.asarray(list(range(num_prof))) | |
1049 | num_mask_prof = mask_prof.size |
|
1077 | num_mask_prof = mask_prof.size | |
1050 | comp_mask_prof = [0, num_prof / 2] |
|
1078 | comp_mask_prof = [0, num_prof / 2] | |
1051 |
|
1079 | |||
1052 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
1080 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |
1053 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
1081 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |
1054 | jnoise = numpy.nan |
|
1082 | jnoise = numpy.nan | |
1055 | noise_exist = jnoise[0] < numpy.Inf |
|
1083 | noise_exist = jnoise[0] < numpy.Inf | |
1056 |
|
1084 | |||
1057 | # Subrutina de Remocion de la Interferencia |
|
1085 | # Subrutina de Remocion de la Interferencia | |
1058 | for ich in range(num_channel): |
|
1086 | for ich in range(num_channel): | |
1059 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1087 | # Se ordena los espectros segun su potencia (menor a mayor) | |
1060 | power = jspectra[ich, mask_prof, :] |
|
1088 | power = jspectra[ich, mask_prof, :] | |
1061 | power = power[:, hei_interf] |
|
1089 | power = power[:, hei_interf] | |
1062 | power = power.sum(axis=0) |
|
1090 | power = power.sum(axis=0) | |
1063 | psort = power.ravel().argsort() |
|
1091 | psort = power.ravel().argsort() | |
1064 |
|
1092 | |||
1065 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
1093 | # Se estima la interferencia promedio en los Espectros de Potencia empleando | |
1066 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
1094 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( | |
1067 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1095 | offhei_interf, nhei_interf + offhei_interf))]]] | |
1068 |
|
1096 | |||
1069 | if noise_exist: |
|
1097 | if noise_exist: | |
1070 | # tmp_noise = jnoise[ich] / num_prof |
|
1098 | # tmp_noise = jnoise[ich] / num_prof | |
1071 | tmp_noise = jnoise[ich] |
|
1099 | tmp_noise = jnoise[ich] | |
1072 | junkspc_interf = junkspc_interf - tmp_noise |
|
1100 | junkspc_interf = junkspc_interf - tmp_noise | |
1073 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
1101 | #junkspc_interf[:,comp_mask_prof] = 0 | |
1074 |
|
1102 | |||
1075 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
1103 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf | |
1076 | jspc_interf = jspc_interf.transpose() |
|
1104 | jspc_interf = jspc_interf.transpose() | |
1077 | # Calculando el espectro de interferencia promedio |
|
1105 | # Calculando el espectro de interferencia promedio | |
1078 | noiseid = numpy.where( |
|
1106 | noiseid = numpy.where( | |
1079 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
1107 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) | |
1080 | noiseid = noiseid[0] |
|
1108 | noiseid = noiseid[0] | |
1081 | cnoiseid = noiseid.size |
|
1109 | cnoiseid = noiseid.size | |
1082 | interfid = numpy.where( |
|
1110 | interfid = numpy.where( | |
1083 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
1111 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) | |
1084 | interfid = interfid[0] |
|
1112 | interfid = interfid[0] | |
1085 | cinterfid = interfid.size |
|
1113 | cinterfid = interfid.size | |
1086 |
|
1114 | |||
1087 | if (cnoiseid > 0): |
|
1115 | if (cnoiseid > 0): | |
1088 | jspc_interf[noiseid] = 0 |
|
1116 | jspc_interf[noiseid] = 0 | |
1089 |
|
1117 | |||
1090 | # Expandiendo los perfiles a limpiar |
|
1118 | # Expandiendo los perfiles a limpiar | |
1091 | if (cinterfid > 0): |
|
1119 | if (cinterfid > 0): | |
1092 | new_interfid = ( |
|
1120 | new_interfid = ( | |
1093 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
1121 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof | |
1094 | new_interfid = numpy.asarray(new_interfid) |
|
1122 | new_interfid = numpy.asarray(new_interfid) | |
1095 | new_interfid = {x for x in new_interfid} |
|
1123 | new_interfid = {x for x in new_interfid} | |
1096 | new_interfid = numpy.array(list(new_interfid)) |
|
1124 | new_interfid = numpy.array(list(new_interfid)) | |
1097 | new_cinterfid = new_interfid.size |
|
1125 | new_cinterfid = new_interfid.size | |
