@@ -1,517 +1,517 | |||||
1 | import os |
|
1 | import os | |
2 | import datetime |
|
2 | import datetime | |
3 | import numpy |
|
3 | import numpy | |
4 |
|
4 | |||
5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
5 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot | |
7 | from schainpy.utils import log |
|
7 | from schainpy.utils import log | |
8 | # libreria wradlib |
|
8 | # libreria wradlib | |
9 | import wradlib as wrl |
|
9 | import wradlib as wrl | |
10 |
|
10 | |||
11 | EARTH_RADIUS = 6.3710e3 |
|
11 | EARTH_RADIUS = 6.3710e3 | |
12 |
|
12 | |||
13 |
|
13 | |||
14 | def ll2xy(lat1, lon1, lat2, lon2): |
|
14 | def ll2xy(lat1, lon1, lat2, lon2): | |
15 |
|
15 | |||
16 | p = 0.017453292519943295 |
|
16 | p = 0.017453292519943295 | |
17 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
17 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
18 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
18 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
19 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
19 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
20 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
20 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
21 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
21 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
22 | theta = -theta + numpy.pi/2 |
|
22 | theta = -theta + numpy.pi/2 | |
23 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
23 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
24 |
|
24 | |||
25 |
|
25 | |||
26 | def km2deg(km): |
|
26 | def km2deg(km): | |
27 | ''' |
|
27 | ''' | |
28 | Convert distance in km to degrees |
|
28 | Convert distance in km to degrees | |
29 | ''' |
|
29 | ''' | |
30 |
|
30 | |||
31 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
31 | return numpy.rad2deg(km/EARTH_RADIUS) | |
32 |
|
32 | |||
33 |
|
33 | |||
34 |
|
34 | |||
35 | class SpectralMomentsPlot(SpectraPlot): |
|
35 | class SpectralMomentsPlot(SpectraPlot): | |
36 | ''' |
|
36 | ''' | |
37 | Plot for Spectral Moments |
|
37 | Plot for Spectral Moments | |
38 | ''' |
|
38 | ''' | |
39 | CODE = 'spc_moments' |
|
39 | CODE = 'spc_moments' | |
40 | # colormap = 'jet' |
|
40 | # colormap = 'jet' | |
41 | # plot_type = 'pcolor' |
|
41 | # plot_type = 'pcolor' | |
42 |
|
42 | |||
43 | class DobleGaussianPlot(SpectraPlot): |
|
43 | class DobleGaussianPlot(SpectraPlot): | |
44 | ''' |
|
44 | ''' | |
45 | Plot for Double Gaussian Plot |
|
45 | Plot for Double Gaussian Plot | |
46 | ''' |
|
46 | ''' | |
47 | CODE = 'gaussian_fit' |
|
47 | CODE = 'gaussian_fit' | |
48 | # colormap = 'jet' |
|
48 | # colormap = 'jet' | |
49 | # plot_type = 'pcolor' |
|
49 | # plot_type = 'pcolor' | |
50 |
|
50 | |||
51 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
51 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): | |
52 | ''' |
|
52 | ''' | |
53 | Plot SpectraCut with Double Gaussian Fit |
|
53 | Plot SpectraCut with Double Gaussian Fit | |
54 | ''' |
|
54 | ''' | |
55 | CODE = 'cut_gaussian_fit' |
|
55 | CODE = 'cut_gaussian_fit' | |
56 |
|
56 | |||
57 | class SnrPlot(RTIPlot): |
|
57 | class SnrPlot(RTIPlot): | |
58 | ''' |
|
58 | ''' | |
59 | Plot for SNR Data |
|
59 | Plot for SNR Data | |
60 | ''' |
|
60 | ''' | |
61 |
|
61 | |||
62 | CODE = 'snr' |
|
62 | CODE = 'snr' | |
63 | colormap = 'jet' |
|
63 | colormap = 'jet' | |
64 |
|
64 | |||
65 | def update(self, dataOut): |
|
65 | def update(self, dataOut): | |
66 |
|
66 | |||
67 | data = { |
|
67 | data = { | |
68 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
68 | 'snr': 10*numpy.log10(dataOut.data_snr) | |
69 | } |
|
69 | } | |
70 |
|
70 | |||
71 | return data, {} |
|
71 | return data, {} | |
72 |
|
72 | |||
73 | class DopplerPlot(RTIPlot): |
|
73 | class DopplerPlot(RTIPlot): | |
74 | ''' |
|
74 | ''' | |
75 | Plot for DOPPLER Data (1st moment) |
|
75 | Plot for DOPPLER Data (1st moment) | |
76 | ''' |
|
76 | ''' | |
77 |
|
77 | |||
78 | CODE = 'dop' |
|
78 | CODE = 'dop' | |
79 | colormap = 'jet' |
|
79 | colormap = 'jet' | |
80 |
|
80 | |||
81 | def update(self, dataOut): |
|
81 | def update(self, dataOut): | |
82 |
|
82 | |||
83 | data = { |
|
83 | data = { | |
84 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
84 | 'dop': 10*numpy.log10(dataOut.data_dop) | |
85 | } |
|
85 | } | |
86 |
|
86 | |||
87 | return data, {} |
|
87 | return data, {} | |
88 |
|
88 | |||
89 | class PowerPlot(RTIPlot): |
|
89 | class PowerPlot(RTIPlot): | |
90 | ''' |
|
90 | ''' | |
91 | Plot for Power Data (0 moment) |
|
91 | Plot for Power Data (0 moment) | |
92 | ''' |
|
92 | ''' | |
93 |
|
93 | |||
94 | CODE = 'pow' |
|
94 | CODE = 'pow' | |
95 | colormap = 'jet' |
|
95 | colormap = 'jet' | |
96 |
|
96 | |||
97 | def update(self, dataOut): |
|
97 | def update(self, dataOut): | |
98 | data = { |
|
98 | data = { | |
99 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
99 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) | |
100 | } |
|
100 | } | |
101 | return data, {} |
|
101 | return data, {} | |
102 |
|
102 | |||
103 | class SpectralWidthPlot(RTIPlot): |
|
103 | class SpectralWidthPlot(RTIPlot): | |
104 | ''' |
|
104 | ''' | |
105 | Plot for Spectral Width Data (2nd moment) |
|
105 | Plot for Spectral Width Data (2nd moment) | |
106 | ''' |
|
106 | ''' | |
107 |
|
107 | |||
108 | CODE = 'width' |
|
108 | CODE = 'width' | |
109 | colormap = 'jet' |
|
109 | colormap = 'jet' | |
110 |
|
110 | |||
111 | def update(self, dataOut): |
|
111 | def update(self, dataOut): | |
112 |
|
112 | |||
113 | data = { |
|
113 | data = { | |
114 | 'width': dataOut.data_width |
|
114 | 'width': dataOut.data_width | |
115 | } |
|
115 | } | |
116 |
|
116 | |||
117 | return data, {} |
|
117 | return data, {} | |
118 |
|
118 | |||
119 | class SkyMapPlot(Plot): |
|
119 | class SkyMapPlot(Plot): | |
120 | ''' |
|
120 | ''' | |
121 | Plot for meteors detection data |
|
121 | Plot for meteors detection data | |
122 | ''' |
|
122 | ''' | |
123 |
|
123 | |||
124 | CODE = 'param' |
|
124 | CODE = 'param' | |
125 |
|
125 | |||
126 | def setup(self): |
|
126 | def setup(self): | |
127 |
|
127 | |||
128 | self.ncols = 1 |
|
128 | self.ncols = 1 | |
129 | self.nrows = 1 |
|
129 | self.nrows = 1 | |
130 | self.width = 7.2 |
|
130 | self.width = 7.2 | |
131 | self.height = 7.2 |
|
131 | self.height = 7.2 | |
132 | self.nplots = 1 |
|
132 | self.nplots = 1 | |
133 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
133 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
134 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
134 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
135 | self.polar = True |
|
135 | self.polar = True | |
136 | self.ymin = -180 |
|
136 | self.ymin = -180 | |
137 | self.ymax = 180 |
|
137 | self.ymax = 180 | |
138 | self.colorbar = False |
|
138 | self.colorbar = False | |
139 |
|
139 | |||
140 | def plot(self): |
|
140 | def plot(self): | |
141 |
|
141 | |||
142 | arrayParameters = numpy.concatenate(self.data['param']) |
|
142 | arrayParameters = numpy.concatenate(self.data['param']) | |
143 | error = arrayParameters[:, -1] |
|
143 | error = arrayParameters[:, -1] | |
144 | indValid = numpy.where(error == 0)[0] |
|
144 | indValid = numpy.where(error == 0)[0] | |
145 | finalMeteor = arrayParameters[indValid, :] |
|
145 | finalMeteor = arrayParameters[indValid, :] | |
146 | finalAzimuth = finalMeteor[:, 3] |
|
146 | finalAzimuth = finalMeteor[:, 3] | |
147 | finalZenith = finalMeteor[:, 4] |
|
147 | finalZenith = finalMeteor[:, 4] | |
148 |
|
148 | |||
149 | x = finalAzimuth * numpy.pi / 180 |
|
149 | x = finalAzimuth * numpy.pi / 180 | |
150 | y = finalZenith |
|
150 | y = finalZenith | |
151 |
|
151 | |||
152 | ax = self.axes[0] |
|
152 | ax = self.axes[0] | |
153 |
|
153 | |||
154 | if ax.firsttime: |
|
154 | if ax.firsttime: | |
155 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
155 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] | |
156 | else: |
|
156 | else: | |
157 | ax.plot.set_data(x, y) |
|
157 | ax.plot.set_data(x, y) | |
158 |
|
158 | |||
159 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
159 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | |
160 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
160 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | |
161 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
161 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
162 | dt2, |
|
162 | dt2, | |
163 | len(x)) |
|
163 | len(x)) | |
164 | self.titles[0] = title |
|
164 | self.titles[0] = title | |
165 |
|
165 | |||
166 |
|
166 | |||
167 | class GenericRTIPlot(Plot): |
|
167 | class GenericRTIPlot(Plot): | |
168 | ''' |
|
168 | ''' | |
169 | Plot for data_xxxx object |
|
169 | Plot for data_xxxx object | |
170 | ''' |
|
170 | ''' | |
171 |
|
171 | |||
172 | CODE = 'param' |
|
172 | CODE = 'param' | |
173 | colormap = 'viridis' |
|
173 | colormap = 'viridis' | |
174 | plot_type = 'pcolorbuffer' |
|
174 | plot_type = 'pcolorbuffer' | |
175 |
|
175 | |||
176 | def setup(self): |
|
176 | def setup(self): | |
177 | self.xaxis = 'time' |
|
177 | self.xaxis = 'time' | |
178 | self.ncols = 1 |
|
178 | self.ncols = 1 | |
179 | self.nrows = self.data.shape('param')[0] |
|
179 | self.nrows = self.data.shape('param')[0] | |
180 | self.nplots = self.nrows |
|
180 | self.nplots = self.nrows | |
181 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
181 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) | |
182 |
|
182 | |||
183 | if not self.xlabel: |
|
183 | if not self.xlabel: | |
184 | self.xlabel = 'Time' |
|
184 | self.xlabel = 'Time' | |
185 |
|
185 | |||
186 | self.ylabel = 'Range [km]' |
|
186 | self.ylabel = 'Range [km]' | |
187 | if not self.titles: |
|
187 | if not self.titles: | |
188 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
188 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] | |
189 |
|
189 | |||
190 | def update(self, dataOut): |
|
190 | def update(self, dataOut): | |
191 |
|
191 | |||
192 | data = { |
|
192 | data = { | |
193 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
193 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) | |
194 | } |
|
194 | } | |
195 |
|
195 | |||
196 | meta = {} |
|
196 | meta = {} | |
197 |
|
197 | |||
198 | return data, meta |
|
198 | return data, meta | |
199 |
|
199 | |||
200 | def plot(self): |
|
200 | def plot(self): | |
201 | # self.data.normalize_heights() |
|
201 | # self.data.normalize_heights() | |
202 | self.x = self.data.times |
|
202 | self.x = self.data.times | |
203 | self.y = self.data.yrange |
|
203 | self.y = self.data.yrange | |
204 | self.z = self.data['param'] |
|
204 | self.z = self.data['param'] | |
205 | self.z = 10*numpy.log10(self.z) |
|
205 | self.z = 10*numpy.log10(self.z) | |
206 | self.z = numpy.ma.masked_invalid(self.z) |
|
206 | self.z = numpy.ma.masked_invalid(self.z) | |
207 |
|
207 | |||
208 | if self.decimation is None: |
|
208 | if self.decimation is None: | |
209 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
209 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
210 | else: |
|
210 | else: | |
211 | x, y, z = self.fill_gaps(*self.decimate()) |
|
211 | x, y, z = self.fill_gaps(*self.decimate()) | |
212 |
|
212 | |||
213 | for n, ax in enumerate(self.axes): |
|
213 | for n, ax in enumerate(self.axes): | |
214 |
|
214 | |||
215 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
215 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
216 | self.z[n]) |
|
216 | self.z[n]) | |
217 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
217 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
218 | self.z[n]) |
|
218 | self.z[n]) | |
219 |
|
219 | |||
220 | if ax.firsttime: |
|
220 | if ax.firsttime: | |
221 | if self.zlimits is not None: |
|
221 | if self.zlimits is not None: | |
222 | self.zmin, self.zmax = self.zlimits[n] |
|
222 | self.zmin, self.zmax = self.zlimits[n] | |
223 |
|
223 | |||
224 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
224 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
225 | vmin=self.zmin, |
|
225 | vmin=self.zmin, | |
226 | vmax=self.zmax, |
|
226 | vmax=self.zmax, | |
227 | cmap=self.cmaps[n] |
|
227 | cmap=self.cmaps[n] | |
228 | ) |
|
228 | ) | |
229 | else: |
|
229 | else: | |
230 | if self.zlimits is not None: |
|
230 | if self.zlimits is not None: | |
231 | self.zmin, self.zmax = self.zlimits[n] |
|
231 | self.zmin, self.zmax = self.zlimits[n] | |
232 | ax.collections.remove(ax.collections[0]) |
|
232 | ax.collections.remove(ax.collections[0]) | |
233 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
233 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
234 | vmin=self.zmin, |
|
234 | vmin=self.zmin, | |
235 | vmax=self.zmax, |
|
235 | vmax=self.zmax, | |
236 | cmap=self.cmaps[n] |
|
236 | cmap=self.cmaps[n] | |
237 | ) |
|
237 | ) | |
238 |
|
238 | |||
239 |
|
239 | |||
240 | class PolarMapPlot(Plot): |
|
240 | class PolarMapPlot(Plot): | |
241 | ''' |
|
241 | ''' | |
242 | Plot for weather radar |
|
242 | Plot for weather radar | |
243 | ''' |
|
243 | ''' | |
244 |
|
244 | |||
245 | CODE = 'param' |
|
245 | CODE = 'param' | |
246 | colormap = 'seismic' |
|
246 | colormap = 'seismic' | |
247 |
|
247 | |||
248 | def setup(self): |
|
248 | def setup(self): | |
249 | self.ncols = 1 |
|
249 | self.ncols = 1 | |
250 | self.nrows = 1 |
|
250 | self.nrows = 1 | |
251 | self.width = 9 |
|
251 | self.width = 9 | |
252 | self.height = 8 |
|
252 | self.height = 8 | |
253 | self.mode = self.data.meta['mode'] |
|
253 | self.mode = self.data.meta['mode'] | |
254 | if self.channels is not None: |
|
254 | if self.channels is not None: | |
255 | self.nplots = len(self.channels) |
|
255 | self.nplots = len(self.channels) | |
256 | self.nrows = len(self.channels) |
|
256 | self.nrows = len(self.channels) | |
257 | else: |
|
257 | else: | |
258 | self.nplots = self.data.shape(self.CODE)[0] |
|
258 | self.nplots = self.data.shape(self.CODE)[0] | |
259 | self.nrows = self.nplots |
|
259 | self.nrows = self.nplots | |
260 | self.channels = list(range(self.nplots)) |
|
260 | self.channels = list(range(self.nplots)) | |
261 | if self.mode == 'E': |
|
261 | if self.mode == 'E': | |
262 | self.xlabel = 'Longitude' |
|
262 | self.xlabel = 'Longitude' | |
263 | self.ylabel = 'Latitude' |
|
263 | self.ylabel = 'Latitude' | |
264 | else: |
|
264 | else: | |
265 | self.xlabel = 'Range (km)' |
|
265 | self.xlabel = 'Range (km)' | |
266 | self.ylabel = 'Height (km)' |
|
266 | self.ylabel = 'Height (km)' | |
267 | self.bgcolor = 'white' |
|
267 | self.bgcolor = 'white' | |
268 | self.cb_labels = self.data.meta['units'] |
|
268 | self.cb_labels = self.data.meta['units'] | |
269 | self.lat = self.data.meta['latitude'] |
|
269 | self.lat = self.data.meta['latitude'] | |
270 | self.lon = self.data.meta['longitude'] |
|
270 | self.lon = self.data.meta['longitude'] | |
271 | self.xmin, self.xmax = float( |
|
271 | self.xmin, self.xmax = float( | |
272 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
272 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | |
273 | self.ymin, self.ymax = float( |
|
273 | self.ymin, self.ymax = float( | |
274 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
274 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | |
275 | # self.polar = True |
|
275 | # self.polar = True | |
276 |
|
276 | |||
277 | def plot(self): |
|
277 | def plot(self): | |
278 |
|
278 | |||
279 | for n, ax in enumerate(self.axes): |
|
279 | for n, ax in enumerate(self.axes): | |
280 | data = self.data['param'][self.channels[n]] |
|
280 | data = self.data['param'][self.channels[n]] | |
281 |
|
281 | |||
282 | zeniths = numpy.linspace( |
|
282 | zeniths = numpy.linspace( | |
283 | 0, self.data.meta['max_range'], data.shape[1]) |
|
283 | 0, self.data.meta['max_range'], data.shape[1]) | |
284 | if self.mode == 'E': |
|
284 | if self.mode == 'E': | |
285 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
285 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 | |
286 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
286 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
287 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
287 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | |
288 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
288 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | |
289 | x = km2deg(x) + self.lon |
|
289 | x = km2deg(x) + self.lon | |
290 | y = km2deg(y) + self.lat |
|
290 | y = km2deg(y) + self.lat | |
291 | else: |
|
291 | else: | |
292 | azimuths = numpy.radians(self.data.yrange) |
|
292 | azimuths = numpy.radians(self.data.yrange) | |
293 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
293 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
294 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
294 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
295 | self.y = zeniths |
|
295 | self.y = zeniths | |
296 |
|
296 | |||
297 | if ax.firsttime: |
|
297 | if ax.firsttime: | |
298 | if self.zlimits is not None: |
|
298 | if self.zlimits is not None: | |
299 | self.zmin, self.zmax = self.zlimits[n] |
|
299 | self.zmin, self.zmax = self.zlimits[n] | |
300 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
300 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
301 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
301 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
302 | vmin=self.zmin, |
|
302 | vmin=self.zmin, | |
303 | vmax=self.zmax, |
|
303 | vmax=self.zmax, | |
304 | cmap=self.cmaps[n]) |
|
304 | cmap=self.cmaps[n]) | |
305 | else: |
|
305 | else: | |
306 | if self.zlimits is not None: |
|
306 | if self.zlimits is not None: | |
307 | self.zmin, self.zmax = self.zlimits[n] |
|
307 | self.zmin, self.zmax = self.zlimits[n] | |
308 | ax.collections.remove(ax.collections[0]) |
|
308 | ax.collections.remove(ax.collections[0]) | |
309 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
309 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
310 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
310 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
311 | vmin=self.zmin, |
|
311 | vmin=self.zmin, | |
312 | vmax=self.zmax, |
|
312 | vmax=self.zmax, | |
313 | cmap=self.cmaps[n]) |
|
313 | cmap=self.cmaps[n]) | |
314 |
|
314 | |||
315 | if self.mode == 'A': |
|
315 | if self.mode == 'A': | |
316 | continue |
|
316 | continue | |
317 |
|
317 | |||
318 | # plot district names |
|
318 | # plot district names | |
319 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
319 | f = open('/data/workspace/schain_scripts/distrito.csv') | |
320 | for line in f: |
|
320 | for line in f: | |
321 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
321 | label, lon, lat = [s.strip() for s in line.split(',') if s] | |
322 | lat = float(lat) |
|
322 | lat = float(lat) | |
323 | lon = float(lon) |
|
323 | lon = float(lon) | |
324 | # ax.plot(lon, lat, '.b', ms=2) |
|
324 | # ax.plot(lon, lat, '.b', ms=2) | |
325 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
325 | ax.text(lon, lat, label.decode('utf8'), ha='center', | |
326 | va='bottom', size='8', color='black') |
|
326 | va='bottom', size='8', color='black') | |
327 |
|
327 | |||
328 | # plot limites |
|
328 | # plot limites | |
329 | limites = [] |
|
329 | limites = [] | |
330 | tmp = [] |
|
330 | tmp = [] | |
331 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
331 | for line in open('/data/workspace/schain_scripts/lima.csv'): | |
332 | if '#' in line: |
|
332 | if '#' in line: | |
333 | if tmp: |
|
333 | if tmp: | |
334 | limites.append(tmp) |
|
334 | limites.append(tmp) | |
335 | tmp = [] |
|
335 | tmp = [] | |
336 | continue |
|
336 | continue | |
337 | values = line.strip().split(',') |
|
337 | values = line.strip().split(',') | |
338 | tmp.append((float(values[0]), float(values[1]))) |
|
338 | tmp.append((float(values[0]), float(values[1]))) | |
339 | for points in limites: |
|
339 | for points in limites: | |
340 | ax.add_patch( |
|
340 | ax.add_patch( | |
341 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
341 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | |
342 |
|
342 | |||
343 | # plot Cuencas |
|
343 | # plot Cuencas | |
344 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
344 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | |
345 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
345 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) | |
346 | values = [line.strip().split(',') for line in f] |
|
346 | values = [line.strip().split(',') for line in f] | |
347 | points = [(float(s[0]), float(s[1])) for s in values] |
|
347 | points = [(float(s[0]), float(s[1])) for s in values] | |
348 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
348 | ax.add_patch(Polygon(points, ec='b', fc='none')) | |
349 |
|
349 | |||
350 | # plot grid |
|
350 | # plot grid | |
351 | for r in (15, 30, 45, 60): |
|
351 | for r in (15, 30, 45, 60): | |
352 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
352 | ax.add_artist(plt.Circle((self.lon, self.lat), | |
353 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
353 | km2deg(r), color='0.6', fill=False, lw=0.2)) | |
354 | ax.text( |
|
354 | ax.text( | |
355 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
355 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), | |
356 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
356 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), | |
357 | '{}km'.format(r), |
|
357 | '{}km'.format(r), | |
358 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
358 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') | |
359 |
|
359 | |||
360 | if self.mode == 'E': |
|
360 | if self.mode == 'E': | |
361 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
361 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | |
362 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
362 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | |
363 | else: |
|
363 | else: | |
364 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
364 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | |
365 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
365 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | |
366 |
|
366 | |||
367 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
367 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
368 | self.titles = ['{} {}'.format( |
|
368 | self.titles = ['{} {}'.format( | |
369 | self.data.parameters[x], title) for x in self.channels] |
|
369 | self.data.parameters[x], title) for x in self.channels] | |
370 |
|
370 | |||
371 | class WeatherPlot(Plot): |
|
371 | class WeatherPlot(Plot): | |
372 | CODE = 'weather' |
|
372 | CODE = 'weather' | |
373 | plot_name = 'weather' |
|
373 | plot_name = 'weather' | |
374 | plot_type = 'ppistyle' |
|
374 | plot_type = 'ppistyle' | |
375 | buffering = False |
|
375 | buffering = False | |
376 |
|
376 | |||
377 | def setup(self): |
|
377 | def setup(self): | |
378 | self.ncols = 1 |
|
378 | self.ncols = 1 | |
379 | self.nrows = 1 |
|
379 | self.nrows = 1 | |
380 | self.nplots= 1 |
|
380 | self.nplots= 1 | |
381 | self.ylabel= 'Range [Km]' |
|
381 | self.ylabel= 'Range [Km]' | |
382 | self.titles= ['Weather'] |
|
382 | self.titles= ['Weather'] | |
383 | self.colorbar=False |
|
383 | self.colorbar=False | |
384 | self.width =8 |
|
384 | self.width =8 | |
385 | self.height =8 |
|
385 | self.height =8 | |
386 | self.ini =0 |
|
386 | self.ini =0 | |
387 | self.len_azi =0 |
|
387 | self.len_azi =0 | |
388 | self.buffer_ini = None |
|
388 | self.buffer_ini = None | |
389 | self.buffer_azi = None |
|
389 | self.buffer_azi = None | |
390 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
390 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
391 | self.flag =0 |
|
391 | self.flag =0 | |
392 | self.indicador= 0 |
|
392 | self.indicador= 0 | |
393 |
|
393 | |||
394 | def update(self, dataOut): |
|
394 | def update(self, dataOut): | |
395 |
|
395 | |||
396 | data = {} |
|
396 | data = {} | |
397 | meta = {} |
|
397 | meta = {} | |
398 | if hasattr(dataOut, 'dataPP_POWER'): |
|
398 | if hasattr(dataOut, 'dataPP_POWER'): | |
399 | factor = 1 |
|
399 | factor = 1 | |
400 |
|
400 | |||
401 | if hasattr(dataOut, 'nFFTPoints'): |
|
401 | if hasattr(dataOut, 'nFFTPoints'): | |
402 | factor = dataOut.normFactor |
|
402 | factor = dataOut.normFactor | |
403 |
|
403 | |||
404 | print("factor",factor) |
|
404 | ####print("factor",factor) | |
405 | data['weather'] = 10*numpy.log10(dataOut.data_360[0]/(factor)) |
|
405 | data['weather'] = 10*numpy.log10(dataOut.data_360[0]/(factor)) | |
406 | print("weather",data['weather']) |
|
406 | print("weather",data['weather']) | |
407 | data['azi'] = dataOut.data_azi |
|
407 | data['azi'] = dataOut.data_azi | |
408 | return data, meta |
|
408 | return data, meta | |
409 |
|
409 | |||
410 | def const_ploteo(self,data_weather,data_azi,step,res): |
|
410 | def const_ploteo(self,data_weather,data_azi,step,res): | |
411 | if self.ini==0: |
|
411 | if self.ini==0: | |
412 | #------- AZIMUTH |
|
412 | #------- AZIMUTH | |
413 | n = (360/res)-len(data_azi) |
|
413 | n = (360/res)-len(data_azi) | |
414 | start = data_azi[-1] + res |
|
414 | start = data_azi[-1] + res | |
415 | end = data_azi[0] - res |
|
415 | end = data_azi[0] - res | |
416 | if start>end: |
|
416 | if start>end: | |
417 | end = end + 360 |
|
417 | end = end + 360 | |
418 | azi_vacia = numpy.linspace(start,end,int(n)) |
|
418 | azi_vacia = numpy.linspace(start,end,int(n)) | |
419 | azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) |
|
419 | azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) | |
420 | data_azi = numpy.hstack((data_azi,azi_vacia)) |
|
420 | data_azi = numpy.hstack((data_azi,azi_vacia)) | |
421 | # RADAR |
|
421 | # RADAR | |
422 | val_mean = numpy.mean(data_weather[:,0]) |
|
422 | val_mean = numpy.mean(data_weather[:,0]) | |
423 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean |
|
423 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean | |
424 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) |
|
424 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) | |
425 | else: |
|
425 | else: | |
426 | # azimuth |
|
426 | # azimuth | |
427 | flag=0 |
|
427 | flag=0 | |
428 | start_azi = self.res_azi[0] |
|
428 | start_azi = self.res_azi[0] | |
429 | start = data_azi[0] |
|
429 | start = data_azi[0] | |
430 | end = data_azi[-1] |
|
430 | end = data_azi[-1] | |
431 | print("start",start) |
|
431 | print("start",start) | |
432 | print("end",end) |
|
432 | print("end",end) | |
433 | if start< start_azi: |
|
433 | if start< start_azi: | |
434 | start = start +360 |
|
434 | start = start +360 | |
435 | if end <start_azi: |
|
435 | if end <start_azi: | |
436 | end = end +360 |
|
436 | end = end +360 | |
437 |
|
437 | |||
438 | print("start",start) |
|
438 | print("start",start) | |
439 | print("end",end) |
|
439 | print("end",end) | |
440 | #### AQUI SERA LA MAGIA |
|
440 | #### AQUI SERA LA MAGIA | |
441 | pos_ini = int((start-start_azi)/res) |
|
441 | pos_ini = int((start-start_azi)/res) | |
442 | len_azi = len(data_azi) |
|
442 | len_azi = len(data_azi) | |
443 | if (360-pos_ini)<len_azi: |
|
443 | if (360-pos_ini)<len_azi: | |
444 | if pos_ini+1==360: |
|
444 | if pos_ini+1==360: | |
445 | pos_ini=0 |
|
445 | pos_ini=0 | |
446 | else: |
|
446 | else: | |
447 | flag=1 |
|
447 | flag=1 | |
448 | dif= 360-pos_ini |
|
448 | dif= 360-pos_ini | |
449 | comp= len_azi-dif |
|
449 | comp= len_azi-dif | |
450 |
|
450 | |||
451 | print(pos_ini) |
|
451 | print(pos_ini) | |
452 | print(len_azi) |
|
452 | print(len_azi) | |
453 | print("shape",self.res_azi.shape) |
|
453 | print("shape",self.res_azi.shape) | |
454 | if flag==0: |
|
454 | if flag==0: | |
455 | # AZIMUTH |
|
455 | # AZIMUTH | |
456 | self.res_azi[pos_ini:pos_ini+len_azi] = data_azi |
|
456 | self.res_azi[pos_ini:pos_ini+len_azi] = data_azi | |
457 | # RADAR |
|
457 | # RADAR | |
458 | self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather |
|
458 | self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather | |
459 | else: |
|
459 | else: | |
460 | # AZIMUTH |
|
460 | # AZIMUTH | |
461 | self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] |
|
461 | self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] | |
462 | self.res_azi[0:comp] = data_azi[dif:] |
|
462 | self.res_azi[0:comp] = data_azi[dif:] | |
463 | # RADAR |
|
463 | # RADAR | |
464 | self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] |
|
464 | self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] | |
465 | self.res_weather[0:comp,:] = data_weather[dif:,:] |
|
465 | self.res_weather[0:comp,:] = data_weather[dif:,:] | |
466 | flag=0 |
|
466 | flag=0 | |
467 | data_azi = self.res_azi |
|
467 | data_azi = self.res_azi | |
468 | data_weather = self.res_weather |
|
468 | data_weather = self.res_weather | |
469 |
|
469 | |||
470 | return data_weather,data_azi |
|
470 | return data_weather,data_azi | |
471 |
|
471 | |||
472 | def plot(self): |
|
472 | def plot(self): | |
473 | print("--------------------------------------",self.ini,"-----------------------------------") |
|
473 | print("--------------------------------------",self.ini,"-----------------------------------") | |
474 | #numpy.set_printoptions(suppress=True) |
|
474 | #numpy.set_printoptions(suppress=True) | |
475 | #print(self.data.times) |
|
475 | #print(self.data.times) | |
476 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]) |
|
476 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]) | |
477 | data = self.data[-1] |
|
477 | data = self.data[-1] | |
478 | # ALTURA altura_tmp_h |
|
478 | # ALTURA altura_tmp_h | |
479 | altura_h = (data['weather'].shape[1])/10.0 |
|
479 | altura_h = (data['weather'].shape[1])/10.0 | |
480 | stoprange = float(altura_h*1.5)#stoprange = float(33*1.5) por ahora 400 |
|
480 | stoprange = float(altura_h*1.5)#stoprange = float(33*1.5) por ahora 400 | |
481 | rangestep = float(0.15) |
|
481 | rangestep = float(0.15) | |
482 | r = numpy.arange(0, stoprange, rangestep) |
|
482 | r = numpy.arange(0, stoprange, rangestep) | |
483 | self.y = 2*r |
|
483 | self.y = 2*r | |
484 | # RADAR |
|
484 | # RADAR | |
485 | #data_weather = data['weather'] |
|
485 | #data_weather = data['weather'] | |
486 | # PEDESTAL |
|
486 | # PEDESTAL | |
487 | #data_azi = data['azi'] |
|
487 | #data_azi = data['azi'] | |
488 | res = 1 |
|
488 | res = 1 | |
489 | # STEP |
|
489 | # STEP | |
490 | step = (360/(res*data['weather'].shape[0])) |
|
490 | step = (360/(res*data['weather'].shape[0])) | |
491 | #print("shape wr_data", wr_data.shape) |
|
491 | #print("shape wr_data", wr_data.shape) | |
492 | #print("shape wr_azi",wr_azi.shape) |
|
492 | #print("shape wr_azi",wr_azi.shape) | |
493 | #print("step",step) |
|
493 | #print("step",step) | |
494 | print("Time---->",self.data.times[-1],thisDatetime) |
|
494 | print("Time---->",self.data.times[-1],thisDatetime) | |
495 | #print("alturas", len(self.y)) |
|
495 | #print("alturas", len(self.y)) | |
496 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'],data_azi=data['azi'],step=step,res=res) |
|
496 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'],data_azi=data['azi'],step=step,res=res) | |
497 | #numpy.set_printoptions(suppress=True) |
|
497 | #numpy.set_printoptions(suppress=True) | |
498 | #print("resultado",self.res_azi) |
|
498 | #print("resultado",self.res_azi) | |
499 | ########################################################## |
|
499 | ########################################################## | |
500 | ################# PLOTEO ################### |
|
500 | ################# PLOTEO ################### | |
501 | ########################################################## |
|
501 | ########################################################## | |
502 |
|
502 | |||
503 | for i,ax in enumerate(self.axes): |
|
503 | for i,ax in enumerate(self.axes): | |
504 | if ax.firsttime: |
|
504 | if ax.firsttime: | |
505 | plt.clf() |
|
505 | plt.clf() | |
506 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60) |
|
506 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60) | |
507 | else: |
|
507 | else: | |
508 | plt.clf() |
|
508 | plt.clf() | |
509 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60) |
|
509 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60) | |
510 | caax = cgax.parasites[0] |
|
510 | caax = cgax.parasites[0] | |
511 | paax = cgax.parasites[1] |
|
511 | paax = cgax.parasites[1] | |
512 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
512 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
513 | caax.set_xlabel('x_range [km]') |
|
513 | caax.set_xlabel('x_range [km]') | |
514 | caax.set_ylabel('y_range [km]') |
|
514 | caax.set_ylabel('y_range [km]') | |
515 | plt.text(1.0, 1.05, 'azimuth '+str(thisDatetime)+"step"+str(self.ini), transform=caax.transAxes, va='bottom',ha='right') |
|
515 | plt.text(1.0, 1.05, 'azimuth '+str(thisDatetime)+"step"+str(self.ini), transform=caax.transAxes, va='bottom',ha='right') | |
516 |
|
516 | |||
517 | self.ini= self.ini+1 |
|
517 | self.ini= self.ini+1 |
@@ -1,4473 +1,4473 | |||||
1 | import numpy,os,h5py |
|
1 | import numpy,os,h5py | |
2 | import math |
|
2 | import math | |
3 | from scipy import optimize, interpolate, signal, stats, ndimage |
|
3 | from scipy import optimize, interpolate, signal, stats, ndimage | |
4 | import scipy |
|
4 | import scipy | |
5 | import re |
|
5 | import re | |
6 | import datetime |
|
6 | import datetime | |
7 | import copy |
|
7 | import copy | |
8 | import sys |
|
8 | import sys | |
9 | import importlib |
|
9 | import importlib | |
10 | import itertools |
|
10 | import itertools | |
11 | from multiprocessing import Pool, TimeoutError |
|
11 | from multiprocessing import Pool, TimeoutError | |
12 | from multiprocessing.pool import ThreadPool |
|
12 | from multiprocessing.pool import ThreadPool | |
13 | import time |
|
13 | import time | |
14 |
|
14 | |||
15 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters |
|
15 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters | |
16 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
16 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator | |
17 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon |
|
17 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon | |
18 | from scipy import asarray as ar,exp |
|
18 | from scipy import asarray as ar,exp | |
19 | from scipy.optimize import curve_fit |
|
19 | from scipy.optimize import curve_fit | |
20 | from schainpy.utils import log |
|
20 | from schainpy.utils import log | |
21 | import warnings |
|
21 | import warnings | |
22 | from numpy import NaN |
|
22 | from numpy import NaN | |
23 | from scipy.optimize.optimize import OptimizeWarning |
|
23 | from scipy.optimize.optimize import OptimizeWarning | |
24 | warnings.filterwarnings('ignore') |
|
24 | warnings.filterwarnings('ignore') | |
25 |
|
25 | |||
26 | import matplotlib.pyplot as plt |
|
26 | import matplotlib.pyplot as plt | |
27 |
|
27 | |||
28 | SPEED_OF_LIGHT = 299792458 |
|
28 | SPEED_OF_LIGHT = 299792458 | |
29 |
|
29 | |||
30 | '''solving pickling issue''' |
|
30 | '''solving pickling issue''' | |
31 |
|
31 | |||
32 | def _pickle_method(method): |
|
32 | def _pickle_method(method): | |
33 | func_name = method.__func__.__name__ |
|
33 | func_name = method.__func__.__name__ | |
34 | obj = method.__self__ |
|
34 | obj = method.__self__ | |
35 | cls = method.__self__.__class__ |
|
35 | cls = method.__self__.__class__ | |
36 | return _unpickle_method, (func_name, obj, cls) |
|
36 | return _unpickle_method, (func_name, obj, cls) | |
37 |
|
37 | |||
38 | def _unpickle_method(func_name, obj, cls): |
|
38 | def _unpickle_method(func_name, obj, cls): | |
39 | for cls in cls.mro(): |
|
39 | for cls in cls.mro(): | |
40 | try: |
|
40 | try: | |
41 | func = cls.__dict__[func_name] |
|
41 | func = cls.__dict__[func_name] | |
42 | except KeyError: |
|
42 | except KeyError: | |
43 | pass |
|
43 | pass | |
44 | else: |
|
44 | else: | |
45 | break |
|
45 | break | |
46 | return func.__get__(obj, cls) |
|
46 | return func.__get__(obj, cls) | |
47 |
|
47 | |||
48 | def isNumber(str): |
|
48 | def isNumber(str): | |
49 | try: |
|
49 | try: | |
50 | float(str) |
|
50 | float(str) | |
51 | return True |
|
51 | return True | |
52 | except: |
|
52 | except: | |
53 | return False |
|
53 | return False | |
54 |
|
54 | |||
55 | class ParametersProc(ProcessingUnit): |
|
55 | class ParametersProc(ProcessingUnit): | |
56 |
|
56 | |||
57 | METHODS = {} |
|
57 | METHODS = {} | |
58 | nSeconds = None |
|
58 | nSeconds = None | |
59 |
|
59 | |||
60 | def __init__(self): |
|
60 | def __init__(self): | |
61 | ProcessingUnit.__init__(self) |
|
61 | ProcessingUnit.__init__(self) | |
62 |
|
62 | |||
63 | # self.objectDict = {} |
|
63 | # self.objectDict = {} | |
64 | self.buffer = None |
|
64 | self.buffer = None | |
65 | self.firstdatatime = None |
|
65 | self.firstdatatime = None | |
66 | self.profIndex = 0 |
|
66 | self.profIndex = 0 | |
67 | self.dataOut = Parameters() |
|
67 | self.dataOut = Parameters() | |
68 | self.setupReq = False #Agregar a todas las unidades de proc |
|
68 | self.setupReq = False #Agregar a todas las unidades de proc | |
69 |
|
69 | |||
70 | def __updateObjFromInput(self): |
|
70 | def __updateObjFromInput(self): | |
71 |
|
71 | |||
72 | self.dataOut.inputUnit = self.dataIn.type |
|
72 | self.dataOut.inputUnit = self.dataIn.type | |
73 |
|
73 | |||
74 | self.dataOut.timeZone = self.dataIn.timeZone |
|
74 | self.dataOut.timeZone = self.dataIn.timeZone | |
75 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
75 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
76 | self.dataOut.errorCount = self.dataIn.errorCount |
|
76 | self.dataOut.errorCount = self.dataIn.errorCount | |
77 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
77 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
78 |
|
78 | |||
79 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
79 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
80 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
80 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
81 | self.dataOut.channelList = self.dataIn.channelList |
|
81 | self.dataOut.channelList = self.dataIn.channelList | |
82 | self.dataOut.heightList = self.dataIn.heightList |
|
82 | self.dataOut.heightList = self.dataIn.heightList | |
83 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
83 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
84 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
84 | # self.dataOut.nHeights = self.dataIn.nHeights | |
85 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
85 | # self.dataOut.nChannels = self.dataIn.nChannels | |
86 | # self.dataOut.nBaud = self.dataIn.nBaud |
|
86 | # self.dataOut.nBaud = self.dataIn.nBaud | |
87 | # self.dataOut.nCode = self.dataIn.nCode |
|
87 | # self.dataOut.nCode = self.dataIn.nCode | |
88 | # self.dataOut.code = self.dataIn.code |
|
88 | # self.dataOut.code = self.dataIn.code | |
89 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
89 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
90 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
90 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
91 | # self.dataOut.utctime = self.firstdatatime |
|
91 | # self.dataOut.utctime = self.firstdatatime | |
92 | self.dataOut.utctime = self.dataIn.utctime |
|
92 | self.dataOut.utctime = self.dataIn.utctime | |
93 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
93 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
94 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
94 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
95 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
95 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
96 | # self.dataOut.nIncohInt = 1 |
|
96 | # self.dataOut.nIncohInt = 1 | |
97 | # self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
97 | # self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
98 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
98 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
99 | self.dataOut.timeInterval1 = self.dataIn.timeInterval |
|
99 | self.dataOut.timeInterval1 = self.dataIn.timeInterval | |
100 | self.dataOut.heightList = self.dataIn.heightList |
|
100 | self.dataOut.heightList = self.dataIn.heightList | |
101 | self.dataOut.frequency = self.dataIn.frequency |
|
101 | self.dataOut.frequency = self.dataIn.frequency | |
102 | # self.dataOut.noise = self.dataIn.noise |
|
102 | # self.dataOut.noise = self.dataIn.noise | |
103 |
|
103 | |||
104 | def run(self): |
|
104 | def run(self): | |
105 |
|
105 | |||
106 |
|
106 | |||
107 | #print("HOLA MUNDO SOY YO") |
|
107 | #print("HOLA MUNDO SOY YO") | |
108 | #---------------------- Voltage Data --------------------------- |
|
108 | #---------------------- Voltage Data --------------------------- | |
109 |
|
109 | |||
110 | if self.dataIn.type == "Voltage": |
|
110 | if self.dataIn.type == "Voltage": | |
111 |
|
111 | |||
112 | self.__updateObjFromInput() |
|
112 | self.__updateObjFromInput() | |
113 | self.dataOut.data_pre = self.dataIn.data.copy() |
|
113 | self.dataOut.data_pre = self.dataIn.data.copy() | |
114 | self.dataOut.flagNoData = False |
|
114 | self.dataOut.flagNoData = False | |
115 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
115 | self.dataOut.utctimeInit = self.dataIn.utctime | |
116 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds |
|
116 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds | |
117 |
|
117 | |||
118 | if hasattr(self.dataIn, 'flagDataAsBlock'): |
|
118 | if hasattr(self.dataIn, 'flagDataAsBlock'): | |
119 | self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock |
|
119 | self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock | |
120 |
|
120 | |||
121 | if hasattr(self.dataIn, 'profileIndex'): |
|
121 | if hasattr(self.dataIn, 'profileIndex'): | |
122 | self.dataOut.profileIndex = self.dataIn.profileIndex |
|
122 | self.dataOut.profileIndex = self.dataIn.profileIndex | |
123 |
|
123 | |||
124 | if hasattr(self.dataIn, 'dataPP_POW'): |
|
124 | if hasattr(self.dataIn, 'dataPP_POW'): | |
125 | self.dataOut.dataPP_POW = self.dataIn.dataPP_POW |
|
125 | self.dataOut.dataPP_POW = self.dataIn.dataPP_POW | |
126 |
|
126 | |||
127 | if hasattr(self.dataIn, 'dataPP_POWER'): |
|
127 | if hasattr(self.dataIn, 'dataPP_POWER'): | |
128 | self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER |
|
128 | self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER | |
129 |
|
129 | |||
130 | if hasattr(self.dataIn, 'dataPP_DOP'): |
|
130 | if hasattr(self.dataIn, 'dataPP_DOP'): | |
131 | self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP |
|
131 | self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP | |
132 |
|
132 | |||
133 | if hasattr(self.dataIn, 'dataPP_SNR'): |
|
133 | if hasattr(self.dataIn, 'dataPP_SNR'): | |
134 | self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR |
|
134 | self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR | |
135 |
|
135 | |||
136 | if hasattr(self.dataIn, 'dataPP_WIDTH'): |
|
136 | if hasattr(self.dataIn, 'dataPP_WIDTH'): | |
137 | self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH |
|
137 | self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH | |
138 | return |
|
138 | return | |
139 |
|
139 | |||
140 | #---------------------- Spectra Data --------------------------- |
|
140 | #---------------------- Spectra Data --------------------------- | |
141 |
|
141 | |||
142 | if self.dataIn.type == "Spectra": |
|
142 | if self.dataIn.type == "Spectra": | |
143 | #print("que paso en spectra") |
|
143 | #print("que paso en spectra") | |
144 | self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc] |
|
144 | self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc] | |
145 | self.dataOut.data_spc = self.dataIn.data_spc |
|
145 | self.dataOut.data_spc = self.dataIn.data_spc | |
146 | self.dataOut.data_cspc = self.dataIn.data_cspc |
|
146 | self.dataOut.data_cspc = self.dataIn.data_cspc | |
147 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
147 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
148 | self.dataOut.nIncohInt = self.dataIn.nIncohInt |
|
148 | self.dataOut.nIncohInt = self.dataIn.nIncohInt | |
149 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints |
|
149 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints | |
150 | self.dataOut.ippFactor = self.dataIn.ippFactor |
|
150 | self.dataOut.ippFactor = self.dataIn.ippFactor | |
151 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
151 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
152 | self.dataOut.spc_noise = self.dataIn.getNoise() |
|
152 | self.dataOut.spc_noise = self.dataIn.getNoise() | |
153 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) |
|
153 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) | |
154 | # self.dataOut.normFactor = self.dataIn.normFactor |
|
154 | # self.dataOut.normFactor = self.dataIn.normFactor | |
155 | self.dataOut.pairsList = self.dataIn.pairsList |
|
155 | self.dataOut.pairsList = self.dataIn.pairsList | |
156 | self.dataOut.groupList = self.dataIn.pairsList |
|
156 | self.dataOut.groupList = self.dataIn.pairsList | |
157 | self.dataOut.flagNoData = False |
|
157 | self.dataOut.flagNoData = False | |
158 |
|
158 | |||
159 | if hasattr(self.dataIn, 'flagDataAsBlock'): |
|
159 | if hasattr(self.dataIn, 'flagDataAsBlock'): | |
160 | self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock |
|
160 | self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock | |
161 |
|
161 | |||
162 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
162 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels | |
163 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
163 | self.dataOut.ChanDist = self.dataIn.ChanDist | |
164 | else: self.dataOut.ChanDist = None |
|
164 | else: self.dataOut.ChanDist = None | |
165 |
|
165 | |||
166 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
166 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range | |
167 | # self.dataOut.VelRange = self.dataIn.VelRange |
|
167 | # self.dataOut.VelRange = self.dataIn.VelRange | |
168 | #else: self.dataOut.VelRange = None |
|
168 | #else: self.dataOut.VelRange = None | |
169 |
|
169 | |||
170 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant |
|
170 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant | |
171 | self.dataOut.RadarConst = self.dataIn.RadarConst |
|
171 | self.dataOut.RadarConst = self.dataIn.RadarConst | |
172 |
|
172 | |||
173 | if hasattr(self.dataIn, 'NPW'): #NPW |
|
173 | if hasattr(self.dataIn, 'NPW'): #NPW | |
174 | self.dataOut.NPW = self.dataIn.NPW |
|
174 | self.dataOut.NPW = self.dataIn.NPW | |
175 |
|
175 | |||
176 | if hasattr(self.dataIn, 'COFA'): #COFA |
|
176 | if hasattr(self.dataIn, 'COFA'): #COFA | |
177 | self.dataOut.COFA = self.dataIn.COFA |
|
177 | self.dataOut.COFA = self.dataIn.COFA | |
178 |
|
178 | |||
179 |
|
179 | |||
180 |
|
180 | |||
181 | #---------------------- Correlation Data --------------------------- |
|
181 | #---------------------- Correlation Data --------------------------- | |
182 |
|
182 | |||
183 | if self.dataIn.type == "Correlation": |
|
183 | if self.dataIn.type == "Correlation": | |
184 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() |
|
184 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() | |
185 |
|
185 | |||
186 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) |
|
186 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) | |
187 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) |
|
187 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) | |
188 | self.dataOut.groupList = (acf_pairs, ccf_pairs) |
|
188 | self.dataOut.groupList = (acf_pairs, ccf_pairs) | |
189 |
|
189 | |||
190 | self.dataOut.abscissaList = self.dataIn.lagRange |
|
190 | self.dataOut.abscissaList = self.dataIn.lagRange | |
191 | self.dataOut.noise = self.dataIn.noise |
|
191 | self.dataOut.noise = self.dataIn.noise | |
192 | self.dataOut.data_snr = self.dataIn.SNR |
|
192 | self.dataOut.data_snr = self.dataIn.SNR | |
193 | self.dataOut.flagNoData = False |
|
193 | self.dataOut.flagNoData = False | |
194 | self.dataOut.nAvg = self.dataIn.nAvg |
|
194 | self.dataOut.nAvg = self.dataIn.nAvg | |
195 |
|
195 | |||
196 | #---------------------- Parameters Data --------------------------- |
|
196 | #---------------------- Parameters Data --------------------------- | |
197 |
|
197 | |||
198 | if self.dataIn.type == "Parameters": |
|
198 | if self.dataIn.type == "Parameters": | |
199 | self.dataOut.copy(self.dataIn) |
|
199 | self.dataOut.copy(self.dataIn) | |
200 | self.dataOut.flagNoData = False |
|
200 | self.dataOut.flagNoData = False | |
201 | #print("yo si entre") |
|
201 | #print("yo si entre") | |
202 |
|
202 | |||
203 | return True |
|
203 | return True | |
204 |
|
204 | |||
205 | self.__updateObjFromInput() |
|
205 | self.__updateObjFromInput() | |
206 | #print("yo si entre2") |
|
206 | #print("yo si entre2") | |
207 |
|
207 | |||
208 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
208 | self.dataOut.utctimeInit = self.dataIn.utctime | |
209 | self.dataOut.paramInterval = self.dataIn.timeInterval |
|
209 | self.dataOut.paramInterval = self.dataIn.timeInterval | |
210 | #print("soy spectra ",self.dataOut.utctimeInit) |
|
210 | #print("soy spectra ",self.dataOut.utctimeInit) | |
211 | return |
|
211 | return | |
212 |
|
212 | |||
213 |
|
213 | |||
214 | def target(tups): |
|
214 | def target(tups): | |
215 |
|
215 | |||
216 | obj, args = tups |
|
216 | obj, args = tups | |
217 |
|
217 | |||
218 | return obj.FitGau(args) |
|
218 | return obj.FitGau(args) | |
219 |
|
219 | |||
220 | class RemoveWideGC(Operation): |
|
220 | class RemoveWideGC(Operation): | |
221 | ''' This class remove the wide clutter and replace it with a simple interpolation points |
|
221 | ''' This class remove the wide clutter and replace it with a simple interpolation points | |
222 | This mainly applies to CLAIRE radar |
|
222 | This mainly applies to CLAIRE radar | |
223 |
|
223 | |||
224 | ClutterWidth : Width to look for the clutter peak |
|
224 | ClutterWidth : Width to look for the clutter peak | |
225 |
|
225 | |||
226 | Input: |
|
226 | Input: | |
227 |
|
227 | |||
228 | self.dataOut.data_pre : SPC and CSPC |
|
228 | self.dataOut.data_pre : SPC and CSPC | |
229 | self.dataOut.spc_range : To select wind and rainfall velocities |
|
229 | self.dataOut.spc_range : To select wind and rainfall velocities | |
230 |
|
230 | |||
231 | Affected: |
|
231 | Affected: | |
232 |
|
232 | |||
233 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind |
|
233 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |
234 |
|
234 | |||
235 | Written by D. ScipiΓ³n 25.02.2021 |
|
235 | Written by D. ScipiΓ³n 25.02.2021 | |
236 | ''' |
|
236 | ''' | |
237 | def __init__(self): |
|
237 | def __init__(self): | |
238 | Operation.__init__(self) |
|
238 | Operation.__init__(self) | |
239 | self.i = 0 |
|
239 | self.i = 0 | |
240 | self.ich = 0 |
|
240 | self.ich = 0 | |
241 | self.ir = 0 |
|
241 | self.ir = 0 | |
242 |
|
242 | |||
243 | def run(self, dataOut, ClutterWidth=2.5): |
|
243 | def run(self, dataOut, ClutterWidth=2.5): | |
244 | # print ('Entering RemoveWideGC ... ') |
|
244 | # print ('Entering RemoveWideGC ... ') | |
245 |
|
245 | |||
246 | self.spc = dataOut.data_pre[0].copy() |
|
246 | self.spc = dataOut.data_pre[0].copy() | |
247 | self.spc_out = dataOut.data_pre[0].copy() |
|
247 | self.spc_out = dataOut.data_pre[0].copy() | |
248 | self.Num_Chn = self.spc.shape[0] |
|
248 | self.Num_Chn = self.spc.shape[0] | |
249 | self.Num_Hei = self.spc.shape[2] |
|
249 | self.Num_Hei = self.spc.shape[2] | |
250 | VelRange = dataOut.spc_range[2][:-1] |
|
250 | VelRange = dataOut.spc_range[2][:-1] | |
251 | dv = VelRange[1]-VelRange[0] |
|
251 | dv = VelRange[1]-VelRange[0] | |
252 |
|
252 | |||
253 | # Find the velocities that corresponds to zero |
|
253 | # Find the velocities that corresponds to zero | |
254 | gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth)) |
|
254 | gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth)) | |
255 |
|
255 | |||
256 | # Removing novalid data from the spectra |
|
256 | # Removing novalid data from the spectra | |
257 | for ich in range(self.Num_Chn) : |
|
257 | for ich in range(self.Num_Chn) : | |
258 | for ir in range(self.Num_Hei) : |
|
258 | for ir in range(self.Num_Hei) : | |
259 | # Estimate the noise at each range |
|
259 | # Estimate the noise at each range | |
260 | HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt) |
|
260 | HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt) | |
261 |
|
261 | |||
262 | # Removing the noise floor at each range |
|
262 | # Removing the noise floor at each range | |
263 | novalid = numpy.where(self.spc[ich,:,ir] < HSn) |
|
263 | novalid = numpy.where(self.spc[ich,:,ir] < HSn) | |
264 | self.spc[ich,novalid,ir] = HSn |
|
264 | self.spc[ich,novalid,ir] = HSn | |
265 |
|
265 | |||
266 | junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn) |
|
266 | junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn) | |
267 | j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0)) |
|
267 | j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0)) | |
268 | j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0)) |
|
268 | j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0)) | |
269 | if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) : |
|
269 | if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) : | |
270 | continue |
|
270 | continue | |
271 | junk3 = numpy.squeeze(numpy.diff(j1index)) |
|
271 | junk3 = numpy.squeeze(numpy.diff(j1index)) | |
272 | junk4 = numpy.squeeze(numpy.diff(j2index)) |
|
272 | junk4 = numpy.squeeze(numpy.diff(j2index)) | |
273 |
|
273 | |||
274 | valleyindex = j2index[numpy.where(junk4>1)] |
|
274 | valleyindex = j2index[numpy.where(junk4>1)] | |
275 | peakindex = j1index[numpy.where(junk3>1)] |
|
275 | peakindex = j1index[numpy.where(junk3>1)] | |
276 |
|
276 | |||
277 | isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv)) |
|
277 | isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv)) | |
278 | if numpy.size(isvalid) == 0 : |
|
278 | if numpy.size(isvalid) == 0 : | |
279 | continue |
|
279 | continue | |
280 | if numpy.size(isvalid) >1 : |
|
280 | if numpy.size(isvalid) >1 : | |
281 | vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir]) |
|
281 | vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir]) | |
282 | isvalid = isvalid[vindex] |
|
282 | isvalid = isvalid[vindex] | |
283 |
|
283 | |||
284 | # clutter peak |
|
284 | # clutter peak | |
285 | gcpeak = peakindex[isvalid] |
|
285 | gcpeak = peakindex[isvalid] | |
286 | vl = numpy.where(valleyindex < gcpeak) |
|
286 | vl = numpy.where(valleyindex < gcpeak) | |
287 | if numpy.size(vl) == 0: |
|
287 | if numpy.size(vl) == 0: | |
288 | continue |
|
288 | continue | |
289 | gcvl = valleyindex[vl[0][-1]] |
|
289 | gcvl = valleyindex[vl[0][-1]] | |
290 | vr = numpy.where(valleyindex > gcpeak) |
|
290 | vr = numpy.where(valleyindex > gcpeak) | |
291 | if numpy.size(vr) == 0: |
|
291 | if numpy.size(vr) == 0: | |
292 | continue |
|
292 | continue | |
293 | gcvr = valleyindex[vr[0][0]] |
|
293 | gcvr = valleyindex[vr[0][0]] | |
294 |
|
294 | |||
295 | # Removing the clutter |
|
295 | # Removing the clutter | |
296 | interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]]) |
|
296 | interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]]) | |
297 | gcindex = gc_values[gcvl+1:gcvr-1] |
|
297 | gcindex = gc_values[gcvl+1:gcvr-1] | |
298 | self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir]) |
|
298 | self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir]) | |
299 |
|
299 | |||
300 | dataOut.data_pre[0] = self.spc_out |
|
300 | dataOut.data_pre[0] = self.spc_out | |
301 | #print ('Leaving RemoveWideGC ... ') |
|
301 | #print ('Leaving RemoveWideGC ... ') | |
302 | return dataOut |
|
302 | return dataOut | |
303 |
|
303 | |||
304 | class SpectralFilters(Operation): |
|
304 | class SpectralFilters(Operation): | |
305 | ''' This class allows to replace the novalid values with noise for each channel |
|
305 | ''' This class allows to replace the novalid values with noise for each channel | |
306 | This applies to CLAIRE RADAR |
|
306 | This applies to CLAIRE RADAR | |
307 |
|
307 | |||
308 | PositiveLimit : RightLimit of novalid data |
|
308 | PositiveLimit : RightLimit of novalid data | |
309 | NegativeLimit : LeftLimit of novalid data |
|
309 | NegativeLimit : LeftLimit of novalid data | |
310 |
|
310 | |||
311 | Input: |
|
311 | Input: | |
312 |
|
312 | |||
313 | self.dataOut.data_pre : SPC and CSPC |
|
313 | self.dataOut.data_pre : SPC and CSPC | |
314 | self.dataOut.spc_range : To select wind and rainfall velocities |
|
314 | self.dataOut.spc_range : To select wind and rainfall velocities | |
315 |
|
315 | |||
316 | Affected: |
|
316 | Affected: | |
317 |
|
317 | |||
318 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind |
|
318 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |
319 |
|
319 | |||
320 | Written by D. ScipiΓ³n 29.01.2021 |
|
320 | Written by D. ScipiΓ³n 29.01.2021 | |
321 | ''' |
|
321 | ''' | |
322 | def __init__(self): |
|
322 | def __init__(self): | |
323 | Operation.__init__(self) |
|
323 | Operation.__init__(self) | |
324 | self.i = 0 |
|
324 | self.i = 0 | |
325 |
|
325 | |||
326 | def run(self, dataOut, ): |
|
326 | def run(self, dataOut, ): | |
327 |
|
327 | |||
328 | self.spc = dataOut.data_pre[0].copy() |
|
328 | self.spc = dataOut.data_pre[0].copy() | |
329 | self.Num_Chn = self.spc.shape[0] |
|
329 | self.Num_Chn = self.spc.shape[0] | |
330 | VelRange = dataOut.spc_range[2] |
|
330 | VelRange = dataOut.spc_range[2] | |
331 |
|
331 | |||
332 | # novalid corresponds to data within the Negative and PositiveLimit |
|
332 | # novalid corresponds to data within the Negative and PositiveLimit | |
333 |
|
333 | |||
334 |
|
334 | |||
335 | # Removing novalid data from the spectra |
|
335 | # Removing novalid data from the spectra | |
336 | for i in range(self.Num_Chn): |
|
336 | for i in range(self.Num_Chn): | |
337 | self.spc[i,novalid,:] = dataOut.noise[i] |
|
337 | self.spc[i,novalid,:] = dataOut.noise[i] | |
338 | dataOut.data_pre[0] = self.spc |
|
338 | dataOut.data_pre[0] = self.spc | |
339 | return dataOut |
|
339 | return dataOut | |
340 |
|
340 | |||
341 | class GaussianFit(Operation): |
|
341 | class GaussianFit(Operation): | |
342 |
|
342 | |||
343 | ''' |
|
343 | ''' | |
344 | Function that fit of one and two generalized gaussians (gg) based |
|
344 | Function that fit of one and two generalized gaussians (gg) based | |
345 | on the PSD shape across an "power band" identified from a cumsum of |
|
345 | on the PSD shape across an "power band" identified from a cumsum of | |
346 | the measured spectrum - noise. |
|
346 | the measured spectrum - noise. | |
347 |
|
347 | |||
348 | Input: |
|
348 | Input: | |
349 | self.dataOut.data_pre : SelfSpectra |
|
349 | self.dataOut.data_pre : SelfSpectra | |
350 |
|
350 | |||
351 | Output: |
|
351 | Output: | |
352 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 |
|
352 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 | |
353 |
|
353 | |||
354 | ''' |
|
354 | ''' | |
355 | def __init__(self): |
|
355 | def __init__(self): | |
356 | Operation.__init__(self) |
|
356 | Operation.__init__(self) | |
357 | self.i=0 |
|
357 | self.i=0 | |
358 |
|
358 | |||
359 |
|
359 | |||
360 | # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points |
|
360 | # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
361 | def run(self, dataOut, SNRdBlimit=-9, method='generalized'): |
|
361 | def run(self, dataOut, SNRdBlimit=-9, method='generalized'): | |
362 | """This routine will find a couple of generalized Gaussians to a power spectrum |
|
362 | """This routine will find a couple of generalized Gaussians to a power spectrum | |
363 | methods: generalized, squared |
|
363 | methods: generalized, squared | |
364 | input: spc |
|
364 | input: spc | |
365 | output: |
|
365 | output: | |
366 | noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1 |
|
366 | noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1 | |
367 | """ |
|
367 | """ | |
368 | print ('Entering ',method,' double Gaussian fit') |
|
368 | print ('Entering ',method,' double Gaussian fit') | |
369 | self.spc = dataOut.data_pre[0].copy() |
|
369 | self.spc = dataOut.data_pre[0].copy() | |
370 | self.Num_Hei = self.spc.shape[2] |
|
370 | self.Num_Hei = self.spc.shape[2] | |
371 | self.Num_Bin = self.spc.shape[1] |
|
371 | self.Num_Bin = self.spc.shape[1] | |
372 | self.Num_Chn = self.spc.shape[0] |
|
372 | self.Num_Chn = self.spc.shape[0] | |
373 |
|
373 | |||
374 | start_time = time.time() |
|
374 | start_time = time.time() | |
375 |
|
375 | |||
376 | pool = Pool(processes=self.Num_Chn) |
|
376 | pool = Pool(processes=self.Num_Chn) | |
377 | args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)] |
|
377 | args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)] | |
378 | objs = [self for __ in range(self.Num_Chn)] |
|
378 | objs = [self for __ in range(self.Num_Chn)] | |
379 | attrs = list(zip(objs, args)) |
|
379 | attrs = list(zip(objs, args)) | |
380 | DGauFitParam = pool.map(target, attrs) |
|
380 | DGauFitParam = pool.map(target, attrs) | |
381 | # Parameters: |
|
381 | # Parameters: | |
382 | # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power |
|
382 | # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power | |
383 | dataOut.DGauFitParams = numpy.asarray(DGauFitParam) |
|
383 | dataOut.DGauFitParams = numpy.asarray(DGauFitParam) | |
384 |
|
384 | |||
385 | # Double Gaussian Curves |
|
385 | # Double Gaussian Curves | |
386 | gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
386 | gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
387 | gau0[:] = numpy.NaN |
|
387 | gau0[:] = numpy.NaN | |
388 | gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
