@@ -1,1935 +1,1935 | |||||
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Classes to plot Spectra data |
|
5 | """Classes to plot Spectra data | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import numpy |
|
10 | import numpy | |
11 | import datetime |
|
11 | import datetime | |
12 |
|
12 | |||
13 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
13 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
14 | from itertools import combinations |
|
14 | from itertools import combinations | |
15 | from matplotlib.ticker import LinearLocator |
|
15 | from matplotlib.ticker import LinearLocator | |
16 |
|
16 | |||
17 | from schainpy.model.utils.BField import BField |
|
17 | from schainpy.model.utils.BField import BField | |
18 | from scipy.interpolate import splrep |
|
18 | from scipy.interpolate import splrep | |
19 | from scipy.interpolate import splev |
|
19 | from scipy.interpolate import splev | |
20 |
|
20 | |||
21 | from matplotlib import __version__ as plt_version |
|
21 | from matplotlib import __version__ as plt_version | |
22 |
|
22 | |||
23 | if plt_version >='3.3.4': |
|
23 | if plt_version >='3.3.4': | |
24 | EXTRA_POINTS = 0 |
|
24 | EXTRA_POINTS = 0 | |
25 | else: |
|
25 | else: | |
26 | EXTRA_POINTS = 1 |
|
26 | EXTRA_POINTS = 1 | |
27 | class SpectraPlot(Plot): |
|
27 | class SpectraPlot(Plot): | |
28 | ''' |
|
28 | ''' | |
29 | Plot for Spectra data |
|
29 | Plot for Spectra data | |
30 | ''' |
|
30 | ''' | |
31 |
|
31 | |||
32 | CODE = 'spc' |
|
32 | CODE = 'spc' | |
33 | colormap = 'jet' |
|
33 | colormap = 'jet' | |
34 | plot_type = 'pcolor' |
|
34 | plot_type = 'pcolor' | |
35 | buffering = False |
|
35 | buffering = False | |
36 | channelList = [] |
|
36 | channelList = [] | |
37 | elevationList = [] |
|
37 | elevationList = [] | |
38 | azimuthList = [] |
|
38 | azimuthList = [] | |
39 |
|
39 | |||
40 | def setup(self): |
|
40 | def setup(self): | |
41 |
|
41 | |||
42 | self.nplots = len(self.data.channels) |
|
42 | self.nplots = len(self.data.channels) | |
43 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
43 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
44 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
44 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
45 | self.height = 3.4 * self.nrows |
|
45 | self.height = 3.4 * self.nrows | |
46 | self.cb_label = 'dB' |
|
46 | self.cb_label = 'dB' | |
47 | if self.showprofile: |
|
47 | if self.showprofile: | |
48 | self.width = 5.2 * self.ncols |
|
48 | self.width = 5.2 * self.ncols | |
49 | else: |
|
49 | else: | |
50 | self.width = 4.2* self.ncols |
|
50 | self.width = 4.2* self.ncols | |
51 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.12}) |
|
51 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.12}) | |
52 | self.ylabel = 'Range [km]' |
|
52 | self.ylabel = 'Range [km]' | |
53 |
|
53 | |||
54 | def update_list(self,dataOut): |
|
54 | def update_list(self,dataOut): | |
55 |
|
55 | |||
56 | if len(self.channelList) == 0: |
|
56 | if len(self.channelList) == 0: | |
57 | self.channelList = dataOut.channelList |
|
57 | self.channelList = dataOut.channelList | |
58 | if len(self.elevationList) == 0: |
|
58 | if len(self.elevationList) == 0: | |
59 | self.elevationList = dataOut.elevationList |
|
59 | self.elevationList = dataOut.elevationList | |
60 | if len(self.azimuthList) == 0: |
|
60 | if len(self.azimuthList) == 0: | |
61 | self.azimuthList = dataOut.azimuthList |
|
61 | self.azimuthList = dataOut.azimuthList | |
62 |
|
62 | |||
63 | def update(self, dataOut): |
|
63 | def update(self, dataOut): | |
64 |
|
64 | |||
65 | self.update_list(dataOut) |
|
65 | self.update_list(dataOut) | |
66 | data = {} |
|
66 | data = {} | |
67 | meta = {} |
|
67 | meta = {} | |
68 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
68 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter | |
69 | if dataOut.type == "Parameters": |
|
69 | if dataOut.type == "Parameters": | |
70 | noise = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
70 | noise = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
71 | spc = 10*numpy.log10(dataOut.data_spc/(dataOut.nProfiles)) |
|
71 | spc = 10*numpy.log10(dataOut.data_spc/(dataOut.nProfiles)) | |
72 | else: |
|
72 | else: | |
73 | noise = 10*numpy.log10(dataOut.getNoise()/norm) |
|
73 | noise = 10*numpy.log10(dataOut.getNoise()/norm) | |
74 |
|
74 | |||
75 | z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights)) |
|
75 | z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights)) | |
76 | for ch in range(dataOut.nChannels): |
|
76 | for ch in range(dataOut.nChannels): | |
77 | if hasattr(dataOut.normFactor,'ndim'): |
|
77 | if hasattr(dataOut.normFactor,'ndim'): | |
78 | if dataOut.normFactor.ndim > 1: |
|
78 | if dataOut.normFactor.ndim > 1: | |
79 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) |
|
79 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) | |
80 |
|
80 | |||
81 | else: |
|
81 | else: | |
82 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
82 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) | |
83 | else: |
|
83 | else: | |
84 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
84 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) | |
85 |
|
85 | |||
86 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
86 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
87 | spc = 10*numpy.log10(z) |
|
87 | spc = 10*numpy.log10(z) | |
88 |
|
88 | |||
89 | data['spc'] = spc |
|
89 | data['spc'] = spc | |
90 | data['rti'] = spc.mean(axis=1) |
|
90 | data['rti'] = spc.mean(axis=1) | |
91 | data['noise'] = noise |
|
91 | data['noise'] = noise | |
92 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) |
|
92 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
93 | if self.CODE == 'spc_moments': |
|
93 | if self.CODE == 'spc_moments': | |
94 | data['moments'] = dataOut.moments |
|
94 | data['moments'] = dataOut.moments | |
95 |
|
95 | |||
96 | return data, meta |
|
96 | return data, meta | |
97 |
|
97 | |||
98 | def plot(self): |
|
98 | def plot(self): | |
99 |
|
99 | |||
100 | if self.xaxis == "frequency": |
|
100 | if self.xaxis == "frequency": | |
101 | x = self.data.xrange[0] |
|
101 | x = self.data.xrange[0] | |
102 | self.xlabel = "Frequency (kHz)" |
|
102 | self.xlabel = "Frequency (kHz)" | |
103 | elif self.xaxis == "time": |
|
103 | elif self.xaxis == "time": | |
104 | x = self.data.xrange[1] |
|
104 | x = self.data.xrange[1] | |
105 | self.xlabel = "Time (ms)" |
|
105 | self.xlabel = "Time (ms)" | |
106 | else: |
|
106 | else: | |
107 | x = self.data.xrange[2] |
|
107 | x = self.data.xrange[2] | |
108 | self.xlabel = "Velocity (m/s)" |
|
108 | self.xlabel = "Velocity (m/s)" | |
109 |
|
109 | |||
110 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): |
|
110 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): | |
111 | x = self.data.xrange[2] |
|
111 | x = self.data.xrange[2] | |
112 | self.xlabel = "Velocity (m/s)" |
|
112 | self.xlabel = "Velocity (m/s)" | |
113 |
|
113 | |||
114 | self.titles = [] |
|
114 | self.titles = [] | |
115 |
|
115 | |||
116 | y = self.data.yrange |
|
116 | y = self.data.yrange | |
117 | self.y = y |
|
117 | self.y = y | |
118 |
|
118 | |||
119 | data = self.data[-1] |
|
119 | data = self.data[-1] | |
120 | z = data['spc'] |
|
120 | z = data['spc'] | |
121 |
|
121 | |||
122 | for n, ax in enumerate(self.axes): |
|
122 | for n, ax in enumerate(self.axes): | |
123 | noise = self.data['noise'][n][0] |
|
123 | noise = self.data['noise'][n][0] | |
124 | # noise = data['noise'][n] |
|
124 | # noise = data['noise'][n] | |
125 |
|
125 | |||
126 | if self.CODE == 'spc_moments': |
|
126 | if self.CODE == 'spc_moments': | |
127 | mean = data['moments'][n, 1] |
|
127 | mean = data['moments'][n, 1] | |
128 | if self.CODE == 'gaussian_fit': |
|
128 | if self.CODE == 'gaussian_fit': | |
129 | gau0 = data['gaussfit'][n][2,:,0] |
|
129 | gau0 = data['gaussfit'][n][2,:,0] | |
130 | gau1 = data['gaussfit'][n][2,:,1] |
|
130 | gau1 = data['gaussfit'][n][2,:,1] | |
131 | if ax.firsttime: |
|
131 | if ax.firsttime: | |
132 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
132 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
133 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
133 | self.xmin = self.xmin if self.xmin else -self.xmax | |
134 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
134 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
135 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
135 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
136 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
136 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
137 | vmin=self.zmin, |
|
137 | vmin=self.zmin, | |
138 | vmax=self.zmax, |
|
138 | vmax=self.zmax, | |
139 | cmap=plt.get_cmap(self.colormap) |
|
139 | cmap=plt.get_cmap(self.colormap) | |
140 | ) |
|
140 | ) | |
141 |
|
141 | |||
142 | if self.showprofile: |
|
142 | if self.showprofile: | |
143 | ax.plt_profile = self.pf_axes[n].plot( |
|
143 | ax.plt_profile = self.pf_axes[n].plot( | |
144 | data['rti'][n], y)[0] |
|
144 | data['rti'][n], y)[0] | |
145 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
145 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
146 | color="k", linestyle="dashed", lw=1)[0] |
|
146 | color="k", linestyle="dashed", lw=1)[0] | |
147 | if self.CODE == 'spc_moments': |
|
147 | if self.CODE == 'spc_moments': | |
148 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
148 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] | |
149 | if self.CODE == 'gaussian_fit': |
|
149 | if self.CODE == 'gaussian_fit': | |
150 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] |
|
150 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] | |
151 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] |
|
151 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] | |
152 | else: |
|
152 | else: | |
153 | ax.plt.set_array(z[n].T.ravel()) |
|
153 | ax.plt.set_array(z[n].T.ravel()) | |
154 | if self.showprofile: |
|
154 | if self.showprofile: | |
155 | ax.plt_profile.set_data(data['rti'][n], y) |
|
155 | ax.plt_profile.set_data(data['rti'][n], y) | |
156 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
156 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
157 | if self.CODE == 'spc_moments': |
|
157 | if self.CODE == 'spc_moments': | |
158 | ax.plt_mean.set_data(mean, y) |
|
158 | ax.plt_mean.set_data(mean, y) | |
159 | if self.CODE == 'gaussian_fit': |
|
159 | if self.CODE == 'gaussian_fit': | |
160 | ax.plt_gau0.set_data(gau0, y) |
|
160 | ax.plt_gau0.set_data(gau0, y) | |
161 | ax.plt_gau1.set_data(gau1, y) |
|
161 | ax.plt_gau1.set_data(gau1, y) | |
162 | if len(self.azimuthList) > 0 and len(self.elevationList) > 0: |
|
162 | if len(self.azimuthList) > 0 and len(self.elevationList) > 0: | |
163 | self.titles.append('CH {}: {:2.1f}elv {:2.1f}az {:3.2f}dB'.format(self.channelList[n], noise, self.elevationList[n], self.azimuthList[n])) |
|
163 | self.titles.append('CH {}: {:2.1f}elv {:2.1f}az {:3.2f}dB'.format(self.channelList[n], noise, self.elevationList[n], self.azimuthList[n])) | |
164 | else: |
|
164 | else: | |
165 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
165 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) | |
166 |
|
166 | |||
167 | class SpectraObliquePlot(Plot): |
|
167 | class SpectraObliquePlot(Plot): | |
168 | ''' |
|
168 | ''' | |
169 | Plot for Spectra data |
|
169 | Plot for Spectra data | |
170 | ''' |
|
170 | ''' | |
171 |
|
171 | |||
172 | CODE = 'spc_oblique' |
|
172 | CODE = 'spc_oblique' | |
173 | colormap = 'jet' |
|
173 | colormap = 'jet' | |
174 | plot_type = 'pcolor' |
|
174 | plot_type = 'pcolor' | |
175 |
|
175 | |||
176 | def setup(self): |
|
176 | def setup(self): | |
177 | self.xaxis = "oblique" |
|
177 | self.xaxis = "oblique" | |
178 | self.nplots = len(self.data.channels) |
|
178 | self.nplots = len(self.data.channels) | |
179 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
179 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
180 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
180 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
181 | self.height = 2.6 * self.nrows |
|
181 | self.height = 2.6 * self.nrows | |
182 | self.cb_label = 'dB' |
|
182 | self.cb_label = 'dB' | |
183 | if self.showprofile: |
|
183 | if self.showprofile: | |
184 | self.width = 4 * self.ncols |
|
184 | self.width = 4 * self.ncols | |
185 | else: |
|
185 | else: | |
186 | self.width = 3.5 * self.ncols |
|
186 | self.width = 3.5 * self.ncols | |
187 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
187 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
188 | self.ylabel = 'Range [km]' |
|
188 | self.ylabel = 'Range [km]' | |
189 |
|
189 | |||
190 | def update(self, dataOut): |
|
190 | def update(self, dataOut): | |
191 |
|
191 | |||
192 | data = {} |
|
192 | data = {} | |
193 | meta = {} |
|
193 | meta = {} | |
194 |
|
194 | |||
195 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
195 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
196 | data['spc'] = spc |
|
196 | data['spc'] = spc | |
197 | data['rti'] = dataOut.getPower() |
|
197 | data['rti'] = dataOut.getPower() | |
198 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
198 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
199 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
199 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
200 |
|
200 | |||
201 | data['shift1'] = dataOut.Dop_EEJ_T1[0] |
|
201 | data['shift1'] = dataOut.Dop_EEJ_T1[0] | |
202 | data['shift2'] = dataOut.Dop_EEJ_T2[0] |
|
202 | data['shift2'] = dataOut.Dop_EEJ_T2[0] | |
203 | data['max_val_2'] = dataOut.Oblique_params[0,-1,:] |
|
203 | data['max_val_2'] = dataOut.Oblique_params[0,-1,:] | |
204 | data['shift1_error'] = dataOut.Err_Dop_EEJ_T1[0] |
|
204 | data['shift1_error'] = dataOut.Err_Dop_EEJ_T1[0] | |
205 | data['shift2_error'] = dataOut.Err_Dop_EEJ_T2[0] |
|
205 | data['shift2_error'] = dataOut.Err_Dop_EEJ_T2[0] | |
206 |
|
206 | |||
207 | return data, meta |
|
207 | return data, meta | |
208 |
|
208 | |||
209 | def plot(self): |
|
209 | def plot(self): | |
210 |
|
210 | |||
211 | if self.xaxis == "frequency": |
|
211 | if self.xaxis == "frequency": | |
212 | x = self.data.xrange[0] |
|
212 | x = self.data.xrange[0] | |
213 | self.xlabel = "Frequency (kHz)" |
|
213 | self.xlabel = "Frequency (kHz)" | |
214 | elif self.xaxis == "time": |
|
214 | elif self.xaxis == "time": | |
215 | x = self.data.xrange[1] |
|
215 | x = self.data.xrange[1] | |
216 | self.xlabel = "Time (ms)" |
|
216 | self.xlabel = "Time (ms)" | |
217 | else: |
|
217 | else: | |
218 | x = self.data.xrange[2] |
|
218 | x = self.data.xrange[2] | |
219 | self.xlabel = "Velocity (m/s)" |
|
219 | self.xlabel = "Velocity (m/s)" | |
220 |
|
220 | |||
221 | self.titles = [] |
|
221 | self.titles = [] | |
222 |
|
222 | |||
223 | y = self.data.yrange |
|
223 | y = self.data.yrange | |
224 | self.y = y |
|
224 | self.y = y | |
225 |
|
225 | |||
226 | data = self.data[-1] |
|
226 | data = self.data[-1] | |
227 | z = data['spc'] |
|
227 | z = data['spc'] | |
228 |
|
228 | |||
229 | for n, ax in enumerate(self.axes): |
|
229 | for n, ax in enumerate(self.axes): | |
230 | noise = self.data['noise'][n][-1] |
|
230 | noise = self.data['noise'][n][-1] | |
231 | shift1 = data['shift1'] |
|
231 | shift1 = data['shift1'] | |
232 | shift2 = data['shift2'] |
|
232 | shift2 = data['shift2'] | |
233 | max_val_2 = data['max_val_2'] |
|
233 | max_val_2 = data['max_val_2'] | |
234 | err1 = data['shift1_error'] |
|
234 | err1 = data['shift1_error'] | |
235 | err2 = data['shift2_error'] |
|
235 | err2 = data['shift2_error'] | |
236 | if ax.firsttime: |
|
236 | if ax.firsttime: | |
237 |
|
237 | |||
238 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
238 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
239 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
239 | self.xmin = self.xmin if self.xmin else -self.xmax | |
240 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
240 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
241 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
241 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
242 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
242 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
243 | vmin=self.zmin, |
|
243 | vmin=self.zmin, | |
244 | vmax=self.zmax, |
|
244 | vmax=self.zmax, | |
245 | cmap=plt.get_cmap(self.colormap) |
|
245 | cmap=plt.get_cmap(self.colormap) | |
246 | ) |
|
246 | ) | |
247 |
|
247 | |||
248 | if self.showprofile: |
|
248 | if self.showprofile: | |
249 | ax.plt_profile = self.pf_axes[n].plot( |
|
249 | ax.plt_profile = self.pf_axes[n].plot( | |
250 | self.data['rti'][n][-1], y)[0] |
|
250 | self.data['rti'][n][-1], y)[0] | |
251 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
251 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
252 | color="k", linestyle="dashed", lw=1)[0] |
|
252 | color="k", linestyle="dashed", lw=1)[0] | |
253 |
|
253 | |||
254 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
254 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
255 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
255 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
256 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
256 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
257 |
|
257 | |||
258 | else: |
|
258 | else: | |
259 | self.ploterr1.remove() |
|
259 | self.ploterr1.remove() | |
260 | self.ploterr2.remove() |
|
260 | self.ploterr2.remove() | |
261 | self.ploterr3.remove() |
|
261 | self.ploterr3.remove() | |
262 | ax.plt.set_array(z[n].T.ravel()) |
|
262 | ax.plt.set_array(z[n].T.ravel()) | |
263 | if self.showprofile: |
|
263 | if self.showprofile: | |
264 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
264 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) | |
265 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
265 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
266 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
266 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
267 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
267 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
268 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
268 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
269 |
|
269 | |||
270 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
270 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
271 |
|
271 | |||
272 |
|
272 | |||
273 | class CrossSpectraPlot(Plot): |
|
273 | class CrossSpectraPlot(Plot): | |
274 |
|
274 | |||
275 | CODE = 'cspc' |
|
275 | CODE = 'cspc' | |
276 | colormap = 'jet' |
|
276 | colormap = 'jet' | |
277 | plot_type = 'pcolor' |
|
277 | plot_type = 'pcolor' | |
278 | zmin_coh = None |
|
278 | zmin_coh = None | |
279 | zmax_coh = None |
|
279 | zmax_coh = None | |
280 | zmin_phase = None |
|
280 | zmin_phase = None | |
281 | zmax_phase = None |
|
281 | zmax_phase = None | |
282 | realChannels = None |
|
282 | realChannels = None | |
283 | crossPairs = None |
|
283 | crossPairs = None | |
284 |
|
284 | |||
285 | def setup(self): |
|
285 | def setup(self): | |
286 |
|
286 | |||
287 | self.ncols = 4 |
|
287 | self.ncols = 4 | |
288 | self.nplots = len(self.data.pairs) * 2 |
|
288 | self.nplots = len(self.data.pairs) * 2 | |
289 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
289 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
290 | self.width = 3.1 * self.ncols |
|
290 | self.width = 3.1 * self.ncols | |
291 | self.height = 2.6 * self.nrows |
|
291 | self.height = 2.6 * self.nrows | |
292 | self.ylabel = 'Range [km]' |
|
292 | self.ylabel = 'Range [km]' | |
293 | self.showprofile = False |
|
293 | self.showprofile = False | |
294 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
294 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
295 |
|
295 | |||
296 | def update(self, dataOut): |
|
296 | def update(self, dataOut): | |
297 |
|
297 | |||
298 | data = {} |
|
298 | data = {} | |
299 | meta = {} |
|
299 | meta = {} | |
300 |
|
300 | |||
301 | spc = dataOut.data_spc |
|
301 | spc = dataOut.data_spc | |
302 | cspc = dataOut.data_cspc |
|
302 | cspc = dataOut.data_cspc | |
303 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) |
|
303 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
304 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) |
|
304 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) | |
305 | meta['pairs'] = rawPairs |
|
305 | meta['pairs'] = rawPairs | |
306 | if self.crossPairs == None: |
|
306 | if self.crossPairs == None: | |
307 | self.crossPairs = dataOut.pairsList |
|
307 | self.crossPairs = dataOut.pairsList | |
308 | tmp = [] |
|
308 | tmp = [] | |
309 |
|
309 | |||
310 | for n, pair in enumerate(meta['pairs']): |
|
310 | for n, pair in enumerate(meta['pairs']): | |
311 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
311 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
312 | coh = numpy.abs(out) |
|
312 | coh = numpy.abs(out) | |
313 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
313 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
314 | tmp.append(coh) |
|
314 | tmp.append(coh) | |
315 | tmp.append(phase) |
|
315 | tmp.append(phase) | |
316 |
|
316 | |||
317 | data['cspc'] = numpy.array(tmp) |
|
317 | data['cspc'] = numpy.array(tmp) | |
318 |
|
318 | |||
319 | return data, meta |
|
319 | return data, meta | |
320 |
|
320 | |||
321 | def plot(self): |
|
321 | def plot(self): | |
322 |
|
322 | |||
323 | if self.xaxis == "frequency": |
|
323 | if self.xaxis == "frequency": | |
324 | x = self.data.xrange[0] |
|
324 | x = self.data.xrange[0] | |
325 | self.xlabel = "Frequency (kHz)" |
|
325 | self.xlabel = "Frequency (kHz)" | |
326 | elif self.xaxis == "time": |
|
326 | elif self.xaxis == "time": | |
327 | x = self.data.xrange[1] |
|
327 | x = self.data.xrange[1] | |
328 | self.xlabel = "Time (ms)" |
|
328 | self.xlabel = "Time (ms)" | |
329 | else: |
|
329 | else: | |
330 | x = self.data.xrange[2] |
|
330 | x = self.data.xrange[2] | |
331 | self.xlabel = "Velocity (m/s)" |
|
331 | self.xlabel = "Velocity (m/s)" | |
332 |
|
332 | |||
333 | self.titles = [] |
|
333 | self.titles = [] | |
334 |
|
334 | |||
335 | y = self.data.yrange |
|
335 | y = self.data.yrange | |
336 | self.y = y |
|
336 | self.y = y | |
337 |
|
337 | |||
338 | data = self.data[-1] |
|
338 | data = self.data[-1] | |
339 | cspc = data['cspc'] |
|
339 | cspc = data['cspc'] | |
340 |
|
340 | |||
341 | for n in range(len(self.data.pairs)): |
|
341 | for n in range(len(self.data.pairs)): | |
342 | pair = self.crossPairs[n] |
|
342 | pair = self.crossPairs[n] | |
343 | coh = cspc[n*2] |
|
343 | coh = cspc[n*2] | |
344 | phase = cspc[n*2+1] |
|
344 | phase = cspc[n*2+1] | |
345 | ax = self.axes[2 * n] |
|
345 | ax = self.axes[2 * n] | |
346 | if ax.firsttime: |
|
346 | if ax.firsttime: | |
347 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
347 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
348 | vmin=self.zmin_coh, |
|
348 | vmin=self.zmin_coh, | |
349 | vmax=self.zmax_coh, |
|
349 | vmax=self.zmax_coh, | |
350 | cmap=plt.get_cmap(self.colormap_coh) |
|
350 | cmap=plt.get_cmap(self.colormap_coh) | |
351 | ) |
|
351 | ) | |
352 | else: |
|
352 | else: | |
353 | ax.plt.set_array(coh.T.ravel()) |
|
353 | ax.plt.set_array(coh.T.ravel()) | |
354 | self.titles.append( |
|
354 | self.titles.append( | |
355 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
355 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
356 |