1098 | else: |
|
1126 | else: | |
1099 | new_cinterfid = 0 |
|
1127 | new_cinterfid = 0 | |
1100 |
|
1128 | |||
1101 | for ip in range(new_cinterfid): |
|
1129 | for ip in range(new_cinterfid): | |
1102 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
1130 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() | |
1103 | jspc_interf[new_interfid[ip] |
|
1131 | jspc_interf[new_interfid[ip] | |
1104 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
1132 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] | |
1105 |
|
1133 | |||
1106 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
1134 | jspectra[ich, :, ind_hei] = jspectra[ich, :, | |
1107 | ind_hei] - jspc_interf # Corregir indices |
|
1135 | ind_hei] - jspc_interf # Corregir indices | |
1108 |
|
1136 | |||
1109 | # Removiendo la interferencia del punto de mayor interferencia |
|
1137 | # Removiendo la interferencia del punto de mayor interferencia | |
1110 | ListAux = jspc_interf[mask_prof].tolist() |
|
1138 | ListAux = jspc_interf[mask_prof].tolist() | |
1111 | maxid = ListAux.index(max(ListAux)) |
|
1139 | maxid = ListAux.index(max(ListAux)) | |
1112 |
|
1140 | |||
1113 | if cinterfid > 0: |
|
1141 | if cinterfid > 0: | |
1114 | for ip in range(cinterfid * (interf == 2) - 1): |
|
1142 | for ip in range(cinterfid * (interf == 2) - 1): | |
1115 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
1143 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * | |
1116 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1144 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() | |
1117 | cind = len(ind) |
|
1145 | cind = len(ind) | |
1118 |
|
1146 | |||
1119 | if (cind > 0): |
|
1147 | if (cind > 0): | |
1120 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
1148 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ | |
1121 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
1149 | (1 + (numpy.random.uniform(cind) - 0.5) / | |
1122 | numpy.sqrt(num_incoh)) |
|
1150 | numpy.sqrt(num_incoh)) | |
1123 |
|
1151 | |||
1124 | ind = numpy.array([-2, -1, 1, 2]) |
|
1152 | ind = numpy.array([-2, -1, 1, 2]) | |
1125 | xx = numpy.zeros([4, 4]) |
|
1153 | xx = numpy.zeros([4, 4]) | |
1126 |
|
1154 | |||
1127 | for id1 in range(4): |
|
1155 | for id1 in range(4): | |
1128 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1156 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
1129 |
|
1157 | |||
1130 | xx_inv = numpy.linalg.inv(xx) |
|
1158 | xx_inv = numpy.linalg.inv(xx) | |
1131 | xx = xx_inv[:, 0] |
|
1159 | xx = xx_inv[:, 0] | |
1132 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1160 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
1133 | yy = jspectra[ich, mask_prof[ind], :] |
|
1161 | yy = jspectra[ich, mask_prof[ind], :] | |
1134 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
1162 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( | |
1135 | yy.transpose(), xx) |
|
1163 | yy.transpose(), xx) | |
1136 |
|
1164 | |||
1137 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
1165 | indAux = (jspectra[ich, :, :] < tmp_noise * | |
1138 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1166 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() | |
1139 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
1167 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ | |
1140 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
1168 | (1 - 1 / numpy.sqrt(num_incoh)) | |
1141 |
|
1169 | |||
1142 | # Remocion de Interferencia en el Cross Spectra |
|
1170 | # Remocion de Interferencia en el Cross Spectra | |
1143 | if jcspectra is None: |
|
1171 | if jcspectra is None: | |
1144 | return jspectra, jcspectra |
|
1172 | return jspectra, jcspectra | |
1145 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
1173 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) | |
1146 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
1174 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |
1147 |
|
1175 | |||
1148 | for ip in range(num_pairs): |
|
1176 | for ip in range(num_pairs): | |
1149 |
|
1177 | |||
1150 | #------------------------------------------- |