388 | gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
389 | gau1[:] = numpy.NaN |
|
389 | gau1[:] = numpy.NaN | |
390 | x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1))) |
|
390 | x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1))) | |
391 | for iCh in range(self.Num_Chn): |
|
391 | for iCh in range(self.Num_Chn): | |
392 | N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin)) |
|
392 | N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin)) | |
393 | N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin)) |
|
393 | N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin)) | |
394 | A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin)) |
|
394 | A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin)) | |
395 | A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin)) |
|
395 | A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin)) | |
396 | v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin)) |
|
396 | v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin)) | |
397 | v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin)) |
|
397 | v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin)) | |
398 | s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin)) |
|
398 | s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin)) | |
399 | s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin)) |
|
399 | s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin)) | |
400 | if method == 'genealized': |
|
400 | if method == 'genealized': | |
401 | p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin)) |
|
401 | p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin)) | |
402 | p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin)) |
|
402 | p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin)) | |
403 | elif method == 'squared': |
|
403 | elif method == 'squared': | |
404 | p0 = 2. |
|
404 | p0 = 2. | |
405 | p1 = 2. |
|
405 | p1 = 2. | |
406 | gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0 |
|
406 | gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0 | |
407 | gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1 |
|
407 | gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1 | |
408 | dataOut.GaussFit0 = gau0 |
|
408 | dataOut.GaussFit0 = gau0 | |
409 | dataOut.GaussFit1 = gau1 |
|
409 | dataOut.GaussFit1 = gau1 | |
410 |
|
410 | |||
411 | print('Leaving ',method ,' double Gaussian fit') |
|
411 | print('Leaving ',method ,' double Gaussian fit') | |
412 | return dataOut |
|
412 | return dataOut | |
413 |
|
413 | |||
414 | def FitGau(self, X): |
|
414 | def FitGau(self, X): | |
415 | # print('Entering FitGau') |
|
415 | # print('Entering FitGau') | |
416 | # Assigning the variables |
|
416 | # Assigning the variables | |
417 | Vrange, ch, wnoise, num_intg, SNRlimit = X |
|
417 | Vrange, ch, wnoise, num_intg, SNRlimit = X | |
418 | # Noise Limits |
|
418 | # Noise Limits | |
419 | noisebl = wnoise * 0.9 |
|
419 | noisebl = wnoise * 0.9 | |
420 | noisebh = wnoise * 1.1 |
|
420 | noisebh = wnoise * 1.1 | |
421 | # Radar Velocity |
|
421 | # Radar Velocity | |
422 | Va = max(Vrange) |
|
422 | Va = max(Vrange) | |
423 | deltav = Vrange[1] - Vrange[0] |
|
423 | deltav = Vrange[1] - Vrange[0] | |
424 | x = numpy.arange(self.Num_Bin) |
|
424 | x = numpy.arange(self.Num_Bin) | |
425 |
|
425 | |||
426 | # print ('stop 0') |
|
426 | # print ('stop 0') | |
427 |
|
427 | |||
428 | # 5 parameters, 2 Gaussians |
|
428 | # 5 parameters, 2 Gaussians | |
429 | DGauFitParam = numpy.zeros([5, self.Num_Hei,2]) |
|
429 | DGauFitParam = numpy.zeros([5, self.Num_Hei,2]) | |
430 | DGauFitParam[:] = numpy.NaN |
|
430 | DGauFitParam[:] = numpy.NaN | |
431 |
|
431 | |||
432 | # SPCparam = [] |
|
432 | # SPCparam = [] | |
433 | # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
433 | # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
434 | # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
434 | # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
435 | # SPC_ch1[:] = 0 #numpy.NaN |
|
435 | # SPC_ch1[:] = 0 #numpy.NaN | |
436 | # SPC_ch2[:] = 0 #numpy.NaN |
|
436 | # SPC_ch2[:] = 0 #numpy.NaN | |
437 | # print ('stop 1') |
|
437 | # print ('stop 1') | |
438 | for ht in range(self.Num_Hei): |
|
438 | for ht in range(self.Num_Hei): | |
439 | # print (ht) |
|
439 | # print (ht) | |
440 | # print ('stop 2') |
|
440 | # print ('stop 2') | |
441 | # Spectra at each range |
|
441 | # Spectra at each range | |
442 | spc = numpy.asarray(self.spc)[ch,:,ht] |
|
442 | spc = numpy.asarray(self.spc)[ch,:,ht] | |
443 | snr = ( spc.mean() - wnoise ) / wnoise |
|
443 | snr = ( spc.mean() - wnoise ) / wnoise | |
444 | snrdB = 10.*numpy.log10(snr) |
|
444 | snrdB = 10.*numpy.log10(snr) | |
445 |
|
445 | |||
446 | #print ('stop 3') |
|
446 | #print ('stop 3') | |
447 | if snrdB < SNRlimit : |
|
447 | if snrdB < SNRlimit : | |
448 | # snr = numpy.NaN |
|
448 | # snr = numpy.NaN | |
449 | # SPC_ch1[:,ht] = 0#numpy.NaN |
|
449 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
450 | # SPC_ch1[:,ht] = 0#numpy.NaN |
|
450 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
451 | # SPCparam = (SPC_ch1,SPC_ch2) |
|
451 | # SPCparam = (SPC_ch1,SPC_ch2) | |
452 | # print ('SNR less than SNRth') |
|
452 | # print ('SNR less than SNRth') | |
453 | continue |
|
453 | continue | |
454 | # wnoise = hildebrand_sekhon(spc,num_intg) |
|
454 | # wnoise = hildebrand_sekhon(spc,num_intg) | |
455 | # print ('stop 2.01') |
|
455 | # print ('stop 2.01') | |
456 | ############################################# |
|
456 | ############################################# | |
457 | # normalizing spc and noise |
|
457 | # normalizing spc and noise | |
458 | # This part differs from gg1 |
|
458 | # This part differs from gg1 | |
459 | # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021 |
|
459 | # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021 | |
460 | #spc = spc / spc_norm_max |
|
460 | #spc = spc / spc_norm_max | |
461 | # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021 |
|
461 | # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021 | |
462 | ############################################# |
|
462 | ############################################# | |
463 |
|
463 | |||
464 | # print ('stop 2.1') |
|
464 | # print ('stop 2.1') | |
465 | fatspectra=1.0 |
|
465 | fatspectra=1.0 | |
466 | # noise per channel.... we might want to use the noise at each range |
|
466 | # noise per channel.... we might want to use the noise at each range | |
467 |
|
467 | |||
468 | # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021 |
|
468 | # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021 | |
469 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
469 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |
470 | #if wnoise>1.1*pnoise: # to be tested later |
|
470 | #if wnoise>1.1*pnoise: # to be tested later | |
471 | # wnoise=pnoise |
|
471 | # wnoise=pnoise | |
472 | # noisebl = wnoise*0.9 |
|
472 | # noisebl = wnoise*0.9 | |
473 | # noisebh = wnoise*1.1 |
|
473 | # noisebh = wnoise*1.1 | |
474 | spc = spc - wnoise # signal |
|
474 | spc = spc - wnoise # signal | |
475 |
|
475 | |||
476 | # print ('stop 2.2') |
|
476 | # print ('stop 2.2') | |
477 | minx = numpy.argmin(spc) |
|
477 | minx = numpy.argmin(spc) | |
478 | #spcs=spc.copy() |
|
478 | #spcs=spc.copy() | |
479 | spcs = numpy.roll(spc,-minx) |
|
479 | spcs = numpy.roll(spc,-minx) | |
480 | cum = numpy.cumsum(spcs) |
|
480 | cum = numpy.cumsum(spcs) | |
481 | # tot_noise = wnoise * self.Num_Bin #64; |
|
481 | # tot_noise = wnoise * self.Num_Bin #64; | |
482 |
|
482 | |||
483 | # print ('stop 2.3') |
|
483 | # print ('stop 2.3') | |
484 | # snr = sum(spcs) / tot_noise |
|
484 | # snr = sum(spcs) / tot_noise | |
485 | # snrdB = 10.*numpy.log10(snr) |
|
485 | # snrdB = 10.*numpy.log10(snr) | |
486 | #print ('stop 3') |
|
486 | #print ('stop 3') | |
487 | # if snrdB < SNRlimit : |
|
487 | # if snrdB < SNRlimit : | |
488 | # snr = numpy.NaN |
|
488 | # snr = numpy.NaN | |
489 | # SPC_ch1[:,ht] = 0#numpy.NaN |
|
489 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
490 | # SPC_ch1[:,ht] = 0#numpy.NaN |
|
490 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
491 | # SPCparam = (SPC_ch1,SPC_ch2) |
|
491 | # SPCparam = (SPC_ch1,SPC_ch2) | |
492 | # print ('SNR less than SNRth') |
|
492 | # print ('SNR less than SNRth') | |
493 | # continue |
|
493 | # continue | |
494 |
|
494 | |||
495 |
|
495 | |||
496 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
496 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |
497 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
497 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
498 | # print ('stop 4') |
|
498 | # print ('stop 4') | |
499 | cummax = max(cum) |
|
499 | cummax = max(cum) | |
500 | epsi = 0.08 * fatspectra # cumsum to narrow down the energy region |
|
500 | epsi = 0.08 * fatspectra # cumsum to narrow down the energy region | |
501 | cumlo = cummax * epsi |
|
501 | cumlo = cummax * epsi | |
502 | cumhi = cummax * (1-epsi) |
|
502 | cumhi = cummax * (1-epsi) | |
503 | powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
503 | powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
504 |
|
504 | |||
505 | # print ('stop 5') |
|
505 | # print ('stop 5') | |
506 | if len(powerindex) < 1:# case for powerindex 0 |
|
506 | if len(powerindex) < 1:# case for powerindex 0 | |
507 | # print ('powerindex < 1') |
|
507 | # print ('powerindex < 1') | |
508 | continue |
|
508 | continue | |
509 | powerlo = powerindex[0] |
|
509 | powerlo = powerindex[0] | |
510 | powerhi = powerindex[-1] |
|
510 | powerhi = powerindex[-1] | |
511 | powerwidth = powerhi-powerlo |
|
511 | powerwidth = powerhi-powerlo | |
512 | if powerwidth <= 1: |
|
512 | if powerwidth <= 1: | |
513 | # print('powerwidth <= 1') |
|
513 | # print('powerwidth <= 1') | |
514 | continue |
|
514 | continue | |
515 |
|
515 | |||
516 | # print ('stop 6') |
|
516 | # print ('stop 6') | |
517 | firstpeak = powerlo + powerwidth/10.# first gaussian energy location |
|
517 | firstpeak = powerlo + powerwidth/10.# first gaussian energy location | |
518 | secondpeak = powerhi - powerwidth/10. #second gaussian energy location |
|
518 | secondpeak = powerhi - powerwidth/10. #second gaussian energy location | |
519 | midpeak = (firstpeak + secondpeak)/2. |
|
519 | midpeak = (firstpeak + secondpeak)/2. | |
520 | firstamp = spcs[int(firstpeak)] |
|
520 | firstamp = spcs[int(firstpeak)] | |
521 | secondamp = spcs[int(secondpeak)] |
|
521 | secondamp = spcs[int(secondpeak)] | |
522 | midamp = spcs[int(midpeak)] |
|
522 | midamp = spcs[int(midpeak)] | |
523 |
|
523 | |||
524 | y_data = spc + wnoise |
|
524 | y_data = spc + wnoise | |
525 |
|
525 | |||
526 | ''' single Gaussian ''' |
|
526 | ''' single Gaussian ''' | |
527 | shift0 = numpy.mod(midpeak+minx, self.Num_Bin ) |
|
527 | shift0 = numpy.mod(midpeak+minx, self.Num_Bin ) | |
528 | width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4 |
|
528 | width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
529 | power0 = 2. |
|
529 | power0 = 2. | |
530 | amplitude0 = midamp |
|
530 | amplitude0 = midamp | |
531 | state0 = [shift0,width0,amplitude0,power0,wnoise] |
|
531 | state0 = [shift0,width0,amplitude0,power0,wnoise] | |
532 | bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
532 | bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
533 | lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True) |
|
533 | lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True) | |
534 | # print ('stop 7.1') |
|
534 | # print ('stop 7.1') | |
535 | # print (bnds) |
|
535 | # print (bnds) | |
536 |
|
536 | |||
537 | chiSq1=lsq1[1] |
|
537 | chiSq1=lsq1[1] | |
538 |
|
538 | |||
539 | # print ('stop 8') |
|
539 | # print ('stop 8') | |
540 | if fatspectra<1.0 and powerwidth<4: |
|
540 | if fatspectra<1.0 and powerwidth<4: | |
541 | choice=0 |
|
541 | choice=0 | |
542 | Amplitude0=lsq1[0][2] |
|
542 | Amplitude0=lsq1[0][2] | |
543 | shift0=lsq1[0][0] |
|
543 | shift0=lsq1[0][0] | |
544 | width0=lsq1[0][1] |
|
544 | width0=lsq1[0][1] | |
545 | p0=lsq1[0][3] |
|
545 | p0=lsq1[0][3] | |
546 | Amplitude1=0. |
|
546 | Amplitude1=0. | |
547 | shift1=0. |
|
547 | shift1=0. | |
548 | width1=0. |
|
548 | width1=0. | |
549 | p1=0. |
|
549 | p1=0. | |
550 | noise=lsq1[0][4] |
|
550 | noise=lsq1[0][4] | |
551 | #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
551 | #return (numpy.array([shift0,width0,Amplitude0,p0]), | |
552 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
552 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |
553 |
|
553 | |||
554 | # print ('stop 9') |
|
554 | # print ('stop 9') | |
555 | ''' two Gaussians ''' |
|
555 | ''' two Gaussians ''' | |
556 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
556 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |
557 | shift0 = numpy.mod(firstpeak+minx, self.Num_Bin ) |
|
557 | shift0 = numpy.mod(firstpeak+minx, self.Num_Bin ) | |
558 | shift1 = numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
558 | shift1 = numpy.mod(secondpeak+minx, self.Num_Bin ) | |
559 | width0 = powerwidth/6. |
|
559 | width0 = powerwidth/6. | |
560 | width1 = width0 |
|
560 | width1 = width0 | |
561 | power0 = 2. |
|
561 | power0 = 2. | |
562 | power1 = power0 |
|
562 | power1 = power0 | |
563 | amplitude0 = firstamp |
|
563 | amplitude0 = firstamp | |
564 | amplitude1 = secondamp |
|
564 | amplitude1 = secondamp | |
565 | state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] |
|
565 | state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
566 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
566 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
567 | bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
567 | bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
568 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
568 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |
569 |
|
569 | |||
570 | # print ('stop 10') |
|
570 | # print ('stop 10') | |
571 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) |
|
571 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) | |
572 |
|
572 | |||
573 | # print ('stop 11') |
|
573 | # print ('stop 11') | |
574 | chiSq2 = lsq2[1] |
|
574 | chiSq2 = lsq2[1] | |
575 |
|
575 | |||
576 | # print ('stop 12') |
|
576 | # print ('stop 12') | |
577 |
|
577 | |||
578 | oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
578 | oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
579 |
|
579 | |||
580 | # print ('stop 13') |
|
580 | # print ('stop 13') | |
581 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error |
|
581 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error | |
582 | if oneG: |
|
582 | if oneG: | |
583 | choice = 0 |
|
583 | choice = 0 | |
584 | else: |
|
584 | else: | |
585 | w1 = lsq2[0][1]; w2 = lsq2[0][5] |
|
585 | w1 = lsq2[0][1]; w2 = lsq2[0][5] | |
586 | a1 = lsq2[0][2]; a2 = lsq2[0][6] |
|
586 | a1 = lsq2[0][2]; a2 = lsq2[0][6] | |
587 | p1 = lsq2[0][3]; p2 = lsq2[0][7] |
|
587 | p1 = lsq2[0][3]; p2 = lsq2[0][7] | |
588 | s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1 |
|
588 | s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1 | |
589 | s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2 |
|
589 | s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2 | |
590 | gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
590 | gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling | |
591 |
|
591 | |||
592 | if gp1>gp2: |
|
592 | if gp1>gp2: | |
593 | if a1>0.7*a2: |
|
593 | if a1>0.7*a2: | |
594 | choice = 1 |
|
594 | choice = 1 | |
595 | else: |
|
595 | else: | |
596 | choice = 2 |
|
596 | choice = 2 | |
597 | elif gp2>gp1: |
|
597 | elif gp2>gp1: | |
598 | if a2>0.7*a1: |
|
598 | if a2>0.7*a1: | |
599 | choice = 2 |
|
599 | choice = 2 | |
600 | else: |
|
600 | else: | |
601 | choice = 1 |
|
601 | choice = 1 | |
602 | else: |
|
602 | else: | |
603 | choice = numpy.argmax([a1,a2])+1 |
|
603 | choice = numpy.argmax([a1,a2])+1 | |
604 | #else: |
|
604 | #else: | |
605 | #choice=argmin([std2a,std2b])+1 |
|
605 | #choice=argmin([std2a,std2b])+1 | |
606 |
|
606 | |||
607 | else: # with low SNR go to the most energetic peak |
|
607 | else: # with low SNR go to the most energetic peak | |
608 | choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
608 | choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
609 |
|
609 | |||
610 | # print ('stop 14') |
|
610 | # print ('stop 14') | |
611 | shift0 = lsq2[0][0] |
|
611 | shift0 = lsq2[0][0] | |
612 | vel0 = Vrange[0] + shift0 * deltav |
|
612 | vel0 = Vrange[0] + shift0 * deltav | |
613 | shift1 = lsq2[0][4] |
|
613 | shift1 = lsq2[0][4] | |
614 | # vel1=Vrange[0] + shift1 * deltav |
|
614 | # vel1=Vrange[0] + shift1 * deltav | |
615 |
|
615 | |||
616 | # max_vel = 1.0 |
|
616 | # max_vel = 1.0 | |
617 | # Va = max(Vrange) |
|
617 | # Va = max(Vrange) | |
618 | # deltav = Vrange[1]-Vrange[0] |
|
618 | # deltav = Vrange[1]-Vrange[0] | |
619 | # print ('stop 15') |
|
619 | # print ('stop 15') | |
620 | #first peak will be 0, second peak will be 1 |
|
620 | #first peak will be 0, second peak will be 1 | |
621 | # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021 |
|
621 | # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021 | |
622 | if vel0 > -Va and vel0 < Va : #first peak is in the correct range |
|
622 | if vel0 > -Va and vel0 < Va : #first peak is in the correct range | |
623 | shift0 = lsq2[0][0] |
|
623 | shift0 = lsq2[0][0] | |
624 | width0 = lsq2[0][1] |
|
624 | width0 = lsq2[0][1] | |
625 | Amplitude0 = lsq2[0][2] |
|
625 | Amplitude0 = lsq2[0][2] | |
626 | p0 = lsq2[0][3] |
|
626 | p0 = lsq2[0][3] | |
627 |
|
627 | |||
628 | shift1 = lsq2[0][4] |
|
628 | shift1 = lsq2[0][4] | |
629 | width1 = lsq2[0][5] |
|
629 | width1 = lsq2[0][5] | |
630 | Amplitude1 = lsq2[0][6] |
|
630 | Amplitude1 = lsq2[0][6] | |
631 | p1 = lsq2[0][7] |
|
631 | p1 = lsq2[0][7] | |
632 | noise = lsq2[0][8] |
|
632 | noise = lsq2[0][8] | |
633 | else: |
|
633 | else: | |
634 | shift1 = lsq2[0][0] |
|
634 | shift1 = lsq2[0][0] | |
635 | width1 = lsq2[0][1] |
|
635 | width1 = lsq2[0][1] | |
636 | Amplitude1 = lsq2[0][2] |
|
636 | Amplitude1 = lsq2[0][2] | |
637 | p1 = lsq2[0][3] |
|
637 | p1 = lsq2[0][3] | |
638 |
|
638 | |||
639 | shift0 = lsq2[0][4] |
|
639 | shift0 = lsq2[0][4] | |
640 | width0 = lsq2[0][5] |
|
640 | width0 = lsq2[0][5] | |
641 | Amplitude0 = lsq2[0][6] |
|
641 | Amplitude0 = lsq2[0][6] | |
642 | p0 = lsq2[0][7] |
|
642 | p0 = lsq2[0][7] | |
643 | noise = lsq2[0][8] |
|
643 | noise = lsq2[0][8] | |
644 |
|
644 | |||
645 | if Amplitude0<0.05: # in case the peak is noise |
|
645 | if Amplitude0<0.05: # in case the peak is noise | |
646 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] |
|
646 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] | |
647 | if Amplitude1<0.05: |
|
647 | if Amplitude1<0.05: | |
648 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] |
|
648 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] | |
649 |
|
649 | |||
650 | # print ('stop 16 ') |
|
650 | # print ('stop 16 ') | |
651 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0) |
|
651 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0) | |
652 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1) |
|
652 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1) | |
653 | # SPCparam = (SPC_ch1,SPC_ch2) |
|
653 | # SPCparam = (SPC_ch1,SPC_ch2) | |
654 |
|
654 | |||
655 | DGauFitParam[0,ht,0] = noise |
|
655 | DGauFitParam[0,ht,0] = noise | |
656 | DGauFitParam[0,ht,1] = noise |
|
656 | DGauFitParam[0,ht,1] = noise | |
657 | DGauFitParam[1,ht,0] = Amplitude0 |
|
657 | DGauFitParam[1,ht,0] = Amplitude0 | |
658 | DGauFitParam[1,ht,1] = Amplitude1 |
|
658 | DGauFitParam[1,ht,1] = Amplitude1 | |
659 | DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav |
|
659 | DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav | |
660 | DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav |
|
660 | DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav | |
661 | DGauFitParam[3,ht,0] = width0 * deltav |
|
661 | DGauFitParam[3,ht,0] = width0 * deltav | |
662 | DGauFitParam[3,ht,1] = width1 * deltav |
|
662 | DGauFitParam[3,ht,1] = width1 * deltav | |
663 | DGauFitParam[4,ht,0] = p0 |
|
663 | DGauFitParam[4,ht,0] = p0 | |
664 | DGauFitParam[4,ht,1] = p1 |
|
664 | DGauFitParam[4,ht,1] = p1 | |
665 |
|
665 | |||
666 | # print (DGauFitParam.shape) |
|
666 | # print (DGauFitParam.shape) | |
667 | # print ('Leaving FitGau') |
|
667 | # print ('Leaving FitGau') | |
668 | return DGauFitParam |
|
668 | return DGauFitParam | |
669 | # return SPCparam |
|
669 | # return SPCparam | |
670 | # return GauSPC |
|
670 | # return GauSPC | |
671 |
|
671 | |||
672 | def y_model1(self,x,state): |
|
672 | def y_model1(self,x,state): | |
673 | shift0, width0, amplitude0, power0, noise = state |
|
673 | shift0, width0, amplitude0, power0, noise = state | |
674 | model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0) |
|
674 | model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0) | |
675 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) |
|
675 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | |
676 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) |
|
676 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |
677 | return model0 + model0u + model0d + noise |
|
677 | return model0 + model0u + model0d + noise | |
678 |
|
678 | |||
679 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist |
|
679 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist | |
680 | shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state |
|
680 | shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state | |
681 | model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
681 | model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
682 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) |
|
682 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | |
683 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) |
|
683 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |
684 |
|
684 | |||
685 | model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1) |
|
685 | model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1) | |
686 | model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1) |
|
686 | model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1) | |
687 | model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1) |
|
687 | model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1) | |
688 | return model0 + model0u + model0d + model1 + model1u + model1d + noise |
|
688 | return model0 + model0u + model0d + model1 + model1u + model1d + noise | |
689 |
|
689 | |||
690 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. |
|
690 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. | |
691 |
|
691 | |||
692 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented |
|
692 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented | |
693 |
|
693 | |||
694 | def misfit2(self,state,y_data,x,num_intg): |
|
694 | def misfit2(self,state,y_data,x,num_intg): | |
695 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) |
|
695 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) | |
696 |
|
696 | |||
697 |
|
697 | |||
698 |
|
698 | |||
699 | class PrecipitationProc(Operation): |
|
699 | class PrecipitationProc(Operation): | |
700 |
|
700 | |||
701 | ''' |
|
701 | ''' | |
702 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) |
|
702 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) | |
703 |
|
703 | |||
704 | Input: |
|
704 | Input: | |
705 | self.dataOut.data_pre : SelfSpectra |
|
705 | self.dataOut.data_pre : SelfSpectra | |
706 |
|
706 | |||
707 | Output: |
|
707 | Output: | |
708 |
|
708 | |||
709 | self.dataOut.data_output : Reflectivity factor, rainfall Rate |
|
709 | self.dataOut.data_output : Reflectivity factor, rainfall Rate | |
710 |
|
710 | |||
711 |
|
711 | |||
712 | Parameters affected: |
|
712 | Parameters affected: | |
713 | ''' |
|
713 | ''' | |
714 |
|
714 | |||
715 | def __init__(self): |
|
715 | def __init__(self): | |
716 | Operation.__init__(self) |
|
716 | Operation.__init__(self) | |
717 | self.i=0 |
|
717 | self.i=0 | |
718 |
|
718 | |||
719 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, |
|
719 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, | |
720 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30): |
|
720 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30): | |
721 |
|
721 | |||
722 | # print ('Entering PrecepitationProc ... ') |
|
722 | # print ('Entering PrecepitationProc ... ') | |
723 |
|
723 | |||
724 | if radar == "MIRA35C" : |
|
724 | if radar == "MIRA35C" : | |
725 |
|
725 | |||
726 | self.spc = dataOut.data_pre[0].copy() |
|
726 | self.spc = dataOut.data_pre[0].copy() | |
727 | self.Num_Hei = self.spc.shape[2] |
|
727 | self.Num_Hei = self.spc.shape[2] | |
728 | self.Num_Bin = self.spc.shape[1] |
|
728 | self.Num_Bin = self.spc.shape[1] | |
729 | self.Num_Chn = self.spc.shape[0] |
|
729 | self.Num_Chn = self.spc.shape[0] | |
730 | Ze = self.dBZeMODE2(dataOut) |
|
730 | Ze = self.dBZeMODE2(dataOut) | |
731 |
|
731 | |||
732 | else: |
|
732 | else: | |
733 |
|
733 | |||
734 | self.spc = dataOut.data_pre[0].copy() |
|
734 | self.spc = dataOut.data_pre[0].copy() | |
735 |
|
735 | |||
736 | #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX |
|
736 | #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX | |
737 | self.spc[:,:,0:7]= numpy.NaN |
|
737 | self.spc[:,:,0:7]= numpy.NaN | |
738 |
|
738 | |||
739 | self.Num_Hei = self.spc.shape[2] |
|
739 | self.Num_Hei = self.spc.shape[2] | |
740 | self.Num_Bin = self.spc.shape[1] |
|
740 | self.Num_Bin = self.spc.shape[1] | |
741 | self.Num_Chn = self.spc.shape[0] |
|
741 | self.Num_Chn = self.spc.shape[0] | |
742 |
|
742 | |||
743 | VelRange = dataOut.spc_range[2] |
|
743 | VelRange = dataOut.spc_range[2] | |
744 |
|
744 | |||
745 | ''' Se obtiene la constante del RADAR ''' |
|
745 | ''' Se obtiene la constante del RADAR ''' | |
746 |
|
746 | |||
747 | self.Pt = Pt |
|
747 | self.Pt = Pt | |
748 | self.Gt = Gt |
|
748 | self.Gt = Gt | |
749 | self.Gr = Gr |
|
749 | self.Gr = Gr | |
750 | self.Lambda = Lambda |
|
750 | self.Lambda = Lambda | |
751 | self.aL = aL |
|
751 | self.aL = aL | |
752 | self.tauW = tauW |
|
752 | self.tauW = tauW | |
753 | self.ThetaT = ThetaT |
|
753 | self.ThetaT = ThetaT | |
754 | self.ThetaR = ThetaR |
|
754 | self.ThetaR = ThetaR | |
755 | self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB |
|
755 | self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB | |
756 | self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB |
|
756 | self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB | |
757 | self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB |
|
757 | self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB | |
758 |
|
758 | |||
759 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
759 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
760 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) |
|
760 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) | |
761 | RadarConstant = 10e-26 * Numerator / Denominator # |
|
761 | RadarConstant = 10e-26 * Numerator / Denominator # | |
762 | ExpConstant = 10**(40/10) #Constante Experimental |
|
762 | ExpConstant = 10**(40/10) #Constante Experimental | |
763 |
|
763 | |||
764 | SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
764 | SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
765 | for i in range(self.Num_Chn): |
|
765 | for i in range(self.Num_Chn): | |
766 | SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i] |
|
766 | SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i] | |
767 | SignalPower[numpy.where(SignalPower < 0)] = 1e-20 |
|
767 | SignalPower[numpy.where(SignalPower < 0)] = 1e-20 | |
768 |
|
768 | |||
769 | SPCmean = numpy.mean(SignalPower, 0) |
|
769 | SPCmean = numpy.mean(SignalPower, 0) | |
770 | Pr = SPCmean[:,:]/dataOut.normFactor |
|
770 | Pr = SPCmean[:,:]/dataOut.normFactor | |
771 |
|
771 | |||
772 | # Declaring auxiliary variables |
|
772 | # Declaring auxiliary variables | |
773 | Range = dataOut.heightList*1000. #Range in m |
|
773 | Range = dataOut.heightList*1000. #Range in m | |
774 | # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei] |
|
774 | # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei] | |
775 | rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin)) |
|
775 | rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin)) | |
776 | zMtrx = rMtrx+Altitude |
|
776 | zMtrx = rMtrx+Altitude | |
777 | # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei] |
|
777 | # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei] | |
778 | VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1))) |
|
778 | VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1))) | |
779 |
|
779 | |||
780 | # height dependence to air density Foote and Du Toit (1969) |
|
780 | # height dependence to air density Foote and Du Toit (1969) | |
781 | delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2 |
|
781 | delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2 | |
782 | VMtrx = VelMtrx / delv_z #Normalized velocity |
|
782 | VMtrx = VelMtrx / delv_z #Normalized velocity | |
783 | VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN |
|
783 | VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN | |
784 | # Diameter is related to the fall speed of falling drops |
|
784 | # Diameter is related to the fall speed of falling drops | |
785 | D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm] |
|
785 | D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm] | |
786 | # Only valid for D>= 0.16 mm |
|
786 | # Only valid for D>= 0.16 mm | |
787 | D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN |
|
787 | D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN | |
788 |
|
788 | |||
789 | #Calculate Radar Reflectivity ETAn |
|
789 | #Calculate Radar Reflectivity ETAn | |
790 | ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA) |
|
790 | ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA) | |
791 | ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z |
|
791 | ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z | |
792 | # Radar Cross Section |
|
792 | # Radar Cross Section | |
793 | sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4 |
|
793 | sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4 | |
794 | # Drop Size Distribution |
|
794 | # Drop Size Distribution | |
795 | DSD = ETAn / sigmaD |
|
795 | DSD = ETAn / sigmaD | |
796 | # Equivalente Reflectivy |
|
796 | # Equivalente Reflectivy | |
797 | Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0) |
|
797 | Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0) | |
798 | Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3] |
|
798 | Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3] | |
799 | # RainFall Rate |
|
799 | # RainFall Rate | |
800 | RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr |
|
800 | RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr | |
801 |
|
801 | |||
802 | # Censoring the data |
|
802 | # Censoring the data | |
803 | # Removing data with SNRth < 0dB se debe considerar el SNR por canal |
|
803 | # Removing data with SNRth < 0dB se debe considerar el SNR por canal | |
804 | SNRth = 10**(SNRdBlimit/10) #-30dB |
|
804 | SNRth = 10**(SNRdBlimit/10) #-30dB | |
805 | novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better |
|
805 | novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better | |
806 | W = numpy.nanmean(dataOut.data_dop,0) |
|
806 | W = numpy.nanmean(dataOut.data_dop,0) | |
807 | W[novalid] = numpy.NaN |
|
807 | W[novalid] = numpy.NaN | |
808 | Ze_org[novalid] = numpy.NaN |
|
808 | Ze_org[novalid] = numpy.NaN | |
809 | RR[novalid] = numpy.NaN |
|
809 | RR[novalid] = numpy.NaN | |
810 |
|
810 | |||
811 | dataOut.data_output = RR[8] |
|
811 | dataOut.data_output = RR[8] | |
812 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) |
|
812 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) | |
813 | dataOut.channelList = [0,1,2] |
|
813 | dataOut.channelList = [0,1,2] | |
814 |
|
814 | |||
815 | dataOut.data_param[0]=10*numpy.log10(Ze_org) |
|
815 | dataOut.data_param[0]=10*numpy.log10(Ze_org) | |
816 | dataOut.data_param[1]=-W |
|
816 | dataOut.data_param[1]=-W | |
817 | dataOut.data_param[2]=RR |
|
817 | dataOut.data_param[2]=RR | |
818 |
|
818 | |||
819 | # print ('Leaving PrecepitationProc ... ') |
|
819 | # print ('Leaving PrecepitationProc ... ') | |
820 | return dataOut |
|
820 | return dataOut | |
821 |
|
821 | |||
822 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C |
|
822 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C | |
823 |
|
823 | |||
824 | NPW = dataOut.NPW |
|
824 | NPW = dataOut.NPW | |
825 | COFA = dataOut.COFA |
|
825 | COFA = dataOut.COFA | |
826 |
|
826 | |||
827 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) |
|
827 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) | |
828 | RadarConst = dataOut.RadarConst |
|
828 | RadarConst = dataOut.RadarConst | |
829 | #frequency = 34.85*10**9 |
|
829 | #frequency = 34.85*10**9 | |
830 |
|
830 | |||
831 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) |
|
831 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) | |
832 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN |
|
832 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN | |
833 |
|
833 | |||
834 | ETA = numpy.sum(SNR,1) |
|
834 | ETA = numpy.sum(SNR,1) | |
835 |
|
835 | |||
836 | ETA = numpy.where(ETA != 0. , ETA, numpy.NaN) |
|
836 | ETA = numpy.where(ETA != 0. , ETA, numpy.NaN) | |
837 |
|
837 | |||
838 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) |
|
838 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) | |
839 |
|
839 | |||
840 | for r in range(self.Num_Hei): |
|
840 | for r in range(self.Num_Hei): | |
841 |
|
841 | |||
842 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) |
|
842 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) | |
843 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) |
|
843 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) | |
844 |
|
844 | |||
845 | return Ze |
|
845 | return Ze | |
846 |
|
846 | |||
847 | # def GetRadarConstant(self): |
|
847 | # def GetRadarConstant(self): | |
848 | # |
|
848 | # | |
849 | # """ |
|
849 | # """ | |
850 | # Constants: |
|
850 | # Constants: | |
851 | # |
|
851 | # | |
852 | # Pt: Transmission Power dB 5kW 5000 |
|
852 | # Pt: Transmission Power dB 5kW 5000 | |
853 | # Gt: Transmission Gain dB 24.7 dB 295.1209 |
|
853 | # Gt: Transmission Gain dB 24.7 dB 295.1209 | |
854 | # Gr: Reception Gain dB 18.5 dB 70.7945 |
|
854 | # Gr: Reception Gain dB 18.5 dB 70.7945 | |
855 | # Lambda: Wavelenght m 0.6741 m 0.6741 |
|
855 | # Lambda: Wavelenght m 0.6741 m 0.6741 | |
856 | # aL: Attenuation loses dB 4dB 2.5118 |
|
856 | # aL: Attenuation loses dB 4dB 2.5118 | |
857 | # tauW: Width of transmission pulse s 4us 4e-6 |
|
857 | # tauW: Width of transmission pulse s 4us 4e-6 | |
858 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 |
|
858 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 | |
859 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 |
|
859 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 | |
860 | # |
|
860 | # | |
861 | # """ |
|
861 | # """ | |
862 | # |
|
862 | # | |
863 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
863 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
864 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) |
|
864 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) | |
865 | # RadarConstant = Numerator / Denominator |
|
865 | # RadarConstant = Numerator / Denominator | |
866 | # |
|
866 | # | |
867 | # return RadarConstant |
|
867 | # return RadarConstant | |
868 |
|
868 | |||
869 |
|
869 | |||
870 |
|
870 | |||
871 | class FullSpectralAnalysis(Operation): |
|
871 | class FullSpectralAnalysis(Operation): | |
872 |
|
872 | |||
873 | """ |
|
873 | """ | |
874 | Function that implements Full Spectral Analysis technique. |
|
874 | Function that implements Full Spectral Analysis technique. | |
875 |
|
875 | |||
876 | Input: |
|
876 | Input: | |
877 | self.dataOut.data_pre : SelfSpectra and CrossSpectra data |
|
877 | self.dataOut.data_pre : SelfSpectra and CrossSpectra data | |
878 | self.dataOut.groupList : Pairlist of channels |
|
878 | self.dataOut.groupList : Pairlist of channels | |
879 | self.dataOut.ChanDist : Physical distance between receivers |
|
879 | self.dataOut.ChanDist : Physical distance between receivers | |
880 |
|
880 | |||
881 |
|
881 | |||
882 | Output: |
|
882 | Output: | |
883 |
|
883 | |||
884 | self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind |
|
884 | self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind | |
885 |
|
885 | |||
886 |
|
886 | |||
887 | Parameters affected: Winds, height range, SNR |
|
887 | Parameters affected: Winds, height range, SNR | |
888 |
|
888 | |||
889 | """ |
|
889 | """ | |
890 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30, |
|
890 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30, | |
891 | minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None): |
|
891 | minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None): | |
892 |
|
892 | |||
893 | spc = dataOut.data_pre[0].copy() |
|
893 | spc = dataOut.data_pre[0].copy() | |
894 | cspc = dataOut.data_pre[1] |
|
894 | cspc = dataOut.data_pre[1] | |
895 | nHeights = spc.shape[2] |
|
895 | nHeights = spc.shape[2] | |
896 |
|
896 | |||
897 | # first_height = 0.75 #km (ref: data header 20170822) |
|
897 | # first_height = 0.75 #km (ref: data header 20170822) | |
898 | # resolution_height = 0.075 #km |
|
898 | # resolution_height = 0.075 #km | |
899 | ''' |
|
899 | ''' | |
900 | finding height range. check this when radar parameters are changed! |
|
900 | finding height range. check this when radar parameters are changed! | |
901 | ''' |
|
901 | ''' | |
902 | if maxheight is not None: |
|
902 | if maxheight is not None: | |
903 | # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical |
|
903 | # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical | |
904 | range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better |
|
904 | range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better | |
905 | else: |
|
905 | else: | |
906 | range_max = nHeights |
|
906 | range_max = nHeights | |
907 | if minheight is not None: |
|
907 | if minheight is not None: | |
908 | # range_min = int((minheight - first_height) / resolution_height) # theoretical |
|
908 | # range_min = int((minheight - first_height) / resolution_height) # theoretical | |
909 | range_min = int(13.26 * minheight - 5) # empirical, works better |
|
909 | range_min = int(13.26 * minheight - 5) # empirical, works better | |
910 | if range_min < 0: |
|
910 | if range_min < 0: | |
911 | range_min = 0 |
|
911 | range_min = 0 | |
912 | else: |
|
912 | else: | |
913 | range_min = 0 |
|
913 | range_min = 0 | |
914 |
|
914 | |||
915 | pairsList = dataOut.groupList |
|
915 | pairsList = dataOut.groupList | |
916 | if dataOut.ChanDist is not None : |
|
916 | if dataOut.ChanDist is not None : | |
917 | ChanDist = dataOut.ChanDist |
|
917 | ChanDist = dataOut.ChanDist | |
918 | else: |
|
918 | else: | |
919 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) |
|
919 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) | |
920 |
|
920 | |||
921 | # 4 variables: zonal, meridional, vertical, and average SNR |
|
921 | # 4 variables: zonal, meridional, vertical, and average SNR | |
922 | data_param = numpy.zeros([4,nHeights]) * numpy.NaN |
|
922 | data_param = numpy.zeros([4,nHeights]) * numpy.NaN | |
923 | velocityX = numpy.zeros([nHeights]) * numpy.NaN |
|
923 | velocityX = numpy.zeros([nHeights]) * numpy.NaN | |
924 | velocityY = numpy.zeros([nHeights]) * numpy.NaN |
|
924 | velocityY = numpy.zeros([nHeights]) * numpy.NaN | |
925 | velocityZ = numpy.zeros([nHeights]) * numpy.NaN |
|
925 | velocityZ = numpy.zeros([nHeights]) * numpy.NaN | |
926 |
|
926 | |||
927 | dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0)) |
|
927 | dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0)) | |
928 |
|
928 | |||
929 | '''***********************************************WIND ESTIMATION**************************************''' |
|
929 | '''***********************************************WIND ESTIMATION**************************************''' | |
930 | for Height in range(nHeights): |
|
930 | for Height in range(nHeights): | |
931 |
|
931 | |||
932 | if Height >= range_min and Height < range_max: |
|
932 | if Height >= range_min and Height < range_max: | |
933 | # error_code will be useful in future analysis |
|
933 | # error_code will be useful in future analysis | |
934 | [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, |
|
934 | [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, | |
935 | ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency) |
|
935 | ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency) | |
936 |
|
936 | |||
937 | if abs(Vzon) < 100. and abs(Vmer) < 100.: |
|
937 | if abs(Vzon) < 100. and abs(Vmer) < 100.: | |
938 | velocityX[Height] = Vzon |
|
938 | velocityX[Height] = Vzon | |
939 | velocityY[Height] = -Vmer |
|
939 | velocityY[Height] = -Vmer | |
940 | velocityZ[Height] = Vver |
|
940 | velocityZ[Height] = Vver | |
941 |
|
941 | |||
942 | # Censoring data with SNR threshold |
|
942 | # Censoring data with SNR threshold | |
943 | dbSNR [dbSNR < SNRdBlimit] = numpy.NaN |
|
943 | dbSNR [dbSNR < SNRdBlimit] = numpy.NaN | |
944 |
|
944 | |||
945 | data_param[0] = velocityX |
|
945 | data_param[0] = velocityX | |
946 | data_param[1] = velocityY |
|
946 | data_param[1] = velocityY | |
947 | data_param[2] = velocityZ |
|
947 | data_param[2] = velocityZ | |
948 | data_param[3] = dbSNR |
|
948 | data_param[3] = dbSNR | |
949 | dataOut.data_param = data_param |
|
949 | dataOut.data_param = data_param | |
950 | return dataOut |
|
950 | return dataOut | |
951 |
|
951 | |||
952 | def moving_average(self,x, N=2): |
|
952 | def moving_average(self,x, N=2): | |
953 | """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """ |
|
953 | """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """ | |
954 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] |
|
954 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |
955 |
|
955 | |||
956 | def gaus(self,xSamples,Amp,Mu,Sigma): |
|
956 | def gaus(self,xSamples,Amp,Mu,Sigma): | |
957 | return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2) |
|
957 | return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2) | |
958 |
|
958 | |||
959 | def Moments(self, ySamples, xSamples): |
|
959 | def Moments(self, ySamples, xSamples): | |
960 | Power = numpy.nanmean(ySamples) # Power, 0th Moment |
|
960 | Power = numpy.nanmean(ySamples) # Power, 0th Moment | |
961 | yNorm = ySamples / numpy.nansum(ySamples) |
|
961 | yNorm = ySamples / numpy.nansum(ySamples) | |
962 | RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment |
|
962 | RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment | |
963 | Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment |
|
963 | Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment | |
964 | StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral |
|
964 | StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral | |
965 | return numpy.array([Power,RadVel,StdDev]) |
|
965 | return numpy.array([Power,RadVel,StdDev]) | |
966 |
|
966 | |||
967 | def StopWindEstimation(self, error_code): |
|
967 | def StopWindEstimation(self, error_code): | |
968 | Vzon = numpy.NaN |
|
968 | Vzon = numpy.NaN | |
969 | Vmer = numpy.NaN |
|
969 | Vmer = numpy.NaN | |
970 | Vver = numpy.NaN |
|
970 | Vver = numpy.NaN | |
971 | return Vzon, Vmer, Vver, error_code |
|
971 | return Vzon, Vmer, Vver, error_code | |
972 |
|
972 | |||
973 | def AntiAliasing(self, interval, maxstep): |
|
973 | def AntiAliasing(self, interval, maxstep): | |
974 | """ |
|
974 | """ | |
975 | function to prevent errors from aliased values when computing phaseslope |
|
975 | function to prevent errors from aliased values when computing phaseslope | |
976 | """ |
|
976 | """ | |
977 | antialiased = numpy.zeros(len(interval)) |
|
977 | antialiased = numpy.zeros(len(interval)) | |
978 | copyinterval = interval.copy() |
|
978 | copyinterval = interval.copy() | |
979 |
|
979 | |||
980 | antialiased[0] = copyinterval[0] |
|
980 | antialiased[0] = copyinterval[0] | |
981 |
|
981 | |||
982 | for i in range(1,len(antialiased)): |
|
982 | for i in range(1,len(antialiased)): | |
983 | step = interval[i] - interval[i-1] |
|
983 | step = interval[i] - interval[i-1] | |
984 | if step > maxstep: |
|
984 | if step > maxstep: | |
985 | copyinterval -= 2*numpy.pi |
|
985 | copyinterval -= 2*numpy.pi | |
986 | antialiased[i] = copyinterval[i] |
|
986 | antialiased[i] = copyinterval[i] | |
987 | elif step < maxstep*(-1): |
|
987 | elif step < maxstep*(-1): | |
988 | copyinterval += 2*numpy.pi |
|
988 | copyinterval += 2*numpy.pi | |
989 | antialiased[i] = copyinterval[i] |
|
989 | antialiased[i] = copyinterval[i] | |
990 | else: |
|
990 | else: | |
991 | antialiased[i] = copyinterval[i].copy() |
|
991 | antialiased[i] = copyinterval[i].copy() | |
992 |
|
992 | |||
993 | return antialiased |
|
993 | return antialiased | |
994 |
|
994 | |||
995 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq): |
|
995 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq): | |
996 | """ |
|
996 | """ | |
997 | Function that Calculates Zonal, Meridional and Vertical wind velocities. |
|
997 | Function that Calculates Zonal, Meridional and Vertical wind velocities. | |
998 | Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019. |
|
998 | Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019. | |
999 |
|
999 | |||
1000 | Input: |
|
1000 | Input: | |
1001 | spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively. |
|
1001 | spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively. | |
1002 | pairsList : Pairlist of channels |
|
1002 | pairsList : Pairlist of channels | |
1003 | ChanDist : array of xi_ij and eta_ij |
|
1003 | ChanDist : array of xi_ij and eta_ij | |
1004 | Height : height at which data is processed |
|
1004 | Height : height at which data is processed | |
1005 | noise : noise in [channels] format for specific height |
|
1005 | noise : noise in [channels] format for specific height | |
1006 | Abbsisarange : range of the frequencies or velocities |
|
1006 | Abbsisarange : range of the frequencies or velocities | |
1007 | dbSNR, SNRlimit : signal to noise ratio in db, lower limit |
|
1007 | dbSNR, SNRlimit : signal to noise ratio in db, lower limit | |
1008 |
|
1008 | |||
1009 | Output: |
|
1009 | Output: | |
1010 | Vzon, Vmer, Vver : wind velocities |
|
1010 | Vzon, Vmer, Vver : wind velocities | |
1011 | error_code : int that states where code is terminated |
|
1011 | error_code : int that states where code is terminated | |
1012 |
|
1012 | |||
1013 | 0 : no error detected |
|
1013 | 0 : no error detected | |
1014 | 1 : Gaussian of mean spc exceeds widthlimit |
|
1014 | 1 : Gaussian of mean spc exceeds widthlimit | |
1015 | 2 : no Gaussian of mean spc found |
|
1015 | 2 : no Gaussian of mean spc found | |
1016 | 3 : SNR to low or velocity to high -> prec. e.g. |
|
1016 | 3 : SNR to low or velocity to high -> prec. e.g. | |
1017 | 4 : at least one Gaussian of cspc exceeds widthlimit |
|
1017 | 4 : at least one Gaussian of cspc exceeds widthlimit | |
1018 | 5 : zero out of three cspc Gaussian fits converged |
|
1018 | 5 : zero out of three cspc Gaussian fits converged | |
1019 | 6 : phase slope fit could not be found |
|
1019 | 6 : phase slope fit could not be found | |
1020 | 7 : arrays used to fit phase have different length |
|
1020 | 7 : arrays used to fit phase have different length | |
1021 | 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc) |
|
1021 | 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc) | |
1022 |
|
1022 | |||
1023 | """ |
|
1023 | """ | |
1024 |
|
1024 | |||
1025 | error_code = 0 |
|
1025 | error_code = 0 | |
1026 |
|
1026 | |||
1027 | nChan = spc.shape[0] |
|
1027 | nChan = spc.shape[0] | |
1028 | nProf = spc.shape[1] |
|
1028 | nProf = spc.shape[1] | |
1029 | nPair = cspc.shape[0] |
|
1029 | nPair = cspc.shape[0] | |
1030 |
|
1030 | |||
1031 | SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height |
|
1031 | SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height | |
1032 | CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values |
|
1032 | CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values | |
1033 | phase = numpy.zeros([nPair, nProf]) # phase between channels |
|
1033 | phase = numpy.zeros([nPair, nProf]) # phase between channels | |
1034 | PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise |
|
1034 | PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise | |
1035 | PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise |
|
1035 | PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise | |
1036 | xFrec = AbbsisaRange[0][:-1] # frequency range |
|
1036 | xFrec = AbbsisaRange[0][:-1] # frequency range | |
1037 | xVel = AbbsisaRange[2][:-1] # velocity range |
|
1037 | xVel = AbbsisaRange[2][:-1] # velocity range | |
1038 | xSamples = xFrec # the frequency range is taken |
|
1038 | xSamples = xFrec # the frequency range is taken | |
1039 | delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x |
|
1039 | delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x | |
1040 |
|
1040 | |||
1041 | # only consider velocities with in NegativeLimit and PositiveLimit |
|
1041 | # only consider velocities with in NegativeLimit and PositiveLimit | |
1042 | if (NegativeLimit is None): |
|
1042 | if (NegativeLimit is None): | |
1043 | NegativeLimit = numpy.min(xVel) |
|
1043 | NegativeLimit = numpy.min(xVel) | |
1044 | if (PositiveLimit is None): |
|
1044 | if (PositiveLimit is None): | |
1045 | PositiveLimit = numpy.max(xVel) |
|
1045 | PositiveLimit = numpy.max(xVel) | |
1046 | xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit)) |
|
1046 | xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit)) | |
1047 | xSamples_zoom = xSamples[xvalid] |
|
1047 | xSamples_zoom = xSamples[xvalid] | |
1048 |
|
1048 | |||
1049 | '''Getting Eij and Nij''' |
|
1049 | '''Getting Eij and Nij''' | |
1050 | Xi01, Xi02, Xi12 = ChanDist[:,0] |
|
1050 | Xi01, Xi02, Xi12 = ChanDist[:,0] | |
1051 | Eta01, Eta02, Eta12 = ChanDist[:,1] |
|
1051 | Eta01, Eta02, Eta12 = ChanDist[:,1] | |
1052 |
|
1052 | |||
1053 | # spwd limit - updated by D. ScipiΓ³n 30.03.2021 |
|
1053 | # spwd limit - updated by D. ScipiΓ³n 30.03.2021 | |
1054 | widthlimit = 10 |
|
1054 | widthlimit = 10 | |
1055 | '''************************* SPC is normalized ********************************''' |
|
1055 | '''************************* SPC is normalized ********************************''' | |
1056 | spc_norm = spc.copy() |
|
1056 | spc_norm = spc.copy() | |
1057 | # For each channel |
|
1057 | # For each channel | |
1058 | for i in range(nChan): |
|
1058 | for i in range(nChan): | |
1059 | spc_sub = spc_norm[i,:] - noise[i] # only the signal power |
|
1059 | spc_sub = spc_norm[i,:] - noise[i] # only the signal power | |
1060 | SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x) |
|
1060 | SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x) | |
1061 |
|
1061 | |||
1062 | '''********************** FITTING MEAN SPC GAUSSIAN **********************''' |
|
1062 | '''********************** FITTING MEAN SPC GAUSSIAN **********************''' | |
1063 |
|
1063 | |||
1064 | """ the gaussian of the mean: first subtract noise, then normalize. this is legal because |
|
1064 | """ the gaussian of the mean: first subtract noise, then normalize. this is legal because | |
1065 | you only fit the curve and don't need the absolute value of height for calculation, |
|
1065 | you only fit the curve and don't need the absolute value of height for calculation, | |
1066 | only for estimation of width. for normalization of cross spectra, you need initial, |
|
1066 | only for estimation of width. for normalization of cross spectra, you need initial, | |
1067 | unnormalized self-spectra With noise. |
|
1067 | unnormalized self-spectra With noise. | |
1068 |
|
1068 | |||
1069 | Technically, you don't even need to normalize the self-spectra, as you only need the |
|
1069 | Technically, you don't even need to normalize the self-spectra, as you only need the | |
1070 | width of the peak. However, it was left this way. Note that the normalization has a flaw: |
|
1070 | width of the peak. However, it was left this way. Note that the normalization has a flaw: | |
1071 | due to subtraction of the noise, some values are below zero. Raw "spc" values should be |
|
1071 | due to subtraction of the noise, some values are below zero. Raw "spc" values should be | |
1072 | >= 0, as it is the modulus squared of the signals (complex * it's conjugate) |
|
1072 | >= 0, as it is the modulus squared of the signals (complex * it's conjugate) | |
1073 | """ |
|
1073 | """ | |
1074 | # initial conditions |
|
1074 | # initial conditions | |
1075 | popt = [1e-10,0,1e-10] |
|
1075 | popt = [1e-10,0,1e-10] | |
1076 | # Spectra average |
|
1076 | # Spectra average | |
1077 | SPCMean = numpy.average(SPC_Samples,0) |
|
1077 | SPCMean = numpy.average(SPC_Samples,0) | |
1078 | # Moments in frequency |
|
1078 | # Moments in frequency | |
1079 | SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom) |
|
1079 | SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom) | |
1080 |
|
1080 | |||
1081 | # Gauss Fit SPC in frequency domain |
|
1081 | # Gauss Fit SPC in frequency domain | |
1082 | if dbSNR > SNRlimit: # only if SNR > SNRth |
|
1082 | if dbSNR > SNRlimit: # only if SNR > SNRth | |
1083 | try: |
|
1083 | try: | |
1084 | popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments) |
|
1084 | popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments) | |
1085 | if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION |
|
1085 | if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION | |
1086 | return self.StopWindEstimation(error_code = 1) |
|
1086 | return self.StopWindEstimation(error_code = 1) | |
1087 | FitGauss = self.gaus(xSamples_zoom,*popt) |
|
1087 | FitGauss = self.gaus(xSamples_zoom,*popt) | |
1088 | except :#RuntimeError: |
|
1088 | except :#RuntimeError: | |
1089 | return self.StopWindEstimation(error_code = 2) |
|
1089 | return self.StopWindEstimation(error_code = 2) | |
1090 | else: |
|
1090 | else: | |
1091 | return self.StopWindEstimation(error_code = 3) |
|
1091 | return self.StopWindEstimation(error_code = 3) | |
1092 |
|
1092 | |||
1093 | '''***************************** CSPC Normalization ************************* |
|
1093 | '''***************************** CSPC Normalization ************************* | |
1094 | The Spc spectra are used to normalize the crossspectra. Peaks from precipitation |
|
1094 | The Spc spectra are used to normalize the crossspectra. Peaks from precipitation | |
1095 | influence the norm which is not desired. First, a range is identified where the |
|
1095 | influence the norm which is not desired. First, a range is identified where the | |
1096 | wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area |
|
1096 | wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area | |
1097 | around it gets cut off and values replaced by mean determined by the boundary |
|
1097 | around it gets cut off and values replaced by mean determined by the boundary | |
1098 | data -> sum_noise (spc is not normalized here, thats why the noise is important) |
|
1098 | data -> sum_noise (spc is not normalized here, thats why the noise is important) | |
1099 |
|
1099 | |||
1100 | The sums are then added and multiplied by range/datapoints, because you need |
|
1100 | The sums are then added and multiplied by range/datapoints, because you need | |
1101 | an integral and not a sum for normalization. |
|
1101 | an integral and not a sum for normalization. | |
1102 |
|
1102 | |||
1103 | A norm is found according to Briggs 92. |
|
1103 | A norm is found according to Briggs 92. | |
1104 | ''' |
|
1104 | ''' | |
1105 | # for each pair |
|
1105 | # for each pair | |
1106 | for i in range(nPair): |
|
1106 | for i in range(nPair): | |
1107 | cspc_norm = cspc[i,:].copy() |
|
1107 | cspc_norm = cspc[i,:].copy() | |
1108 | chan_index0 = pairsList[i][0] |
|
1108 | chan_index0 = pairsList[i][0] | |
1109 | chan_index1 = pairsList[i][1] |
|
1109 | chan_index1 = pairsList[i][1] | |
1110 | CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x) |
|
1110 | CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x) | |
1111 | phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real) |
|
1111 | phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real) | |
1112 |
|
1112 | |||
1113 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom), |
|
1113 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom), | |
1114 | self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom), |
|
1114 | self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom), | |
1115 | self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)]) |
|
1115 | self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)]) | |
1116 |
|
1116 | |||
1117 | popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10] |
|
1117 | popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10] | |
1118 | FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)) |
|
1118 | FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)) | |
1119 |
|
1119 | |||
1120 | '''*******************************FIT GAUSS CSPC************************************''' |
|
1120 | '''*******************************FIT GAUSS CSPC************************************''' | |
1121 | try: |
|
1121 | try: | |
1122 | popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0]) |
|
1122 | popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0]) | |
1123 | if popt01[2] > widthlimit: # CONDITION |
|
1123 | if popt01[2] > widthlimit: # CONDITION | |
1124 | return self.StopWindEstimation(error_code = 4) |
|
1124 | return self.StopWindEstimation(error_code = 4) | |
1125 | popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1]) |
|
1125 | popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1]) | |
1126 | if popt02[2] > widthlimit: # CONDITION |
|
1126 | if popt02[2] > widthlimit: # CONDITION | |
1127 | return self.StopWindEstimation(error_code = 4) |
|
1127 | return self.StopWindEstimation(error_code = 4) | |
1128 | popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2]) |
|
1128 | popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2]) | |
1129 | if popt12[2] > widthlimit: # CONDITION |
|
1129 | if popt12[2] > widthlimit: # CONDITION | |
1130 | return self.StopWindEstimation(error_code = 4) |
|
1130 | return self.StopWindEstimation(error_code = 4) | |
1131 |
|
1131 | |||
1132 | FitGauss01 = self.gaus(xSamples_zoom, *popt01) |
|
1132 | FitGauss01 = self.gaus(xSamples_zoom, *popt01) | |
1133 | FitGauss02 = self.gaus(xSamples_zoom, *popt02) |
|
1133 | FitGauss02 = self.gaus(xSamples_zoom, *popt02) | |
1134 | FitGauss12 = self.gaus(xSamples_zoom, *popt12) |
|
1134 | FitGauss12 = self.gaus(xSamples_zoom, *popt12) | |
1135 | except: |
|
1135 | except: | |
1136 | return self.StopWindEstimation(error_code = 5) |
|
1136 | return self.StopWindEstimation(error_code = 5) | |
1137 |
|
1137 | |||
1138 |
|
1138 | |||
1139 | '''************* Getting Fij ***************''' |
|
1139 | '''************* Getting Fij ***************''' | |
1140 | # x-axis point of the gaussian where the center is located from GaussFit of spectra |
|
1140 | # x-axis point of the gaussian where the center is located from GaussFit of spectra | |
1141 | GaussCenter = popt[1] |
|
1141 | GaussCenter = popt[1] | |
1142 | ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()] |
|
1142 | ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()] | |
1143 | PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0] |
|
1143 | PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0] | |
1144 |
|
1144 | |||
1145 | # Point where e^-1 is located in the gaussian |
|
1145 | # Point where e^-1 is located in the gaussian | |
1146 | PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1) |
|
1146 | PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1) | |
1147 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss" |
|
1147 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss" | |
1148 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] |
|
1148 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] | |
1149 | Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter]) |
|
1149 | Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter]) | |
1150 |
|
1150 | |||
1151 | '''********** Taking frequency ranges from mean SPCs **********''' |
|
1151 | '''********** Taking frequency ranges from mean SPCs **********''' | |
1152 | GauWidth = popt[2] * 3/2 # Bandwidth of Gau01 |
|
1152 | GauWidth = popt[2] * 3/2 # Bandwidth of Gau01 | |
1153 | Range = numpy.empty(2) |
|
1153 | Range = numpy.empty(2) | |
1154 | Range[0] = GaussCenter - GauWidth |
|
1154 | Range[0] = GaussCenter - GauWidth | |
1155 | Range[1] = GaussCenter + GauWidth |
|
1155 | Range[1] = GaussCenter + GauWidth | |
1156 | # Point in x-axis where the bandwidth is located (min:max) |
|
1156 | # Point in x-axis where the bandwidth is located (min:max) | |
1157 | ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()] |
|
1157 | ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()] | |
1158 | ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()] |
|
1158 | ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()] | |
1159 | PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0] |
|
1159 | PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0] | |