|
356 | |||
357 | ax = self.axes[2 * n + 1] |
|
357 | ax = self.axes[2 * n + 1] | |
358 | if ax.firsttime: |
|
358 | if ax.firsttime: | |
359 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
359 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
360 | vmin=-180, |
|
360 | vmin=-180, | |
361 | vmax=180, |
|
361 | vmax=180, | |
362 | cmap=plt.get_cmap(self.colormap_phase) |
|
362 | cmap=plt.get_cmap(self.colormap_phase) | |
363 | ) |
|
363 | ) | |
364 | else: |
|
364 | else: | |
365 | ax.plt.set_array(phase.T.ravel()) |
|
365 | ax.plt.set_array(phase.T.ravel()) | |
366 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
366 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
367 |
|
367 | |||
368 |
|
368 | |||
369 | class CrossSpectra4Plot(Plot): |
|
369 | class CrossSpectra4Plot(Plot): | |
370 |
|
370 | |||
371 | CODE = 'cspc' |
|
371 | CODE = 'cspc' | |
372 | colormap = 'jet' |
|
372 | colormap = 'jet' | |
373 | plot_type = 'pcolor' |
|
373 | plot_type = 'pcolor' | |
374 | zmin_coh = None |
|
374 | zmin_coh = None | |
375 | zmax_coh = None |
|
375 | zmax_coh = None | |
376 | zmin_phase = None |
|
376 | zmin_phase = None | |
377 | zmax_phase = None |
|
377 | zmax_phase = None | |
378 |
|
378 | |||
379 | def setup(self): |
|
379 | def setup(self): | |
380 |
|
380 | |||
381 | self.ncols = 4 |
|
381 | self.ncols = 4 | |
382 | self.nrows = len(self.data.pairs) |
|
382 | self.nrows = len(self.data.pairs) | |
383 | self.nplots = self.nrows * 4 |
|
383 | self.nplots = self.nrows * 4 | |
384 | self.width = 3.1 * self.ncols |
|
384 | self.width = 3.1 * self.ncols | |
385 | self.height = 5 * self.nrows |
|
385 | self.height = 5 * self.nrows | |
386 | self.ylabel = 'Range [km]' |
|
386 | self.ylabel = 'Range [km]' | |
387 | self.showprofile = False |
|
387 | self.showprofile = False | |
388 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
388 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
389 |
|
389 | |||
390 | def plot(self): |
|
390 | def plot(self): | |
391 |
|
391 | |||
392 | if self.xaxis == "frequency": |
|
392 | if self.xaxis == "frequency": | |
393 | x = self.data.xrange[0] |
|
393 | x = self.data.xrange[0] | |
394 | self.xlabel = "Frequency (kHz)" |
|
394 | self.xlabel = "Frequency (kHz)" | |
395 | elif self.xaxis == "time": |
|
395 | elif self.xaxis == "time": | |
396 | x = self.data.xrange[1] |
|
396 | x = self.data.xrange[1] | |
397 | self.xlabel = "Time (ms)" |
|
397 | self.xlabel = "Time (ms)" | |
398 | else: |
|
398 | else: | |
399 | x = self.data.xrange[2] |
|
399 | x = self.data.xrange[2] | |
400 | self.xlabel = "Velocity (m/s)" |
|
400 | self.xlabel = "Velocity (m/s)" | |
401 |
|
401 | |||
402 | self.titles = [] |
|
402 | self.titles = [] | |
403 |
|
403 | |||
404 |
|
404 | |||
405 | y = self.data.heights |
|
405 | y = self.data.heights | |
406 | self.y = y |
|
406 | self.y = y | |
407 | nspc = self.data['spc'] |
|
407 | nspc = self.data['spc'] | |
408 | spc = self.data['cspc'][0] |
|
408 | spc = self.data['cspc'][0] | |
409 | cspc = self.data['cspc'][1] |
|
409 | cspc = self.data['cspc'][1] | |
410 |
|
410 | |||
411 | for n in range(self.nrows): |
|
411 | for n in range(self.nrows): | |
412 | noise = self.data['noise'][:,-1] |
|
412 | noise = self.data['noise'][:,-1] | |
413 | pair = self.data.pairs[n] |
|
413 | pair = self.data.pairs[n] | |
414 |
|
414 | |||
415 | ax = self.axes[4 * n] |
|
415 | ax = self.axes[4 * n] | |
416 | if ax.firsttime: |
|
416 | if ax.firsttime: | |
417 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
417 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
418 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
418 | self.xmin = self.xmin if self.xmin else -self.xmax | |
419 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) |
|
419 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) | |
420 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) |
|
420 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) | |
421 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, |
|
421 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, | |
422 | vmin=self.zmin, |
|
422 | vmin=self.zmin, | |
423 | vmax=self.zmax, |
|
423 | vmax=self.zmax, | |
424 | cmap=plt.get_cmap(self.colormap) |
|
424 | cmap=plt.get_cmap(self.colormap) | |
425 | ) |
|
425 | ) | |
426 | else: |
|
426 | else: | |
427 |
|
427 | |||
428 | ax.plt.set_array(nspc[pair[0]].T.ravel()) |
|
428 | ax.plt.set_array(nspc[pair[0]].T.ravel()) | |
429 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) |
|
429 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) | |
430 |
|
430 | |||
431 | ax = self.axes[4 * n + 1] |
|
431 | ax = self.axes[4 * n + 1] | |
432 |
|
432 | |||
433 | if ax.firsttime: |
|
433 | if ax.firsttime: | |
434 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, |
|
434 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, | |
435 | vmin=self.zmin, |
|
435 | vmin=self.zmin, | |
436 | vmax=self.zmax, |
|
436 | vmax=self.zmax, | |
437 | cmap=plt.get_cmap(self.colormap) |
|
437 | cmap=plt.get_cmap(self.colormap) | |
438 | ) |
|
438 | ) | |
439 | else: |
|
439 | else: | |
440 |
|
440 | |||
441 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) |
|
441 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) | |
442 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) |
|
442 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) | |
443 |
|
443 | |||
444 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
444 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
445 | coh = numpy.abs(out) |
|
445 | coh = numpy.abs(out) | |
446 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
446 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
447 |
|
447 | |||
448 | ax = self.axes[4 * n + 2] |
|
448 | ax = self.axes[4 * n + 2] | |
449 | if ax.firsttime: |
|
449 | if ax.firsttime: | |
450 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, |
|
450 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, | |
451 | vmin=0, |
|
451 | vmin=0, | |
452 | vmax=1, |
|
452 | vmax=1, | |
453 | cmap=plt.get_cmap(self.colormap_coh) |
|
453 | cmap=plt.get_cmap(self.colormap_coh) | |
454 | ) |
|
454 | ) | |
455 | else: |
|
455 | else: | |
456 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) |
|
456 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) | |
457 | self.titles.append( |
|
457 | self.titles.append( | |
458 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
458 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
459 |
|
459 | |||
460 | ax = self.axes[4 * n + 3] |
|
460 | ax = self.axes[4 * n + 3] | |
461 | if ax.firsttime: |
|
461 | if ax.firsttime: | |
462 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, |
|
462 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, | |
463 | vmin=-180, |
|
463 | vmin=-180, | |
464 | vmax=180, |
|
464 | vmax=180, | |
465 | cmap=plt.get_cmap(self.colormap_phase) |
|
465 | cmap=plt.get_cmap(self.colormap_phase) | |
466 | ) |
|
466 | ) | |
467 | else: |
|
467 | else: | |
468 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) |
|
468 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) | |
469 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
469 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
470 |
|
470 | |||
471 |
|
471 | |||
472 | class CrossSpectra2Plot(Plot): |
|
472 | class CrossSpectra2Plot(Plot): | |
473 |
|
473 | |||
474 | CODE = 'cspc' |
|
474 | CODE = 'cspc' | |
475 | colormap = 'jet' |
|
475 | colormap = 'jet' | |
476 | plot_type = 'pcolor' |
|
476 | plot_type = 'pcolor' | |
477 | zmin_coh = None |
|
477 | zmin_coh = None | |
478 | zmax_coh = None |
|
478 | zmax_coh = None | |
479 | zmin_phase = None |
|
479 | zmin_phase = None | |
480 | zmax_phase = None |
|
480 | zmax_phase = None | |
481 |
|
481 | |||
482 | def setup(self): |
|
482 | def setup(self): | |
483 |
|
483 | |||
484 | self.ncols = 1 |
|
484 | self.ncols = 1 | |
485 | self.nrows = len(self.data.pairs) |
|
485 | self.nrows = len(self.data.pairs) | |
486 | self.nplots = self.nrows * 1 |
|
486 | self.nplots = self.nrows * 1 | |
487 | self.width = 3.1 * self.ncols |
|
487 | self.width = 3.1 * self.ncols | |
488 | self.height = 5 * self.nrows |
|
488 | self.height = 5 * self.nrows | |
489 | self.ylabel = 'Range [km]' |
|
489 | self.ylabel = 'Range [km]' | |
490 | self.showprofile = False |
|
490 | self.showprofile = False | |
491 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
491 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
492 |
|
492 | |||
493 | def plot(self): |
|
493 | def plot(self): | |
494 |
|
494 | |||
495 | if self.xaxis == "frequency": |
|
495 | if self.xaxis == "frequency": | |
496 | x = self.data.xrange[0] |
|
496 | x = self.data.xrange[0] | |
497 | self.xlabel = "Frequency (kHz)" |
|
497 | self.xlabel = "Frequency (kHz)" | |
498 | elif self.xaxis == "time": |
|
498 | elif self.xaxis == "time": | |
499 | x = self.data.xrange[1] |
|
499 | x = self.data.xrange[1] | |
500 | self.xlabel = "Time (ms)" |
|
500 | self.xlabel = "Time (ms)" | |
501 | else: |
|
501 | else: | |
502 | x = self.data.xrange[2] |
|
502 | x = self.data.xrange[2] | |
503 | self.xlabel = "Velocity (m/s)" |
|
503 | self.xlabel = "Velocity (m/s)" | |
504 |
|
504 | |||
505 | self.titles = [] |
|
505 | self.titles = [] | |
506 |
|
506 | |||
507 |
|
507 | |||
508 | y = self.data.heights |
|
508 | y = self.data.heights | |
509 | self.y = y |
|
509 | self.y = y | |
510 | cspc = self.data['cspc'][1] |
|
510 | cspc = self.data['cspc'][1] | |
511 |
|
511 | |||
512 | for n in range(self.nrows): |
|
512 | for n in range(self.nrows): | |
513 | noise = self.data['noise'][:,-1] |
|
513 | noise = self.data['noise'][:,-1] | |
514 | pair = self.data.pairs[n] |
|
514 | pair = self.data.pairs[n] | |
515 | out = cspc[n] |
|
515 | out = cspc[n] | |
516 | cross = numpy.abs(out) |
|
516 | cross = numpy.abs(out) | |
517 | z = cross/self.data.nFactor |
|
517 | z = cross/self.data.nFactor | |
518 | cross = 10*numpy.log10(z) |
|
518 | cross = 10*numpy.log10(z) | |
519 |
|
519 | |||
520 | ax = self.axes[1 * n] |
|
520 | ax = self.axes[1 * n] | |
521 | if ax.firsttime: |
|
521 | if ax.firsttime: | |
522 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
522 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
523 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
523 | self.xmin = self.xmin if self.xmin else -self.xmax | |
524 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
524 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
525 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
525 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
526 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
526 | ax.plt = ax.pcolormesh(x, y, cross.T, | |
527 | vmin=self.zmin, |
|
527 | vmin=self.zmin, | |
528 | vmax=self.zmax, |
|
528 | vmax=self.zmax, | |
529 | cmap=plt.get_cmap(self.colormap) |
|
529 | cmap=plt.get_cmap(self.colormap) | |
530 | ) |
|
530 | ) | |
531 | else: |
|
531 | else: | |
532 | ax.plt.set_array(cross.T.ravel()) |
|
532 | ax.plt.set_array(cross.T.ravel()) | |
533 | self.titles.append( |
|
533 | self.titles.append( | |
534 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
534 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) | |
535 |
|
535 | |||
536 |
|
536 | |||
537 | class CrossSpectra3Plot(Plot): |
|
537 | class CrossSpectra3Plot(Plot): | |
538 |
|
538 | |||
539 | CODE = 'cspc' |
|
539 | CODE = 'cspc' | |
540 | colormap = 'jet' |
|
540 | colormap = 'jet' | |
541 | plot_type = 'pcolor' |
|
541 | plot_type = 'pcolor' | |
542 | zmin_coh = None |
|
542 | zmin_coh = None | |
543 | zmax_coh = None |
|
543 | zmax_coh = None | |
544 | zmin_phase = None |
|
544 | zmin_phase = None | |
545 | zmax_phase = None |
|
545 | zmax_phase = None | |
546 |
|
546 | |||
547 | def setup(self): |
|
547 | def setup(self): | |
548 |
|
548 | |||
549 | self.ncols = 3 |
|
549 | self.ncols = 3 | |
550 | self.nrows = len(self.data.pairs) |
|
550 | self.nrows = len(self.data.pairs) | |
551 | self.nplots = self.nrows * 3 |
|
551 | self.nplots = self.nrows * 3 | |
552 | self.width = 3.1 * self.ncols |
|
552 | self.width = 3.1 * self.ncols | |
553 | self.height = 5 * self.nrows |
|
553 | self.height = 5 * self.nrows | |
554 | self.ylabel = 'Range [km]' |
|
554 | self.ylabel = 'Range [km]' | |
555 | self.showprofile = False |
|
555 | self.showprofile = False | |
556 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
556 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
557 |
|
557 | |||
558 | def plot(self): |
|
558 | def plot(self): | |
559 |
|
559 | |||
560 | if self.xaxis == "frequency": |
|
560 | if self.xaxis == "frequency": | |
561 | x = self.data.xrange[0] |
|
561 | x = self.data.xrange[0] | |
562 | self.xlabel = "Frequency (kHz)" |
|
562 | self.xlabel = "Frequency (kHz)" | |
563 | elif self.xaxis == "time": |
|
563 | elif self.xaxis == "time": | |
564 | x = self.data.xrange[1] |
|
564 | x = self.data.xrange[1] | |
565 | self.xlabel = "Time (ms)" |
|
565 | self.xlabel = "Time (ms)" | |
566 | else: |
|
566 | else: | |
567 | x = self.data.xrange[2] |
|
567 | x = self.data.xrange[2] | |
568 | self.xlabel = "Velocity (m/s)" |
|
568 | self.xlabel = "Velocity (m/s)" | |
569 |
|
569 | |||
570 | self.titles = [] |
|
570 | self.titles = [] | |
571 |
|
571 | |||
572 |
|
572 | |||
573 | y = self.data.heights |
|
573 | y = self.data.heights | |
574 | self.y = y |
|
574 | self.y = y | |
575 |
|
575 | |||
576 | cspc = self.data['cspc'][1] |
|
576 | cspc = self.data['cspc'][1] | |
577 |
|
577 | |||
578 | for n in range(self.nrows): |
|
578 | for n in range(self.nrows): | |
579 | noise = self.data['noise'][:,-1] |
|
579 | noise = self.data['noise'][:,-1] | |
580 | pair = self.data.pairs[n] |
|
580 | pair = self.data.pairs[n] | |
581 | out = cspc[n] |
|
581 | out = cspc[n] | |
582 |
|
582 | |||
583 | cross = numpy.abs(out) |
|
583 | cross = numpy.abs(out) | |
584 | z = cross/self.data.nFactor |
|
584 | z = cross/self.data.nFactor | |
585 | cross = 10*numpy.log10(z) |
|
585 | cross = 10*numpy.log10(z) | |
586 |
|
586 | |||
587 | out_r= out.real/self.data.nFactor |
|
587 | out_r= out.real/self.data.nFactor | |
588 |
|
588 | |||
589 | out_i= out.imag/self.data.nFactor |
|
589 | out_i= out.imag/self.data.nFactor | |
590 |
|
590 | |||
591 | ax = self.axes[3 * n] |
|
591 | ax = self.axes[3 * n] | |
592 | if ax.firsttime: |
|
592 | if ax.firsttime: | |
593 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
593 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
594 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
594 | self.xmin = self.xmin if self.xmin else -self.xmax | |
595 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
595 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
596 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
596 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
597 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
597 | ax.plt = ax.pcolormesh(x, y, cross.T, | |
598 | vmin=self.zmin, |
|
598 | vmin=self.zmin, | |
599 | vmax=self.zmax, |
|
599 | vmax=self.zmax, | |
600 | cmap=plt.get_cmap(self.colormap) |
|
600 | cmap=plt.get_cmap(self.colormap) | |
601 | ) |
|
601 | ) | |
602 | else: |
|
602 | else: | |
603 | ax.plt.set_array(cross.T.ravel()) |
|
603 | ax.plt.set_array(cross.T.ravel()) | |
604 | self.titles.append( |
|
604 | self.titles.append( | |
605 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
605 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) | |
606 |
|
606 | |||
607 | ax = self.axes[3 * n + 1] |
|
607 | ax = self.axes[3 * n + 1] | |
608 | if ax.firsttime: |
|
608 | if ax.firsttime: | |
609 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
609 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
610 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
610 | self.xmin = self.xmin if self.xmin else -self.xmax | |
611 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
611 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
612 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
612 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
613 | ax.plt = ax.pcolormesh(x, y, out_r.T, |
|
613 | ax.plt = ax.pcolormesh(x, y, out_r.T, | |
614 | vmin=-1.e6, |
|
614 | vmin=-1.e6, | |
615 | vmax=0, |
|
615 | vmax=0, | |
616 | cmap=plt.get_cmap(self.colormap) |
|
616 | cmap=plt.get_cmap(self.colormap) | |
617 | ) |
|
617 | ) | |
618 | else: |
|
618 | else: | |
619 | ax.plt.set_array(out_r.T.ravel()) |
|
619 | ax.plt.set_array(out_r.T.ravel()) | |
620 | self.titles.append( |
|
620 | self.titles.append( | |
621 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
621 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) | |
622 |
|
622 | |||
623 | ax = self.axes[3 * n + 2] |
|
623 | ax = self.axes[3 * n + 2] | |
624 |
|
624 | |||
625 |
|
625 | |||
626 | if ax.firsttime: |
|
626 | if ax.firsttime: | |
627 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
627 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
628 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
628 | self.xmin = self.xmin if self.xmin else -self.xmax | |
629 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
629 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
630 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
630 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
631 | ax.plt = ax.pcolormesh(x, y, out_i.T, |
|
631 | ax.plt = ax.pcolormesh(x, y, out_i.T, | |
632 | vmin=-1.e6, |
|
632 | vmin=-1.e6, | |
633 | vmax=1.e6, |
|
633 | vmax=1.e6, | |
634 | cmap=plt.get_cmap(self.colormap) |
|
634 | cmap=plt.get_cmap(self.colormap) | |
635 | ) |
|
635 | ) | |
636 | else: |
|
636 | else: | |
637 | ax.plt.set_array(out_i.T.ravel()) |
|
637 | ax.plt.set_array(out_i.T.ravel()) | |
638 | self.titles.append( |
|
638 | self.titles.append( | |
639 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
639 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) | |
640 |
|
640 | |||
641 | class RTIPlot(Plot): |
|
641 | class RTIPlot(Plot): | |
642 | ''' |
|
642 | ''' | |
643 | Plot for RTI data |
|
643 | Plot for RTI data | |
644 | ''' |
|
644 | ''' | |
645 |
|
645 | |||
646 | CODE = 'rti' |
|
646 | CODE = 'rti' | |
647 | colormap = 'jet' |
|
647 | colormap = 'jet' | |
648 | plot_type = 'pcolorbuffer' |
|
648 | plot_type = 'pcolorbuffer' | |
649 | titles = None |
|
649 | titles = None | |
650 | channelList = [] |
|
650 | channelList = [] | |
651 | elevationList = [] |
|
651 | elevationList = [] | |
652 | azimuthList = [] |
|
652 | azimuthList = [] | |
653 |
|
653 | |||
654 | def setup(self): |
|
654 | def setup(self): | |
655 | self.xaxis = 'time' |
|
655 | self.xaxis = 'time' | |
656 | self.ncols = 1 |
|
656 | self.ncols = 1 | |
657 | self.nrows = len(self.data.channels) |
|
657 | self.nrows = len(self.data.channels) | |
658 | self.nplots = len(self.data.channels) |
|
658 | self.nplots = len(self.data.channels) | |
659 | self.ylabel = 'Range [km]' |
|
659 | self.ylabel = 'Range [km]' | |
660 | #self.xlabel = 'Time' |
|
660 | #self.xlabel = 'Time' | |
661 | self.cb_label = 'dB' |
|
661 | self.cb_label = 'dB' | |
662 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
662 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) | |
663 | self.titles = ['{} Channel {}'.format( |
|
663 | self.titles = ['{} Channel {}'.format( | |
664 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
664 | self.CODE.upper(), x) for x in range(self.nplots)] | |
665 |
|
665 | |||
666 | def update_list(self,dataOut): |
|
666 | def update_list(self,dataOut): | |
667 |
|
667 | |||
668 | if len(self.channelList) == 0: |
|
668 | if len(self.channelList) == 0: | |
669 | self.channelList = dataOut.channelList |
|
669 | self.channelList = dataOut.channelList | |
670 | if len(self.elevationList) == 0: |
|
670 | if len(self.elevationList) == 0: | |
671 | self.elevationList = dataOut.elevationList |
|
671 | self.elevationList = dataOut.elevationList | |
672 | if len(self.azimuthList) == 0: |
|
672 | if len(self.azimuthList) == 0: | |
673 | self.azimuthList = dataOut.azimuthList |
|
673 | self.azimuthList = dataOut.azimuthList | |
674 |
|
674 | |||
675 |
|
675 | |||
676 | def update(self, dataOut): |
|
676 | def update(self, dataOut): | |
677 |
|
677 | |||
678 | if len(self.channelList) == 0: |
|
678 | if len(self.channelList) == 0: | |
679 | self.update_list(dataOut) |
|
679 | self.update_list(dataOut) | |
680 | data = {} |
|
680 | data = {} | |
681 | meta = {} |
|
681 | meta = {} | |
682 | data['rti'] = dataOut.getPower() |
|
682 | data['rti'] = dataOut.getPower() | |
683 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
683 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter | |
684 | noise = 10*numpy.log10(dataOut.getNoise()/norm) |
|
684 | noise = 10*numpy.log10(dataOut.getNoise()/norm) | |
685 | data['noise'] = noise |
|
685 | data['noise'] = noise | |
686 |
|
686 | |||
687 | return data, meta |
|
687 | return data, meta | |
688 |
|
688 | |||
689 | def plot(self): |
|
689 | def plot(self): | |
690 |
|
690 | |||
691 | self.x = self.data.times |
|
691 | self.x = self.data.times | |
692 | self.y = self.data.yrange |
|
692 | self.y = self.data.yrange | |
693 | self.z = self.data[self.CODE] |
|
693 | self.z = self.data[self.CODE] | |
694 | self.z = numpy.array(self.z, dtype=float) |
|
694 | self.z = numpy.array(self.z, dtype=float) | |
695 | self.z = numpy.ma.masked_invalid(self.z) |
|
695 | self.z = numpy.ma.masked_invalid(self.z) | |
696 |
|
696 | |||
697 | try: |
|
697 | try: | |
698 | if self.channelList != None: |
|
698 | if self.channelList != None: | |
699 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
699 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: | |
700 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
700 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( | |
701 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
701 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] | |
702 | else: |
|
702 | else: | |
703 | self.titles = ['{} Channel {}'.format( |
|
703 | self.titles = ['{} Channel {}'.format( | |
704 | self.CODE.upper(), x) for x in self.channelList] |
|
704 | self.CODE.upper(), x) for x in self.channelList] | |
705 | except: |
|
705 | except: | |
706 | if self.channelList.any() != None: |
|
706 | if self.channelList.any() != None: | |
707 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
707 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: | |
708 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
708 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( | |
709 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
709 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] | |
710 | else: |
|
710 | else: | |
711 | self.titles = ['{} Channel {}'.format( |
|
711 | self.titles = ['{} Channel {}'.format( | |
712 | self.CODE.upper(), x) for x in self.channelList] |
|
712 | self.CODE.upper(), x) for x in self.channelList] | |
713 |
|
713 | |||
714 | if self.decimation is None: |
|
714 | if self.decimation is None: | |
715 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
715 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
716 | else: |
|
716 | else: | |
717 | x, y, z = self.fill_gaps(*self.decimate()) |
|
717 | x, y, z = self.fill_gaps(*self.decimate()) | |
718 |
|
718 | |||
719 | for n, ax in enumerate(self.axes): |
|
719 | for n, ax in enumerate(self.axes): | |
720 |
|
720 | |||
721 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
721 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
722 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
722 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
723 | data = self.data[-1] |