|
1178 | #------------------------------------------- | |
1151 |
|
1179 | |||
1152 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
1180 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) | |
1153 | cspower = cspower[:, hei_interf] |
|
1181 | cspower = cspower[:, hei_interf] | |
1154 | cspower = cspower.sum(axis=0) |
|
1182 | cspower = cspower.sum(axis=0) | |
1155 |
|
1183 | |||
1156 | cspsort = cspower.ravel().argsort() |
|
1184 | cspsort = cspower.ravel().argsort() | |
1157 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
1185 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( | |
1158 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1186 | offhei_interf, nhei_interf + offhei_interf))]]] | |
1159 | junkcspc_interf = junkcspc_interf.transpose() |
|
1187 | junkcspc_interf = junkcspc_interf.transpose() | |
1160 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
1188 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf | |
1161 |
|
1189 | |||
1162 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1190 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |
1163 |
|
1191 | |||
1164 | median_real = int(numpy.median(numpy.real( |
|
1192 | median_real = int(numpy.median(numpy.real( | |
1165 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1193 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
1166 | median_imag = int(numpy.median(numpy.imag( |
|
1194 | median_imag = int(numpy.median(numpy.imag( | |
1167 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1195 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
1168 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
1196 | comp_mask_prof = [int(e) for e in comp_mask_prof] | |
1169 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
1197 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( | |
1170 | median_real, median_imag) |
|
1198 | median_real, median_imag) | |
1171 |
|
1199 | |||
1172 | for iprof in range(num_prof): |
|
1200 | for iprof in range(num_prof): | |
1173 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
1201 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() | |
1174 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
1202 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] | |
1175 |
|
1203 | |||
1176 | # Removiendo la Interferencia |
|
1204 | # Removiendo la Interferencia | |
1177 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
1205 | jcspectra[ip, :, ind_hei] = jcspectra[ip, | |
1178 | :, ind_hei] - jcspc_interf |
|
1206 | :, ind_hei] - jcspc_interf | |
1179 |
|
1207 | |||
1180 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1208 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |
1181 | maxid = ListAux.index(max(ListAux)) |
|
1209 | maxid = ListAux.index(max(ListAux)) | |
1182 |
|
1210 | |||
1183 | ind = numpy.array([-2, -1, 1, 2]) |
|
1211 | ind = numpy.array([-2, -1, 1, 2]) | |
1184 | xx = numpy.zeros([4, 4]) |
|
1212 | xx = numpy.zeros([4, 4]) | |
1185 |
|
1213 | |||
1186 | for id1 in range(4): |
|
1214 | for id1 in range(4): | |
1187 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1215 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
1188 |
|
1216 | |||
1189 | xx_inv = numpy.linalg.inv(xx) |
|
1217 | xx_inv = numpy.linalg.inv(xx) | |
1190 | xx = xx_inv[:, 0] |
|
1218 | xx = xx_inv[:, 0] | |
1191 |
|
1219 | |||
1192 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1220 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
1193 | yy = jcspectra[ip, mask_prof[ind], :] |
|
1221 | yy = jcspectra[ip, mask_prof[ind], :] | |
1194 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1222 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) | |
1195 |
|
1223 | |||
1196 | # Guardar Resultados |
|
1224 | # Guardar Resultados | |
1197 | self.dataOut.data_spc = jspectra |
|
1225 | self.dataOut.data_spc = jspectra | |
1198 | self.dataOut.data_cspc = jcspectra |
|
1226 | self.dataOut.data_cspc = jcspectra | |
1199 |
|
1227 | |||
1200 | return 1 |
|
1228 | return 1 | |
1201 |
|
1229 | |||
1202 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): |
|