1160 | PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0] |
|
1160 | PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0] | |
1161 | Range = numpy.array([ PointRangeMin, PointRangeMax ]) |
|
1161 | Range = numpy.array([ PointRangeMin, PointRangeMax ]) | |
1162 | FrecRange = xSamples_zoom[ Range[0] : Range[1] ] |
|
1162 | FrecRange = xSamples_zoom[ Range[0] : Range[1] ] | |
1163 |
|
1163 | |||
1164 | '''************************** Getting Phase Slope ***************************''' |
|
1164 | '''************************** Getting Phase Slope ***************************''' | |
1165 | for i in range(nPair): |
|
1165 | for i in range(nPair): | |
1166 | if len(FrecRange) > 5: |
|
1166 | if len(FrecRange) > 5: | |
1167 | PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy() |
|
1167 | PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy() | |
1168 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) |
|
1168 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) | |
1169 | if len(FrecRange) == len(PhaseRange): |
|
1169 | if len(FrecRange) == len(PhaseRange): | |
1170 | try: |
|
1170 | try: | |
1171 | slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5)) |
|
1171 | slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5)) | |
1172 | PhaseSlope[i] = slope |
|
1172 | PhaseSlope[i] = slope | |
1173 | PhaseInter[i] = intercept |
|
1173 | PhaseInter[i] = intercept | |
1174 | except: |
|
1174 | except: | |
1175 | return self.StopWindEstimation(error_code = 6) |
|
1175 | return self.StopWindEstimation(error_code = 6) | |
1176 | else: |
|
1176 | else: | |
1177 | return self.StopWindEstimation(error_code = 7) |
|
1177 | return self.StopWindEstimation(error_code = 7) | |
1178 | else: |
|
1178 | else: | |
1179 | return self.StopWindEstimation(error_code = 8) |
|
1179 | return self.StopWindEstimation(error_code = 8) | |
1180 |
|
1180 | |||
1181 | '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***''' |
|
1181 | '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***''' | |
1182 |
|
1182 | |||
1183 | '''Getting constant C''' |
|
1183 | '''Getting constant C''' | |
1184 | cC=(Fij*numpy.pi)**2 |
|
1184 | cC=(Fij*numpy.pi)**2 | |
1185 |
|
1185 | |||
1186 | '''****** Getting constants F and G ******''' |
|
1186 | '''****** Getting constants F and G ******''' | |
1187 | MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) |
|
1187 | MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) | |
1188 | # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]]) |
|
1188 | # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]]) | |
1189 | # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi) |
|
1189 | # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi) | |
1190 | MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi) |
|
1190 | MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi) | |
1191 | MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi) |
|
1191 | MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi) | |
1192 | # MijResults = numpy.array([MijResult0, MijResult1, MijResult2]) |
|
1192 | # MijResults = numpy.array([MijResult0, MijResult1, MijResult2]) | |
1193 | MijResults = numpy.array([MijResult1, MijResult2]) |
|
1193 | MijResults = numpy.array([MijResult1, MijResult2]) | |
1194 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
1194 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |
1195 |
|
1195 | |||
1196 | '''****** Getting constants A, B and H ******''' |
|
1196 | '''****** Getting constants A, B and H ******''' | |
1197 | W01 = numpy.nanmax( FitGauss01 ) |
|
1197 | W01 = numpy.nanmax( FitGauss01 ) | |
1198 | W02 = numpy.nanmax( FitGauss02 ) |
|
1198 | W02 = numpy.nanmax( FitGauss02 ) | |
1199 | W12 = numpy.nanmax( FitGauss12 ) |
|
1199 | W12 = numpy.nanmax( FitGauss12 ) | |
1200 |
|
1200 | |||
1201 | WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) |
|
1201 | WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) | |
1202 | WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC)) |
|
1202 | WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC)) | |
1203 | WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) |
|
1203 | WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) | |
1204 | WijResults = numpy.array([WijResult01, WijResult02, WijResult12]) |
|
1204 | WijResults = numpy.array([WijResult01, WijResult02, WijResult12]) | |
1205 |
|
1205 | |||
1206 | WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) |
|
1206 | WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) | |
1207 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
1207 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |
1208 |
|
1208 | |||
1209 | VxVy = numpy.array([[cA,cH],[cH,cB]]) |
|
1209 | VxVy = numpy.array([[cA,cH],[cH,cB]]) | |
1210 | VxVyResults = numpy.array([-cF,-cG]) |
|
1210 | VxVyResults = numpy.array([-cF,-cG]) | |
1211 | (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults) |
|
1211 | (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults) | |
1212 | Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq) |
|
1212 | Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq) | |
1213 | error_code = 0 |
|
1213 | error_code = 0 | |
1214 |
|
1214 | |||
1215 | return Vzon, Vmer, Vver, error_code |
|
1215 | return Vzon, Vmer, Vver, error_code | |
1216 |
|
1216 | |||
1217 | class SpectralMoments(Operation): |
|
1217 | class SpectralMoments(Operation): | |
1218 |
|
1218 | |||
1219 | ''' |
|
1219 | ''' | |
1220 | Function SpectralMoments() |
|
1220 | Function SpectralMoments() | |
1221 |
|
1221 | |||
1222 | Calculates moments (power, mean, standard deviation) and SNR of the signal |
|
1222 | Calculates moments (power, mean, standard deviation) and SNR of the signal | |
1223 |
|
1223 | |||
1224 | Type of dataIn: Spectra |
|
1224 | Type of dataIn: Spectra | |
1225 |
|
1225 | |||
1226 | Configuration Parameters: |
|
1226 | Configuration Parameters: | |
1227 |
|
1227 | |||
1228 | dirCosx : Cosine director in X axis |
|
1228 | dirCosx : Cosine director in X axis | |
1229 | dirCosy : Cosine director in Y axis |
|
1229 | dirCosy : Cosine director in Y axis | |
1230 |
|
1230 | |||
1231 | elevation : |
|
1231 | elevation : | |
1232 | azimuth : |
|
1232 | azimuth : | |
1233 |
|
1233 | |||
1234 | Input: |
|
1234 | Input: | |
1235 | channelList : simple channel list to select e.g. [2,3,7] |
|
1235 | channelList : simple channel list to select e.g. [2,3,7] | |
1236 | self.dataOut.data_pre : Spectral data |
|
1236 | self.dataOut.data_pre : Spectral data | |
1237 | self.dataOut.abscissaList : List of frequencies |
|
1237 | self.dataOut.abscissaList : List of frequencies | |
1238 | self.dataOut.noise : Noise level per channel |
|
1238 | self.dataOut.noise : Noise level per channel | |
1239 |
|
1239 | |||
1240 | Affected: |
|
1240 | Affected: | |
1241 | self.dataOut.moments : Parameters per channel |
|
1241 | self.dataOut.moments : Parameters per channel | |
1242 | self.dataOut.data_snr : SNR per channel |
|
1242 | self.dataOut.data_snr : SNR per channel | |
1243 |
|
1243 | |||
1244 | ''' |
|
1244 | ''' | |
1245 |
|
1245 | |||
1246 | def run(self, dataOut): |
|
1246 | def run(self, dataOut): | |
1247 |
|
1247 | |||
1248 | data = dataOut.data_pre[0] |
|
1248 | data = dataOut.data_pre[0] | |
1249 | absc = dataOut.abscissaList[:-1] |
|
1249 | absc = dataOut.abscissaList[:-1] | |
1250 | noise = dataOut.noise |
|
1250 | noise = dataOut.noise | |
1251 | nChannel = data.shape[0] |
|
1251 | nChannel = data.shape[0] | |
1252 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) |
|
1252 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) | |
1253 |
|
1253 | |||
1254 | for ind in range(nChannel): |
|
1254 | for ind in range(nChannel): | |
1255 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) |
|
1255 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) | |
1256 |
|
1256 | |||
1257 | dataOut.moments = data_param[:,1:,:] |
|
1257 | dataOut.moments = data_param[:,1:,:] | |
1258 | dataOut.data_snr = data_param[:,0] |
|
1258 | dataOut.data_snr = data_param[:,0] | |
1259 | dataOut.data_pow = data_param[:,1] |
|
1259 | dataOut.data_pow = data_param[:,1] | |
1260 | dataOut.data_dop = data_param[:,2] |
|
1260 | dataOut.data_dop = data_param[:,2] | |
1261 | dataOut.data_width = data_param[:,3] |
|
1261 | dataOut.data_width = data_param[:,3] | |
1262 | return dataOut |
|
1262 | return dataOut | |
1263 |
|
1263 | |||
1264 | def __calculateMoments(self, oldspec, oldfreq, n0, |
|
1264 | def __calculateMoments(self, oldspec, oldfreq, n0, | |
1265 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
1265 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |
1266 |
|
1266 | |||
1267 | if (nicoh is None): nicoh = 1 |
|
1267 | if (nicoh is None): nicoh = 1 | |
1268 | if (graph is None): graph = 0 |
|
1268 | if (graph is None): graph = 0 | |
1269 | if (smooth is None): smooth = 0 |
|
1269 | if (smooth is None): smooth = 0 | |
1270 | elif (self.smooth < 3): smooth = 0 |
|
1270 | elif (self.smooth < 3): smooth = 0 | |
1271 |
|
1271 | |||
1272 | if (type1 is None): type1 = 0 |
|
1272 | if (type1 is None): type1 = 0 | |
1273 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 |
|
1273 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 | |
1274 | if (snrth is None): snrth = -3 |
|
1274 | if (snrth is None): snrth = -3 | |
1275 | if (dc is None): dc = 0 |
|
1275 | if (dc is None): dc = 0 | |
1276 | if (aliasing is None): aliasing = 0 |
|
1276 | if (aliasing is None): aliasing = 0 | |
1277 | if (oldfd is None): oldfd = 0 |
|
1277 | if (oldfd is None): oldfd = 0 | |
1278 | if (wwauto is None): wwauto = 0 |
|
1278 | if (wwauto is None): wwauto = 0 | |
1279 |
|
1279 | |||
1280 | if (n0 < 1.e-20): n0 = 1.e-20 |
|
1280 | if (n0 < 1.e-20): n0 = 1.e-20 | |
1281 |
|
1281 | |||
1282 | freq = oldfreq |
|
1282 | freq = oldfreq | |
1283 | vec_power = numpy.zeros(oldspec.shape[1]) |
|
1283 | vec_power = numpy.zeros(oldspec.shape[1]) | |
1284 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
1284 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
1285 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
1285 | vec_w = numpy.zeros(oldspec.shape[1]) | |
1286 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
1286 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
1287 |
|
1287 | |||
1288 | # oldspec = numpy.ma.masked_invalid(oldspec) |
|
1288 | # oldspec = numpy.ma.masked_invalid(oldspec) | |
1289 | for ind in range(oldspec.shape[1]): |
|
1289 | for ind in range(oldspec.shape[1]): | |
1290 |
|
1290 | |||
1291 | spec = oldspec[:,ind] |
|
1291 | spec = oldspec[:,ind] | |
1292 | aux = spec*fwindow |
|
1292 | aux = spec*fwindow | |
1293 | max_spec = aux.max() |
|
1293 | max_spec = aux.max() | |
1294 | m = aux.tolist().index(max_spec) |
|
1294 | m = aux.tolist().index(max_spec) | |
1295 |
|
1295 | |||
1296 | # Smooth |
|
1296 | # Smooth | |
1297 | if (smooth == 0): |
|
1297 | if (smooth == 0): | |
1298 | spec2 = spec |
|
1298 | spec2 = spec | |
1299 | else: |
|
1299 | else: | |
1300 | spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
1300 | spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
1301 |
|
1301 | |||
1302 | # Moments Estimation |
|
1302 | # Moments Estimation | |
1303 | bb = spec2[numpy.arange(m,spec2.size)] |
|
1303 | bb = spec2[numpy.arange(m,spec2.size)] | |
1304 | bb = (bb<n0).nonzero() |
|
1304 | bb = (bb<n0).nonzero() | |
1305 | bb = bb[0] |
|
1305 | bb = bb[0] | |
1306 |
|
1306 | |||
1307 | ss = spec2[numpy.arange(0,m + 1)] |
|
1307 | ss = spec2[numpy.arange(0,m + 1)] | |
1308 | ss = (ss<n0).nonzero() |
|
1308 | ss = (ss<n0).nonzero() | |
1309 | ss = ss[0] |
|
1309 | ss = ss[0] | |
1310 |
|
1310 | |||
1311 | if (bb.size == 0): |
|
1311 | if (bb.size == 0): | |
1312 | bb0 = spec.size - 1 - m |
|
1312 | bb0 = spec.size - 1 - m | |
1313 | else: |
|
1313 | else: | |
1314 | bb0 = bb[0] - 1 |
|
1314 | bb0 = bb[0] - 1 | |
1315 | if (bb0 < 0): |
|
1315 | if (bb0 < 0): | |
1316 | bb0 = 0 |
|
1316 | bb0 = 0 | |
1317 |
|
1317 | |||
1318 | if (ss.size == 0): |
|
1318 | if (ss.size == 0): | |
1319 | ss1 = 1 |
|
1319 | ss1 = 1 | |
1320 | else: |
|
1320 | else: | |
1321 | ss1 = max(ss) + 1 |
|
1321 | ss1 = max(ss) + 1 | |
1322 |
|
1322 | |||
1323 | if (ss1 > m): |
|
1323 | if (ss1 > m): | |
1324 | ss1 = m |
|
1324 | ss1 = m | |
1325 |
|
1325 | |||
1326 | valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1 |
|
1326 | valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1 | |
1327 | #valid = numpy.arange(1,oldspec.shape[0])# valid perfil completo igual pulsepair |
|
1327 | #valid = numpy.arange(1,oldspec.shape[0])# valid perfil completo igual pulsepair | |
1328 | signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition |
|
1328 | signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition | |
1329 | total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition |
|
1329 | total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition | |
1330 | power = ((spec2[valid] - n0) * fwindow[valid]).sum() |
|
1330 | power = ((spec2[valid] - n0) * fwindow[valid]).sum() | |
1331 | fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power |
|
1331 | fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power | |
1332 | w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power) |
|
1332 | w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power) | |
1333 | snr = (spec2.mean()-n0)/n0 |
|
1333 | snr = (spec2.mean()-n0)/n0 | |
1334 | if (snr < 1.e-20) : |
|
1334 | if (snr < 1.e-20) : | |
1335 | snr = 1.e-20 |
|
1335 | snr = 1.e-20 | |
1336 |
|
1336 | |||
1337 | # vec_power[ind] = power #D. ScipiΓ³n replaced with the line below |
|
1337 | # vec_power[ind] = power #D. ScipiΓ³n replaced with the line below | |
1338 | vec_power[ind] = total_power |
|
1338 | vec_power[ind] = total_power | |
1339 | vec_fd[ind] = fd |
|
1339 | vec_fd[ind] = fd | |
1340 | vec_w[ind] = w |
|
1340 | vec_w[ind] = w | |
1341 | vec_snr[ind] = snr |
|
1341 | vec_snr[ind] = snr | |
1342 |
|
1342 | |||
1343 | return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
1343 | return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
1344 |
|
1344 | |||
1345 | #------------------ Get SA Parameters -------------------------- |
|
1345 | #------------------ Get SA Parameters -------------------------- | |
1346 |
|
1346 | |||
1347 | def GetSAParameters(self): |
|
1347 | def GetSAParameters(self): | |
1348 | #SA en frecuencia |
|
1348 | #SA en frecuencia | |
1349 | pairslist = self.dataOut.groupList |
|
1349 | pairslist = self.dataOut.groupList | |
1350 | num_pairs = len(pairslist) |
|
1350 | num_pairs = len(pairslist) | |
1351 |
|
1351 | |||
1352 | vel = self.dataOut.abscissaList |
|
1352 | vel = self.dataOut.abscissaList | |
1353 | spectra = self.dataOut.data_pre |
|
1353 | spectra = self.dataOut.data_pre | |
1354 | cspectra = self.dataIn.data_cspc |
|
1354 | cspectra = self.dataIn.data_cspc | |
1355 | delta_v = vel[1] - vel[0] |
|
1355 | delta_v = vel[1] - vel[0] | |
1356 |
|
1356 | |||
1357 | #Calculating the power spectrum |
|
1357 | #Calculating the power spectrum | |
1358 | spc_pow = numpy.sum(spectra, 3)*delta_v |
|
1358 | spc_pow = numpy.sum(spectra, 3)*delta_v | |
1359 | #Normalizing Spectra |
|
1359 | #Normalizing Spectra | |
1360 | norm_spectra = spectra/spc_pow |
|
1360 | norm_spectra = spectra/spc_pow | |
1361 | #Calculating the norm_spectra at peak |
|
1361 | #Calculating the norm_spectra at peak | |
1362 | max_spectra = numpy.max(norm_spectra, 3) |
|
1362 | max_spectra = numpy.max(norm_spectra, 3) | |
1363 |
|
1363 | |||
1364 | #Normalizing Cross Spectra |
|
1364 | #Normalizing Cross Spectra | |
1365 | norm_cspectra = numpy.zeros(cspectra.shape) |
|
1365 | norm_cspectra = numpy.zeros(cspectra.shape) | |
1366 |
|
1366 | |||
1367 | for i in range(num_chan): |
|
1367 | for i in range(num_chan): | |
1368 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) |
|
1368 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) | |
1369 |
|
1369 | |||
1370 | max_cspectra = numpy.max(norm_cspectra,2) |
|
1370 | max_cspectra = numpy.max(norm_cspectra,2) | |
1371 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) |
|
1371 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) | |
1372 |
|
1372 | |||
1373 | for i in range(num_pairs): |
|
1373 | for i in range(num_pairs): | |
1374 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) |
|
1374 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) | |
1375 | #------------------- Get Lags ---------------------------------- |
|
1375 | #------------------- Get Lags ---------------------------------- | |
1376 |
|
1376 | |||
1377 | class SALags(Operation): |
|
1377 | class SALags(Operation): | |
1378 | ''' |
|
1378 | ''' | |
1379 | Function GetMoments() |
|
1379 | Function GetMoments() | |
1380 |
|
1380 | |||
1381 | Input: |
|
1381 | Input: | |
1382 | self.dataOut.data_pre |
|
1382 | self.dataOut.data_pre | |
1383 | self.dataOut.abscissaList |
|
1383 | self.dataOut.abscissaList | |
1384 | self.dataOut.noise |
|
1384 | self.dataOut.noise | |
1385 | self.dataOut.normFactor |
|
1385 | self.dataOut.normFactor | |
1386 | self.dataOut.data_snr |
|
1386 | self.dataOut.data_snr | |
1387 | self.dataOut.groupList |
|
1387 | self.dataOut.groupList | |
1388 | self.dataOut.nChannels |
|
1388 | self.dataOut.nChannels | |
1389 |
|
1389 | |||
1390 | Affected: |
|
1390 | Affected: | |
1391 | self.dataOut.data_param |
|
1391 | self.dataOut.data_param | |
1392 |
|
1392 | |||
1393 | ''' |
|
1393 | ''' | |
1394 | def run(self, dataOut): |
|
1394 | def run(self, dataOut): | |
1395 | data_acf = dataOut.data_pre[0] |
|
1395 | data_acf = dataOut.data_pre[0] | |
1396 | data_ccf = dataOut.data_pre[1] |
|
1396 | data_ccf = dataOut.data_pre[1] | |
1397 | normFactor_acf = dataOut.normFactor[0] |
|
1397 | normFactor_acf = dataOut.normFactor[0] | |
1398 | normFactor_ccf = dataOut.normFactor[1] |
|
1398 | normFactor_ccf = dataOut.normFactor[1] | |
1399 | pairs_acf = dataOut.groupList[0] |
|
1399 | pairs_acf = dataOut.groupList[0] | |
1400 | pairs_ccf = dataOut.groupList[1] |
|
1400 | pairs_ccf = dataOut.groupList[1] | |
1401 |
|
1401 | |||
1402 | nHeights = dataOut.nHeights |
|
1402 | nHeights = dataOut.nHeights | |
1403 | absc = dataOut.abscissaList |
|
1403 | absc = dataOut.abscissaList | |
1404 | noise = dataOut.noise |
|
1404 | noise = dataOut.noise | |
1405 | SNR = dataOut.data_snr |
|
1405 | SNR = dataOut.data_snr | |
1406 | nChannels = dataOut.nChannels |
|
1406 | nChannels = dataOut.nChannels | |
1407 | # pairsList = dataOut.groupList |
|
1407 | # pairsList = dataOut.groupList | |
1408 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
1408 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
1409 |
|
1409 | |||
1410 | for l in range(len(pairs_acf)): |
|
1410 | for l in range(len(pairs_acf)): | |
1411 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] |
|
1411 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] | |
1412 |
|
1412 | |||
1413 | for l in range(len(pairs_ccf)): |
|
1413 | for l in range(len(pairs_ccf)): | |
1414 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] |
|
1414 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] | |
1415 |
|
1415 | |||
1416 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) |
|
1416 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) | |
1417 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) |
|
1417 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) | |
1418 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) |
|
1418 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) | |
1419 | return |
|
1419 | return | |
1420 |
|
1420 | |||
1421 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1421 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
1422 | # |
|
1422 | # | |
1423 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1423 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1424 | # |
|
1424 | # | |
1425 | # for l in range(len(pairsList)): |
|
1425 | # for l in range(len(pairsList)): | |
1426 | # firstChannel = pairsList[l][0] |
|
1426 | # firstChannel = pairsList[l][0] | |
1427 | # secondChannel = pairsList[l][1] |
|
1427 | # secondChannel = pairsList[l][1] | |
1428 | # |
|
1428 | # | |
1429 | # #Obteniendo pares de Autocorrelacion |
|
1429 | # #Obteniendo pares de Autocorrelacion | |
1430 | # if firstChannel == secondChannel: |
|
1430 | # if firstChannel == secondChannel: | |
1431 | # pairsAutoCorr[firstChannel] = int(l) |
|
1431 | # pairsAutoCorr[firstChannel] = int(l) | |
1432 | # |
|
1432 | # | |
1433 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1433 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
1434 | # |
|
1434 | # | |
1435 | # pairsCrossCorr = range(len(pairsList)) |
|
1435 | # pairsCrossCorr = range(len(pairsList)) | |
1436 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1436 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1437 | # |
|
1437 | # | |
1438 | # return pairsAutoCorr, pairsCrossCorr |
|
1438 | # return pairsAutoCorr, pairsCrossCorr | |
1439 |
|
1439 | |||
1440 | def __calculateTaus(self, data_acf, data_ccf, lagRange): |
|
1440 | def __calculateTaus(self, data_acf, data_ccf, lagRange): | |
1441 |
|
1441 | |||
1442 | lag0 = data_acf.shape[1]/2 |
|
1442 | lag0 = data_acf.shape[1]/2 | |
1443 | #Funcion de Autocorrelacion |
|
1443 | #Funcion de Autocorrelacion | |
1444 | mean_acf = stats.nanmean(data_acf, axis = 0) |
|
1444 | mean_acf = stats.nanmean(data_acf, axis = 0) | |
1445 |
|
1445 | |||
1446 | #Obtencion Indice de TauCross |
|
1446 | #Obtencion Indice de TauCross | |
1447 | ind_ccf = data_ccf.argmax(axis = 1) |
|
1447 | ind_ccf = data_ccf.argmax(axis = 1) | |
1448 | #Obtencion Indice de TauAuto |
|
1448 | #Obtencion Indice de TauAuto | |
1449 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') |
|
1449 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') | |
1450 | ccf_lag0 = data_ccf[:,lag0,:] |
|
1450 | ccf_lag0 = data_ccf[:,lag0,:] | |
1451 |
|
1451 | |||
1452 | for i in range(ccf_lag0.shape[0]): |
|
1452 | for i in range(ccf_lag0.shape[0]): | |
1453 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) |
|
1453 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) | |
1454 |
|
1454 | |||
1455 | #Obtencion de TauCross y TauAuto |
|
1455 | #Obtencion de TauCross y TauAuto | |
1456 | tau_ccf = lagRange[ind_ccf] |
|
1456 | tau_ccf = lagRange[ind_ccf] | |
1457 | tau_acf = lagRange[ind_acf] |
|
1457 | tau_acf = lagRange[ind_acf] | |
1458 |
|
1458 | |||
1459 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) |
|
1459 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) | |
1460 |
|
1460 | |||
1461 | tau_ccf[Nan1,Nan2] = numpy.nan |
|
1461 | tau_ccf[Nan1,Nan2] = numpy.nan | |
1462 | tau_acf[Nan1,Nan2] = numpy.nan |
|
1462 | tau_acf[Nan1,Nan2] = numpy.nan | |
1463 | tau = numpy.vstack((tau_ccf,tau_acf)) |
|
1463 | tau = numpy.vstack((tau_ccf,tau_acf)) | |
1464 |
|
1464 | |||
1465 | return tau |
|
1465 | return tau | |
1466 |
|
1466 | |||
1467 | def __calculateLag1Phase(self, data, lagTRange): |
|
1467 | def __calculateLag1Phase(self, data, lagTRange): | |
1468 | data1 = stats.nanmean(data, axis = 0) |
|
1468 | data1 = stats.nanmean(data, axis = 0) | |
1469 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 |
|
1469 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |
1470 |
|
1470 | |||
1471 | phase = numpy.angle(data1[lag1,:]) |
|
1471 | phase = numpy.angle(data1[lag1,:]) | |
1472 |
|
1472 | |||
1473 | return phase |
|
1473 | return phase | |
1474 |
|
1474 | |||
1475 | class SpectralFitting(Operation): |
|
1475 | class SpectralFitting(Operation): | |
1476 | ''' |
|
1476 | ''' | |
1477 | Function GetMoments() |
|
1477 | Function GetMoments() | |
1478 |
|
1478 | |||
1479 | Input: |
|
1479 | Input: | |
1480 | Output: |
|
1480 | Output: | |
1481 | Variables modified: |
|
1481 | Variables modified: | |
1482 | ''' |
|
1482 | ''' | |
1483 |
|
1483 | |||
1484 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): |
|
1484 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): | |
1485 |
|
1485 | |||
1486 |
|
1486 | |||
1487 | if path != None: |
|
1487 | if path != None: | |
1488 | sys.path.append(path) |
|
1488 | sys.path.append(path) | |
1489 | self.dataOut.library = importlib.import_module(file) |
|
1489 | self.dataOut.library = importlib.import_module(file) | |
1490 |
|
1490 | |||
1491 | #To be inserted as a parameter |
|
1491 | #To be inserted as a parameter | |
1492 | groupArray = numpy.array(groupList) |
|
1492 | groupArray = numpy.array(groupList) | |
1493 | # groupArray = numpy.array([[0,1],[2,3]]) |
|
1493 | # groupArray = numpy.array([[0,1],[2,3]]) | |
1494 | self.dataOut.groupList = groupArray |
|
1494 | self.dataOut.groupList = groupArray | |
1495 |
|
1495 | |||
1496 | nGroups = groupArray.shape[0] |
|
1496 | nGroups = groupArray.shape[0] | |
1497 | nChannels = self.dataIn.nChannels |
|
1497 | nChannels = self.dataIn.nChannels | |
1498 | nHeights=self.dataIn.heightList.size |
|
1498 | nHeights=self.dataIn.heightList.size | |
1499 |
|
1499 | |||
1500 | #Parameters Array |
|
1500 | #Parameters Array | |
1501 | self.dataOut.data_param = None |
|
1501 | self.dataOut.data_param = None | |
1502 |
|
1502 | |||
1503 | #Set constants |
|
1503 | #Set constants | |
1504 | constants = self.dataOut.library.setConstants(self.dataIn) |
|
1504 | constants = self.dataOut.library.setConstants(self.dataIn) | |
1505 | self.dataOut.constants = constants |
|
1505 | self.dataOut.constants = constants | |
1506 | M = self.dataIn.normFactor |
|
1506 | M = self.dataIn.normFactor | |
1507 | N = self.dataIn.nFFTPoints |
|
1507 | N = self.dataIn.nFFTPoints | |
1508 | ippSeconds = self.dataIn.ippSeconds |
|
1508 | ippSeconds = self.dataIn.ippSeconds | |
1509 | K = self.dataIn.nIncohInt |
|
1509 | K = self.dataIn.nIncohInt | |
1510 | pairsArray = numpy.array(self.dataIn.pairsList) |
|
1510 | pairsArray = numpy.array(self.dataIn.pairsList) | |
1511 |
|
1511 | |||
1512 | #List of possible combinations |
|
1512 | #List of possible combinations | |
1513 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) |
|
1513 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |
1514 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') |
|
1514 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |
1515 |
|
1515 | |||
1516 | if getSNR: |
|
1516 | if getSNR: | |
1517 | listChannels = groupArray.reshape((groupArray.size)) |
|
1517 | listChannels = groupArray.reshape((groupArray.size)) | |
1518 | listChannels.sort() |
|
1518 | listChannels.sort() | |
1519 | noise = self.dataIn.getNoise() |
|
1519 | noise = self.dataIn.getNoise() | |
1520 | self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) |
|
1520 | self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) | |
1521 |
|
1521 | |||
1522 | for i in range(nGroups): |
|
1522 | for i in range(nGroups): | |
1523 | coord = groupArray[i,:] |
|
1523 | coord = groupArray[i,:] | |
1524 |
|
1524 | |||
1525 | #Input data array |
|
1525 | #Input data array | |
1526 | data = self.dataIn.data_spc[coord,:,:]/(M*N) |
|
1526 | data = self.dataIn.data_spc[coord,:,:]/(M*N) | |
1527 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) |
|
1527 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |
1528 |
|
1528 | |||
1529 | #Cross Spectra data array for Covariance Matrixes |
|
1529 | #Cross Spectra data array for Covariance Matrixes | |
1530 | ind = 0 |
|
1530 | ind = 0 | |
1531 | for pairs in listComb: |
|
1531 | for pairs in listComb: | |
1532 | pairsSel = numpy.array([coord[x],coord[y]]) |
|
1532 | pairsSel = numpy.array([coord[x],coord[y]]) | |
1533 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) |
|
1533 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |
1534 | ind += 1 |
|
1534 | ind += 1 | |
1535 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) |
|
1535 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) | |
1536 | dataCross = dataCross**2/K |
|
1536 | dataCross = dataCross**2/K | |
1537 |
|
1537 | |||
1538 | for h in range(nHeights): |
|
1538 | for h in range(nHeights): | |
1539 |
|
1539 | |||
1540 | #Input |
|
1540 | #Input | |
1541 | d = data[:,h] |
|
1541 | d = data[:,h] | |
1542 |
|
1542 | |||
1543 | #Covariance Matrix |
|
1543 | #Covariance Matrix | |
1544 | D = numpy.diag(d**2/K) |
|
1544 | D = numpy.diag(d**2/K) | |
1545 | ind = 0 |
|
1545 | ind = 0 | |
1546 | for pairs in listComb: |
|
1546 | for pairs in listComb: | |
1547 | #Coordinates in Covariance Matrix |
|
1547 | #Coordinates in Covariance Matrix | |
1548 | x = pairs[0] |
|
1548 | x = pairs[0] | |
1549 | y = pairs[1] |
|
1549 | y = pairs[1] | |
1550 | #Channel Index |
|
1550 | #Channel Index | |
1551 | S12 = dataCross[ind,:,h] |
|
1551 | S12 = dataCross[ind,:,h] | |
1552 | D12 = numpy.diag(S12) |
|
1552 | D12 = numpy.diag(S12) | |
1553 | #Completing Covariance Matrix with Cross Spectras |
|
1553 | #Completing Covariance Matrix with Cross Spectras | |
1554 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 |
|
1554 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |
1555 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 |
|
1555 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |
1556 | ind += 1 |
|
1556 | ind += 1 | |
1557 | Dinv=numpy.linalg.inv(D) |
|
1557 | Dinv=numpy.linalg.inv(D) | |
1558 | L=numpy.linalg.cholesky(Dinv) |
|
1558 | L=numpy.linalg.cholesky(Dinv) | |
1559 | LT=L.T |
|
1559 | LT=L.T | |
1560 |
|
1560 | |||
1561 | dp = numpy.dot(LT,d) |
|
1561 | dp = numpy.dot(LT,d) | |
1562 |
|
1562 | |||
1563 | #Initial values |
|
1563 | #Initial values | |
1564 | data_spc = self.dataIn.data_spc[coord,:,h] |
|
1564 | data_spc = self.dataIn.data_spc[coord,:,h] | |
1565 |
|
1565 | |||
1566 | if (h>0)and(error1[3]<5): |
|
1566 | if (h>0)and(error1[3]<5): | |
1567 | p0 = self.dataOut.data_param[i,:,h-1] |
|
1567 | p0 = self.dataOut.data_param[i,:,h-1] | |
1568 | else: |
|
1568 | else: | |
1569 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) |
|
1569 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) | |
1570 |
|
1570 | |||
1571 | try: |
|
1571 | try: | |
1572 | #Least Squares |
|
1572 | #Least Squares | |
1573 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) |
|
1573 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |
1574 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) |
|
1574 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |
1575 | #Chi square error |
|
1575 | #Chi square error | |
1576 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) |
|
1576 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |
1577 | #Error with Jacobian |
|
1577 | #Error with Jacobian | |
1578 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) |
|
1578 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) | |
1579 | except: |
|
1579 | except: | |
1580 | minp = p0*numpy.nan |
|
1580 | minp = p0*numpy.nan | |
1581 | error0 = numpy.nan |
|
1581 | error0 = numpy.nan | |
1582 | error1 = p0*numpy.nan |
|
1582 | error1 = p0*numpy.nan | |
1583 |
|
1583 | |||
1584 | #Save |
|
1584 | #Save | |
1585 | if self.dataOut.data_param is None: |
|
1585 | if self.dataOut.data_param is None: | |
1586 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan |
|
1586 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |
1587 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan |
|
1587 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |
1588 |
|
1588 | |||
1589 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) |
|
1589 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |
1590 | self.dataOut.data_param[i,:,h] = minp |
|
1590 | self.dataOut.data_param[i,:,h] = minp | |
1591 | return |
|
1591 | return | |
1592 |
|
1592 | |||
1593 | def __residFunction(self, p, dp, LT, constants): |
|
1593 | def __residFunction(self, p, dp, LT, constants): | |
1594 |
|
1594 | |||
1595 | fm = self.dataOut.library.modelFunction(p, constants) |
|
1595 | fm = self.dataOut.library.modelFunction(p, constants) | |
1596 | fmp=numpy.dot(LT,fm) |
|
1596 | fmp=numpy.dot(LT,fm) | |
1597 |
|
1597 | |||
1598 | return dp-fmp |
|
1598 | return dp-fmp | |
1599 |
|
1599 | |||
1600 | def __getSNR(self, z, noise): |
|
1600 | def __getSNR(self, z, noise): | |
1601 |
|
1601 | |||
1602 | avg = numpy.average(z, axis=1) |
|
1602 | avg = numpy.average(z, axis=1) | |
1603 | SNR = (avg.T-noise)/noise |
|
1603 | SNR = (avg.T-noise)/noise | |
1604 | SNR = SNR.T |
|
1604 | SNR = SNR.T | |
1605 | return SNR |
|
1605 | return SNR | |
1606 |
|
1606 | |||
1607 | def __chisq(p,chindex,hindex): |
|
1607 | def __chisq(p,chindex,hindex): | |
1608 | #similar to Resid but calculates CHI**2 |
|
1608 | #similar to Resid but calculates CHI**2 | |
1609 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) |
|
1609 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |
1610 | dp=numpy.dot(LT,d) |
|
1610 | dp=numpy.dot(LT,d) | |
1611 | fmp=numpy.dot(LT,fm) |
|
1611 | fmp=numpy.dot(LT,fm) | |
1612 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) |
|
1612 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |
1613 | return chisq |
|
1613 | return chisq | |
1614 |
|
1614 | |||
1615 | class WindProfiler(Operation): |
|
1615 | class WindProfiler(Operation): | |
1616 |
|
1616 | |||
1617 | __isConfig = False |
|
1617 | __isConfig = False | |
1618 |
|
1618 | |||
1619 | __initime = None |
|
1619 | __initime = None | |
1620 | __lastdatatime = None |
|
1620 | __lastdatatime = None | |
1621 | __integrationtime = None |
|
1621 | __integrationtime = None | |
1622 |
|
1622 | |||
1623 | __buffer = None |
|
1623 | __buffer = None | |
1624 |
|
1624 | |||
1625 | __dataReady = False |
|
1625 | __dataReady = False | |
1626 |
|
1626 | |||
1627 | __firstdata = None |
|
1627 | __firstdata = None | |
1628 |
|
1628 | |||
1629 | n = None |
|
1629 | n = None | |
1630 |
|
1630 | |||
1631 | def __init__(self): |
|
1631 | def __init__(self): | |
1632 | Operation.__init__(self) |
|
1632 | Operation.__init__(self) | |
1633 |
|
1633 | |||
1634 | def __calculateCosDir(self, elev, azim): |
|
1634 | def __calculateCosDir(self, elev, azim): | |
1635 | zen = (90 - elev)*numpy.pi/180 |
|
1635 | zen = (90 - elev)*numpy.pi/180 | |
1636 | azim = azim*numpy.pi/180 |
|
1636 | azim = azim*numpy.pi/180 | |
1637 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) |
|
1637 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |
1638 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) |
|
1638 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |
1639 |
|
1639 | |||
1640 | signX = numpy.sign(numpy.cos(azim)) |
|
1640 | signX = numpy.sign(numpy.cos(azim)) | |
1641 | signY = numpy.sign(numpy.sin(azim)) |
|
1641 | signY = numpy.sign(numpy.sin(azim)) | |
1642 |
|
1642 | |||
1643 | cosDirX = numpy.copysign(cosDirX, signX) |
|
1643 | cosDirX = numpy.copysign(cosDirX, signX) | |
1644 | cosDirY = numpy.copysign(cosDirY, signY) |
|
1644 | cosDirY = numpy.copysign(cosDirY, signY) | |
1645 | return cosDirX, cosDirY |
|
1645 | return cosDirX, cosDirY | |
1646 |
|
1646 | |||
1647 | def __calculateAngles(self, theta_x, theta_y, azimuth): |
|
1647 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |
1648 |
|
1648 | |||
1649 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) |
|
1649 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |
1650 | zenith_arr = numpy.arccos(dir_cosw) |
|
1650 | zenith_arr = numpy.arccos(dir_cosw) | |
1651 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 |
|
1651 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |
1652 |
|
1652 | |||
1653 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) |
|
1653 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |
1654 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) |
|
1654 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |
1655 |
|
1655 | |||
1656 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw |
|
1656 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |
1657 |
|
1657 | |||
1658 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): |
|
1658 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |
1659 |
|
1659 | |||
1660 | # |
|
1660 | # | |
1661 | if horOnly: |
|
1661 | if horOnly: | |
1662 | A = numpy.c_[dir_cosu,dir_cosv] |
|
1662 | A = numpy.c_[dir_cosu,dir_cosv] | |
1663 | else: |
|
1663 | else: | |
1664 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] |
|
1664 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] | |
1665 | A = numpy.asmatrix(A) |
|
1665 | A = numpy.asmatrix(A) | |
1666 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() |
|
1666 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() | |
1667 |
|
1667 | |||
1668 | return A1 |
|
1668 | return A1 | |
1669 |
|
1669 | |||
1670 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
1670 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
1671 | listPhi = phi.tolist() |
|
1671 | listPhi = phi.tolist() | |
1672 | maxid = listPhi.index(max(listPhi)) |
|
1672 | maxid = listPhi.index(max(listPhi)) | |
1673 | minid = listPhi.index(min(listPhi)) |
|
1673 | minid = listPhi.index(min(listPhi)) | |
1674 |
|
1674 | |||
1675 | rango = list(range(len(phi))) |
|
1675 | rango = list(range(len(phi))) | |
1676 | # rango = numpy.delete(rango,maxid) |
|
1676 | # rango = numpy.delete(rango,maxid) | |
1677 |
|
1677 | |||
1678 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
1678 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
1679 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
1679 | heiRangAux = heiRang*math.cos(phi[minid]) | |
1680 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
1680 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
1681 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
1681 | heiRang1 = numpy.delete(heiRang1,indOut) | |
1682 |
|
1682 | |||
1683 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1683 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1684 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1684 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1685 |
|
1685 | |||
1686 | for i in rango: |
|
1686 | for i in rango: | |
1687 | x = heiRang*math.cos(phi[i]) |
|
1687 | x = heiRang*math.cos(phi[i]) | |
1688 | y1 = velRadial[i,:] |
|
1688 | y1 = velRadial[i,:] | |
1689 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
1689 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
1690 |
|
1690 | |||
1691 | x1 = heiRang1 |
|
1691 | x1 = heiRang1 | |
1692 | y11 = f1(x1) |
|
1692 | y11 = f1(x1) | |
1693 |
|
1693 | |||
1694 | y2 = SNR[i,:] |
|
1694 | y2 = SNR[i,:] | |
1695 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
1695 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
1696 | y21 = f2(x1) |
|
1696 | y21 = f2(x1) | |
1697 |
|
1697 | |||
1698 | velRadial1[i,:] = y11 |
|
1698 | velRadial1[i,:] = y11 | |
1699 | SNR1[i,:] = y21 |
|
1699 | SNR1[i,:] = y21 | |
1700 |
|
1700 | |||
1701 | return heiRang1, velRadial1, SNR1 |
|
1701 | return heiRang1, velRadial1, SNR1 | |
1702 |
|
1702 | |||
1703 | def __calculateVelUVW(self, A, velRadial): |
|
1703 | def __calculateVelUVW(self, A, velRadial): | |
1704 |
|
1704 | |||
1705 | #Operacion Matricial |
|
1705 | #Operacion Matricial | |
1706 | # velUVW = numpy.zeros((velRadial.shape[1],3)) |
|
1706 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |
1707 | # for ind in range(velRadial.shape[1]): |
|
1707 | # for ind in range(velRadial.shape[1]): | |
1708 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) |
|
1708 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) | |
1709 | # velUVW = velUVW.transpose() |
|
1709 | # velUVW = velUVW.transpose() | |
1710 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) |
|
1710 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |
1711 | velUVW[:,:] = numpy.dot(A,velRadial) |
|
1711 | velUVW[:,:] = numpy.dot(A,velRadial) | |
1712 |
|
1712 | |||
1713 |
|
1713 | |||
1714 | return velUVW |
|
1714 | return velUVW | |
1715 |
|
1715 | |||
1716 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): |
|
1716 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |
1717 |
|
1717 | |||
1718 | def techniqueDBS(self, kwargs): |
|
1718 | def techniqueDBS(self, kwargs): | |
1719 | """ |
|
1719 | """ | |
1720 | Function that implements Doppler Beam Swinging (DBS) technique. |
|
1720 | Function that implements Doppler Beam Swinging (DBS) technique. | |
1721 |
|
1721 | |||
1722 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1722 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1723 | Direction correction (if necessary), Ranges and SNR |
|
1723 | Direction correction (if necessary), Ranges and SNR | |
1724 |
|
1724 | |||
1725 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1725 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1726 |
|
1726 | |||
1727 | Parameters affected: Winds, height range, SNR |
|
1727 | Parameters affected: Winds, height range, SNR | |
1728 | """ |
|
1728 | """ | |
1729 | velRadial0 = kwargs['velRadial'] |
|
1729 | velRadial0 = kwargs['velRadial'] | |
1730 | heiRang = kwargs['heightList'] |
|
1730 | heiRang = kwargs['heightList'] | |
1731 | SNR0 = kwargs['SNR'] |
|
1731 | SNR0 = kwargs['SNR'] | |
1732 |
|
1732 | |||
1733 | if 'dirCosx' in kwargs and 'dirCosy' in kwargs: |
|
1733 | if 'dirCosx' in kwargs and 'dirCosy' in kwargs: | |
1734 | theta_x = numpy.array(kwargs['dirCosx']) |
|
1734 | theta_x = numpy.array(kwargs['dirCosx']) | |
1735 | theta_y = numpy.array(kwargs['dirCosy']) |
|
1735 | theta_y = numpy.array(kwargs['dirCosy']) | |
1736 | else: |
|
1736 | else: | |
1737 | elev = numpy.array(kwargs['elevation']) |
|
1737 | elev = numpy.array(kwargs['elevation']) | |
1738 | azim = numpy.array(kwargs['azimuth']) |
|
1738 | azim = numpy.array(kwargs['azimuth']) | |
1739 | theta_x, theta_y = self.__calculateCosDir(elev, azim) |
|
1739 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |
1740 | azimuth = kwargs['correctAzimuth'] |
|
1740 | azimuth = kwargs['correctAzimuth'] | |
1741 | if 'horizontalOnly' in kwargs: |
|
1741 | if 'horizontalOnly' in kwargs: | |
1742 | horizontalOnly = kwargs['horizontalOnly'] |
|
1742 | horizontalOnly = kwargs['horizontalOnly'] | |
1743 | else: horizontalOnly = False |
|
1743 | else: horizontalOnly = False | |
1744 | if 'correctFactor' in kwargs: |
|
1744 | if 'correctFactor' in kwargs: | |
1745 | correctFactor = kwargs['correctFactor'] |
|
1745 | correctFactor = kwargs['correctFactor'] | |
1746 | else: correctFactor = 1 |
|
1746 | else: correctFactor = 1 | |
1747 | if 'channelList' in kwargs: |
|
1747 | if 'channelList' in kwargs: | |
1748 | channelList = kwargs['channelList'] |
|
1748 | channelList = kwargs['channelList'] | |
1749 | if len(channelList) == 2: |
|
1749 | if len(channelList) == 2: | |
1750 | horizontalOnly = True |
|
1750 | horizontalOnly = True | |
1751 | arrayChannel = numpy.array(channelList) |
|
1751 | arrayChannel = numpy.array(channelList) | |
1752 | param = param[arrayChannel,:,:] |
|
1752 | param = param[arrayChannel,:,:] | |
1753 | theta_x = theta_x[arrayChannel] |
|
1753 | theta_x = theta_x[arrayChannel] | |
1754 | theta_y = theta_y[arrayChannel] |
|
1754 | theta_y = theta_y[arrayChannel] | |
1755 |
|
1755 | |||
1756 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
1756 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
1757 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) |
|
1757 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) | |
1758 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) |
|
1758 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |
1759 |
|
1759 | |||
1760 | #Calculo de Componentes de la velocidad con DBS |
|
1760 | #Calculo de Componentes de la velocidad con DBS | |
1761 | winds = self.__calculateVelUVW(A,velRadial1) |
|
1761 | winds = self.__calculateVelUVW(A,velRadial1) | |
1762 |
|
1762 | |||
1763 | return winds, heiRang1, SNR1 |
|
1763 | return winds, heiRang1, SNR1 | |
1764 |
|
1764 | |||
1765 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): |
|
1765 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): | |
1766 |
|
1766 | |||
1767 | nPairs = len(pairs_ccf) |
|
1767 | nPairs = len(pairs_ccf) | |
1768 | posx = numpy.asarray(posx) |
|
1768 | posx = numpy.asarray(posx) | |
1769 | posy = numpy.asarray(posy) |
|
1769 | posy = numpy.asarray(posy) | |
1770 |
|
1770 | |||
1771 | #Rotacion Inversa para alinear con el azimuth |
|
1771 | #Rotacion Inversa para alinear con el azimuth | |
1772 | if azimuth!= None: |
|
1772 | if azimuth!= None: | |
1773 | azimuth = azimuth*math.pi/180 |
|
1773 | azimuth = azimuth*math.pi/180 | |
1774 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) |
|
1774 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) | |
1775 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) |
|
1775 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) | |
1776 | else: |
|
1776 | else: | |
1777 | posx1 = posx |
|
1777 | posx1 = posx | |
1778 | posy1 = posy |
|
1778 | posy1 = posy | |
1779 |
|
1779 | |||
1780 | #Calculo de Distancias |
|
1780 | #Calculo de Distancias | |
1781 | distx = numpy.zeros(nPairs) |
|
1781 | distx = numpy.zeros(nPairs) | |
1782 | disty = numpy.zeros(nPairs) |
|
1782 | disty = numpy.zeros(nPairs) | |
1783 | dist = numpy.zeros(nPairs) |
|
1783 | dist = numpy.zeros(nPairs) | |
1784 | ang = numpy.zeros(nPairs) |
|
1784 | ang = numpy.zeros(nPairs) | |
1785 |
|
1785 | |||
1786 | for i in range(nPairs): |
|
1786 | for i in range(nPairs): | |
1787 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] |
|
1787 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] | |
1788 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] |
|
1788 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] | |
1789 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) |
|
1789 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |
1790 | ang[i] = numpy.arctan2(disty[i],distx[i]) |
|
1790 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |
1791 |
|
1791 | |||
1792 | return distx, disty, dist, ang |
|
1792 | return distx, disty, dist, ang | |
1793 | #Calculo de Matrices |
|
1793 | #Calculo de Matrices | |
1794 | # nPairs = len(pairs) |
|
1794 | # nPairs = len(pairs) | |
1795 | # ang1 = numpy.zeros((nPairs, 2, 1)) |
|
1795 | # ang1 = numpy.zeros((nPairs, 2, 1)) | |
1796 | # dist1 = numpy.zeros((nPairs, 2, 1)) |
|
1796 | # dist1 = numpy.zeros((nPairs, 2, 1)) | |
1797 | # |
|
1797 | # | |
1798 | # for j in range(nPairs): |
|
1798 | # for j in range(nPairs): | |
1799 | # dist1[j,0,0] = dist[pairs[j][0]] |
|
1799 | # dist1[j,0,0] = dist[pairs[j][0]] | |
1800 | # dist1[j,1,0] = dist[pairs[j][1]] |
|
1800 | # dist1[j,1,0] = dist[pairs[j][1]] | |
1801 | # ang1[j,0,0] = ang[pairs[j][0]] |
|
1801 | # ang1[j,0,0] = ang[pairs[j][0]] | |
1802 | # ang1[j,1,0] = ang[pairs[j][1]] |
|
1802 | # ang1[j,1,0] = ang[pairs[j][1]] | |
1803 | # |
|
1803 | # | |
1804 | # return distx,disty, dist1,ang1 |
|
1804 | # return distx,disty, dist1,ang1 | |
1805 |
|
1805 | |||
1806 |
|
1806 | |||
1807 | def __calculateVelVer(self, phase, lagTRange, _lambda): |
|
1807 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |
1808 |
|
1808 | |||
1809 | Ts = lagTRange[1] - lagTRange[0] |
|
1809 | Ts = lagTRange[1] - lagTRange[0] | |
1810 | velW = -_lambda*phase/(4*math.pi*Ts) |
|
1810 | velW = -_lambda*phase/(4*math.pi*Ts) | |
1811 |
|
1811 | |||
1812 | return velW |
|
1812 | return velW | |
1813 |
|
1813 | |||
1814 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): |
|
1814 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |
1815 | nPairs = tau1.shape[0] |
|
1815 | nPairs = tau1.shape[0] | |
1816 | nHeights = tau1.shape[1] |
|
1816 | nHeights = tau1.shape[1] | |
1817 | vel = numpy.zeros((nPairs,3,nHeights)) |
|
1817 | vel = numpy.zeros((nPairs,3,nHeights)) | |
1818 | dist1 = numpy.reshape(dist, (dist.size,1)) |
|
1818 | dist1 = numpy.reshape(dist, (dist.size,1)) | |
1819 |
|
1819 | |||
1820 | angCos = numpy.cos(ang) |
|
1820 | angCos = numpy.cos(ang) | |
1821 | angSin = numpy.sin(ang) |
|
1821 | angSin = numpy.sin(ang) | |
1822 |
|
1822 | |||
1823 | vel0 = dist1*tau1/(2*tau2**2) |
|
1823 | vel0 = dist1*tau1/(2*tau2**2) | |
1824 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) |
|
1824 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |
1825 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) |
|
1825 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |
1826 |
|
1826 | |||
1827 | ind = numpy.where(numpy.isinf(vel)) |
|
1827 | ind = numpy.where(numpy.isinf(vel)) | |
1828 | vel[ind] = numpy.nan |
|
1828 | vel[ind] = numpy.nan | |
1829 |
|
1829 | |||
1830 | return vel |
|
1830 | return vel | |
1831 |
|
1831 | |||
1832 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1832 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
1833 | # |
|
1833 | # | |
1834 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1834 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1835 | # |
|
1835 | # | |
1836 | # for l in range(len(pairsList)): |
|
1836 | # for l in range(len(pairsList)): | |
1837 | # firstChannel = pairsList[l][0] |
|
1837 | # firstChannel = pairsList[l][0] | |
1838 | # secondChannel = pairsList[l][1] |
|
1838 | # secondChannel = pairsList[l][1] | |
1839 | # |
|
1839 | # | |
1840 | # #Obteniendo pares de Autocorrelacion |
|
1840 | # #Obteniendo pares de Autocorrelacion | |
1841 | # if firstChannel == secondChannel: |
|
1841 | # if firstChannel == secondChannel: | |
1842 | # pairsAutoCorr[firstChannel] = int(l) |
|
1842 | # pairsAutoCorr[firstChannel] = int(l) | |
1843 | # |
|
1843 | # | |
1844 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1844 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
1845 | # |
|
1845 | # | |
1846 | # pairsCrossCorr = range(len(pairsList)) |
|
1846 | # pairsCrossCorr = range(len(pairsList)) | |
1847 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1847 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1848 | # |
|
1848 | # | |
1849 | # return pairsAutoCorr, pairsCrossCorr |
|
1849 | # return pairsAutoCorr, pairsCrossCorr | |
1850 |
|
1850 | |||
1851 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): |
|
1851 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |
1852 | def techniqueSA(self, kwargs): |
|
1852 | def techniqueSA(self, kwargs): | |
1853 |
|
1853 | |||
1854 | """ |
|
1854 | """ | |
1855 | Function that implements Spaced Antenna (SA) technique. |
|
1855 | Function that implements Spaced Antenna (SA) technique. | |
1856 |
|
1856 | |||
1857 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1857 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1858 | Direction correction (if necessary), Ranges and SNR |
|
1858 | Direction correction (if necessary), Ranges and SNR | |
1859 |
|
1859 | |||
1860 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1860 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1861 |
|
1861 | |||
1862 | Parameters affected: Winds |
|
1862 | Parameters affected: Winds | |
1863 | """ |
|
1863 | """ | |
1864 | position_x = kwargs['positionX'] |
|
1864 | position_x = kwargs['positionX'] | |
1865 | position_y = kwargs['positionY'] |
|
1865 | position_y = kwargs['positionY'] | |
1866 | azimuth = kwargs['azimuth'] |
|
1866 | azimuth = kwargs['azimuth'] | |
1867 |
|
1867 | |||
1868 | if 'correctFactor' in kwargs: |
|
1868 | if 'correctFactor' in kwargs: | |
1869 | correctFactor = kwargs['correctFactor'] |
|
1869 | correctFactor = kwargs['correctFactor'] | |
1870 | else: |
|
1870 | else: | |
1871 | correctFactor = 1 |
|
1871 | correctFactor = 1 | |
1872 |
|
1872 | |||
1873 | groupList = kwargs['groupList'] |
|
1873 | groupList = kwargs['groupList'] | |
1874 | pairs_ccf = groupList[1] |
|
1874 | pairs_ccf = groupList[1] | |
1875 | tau = kwargs['tau'] |
|
1875 | tau = kwargs['tau'] | |
1876 | _lambda = kwargs['_lambda'] |
|
1876 | _lambda = kwargs['_lambda'] | |
1877 |
|
1877 | |||
1878 | #Cross Correlation pairs obtained |
|
1878 | #Cross Correlation pairs obtained | |
1879 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) |
|
1879 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) | |
1880 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] |
|
1880 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |
1881 | # pairsSelArray = numpy.array(pairsSelected) |
|
1881 | # pairsSelArray = numpy.array(pairsSelected) | |
1882 | # pairs = [] |
|
1882 | # pairs = [] | |
1883 | # |
|
1883 | # | |
1884 | # #Wind estimation pairs obtained |
|
1884 | # #Wind estimation pairs obtained | |
1885 | # for i in range(pairsSelArray.shape[0]/2): |
|
1885 | # for i in range(pairsSelArray.shape[0]/2): | |
1886 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] |
|
1886 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |
1887 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] |
|
1887 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |
1888 | # pairs.append((ind1,ind2)) |
|
1888 | # pairs.append((ind1,ind2)) | |
1889 |
|
1889 | |||
1890 | indtau = tau.shape[0]/2 |
|
1890 | indtau = tau.shape[0]/2 | |
1891 | tau1 = tau[:indtau,:] |
|
1891 | tau1 = tau[:indtau,:] | |
1892 | tau2 = tau[indtau:-1,:] |
|
1892 | tau2 = tau[indtau:-1,:] | |
1893 | # tau1 = tau1[pairs,:] |
|
1893 | # tau1 = tau1[pairs,:] | |
1894 | # tau2 = tau2[pairs,:] |
|
1894 | # tau2 = tau2[pairs,:] | |
1895 | phase1 = tau[-1,:] |
|
1895 | phase1 = tau[-1,:] | |
1896 |
|
1896 | |||
1897 | #--------------------------------------------------------------------- |
|
1897 | #--------------------------------------------------------------------- | |
1898 | #Metodo Directo |
|
1898 | #Metodo Directo | |
1899 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) |
|
1899 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) | |
1900 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) |
|
1900 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |
1901 | winds = stats.nanmean(winds, axis=0) |
|
1901 | winds = stats.nanmean(winds, axis=0) | |
1902 | #--------------------------------------------------------------------- |
|
1902 | #--------------------------------------------------------------------- | |
1903 | #Metodo General |
|
1903 | #Metodo General | |
1904 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) |
|
1904 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) | |
1905 | # #Calculo Coeficientes de Funcion de Correlacion |
|
1905 | # #Calculo Coeficientes de Funcion de Correlacion | |
1906 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) |
|
1906 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) | |
1907 | # #Calculo de Velocidades |
|
1907 | # #Calculo de Velocidades | |
1908 | # winds = self.calculateVelUV(F,G,A,B,H) |
|
1908 | # winds = self.calculateVelUV(F,G,A,B,H) | |
1909 |
|
1909 | |||
1910 | #--------------------------------------------------------------------- |
|
1910 | #--------------------------------------------------------------------- | |
1911 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) |
|
1911 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |
1912 | winds = correctFactor*winds |
|
1912 | winds = correctFactor*winds | |
1913 | return winds |
|
1913 | return winds | |
1914 |
|
1914 | |||
1915 | def __checkTime(self, currentTime, paramInterval, outputInterval): |
|
1915 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |
1916 |
|
1916 | |||
1917 | dataTime = currentTime + paramInterval |
|
1917 | dataTime = currentTime + paramInterval | |
1918 | deltaTime = dataTime - self.__initime |
|
1918 | deltaTime = dataTime - self.__initime | |
1919 |
|
1919 | |||
1920 | if deltaTime >= outputInterval or deltaTime < 0: |
|
1920 | if deltaTime >= outputInterval or deltaTime < 0: | |
1921 | self.__dataReady = True |
|
1921 | self.__dataReady = True | |
1922 | return |
|
1922 | return | |
1923 |
|
1923 | |||
1924 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): |
|
1924 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |
1925 | ''' |
|
1925 | ''' | |
1926 | Function that implements winds estimation technique with detected meteors. |
|
1926 | Function that implements winds estimation technique with detected meteors. | |
1927 |
|
1927 | |||
1928 | Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
1928 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |
1929 |
|
1929 | |||
1930 | Output: Winds estimation (Zonal and Meridional) |
|
1930 | Output: Winds estimation (Zonal and Meridional) | |
1931 |
|
1931 | |||
1932 | Parameters affected: Winds |
|
1932 | Parameters affected: Winds | |
1933 | ''' |
|
1933 | ''' | |
1934 | #Settings |
|
1934 | #Settings | |
1935 | nInt = (heightMax - heightMin)/2 |
|
1935 | nInt = (heightMax - heightMin)/2 | |
1936 | nInt = int(nInt) |
|
1936 | nInt = int(nInt) | |
1937 | winds = numpy.zeros((2,nInt))*numpy.nan |
|
1937 | winds = numpy.zeros((2,nInt))*numpy.nan | |
1938 |
|
1938 | |||
1939 | #Filter errors |
|
1939 | #Filter errors | |
1940 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] |
|
1940 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] | |
1941 | finalMeteor = arrayMeteor[error,:] |
|
1941 | finalMeteor = arrayMeteor[error,:] | |
1942 |
|
1942 | |||
1943 | #Meteor Histogram |
|
1943 | #Meteor Histogram | |
1944 | finalHeights = finalMeteor[:,2] |
|
1944 | finalHeights = finalMeteor[:,2] | |
1945 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) |
|
1945 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |
1946 | nMeteorsPerI = hist[0] |
|
1946 | nMeteorsPerI = hist[0] | |
1947 | heightPerI = hist[1] |
|
1947 | heightPerI = hist[1] | |
1948 |
|
1948 | |||
1949 | #Sort of meteors |
|
1949 | #Sort of meteors | |
1950 | indSort = finalHeights.argsort() |
|
1950 | indSort = finalHeights.argsort() | |
1951 | finalMeteor2 = finalMeteor[indSort,:] |
|
1951 | finalMeteor2 = finalMeteor[indSort,:] | |
1952 |
|
1952 | |||
1953 | # Calculating winds |
|
1953 | # Calculating winds | |
1954 | ind1 = 0 |
|
1954 | ind1 = 0 | |
1955 | ind2 = 0 |
|
1955 | ind2 = 0 | |
1956 |
|
1956 | |||
1957 | for i in range(nInt): |
|
1957 | for i in range(nInt): | |
1958 | nMet = nMeteorsPerI[i] |
|
1958 | nMet = nMeteorsPerI[i] | |
1959 | ind1 = ind2 |
|
1959 | ind1 = ind2 | |
1960 | ind2 = ind1 + nMet |
|
1960 | ind2 = ind1 + nMet | |
1961 |
|
1961 | |||
1962 | meteorAux = finalMeteor2[ind1:ind2,:] |
|
1962 | meteorAux = finalMeteor2[ind1:ind2,:] | |
1963 |
|
1963 | |||
1964 | if meteorAux.shape[0] >= meteorThresh: |
|
1964 | if meteorAux.shape[0] >= meteorThresh: | |
1965 | vel = meteorAux[:, 6] |
|
1965 | vel = meteorAux[:, 6] | |
1966 | zen = meteorAux[:, 4]*numpy.pi/180 |
|
1966 | zen = meteorAux[:, 4]*numpy.pi/180 | |
1967 | azim = meteorAux[:, 3]*numpy.pi/180 |
|
1967 | azim = meteorAux[:, 3]*numpy.pi/180 | |
1968 |
|
1968 | |||
1969 | n = numpy.cos(zen) |
|
1969 | n = numpy.cos(zen) | |
1970 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) |
|
1970 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |
1971 | # l = m*numpy.tan(azim) |
|
1971 | # l = m*numpy.tan(azim) | |
1972 | l = numpy.sin(zen)*numpy.sin(azim) |
|
1972 | l = numpy.sin(zen)*numpy.sin(azim) | |
1973 | m = numpy.sin(zen)*numpy.cos(azim) |
|
1973 | m = numpy.sin(zen)*numpy.cos(azim) | |
1974 |
|
1974 | |||
1975 | A = numpy.vstack((l, m)).transpose() |
|
1975 | A = numpy.vstack((l, m)).transpose() | |
1976 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) |
|
1976 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |
1977 | windsAux = numpy.dot(A1, vel) |
|
1977 | windsAux = numpy.dot(A1, vel) | |
1978 |
|
1978 | |||
1979 | winds[0,i] = windsAux[0] |
|
1979 | winds[0,i] = windsAux[0] | |
1980 | winds[1,i] = windsAux[1] |
|
1980 | winds[1,i] = windsAux[1] | |
1981 |
|
1981 | |||
1982 | return winds, heightPerI[:-1] |
|
1982 | return winds, heightPerI[:-1] | |
1983 |
|
1983 | |||
1984 | def techniqueNSM_SA(self, **kwargs): |
|
1984 | def techniqueNSM_SA(self, **kwargs): | |
1985 | metArray = kwargs['metArray'] |
|
1985 | metArray = kwargs['metArray'] | |
1986 | heightList = kwargs['heightList'] |
|
1986 | heightList = kwargs['heightList'] | |
1987 | timeList = kwargs['timeList'] |
|
1987 | timeList = kwargs['timeList'] | |
1988 |
|
1988 | |||
1989 | rx_location = kwargs['rx_location'] |
|
1989 | rx_location = kwargs['rx_location'] | |
1990 | groupList = kwargs['groupList'] |
|
1990 | groupList = kwargs['groupList'] | |
1991 | azimuth = kwargs['azimuth'] |
|
1991 | azimuth = kwargs['azimuth'] | |
1992 | dfactor = kwargs['dfactor'] |
|
1992 | dfactor = kwargs['dfactor'] | |
1993 | k = kwargs['k'] |
|
1993 | k = kwargs['k'] | |
1994 |
|
1994 | |||
1995 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) |
|
1995 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) | |
1996 | d = dist*dfactor |
|
1996 | d = dist*dfactor | |
1997 | #Phase calculation |
|
1997 | #Phase calculation | |
1998 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) |
|
1998 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) | |
1999 |
|
1999 | |||
2000 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities |
|
2000 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities | |
2001 |
|
2001 | |||
2002 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
2002 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
2003 | azimuth1 = azimuth1*numpy.pi/180 |
|
2003 | azimuth1 = azimuth1*numpy.pi/180 | |
2004 |
|
2004 | |||
2005 | for i in range(heightList.size): |
|
2005 | for i in range(heightList.size): | |
2006 | h = heightList[i] |
|
2006 | h = heightList[i] | |
2007 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] |
|
2007 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] | |
2008 | metHeight = metArray1[indH,:] |
|
2008 | metHeight = metArray1[indH,:] | |
2009 | if metHeight.shape[0] >= 2: |
|
2009 | if metHeight.shape[0] >= 2: | |
2010 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities |
|
2010 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities | |
2011 | iazim = metHeight[:,1].astype(int) |
|
2011 | iazim = metHeight[:,1].astype(int) | |
2012 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths |
|
2012 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths | |
2013 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) |
|
2013 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) | |
2014 | A = numpy.asmatrix(A) |
|
2014 | A = numpy.asmatrix(A) | |