|
723 | data = self.data[-1] | |
724 | if ax.firsttime: |
|
724 | if ax.firsttime: | |
725 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
725 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
726 | vmin=self.zmin, |
|
726 | vmin=self.zmin, | |
727 | vmax=self.zmax, |
|
727 | vmax=self.zmax, | |
728 | cmap=plt.get_cmap(self.colormap) |
|
728 | cmap=plt.get_cmap(self.colormap) | |
729 | ) |
|
729 | ) | |
730 | if self.showprofile: |
|
730 | if self.showprofile: | |
731 | ax.plot_profile = self.pf_axes[n].plot( |
|
731 | ax.plot_profile = self.pf_axes[n].plot( | |
732 | data[self.CODE][n], self.y)[0] |
|
732 | data[self.CODE][n], self.y)[0] | |
733 | if "noise" in self.data: |
|
733 | if "noise" in self.data: | |
734 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
734 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, | |
735 | color="k", linestyle="dashed", lw=1)[0] |
|
735 | color="k", linestyle="dashed", lw=1)[0] | |
736 | else: |
|
736 | else: | |
737 |
|
|
737 | ax.collections.remove(ax.collections[0]) # error while running in 3.12 | |
738 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
738 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
739 | vmin=self.zmin, |
|
739 | vmin=self.zmin, | |
740 | vmax=self.zmax, |
|
740 | vmax=self.zmax, | |
741 | cmap=plt.get_cmap(self.colormap) |
|
741 | cmap=plt.get_cmap(self.colormap) | |
742 | ) |
|
742 | ) | |
743 | if self.showprofile: |
|
743 | if self.showprofile: | |
744 | ax.plot_profile.set_data(data[self.CODE][n], self.y) |
|
744 | ax.plot_profile.set_data(data[self.CODE][n], self.y) | |
745 | if "noise" in self.data: |
|
745 | if "noise" in self.data: | |
746 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
746 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, | |
747 | color="k", linestyle="dashed", lw=1)[0] |
|
747 | color="k", linestyle="dashed", lw=1)[0] | |
748 |
|
748 | |||
749 | class SpectrogramPlot(Plot): |
|
749 | class SpectrogramPlot(Plot): | |
750 | ''' |
|
750 | ''' | |
751 | Plot for Spectrogram data |
|
751 | Plot for Spectrogram data | |
752 | ''' |
|
752 | ''' | |
753 |
|
753 | |||
754 | CODE = 'Spectrogram_Profile' |
|
754 | CODE = 'Spectrogram_Profile' | |
755 | colormap = 'binary' |
|
755 | colormap = 'binary' | |
756 | plot_type = 'pcolorbuffer' |
|
756 | plot_type = 'pcolorbuffer' | |
757 |
|
757 | |||
758 | def setup(self): |
|
758 | def setup(self): | |
759 | self.xaxis = 'time' |
|
759 | self.xaxis = 'time' | |
760 | self.ncols = 1 |
|
760 | self.ncols = 1 | |
761 | self.nrows = len(self.data.channels) |
|
761 | self.nrows = len(self.data.channels) | |
762 | self.nplots = len(self.data.channels) |
|
762 | self.nplots = len(self.data.channels) | |
763 | self.xlabel = 'Time' |
|
763 | self.xlabel = 'Time' | |
764 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) |
|
764 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) | |
765 | self.titles = [] |
|
765 | self.titles = [] | |
766 |
|
766 | |||
767 | self.titles = ['{} Channel {}'.format( |
|
767 | self.titles = ['{} Channel {}'.format( | |
768 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
768 | self.CODE.upper(), x) for x in range(self.nrows)] | |
769 |
|
769 | |||
770 |
|
770 | |||
771 | def update(self, dataOut): |
|
771 | def update(self, dataOut): | |
772 | data = {} |
|
772 | data = {} | |
773 | meta = {} |
|
773 | meta = {} | |
774 |
|
774 | |||
775 | maxHei = 1620#+12000 |
|
775 | maxHei = 1620#+12000 | |
776 | indb = numpy.where(dataOut.heightList <= maxHei) |
|
776 | indb = numpy.where(dataOut.heightList <= maxHei) | |
777 | hei = indb[0][-1] |
|
777 | hei = indb[0][-1] | |
778 |
|
778 | |||
779 | factor = dataOut.nIncohInt |
|
779 | factor = dataOut.nIncohInt | |
780 | z = dataOut.data_spc[:,:,hei] / factor |
|
780 | z = dataOut.data_spc[:,:,hei] / factor | |
781 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
781 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
782 |
|
782 | |||
783 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
783 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
784 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) |
|
784 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) | |
785 |
|
785 | |||
786 | data['hei'] = hei |
|
786 | data['hei'] = hei | |
787 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
787 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step | |
788 | data['nProfiles'] = dataOut.nProfiles |
|
788 | data['nProfiles'] = dataOut.nProfiles | |
789 |
|
789 | |||
790 | return data, meta |
|
790 | return data, meta | |
791 |
|
791 | |||
792 | def plot(self): |
|
792 | def plot(self): | |
793 |
|
793 | |||
794 | self.x = self.data.times |
|
794 | self.x = self.data.times | |
795 | self.z = self.data[self.CODE] |
|
795 | self.z = self.data[self.CODE] | |
796 | self.y = self.data.xrange[0] |
|
796 | self.y = self.data.xrange[0] | |
797 |
|
797 | |||
798 | hei = self.data['hei'][-1] |
|
798 | hei = self.data['hei'][-1] | |
799 | DH = self.data['DH'][-1] |
|
799 | DH = self.data['DH'][-1] | |
800 | nProfiles = self.data['nProfiles'][-1] |
|
800 | nProfiles = self.data['nProfiles'][-1] | |
801 |
|
801 | |||
802 | self.ylabel = "Frequency (kHz)" |
|
802 | self.ylabel = "Frequency (kHz)" | |
803 |
|
803 | |||
804 | self.z = numpy.ma.masked_invalid(self.z) |
|
804 | self.z = numpy.ma.masked_invalid(self.z) | |
805 |
|
805 | |||
806 | if self.decimation is None: |
|
806 | if self.decimation is None: | |
807 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
807 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
808 | else: |
|
808 | else: | |
809 | x, y, z = self.fill_gaps(*self.decimate()) |
|
809 | x, y, z = self.fill_gaps(*self.decimate()) | |
810 |
|
810 | |||
811 | for n, ax in enumerate(self.axes): |
|
811 | for n, ax in enumerate(self.axes): | |
812 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
812 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
813 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
813 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
814 | data = self.data[-1] |
|
814 | data = self.data[-1] | |
815 | if ax.firsttime: |
|
815 | if ax.firsttime: | |
816 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
816 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
817 | vmin=self.zmin, |
|
817 | vmin=self.zmin, | |
818 | vmax=self.zmax, |
|
818 | vmax=self.zmax, | |
819 | cmap=plt.get_cmap(self.colormap) |
|
819 | cmap=plt.get_cmap(self.colormap) | |
820 | ) |
|
820 | ) | |
821 | else: |
|
821 | else: | |
822 | # ax.collections.remove(ax.collections[0]) # error while running |
|
822 | # ax.collections.remove(ax.collections[0]) # error while running | |
823 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
823 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
824 | vmin=self.zmin, |
|
824 | vmin=self.zmin, | |
825 | vmax=self.zmax, |
|
825 | vmax=self.zmax, | |
826 | cmap=plt.get_cmap(self.colormap) |
|
826 | cmap=plt.get_cmap(self.colormap) | |
827 | ) |
|
827 | ) | |
828 |
|
828 | |||
829 |
|
829 | |||
830 |
|
830 | |||
831 | class CoherencePlot(RTIPlot): |
|
831 | class CoherencePlot(RTIPlot): | |
832 | ''' |
|
832 | ''' | |
833 | Plot for Coherence data |
|
833 | Plot for Coherence data | |
834 | ''' |
|
834 | ''' | |
835 |
|
835 | |||
836 | CODE = 'coh' |
|
836 | CODE = 'coh' | |
837 | titles = None |
|
837 | titles = None | |
838 |
|
838 | |||
839 | def setup(self): |
|
839 | def setup(self): | |
840 | self.xaxis = 'time' |
|
840 | self.xaxis = 'time' | |
841 | self.ncols = 1 |
|
841 | self.ncols = 1 | |
842 | self.nrows = len(self.data.pairs) |
|
842 | self.nrows = len(self.data.pairs) | |
843 | self.nplots = len(self.data.pairs) |
|
843 | self.nplots = len(self.data.pairs) | |
844 | self.ylabel = 'Range [km]' |
|
844 | self.ylabel = 'Range [km]' | |
845 | self.xlabel = 'Time' |
|
845 | self.xlabel = 'Time' | |
846 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
846 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) | |
847 | if self.CODE == 'coh': |
|
847 | if self.CODE == 'coh': | |
848 | self.cb_label = '' |
|
848 | self.cb_label = '' | |
849 | self.titles = [ |
|
849 | self.titles = [ | |
850 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
850 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
851 | else: |
|
851 | else: | |
852 | self.cb_label = 'Degrees' |
|
852 | self.cb_label = 'Degrees' | |
853 | self.titles = [ |
|
853 | self.titles = [ | |
854 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
854 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
855 |
|
855 | |||
856 | def update(self, dataOut): |
|
856 | def update(self, dataOut): | |
857 |
|
857 | |||
858 | data = {} |
|
858 | data = {} | |
859 | meta = {} |
|
859 | meta = {} | |
860 | data['coh'] = dataOut.getCoherence() |
|
860 | data['coh'] = dataOut.getCoherence() | |
861 | meta['pairs'] = dataOut.pairsList |
|
861 | meta['pairs'] = dataOut.pairsList | |
862 |
|
862 | |||
863 | return data, meta |
|
863 | return data, meta | |
864 |
|
864 | |||
865 | class PhasePlot(CoherencePlot): |
|
865 | class PhasePlot(CoherencePlot): | |
866 | ''' |
|
866 | ''' | |
867 | Plot for Phase map data |
|
867 | Plot for Phase map data | |
868 | ''' |
|
868 | ''' | |
869 |
|
869 | |||
870 | CODE = 'phase' |
|
870 | CODE = 'phase' | |
871 | colormap = 'seismic' |
|
871 | colormap = 'seismic' | |
872 |
|
872 | |||
873 | def update(self, dataOut): |
|
873 | def update(self, dataOut): | |
874 |
|
874 | |||
875 | data = {} |
|
875 | data = {} | |
876 | meta = {} |
|
876 | meta = {} | |
877 | data['phase'] = dataOut.getCoherence(phase=True) |
|
877 | data['phase'] = dataOut.getCoherence(phase=True) | |
878 | meta['pairs'] = dataOut.pairsList |
|
878 | meta['pairs'] = dataOut.pairsList | |
879 |
|
879 | |||
880 | return data, meta |
|
880 | return data, meta | |
881 |
|
881 | |||
882 | class NoisePlot(Plot): |
|
882 | class NoisePlot(Plot): | |
883 | ''' |
|
883 | ''' | |
884 | Plot for noise |
|
884 | Plot for noise | |
885 | ''' |
|
885 | ''' | |
886 |
|
886 | |||
887 | CODE = 'noise' |
|
887 | CODE = 'noise' | |
888 | plot_type = 'scatterbuffer' |
|
888 | plot_type = 'scatterbuffer' | |
889 |
|
889 | |||
890 | def setup(self): |
|
890 | def setup(self): | |
891 | self.xaxis = 'time' |
|
891 | self.xaxis = 'time' | |
892 | self.ncols = 1 |
|
892 | self.ncols = 1 | |
893 | self.nrows = 1 |
|
893 | self.nrows = 1 | |
894 | self.nplots = 1 |
|
894 | self.nplots = 1 | |
895 | self.ylabel = 'Intensity [dB]' |
|
895 | self.ylabel = 'Intensity [dB]' | |
896 | self.xlabel = 'Time' |
|
896 | self.xlabel = 'Time' | |
897 | self.titles = ['Noise'] |
|
897 | self.titles = ['Noise'] | |
898 | self.colorbar = False |
|
898 | self.colorbar = False | |
899 | self.plots_adjust.update({'right': 0.85 }) |
|
899 | self.plots_adjust.update({'right': 0.85 }) | |
900 | self.titles = ['Noise Plot'] |
|
900 | self.titles = ['Noise Plot'] | |
901 |
|
901 | |||
902 | def update(self, dataOut): |
|
902 | def update(self, dataOut): | |
903 |
|
903 | |||
904 | data = {} |
|
904 | data = {} | |
905 | meta = {} |
|
905 | meta = {} | |
906 | noise = 10*numpy.log10(dataOut.getNoise()) |
|
906 | noise = 10*numpy.log10(dataOut.getNoise()) | |
907 | noise = noise.reshape(dataOut.nChannels, 1) |
|
907 | noise = noise.reshape(dataOut.nChannels, 1) | |
908 | data['noise'] = noise |
|
908 | data['noise'] = noise | |
909 | meta['yrange'] = numpy.array([]) |
|
909 | meta['yrange'] = numpy.array([]) | |
910 |
|
910 | |||
911 | return data, meta |
|
911 | return data, meta | |
912 |
|
912 | |||
913 | def plot(self): |
|
913 | def plot(self): | |
914 |
|
914 | |||
915 | x = self.data.times |
|
915 | x = self.data.times | |
916 | xmin = self.data.min_time |
|
916 | xmin = self.data.min_time | |
917 | xmax = xmin + self.xrange * 60 * 60 |
|
917 | xmax = xmin + self.xrange * 60 * 60 | |
918 | Y = self.data['noise'] |
|
918 | Y = self.data['noise'] | |
919 |
|
919 | |||
920 | if self.axes[0].firsttime: |
|
920 | if self.axes[0].firsttime: | |
921 | self.ymin = numpy.nanmin(Y) - 5 |
|
921 | self.ymin = numpy.nanmin(Y) - 5 | |
922 | self.ymax = numpy.nanmax(Y) + 5 |
|
922 | self.ymax = numpy.nanmax(Y) + 5 | |
923 | for ch in self.data.channels: |
|
923 | for ch in self.data.channels: | |
924 | y = Y[ch] |
|
924 | y = Y[ch] | |
925 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
925 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
926 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
926 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
927 | else: |
|
927 | else: | |
928 | for ch in self.data.channels: |
|
928 | for ch in self.data.channels: | |
929 | y = Y[ch] |
|
929 | y = Y[ch] | |
930 | self.axes[0].lines[ch].set_data(x, y) |
|
930 | self.axes[0].lines[ch].set_data(x, y) | |
931 |
|
931 | |||
932 | class PowerProfilePlot(Plot): |
|
932 | class PowerProfilePlot(Plot): | |
933 |
|
933 | |||
934 | CODE = 'pow_profile' |
|
934 | CODE = 'pow_profile' | |
935 | plot_type = 'scatter' |
|
935 | plot_type = 'scatter' | |
936 |
|
936 | |||
937 | def setup(self): |
|
937 | def setup(self): | |
938 |
|
938 | |||
939 | self.ncols = 1 |
|
939 | self.ncols = 1 | |
940 | self.nrows = 1 |
|
940 | self.nrows = 1 | |
941 | self.nplots = 1 |
|
941 | self.nplots = 1 | |
942 | self.height = 4 |
|
942 | self.height = 4 | |
943 | self.width = 3 |
|
943 | self.width = 3 | |
944 | self.ylabel = 'Range [km]' |
|
944 | self.ylabel = 'Range [km]' | |
945 | self.xlabel = 'Intensity [dB]' |
|
945 | self.xlabel = 'Intensity [dB]' | |
946 | self.titles = ['Power Profile'] |
|
946 | self.titles = ['Power Profile'] | |
947 | self.colorbar = False |
|
947 | self.colorbar = False | |
948 |
|
948 | |||
949 | def update(self, dataOut): |
|
949 | def update(self, dataOut): | |
950 |
|
950 | |||
951 | data = {} |
|
951 | data = {} | |
952 | meta = {} |
|
952 | meta = {} | |
953 | data[self.CODE] = dataOut.getPower() |
|
953 | data[self.CODE] = dataOut.getPower() | |
954 |
|
954 | |||
955 | return data, meta |
|
955 | return data, meta | |
956 |
|
956 | |||
957 | def plot(self): |
|
957 | def plot(self): | |
958 |
|
958 | |||
959 | y = self.data.yrange |
|
959 | y = self.data.yrange | |
960 | self.y = y |
|
960 | self.y = y | |
961 |
|
961 | |||
962 | x = self.data[-1][self.CODE] |
|
962 | x = self.data[-1][self.CODE] | |
963 |
|
963 | |||
964 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
964 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 | |
965 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
965 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 | |
966 |
|
966 | |||
967 | if self.axes[0].firsttime: |
|
967 | if self.axes[0].firsttime: | |
968 | for ch in self.data.channels: |
|
968 | for ch in self.data.channels: | |
969 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
969 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) | |
970 | plt.legend() |
|
970 | plt.legend() | |
971 | else: |
|
971 | else: | |
972 | for ch in self.data.channels: |
|
972 | for ch in self.data.channels: | |
973 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
973 | self.axes[0].lines[ch].set_data(x[ch], y) | |
974 |
|
974 | |||
975 |
|
975 | |||
976 | class SpectraCutPlot(Plot): |
|
976 | class SpectraCutPlot(Plot): | |
977 |
|
977 | |||
978 | CODE = 'spc_cut' |
|
978 | CODE = 'spc_cut' | |
979 | plot_type = 'scatter' |
|
979 | plot_type = 'scatter' | |
980 | buffering = False |
|
980 | buffering = False | |
981 | heights = [] |
|
981 | heights = [] | |
982 | channelList = [] |
|
982 | channelList = [] | |
983 | maintitle = "Spectra Cuts" |
|
983 | maintitle = "Spectra Cuts" | |
984 | flag_setIndex = False |
|
984 | flag_setIndex = False | |
985 |
|
985 | |||
986 | def setup(self): |
|
986 | def setup(self): | |
987 |
|
987 | |||
988 | self.nplots = len(self.data.channels) |
|
988 | self.nplots = len(self.data.channels) | |
989 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
989 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
990 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
990 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
991 | self.width = 4.5 * self.ncols + 2.5 |
|
991 | self.width = 4.5 * self.ncols + 2.5 | |
992 | self.height = 4.8 * self.nrows |
|
992 | self.height = 4.8 * self.nrows | |
993 | self.ylabel = 'Power [dB]' |
|
993 | self.ylabel = 'Power [dB]' | |
994 | self.colorbar = False |
|
994 | self.colorbar = False | |
995 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.9, 'bottom':0.08}) |
|
995 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.9, 'bottom':0.08}) | |
996 |
|
996 | |||
997 | if len(self.selectedHeightsList) > 0: |
|
997 | if len(self.selectedHeightsList) > 0: | |
998 | self.maintitle = "Spectra Cut"# for %d km " %(int(self.selectedHeight)) |
|
998 | self.maintitle = "Spectra Cut"# for %d km " %(int(self.selectedHeight)) | |
999 |
|
999 | |||
1000 |
|
1000 | |||
1001 |
|
1001 | |||
1002 | def update(self, dataOut): |
|
1002 | def update(self, dataOut): | |
1003 | if len(self.channelList) == 0: |
|
1003 | if len(self.channelList) == 0: | |
1004 | self.channelList = dataOut.channelList |
|
1004 | self.channelList = dataOut.channelList | |
1005 |
|
1005 | |||
1006 | self.heights = dataOut.heightList |
|
1006 | self.heights = dataOut.heightList | |
1007 | #print("sels: ",self.selectedHeightsList) |
|
1007 | #print("sels: ",self.selectedHeightsList) | |
1008 | if len(self.selectedHeightsList)>0 and not self.flag_setIndex: |
|
1008 | if len(self.selectedHeightsList)>0 and not self.flag_setIndex: | |
1009 |
|
1009 | |||
1010 | for sel_height in self.selectedHeightsList: |
|
1010 | for sel_height in self.selectedHeightsList: | |
1011 | index_list = numpy.where(self.heights >= sel_height) |
|
1011 | index_list = numpy.where(self.heights >= sel_height) | |
1012 | index_list = index_list[0] |
|
1012 | index_list = index_list[0] | |
1013 | self.height_index.append(index_list[0]) |
|
1013 | self.height_index.append(index_list[0]) | |
1014 | #print("sels i:"", self.height_index) |
|
1014 | #print("sels i:"", self.height_index) | |
1015 | self.flag_setIndex = True |
|
1015 | self.flag_setIndex = True | |
1016 | #print(self.height_index) |
|
1016 | #print(self.height_index) | |
1017 | data = {} |
|
1017 | data = {} | |
1018 | meta = {} |
|
1018 | meta = {} | |
1019 |
|
1019 | |||
1020 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter#*dataOut.nFFTPoints |
|
1020 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter#*dataOut.nFFTPoints | |
1021 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) |
|
1021 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) | |
1022 | noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights) |
|
1022 | noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights) | |
1023 |
|
1023 | |||
1024 |
|
1024 | |||
1025 | z = [] |
|
1025 | z = [] | |
1026 | for ch in range(dataOut.nChannels): |
|
1026 | for ch in range(dataOut.nChannels): | |
1027 | if hasattr(dataOut.normFactor,'shape'): |
|
1027 | if hasattr(dataOut.normFactor,'shape'): | |
1028 | z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) |
|
1028 | z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) | |
1029 | else: |
|
1029 | else: | |
1030 | z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
1030 | z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) | |
1031 |
|
1031 | |||
1032 | z = numpy.asarray(z) |
|
1032 | z = numpy.asarray(z) | |
1033 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1033 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
1034 | spc = 10*numpy.log10(z) |
|
1034 | spc = 10*numpy.log10(z) | |
1035 |
|
1035 | |||
1036 |
|
1036 | |||
1037 | data['spc'] = spc - noise |
|
1037 | data['spc'] = spc - noise | |
1038 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) |
|
1038 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
1039 |
|
1039 | |||
1040 | return data, meta |
|
1040 | return data, meta | |
1041 |
|
1041 | |||
1042 | def plot(self): |
|
1042 | def plot(self): | |
1043 | if self.xaxis == "frequency": |
|
1043 | if self.xaxis == "frequency": | |
1044 | x = self.data.xrange[0][0:] |
|
1044 | x = self.data.xrange[0][0:] | |
1045 | self.xlabel = "Frequency (kHz)" |
|
1045 | self.xlabel = "Frequency (kHz)" | |
1046 | elif self.xaxis == "time": |
|
1046 | elif self.xaxis == "time": | |
1047 | x = self.data.xrange[1] |
|
1047 | x = self.data.xrange[1] | |
1048 | self.xlabel = "Time (ms)" |
|
1048 | self.xlabel = "Time (ms)" | |
1049 | else: |
|
1049 | else: | |
1050 | x = self.data.xrange[2] |
|
1050 | x = self.data.xrange[2] | |
1051 | self.xlabel = "Velocity (m/s)" |
|
1051 | self.xlabel = "Velocity (m/s)" | |
1052 |
|
1052 | |||
1053 | self.titles = [] |
|
1053 | self.titles = [] | |
1054 |
|
1054 | |||
1055 | y = self.data.yrange |
|
1055 | y = self.data.yrange | |
1056 | z = self.data[-1]['spc'] |
|
1056 | z = self.data[-1]['spc'] | |
1057 | #print(z.shape) |
|
1057 | #print(z.shape) | |
1058 | if len(self.height_index) > 0: |
|
1058 | if len(self.height_index) > 0: | |
1059 | index = self.height_index |
|
1059 | index = self.height_index | |
1060 | else: |
|
1060 | else: | |
1061 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
1061 | index = numpy.arange(0, len(y), int((len(y))/9)) | |
1062 | #print("inde x ", index, self.axes) |
|
1062 | #print("inde x ", index, self.axes) | |
1063 |
|
1063 | |||
1064 | for n, ax in enumerate(self.axes): |
|
1064 | for n, ax in enumerate(self.axes): | |
1065 |
|
1065 | |||
1066 | if ax.firsttime: |
|
1066 | if ax.firsttime: | |
1067 |
|
1067 | |||
1068 |
|
1068 | |||
1069 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
1069 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
1070 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
1070 | self.xmin = self.xmin if self.xmin else -self.xmax | |
1071 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
1071 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) | |
1072 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
1072 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) | |
1073 |
|
1073 | |||
1074 |
|
1074 | |||
1075 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
1075 | ax.plt = ax.plot(x, z[n, :, index].T) | |
1076 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
1076 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] | |
1077 | self.figures[0].legend(ax.plt, labels, loc='center right', prop={'size': 8}) |
|
1077 | self.figures[0].legend(ax.plt, labels, loc='center right', prop={'size': 8}) | |
1078 | ax.minorticks_on() |
|
1078 | ax.minorticks_on() | |
1079 | ax.grid(which='major', axis='both') |
|
1079 | ax.grid(which='major', axis='both') | |
1080 | ax.grid(which='minor', axis='x') |
|
1080 | ax.grid(which='minor', axis='x') | |
1081 | else: |
|
1081 | else: | |
1082 | for i, line in enumerate(ax.plt): |
|
1082 | for i, line in enumerate(ax.plt): | |
1083 | line.set_data(x, z[n, :, index[i]]) |
|
1083 | line.set_data(x, z[n, :, index[i]]) | |
1084 |
|
1084 | |||
1085 |
|
1085 | |||
1086 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
1086 | self.titles.append('CH {}'.format(self.channelList[n])) | |
1087 | plt.suptitle(self.maintitle, fontsize=10) |
|
1087 | plt.suptitle(self.maintitle, fontsize=10) | |
1088 |
|
1088 | |||
1089 |
|
1089 | |||
1090 | class BeaconPhase(Plot): |
|
1090 | class BeaconPhase(Plot): | |
1091 |
|
1091 | |||
1092 | __isConfig = None |
|
1092 | __isConfig = None | |
1093 | __nsubplots = None |
|
1093 | __nsubplots = None | |
1094 |
|
1094 | |||
1095 | PREFIX = 'beacon_phase' |
|
1095 | PREFIX = 'beacon_phase' | |
1096 |
|
1096 | |||