1230 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): | |
1203 |
|
1231 | |||
1204 | self.dataOut = dataOut |
|
1232 | self.dataOut = dataOut | |
1205 |
|
1233 | |||
1206 | if mode == 1: |
|
1234 | if mode == 1: | |
1207 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
1235 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) | |
1208 | elif mode == 2: |
|
1236 | elif mode == 2: | |
1209 | self.removeInterference2() |
|
1237 | self.removeInterference2() | |
1210 |
|
1238 | |||
1211 | return self.dataOut |
|
1239 | return self.dataOut | |
1212 |
|
1240 | |||
1213 |
|
1241 | |||
1214 | class IncohInt(Operation): |
|
1242 | class IncohInt(Operation): | |
1215 |
|
1243 | |||
1216 | __profIndex = 0 |
|
1244 | __profIndex = 0 | |
1217 | __withOverapping = False |
|
1245 | __withOverapping = False | |
1218 |
|
1246 | |||
1219 | __byTime = False |
|
1247 | __byTime = False | |
1220 | __initime = None |
|
1248 | __initime = None | |
1221 | __lastdatatime = None |
|
1249 | __lastdatatime = None | |
1222 | __integrationtime = None |
|
1250 | __integrationtime = None | |
1223 |
|
1251 | |||
1224 | __buffer_spc = None |
|
1252 | __buffer_spc = None | |
1225 | __buffer_cspc = None |
|
1253 | __buffer_cspc = None | |
1226 | __buffer_dc = None |
|
1254 | __buffer_dc = None | |
1227 |
|
1255 | |||
1228 | __dataReady = False |
|
1256 | __dataReady = False | |
1229 |
|
1257 | |||
1230 | __timeInterval = None |
|
1258 | __timeInterval = None | |
1231 |
|
1259 | |||
1232 | n = None |
|
1260 | n = None | |
1233 |
|
1261 | |||
1234 | def __init__(self): |
|
1262 | def __init__(self): | |
1235 |
|
1263 | |||
1236 | Operation.__init__(self) |
|
1264 | Operation.__init__(self) | |
1237 |
|
1265 | |||
1238 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1266 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
1239 | """ |
|
1267 | """ | |
1240 | Set the parameters of the integration class. |
|
1268 | Set the parameters of the integration class. | |
1241 |
|
1269 | |||
1242 | Inputs: |
|
1270 | Inputs: | |
1243 |
|
1271 | |||
1244 | n : Number of coherent integrations |
|
1272 | n : Number of coherent integrations | |
1245 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1273 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
1246 | overlapping : |
|
1274 | overlapping : | |
1247 |
|
1275 | |||
1248 | """ |
|
1276 | """ | |
1249 |
|
1277 | |||
1250 | self.__initime = None |
|
1278 | self.__initime = None | |
1251 | self.__lastdatatime = 0 |
|
1279 | self.__lastdatatime = 0 | |
1252 |
|
1280 | |||
1253 | self.__buffer_spc = 0 |
|
1281 | self.__buffer_spc = 0 | |
1254 | self.__buffer_cspc = 0 |
|
1282 | self.__buffer_cspc = 0 | |
1255 | self.__buffer_dc = 0 |
|
1283 | self.__buffer_dc = 0 | |
1256 |
|
1284 | |||
1257 | self.__profIndex = 0 |
|
1285 | self.__profIndex = 0 | |
1258 | self.__dataReady = False |
|
1286 | self.__dataReady = False | |
1259 | self.__byTime = False |
|
1287 | self.__byTime = False | |
1260 |
|
1288 | |||
1261 | if n is None and timeInterval is None: |
|
1289 | if n is None and timeInterval is None: | |
1262 | raise ValueError("n or timeInterval should be specified ...") |
|
1290 | raise ValueError("n or timeInterval should be specified ...") | |
1263 |
|
1291 | |||
1264 | if n is not None: |
|
1292 | if n is not None: | |
1265 | self.n = int(n) |
|
1293 | self.n = int(n) | |
1266 | else: |
|
1294 | else: | |
1267 |
|
1295 | |||
1268 | self.__integrationtime = int(timeInterval) |
|
1296 | self.__integrationtime = int(timeInterval) | |
1269 | self.n = None |
|
1297 | self.n = None | |
1270 | self.__byTime = True |
|
1298 | self.__byTime = True | |
1271 |
|
1299 | |||
1272 | def putData(self, data_spc, data_cspc, data_dc): |
|
1300 | def putData(self, data_spc, data_cspc, data_dc): | |
1273 | """ |
|
1301 | """ | |
1274 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1302 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
1275 |
|
1303 | |||
1276 | """ |
|
1304 | """ | |
1277 |
|
1305 | |||
1278 | self.__buffer_spc += data_spc |
|
1306 | self.__buffer_spc += data_spc | |
1279 |
|
1307 | |||
1280 | if data_cspc is None: |
|