2015 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() |
|
2015 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() | |
2016 | velHor = numpy.dot(A1,velAux) |
|
2016 | velHor = numpy.dot(A1,velAux) | |
2017 |
|
2017 | |||
2018 | velEst[i,:] = numpy.squeeze(velHor) |
|
2018 | velEst[i,:] = numpy.squeeze(velHor) | |
2019 | return velEst |
|
2019 | return velEst | |
2020 |
|
2020 | |||
2021 | def __getPhaseSlope(self, metArray, heightList, timeList): |
|
2021 | def __getPhaseSlope(self, metArray, heightList, timeList): | |
2022 | meteorList = [] |
|
2022 | meteorList = [] | |
2023 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 |
|
2023 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 | |
2024 | #Putting back together the meteor matrix |
|
2024 | #Putting back together the meteor matrix | |
2025 | utctime = metArray[:,0] |
|
2025 | utctime = metArray[:,0] | |
2026 | uniqueTime = numpy.unique(utctime) |
|
2026 | uniqueTime = numpy.unique(utctime) | |
2027 |
|
2027 | |||
2028 | phaseDerThresh = 0.5 |
|
2028 | phaseDerThresh = 0.5 | |
2029 | ippSeconds = timeList[1] - timeList[0] |
|
2029 | ippSeconds = timeList[1] - timeList[0] | |
2030 | sec = numpy.where(timeList>1)[0][0] |
|
2030 | sec = numpy.where(timeList>1)[0][0] | |
2031 | nPairs = metArray.shape[1] - 6 |
|
2031 | nPairs = metArray.shape[1] - 6 | |
2032 | nHeights = len(heightList) |
|
2032 | nHeights = len(heightList) | |
2033 |
|
2033 | |||
2034 | for t in uniqueTime: |
|
2034 | for t in uniqueTime: | |
2035 | metArray1 = metArray[utctime==t,:] |
|
2035 | metArray1 = metArray[utctime==t,:] | |
2036 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh |
|
2036 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh | |
2037 | tmet = metArray1[:,1].astype(int) |
|
2037 | tmet = metArray1[:,1].astype(int) | |
2038 | hmet = metArray1[:,2].astype(int) |
|
2038 | hmet = metArray1[:,2].astype(int) | |
2039 |
|
2039 | |||
2040 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) |
|
2040 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) | |
2041 | metPhase[:,:] = numpy.nan |
|
2041 | metPhase[:,:] = numpy.nan | |
2042 | metPhase[:,hmet,tmet] = metArray1[:,6:].T |
|
2042 | metPhase[:,hmet,tmet] = metArray1[:,6:].T | |
2043 |
|
2043 | |||
2044 | #Delete short trails |
|
2044 | #Delete short trails | |
2045 | metBool = ~numpy.isnan(metPhase[0,:,:]) |
|
2045 | metBool = ~numpy.isnan(metPhase[0,:,:]) | |
2046 | heightVect = numpy.sum(metBool, axis = 1) |
|
2046 | heightVect = numpy.sum(metBool, axis = 1) | |
2047 | metBool[heightVect<sec,:] = False |
|
2047 | metBool[heightVect<sec,:] = False | |
2048 | metPhase[:,heightVect<sec,:] = numpy.nan |
|
2048 | metPhase[:,heightVect<sec,:] = numpy.nan | |
2049 |
|
2049 | |||
2050 | #Derivative |
|
2050 | #Derivative | |
2051 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) |
|
2051 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) | |
2052 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) |
|
2052 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) | |
2053 | metPhase[phDerAux] = numpy.nan |
|
2053 | metPhase[phDerAux] = numpy.nan | |
2054 |
|
2054 | |||
2055 | #--------------------------METEOR DETECTION ----------------------------------------- |
|
2055 | #--------------------------METEOR DETECTION ----------------------------------------- | |
2056 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] |
|
2056 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] | |
2057 |
|
2057 | |||
2058 | for p in numpy.arange(nPairs): |
|
2058 | for p in numpy.arange(nPairs): | |
2059 | phase = metPhase[p,:,:] |
|
2059 | phase = metPhase[p,:,:] | |
2060 | phDer = metDer[p,:,:] |
|
2060 | phDer = metDer[p,:,:] | |
2061 |
|
2061 | |||
2062 | for h in indMet: |
|
2062 | for h in indMet: | |
2063 | height = heightList[h] |
|
2063 | height = heightList[h] | |
2064 | phase1 = phase[h,:] #82 |
|
2064 | phase1 = phase[h,:] #82 | |
2065 | phDer1 = phDer[h,:] |
|
2065 | phDer1 = phDer[h,:] | |
2066 |
|
2066 | |||
2067 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap |
|
2067 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap | |
2068 |
|
2068 | |||
2069 | indValid = numpy.where(~numpy.isnan(phase1))[0] |
|
2069 | indValid = numpy.where(~numpy.isnan(phase1))[0] | |
2070 | initMet = indValid[0] |
|
2070 | initMet = indValid[0] | |
2071 | endMet = 0 |
|
2071 | endMet = 0 | |
2072 |
|
2072 | |||
2073 | for i in range(len(indValid)-1): |
|
2073 | for i in range(len(indValid)-1): | |
2074 |
|
2074 | |||
2075 | #Time difference |
|
2075 | #Time difference | |
2076 | inow = indValid[i] |
|
2076 | inow = indValid[i] | |
2077 | inext = indValid[i+1] |
|
2077 | inext = indValid[i+1] | |
2078 | idiff = inext - inow |
|
2078 | idiff = inext - inow | |
2079 | #Phase difference |
|
2079 | #Phase difference | |
2080 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) |
|
2080 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) | |
2081 |
|
2081 | |||
2082 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor |
|
2082 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor | |
2083 | sizeTrail = inow - initMet + 1 |
|
2083 | sizeTrail = inow - initMet + 1 | |
2084 | if sizeTrail>3*sec: #Too short meteors |
|
2084 | if sizeTrail>3*sec: #Too short meteors | |
2085 | x = numpy.arange(initMet,inow+1)*ippSeconds |
|
2085 | x = numpy.arange(initMet,inow+1)*ippSeconds | |
2086 | y = phase1[initMet:inow+1] |
|
2086 | y = phase1[initMet:inow+1] | |
2087 | ynnan = ~numpy.isnan(y) |
|
2087 | ynnan = ~numpy.isnan(y) | |
2088 | x = x[ynnan] |
|
2088 | x = x[ynnan] | |
2089 | y = y[ynnan] |
|
2089 | y = y[ynnan] | |
2090 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) |
|
2090 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) | |
2091 | ylin = x*slope + intercept |
|
2091 | ylin = x*slope + intercept | |
2092 | rsq = r_value**2 |
|
2092 | rsq = r_value**2 | |
2093 | if rsq > 0.5: |
|
2093 | if rsq > 0.5: | |
2094 | vel = slope#*height*1000/(k*d) |
|
2094 | vel = slope#*height*1000/(k*d) | |
2095 | estAux = numpy.array([utctime,p,height, vel, rsq]) |
|
2095 | estAux = numpy.array([utctime,p,height, vel, rsq]) | |
2096 | meteorList.append(estAux) |
|
2096 | meteorList.append(estAux) | |
2097 | initMet = inext |
|
2097 | initMet = inext | |
2098 | metArray2 = numpy.array(meteorList) |
|
2098 | metArray2 = numpy.array(meteorList) | |
2099 |
|
2099 | |||
2100 | return metArray2 |
|
2100 | return metArray2 | |
2101 |
|
2101 | |||
2102 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): |
|
2102 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): | |
2103 |
|
2103 | |||
2104 | azimuth1 = numpy.zeros(len(pairslist)) |
|
2104 | azimuth1 = numpy.zeros(len(pairslist)) | |
2105 | dist = numpy.zeros(len(pairslist)) |
|
2105 | dist = numpy.zeros(len(pairslist)) | |
2106 |
|
2106 | |||
2107 | for i in range(len(rx_location)): |
|
2107 | for i in range(len(rx_location)): | |
2108 | ch0 = pairslist[i][0] |
|
2108 | ch0 = pairslist[i][0] | |
2109 | ch1 = pairslist[i][1] |
|
2109 | ch1 = pairslist[i][1] | |
2110 |
|
2110 | |||
2111 | diffX = rx_location[ch0][0] - rx_location[ch1][0] |
|
2111 | diffX = rx_location[ch0][0] - rx_location[ch1][0] | |
2112 | diffY = rx_location[ch0][1] - rx_location[ch1][1] |
|
2112 | diffY = rx_location[ch0][1] - rx_location[ch1][1] | |
2113 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi |
|
2113 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi | |
2114 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) |
|
2114 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) | |
2115 |
|
2115 | |||
2116 | azimuth1 -= azimuth0 |
|
2116 | azimuth1 -= azimuth0 | |
2117 | return azimuth1, dist |
|
2117 | return azimuth1, dist | |
2118 |
|
2118 | |||
2119 | def techniqueNSM_DBS(self, **kwargs): |
|
2119 | def techniqueNSM_DBS(self, **kwargs): | |
2120 | metArray = kwargs['metArray'] |
|
2120 | metArray = kwargs['metArray'] | |
2121 | heightList = kwargs['heightList'] |
|
2121 | heightList = kwargs['heightList'] | |
2122 | timeList = kwargs['timeList'] |
|
2122 | timeList = kwargs['timeList'] | |
2123 | azimuth = kwargs['azimuth'] |
|
2123 | azimuth = kwargs['azimuth'] | |
2124 | theta_x = numpy.array(kwargs['theta_x']) |
|
2124 | theta_x = numpy.array(kwargs['theta_x']) | |
2125 | theta_y = numpy.array(kwargs['theta_y']) |
|
2125 | theta_y = numpy.array(kwargs['theta_y']) | |
2126 |
|
2126 | |||
2127 | utctime = metArray[:,0] |
|
2127 | utctime = metArray[:,0] | |
2128 | cmet = metArray[:,1].astype(int) |
|
2128 | cmet = metArray[:,1].astype(int) | |
2129 | hmet = metArray[:,3].astype(int) |
|
2129 | hmet = metArray[:,3].astype(int) | |
2130 | SNRmet = metArray[:,4] |
|
2130 | SNRmet = metArray[:,4] | |
2131 | vmet = metArray[:,5] |
|
2131 | vmet = metArray[:,5] | |
2132 | spcmet = metArray[:,6] |
|
2132 | spcmet = metArray[:,6] | |
2133 |
|
2133 | |||
2134 | nChan = numpy.max(cmet) + 1 |
|
2134 | nChan = numpy.max(cmet) + 1 | |
2135 | nHeights = len(heightList) |
|
2135 | nHeights = len(heightList) | |
2136 |
|
2136 | |||
2137 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
2137 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
2138 | hmet = heightList[hmet] |
|
2138 | hmet = heightList[hmet] | |
2139 | h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights |
|
2139 | h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights | |
2140 |
|
2140 | |||
2141 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
2141 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
2142 |
|
2142 | |||
2143 | for i in range(nHeights - 1): |
|
2143 | for i in range(nHeights - 1): | |
2144 | hmin = heightList[i] |
|
2144 | hmin = heightList[i] | |
2145 | hmax = heightList[i + 1] |
|
2145 | hmax = heightList[i + 1] | |
2146 |
|
2146 | |||
2147 | thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) |
|
2147 | thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) | |
2148 | indthisH = numpy.where(thisH) |
|
2148 | indthisH = numpy.where(thisH) | |
2149 |
|
2149 | |||
2150 | if numpy.size(indthisH) > 3: |
|
2150 | if numpy.size(indthisH) > 3: | |
2151 |
|
2151 | |||
2152 | vel_aux = vmet[thisH] |
|
2152 | vel_aux = vmet[thisH] | |
2153 | chan_aux = cmet[thisH] |
|
2153 | chan_aux = cmet[thisH] | |
2154 | cosu_aux = dir_cosu[chan_aux] |
|
2154 | cosu_aux = dir_cosu[chan_aux] | |
2155 | cosv_aux = dir_cosv[chan_aux] |
|
2155 | cosv_aux = dir_cosv[chan_aux] | |
2156 | cosw_aux = dir_cosw[chan_aux] |
|
2156 | cosw_aux = dir_cosw[chan_aux] | |
2157 |
|
2157 | |||
2158 | nch = numpy.size(numpy.unique(chan_aux)) |
|
2158 | nch = numpy.size(numpy.unique(chan_aux)) | |
2159 | if nch > 1: |
|
2159 | if nch > 1: | |
2160 | A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) |
|
2160 | A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) | |
2161 | velEst[i,:] = numpy.dot(A,vel_aux) |
|
2161 | velEst[i,:] = numpy.dot(A,vel_aux) | |
2162 |
|
2162 | |||
2163 | return velEst |
|
2163 | return velEst | |
2164 |
|
2164 | |||
2165 | def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): |
|
2165 | def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): | |
2166 |
|
2166 | |||
2167 | param = dataOut.data_param |
|
2167 | param = dataOut.data_param | |
2168 | if dataOut.abscissaList != None: |
|
2168 | if dataOut.abscissaList != None: | |
2169 | absc = dataOut.abscissaList[:-1] |
|
2169 | absc = dataOut.abscissaList[:-1] | |
2170 | # noise = dataOut.noise |
|
2170 | # noise = dataOut.noise | |
2171 | heightList = dataOut.heightList |
|
2171 | heightList = dataOut.heightList | |
2172 | SNR = dataOut.data_snr |
|
2172 | SNR = dataOut.data_snr | |
2173 |
|
2173 | |||
2174 | if technique == 'DBS': |
|
2174 | if technique == 'DBS': | |
2175 |
|
2175 | |||
2176 | kwargs['velRadial'] = param[:,1,:] #Radial velocity |
|
2176 | kwargs['velRadial'] = param[:,1,:] #Radial velocity | |
2177 | kwargs['heightList'] = heightList |
|
2177 | kwargs['heightList'] = heightList | |
2178 | kwargs['SNR'] = SNR |
|
2178 | kwargs['SNR'] = SNR | |
2179 |
|
2179 | |||
2180 | dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function |
|
2180 | dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function | |
2181 | dataOut.utctimeInit = dataOut.utctime |
|
2181 | dataOut.utctimeInit = dataOut.utctime | |
2182 | dataOut.outputInterval = dataOut.paramInterval |
|
2182 | dataOut.outputInterval = dataOut.paramInterval | |
2183 |
|
2183 | |||
2184 | elif technique == 'SA': |
|
2184 | elif technique == 'SA': | |
2185 |
|
2185 | |||
2186 | #Parameters |
|
2186 | #Parameters | |
2187 | # position_x = kwargs['positionX'] |
|
2187 | # position_x = kwargs['positionX'] | |
2188 | # position_y = kwargs['positionY'] |
|
2188 | # position_y = kwargs['positionY'] | |
2189 | # azimuth = kwargs['azimuth'] |
|
2189 | # azimuth = kwargs['azimuth'] | |
2190 | # |
|
2190 | # | |
2191 | # if kwargs.has_key('crosspairsList'): |
|
2191 | # if kwargs.has_key('crosspairsList'): | |
2192 | # pairs = kwargs['crosspairsList'] |
|
2192 | # pairs = kwargs['crosspairsList'] | |
2193 | # else: |
|
2193 | # else: | |
2194 | # pairs = None |
|
2194 | # pairs = None | |
2195 | # |
|
2195 | # | |
2196 | # if kwargs.has_key('correctFactor'): |
|
2196 | # if kwargs.has_key('correctFactor'): | |
2197 | # correctFactor = kwargs['correctFactor'] |
|
2197 | # correctFactor = kwargs['correctFactor'] | |
2198 | # else: |
|
2198 | # else: | |
2199 | # correctFactor = 1 |
|
2199 | # correctFactor = 1 | |
2200 |
|
2200 | |||
2201 | # tau = dataOut.data_param |
|
2201 | # tau = dataOut.data_param | |
2202 | # _lambda = dataOut.C/dataOut.frequency |
|
2202 | # _lambda = dataOut.C/dataOut.frequency | |
2203 | # pairsList = dataOut.groupList |
|
2203 | # pairsList = dataOut.groupList | |
2204 | # nChannels = dataOut.nChannels |
|
2204 | # nChannels = dataOut.nChannels | |
2205 |
|
2205 | |||
2206 | kwargs['groupList'] = dataOut.groupList |
|
2206 | kwargs['groupList'] = dataOut.groupList | |
2207 | kwargs['tau'] = dataOut.data_param |
|
2207 | kwargs['tau'] = dataOut.data_param | |
2208 | kwargs['_lambda'] = dataOut.C/dataOut.frequency |
|
2208 | kwargs['_lambda'] = dataOut.C/dataOut.frequency | |
2209 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) |
|
2209 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) | |
2210 | dataOut.data_output = self.techniqueSA(kwargs) |
|
2210 | dataOut.data_output = self.techniqueSA(kwargs) | |
2211 | dataOut.utctimeInit = dataOut.utctime |
|
2211 | dataOut.utctimeInit = dataOut.utctime | |
2212 | dataOut.outputInterval = dataOut.timeInterval |
|
2212 | dataOut.outputInterval = dataOut.timeInterval | |
2213 |
|
2213 | |||
2214 | elif technique == 'Meteors': |
|
2214 | elif technique == 'Meteors': | |
2215 | dataOut.flagNoData = True |
|
2215 | dataOut.flagNoData = True | |
2216 | self.__dataReady = False |
|
2216 | self.__dataReady = False | |
2217 |
|
2217 | |||
2218 | if 'nHours' in kwargs: |
|
2218 | if 'nHours' in kwargs: | |
2219 | nHours = kwargs['nHours'] |
|
2219 | nHours = kwargs['nHours'] | |
2220 | else: |
|
2220 | else: | |
2221 | nHours = 1 |
|
2221 | nHours = 1 | |
2222 |
|
2222 | |||
2223 | if 'meteorsPerBin' in kwargs: |
|
2223 | if 'meteorsPerBin' in kwargs: | |
2224 | meteorThresh = kwargs['meteorsPerBin'] |
|
2224 | meteorThresh = kwargs['meteorsPerBin'] | |
2225 | else: |
|
2225 | else: | |
2226 | meteorThresh = 6 |
|
2226 | meteorThresh = 6 | |
2227 |
|
2227 | |||
2228 | if 'hmin' in kwargs: |
|
2228 | if 'hmin' in kwargs: | |
2229 | hmin = kwargs['hmin'] |
|
2229 | hmin = kwargs['hmin'] | |
2230 | else: hmin = 70 |
|
2230 | else: hmin = 70 | |
2231 | if 'hmax' in kwargs: |
|
2231 | if 'hmax' in kwargs: | |
2232 | hmax = kwargs['hmax'] |
|
2232 | hmax = kwargs['hmax'] | |
2233 | else: hmax = 110 |
|
2233 | else: hmax = 110 | |
2234 |
|
2234 | |||
2235 | dataOut.outputInterval = nHours*3600 |
|
2235 | dataOut.outputInterval = nHours*3600 | |
2236 |
|
2236 | |||
2237 | if self.__isConfig == False: |
|
2237 | if self.__isConfig == False: | |
2238 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2238 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2239 | #Get Initial LTC time |
|
2239 | #Get Initial LTC time | |
2240 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2240 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2241 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2241 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2242 |
|
2242 | |||
2243 | self.__isConfig = True |
|
2243 | self.__isConfig = True | |
2244 |
|
2244 | |||
2245 | if self.__buffer is None: |
|
2245 | if self.__buffer is None: | |
2246 | self.__buffer = dataOut.data_param |
|
2246 | self.__buffer = dataOut.data_param | |
2247 | self.__firstdata = copy.copy(dataOut) |
|
2247 | self.__firstdata = copy.copy(dataOut) | |
2248 |
|
2248 | |||
2249 | else: |
|
2249 | else: | |
2250 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2250 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2251 |
|
2251 | |||
2252 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2252 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2253 |
|
2253 | |||
2254 | if self.__dataReady: |
|
2254 | if self.__dataReady: | |
2255 | dataOut.utctimeInit = self.__initime |
|
2255 | dataOut.utctimeInit = self.__initime | |
2256 |
|
2256 | |||
2257 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2257 | self.__initime += dataOut.outputInterval #to erase time offset | |
2258 |
|
2258 | |||
2259 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) |
|
2259 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |
2260 | dataOut.flagNoData = False |
|
2260 | dataOut.flagNoData = False | |
2261 | self.__buffer = None |
|
2261 | self.__buffer = None | |
2262 |
|
2262 | |||
2263 | elif technique == 'Meteors1': |
|
2263 | elif technique == 'Meteors1': | |
2264 | dataOut.flagNoData = True |
|
2264 | dataOut.flagNoData = True | |
2265 | self.__dataReady = False |
|
2265 | self.__dataReady = False | |
2266 |
|
2266 | |||
2267 | if 'nMins' in kwargs: |
|
2267 | if 'nMins' in kwargs: | |
2268 | nMins = kwargs['nMins'] |
|
2268 | nMins = kwargs['nMins'] | |
2269 | else: nMins = 20 |
|
2269 | else: nMins = 20 | |
2270 | if 'rx_location' in kwargs: |
|
2270 | if 'rx_location' in kwargs: | |
2271 | rx_location = kwargs['rx_location'] |
|
2271 | rx_location = kwargs['rx_location'] | |
2272 | else: rx_location = [(0,1),(1,1),(1,0)] |
|
2272 | else: rx_location = [(0,1),(1,1),(1,0)] | |
2273 | if 'azimuth' in kwargs: |
|
2273 | if 'azimuth' in kwargs: | |
2274 | azimuth = kwargs['azimuth'] |
|
2274 | azimuth = kwargs['azimuth'] | |
2275 | else: azimuth = 51.06 |
|
2275 | else: azimuth = 51.06 | |
2276 | if 'dfactor' in kwargs: |
|
2276 | if 'dfactor' in kwargs: | |
2277 | dfactor = kwargs['dfactor'] |
|
2277 | dfactor = kwargs['dfactor'] | |
2278 | if 'mode' in kwargs: |
|
2278 | if 'mode' in kwargs: | |
2279 | mode = kwargs['mode'] |
|
2279 | mode = kwargs['mode'] | |
2280 | if 'theta_x' in kwargs: |
|
2280 | if 'theta_x' in kwargs: | |
2281 | theta_x = kwargs['theta_x'] |
|
2281 | theta_x = kwargs['theta_x'] | |
2282 | if 'theta_y' in kwargs: |
|
2282 | if 'theta_y' in kwargs: | |
2283 | theta_y = kwargs['theta_y'] |
|
2283 | theta_y = kwargs['theta_y'] | |
2284 | else: mode = 'SA' |
|
2284 | else: mode = 'SA' | |
2285 |
|
2285 | |||
2286 | #Borrar luego esto |
|
2286 | #Borrar luego esto | |
2287 | if dataOut.groupList is None: |
|
2287 | if dataOut.groupList is None: | |
2288 | dataOut.groupList = [(0,1),(0,2),(1,2)] |
|
2288 | dataOut.groupList = [(0,1),(0,2),(1,2)] | |
2289 | groupList = dataOut.groupList |
|
2289 | groupList = dataOut.groupList | |
2290 | C = 3e8 |
|
2290 | C = 3e8 | |
2291 | freq = 50e6 |
|
2291 | freq = 50e6 | |
2292 | lamb = C/freq |
|
2292 | lamb = C/freq | |
2293 | k = 2*numpy.pi/lamb |
|
2293 | k = 2*numpy.pi/lamb | |
2294 |
|
2294 | |||
2295 | timeList = dataOut.abscissaList |
|
2295 | timeList = dataOut.abscissaList | |
2296 | heightList = dataOut.heightList |
|
2296 | heightList = dataOut.heightList | |
2297 |
|
2297 | |||
2298 | if self.__isConfig == False: |
|
2298 | if self.__isConfig == False: | |
2299 | dataOut.outputInterval = nMins*60 |
|
2299 | dataOut.outputInterval = nMins*60 | |
2300 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2300 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2301 | #Get Initial LTC time |
|
2301 | #Get Initial LTC time | |
2302 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2302 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2303 | minuteAux = initime.minute |
|
2303 | minuteAux = initime.minute | |
2304 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) |
|
2304 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) | |
2305 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2305 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2306 |
|
2306 | |||
2307 | self.__isConfig = True |
|
2307 | self.__isConfig = True | |
2308 |
|
2308 | |||
2309 | if self.__buffer is None: |
|
2309 | if self.__buffer is None: | |
2310 | self.__buffer = dataOut.data_param |
|
2310 | self.__buffer = dataOut.data_param | |
2311 | self.__firstdata = copy.copy(dataOut) |
|
2311 | self.__firstdata = copy.copy(dataOut) | |
2312 |
|
2312 | |||
2313 | else: |
|
2313 | else: | |
2314 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2314 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2315 |
|
2315 | |||
2316 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2316 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2317 |
|
2317 | |||
2318 | if self.__dataReady: |
|
2318 | if self.__dataReady: | |
2319 | dataOut.utctimeInit = self.__initime |
|
2319 | dataOut.utctimeInit = self.__initime | |
2320 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2320 | self.__initime += dataOut.outputInterval #to erase time offset | |
2321 |
|
2321 | |||
2322 | metArray = self.__buffer |
|
2322 | metArray = self.__buffer | |
2323 | if mode == 'SA': |
|
2323 | if mode == 'SA': | |
2324 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) |
|
2324 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) | |
2325 | elif mode == 'DBS': |
|
2325 | elif mode == 'DBS': | |
2326 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y) |
|
2326 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y) | |
2327 | dataOut.data_output = dataOut.data_output.T |
|
2327 | dataOut.data_output = dataOut.data_output.T | |
2328 | dataOut.flagNoData = False |
|
2328 | dataOut.flagNoData = False | |
2329 | self.__buffer = None |
|
2329 | self.__buffer = None | |
2330 |
|
2330 | |||
2331 | return |
|
2331 | return | |
2332 |
|
2332 | |||
2333 | class EWDriftsEstimation(Operation): |
|
2333 | class EWDriftsEstimation(Operation): | |
2334 |
|
2334 | |||
2335 | def __init__(self): |
|
2335 | def __init__(self): | |
2336 | Operation.__init__(self) |
|
2336 | Operation.__init__(self) | |
2337 |
|
2337 | |||
2338 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
2338 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
2339 | listPhi = phi.tolist() |
|
2339 | listPhi = phi.tolist() | |
2340 | maxid = listPhi.index(max(listPhi)) |
|
2340 | maxid = listPhi.index(max(listPhi)) | |
2341 | minid = listPhi.index(min(listPhi)) |
|
2341 | minid = listPhi.index(min(listPhi)) | |
2342 |
|
2342 | |||
2343 | rango = list(range(len(phi))) |
|
2343 | rango = list(range(len(phi))) | |
2344 | # rango = numpy.delete(rango,maxid) |
|
2344 | # rango = numpy.delete(rango,maxid) | |
2345 |
|
2345 | |||
2346 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
2346 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
2347 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
2347 | heiRangAux = heiRang*math.cos(phi[minid]) | |
2348 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
2348 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
2349 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
2349 | heiRang1 = numpy.delete(heiRang1,indOut) | |
2350 |
|
2350 | |||
2351 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2351 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2352 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2352 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2353 |
|
2353 | |||
2354 | for i in rango: |
|
2354 | for i in rango: | |
2355 | x = heiRang*math.cos(phi[i]) |
|
2355 | x = heiRang*math.cos(phi[i]) | |
2356 | y1 = velRadial[i,:] |
|
2356 | y1 = velRadial[i,:] | |
2357 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
2357 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
2358 |
|
2358 | |||
2359 | x1 = heiRang1 |
|
2359 | x1 = heiRang1 | |
2360 | y11 = f1(x1) |
|
2360 | y11 = f1(x1) | |
2361 |
|
2361 | |||
2362 | y2 = SNR[i,:] |
|
2362 | y2 = SNR[i,:] | |
2363 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
2363 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
2364 | y21 = f2(x1) |
|
2364 | y21 = f2(x1) | |
2365 |
|
2365 | |||
2366 | velRadial1[i,:] = y11 |
|
2366 | velRadial1[i,:] = y11 | |
2367 | SNR1[i,:] = y21 |
|
2367 | SNR1[i,:] = y21 | |
2368 |
|
2368 | |||
2369 | return heiRang1, velRadial1, SNR1 |
|
2369 | return heiRang1, velRadial1, SNR1 | |
2370 |
|
2370 | |||
2371 | def run(self, dataOut, zenith, zenithCorrection): |
|
2371 | def run(self, dataOut, zenith, zenithCorrection): | |
2372 | heiRang = dataOut.heightList |
|
2372 | heiRang = dataOut.heightList | |
2373 | velRadial = dataOut.data_param[:,3,:] |
|
2373 | velRadial = dataOut.data_param[:,3,:] | |
2374 | SNR = dataOut.data_snr |
|
2374 | SNR = dataOut.data_snr | |
2375 |
|
2375 | |||
2376 | zenith = numpy.array(zenith) |
|
2376 | zenith = numpy.array(zenith) | |
2377 | zenith -= zenithCorrection |
|
2377 | zenith -= zenithCorrection | |
2378 | zenith *= numpy.pi/180 |
|
2378 | zenith *= numpy.pi/180 | |
2379 |
|
2379 | |||
2380 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) |
|
2380 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |
2381 |
|
2381 | |||
2382 | alp = zenith[0] |
|
2382 | alp = zenith[0] | |
2383 | bet = zenith[1] |
|
2383 | bet = zenith[1] | |
2384 |
|
2384 | |||
2385 | w_w = velRadial1[0,:] |
|
2385 | w_w = velRadial1[0,:] | |
2386 | w_e = velRadial1[1,:] |
|
2386 | w_e = velRadial1[1,:] | |
2387 |
|
2387 | |||
2388 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) |
|
2388 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |
2389 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) |
|
2389 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |
2390 |
|
2390 | |||
2391 | winds = numpy.vstack((u,w)) |
|
2391 | winds = numpy.vstack((u,w)) | |
2392 |
|
2392 | |||
2393 | dataOut.heightList = heiRang1 |
|
2393 | dataOut.heightList = heiRang1 | |
2394 | dataOut.data_output = winds |
|
2394 | dataOut.data_output = winds | |
2395 | dataOut.data_snr = SNR1 |
|
2395 | dataOut.data_snr = SNR1 | |
2396 |
|
2396 | |||
2397 | dataOut.utctimeInit = dataOut.utctime |
|
2397 | dataOut.utctimeInit = dataOut.utctime | |
2398 | dataOut.outputInterval = dataOut.timeInterval |
|
2398 | dataOut.outputInterval = dataOut.timeInterval | |
2399 | return |
|
2399 | return | |
2400 |
|
2400 | |||
2401 | #--------------- Non Specular Meteor ---------------- |
|
2401 | #--------------- Non Specular Meteor ---------------- | |
2402 |
|
2402 | |||
2403 | class NonSpecularMeteorDetection(Operation): |
|
2403 | class NonSpecularMeteorDetection(Operation): | |
2404 |
|
2404 | |||
2405 | def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): |
|
2405 | def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): | |
2406 | data_acf = dataOut.data_pre[0] |
|
2406 | data_acf = dataOut.data_pre[0] | |
2407 | data_ccf = dataOut.data_pre[1] |
|
2407 | data_ccf = dataOut.data_pre[1] | |
2408 | pairsList = dataOut.groupList[1] |
|
2408 | pairsList = dataOut.groupList[1] | |
2409 |
|
2409 | |||
2410 | lamb = dataOut.C/dataOut.frequency |
|
2410 | lamb = dataOut.C/dataOut.frequency | |
2411 | tSamp = dataOut.ippSeconds*dataOut.nCohInt |
|
2411 | tSamp = dataOut.ippSeconds*dataOut.nCohInt | |
2412 | paramInterval = dataOut.paramInterval |
|
2412 | paramInterval = dataOut.paramInterval | |
2413 |
|
2413 | |||
2414 | nChannels = data_acf.shape[0] |
|
2414 | nChannels = data_acf.shape[0] | |
2415 | nLags = data_acf.shape[1] |
|
2415 | nLags = data_acf.shape[1] | |
2416 | nProfiles = data_acf.shape[2] |
|
2416 | nProfiles = data_acf.shape[2] | |
2417 | nHeights = dataOut.nHeights |
|
2417 | nHeights = dataOut.nHeights | |
2418 | nCohInt = dataOut.nCohInt |
|
2418 | nCohInt = dataOut.nCohInt | |
2419 | sec = numpy.round(nProfiles/dataOut.paramInterval) |
|
2419 | sec = numpy.round(nProfiles/dataOut.paramInterval) | |
2420 | heightList = dataOut.heightList |
|
2420 | heightList = dataOut.heightList | |
2421 | ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg |
|
2421 | ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg | |
2422 | utctime = dataOut.utctime |
|
2422 | utctime = dataOut.utctime | |
2423 |
|
2423 | |||
2424 | dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) |
|
2424 | dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) | |
2425 |
|
2425 | |||
2426 | #------------------------ SNR -------------------------------------- |
|
2426 | #------------------------ SNR -------------------------------------- | |
2427 | power = data_acf[:,0,:,:].real |
|
2427 | power = data_acf[:,0,:,:].real | |
2428 | noise = numpy.zeros(nChannels) |
|
2428 | noise = numpy.zeros(nChannels) | |
2429 | SNR = numpy.zeros(power.shape) |
|
2429 | SNR = numpy.zeros(power.shape) | |
2430 | for i in range(nChannels): |
|
2430 | for i in range(nChannels): | |
2431 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) |
|
2431 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) | |
2432 | SNR[i] = (power[i]-noise[i])/noise[i] |
|
2432 | SNR[i] = (power[i]-noise[i])/noise[i] | |
2433 | SNRm = numpy.nanmean(SNR, axis = 0) |
|
2433 | SNRm = numpy.nanmean(SNR, axis = 0) | |
2434 | SNRdB = 10*numpy.log10(SNR) |
|
2434 | SNRdB = 10*numpy.log10(SNR) | |
2435 |
|
2435 | |||
2436 | if mode == 'SA': |
|
2436 | if mode == 'SA': | |
2437 | dataOut.groupList = dataOut.groupList[1] |
|
2437 | dataOut.groupList = dataOut.groupList[1] | |
2438 | nPairs = data_ccf.shape[0] |
|
2438 | nPairs = data_ccf.shape[0] | |
2439 | #---------------------- Coherence and Phase -------------------------- |
|
2439 | #---------------------- Coherence and Phase -------------------------- | |
2440 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2440 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) | |
2441 | # phase1 = numpy.copy(phase) |
|
2441 | # phase1 = numpy.copy(phase) | |
2442 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2442 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) | |
2443 |
|
2443 | |||
2444 | for p in range(nPairs): |
|
2444 | for p in range(nPairs): | |
2445 | ch0 = pairsList[p][0] |
|
2445 | ch0 = pairsList[p][0] | |
2446 | ch1 = pairsList[p][1] |
|
2446 | ch1 = pairsList[p][1] | |
2447 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) |
|
2447 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) | |
2448 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter |
|
2448 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter | |
2449 | # phase1[p,:,:] = numpy.angle(ccf) #median filter |
|
2449 | # phase1[p,:,:] = numpy.angle(ccf) #median filter | |
2450 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter |
|
2450 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter | |
2451 | # coh1[p,:,:] = numpy.abs(ccf) #median filter |
|
2451 | # coh1[p,:,:] = numpy.abs(ccf) #median filter | |
2452 | coh = numpy.nanmax(coh1, axis = 0) |
|
2452 | coh = numpy.nanmax(coh1, axis = 0) | |
2453 | # struc = numpy.ones((5,1)) |
|
2453 | # struc = numpy.ones((5,1)) | |
2454 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) |
|
2454 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) | |
2455 | #---------------------- Radial Velocity ---------------------------- |
|
2455 | #---------------------- Radial Velocity ---------------------------- | |
2456 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) |
|
2456 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) | |
2457 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) |
|
2457 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) | |
2458 |
|
2458 | |||
2459 | if allData: |
|
2459 | if allData: | |
2460 | boolMetFin = ~numpy.isnan(SNRm) |
|
2460 | boolMetFin = ~numpy.isnan(SNRm) | |
2461 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2461 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
2462 | else: |
|
2462 | else: | |
2463 | #------------------------ Meteor mask --------------------------------- |
|
2463 | #------------------------ Meteor mask --------------------------------- | |
2464 | # #SNR mask |
|
2464 | # #SNR mask | |
2465 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) |
|
2465 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) | |
2466 | # |
|
2466 | # | |
2467 | # #Erase small objects |
|
2467 | # #Erase small objects | |
2468 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) |
|
2468 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) | |
2469 | # |
|
2469 | # | |
2470 | # auxEEJ = numpy.sum(boolMet1,axis=0) |
|
2470 | # auxEEJ = numpy.sum(boolMet1,axis=0) | |
2471 | # indOver = auxEEJ>nProfiles*0.8 #Use this later |
|
2471 | # indOver = auxEEJ>nProfiles*0.8 #Use this later | |
2472 | # indEEJ = numpy.where(indOver)[0] |
|
2472 | # indEEJ = numpy.where(indOver)[0] | |
2473 | # indNEEJ = numpy.where(~indOver)[0] |
|
2473 | # indNEEJ = numpy.where(~indOver)[0] | |
2474 | # |
|
2474 | # | |
2475 | # boolMetFin = boolMet1 |
|
2475 | # boolMetFin = boolMet1 | |
2476 | # |
|
2476 | # | |
2477 | # if indEEJ.size > 0: |
|
2477 | # if indEEJ.size > 0: | |
2478 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ |
|
2478 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ | |
2479 | # |
|
2479 | # | |
2480 | # boolMet2 = coh > cohThresh |
|
2480 | # boolMet2 = coh > cohThresh | |
2481 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) |
|
2481 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) | |
2482 | # |
|
2482 | # | |
2483 | # #Final Meteor mask |
|
2483 | # #Final Meteor mask | |
2484 | # boolMetFin = boolMet1|boolMet2 |
|
2484 | # boolMetFin = boolMet1|boolMet2 | |
2485 |
|
2485 | |||
2486 | #Coherence mask |
|
2486 | #Coherence mask | |
2487 | boolMet1 = coh > 0.75 |
|
2487 | boolMet1 = coh > 0.75 | |
2488 | struc = numpy.ones((30,1)) |
|
2488 | struc = numpy.ones((30,1)) | |
2489 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) |
|
2489 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) | |
2490 |
|
2490 | |||
2491 | #Derivative mask |
|
2491 | #Derivative mask | |
2492 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2492 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
2493 | boolMet2 = derPhase < 0.2 |
|
2493 | boolMet2 = derPhase < 0.2 | |
2494 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) |
|
2494 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) | |
2495 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) |
|
2495 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) | |
2496 | boolMet2 = ndimage.median_filter(boolMet2,size=5) |
|
2496 | boolMet2 = ndimage.median_filter(boolMet2,size=5) | |
2497 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) |
|
2497 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) | |
2498 | # #Final mask |
|
2498 | # #Final mask | |
2499 | # boolMetFin = boolMet2 |
|
2499 | # boolMetFin = boolMet2 | |
2500 | boolMetFin = boolMet1&boolMet2 |
|
2500 | boolMetFin = boolMet1&boolMet2 | |
2501 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) |
|
2501 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) | |
2502 | #Creating data_param |
|
2502 | #Creating data_param | |
2503 | coordMet = numpy.where(boolMetFin) |
|
2503 | coordMet = numpy.where(boolMetFin) | |
2504 |
|
2504 | |||
2505 | tmet = coordMet[0] |
|
2505 | tmet = coordMet[0] | |
2506 | hmet = coordMet[1] |
|
2506 | hmet = coordMet[1] | |
2507 |
|
2507 | |||
2508 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) |
|
2508 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) | |
2509 | data_param[:,0] = utctime |
|
2509 | data_param[:,0] = utctime | |
2510 | data_param[:,1] = tmet |
|
2510 | data_param[:,1] = tmet | |
2511 | data_param[:,2] = hmet |
|
2511 | data_param[:,2] = hmet | |
2512 | data_param[:,3] = SNRm[tmet,hmet] |
|
2512 | data_param[:,3] = SNRm[tmet,hmet] | |
2513 | data_param[:,4] = velRad[tmet,hmet] |
|
2513 | data_param[:,4] = velRad[tmet,hmet] | |
2514 | data_param[:,5] = coh[tmet,hmet] |
|
2514 | data_param[:,5] = coh[tmet,hmet] | |
2515 | data_param[:,6:] = phase[:,tmet,hmet].T |
|
2515 | data_param[:,6:] = phase[:,tmet,hmet].T | |
2516 |
|
2516 | |||
2517 | elif mode == 'DBS': |
|
2517 | elif mode == 'DBS': | |
2518 | dataOut.groupList = numpy.arange(nChannels) |
|
2518 | dataOut.groupList = numpy.arange(nChannels) | |
2519 |
|
2519 | |||
2520 | #Radial Velocities |
|
2520 | #Radial Velocities | |
2521 | phase = numpy.angle(data_acf[:,1,:,:]) |
|
2521 | phase = numpy.angle(data_acf[:,1,:,:]) | |
2522 | # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2522 | # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) | |
2523 | velRad = phase*lamb/(4*numpy.pi*tSamp) |
|
2523 | velRad = phase*lamb/(4*numpy.pi*tSamp) | |
2524 |
|
2524 | |||
2525 | #Spectral width |
|
2525 | #Spectral width | |
2526 | # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2526 | # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) | |
2527 | # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) |
|
2527 | # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) | |
2528 | acf1 = data_acf[:,1,:,:] |
|
2528 | acf1 = data_acf[:,1,:,:] | |
2529 | acf2 = data_acf[:,2,:,:] |
|
2529 | acf2 = data_acf[:,2,:,:] | |
2530 |
|
2530 | |||
2531 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) |
|
2531 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) | |
2532 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) |
|
2532 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) | |
2533 | if allData: |
|
2533 | if allData: | |
2534 | boolMetFin = ~numpy.isnan(SNRdB) |
|
2534 | boolMetFin = ~numpy.isnan(SNRdB) | |
2535 | else: |
|
2535 | else: | |
2536 | #SNR |
|
2536 | #SNR | |
2537 | boolMet1 = (SNRdB>SNRthresh) #SNR mask |
|
2537 | boolMet1 = (SNRdB>SNRthresh) #SNR mask | |
2538 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) |
|
2538 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) | |
2539 |
|
2539 | |||
2540 | #Radial velocity |
|
2540 | #Radial velocity | |
2541 | boolMet2 = numpy.abs(velRad) < 20 |
|
2541 | boolMet2 = numpy.abs(velRad) < 20 | |
2542 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) |
|
2542 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) | |
2543 |
|
2543 | |||
2544 | #Spectral Width |
|
2544 | #Spectral Width | |
2545 | boolMet3 = spcWidth < 30 |
|
2545 | boolMet3 = spcWidth < 30 | |
2546 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) |
|
2546 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) | |
2547 | # boolMetFin = self.__erase_small(boolMet1, 10,5) |
|
2547 | # boolMetFin = self.__erase_small(boolMet1, 10,5) | |
2548 | boolMetFin = boolMet1&boolMet2&boolMet3 |
|
2548 | boolMetFin = boolMet1&boolMet2&boolMet3 | |
2549 |
|
2549 | |||
2550 | #Creating data_param |
|
2550 | #Creating data_param | |
2551 | coordMet = numpy.where(boolMetFin) |
|
2551 | coordMet = numpy.where(boolMetFin) | |
2552 |
|
2552 | |||
2553 | cmet = coordMet[0] |
|
2553 | cmet = coordMet[0] | |
2554 | tmet = coordMet[1] |
|
2554 | tmet = coordMet[1] | |
2555 | hmet = coordMet[2] |
|
2555 | hmet = coordMet[2] | |
2556 |
|
2556 | |||
2557 | data_param = numpy.zeros((tmet.size, 7)) |
|
2557 | data_param = numpy.zeros((tmet.size, 7)) | |
2558 | data_param[:,0] = utctime |
|
2558 | data_param[:,0] = utctime | |
2559 | data_param[:,1] = cmet |
|
2559 | data_param[:,1] = cmet | |
2560 | data_param[:,2] = tmet |
|
2560 | data_param[:,2] = tmet | |
2561 | data_param[:,3] = hmet |
|
2561 | data_param[:,3] = hmet | |
2562 | data_param[:,4] = SNR[cmet,tmet,hmet].T |
|
2562 | data_param[:,4] = SNR[cmet,tmet,hmet].T | |
2563 | data_param[:,5] = velRad[cmet,tmet,hmet].T |
|
2563 | data_param[:,5] = velRad[cmet,tmet,hmet].T | |
2564 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T |
|
2564 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T | |
2565 |
|
2565 | |||
2566 | # self.dataOut.data_param = data_int |
|
2566 | # self.dataOut.data_param = data_int | |
2567 | if len(data_param) == 0: |
|
2567 | if len(data_param) == 0: | |
2568 | dataOut.flagNoData = True |
|
2568 | dataOut.flagNoData = True | |
2569 | else: |
|
2569 | else: | |
2570 | dataOut.data_param = data_param |
|
2570 | dataOut.data_param = data_param | |
2571 |
|
2571 | |||
2572 | def __erase_small(self, binArray, threshX, threshY): |
|
2572 | def __erase_small(self, binArray, threshX, threshY): | |
2573 | labarray, numfeat = ndimage.measurements.label(binArray) |
|
2573 | labarray, numfeat = ndimage.measurements.label(binArray) | |
2574 | binArray1 = numpy.copy(binArray) |
|
2574 | binArray1 = numpy.copy(binArray) | |
2575 |
|
2575 | |||
2576 | for i in range(1,numfeat + 1): |
|
2576 | for i in range(1,numfeat + 1): | |
2577 | auxBin = (labarray==i) |
|
2577 | auxBin = (labarray==i) | |
2578 | auxSize = auxBin.sum() |
|
2578 | auxSize = auxBin.sum() | |
2579 |
|
2579 | |||
2580 | x,y = numpy.where(auxBin) |
|
2580 | x,y = numpy.where(auxBin) | |
2581 | widthX = x.max() - x.min() |
|
2581 | widthX = x.max() - x.min() | |
2582 | widthY = y.max() - y.min() |
|
2582 | widthY = y.max() - y.min() | |
2583 |
|
2583 | |||
2584 | #width X: 3 seg -> 12.5*3 |
|
2584 | #width X: 3 seg -> 12.5*3 | |
2585 | #width Y: |
|
2585 | #width Y: | |
2586 |
|
2586 | |||
2587 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): |
|
2587 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): | |
2588 | binArray1[auxBin] = False |
|
2588 | binArray1[auxBin] = False | |
2589 |
|
2589 | |||
2590 | return binArray1 |
|
2590 | return binArray1 | |
2591 |
|
2591 | |||
2592 | #--------------- Specular Meteor ---------------- |
|
2592 | #--------------- Specular Meteor ---------------- | |
2593 |
|
2593 | |||
2594 | class SMDetection(Operation): |
|
2594 | class SMDetection(Operation): | |
2595 | ''' |
|
2595 | ''' | |
2596 | Function DetectMeteors() |
|
2596 | Function DetectMeteors() | |
2597 | Project developed with paper: |
|
2597 | Project developed with paper: | |
2598 | HOLDSWORTH ET AL. 2004 |
|
2598 | HOLDSWORTH ET AL. 2004 | |
2599 |
|
2599 | |||
2600 | Input: |
|
2600 | Input: | |
2601 | self.dataOut.data_pre |
|
2601 | self.dataOut.data_pre | |
2602 |
|
2602 | |||
2603 | centerReceiverIndex: From the channels, which is the center receiver |
|
2603 | centerReceiverIndex: From the channels, which is the center receiver | |
2604 |
|
2604 | |||
2605 | hei_ref: Height reference for the Beacon signal extraction |
|
2605 | hei_ref: Height reference for the Beacon signal extraction | |
2606 | tauindex: |
|
2606 | tauindex: | |
2607 | predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
2607 | predefinedPhaseShifts: Predefined phase offset for the voltge signals | |
2608 |
|
2608 | |||
2609 | cohDetection: Whether to user Coherent detection or not |
|
2609 | cohDetection: Whether to user Coherent detection or not | |
2610 | cohDet_timeStep: Coherent Detection calculation time step |
|
2610 | cohDet_timeStep: Coherent Detection calculation time step | |
2611 | cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
2611 | cohDet_thresh: Coherent Detection phase threshold to correct phases | |
2612 |
|
2612 | |||
2613 | noise_timeStep: Noise calculation time step |
|
2613 | noise_timeStep: Noise calculation time step | |
2614 | noise_multiple: Noise multiple to define signal threshold |
|
2614 | noise_multiple: Noise multiple to define signal threshold | |
2615 |
|
2615 | |||
2616 | multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
2616 | multDet_timeLimit: Multiple Detection Removal time limit in seconds | |
2617 | multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
2617 | multDet_rangeLimit: Multiple Detection Removal range limit in km | |
2618 |
|
2618 | |||
2619 | phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
2619 | phaseThresh: Maximum phase difference between receiver to be consider a meteor | |
2620 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
2620 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |
2621 |
|
2621 | |||
2622 | hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
2622 | hmin: Minimum Height of the meteor to use it in the further wind estimations | |
2623 | hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
2623 | hmax: Maximum Height of the meteor to use it in the further wind estimations | |
2624 | azimuth: Azimuth angle correction |
|
2624 | azimuth: Azimuth angle correction | |
2625 |
|
2625 | |||
2626 | Affected: |
|
2626 | Affected: | |
2627 | self.dataOut.data_param |
|
2627 | self.dataOut.data_param | |
2628 |
|
2628 | |||
2629 | Rejection Criteria (Errors): |
|
2629 | Rejection Criteria (Errors): | |
2630 | 0: No error; analysis OK |
|
2630 | 0: No error; analysis OK | |
2631 | 1: SNR < SNR threshold |
|
2631 | 1: SNR < SNR threshold | |
2632 | 2: angle of arrival (AOA) ambiguously determined |
|
2632 | 2: angle of arrival (AOA) ambiguously determined | |
2633 | 3: AOA estimate not feasible |
|
2633 | 3: AOA estimate not feasible | |
2634 | 4: Large difference in AOAs obtained from different antenna baselines |
|
2634 | 4: Large difference in AOAs obtained from different antenna baselines | |
2635 | 5: echo at start or end of time series |
|
2635 | 5: echo at start or end of time series | |
2636 | 6: echo less than 5 examples long; too short for analysis |
|
2636 | 6: echo less than 5 examples long; too short for analysis | |
2637 | 7: echo rise exceeds 0.3s |
|
2637 | 7: echo rise exceeds 0.3s | |
2638 | 8: echo decay time less than twice rise time |
|
2638 | 8: echo decay time less than twice rise time | |
2639 | 9: large power level before echo |
|
2639 | 9: large power level before echo | |
2640 | 10: large power level after echo |
|
2640 | 10: large power level after echo | |
2641 | 11: poor fit to amplitude for estimation of decay time |
|
2641 | 11: poor fit to amplitude for estimation of decay time | |
2642 | 12: poor fit to CCF phase variation for estimation of radial drift velocity |
|
2642 | 12: poor fit to CCF phase variation for estimation of radial drift velocity | |
2643 | 13: height unresolvable echo: not valid height within 70 to 110 km |
|
2643 | 13: height unresolvable echo: not valid height within 70 to 110 km | |
2644 | 14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
2644 | 14: height ambiguous echo: more then one possible height within 70 to 110 km | |
2645 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
2645 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |
2646 | 16: oscilatory echo, indicating event most likely not an underdense echo |
|
2646 | 16: oscilatory echo, indicating event most likely not an underdense echo | |
2647 |
|
2647 | |||
2648 | 17: phase difference in meteor Reestimation |
|
2648 | 17: phase difference in meteor Reestimation | |
2649 |
|
2649 | |||
2650 | Data Storage: |
|
2650 | Data Storage: | |
2651 | Meteors for Wind Estimation (8): |
|
2651 | Meteors for Wind Estimation (8): | |
2652 | Utc Time | Range Height |
|
2652 | Utc Time | Range Height | |
2653 | Azimuth Zenith errorCosDir |
|
2653 | Azimuth Zenith errorCosDir | |
2654 | VelRad errorVelRad |
|
2654 | VelRad errorVelRad | |
2655 | Phase0 Phase1 Phase2 Phase3 |
|
2655 | Phase0 Phase1 Phase2 Phase3 | |
2656 | TypeError |
|
2656 | TypeError | |
2657 |
|
2657 | |||
2658 | ''' |
|
2658 | ''' | |
2659 |
|
2659 | |||
2660 | def run(self, dataOut, hei_ref = None, tauindex = 0, |
|
2660 | def run(self, dataOut, hei_ref = None, tauindex = 0, | |
2661 | phaseOffsets = None, |
|
2661 | phaseOffsets = None, | |
2662 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, |
|
2662 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |
2663 | noise_timeStep = 4, noise_multiple = 4, |
|
2663 | noise_timeStep = 4, noise_multiple = 4, | |
2664 | multDet_timeLimit = 1, multDet_rangeLimit = 3, |
|
2664 | multDet_timeLimit = 1, multDet_rangeLimit = 3, | |
2665 | phaseThresh = 20, SNRThresh = 5, |
|
2665 | phaseThresh = 20, SNRThresh = 5, | |
2666 | hmin = 50, hmax=150, azimuth = 0, |
|
2666 | hmin = 50, hmax=150, azimuth = 0, | |
2667 | channelPositions = None) : |
|
2667 | channelPositions = None) : | |
2668 |
|
2668 | |||
2669 |
|
2669 | |||
2670 | #Getting Pairslist |
|
2670 | #Getting Pairslist | |
2671 | if channelPositions is None: |
|
2671 | if channelPositions is None: | |
2672 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
2672 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
2673 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
2673 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
2674 | meteorOps = SMOperations() |
|
2674 | meteorOps = SMOperations() | |
2675 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
2675 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
2676 | heiRang = dataOut.heightList |
|
2676 | heiRang = dataOut.heightList | |
2677 | #Get Beacon signal - No Beacon signal anymore |
|
2677 | #Get Beacon signal - No Beacon signal anymore | |
2678 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
2678 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
2679 | # |
|
2679 | # | |
2680 | # if hei_ref != None: |
|
2680 | # if hei_ref != None: | |
2681 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
2681 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
2682 | # |
|
2682 | # | |
2683 |
|
2683 | |||
2684 |
|
2684 | |||
2685 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** |
|
2685 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |
2686 | # see if the user put in pre defined phase shifts |
|
2686 | # see if the user put in pre defined phase shifts | |
2687 | voltsPShift = dataOut.data_pre.copy() |
|
2687 | voltsPShift = dataOut.data_pre.copy() | |
2688 |
|
2688 | |||
2689 | # if predefinedPhaseShifts != None: |
|
2689 | # if predefinedPhaseShifts != None: | |
2690 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 |
|
2690 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |
2691 | # |
|
2691 | # | |
2692 | # # elif beaconPhaseShifts: |
|
2692 | # # elif beaconPhaseShifts: | |
2693 | # # #get hardware phase shifts using beacon signal |
|
2693 | # # #get hardware phase shifts using beacon signal | |
2694 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) |
|
2694 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |
2695 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) |
|
2695 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |
2696 | # |
|
2696 | # | |
2697 | # else: |
|
2697 | # else: | |
2698 | # hardwarePhaseShifts = numpy.zeros(5) |
|
2698 | # hardwarePhaseShifts = numpy.zeros(5) | |
2699 | # |
|
2699 | # | |
2700 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') |
|
2700 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |
2701 | # for i in range(self.dataOut.data_pre.shape[0]): |
|
2701 | # for i in range(self.dataOut.data_pre.shape[0]): | |
2702 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) |
|
2702 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |
2703 |
|
2703 | |||
2704 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* |
|
2704 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |
2705 |
|
2705 | |||
2706 | #Remove DC |
|
2706 | #Remove DC | |
2707 | voltsDC = numpy.mean(voltsPShift,1) |
|
2707 | voltsDC = numpy.mean(voltsPShift,1) | |
2708 | voltsDC = numpy.mean(voltsDC,1) |
|
2708 | voltsDC = numpy.mean(voltsDC,1) | |
2709 | for i in range(voltsDC.shape[0]): |
|
2709 | for i in range(voltsDC.shape[0]): | |
2710 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] |
|
2710 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |
2711 |
|
2711 | |||
2712 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift |
|
2712 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |
2713 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] |
|
2713 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |
2714 |
|
2714 | |||
2715 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** |
|
2715 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |
2716 | #Coherent Detection |
|
2716 | #Coherent Detection | |
2717 | if cohDetection: |
|
2717 | if cohDetection: | |
2718 | #use coherent detection to get the net power |
|
2718 | #use coherent detection to get the net power | |
2719 | cohDet_thresh = cohDet_thresh*numpy.pi/180 |
|
2719 | cohDet_thresh = cohDet_thresh*numpy.pi/180 | |
2720 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) |
|
2720 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) | |
2721 |
|
2721 | |||
2722 | #Non-coherent detection! |
|
2722 | #Non-coherent detection! | |
2723 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) |
|
2723 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |
2724 | #********** END OF COH/NON-COH POWER CALCULATION********************** |
|
2724 | #********** END OF COH/NON-COH POWER CALCULATION********************** | |
2725 |
|
2725 | |||
2726 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** |
|
2726 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |
2727 | #Get noise |
|
2727 | #Get noise | |
2728 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) |
|
2728 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) | |
2729 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) |
|
2729 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) | |
2730 | #Get signal threshold |
|
2730 | #Get signal threshold | |
2731 | signalThresh = noise_multiple*noise |
|
2731 | signalThresh = noise_multiple*noise | |
2732 | #Meteor echoes detection |
|
2732 | #Meteor echoes detection | |
2733 | listMeteors = self.__findMeteors(powerNet, signalThresh) |
|
2733 | listMeteors = self.__findMeteors(powerNet, signalThresh) | |
2734 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** |
|
2734 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |
2735 |
|
2735 | |||
2736 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** |
|
2736 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |
2737 | #Parameters |
|
2737 | #Parameters | |
2738 | heiRange = dataOut.heightList |
|
2738 | heiRange = dataOut.heightList | |
2739 | rangeInterval = heiRange[1] - heiRange[0] |
|
2739 | rangeInterval = heiRange[1] - heiRange[0] | |
2740 | rangeLimit = multDet_rangeLimit/rangeInterval |
|
2740 | rangeLimit = multDet_rangeLimit/rangeInterval | |
2741 | timeLimit = multDet_timeLimit/dataOut.timeInterval |
|
2741 | timeLimit = multDet_timeLimit/dataOut.timeInterval | |
2742 | #Multiple detection removals |
|
2742 | #Multiple detection removals | |
2743 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) |
|
2743 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |
2744 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** |
|
2744 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |
2745 |
|
2745 | |||
2746 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** |
|
2746 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |
2747 | #Parameters |
|
2747 | #Parameters | |
2748 | phaseThresh = phaseThresh*numpy.pi/180 |
|
2748 | phaseThresh = phaseThresh*numpy.pi/180 | |
2749 | thresh = [phaseThresh, noise_multiple, SNRThresh] |
|
2749 | thresh = [phaseThresh, noise_multiple, SNRThresh] | |
2750 | #Meteor reestimation (Errors N 1, 6, 12, 17) |
|
2750 | #Meteor reestimation (Errors N 1, 6, 12, 17) | |
2751 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) |
|
2751 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) | |
2752 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) |
|
2752 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) | |
2753 | #Estimation of decay times (Errors N 7, 8, 11) |
|
2753 | #Estimation of decay times (Errors N 7, 8, 11) | |
2754 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) |
|
2754 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) | |
2755 | #******************* END OF METEOR REESTIMATION ******************* |
|
2755 | #******************* END OF METEOR REESTIMATION ******************* | |
2756 |
|
2756 | |||
2757 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** |
|
2757 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |
2758 | #Calculating Radial Velocity (Error N 15) |
|
2758 | #Calculating Radial Velocity (Error N 15) | |
2759 | radialStdThresh = 10 |
|
2759 | radialStdThresh = 10 | |
2760 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) |
|
2760 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) | |
2761 |
|
2761 | |||
2762 | if len(listMeteors4) > 0: |
|
2762 | if len(listMeteors4) > 0: | |
2763 | #Setting New Array |
|
2763 | #Setting New Array | |
2764 | date = dataOut.utctime |
|
2764 | date = dataOut.utctime | |
2765 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) |
|
2765 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |
2766 |
|
2766 | |||
2767 | #Correcting phase offset |
|
2767 | #Correcting phase offset | |
2768 | if phaseOffsets != None: |
|
2768 | if phaseOffsets != None: | |
2769 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
2769 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
2770 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
2770 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
2771 |
|
2771 | |||
2772 | #Second Pairslist |
|
2772 | #Second Pairslist | |
2773 | pairsList = [] |
|
2773 | pairsList = [] | |
2774 | pairx = (0,1) |
|
2774 | pairx = (0,1) | |
2775 | pairy = (2,3) |
|
2775 | pairy = (2,3) | |
2776 | pairsList.append(pairx) |
|
2776 | pairsList.append(pairx) | |
2777 | pairsList.append(pairy) |
|
2777 | pairsList.append(pairy) | |
2778 |
|
2778 | |||
2779 | jph = numpy.array([0,0,0,0]) |
|
2779 | jph = numpy.array([0,0,0,0]) | |
2780 | h = (hmin,hmax) |
|
2780 | h = (hmin,hmax) | |
2781 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
2781 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
2782 |
|
2782 | |||
2783 | # #Calculate AOA (Error N 3, 4) |
|
2783 | # #Calculate AOA (Error N 3, 4) | |
2784 | # #JONES ET AL. 1998 |
|
2784 | # #JONES ET AL. 1998 | |
2785 | # error = arrayParameters[:,-1] |
|
2785 | # error = arrayParameters[:,-1] | |
2786 | # AOAthresh = numpy.pi/8 |
|
2786 | # AOAthresh = numpy.pi/8 | |
2787 | # phases = -arrayParameters[:,9:13] |
|
2787 | # phases = -arrayParameters[:,9:13] | |
2788 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
2788 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |
2789 | # |
|
2789 | # | |
2790 | # #Calculate Heights (Error N 13 and 14) |
|
2790 | # #Calculate Heights (Error N 13 and 14) | |
2791 | # error = arrayParameters[:,-1] |
|
2791 | # error = arrayParameters[:,-1] | |
2792 | # Ranges = arrayParameters[:,2] |
|
2792 | # Ranges = arrayParameters[:,2] | |
2793 | # zenith = arrayParameters[:,5] |
|
2793 | # zenith = arrayParameters[:,5] | |
2794 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) |
|
2794 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) | |
2795 | # error = arrayParameters[:,-1] |
|
2795 | # error = arrayParameters[:,-1] | |
2796 | #********************* END OF PARAMETERS CALCULATION ************************** |
|
2796 | #********************* END OF PARAMETERS CALCULATION ************************** | |
2797 |
|
2797 | |||
2798 | #***************************+ PASS DATA TO NEXT STEP ********************** |
|
2798 | #***************************+ PASS DATA TO NEXT STEP ********************** | |
2799 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) |
|
2799 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) | |
2800 | dataOut.data_param = arrayParameters |
|
2800 | dataOut.data_param = arrayParameters | |
2801 |
|
2801 | |||
2802 | if arrayParameters is None: |
|
2802 | if arrayParameters is None: | |
2803 | dataOut.flagNoData = True |
|
2803 | dataOut.flagNoData = True | |
2804 | else: |
|
2804 | else: | |
2805 | dataOut.flagNoData = True |
|
2805 | dataOut.flagNoData = True | |
2806 |
|
2806 | |||
2807 | return |
|
2807 | return | |
2808 |
|
2808 | |||
2809 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): |
|
2809 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |
2810 |
|
2810 | |||
2811 | minIndex = min(newheis[0]) |
|
2811 | minIndex = min(newheis[0]) | |
2812 | maxIndex = max(newheis[0]) |
|
2812 | maxIndex = max(newheis[0]) | |
2813 |
|
2813 | |||
2814 | voltage = voltage0[:,:,minIndex:maxIndex+1] |
|
2814 | voltage = voltage0[:,:,minIndex:maxIndex+1] | |
2815 | nLength = voltage.shape[1]/n |
|
2815 | nLength = voltage.shape[1]/n | |
2816 | nMin = 0 |
|
2816 | nMin = 0 | |
2817 | nMax = 0 |
|
2817 | nMax = 0 | |
2818 | phaseOffset = numpy.zeros((len(pairslist),n)) |
|
2818 | phaseOffset = numpy.zeros((len(pairslist),n)) | |
2819 |
|
2819 | |||
2820 | for i in range(n): |
|
2820 | for i in range(n): | |
2821 | nMax += nLength |
|
2821 | nMax += nLength | |
2822 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) |
|
2822 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |
2823 | phaseCCF = numpy.mean(phaseCCF, axis = 2) |
|
2823 | phaseCCF = numpy.mean(phaseCCF, axis = 2) | |
2824 | phaseOffset[:,i] = phaseCCF.transpose() |
|
2824 | phaseOffset[:,i] = phaseCCF.transpose() | |
2825 | nMin = nMax |
|
2825 | nMin = nMax | |
2826 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) |
|
2826 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |
2827 |
|
2827 | |||
2828 | #Remove Outliers |
|
2828 | #Remove Outliers | |
2829 | factor = 2 |
|
2829 | factor = 2 | |
2830 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) |
|
2830 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |
2831 | dw = numpy.std(wt,axis = 1) |
|
2831 | dw = numpy.std(wt,axis = 1) | |
2832 | dw = dw.reshape((dw.size,1)) |
|
2832 | dw = dw.reshape((dw.size,1)) | |
2833 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) |
|