1097 | def __init__(self): |
|
1097 | def __init__(self): | |
1098 | Plot.__init__(self) |
|
1098 | Plot.__init__(self) | |
1099 | self.timerange = 24*60*60 |
|
1099 | self.timerange = 24*60*60 | |
1100 | self.isConfig = False |
|
1100 | self.isConfig = False | |
1101 | self.__nsubplots = 1 |
|
1101 | self.__nsubplots = 1 | |
1102 | self.counter_imagwr = 0 |
|
1102 | self.counter_imagwr = 0 | |
1103 | self.WIDTH = 800 |
|
1103 | self.WIDTH = 800 | |
1104 | self.HEIGHT = 400 |
|
1104 | self.HEIGHT = 400 | |
1105 | self.WIDTHPROF = 120 |
|
1105 | self.WIDTHPROF = 120 | |
1106 | self.HEIGHTPROF = 0 |
|
1106 | self.HEIGHTPROF = 0 | |
1107 | self.xdata = None |
|
1107 | self.xdata = None | |
1108 | self.ydata = None |
|
1108 | self.ydata = None | |
1109 |
|
1109 | |||
1110 | self.PLOT_CODE = BEACON_CODE |
|
1110 | self.PLOT_CODE = BEACON_CODE | |
1111 |
|
1111 | |||
1112 | self.FTP_WEI = None |
|
1112 | self.FTP_WEI = None | |
1113 | self.EXP_CODE = None |
|
1113 | self.EXP_CODE = None | |
1114 | self.SUB_EXP_CODE = None |
|
1114 | self.SUB_EXP_CODE = None | |
1115 | self.PLOT_POS = None |
|
1115 | self.PLOT_POS = None | |
1116 |
|
1116 | |||
1117 | self.filename_phase = None |
|
1117 | self.filename_phase = None | |
1118 |
|
1118 | |||
1119 | self.figfile = None |
|
1119 | self.figfile = None | |
1120 |
|
1120 | |||
1121 | self.xmin = None |
|
1121 | self.xmin = None | |
1122 | self.xmax = None |
|
1122 | self.xmax = None | |
1123 |
|
1123 | |||
1124 | def getSubplots(self): |
|
1124 | def getSubplots(self): | |
1125 |
|
1125 | |||
1126 | ncol = 1 |
|
1126 | ncol = 1 | |
1127 | nrow = 1 |
|
1127 | nrow = 1 | |
1128 |
|
1128 | |||
1129 | return nrow, ncol |
|
1129 | return nrow, ncol | |
1130 |
|
1130 | |||
1131 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1131 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
1132 |
|
1132 | |||
1133 | self.__showprofile = showprofile |
|
1133 | self.__showprofile = showprofile | |
1134 | self.nplots = nplots |
|
1134 | self.nplots = nplots | |
1135 |
|
1135 | |||
1136 | ncolspan = 7 |
|
1136 | ncolspan = 7 | |
1137 | colspan = 6 |
|
1137 | colspan = 6 | |
1138 | self.__nsubplots = 2 |
|
1138 | self.__nsubplots = 2 | |
1139 |
|
1139 | |||
1140 | self.createFigure(id = id, |
|
1140 | self.createFigure(id = id, | |
1141 | wintitle = wintitle, |
|
1141 | wintitle = wintitle, | |
1142 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1142 | widthplot = self.WIDTH+self.WIDTHPROF, | |
1143 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1143 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
1144 | show=show) |
|
1144 | show=show) | |
1145 |
|
1145 | |||
1146 | nrow, ncol = self.getSubplots() |
|
1146 | nrow, ncol = self.getSubplots() | |
1147 |
|
1147 | |||
1148 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1148 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
1149 |
|
1149 | |||
1150 | def save_phase(self, filename_phase): |
|
1150 | def save_phase(self, filename_phase): | |
1151 | f = open(filename_phase,'w+') |
|
1151 | f = open(filename_phase,'w+') | |
1152 | f.write('\n\n') |
|
1152 | f.write('\n\n') | |
1153 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1153 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
1154 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1154 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
1155 | f.close() |
|
1155 | f.close() | |
1156 |
|
1156 | |||
1157 | def save_data(self, filename_phase, data, data_datetime): |
|
1157 | def save_data(self, filename_phase, data, data_datetime): | |
1158 | f=open(filename_phase,'a') |
|
1158 | f=open(filename_phase,'a') | |
1159 | timetuple_data = data_datetime.timetuple() |
|
1159 | timetuple_data = data_datetime.timetuple() | |
1160 | day = str(timetuple_data.tm_mday) |
|
1160 | day = str(timetuple_data.tm_mday) | |
1161 | month = str(timetuple_data.tm_mon) |
|
1161 | month = str(timetuple_data.tm_mon) | |
1162 | year = str(timetuple_data.tm_year) |
|
1162 | year = str(timetuple_data.tm_year) | |
1163 | hour = str(timetuple_data.tm_hour) |
|
1163 | hour = str(timetuple_data.tm_hour) | |
1164 | minute = str(timetuple_data.tm_min) |
|
1164 | minute = str(timetuple_data.tm_min) | |
1165 | second = str(timetuple_data.tm_sec) |
|
1165 | second = str(timetuple_data.tm_sec) | |
1166 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1166 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
1167 | f.close() |
|
1167 | f.close() | |
1168 |
|
1168 | |||
1169 | def plot(self): |
|
1169 | def plot(self): | |
1170 | log.warning('TODO: Not yet implemented...') |
|
1170 | log.warning('TODO: Not yet implemented...') | |
1171 |
|
1171 | |||
1172 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1172 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
1173 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1173 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
1174 | timerange=None, |
|
1174 | timerange=None, | |
1175 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1175 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
1176 | server=None, folder=None, username=None, password=None, |
|
1176 | server=None, folder=None, username=None, password=None, | |
1177 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1177 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1178 |
|
1178 | |||
1179 | if dataOut.flagNoData: |
|
1179 | if dataOut.flagNoData: | |
1180 | return dataOut |
|
1180 | return dataOut | |
1181 |
|
1181 | |||
1182 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1182 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
1183 | return |
|
1183 | return | |
1184 |
|
1184 | |||
1185 | if pairsList == None: |
|
1185 | if pairsList == None: | |
1186 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1186 | pairsIndexList = dataOut.pairsIndexList[:10] | |
1187 | else: |
|
1187 | else: | |
1188 | pairsIndexList = [] |
|
1188 | pairsIndexList = [] | |
1189 | for pair in pairsList: |
|
1189 | for pair in pairsList: | |
1190 | if pair not in dataOut.pairsList: |
|
1190 | if pair not in dataOut.pairsList: | |
1191 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
1191 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) | |
1192 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1192 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
1193 |
|
1193 | |||
1194 | if pairsIndexList == []: |
|
1194 | if pairsIndexList == []: | |
1195 | return |
|
1195 | return | |
1196 |
|
1196 | |||
1197 | # if len(pairsIndexList) > 4: |
|
1197 | # if len(pairsIndexList) > 4: | |
1198 | # pairsIndexList = pairsIndexList[0:4] |
|
1198 | # pairsIndexList = pairsIndexList[0:4] | |
1199 |
|
1199 | |||
1200 | hmin_index = None |
|
1200 | hmin_index = None | |
1201 | hmax_index = None |
|
1201 | hmax_index = None | |
1202 |
|
1202 | |||
1203 | if hmin != None and hmax != None: |
|
1203 | if hmin != None and hmax != None: | |
1204 | indexes = numpy.arange(dataOut.nHeights) |
|
1204 | indexes = numpy.arange(dataOut.nHeights) | |
1205 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1205 | hmin_list = indexes[dataOut.heightList >= hmin] | |
1206 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1206 | hmax_list = indexes[dataOut.heightList <= hmax] | |
1207 |
|
1207 | |||
1208 | if hmin_list.any(): |
|
1208 | if hmin_list.any(): | |
1209 | hmin_index = hmin_list[0] |
|
1209 | hmin_index = hmin_list[0] | |
1210 |
|
1210 | |||
1211 | if hmax_list.any(): |
|
1211 | if hmax_list.any(): | |
1212 | hmax_index = hmax_list[-1]+1 |
|
1212 | hmax_index = hmax_list[-1]+1 | |
1213 |
|
1213 | |||
1214 | x = dataOut.getTimeRange() |
|
1214 | x = dataOut.getTimeRange() | |
1215 |
|
1215 | |||
1216 | thisDatetime = dataOut.datatime |
|
1216 | thisDatetime = dataOut.datatime | |
1217 |
|
1217 | |||
1218 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1218 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1219 | xlabel = "Local Time" |
|
1219 | xlabel = "Local Time" | |
1220 | ylabel = "Phase (degrees)" |
|
1220 | ylabel = "Phase (degrees)" | |
1221 |
|
1221 | |||
1222 | update_figfile = False |
|
1222 | update_figfile = False | |
1223 |
|
1223 | |||
1224 | nplots = len(pairsIndexList) |
|
1224 | nplots = len(pairsIndexList) | |
1225 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1225 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
1226 | for i in range(nplots): |
|
1226 | for i in range(nplots): | |
1227 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1227 | pair = dataOut.pairsList[pairsIndexList[i]] | |
1228 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1228 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
1229 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1229 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
1230 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1230 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
1231 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1231 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
1232 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1232 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
1233 |
|
1233 | |||
1234 | if dataOut.beacon_heiIndexList: |
|
1234 | if dataOut.beacon_heiIndexList: | |
1235 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1235 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
1236 | else: |
|
1236 | else: | |
1237 | phase_beacon[i] = numpy.average(phase) |
|
1237 | phase_beacon[i] = numpy.average(phase) | |
1238 |
|
1238 | |||
1239 | if not self.isConfig: |
|
1239 | if not self.isConfig: | |
1240 |
|
1240 | |||
1241 | nplots = len(pairsIndexList) |
|
1241 | nplots = len(pairsIndexList) | |
1242 |
|
1242 | |||
1243 | self.setup(id=id, |
|
1243 | self.setup(id=id, | |
1244 | nplots=nplots, |
|
1244 | nplots=nplots, | |
1245 | wintitle=wintitle, |
|
1245 | wintitle=wintitle, | |
1246 | showprofile=showprofile, |
|
1246 | showprofile=showprofile, | |
1247 | show=show) |
|
1247 | show=show) | |
1248 |
|
1248 | |||
1249 | if timerange != None: |
|
1249 | if timerange != None: | |
1250 | self.timerange = timerange |
|
1250 | self.timerange = timerange | |
1251 |
|
1251 | |||
1252 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1252 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1253 |
|
1253 | |||
1254 | if ymin == None: ymin = 0 |
|
1254 | if ymin == None: ymin = 0 | |
1255 | if ymax == None: ymax = 360 |
|
1255 | if ymax == None: ymax = 360 | |
1256 |
|
1256 | |||
1257 | self.FTP_WEI = ftp_wei |
|
1257 | self.FTP_WEI = ftp_wei | |
1258 | self.EXP_CODE = exp_code |
|
1258 | self.EXP_CODE = exp_code | |
1259 | self.SUB_EXP_CODE = sub_exp_code |
|
1259 | self.SUB_EXP_CODE = sub_exp_code | |
1260 | self.PLOT_POS = plot_pos |
|
1260 | self.PLOT_POS = plot_pos | |
1261 |
|
1261 | |||
1262 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1262 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1263 | self.isConfig = True |
|
1263 | self.isConfig = True | |
1264 | self.figfile = figfile |
|
1264 | self.figfile = figfile | |
1265 | self.xdata = numpy.array([]) |
|
1265 | self.xdata = numpy.array([]) | |
1266 | self.ydata = numpy.array([]) |
|
1266 | self.ydata = numpy.array([]) | |
1267 |
|
1267 | |||
1268 | update_figfile = True |
|
1268 | update_figfile = True | |
1269 |
|
1269 | |||
1270 | #open file beacon phase |
|
1270 | #open file beacon phase | |
1271 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1271 | path = '%s%03d' %(self.PREFIX, self.id) | |
1272 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1272 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
1273 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1273 | self.filename_phase = os.path.join(figpath,beacon_file) | |
1274 |
|
1274 | |||
1275 | self.setWinTitle(title) |
|
1275 | self.setWinTitle(title) | |
1276 |
|
1276 | |||
1277 |
|
1277 | |||
1278 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1278 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1279 |
|
1279 | |||
1280 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1280 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
1281 |
|
1281 | |||
1282 | axes = self.axesList[0] |
|
1282 | axes = self.axesList[0] | |
1283 |
|
1283 | |||
1284 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1284 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
1285 |
|
1285 | |||
1286 | if len(self.ydata)==0: |
|
1286 | if len(self.ydata)==0: | |
1287 | self.ydata = phase_beacon.reshape(-1,1) |
|
1287 | self.ydata = phase_beacon.reshape(-1,1) | |
1288 | else: |
|
1288 | else: | |
1289 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1289 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
1290 |
|
1290 | |||
1291 |
|
1291 | |||
1292 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1292 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
1293 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1293 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
1294 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1294 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
1295 | XAxisAsTime=True, grid='both' |
|
1295 | XAxisAsTime=True, grid='both' | |
1296 | ) |
|
1296 | ) | |
1297 |
|
1297 | |||
1298 | self.draw() |
|
1298 | self.draw() | |
1299 |
|
1299 | |||
1300 | if dataOut.ltctime >= self.xmax: |
|
1300 | if dataOut.ltctime >= self.xmax: | |
1301 | self.counter_imagwr = wr_period |
|
1301 | self.counter_imagwr = wr_period | |
1302 | self.isConfig = False |
|
1302 | self.isConfig = False | |
1303 | update_figfile = True |
|
1303 | update_figfile = True | |
1304 |
|
1304 | |||
1305 | self.save(figpath=figpath, |
|
1305 | self.save(figpath=figpath, | |
1306 | figfile=figfile, |
|
1306 | figfile=figfile, | |
1307 | save=save, |
|
1307 | save=save, | |
1308 | ftp=ftp, |
|
1308 | ftp=ftp, | |
1309 | wr_period=wr_period, |
|
1309 | wr_period=wr_period, | |
1310 | thisDatetime=thisDatetime, |
|
1310 | thisDatetime=thisDatetime, | |
1311 | update_figfile=update_figfile) |
|
1311 | update_figfile=update_figfile) | |
1312 |
|
1312 | |||
1313 | return dataOut |
|
1313 | return dataOut | |
1314 |
|
1314 | |||
1315 | ##################################### |
|
1315 | ##################################### | |
1316 | class NoiselessSpectraPlot(Plot): |
|
1316 | class NoiselessSpectraPlot(Plot): | |
1317 | ''' |
|
1317 | ''' | |
1318 | Plot for Spectra data, subtracting |
|
1318 | Plot for Spectra data, subtracting | |
1319 | the noise in all channels, using for |
|
1319 | the noise in all channels, using for | |
1320 | amisr-14 data |
|
1320 | amisr-14 data | |
1321 | ''' |
|
1321 | ''' | |
1322 |
|
1322 | |||
1323 | CODE = 'noiseless_spc' |
|
1323 | CODE = 'noiseless_spc' | |
1324 | colormap = 'jet' |
|
1324 | colormap = 'jet' | |
1325 | plot_type = 'pcolor' |
|
1325 | plot_type = 'pcolor' | |
1326 | buffering = False |
|
1326 | buffering = False | |
1327 | channelList = [] |
|
1327 | channelList = [] | |
1328 | last_noise = None |
|
1328 | last_noise = None | |
1329 |
|
1329 | |||
1330 | def setup(self): |
|
1330 | def setup(self): | |
1331 |
|
1331 | |||
1332 | self.nplots = len(self.data.channels) |
|
1332 | self.nplots = len(self.data.channels) | |
1333 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
1333 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
1334 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
1334 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
1335 | self.height = 3.5 * self.nrows |
|
1335 | self.height = 3.5 * self.nrows | |
1336 |
|
1336 | |||
1337 | self.cb_label = 'dB' |
|
1337 | self.cb_label = 'dB' | |
1338 | if self.showprofile: |
|
1338 | if self.showprofile: | |
1339 | self.width = 5.8 * self.ncols |
|
1339 | self.width = 5.8 * self.ncols | |
1340 | else: |
|
1340 | else: | |
1341 | self.width = 4.8* self.ncols |
|
1341 | self.width = 4.8* self.ncols | |
1342 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.92, 'bottom': 0.12}) |
|
1342 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.92, 'bottom': 0.12}) | |
1343 |
|
1343 | |||
1344 | self.ylabel = 'Range [km]' |
|
1344 | self.ylabel = 'Range [km]' | |
1345 |
|
1345 | |||
1346 |
|
1346 | |||
1347 | def update_list(self,dataOut): |
|
1347 | def update_list(self,dataOut): | |
1348 | if len(self.channelList) == 0: |
|
1348 | if len(self.channelList) == 0: | |
1349 | self.channelList = dataOut.channelList |
|
1349 | self.channelList = dataOut.channelList | |
1350 |
|
1350 | |||
1351 | def update(self, dataOut): |
|
1351 | def update(self, dataOut): | |
1352 |
|
1352 | |||
1353 | self.update_list(dataOut) |
|
1353 | self.update_list(dataOut) | |
1354 | data = {} |
|
1354 | data = {} | |
1355 | meta = {} |
|
1355 | meta = {} | |
1356 |
|
1356 | |||
1357 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
1357 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter | |
1358 | n0 = (dataOut.getNoise()/norm) |
|
1358 | n0 = (dataOut.getNoise()/norm) | |
1359 | noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights) |
|
1359 | noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights) | |
1360 | noise = 10*numpy.log10(noise) |
|
1360 | noise = 10*numpy.log10(noise) | |
1361 |
|
1361 | |||
1362 | z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights)) |
|
1362 | z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights)) | |
1363 | for ch in range(dataOut.nChannels): |
|
1363 | for ch in range(dataOut.nChannels): | |
1364 | if hasattr(dataOut.normFactor,'ndim'): |
|
1364 | if hasattr(dataOut.normFactor,'ndim'): | |
1365 | if dataOut.normFactor.ndim > 1: |
|
1365 | if dataOut.normFactor.ndim > 1: | |
1366 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) |
|
1366 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) | |
1367 | else: |
|
1367 | else: | |
1368 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
1368 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) | |
1369 | else: |
|
1369 | else: | |
1370 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
1370 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) | |
1371 |
|
1371 | |||
1372 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1372 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
1373 | spc = 10*numpy.log10(z) |
|
1373 | spc = 10*numpy.log10(z) | |
1374 |
|
1374 | |||
1375 |
|
1375 | |||
1376 | data['spc'] = spc - noise |
|
1376 | data['spc'] = spc - noise | |
1377 | #print(spc.shape) |
|
1377 | #print(spc.shape) | |
1378 | data['rti'] = spc.mean(axis=1) |
|
1378 | data['rti'] = spc.mean(axis=1) | |
1379 | data['noise'] = noise |
|
1379 | data['noise'] = noise | |
1380 |
|
1380 | |||
1381 |
|
1381 | |||
1382 |
|
1382 | |||
1383 | # data['noise'] = noise |
|
1383 | # data['noise'] = noise | |
1384 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) |
|
1384 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
1385 |
|
1385 | |||
1386 | return data, meta |
|
1386 | return data, meta | |
1387 |
|
1387 | |||
1388 | def plot(self): |
|
1388 | def plot(self): | |
1389 | if self.xaxis == "frequency": |
|
1389 | if self.xaxis == "frequency": | |
1390 | x = self.data.xrange[0] |
|
1390 | x = self.data.xrange[0] | |
1391 | self.xlabel = "Frequency (kHz)" |
|
1391 | self.xlabel = "Frequency (kHz)" | |
1392 | elif self.xaxis == "time": |
|
1392 | elif self.xaxis == "time": | |
1393 | x = self.data.xrange[1] |
|
1393 | x = self.data.xrange[1] | |
1394 | self.xlabel = "Time (ms)" |
|
1394 | self.xlabel = "Time (ms)" | |
1395 | else: |
|
1395 | else: | |
1396 | x = self.data.xrange[2] |
|
1396 | x = self.data.xrange[2] | |
1397 | self.xlabel = "Velocity (m/s)" |
|
1397 | self.xlabel = "Velocity (m/s)" | |
1398 |
|
1398 | |||
1399 | self.titles = [] |
|
1399 | self.titles = [] | |
1400 | y = self.data.yrange |
|
1400 | y = self.data.yrange | |
1401 | self.y = y |
|
1401 | self.y = y | |
1402 |
|
1402 | |||
1403 | data = self.data[-1] |
|
1403 | data = self.data[-1] | |
1404 | z = data['spc'] |
|
1404 | z = data['spc'] | |
1405 |
|
1405 | |||
1406 | for n, ax in enumerate(self.axes): |
|
1406 | for n, ax in enumerate(self.axes): | |
1407 | #noise = data['noise'][n] |
|
1407 | #noise = data['noise'][n] | |
1408 |
|
1408 | |||
1409 | if ax.firsttime: |
|
1409 | if ax.firsttime: | |
1410 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
1410 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
1411 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
1411 | self.xmin = self.xmin if self.xmin else -self.xmax | |
1412 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
1412 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
1413 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
1413 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
1414 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1414 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
1415 | vmin=self.zmin, |
|
1415 | vmin=self.zmin, | |
1416 | vmax=self.zmax, |
|
1416 | vmax=self.zmax, | |
1417 | cmap=plt.get_cmap(self.colormap) |
|
1417 | cmap=plt.get_cmap(self.colormap) | |
1418 | ) |
|
1418 | ) | |
1419 |
|
1419 | |||
1420 | if self.showprofile: |
|
1420 | if self.showprofile: | |
1421 | ax.plt_profile = self.pf_axes[n].plot( |
|
1421 | ax.plt_profile = self.pf_axes[n].plot( | |
1422 | data['rti'][n], y)[0] |
|
1422 | data['rti'][n], y)[0] | |
1423 |
|
1423 | |||
1424 |
|
1424 | |||
1425 | else: |
|
1425 | else: | |
1426 | ax.plt.set_array(z[n].T.ravel()) |
|
1426 | ax.plt.set_array(z[n].T.ravel()) | |
1427 | if self.showprofile: |
|
1427 | if self.showprofile: | |
1428 | ax.plt_profile.set_data(data['rti'][n], y) |
|
1428 | ax.plt_profile.set_data(data['rti'][n], y) | |
1429 |
|
1429 | |||
1430 |
|
1430 | |||
1431 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
1431 | self.titles.append('CH {}'.format(self.channelList[n])) | |
1432 |
|
1432 | |||
1433 |
|
1433 | |||
1434 | class NoiselessRTIPlot(RTIPlot): |
|
1434 | class NoiselessRTIPlot(RTIPlot): | |
1435 | ''' |
|
1435 | ''' | |
1436 | Plot for RTI data |
|
1436 | Plot for RTI data | |
1437 | ''' |
|
1437 | ''' | |
1438 |
|
1438 | |||
1439 | CODE = 'noiseless_rti' |
|
1439 | CODE = 'noiseless_rti' | |
1440 | colormap = 'jet' |
|
1440 | colormap = 'jet' | |
1441 | plot_type = 'pcolorbuffer' |
|
1441 | plot_type = 'pcolorbuffer' | |
1442 | titles = None |
|
1442 | titles = None | |
1443 | channelList = [] |
|
1443 | channelList = [] | |
1444 | elevationList = [] |
|
1444 | elevationList = [] | |
1445 | azimuthList = [] |
|
1445 | azimuthList = [] | |
1446 | last_noise = None |
|
1446 | last_noise = None | |
1447 |
|
1447 | |||
1448 | def setup(self): |
|
1448 | def setup(self): | |
1449 | self.xaxis = 'time' |
|
1449 | self.xaxis = 'time' | |
1450 | self.ncols = 1 |
|
1450 | self.ncols = 1 | |
1451 | #print("dataChannels ",self.data.channels) |
|
1451 | #print("dataChannels ",self.data.channels) | |
1452 | self.nrows = len(self.data.channels) |
|
1452 | self.nrows = len(self.data.channels) | |
1453 | self.nplots = len(self.data.channels) |
|
1453 | self.nplots = len(self.data.channels) | |
1454 | self.ylabel = 'Range [km]' |
|
1454 | self.ylabel = 'Range [km]' | |
1455 | #self.xlabel = 'Time' |
|
1455 | #self.xlabel = 'Time' | |
1456 | self.cb_label = 'dB' |
|
1456 | self.cb_label = 'dB' | |
1457 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
1457 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) | |
1458 | self.titles = ['{} Channel {}'.format( |
|
1458 | self.titles = ['{} Channel {}'.format( | |
1459 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
1459 | self.CODE.upper(), x) for x in range(self.nplots)] | |
1460 |
|
1460 | |||
1461 | def update_list(self,dataOut): |
|
1461 | def update_list(self,dataOut): | |