1308 | if data_cspc is None: | |
1281 | self.__buffer_cspc = None |
|
1309 | self.__buffer_cspc = None | |
1282 | else: |
|
1310 | else: | |
1283 | self.__buffer_cspc += data_cspc |
|
1311 | self.__buffer_cspc += data_cspc | |
1284 |
|
1312 | |||
1285 | if data_dc is None: |
|
1313 | if data_dc is None: | |
1286 | self.__buffer_dc = None |
|
1314 | self.__buffer_dc = None | |
1287 | else: |
|
1315 | else: | |
1288 | self.__buffer_dc += data_dc |
|
1316 | self.__buffer_dc += data_dc | |
1289 |
|
1317 | |||
1290 | self.__profIndex += 1 |
|
1318 | self.__profIndex += 1 | |
1291 |
|
1319 | |||
1292 | return |
|
1320 | return | |
1293 |
|
1321 | |||
1294 | def pushData(self): |
|
1322 | def pushData(self): | |
1295 | """ |
|
1323 | """ | |
1296 | Return the sum of the last profiles and the profiles used in the sum. |
|
1324 | Return the sum of the last profiles and the profiles used in the sum. | |
1297 |
|
1325 | |||
1298 | Affected: |
|
1326 | Affected: | |
1299 |
|
1327 | |||
1300 | self.__profileIndex |
|
1328 | self.__profileIndex | |
1301 |
|
1329 | |||
1302 | """ |
|
1330 | """ | |
1303 |
|
1331 | |||
1304 | data_spc = self.__buffer_spc |
|
1332 | data_spc = self.__buffer_spc | |
1305 | data_cspc = self.__buffer_cspc |
|
1333 | data_cspc = self.__buffer_cspc | |
1306 | data_dc = self.__buffer_dc |
|
1334 | data_dc = self.__buffer_dc | |
1307 | n = self.__profIndex |
|
1335 | n = self.__profIndex | |
1308 |
|
1336 | |||
1309 | self.__buffer_spc = 0 |
|
1337 | self.__buffer_spc = 0 | |
1310 | self.__buffer_cspc = 0 |
|
1338 | self.__buffer_cspc = 0 | |
1311 | self.__buffer_dc = 0 |
|
1339 | self.__buffer_dc = 0 | |
1312 | self.__profIndex = 0 |
|
1340 | self.__profIndex = 0 | |
1313 |
|
1341 | |||
1314 | return data_spc, data_cspc, data_dc, n |
|
1342 | return data_spc, data_cspc, data_dc, n | |
1315 |
|
1343 | |||
1316 | def byProfiles(self, *args): |
|
1344 | def byProfiles(self, *args): | |
1317 |
|
1345 | |||
1318 | self.__dataReady = False |
|
1346 | self.__dataReady = False | |
1319 | avgdata_spc = None |
|
1347 | avgdata_spc = None | |
1320 | avgdata_cspc = None |
|
1348 | avgdata_cspc = None | |
1321 | avgdata_dc = None |
|
1349 | avgdata_dc = None | |
1322 |
|
1350 | |||
1323 | self.putData(*args) |
|
1351 | self.putData(*args) | |
1324 |
|
1352 | |||
1325 | if self.__profIndex == self.n: |
|
1353 | if self.__profIndex == self.n: | |
1326 |
|
1354 | |||
1327 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1355 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1328 | self.n = n |
|
1356 | self.n = n | |
1329 | self.__dataReady = True |
|
1357 | self.__dataReady = True | |
1330 |
|
1358 | |||
1331 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1359 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1332 |
|
1360 | |||
1333 | def byTime(self, datatime, *args): |
|
1361 | def byTime(self, datatime, *args): | |
1334 |
|
1362 | |||
1335 | self.__dataReady = False |
|
1363 | self.__dataReady = False | |
1336 | avgdata_spc = None |
|
1364 | avgdata_spc = None | |
1337 | avgdata_cspc = None |
|
1365 | avgdata_cspc = None | |
1338 | avgdata_dc = None |
|
1366 | avgdata_dc = None | |
1339 |
|
1367 | |||
1340 | self.putData(*args) |
|
1368 | self.putData(*args) | |
1341 |
|
1369 | |||
1342 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1370 | if (datatime - self.__initime) >= self.__integrationtime: | |
1343 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1371 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1344 | self.n = n |
|
1372 | self.n = n | |
1345 | self.__dataReady = True |
|
1373 | self.__dataReady = True | |
1346 |
|
1374 | |||
1347 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1375 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1348 |
|
1376 | |||
1349 | def integrate(self, datatime, *args): |
|
1377 | def integrate(self, datatime, *args): | |
1350 |
|
1378 | |||
1351 | if self.__profIndex == 0: |
|
1379 | if self.__profIndex == 0: | |
1352 | self.__initime = datatime |
|
1380 | self.__initime = datatime | |
1353 |
|
1381 | |||
1354 | if self.__byTime: |
|
1382 | if self.__byTime: | |