2833 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |
2834 | phaseOffset[ind] = numpy.nan |
|
2834 | phaseOffset[ind] = numpy.nan | |
2835 | phaseOffset = stats.nanmean(phaseOffset, axis=1) |
|
2835 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |
2836 |
|
2836 | |||
2837 | return phaseOffset |
|
2837 | return phaseOffset | |
2838 |
|
2838 | |||
2839 | def __shiftPhase(self, data, phaseShift): |
|
2839 | def __shiftPhase(self, data, phaseShift): | |
2840 | #this will shift the phase of a complex number |
|
2840 | #this will shift the phase of a complex number | |
2841 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) |
|
2841 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |
2842 | return dataShifted |
|
2842 | return dataShifted | |
2843 |
|
2843 | |||
2844 | def __estimatePhaseDifference(self, array, pairslist): |
|
2844 | def __estimatePhaseDifference(self, array, pairslist): | |
2845 | nChannel = array.shape[0] |
|
2845 | nChannel = array.shape[0] | |
2846 | nHeights = array.shape[2] |
|
2846 | nHeights = array.shape[2] | |
2847 | numPairs = len(pairslist) |
|
2847 | numPairs = len(pairslist) | |
2848 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) |
|
2848 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |
2849 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) |
|
2849 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |
2850 |
|
2850 | |||
2851 | #Correct phases |
|
2851 | #Correct phases | |
2852 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] |
|
2852 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |
2853 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
2853 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
2854 |
|
2854 | |||
2855 | if indDer[0].shape[0] > 0: |
|
2855 | if indDer[0].shape[0] > 0: | |
2856 | for i in range(indDer[0].shape[0]): |
|
2856 | for i in range(indDer[0].shape[0]): | |
2857 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) |
|
2857 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |
2858 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi |
|
2858 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |
2859 |
|
2859 | |||
2860 | # for j in range(numSides): |
|
2860 | # for j in range(numSides): | |
2861 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) |
|
2861 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |
2862 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) |
|
2862 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |
2863 | # |
|
2863 | # | |
2864 | #Linear |
|
2864 | #Linear | |
2865 | phaseInt = numpy.zeros((numPairs,1)) |
|
2865 | phaseInt = numpy.zeros((numPairs,1)) | |
2866 | angAllCCF = phaseCCF[:,[0,1,3,4],0] |
|
2866 | angAllCCF = phaseCCF[:,[0,1,3,4],0] | |
2867 | for j in range(numPairs): |
|
2867 | for j in range(numPairs): | |
2868 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) |
|
2868 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) | |
2869 | phaseInt[j] = fit[1] |
|
2869 | phaseInt[j] = fit[1] | |
2870 | #Phase Differences |
|
2870 | #Phase Differences | |
2871 | phaseDiff = phaseInt - phaseCCF[:,2,:] |
|
2871 | phaseDiff = phaseInt - phaseCCF[:,2,:] | |
2872 | phaseArrival = phaseInt.reshape(phaseInt.size) |
|
2872 | phaseArrival = phaseInt.reshape(phaseInt.size) | |
2873 |
|
2873 | |||
2874 | #Dealias |
|
2874 | #Dealias | |
2875 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) |
|
2875 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) | |
2876 | # indAlias = numpy.where(phaseArrival > numpy.pi) |
|
2876 | # indAlias = numpy.where(phaseArrival > numpy.pi) | |
2877 | # phaseArrival[indAlias] -= 2*numpy.pi |
|
2877 | # phaseArrival[indAlias] -= 2*numpy.pi | |
2878 | # indAlias = numpy.where(phaseArrival < -numpy.pi) |
|
2878 | # indAlias = numpy.where(phaseArrival < -numpy.pi) | |
2879 | # phaseArrival[indAlias] += 2*numpy.pi |
|
2879 | # phaseArrival[indAlias] += 2*numpy.pi | |
2880 |
|
2880 | |||
2881 | return phaseDiff, phaseArrival |
|
2881 | return phaseDiff, phaseArrival | |
2882 |
|
2882 | |||
2883 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): |
|
2883 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |
2884 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power |
|
2884 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |
2885 | #find the phase shifts of each channel over 1 second intervals |
|
2885 | #find the phase shifts of each channel over 1 second intervals | |
2886 | #only look at ranges below the beacon signal |
|
2886 | #only look at ranges below the beacon signal | |
2887 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
2887 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
2888 | numBlocks = int(volts.shape[1]/numProfPerBlock) |
|
2888 | numBlocks = int(volts.shape[1]/numProfPerBlock) | |
2889 | numHeights = volts.shape[2] |
|
2889 | numHeights = volts.shape[2] | |
2890 | nChannel = volts.shape[0] |
|
2890 | nChannel = volts.shape[0] | |
2891 | voltsCohDet = volts.copy() |
|
2891 | voltsCohDet = volts.copy() | |
2892 |
|
2892 | |||
2893 | pairsarray = numpy.array(pairslist) |
|
2893 | pairsarray = numpy.array(pairslist) | |
2894 | indSides = pairsarray[:,1] |
|
2894 | indSides = pairsarray[:,1] | |
2895 | # indSides = numpy.array(range(nChannel)) |
|
2895 | # indSides = numpy.array(range(nChannel)) | |
2896 | # indSides = numpy.delete(indSides, indCenter) |
|
2896 | # indSides = numpy.delete(indSides, indCenter) | |
2897 | # |
|
2897 | # | |
2898 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) |
|
2898 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |
2899 | listBlocks = numpy.array_split(volts, numBlocks, 1) |
|
2899 | listBlocks = numpy.array_split(volts, numBlocks, 1) | |
2900 |
|
2900 | |||
2901 | startInd = 0 |
|
2901 | startInd = 0 | |
2902 | endInd = 0 |
|
2902 | endInd = 0 | |
2903 |
|
2903 | |||
2904 | for i in range(numBlocks): |
|
2904 | for i in range(numBlocks): | |
2905 | startInd = endInd |
|
2905 | startInd = endInd | |
2906 | endInd = endInd + listBlocks[i].shape[1] |
|
2906 | endInd = endInd + listBlocks[i].shape[1] | |
2907 |
|
2907 | |||
2908 | arrayBlock = listBlocks[i] |
|
2908 | arrayBlock = listBlocks[i] | |
2909 | # arrayBlockCenter = listCenter[i] |
|
2909 | # arrayBlockCenter = listCenter[i] | |
2910 |
|
2910 | |||
2911 | #Estimate the Phase Difference |
|
2911 | #Estimate the Phase Difference | |
2912 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) |
|
2912 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |
2913 | #Phase Difference RMS |
|
2913 | #Phase Difference RMS | |
2914 | arrayPhaseRMS = numpy.abs(phaseDiff) |
|
2914 | arrayPhaseRMS = numpy.abs(phaseDiff) | |
2915 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) |
|
2915 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) | |
2916 | indPhase = numpy.where(phaseRMSaux==4) |
|
2916 | indPhase = numpy.where(phaseRMSaux==4) | |
2917 | #Shifting |
|
2917 | #Shifting | |
2918 | if indPhase[0].shape[0] > 0: |
|
2918 | if indPhase[0].shape[0] > 0: | |
2919 | for j in range(indSides.size): |
|
2919 | for j in range(indSides.size): | |
2920 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) |
|
2920 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |
2921 | voltsCohDet[:,startInd:endInd,:] = arrayBlock |
|
2921 | voltsCohDet[:,startInd:endInd,:] = arrayBlock | |
2922 |
|
2922 | |||
2923 | return voltsCohDet |
|
2923 | return voltsCohDet | |
2924 |
|
2924 | |||
2925 | def __calculateCCF(self, volts, pairslist ,laglist): |
|
2925 | def __calculateCCF(self, volts, pairslist ,laglist): | |
2926 |
|
2926 | |||
2927 | nHeights = volts.shape[2] |
|
2927 | nHeights = volts.shape[2] | |
2928 | nPoints = volts.shape[1] |
|
2928 | nPoints = volts.shape[1] | |
2929 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') |
|
2929 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |
2930 |
|
2930 | |||
2931 | for i in range(len(pairslist)): |
|
2931 | for i in range(len(pairslist)): | |
2932 | volts1 = volts[pairslist[i][0]] |
|
2932 | volts1 = volts[pairslist[i][0]] | |
2933 | volts2 = volts[pairslist[i][1]] |
|
2933 | volts2 = volts[pairslist[i][1]] | |
2934 |
|
2934 | |||
2935 | for t in range(len(laglist)): |
|
2935 | for t in range(len(laglist)): | |
2936 | idxT = laglist[t] |
|
2936 | idxT = laglist[t] | |
2937 | if idxT >= 0: |
|
2937 | if idxT >= 0: | |
2938 | vStacked = numpy.vstack((volts2[idxT:,:], |
|
2938 | vStacked = numpy.vstack((volts2[idxT:,:], | |
2939 | numpy.zeros((idxT, nHeights),dtype='complex'))) |
|
2939 | numpy.zeros((idxT, nHeights),dtype='complex'))) | |
2940 | else: |
|
2940 | else: | |
2941 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), |
|
2941 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |
2942 | volts2[:(nPoints + idxT),:])) |
|
2942 | volts2[:(nPoints + idxT),:])) | |
2943 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) |
|
2943 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |
2944 |
|
2944 | |||
2945 | vStacked = None |
|
2945 | vStacked = None | |
2946 | return voltsCCF |
|
2946 | return voltsCCF | |
2947 |
|
2947 | |||
2948 | def __getNoise(self, power, timeSegment, timeInterval): |
|
2948 | def __getNoise(self, power, timeSegment, timeInterval): | |
2949 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
2949 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
2950 | numBlocks = int(power.shape[0]/numProfPerBlock) |
|
2950 | numBlocks = int(power.shape[0]/numProfPerBlock) | |
2951 | numHeights = power.shape[1] |
|
2951 | numHeights = power.shape[1] | |
2952 |
|
2952 | |||
2953 | listPower = numpy.array_split(power, numBlocks, 0) |
|
2953 | listPower = numpy.array_split(power, numBlocks, 0) | |
2954 | noise = numpy.zeros((power.shape[0], power.shape[1])) |
|
2954 | noise = numpy.zeros((power.shape[0], power.shape[1])) | |
2955 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) |
|
2955 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |
2956 |
|
2956 | |||
2957 | startInd = 0 |
|
2957 | startInd = 0 | |
2958 | endInd = 0 |
|
2958 | endInd = 0 | |
2959 |
|
2959 | |||
2960 | for i in range(numBlocks): #split por canal |
|
2960 | for i in range(numBlocks): #split por canal | |
2961 | startInd = endInd |
|
2961 | startInd = endInd | |
2962 | endInd = endInd + listPower[i].shape[0] |
|
2962 | endInd = endInd + listPower[i].shape[0] | |
2963 |
|
2963 | |||
2964 | arrayBlock = listPower[i] |
|
2964 | arrayBlock = listPower[i] | |
2965 | noiseAux = numpy.mean(arrayBlock, 0) |
|
2965 | noiseAux = numpy.mean(arrayBlock, 0) | |
2966 | # noiseAux = numpy.median(noiseAux) |
|
2966 | # noiseAux = numpy.median(noiseAux) | |
2967 | # noiseAux = numpy.mean(arrayBlock) |
|
2967 | # noiseAux = numpy.mean(arrayBlock) | |
2968 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux |
|
2968 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |
2969 |
|
2969 | |||
2970 | noiseAux1 = numpy.mean(arrayBlock) |
|
2970 | noiseAux1 = numpy.mean(arrayBlock) | |
2971 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 |
|
2971 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |
2972 |
|
2972 | |||
2973 | return noise, noise1 |
|
2973 | return noise, noise1 | |
2974 |
|
2974 | |||
2975 | def __findMeteors(self, power, thresh): |
|
2975 | def __findMeteors(self, power, thresh): | |
2976 | nProf = power.shape[0] |
|
2976 | nProf = power.shape[0] | |
2977 | nHeights = power.shape[1] |
|
2977 | nHeights = power.shape[1] | |
2978 | listMeteors = [] |
|
2978 | listMeteors = [] | |
2979 |
|
2979 | |||
2980 | for i in range(nHeights): |
|
2980 | for i in range(nHeights): | |
2981 | powerAux = power[:,i] |
|
2981 | powerAux = power[:,i] | |
2982 | threshAux = thresh[:,i] |
|
2982 | threshAux = thresh[:,i] | |
2983 |
|
2983 | |||
2984 | indUPthresh = numpy.where(powerAux > threshAux)[0] |
|
2984 | indUPthresh = numpy.where(powerAux > threshAux)[0] | |
2985 | indDNthresh = numpy.where(powerAux <= threshAux)[0] |
|
2985 | indDNthresh = numpy.where(powerAux <= threshAux)[0] | |
2986 |
|
2986 | |||
2987 | j = 0 |
|
2987 | j = 0 | |
2988 |
|
2988 | |||
2989 | while (j < indUPthresh.size - 2): |
|
2989 | while (j < indUPthresh.size - 2): | |
2990 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): |
|
2990 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |
2991 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) |
|
2991 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |
2992 | indDNthresh = indDNthresh[indDNAux] |
|
2992 | indDNthresh = indDNthresh[indDNAux] | |
2993 |
|
2993 | |||
2994 | if (indDNthresh.size > 0): |
|
2994 | if (indDNthresh.size > 0): | |
2995 | indEnd = indDNthresh[0] - 1 |
|
2995 | indEnd = indDNthresh[0] - 1 | |
2996 | indInit = indUPthresh[j] |
|
2996 | indInit = indUPthresh[j] | |
2997 |
|
2997 | |||
2998 | meteor = powerAux[indInit:indEnd + 1] |
|
2998 | meteor = powerAux[indInit:indEnd + 1] | |
2999 | indPeak = meteor.argmax() + indInit |
|
2999 | indPeak = meteor.argmax() + indInit | |
3000 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) |
|
3000 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |
3001 |
|
3001 | |||
3002 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! |
|
3002 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |
3003 | j = numpy.where(indUPthresh == indEnd)[0] + 1 |
|
3003 | j = numpy.where(indUPthresh == indEnd)[0] + 1 | |
3004 | else: j+=1 |
|
3004 | else: j+=1 | |
3005 | else: j+=1 |
|
3005 | else: j+=1 | |
3006 |
|
3006 | |||
3007 | return listMeteors |
|
3007 | return listMeteors | |
3008 |
|
3008 | |||
3009 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): |
|
3009 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |
3010 |
|
3010 | |||
3011 | arrayMeteors = numpy.asarray(listMeteors) |
|
3011 | arrayMeteors = numpy.asarray(listMeteors) | |
3012 | listMeteors1 = [] |
|
3012 | listMeteors1 = [] | |
3013 |
|
3013 | |||
3014 | while arrayMeteors.shape[0] > 0: |
|
3014 | while arrayMeteors.shape[0] > 0: | |
3015 | FLAs = arrayMeteors[:,4] |
|
3015 | FLAs = arrayMeteors[:,4] | |
3016 | maxFLA = FLAs.argmax() |
|
3016 | maxFLA = FLAs.argmax() | |
3017 | listMeteors1.append(arrayMeteors[maxFLA,:]) |
|
3017 | listMeteors1.append(arrayMeteors[maxFLA,:]) | |
3018 |
|
3018 | |||
3019 | MeteorInitTime = arrayMeteors[maxFLA,1] |
|
3019 | MeteorInitTime = arrayMeteors[maxFLA,1] | |
3020 | MeteorEndTime = arrayMeteors[maxFLA,3] |
|
3020 | MeteorEndTime = arrayMeteors[maxFLA,3] | |
3021 | MeteorHeight = arrayMeteors[maxFLA,0] |
|
3021 | MeteorHeight = arrayMeteors[maxFLA,0] | |
3022 |
|
3022 | |||
3023 | #Check neighborhood |
|
3023 | #Check neighborhood | |
3024 | maxHeightIndex = MeteorHeight + rangeLimit |
|
3024 | maxHeightIndex = MeteorHeight + rangeLimit | |
3025 | minHeightIndex = MeteorHeight - rangeLimit |
|
3025 | minHeightIndex = MeteorHeight - rangeLimit | |
3026 | minTimeIndex = MeteorInitTime - timeLimit |
|
3026 | minTimeIndex = MeteorInitTime - timeLimit | |
3027 | maxTimeIndex = MeteorEndTime + timeLimit |
|
3027 | maxTimeIndex = MeteorEndTime + timeLimit | |
3028 |
|
3028 | |||
3029 | #Check Heights |
|
3029 | #Check Heights | |
3030 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) |
|
3030 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |
3031 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) |
|
3031 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |
3032 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) |
|
3032 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |
3033 |
|
3033 | |||
3034 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) |
|
3034 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |
3035 |
|
3035 | |||
3036 | return listMeteors1 |
|
3036 | return listMeteors1 | |
3037 |
|
3037 | |||
3038 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): |
|
3038 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |
3039 | numHeights = volts.shape[2] |
|
3039 | numHeights = volts.shape[2] | |
3040 | nChannel = volts.shape[0] |
|
3040 | nChannel = volts.shape[0] | |
3041 |
|
3041 | |||
3042 | thresholdPhase = thresh[0] |
|
3042 | thresholdPhase = thresh[0] | |
3043 | thresholdNoise = thresh[1] |
|
3043 | thresholdNoise = thresh[1] | |
3044 | thresholdDB = float(thresh[2]) |
|
3044 | thresholdDB = float(thresh[2]) | |
3045 |
|
3045 | |||
3046 | thresholdDB1 = 10**(thresholdDB/10) |
|
3046 | thresholdDB1 = 10**(thresholdDB/10) | |
3047 | pairsarray = numpy.array(pairslist) |
|
3047 | pairsarray = numpy.array(pairslist) | |
3048 | indSides = pairsarray[:,1] |
|
3048 | indSides = pairsarray[:,1] | |
3049 |
|
3049 | |||
3050 | pairslist1 = list(pairslist) |
|
3050 | pairslist1 = list(pairslist) | |
3051 | pairslist1.append((0,1)) |
|
3051 | pairslist1.append((0,1)) | |
3052 | pairslist1.append((3,4)) |
|
3052 | pairslist1.append((3,4)) | |
3053 |
|
3053 | |||
3054 | listMeteors1 = [] |
|
3054 | listMeteors1 = [] | |
3055 | listPowerSeries = [] |
|
3055 | listPowerSeries = [] | |
3056 | listVoltageSeries = [] |
|
3056 | listVoltageSeries = [] | |
3057 | #volts has the war data |
|
3057 | #volts has the war data | |
3058 |
|
3058 | |||
3059 | if frequency == 30e6: |
|
3059 | if frequency == 30e6: | |
3060 | timeLag = 45*10**-3 |
|
3060 | timeLag = 45*10**-3 | |
3061 | else: |
|
3061 | else: | |
3062 | timeLag = 15*10**-3 |
|
3062 | timeLag = 15*10**-3 | |
3063 | lag = numpy.ceil(timeLag/timeInterval) |
|
3063 | lag = numpy.ceil(timeLag/timeInterval) | |
3064 |
|
3064 | |||
3065 | for i in range(len(listMeteors)): |
|
3065 | for i in range(len(listMeteors)): | |
3066 |
|
3066 | |||
3067 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### |
|
3067 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |
3068 | meteorAux = numpy.zeros(16) |
|
3068 | meteorAux = numpy.zeros(16) | |
3069 |
|
3069 | |||
3070 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) |
|
3070 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |
3071 | mHeight = listMeteors[i][0] |
|
3071 | mHeight = listMeteors[i][0] | |
3072 | mStart = listMeteors[i][1] |
|
3072 | mStart = listMeteors[i][1] | |
3073 | mPeak = listMeteors[i][2] |
|
3073 | mPeak = listMeteors[i][2] | |
3074 | mEnd = listMeteors[i][3] |
|
3074 | mEnd = listMeteors[i][3] | |
3075 |
|
3075 | |||
3076 | #get the volt data between the start and end times of the meteor |
|
3076 | #get the volt data between the start and end times of the meteor | |
3077 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] |
|
3077 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |
3078 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3078 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
3079 |
|
3079 | |||
3080 | #3.6. Phase Difference estimation |
|
3080 | #3.6. Phase Difference estimation | |
3081 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) |
|
3081 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |
3082 |
|
3082 | |||
3083 | #3.7. Phase difference removal & meteor start, peak and end times reestimated |
|
3083 | #3.7. Phase difference removal & meteor start, peak and end times reestimated | |
3084 | #meteorVolts0.- all Channels, all Profiles |
|
3084 | #meteorVolts0.- all Channels, all Profiles | |
3085 | meteorVolts0 = volts[:,:,mHeight] |
|
3085 | meteorVolts0 = volts[:,:,mHeight] | |
3086 | meteorThresh = noise[:,mHeight]*thresholdNoise |
|
3086 | meteorThresh = noise[:,mHeight]*thresholdNoise | |
3087 | meteorNoise = noise[:,mHeight] |
|
3087 | meteorNoise = noise[:,mHeight] | |
3088 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting |
|
3088 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |
3089 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power |
|
3089 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |
3090 |
|
3090 | |||
3091 | #Times reestimation |
|
3091 | #Times reestimation | |
3092 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] |
|
3092 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |
3093 | if mStart1.size > 0: |
|
3093 | if mStart1.size > 0: | |
3094 | mStart1 = mStart1[-1] + 1 |
|
3094 | mStart1 = mStart1[-1] + 1 | |
3095 |
|
3095 | |||
3096 | else: |
|
3096 | else: | |
3097 | mStart1 = mPeak |
|
3097 | mStart1 = mPeak | |
3098 |
|
3098 | |||
3099 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 |
|
3099 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |
3100 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] |
|
3100 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |
3101 | if mEndDecayTime1.size == 0: |
|
3101 | if mEndDecayTime1.size == 0: | |
3102 | mEndDecayTime1 = powerNet0.size |
|
3102 | mEndDecayTime1 = powerNet0.size | |
3103 | else: |
|
3103 | else: | |
3104 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 |
|
3104 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |
3105 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() |
|
3105 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |
3106 |
|
3106 | |||
3107 | #meteorVolts1.- all Channels, from start to end |
|
3107 | #meteorVolts1.- all Channels, from start to end | |
3108 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] |
|
3108 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |
3109 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] |
|
3109 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |
3110 | if meteorVolts2.shape[1] == 0: |
|
3110 | if meteorVolts2.shape[1] == 0: | |
3111 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] |
|
3111 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] | |
3112 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) |
|
3112 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |
3113 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) |
|
3113 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |
3114 | ##################### END PARAMETERS REESTIMATION ######################### |
|
3114 | ##################### END PARAMETERS REESTIMATION ######################### | |
3115 |
|
3115 | |||
3116 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## |
|
3116 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |
3117 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3117 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |
3118 | if meteorVolts2.shape[1] > 0: |
|
3118 | if meteorVolts2.shape[1] > 0: | |
3119 | #Phase Difference re-estimation |
|
3119 | #Phase Difference re-estimation | |
3120 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation |
|
3120 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |
3121 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) |
|
3121 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |
3122 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) |
|
3122 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |
3123 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) |
|
3123 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |
3124 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting |
|
3124 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |
3125 |
|
3125 | |||
3126 | #Phase Difference RMS |
|
3126 | #Phase Difference RMS | |
3127 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) |
|
3127 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |
3128 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) |
|
3128 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |
3129 | #Data from Meteor |
|
3129 | #Data from Meteor | |
3130 | mPeak1 = powerNet1.argmax() + mStart1 |
|
3130 | mPeak1 = powerNet1.argmax() + mStart1 | |
3131 | mPeakPower1 = powerNet1.max() |
|
3131 | mPeakPower1 = powerNet1.max() | |
3132 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) |
|
3132 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) | |
3133 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux |
|
3133 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux | |
3134 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) |
|
3134 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) | |
3135 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) |
|
3135 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) | |
3136 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] |
|
3136 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] | |
3137 | #Vectorize |
|
3137 | #Vectorize | |
3138 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] |
|
3138 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |
3139 | meteorAux[7:11] = phaseDiffint[0:4] |
|
3139 | meteorAux[7:11] = phaseDiffint[0:4] | |
3140 |
|
3140 | |||
3141 | #Rejection Criterions |
|
3141 | #Rejection Criterions | |
3142 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation |
|
3142 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |
3143 | meteorAux[-1] = 17 |
|
3143 | meteorAux[-1] = 17 | |
3144 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB |
|
3144 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |
3145 | meteorAux[-1] = 1 |
|
3145 | meteorAux[-1] = 1 | |
3146 |
|
3146 | |||
3147 |
|
3147 | |||
3148 | else: |
|
3148 | else: | |
3149 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] |
|
3149 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |
3150 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3150 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |
3151 | PowerSeries = 0 |
|
3151 | PowerSeries = 0 | |
3152 |
|
3152 | |||
3153 | listMeteors1.append(meteorAux) |
|
3153 | listMeteors1.append(meteorAux) | |
3154 | listPowerSeries.append(PowerSeries) |
|
3154 | listPowerSeries.append(PowerSeries) | |
3155 | listVoltageSeries.append(meteorVolts1) |
|
3155 | listVoltageSeries.append(meteorVolts1) | |
3156 |
|
3156 | |||
3157 | return listMeteors1, listPowerSeries, listVoltageSeries |
|
3157 | return listMeteors1, listPowerSeries, listVoltageSeries | |
3158 |
|
3158 | |||
3159 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): |
|
3159 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |
3160 |
|
3160 | |||
3161 | threshError = 10 |
|
3161 | threshError = 10 | |
3162 | #Depending if it is 30 or 50 MHz |
|
3162 | #Depending if it is 30 or 50 MHz | |
3163 | if frequency == 30e6: |
|
3163 | if frequency == 30e6: | |
3164 | timeLag = 45*10**-3 |
|
3164 | timeLag = 45*10**-3 | |
3165 | else: |
|
3165 | else: | |
3166 | timeLag = 15*10**-3 |
|
3166 | timeLag = 15*10**-3 | |
3167 | lag = numpy.ceil(timeLag/timeInterval) |
|
3167 | lag = numpy.ceil(timeLag/timeInterval) | |
3168 |
|
3168 | |||
3169 | listMeteors1 = [] |
|
3169 | listMeteors1 = [] | |
3170 |
|
3170 | |||
3171 | for i in range(len(listMeteors)): |
|
3171 | for i in range(len(listMeteors)): | |
3172 | meteorPower = listPower[i] |
|
3172 | meteorPower = listPower[i] | |
3173 | meteorAux = listMeteors[i] |
|
3173 | meteorAux = listMeteors[i] | |
3174 |
|
3174 | |||
3175 | if meteorAux[-1] == 0: |
|
3175 | if meteorAux[-1] == 0: | |
3176 |
|
3176 | |||
3177 | try: |
|
3177 | try: | |
3178 | indmax = meteorPower.argmax() |
|
3178 | indmax = meteorPower.argmax() | |
3179 | indlag = indmax + lag |
|
3179 | indlag = indmax + lag | |
3180 |
|
3180 | |||
3181 | y = meteorPower[indlag:] |
|
3181 | y = meteorPower[indlag:] | |
3182 | x = numpy.arange(0, y.size)*timeLag |
|
3182 | x = numpy.arange(0, y.size)*timeLag | |
3183 |
|
3183 | |||
3184 | #first guess |
|
3184 | #first guess | |
3185 | a = y[0] |
|
3185 | a = y[0] | |
3186 | tau = timeLag |
|
3186 | tau = timeLag | |
3187 | #exponential fit |
|
3187 | #exponential fit | |
3188 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) |
|
3188 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) | |
3189 | y1 = self.__exponential_function(x, *popt) |
|
3189 | y1 = self.__exponential_function(x, *popt) | |
3190 | #error estimation |
|
3190 | #error estimation | |
3191 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) |
|
3191 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |
3192 |
|
3192 | |||
3193 | decayTime = popt[1] |
|
3193 | decayTime = popt[1] | |
3194 | riseTime = indmax*timeInterval |
|
3194 | riseTime = indmax*timeInterval | |
3195 | meteorAux[11:13] = [decayTime, error] |
|
3195 | meteorAux[11:13] = [decayTime, error] | |
3196 |
|
3196 | |||
3197 | #Table items 7, 8 and 11 |
|
3197 | #Table items 7, 8 and 11 | |
3198 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s |
|
3198 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |
3199 | meteorAux[-1] = 7 |
|
3199 | meteorAux[-1] = 7 | |
3200 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time |
|
3200 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |
3201 | meteorAux[-1] = 8 |
|
3201 | meteorAux[-1] = 8 | |
3202 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time |
|
3202 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |
3203 | meteorAux[-1] = 11 |
|
3203 | meteorAux[-1] = 11 | |
3204 |
|
3204 | |||
3205 |
|
3205 | |||
3206 | except: |
|
3206 | except: | |
3207 | meteorAux[-1] = 11 |
|
3207 | meteorAux[-1] = 11 | |
3208 |
|
3208 | |||
3209 |
|
3209 | |||
3210 | listMeteors1.append(meteorAux) |
|
3210 | listMeteors1.append(meteorAux) | |
3211 |
|
3211 | |||
3212 | return listMeteors1 |
|
3212 | return listMeteors1 | |
3213 |
|
3213 | |||
3214 | #Exponential Function |
|
3214 | #Exponential Function | |
3215 |
|
3215 | |||
3216 | def __exponential_function(self, x, a, tau): |
|
3216 | def __exponential_function(self, x, a, tau): | |
3217 | y = a*numpy.exp(-x/tau) |
|
3217 | y = a*numpy.exp(-x/tau) | |
3218 | return y |
|
3218 | return y | |
3219 |
|
3219 | |||
3220 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): |
|
3220 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |
3221 |
|
3221 | |||
3222 | pairslist1 = list(pairslist) |
|
3222 | pairslist1 = list(pairslist) | |
3223 | pairslist1.append((0,1)) |
|
3223 | pairslist1.append((0,1)) | |
3224 | pairslist1.append((3,4)) |
|
3224 | pairslist1.append((3,4)) | |
3225 | numPairs = len(pairslist1) |
|
3225 | numPairs = len(pairslist1) | |
3226 | #Time Lag |
|
3226 | #Time Lag | |
3227 | timeLag = 45*10**-3 |
|
3227 | timeLag = 45*10**-3 | |
3228 | c = 3e8 |
|
3228 | c = 3e8 | |
3229 | lag = numpy.ceil(timeLag/timeInterval) |
|
3229 | lag = numpy.ceil(timeLag/timeInterval) | |
3230 | freq = 30e6 |
|
3230 | freq = 30e6 | |
3231 |
|
3231 | |||
3232 | listMeteors1 = [] |
|
3232 | listMeteors1 = [] | |
3233 |
|
3233 | |||
3234 | for i in range(len(listMeteors)): |
|
3234 | for i in range(len(listMeteors)): | |
3235 | meteorAux = listMeteors[i] |
|
3235 | meteorAux = listMeteors[i] | |
3236 | if meteorAux[-1] == 0: |
|
3236 | if meteorAux[-1] == 0: | |
3237 | mStart = listMeteors[i][1] |
|
3237 | mStart = listMeteors[i][1] | |
3238 | mPeak = listMeteors[i][2] |
|
3238 | mPeak = listMeteors[i][2] | |
3239 | mLag = mPeak - mStart + lag |
|
3239 | mLag = mPeak - mStart + lag | |
3240 |
|
3240 | |||
3241 | #get the volt data between the start and end times of the meteor |
|
3241 | #get the volt data between the start and end times of the meteor | |
3242 | meteorVolts = listVolts[i] |
|
3242 | meteorVolts = listVolts[i] | |
3243 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3243 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
3244 |
|
3244 | |||
3245 | #Get CCF |
|
3245 | #Get CCF | |
3246 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) |
|
3246 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |
3247 |
|
3247 | |||
3248 | #Method 2 |
|
3248 | #Method 2 | |
3249 | slopes = numpy.zeros(numPairs) |
|
3249 | slopes = numpy.zeros(numPairs) | |
3250 | time = numpy.array([-2,-1,1,2])*timeInterval |
|
3250 | time = numpy.array([-2,-1,1,2])*timeInterval | |
3251 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) |
|
3251 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) | |
3252 |
|
3252 | |||
3253 | #Correct phases |
|
3253 | #Correct phases | |
3254 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] |
|
3254 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |
3255 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
3255 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
3256 |
|
3256 | |||
3257 | if indDer[0].shape[0] > 0: |
|
3257 | if indDer[0].shape[0] > 0: | |
3258 | for i in range(indDer[0].shape[0]): |
|
3258 | for i in range(indDer[0].shape[0]): | |
3259 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) |
|
3259 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |
3260 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi |
|
3260 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |
3261 |
|
3261 | |||
3262 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) |
|
3262 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) | |
3263 | for j in range(numPairs): |
|
3263 | for j in range(numPairs): | |
3264 | fit = stats.linregress(time, angAllCCF[j,:]) |
|
3264 | fit = stats.linregress(time, angAllCCF[j,:]) | |
3265 | slopes[j] = fit[0] |
|
3265 | slopes[j] = fit[0] | |
3266 |
|
3266 | |||
3267 | #Remove Outlier |
|
3267 | #Remove Outlier | |
3268 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3268 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
3269 | # slopes = numpy.delete(slopes,indOut) |
|
3269 | # slopes = numpy.delete(slopes,indOut) | |
3270 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3270 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
3271 | # slopes = numpy.delete(slopes,indOut) |
|
3271 | # slopes = numpy.delete(slopes,indOut) | |
3272 |
|
3272 | |||
3273 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3273 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |
3274 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3274 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |
3275 | meteorAux[-2] = radialError |
|
3275 | meteorAux[-2] = radialError | |
3276 | meteorAux[-3] = radialVelocity |
|
3276 | meteorAux[-3] = radialVelocity | |
3277 |
|
3277 | |||
3278 | #Setting Error |
|
3278 | #Setting Error | |
3279 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s |
|
3279 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |
3280 | if numpy.abs(radialVelocity) > 200: |
|
3280 | if numpy.abs(radialVelocity) > 200: | |
3281 | meteorAux[-1] = 15 |
|
3281 | meteorAux[-1] = 15 | |
3282 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity |
|
3282 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |
3283 | elif radialError > radialStdThresh: |
|
3283 | elif radialError > radialStdThresh: | |
3284 | meteorAux[-1] = 12 |
|
3284 | meteorAux[-1] = 12 | |
3285 |
|
3285 | |||
3286 | listMeteors1.append(meteorAux) |
|
3286 | listMeteors1.append(meteorAux) | |
3287 | return listMeteors1 |
|
3287 | return listMeteors1 | |
3288 |
|
3288 | |||
3289 | def __setNewArrays(self, listMeteors, date, heiRang): |
|
3289 | def __setNewArrays(self, listMeteors, date, heiRang): | |
3290 |
|
3290 | |||
3291 | #New arrays |
|
3291 | #New arrays | |
3292 | arrayMeteors = numpy.array(listMeteors) |
|
3292 | arrayMeteors = numpy.array(listMeteors) | |
3293 | arrayParameters = numpy.zeros((len(listMeteors), 13)) |
|
3293 | arrayParameters = numpy.zeros((len(listMeteors), 13)) | |
3294 |
|
3294 | |||
3295 | #Date inclusion |
|
3295 | #Date inclusion | |
3296 | # date = re.findall(r'\((.*?)\)', date) |
|
3296 | # date = re.findall(r'\((.*?)\)', date) | |
3297 | # date = date[0].split(',') |
|
3297 | # date = date[0].split(',') | |
3298 | # date = map(int, date) |
|
3298 | # date = map(int, date) | |
3299 | # |
|
3299 | # | |
3300 | # if len(date)<6: |
|
3300 | # if len(date)<6: | |
3301 | # date.append(0) |
|
3301 | # date.append(0) | |
3302 | # |
|
3302 | # | |
3303 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] |
|
3303 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |
3304 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) |
|
3304 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |
3305 | arrayDate = numpy.tile(date, (len(listMeteors))) |
|
3305 | arrayDate = numpy.tile(date, (len(listMeteors))) | |
3306 |
|
3306 | |||
3307 | #Meteor array |
|
3307 | #Meteor array | |
3308 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] |
|
3308 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |
3309 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) |
|
3309 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |
3310 |
|
3310 | |||
3311 | #Parameters Array |
|
3311 | #Parameters Array | |
3312 | arrayParameters[:,0] = arrayDate #Date |
|
3312 | arrayParameters[:,0] = arrayDate #Date | |
3313 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range |
|
3313 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range | |
3314 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error |
|
3314 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error | |
3315 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases |
|
3315 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases | |
3316 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error |
|
3316 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error | |
3317 |
|
3317 | |||
3318 |
|
3318 | |||
3319 | return arrayParameters |
|
3319 | return arrayParameters | |
3320 |
|
3320 | |||
3321 | class CorrectSMPhases(Operation): |
|
3321 | class CorrectSMPhases(Operation): | |
3322 |
|
3322 | |||
3323 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): |
|
3323 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): | |
3324 |
|
3324 | |||
3325 | arrayParameters = dataOut.data_param |
|
3325 | arrayParameters = dataOut.data_param | |
3326 | pairsList = [] |
|
3326 | pairsList = [] | |
3327 | pairx = (0,1) |
|
3327 | pairx = (0,1) | |
3328 | pairy = (2,3) |
|
3328 | pairy = (2,3) | |
3329 | pairsList.append(pairx) |
|
3329 | pairsList.append(pairx) | |
3330 | pairsList.append(pairy) |
|
3330 | pairsList.append(pairy) | |
3331 | jph = numpy.zeros(4) |
|
3331 | jph = numpy.zeros(4) | |
3332 |
|
3332 | |||
3333 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
3333 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
3334 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
3334 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
3335 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) |
|
3335 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) | |
3336 |
|
3336 | |||
3337 | meteorOps = SMOperations() |
|
3337 | meteorOps = SMOperations() | |
3338 | if channelPositions is None: |
|
3338 | if channelPositions is None: | |
3339 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3339 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
3340 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3340 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
3341 |
|
3341 | |||
3342 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3342 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
3343 | h = (hmin,hmax) |
|
3343 | h = (hmin,hmax) | |
3344 |
|
3344 | |||
3345 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
3345 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
3346 |
|
3346 | |||
3347 | dataOut.data_param = arrayParameters |
|
3347 | dataOut.data_param = arrayParameters | |
3348 | return |
|
3348 | return | |
3349 |
|
3349 | |||
3350 | class SMPhaseCalibration(Operation): |
|
3350 | class SMPhaseCalibration(Operation): | |
3351 |
|
3351 | |||
3352 | __buffer = None |
|
3352 | __buffer = None | |
3353 |
|
3353 | |||
3354 | __initime = None |
|
3354 | __initime = None | |
3355 |
|
3355 | |||
3356 | __dataReady = False |
|
3356 | __dataReady = False | |
3357 |
|
3357 | |||
3358 | __isConfig = False |
|
3358 | __isConfig = False | |
3359 |
|
3359 | |||
3360 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): |
|
3360 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): | |
3361 |
|
3361 | |||
3362 | dataTime = currentTime + paramInterval |
|
3362 | dataTime = currentTime + paramInterval | |
3363 | deltaTime = dataTime - initTime |
|
3363 | deltaTime = dataTime - initTime | |
3364 |
|
3364 | |||
3365 | if deltaTime >= outputInterval or deltaTime < 0: |
|
3365 | if deltaTime >= outputInterval or deltaTime < 0: | |
3366 | return True |
|
3366 | return True | |
3367 |
|
3367 | |||
3368 | return False |
|
3368 | return False | |
3369 |
|
3369 | |||
3370 | def __getGammas(self, pairs, d, phases): |
|
3370 | def __getGammas(self, pairs, d, phases): | |
3371 | gammas = numpy.zeros(2) |
|
3371 | gammas = numpy.zeros(2) | |
3372 |
|
3372 | |||
3373 | for i in range(len(pairs)): |
|
3373 | for i in range(len(pairs)): | |
3374 |
|
3374 | |||
3375 | pairi = pairs[i] |
|
3375 | pairi = pairs[i] | |
3376 |
|
3376 | |||
3377 | phip3 = phases[:,pairi[0]] |
|
3377 | phip3 = phases[:,pairi[0]] | |
3378 | d3 = d[pairi[0]] |
|
3378 | d3 = d[pairi[0]] | |
3379 | phip2 = phases[:,pairi[1]] |
|
3379 | phip2 = phases[:,pairi[1]] | |
3380 | d2 = d[pairi[1]] |
|
3380 | d2 = d[pairi[1]] | |
3381 | #Calculating gamma |
|
3381 | #Calculating gamma | |
3382 | # jdcos = alp1/(k*d1) |
|
3382 | # jdcos = alp1/(k*d1) | |
3383 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) |
|
3383 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) | |
3384 | jgamma = -phip2*d3/d2 - phip3 |
|
3384 | jgamma = -phip2*d3/d2 - phip3 | |
3385 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) |
|
3385 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) | |
3386 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi |
|
3386 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi | |
3387 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi |
|
3387 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi | |
3388 |
|
3388 | |||
3389 | #Revised distribution |
|
3389 | #Revised distribution | |
3390 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) |
|
3390 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) | |
3391 |
|
3391 | |||
3392 | #Histogram |
|
3392 | #Histogram | |
3393 | nBins = 64 |
|
3393 | nBins = 64 | |
3394 | rmin = -0.5*numpy.pi |
|
3394 | rmin = -0.5*numpy.pi | |
3395 | rmax = 0.5*numpy.pi |
|
3395 | rmax = 0.5*numpy.pi | |
3396 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) |
|
3396 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) | |
3397 |
|
3397 | |||
3398 | meteorsY = phaseHisto[0] |
|
3398 | meteorsY = phaseHisto[0] | |
3399 | phasesX = phaseHisto[1][:-1] |
|
3399 | phasesX = phaseHisto[1][:-1] | |
3400 | width = phasesX[1] - phasesX[0] |
|
3400 | width = phasesX[1] - phasesX[0] | |
3401 | phasesX += width/2 |
|
3401 | phasesX += width/2 | |
3402 |
|
3402 | |||
3403 | #Gaussian aproximation |
|
3403 | #Gaussian aproximation | |
3404 | bpeak = meteorsY.argmax() |
|
3404 | bpeak = meteorsY.argmax() | |
3405 | peak = meteorsY.max() |
|
3405 | peak = meteorsY.max() | |
3406 | jmin = bpeak - 5 |
|
3406 | jmin = bpeak - 5 | |
3407 | jmax = bpeak + 5 + 1 |
|
3407 | jmax = bpeak + 5 + 1 | |
3408 |
|
3408 | |||
3409 | if jmin<0: |
|
3409 | if jmin<0: | |
3410 | jmin = 0 |
|
3410 | jmin = 0 | |
3411 | jmax = 6 |
|
3411 | jmax = 6 | |
3412 | elif jmax > meteorsY.size: |
|
3412 | elif jmax > meteorsY.size: | |
3413 | jmin = meteorsY.size - 6 |
|
3413 | jmin = meteorsY.size - 6 | |
3414 | jmax = meteorsY.size |
|
3414 | jmax = meteorsY.size | |
3415 |
|
3415 | |||
3416 | x0 = numpy.array([peak,bpeak,50]) |
|
3416 | x0 = numpy.array([peak,bpeak,50]) | |
3417 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) |
|
3417 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) | |
3418 |
|
3418 | |||
3419 | #Gammas |
|
3419 | #Gammas | |
3420 | gammas[i] = coeff[0][1] |
|
3420 | gammas[i] = coeff[0][1] | |
3421 |
|
3421 | |||
3422 | return gammas |
|
3422 | return gammas | |
3423 |
|
3423 | |||
3424 | def __residualFunction(self, coeffs, y, t): |
|
3424 | def __residualFunction(self, coeffs, y, t): | |
3425 |
|
3425 | |||
3426 | return y - self.__gauss_function(t, coeffs) |
|
3426 | return y - self.__gauss_function(t, coeffs) | |
3427 |
|
3427 | |||
3428 | def __gauss_function(self, t, coeffs): |
|
3428 | def __gauss_function(self, t, coeffs): | |
3429 |
|
3429 | |||
3430 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) |
|
3430 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) | |
3431 |
|
3431 | |||
3432 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): |
|
3432 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): | |
3433 | meteorOps = SMOperations() |
|
3433 | meteorOps = SMOperations() | |
3434 | nchan = 4 |
|
3434 | nchan = 4 | |
3435 | pairx = pairsList[0] #x es 0 |
|
3435 | pairx = pairsList[0] #x es 0 | |
3436 | pairy = pairsList[1] #y es 1 |
|
3436 | pairy = pairsList[1] #y es 1 | |
3437 | center_xangle = 0 |
|
3437 | center_xangle = 0 | |
3438 | center_yangle = 0 |
|
3438 | center_yangle = 0 | |
3439 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) |
|
3439 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) | |
3440 | ntimes = len(range_angle) |
|
3440 | ntimes = len(range_angle) | |
3441 |
|
3441 | |||
3442 | nstepsx = 20 |
|
3442 | nstepsx = 20 | |
3443 | nstepsy = 20 |
|
3443 | nstepsy = 20 | |
3444 |
|
3444 | |||
3445 | for iz in range(ntimes): |
|
3445 | for iz in range(ntimes): | |
3446 | min_xangle = -range_angle[iz]/2 + center_xangle |
|
3446 | min_xangle = -range_angle[iz]/2 + center_xangle | |
3447 | max_xangle = range_angle[iz]/2 + center_xangle |
|
3447 | max_xangle = range_angle[iz]/2 + center_xangle | |
3448 | min_yangle = -range_angle[iz]/2 + center_yangle |
|
3448 | min_yangle = -range_angle[iz]/2 + center_yangle | |
3449 | max_yangle = range_angle[iz]/2 + center_yangle |
|
3449 | max_yangle = range_angle[iz]/2 + center_yangle | |
3450 |
|
3450 | |||
3451 | inc_x = (max_xangle-min_xangle)/nstepsx |
|
3451 | inc_x = (max_xangle-min_xangle)/nstepsx | |
3452 | inc_y = (max_yangle-min_yangle)/nstepsy |
|
3452 | inc_y = (max_yangle-min_yangle)/nstepsy | |
3453 |
|
3453 | |||
3454 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle |
|
3454 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle | |
3455 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle |
|
3455 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle | |
3456 | penalty = numpy.zeros((nstepsx,nstepsy)) |
|
3456 | penalty = numpy.zeros((nstepsx,nstepsy)) | |
3457 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) |
|
3457 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) | |
3458 | jph = numpy.zeros(nchan) |
|
3458 | jph = numpy.zeros(nchan) | |
3459 |
|
3459 | |||
3460 | # Iterations looking for the offset |
|
3460 | # Iterations looking for the offset | |
3461 | for iy in range(int(nstepsy)): |
|
3461 | for iy in range(int(nstepsy)): | |
3462 | for ix in range(int(nstepsx)): |
|
3462 | for ix in range(int(nstepsx)): | |
3463 | d3 = d[pairsList[1][0]] |
|
3463 | d3 = d[pairsList[1][0]] | |
3464 | d2 = d[pairsList[1][1]] |
|
3464 | d2 = d[pairsList[1][1]] | |
3465 | d5 = d[pairsList[0][0]] |
|
3465 | d5 = d[pairsList[0][0]] | |
3466 | d4 = d[pairsList[0][1]] |
|
3466 | d4 = d[pairsList[0][1]] | |
3467 |
|
3467 | |||
3468 | alp2 = alpha_y[iy] #gamma 1 |
|
3468 | alp2 = alpha_y[iy] #gamma 1 | |
3469 | alp4 = alpha_x[ix] #gamma 0 |
|
3469 | alp4 = alpha_x[ix] #gamma 0 | |
3470 |
|
3470 | |||
3471 | alp3 = -alp2*d3/d2 - gammas[1] |
|
3471 | alp3 = -alp2*d3/d2 - gammas[1] | |
3472 | alp5 = -alp4*d5/d4 - gammas[0] |
|
3472 | alp5 = -alp4*d5/d4 - gammas[0] | |
3473 | # jph[pairy[1]] = alpha_y[iy] |
|
3473 | # jph[pairy[1]] = alpha_y[iy] | |
3474 | # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] |
|
3474 | # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] | |
3475 |
|
3475 | |||
3476 | # jph[pairx[1]] = alpha_x[ix] |
|
3476 | # jph[pairx[1]] = alpha_x[ix] | |
3477 | # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] |
|
3477 | # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] | |
3478 | jph[pairsList[0][1]] = alp4 |
|
3478 | jph[pairsList[0][1]] = alp4 | |
3479 | jph[pairsList[0][0]] = alp5 |
|
3479 | jph[pairsList[0][0]] = alp5 | |
3480 | jph[pairsList[1][0]] = alp3 |
|
3480 | jph[pairsList[1][0]] = alp3 | |
3481 | jph[pairsList[1][1]] = alp2 |
|
3481 | jph[pairsList[1][1]] = alp2 | |
3482 | jph_array[:,ix,iy] = jph |
|
3482 | jph_array[:,ix,iy] = jph | |
3483 | # d = [2.0,2.5,2.5,2.0] |
|
3483 | # d = [2.0,2.5,2.5,2.0] | |
3484 | #falta chequear si va a leer bien los meteoros |
|
3484 | #falta chequear si va a leer bien los meteoros | |
3485 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) |
|
3485 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) | |
3486 | error = meteorsArray1[:,-1] |
|
3486 | error = meteorsArray1[:,-1] | |
3487 | ind1 = numpy.where(error==0)[0] |
|
3487 | ind1 = numpy.where(error==0)[0] | |
3488 | penalty[ix,iy] = ind1.size |
|
3488 | penalty[ix,iy] = ind1.size | |
3489 |
|
3489 | |||
3490 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) |
|
3490 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) | |
3491 | phOffset = jph_array[:,i,j] |
|
3491 | phOffset = jph_array[:,i,j] | |
3492 |
|
3492 | |||
3493 | center_xangle = phOffset[pairx[1]] |
|
3493 | center_xangle = phOffset[pairx[1]] | |
3494 | center_yangle = phOffset[pairy[1]] |
|
3494 | center_yangle = phOffset[pairy[1]] | |
3495 |
|
3495 | |||
3496 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) |
|
3496 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) | |
3497 | phOffset = phOffset*180/numpy.pi |
|
3497 | phOffset = phOffset*180/numpy.pi | |
3498 | return phOffset |
|
3498 | return phOffset | |
3499 |
|
3499 | |||
3500 |
|
3500 | |||
3501 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): |
|
3501 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): | |
3502 |
|
3502 | |||
3503 | dataOut.flagNoData = True |
|
3503 | dataOut.flagNoData = True | |
3504 | self.__dataReady = False |
|
3504 | self.__dataReady = False | |
3505 | dataOut.outputInterval = nHours*3600 |
|
3505 | dataOut.outputInterval = nHours*3600 | |
3506 |
|
3506 | |||
3507 | if self.__isConfig == False: |
|
3507 | if self.__isConfig == False: | |
3508 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
3508 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
3509 | #Get Initial LTC time |
|
3509 | #Get Initial LTC time | |
3510 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
3510 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
3511 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
3511 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
3512 |
|
3512 | |||
3513 | self.__isConfig = True |
|
3513 | self.__isConfig = True | |
3514 |
|
3514 | |||
3515 | if self.__buffer is None: |
|
3515 | if self.__buffer is None: | |
3516 | self.__buffer = dataOut.data_param.copy() |
|
3516 | self.__buffer = dataOut.data_param.copy() | |
3517 |
|
3517 | |||
3518 | else: |
|
3518 | else: | |
3519 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
3519 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
3520 |
|
3520 | |||
3521 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
3521 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
3522 |
|
3522 | |||
3523 | if self.__dataReady: |
|
3523 | if self.__dataReady: | |
3524 | dataOut.utctimeInit = self.__initime |
|
3524 | dataOut.utctimeInit = self.__initime | |
3525 | self.__initime += dataOut.outputInterval #to erase time offset |
|
3525 | self.__initime += dataOut.outputInterval #to erase time offset | |
3526 |
|
3526 | |||
3527 | freq = dataOut.frequency |
|
3527 | freq = dataOut.frequency | |
3528 | c = dataOut.C #m/s |
|
3528 | c = dataOut.C #m/s | |
3529 | lamb = c/freq |
|
3529 | lamb = c/freq | |
3530 | k = 2*numpy.pi/lamb |
|
3530 | k = 2*numpy.pi/lamb | |
3531 | azimuth = 0 |
|
3531 | azimuth = 0 | |
3532 | h = (hmin, hmax) |
|
3532 | h = (hmin, hmax) | |
3533 | # pairs = ((0,1),(2,3)) #Estrella |
|
3533 | # pairs = ((0,1),(2,3)) #Estrella | |
3534 | # pairs = ((1,0),(2,3)) #T |
|
3534 | # pairs = ((1,0),(2,3)) #T | |
3535 |
|
3535 | |||
3536 | if channelPositions is None: |
|
3536 | if channelPositions is None: | |
3537 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3537 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
3538 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3538 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
3539 | meteorOps = SMOperations() |
|
3539 | meteorOps = SMOperations() | |
3540 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3540 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
3541 |
|
3541 | |||
3542 | #Checking correct order of pairs |
|
3542 | #Checking correct order of pairs | |
3543 | pairs = [] |
|
3543 | pairs = [] | |
3544 | if distances[1] > distances[0]: |
|
3544 | if distances[1] > distances[0]: | |
3545 | pairs.append((1,0)) |
|
3545 | pairs.append((1,0)) | |
3546 | else: |
|
3546 | else: | |
3547 | pairs.append((0,1)) |
|
3547 | pairs.append((0,1)) | |
3548 |
|
3548 | |||
3549 | if distances[3] > distances[2]: |
|
3549 | if distances[3] > distances[2]: | |
3550 | pairs.append((3,2)) |
|
3550 | pairs.append((3,2)) | |
3551 | else: |
|
3551 | else: | |
3552 | pairs.append((2,3)) |
|
3552 | pairs.append((2,3)) | |
3553 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] |
|
3553 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] | |
3554 |
|
3554 | |||
3555 | meteorsArray = self.__buffer |
|
3555 | meteorsArray = self.__buffer | |
3556 | error = meteorsArray[:,-1] |
|
3556 | error = meteorsArray[:,-1] | |
3557 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) |
|
3557 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) | |
3558 | ind1 = numpy.where(boolError)[0] |
|
3558 | ind1 = numpy.where(boolError)[0] | |
3559 | meteorsArray = meteorsArray[ind1,:] |
|
3559 | meteorsArray = meteorsArray[ind1,:] | |
3560 | meteorsArray[:,-1] = 0 |
|
3560 | meteorsArray[:,-1] = 0 | |
3561 | phases = meteorsArray[:,8:12] |
|
3561 | phases = meteorsArray[:,8:12] | |
3562 |
|
3562 | |||
3563 | #Calculate Gammas |
|
3563 | #Calculate Gammas | |
3564 | gammas = self.__getGammas(pairs, distances, phases) |
|
3564 | gammas = self.__getGammas(pairs, distances, phases) | |
3565 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 |
|
3565 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 | |
3566 | #Calculate Phases |
|
3566 | #Calculate Phases | |
3567 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) |
|
3567 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) | |
3568 | phasesOff = phasesOff.reshape((1,phasesOff.size)) |
|
3568 | phasesOff = phasesOff.reshape((1,phasesOff.size)) | |
3569 | dataOut.data_output = -phasesOff |
|
3569 | dataOut.data_output = -phasesOff | |
3570 | dataOut.flagNoData = False |
|
3570 | dataOut.flagNoData = False | |
3571 | self.__buffer = None |
|
3571 | self.__buffer = None | |
3572 |
|
3572 | |||
3573 |
|
3573 | |||
3574 | return |
|
3574 | return | |
3575 |
|
3575 | |||
3576 | class SMOperations(): |
|
3576 | class SMOperations(): | |
3577 |
|
3577 | |||
3578 | def __init__(self): |
|
3578 | def __init__(self): | |
3579 |
|
3579 | |||
3580 | return |
|
3580 | return | |
3581 |
|
3581 | |||
3582 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): |
|
3582 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): | |
3583 |
|
3583 | |||
3584 | arrayParameters = arrayParameters0.copy() |
|
3584 | arrayParameters = arrayParameters0.copy() | |
3585 | hmin = h[0] |
|
3585 | hmin = h[0] | |
3586 | hmax = h[1] |
|
3586 | hmax = h[1] | |
3587 |
|
3587 | |||
3588 | #Calculate AOA (Error N 3, 4) |
|
3588 | #Calculate AOA (Error N 3, 4) | |
3589 | #JONES ET AL. 1998 |
|
3589 | #JONES ET AL. 1998 | |
3590 | AOAthresh = numpy.pi/8 |
|
3590 | AOAthresh = numpy.pi/8 | |
3591 | error = arrayParameters[:,-1] |
|
3591 | error = arrayParameters[:,-1] | |
3592 | phases = -arrayParameters[:,8:12] + jph |
|
3592 | phases = -arrayParameters[:,8:12] + jph | |
3593 | # phases = numpy.unwrap(phases) |
|
3593 | # phases = numpy.unwrap(phases) | |
3594 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) |
|
3594 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) | |
3595 |
|
3595 | |||
3596 | #Calculate Heights (Error N 13 and 14) |
|
3596 | #Calculate Heights (Error N 13 and 14) | |
3597 | error = arrayParameters[:,-1] |
|
3597 | error = arrayParameters[:,-1] | |
3598 | Ranges = arrayParameters[:,1] |
|
3598 | Ranges = arrayParameters[:,1] | |
3599 | zenith = arrayParameters[:,4] |
|
3599 | zenith = arrayParameters[:,4] | |
3600 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) |
|
3600 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |
3601 |
|
3601 | |||
3602 | #----------------------- Get Final data ------------------------------------ |
|
3602 | #----------------------- Get Final data ------------------------------------ | |
3603 | # error = arrayParameters[:,-1] |
|
3603 | # error = arrayParameters[:,-1] | |
3604 | # ind1 = numpy.where(error==0)[0] |
|
3604 | # ind1 = numpy.where(error==0)[0] | |
3605 | # arrayParameters = arrayParameters[ind1,:] |
|
3605 | # arrayParameters = arrayParameters[ind1,:] | |
3606 |
|
3606 | |||
3607 | return arrayParameters |
|
3607 | return arrayParameters | |
3608 |
|
3608 | |||
3609 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): |
|
3609 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): | |
3610 |
|
3610 | |||
3611 | arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3611 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |
3612 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) |
|
3612 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) | |
3613 |
|
3613 | |||
3614 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3614 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
3615 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3615 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
3616 | arrayAOA[:,2] = cosDirError |
|
3616 | arrayAOA[:,2] = cosDirError | |
3617 |
|
3617 | |||
3618 | azimuthAngle = arrayAOA[:,0] |
|
3618 | azimuthAngle = arrayAOA[:,0] | |
3619 | zenithAngle = arrayAOA[:,1] |
|
3619 | zenithAngle = arrayAOA[:,1] | |
3620 |
|
3620 | |||
3621 | #Setting Error |
|
3621 | #Setting Error | |
3622 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] |
|
3622 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] | |
3623 | error[indError] = 0 |
|
3623 | error[indError] = 0 | |
3624 | #Number 3: AOA not fesible |
|
3624 | #Number 3: AOA not fesible | |
3625 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3625 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
3626 | error[indInvalid] = 3 |
|
3626 | error[indInvalid] = 3 | |
3627 | #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3627 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |
3628 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3628 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
3629 | error[indInvalid] = 4 |
|
3629 | error[indInvalid] = 4 | |
3630 | return arrayAOA, error |
|
3630 | return arrayAOA, error | |
3631 |
|
3631 | |||
3632 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): |
|
3632 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): | |
3633 |
|
3633 | |||
3634 | #Initializing some variables |
|
3634 | #Initializing some variables | |
3635 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3635 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
3636 | ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3636 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |
3637 |
|
3637 | |||
3638 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3638 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
3639 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3639 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
3640 |
|
3640 | |||
3641 |
|
3641 | |||
3642 | for i in range(2): |
|
3642 | for i in range(2): | |
3643 | ph0 = arrayPhase[:,pairsList[i][0]] |
|
3643 | ph0 = arrayPhase[:,pairsList[i][0]] | |
3644 | ph1 = arrayPhase[:,pairsList[i][1]] |
|
3644 | ph1 = arrayPhase[:,pairsList[i][1]] | |
3645 | d0 = distances[pairsList[i][0]] |
|
3645 | d0 = distances[pairsList[i][0]] | |
3646 | d1 = distances[pairsList[i][1]] |
|
3646 | d1 = distances[pairsList[i][1]] | |
3647 |
|
3647 | |||
3648 | ph0_aux = ph0 + ph1 |
|
3648 | ph0_aux = ph0 + ph1 | |
3649 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) |
|
3649 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) | |
3650 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi |
|
3650 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi | |
3651 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi |
|
3651 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi | |
3652 | #First Estimation |
|
3652 | #First Estimation | |
3653 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) |
|
3653 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) | |
3654 |
|
3654 | |||
3655 | #Most-Accurate Second Estimation |
|
3655 | #Most-Accurate Second Estimation | |
3656 | phi1_aux = ph0 - ph1 |
|
3656 | phi1_aux = ph0 - ph1 | |
3657 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3657 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
3658 | #Direction Cosine 1 |
|
3658 | #Direction Cosine 1 | |
3659 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) |
|
3659 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) | |
3660 |
|
3660 | |||
3661 | #Searching the correct Direction Cosine |
|
3661 | #Searching the correct Direction Cosine | |
3662 | cosdir0_aux = cosdir0[:,i] |
|
3662 | cosdir0_aux = cosdir0[:,i] | |
3663 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
3663 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
3664 | #Minimum Distance |
|
3664 | #Minimum Distance | |
3665 | cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
3665 | cosDiff = (cosdir1 - cosdir0_aux)**2 | |
3666 | indcos = cosDiff.argmin(axis = 1) |
|
3666 | indcos = cosDiff.argmin(axis = 1) | |
3667 | #Saving Value obtained |
|
3667 | #Saving Value obtained | |
3668 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
3668 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
3669 |
|
3669 | |||
3670 | return cosdir0, cosdir |
|
3670 | return cosdir0, cosdir | |
3671 |
|
3671 | |||
3672 | def __calculateAOA(self, cosdir, azimuth): |
|
3672 | def __calculateAOA(self, cosdir, azimuth): | |
3673 | cosdirX = cosdir[:,0] |
|
3673 | cosdirX = cosdir[:,0] | |
3674 | cosdirY = cosdir[:,1] |
|
3674 | cosdirY = cosdir[:,1] | |
3675 |
|
3675 | |||
3676 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
3676 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