1462 | if len(self.channelList) == 0: |
|
1462 | if len(self.channelList) == 0: | |
1463 | self.channelList = dataOut.channelList |
|
1463 | self.channelList = dataOut.channelList | |
1464 | if len(self.elevationList) == 0: |
|
1464 | if len(self.elevationList) == 0: | |
1465 | self.elevationList = dataOut.elevationList |
|
1465 | self.elevationList = dataOut.elevationList | |
1466 | if len(self.azimuthList) == 0: |
|
1466 | if len(self.azimuthList) == 0: | |
1467 | self.azimuthList = dataOut.azimuthList |
|
1467 | self.azimuthList = dataOut.azimuthList | |
1468 |
|
1468 | |||
1469 | def update(self, dataOut): |
|
1469 | def update(self, dataOut): | |
1470 | if len(self.channelList) == 0: |
|
1470 | if len(self.channelList) == 0: | |
1471 | self.update_list(dataOut) |
|
1471 | self.update_list(dataOut) | |
1472 |
|
1472 | |||
1473 | data = {} |
|
1473 | data = {} | |
1474 | meta = {} |
|
1474 | meta = {} | |
1475 | #print(dataOut.max_nIncohInt, dataOut.nIncohInt) |
|
1475 | #print(dataOut.max_nIncohInt, dataOut.nIncohInt) | |
1476 | #print(dataOut.windowOfFilter,dataOut.nCohInt,dataOut.nProfiles,dataOut.max_nIncohInt,dataOut.nIncohInt |
|
1476 | #print(dataOut.windowOfFilter,dataOut.nCohInt,dataOut.nProfiles,dataOut.max_nIncohInt,dataOut.nIncohInt | |
1477 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
1477 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter | |
1478 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) |
|
1478 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) | |
1479 | data['noise'] = n0 |
|
1479 | data['noise'] = n0 | |
1480 | noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights) |
|
1480 | noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights) | |
1481 | noiseless_data = dataOut.getPower() - noise |
|
1481 | noiseless_data = dataOut.getPower() - noise | |
1482 |
|
1482 | |||
1483 | #print("power, noise:", dataOut.getPower(), n0) |
|
1483 | #print("power, noise:", dataOut.getPower(), n0) | |
1484 | #print(noise) |
|
1484 | #print(noise) | |
1485 | #print(noiseless_data) |
|
1485 | #print(noiseless_data) | |
1486 |
|
1486 | |||
1487 | data['noiseless_rti'] = noiseless_data |
|
1487 | data['noiseless_rti'] = noiseless_data | |
1488 |
|
1488 | |||
1489 | return data, meta |
|
1489 | return data, meta | |
1490 |
|
1490 | |||
1491 | def plot(self): |
|
1491 | def plot(self): | |
1492 | from matplotlib import pyplot as plt |
|
1492 | from matplotlib import pyplot as plt | |
1493 | self.x = self.data.times |
|
1493 | self.x = self.data.times | |
1494 | self.y = self.data.yrange |
|
1494 | self.y = self.data.yrange | |
1495 | self.z = self.data['noiseless_rti'] |
|
1495 | self.z = self.data['noiseless_rti'] | |
1496 | self.z = numpy.array(self.z, dtype=float) |
|
1496 | self.z = numpy.array(self.z, dtype=float) | |
1497 | self.z = numpy.ma.masked_invalid(self.z) |
|
1497 | self.z = numpy.ma.masked_invalid(self.z) | |
1498 |
|
1498 | |||
1499 |
|
1499 | |||
1500 | try: |
|
1500 | try: | |
1501 | if self.channelList != None: |
|
1501 | if self.channelList != None: | |
1502 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
1502 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: | |
1503 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
1503 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( | |
1504 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
1504 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] | |
1505 | else: |
|
1505 | else: | |
1506 | self.titles = ['{} Channel {}'.format( |
|
1506 | self.titles = ['{} Channel {}'.format( | |
1507 | self.CODE.upper(), x) for x in self.channelList] |
|
1507 | self.CODE.upper(), x) for x in self.channelList] | |
1508 | except: |
|
1508 | except: | |
1509 | if self.channelList.any() != None: |
|
1509 | if self.channelList.any() != None: | |
1510 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
1510 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: | |
1511 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
1511 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( | |
1512 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
1512 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] | |
1513 | else: |
|
1513 | else: | |
1514 | self.titles = ['{} Channel {}'.format( |
|
1514 | self.titles = ['{} Channel {}'.format( | |
1515 | self.CODE.upper(), x) for x in self.channelList] |
|
1515 | self.CODE.upper(), x) for x in self.channelList] | |
1516 |
|
1516 | |||
1517 |
|
1517 | |||
1518 | if self.decimation is None: |
|
1518 | if self.decimation is None: | |
1519 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1519 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
1520 | else: |
|
1520 | else: | |
1521 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1521 | x, y, z = self.fill_gaps(*self.decimate()) | |
1522 |
|
1522 | |||
1523 | dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes |
|
1523 | dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes | |
1524 | #print("plot shapes ", z.shape, x.shape, y.shape) |
|
1524 | #print("plot shapes ", z.shape, x.shape, y.shape) | |
1525 | #print(self.axes) |
|
1525 | #print(self.axes) | |
1526 | for n, ax in enumerate(self.axes): |
|
1526 | for n, ax in enumerate(self.axes): | |
1527 |
|
1527 | |||
1528 |
|
1528 | |||
1529 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
1529 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
1530 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
1530 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
1531 | data = self.data[-1] |
|
1531 | data = self.data[-1] | |
1532 | if ax.firsttime: |
|
1532 | if ax.firsttime: | |
1533 | if (n+1) == len(self.channelList): |
|
1533 | if (n+1) == len(self.channelList): | |
1534 | ax.set_xlabel('Time') |
|
1534 | ax.set_xlabel('Time') | |
1535 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1535 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
1536 | vmin=self.zmin, |
|
1536 | vmin=self.zmin, | |
1537 | vmax=self.zmax, |
|
1537 | vmax=self.zmax, | |
1538 | cmap=plt.get_cmap(self.colormap) |
|
1538 | cmap=plt.get_cmap(self.colormap) | |
1539 | ) |
|
1539 | ) | |
1540 | if self.showprofile: |
|
1540 | if self.showprofile: | |
1541 | ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0] |
|
1541 | ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0] | |
1542 |
|
1542 | |||
1543 | else: |
|
1543 | else: | |
1544 | # ax.collections.remove(ax.collections[0]) # error while running |
|
1544 | # ax.collections.remove(ax.collections[0]) # error while running | |
1545 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1545 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
1546 | vmin=self.zmin, |
|
1546 | vmin=self.zmin, | |
1547 | vmax=self.zmax, |
|
1547 | vmax=self.zmax, | |
1548 | cmap=plt.get_cmap(self.colormap) |
|
1548 | cmap=plt.get_cmap(self.colormap) | |
1549 | ) |
|
1549 | ) | |
1550 | if self.showprofile: |
|
1550 | if self.showprofile: | |
1551 | ax.plot_profile.set_data(data['noiseless_rti'][n], self.y) |
|
1551 | ax.plot_profile.set_data(data['noiseless_rti'][n], self.y) | |
1552 | # if "noise" in self.data: |
|
1552 | # if "noise" in self.data: | |
1553 | # #ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y) |
|
1553 | # #ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y) | |
1554 | # ax.plot_noise.set_data(data['noise'][n], self.y) |
|
1554 | # ax.plot_noise.set_data(data['noise'][n], self.y) | |
1555 |
|
1555 | |||
1556 |
|
1556 | |||
1557 | class OutliersRTIPlot(Plot): |
|
1557 | class OutliersRTIPlot(Plot): | |
1558 | ''' |
|
1558 | ''' | |
1559 | Plot for data_xxxx object |
|
1559 | Plot for data_xxxx object | |
1560 | ''' |
|
1560 | ''' | |
1561 |
|
1561 | |||
1562 | CODE = 'outlier_rtc' # Range Time Counts |
|
1562 | CODE = 'outlier_rtc' # Range Time Counts | |
1563 | colormap = 'cool' |
|
1563 | colormap = 'cool' | |
1564 | plot_type = 'pcolorbuffer' |
|
1564 | plot_type = 'pcolorbuffer' | |
1565 |
|
1565 | |||
1566 | def setup(self): |
|
1566 | def setup(self): | |
1567 | self.xaxis = 'time' |
|
1567 | self.xaxis = 'time' | |
1568 | self.ncols = 1 |
|
1568 | self.ncols = 1 | |
1569 | self.nrows = self.data.shape('outlier_rtc')[0] |
|
1569 | self.nrows = self.data.shape('outlier_rtc')[0] | |
1570 | self.nplots = self.nrows |
|
1570 | self.nplots = self.nrows | |
1571 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
1571 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) | |
1572 |
|
1572 | |||
1573 |
|
1573 | |||
1574 | if not self.xlabel: |
|
1574 | if not self.xlabel: | |
1575 | self.xlabel = 'Time' |
|
1575 | self.xlabel = 'Time' | |
1576 |
|
1576 | |||
1577 | self.ylabel = 'Height [km]' |
|
1577 | self.ylabel = 'Height [km]' | |
1578 | if not self.titles: |
|
1578 | if not self.titles: | |
1579 | self.titles = ['Outliers Ch:{}'.format(x) for x in range(self.nrows)] |
|
1579 | self.titles = ['Outliers Ch:{}'.format(x) for x in range(self.nrows)] | |
1580 |
|
1580 | |||
1581 | def update(self, dataOut): |
|
1581 | def update(self, dataOut): | |
1582 |
|
1582 | |||
1583 | data = {} |
|
1583 | data = {} | |
1584 | data['outlier_rtc'] = dataOut.data_outlier |
|
1584 | data['outlier_rtc'] = dataOut.data_outlier | |
1585 |
|
1585 | |||
1586 | meta = {} |
|
1586 | meta = {} | |
1587 |
|
1587 | |||
1588 | return data, meta |
|
1588 | return data, meta | |
1589 |
|
1589 | |||
1590 | def plot(self): |
|
1590 | def plot(self): | |
1591 | # self.data.normalize_heights() |
|
1591 | # self.data.normalize_heights() | |
1592 | self.x = self.data.times |
|
1592 | self.x = self.data.times | |
1593 | self.y = self.data.yrange |
|
1593 | self.y = self.data.yrange | |
1594 | self.z = self.data['outlier_rtc'] |
|
1594 | self.z = self.data['outlier_rtc'] | |
1595 |
|
1595 | |||
1596 | #self.z = numpy.ma.masked_invalid(self.z) |
|
1596 | #self.z = numpy.ma.masked_invalid(self.z) | |
1597 |
|
1597 | |||
1598 | if self.decimation is None: |
|
1598 | if self.decimation is None: | |
1599 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1599 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
1600 | else: |
|
1600 | else: | |
1601 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1601 | x, y, z = self.fill_gaps(*self.decimate()) | |
1602 |
|
1602 | |||
1603 | for n, ax in enumerate(self.axes): |
|
1603 | for n, ax in enumerate(self.axes): | |
1604 |
|
1604 | |||
1605 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
1605 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
1606 | self.z[n]) |
|
1606 | self.z[n]) | |
1607 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
1607 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
1608 | self.z[n]) |
|
1608 | self.z[n]) | |
1609 | data = self.data[-1] |
|
1609 | data = self.data[-1] | |
1610 | if ax.firsttime: |
|
1610 | if ax.firsttime: | |
1611 | if self.zlimits is not None: |
|
1611 | if self.zlimits is not None: | |
1612 | self.zmin, self.zmax = self.zlimits[n] |
|
1612 | self.zmin, self.zmax = self.zlimits[n] | |
1613 |
|
1613 | |||
1614 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1614 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
1615 | vmin=self.zmin, |
|
1615 | vmin=self.zmin, | |
1616 | vmax=self.zmax, |
|
1616 | vmax=self.zmax, | |
1617 | cmap=self.cmaps[n] |
|
1617 | cmap=self.cmaps[n] | |
1618 | ) |
|
1618 | ) | |
1619 | if self.showprofile: |
|
1619 | if self.showprofile: | |
1620 | ax.plot_profile = self.pf_axes[n].plot(data['outlier_rtc'][n], self.y)[0] |
|
1620 | ax.plot_profile = self.pf_axes[n].plot(data['outlier_rtc'][n], self.y)[0] | |
1621 | self.pf_axes[n].set_xlabel('') |
|
1621 | self.pf_axes[n].set_xlabel('') | |
1622 | else: |
|
1622 | else: | |
1623 | if self.zlimits is not None: |
|
1623 | if self.zlimits is not None: | |
1624 | self.zmin, self.zmax = self.zlimits[n] |
|
1624 | self.zmin, self.zmax = self.zlimits[n] | |
1625 | # ax.collections.remove(ax.collections[0]) # error while running |
|
1625 | # ax.collections.remove(ax.collections[0]) # error while running | |
1626 | ax.plt = ax.pcolormesh(x, y, z[n].T , |
|
1626 | ax.plt = ax.pcolormesh(x, y, z[n].T , | |
1627 | vmin=self.zmin, |
|
1627 | vmin=self.zmin, | |
1628 | vmax=self.zmax, |
|
1628 | vmax=self.zmax, | |
1629 | cmap=self.cmaps[n] |
|
1629 | cmap=self.cmaps[n] | |
1630 | ) |
|
1630 | ) | |
1631 | if self.showprofile: |
|
1631 | if self.showprofile: | |
1632 | ax.plot_profile.set_data(data['outlier_rtc'][n], self.y) |
|
1632 | ax.plot_profile.set_data(data['outlier_rtc'][n], self.y) | |
1633 | self.pf_axes[n].set_xlabel('') |
|
1633 | self.pf_axes[n].set_xlabel('') | |
1634 |
|
1634 | |||
1635 | class NIncohIntRTIPlot(Plot): |
|
1635 | class NIncohIntRTIPlot(Plot): | |
1636 | ''' |
|
1636 | ''' | |
1637 | Plot for data_xxxx object |
|
1637 | Plot for data_xxxx object | |
1638 | ''' |
|
1638 | ''' | |
1639 |
|
1639 | |||
1640 | CODE = 'integrations_rtc' # Range Time Counts |
|
1640 | CODE = 'integrations_rtc' # Range Time Counts | |
1641 | colormap = 'BuGn' |
|
1641 | colormap = 'BuGn' | |
1642 | plot_type = 'pcolorbuffer' |
|
1642 | plot_type = 'pcolorbuffer' | |
1643 |
|
1643 | |||
1644 | def setup(self): |
|
1644 | def setup(self): | |
1645 | self.xaxis = 'time' |
|
1645 | self.xaxis = 'time' | |
1646 | self.ncols = 1 |
|
1646 | self.ncols = 1 | |
1647 | self.nrows = self.data.shape('integrations_rtc')[0] |
|
1647 | self.nrows = self.data.shape('integrations_rtc')[0] | |
1648 | self.nplots = self.nrows |
|
1648 | self.nplots = self.nrows | |
1649 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
1649 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) | |
1650 |
|
1650 | |||
1651 |
|
1651 | |||
1652 | if not self.xlabel: |
|
1652 | if not self.xlabel: | |
1653 | self.xlabel = 'Time' |
|
1653 | self.xlabel = 'Time' | |
1654 |
|
1654 | |||
1655 | self.ylabel = 'Height [km]' |
|
1655 | self.ylabel = 'Height [km]' | |
1656 | if not self.titles: |
|
1656 | if not self.titles: | |
1657 | self.titles = ['Integration Ch:{}'.format(x) for x in range(self.nrows)] |
|
1657 | self.titles = ['Integration Ch:{}'.format(x) for x in range(self.nrows)] | |
1658 |
|
1658 | |||
1659 | def update(self, dataOut): |
|
1659 | def update(self, dataOut): | |
1660 |
|
1660 | |||
1661 | data = {} |
|
1661 | data = {} | |
1662 | data['integrations_rtc'] = dataOut.nIncohInt |
|
1662 | data['integrations_rtc'] = dataOut.nIncohInt | |
1663 |
|
1663 | |||
1664 | meta = {} |
|
1664 | meta = {} | |
1665 |
|
1665 | |||
1666 | return data, meta |
|
1666 | return data, meta | |
1667 |
|
1667 | |||
1668 | def plot(self): |
|
1668 | def plot(self): | |
1669 | # self.data.normalize_heights() |
|
1669 | # self.data.normalize_heights() | |
1670 | self.x = self.data.times |
|
1670 | self.x = self.data.times | |
1671 | self.y = self.data.yrange |
|
1671 | self.y = self.data.yrange | |
1672 | self.z = self.data['integrations_rtc'] |
|
1672 | self.z = self.data['integrations_rtc'] | |
1673 |
|
1673 | |||
1674 | #self.z = numpy.ma.masked_invalid(self.z) |
|
1674 | #self.z = numpy.ma.masked_invalid(self.z) | |
1675 |
|
1675 | |||
1676 | if self.decimation is None: |
|
1676 | if self.decimation is None: | |
1677 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1677 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
1678 | else: |
|
1678 | else: | |
1679 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1679 | x, y, z = self.fill_gaps(*self.decimate()) | |
1680 |
|
1680 | |||
1681 | for n, ax in enumerate(self.axes): |
|
1681 | for n, ax in enumerate(self.axes): | |
1682 |
|
1682 | |||
1683 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
1683 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
1684 | self.z[n]) |
|
1684 | self.z[n]) | |
1685 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
1685 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
1686 | self.z[n]) |
|
1686 | self.z[n]) | |
1687 | data = self.data[-1] |
|
1687 | data = self.data[-1] | |
1688 | if ax.firsttime: |
|
1688 | if ax.firsttime: | |
1689 | if self.zlimits is not None: |
|
1689 | if self.zlimits is not None: | |
1690 | self.zmin, self.zmax = self.zlimits[n] |
|
1690 | self.zmin, self.zmax = self.zlimits[n] | |
1691 |
|
1691 | |||
1692 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1692 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
1693 | vmin=self.zmin, |
|
1693 | vmin=self.zmin, | |
1694 | vmax=self.zmax, |
|
1694 | vmax=self.zmax, | |
1695 | cmap=self.cmaps[n] |
|
1695 | cmap=self.cmaps[n] | |
1696 | ) |
|
1696 | ) | |
1697 | if self.showprofile: |
|
1697 | if self.showprofile: | |
1698 | ax.plot_profile = self.pf_axes[n].plot(data['integrations_rtc'][n], self.y)[0] |
|
1698 | ax.plot_profile = self.pf_axes[n].plot(data['integrations_rtc'][n], self.y)[0] | |
1699 | self.pf_axes[n].set_xlabel('') |
|
1699 | self.pf_axes[n].set_xlabel('') | |
1700 | else: |
|
1700 | else: | |
1701 | if self.zlimits is not None: |
|
1701 | if self.zlimits is not None: | |
1702 | self.zmin, self.zmax = self.zlimits[n] |
|
1702 | self.zmin, self.zmax = self.zlimits[n] | |
1703 | # ax.collections.remove(ax.collections[0]) # error while running |
|
1703 | # ax.collections.remove(ax.collections[0]) # error while running | |
1704 | ax.plt = ax.pcolormesh(x, y, z[n].T , |
|
1704 | ax.plt = ax.pcolormesh(x, y, z[n].T , | |
1705 | vmin=self.zmin, |
|
1705 | vmin=self.zmin, | |
1706 | vmax=self.zmax, |
|
1706 | vmax=self.zmax, | |
1707 | cmap=self.cmaps[n] |
|
1707 | cmap=self.cmaps[n] | |
1708 | ) |
|
1708 | ) | |
1709 | if self.showprofile: |
|
1709 | if self.showprofile: | |
1710 | ax.plot_profile.set_data(data['integrations_rtc'][n], self.y) |
|
1710 | ax.plot_profile.set_data(data['integrations_rtc'][n], self.y) | |
1711 | self.pf_axes[n].set_xlabel('') |
|
1711 | self.pf_axes[n].set_xlabel('') | |
1712 |
|
1712 | |||
1713 |
|
1713 | |||
1714 |
|
1714 | |||
1715 | class RTIMapPlot(Plot): |
|
1715 | class RTIMapPlot(Plot): | |
1716 | ''' |
|
1716 | ''' | |
1717 | Plot for RTI data |
|
1717 | Plot for RTI data | |
1718 |
|
1718 | |||
1719 | Example: |
|
1719 | Example: | |
1720 |
|
1720 | |||
1721 | controllerObj = Project() |
|
1721 | controllerObj = Project() | |
1722 | controllerObj.setup(id = '11', name='eej_proc', description=desc) |
|
1722 | controllerObj.setup(id = '11', name='eej_proc', description=desc) | |
1723 | ##....................................................................................... |
|
1723 | ##....................................................................................... | |
1724 | ##....................................................................................... |
|
1724 | ##....................................................................................... | |
1725 | readUnitConfObj = controllerObj.addReadUnit(datatype='AMISRReader', path=inPath, startDate='2023/05/24',endDate='2023/05/24', |
|
1725 | readUnitConfObj = controllerObj.addReadUnit(datatype='AMISRReader', path=inPath, startDate='2023/05/24',endDate='2023/05/24', | |
1726 | startTime='12:00:00',endTime='12:45:59',walk=1,timezone='lt',margin_days=1,code = code,nCode = nCode, |
|
1726 | startTime='12:00:00',endTime='12:45:59',walk=1,timezone='lt',margin_days=1,code = code,nCode = nCode, | |
1727 | nBaud = nBaud,nOsamp = nosamp,nChannels=nChannels,nFFT=NFFT, |
|
1727 | nBaud = nBaud,nOsamp = nosamp,nChannels=nChannels,nFFT=NFFT, | |
1728 | syncronization=False,shiftChannels=0) |
|
1728 | syncronization=False,shiftChannels=0) | |
1729 |
|
1729 | |||
1730 | volts_proc = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) |
|
1730 | volts_proc = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) | |
1731 |
|
1731 | |||
1732 | opObj01 = volts_proc.addOperation(name='Decoder', optype='other') |
|
1732 | opObj01 = volts_proc.addOperation(name='Decoder', optype='other') | |
1733 | opObj01.addParameter(name='code', value=code, format='floatlist') |
|
1733 | opObj01.addParameter(name='code', value=code, format='floatlist') | |
1734 | opObj01.addParameter(name='nCode', value=1, format='int') |
|
1734 | opObj01.addParameter(name='nCode', value=1, format='int') | |
1735 | opObj01.addParameter(name='nBaud', value=nBaud, format='int') |
|
1735 | opObj01.addParameter(name='nBaud', value=nBaud, format='int') | |
1736 | opObj01.addParameter(name='osamp', value=nosamp, format='int') |
|
1736 | opObj01.addParameter(name='osamp', value=nosamp, format='int') | |
1737 |
|
1737 | |||
1738 | opObj12 = volts_proc.addOperation(name='selectHeights', optype='self') |
|
1738 | opObj12 = volts_proc.addOperation(name='selectHeights', optype='self') | |
1739 | opObj12.addParameter(name='minHei', value='90', format='float') |
|
1739 | opObj12.addParameter(name='minHei', value='90', format='float') | |
1740 | opObj12.addParameter(name='maxHei', value='150', format='float') |
|
1740 | opObj12.addParameter(name='maxHei', value='150', format='float') | |
1741 |
|
1741 | |||
1742 | proc_spc = controllerObj.addProcUnit(datatype='SpectraProc', inputId=volts_proc.getId()) |
|
1742 | proc_spc = controllerObj.addProcUnit(datatype='SpectraProc', inputId=volts_proc.getId()) | |
1743 | proc_spc.addParameter(name='nFFTPoints', value='8', format='int') |
|
1743 | proc_spc.addParameter(name='nFFTPoints', value='8', format='int') | |
1744 |
|
1744 | |||
1745 | opObj11 = proc_spc.addOperation(name='IncohInt', optype='other') |
|
1745 | opObj11 = proc_spc.addOperation(name='IncohInt', optype='other') | |
1746 | opObj11.addParameter(name='n', value='1', format='int') |
|
1746 | opObj11.addParameter(name='n', value='1', format='int') | |
1747 |
|
1747 | |||
1748 | beamMapFile = "/home/japaza/Documents/AMISR_sky_mapper/UMET_beamcodes.csv" |
|
1748 | beamMapFile = "/home/japaza/Documents/AMISR_sky_mapper/UMET_beamcodes.csv" | |
1749 |
|
1749 | |||
1750 | opObj12 = proc_spc.addOperation(name='RTIMapPlot', optype='external') |
|
1750 | opObj12 = proc_spc.addOperation(name='RTIMapPlot', optype='external') | |
1751 | opObj12.addParameter(name='selectedHeightsList', value='95, 100, 105, 110 ', format='int') |
|
1751 | opObj12.addParameter(name='selectedHeightsList', value='95, 100, 105, 110 ', format='int') | |
1752 | opObj12.addParameter(name='bField', value='100', format='int') |
|
1752 | opObj12.addParameter(name='bField', value='100', format='int') | |
1753 | opObj12.addParameter(name='filename', value=beamMapFile, format='str') |
|
1753 | opObj12.addParameter(name='filename', value=beamMapFile, format='str') | |
1754 |
|
1754 | |||
1755 | ''' |
|
1755 | ''' | |
1756 |
|
1756 | |||
1757 | CODE = 'rti_skymap' |
|
1757 | CODE = 'rti_skymap' | |
1758 |
|
1758 | |||
1759 | plot_type = 'scatter' |
|
1759 | plot_type = 'scatter' | |
1760 | titles = None |
|
1760 | titles = None | |
1761 | colormap = 'jet' |
|
1761 | colormap = 'jet' | |
1762 | channelList = [] |
|
1762 | channelList = [] | |
1763 | elevationList = [] |
|
1763 | elevationList = [] | |
1764 | azimuthList = [] |
|
1764 | azimuthList = [] | |
1765 | last_noise = None |
|
1765 | last_noise = None | |
1766 | flag_setIndex = False |
|
1766 | flag_setIndex = False | |
1767 | heights = [] |
|
1767 | heights = [] | |
1768 | dcosx = [] |
|
1768 | dcosx = [] | |
1769 | dcosy = [] |
|
1769 | dcosy = [] | |
1770 | fullDcosy = None |
|
1770 | fullDcosy = None | |
1771 | fullDcosy = None |
|
1771 | fullDcosy = None | |
1772 | hindex = [] |
|
1772 | hindex = [] | |
1773 | mapFile = False |
|
1773 | mapFile = False | |
1774 | ##### BField #### |
|
1774 | ##### BField #### | |
1775 | flagBField = False |
|
1775 | flagBField = False | |
1776 | dcosxB = [] |
|
1776 | dcosxB = [] | |
1777 | dcosyB = [] |
|
1777 | dcosyB = [] | |