1355 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1383 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |
1356 | datatime, *args) |
|
1384 | datatime, *args) | |
1357 | else: |
|
1385 | else: | |
1358 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1386 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
1359 |
|
1387 | |||
1360 | if not self.__dataReady: |
|
1388 | if not self.__dataReady: | |
1361 | return None, None, None, None |
|
1389 | return None, None, None, None | |
1362 |
|
1390 | |||
1363 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1391 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |
1364 |
|
1392 | |||
1365 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1393 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | |
1366 | if n == 1: |
|
1394 | if n == 1: | |
1367 | return dataOut |
|
1395 | return dataOut | |
1368 |
|
1396 | |||
1369 | dataOut.flagNoData = True |
|
1397 | dataOut.flagNoData = True | |
1370 |
|
1398 | |||
1371 | if not self.isConfig: |
|
1399 | if not self.isConfig: | |
1372 | self.setup(n, timeInterval, overlapping) |
|
1400 | self.setup(n, timeInterval, overlapping) | |
1373 | self.isConfig = True |
|
1401 | self.isConfig = True | |
1374 |
|
1402 | |||
1375 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1403 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |
1376 | dataOut.data_spc, |
|
1404 | dataOut.data_spc, | |
1377 | dataOut.data_cspc, |
|
1405 | dataOut.data_cspc, | |
1378 | dataOut.data_dc) |
|
1406 | dataOut.data_dc) | |
1379 |
|
1407 | |||
1380 | if self.__dataReady: |
|
1408 | if self.__dataReady: | |
1381 |
|
1409 | |||
1382 | dataOut.data_spc = avgdata_spc |
|
1410 | dataOut.data_spc = avgdata_spc | |
1383 | dataOut.data_cspc = avgdata_cspc |
|
1411 | dataOut.data_cspc = avgdata_cspc | |
1384 | dataOut.data_dc = avgdata_dc |
|
1412 | dataOut.data_dc = avgdata_dc | |
1385 | dataOut.nIncohInt *= self.n |
|
1413 | dataOut.nIncohInt *= self.n | |
1386 | dataOut.utctime = avgdatatime |
|
1414 | dataOut.utctime = avgdatatime | |
1387 | dataOut.flagNoData = False |
|
1415 | dataOut.flagNoData = False | |
1388 |
|
1416 | |||
1389 | return dataOut |
|
1417 | return dataOut | |
1390 |
|
1418 | |||
1391 | class dopplerFlip(Operation): |
|
1419 | class dopplerFlip(Operation): | |
1392 |
|
1420 | |||
1393 | def run(self, dataOut): |
|
1421 | def run(self, dataOut): | |
1394 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1422 | # arreglo 1: (num_chan, num_profiles, num_heights) | |
1395 | self.dataOut = dataOut |
|
1423 | self.dataOut = dataOut | |
1396 | # JULIA-oblicua, indice 2 |
|
1424 | # JULIA-oblicua, indice 2 | |
1397 | # arreglo 2: (num_profiles, num_heights) |
|
1425 | # arreglo 2: (num_profiles, num_heights) | |
1398 | jspectra = self.dataOut.data_spc[2] |
|
1426 | jspectra = self.dataOut.data_spc[2] | |
1399 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
1427 | jspectra_tmp = numpy.zeros(jspectra.shape) | |
1400 | num_profiles = jspectra.shape[0] |
|
1428 | num_profiles = jspectra.shape[0] | |
1401 | freq_dc = int(num_profiles / 2) |
|
1429 | freq_dc = int(num_profiles / 2) | |
1402 | # Flip con for |
|
1430 | # Flip con for | |
1403 | for j in range(num_profiles): |
|
1431 | for j in range(num_profiles): | |
1404 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1432 | jspectra_tmp[num_profiles-j-1]= jspectra[j] | |
1405 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1433 | # Intercambio perfil de DC con perfil inmediato anterior | |
1406 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1434 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] | |
1407 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1435 | jspectra_tmp[freq_dc]= jspectra[freq_dc] | |
1408 | # canal modificado es re-escrito en el arreglo de canales |
|
1436 | # canal modificado es re-escrito en el arreglo de canales | |
1409 | self.dataOut.data_spc[2] = jspectra_tmp |
|
1437 | self.dataOut.data_spc[2] = jspectra_tmp | |
1410 |
|
1438 | |||
1411 | return self.dataOut |
|
1439 | return self.dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now