3677 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east |
|
3677 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east | |
3678 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
3678 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
3679 |
|
3679 | |||
3680 | return angles |
|
3680 | return angles | |
3681 |
|
3681 | |||
3682 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
3682 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
3683 |
|
3683 | |||
3684 | Ramb = 375 #Ramb = c/(2*PRF) |
|
3684 | Ramb = 375 #Ramb = c/(2*PRF) | |
3685 | Re = 6371 #Earth Radius |
|
3685 | Re = 6371 #Earth Radius | |
3686 | heights = numpy.zeros(Ranges.shape) |
|
3686 | heights = numpy.zeros(Ranges.shape) | |
3687 |
|
3687 | |||
3688 | R_aux = numpy.array([0,1,2])*Ramb |
|
3688 | R_aux = numpy.array([0,1,2])*Ramb | |
3689 | R_aux = R_aux.reshape(1,R_aux.size) |
|
3689 | R_aux = R_aux.reshape(1,R_aux.size) | |
3690 |
|
3690 | |||
3691 | Ranges = Ranges.reshape(Ranges.size,1) |
|
3691 | Ranges = Ranges.reshape(Ranges.size,1) | |
3692 |
|
3692 | |||
3693 | Ri = Ranges + R_aux |
|
3693 | Ri = Ranges + R_aux | |
3694 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
3694 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
3695 |
|
3695 | |||
3696 | #Check if there is a height between 70 and 110 km |
|
3696 | #Check if there is a height between 70 and 110 km | |
3697 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
3697 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
3698 | ind_h = numpy.where(h_bool == 1)[0] |
|
3698 | ind_h = numpy.where(h_bool == 1)[0] | |
3699 |
|
3699 | |||
3700 | hCorr = hi[ind_h, :] |
|
3700 | hCorr = hi[ind_h, :] | |
3701 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
3701 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
3702 |
|
3702 | |||
3703 | hCorr = hi[ind_hCorr][:len(ind_h)] |
|
3703 | hCorr = hi[ind_hCorr][:len(ind_h)] | |
3704 | heights[ind_h] = hCorr |
|
3704 | heights[ind_h] = hCorr | |
3705 |
|
3705 | |||
3706 | #Setting Error |
|
3706 | #Setting Error | |
3707 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
3707 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
3708 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
3708 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
3709 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] |
|
3709 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] | |
3710 | error[indError] = 0 |
|
3710 | error[indError] = 0 | |
3711 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
3711 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
3712 | error[indInvalid2] = 14 |
|
3712 | error[indInvalid2] = 14 | |
3713 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
3713 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
3714 | error[indInvalid1] = 13 |
|
3714 | error[indInvalid1] = 13 | |
3715 |
|
3715 | |||
3716 | return heights, error |
|
3716 | return heights, error | |
3717 |
|
3717 | |||
3718 | def getPhasePairs(self, channelPositions): |
|
3718 | def getPhasePairs(self, channelPositions): | |
3719 | chanPos = numpy.array(channelPositions) |
|
3719 | chanPos = numpy.array(channelPositions) | |
3720 | listOper = list(itertools.combinations(list(range(5)),2)) |
|
3720 | listOper = list(itertools.combinations(list(range(5)),2)) | |
3721 |
|
3721 | |||
3722 | distances = numpy.zeros(4) |
|
3722 | distances = numpy.zeros(4) | |
3723 | axisX = [] |
|
3723 | axisX = [] | |
3724 | axisY = [] |
|
3724 | axisY = [] | |
3725 | distX = numpy.zeros(3) |
|
3725 | distX = numpy.zeros(3) | |
3726 | distY = numpy.zeros(3) |
|
3726 | distY = numpy.zeros(3) | |
3727 | ix = 0 |
|
3727 | ix = 0 | |
3728 | iy = 0 |
|
3728 | iy = 0 | |
3729 |
|
3729 | |||
3730 | pairX = numpy.zeros((2,2)) |
|
3730 | pairX = numpy.zeros((2,2)) | |
3731 | pairY = numpy.zeros((2,2)) |
|
3731 | pairY = numpy.zeros((2,2)) | |
3732 |
|
3732 | |||
3733 | for i in range(len(listOper)): |
|
3733 | for i in range(len(listOper)): | |
3734 | pairi = listOper[i] |
|
3734 | pairi = listOper[i] | |
3735 |
|
3735 | |||
3736 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) |
|
3736 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) | |
3737 |
|
3737 | |||
3738 | if posDif[0] == 0: |
|
3738 | if posDif[0] == 0: | |
3739 | axisY.append(pairi) |
|
3739 | axisY.append(pairi) | |
3740 | distY[iy] = posDif[1] |
|
3740 | distY[iy] = posDif[1] | |
3741 | iy += 1 |
|
3741 | iy += 1 | |
3742 | elif posDif[1] == 0: |
|
3742 | elif posDif[1] == 0: | |
3743 | axisX.append(pairi) |
|
3743 | axisX.append(pairi) | |
3744 | distX[ix] = posDif[0] |
|
3744 | distX[ix] = posDif[0] | |
3745 | ix += 1 |
|
3745 | ix += 1 | |
3746 |
|
3746 | |||
3747 | for i in range(2): |
|
3747 | for i in range(2): | |
3748 | if i==0: |
|
3748 | if i==0: | |
3749 | dist0 = distX |
|
3749 | dist0 = distX | |
3750 | axis0 = axisX |
|
3750 | axis0 = axisX | |
3751 | else: |
|
3751 | else: | |
3752 | dist0 = distY |
|
3752 | dist0 = distY | |
3753 | axis0 = axisY |
|
3753 | axis0 = axisY | |
3754 |
|
3754 | |||
3755 | side = numpy.argsort(dist0)[:-1] |
|
3755 | side = numpy.argsort(dist0)[:-1] | |
3756 | axis0 = numpy.array(axis0)[side,:] |
|
3756 | axis0 = numpy.array(axis0)[side,:] | |
3757 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) |
|
3757 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) | |
3758 | axis1 = numpy.unique(numpy.reshape(axis0,4)) |
|
3758 | axis1 = numpy.unique(numpy.reshape(axis0,4)) | |
3759 | side = axis1[axis1 != chanC] |
|
3759 | side = axis1[axis1 != chanC] | |
3760 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] |
|
3760 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] | |
3761 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] |
|
3761 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] | |
3762 | if diff1<0: |
|
3762 | if diff1<0: | |
3763 | chan2 = side[0] |
|
3763 | chan2 = side[0] | |
3764 | d2 = numpy.abs(diff1) |
|
3764 | d2 = numpy.abs(diff1) | |
3765 | chan1 = side[1] |
|
3765 | chan1 = side[1] | |
3766 | d1 = numpy.abs(diff2) |
|
3766 | d1 = numpy.abs(diff2) | |
3767 | else: |
|
3767 | else: | |
3768 | chan2 = side[1] |
|
3768 | chan2 = side[1] | |
3769 | d2 = numpy.abs(diff2) |
|
3769 | d2 = numpy.abs(diff2) | |
3770 | chan1 = side[0] |
|
3770 | chan1 = side[0] | |
3771 | d1 = numpy.abs(diff1) |
|
3771 | d1 = numpy.abs(diff1) | |
3772 |
|
3772 | |||
3773 | if i==0: |
|
3773 | if i==0: | |
3774 | chanCX = chanC |
|
3774 | chanCX = chanC | |
3775 | chan1X = chan1 |
|
3775 | chan1X = chan1 | |
3776 | chan2X = chan2 |
|
3776 | chan2X = chan2 | |
3777 | distances[0:2] = numpy.array([d1,d2]) |
|
3777 | distances[0:2] = numpy.array([d1,d2]) | |
3778 | else: |
|
3778 | else: | |
3779 | chanCY = chanC |
|
3779 | chanCY = chanC | |
3780 | chan1Y = chan1 |
|
3780 | chan1Y = chan1 | |
3781 | chan2Y = chan2 |
|
3781 | chan2Y = chan2 | |
3782 | distances[2:4] = numpy.array([d1,d2]) |
|
3782 | distances[2:4] = numpy.array([d1,d2]) | |
3783 | # axisXsides = numpy.reshape(axisX[ix,:],4) |
|
3783 | # axisXsides = numpy.reshape(axisX[ix,:],4) | |
3784 | # |
|
3784 | # | |
3785 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) |
|
3785 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) | |
3786 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) |
|
3786 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) | |
3787 | # |
|
3787 | # | |
3788 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] |
|
3788 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] | |
3789 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] |
|
3789 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] | |
3790 | # channel25X = int(pairX[0,ind25X]) |
|
3790 | # channel25X = int(pairX[0,ind25X]) | |
3791 | # channel20X = int(pairX[1,ind20X]) |
|
3791 | # channel20X = int(pairX[1,ind20X]) | |
3792 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] |
|
3792 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] | |
3793 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] |
|
3793 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] | |
3794 | # channel25Y = int(pairY[0,ind25Y]) |
|
3794 | # channel25Y = int(pairY[0,ind25Y]) | |
3795 | # channel20Y = int(pairY[1,ind20Y]) |
|
3795 | # channel20Y = int(pairY[1,ind20Y]) | |
3796 |
|
3796 | |||
3797 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] |
|
3797 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] | |
3798 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] |
|
3798 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] | |
3799 |
|
3799 | |||
3800 | return pairslist, distances |
|
3800 | return pairslist, distances | |
3801 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
3801 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |
3802 | # |
|
3802 | # | |
3803 | # arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3803 | # arrayAOA = numpy.zeros((phases.shape[0],3)) | |
3804 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
3804 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |
3805 | # |
|
3805 | # | |
3806 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3806 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
3807 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3807 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
3808 | # arrayAOA[:,2] = cosDirError |
|
3808 | # arrayAOA[:,2] = cosDirError | |
3809 | # |
|
3809 | # | |
3810 | # azimuthAngle = arrayAOA[:,0] |
|
3810 | # azimuthAngle = arrayAOA[:,0] | |
3811 | # zenithAngle = arrayAOA[:,1] |
|
3811 | # zenithAngle = arrayAOA[:,1] | |
3812 | # |
|
3812 | # | |
3813 | # #Setting Error |
|
3813 | # #Setting Error | |
3814 | # #Number 3: AOA not fesible |
|
3814 | # #Number 3: AOA not fesible | |
3815 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3815 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
3816 | # error[indInvalid] = 3 |
|
3816 | # error[indInvalid] = 3 | |
3817 | # #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3817 | # #Number 4: Large difference in AOAs obtained from different antenna baselines | |
3818 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3818 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
3819 | # error[indInvalid] = 4 |
|
3819 | # error[indInvalid] = 4 | |
3820 | # return arrayAOA, error |
|
3820 | # return arrayAOA, error | |
3821 | # |
|
3821 | # | |
3822 | # def __getDirectionCosines(self, arrayPhase, pairsList): |
|
3822 | # def __getDirectionCosines(self, arrayPhase, pairsList): | |
3823 | # |
|
3823 | # | |
3824 | # #Initializing some variables |
|
3824 | # #Initializing some variables | |
3825 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3825 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
3826 | # ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3826 | # ang_aux = ang_aux.reshape(1,ang_aux.size) | |
3827 | # |
|
3827 | # | |
3828 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3828 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
3829 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3829 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
3830 | # |
|
3830 | # | |
3831 | # |
|
3831 | # | |
3832 | # for i in range(2): |
|
3832 | # for i in range(2): | |
3833 | # #First Estimation |
|
3833 | # #First Estimation | |
3834 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
3834 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |
3835 | # #Dealias |
|
3835 | # #Dealias | |
3836 | # indcsi = numpy.where(phi0_aux > numpy.pi) |
|
3836 | # indcsi = numpy.where(phi0_aux > numpy.pi) | |
3837 | # phi0_aux[indcsi] -= 2*numpy.pi |
|
3837 | # phi0_aux[indcsi] -= 2*numpy.pi | |
3838 | # indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
3838 | # indcsi = numpy.where(phi0_aux < -numpy.pi) | |
3839 | # phi0_aux[indcsi] += 2*numpy.pi |
|
3839 | # phi0_aux[indcsi] += 2*numpy.pi | |
3840 | # #Direction Cosine 0 |
|
3840 | # #Direction Cosine 0 | |
3841 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
3841 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |
3842 | # |
|
3842 | # | |
3843 | # #Most-Accurate Second Estimation |
|
3843 | # #Most-Accurate Second Estimation | |
3844 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
3844 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |
3845 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3845 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
3846 | # #Direction Cosine 1 |
|
3846 | # #Direction Cosine 1 | |
3847 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) |
|
3847 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |
3848 | # |
|
3848 | # | |
3849 | # #Searching the correct Direction Cosine |
|
3849 | # #Searching the correct Direction Cosine | |
3850 | # cosdir0_aux = cosdir0[:,i] |
|
3850 | # cosdir0_aux = cosdir0[:,i] | |
3851 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
3851 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
3852 | # #Minimum Distance |
|
3852 | # #Minimum Distance | |
3853 | # cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
3853 | # cosDiff = (cosdir1 - cosdir0_aux)**2 | |
3854 | # indcos = cosDiff.argmin(axis = 1) |
|
3854 | # indcos = cosDiff.argmin(axis = 1) | |
3855 | # #Saving Value obtained |
|
3855 | # #Saving Value obtained | |
3856 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
3856 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
3857 | # |
|
3857 | # | |
3858 | # return cosdir0, cosdir |
|
3858 | # return cosdir0, cosdir | |
3859 | # |
|
3859 | # | |
3860 | # def __calculateAOA(self, cosdir, azimuth): |
|
3860 | # def __calculateAOA(self, cosdir, azimuth): | |
3861 | # cosdirX = cosdir[:,0] |
|
3861 | # cosdirX = cosdir[:,0] | |
3862 | # cosdirY = cosdir[:,1] |
|
3862 | # cosdirY = cosdir[:,1] | |
3863 | # |
|
3863 | # | |
3864 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
3864 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
3865 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east |
|
3865 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |
3866 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
3866 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
3867 | # |
|
3867 | # | |
3868 | # return angles |
|
3868 | # return angles | |
3869 | # |
|
3869 | # | |
3870 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
3870 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
3871 | # |
|
3871 | # | |
3872 | # Ramb = 375 #Ramb = c/(2*PRF) |
|
3872 | # Ramb = 375 #Ramb = c/(2*PRF) | |
3873 | # Re = 6371 #Earth Radius |
|
3873 | # Re = 6371 #Earth Radius | |
3874 | # heights = numpy.zeros(Ranges.shape) |
|
3874 | # heights = numpy.zeros(Ranges.shape) | |
3875 | # |
|
3875 | # | |
3876 | # R_aux = numpy.array([0,1,2])*Ramb |
|
3876 | # R_aux = numpy.array([0,1,2])*Ramb | |
3877 | # R_aux = R_aux.reshape(1,R_aux.size) |
|
3877 | # R_aux = R_aux.reshape(1,R_aux.size) | |
3878 | # |
|
3878 | # | |
3879 | # Ranges = Ranges.reshape(Ranges.size,1) |
|
3879 | # Ranges = Ranges.reshape(Ranges.size,1) | |
3880 | # |
|
3880 | # | |
3881 | # Ri = Ranges + R_aux |
|
3881 | # Ri = Ranges + R_aux | |
3882 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
3882 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
3883 | # |
|
3883 | # | |
3884 | # #Check if there is a height between 70 and 110 km |
|
3884 | # #Check if there is a height between 70 and 110 km | |
3885 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
3885 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
3886 | # ind_h = numpy.where(h_bool == 1)[0] |
|
3886 | # ind_h = numpy.where(h_bool == 1)[0] | |
3887 | # |
|
3887 | # | |
3888 | # hCorr = hi[ind_h, :] |
|
3888 | # hCorr = hi[ind_h, :] | |
3889 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
3889 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
3890 | # |
|
3890 | # | |
3891 | # hCorr = hi[ind_hCorr] |
|
3891 | # hCorr = hi[ind_hCorr] | |
3892 | # heights[ind_h] = hCorr |
|
3892 | # heights[ind_h] = hCorr | |
3893 | # |
|
3893 | # | |
3894 | # #Setting Error |
|
3894 | # #Setting Error | |
3895 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
3895 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
3896 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
3896 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
3897 | # |
|
3897 | # | |
3898 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
3898 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
3899 | # error[indInvalid2] = 14 |
|
3899 | # error[indInvalid2] = 14 | |
3900 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
3900 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
3901 | # error[indInvalid1] = 13 |
|
3901 | # error[indInvalid1] = 13 | |
3902 | # |
|
3902 | # | |
3903 | # return heights, error |
|
3903 | # return heights, error | |
3904 |
|
3904 | |||
3905 |
|
3905 | |||
3906 | class WeatherRadar(Operation): |
|
3906 | class WeatherRadar(Operation): | |
3907 | ''' |
|
3907 | ''' | |
3908 | Function tat implements Weather Radar operations- |
|
3908 | Function tat implements Weather Radar operations- | |
3909 | Input: |
|
3909 | Input: | |
3910 | Output: |
|
3910 | Output: | |
3911 | Parameters affected: |
|
3911 | Parameters affected: | |
3912 | ''' |
|
3912 | ''' | |
3913 | isConfig = False |
|
3913 | isConfig = False | |
3914 |
|
3914 | |||
3915 | def __init__(self): |
|
3915 | def __init__(self): | |
3916 | Operation.__init__(self) |
|
3916 | Operation.__init__(self) | |
3917 |
|
3917 | |||
3918 | def setup(self,dataOut,Pt=0,Gt=0,Gr=0,lambda_=0, aL=0, |
|
3918 | def setup(self,dataOut,Pt=0,Gt=0,Gr=0,lambda_=0, aL=0, | |
3919 | tauW= 0,thetaT=0,thetaR=0,Km =0): |
|
3919 | tauW= 0,thetaT=0,thetaR=0,Km =0): | |
3920 | self.nCh = dataOut.nChannels |
|
3920 | self.nCh = dataOut.nChannels | |
3921 | self.nHeis = dataOut.nHeights |
|
3921 | self.nHeis = dataOut.nHeights | |
3922 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
3922 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
3923 | self.Range = numpy.arange(dataOut.nHeights)*deltaHeight + dataOut.heightList[0] |
|
3923 | self.Range = numpy.arange(dataOut.nHeights)*deltaHeight + dataOut.heightList[0] | |
3924 | self.Range = self.Range.reshape(1,self.nHeis) |
|
3924 | self.Range = self.Range.reshape(1,self.nHeis) | |
3925 | self.Range = numpy.tile(self.Range,[self.nCh,1]) |
|
3925 | self.Range = numpy.tile(self.Range,[self.nCh,1]) | |
3926 | '''-----------1 Constante del Radar----------''' |
|
3926 | '''-----------1 Constante del Radar----------''' | |
3927 | self.Pt = Pt |
|
3927 | self.Pt = Pt | |
3928 | self.Gt = Gt |
|
3928 | self.Gt = Gt | |
3929 | self.Gr = Gr |
|
3929 | self.Gr = Gr | |
3930 | self.lambda_ = lambda_ |
|
3930 | self.lambda_ = lambda_ | |
3931 | self.aL = aL |
|
3931 | self.aL = aL | |
3932 | self.tauW = tauW |
|
3932 | self.tauW = tauW | |
3933 | self.thetaT = thetaT |
|
3933 | self.thetaT = thetaT | |
3934 | self.thetaR = thetaR |
|
3934 | self.thetaR = thetaR | |
3935 | self.Km = Km |
|
3935 | self.Km = Km | |
3936 | Numerator = ((4*numpy.pi)**3 * aL**2 * 16 *numpy.log(2)) |
|
3936 | Numerator = ((4*numpy.pi)**3 * aL**2 * 16 *numpy.log(2)) | |
3937 | Denominator = (Pt * Gt * Gr * lambda_**2 * SPEED_OF_LIGHT * tauW * numpy.pi*thetaT*thetaR) |
|
3937 | Denominator = (Pt * Gt * Gr * lambda_**2 * SPEED_OF_LIGHT * tauW * numpy.pi*thetaT*thetaR) | |
3938 | self.RadarConstant = Numerator/Denominator |
|
3938 | self.RadarConstant = Numerator/Denominator | |
3939 | '''-----------2 Reflectividad del Radar y Factor de Reflectividad------''' |
|
3939 | '''-----------2 Reflectividad del Radar y Factor de Reflectividad------''' | |
3940 | self.n_radar = numpy.zeros((self.nCh,self.nHeis)) |
|
3940 | self.n_radar = numpy.zeros((self.nCh,self.nHeis)) | |
3941 | self.Z_radar = numpy.zeros((self.nCh,self.nHeis)) |
|
3941 | self.Z_radar = numpy.zeros((self.nCh,self.nHeis)) | |
3942 |
|
3942 | |||
3943 | def setMoments(self,dataOut,i): |
|
3943 | def setMoments(self,dataOut,i): | |
3944 |
|
3944 | |||
3945 | type = dataOut.inputUnit |
|
3945 | type = dataOut.inputUnit | |
3946 | nCh = dataOut.nChannels |
|
3946 | nCh = dataOut.nChannels | |
3947 | nHeis= dataOut.nHeights |
|
3947 | nHeis= dataOut.nHeights | |
3948 | data_param = numpy.zeros((nCh,4,nHeis)) |
|
3948 | data_param = numpy.zeros((nCh,4,nHeis)) | |
3949 | if type == "Voltage": |
|
3949 | if type == "Voltage": | |
3950 | data_param[:,0,:] = dataOut.dataPP_POW/(dataOut.nCohInt**2) |
|
3950 | data_param[:,0,:] = dataOut.dataPP_POW/(dataOut.nCohInt**2) | |
3951 | data_param[:,1,:] = dataOut.dataPP_DOP |
|
3951 | data_param[:,1,:] = dataOut.dataPP_DOP | |
3952 | data_param[:,2,:] = dataOut.dataPP_WIDTH |
|
3952 | data_param[:,2,:] = dataOut.dataPP_WIDTH | |
3953 | data_param[:,3,:] = dataOut.dataPP_SNR |
|
3953 | data_param[:,3,:] = dataOut.dataPP_SNR | |
3954 | if type == "Spectra": |
|
3954 | if type == "Spectra": | |
3955 | data_param[:,0,:] = dataOut.data_POW |
|
3955 | data_param[:,0,:] = dataOut.data_POW | |
3956 | data_param[:,1,:] = dataOut.data_DOP |
|
3956 | data_param[:,1,:] = dataOut.data_DOP | |
3957 | data_param[:,2,:] = dataOut.data_WIDTH |
|
3957 | data_param[:,2,:] = dataOut.data_WIDTH | |
3958 | def setMoments(self,dataOut,i): |
|
3958 | def setMoments(self,dataOut,i): | |
3959 | data_param[:,3,:] = dataOut.data_SNR |
|
3959 | data_param[:,3,:] = dataOut.data_SNR | |
3960 |
|
3960 | |||
3961 | return data_param[:,i,:] |
|
3961 | return data_param[:,i,:] | |
3962 |
|
3962 | |||
3963 |
|
3963 | |||
3964 | def run(self,dataOut,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118, |
|
3964 | def run(self,dataOut,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118, | |
3965 | tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93): |
|
3965 | tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93): | |
3966 |
|
3966 | |||
3967 | if not self.isConfig: |
|
3967 | if not self.isConfig: | |
3968 | self.setup(dataOut= dataOut,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118, |
|
3968 | self.setup(dataOut= dataOut,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118, | |
3969 | tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93) |
|
3969 | tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93) | |
3970 | self.isConfig = True |
|
3970 | self.isConfig = True | |
3971 | '''-----------------------------Potencia de Radar -Signal S-----------------------------''' |
|
3971 | '''-----------------------------Potencia de Radar -Signal S-----------------------------''' | |
3972 | Pr = self.setMoments(dataOut,0) |
|
3972 | Pr = self.setMoments(dataOut,0) | |
3973 |
|
3973 | |||
3974 | for R in range(self.nHeis): |
|
3974 | for R in range(self.nHeis): | |
3975 | self.n_radar[:,R] = self.RadarConstant*Pr[:,R]* (self.Range[:,R])**2 |
|
3975 | self.n_radar[:,R] = self.RadarConstant*Pr[:,R]* (self.Range[:,R])**2 | |
3976 |
|
3976 | |||
3977 | self.Z_radar[:,R] = self.n_radar[:,R]* self.lambda_**4/( numpy.pi**5 * self.Km**2) |
|
3977 | self.Z_radar[:,R] = self.n_radar[:,R]* self.lambda_**4/( numpy.pi**5 * self.Km**2) | |
3978 |
|
3978 | |||
3979 | '''----------- Factor de Reflectividad Equivalente lamda_ < 10 cm , lamda_= 3.2cm-------''' |
|
3979 | '''----------- Factor de Reflectividad Equivalente lamda_ < 10 cm , lamda_= 3.2cm-------''' | |
3980 | Zeh = self.Z_radar |
|
3980 | Zeh = self.Z_radar | |
3981 | dBZeh = 10*numpy.log10(Zeh) |
|
3981 | dBZeh = 10*numpy.log10(Zeh) | |
3982 | dataOut.factor_Zeh= dBZeh |
|
3982 | dataOut.factor_Zeh= dBZeh | |
3983 | self.n_radar = numpy.zeros((self.nCh,self.nHeis)) |
|
3983 | self.n_radar = numpy.zeros((self.nCh,self.nHeis)) | |
3984 | self.Z_radar = numpy.zeros((self.nCh,self.nHeis)) |
|
3984 | self.Z_radar = numpy.zeros((self.nCh,self.nHeis)) | |
3985 |
|
3985 | |||
3986 | return dataOut |
|
3986 | return dataOut | |
3987 |
|
3987 | |||
3988 | class PedestalInformation(Operation): |
|
3988 | class PedestalInformation(Operation): | |
3989 | path_ped = None |
|
3989 | path_ped = None | |
3990 | path_adq = None |
|
3990 | path_adq = None | |
3991 | t_Interval_p = None |
|
3991 | t_Interval_p = None | |
3992 | n_Muestras_p = None |
|
3992 | n_Muestras_p = None | |
3993 | isConfig = False |
|
3993 | isConfig = False | |
3994 | blocksPerfile= None |
|
3994 | blocksPerfile= None | |
3995 | f_a_p = None |
|
3995 | f_a_p = None | |
3996 | online = None |
|
3996 | online = None | |
3997 | angulo_adq = None |
|
3997 | angulo_adq = None | |
3998 | nro_file = None |
|
3998 | nro_file = None | |
3999 | nro_key_p = None |
|
3999 | nro_key_p = None | |
4000 | tmp = None |
|
4000 | tmp = None | |
4001 |
|
4001 | |||
4002 |
|
4002 | |||
4003 | def __init__(self): |
|
4003 | def __init__(self): | |
4004 | Operation.__init__(self) |
|
4004 | Operation.__init__(self) | |
4005 |
|
4005 | |||
4006 | def getfirstFilefromPath(self,path,meta,ext): |
|
4006 | def getfirstFilefromPath(self,path,meta,ext): | |
4007 | validFilelist = [] |
|
4007 | validFilelist = [] | |
4008 | #print("SEARH",path) |
|
4008 | #print("SEARH",path) | |
4009 | try: |
|
4009 | try: | |
4010 | fileList = os.listdir(path) |
|
4010 | fileList = os.listdir(path) | |
4011 | except: |
|
4011 | except: | |
4012 | print("check path - fileList") |
|
4012 | print("check path - fileList") | |
4013 | if len(fileList)<1: |
|
4013 | if len(fileList)<1: | |
4014 | return None |
|
4014 | return None | |
4015 | # meta 1234 567 8-18 BCDE |
|
4015 | # meta 1234 567 8-18 BCDE | |
4016 | # H,D,PE YYYY DDD EPOC .ext |
|
4016 | # H,D,PE YYYY DDD EPOC .ext | |
4017 |
|
4017 | |||
4018 | for thisFile in fileList: |
|
4018 | for thisFile in fileList: | |
4019 | #print("HI",thisFile) |
|
4019 | #print("HI",thisFile) | |
4020 | if meta =="PE": |
|
4020 | if meta =="PE": | |
4021 | try: |
|
4021 | try: | |
4022 | number= int(thisFile[len(meta)+7:len(meta)+17]) |
|
4022 | number= int(thisFile[len(meta)+7:len(meta)+17]) | |
4023 | except: |
|
4023 | except: | |
4024 | print("There is a file or folder with different format") |
|
4024 | print("There is a file or folder with different format") | |
4025 | if meta == "D": |
|
4025 | if meta == "D": | |
4026 | try: |
|
4026 | try: | |
4027 | number= int(thisFile[8:11]) |
|
4027 | number= int(thisFile[8:11]) | |
4028 | except: |
|
4028 | except: | |
4029 | print("There is a file or folder with different format") |
|
4029 | print("There is a file or folder with different format") | |
4030 |
|
4030 | |||
4031 | if not isNumber(str=number): |
|
4031 | if not isNumber(str=number): | |
4032 | continue |
|
4032 | continue | |
4033 | if (os.path.splitext(thisFile)[-1].lower() != ext.lower()): |
|
4033 | if (os.path.splitext(thisFile)[-1].lower() != ext.lower()): | |
4034 | continue |
|
4034 | continue | |
4035 | validFilelist.sort() |
|
4035 | validFilelist.sort() | |
4036 | validFilelist.append(thisFile) |
|
4036 | validFilelist.append(thisFile) | |
4037 | if len(validFilelist)>0: |
|
4037 | if len(validFilelist)>0: | |
4038 | validFilelist = sorted(validFilelist,key=str.lower) |
|
4038 | validFilelist = sorted(validFilelist,key=str.lower) | |
4039 | return validFilelist |
|
4039 | return validFilelist | |
4040 | return None |
|
4040 | return None | |
4041 |
|
4041 | |||
4042 | def gettimeutcfromDirFilename(self,path,file): |
|
4042 | def gettimeutcfromDirFilename(self,path,file): | |
4043 | dir_file= path+"/"+file |
|
4043 | dir_file= path+"/"+file | |
4044 | fp = h5py.File(dir_file,'r') |
|
4044 | fp = h5py.File(dir_file,'r') | |
4045 | #epoc = fp['Metadata'].get('utctimeInit')[()] |
|
4045 | #epoc = fp['Metadata'].get('utctimeInit')[()] | |
4046 | epoc = fp['Data'].get('utc')[()] |
|
4046 | epoc = fp['Data'].get('utc')[()] | |
4047 | fp.close() |
|
4047 | fp.close() | |
4048 | return epoc |
|
4048 | return epoc | |
4049 |
|
4049 | |||
4050 | def gettimeutcadqfromDirFilename(self,path,file): |
|
4050 | def gettimeutcadqfromDirFilename(self,path,file): | |
4051 | dir_file= path+"/"+file |
|
4051 | dir_file= path+"/"+file | |
4052 | fp = h5py.File(dir_file,'r') |
|
4052 | fp = h5py.File(dir_file,'r') | |
4053 | epoc = fp['Metadata'].get('utctimeInit')[()] |
|
4053 | epoc = fp['Metadata'].get('utctimeInit')[()] | |
4054 | #epoc = fp['Data'].get('utc')[()] |
|
4054 | #epoc = fp['Data'].get('utc')[()] | |
4055 | fp.close() |
|
4055 | fp.close() | |
4056 | return epoc |
|
4056 | return epoc | |
4057 |
|
4057 | |||
4058 | def getDatavaluefromDirFilename(self,path,file,value): |
|
4058 | def getDatavaluefromDirFilename(self,path,file,value): | |
4059 | dir_file= path+"/"+file |
|
4059 | dir_file= path+"/"+file | |
4060 | fp = h5py.File(dir_file,'r') |
|
4060 | fp = h5py.File(dir_file,'r') | |
4061 | array = fp['Data'].get(value)[()] |
|
4061 | array = fp['Data'].get(value)[()] | |
4062 | fp.close() |
|
4062 | fp.close() | |
4063 | return array |
|
4063 | return array | |
4064 |
|
4064 | |||
4065 | def getFile_KeyP(self,list_pedestal,list_adq): |
|
4065 | def getFile_KeyP(self,list_pedestal,list_adq): | |
4066 | print(list_pedestal) |
|
4066 | print(list_pedestal) | |
4067 | print(list_adq) |
|
4067 | print(list_adq) | |
4068 |
|
4068 | |||
4069 | def getNROFile(self,utc_adq,utc_ped_list): |
|
4069 | def getNROFile(self,utc_adq,utc_ped_list): | |
4070 | c=0 |
|
4070 | c=0 | |
4071 | print("insidegetNROFile") |
|
4071 | print("insidegetNROFile") | |
4072 | print(utc_adq) |
|
4072 | print(utc_adq) | |
4073 | print(len(utc_ped_list)) |
|
4073 | print(len(utc_ped_list)) | |
4074 | for i in range(len(utc_ped_list)): |
|
4074 | for i in range(len(utc_ped_list)): | |
4075 | if utc_adq>utc_ped_list[i]: |
|
4075 | if utc_adq>utc_ped_list[i]: | |
4076 | #print("mayor") |
|
4076 | #print("mayor") | |
4077 | #print("utc_ped_list",utc_ped_list[i]) |
|
4077 | #print("utc_ped_list",utc_ped_list[i]) | |
4078 | c +=1 |
|
4078 | c +=1 | |
4079 |
|
4079 | |||
4080 | return c-1,utc_ped_list[c-1],utc_ped_list[c] |
|
4080 | return c-1,utc_ped_list[c-1],utc_ped_list[c] | |
4081 |
|
4081 | |||
4082 | def verificarNROFILE(self,dataOut,utc_ped,f_a_p,n_Muestras_p): |
|
4082 | def verificarNROFILE(self,dataOut,utc_ped,f_a_p,n_Muestras_p): | |
4083 | var =int(f_a_p/n_Muestras_p) |
|
4083 | var =int(f_a_p/n_Muestras_p) | |
4084 | flag=0 |
|
4084 | flag=0 | |
4085 | for i in range(var): |
|
4085 | for i in range(var): | |
4086 | if dataOut.utctime+i==utc_ped: |
|
4086 | if dataOut.utctime+i==utc_ped: | |
4087 | flag==1 |
|
4087 | flag==1 | |
4088 | break |
|
4088 | break | |
4089 | return flag |
|
4089 | return flag | |
4090 |
|
4090 | |||
4091 | #def setup_offline(self,dataOut,list_pedestal,list_adq): |
|
4091 | #def setup_offline(self,dataOut,list_pedestal,list_adq): | |
4092 | def setup_offline(self,dataOut,list_pedestal): |
|
4092 | def setup_offline(self,dataOut,list_pedestal): | |
4093 |
|
4093 | |||
4094 | print("SETUP OFFLINE") |
|
4094 | print("SETUP OFFLINE") | |
4095 | print(self.path_ped) |
|
4095 | print(self.path_ped) | |
4096 | #print(self.path_adq) |
|
4096 | #print(self.path_adq) | |
4097 | print(len(self.list_pedestal)) |
|
4097 | print(len(self.list_pedestal)) | |
4098 | #print(len(self.list_adq)) |
|
4098 | #print(len(self.list_adq)) | |
4099 | utc_ped_list=[] |
|
4099 | utc_ped_list=[] | |
4100 | for i in range(len(self.list_pedestal)): |
|
4100 | for i in range(len(self.list_pedestal)): | |
4101 | #print(i)# OJO IDENTIFICADOR DE SINCRONISMO |
|
4101 | #print(i)# OJO IDENTIFICADOR DE SINCRONISMO | |
4102 | utc_ped_list.append(self.gettimeutcfromDirFilename(path=self.path_ped,file=self.list_pedestal[i])) |
|
4102 | utc_ped_list.append(self.gettimeutcfromDirFilename(path=self.path_ped,file=self.list_pedestal[i])) | |
4103 |
|
4103 | |||
4104 | #utc_ped_list= utc_ped_list |
|
4104 | #utc_ped_list= utc_ped_list | |
4105 | ###utc_adq = self.gettimeutcadqfromDirFilename(path=self.path_adq,file=self.list_adq[0]) |
|
4105 | ###utc_adq = self.gettimeutcadqfromDirFilename(path=self.path_adq,file=self.list_adq[0]) | |
4106 | print("dios existe donde esta") |
|
4106 | print("dios existe donde esta") | |
4107 |
|
4107 | |||
4108 | #print("utc_ped_list",utc_ped_list) |
|
4108 | #print("utc_ped_list",utc_ped_list) | |
4109 | ###print("utc_adq",utc_adq) |
|
4109 | ###print("utc_adq",utc_adq) | |
4110 | # utc_adq_dataOut |
|
4110 | # utc_adq_dataOut | |
4111 | utc_adq_dataOut =dataOut.utctime |
|
4111 | utc_adq_dataOut =dataOut.utctime | |
4112 | print("Offline-utc_adq_dataout",utc_adq_dataOut) |
|
4112 | print("Offline-utc_adq_dataout",utc_adq_dataOut) | |
4113 |
|
4113 | |||
4114 | nro_file,utc_ped,utc_ped_1 = self.getNROFile(utc_adq=utc_adq_dataOut, utc_ped_list= utc_ped_list) |
|
4114 | nro_file,utc_ped,utc_ped_1 = self.getNROFile(utc_adq=utc_adq_dataOut, utc_ped_list= utc_ped_list) | |
4115 |
|
4115 | |||
4116 | print("nro_file",nro_file,"utc_ped",utc_ped) |
|
4116 | print("nro_file",nro_file,"utc_ped",utc_ped) | |
4117 | print("nro_file",i) |
|
4117 | print("nro_file",i) | |
4118 | nro_key_p = int((utc_adq_dataOut-utc_ped)/self.t_Interval_p)-1 # ojito al -1 estimado alex |
|
4118 | nro_key_p = int((utc_adq_dataOut-utc_ped)/self.t_Interval_p)-1 # ojito al -1 estimado alex | |
4119 | print("nro_key_p",nro_key_p) |
|
4119 | print("nro_key_p",nro_key_p) | |
4120 |
|
4120 | |||
4121 | ff_pedestal = self.list_pedestal[nro_file] |
|
4121 | ff_pedestal = self.list_pedestal[nro_file] | |
4122 | #angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azimuth") |
|
4122 | #angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azimuth") | |
4123 | angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azi_pos") |
|
4123 | angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azi_pos") | |
4124 |
|
4124 | |||
4125 | print("utc_pedestal_init :",utc_ped+nro_key_p*self.t_Interval_p) |
|
4125 | print("utc_pedestal_init :",utc_ped+nro_key_p*self.t_Interval_p) | |
4126 | print("angulo_array :",angulo[nro_key_p]) |
|
4126 | print("angulo_array :",angulo[nro_key_p]) | |
4127 | self.nro_file = nro_file |
|
4127 | self.nro_file = nro_file | |
4128 | self.nro_key_p = nro_key_p |
|
4128 | self.nro_key_p = nro_key_p | |
4129 |
|
4129 | |||
4130 | def setup_online(self,dataOut): |
|
4130 | def setup_online(self,dataOut): | |
4131 | utc_adq =dataOut.utctime |
|
4131 | utc_adq =dataOut.utctime | |
4132 | print("Online-utc_adq",utc_adq) |
|
4132 | print("Online-utc_adq",utc_adq) | |
4133 | print(len(self.list_pedestal)) |
|
4133 | print(len(self.list_pedestal)) | |
4134 | utc_ped_list=[] |
|
4134 | utc_ped_list=[] | |
4135 | for i in range(len(self.list_pedestal)): |
|
4135 | for i in range(len(self.list_pedestal)): | |
4136 | utc_ped_list.append(self.gettimeutcfromDirFilename(path=self.path_ped,file=self.list_pedestal[i])) |
|
4136 | utc_ped_list.append(self.gettimeutcfromDirFilename(path=self.path_ped,file=self.list_pedestal[i])) | |
4137 | print(utc_ped_list[:20]) |
|
4137 | print(utc_ped_list[:20]) | |
4138 | #print(utc_ped_list[488:498]) |
|
4138 | #print(utc_ped_list[488:498]) | |
4139 | print("ultimo UTC-PEDESTAL",utc_ped_list[-1]) |
|
4139 | print("ultimo UTC-PEDESTAL",utc_ped_list[-1]) | |
4140 | nro_file,utc_ped,utc_ped_1 = self.getNROFile(utc_adq=utc_adq, utc_ped_list= utc_ped_list) |
|
4140 | nro_file,utc_ped,utc_ped_1 = self.getNROFile(utc_adq=utc_adq, utc_ped_list= utc_ped_list) | |
4141 | print("nro_file",nro_file,"utc_ped",utc_ped,"utc_ped_1",utc_ped_1) |
|
4141 | print("nro_file",nro_file,"utc_ped",utc_ped,"utc_ped_1",utc_ped_1) | |
4142 | print("name_PEDESTAL",self.list_pedestal[nro_file]) |
|
4142 | print("name_PEDESTAL",self.list_pedestal[nro_file]) | |
4143 | nro_key_p = int((utc_adq-utc_ped)/self.t_Interval_p)-1 |
|
4143 | nro_key_p = int((utc_adq-utc_ped)/self.t_Interval_p)-1 | |
4144 | print("nro_key_p",nro_key_p) |
|
4144 | print("nro_key_p",nro_key_p) | |
4145 | ff_pedestal = self.list_pedestal[nro_file] |
|
4145 | ff_pedestal = self.list_pedestal[nro_file] | |
4146 | #angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azimuth") |
|
4146 | #angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azimuth") | |
4147 | angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azi_pos") |
|
4147 | angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azi_pos") | |
4148 |
|
4148 | |||
4149 | print("utc_pedestal_init :",utc_ped+nro_key_p*self.t_Interval_p) |
|
4149 | print("utc_pedestal_init :",utc_ped+nro_key_p*self.t_Interval_p) | |
4150 | print("angulo_array :",angulo[nro_key_p]) |
|
4150 | print("angulo_array :",angulo[nro_key_p]) | |
4151 | self.nro_file = nro_file |
|
4151 | self.nro_file = nro_file | |
4152 | self.nro_key_p = nro_key_p |
|
4152 | self.nro_key_p = nro_key_p | |
4153 |
|
4153 | |||
4154 | #def setup(self,dataOut,path_ped,path_adq,t_Interval_p,n_Muestras_p,blocksPerfile,f_a_p,online): |
|
4154 | #def setup(self,dataOut,path_ped,path_adq,t_Interval_p,n_Muestras_p,blocksPerfile,f_a_p,online): | |
4155 | def setup(self,dataOut,path_ped,t_Interval_p,n_Muestras_p,blocksPerfile,f_a_p,online): |
|
4155 | def setup(self,dataOut,path_ped,t_Interval_p,n_Muestras_p,blocksPerfile,f_a_p,online): | |
4156 | print("SETUP PEDESTAL") |
|
4156 | print("SETUP PEDESTAL") | |
4157 | self.__dataReady = False |
|
4157 | self.__dataReady = False | |
4158 | self.path_ped = path_ped |
|
4158 | self.path_ped = path_ped | |
4159 | #self.path_adq = path_adq |
|
4159 | #self.path_adq = path_adq | |
4160 | self.t_Interval_p = t_Interval_p |
|
4160 | self.t_Interval_p = t_Interval_p | |
4161 | self.n_Muestras_p = n_Muestras_p |
|
4161 | self.n_Muestras_p = n_Muestras_p | |
4162 | self.blocksPerfile= blocksPerfile |
|
4162 | self.blocksPerfile= blocksPerfile | |
4163 | self.f_a_p = f_a_p |
|
4163 | self.f_a_p = f_a_p | |
4164 | self.online = online |
|
4164 | self.online = online | |
4165 | self.angulo_adq = numpy.zeros(self.blocksPerfile) |
|
4165 | self.angulo_adq = numpy.zeros(self.blocksPerfile) | |
4166 | self.__profIndex = 0 |
|
4166 | self.__profIndex = 0 | |
4167 | self.tmp = 0 |
|
4167 | self.tmp = 0 | |
4168 | self.c_ped = 0 |
|
4168 | self.c_ped = 0 | |
4169 | print(self.path_ped) |
|
4169 | print(self.path_ped) | |
4170 | #print(self.path_adq) |
|
4170 | #print(self.path_adq) | |
4171 | self.list_pedestal = self.getfirstFilefromPath(path=self.path_ped,meta="PE",ext=".hdf5") |
|
4171 | self.list_pedestal = self.getfirstFilefromPath(path=self.path_ped,meta="PE",ext=".hdf5") | |
4172 | print("LIST NEW", self.list_pedestal[:20]) |
|
4172 | print("LIST NEW", self.list_pedestal[:20]) | |
4173 | #self.list_adq = self.getfirstFilefromPath(path=self.path_adq,meta="D",ext=".hdf5") |
|
4173 | #self.list_adq = self.getfirstFilefromPath(path=self.path_adq,meta="D",ext=".hdf5") | |
4174 | print("*************Longitud list pedestal****************",len(self.list_pedestal)) |
|
4174 | print("*************Longitud list pedestal****************",len(self.list_pedestal)) | |
4175 |
|
4175 | |||
4176 | if self.online: |
|
4176 | if self.online: | |
4177 | print("Enable Online") |
|
4177 | print("Enable Online") | |
4178 | self.setup_online(dataOut) |
|
4178 | self.setup_online(dataOut) | |
4179 | else: |
|
4179 | else: | |
4180 | #self.setup_offline(dataOut,list_pedestal=self.list_pedestal,list_adq=self.list_adq) |
|
4180 | #self.setup_offline(dataOut,list_pedestal=self.list_pedestal,list_adq=self.list_adq) | |
4181 | self.setup_offline(dataOut,list_pedestal=self.list_pedestal) |
|
4181 | self.setup_offline(dataOut,list_pedestal=self.list_pedestal) | |
4182 |
|
4182 | |||
4183 |
|
4183 | |||
4184 | def setNextFileP(self,dataOut): |
|
4184 | def setNextFileP(self,dataOut): | |
4185 | if self.online: |
|
4185 | if self.online: | |
4186 | data_pedestal = self.setNextFileonline() |
|
4186 | data_pedestal = self.setNextFileonline() | |
4187 | else: |
|
4187 | else: | |
4188 | data_pedestal = self.setNextFileoffline(dataOut) |
|
4188 | data_pedestal = self.setNextFileoffline(dataOut) | |
4189 |
|
4189 | |||
4190 | return data_pedestal |
|
4190 | return data_pedestal | |
4191 |
|
4191 | |||
4192 |
|
4192 | |||
4193 | def setNextFileoffline(self,dataOut): |
|
4193 | def setNextFileoffline(self,dataOut): | |
4194 | ##tmp=0 |
|
4194 | ##tmp=0 | |
4195 | for j in range(self.blocksPerfile): |
|
4195 | for j in range(self.blocksPerfile): | |
4196 | ###print("NUMERO DEL BLOQUE---->",j) |
|
4196 | ###print("NUMERO DEL BLOQUE---->",j) | |
4197 | ###print("nro_key_p",self.nro_key_p) |
|
4197 | ###print("nro_key_p",self.nro_key_p) | |
4198 |
|
4198 | |||
4199 | #iterador = self.nro_key_p +self.f_a_p*(j-tmp) |
|
4199 | #iterador = self.nro_key_p +self.f_a_p*(j-tmp) | |
4200 | iterador = self.nro_key_p +self.f_a_p*self.c_ped |
|
4200 | iterador = self.nro_key_p +self.f_a_p*self.c_ped | |
4201 | self.c_ped = self.c_ped +1 |
|
4201 | self.c_ped = self.c_ped +1 | |
4202 |
|
4202 | |||
4203 | print("iterador------------->",iterador) |
|
4203 | print("iterador------------->",iterador) | |
4204 | if iterador < self.n_Muestras_p: |
|
4204 | if iterador < self.n_Muestras_p: | |
4205 | self.nro_file = self.nro_file |
|
4205 | self.nro_file = self.nro_file | |
4206 | else: |
|
4206 | else: | |
4207 | self.nro_file = self.nro_file+1 |
|
4207 | self.nro_file = self.nro_file+1 | |
4208 | print("PRUEBA-------------") |
|
4208 | print("PRUEBA-------------") | |
4209 | utc_ped_setnext=self.gettimeutcfromDirFilename(path=self.path_ped,file=self.list_pedestal[self.nro_file]) |
|
4209 | utc_ped_setnext=self.gettimeutcfromDirFilename(path=self.path_ped,file=self.list_pedestal[self.nro_file]) | |
4210 | utc_adq_setnext=dataOut.utctime |
|
4210 | utc_adq_setnext=dataOut.utctime | |
4211 | print("utc_pedestal",utc_ped_setnext) |
|
4211 | print("utc_pedestal",utc_ped_setnext) | |
4212 | print("utc_adq",utc_adq_setnext) |
|
4212 | print("utc_adq",utc_adq_setnext) | |
4213 |
|
4213 | |||
4214 | print("self.c_ped",self.c_ped) |
|
4214 | print("self.c_ped",self.c_ped) | |
4215 | #dif = self.blocksPerfile-(self.nro_key_p+self.f_a_p*(self.c_ped-2)) |
|
4215 | #dif = self.blocksPerfile-(self.nro_key_p+self.f_a_p*(self.c_ped-2)) | |
4216 | dif = self.n_Muestras_p-(self.nro_key_p+self.f_a_p*(self.c_ped-2)) |
|
4216 | dif = self.n_Muestras_p-(self.nro_key_p+self.f_a_p*(self.c_ped-2)) | |
4217 |
|
4217 | |||
4218 | self.c_ped = 1 |
|
4218 | self.c_ped = 1 | |
4219 | ##tmp = j |
|
4219 | ##tmp = j | |
4220 | ##print("tmp else",tmp) |
|
4220 | ##print("tmp else",tmp) | |
4221 | self.nro_key_p= self.f_a_p-dif |
|
4221 | self.nro_key_p= self.f_a_p-dif | |
4222 | iterador = self.nro_key_p |
|
4222 | iterador = self.nro_key_p | |
4223 | print("iterador else",iterador) |
|
4223 | print("iterador else",iterador) | |
4224 | #self.c_ped = self.c_ped +1 |
|
4224 | #self.c_ped = self.c_ped +1 | |
4225 |
|
4225 | |||
4226 | print("nro_file",self.nro_file) |
|
4226 | print("nro_file",self.nro_file) | |
4227 | #print("tmp",tmp) |
|
4227 | #print("tmp",tmp) | |
4228 | try: |
|
4228 | try: | |
4229 | ff_pedestal = self.list_pedestal[self.nro_file] |
|
4229 | ff_pedestal = self.list_pedestal[self.nro_file] | |
4230 | print("ff_pedestal",ff_pedestal) |
|
4230 | print("ff_pedestal",ff_pedestal) | |
4231 | except: |
|
4231 | except: | |
4232 | print("############# EXCEPCION ######################") |
|
4232 | print("############# EXCEPCION ######################") | |
4233 | return numpy.ones(self.blocksPerfile)*numpy.nan |
|
4233 | return numpy.ones(self.blocksPerfile)*numpy.nan | |
4234 |
|
4234 | |||
4235 | #angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azimuth") |
|
4235 | #angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azimuth") | |
4236 | angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azi_pos") |
|
4236 | angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azi_pos") | |
4237 |
|
4237 | |||
4238 | self.angulo_adq[j]= angulo[iterador] |
|
4238 | self.angulo_adq[j]= angulo[iterador] | |
4239 |
|
4239 | |||
4240 | return self.angulo_adq |
|
4240 | return self.angulo_adq | |
4241 |
|
4241 | |||
4242 | def setNextFileonline(self): |
|
4242 | def setNextFileonline(self): | |
4243 | tmp = 0 |
|
4243 | tmp = 0 | |
4244 | self.nTries_p = 3 |
|
4244 | self.nTries_p = 3 | |
4245 | self.delay = 3 |
|
4245 | self.delay = 3 | |
4246 | ready = 1 |
|
4246 | ready = 1 | |
4247 | for j in range(self.blocksPerfile): |
|
4247 | for j in range(self.blocksPerfile): | |
4248 | iterador = self.nro_key_p +self.f_a_p*(j-tmp) |
|
4248 | iterador = self.nro_key_p +self.f_a_p*(j-tmp) | |
4249 | if iterador < self.n_Muestras_p: |
|
4249 | if iterador < self.n_Muestras_p: | |
4250 | self.nro_file = self.nro_file |
|
4250 | self.nro_file = self.nro_file | |
4251 | else: |
|
4251 | else: | |
4252 | self.nro_file = self.nro_file+1 |
|
4252 | self.nro_file = self.nro_file+1 | |
4253 | dif = self.blocksPerfile-(self.nro_key_p+self.f_a_p*(j-tmp-1)) |
|
4253 | dif = self.blocksPerfile-(self.nro_key_p+self.f_a_p*(j-tmp-1)) | |
4254 | tmp = j |
|
4254 | tmp = j | |
4255 | self.nro_key_p= self.f_a_p-dif |
|
4255 | self.nro_key_p= self.f_a_p-dif | |
4256 | iterador = self.nro_key_p |
|
4256 | iterador = self.nro_key_p | |
4257 | #print("nro_file---------------- :",self.nro_file) |
|
4257 | #print("nro_file---------------- :",self.nro_file) | |
4258 | try: |
|
4258 | try: | |
4259 | # update list_pedestal |
|
4259 | # update list_pedestal | |
4260 | self.list_pedestal = self.getfirstFilefromPath(path=self.path_ped,meta="PE",ext=".hdf5") |
|
4260 | self.list_pedestal = self.getfirstFilefromPath(path=self.path_ped,meta="PE",ext=".hdf5") | |
4261 | ff_pedestal = self.list_pedestal[self.nro_file] |
|
4261 | ff_pedestal = self.list_pedestal[self.nro_file] | |
4262 | except: |
|
4262 | except: | |
4263 | ff_pedestal = None |
|
4263 | ff_pedestal = None | |
4264 | ready = 0 |
|
4264 | ready = 0 | |
4265 | for nTries_p in range(self.nTries_p): |
|
4265 | for nTries_p in range(self.nTries_p): | |
4266 | try: |
|
4266 | try: | |
4267 | # update list_pedestal |
|
4267 | # update list_pedestal | |
4268 | self.list_pedestal = self.getfirstFilefromPath(path=self.path_ped,meta="PE",ext=".hdf5") |
|
4268 | self.list_pedestal = self.getfirstFilefromPath(path=self.path_ped,meta="PE",ext=".hdf5") | |
4269 | ff_pedestal = self.list_pedestal[self.nro_file] |
|
4269 | ff_pedestal = self.list_pedestal[self.nro_file] | |
4270 | except: |
|
4270 | except: | |
4271 | ff_pedestal = None |
|
4271 | ff_pedestal = None | |
4272 | if ff_pedestal is not None: |
|
4272 | if ff_pedestal is not None: | |
4273 | ready=1 |
|
4273 | ready=1 | |
4274 | break |
|
4274 | break | |
4275 | log.warning("Waiting %0.2f sec for the next file: \"%s\" , try %02d ..." % (self.delay, self.nro_file, nTries_p + 1)) |
|
4275 | log.warning("Waiting %0.2f sec for the next file: \"%s\" , try %02d ..." % (self.delay, self.nro_file, nTries_p + 1)) | |
4276 | time.sleep(self.delay) |
|
4276 | time.sleep(self.delay) | |
4277 | continue |
|
4277 | continue | |
4278 | #return numpy.ones(self.blocksPerfile)*numpy.nan |
|
4278 | #return numpy.ones(self.blocksPerfile)*numpy.nan | |
4279 |
|
4279 | |||
4280 | if ready == 1: |
|
4280 | if ready == 1: | |
4281 | #angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azimuth") |
|
4281 | #angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azimuth") | |
4282 | angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azi_pos") |
|
4282 | angulo = self.getDatavaluefromDirFilename(path=self.path_ped,file=ff_pedestal,value="azi_pos") | |
4283 |
|
4283 | |||
4284 | else: |
|
4284 | else: | |
4285 | print("there is no pedestal file") |
|
4285 | print("there is no pedestal file") | |
4286 | angulo = numpy.ones(self.n_Muestras_p)*numpy.nan |
|
4286 | angulo = numpy.ones(self.n_Muestras_p)*numpy.nan | |
4287 | self.angulo_adq[j]= angulo[iterador] |
|
4287 | self.angulo_adq[j]= angulo[iterador] | |
4288 | ####print("Angulo",self.angulo_adq) |
|
4288 | ####print("Angulo",self.angulo_adq) | |
4289 | ####print("Angulo",len(self.angulo_adq)) |
|
4289 | ####print("Angulo",len(self.angulo_adq)) | |
4290 | #self.nro_key_p=iterador + self.f_a_p |
|
4290 | #self.nro_key_p=iterador + self.f_a_p | |
4291 | #if self.nro_key_p< self.n_Muestras_p: |
|
4291 | #if self.nro_key_p< self.n_Muestras_p: | |
4292 | # self.nro_file = self.nro_file |
|
4292 | # self.nro_file = self.nro_file | |
4293 | #else: |
|
4293 | #else: | |
4294 | # self.nro_file = self.nro_file+1 |
|
4294 | # self.nro_file = self.nro_file+1 | |
4295 | # self.nro_key_p= self.nro_key_p |
|
4295 | # self.nro_key_p= self.nro_key_p | |
4296 | return self.angulo_adq |
|
4296 | return self.angulo_adq | |
4297 |
|
4297 | |||
4298 |
|
4298 | |||
4299 | #def run(self, dataOut,path_ped,path_adq,t_Interval_p,n_Muestras_p,blocksPerfile,f_a_p,online): |
|
4299 | #def run(self, dataOut,path_ped,path_adq,t_Interval_p,n_Muestras_p,blocksPerfile,f_a_p,online): | |
4300 | def run(self, dataOut,path_ped,t_Interval_p,n_Muestras_p,blocksPerfile,f_a_p,online): |
|
4300 | def run(self, dataOut,path_ped,t_Interval_p,n_Muestras_p,blocksPerfile,f_a_p,online): | |
4301 |
|
4301 | |||
4302 | if not self.isConfig: |
|
4302 | if not self.isConfig: | |
4303 | print("######################SETUP#########################################") |
|
4303 | print("######################SETUP#########################################") | |
4304 | #self.setup( dataOut, path_ped,path_adq,t_Interval_p,n_Muestras_p,blocksPerfile,f_a_p,online) |
|
4304 | #self.setup( dataOut, path_ped,path_adq,t_Interval_p,n_Muestras_p,blocksPerfile,f_a_p,online) | |
4305 | self.setup( dataOut, path_ped,t_Interval_p,n_Muestras_p,blocksPerfile,f_a_p,online) |
|
4305 | self.setup( dataOut, path_ped,t_Interval_p,n_Muestras_p,blocksPerfile,f_a_p,online) | |
4306 | self.isConfig = True |
|
4306 | self.isConfig = True | |
4307 |
|
4307 | |||
4308 | dataOut.flagNoData = True |
|
4308 | dataOut.flagNoData = True | |
4309 | print("profIndex",self.__profIndex) |
|
4309 | ###print("profIndex",self.__profIndex) | |
4310 |
|
4310 | |||
4311 | if self.__profIndex==0: |
|
4311 | if self.__profIndex==0: | |
4312 | angulo_adq = self.setNextFileP(dataOut) |
|
4312 | angulo_adq = self.setNextFileP(dataOut) | |
4313 | dataOut.azimuth = angulo_adq |
|
4313 | dataOut.azimuth = angulo_adq | |
4314 | print("TIEMPO:",dataOut.utctime) |
|
4314 | ######print("TIEMPO:",dataOut.utctime) | |
4315 | ##print("####################################################################") |
|
4315 | ##print("####################################################################") | |
4316 | print("angulos",dataOut.azimuth,len(dataOut.azimuth)) |
|
4316 | ######print("angulos",dataOut.azimuth,len(dataOut.azimuth)) | |
4317 | self.__dataReady = True |
|
4317 | self.__dataReady = True | |
4318 | self.__profIndex += 1 |
|
4318 | self.__profIndex += 1 | |
4319 | print("TIEMPO_bucle:",dataOut.utctime) |
|
4319 | ####print("TIEMPO_bucle:",dataOut.utctime) | |
4320 | print("profIndex",self.__profIndex) |
|
4320 | ####print("profIndex",self.__profIndex) | |
4321 | if self.__profIndex== blocksPerfile: |
|
4321 | if self.__profIndex== blocksPerfile: | |
4322 | self.__profIndex = 0 |
|
4322 | self.__profIndex = 0 | |
4323 | if self.__dataReady: |
|
4323 | if self.__dataReady: | |
4324 | #print(self.__profIndex,dataOut.azimuth[:10]) |
|
4324 | #print(self.__profIndex,dataOut.azimuth[:10]) | |
4325 | dataOut.flagNoData = False |
|
4325 | dataOut.flagNoData = False | |
4326 | return dataOut |
|
4326 | return dataOut | |
4327 |
|
4327 | |||
4328 |
|
4328 | |||
4329 | class Block360(Operation): |
|
4329 | class Block360(Operation): | |
4330 | ''' |
|
4330 | ''' | |
4331 | ''' |
|
4331 | ''' | |
4332 | isConfig = False |
|
4332 | isConfig = False | |
4333 | __profIndex = 0 |
|
4333 | __profIndex = 0 | |
4334 | __initime = None |
|
4334 | __initime = None | |
4335 | __lastdatatime = None |
|
4335 | __lastdatatime = None | |
4336 | __buffer = None |
|
4336 | __buffer = None | |
4337 | __dataReady = False |
|
4337 | __dataReady = False | |
4338 | n = None |
|
4338 | n = None | |
4339 | __nch = 0 |
|
4339 | __nch = 0 | |
4340 | __nHeis = 0 |
|
4340 | __nHeis = 0 | |
4341 | index = 0 |
|
4341 | index = 0 | |
4342 | mode = 0 |
|
4342 | mode = 0 | |
4343 |
|
4343 | |||
4344 | def __init__(self,**kwargs): |
|
4344 | def __init__(self,**kwargs): | |
4345 | Operation.__init__(self,**kwargs) |
|
4345 | Operation.__init__(self,**kwargs) | |
4346 |
|
4346 | |||
4347 | def setup(self, dataOut, n = None, mode = None): |
|
4347 | def setup(self, dataOut, n = None, mode = None): | |
4348 | ''' |
|
4348 | ''' | |
4349 | n= Numero de PRF's de entrada |
|
4349 | n= Numero de PRF's de entrada | |
4350 | ''' |
|
4350 | ''' | |
4351 | self.__initime = None |
|
4351 | self.__initime = None | |
4352 | self.__lastdatatime = 0 |
|
4352 | self.__lastdatatime = 0 | |
4353 | self.__dataReady = False |
|
4353 | self.__dataReady = False | |
4354 | self.__buffer = 0 |
|
4354 | self.__buffer = 0 | |
4355 | self.__buffer_1D = 0 |
|
4355 | self.__buffer_1D = 0 | |
4356 | self.__profIndex = 0 |
|
4356 | self.__profIndex = 0 | |
4357 | self.index = 0 |
|
4357 | self.index = 0 | |
4358 | self.__nch = dataOut.nChannels |
|
4358 | self.__nch = dataOut.nChannels | |
4359 | self.__nHeis = dataOut.nHeights |
|
4359 | self.__nHeis = dataOut.nHeights | |
4360 | ##print("ELVALOR DE n es:", n) |
|
4360 | ##print("ELVALOR DE n es:", n) | |
4361 | if n == None: |
|
4361 | if n == None: | |
4362 | raise ValueError("n should be specified.") |
|
4362 | raise ValueError("n should be specified.") | |
4363 |
|
4363 | |||
4364 | if mode == None: |
|
4364 | if mode == None: | |
4365 | raise ValueError("mode should be specified.") |
|
4365 | raise ValueError("mode should be specified.") | |
4366 |
|
4366 | |||
4367 | if n != None: |
|
4367 | if n != None: | |
4368 | if n<1: |
|
4368 | if n<1: | |
4369 | print("n should be greater than 2") |
|
4369 | print("n should be greater than 2") | |
4370 | raise ValueError("n should be greater than 2") |
|
4370 | raise ValueError("n should be greater than 2") | |
4371 |
|
4371 | |||
4372 | self.n = n |
|
4372 | self.n = n | |
4373 | self.mode = mode |
|
4373 | self.mode = mode | |
4374 | print("self.mode",self.mode) |
|
4374 | print("self.mode",self.mode) | |
4375 | #print("nHeights") |
|
4375 | #print("nHeights") | |
4376 | self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights)) |
|
4376 | self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights)) | |
4377 | self.__buffer2= numpy.zeros(n) |
|
4377 | self.__buffer2= numpy.zeros(n) | |
4378 |
|
4378 | |||
4379 | def putData(self,data,mode): |
|
4379 | def putData(self,data,mode): | |
4380 | ''' |
|
4380 | ''' | |
4381 | Add a profile to he __buffer and increase in one the __profiel Index |
|
4381 | Add a profile to he __buffer and increase in one the __profiel Index | |
4382 | ''' |
|
4382 | ''' | |
4383 | #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10]) |
|
4383 | #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10]) | |
4384 | #print("line 4049",data.azimuth.shape,data.azimuth) |
|
4384 | #print("line 4049",data.azimuth.shape,data.azimuth) | |
4385 | if self.mode==0: |
|
4385 | if self.mode==0: | |
4386 | self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO |
|
4386 | self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO | |
4387 | if self.mode==1: |
|
4387 | if self.mode==1: | |
4388 | self.__buffer[:,self.__profIndex,:]= data.data_pow |
|
4388 | self.__buffer[:,self.__profIndex,:]= data.data_pow | |
4389 | #print("me casi",self.index,data.azimuth[self.index]) |
|
4389 | #print("me casi",self.index,data.azimuth[self.index]) | |
4390 | #print(self.__profIndex, self.index , data.azimuth[self.index] ) |
|
4390 | #print(self.__profIndex, self.index , data.azimuth[self.index] ) | |
4391 | #print("magic",data.profileIndex) |
|
4391 | #print("magic",data.profileIndex) | |
4392 | #print(data.azimuth[self.index]) |
|
4392 | #print(data.azimuth[self.index]) | |
4393 | #print("index",self.index) |
|
4393 | #print("index",self.index) | |
4394 |
|
4394 | |||
4395 | self.__buffer2[self.__profIndex] = data.azimuth[self.index] |
|
4395 | self.__buffer2[self.__profIndex] = data.azimuth[self.index] | |
4396 | #print("q pasa") |
|
4396 | #print("q pasa") | |
4397 | self.index+=1 |
|
4397 | self.index+=1 | |
4398 | #print("index",self.index,data.azimuth[:10]) |
|
4398 | #print("index",self.index,data.azimuth[:10]) | |
4399 | self.__profIndex += 1 |
|
4399 | self.__profIndex += 1 | |
4400 | return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· |
|
4400 | return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· | |
4401 |
|
4401 | |||
4402 | def pushData(self,data): |
|
4402 | def pushData(self,data): | |
4403 | ''' |
|
4403 | ''' | |
4404 | Return the PULSEPAIR and the profiles used in the operation |
|
4404 | Return the PULSEPAIR and the profiles used in the operation | |
4405 | Affected : self.__profileIndex |
|
4405 | Affected : self.__profileIndex | |
4406 | ''' |
|
4406 | ''' | |
4407 | #print("pushData") |
|
4407 | #print("pushData") | |
4408 |
|
4408 | |||
4409 | data_360 = self.__buffer |
|
4409 | data_360 = self.__buffer | |
4410 | data_p = self.__buffer2 |
|
4410 | data_p = self.__buffer2 | |
4411 | n = self.__profIndex |
|
4411 | n = self.__profIndex | |
4412 |
|
4412 | |||
4413 | self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis)) |
|
4413 | self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis)) | |
4414 | self.__buffer2 = numpy.zeros(self.n) |
|
4414 | self.__buffer2 = numpy.zeros(self.n) | |
4415 | self.__profIndex = 0 |
|
4415 | self.__profIndex = 0 | |
4416 | #print("pushData") |
|
4416 | #print("pushData") | |
4417 | return data_360,n,data_p |
|
4417 | return data_360,n,data_p | |
4418 |
|
4418 | |||
4419 |
|
4419 | |||
4420 | def byProfiles(self,dataOut): |
|
4420 | def byProfiles(self,dataOut): | |
4421 |
|
4421 | |||
4422 | self.__dataReady = False |
|
4422 | self.__dataReady = False | |
4423 | data_360 = None |
|
4423 | data_360 = None | |
4424 | data_p = None |
|
4424 | data_p = None | |
4425 | #print("dataOu",dataOut.dataPP_POW) |
|
4425 | #print("dataOu",dataOut.dataPP_POW) | |
4426 | self.putData(data=dataOut,mode = self.mode) |
|
4426 | self.putData(data=dataOut,mode = self.mode) | |
4427 | #print("profIndex",self.__profIndex) |
|
4427 | #print("profIndex",self.__profIndex) | |
4428 | if self.__profIndex == self.n: |
|
4428 | if self.__profIndex == self.n: | |
4429 | data_360,n,data_p = self.pushData(data=dataOut) |
|
4429 | data_360,n,data_p = self.pushData(data=dataOut) | |
4430 | self.__dataReady = True |
|
4430 | self.__dataReady = True | |
4431 |
|
4431 | |||
4432 | return data_360,data_p |
|
4432 | return data_360,data_p | |
4433 |
|
4433 | |||
4434 |
|
4434 | |||
4435 | def blockOp(self, dataOut, datatime= None): |
|
4435 | def blockOp(self, dataOut, datatime= None): | |
4436 | if self.__initime == None: |
|
4436 | if self.__initime == None: | |
4437 | self.__initime = datatime |
|
4437 | self.__initime = datatime | |
4438 | data_360,data_p = self.byProfiles(dataOut) |
|
4438 | data_360,data_p = self.byProfiles(dataOut) | |
4439 | self.__lastdatatime = datatime |
|
4439 | self.__lastdatatime = datatime | |
4440 |
|
4440 | |||
4441 | if data_360 is None: |
|
4441 | if data_360 is None: | |
4442 | return None, None,None |
|
4442 | return None, None,None | |
4443 |
|
4443 | |||
4444 | avgdatatime = self.__initime |
|
4444 | avgdatatime = self.__initime | |
4445 | deltatime = datatime - self.__lastdatatime |
|
4445 | deltatime = datatime - self.__lastdatatime | |
4446 | self.__initime = datatime |
|
4446 | self.__initime = datatime | |
4447 | #print(data_360.shape,avgdatatime,data_p.shape) |
|
4447 | #print(data_360.shape,avgdatatime,data_p.shape) | |
4448 | return data_360,avgdatatime,data_p |
|
4448 | return data_360,avgdatatime,data_p | |
4449 |
|
4449 | |||
4450 | def run(self, dataOut,n = None,mode=None,**kwargs): |
|
4450 | def run(self, dataOut,n = None,mode=None,**kwargs): | |
4451 | print("BLOCK 360 HERE WE GO MOMENTOS") |
|
4451 | ####print("BLOCK 360 HERE WE GO MOMENTOS") | |
4452 | if not self.isConfig: |
|
4452 | if not self.isConfig: | |
4453 | self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs) |
|
4453 | self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs) | |
4454 | self.index = 0 |
|
4454 | self.index = 0 | |
4455 | #print("comova",self.isConfig) |
|
4455 | #print("comova",self.isConfig) | |
4456 | self.isConfig = True |
|
4456 | self.isConfig = True | |
4457 | if self.index==dataOut.azimuth.shape[0]: |
|
4457 | if self.index==dataOut.azimuth.shape[0]: | |
4458 | self.index=0 |
|
4458 | self.index=0 | |
4459 | data_360, avgdatatime,data_p = self.blockOp(dataOut, dataOut.utctime) |
|
4459 | data_360, avgdatatime,data_p = self.blockOp(dataOut, dataOut.utctime) | |
4460 | dataOut.flagNoData = True |
|
4460 | dataOut.flagNoData = True | |
4461 |
|
4461 | |||
4462 | if self.__dataReady: |
|
4462 | if self.__dataReady: | |
4463 | dataOut.data_360 = data_360 # S |
|
4463 | dataOut.data_360 = data_360 # S | |
4464 | ##print("---------------------------------------------------------------------------------") |
|
4464 | ##print("---------------------------------------------------------------------------------") | |
4465 | ##print("---------------------------DATAREADY---------------------------------------------") |
|
4465 | ##print("---------------------------DATAREADY---------------------------------------------") | |
4466 | ##print("---------------------------------------------------------------------------------") |
|
4466 | ##print("---------------------------------------------------------------------------------") | |
4467 | ##print("data_360",dataOut.data_360.shape) |
|
4467 | ##print("data_360",dataOut.data_360.shape) | |
4468 | dataOut.data_azi = data_p |
|
4468 | dataOut.data_azi = data_p | |
4469 | ##print("azi: ",dataOut.data_azi) |
|
4469 | ##print("azi: ",dataOut.data_azi) | |
4470 | #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime) |
|
4470 | #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime) | |
4471 | dataOut.utctime = avgdatatime |
|
4471 | dataOut.utctime = avgdatatime | |
4472 | dataOut.flagNoData = False |
|
4472 | dataOut.flagNoData = False | |
4473 | return dataOut |
|
4473 | return dataOut |
@@ -1,1628 +1,1627 | |||||
1 | import sys |
|
1 | import sys | |