1778 | Bmarker = ['+','*','D','x','s','>','o','^'] |
|
1778 | Bmarker = ['+','*','D','x','s','>','o','^'] | |
1779 |
|
1779 | |||
1780 |
|
1780 | |||
1781 | def setup(self): |
|
1781 | def setup(self): | |
1782 |
|
1782 | |||
1783 | self.xaxis = 'Range (Km)' |
|
1783 | self.xaxis = 'Range (Km)' | |
1784 | if len(self.selectedHeightsList) > 0: |
|
1784 | if len(self.selectedHeightsList) > 0: | |
1785 | self.nplots = len(self.selectedHeightsList) |
|
1785 | self.nplots = len(self.selectedHeightsList) | |
1786 | else: |
|
1786 | else: | |
1787 | self.nplots = 4 |
|
1787 | self.nplots = 4 | |
1788 | self.ncols = int(numpy.ceil(self.nplots/2)) |
|
1788 | self.ncols = int(numpy.ceil(self.nplots/2)) | |
1789 | self.nrows = int(numpy.ceil(self.nplots/self.ncols)) |
|
1789 | self.nrows = int(numpy.ceil(self.nplots/self.ncols)) | |
1790 | self.ylabel = 'dcosy' |
|
1790 | self.ylabel = 'dcosy' | |
1791 | self.xlabel = 'dcosx' |
|
1791 | self.xlabel = 'dcosx' | |
1792 | self.colorbar = True |
|
1792 | self.colorbar = True | |
1793 | self.width = 6 + 4.1*self.nrows |
|
1793 | self.width = 6 + 4.1*self.nrows | |
1794 | self.height = 3 + 3.5*self.ncols |
|
1794 | self.height = 3 + 3.5*self.ncols | |
1795 |
|
1795 | |||
1796 |
|
1796 | |||
1797 | if self.extFile!=None: |
|
1797 | if self.extFile!=None: | |
1798 | try: |
|
1798 | try: | |
1799 | pointings = numpy.genfromtxt(self.extFile, delimiter=',') |
|
1799 | pointings = numpy.genfromtxt(self.extFile, delimiter=',') | |
1800 | full_azi = pointings[:,1] |
|
1800 | full_azi = pointings[:,1] | |
1801 | full_elev = pointings[:,2] |
|
1801 | full_elev = pointings[:,2] | |
1802 | self.fullDcosx = numpy.cos(numpy.radians(full_elev))*numpy.sin(numpy.radians(full_azi)) |
|
1802 | self.fullDcosx = numpy.cos(numpy.radians(full_elev))*numpy.sin(numpy.radians(full_azi)) | |
1803 | self.fullDcosy = numpy.cos(numpy.radians(full_elev))*numpy.cos(numpy.radians(full_azi)) |
|
1803 | self.fullDcosy = numpy.cos(numpy.radians(full_elev))*numpy.cos(numpy.radians(full_azi)) | |
1804 | mapFile = True |
|
1804 | mapFile = True | |
1805 | except Exception as e: |
|
1805 | except Exception as e: | |
1806 | self.extFile = None |
|
1806 | self.extFile = None | |
1807 | print(e) |
|
1807 | print(e) | |
1808 |
|
1808 | |||
1809 |
|
1809 | |||
1810 | def update_list(self,dataOut): |
|
1810 | def update_list(self,dataOut): | |
1811 | if len(self.channelList) == 0: |
|
1811 | if len(self.channelList) == 0: | |
1812 | self.channelList = dataOut.channelList |
|
1812 | self.channelList = dataOut.channelList | |
1813 | if len(self.elevationList) == 0: |
|
1813 | if len(self.elevationList) == 0: | |
1814 | self.elevationList = dataOut.elevationList |
|
1814 | self.elevationList = dataOut.elevationList | |
1815 | if len(self.azimuthList) == 0: |
|
1815 | if len(self.azimuthList) == 0: | |
1816 | self.azimuthList = dataOut.azimuthList |
|
1816 | self.azimuthList = dataOut.azimuthList | |
1817 | a = numpy.radians(numpy.asarray(self.azimuthList)) |
|
1817 | a = numpy.radians(numpy.asarray(self.azimuthList)) | |
1818 | e = numpy.radians(numpy.asarray(self.elevationList)) |
|
1818 | e = numpy.radians(numpy.asarray(self.elevationList)) | |
1819 | self.heights = dataOut.heightList |
|
1819 | self.heights = dataOut.heightList | |
1820 | self.dcosx = numpy.cos(e)*numpy.sin(a) |
|
1820 | self.dcosx = numpy.cos(e)*numpy.sin(a) | |
1821 | self.dcosy = numpy.cos(e)*numpy.cos(a) |
|
1821 | self.dcosy = numpy.cos(e)*numpy.cos(a) | |
1822 |
|
1822 | |||
1823 | if len(self.bFieldList)>0: |
|
1823 | if len(self.bFieldList)>0: | |
1824 | datetObj = datetime.datetime.fromtimestamp(dataOut.utctime) |
|
1824 | datetObj = datetime.datetime.fromtimestamp(dataOut.utctime) | |
1825 | doy = datetObj.timetuple().tm_yday |
|
1825 | doy = datetObj.timetuple().tm_yday | |
1826 | year = datetObj.year |
|
1826 | year = datetObj.year | |
1827 | # self.dcosxB, self.dcosyB |
|
1827 | # self.dcosxB, self.dcosyB | |
1828 | ObjB = BField(year=year,doy=doy,site=2,heights=self.bFieldList) |
|
1828 | ObjB = BField(year=year,doy=doy,site=2,heights=self.bFieldList) | |
1829 | [dcos, alpha, nlon, nlat] = ObjB.getBField() |
|
1829 | [dcos, alpha, nlon, nlat] = ObjB.getBField() | |
1830 |
|
1830 | |||
1831 | alpha_location = numpy.zeros((nlon,2,len(self.bFieldList))) |
|
1831 | alpha_location = numpy.zeros((nlon,2,len(self.bFieldList))) | |
1832 | for ih in range(len(self.bFieldList)): |
|
1832 | for ih in range(len(self.bFieldList)): | |
1833 | alpha_location[:,0,ih] = dcos[:,0,ih,0] |
|
1833 | alpha_location[:,0,ih] = dcos[:,0,ih,0] | |
1834 | for ilon in numpy.arange(nlon): |
|
1834 | for ilon in numpy.arange(nlon): | |
1835 | myx = (alpha[ilon,:,ih])[::-1] |
|
1835 | myx = (alpha[ilon,:,ih])[::-1] | |
1836 | myy = (dcos[ilon,:,ih,0])[::-1] |
|
1836 | myy = (dcos[ilon,:,ih,0])[::-1] | |
1837 | tck = splrep(myx,myy,s=0) |
|
1837 | tck = splrep(myx,myy,s=0) | |
1838 | mydcosx = splev(ObjB.alpha_i,tck,der=0) |
|
1838 | mydcosx = splev(ObjB.alpha_i,tck,der=0) | |
1839 |
|
1839 | |||
1840 | myx = (alpha[ilon,:,ih])[::-1] |
|
1840 | myx = (alpha[ilon,:,ih])[::-1] | |
1841 | myy = (dcos[ilon,:,ih,1])[::-1] |
|
1841 | myy = (dcos[ilon,:,ih,1])[::-1] | |
1842 | tck = splrep(myx,myy,s=0) |
|
1842 | tck = splrep(myx,myy,s=0) | |
1843 | mydcosy = splev(ObjB.alpha_i,tck,der=0) |
|
1843 | mydcosy = splev(ObjB.alpha_i,tck,der=0) | |
1844 | alpha_location[ilon,:,ih] = numpy.array([mydcosx, mydcosy]) |
|
1844 | alpha_location[ilon,:,ih] = numpy.array([mydcosx, mydcosy]) | |
1845 | self.dcosxB.append(alpha_location[:,0,ih]) |
|
1845 | self.dcosxB.append(alpha_location[:,0,ih]) | |
1846 | self.dcosyB.append(alpha_location[:,1,ih]) |
|
1846 | self.dcosyB.append(alpha_location[:,1,ih]) | |
1847 | self.flagBField = True |
|
1847 | self.flagBField = True | |
1848 |
|
1848 | |||
1849 | if len(self.celestialList)>0: |
|
1849 | if len(self.celestialList)>0: | |
1850 | #getBField(self.bFieldList, date) |
|
1850 | #getBField(self.bFieldList, date) | |
1851 | #pass = kwargs.get('celestial', []) |
|
1851 | #pass = kwargs.get('celestial', []) | |
1852 | pass |
|
1852 | pass | |
1853 |
|
1853 | |||
1854 |
|
1854 | |||
1855 | def update(self, dataOut): |
|
1855 | def update(self, dataOut): | |
1856 |
|
1856 | |||
1857 | if len(self.channelList) == 0: |
|
1857 | if len(self.channelList) == 0: | |
1858 | self.update_list(dataOut) |
|
1858 | self.update_list(dataOut) | |
1859 |
|
1859 | |||
1860 | if not self.flag_setIndex: |
|
1860 | if not self.flag_setIndex: | |
1861 | if len(self.selectedHeightsList)>0: |
|
1861 | if len(self.selectedHeightsList)>0: | |
1862 | for sel_height in self.selectedHeightsList: |
|
1862 | for sel_height in self.selectedHeightsList: | |
1863 | index_list = numpy.where(self.heights >= sel_height) |
|
1863 | index_list = numpy.where(self.heights >= sel_height) | |
1864 | index_list = index_list[0] |
|
1864 | index_list = index_list[0] | |
1865 | self.hindex.append(index_list[0]) |
|
1865 | self.hindex.append(index_list[0]) | |
1866 | self.flag_setIndex = True |
|
1866 | self.flag_setIndex = True | |
1867 |
|
1867 | |||
1868 | data = {} |
|
1868 | data = {} | |
1869 | meta = {} |
|
1869 | meta = {} | |
1870 |
|
1870 | |||
1871 | data['rti_skymap'] = dataOut.getPower() |
|
1871 | data['rti_skymap'] = dataOut.getPower() | |
1872 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
1872 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter | |
1873 | noise = 10*numpy.log10(dataOut.getNoise()/norm) |
|
1873 | noise = 10*numpy.log10(dataOut.getNoise()/norm) | |
1874 | data['noise'] = noise |
|
1874 | data['noise'] = noise | |
1875 |
|
1875 | |||
1876 | return data, meta |
|
1876 | return data, meta | |
1877 |
|
1877 | |||
1878 | def plot(self): |
|
1878 | def plot(self): | |
1879 |
|
1879 | |||
1880 | self.x = self.dcosx |
|
1880 | self.x = self.dcosx | |
1881 | self.y = self.dcosy |
|
1881 | self.y = self.dcosy | |
1882 | self.z = self.data[-1]['rti_skymap'] |
|
1882 | self.z = self.data[-1]['rti_skymap'] | |
1883 | self.z = numpy.array(self.z, dtype=float) |
|
1883 | self.z = numpy.array(self.z, dtype=float) | |
1884 |
|
1884 | |||
1885 | if len(self.hindex) > 0: |
|
1885 | if len(self.hindex) > 0: | |
1886 | index = self.hindex |
|
1886 | index = self.hindex | |
1887 | else: |
|
1887 | else: | |
1888 | index = numpy.arange(0, len(self.heights), int((len(self.heights))/4.2)) |
|
1888 | index = numpy.arange(0, len(self.heights), int((len(self.heights))/4.2)) | |
1889 |
|
1889 | |||
1890 | self.titles = ['Height {:.2f} km '.format(self.heights[i])+" " for i in index] |
|
1890 | self.titles = ['Height {:.2f} km '.format(self.heights[i])+" " for i in index] | |
1891 | for n, ax in enumerate(self.axes): |
|
1891 | for n, ax in enumerate(self.axes): | |
1892 |
|
1892 | |||
1893 | if ax.firsttime: |
|
1893 | if ax.firsttime: | |
1894 |
|
1894 | |||
1895 | self.xmax = self.xmax if self.xmax else numpy.nanmax(self.x) |
|
1895 | self.xmax = self.xmax if self.xmax else numpy.nanmax(self.x) | |
1896 | self.xmin = self.xmin if self.xmin else numpy.nanmin(self.x) |
|
1896 | self.xmin = self.xmin if self.xmin else numpy.nanmin(self.x) | |
1897 | self.ymax = self.ymax if self.ymax else numpy.nanmax(self.y) |
|
1897 | self.ymax = self.ymax if self.ymax else numpy.nanmax(self.y) | |
1898 | self.ymin = self.ymin if self.ymin else numpy.nanmin(self.y) |
|
1898 | self.ymin = self.ymin if self.ymin else numpy.nanmin(self.y) | |
1899 | self.zmax = self.zmax if self.zmax else numpy.nanmax(self.z) |
|
1899 | self.zmax = self.zmax if self.zmax else numpy.nanmax(self.z) | |
1900 | self.zmin = self.zmin if self.zmin else numpy.nanmin(self.z) |
|
1900 | self.zmin = self.zmin if self.zmin else numpy.nanmin(self.z) | |
1901 |
|
1901 | |||
1902 | if self.extFile!=None: |
|
1902 | if self.extFile!=None: | |
1903 | ax.scatter(self.fullDcosx, self.fullDcosy, marker="+", s=20) |
|
1903 | ax.scatter(self.fullDcosx, self.fullDcosy, marker="+", s=20) | |
1904 |
|
1904 | |||
1905 | ax.plt = ax.scatter(self.x, self.y, c=self.z[:,index[n]], cmap = 'jet',vmin = self.zmin, |
|
1905 | ax.plt = ax.scatter(self.x, self.y, c=self.z[:,index[n]], cmap = 'jet',vmin = self.zmin, | |
1906 | s=60, marker="s", vmax = self.zmax) |
|
1906 | s=60, marker="s", vmax = self.zmax) | |
1907 |
|
1907 | |||
1908 |
|
1908 | |||
1909 | ax.minorticks_on() |
|
1909 | ax.minorticks_on() | |
1910 | ax.grid(which='major', axis='both') |
|
1910 | ax.grid(which='major', axis='both') | |
1911 | ax.grid(which='minor', axis='x') |
|
1911 | ax.grid(which='minor', axis='x') | |
1912 |
|
1912 | |||
1913 | if self.flagBField : |
|
1913 | if self.flagBField : | |
1914 |
|
1914 | |||
1915 | for ih in range(len(self.bFieldList)): |
|
1915 | for ih in range(len(self.bFieldList)): | |
1916 | label = str(self.bFieldList[ih]) + ' km' |
|
1916 | label = str(self.bFieldList[ih]) + ' km' | |
1917 | ax.plot(self.dcosxB[ih], self.dcosyB[ih], color='k', marker=self.Bmarker[ih % 8], |
|
1917 | ax.plot(self.dcosxB[ih], self.dcosyB[ih], color='k', marker=self.Bmarker[ih % 8], | |
1918 | label=label, linestyle='--', ms=4.0,lw=0.5) |
|
1918 | label=label, linestyle='--', ms=4.0,lw=0.5) | |
1919 | handles, labels = ax.get_legend_handles_labels() |
|
1919 | handles, labels = ax.get_legend_handles_labels() | |
1920 | a = -0.05 |
|
1920 | a = -0.05 | |
1921 | b = 1.15 - 1.19*(self.nrows) |
|
1921 | b = 1.15 - 1.19*(self.nrows) | |
1922 | self.axes[0].legend(handles,labels, bbox_to_anchor=(a,b), prop={'size': (5.8+ 1.1*self.nplots)}, title='B Field β₯') |
|
1922 | self.axes[0].legend(handles,labels, bbox_to_anchor=(a,b), prop={'size': (5.8+ 1.1*self.nplots)}, title='B Field β₯') | |
1923 |
|
1923 | |||
1924 | else: |
|
1924 | else: | |
1925 |
|
1925 | |||
1926 | ax.plt = ax.scatter(self.x, self.y, c=self.z[:,index[n]], cmap = 'jet',vmin = self.zmin, |
|
1926 | ax.plt = ax.scatter(self.x, self.y, c=self.z[:,index[n]], cmap = 'jet',vmin = self.zmin, | |
1927 | s=80, marker="s", vmax = self.zmax) |
|
1927 | s=80, marker="s", vmax = self.zmax) | |
1928 |
|
1928 | |||
1929 | if self.flagBField : |
|
1929 | if self.flagBField : | |
1930 | for ih in range(len(self.bFieldList)): |
|
1930 | for ih in range(len(self.bFieldList)): | |
1931 | ax.plot (self.dcosxB[ih], self.dcosyB[ih], color='k', marker=self.Bmarker[ih % 8], |
|
1931 | ax.plot (self.dcosxB[ih], self.dcosyB[ih], color='k', marker=self.Bmarker[ih % 8], | |
1932 | linestyle='--', ms=4.0,lw=0.5) |
|
1932 | linestyle='--', ms=4.0,lw=0.5) | |
1933 |
|
1933 | |||
1934 |
|
1934 | |||
1935 |
|
1935 |
@@ -1,779 +1,778 | |||||
1 | '''' |
|
1 | '''' | |
2 | Created on Set 9, 2015 |
|
2 | Created on Set 9, 2015 | |
3 |
|
3 | |||
4 | @author: roj-idl71 Karim Kuyeng |
|
4 | @author: roj-idl71 Karim Kuyeng | |
5 |
|
5 | |||
6 | @upgrade: 2021, Joab Apaza |
|
6 | @upgrade: 2021, Joab Apaza | |
7 |
|
7 | |||
8 | ''' |
|
8 | ''' | |
9 |
|
9 | |||
10 | import os |
|
10 | import os | |
11 | import sys |
|
11 | import sys | |
12 | import glob |
|
12 | import glob | |
13 | import fnmatch |
|
13 | import fnmatch | |
14 | import datetime |
|
14 | import datetime | |
15 | import time |
|
15 | import time | |
16 | import re |
|
16 | import re | |
17 | import h5py |
|
17 | import h5py | |
18 | import numpy |
|
18 | import numpy | |
19 |
|
19 | |||
20 | try: |
|
20 | try: | |
21 | from gevent import sleep |
|
21 | from gevent import sleep | |
22 | except: |
|
22 | except: | |
23 | from time import sleep |
|
23 | from time import sleep | |
24 |
|
24 | |||
25 | from schainpy.model.data.jroheaderIO import RadarControllerHeader, SystemHeader,ProcessingHeader |
|
25 | from schainpy.model.data.jroheaderIO import RadarControllerHeader, SystemHeader,ProcessingHeader | |
26 | from schainpy.model.data.jrodata import Voltage |
|
26 | from schainpy.model.data.jrodata import Voltage | |
27 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
27 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
28 | from numpy import imag |
|
28 | from numpy import imag | |
29 | from schainpy.utils import log |
|
29 | from schainpy.utils import log | |
30 |
|
30 | |||
31 |
|
31 | |||
32 | class AMISRReader(ProcessingUnit): |
|
32 | class AMISRReader(ProcessingUnit): | |
33 | ''' |
|
33 | ''' | |
34 | classdocs |
|
34 | classdocs | |
35 | ''' |
|
35 | ''' | |
36 |
|
36 | |||
37 | def __init__(self): |
|
37 | def __init__(self): | |
38 | ''' |
|
38 | ''' | |
39 | Constructor |
|
39 | Constructor | |
40 | ''' |
|
40 | ''' | |
41 |
|
41 | |||
42 | ProcessingUnit.__init__(self) |
|
42 | ProcessingUnit.__init__(self) | |
43 |
|
43 | |||
44 | self.set = None |
|
44 | self.set = None | |
45 | self.subset = None |
|
45 | self.subset = None | |
46 | self.extension_file = '.h5' |
|
46 | self.extension_file = '.h5' | |
47 | self.dtc_str = 'dtc' |
|
47 | self.dtc_str = 'dtc' | |
48 | self.dtc_id = 0 |
|
48 | self.dtc_id = 0 | |
49 | self.status = True |
|
49 | self.status = True | |
50 | self.isConfig = False |
|
50 | self.isConfig = False | |
51 | self.dirnameList = [] |
|
51 | self.dirnameList = [] | |
52 | self.filenameList = [] |
|
52 | self.filenameList = [] | |
53 | self.fileIndex = None |
|
53 | self.fileIndex = None | |
54 | self.flagNoMoreFiles = False |
|
54 | self.flagNoMoreFiles = False | |
55 | self.flagIsNewFile = 0 |
|
55 | self.flagIsNewFile = 0 | |
56 | self.filename = '' |
|
56 | self.filename = '' | |
57 | self.amisrFilePointer = None |
|
57 | self.amisrFilePointer = None | |
58 |
|
58 | |||
59 | self.beamCodeMap = None |
|
59 | self.beamCodeMap = None | |
60 | self.azimuthList = [] |
|
60 | self.azimuthList = [] | |
61 | self.elevationList = [] |
|
61 | self.elevationList = [] | |
62 | self.dataShape = None |
|
62 | self.dataShape = None | |
63 | self.flag_old_beams = False |
|
63 | self.flag_old_beams = False | |
64 |
|
64 | |||
65 | self.flagAsync = False #Use when the experiment has no syncronization |
|
65 | self.flagAsync = False #Use when the experiment has no syncronization | |
66 | self.shiftChannels = 0 |
|
66 | self.shiftChannels = 0 | |
67 | self.profileIndex = 0 |
|
67 | self.profileIndex = 0 | |
68 |
|
68 | |||
69 |
|
69 | |||
70 | self.beamCodeByFrame = None |
|
70 | self.beamCodeByFrame = None | |
71 | self.radacTimeByFrame = None |
|
71 | self.radacTimeByFrame = None | |
72 |
|
72 | |||
73 | self.dataset = None |
|
73 | self.dataset = None | |
74 |
|
74 | |||
75 | self.__firstFile = True |
|
75 | self.__firstFile = True | |
76 |
|
76 | |||
77 | self.buffer = None |
|
77 | self.buffer = None | |
78 |
|
78 | |||
79 | self.timezone = 'ut' |
|
79 | self.timezone = 'ut' | |
80 |
|
80 | |||
81 | self.__waitForNewFile = 20 |
|
81 | self.__waitForNewFile = 20 | |
82 | self.__filename_online = None |
|
82 | self.__filename_online = None | |
83 | #Is really necessary create the output object in the initializer |
|
83 | #Is really necessary create the output object in the initializer | |
84 | self.dataOut = Voltage() |
|
84 | self.dataOut = Voltage() | |
85 | self.dataOut.error=False |
|
85 | self.dataOut.error=False | |
86 | self.margin_days = 1 |
|
86 | self.margin_days = 1 | |
87 | self.flag_ignoreFiles = False #to activate the ignoring Files flag |
|
87 | self.flag_ignoreFiles = False #to activate the ignoring Files flag | |
88 | self.flag_standby = False # just keep waiting, use when ignoring files |
|
88 | self.flag_standby = False # just keep waiting, use when ignoring files | |
89 | self.ignStartDateTime=None |
|
89 | self.ignStartDateTime=None | |
90 | self.ignEndDateTime=None |
|
90 | self.ignEndDateTime=None | |
91 |
|
91 | |||
92 | def setup(self,path=None, |
|
92 | def setup(self,path=None, | |
93 | startDate=None, |
|
93 | startDate=None, | |
94 | endDate=None, |
|
94 | endDate=None, | |
95 | startTime=None, |
|
95 | startTime=None, | |
96 | endTime=None, |
|
96 | endTime=None, | |
97 | walk=True, |
|
97 | walk=True, | |
98 | timezone='ut', |
|
98 | timezone='ut', | |
99 | all=0, |
|
99 | all=0, | |
100 | code = 1, |
|
100 | code = 1, | |
101 | nCode = 1, |
|
101 | nCode = 1, | |
102 | nBaud = 0, |
|
102 | nBaud = 0, | |
103 | nOsamp = 0, |
|
103 | nOsamp = 0, | |
104 | online=False, |
|
104 | online=False, | |
105 | old_beams=False, |
|
105 | old_beams=False, | |
106 | margin_days=1, |
|
106 | margin_days=1, | |
107 | nFFT = None, |
|
107 | nFFT = None, | |
108 | nChannels = None, |
|
108 | nChannels = None, | |
109 | ignStartDate=None, |
|
109 | ignStartDate=None, | |
110 | ignEndDate=None, |
|
110 | ignEndDate=None, | |
111 | ignStartTime=None, |
|
111 | ignStartTime=None, | |
112 | ignEndTime=None, |
|
112 | ignEndTime=None, | |
113 | syncronization=True, |
|
113 | syncronization=True, | |
114 | shiftChannels=0 |
|
114 | shiftChannels=0 | |
115 | ): |
|
115 | ): | |
116 |
|
116 | |||
117 |
|
117 | |||
118 |
|
118 | |||
119 | self.timezone = timezone |
|
119 | self.timezone = timezone | |
120 | self.all = all |
|
120 | self.all = all | |
121 | self.online = online |
|
121 | self.online = online | |
122 | self.flag_old_beams = old_beams |
|
122 | self.flag_old_beams = old_beams | |
123 | self.code = code |
|
123 | self.code = code | |
124 | self.nCode = int(nCode) |
|
124 | self.nCode = int(nCode) | |
125 | self.nBaud = int(nBaud) |
|
125 | self.nBaud = int(nBaud) | |
126 | self.nOsamp = int(nOsamp) |
|
126 | self.nOsamp = int(nOsamp) | |
127 | self.margin_days = margin_days |
|
127 | self.margin_days = margin_days | |
128 | self.__sampleRate = None |
|
128 | self.__sampleRate = None | |
129 | self.flagAsync = not syncronization |
|
129 | self.flagAsync = not syncronization | |
130 | self.shiftChannels = shiftChannels |
|
130 | self.shiftChannels = shiftChannels | |
131 | self.nFFT = nFFT |
|
131 | self.nFFT = nFFT | |
132 | self.nChannels = nChannels |
|
132 | self.nChannels = nChannels | |
133 | if ignStartTime!=None and ignEndTime!=None: |
|
133 | if ignStartTime!=None and ignEndTime!=None: | |
134 | if ignStartDate!=None and ignEndDate!=None: |
|
134 | if ignStartDate!=None and ignEndDate!=None: | |
135 | self.ignStartDateTime=datetime.datetime.combine(ignStartDate,ignStartTime) |
|
135 | self.ignStartDateTime=datetime.datetime.combine(ignStartDate,ignStartTime) | |
136 | self.ignEndDateTime=datetime.datetime.combine(ignEndDate,ignEndTime) |
|
136 | self.ignEndDateTime=datetime.datetime.combine(ignEndDate,ignEndTime) | |
137 | else: |
|
137 | else: | |
138 | self.ignStartDateTime=datetime.datetime.combine(startDate,ignStartTime) |
|
138 | self.ignStartDateTime=datetime.datetime.combine(startDate,ignStartTime) | |
139 | self.ignEndDateTime=datetime.datetime.combine(endDate,ignEndTime) |
|
139 | self.ignEndDateTime=datetime.datetime.combine(endDate,ignEndTime) | |
140 | self.flag_ignoreFiles = True |
|
140 | self.flag_ignoreFiles = True | |
141 |
|
141 | |||
142 | #self.findFiles() |
|
142 | #self.findFiles() | |
143 | if not(online): |
|
143 | if not(online): | |
144 | #Busqueda de archivos offline |
|
144 | #Busqueda de archivos offline | |
145 | self.searchFilesOffLine(path, startDate, endDate, startTime, endTime, walk,) |
|
145 | self.searchFilesOffLine(path, startDate, endDate, startTime, endTime, walk,) | |
146 | else: |
|
146 | else: | |
147 | self.searchFilesOnLine(path, startDate, endDate, startTime,endTime,walk) |
|
147 | self.searchFilesOnLine(path, startDate, endDate, startTime,endTime,walk) | |
148 |
|
148 | |||
149 | if not(self.filenameList): |
|
149 | if not(self.filenameList): | |
150 | raise schainpy.admin.SchainWarning("There is no files into the folder: %s"%(path)) |
|
150 | raise schainpy.admin.SchainWarning("There is no files into the folder: %s"%(path)) | |
151 | #sys.exit(0) |
|
151 | #sys.exit(0) | |
152 | self.dataOut.error = True |
|
152 | self.dataOut.error = True | |
153 |
|
153 | |||
154 | self.fileIndex = 0 |
|
154 | self.fileIndex = 0 | |
155 |
|
155 | |||
156 | self.readNextFile(online) |
|
156 | self.readNextFile(online) | |
157 |
|
157 | |||
158 | ''' |
|
158 | ''' | |
159 | Add code |
|
159 | Add code | |
160 | ''' |
|
160 | ''' | |
161 | self.isConfig = True |
|
161 | self.isConfig = True | |
162 | # print("Setup Done") |
|
162 | # print("Setup Done") | |
163 | pass |
|
163 | pass | |
164 |
|
164 | |||
165 |
|
165 | |||
166 | def readAMISRHeader(self,fp): |
|
166 | def readAMISRHeader(self,fp): | |
167 |
|
167 | |||
168 | if self.isConfig and (not self.flagNoMoreFiles): |
|
168 | if self.isConfig and (not self.flagNoMoreFiles): | |
169 | newShape = fp.get('Raw11/Data/Samples/Data').shape[1:] |
|
169 | newShape = fp.get('Raw11/Data/Samples/Data').shape[1:] | |
170 | if self.dataShape != newShape and newShape != None and not self.flag_standby: |
|
170 | if self.dataShape != newShape and newShape != None and not self.flag_standby: | |
171 | raise schainpy.admin.SchainError("NEW FILE HAS A DIFFERENT SHAPE: ") |
|
171 | raise schainpy.admin.SchainError("NEW FILE HAS A DIFFERENT SHAPE: ") | |
172 | print(self.dataShape,newShape,"\n") |
|
172 | print(self.dataShape,newShape,"\n") | |
173 | return 0 |
|
173 | return 0 | |
174 | else: |
|
174 | else: | |
175 | self.dataShape = fp.get('Raw11/Data/Samples/Data').shape[1:] |
|
175 | self.dataShape = fp.get('Raw11/Data/Samples/Data').shape[1:] | |
176 |
|
176 | |||
177 |
|
177 | |||
178 | header = 'Raw11/Data/RadacHeader' |
|
178 | header = 'Raw11/Data/RadacHeader' | |
179 | if self.nChannels == None: |
|
179 | if self.nChannels == None: | |
180 | expFile = fp['Setup/Experimentfile'][()].decode() |
|
180 | expFile = fp['Setup/Experimentfile'][()].decode() | |
181 | linesExp = expFile.split("\n") |
|
181 | linesExp = expFile.split("\n") | |
182 | a = [line for line in linesExp if "nbeamcodes" in line] |
|