2 | import numpy,math |
|
2 | import numpy,math | |
3 | from scipy import interpolate |
|
3 | from scipy import interpolate | |
4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
5 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon |
|
5 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon | |
6 | from schainpy.utils import log |
|
6 | from schainpy.utils import log | |
7 | from time import time |
|
7 | from time import time | |
8 |
|
8 | |||
9 |
|
9 | |||
10 |
|
10 | |||
11 | class VoltageProc(ProcessingUnit): |
|
11 | class VoltageProc(ProcessingUnit): | |
12 |
|
12 | |||
13 | def __init__(self): |
|
13 | def __init__(self): | |
14 |
|
14 | |||
15 | ProcessingUnit.__init__(self) |
|
15 | ProcessingUnit.__init__(self) | |
16 |
|
16 | |||
17 | self.dataOut = Voltage() |
|
17 | self.dataOut = Voltage() | |
18 | self.flip = 1 |
|
18 | self.flip = 1 | |
19 | self.setupReq = False |
|
19 | self.setupReq = False | |
20 |
|
20 | |||
21 | def run(self): |
|
21 | def run(self): | |
22 |
|
22 | |||
23 | if self.dataIn.type == 'AMISR': |
|
23 | if self.dataIn.type == 'AMISR': | |
24 | self.__updateObjFromAmisrInput() |
|
24 | self.__updateObjFromAmisrInput() | |
25 |
|
25 | |||
26 | if self.dataIn.type == 'Voltage': |
|
26 | if self.dataIn.type == 'Voltage': | |
27 | self.dataOut.copy(self.dataIn) |
|
27 | self.dataOut.copy(self.dataIn) | |
28 |
|
28 | |||
29 | def __updateObjFromAmisrInput(self): |
|
29 | def __updateObjFromAmisrInput(self): | |
30 |
|
30 | |||
31 | self.dataOut.timeZone = self.dataIn.timeZone |
|
31 | self.dataOut.timeZone = self.dataIn.timeZone | |
32 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
32 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
33 | self.dataOut.errorCount = self.dataIn.errorCount |
|
33 | self.dataOut.errorCount = self.dataIn.errorCount | |
34 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
34 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
35 |
|
35 | |||
36 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
36 | self.dataOut.flagNoData = self.dataIn.flagNoData | |
37 | self.dataOut.data = self.dataIn.data |
|
37 | self.dataOut.data = self.dataIn.data | |
38 | self.dataOut.utctime = self.dataIn.utctime |
|
38 | self.dataOut.utctime = self.dataIn.utctime | |
39 | self.dataOut.channelList = self.dataIn.channelList |
|
39 | self.dataOut.channelList = self.dataIn.channelList | |
40 | #self.dataOut.timeInterval = self.dataIn.timeInterval |
|
40 | #self.dataOut.timeInterval = self.dataIn.timeInterval | |
41 | self.dataOut.heightList = self.dataIn.heightList |
|
41 | self.dataOut.heightList = self.dataIn.heightList | |
42 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
42 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
43 |
|
43 | |||
44 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
44 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
45 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
45 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
46 | self.dataOut.frequency = self.dataIn.frequency |
|
46 | self.dataOut.frequency = self.dataIn.frequency | |
47 |
|
47 | |||
48 | self.dataOut.azimuth = self.dataIn.azimuth |
|
48 | self.dataOut.azimuth = self.dataIn.azimuth | |
49 | self.dataOut.zenith = self.dataIn.zenith |
|
49 | self.dataOut.zenith = self.dataIn.zenith | |
50 |
|
50 | |||
51 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
51 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |
52 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
52 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |
53 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
53 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |
54 |
|
54 | |||
55 |
|
55 | |||
56 | class selectChannels(Operation): |
|
56 | class selectChannels(Operation): | |
57 |
|
57 | |||
58 | def run(self, dataOut, channelList): |
|
58 | def run(self, dataOut, channelList): | |
59 |
|
59 | |||
60 | channelIndexList = [] |
|
60 | channelIndexList = [] | |
61 | self.dataOut = dataOut |
|
61 | self.dataOut = dataOut | |
62 | for channel in channelList: |
|
62 | for channel in channelList: | |
63 | if channel not in self.dataOut.channelList: |
|
63 | if channel not in self.dataOut.channelList: | |
64 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) |
|
64 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) | |
65 |
|
65 | |||
66 | index = self.dataOut.channelList.index(channel) |
|
66 | index = self.dataOut.channelList.index(channel) | |
67 | channelIndexList.append(index) |
|
67 | channelIndexList.append(index) | |
68 | self.selectChannelsByIndex(channelIndexList) |
|
68 | self.selectChannelsByIndex(channelIndexList) | |
69 | return self.dataOut |
|
69 | return self.dataOut | |
70 |
|
70 | |||
71 | def selectChannelsByIndex(self, channelIndexList): |
|
71 | def selectChannelsByIndex(self, channelIndexList): | |
72 | """ |
|
72 | """ | |
73 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
73 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
74 |
|
74 | |||
75 | Input: |
|
75 | Input: | |
76 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
76 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
77 |
|
77 | |||
78 | Affected: |
|
78 | Affected: | |
79 | self.dataOut.data |
|
79 | self.dataOut.data | |
80 | self.dataOut.channelIndexList |
|
80 | self.dataOut.channelIndexList | |
81 | self.dataOut.nChannels |
|
81 | self.dataOut.nChannels | |
82 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
82 | self.dataOut.m_ProcessingHeader.totalSpectra | |
83 | self.dataOut.systemHeaderObj.numChannels |
|
83 | self.dataOut.systemHeaderObj.numChannels | |
84 | self.dataOut.m_ProcessingHeader.blockSize |
|
84 | self.dataOut.m_ProcessingHeader.blockSize | |
85 |
|
85 | |||
86 | Return: |
|
86 | Return: | |
87 | None |
|
87 | None | |
88 | """ |
|
88 | """ | |
89 |
|
89 | |||
90 | for channelIndex in channelIndexList: |
|
90 | for channelIndex in channelIndexList: | |
91 | if channelIndex not in self.dataOut.channelIndexList: |
|
91 | if channelIndex not in self.dataOut.channelIndexList: | |
92 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) |
|
92 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) | |
93 |
|
93 | |||
94 | if self.dataOut.type == 'Voltage': |
|
94 | if self.dataOut.type == 'Voltage': | |
95 | if self.dataOut.flagDataAsBlock: |
|
95 | if self.dataOut.flagDataAsBlock: | |
96 | """ |
|
96 | """ | |
97 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
97 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
98 | """ |
|
98 | """ | |
99 | data = self.dataOut.data[channelIndexList,:,:] |
|
99 | data = self.dataOut.data[channelIndexList,:,:] | |
100 | else: |
|
100 | else: | |
101 | data = self.dataOut.data[channelIndexList,:] |
|
101 | data = self.dataOut.data[channelIndexList,:] | |
102 |
|
102 | |||
103 | self.dataOut.data = data |
|
103 | self.dataOut.data = data | |
104 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
104 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
105 | self.dataOut.channelList = range(len(channelIndexList)) |
|
105 | self.dataOut.channelList = range(len(channelIndexList)) | |
106 |
|
106 | |||
107 | elif self.dataOut.type == 'Spectra': |
|
107 | elif self.dataOut.type == 'Spectra': | |
108 | data_spc = self.dataOut.data_spc[channelIndexList, :] |
|
108 | data_spc = self.dataOut.data_spc[channelIndexList, :] | |
109 | data_dc = self.dataOut.data_dc[channelIndexList, :] |
|
109 | data_dc = self.dataOut.data_dc[channelIndexList, :] | |
110 |
|
110 | |||
111 | self.dataOut.data_spc = data_spc |
|
111 | self.dataOut.data_spc = data_spc | |
112 | self.dataOut.data_dc = data_dc |
|
112 | self.dataOut.data_dc = data_dc | |
113 |
|
113 | |||
114 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
114 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
115 | self.dataOut.channelList = range(len(channelIndexList)) |
|
115 | self.dataOut.channelList = range(len(channelIndexList)) | |
116 | self.__selectPairsByChannel(channelIndexList) |
|
116 | self.__selectPairsByChannel(channelIndexList) | |
117 |
|
117 | |||
118 | return 1 |
|
118 | return 1 | |
119 |
|
119 | |||
120 | def __selectPairsByChannel(self, channelList=None): |
|
120 | def __selectPairsByChannel(self, channelList=None): | |
121 |
|
121 | |||
122 | if channelList == None: |
|
122 | if channelList == None: | |
123 | return |
|
123 | return | |
124 |
|
124 | |||
125 | pairsIndexListSelected = [] |
|
125 | pairsIndexListSelected = [] | |
126 | for pairIndex in self.dataOut.pairsIndexList: |
|
126 | for pairIndex in self.dataOut.pairsIndexList: | |
127 | # First pair |
|
127 | # First pair | |
128 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
128 | if self.dataOut.pairsList[pairIndex][0] not in channelList: | |
129 | continue |
|
129 | continue | |
130 | # Second pair |
|
130 | # Second pair | |
131 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
131 | if self.dataOut.pairsList[pairIndex][1] not in channelList: | |
132 | continue |
|
132 | continue | |
133 |
|
133 | |||
134 | pairsIndexListSelected.append(pairIndex) |
|
134 | pairsIndexListSelected.append(pairIndex) | |
135 |
|
135 | |||
136 | if not pairsIndexListSelected: |
|
136 | if not pairsIndexListSelected: | |
137 | self.dataOut.data_cspc = None |
|
137 | self.dataOut.data_cspc = None | |
138 | self.dataOut.pairsList = [] |
|
138 | self.dataOut.pairsList = [] | |
139 | return |
|
139 | return | |
140 |
|
140 | |||
141 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
141 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |
142 | self.dataOut.pairsList = [self.dataOut.pairsList[i] |
|
142 | self.dataOut.pairsList = [self.dataOut.pairsList[i] | |
143 | for i in pairsIndexListSelected] |
|
143 | for i in pairsIndexListSelected] | |
144 |
|
144 | |||
145 | return |
|
145 | return | |
146 |
|
146 | |||
147 | class selectHeights(Operation): |
|
147 | class selectHeights(Operation): | |
148 |
|
148 | |||
149 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): |
|
149 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): | |
150 | """ |
|
150 | """ | |
151 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
151 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
152 | minHei <= height <= maxHei |
|
152 | minHei <= height <= maxHei | |
153 |
|
153 | |||
154 | Input: |
|
154 | Input: | |
155 | minHei : valor minimo de altura a considerar |
|
155 | minHei : valor minimo de altura a considerar | |
156 | maxHei : valor maximo de altura a considerar |
|
156 | maxHei : valor maximo de altura a considerar | |
157 |
|
157 | |||
158 | Affected: |
|
158 | Affected: | |
159 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
159 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |
160 |
|
160 | |||
161 | Return: |
|
161 | Return: | |
162 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
162 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
163 | """ |
|
163 | """ | |
164 |
|
164 | |||
165 | self.dataOut = dataOut |
|
165 | self.dataOut = dataOut | |
166 |
|
166 | |||
167 | if minHei and maxHei: |
|
167 | if minHei and maxHei: | |
168 |
|
168 | |||
169 | if (minHei < self.dataOut.heightList[0]): |
|
169 | if (minHei < self.dataOut.heightList[0]): | |
170 | minHei = self.dataOut.heightList[0] |
|
170 | minHei = self.dataOut.heightList[0] | |
171 |
|
171 | |||
172 | if (maxHei > self.dataOut.heightList[-1]): |
|
172 | if (maxHei > self.dataOut.heightList[-1]): | |
173 | maxHei = self.dataOut.heightList[-1] |
|
173 | maxHei = self.dataOut.heightList[-1] | |
174 |
|
174 | |||
175 | minIndex = 0 |
|
175 | minIndex = 0 | |
176 | maxIndex = 0 |
|
176 | maxIndex = 0 | |
177 | heights = self.dataOut.heightList |
|
177 | heights = self.dataOut.heightList | |
178 |
|
178 | |||
179 | inda = numpy.where(heights >= minHei) |
|
179 | inda = numpy.where(heights >= minHei) | |
180 | indb = numpy.where(heights <= maxHei) |
|
180 | indb = numpy.where(heights <= maxHei) | |
181 |
|
181 | |||
182 | try: |
|
182 | try: | |
183 | minIndex = inda[0][0] |
|
183 | minIndex = inda[0][0] | |
184 | except: |
|
184 | except: | |
185 | minIndex = 0 |
|
185 | minIndex = 0 | |
186 |
|
186 | |||
187 | try: |
|
187 | try: | |
188 | maxIndex = indb[0][-1] |
|
188 | maxIndex = indb[0][-1] | |
189 | except: |
|
189 | except: | |
190 | maxIndex = len(heights) |
|
190 | maxIndex = len(heights) | |
191 |
|
191 | |||
192 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
192 | self.selectHeightsByIndex(minIndex, maxIndex) | |
193 |
|
193 | |||
194 | return self.dataOut |
|
194 | return self.dataOut | |
195 |
|
195 | |||
196 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
196 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
197 | """ |
|
197 | """ | |
198 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
198 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
199 | minIndex <= index <= maxIndex |
|
199 | minIndex <= index <= maxIndex | |
200 |
|
200 | |||
201 | Input: |
|
201 | Input: | |
202 | minIndex : valor de indice minimo de altura a considerar |
|
202 | minIndex : valor de indice minimo de altura a considerar | |
203 | maxIndex : valor de indice maximo de altura a considerar |
|
203 | maxIndex : valor de indice maximo de altura a considerar | |
204 |
|
204 | |||
205 | Affected: |
|
205 | Affected: | |
206 | self.dataOut.data |
|
206 | self.dataOut.data | |
207 | self.dataOut.heightList |
|
207 | self.dataOut.heightList | |
208 |
|
208 | |||
209 | Return: |
|
209 | Return: | |
210 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
210 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
211 | """ |
|
211 | """ | |
212 |
|
212 | |||
213 | if self.dataOut.type == 'Voltage': |
|
213 | if self.dataOut.type == 'Voltage': | |
214 | if (minIndex < 0) or (minIndex > maxIndex): |
|
214 | if (minIndex < 0) or (minIndex > maxIndex): | |
215 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
215 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
216 |
|
216 | |||
217 | if (maxIndex >= self.dataOut.nHeights): |
|
217 | if (maxIndex >= self.dataOut.nHeights): | |
218 | maxIndex = self.dataOut.nHeights |
|
218 | maxIndex = self.dataOut.nHeights | |
219 |
|
219 | |||
220 | #voltage |
|
220 | #voltage | |
221 | if self.dataOut.flagDataAsBlock: |
|
221 | if self.dataOut.flagDataAsBlock: | |
222 | """ |
|
222 | """ | |
223 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
223 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
224 | """ |
|
224 | """ | |
225 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
225 | data = self.dataOut.data[:,:, minIndex:maxIndex] | |
226 | else: |
|
226 | else: | |
227 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
227 | data = self.dataOut.data[:, minIndex:maxIndex] | |
228 |
|
228 | |||
229 | # firstHeight = self.dataOut.heightList[minIndex] |
|
229 | # firstHeight = self.dataOut.heightList[minIndex] | |
230 |
|
230 | |||
231 | self.dataOut.data = data |
|
231 | self.dataOut.data = data | |
232 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
232 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] | |
233 |
|
233 | |||
234 | if self.dataOut.nHeights <= 1: |
|
234 | if self.dataOut.nHeights <= 1: | |
235 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) |
|
235 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) | |
236 | elif self.dataOut.type == 'Spectra': |
|
236 | elif self.dataOut.type == 'Spectra': | |
237 | if (minIndex < 0) or (minIndex > maxIndex): |
|
237 | if (minIndex < 0) or (minIndex > maxIndex): | |
238 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( |
|
238 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( | |
239 | minIndex, maxIndex)) |
|
239 | minIndex, maxIndex)) | |
240 |
|
240 | |||
241 | if (maxIndex >= self.dataOut.nHeights): |
|
241 | if (maxIndex >= self.dataOut.nHeights): | |
242 | maxIndex = self.dataOut.nHeights - 1 |
|
242 | maxIndex = self.dataOut.nHeights - 1 | |
243 |
|
243 | |||
244 | # Spectra |
|
244 | # Spectra | |
245 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
245 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
246 |
|
246 | |||
247 | data_cspc = None |
|
247 | data_cspc = None | |
248 | if self.dataOut.data_cspc is not None: |
|
248 | if self.dataOut.data_cspc is not None: | |
249 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
249 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
250 |
|
250 | |||
251 | data_dc = None |
|
251 | data_dc = None | |
252 | if self.dataOut.data_dc is not None: |
|
252 | if self.dataOut.data_dc is not None: | |
253 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
253 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
254 |
|
254 | |||
255 | self.dataOut.data_spc = data_spc |
|
255 | self.dataOut.data_spc = data_spc | |
256 | self.dataOut.data_cspc = data_cspc |
|
256 | self.dataOut.data_cspc = data_cspc | |
257 | self.dataOut.data_dc = data_dc |
|
257 | self.dataOut.data_dc = data_dc | |
258 |
|
258 | |||
259 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
259 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
260 |
|
260 | |||
261 | return 1 |
|
261 | return 1 | |
262 |
|
262 | |||
263 |
|
263 | |||
264 | class filterByHeights(Operation): |
|
264 | class filterByHeights(Operation): | |
265 |
|
265 | |||
266 | def run(self, dataOut, window): |
|
266 | def run(self, dataOut, window): | |
267 |
|
267 | |||
268 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
268 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
269 |
|
269 | |||
270 | if window == None: |
|
270 | if window == None: | |
271 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
271 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight | |
272 |
|
272 | |||
273 | newdelta = deltaHeight * window |
|
273 | newdelta = deltaHeight * window | |
274 | r = dataOut.nHeights % window |
|
274 | r = dataOut.nHeights % window | |
275 | newheights = (dataOut.nHeights-r)/window |
|
275 | newheights = (dataOut.nHeights-r)/window | |
276 |
|
276 | |||
277 | if newheights <= 1: |
|
277 | if newheights <= 1: | |
278 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) |
|
278 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) | |
279 |
|
279 | |||
280 | if dataOut.flagDataAsBlock: |
|
280 | if dataOut.flagDataAsBlock: | |
281 | """ |
|
281 | """ | |
282 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
282 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
283 | """ |
|
283 | """ | |
284 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] |
|
284 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] | |
285 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) |
|
285 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) | |
286 | buffer = numpy.sum(buffer,3) |
|
286 | buffer = numpy.sum(buffer,3) | |
287 |
|
287 | |||
288 | else: |
|
288 | else: | |
289 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] |
|
289 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] | |
290 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) |
|
290 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) | |
291 | buffer = numpy.sum(buffer,2) |
|
291 | buffer = numpy.sum(buffer,2) | |
292 |
|
292 | |||
293 | dataOut.data = buffer |
|
293 | dataOut.data = buffer | |
294 | dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
294 | dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta | |
295 | dataOut.windowOfFilter = window |
|
295 | dataOut.windowOfFilter = window | |
296 |
|
296 | |||
297 | return dataOut |
|
297 | return dataOut | |
298 |
|
298 | |||
299 |
|
299 | |||
300 | class setH0(Operation): |
|
300 | class setH0(Operation): | |
301 |
|
301 | |||
302 | def run(self, dataOut, h0, deltaHeight = None): |
|
302 | def run(self, dataOut, h0, deltaHeight = None): | |
303 |
|
303 | |||
304 | if not deltaHeight: |
|
304 | if not deltaHeight: | |
305 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
305 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
306 |
|
306 | |||
307 | nHeights = dataOut.nHeights |
|
307 | nHeights = dataOut.nHeights | |
308 |
|
308 | |||
309 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
309 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight | |
310 |
|
310 | |||
311 | dataOut.heightList = newHeiRange |
|
311 | dataOut.heightList = newHeiRange | |
312 |
|
312 | |||
313 | return dataOut |
|
313 | return dataOut | |
314 |
|
314 | |||
315 |
|
315 | |||
316 | class deFlip(Operation): |
|
316 | class deFlip(Operation): | |
317 |
|
317 | |||
318 | def run(self, dataOut, channelList = []): |
|
318 | def run(self, dataOut, channelList = []): | |
319 |
|
319 | |||
320 | data = dataOut.data.copy() |
|
320 | data = dataOut.data.copy() | |
321 |
|
321 | |||
322 | if dataOut.flagDataAsBlock: |
|
322 | if dataOut.flagDataAsBlock: | |
323 | flip = self.flip |
|
323 | flip = self.flip | |
324 | profileList = list(range(dataOut.nProfiles)) |
|
324 | profileList = list(range(dataOut.nProfiles)) | |
325 |
|
325 | |||
326 | if not channelList: |
|
326 | if not channelList: | |
327 | for thisProfile in profileList: |
|
327 | for thisProfile in profileList: | |
328 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
328 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip | |
329 | flip *= -1.0 |
|
329 | flip *= -1.0 | |
330 | else: |
|
330 | else: | |
331 | for thisChannel in channelList: |
|
331 | for thisChannel in channelList: | |
332 | if thisChannel not in dataOut.channelList: |
|
332 | if thisChannel not in dataOut.channelList: | |
333 | continue |
|
333 | continue | |
334 |
|
334 | |||
335 | for thisProfile in profileList: |
|
335 | for thisProfile in profileList: | |
336 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
336 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip | |
337 | flip *= -1.0 |
|
337 | flip *= -1.0 | |
338 |
|
338 | |||
339 | self.flip = flip |
|
339 | self.flip = flip | |
340 |
|
340 | |||
341 | else: |
|
341 | else: | |
342 | if not channelList: |
|
342 | if not channelList: | |
343 | data[:,:] = data[:,:]*self.flip |
|
343 | data[:,:] = data[:,:]*self.flip | |
344 | else: |
|
344 | else: | |
345 | for thisChannel in channelList: |
|
345 | for thisChannel in channelList: | |
346 | if thisChannel not in dataOut.channelList: |
|
346 | if thisChannel not in dataOut.channelList: | |
347 | continue |
|
347 | continue | |
348 |
|
348 | |||
349 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
349 | data[thisChannel,:] = data[thisChannel,:]*self.flip | |
350 |
|
350 | |||
351 | self.flip *= -1. |
|
351 | self.flip *= -1. | |
352 |
|
352 | |||
353 | dataOut.data = data |
|
353 | dataOut.data = data | |
354 |
|
354 | |||
355 | return dataOut |
|
355 | return dataOut | |
356 |
|
356 | |||
357 |
|
357 | |||
358 | class setAttribute(Operation): |
|
358 | class setAttribute(Operation): | |
359 | ''' |
|
359 | ''' | |
360 | Set an arbitrary attribute(s) to dataOut |
|
360 | Set an arbitrary attribute(s) to dataOut | |
361 | ''' |
|
361 | ''' | |
362 |
|
362 | |||
363 | def __init__(self): |
|
363 | def __init__(self): | |
364 |
|
364 | |||
365 | Operation.__init__(self) |
|
365 | Operation.__init__(self) | |
366 | self._ready = False |
|
366 | self._ready = False | |
367 |
|
367 | |||
368 | def run(self, dataOut, **kwargs): |
|
368 | def run(self, dataOut, **kwargs): | |
369 |
|
369 | |||
370 | for key, value in kwargs.items(): |
|
370 | for key, value in kwargs.items(): | |
371 | setattr(dataOut, key, value) |
|
371 | setattr(dataOut, key, value) | |
372 |
|
372 | |||
373 | return dataOut |
|
373 | return dataOut | |
374 |
|
374 | |||
375 |
|
375 | |||
376 | @MPDecorator |
|
376 | @MPDecorator | |
377 | class printAttribute(Operation): |
|
377 | class printAttribute(Operation): | |
378 | ''' |
|
378 | ''' | |
379 | Print an arbitrary attribute of dataOut |
|
379 | Print an arbitrary attribute of dataOut | |
380 | ''' |
|
380 | ''' | |
381 |
|
381 | |||
382 | def __init__(self): |
|
382 | def __init__(self): | |
383 |
|
383 | |||
384 | Operation.__init__(self) |
|
384 | Operation.__init__(self) | |
385 |
|
385 | |||
386 | def run(self, dataOut, attributes): |
|
386 | def run(self, dataOut, attributes): | |
387 |
|
387 | |||
388 | if isinstance(attributes, str): |
|
388 | if isinstance(attributes, str): | |
389 | attributes = [attributes] |
|
389 | attributes = [attributes] | |
390 | for attr in attributes: |
|
390 | for attr in attributes: | |
391 | if hasattr(dataOut, attr): |
|
391 | if hasattr(dataOut, attr): | |
392 | log.log(getattr(dataOut, attr), attr) |
|
392 | log.log(getattr(dataOut, attr), attr) | |
393 |
|
393 | |||
394 |
|
394 | |||
395 | class interpolateHeights(Operation): |
|
395 | class interpolateHeights(Operation): | |
396 |
|
396 | |||
397 | def run(self, dataOut, topLim, botLim): |
|
397 | def run(self, dataOut, topLim, botLim): | |
398 | #69 al 72 para julia |
|
398 | #69 al 72 para julia | |
399 | #82-84 para meteoros |
|
399 | #82-84 para meteoros | |
400 | if len(numpy.shape(dataOut.data))==2: |
|
400 | if len(numpy.shape(dataOut.data))==2: | |
401 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 |
|
401 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 | |
402 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
402 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) | |
403 | #dataOut.data[:,botLim:limSup+1] = sampInterp |
|
403 | #dataOut.data[:,botLim:limSup+1] = sampInterp | |
404 | dataOut.data[:,botLim:topLim+1] = sampInterp |
|
404 | dataOut.data[:,botLim:topLim+1] = sampInterp | |
405 | else: |
|
405 | else: | |
406 | nHeights = dataOut.data.shape[2] |
|
406 | nHeights = dataOut.data.shape[2] | |
407 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
407 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) | |
408 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] |
|
408 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] | |
409 | f = interpolate.interp1d(x, y, axis = 2) |
|
409 | f = interpolate.interp1d(x, y, axis = 2) | |
410 | xnew = numpy.arange(botLim,topLim+1) |
|
410 | xnew = numpy.arange(botLim,topLim+1) | |
411 | ynew = f(xnew) |
|
411 | ynew = f(xnew) | |
412 | dataOut.data[:,:,botLim:topLim+1] = ynew |
|
412 | dataOut.data[:,:,botLim:topLim+1] = ynew | |
413 |
|
413 | |||
414 | return dataOut |
|
414 | return dataOut | |
415 |
|
415 | |||
416 |
|
416 | |||
417 | class CohInt(Operation): |
|
417 | class CohInt(Operation): | |
418 |
|
418 | |||
419 | isConfig = False |
|
419 | isConfig = False | |
420 | __profIndex = 0 |
|
420 | __profIndex = 0 | |
421 | __byTime = False |
|
421 | __byTime = False | |
422 | __initime = None |
|
422 | __initime = None | |
423 | __lastdatatime = None |
|
423 | __lastdatatime = None | |
424 | __integrationtime = None |
|
424 | __integrationtime = None | |
425 | __buffer = None |
|
425 | __buffer = None | |
426 | __bufferStride = [] |
|
426 | __bufferStride = [] | |
427 | __dataReady = False |
|
427 | __dataReady = False | |
428 | __profIndexStride = 0 |
|
428 | __profIndexStride = 0 | |
429 | __dataToPutStride = False |
|
429 | __dataToPutStride = False | |
430 | n = None |
|
430 | n = None | |
431 |
|
431 | |||
432 | def __init__(self, **kwargs): |
|
432 | def __init__(self, **kwargs): | |
433 |
|
433 | |||
434 | Operation.__init__(self, **kwargs) |
|
434 | Operation.__init__(self, **kwargs) | |
435 |
|
435 | |||
436 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
436 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): | |
437 | """ |
|
437 | """ | |
438 | Set the parameters of the integration class. |
|
438 | Set the parameters of the integration class. | |
439 |
|
439 | |||
440 | Inputs: |
|
440 | Inputs: | |
441 |
|
441 | |||
442 | n : Number of coherent integrations |
|
442 | n : Number of coherent integrations | |
443 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
443 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
444 | overlapping : |
|
444 | overlapping : | |
445 | """ |
|
445 | """ | |
446 |
|
446 | |||
447 | self.__initime = None |
|
447 | self.__initime = None | |
448 | self.__lastdatatime = 0 |
|
448 | self.__lastdatatime = 0 | |
449 | self.__buffer = None |
|
449 | self.__buffer = None | |
450 | self.__dataReady = False |
|
450 | self.__dataReady = False | |
451 | self.byblock = byblock |
|
451 | self.byblock = byblock | |
452 | self.stride = stride |
|
452 | self.stride = stride | |
453 |
|
453 | |||
454 | if n == None and timeInterval == None: |
|
454 | if n == None and timeInterval == None: | |
455 | raise ValueError("n or timeInterval should be specified ...") |
|
455 | raise ValueError("n or timeInterval should be specified ...") | |
456 |
|
456 | |||
457 | if n != None: |
|
457 | if n != None: | |
458 | self.n = n |
|
458 | self.n = n | |
459 | self.__byTime = False |
|
459 | self.__byTime = False | |
460 | else: |
|
460 | else: | |
461 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
461 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line | |
462 | self.n = 9999 |
|
462 | self.n = 9999 | |
463 | self.__byTime = True |
|
463 | self.__byTime = True | |
464 |
|
464 | |||
465 | if overlapping: |
|
465 | if overlapping: | |
466 | self.__withOverlapping = True |
|
466 | self.__withOverlapping = True | |
467 | self.__buffer = None |
|
467 | self.__buffer = None | |
468 | else: |
|
468 | else: | |
469 | self.__withOverlapping = False |
|
469 | self.__withOverlapping = False | |
470 | self.__buffer = 0 |
|
470 | self.__buffer = 0 | |
471 |
|
471 | |||
472 | self.__profIndex = 0 |
|
472 | self.__profIndex = 0 | |
473 |
|
473 | |||
474 | def putData(self, data): |
|
474 | def putData(self, data): | |
475 |
|
475 | |||
476 | """ |
|
476 | """ | |
477 | Add a profile to the __buffer and increase in one the __profileIndex |
|
477 | Add a profile to the __buffer and increase in one the __profileIndex | |
478 |
|
478 | |||
479 | """ |
|
479 | """ | |
480 |
|
480 | |||
481 | if not self.__withOverlapping: |
|
481 | if not self.__withOverlapping: | |
482 | self.__buffer += data.copy() |
|
482 | self.__buffer += data.copy() | |
483 | self.__profIndex += 1 |
|
483 | self.__profIndex += 1 | |
484 | return |
|
484 | return | |
485 |
|
485 | |||
486 | #Overlapping data |
|
486 | #Overlapping data | |
487 | nChannels, nHeis = data.shape |
|
487 | nChannels, nHeis = data.shape | |
488 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
488 | data = numpy.reshape(data, (1, nChannels, nHeis)) | |
489 |
|
489 | |||
490 | #If the buffer is empty then it takes the data value |
|
490 | #If the buffer is empty then it takes the data value | |
491 | if self.__buffer is None: |
|
491 | if self.__buffer is None: | |
492 | self.__buffer = data |
|
492 | self.__buffer = data | |
493 | self.__profIndex += 1 |
|
493 | self.__profIndex += 1 | |
494 | return |
|
494 | return | |
495 |
|
495 | |||
496 | #If the buffer length is lower than n then stakcing the data value |
|
496 | #If the buffer length is lower than n then stakcing the data value | |
497 | if self.__profIndex < self.n: |
|
497 | if self.__profIndex < self.n: | |
498 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
498 | self.__buffer = numpy.vstack((self.__buffer, data)) | |
499 | self.__profIndex += 1 |
|
499 | self.__profIndex += 1 | |
500 | return |
|
500 | return | |
501 |
|
501 | |||
502 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
502 | #If the buffer length is equal to n then replacing the last buffer value with the data value | |
503 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
503 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) | |
504 | self.__buffer[self.n-1] = data |
|
504 | self.__buffer[self.n-1] = data | |
505 | self.__profIndex = self.n |
|
505 | self.__profIndex = self.n | |
506 | return |
|
506 | return | |
507 |
|
507 | |||
508 |
|
508 | |||
509 | def pushData(self): |
|
509 | def pushData(self): | |
510 | """ |
|
510 | """ | |
511 | Return the sum of the last profiles and the profiles used in the sum. |
|
511 | Return the sum of the last profiles and the profiles used in the sum. | |
512 |
|
512 | |||
513 | Affected: |
|
513 | Affected: | |
514 |
|
514 | |||
515 | self.__profileIndex |
|
515 | self.__profileIndex | |
516 |
|
516 | |||
517 | """ |
|
517 | """ | |
518 |
|
518 | |||
519 | if not self.__withOverlapping: |
|
519 | if not self.__withOverlapping: | |
520 | data = self.__buffer |
|
520 | data = self.__buffer | |
521 | n = self.__profIndex |
|
521 | n = self.__profIndex | |
522 |
|
522 | |||
523 | self.__buffer = 0 |
|
523 | self.__buffer = 0 | |
524 | self.__profIndex = 0 |
|
524 | self.__profIndex = 0 | |
525 |
|
525 | |||
526 | return data, n |
|
526 | return data, n | |
527 |
|
527 | |||
528 | #Integration with Overlapping |
|
528 | #Integration with Overlapping | |
529 | data = numpy.sum(self.__buffer, axis=0) |
|
529 | data = numpy.sum(self.__buffer, axis=0) | |
530 | # print data |
|
530 | # print data | |
531 | # raise |
|
531 | # raise | |
532 | n = self.__profIndex |
|
532 | n = self.__profIndex | |
533 |
|
533 | |||
534 | return data, n |
|
534 | return data, n | |
535 |
|
535 | |||
536 | def byProfiles(self, data): |
|
536 | def byProfiles(self, data): | |
537 |
|
537 | |||
538 | self.__dataReady = False |
|
538 | self.__dataReady = False | |
539 | avgdata = None |
|
539 | avgdata = None | |
540 | # n = None |
|
540 | # n = None | |
541 | # print data |
|
541 | # print data | |
542 | # raise |
|
542 | # raise | |
543 | self.putData(data) |
|
543 | self.putData(data) | |
544 |
|
544 | |||
545 | if self.__profIndex == self.n: |
|
545 | if self.__profIndex == self.n: | |
546 | avgdata, n = self.pushData() |
|
546 | avgdata, n = self.pushData() | |
547 | self.__dataReady = True |
|
547 | self.__dataReady = True | |
548 |
|
548 | |||
549 | return avgdata |
|
549 | return avgdata | |
550 |
|
550 | |||
551 | def byTime(self, data, datatime): |
|
551 | def byTime(self, data, datatime): | |
552 |
|
552 | |||
553 | self.__dataReady = False |
|
553 | self.__dataReady = False | |
554 | avgdata = None |
|
554 | avgdata = None | |
555 | n = None |
|
555 | n = None | |
556 |
|
556 | |||
557 | self.putData(data) |
|
557 | self.putData(data) | |
558 |
|
558 | |||
559 | if (datatime - self.__initime) >= self.__integrationtime: |
|
559 | if (datatime - self.__initime) >= self.__integrationtime: | |
560 | avgdata, n = self.pushData() |
|
560 | avgdata, n = self.pushData() | |
561 | self.n = n |
|
561 | self.n = n | |
562 | self.__dataReady = True |
|
562 | self.__dataReady = True | |
563 |
|
563 | |||
564 | return avgdata |
|
564 | return avgdata | |
565 |
|
565 | |||
566 | def integrateByStride(self, data, datatime): |
|
566 | def integrateByStride(self, data, datatime): | |
567 | # print data |
|
567 | # print data | |
568 | if self.__profIndex == 0: |
|
568 | if self.__profIndex == 0: | |
569 | self.__buffer = [[data.copy(), datatime]] |
|
569 | self.__buffer = [[data.copy(), datatime]] | |
570 | else: |
|
570 | else: | |
571 | self.__buffer.append([data.copy(),datatime]) |
|
571 | self.__buffer.append([data.copy(),datatime]) | |
572 | self.__profIndex += 1 |
|
572 | self.__profIndex += 1 | |
573 | self.__dataReady = False |
|
573 | self.__dataReady = False | |
574 |
|
574 | |||
575 | if self.__profIndex == self.n * self.stride : |
|
575 | if self.__profIndex == self.n * self.stride : | |
576 | self.__dataToPutStride = True |
|
576 | self.__dataToPutStride = True | |
577 | self.__profIndexStride = 0 |
|
577 | self.__profIndexStride = 0 | |
578 | self.__profIndex = 0 |
|
578 | self.__profIndex = 0 | |
579 | self.__bufferStride = [] |
|
579 | self.__bufferStride = [] | |
580 | for i in range(self.stride): |
|
580 | for i in range(self.stride): | |
581 | current = self.__buffer[i::self.stride] |
|
581 | current = self.__buffer[i::self.stride] | |
582 | data = numpy.sum([t[0] for t in current], axis=0) |
|
582 | data = numpy.sum([t[0] for t in current], axis=0) | |
583 | avgdatatime = numpy.average([t[1] for t in current]) |
|
583 | avgdatatime = numpy.average([t[1] for t in current]) | |
584 | # print data |
|
584 | # print data | |
585 | self.__bufferStride.append((data, avgdatatime)) |
|
585 | self.__bufferStride.append((data, avgdatatime)) | |
586 |
|
586 | |||
587 | if self.__dataToPutStride: |
|
587 | if self.__dataToPutStride: | |
588 | self.__dataReady = True |
|
588 | self.__dataReady = True | |
589 | self.__profIndexStride += 1 |
|
589 | self.__profIndexStride += 1 | |
590 | if self.__profIndexStride == self.stride: |
|
590 | if self.__profIndexStride == self.stride: | |
591 | self.__dataToPutStride = False |
|
591 | self.__dataToPutStride = False | |
592 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
592 | # print self.__bufferStride[self.__profIndexStride - 1] | |
593 | # raise |
|
593 | # raise | |
594 | return self.__bufferStride[self.__profIndexStride - 1] |
|
594 | return self.__bufferStride[self.__profIndexStride - 1] | |
595 |
|
595 | |||
596 |
|
596 | |||
597 | return None, None |
|
597 | return None, None | |
598 |
|
598 | |||
599 | def integrate(self, data, datatime=None): |
|
599 | def integrate(self, data, datatime=None): | |
600 |
|
600 | |||
601 | if self.__initime == None: |
|
601 | if self.__initime == None: | |
602 | self.__initime = datatime |
|
602 | self.__initime = datatime | |
603 |
|
603 | |||
604 | if self.__byTime: |
|
604 | if self.__byTime: | |
605 | avgdata = self.byTime(data, datatime) |
|
605 | avgdata = self.byTime(data, datatime) | |
606 | else: |
|
606 | else: | |
607 | avgdata = self.byProfiles(data) |
|
607 | avgdata = self.byProfiles(data) | |
608 |
|
608 | |||
609 |
|
609 | |||
610 | self.__lastdatatime = datatime |
|
610 | self.__lastdatatime = datatime | |
611 |
|
611 | |||
612 | if avgdata is None: |
|
612 | if avgdata is None: | |
613 | return None, None |
|
613 | return None, None | |
614 |
|
614 | |||
615 | avgdatatime = self.__initime |
|
615 | avgdatatime = self.__initime | |
616 |
|
616 | |||
617 | deltatime = datatime - self.__lastdatatime |
|
617 | deltatime = datatime - self.__lastdatatime | |
618 |
|
618 | |||
619 | if not self.__withOverlapping: |
|
619 | if not self.__withOverlapping: | |
620 | self.__initime = datatime |
|
620 | self.__initime = datatime | |
621 | else: |
|
621 | else: | |
622 | self.__initime += deltatime |
|
622 | self.__initime += deltatime | |
623 |
|
623 | |||
624 | return avgdata, avgdatatime |
|
624 | return avgdata, avgdatatime | |
625 |
|
625 | |||
626 | def integrateByBlock(self, dataOut): |
|
626 | def integrateByBlock(self, dataOut): | |
627 |
|
627 | |||
628 | times = int(dataOut.data.shape[1]/self.n) |
|
628 | times = int(dataOut.data.shape[1]/self.n) | |
629 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
629 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) | |
630 |
|
630 | |||
631 | id_min = 0 |
|
631 | id_min = 0 | |
632 | id_max = self.n |
|
632 | id_max = self.n | |
633 |
|
633 | |||
634 | for i in range(times): |
|
634 | for i in range(times): | |
635 | junk = dataOut.data[:,id_min:id_max,:] |
|
635 | junk = dataOut.data[:,id_min:id_max,:] | |
636 | avgdata[:,i,:] = junk.sum(axis=1) |
|
636 | avgdata[:,i,:] = junk.sum(axis=1) | |
637 | id_min += self.n |
|
637 | id_min += self.n | |
638 | id_max += self.n |
|
638 | id_max += self.n | |
639 |
|
639 | |||
640 | timeInterval = dataOut.ippSeconds*self.n |
|
640 | timeInterval = dataOut.ippSeconds*self.n | |
641 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
641 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime | |
642 | self.__dataReady = True |
|
642 | self.__dataReady = True | |
643 | return avgdata, avgdatatime |
|
643 | return avgdata, avgdatatime | |
644 |
|
644 | |||
645 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
645 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): | |
646 |
|
646 | |||
647 | if not self.isConfig: |
|
647 | if not self.isConfig: | |
648 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
648 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) | |
649 | self.isConfig = True |
|
649 | self.isConfig = True | |
650 |
|
650 | |||
651 | if dataOut.flagDataAsBlock: |
|
651 | if dataOut.flagDataAsBlock: | |
652 | """ |
|
652 | """ | |
653 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
653 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
654 | """ |
|
654 | """ | |
655 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
655 | avgdata, avgdatatime = self.integrateByBlock(dataOut) | |
656 | dataOut.nProfiles /= self.n |
|
656 | dataOut.nProfiles /= self.n | |
657 | else: |
|
657 | else: | |
658 | if stride is None: |
|
658 | if stride is None: | |
659 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
659 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) | |
660 | else: |
|
660 | else: | |
661 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
661 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) | |
662 |
|
662 | |||
663 |
|
663 | |||
664 | # dataOut.timeInterval *= n |
|
664 | # dataOut.timeInterval *= n | |
665 | dataOut.flagNoData = True |
|
665 | dataOut.flagNoData = True | |
666 |
|
666 | |||
667 | if self.__dataReady: |
|
667 | if self.__dataReady: | |
668 | dataOut.data = avgdata |
|
668 | dataOut.data = avgdata | |
669 | if not dataOut.flagCohInt: |
|
669 | if not dataOut.flagCohInt: | |
670 | dataOut.nCohInt *= self.n |
|
670 | dataOut.nCohInt *= self.n | |
671 | dataOut.flagCohInt = True |
|
671 | dataOut.flagCohInt = True | |
672 | dataOut.utctime = avgdatatime |
|
672 | dataOut.utctime = avgdatatime | |
673 | # print avgdata, avgdatatime |
|
673 | # print avgdata, avgdatatime | |
674 | # raise |
|
674 | # raise | |
675 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
675 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt | |
676 | dataOut.flagNoData = False |
|
676 | dataOut.flagNoData = False | |
677 | return dataOut |
|
677 | return dataOut | |
678 |
|
678 | |||
679 | class Decoder(Operation): |
|
679 | class Decoder(Operation): | |
680 |
|
680 | |||
681 | isConfig = False |
|
681 | isConfig = False | |
682 | __profIndex = 0 |
|
682 | __profIndex = 0 | |
683 |
|
683 | |||
684 | code = None |
|
684 | code = None | |
685 |
|
685 | |||
686 | nCode = None |
|
686 | nCode = None | |
687 | nBaud = None |
|
687 | nBaud = None | |
688 |
|
688 | |||
689 | def __init__(self, **kwargs): |
|
689 | def __init__(self, **kwargs): | |
690 |
|
690 | |||
691 | Operation.__init__(self, **kwargs) |
|
691 | Operation.__init__(self, **kwargs) | |
692 |
|
692 | |||
693 | self.times = None |
|
693 | self.times = None | |
694 | self.osamp = None |
|
694 | self.osamp = None | |
695 | # self.__setValues = False |
|
695 | # self.__setValues = False | |
696 | self.isConfig = False |
|
696 | self.isConfig = False | |
697 | self.setupReq = False |
|
697 | self.setupReq = False | |
698 | def setup(self, code, osamp, dataOut): |
|
698 | def setup(self, code, osamp, dataOut): | |
699 |
|
699 | |||
700 | self.__profIndex = 0 |
|
700 | self.__profIndex = 0 | |
701 |
|
701 | |||
702 | self.code = code |
|
702 | self.code = code | |
703 |
|
703 | |||
704 | self.nCode = len(code) |
|
704 | self.nCode = len(code) | |
705 | self.nBaud = len(code[0]) |
|
705 | self.nBaud = len(code[0]) | |
706 |
|
706 | |||
707 | if (osamp != None) and (osamp >1): |
|
707 | if (osamp != None) and (osamp >1): | |
708 | self.osamp = osamp |
|
708 | self.osamp = osamp | |
709 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
709 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) | |
710 | self.nBaud = self.nBaud*self.osamp |
|
710 | self.nBaud = self.nBaud*self.osamp | |
711 |
|
711 | |||
712 | self.__nChannels = dataOut.nChannels |
|
712 | self.__nChannels = dataOut.nChannels | |
713 | self.__nProfiles = dataOut.nProfiles |
|
713 | self.__nProfiles = dataOut.nProfiles | |
714 | self.__nHeis = dataOut.nHeights |
|
714 | self.__nHeis = dataOut.nHeights | |
715 |
|
715 | |||
716 | if self.__nHeis < self.nBaud: |
|
716 | if self.__nHeis < self.nBaud: | |
717 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) |
|
717 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) | |
718 |
|
718 | |||
719 | #Frequency |
|
719 | #Frequency | |
720 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
720 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) | |
721 |
|
721 | |||
722 | __codeBuffer[:,0:self.nBaud] = self.code |
|
722 | __codeBuffer[:,0:self.nBaud] = self.code | |
723 |
|
723 | |||
724 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
724 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) | |
725 |
|
725 | |||
726 | if dataOut.flagDataAsBlock: |
|
726 | if dataOut.flagDataAsBlock: | |
727 |
|
727 | |||
728 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
728 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |
729 |
|
729 | |||
730 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
730 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) | |
731 |
|
731 | |||
732 | else: |
|
732 | else: | |
733 |
|
733 | |||
734 | #Time |
|
734 | #Time | |
735 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
735 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |
736 |
|
736 | |||
737 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
737 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) | |
738 |
|
738 | |||
739 | def __convolutionInFreq(self, data): |
|
739 | def __convolutionInFreq(self, data): | |
740 |
|
740 | |||
741 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
741 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |
742 |
|
742 | |||
743 | fft_data = numpy.fft.fft(data, axis=1) |
|
743 | fft_data = numpy.fft.fft(data, axis=1) | |
744 |
|
744 | |||
745 | conv = fft_data*fft_code |
|
745 | conv = fft_data*fft_code | |
746 |
|
746 | |||
747 | data = numpy.fft.ifft(conv,axis=1) |
|
747 | data = numpy.fft.ifft(conv,axis=1) | |
748 |
|
748 | |||
749 | return data |
|
749 | return data | |
750 |
|
750 | |||
751 | def __convolutionInFreqOpt(self, data): |
|
751 | def __convolutionInFreqOpt(self, data): | |
752 |
|
752 | |||
753 | raise NotImplementedError |
|
753 | raise NotImplementedError | |
754 |
|
754 | |||
755 | def __convolutionInTime(self, data): |
|
755 | def __convolutionInTime(self, data): | |
756 |
|
756 | |||
757 | code = self.code[self.__profIndex] |
|
757 | code = self.code[self.__profIndex] | |
758 | for i in range(self.__nChannels): |
|
758 | for i in range(self.__nChannels): | |
759 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
759 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] | |
760 |
|
760 | |||
761 | return self.datadecTime |
|
761 | return self.datadecTime | |
762 |
|
762 | |||
763 | def __convolutionByBlockInTime(self, data): |
|
763 | def __convolutionByBlockInTime(self, data): | |
764 |
|
764 | |||
765 | repetitions = int(self.__nProfiles / self.nCode) |
|
765 | repetitions = int(self.__nProfiles / self.nCode) | |
766 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
766 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) | |
767 | junk = junk.flatten() |
|
767 | junk = junk.flatten() | |
768 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
768 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) | |
769 | profilesList = range(self.__nProfiles) |
|
769 | profilesList = range(self.__nProfiles) | |
770 |
|
770 | |||
771 | for i in range(self.__nChannels): |
|
771 | for i in range(self.__nChannels): | |
772 | for j in profilesList: |
|
772 | for j in profilesList: | |
773 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
773 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] | |
774 | return self.datadecTime |
|
774 | return self.datadecTime | |
775 |
|
775 | |||
776 | def __convolutionByBlockInFreq(self, data): |
|
776 | def __convolutionByBlockInFreq(self, data): | |
777 |
|
777 | |||
778 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") |
|
778 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") | |
779 |
|
779 | |||
780 |
|
780 | |||
781 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
781 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |
782 |
|
782 | |||
783 | fft_data = numpy.fft.fft(data, axis=2) |
|
783 | fft_data = numpy.fft.fft(data, axis=2) | |
784 |
|
784 | |||
785 | conv = fft_data*fft_code |
|
785 | conv = fft_data*fft_code | |
786 |
|
786 | |||
787 | data = numpy.fft.ifft(conv,axis=2) |
|
787 | data = numpy.fft.ifft(conv,axis=2) | |
788 |
|
788 | |||
789 | return data |
|
789 | return data | |
790 |
|
790 | |||
791 |
|
791 | |||
792 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
792 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): | |
793 |
|
793 | |||
794 | if dataOut.flagDecodeData: |
|
794 | if dataOut.flagDecodeData: | |
795 | print("This data is already decoded, recoding again ...") |
|
795 | print("This data is already decoded, recoding again ...") | |
796 |
|
796 | |||
797 | if not self.isConfig: |
|
797 | if not self.isConfig: | |
798 |
|
798 | |||
799 | if code is None: |
|
799 | if code is None: | |
800 | if dataOut.code is None: |
|
800 | if dataOut.code is None: | |
801 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) |
|
801 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) | |
802 |
|
802 | |||
803 | code = dataOut.code |
|
803 | code = dataOut.code | |
804 | else: |
|
804 | else: | |
805 | code = numpy.array(code).reshape(nCode,nBaud) |
|
805 | code = numpy.array(code).reshape(nCode,nBaud) | |
806 | self.setup(code, osamp, dataOut) |
|
806 | self.setup(code, osamp, dataOut) | |
807 |
|
807 | |||
808 | self.isConfig = True |
|
808 | self.isConfig = True | |
809 |
|
809 | |||
810 | if mode == 3: |
|
810 | if mode == 3: | |
811 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
811 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) | |
812 |
|
812 | |||
813 | if times != None: |
|
813 | if times != None: | |
814 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
814 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") | |
815 |
|
815 | |||
816 | if self.code is None: |
|
816 | if self.code is None: | |
817 | print("Fail decoding: Code is not defined.") |
|
817 | print("Fail decoding: Code is not defined.") | |
818 | return |
|
818 | return | |
819 |
|
819 | |||
820 | self.__nProfiles = dataOut.nProfiles |
|
820 | self.__nProfiles = dataOut.nProfiles | |
821 | datadec = None |
|
821 | datadec = None | |
822 |
|
822 | |||
823 | if mode == 3: |
|
823 | if mode == 3: | |
824 | mode = 0 |
|
824 | mode = 0 | |
825 |
|
825 | |||
826 | if dataOut.flagDataAsBlock: |
|
826 | if dataOut.flagDataAsBlock: | |
827 | """ |
|
827 | """ | |
828 | Decoding when data have been read as block, |
|
828 | Decoding when data have been read as block, | |
829 | """ |
|
829 | """ | |
830 |
|
830 | |||
831 | if mode == 0: |
|
831 | if mode == 0: | |
832 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
832 | datadec = self.__convolutionByBlockInTime(dataOut.data) | |
833 | if mode == 1: |
|
833 | if mode == 1: | |
834 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
834 | datadec = self.__convolutionByBlockInFreq(dataOut.data) | |
835 | else: |
|
835 | else: | |
836 | """ |
|
836 | """ | |
837 | Decoding when data have been read profile by profile |
|
837 | Decoding when data have been read profile by profile | |
838 | """ |
|
838 | """ | |
839 | if mode == 0: |
|
839 | if mode == 0: | |
840 | datadec = self.__convolutionInTime(dataOut.data) |
|
840 | datadec = self.__convolutionInTime(dataOut.data) | |
841 |
|
841 | |||
842 | if mode == 1: |
|
842 | if mode == 1: | |
843 | datadec = self.__convolutionInFreq(dataOut.data) |
|
843 | datadec = self.__convolutionInFreq(dataOut.data) | |
844 |
|
844 | |||
845 | if mode == 2: |
|
845 | if mode == 2: | |
846 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
846 | datadec = self.__convolutionInFreqOpt(dataOut.data) | |
847 |
|
847 | |||
848 | if datadec is None: |
|
848 | if datadec is None: | |
849 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) |
|
849 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) | |
850 |
|
850 | |||
851 | dataOut.code = self.code |
|
851 | dataOut.code = self.code | |
852 | dataOut.nCode = self.nCode |
|
852 | dataOut.nCode = self.nCode | |
853 | dataOut.nBaud = self.nBaud |
|
853 | dataOut.nBaud = self.nBaud | |
854 |
|
854 | |||
855 | dataOut.data = datadec |
|
855 | dataOut.data = datadec | |
856 |
|
856 | |||
857 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
857 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] | |
858 |
|
858 | |||
859 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
859 | dataOut.flagDecodeData = True #asumo q la data esta decodificada | |
860 |
|
860 | |||
861 | if self.__profIndex == self.nCode-1: |
|
861 | if self.__profIndex == self.nCode-1: | |
862 | self.__profIndex = 0 |
|
862 | self.__profIndex = 0 | |
863 | return dataOut |
|
863 | return dataOut | |
864 |
|
864 | |||
865 | self.__profIndex += 1 |
|
865 | self.__profIndex += 1 | |
866 |
|
866 | |||
867 | return dataOut |
|
867 | return dataOut | |
868 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
868 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip | |
869 |
|
869 | |||
870 |
|
870 | |||
871 | class ProfileConcat(Operation): |
|
871 | class ProfileConcat(Operation): | |
872 |
|
872 | |||
873 | isConfig = False |
|
873 | isConfig = False | |
874 | buffer = None |
|
874 | buffer = None | |
875 |
|
875 | |||
876 | def __init__(self, **kwargs): |
|
876 | def __init__(self, **kwargs): | |
877 |
|
877 | |||
878 | Operation.__init__(self, **kwargs) |
|
878 | Operation.__init__(self, **kwargs) | |
879 | self.profileIndex = 0 |
|
879 | self.profileIndex = 0 | |
880 |
|
880 | |||
881 | def reset(self): |
|
881 | def reset(self): | |
882 | self.buffer = numpy.zeros_like(self.buffer) |
|
882 | self.buffer = numpy.zeros_like(self.buffer) | |
883 | self.start_index = 0 |
|
883 | self.start_index = 0 | |
884 | self.times = 1 |
|
884 | self.times = 1 | |
885 |
|
885 | |||
886 | def setup(self, data, m, n=1): |
|
886 | def setup(self, data, m, n=1): | |
887 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
887 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) | |
888 | self.nHeights = data.shape[1]#.nHeights |
|
888 | self.nHeights = data.shape[1]#.nHeights | |
889 | self.start_index = 0 |
|
889 | self.start_index = 0 | |
890 | self.times = 1 |
|
890 | self.times = 1 | |
891 |
|
891 | |||
892 | def concat(self, data): |
|
892 | def concat(self, data): | |
893 |
|
893 | |||
894 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
894 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() | |
895 | self.start_index = self.start_index + self.nHeights |
|
895 | self.start_index = self.start_index + self.nHeights | |
896 |
|
896 | |||
897 | def run(self, dataOut, m): |
|
897 | def run(self, dataOut, m): | |
898 | dataOut.flagNoData = True |
|
898 | dataOut.flagNoData = True | |
899 |
|
899 | |||
900 | if not self.isConfig: |
|
900 | if not self.isConfig: | |
901 | self.setup(dataOut.data, m, 1) |
|
901 | self.setup(dataOut.data, m, 1) | |
902 | self.isConfig = True |
|
902 | self.isConfig = True | |
903 |
|
903 | |||
904 | if dataOut.flagDataAsBlock: |
|
904 | if dataOut.flagDataAsBlock: | |
905 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") |
|
905 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") | |
906 |
|
906 | |||
907 | else: |
|
907 | else: | |
908 | self.concat(dataOut.data) |
|
908 | self.concat(dataOut.data) | |
909 | self.times += 1 |
|
909 | self.times += 1 | |
910 | if self.times > m: |
|
910 | if self.times > m: | |
911 | dataOut.data = self.buffer |
|
911 | dataOut.data = self.buffer | |
912 | self.reset() |
|
912 | self.reset() | |
913 | dataOut.flagNoData = False |
|
913 | dataOut.flagNoData = False | |
914 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
914 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas | |
915 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
915 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
916 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
916 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m | |
917 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
917 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) | |
918 | dataOut.ippSeconds *= m |
|
918 | dataOut.ippSeconds *= m | |
919 | return dataOut |
|
919 | return dataOut | |
920 |
|
920 | |||
921 | class ProfileSelector(Operation): |
|
921 | class ProfileSelector(Operation): | |
922 |
|
922 | |||
923 | profileIndex = None |
|
923 | profileIndex = None | |
924 | # Tamanho total de los perfiles |
|
924 | # Tamanho total de los perfiles | |
925 | nProfiles = None |
|
925 | nProfiles = None | |
926 |
|
926 | |||
927 | def __init__(self, **kwargs): |
|
927 | def __init__(self, **kwargs): | |
928 |
|
928 | |||
929 | Operation.__init__(self, **kwargs) |
|
929 | Operation.__init__(self, **kwargs) | |
930 | self.profileIndex = 0 |
|
930 | self.profileIndex = 0 | |
931 |
|
931 | |||
932 | def incProfileIndex(self): |
|
932 | def incProfileIndex(self): | |
933 |
|
933 | |||
934 | self.profileIndex += 1 |
|
934 | self.profileIndex += 1 | |
935 |
|
935 | |||
936 | if self.profileIndex >= self.nProfiles: |
|
936 | if self.profileIndex >= self.nProfiles: | |
937 | self.profileIndex = 0 |
|
937 | self.profileIndex = 0 | |
938 |
|
938 | |||
939 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
939 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): | |
940 |
|
940 | |||
941 | if profileIndex < minIndex: |
|
941 | if profileIndex < minIndex: | |
942 | return False |
|
942 | return False | |
943 |
|
943 | |||
944 | if profileIndex > maxIndex: |
|
944 | if profileIndex > maxIndex: | |
945 | return False |
|
945 | return False | |
946 |
|
946 | |||
947 | return True |
|
947 | return True | |
948 |
|
948 | |||
949 | def isThisProfileInList(self, profileIndex, profileList): |
|
949 | def isThisProfileInList(self, profileIndex, profileList): | |
950 |
|
950 | |||
951 | if profileIndex not in profileList: |
|
951 | if profileIndex not in profileList: | |
952 | return False |
|
952 | return False | |
953 |
|
953 | |||
954 | return True |
|
954 | return True | |
955 |
|
955 | |||
956 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
956 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): | |
957 |
|
957 | |||
958 | """ |
|
958 | """ | |
959 | ProfileSelector: |
|
959 | ProfileSelector: | |
960 |
|
960 | |||
961 | Inputs: |
|
961 | Inputs: | |
962 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
962 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) | |
963 |
|
963 | |||
964 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
964 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) | |
965 |
|
965 | |||
966 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
966 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) | |
967 |
|
967 | |||
968 | """ |
|
968 | """ | |
969 |
|
969 | |||
970 | if rangeList is not None: |
|
970 | if rangeList is not None: | |
971 | if type(rangeList[0]) not in (tuple, list): |
|
971 | if type(rangeList[0]) not in (tuple, list): | |
972 | rangeList = [rangeList] |
|
972 | rangeList = [rangeList] | |
973 |
|
973 | |||
974 | dataOut.flagNoData = True |
|
974 | dataOut.flagNoData = True | |
975 |
|
975 | |||
976 | if dataOut.flagDataAsBlock: |
|
976 | if dataOut.flagDataAsBlock: | |
977 | """ |
|
977 | """ | |
978 | data dimension = [nChannels, nProfiles, nHeis] |
|
978 | data dimension = [nChannels, nProfiles, nHeis] | |
979 | """ |
|
979 | """ | |
980 | if profileList != None: |
|
980 | if profileList != None: | |
981 | dataOut.data = dataOut.data[:,profileList,:] |
|
981 | dataOut.data = dataOut.data[:,profileList,:] | |
982 |
|
982 | |||
983 | if profileRangeList != None: |
|
983 | if profileRangeList != None: | |
984 | minIndex = profileRangeList[0] |
|
984 | minIndex = profileRangeList[0] | |
985 | maxIndex = profileRangeList[1] |
|
985 | maxIndex = profileRangeList[1] | |
986 | profileList = list(range(minIndex, maxIndex+1)) |
|
986 | profileList = list(range(minIndex, maxIndex+1)) | |
987 |
|
987 | |||
988 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
988 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] | |
989 |
|
989 | |||
990 | if rangeList != None: |
|
990 | if rangeList != None: | |
991 |
|
991 | |||
992 | profileList = [] |
|
992 | profileList = [] | |
993 |
|
993 | |||
994 | for thisRange in rangeList: |
|
994 | for thisRange in rangeList: | |
995 | minIndex = thisRange[0] |
|
995 | minIndex = thisRange[0] | |
996 | maxIndex = thisRange[1] |
|
996 | maxIndex = thisRange[1] | |
997 |
|
997 | |||
998 | profileList.extend(list(range(minIndex, maxIndex+1))) |
|
998 | profileList.extend(list(range(minIndex, maxIndex+1))) | |
999 |
|
999 | |||
1000 | dataOut.data = dataOut.data[:,profileList,:] |
|
1000 | dataOut.data = dataOut.data[:,profileList,:] | |
1001 |
|
1001 | |||
1002 | dataOut.nProfiles = len(profileList) |
|
1002 | dataOut.nProfiles = len(profileList) | |
1003 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
1003 | dataOut.profileIndex = dataOut.nProfiles - 1 | |
1004 | dataOut.flagNoData = False |
|
1004 | dataOut.flagNoData = False | |
1005 |
|
1005 | |||
1006 | return dataOut |
|
1006 | return dataOut | |
1007 |
|
1007 | |||
1008 | """ |
|
1008 | """ | |
1009 | data dimension = [nChannels, nHeis] |
|
1009 | data dimension = [nChannels, nHeis] | |
1010 | """ |
|
1010 | """ | |
1011 |
|
1011 | |||
1012 | if profileList != None: |
|
1012 | if profileList != None: | |
1013 |
|
1013 | |||
1014 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
1014 | if self.isThisProfileInList(dataOut.profileIndex, profileList): | |
1015 |
|
1015 | |||
1016 | self.nProfiles = len(profileList) |
|
1016 | self.nProfiles = len(profileList) | |
1017 | dataOut.nProfiles = self.nProfiles |
|
1017 | dataOut.nProfiles = self.nProfiles | |
1018 | dataOut.profileIndex = self.profileIndex |
|
1018 | dataOut.profileIndex = self.profileIndex | |
1019 | dataOut.flagNoData = False |
|
1019 | dataOut.flagNoData = False | |
1020 |
|
1020 | |||
1021 | self.incProfileIndex() |
|
1021 | self.incProfileIndex() | |
1022 | return dataOut |
|
1022 | return dataOut | |
1023 |
|
1023 | |||
1024 | if profileRangeList != None: |
|
1024 | if profileRangeList != None: | |
1025 |
|
1025 | |||
1026 | minIndex = profileRangeList[0] |
|
1026 | minIndex = profileRangeList[0] | |
1027 | maxIndex = profileRangeList[1] |
|
1027 | maxIndex = profileRangeList[1] | |
1028 |
|
1028 | |||
1029 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1029 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |
1030 |
|
1030 | |||
1031 | self.nProfiles = maxIndex - minIndex + 1 |
|
1031 | self.nProfiles = maxIndex - minIndex + 1 | |
1032 | dataOut.nProfiles = self.nProfiles |
|
1032 | dataOut.nProfiles = self.nProfiles | |
1033 | dataOut.profileIndex = self.profileIndex |
|
1033 | dataOut.profileIndex = self.profileIndex | |
1034 | dataOut.flagNoData = False |
|
1034 | dataOut.flagNoData = False | |
1035 |
|
1035 | |||
1036 | self.incProfileIndex() |
|
1036 | self.incProfileIndex() | |
1037 | return dataOut |
|
1037 | return dataOut | |
1038 |
|
1038 | |||
1039 | if rangeList != None: |
|
1039 | if rangeList != None: | |
1040 |
|
1040 | |||
1041 | nProfiles = 0 |
|
1041 | nProfiles = 0 | |
1042 |
|
1042 | |||
1043 | for thisRange in rangeList: |
|
1043 | for thisRange in rangeList: | |
1044 | minIndex = thisRange[0] |
|
1044 | minIndex = thisRange[0] | |
1045 | maxIndex = thisRange[1] |
|
1045 | maxIndex = thisRange[1] | |
1046 |
|
1046 | |||
1047 | nProfiles += maxIndex - minIndex + 1 |
|
1047 | nProfiles += maxIndex - minIndex + 1 | |
1048 |
|
1048 | |||
1049 | for thisRange in rangeList: |
|
1049 | for thisRange in rangeList: | |
1050 |
|
1050 | |||
1051 | minIndex = thisRange[0] |
|
1051 | minIndex = thisRange[0] | |
1052 | maxIndex = thisRange[1] |
|
1052 | maxIndex = thisRange[1] | |
1053 |
|
1053 | |||
1054 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1054 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |
1055 |
|
1055 | |||
1056 | self.nProfiles = nProfiles |
|
1056 | self.nProfiles = nProfiles | |
1057 | dataOut.nProfiles = self.nProfiles |
|
1057 | dataOut.nProfiles = self.nProfiles | |
1058 | dataOut.profileIndex = self.profileIndex |
|
1058 | dataOut.profileIndex = self.profileIndex | |
1059 | dataOut.flagNoData = False |
|
1059 | dataOut.flagNoData = False | |
1060 |
|
1060 | |||
1061 | self.incProfileIndex() |
|
1061 | self.incProfileIndex() | |
1062 |
|
1062 | |||
1063 | break |
|
1063 | break | |
1064 |
|
1064 | |||
1065 | return dataOut |
|
1065 | return dataOut | |
1066 |
|
1066 | |||
1067 |
|
1067 | |||
1068 | if beam != None: #beam is only for AMISR data |
|
1068 | if beam != None: #beam is only for AMISR data | |
1069 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
1069 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): | |
1070 | dataOut.flagNoData = False |
|
1070 | dataOut.flagNoData = False | |
1071 | dataOut.profileIndex = self.profileIndex |
|
1071 | dataOut.profileIndex = self.profileIndex | |
1072 |
|
1072 | |||
1073 | self.incProfileIndex() |
|
1073 | self.incProfileIndex() | |
1074 |
|
1074 | |||
1075 | return dataOut |
|
1075 | return dataOut | |
1076 |
|
1076 | |||
1077 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") |
|
1077 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") | |
1078 |
|
1078 | |||
1079 |
|
1079 | |||
1080 | class Reshaper(Operation): |
|
1080 | class Reshaper(Operation): | |
1081 |
|
1081 | |||
1082 | def __init__(self, **kwargs): |
|
1082 | def __init__(self, **kwargs): | |
1083 |
|
1083 | |||
1084 | Operation.__init__(self, **kwargs) |
|
1084 | Operation.__init__(self, **kwargs) | |
1085 |
|
1085 | |||
1086 | self.__buffer = None |
|
1086 | self.__buffer = None | |
1087 | self.__nitems = 0 |
|
1087 | self.__nitems = 0 | |
1088 |
|
1088 | |||
1089 | def __appendProfile(self, dataOut, nTxs): |
|
1089 | def __appendProfile(self, dataOut, nTxs): | |
1090 |
|
1090 | |||
1091 | if self.__buffer is None: |
|
1091 | if self.__buffer is None: | |
1092 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
1092 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) | |
1093 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
1093 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) | |
1094 |
|
1094 | |||
1095 | ini = dataOut.nHeights * self.__nitems |
|
1095 | ini = dataOut.nHeights * self.__nitems | |
1096 | end = ini + dataOut.nHeights |
|
1096 | end = ini + dataOut.nHeights | |
1097 |
|
1097 | |||
1098 | self.__buffer[:, ini:end] = dataOut.data |
|
1098 | self.__buffer[:, ini:end] = dataOut.data | |
1099 |
|
1099 | |||
1100 | self.__nitems += 1 |
|
1100 | self.__nitems += 1 | |
1101 |
|
1101 | |||
1102 | return int(self.__nitems*nTxs) |
|
1102 | return int(self.__nitems*nTxs) | |
1103 |
|
1103 | |||
1104 | def __getBuffer(self): |
|
1104 | def __getBuffer(self): | |
1105 |
|
1105 | |||
1106 | if self.__nitems == int(1./self.__nTxs): |
|
1106 | if self.__nitems == int(1./self.__nTxs): | |
1107 |
|
1107 | |||
1108 | self.__nitems = 0 |
|
1108 | self.__nitems = 0 | |
1109 |
|
1109 | |||
1110 | return self.__buffer.copy() |
|
1110 | return self.__buffer.copy() | |
1111 |
|
1111 | |||
1112 | return None |
|
1112 | return None | |
1113 |
|
1113 | |||
1114 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1114 | def __checkInputs(self, dataOut, shape, nTxs): | |
1115 |
|
1115 | |||
1116 | if shape is None and nTxs is None: |
|
1116 | if shape is None and nTxs is None: | |
1117 | raise ValueError("Reshaper: shape of factor should be defined") |
|
1117 | raise ValueError("Reshaper: shape of factor should be defined") | |
1118 |
|
1118 | |||
1119 | if nTxs: |
|
1119 | if nTxs: | |
1120 | if nTxs < 0: |
|
1120 | if nTxs < 0: | |
1121 | raise ValueError("nTxs should be greater than 0") |
|
1121 | raise ValueError("nTxs should be greater than 0") | |
1122 |
|
1122 | |||
1123 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1123 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: | |
1124 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) |
|
1124 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) | |
1125 |
|
1125 | |||
1126 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1126 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] | |
1127 |
|
1127 | |||
1128 | return shape, nTxs |
|
1128 | return shape, nTxs | |
1129 |
|
1129 | |||
1130 | if len(shape) != 2 and len(shape) != 3: |
|
1130 | if len(shape) != 2 and len(shape) != 3: | |
1131 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) |
|
1131 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) | |
1132 |
|
1132 | |||
1133 | if len(shape) == 2: |
|
1133 | if len(shape) == 2: | |
1134 | shape_tuple = [dataOut.nChannels] |
|
1134 | shape_tuple = [dataOut.nChannels] | |
1135 | shape_tuple.extend(shape) |
|
1135 | shape_tuple.extend(shape) | |
1136 | else: |
|
1136 | else: | |
1137 | shape_tuple = list(shape) |
|
1137 | shape_tuple = list(shape) | |
1138 |
|
1138 | |||
1139 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1139 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles | |
1140 |
|
1140 | |||
1141 | return shape_tuple, nTxs |
|
1141 | return shape_tuple, nTxs | |
1142 |
|
1142 | |||
1143 | def run(self, dataOut, shape=None, nTxs=None): |
|
1143 | def run(self, dataOut, shape=None, nTxs=None): | |
1144 |
|
1144 | |||
1145 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1145 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) | |
1146 |
|
1146 | |||
1147 | dataOut.flagNoData = True |
|
1147 | dataOut.flagNoData = True | |
1148 | profileIndex = None |
|
1148 | profileIndex = None | |
1149 |
|
1149 | |||
1150 | if dataOut.flagDataAsBlock: |
|
1150 | if dataOut.flagDataAsBlock: | |
1151 |
|
1151 | |||
1152 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1152 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) | |
1153 | dataOut.flagNoData = False |
|
1153 | dataOut.flagNoData = False | |
1154 |
|
1154 | |||
1155 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1155 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 | |
1156 |
|
1156 | |||
1157 | else: |
|
1157 | else: | |
1158 |
|
1158 | |||
1159 | if self.__nTxs < 1: |
|
1159 | if self.__nTxs < 1: | |
1160 |
|
1160 | |||
1161 | self.__appendProfile(dataOut, self.__nTxs) |
|
1161 | self.__appendProfile(dataOut, self.__nTxs) | |
1162 | new_data = self.__getBuffer() |
|
1162 | new_data = self.__getBuffer() | |
1163 |
|
1163 | |||
1164 | if new_data is not None: |
|
1164 | if new_data is not None: | |
1165 | dataOut.data = new_data |
|
1165 | dataOut.data = new_data | |
1166 | dataOut.flagNoData = False |
|
1166 | dataOut.flagNoData = False | |
1167 |
|
1167 | |||
1168 | profileIndex = dataOut.profileIndex*nTxs |
|
1168 | profileIndex = dataOut.profileIndex*nTxs | |
1169 |
|
1169 | |||
1170 | else: |
|
1170 | else: | |
1171 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") |
|
1171 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") | |
1172 |
|
1172 | |||
1173 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1173 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1174 |
|
1174 | |||
1175 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1175 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] | |
1176 |
|
1176 | |||
1177 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1177 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) | |
1178 |
|
1178 | |||
1179 | dataOut.profileIndex = profileIndex |
|
1179 | dataOut.profileIndex = profileIndex | |
1180 |
|
1180 | |||
1181 | dataOut.ippSeconds /= self.__nTxs |
|
1181 | dataOut.ippSeconds /= self.__nTxs | |
1182 |
|
1182 | |||
1183 | return dataOut |
|
1183 | return dataOut | |
1184 |
|
1184 | |||
1185 | class SplitProfiles(Operation): |
|
1185 | class SplitProfiles(Operation): | |
1186 |
|
1186 | |||
1187 | def __init__(self, **kwargs): |
|
1187 | def __init__(self, **kwargs): | |
1188 |
|
1188 | |||
1189 | Operation.__init__(self, **kwargs) |
|
1189 | Operation.__init__(self, **kwargs) | |
1190 |
|
1190 | |||
1191 | def run(self, dataOut, n): |
|
1191 | def run(self, dataOut, n): | |
1192 |
|
1192 | |||
1193 | dataOut.flagNoData = True |
|
1193 | dataOut.flagNoData = True | |
1194 | profileIndex = None |
|
1194 | profileIndex = None | |
1195 |
|
1195 | |||
1196 | if dataOut.flagDataAsBlock: |
|
1196 | if dataOut.flagDataAsBlock: | |
1197 |
|
1197 | |||
1198 | #nchannels, nprofiles, nsamples |
|
1198 | #nchannels, nprofiles, nsamples | |
1199 | shape = dataOut.data.shape |
|
1199 | shape = dataOut.data.shape | |
1200 |
|
1200 | |||
1201 | if shape[2] % n != 0: |
|
1201 | if shape[2] % n != 0: | |
1202 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) |
|
1202 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) | |
1203 |
|
1203 | |||
1204 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) |
|
1204 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) | |
1205 |
|
1205 | |||
1206 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1206 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |
1207 | dataOut.flagNoData = False |
|
1207 | dataOut.flagNoData = False | |
1208 |
|
1208 | |||
1209 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1209 | profileIndex = int(dataOut.nProfiles/n) - 1 | |
1210 |
|
1210 | |||
1211 | else: |
|
1211 | else: | |
1212 |
|
1212 | |||
1213 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") |
|
1213 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") | |
1214 |
|
1214 | |||
1215 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1215 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1216 |
|
1216 | |||
1217 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1217 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] | |
1218 |
|
1218 | |||
1219 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1219 | dataOut.nProfiles = int(dataOut.nProfiles*n) | |
1220 |
|
1220 | |||
1221 | dataOut.profileIndex = profileIndex |
|
1221 | dataOut.profileIndex = profileIndex | |
1222 |
|
1222 | |||
1223 | dataOut.ippSeconds /= n |
|
1223 | dataOut.ippSeconds /= n | |
1224 |
|
1224 | |||
1225 | return dataOut |
|
1225 | return dataOut | |
1226 |
|
1226 | |||
1227 | class CombineProfiles(Operation): |
|
1227 | class CombineProfiles(Operation): | |
1228 | def __init__(self, **kwargs): |
|
1228 | def __init__(self, **kwargs): | |
1229 |
|
1229 | |||
1230 | Operation.__init__(self, **kwargs) |
|
1230 | Operation.__init__(self, **kwargs) | |
1231 |
|
1231 | |||
1232 | self.__remData = None |
|
1232 | self.__remData = None | |
1233 | self.__profileIndex = 0 |
|
1233 | self.__profileIndex = 0 | |
1234 |
|
1234 | |||
1235 | def run(self, dataOut, n): |
|
1235 | def run(self, dataOut, n): | |
1236 |
|
1236 | |||
1237 | dataOut.flagNoData = True |
|
1237 | dataOut.flagNoData = True | |
1238 | profileIndex = None |
|
1238 | profileIndex = None | |
1239 |
|
1239 | |||
1240 | if dataOut.flagDataAsBlock: |
|
1240 | if dataOut.flagDataAsBlock: | |
1241 |
|
1241 | |||
1242 | #nchannels, nprofiles, nsamples |
|
1242 | #nchannels, nprofiles, nsamples | |
1243 | shape = dataOut.data.shape |
|
1243 | shape = dataOut.data.shape | |
1244 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1244 | new_shape = shape[0], shape[1]/n, shape[2]*n | |
1245 |
|
1245 | |||
1246 | if shape[1] % n != 0: |
|
1246 | if shape[1] % n != 0: | |
1247 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) |
|
1247 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) | |
1248 |
|
1248 | |||
1249 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1249 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |
1250 | dataOut.flagNoData = False |
|
1250 | dataOut.flagNoData = False | |
1251 |
|
1251 | |||
1252 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1252 | profileIndex = int(dataOut.nProfiles*n) - 1 | |
1253 |
|
1253 | |||
1254 | else: |
|
1254 | else: | |
1255 |
|
1255 | |||
1256 | #nchannels, nsamples |
|
1256 | #nchannels, nsamples | |
1257 | if self.__remData is None: |
|
1257 | if self.__remData is None: | |
1258 | newData = dataOut.data |
|
1258 | newData = dataOut.data | |
1259 | else: |
|
1259 | else: | |
1260 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1260 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) | |
1261 |
|
1261 | |||
1262 | self.__profileIndex += 1 |
|
1262 | self.__profileIndex += 1 | |
1263 |
|
1263 | |||
1264 | if self.__profileIndex < n: |
|
1264 | if self.__profileIndex < n: | |
1265 | self.__remData = newData |
|
1265 | self.__remData = newData | |
1266 | #continue |
|
1266 | #continue | |
1267 | return |
|
1267 | return | |
1268 |
|
1268 | |||
1269 | self.__profileIndex = 0 |
|
1269 | self.__profileIndex = 0 | |
1270 | self.__remData = None |
|
1270 | self.__remData = None | |
1271 |
|
1271 | |||
1272 | dataOut.data = newData |
|
1272 | dataOut.data = newData | |
1273 | dataOut.flagNoData = False |
|
1273 | dataOut.flagNoData = False | |
1274 |
|
1274 | |||
1275 | profileIndex = dataOut.profileIndex/n |
|
1275 | profileIndex = dataOut.profileIndex/n | |
1276 |
|
1276 | |||
1277 |
|
1277 | |||
1278 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1278 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1279 |
|
1279 | |||
1280 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1280 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] | |
1281 |
|
1281 | |||
1282 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1282 | dataOut.nProfiles = int(dataOut.nProfiles/n) | |
1283 |
|
1283 | |||
1284 | dataOut.profileIndex = profileIndex |
|
1284 | dataOut.profileIndex = profileIndex | |
1285 |
|
1285 | |||
1286 | dataOut.ippSeconds *= n |
|
1286 | dataOut.ippSeconds *= n | |
1287 |
|
1287 | |||
1288 | return dataOut |
|
1288 | return dataOut | |
1289 |
|
1289 | |||
1290 | class PulsePair(Operation): |
|
1290 | class PulsePair(Operation): | |
1291 | ''' |
|
1291 | ''' | |
1292 | Function PulsePair(Signal Power, Velocity) |
|
1292 | Function PulsePair(Signal Power, Velocity) | |
1293 | The real component of Lag[0] provides Intensity Information |
|
1293 | The real component of Lag[0] provides Intensity Information | |
1294 | The imag component of Lag[1] Phase provides Velocity Information |
|
1294 | The imag component of Lag[1] Phase provides Velocity Information | |
1295 |
|
1295 | |||
1296 | Configuration Parameters: |
|
1296 | Configuration Parameters: | |
1297 | nPRF = Number of Several PRF |
|
1297 | nPRF = Number of Several PRF | |
1298 | theta = Degree Azimuth angel Boundaries |
|
1298 | theta = Degree Azimuth angel Boundaries | |
1299 |
|
1299 | |||
1300 | Input: |
|
1300 | Input: | |
1301 | self.dataOut |
|
1301 | self.dataOut | |
1302 | lag[N] |
|
1302 | lag[N] | |
1303 | Affected: |
|
1303 | Affected: | |
1304 | self.dataOut.spc |
|
1304 | self.dataOut.spc | |
1305 | ''' |
|
1305 | ''' | |
1306 | isConfig = False |
|
1306 | isConfig = False | |
1307 | __profIndex = 0 |
|
1307 | __profIndex = 0 | |
1308 | __initime = None |
|
1308 | __initime = None | |
1309 | __lastdatatime = None |
|
1309 | __lastdatatime = None | |
1310 | __buffer = None |
|
1310 | __buffer = None | |
1311 | noise = None |
|
1311 | noise = None | |
1312 | __dataReady = False |
|
1312 | __dataReady = False | |
1313 | n = None |
|
1313 | n = None | |
1314 | __nch = 0 |
|
1314 | __nch = 0 | |
1315 | __nHeis = 0 |
|
1315 | __nHeis = 0 | |
1316 | removeDC = False |
|
1316 | removeDC = False | |
1317 | ipp = None |
|
1317 | ipp = None | |
1318 | lambda_ = 0 |
|
1318 | lambda_ = 0 | |
1319 |
|
1319 | |||
1320 | def __init__(self,**kwargs): |
|
1320 | def __init__(self,**kwargs): | |
1321 | Operation.__init__(self,**kwargs) |
|
1321 | Operation.__init__(self,**kwargs) | |
1322 |
|
1322 | |||
1323 | def setup(self, dataOut, n = None, removeDC=False): |
|
1323 | def setup(self, dataOut, n = None, removeDC=False): | |
1324 | ''' |
|
1324 | ''' | |
1325 | n= Numero de PRF's de entrada |
|
1325 | n= Numero de PRF's de entrada | |
1326 | ''' |
|
1326 | ''' | |
1327 | print("[INICIO]-setup del METODO PULSE PAIR") |
|
1327 | print("[INICIO]-setup del METODO PULSE PAIR") | |
1328 | self.__initime = None |
|
1328 | self.__initime = None | |
1329 | self.__lastdatatime = 0 |
|
1329 | self.__lastdatatime = 0 | |
1330 | self.__dataReady = False |
|
1330 | self.__dataReady = False | |
1331 | self.__buffer = 0 |
|
1331 | self.__buffer = 0 | |
1332 | self.__profIndex = 0 |
|
1332 | self.__profIndex = 0 | |
1333 | self.noise = None |
|
1333 | self.noise = None | |
1334 | self.__nch = dataOut.nChannels |
|
1334 | self.__nch = dataOut.nChannels | |
1335 | self.__nHeis = dataOut.nHeights |
|
1335 | self.__nHeis = dataOut.nHeights | |
1336 | self.removeDC = removeDC |
|
1336 | self.removeDC = removeDC | |
1337 | self.lambda_ = 3.0e8/(9345.0e6) |
|
1337 | self.lambda_ = 3.0e8/(9345.0e6) | |
1338 | self.ippSec = dataOut.ippSeconds |
|
1338 | self.ippSec = dataOut.ippSeconds | |
1339 | self.nCohInt = dataOut.nCohInt |
|
1339 | self.nCohInt = dataOut.nCohInt | |
1340 | print("IPPseconds",dataOut.ippSeconds) |
|
1340 | print("IPPseconds",dataOut.ippSeconds) | |
1341 |
|
1341 | |||
1342 | print("ELVALOR DE n es:", n) |
|
1342 | print("ELVALOR DE n es:", n) | |
1343 | if n == None: |
|
1343 | if n == None: | |
1344 | raise ValueError("n should be specified.") |
|
1344 | raise ValueError("n should be specified.") | |
1345 |
|
1345 | |||
1346 | if n != None: |
|
1346 | if n != None: | |
1347 | if n<2: |
|
1347 | if n<2: | |
1348 | raise ValueError("n should be greater than 2") |
|
1348 | raise ValueError("n should be greater than 2") | |
1349 |
|
1349 | |||
1350 | self.n = n |
|
1350 | self.n = n | |
1351 | self.__nProf = n |
|
1351 | self.__nProf = n | |
1352 |
|
1352 | |||
1353 | self.__buffer = numpy.zeros((dataOut.nChannels, |
|
1353 | self.__buffer = numpy.zeros((dataOut.nChannels, | |
1354 | n, |
|
1354 | n, | |
1355 | dataOut.nHeights), |
|
1355 | dataOut.nHeights), | |
1356 | dtype='complex') |
|
1356 | dtype='complex') | |
1357 |
|
1357 | |||
1358 | def putData(self,data): |
|
1358 | def putData(self,data): | |
1359 | ''' |
|
1359 | ''' | |
1360 | Add a profile to he __buffer and increase in one the __profiel Index |
|
1360 | Add a profile to he __buffer and increase in one the __profiel Index | |
1361 | ''' |
|
1361 | ''' | |
1362 | self.__buffer[:,self.__profIndex,:]= data |
|
1362 | self.__buffer[:,self.__profIndex,:]= data | |
1363 | self.__profIndex += 1 |
|
1363 | self.__profIndex += 1 | |
1364 | return |
|
1364 | return | |
1365 |
|
1365 | |||
1366 | def pushData(self,dataOut): |
|
1366 | def pushData(self,dataOut): | |
1367 | ''' |
|
1367 | ''' | |
1368 | Return the PULSEPAIR and the profiles used in the operation |
|
1368 | Return the PULSEPAIR and the profiles used in the operation | |
1369 | Affected : self.__profileIndex |
|
1369 | Affected : self.__profileIndex | |
1370 | ''' |
|
1370 | ''' | |
1371 | #----------------- Remove DC----------------------------------- |
|
1371 | #----------------- Remove DC----------------------------------- | |
1372 | if self.removeDC==True: |
|
1372 | if self.removeDC==True: | |
1373 | mean = numpy.mean(self.__buffer,1) |
|
1373 | mean = numpy.mean(self.__buffer,1) | |
1374 | tmp = mean.reshape(self.__nch,1,self.__nHeis) |
|
1374 | tmp = mean.reshape(self.__nch,1,self.__nHeis) | |
1375 | dc= numpy.tile(tmp,[1,self.__nProf,1]) |
|
1375 | dc= numpy.tile(tmp,[1,self.__nProf,1]) | |
1376 | self.__buffer = self.__buffer - dc |
|
1376 | self.__buffer = self.__buffer - dc | |
1377 | #------------------Calculo de Potencia ------------------------ |
|
1377 | #------------------Calculo de Potencia ------------------------ | |
1378 | pair0 = self.__buffer*numpy.conj(self.__buffer) |
|
1378 | pair0 = self.__buffer*numpy.conj(self.__buffer) | |
1379 | pair0 = pair0.real |
|
1379 | pair0 = pair0.real | |
1380 | lag_0 = numpy.sum(pair0,1) |
|
1380 | lag_0 = numpy.sum(pair0,1) | |
1381 | #------------------Calculo de Ruido x canal-------------------- |
|
1381 | #------------------Calculo de Ruido x canal-------------------- | |
1382 | self.noise = numpy.zeros(self.__nch) |
|
1382 | self.noise = numpy.zeros(self.__nch) | |
1383 | for i in range(self.__nch): |
|
1383 | for i in range(self.__nch): | |
1384 | daux = numpy.sort(pair0[i,:,:],axis= None) |
|
1384 | daux = numpy.sort(pair0[i,:,:],axis= None) | |
1385 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) |
|
1385 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) | |
1386 |
|
1386 | |||
1387 | self.noise = self.noise.reshape(self.__nch,1) |
|
1387 | self.noise = self.noise.reshape(self.__nch,1) | |
1388 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) |
|
1388 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) | |
1389 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) |
|
1389 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) | |
1390 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) |
|
1390 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) | |
1391 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- |
|
1391 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- | |
1392 | #------------------ P= S+N ,P=lag_0/N --------------------------------- |
|
1392 | #------------------ P= S+N ,P=lag_0/N --------------------------------- | |
1393 | #-------------------- Power -------------------------------------------------- |
|
1393 | #-------------------- Power -------------------------------------------------- | |
1394 | data_power = lag_0/(self.n*self.nCohInt) |
|
1394 | data_power = lag_0/(self.n*self.nCohInt) | |
1395 | #------------------ Senal --------------------------------------------------- |
|
1395 | #------------------ Senal --------------------------------------------------- | |
1396 | data_intensity = pair0 - noise_buffer |
|
1396 | data_intensity = pair0 - noise_buffer | |
1397 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) |
|
1397 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) | |
1398 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) |
|
1398 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) | |
1399 | for i in range(self.__nch): |
|
1399 | for i in range(self.__nch): | |
1400 | for j in range(self.__nHeis): |
|
1400 | for j in range(self.__nHeis): | |
1401 | if data_intensity[i][j] < 0: |
|
1401 | if data_intensity[i][j] < 0: | |
1402 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) |
|
1402 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) | |
1403 |
|
1403 | |||
1404 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- |
|
1404 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- | |
1405 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) |
|
1405 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) | |
1406 | lag_1 = numpy.sum(pair1,1) |
|
1406 | lag_1 = numpy.sum(pair1,1) | |
1407 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) |
|
1407 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) | |
1408 | data_velocity = (self.lambda_/2.0)*data_freq |
|
1408 | data_velocity = (self.lambda_/2.0)*data_freq | |
1409 |
|
1409 | |||
1410 | #---------------- Potencia promedio estimada de la Senal----------- |
|
1410 | #---------------- Potencia promedio estimada de la Senal----------- | |
1411 | lag_0 = lag_0/self.n |
|
1411 | lag_0 = lag_0/self.n | |
1412 | S = lag_0-self.noise |
|
1412 | S = lag_0-self.noise | |
1413 |
|
1413 | |||
1414 | #---------------- Frecuencia Doppler promedio --------------------- |
|
1414 | #---------------- Frecuencia Doppler promedio --------------------- | |
1415 | lag_1 = lag_1/(self.n-1) |
|
1415 | lag_1 = lag_1/(self.n-1) | |
1416 | R1 = numpy.abs(lag_1) |
|
1416 | R1 = numpy.abs(lag_1) | |
1417 |
|
1417 | |||
1418 | #---------------- Calculo del SNR---------------------------------- |
|
1418 | #---------------- Calculo del SNR---------------------------------- | |
1419 | data_snrPP = S/self.noise |
|
1419 | data_snrPP = S/self.noise | |
1420 | for i in range(self.__nch): |
|
1420 | for i in range(self.__nch): | |
1421 | for j in range(self.__nHeis): |
|
1421 | for j in range(self.__nHeis): | |
1422 | if data_snrPP[i][j] < 1.e-20: |
|
1422 | if data_snrPP[i][j] < 1.e-20: | |
1423 | data_snrPP[i][j] = 1.e-20 |
|
1423 | data_snrPP[i][j] = 1.e-20 | |
1424 |
|
1424 | |||
1425 | #----------------- Calculo del ancho espectral ---------------------- |
|
1425 | #----------------- Calculo del ancho espectral ---------------------- | |
1426 | L = S/R1 |
|
1426 | L = S/R1 | |
1427 | L = numpy.where(L<0,1,L) |
|
1427 | L = numpy.where(L<0,1,L) | |
1428 | L = numpy.log(L) |
|
1428 | L = numpy.log(L) | |
1429 | tmp = numpy.sqrt(numpy.absolute(L)) |
|
1429 | tmp = numpy.sqrt(numpy.absolute(L)) | |
1430 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) |
|
1430 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) | |
1431 | n = self.__profIndex |
|
1431 | n = self.__profIndex | |
1432 |
|
1432 | |||
1433 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') |
|
1433 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') | |
1434 | self.__profIndex = 0 |
|
1434 | self.__profIndex = 0 | |
1435 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n |
|
1435 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n | |
1436 |
|
1436 | |||
1437 |
|
1437 | |||
1438 | def pulsePairbyProfiles(self,dataOut): |
|
1438 | def pulsePairbyProfiles(self,dataOut): | |
1439 |
|
1439 | |||
1440 | self.__dataReady = False |
|
1440 | self.__dataReady = False | |
1441 | data_power = None |
|
1441 | data_power = None | |
1442 | data_intensity = None |
|
1442 | data_intensity = None | |
1443 | data_velocity = None |
|
1443 | data_velocity = None | |
1444 | data_specwidth = None |
|
1444 | data_specwidth = None | |
1445 | data_snrPP = None |
|
1445 | data_snrPP = None | |
1446 | self.putData(data=dataOut.data) |
|
1446 | self.putData(data=dataOut.data) | |
1447 | if self.__profIndex == self.n: |
|
1447 | if self.__profIndex == self.n: | |
1448 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) |
|
1448 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) | |
1449 | self.__dataReady = True |
|
1449 | self.__dataReady = True | |
1450 |
|
1450 | |||
1451 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth |
|
1451 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth | |
1452 |
|
1452 | |||
1453 |
|
1453 | |||
1454 | def pulsePairOp(self, dataOut, datatime= None): |
|
1454 | def pulsePairOp(self, dataOut, datatime= None): | |
1455 |
|
1455 | |||
1456 | if self.__initime == None: |
|
1456 | if self.__initime == None: | |
1457 | self.__initime = datatime |
|
1457 | self.__initime = datatime | |
1458 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) |
|
1458 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) | |
1459 | self.__lastdatatime = datatime |
|
1459 | self.__lastdatatime = datatime | |
1460 |
|
1460 | |||
1461 | if data_power is None: |
|
1461 | if data_power is None: | |
1462 | return None, None, None,None,None,None |
|
1462 | return None, None, None,None,None,None | |
1463 |
|
1463 | |||
1464 | avgdatatime = self.__initime |
|
1464 | avgdatatime = self.__initime | |
1465 | deltatime = datatime - self.__lastdatatime |
|
1465 | deltatime = datatime - self.__lastdatatime | |
1466 | self.__initime = datatime |
|
1466 | self.__initime = datatime | |
1467 |
|
1467 | |||
1468 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime |
|
1468 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime | |
1469 |
|
1469 | |||
1470 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): |
|
1470 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): | |
1471 |
|
1471 | |||
1472 | if not self.isConfig: |
|
1472 | if not self.isConfig: | |
1473 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) |
|
1473 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) | |
1474 | self.isConfig = True |
|
1474 | self.isConfig = True | |
1475 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) |
|
1475 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) | |
1476 | dataOut.flagNoData = True |
|
1476 | dataOut.flagNoData = True | |
1477 |
|
1477 | |||
1478 | if self.__dataReady: |
|
1478 | if self.__dataReady: | |
1479 | dataOut.nCohInt *= self.n |
|
1479 | dataOut.nCohInt *= self.n | |
1480 | dataOut.dataPP_POW = data_intensity # S |
|
1480 | dataOut.dataPP_POW = data_intensity # S | |
1481 | print("help",data_power) |
|
1481 | dataOut.dataPP_POWER = data_power # P valor que corresponde a POTENCIA MOMENTO | |
1482 | dataOut.dataPP_POWER = data_power # P |
|
|||
1483 | dataOut.dataPP_DOP = data_velocity |
|
1482 | dataOut.dataPP_DOP = data_velocity | |
1484 | dataOut.dataPP_SNR = data_snrPP |
|
1483 | dataOut.dataPP_SNR = data_snrPP | |
1485 | dataOut.dataPP_WIDTH = data_specwidth |
|
1484 | dataOut.dataPP_WIDTH = data_specwidth | |
1486 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. |
|
1485 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. | |
1487 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1486 | dataOut.nProfiles = int(dataOut.nProfiles/n) | |
1488 | dataOut.utctime = avgdatatime |
|
1487 | dataOut.utctime = avgdatatime | |
1489 | dataOut.flagNoData = False |
|
1488 | dataOut.flagNoData = False | |
1490 | return dataOut |
|
1489 | return dataOut | |
1491 |
|
1490 | |||
1492 |
|
1491 | |||
1493 |
|
1492 | |||
1494 | # import collections |
|
1493 | # import collections | |
1495 | # from scipy.stats import mode |
|
1494 | # from scipy.stats import mode | |
1496 | # |
|
1495 | # | |
1497 | # class Synchronize(Operation): |
|
1496 | # class Synchronize(Operation): | |
1498 | # |
|
1497 | # | |
1499 | # isConfig = False |
|
1498 | # isConfig = False | |
1500 | # __profIndex = 0 |
|
1499 | # __profIndex = 0 | |
1501 | # |
|
1500 | # | |
1502 | # def __init__(self, **kwargs): |
|
1501 | # def __init__(self, **kwargs): | |
1503 | # |
|
1502 | # | |
1504 | # Operation.__init__(self, **kwargs) |
|
1503 | # Operation.__init__(self, **kwargs) | |
1505 | # # self.isConfig = False |
|
1504 | # # self.isConfig = False | |
1506 | # self.__powBuffer = None |
|
1505 | # self.__powBuffer = None | |
1507 | # self.__startIndex = 0 |
|
1506 | # self.__startIndex = 0 | |
1508 | # self.__pulseFound = False |
|
1507 | # self.__pulseFound = False | |
1509 | # |
|
1508 | # | |
1510 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1509 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): | |
1511 | # |
|
1510 | # | |
1512 | # #Read data |
|
1511 | # #Read data | |
1513 | # |
|
1512 | # | |
1514 | # powerdB = dataOut.getPower(channel = channel) |
|
1513 | # powerdB = dataOut.getPower(channel = channel) | |
1515 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1514 | # noisedB = dataOut.getNoise(channel = channel)[0] | |
1516 | # |
|
1515 | # | |
1517 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1516 | # self.__powBuffer.extend(powerdB.flatten()) | |
1518 | # |
|
1517 | # | |
1519 | # dataArray = numpy.array(self.__powBuffer) |
|
1518 | # dataArray = numpy.array(self.__powBuffer) | |
1520 | # |
|
1519 | # | |
1521 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1520 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") | |
1522 | # |
|
1521 | # | |
1523 | # maxValue = numpy.nanmax(filteredPower) |
|
1522 | # maxValue = numpy.nanmax(filteredPower) | |
1524 | # |
|
1523 | # | |
1525 | # if maxValue < noisedB + 10: |
|
1524 | # if maxValue < noisedB + 10: | |
1526 | # #No se encuentra ningun pulso de transmision |
|
1525 | # #No se encuentra ningun pulso de transmision | |
1527 | # return None |
|
1526 | # return None | |
1528 | # |
|
1527 | # | |
1529 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1528 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] | |
1530 | # |
|
1529 | # | |
1531 | # if len(maxValuesIndex) < 2: |
|
1530 | # if len(maxValuesIndex) < 2: | |
1532 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1531 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX | |
1533 | # return None |
|
1532 | # return None | |
1534 | # |
|
1533 | # | |
1535 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1534 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples | |
1536 | # |
|
1535 | # | |
1537 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1536 | # #Seleccionar solo valores con un espaciamiento de nSamples | |
1538 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1537 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) | |
1539 | # |
|
1538 | # | |
1540 | # if len(pulseIndex) < 2: |
|
1539 | # if len(pulseIndex) < 2: | |
1541 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1540 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
1542 | # return None |
|
1541 | # return None | |
1543 | # |
|
1542 | # | |
1544 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1543 | # spacing = pulseIndex[1:] - pulseIndex[:-1] | |
1545 | # |
|
1544 | # | |
1546 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1545 | # #remover senales que se distancien menos de 10 unidades o muestras | |
1547 | # #(No deberian existir IPP menor a 10 unidades) |
|
1546 | # #(No deberian existir IPP menor a 10 unidades) | |
1548 | # |
|
1547 | # | |
1549 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1548 | # realIndex = numpy.where(spacing > 10 )[0] | |
1550 | # |
|
1549 | # | |
1551 | # if len(realIndex) < 2: |
|
1550 | # if len(realIndex) < 2: | |
1552 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1551 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
1553 | # return None |
|
1552 | # return None | |
1554 | # |
|
1553 | # | |
1555 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1554 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) | |
1556 | # realPulseIndex = pulseIndex[realIndex] |
|
1555 | # realPulseIndex = pulseIndex[realIndex] | |
1557 | # |
|
1556 | # | |
1558 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1557 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] | |
1559 | # |
|
1558 | # | |
1560 | # print "IPP = %d samples" %period |
|
1559 | # print "IPP = %d samples" %period | |
1561 | # |
|
1560 | # | |
1562 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1561 | # self.__newNSamples = dataOut.nHeights #int(period) | |
1563 | # self.__startIndex = int(realPulseIndex[0]) |
|
1562 | # self.__startIndex = int(realPulseIndex[0]) | |
1564 | # |
|
1563 | # | |
1565 | # return 1 |
|
1564 | # return 1 | |
1566 | # |
|
1565 | # | |
1567 | # |
|
1566 | # | |
1568 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1567 | # def setup(self, nSamples, nChannels, buffer_size = 4): | |
1569 | # |
|
1568 | # | |
1570 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1569 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), | |
1571 | # maxlen = buffer_size*nSamples) |
|
1570 | # maxlen = buffer_size*nSamples) | |
1572 | # |
|
1571 | # | |
1573 | # bufferList = [] |
|
1572 | # bufferList = [] | |
1574 | # |
|
1573 | # | |
1575 | # for i in range(nChannels): |
|
1574 | # for i in range(nChannels): | |
1576 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1575 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, | |
1577 | # maxlen = buffer_size*nSamples) |
|
1576 | # maxlen = buffer_size*nSamples) | |
1578 | # |
|
1577 | # | |
1579 | # bufferList.append(bufferByChannel) |
|
1578 | # bufferList.append(bufferByChannel) | |
1580 | # |
|
1579 | # | |
1581 | # self.__nSamples = nSamples |
|
1580 | # self.__nSamples = nSamples | |
1582 | # self.__nChannels = nChannels |
|
1581 | # self.__nChannels = nChannels | |
1583 | # self.__bufferList = bufferList |
|
1582 | # self.__bufferList = bufferList | |
1584 | # |
|
1583 | # | |
1585 | # def run(self, dataOut, channel = 0): |
|
1584 | # def run(self, dataOut, channel = 0): | |
1586 | # |
|
1585 | # | |
1587 | # if not self.isConfig: |
|
1586 | # if not self.isConfig: | |
1588 | # nSamples = dataOut.nHeights |
|
1587 | # nSamples = dataOut.nHeights | |
1589 | # nChannels = dataOut.nChannels |
|
1588 | # nChannels = dataOut.nChannels | |
1590 | # self.setup(nSamples, nChannels) |
|
1589 | # self.setup(nSamples, nChannels) | |
1591 | # self.isConfig = True |
|
1590 | # self.isConfig = True | |
1592 | # |
|
1591 | # | |
1593 | # #Append new data to internal buffer |
|
1592 | # #Append new data to internal buffer | |
1594 | # for thisChannel in range(self.__nChannels): |
|
1593 | # for thisChannel in range(self.__nChannels): | |
1595 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1594 | # bufferByChannel = self.__bufferList[thisChannel] | |
1596 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1595 | # bufferByChannel.extend(dataOut.data[thisChannel]) | |
1597 | # |
|
1596 | # | |
1598 | # if self.__pulseFound: |
|
1597 | # if self.__pulseFound: | |
1599 | # self.__startIndex -= self.__nSamples |
|
1598 | # self.__startIndex -= self.__nSamples | |
1600 | # |
|
1599 | # | |
1601 | # #Finding Tx Pulse |
|
1600 | # #Finding Tx Pulse | |
1602 | # if not self.__pulseFound: |
|
1601 | # if not self.__pulseFound: | |
1603 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1602 | # indexFound = self.__findTxPulse(dataOut, channel) | |
1604 | # |
|
1603 | # | |
1605 | # if indexFound == None: |
|
1604 | # if indexFound == None: | |
1606 | # dataOut.flagNoData = True |
|
1605 | # dataOut.flagNoData = True | |
1607 | # return |
|
1606 | # return | |
1608 | # |
|
1607 | # | |
1609 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1608 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) | |
1610 | # self.__pulseFound = True |
|
1609 | # self.__pulseFound = True | |
1611 | # self.__startIndex = indexFound |
|
1610 | # self.__startIndex = indexFound | |
1612 | # |
|
1611 | # | |
1613 | # #If pulse was found ... |
|
1612 | # #If pulse was found ... | |
1614 | # for thisChannel in range(self.__nChannels): |
|
1613 | # for thisChannel in range(self.__nChannels): | |
1615 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1614 | # bufferByChannel = self.__bufferList[thisChannel] | |
1616 | # #print self.__startIndex |
|
1615 | # #print self.__startIndex | |
1617 | # x = numpy.array(bufferByChannel) |
|
1616 | # x = numpy.array(bufferByChannel) | |
1618 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1617 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] | |
1619 | # |
|
1618 | # | |
1620 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1619 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1621 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1620 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight | |
1622 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1621 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 | |
1623 | # |
|
1622 | # | |
1624 | # dataOut.data = self.__arrayBuffer |
|
1623 | # dataOut.data = self.__arrayBuffer | |
1625 | # |
|
1624 | # | |
1626 | # self.__startIndex += self.__newNSamples |
|
1625 | # self.__startIndex += self.__newNSamples | |
1627 | # |
|
1626 | # | |
1628 | # return |
|
1627 | # return |
@@ -1,217 +1,217 | |||||
1 | # Ing. AVP |
|
1 | # Ing. AVP | |
2 | # 06/10/2021 |
|
2 | # 06/10/2021 | |
3 | # ARCHIVO DE LECTURA |
|
3 | # ARCHIVO DE LECTURA | |
4 | import os, sys |
|
4 | import os, sys | |
5 | import datetime |
|
5 | import datetime | |
6 | import time |
|
6 | import time | |
7 | from schainpy.controller import Project |
|
7 | from schainpy.controller import Project | |
8 | #### NOTA########################################### |
|
8 | #### NOTA########################################### | |
9 | # INPUT : |
|
9 | # INPUT : | |
10 | # VELOCIDAD PARAMETRO : V = 2Β°/seg |
|
10 | # VELOCIDAD PARAMETRO : V = 2Β°/seg | |
11 | # MODO PULSE PAIR O MOMENTOS: 0 : Pulse Pair ,1 : Momentos |
|
11 | # MODO PULSE PAIR O MOMENTOS: 0 : Pulse Pair ,1 : Momentos | |
12 | ###################################################### |
|
12 | ###################################################### | |
13 | ##### PROCESAMIENTO ################################## |
|
13 | ##### PROCESAMIENTO ################################## | |
14 | ##### OJO TENER EN CUENTA EL n= para el Pulse Pair ## |
|
14 | ##### OJO TENER EN CUENTA EL n= para el Pulse Pair ## | |
15 | ##### O EL n= nFFTPoints ### |
|
15 | ##### O EL n= nFFTPoints ### | |
16 | ###################################################### |
|
16 | ###################################################### | |
17 | ######## BUSCAMOS EL numero de IPP equivalente 1Β°##### |
|
17 | ######## BUSCAMOS EL numero de IPP equivalente 1Β°##### | |
18 | ######## Sea V la velocidad del Pedestal en Β°/seg##### |
|
18 | ######## Sea V la velocidad del Pedestal en Β°/seg##### | |
19 | ######## 1Β° sera Recorrido en un tiempo de 1/V ###### |
|
19 | ######## 1Β° sera Recorrido en un tiempo de 1/V ###### | |
20 | ######## IPP del Radar 400 useg --> 60 Km ############ |
|
20 | ######## IPP del Radar 400 useg --> 60 Km ############ | |
21 | ######## n = 1/(V(Β°/seg)*IPP(Km)) , NUMERO DE IPP ## |
|
21 | ######## n = 1/(V(Β°/seg)*IPP(Km)) , NUMERO DE IPP ## | |
22 | ######## n = 1/(V*IPP) ############################# |
|
22 | ######## n = 1/(V*IPP) ############################# | |
23 | ######## VELOCIDAD DEL PEDESTAL ###################### |
|
23 | ######## VELOCIDAD DEL PEDESTAL ###################### | |
24 | print("SETUP- RADAR METEOROLOGICO") |
|
24 | print("SETUP- RADAR METEOROLOGICO") | |
25 | V = 10 |
|
25 | V = 10 | |
26 |
mode = |
|
26 | mode = 0 | |
27 | #path = '/DATA_RM/23/6v' |
|
27 | #path = '/DATA_RM/23/6v' | |
28 | #path = '/DATA_RM/TEST_INTEGRACION_2M' |
|
28 | #path = '/DATA_RM/TEST_INTEGRACION_2M' | |
29 | path = '/DATA_RM/WR_20_OCT' |
|
29 | path = '/DATA_RM/WR_20_OCT' | |
30 |
|
30 | |||
31 | #path_ped='/DATA_RM/TEST_PEDESTAL/P20211012-082745' |
|
31 | #path_ped='/DATA_RM/TEST_PEDESTAL/P20211012-082745' | |
32 | path_ped='/DATA_RM/TEST_PEDESTAL/P20211020-131248' |
|
32 | path_ped='/DATA_RM/TEST_PEDESTAL/P20211020-131248' | |
33 |
|
33 | |||
34 | figpath_pp = "/home/soporte/Pictures/TEST_PP" |
|
34 | figpath_pp = "/home/soporte/Pictures/TEST_PP" | |
35 | figpath_mom = "/home/soporte/Pictures/TEST_MOM" |
|
35 | figpath_mom = "/home/soporte/Pictures/TEST_MOM" | |
36 | plot = 0 |
|
36 | plot = 0 | |
37 | integration = 1 |
|
37 | integration = 1 | |
38 | save = 0 |
|
38 | save = 0 | |
39 | if save == 1: |
|
39 | if save == 1: | |
40 | if mode==0: |
|
40 | if mode==0: | |
41 | path_save = '/DATA_RM/TEST_HDF5_PP_23/6v' |
|
41 | path_save = '/DATA_RM/TEST_HDF5_PP_23/6v' | |
42 | path_save = '/DATA_RM/TEST_HDF5_PP' |
|
42 | path_save = '/DATA_RM/TEST_HDF5_PP' | |
43 | path_save = '/DATA_RM/TEST_HDF5_PP_100' |
|
43 | path_save = '/DATA_RM/TEST_HDF5_PP_100' | |
44 | else: |
|
44 | else: | |
45 | path_save = '/DATA_RM/TEST_HDF5_SPEC_23_V2/6v' |
|
45 | path_save = '/DATA_RM/TEST_HDF5_SPEC_23_V2/6v' | |
46 |
|
46 | |||
47 | print("* PATH data ADQ :", path) |
|
47 | print("* PATH data ADQ :", path) | |
48 | print("* Velocidad Pedestal :",V,"Β°/seg") |
|
48 | print("* Velocidad Pedestal :",V,"Β°/seg") | |
49 | ############################ NRO Perfiles PROCESAMIENTO ################### |
|
49 | ############################ NRO Perfiles PROCESAMIENTO ################### | |
50 | V=V |
|
50 | V=V | |
51 | IPP=400*1e-6 |
|
51 | IPP=400*1e-6 | |
52 | n= int(1/(V*IPP)) |
|
52 | n= int(1/(V*IPP)) | |
53 | print("* n - NRO Perfiles Proc:", n ) |
|
53 | print("* n - NRO Perfiles Proc:", n ) | |
54 | ################################## MODE ################################### |
|
54 | ################################## MODE ################################### | |
55 | print("* Modo de Operacion :",mode) |
|
55 | print("* Modo de Operacion :",mode) | |
56 | if mode ==0: |
|
56 | if mode ==0: | |
57 | print("* Met. Seleccionado : Pulse Pair") |
|
57 | print("* Met. Seleccionado : Pulse Pair") | |
58 | else: |
|
58 | else: | |
59 | print("* Met. Momentos : Momentos") |
|
59 | print("* Met. Momentos : Momentos") | |
60 |
|
60 | |||
61 | ################################## MODE ################################### |
|
61 | ################################## MODE ################################### | |
62 | print("* Grabado de datos :",save) |
|
62 | print("* Grabado de datos :",save) | |
63 | if save ==1: |
|
63 | if save ==1: | |
64 | if mode==0: |
|
64 | if mode==0: | |
65 | ope= "Pulse Pair" |
|
65 | ope= "Pulse Pair" | |
66 | else: |
|
66 | else: | |
67 | ope= "Momentos" |
|
67 | ope= "Momentos" | |
68 | print("* Path-Save Data -", ope , path_save) |
|
68 | print("* Path-Save Data -", ope , path_save) | |
69 |
|
69 | |||
70 | print("* Integracion de datos :",integration) |
|
70 | print("* Integracion de datos :",integration) | |
71 |
|
71 | |||
72 | time.sleep(5) |
|
72 | time.sleep(5) | |
73 | #remotefolder = "/home/wmaster/graficos" |
|
73 | #remotefolder = "/home/wmaster/graficos" | |
74 | ####################################################################### |
|
74 | ####################################################################### | |
75 | ################# RANGO DE PLOTEO###################################### |
|
75 | ################# RANGO DE PLOTEO###################################### | |
76 | dBmin = '1' |
|
76 | dBmin = '1' | |
77 | dBmax = '85' |
|
77 | dBmax = '85' | |
78 | xmin = '15' |
|
78 | xmin = '15' | |
79 | xmax = '15.25' |
|
79 | xmax = '15.25' | |
80 | ymin = '0' |
|
80 | ymin = '0' | |
81 | ymax = '600' |
|
81 | ymax = '600' | |
82 | ####################################################################### |
|
82 | ####################################################################### | |
83 | ########################FECHA########################################## |
|
83 | ########################FECHA########################################## | |
84 | str = datetime.date.today() |
|
84 | str = datetime.date.today() | |
85 | today = str.strftime("%Y/%m/%d") |
|
85 | today = str.strftime("%Y/%m/%d") | |
86 | str2 = str - datetime.timedelta(days=1) |
|
86 | str2 = str - datetime.timedelta(days=1) | |
87 | yesterday = str2.strftime("%Y/%m/%d") |
|
87 | yesterday = str2.strftime("%Y/%m/%d") | |
88 | ####################################################################### |
|
88 | ####################################################################### | |
89 | ########################SIGNAL CHAIN ################################## |
|
89 | ########################SIGNAL CHAIN ################################## | |
90 | ####################################################################### |
|
90 | ####################################################################### | |
91 | desc = "USRP_test" |
|
91 | desc = "USRP_test" | |
92 | filename = "USRP_processing.xml" |
|
92 | filename = "USRP_processing.xml" | |
93 | controllerObj = Project() |
|
93 | controllerObj = Project() | |
94 | controllerObj.setup(id = '191', name='Test_USRP', description=desc) |
|
94 | controllerObj.setup(id = '191', name='Test_USRP', description=desc) | |
95 | ####################################################################### |
|
95 | ####################################################################### | |
96 | ######################## UNIDAD DE LECTURA############################# |
|
96 | ######################## UNIDAD DE LECTURA############################# | |
97 | ####################################################################### |
|
97 | ####################################################################### | |
98 | readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader', |
|
98 | readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader', | |
99 | path=path, |
|
99 | path=path, | |
100 | startDate="2021/01/01",#today, |
|
100 | startDate="2021/01/01",#today, | |
101 | endDate="2021/12/30",#today, |
|
101 | endDate="2021/12/30",#today, | |
102 | startTime='00:00:00', |
|
102 | startTime='00:00:00', | |
103 | endTime='23:59:59', |
|
103 | endTime='23:59:59', | |
104 | delay=0, |
|
104 | delay=0, | |
105 | #set=0, |
|
105 | #set=0, | |
106 | online=0, |
|
106 | online=0, | |
107 | walk=1, |
|
107 | walk=1, | |
108 | ippKm = 60) |
|
108 | ippKm = 60) | |
109 |
|
109 | |||
110 | opObj11 = readUnitConfObj.addOperation(name='printInfo') |
|
110 | opObj11 = readUnitConfObj.addOperation(name='printInfo') | |
111 |
|
111 | |||
112 | procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) |
|
112 | procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) | |
113 |
|
113 | |||
114 | if mode ==0: |
|
114 | if mode ==0: | |
115 | ####################### METODO PULSE PAIR ###################################################################### |
|
115 | ####################### METODO PULSE PAIR ###################################################################### | |
116 | opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other') |
|
116 | opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other') | |
117 | opObj11.addParameter(name='n', value=int(n), format='int')#10 VOY A USAR 250 DADO QUE LA VELOCIDAD ES 10 GRADOS |
|
117 | opObj11.addParameter(name='n', value=int(n), format='int')#10 VOY A USAR 250 DADO QUE LA VELOCIDAD ES 10 GRADOS | |
118 | #opObj11.addParameter(name='removeDC', value=1, format='int') |
|
118 | #opObj11.addParameter(name='removeDC', value=1, format='int') | |
119 | ####################### METODO Parametros ###################################################################### |
|
119 | ####################### METODO Parametros ###################################################################### | |
120 | procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId()) |
|
120 | procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId()) | |
121 | if plot==1: |
|
121 | if plot==1: | |
122 | opObj11 = procUnitConfObjB.addOperation(name='GenericRTIPlot',optype='external') |
|
122 | opObj11 = procUnitConfObjB.addOperation(name='GenericRTIPlot',optype='external') | |
123 | opObj11.addParameter(name='attr_data', value='dataPP_POW') |
|
123 | opObj11.addParameter(name='attr_data', value='dataPP_POW') | |
124 | opObj11.addParameter(name='colormap', value='jet') |
|
124 | opObj11.addParameter(name='colormap', value='jet') | |
125 | opObj11.addParameter(name='xmin', value=xmin) |
|
125 | opObj11.addParameter(name='xmin', value=xmin) | |
126 | opObj11.addParameter(name='xmax', value=xmax) |
|
126 | opObj11.addParameter(name='xmax', value=xmax) | |
127 | opObj11.addParameter(name='zmin', value=dBmin) |
|
127 | opObj11.addParameter(name='zmin', value=dBmin) | |
128 | opObj11.addParameter(name='zmax', value=dBmax) |
|
128 | opObj11.addParameter(name='zmax', value=dBmax) | |
129 | opObj11.addParameter(name='save', value=figpath_pp) |
|
129 | opObj11.addParameter(name='save', value=figpath_pp) | |
130 | opObj11.addParameter(name='showprofile', value=0) |
|
130 | opObj11.addParameter(name='showprofile', value=0) | |
131 | opObj11.addParameter(name='save_period', value=50) |
|
131 | opObj11.addParameter(name='save_period', value=50) | |
132 |
|
132 | |||
133 | ####################### METODO ESCRITURA ####################################################################### |
|
133 | ####################### METODO ESCRITURA ####################################################################### | |
134 | if save==1: |
|
134 | if save==1: | |
135 | opObj10 = procUnitConfObjB.addOperation(name='HDFWriter') |
|
135 | opObj10 = procUnitConfObjB.addOperation(name='HDFWriter') | |
136 | opObj10.addParameter(name='path',value=path_save) |
|
136 | opObj10.addParameter(name='path',value=path_save) | |
137 | #opObj10.addParameter(name='mode',value=0) |
|
137 | #opObj10.addParameter(name='mode',value=0) | |
138 | opObj10.addParameter(name='blocksPerFile',value='100',format='int') |
|
138 | opObj10.addParameter(name='blocksPerFile',value='100',format='int') | |
139 | opObj10.addParameter(name='metadataList',value='utctimeInit,timeZone,paramInterval,profileIndex,channelList,heightList,flagDataAsBlock',format='list') |
|
139 | opObj10.addParameter(name='metadataList',value='utctimeInit,timeZone,paramInterval,profileIndex,channelList,heightList,flagDataAsBlock',format='list') | |
140 | opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,utctime',format='list')#,format='list' |
|
140 | opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,utctime',format='list')#,format='list' | |
141 | if integration==1: |
|
141 | if integration==1: | |
142 | V=10 |
|
142 | V=10 | |
143 | blocksPerfile=360 |
|
143 | blocksPerfile=360 | |
144 | print("* Velocidad del Pedestal:",V) |
|
144 | print("* Velocidad del Pedestal:",V) | |
145 | tmp_blocksPerfile = 100 |
|
145 | tmp_blocksPerfile = 100 | |
146 | f_a_p= int(tmp_blocksPerfile/V) |
|
146 | f_a_p= int(tmp_blocksPerfile/V) | |
147 |
|
147 | |||
148 | opObj11 = procUnitConfObjB.addOperation(name='PedestalInformation') |
|
148 | opObj11 = procUnitConfObjB.addOperation(name='PedestalInformation') | |
149 | opObj11.addParameter(name='path_ped', value=path_ped) |
|
149 | opObj11.addParameter(name='path_ped', value=path_ped) | |
150 | #opObj11.addParameter(name='path_adq', value=path_adq) |
|
150 | #opObj11.addParameter(name='path_adq', value=path_adq) | |
151 | opObj11.addParameter(name='t_Interval_p', value='0.01', format='float') |
|
151 | opObj11.addParameter(name='t_Interval_p', value='0.01', format='float') | |
152 | opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int') |
|
152 | opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int') | |
153 | opObj11.addParameter(name='n_Muestras_p', value='100', format='float') |
|
153 | opObj11.addParameter(name='n_Muestras_p', value='100', format='float') | |
154 | opObj11.addParameter(name='f_a_p', value=f_a_p, format='int') |
|
154 | opObj11.addParameter(name='f_a_p', value=f_a_p, format='int') | |
155 | opObj11.addParameter(name='online', value='0', format='int') |
|
155 | opObj11.addParameter(name='online', value='0', format='int') | |
156 |
|
156 | |||
157 | opObj11 = procUnitConfObjB.addOperation(name='Block360') |
|
157 | opObj11 = procUnitConfObjB.addOperation(name='Block360') | |
158 | opObj11.addParameter(name='n', value='10', format='int') |
|
158 | opObj11.addParameter(name='n', value='10', format='int') | |
159 | opObj11.addParameter(name='mode', value=mode, format='int') |
|
159 | opObj11.addParameter(name='mode', value=mode, format='int') | |
160 |
|
160 | |||
161 | # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180 |
|
161 | # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180 | |
162 |
|
162 | |||
163 | opObj11= procUnitConfObjB.addOperation(name='WeatherPlot',optype='other') |
|
163 | opObj11= procUnitConfObjB.addOperation(name='WeatherPlot',optype='other') | |
164 |
|
164 | |||
165 |
|
165 | |||
166 | else: |
|
166 | else: | |
167 | ####################### METODO SPECTROS ###################################################################### |
|
167 | ####################### METODO SPECTROS ###################################################################### | |
168 | procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) |
|
168 | procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) | |
169 | procUnitConfObjB.addParameter(name='nFFTPoints', value=n, format='int') |
|
169 | procUnitConfObjB.addParameter(name='nFFTPoints', value=n, format='int') | |
170 | procUnitConfObjB.addParameter(name='nProfiles' , value=n, format='int') |
|
170 | procUnitConfObjB.addParameter(name='nProfiles' , value=n, format='int') | |
171 |
|
171 | |||
172 | procUnitConfObjC = controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjB.getId()) |
|
172 | procUnitConfObjC = controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjB.getId()) | |
173 | procUnitConfObjC.addOperation(name='SpectralMoments') |
|
173 | procUnitConfObjC.addOperation(name='SpectralMoments') | |
174 | if plot==1: |
|
174 | if plot==1: | |
175 | dBmin = '1' |
|
175 | dBmin = '1' | |
176 | dBmax = '65' |
|
176 | dBmax = '65' | |
177 | opObj11 = procUnitConfObjC.addOperation(name='PowerPlot',optype='external') |
|
177 | opObj11 = procUnitConfObjC.addOperation(name='PowerPlot',optype='external') | |
178 | opObj11.addParameter(name='xmin', value=xmin) |
|
178 | opObj11.addParameter(name='xmin', value=xmin) | |
179 | opObj11.addParameter(name='xmax', value=xmax) |
|
179 | opObj11.addParameter(name='xmax', value=xmax) | |
180 | opObj11.addParameter(name='zmin', value=dBmin) |
|
180 | opObj11.addParameter(name='zmin', value=dBmin) | |
181 | opObj11.addParameter(name='zmax', value=dBmax) |
|
181 | opObj11.addParameter(name='zmax', value=dBmax) | |
182 | opObj11.addParameter(name='save', value=figpath_mom) |
|
182 | opObj11.addParameter(name='save', value=figpath_mom) | |
183 | opObj11.addParameter(name='showprofile', value=0) |
|
183 | opObj11.addParameter(name='showprofile', value=0) | |
184 | opObj11.addParameter(name='save_period', value=100) |
|
184 | opObj11.addParameter(name='save_period', value=100) | |
185 |
|
185 | |||
186 | if save==1: |
|
186 | if save==1: | |
187 | opObj10 = procUnitConfObjC.addOperation(name='HDFWriter') |
|
187 | opObj10 = procUnitConfObjC.addOperation(name='HDFWriter') | |
188 | opObj10.addParameter(name='path',value=path_save) |
|
188 | opObj10.addParameter(name='path',value=path_save) | |
189 | #opObj10.addParameter(name='mode',value=0) |
|
189 | #opObj10.addParameter(name='mode',value=0) | |
190 | opObj10.addParameter(name='blocksPerFile',value='360',format='int') |
|
190 | opObj10.addParameter(name='blocksPerFile',value='360',format='int') | |
191 | #opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex |
|
191 | #opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex | |
192 | opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex |
|
192 | opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex | |
193 | opObj10.addParameter(name='dataList',value='data_pow,data_dop,utctime',format='list')#,format='list' |
|
193 | opObj10.addParameter(name='dataList',value='data_pow,data_dop,utctime',format='list')#,format='list' | |
194 |
|
194 | |||
195 | if integration==1: |
|
195 | if integration==1: | |
196 | V=10 |
|
196 | V=10 | |
197 | blocksPerfile=360 |
|
197 | blocksPerfile=360 | |
198 | print("* Velocidad del Pedestal:",V) |
|
198 | print("* Velocidad del Pedestal:",V) | |
199 | tmp_blocksPerfile = 100 |
|
199 | tmp_blocksPerfile = 100 | |
200 | f_a_p= int(tmp_blocksPerfile/V) |
|
200 | f_a_p= int(tmp_blocksPerfile/V) | |
201 |
|
201 | |||
202 | opObj11 = procUnitConfObjC.addOperation(name='PedestalInformation') |
|
202 | opObj11 = procUnitConfObjC.addOperation(name='PedestalInformation') | |
203 | opObj11.addParameter(name='path_ped', value=path_ped) |
|
203 | opObj11.addParameter(name='path_ped', value=path_ped) | |
204 | #opObj11.addParameter(name='path_adq', value=path_adq) |
|
204 | #opObj11.addParameter(name='path_adq', value=path_adq) | |
205 | opObj11.addParameter(name='t_Interval_p', value='0.01', format='float') |
|
205 | opObj11.addParameter(name='t_Interval_p', value='0.01', format='float') | |
206 | opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int') |
|
206 | opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int') | |
207 | opObj11.addParameter(name='n_Muestras_p', value='100', format='float') |
|
207 | opObj11.addParameter(name='n_Muestras_p', value='100', format='float') | |
208 | opObj11.addParameter(name='f_a_p', value=f_a_p, format='int') |
|
208 | opObj11.addParameter(name='f_a_p', value=f_a_p, format='int') | |
209 | opObj11.addParameter(name='online', value='0', format='int') |
|
209 | opObj11.addParameter(name='online', value='0', format='int') | |
210 |
|
210 | |||
211 | opObj11 = procUnitConfObjC.addOperation(name='Block360') |
|
211 | opObj11 = procUnitConfObjC.addOperation(name='Block360') | |
212 | opObj11.addParameter(name='n', value='10', format='int') |
|
212 | opObj11.addParameter(name='n', value='10', format='int') | |
213 | opObj11.addParameter(name='mode', value=mode, format='int') |
|
213 | opObj11.addParameter(name='mode', value=mode, format='int') | |
214 |
|
214 | |||
215 | # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180 |
|
215 | # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180 | |
216 | opObj11= procUnitConfObjC.addOperation(name='WeatherPlot',optype='other') |
|
216 | opObj11= procUnitConfObjC.addOperation(name='WeatherPlot',optype='other') | |
217 | controllerObj.start() |
|
217 | controllerObj.start() |
General Comments 0
You need to be logged in to leave comments.
Login now