182 | a = [line for line in linesExp if "nbeamcodes" in line] | |
183 | self.nChannels = int(a[0][11:]) |
|
183 | self.nChannels = int(a[0][11:]) | |
184 |
|
184 | |||
185 | if not self.flagAsync: #for experiments with no syncronization |
|
185 | if not self.flagAsync: #for experiments with no syncronization | |
186 | self.shiftChannels = 0 |
|
186 | self.shiftChannels = 0 | |
187 |
|
187 | |||
188 |
|
188 | |||
189 |
|
189 | |||
190 | self.beamCodeByPulse = fp.get(header+'/BeamCode') # LIST OF BEAMS PER PROFILE, TO BE USED ON REARRANGE |
|
190 | self.beamCodeByPulse = fp.get(header+'/BeamCode') # LIST OF BEAMS PER PROFILE, TO BE USED ON REARRANGE | |
191 |
|
191 | |||
192 |
|
192 | |||
193 | if (self.startDate > datetime.date(2021, 7, 15)) or self.flag_old_beams: #Se cambiΓ³ la forma de extracciΓ³n de Apuntes el 17 o forzar con flag de reorganizaciΓ³n |
|
193 | if (self.startDate > datetime.date(2021, 7, 15)) or self.flag_old_beams: #Se cambiΓ³ la forma de extracciΓ³n de Apuntes el 17 o forzar con flag de reorganizaciΓ³n | |
194 | self.beamcodeFile = fp['Setup/Beamcodefile'][()].decode() |
|
194 | self.beamcodeFile = fp['Setup/Beamcodefile'][()].decode() | |
195 | self.trueBeams = self.beamcodeFile.split("\n") |
|
195 | self.trueBeams = self.beamcodeFile.split("\n") | |
196 | self.trueBeams.pop()#remove last |
|
196 | self.trueBeams.pop()#remove last | |
197 | if self.nFFT == None: |
|
197 | if self.nFFT == None: | |
198 | log.error("FFT or number of repetitions per channels is needed",self.name) |
|
198 | log.error("FFT or number of repetitions per channels is needed",self.name) | |
199 | beams_idx = [k*self.nFFT for k in range(self.nChannels)] |
|
199 | beams_idx = [k*self.nFFT for k in range(self.nChannels)] | |
200 | beams = [self.trueBeams[b] for b in beams_idx] |
|
200 | beams = [self.trueBeams[b] for b in beams_idx] | |
201 | self.beamCode = [int(x, 16) for x in beams] |
|
201 | self.beamCode = [int(x, 16) for x in beams] | |
202 |
|
202 | |||
203 | if(self.flagAsync and self.shiftChannels == 0): |
|
203 | if(self.flagAsync and self.shiftChannels == 0): | |
204 | initBeam = self.beamCodeByPulse[0, 0] |
|
204 | initBeam = self.beamCodeByPulse[0, 0] | |
205 | self.shiftChannels = numpy.argwhere(self.beamCode ==initBeam)[0,0] |
|
205 | self.shiftChannels = numpy.argwhere(self.beamCode ==initBeam)[0,0] | |
206 |
|
206 | |||
207 | else: |
|
207 | else: | |
208 | _beamCode= fp.get('Raw11/Data/Beamcodes') #se usa la manera previa al cambio de apuntes |
|
208 | _beamCode= fp.get('Raw11/Data/Beamcodes') #se usa la manera previa al cambio de apuntes | |
209 | self.beamCode = _beamCode[0,:] |
|
209 | self.beamCode = _beamCode[0,:] | |
210 |
|
210 | |||
211 |
|
211 | |||
212 |
|
212 | |||
213 |
|
213 | |||
214 | if self.beamCodeMap == None: |
|
214 | if self.beamCodeMap == None: | |
215 | self.beamCodeMap = fp['Setup/BeamcodeMap'] |
|
215 | self.beamCodeMap = fp['Setup/BeamcodeMap'] | |
216 | for beam in self.beamCode: |
|
216 | for beam in self.beamCode: | |
217 | beamAziElev = numpy.where(self.beamCodeMap[:,0]==beam) |
|
217 | beamAziElev = numpy.where(self.beamCodeMap[:,0]==beam) | |
218 | beamAziElev = beamAziElev[0].squeeze() |
|
218 | beamAziElev = beamAziElev[0].squeeze() | |
219 | self.azimuthList.append(self.beamCodeMap[beamAziElev,1]) |
|
219 | self.azimuthList.append(self.beamCodeMap[beamAziElev,1]) | |
220 | self.elevationList.append(self.beamCodeMap[beamAziElev,2]) |
|
220 | self.elevationList.append(self.beamCodeMap[beamAziElev,2]) | |
221 | #print("Beamssss: ",self.beamCodeMap[beamAziElev,1],self.beamCodeMap[beamAziElev,2]) |
|
221 | #print("Beamssss: ",self.beamCodeMap[beamAziElev,1],self.beamCodeMap[beamAziElev,2]) | |
222 | #print(self.beamCode) |
|
222 | #print(self.beamCode) | |
223 | #self.code = fp.get(header+'/Code') # NOT USE FOR THIS |
|
223 | #self.code = fp.get(header+'/Code') # NOT USE FOR THIS | |
224 | self.frameCount = fp.get(header+'/FrameCount')# NOT USE FOR THIS |
|
224 | self.frameCount = fp.get(header+'/FrameCount')# NOT USE FOR THIS | |
225 | self.modeGroup = fp.get(header+'/ModeGroup')# NOT USE FOR THIS |
|
225 | self.modeGroup = fp.get(header+'/ModeGroup')# NOT USE FOR THIS | |
226 | self.nsamplesPulse = fp.get(header+'/NSamplesPulse')# TO GET NSA OR USING DATA FOR THAT |
|
226 | self.nsamplesPulse = fp.get(header+'/NSamplesPulse')# TO GET NSA OR USING DATA FOR THAT | |
227 | self.pulseCount = fp.get(header+'/PulseCount')# NOT USE FOR THIS |
|
227 | self.pulseCount = fp.get(header+'/PulseCount')# NOT USE FOR THIS | |
228 | self.radacTime = fp.get(header+'/RadacTime')# 1st TIME ON FILE ANDE CALCULATE THE REST WITH IPP*nindexprofile |
|
228 | self.radacTime = fp.get(header+'/RadacTime')# 1st TIME ON FILE ANDE CALCULATE THE REST WITH IPP*nindexprofile | |
229 | self.timeCount = fp.get(header+'/TimeCount')# NOT USE FOR THIS |
|
229 | self.timeCount = fp.get(header+'/TimeCount')# NOT USE FOR THIS | |
230 | self.timeStatus = fp.get(header+'/TimeStatus')# NOT USE FOR THIS |
|
230 | self.timeStatus = fp.get(header+'/TimeStatus')# NOT USE FOR THIS | |
231 | self.rangeFromFile = fp.get('Raw11/Data/Samples/Range') |
|
231 | self.rangeFromFile = fp.get('Raw11/Data/Samples/Range') | |
232 | self.frequency = fp.get('Rx/Frequency') |
|
232 | self.frequency = fp.get('Rx/Frequency') | |
233 | txAus = fp.get('Raw11/Data/Pulsewidth') #seconds |
|
233 | txAus = fp.get('Raw11/Data/Pulsewidth') #seconds | |
234 | self.baud = fp.get('Raw11/Data/TxBaud') |
|
234 | self.baud = fp.get('Raw11/Data/TxBaud') | |
235 | sampleRate = fp.get('Rx/SampleRate') |
|
235 | sampleRate = fp.get('Rx/SampleRate') | |
236 | self.__sampleRate = sampleRate[()] |
|
236 | self.__sampleRate = sampleRate[()] | |
237 | self.nblocks = self.pulseCount.shape[0] #nblocks |
|
237 | self.nblocks = self.pulseCount.shape[0] #nblocks | |
238 | self.profPerBlockRAW = self.pulseCount.shape[1] #profiles per block in raw data |
|
238 | self.profPerBlockRAW = self.pulseCount.shape[1] #profiles per block in raw data | |
239 | self.nprofiles = self.pulseCount.shape[1] #nprofile |
|
239 | self.nprofiles = self.pulseCount.shape[1] #nprofile | |
240 | #self.nsa = self.nsamplesPulse[0,0] #ngates |
|
240 | #self.nsa = self.nsamplesPulse[0,0] #ngates | |
241 | self.nsa = len(self.rangeFromFile[0]) |
|
241 | self.nsa = len(self.rangeFromFile[0]) | |
242 | self.nchannels = len(self.beamCode) |
|
242 | self.nchannels = len(self.beamCode) | |
243 | self.ippSeconds = (self.radacTime[0][1] -self.radacTime[0][0]) #Ipp in seconds |
|
243 | self.ippSeconds = (self.radacTime[0][1] -self.radacTime[0][0]) #Ipp in seconds | |
244 | #print("IPPS secs: ",self.ippSeconds) |
|
244 | #print("IPPS secs: ",self.ippSeconds) | |
245 | #self.__waitForNewFile = self.nblocks # wait depending on the number of blocks since each block is 1 sec |
|
245 | #self.__waitForNewFile = self.nblocks # wait depending on the number of blocks since each block is 1 sec | |
246 | self.__waitForNewFile = self.nblocks * self.nprofiles * self.ippSeconds # wait until new file is created |
|
246 | self.__waitForNewFile = self.nblocks * self.nprofiles * self.ippSeconds # wait until new file is created | |
247 |
|
247 | |||
248 | #filling radar controller header parameters |
|
248 | #filling radar controller header parameters | |
249 | self.__ippKm = self.ippSeconds *.15*1e6 # in km |
|
249 | self.__ippKm = self.ippSeconds *.15*1e6 # in km | |
250 | #self.__txA = txAus[()]*.15 #(ipp[us]*.15km/1us) in km |
|
250 | #self.__txA = txAus[()]*.15 #(ipp[us]*.15km/1us) in km | |
251 | self.__txA = txAus[()] #seconds |
|
251 | self.__txA = txAus[()] #seconds | |
252 | self.__txAKm = self.__txA*1e6*.15 |
|
252 | self.__txAKm = self.__txA*1e6*.15 | |
253 | self.__txB = 0 |
|
253 | self.__txB = 0 | |
254 | nWindows=1 |
|
254 | nWindows=1 | |
255 | self.__nSamples = self.nsa |
|
255 | self.__nSamples = self.nsa | |
256 | self.__firstHeight = self.rangeFromFile[0][0]/1000 #in km |
|
256 | self.__firstHeight = self.rangeFromFile[0][0]/1000 #in km | |
257 | self.__deltaHeight = (self.rangeFromFile[0][1] - self.rangeFromFile[0][0])/1000 |
|
257 | self.__deltaHeight = (self.rangeFromFile[0][1] - self.rangeFromFile[0][0])/1000 | |
258 | #print("amisr-ipp:",self.ippSeconds, self.__ippKm) |
|
258 | #print("amisr-ipp:",self.ippSeconds, self.__ippKm) | |
259 | #for now until understand why the code saved is different (code included even though code not in tuf file) |
|
259 | #for now until understand why the code saved is different (code included even though code not in tuf file) | |
260 | #self.__codeType = 0 |
|
260 | #self.__codeType = 0 | |
261 | # self.__nCode = None |
|
261 | # self.__nCode = None | |
262 | # self.__nBaud = None |
|
262 | # self.__nBaud = None | |
263 | self.__code = self.code |
|
263 | self.__code = self.code | |
264 | self.__codeType = 0 |
|
264 | self.__codeType = 0 | |
265 | if self.code != None: |
|
265 | if self.code != None: | |
266 | self.__codeType = 1 |
|
266 | self.__codeType = 1 | |
267 | self.__nCode = self.nCode |
|
267 | self.__nCode = self.nCode | |
268 | self.__nBaud = self.nBaud |
|
268 | self.__nBaud = self.nBaud | |
269 | self.__baudTX = self.__txA/(self.nBaud) |
|
269 | self.__baudTX = self.__txA/(self.nBaud) | |
270 | #self.__code = 0 |
|
270 | #self.__code = 0 | |
271 |
|
271 | |||
272 | #filling system header parameters |
|
272 | #filling system header parameters | |
273 | self.__nSamples = self.nsa |
|
273 | self.__nSamples = self.nsa | |
274 | self.newProfiles = self.nprofiles/self.nchannels |
|
274 | self.newProfiles = self.nprofiles/self.nchannels | |
275 | self.__channelList = [n for n in range(self.nchannels)] |
|
275 | self.__channelList = [n for n in range(self.nchannels)] | |
276 |
|
276 | |||
277 | self.__frequency = self.frequency[0][0] |
|
277 | self.__frequency = self.frequency[0][0] | |
278 |
|
278 | |||
279 |
|
279 | |||
280 | return 1 |
|
280 | return 1 | |
281 |
|
281 | |||
282 |
|
282 | |||
283 | def createBuffers(self): |
|
283 | def createBuffers(self): | |
284 |
|
284 | |||
285 | pass |
|
285 | pass | |
286 |
|
286 | |||
287 | def __setParameters(self,path='', startDate='',endDate='',startTime='', endTime='', walk=''): |
|
287 | def __setParameters(self,path='', startDate='',endDate='',startTime='', endTime='', walk=''): | |
288 | self.path = path |
|
288 | self.path = path | |
289 | self.startDate = startDate |
|
289 | self.startDate = startDate | |
290 | self.endDate = endDate |
|
290 | self.endDate = endDate | |
291 | self.startTime = startTime |
|
291 | self.startTime = startTime | |
292 | self.endTime = endTime |
|
292 | self.endTime = endTime | |
293 | self.walk = walk |
|
293 | self.walk = walk | |
294 |
|
294 | |||
295 |
|
295 | |||
296 | def __checkPath(self): |
|
296 | def __checkPath(self): | |
297 | if os.path.exists(self.path): |
|
297 | if os.path.exists(self.path): | |
298 | self.status = 1 |
|
298 | self.status = 1 | |
299 | else: |
|
299 | else: | |
300 | self.status = 0 |
|
300 | self.status = 0 | |
301 | print('Path:%s does not exists'%self.path) |
|
301 | print('Path:%s does not exists'%self.path) | |
302 |
|
302 | |||
303 | return |
|
303 | return | |
304 |
|
304 | |||
305 |
|
305 | |||
306 | def __selDates(self, amisr_dirname_format): |
|
306 | def __selDates(self, amisr_dirname_format): | |
307 | try: |
|
307 | try: | |
308 | year = int(amisr_dirname_format[0:4]) |
|
308 | year = int(amisr_dirname_format[0:4]) | |
309 | month = int(amisr_dirname_format[4:6]) |
|
309 | month = int(amisr_dirname_format[4:6]) | |
310 | dom = int(amisr_dirname_format[6:8]) |
|
310 | dom = int(amisr_dirname_format[6:8]) | |
311 | thisDate = datetime.date(year,month,dom) |
|
311 | thisDate = datetime.date(year,month,dom) | |
312 | #margen de un dΓa extra, igual luego se filtra for fecha y hora |
|
312 | #margen de un dΓa extra, igual luego se filtra for fecha y hora | |
313 | if (thisDate>=(self.startDate - datetime.timedelta(days=self.margin_days)) and thisDate <= (self.endDate)+ datetime.timedelta(days=1)): |
|
313 | if (thisDate>=(self.startDate - datetime.timedelta(days=self.margin_days)) and thisDate <= (self.endDate)+ datetime.timedelta(days=1)): | |
314 | return amisr_dirname_format |
|
314 | return amisr_dirname_format | |
315 | except: |
|
315 | except: | |
316 | return None |
|
316 | return None | |
317 |
|
317 | |||
318 |
|
318 | |||
319 | def __findDataForDates(self,online=False): |
|
319 | def __findDataForDates(self,online=False): | |
320 |
|
320 | |||
321 | if not(self.status): |
|
321 | if not(self.status): | |
322 | return None |
|
322 | return None | |
323 |
|
323 | |||
324 | pat = '\d+.\d+' |
|
324 | pat = '\d+.\d+' | |
325 | dirnameList = [re.search(pat,x) for x in os.listdir(self.path)] |
|
325 | dirnameList = [re.search(pat,x) for x in os.listdir(self.path)] | |
326 | dirnameList = [x for x in dirnameList if x!=None] |
|
326 | dirnameList = [x for x in dirnameList if x!=None] | |
327 | dirnameList = [x.string for x in dirnameList] |
|
327 | dirnameList = [x.string for x in dirnameList] | |
328 | if not(online): |
|
328 | if not(online): | |
329 | dirnameList = [self.__selDates(x) for x in dirnameList] |
|
329 | dirnameList = [self.__selDates(x) for x in dirnameList] | |
330 | dirnameList = [x for x in dirnameList if x!=None] |
|
330 | dirnameList = [x for x in dirnameList if x!=None] | |
331 | if len(dirnameList)>0: |
|
331 | if len(dirnameList)>0: | |
332 | self.status = 1 |
|
332 | self.status = 1 | |
333 | self.dirnameList = dirnameList |
|
333 | self.dirnameList = dirnameList | |
334 | self.dirnameList.sort() |
|
334 | self.dirnameList.sort() | |
335 | else: |
|
335 | else: | |
336 | self.status = 0 |
|
336 | self.status = 0 | |
337 | return None |
|
337 | return None | |
338 |
|
338 | |||
339 | def __getTimeFromData(self): |
|
339 | def __getTimeFromData(self): | |
340 | startDateTime_Reader = datetime.datetime.combine(self.startDate,self.startTime) |
|
340 | startDateTime_Reader = datetime.datetime.combine(self.startDate,self.startTime) | |
341 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) |
|
341 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) | |
342 |
|
342 | |||
343 | print('Filtering Files from %s to %s'%(startDateTime_Reader, endDateTime_Reader)) |
|
343 | print('Filtering Files from %s to %s'%(startDateTime_Reader, endDateTime_Reader)) | |
344 | print('........................................') |
|
344 | print('........................................') | |
345 | filter_filenameList = [] |
|
345 | filter_filenameList = [] | |
346 | self.filenameList.sort() |
|
346 | self.filenameList.sort() | |
347 | total_files = len(self.filenameList) |
|
347 | total_files = len(self.filenameList) | |
348 | #for i in range(len(self.filenameList)-1): |
|
348 | #for i in range(len(self.filenameList)-1): | |
349 | for i in range(total_files): |
|
349 | for i in range(total_files): | |
350 | filename = self.filenameList[i] |
|
350 | filename = self.filenameList[i] | |
351 | #print("file-> ",filename) |
|
351 | #print("file-> ",filename) | |
352 | try: |
|
352 | try: | |
353 | fp = h5py.File(filename,'r') |
|
353 | fp = h5py.File(filename,'r') | |
354 | time_str = fp.get('Time/RadacTimeString') |
|
354 | time_str = fp.get('Time/RadacTimeString') | |
355 |
|
355 | |||
356 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] |
|
356 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] | |
357 | #startDateTimeStr_File = "2019-12-16 09:21:11" |
|
357 | #startDateTimeStr_File = "2019-12-16 09:21:11" | |
358 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
358 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') | |
359 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
359 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) | |
360 |
|
360 | |||
361 | #endDateTimeStr_File = "2019-12-16 11:10:11" |
|
361 | #endDateTimeStr_File = "2019-12-16 11:10:11" | |
362 | endDateTimeStr_File = time_str[-1][-1].decode('UTF-8').split('.')[0] |
|
362 | endDateTimeStr_File = time_str[-1][-1].decode('UTF-8').split('.')[0] | |
363 | junk = time.strptime(endDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
363 | junk = time.strptime(endDateTimeStr_File, '%Y-%m-%d %H:%M:%S') | |
364 | endDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
364 | endDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) | |
365 |
|
365 | |||
366 | fp.close() |
|
366 | fp.close() | |
367 |
|
367 | |||
368 | #print("check time", startDateTime_File) |
|
368 | #print("check time", startDateTime_File) | |
369 | if self.timezone == 'lt': |
|
369 | if self.timezone == 'lt': | |
370 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) |
|
370 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) | |
371 | endDateTime_File = endDateTime_File - datetime.timedelta(minutes = 300) |
|
371 | endDateTime_File = endDateTime_File - datetime.timedelta(minutes = 300) | |
372 | if (startDateTime_File >=startDateTime_Reader and endDateTime_File<=endDateTime_Reader): |
|
372 | if (startDateTime_File >=startDateTime_Reader and endDateTime_File<=endDateTime_Reader): | |
373 | filter_filenameList.append(filename) |
|
373 | filter_filenameList.append(filename) | |
374 |
|
374 | |||
375 | if (startDateTime_File>endDateTime_Reader): |
|
375 | if (startDateTime_File>endDateTime_Reader): | |
376 | break |
|
376 | break | |
377 | except Exception as e: |
|
377 | except Exception as e: | |
378 | log.warning("Error opening file {} -> {}".format(os.path.split(filename)[1],e)) |
|
378 | log.warning("Error opening file {} -> {}".format(os.path.split(filename)[1],e)) | |
379 |
|
379 | |||
380 | filter_filenameList.sort() |
|
380 | filter_filenameList.sort() | |
381 | self.filenameList = filter_filenameList |
|
381 | self.filenameList = filter_filenameList | |
382 |
|
382 | |||
383 | return 1 |
|
383 | return 1 | |
384 |
|
384 | |||
385 | def __filterByGlob1(self, dirName): |
|
385 | def __filterByGlob1(self, dirName): | |
386 | filter_files = glob.glob1(dirName, '*.*%s'%self.extension_file) |
|
386 | filter_files = glob.glob1(dirName, '*.*%s'%self.extension_file) | |
387 | filter_files.sort() |
|
387 | filter_files.sort() | |
388 | filterDict = {} |
|
388 | filterDict = {} | |
389 | filterDict.setdefault(dirName) |
|
389 | filterDict.setdefault(dirName) | |
390 | filterDict[dirName] = filter_files |
|
390 | filterDict[dirName] = filter_files | |
391 | return filterDict |
|
391 | return filterDict | |
392 |
|
392 | |||
393 | def __getFilenameList(self, fileListInKeys, dirList): |
|
393 | def __getFilenameList(self, fileListInKeys, dirList): | |
394 | for value in fileListInKeys: |
|
394 | for value in fileListInKeys: | |
395 | dirName = list(value.keys())[0] |
|
395 | dirName = list(value.keys())[0] | |
396 | for file in value[dirName]: |
|
396 | for file in value[dirName]: | |
397 | filename = os.path.join(dirName, file) |
|
397 | filename = os.path.join(dirName, file) | |
398 | self.filenameList.append(filename) |
|
398 | self.filenameList.append(filename) | |
399 |
|
399 | |||
400 |
|
400 | |||
401 | def __selectDataForTimes(self, online=False): |
|
401 | def __selectDataForTimes(self, online=False): | |
402 | #aun no esta implementado el filtro for tiempo-> implementado en readNextFile |
|
402 | #aun no esta implementado el filtro for tiempo-> implementado en readNextFile | |
403 | if not(self.status): |
|
403 | if not(self.status): | |
404 | return None |
|
404 | return None | |
405 |
|
405 | |||
406 | dirList = [os.path.join(self.path,x) for x in self.dirnameList] |
|
406 | dirList = [os.path.join(self.path,x) for x in self.dirnameList] | |
407 | fileListInKeys = [self.__filterByGlob1(x) for x in dirList] |
|
407 | fileListInKeys = [self.__filterByGlob1(x) for x in dirList] | |
408 | self.__getFilenameList(fileListInKeys, dirList) |
|
408 | self.__getFilenameList(fileListInKeys, dirList) | |
409 | if not(online): |
|
409 | if not(online): | |
410 | #filtro por tiempo |
|
410 | #filtro por tiempo | |
411 | if not(self.all): |
|
411 | if not(self.all): | |
412 | self.__getTimeFromData() |
|
412 | self.__getTimeFromData() | |
413 |
|
413 | |||
414 | if len(self.filenameList)>0: |
|
414 | if len(self.filenameList)>0: | |
415 | self.status = 1 |
|
415 | self.status = 1 | |
416 | self.filenameList.sort() |
|
416 | self.filenameList.sort() | |
417 | else: |
|
417 | else: | |
418 | self.status = 0 |
|
418 | self.status = 0 | |
419 | return None |
|
419 | return None | |
420 |
|
420 | |||
421 | else: |
|
421 | else: | |
422 | #get the last file - 1 |
|
422 | #get the last file - 1 | |
423 | self.filenameList = [self.filenameList[-2]] |
|
423 | self.filenameList = [self.filenameList[-2]] | |
424 | new_dirnameList = [] |
|
424 | new_dirnameList = [] | |
425 | for dirname in self.dirnameList: |
|
425 | for dirname in self.dirnameList: | |
426 | junk = numpy.array([dirname in x for x in self.filenameList]) |
|
426 | junk = numpy.array([dirname in x for x in self.filenameList]) | |
427 | junk_sum = junk.sum() |
|
427 | junk_sum = junk.sum() | |
428 | if junk_sum > 0: |
|
428 | if junk_sum > 0: | |
429 | new_dirnameList.append(dirname) |
|
429 | new_dirnameList.append(dirname) | |
430 | self.dirnameList = new_dirnameList |
|
430 | self.dirnameList = new_dirnameList | |
431 | return 1 |
|
431 | return 1 | |
432 |
|
432 | |||
433 | def searchFilesOnLine(self, path, startDate, endDate, startTime=datetime.time(0,0,0), |
|
433 | def searchFilesOnLine(self, path, startDate, endDate, startTime=datetime.time(0,0,0), | |
434 | endTime=datetime.time(23,59,59),walk=True): |
|
434 | endTime=datetime.time(23,59,59),walk=True): | |
435 |
|
435 | |||
436 | if endDate ==None: |
|
436 | if endDate ==None: | |
437 | startDate = datetime.datetime.utcnow().date() |
|
437 | startDate = datetime.datetime.utcnow().date() | |
438 | endDate = datetime.datetime.utcnow().date() |
|
438 | endDate = datetime.datetime.utcnow().date() | |
439 |
|
439 | |||
440 | self.__setParameters(path=path, startDate=startDate, endDate=endDate,startTime = startTime,endTime=endTime, walk=walk) |
|
440 | self.__setParameters(path=path, startDate=startDate, endDate=endDate,startTime = startTime,endTime=endTime, walk=walk) | |
441 |
|
441 | |||
442 | self.__checkPath() |
|
442 | self.__checkPath() | |
443 |
|
443 | |||
444 | self.__findDataForDates(online=True) |
|
444 | self.__findDataForDates(online=True) | |
445 |
|
445 | |||
446 | self.dirnameList = [self.dirnameList[-1]] |
|
446 | self.dirnameList = [self.dirnameList[-1]] | |
447 |
|
447 | |||
448 | self.__selectDataForTimes(online=True) |
|
448 | self.__selectDataForTimes(online=True) | |
449 |
|
449 | |||
450 | return |
|
450 | return | |
451 |
|
451 | |||
452 |
|
452 | |||
453 | def searchFilesOffLine(self, |
|
453 | def searchFilesOffLine(self, | |
454 | path, |
|
454 | path, | |
455 | startDate, |
|
455 | startDate, | |
456 | endDate, |
|
456 | endDate, | |
457 | startTime=datetime.time(0,0,0), |
|
457 | startTime=datetime.time(0,0,0), | |
458 | endTime=datetime.time(23,59,59), |
|
458 | endTime=datetime.time(23,59,59), | |
459 | walk=True): |
|
459 | walk=True): | |
460 |
|
460 | |||
461 | self.__setParameters(path, startDate, endDate, startTime, endTime, walk) |
|
461 | self.__setParameters(path, startDate, endDate, startTime, endTime, walk) | |
462 |
|
462 | |||
463 | self.__checkPath() |
|
463 | self.__checkPath() | |
464 |
|
464 | |||
465 | self.__findDataForDates() |
|
465 | self.__findDataForDates() | |
466 |
|
466 | |||
467 | self.__selectDataForTimes() |
|
467 | self.__selectDataForTimes() | |
468 |
|
468 | |||
469 | for i in range(len(self.filenameList)): |
|
469 | for i in range(len(self.filenameList)): | |
470 | print("%s" %(self.filenameList[i])) |
|
470 | print("%s" %(self.filenameList[i])) | |
471 |
|
471 | |||
472 | return |
|
472 | return | |
473 |
|
473 | |||
474 | def __setNextFileOffline(self): |
|
474 | def __setNextFileOffline(self): | |
475 |
|
475 | |||
476 | try: |
|
476 | try: | |
477 | self.filename = self.filenameList[self.fileIndex] |
|
477 | self.filename = self.filenameList[self.fileIndex] | |
478 | self.amisrFilePointer = h5py.File(self.filename,'r') |
|
478 | self.amisrFilePointer = h5py.File(self.filename,'r') | |
479 | self.fileIndex += 1 |
|
479 | self.fileIndex += 1 | |
480 | except: |
|
480 | except: | |
481 | self.flagNoMoreFiles = 1 |
|
481 | self.flagNoMoreFiles = 1 | |
482 | raise schainpy.admin.SchainError('No more files to read') |
|
482 | raise schainpy.admin.SchainError('No more files to read') | |
483 | return 0 |
|
483 | return 0 | |
484 |
|
484 | |||
485 | self.flagIsNewFile = 1 |
|
485 | self.flagIsNewFile = 1 | |
486 | print("Setting the file: %s"%self.filename) |
|
486 | print("Setting the file: %s"%self.filename) | |
487 |
|
487 | |||
488 | return 1 |
|
488 | return 1 | |
489 |
|
489 | |||
490 |
|
490 | |||
491 | def __setNextFileOnline(self): |
|
491 | def __setNextFileOnline(self): | |
492 | filename = self.filenameList[0] |
|
492 | filename = self.filenameList[0] | |
493 | if self.__filename_online != None: |
|
493 | if self.__filename_online != None: | |
494 | self.__selectDataForTimes(online=True) |
|
494 | self.__selectDataForTimes(online=True) | |
495 | filename = self.filenameList[0] |
|
495 | filename = self.filenameList[0] | |
496 | wait = 0 |
|
496 | wait = 0 | |
497 | self.__waitForNewFile=300 ## DEBUG: |
|
497 | self.__waitForNewFile=300 ## DEBUG: | |
498 | while self.__filename_online == filename: |
|
498 | while self.__filename_online == filename: | |
499 | print('waiting %d seconds to get a new file...'%(self.__waitForNewFile)) |
|
499 | print('waiting %d seconds to get a new file...'%(self.__waitForNewFile)) | |
500 | if wait == 5: |
|
500 | if wait == 5: | |
501 | self.flagNoMoreFiles = 1 |
|
501 | self.flagNoMoreFiles = 1 | |
502 | return 0 |
|
502 | return 0 | |
503 | sleep(self.__waitForNewFile) |
|
503 | sleep(self.__waitForNewFile) | |
504 | self.__selectDataForTimes(online=True) |
|
504 | self.__selectDataForTimes(online=True) | |
505 | filename = self.filenameList[0] |
|
505 | filename = self.filenameList[0] | |
506 | wait += 1 |
|
506 | wait += 1 | |
507 |
|
507 | |||
508 | self.__filename_online = filename |
|
508 | self.__filename_online = filename | |
509 |
|
509 | |||
510 | self.amisrFilePointer = h5py.File(filename,'r') |
|
510 | self.amisrFilePointer = h5py.File(filename,'r') | |
511 | self.flagIsNewFile = 1 |
|
511 | self.flagIsNewFile = 1 | |
512 | self.filename = filename |
|
512 | self.filename = filename | |
513 | print("Setting the file: %s"%self.filename) |
|
513 | print("Setting the file: %s"%self.filename) | |
514 | return 1 |
|
514 | return 1 | |
515 |
|
515 | |||
516 |
|
516 | |||
517 | def readData(self): |
|
517 | def readData(self): | |
518 | buffer = self.amisrFilePointer.get('Raw11/Data/Samples/Data') |
|
518 | buffer = self.amisrFilePointer.get('Raw11/Data/Samples/Data') | |
519 | re = buffer[:,:,:,0] |
|
519 | re = buffer[:,:,:,0] | |
520 | im = buffer[:,:,:,1] |
|
520 | im = buffer[:,:,:,1] | |
521 | dataset = re + im*1j |
|
521 | dataset = re + im*1j | |
522 |
|
522 | |||
523 | self.radacTime = self.amisrFilePointer.get('Raw11/Data/RadacHeader/RadacTime') |
|
523 | self.radacTime = self.amisrFilePointer.get('Raw11/Data/RadacHeader/RadacTime') | |
524 | timeset = self.radacTime[:,0] |
|
524 | timeset = self.radacTime[:,0] | |
525 |
|
525 | |||
526 | return dataset,timeset |
|
526 | return dataset,timeset | |
527 |
|
527 | |||
528 | def reshapeData(self): |
|
528 | def reshapeData(self): | |
529 | #print(self.beamCodeByPulse, self.beamCode, self.nblocks, self.nprofiles, self.nsa) |
|
529 | #print(self.beamCodeByPulse, self.beamCode, self.nblocks, self.nprofiles, self.nsa) | |
530 | channels = self.beamCodeByPulse[0,:] |
|
530 | channels = self.beamCodeByPulse[0,:] | |
531 | nchan = self.nchannels |
|
531 | nchan = self.nchannels | |
532 | #self.newProfiles = self.nprofiles/nchan #must be defined on filljroheader |
|
532 | #self.newProfiles = self.nprofiles/nchan #must be defined on filljroheader | |
533 | nblocks = self.nblocks |
|
533 | nblocks = self.nblocks | |
534 | nsamples = self.nsa |
|
534 | nsamples = self.nsa | |
535 | #print("Channels: ",self.nChannels) |
|
535 | #print("Channels: ",self.nChannels) | |
536 | #Dimensions : nChannels, nProfiles, nSamples |
|
536 | #Dimensions : nChannels, nProfiles, nSamples | |
537 | new_block = numpy.empty((nblocks, nchan, numpy.int_(self.newProfiles), nsamples), dtype="complex64") |
|
537 | new_block = numpy.empty((nblocks, nchan, numpy.int_(self.newProfiles), nsamples), dtype="complex64") | |
538 | ############################################ |
|
538 | ############################################ | |
539 | profPerCH = int(self.profPerBlockRAW / (self.nFFT* self.nChannels)) |
|
539 | profPerCH = int(self.profPerBlockRAW / (self.nFFT* self.nChannels)) | |
540 | #profPerCH = int(self.profPerBlockRAW / self.nChannels) |
|
540 | #profPerCH = int(self.profPerBlockRAW / self.nChannels) | |
541 | for thisChannel in range(nchan): |
|
541 | for thisChannel in range(nchan): | |
542 |
|
542 | |||
543 | ich = thisChannel |
|
543 | ich = thisChannel | |
544 |
|
544 | |||
545 | idx_ch = [self.nFFT*(ich + nchan*k) for k in range(profPerCH)] |
|
545 | idx_ch = [self.nFFT*(ich + nchan*k) for k in range(profPerCH)] | |
546 | #print(idx_ch) |
|
546 | #print(idx_ch) | |
547 | if self.nFFT > 1: |
|
547 | if self.nFFT > 1: | |
548 | aux = [numpy.arange(i, i+self.nFFT) for i in idx_ch] |
|
548 | aux = [numpy.arange(i, i+self.nFFT) for i in idx_ch] | |
549 | idx_ch = None |
|
549 | idx_ch = None | |
550 | idx_ch =aux |
|
550 | idx_ch =aux | |
551 | idx_ch = numpy.array(idx_ch, dtype=int).flatten() |
|
551 | idx_ch = numpy.array(idx_ch, dtype=int).flatten() | |
552 | else: |
|
552 | else: | |
553 | idx_ch = numpy.array(idx_ch, dtype=int) |
|
553 | idx_ch = numpy.array(idx_ch, dtype=int) | |
554 |
|
554 | |||
555 | #print(ich,profPerCH,idx_ch) |
|
555 | #print(ich,profPerCH,idx_ch) | |
556 | #print(numpy.where(channels==self.beamCode[ich])[0]) |
|
556 | #print(numpy.where(channels==self.beamCode[ich])[0]) | |
557 | #new_block[:,ich,:,:] = self.dataset[:,numpy.where(channels==self.beamCode[ich])[0],:] |
|
557 | #new_block[:,ich,:,:] = self.dataset[:,numpy.where(channels==self.beamCode[ich])[0],:] | |
558 | new_block[:,ich,:,:] = self.dataset[:,idx_ch,:] |
|
558 | new_block[:,ich,:,:] = self.dataset[:,idx_ch,:] | |
559 |
|
559 | |||
560 | new_block = numpy.transpose(new_block, (1,0,2,3)) |
|
560 | new_block = numpy.transpose(new_block, (1,0,2,3)) | |
561 | new_block = numpy.reshape(new_block, (nchan,-1, nsamples)) |
|
561 | new_block = numpy.reshape(new_block, (nchan,-1, nsamples)) | |
562 | if self.flagAsync: |
|
562 | if self.flagAsync: | |
563 | new_block = numpy.roll(new_block, self.shiftChannels, axis=0) |
|
563 | new_block = numpy.roll(new_block, self.shiftChannels, axis=0) | |
564 | return new_block |
|
564 | return new_block | |
565 |
|
565 | |||
566 | def updateIndexes(self): |
|
566 | def updateIndexes(self): | |
567 |
|
567 | |||
568 | pass |
|
568 | pass | |
569 |
|
569 | |||
570 | def fillJROHeader(self): |
|
570 | def fillJROHeader(self): | |
571 |
|
571 | |||
572 | #fill radar controller header |
|
572 | #fill radar controller header | |
573 |
|
573 | |||
574 | #fill system header |
|
574 | #fill system header | |
575 | self.dataOut.systemHeaderObj = SystemHeader(nSamples=self.__nSamples, |
|
575 | self.dataOut.systemHeaderObj = SystemHeader(nSamples=self.__nSamples, | |
576 | nProfiles=self.newProfiles, |
|
576 | nProfiles=self.newProfiles, | |
577 | nChannels=len(self.__channelList), |
|
577 | nChannels=len(self.__channelList), | |
578 | adcResolution=14, |
|
578 | adcResolution=14, | |
579 | pciDioBusWidth=32) |
|
579 | pciDioBusWidth=32) | |
580 |
|
580 | |||
581 | self.dataOut.type = "Voltage" |
|
581 | self.dataOut.type = "Voltage" | |
582 | self.dataOut.data = None |
|
582 | self.dataOut.data = None | |
583 | self.dataOut.dtype = numpy.dtype([('real','<i8'),('imag','<i8')]) |
|
583 | self.dataOut.dtype = numpy.dtype([('real','<i8'),('imag','<i8')]) | |
584 | # self.dataOut.nChannels = 0 |
|
584 | # self.dataOut.nChannels = 0 | |
585 |
|
585 | |||
586 | # self.dataOut.nHeights = 0 |
|
586 | # self.dataOut.nHeights = 0 | |
587 |
|
587 | |||
588 | self.dataOut.nProfiles = self.newProfiles*self.nblocks |
|
588 | self.dataOut.nProfiles = self.newProfiles*self.nblocks | |
589 | #self.dataOut.heightList = self.__firstHeigth + numpy.arange(self.__nSamples, dtype = numpy.float)*self.__deltaHeigth |
|
589 | #self.dataOut.heightList = self.__firstHeigth + numpy.arange(self.__nSamples, dtype = numpy.float)*self.__deltaHeigth | |
590 | ranges = numpy.reshape(self.rangeFromFile[()],(-1)) |
|
590 | ranges = numpy.reshape(self.rangeFromFile[()],(-1)) | |
591 | self.dataOut.heightList = ranges/1000.0 #km |
|
591 | self.dataOut.heightList = ranges/1000.0 #km | |
592 | self.dataOut.channelList = self.__channelList |
|
592 | self.dataOut.channelList = self.__channelList | |
593 |
|
593 | |||
594 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights |
|
594 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights | |
595 |
|
595 | |||
596 | # self.dataOut.channelIndexList = None |
|
596 | # self.dataOut.channelIndexList = None | |
597 |
|
597 | |||
598 |
|
598 | |||
599 | # #self.dataOut.azimuthList = numpy.roll( numpy.array(self.azimuthList) ,self.shiftChannels) |
|
599 | # #self.dataOut.azimuthList = numpy.roll( numpy.array(self.azimuthList) ,self.shiftChannels) | |
600 | # #self.dataOut.elevationList = numpy.roll(numpy.array(self.elevationList) ,self.shiftChannels) |
|
600 | # #self.dataOut.elevationList = numpy.roll(numpy.array(self.elevationList) ,self.shiftChannels) | |
601 | # #self.dataOut.codeList = numpy.roll(numpy.array(self.beamCode), self.shiftChannels) |
|
601 | # #self.dataOut.codeList = numpy.roll(numpy.array(self.beamCode), self.shiftChannels) | |
602 |
|
602 | |||
603 | self.dataOut.azimuthList = self.azimuthList |
|
603 | self.dataOut.azimuthList = self.azimuthList | |
604 | self.dataOut.elevationList = self.elevationList |
|
604 | self.dataOut.elevationList = self.elevationList | |
605 | self.dataOut.codeList = self.beamCode |
|
605 | self.dataOut.codeList = self.beamCode | |
606 |
|
606 | |||
607 |
|
607 | |||
608 |
|
608 | |||
609 | #print(self.dataOut.elevationList) |
|
609 | #print(self.dataOut.elevationList) | |
610 | self.dataOut.flagNoData = True |
|
610 | self.dataOut.flagNoData = True | |
611 |
|
611 | |||
612 | #Set to TRUE if the data is discontinuous |
|
612 | #Set to TRUE if the data is discontinuous | |
613 | self.dataOut.flagDiscontinuousBlock = False |
|
613 | self.dataOut.flagDiscontinuousBlock = False | |
614 |
|
614 | |||
615 | self.dataOut.utctime = None |
|
615 | self.dataOut.utctime = None | |
616 |
|
616 | |||
617 | #self.dataOut.timeZone = -5 #self.__timezone/60 #timezone like jroheader, difference in minutes between UTC and localtime |
|
617 | #self.dataOut.timeZone = -5 #self.__timezone/60 #timezone like jroheader, difference in minutes between UTC and localtime | |
618 | if self.timezone == 'lt': |
|
618 | if self.timezone == 'lt': | |
619 | self.dataOut.timeZone = time.timezone / 60. #get the timezone in minutes |
|
619 | self.dataOut.timeZone = time.timezone / 60. #get the timezone in minutes | |
620 | else: |
|
620 | else: | |
621 | self.dataOut.timeZone = 0 #by default time is UTC |
|
621 | self.dataOut.timeZone = 0 #by default time is UTC | |
622 |
|
622 | |||
623 | self.dataOut.dstFlag = 0 |
|
623 | self.dataOut.dstFlag = 0 | |
624 | self.dataOut.errorCount = 0 |
|
624 | self.dataOut.errorCount = 0 | |
625 | self.dataOut.nCohInt = 1 |
|
625 | self.dataOut.nCohInt = 1 | |
626 | self.dataOut.flagDecodeData = False #asumo que la data esta decodificada |
|
626 | self.dataOut.flagDecodeData = False #asumo que la data esta decodificada | |
627 | self.dataOut.flagDeflipData = False #asumo que la data esta sin flip |
|
627 | self.dataOut.flagDeflipData = False #asumo que la data esta sin flip | |
628 | self.dataOut.flagShiftFFT = False |
|
628 | self.dataOut.flagShiftFFT = False | |
629 | self.dataOut.ippSeconds = self.ippSeconds |
|
629 | self.dataOut.ippSeconds = self.ippSeconds | |
630 | self.dataOut.ipp = self.__ippKm |
|
630 | self.dataOut.ipp = self.__ippKm | |
631 | self.dataOut.nCode = self.__nCode |
|
631 | self.dataOut.nCode = self.__nCode | |
632 | self.dataOut.code = self.__code |
|
632 | self.dataOut.code = self.__code | |
633 | self.dataOut.nBaud = self.__nBaud |
|
633 | self.dataOut.nBaud = self.__nBaud | |
634 |
|
634 | |||
635 |
|
635 | |||
636 | self.dataOut.frequency = self.__frequency |
|
636 | self.dataOut.frequency = self.__frequency | |
637 | self.dataOut.realtime = self.online |
|
637 | self.dataOut.realtime = self.online | |
638 |
|
638 | |||
639 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader(ipp=self.__ippKm, |
|
639 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader(ipp=self.__ippKm, | |
640 | txA=self.__txAKm, |
|
640 | txA=self.__txAKm, | |
641 | txB=0, |
|
641 | txB=0, | |
642 | nWindows=1, |
|
642 | nWindows=1, | |
643 | nHeights=self.__nSamples, |
|
643 | nHeights=self.__nSamples, | |
644 | firstHeight=self.__firstHeight, |
|
644 | firstHeight=self.__firstHeight, | |
645 | codeType=self.__codeType, |
|
645 | codeType=self.__codeType, | |
646 | nCode=self.__nCode, nBaud=self.__nBaud, |
|
646 | nCode=self.__nCode, nBaud=self.__nBaud, | |
647 | code = self.__code, |
|
647 | code = self.__code, | |
648 | nOsamp=self.nOsamp, |
|
648 | nOsamp=self.nOsamp, | |
649 | frequency = self.__frequency, |
|
649 | frequency = self.__frequency, | |
650 | sampleRate= self.__sampleRate, |
|
650 | sampleRate= self.__sampleRate, | |
651 | fClock=self.__sampleRate) |
|
651 | fClock=self.__sampleRate) | |
652 |
|
652 | |||
653 |
|
653 | |||
654 | self.dataOut.radarControllerHeaderObj.heightList = ranges/1000.0 #km |
|
654 | self.dataOut.radarControllerHeaderObj.heightList = ranges/1000.0 #km | |
655 | self.dataOut.radarControllerHeaderObj.heightResolution = self.__deltaHeight |
|
655 | self.dataOut.radarControllerHeaderObj.heightResolution = self.__deltaHeight | |
656 | self.dataOut.radarControllerHeaderObj.rangeIpp = self.__ippKm #km |
|
656 | self.dataOut.radarControllerHeaderObj.rangeIpp = self.__ippKm #km | |
657 | self.dataOut.radarControllerHeaderObj.rangeTxA = self.__txA*1e6*.15 #km |
|
657 | self.dataOut.radarControllerHeaderObj.rangeTxA = self.__txA*1e6*.15 #km | |
658 | self.dataOut.radarControllerHeaderObj.nChannels = self.nchannels |
|
658 | self.dataOut.radarControllerHeaderObj.nChannels = self.nchannels | |
659 | self.dataOut.radarControllerHeaderObj.channelList = self.__channelList |
|
659 | self.dataOut.radarControllerHeaderObj.channelList = self.__channelList | |
660 | self.dataOut.radarControllerHeaderObj.azimuthList = self.azimuthList |
|
660 | self.dataOut.radarControllerHeaderObj.azimuthList = self.azimuthList | |
661 | self.dataOut.radarControllerHeaderObj.elevationList = self.elevationList |
|
661 | self.dataOut.radarControllerHeaderObj.elevationList = self.elevationList | |
662 | self.dataOut.radarControllerHeaderObj.dtype = "Voltage" |
|
662 | self.dataOut.radarControllerHeaderObj.dtype = "Voltage" | |
663 | self.dataOut.ippSeconds = self.ippSeconds |
|
663 | self.dataOut.ippSeconds = self.ippSeconds | |
664 | self.dataOut.ippFactor = self.nFFT |
|
664 | self.dataOut.ippFactor = self.nFFT | |
665 | pass |
|
665 | pass | |
666 |
|
666 | |||
667 | def readNextFile(self,online=False): |
|
667 | def readNextFile(self,online=False): | |
668 |
|
668 | |||
669 | if not(online): |
|
669 | if not(online): | |
670 | newFile = self.__setNextFileOffline() |
|
670 | newFile = self.__setNextFileOffline() | |
671 | else: |
|
671 | else: | |
672 | newFile = self.__setNextFileOnline() |
|
672 | newFile = self.__setNextFileOnline() | |
673 |
|
673 | |||
674 | if not(newFile): |
|
674 | if not(newFile): | |
675 | self.dataOut.error = True |
|
675 | self.dataOut.error = True | |
676 | return 0 |
|
676 | return 0 | |
677 |
|
677 | |||
678 | if not self.readAMISRHeader(self.amisrFilePointer): |
|
678 | if not self.readAMISRHeader(self.amisrFilePointer): | |
679 | self.dataOut.error = True |
|
679 | self.dataOut.error = True | |
680 | return 0 |
|
680 | return 0 | |
681 |
|
681 | |||
682 | #self.createBuffers() |
|
682 | #self.createBuffers() | |
683 | self.fillJROHeader() |
|
683 | self.fillJROHeader() | |
684 |
|
684 | |||
685 | #self.__firstFile = False |
|
685 | #self.__firstFile = False | |
686 |
|
686 | |||
687 | self.dataset,self.timeset = self.readData() |
|
687 | self.dataset,self.timeset = self.readData() | |
688 |
|
||||
689 | if self.endDate!=None: |
|
688 | if self.endDate!=None: | |
690 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) |
|
689 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) | |
691 | time_str = self.amisrFilePointer.get('Time/RadacTimeString') |
|
690 | time_str = self.amisrFilePointer.get('Time/RadacTimeString') | |
692 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] |
|
691 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] | |
693 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
692 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') | |
694 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
693 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) | |
695 | if self.timezone == 'lt': |
|
694 | if self.timezone == 'lt': | |
696 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) |
|
695 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) | |
697 | if (startDateTime_File>endDateTime_Reader): |
|
696 | if (startDateTime_File>endDateTime_Reader): | |
698 | self.flag_standby = False |
|
697 | self.flag_standby = False | |
699 | return 0 |
|
698 | return 0 | |
700 | if self.flag_ignoreFiles and (startDateTime_File >= self.ignStartDateTime and startDateTime_File <= self.ignEndDateTime): |
|
699 | if self.flag_ignoreFiles and (startDateTime_File >= self.ignStartDateTime and startDateTime_File <= self.ignEndDateTime): | |
701 | print("Ignoring...") |
|
700 | print("Ignoring...") | |
702 | self.flag_standby = True |
|
701 | self.flag_standby = True | |
|
702 | self.profileIndex = 99999999999999999 | |||
703 | return 1 |
|
703 | return 1 | |
704 | self.flag_standby = False |
|
704 | self.flag_standby = False | |
705 |
|
705 | |||
706 | self.jrodataset = self.reshapeData() |
|
706 | self.jrodataset = self.reshapeData() | |
707 | #----self.updateIndexes() |
|
707 | #----self.updateIndexes() | |
708 | self.profileIndex = 0 |
|
708 | self.profileIndex = 0 | |
709 |
|
709 | |||
710 | return 1 |
|
710 | return 1 | |
711 |
|
711 | |||
712 |
|
712 | |||
713 | def __hasNotDataInBuffer(self): |
|
713 | def __hasNotDataInBuffer(self): | |
714 | if self.profileIndex >= (self.newProfiles*self.nblocks): |
|
714 | if self.profileIndex >= (self.newProfiles*self.nblocks): | |
715 | return 1 |
|
715 | return 1 | |
716 | return 0 |
|
716 | return 0 | |
717 |
|
717 | |||
718 |
|
718 | |||
719 | def getData(self): |
|
719 | def getData(self): | |
720 |
|
720 | |||
721 | if self.flagNoMoreFiles: |
|
721 | if self.flagNoMoreFiles: | |
722 | self.dataOut.flagNoData = True |
|
722 | self.dataOut.flagNoData = True | |
723 | return 0 |
|
723 | return 0 | |
724 |
|
||||
725 | if self.profileIndex >= (self.newProfiles*self.nblocks): # |
|
724 | if self.profileIndex >= (self.newProfiles*self.nblocks): # | |
726 | #if self.__hasNotDataInBuffer(): |
|
725 | #if self.__hasNotDataInBuffer(): | |
727 | if not (self.readNextFile(self.online)): |
|
726 | if not (self.readNextFile(self.online)): | |
728 | print("Profile Index break...") |
|
727 | print("Profile Index break...") | |
729 | return 0 |
|
728 | return 0 | |
730 |
|
729 | |||
731 | if self.flag_standby: #Standby mode, if files are being ignoring, just return with no error flag |
|
730 | if self.flag_standby: #Standby mode, if files are being ignoring, just return with no error flag | |
732 | return 0 |
|
731 | return 0 | |
733 |
|
732 | |||
734 | if self.dataset is None: # setear esta condicion cuando no hayan datos por leer |
|
733 | if self.dataset is None: # setear esta condicion cuando no hayan datos por leer | |
735 | self.dataOut.flagNoData = True |
|
734 | self.dataOut.flagNoData = True | |
736 | print("No more data break...") |
|
735 | print("No more data break...") | |
737 | return 0 |
|
736 | return 0 | |
738 |
|
737 | |||
739 | #self.dataOut.data = numpy.reshape(self.jrodataset[self.profileIndex,:],(1,-1)) |
|
738 | #self.dataOut.data = numpy.reshape(self.jrodataset[self.profileIndex,:],(1,-1)) | |
740 |
|
739 | |||
741 | self.dataOut.data = self.jrodataset[:,self.profileIndex,:] |
|
740 | self.dataOut.data = self.jrodataset[:,self.profileIndex,:] | |
742 |
|
741 | |||
743 | #print("R_t",self.timeset) |
|
742 | #print("R_t",self.timeset) | |
744 |
|
743 | |||
745 | #self.dataOut.utctime = self.jrotimeset[self.profileIndex] |
|
744 | #self.dataOut.utctime = self.jrotimeset[self.profileIndex] | |
746 | #verificar basic header de jro data y ver si es compatible con este valor |
|
745 | #verificar basic header de jro data y ver si es compatible con este valor | |
747 | #self.dataOut.utctime = self.timeset + (self.profileIndex * self.ippSeconds * self.nchannels) |
|
746 | #self.dataOut.utctime = self.timeset + (self.profileIndex * self.ippSeconds * self.nchannels) | |
748 | indexprof = numpy.mod(self.profileIndex, self.newProfiles) |
|
747 | indexprof = numpy.mod(self.profileIndex, self.newProfiles) | |
749 | indexblock = self.profileIndex/self.newProfiles |
|
748 | indexblock = self.profileIndex/self.newProfiles | |
750 | #print (indexblock, indexprof) |
|
749 | #print (indexblock, indexprof) | |
751 | diffUTC = 0 |
|
750 | diffUTC = 0 | |
752 | t_comp = (indexprof * self.ippSeconds * self.nchannels) + diffUTC # |
|
751 | t_comp = (indexprof * self.ippSeconds * self.nchannels) + diffUTC # | |
753 |
|
752 | |||
754 | #print("utc :",indexblock," __ ",t_comp) |
|
753 | #print("utc :",indexblock," __ ",t_comp) | |
755 | #print(numpy.shape(self.timeset)) |
|
754 | #print(numpy.shape(self.timeset)) | |
756 | self.dataOut.utctime = self.timeset[numpy.int_(indexblock)] + t_comp |
|
755 | self.dataOut.utctime = self.timeset[numpy.int_(indexblock)] + t_comp | |
757 | #self.dataOut.utctime = self.timeset[self.profileIndex] + t_comp |
|
756 | #self.dataOut.utctime = self.timeset[self.profileIndex] + t_comp | |
758 |
|
757 | |||
759 | self.dataOut.profileIndex = self.profileIndex |
|
758 | self.dataOut.profileIndex = self.profileIndex | |
760 | #print("N profile:",self.profileIndex,self.newProfiles,self.nblocks,self.dataOut.utctime) |
|
759 | #print("N profile:",self.profileIndex,self.newProfiles,self.nblocks,self.dataOut.utctime) | |
761 | self.dataOut.flagNoData = False |
|
760 | self.dataOut.flagNoData = False | |
762 | # if indexprof == 0: |
|
761 | # if indexprof == 0: | |
763 | # print("kamisr: ",self.dataOut.utctime) |
|
762 | # print("kamisr: ",self.dataOut.utctime) | |
764 |
|
763 | |||
765 | self.profileIndex += 1 |
|
764 | self.profileIndex += 1 | |
766 |
|
765 | |||
767 | return self.dataOut.data #retorno necesario?? |
|
766 | return self.dataOut.data #retorno necesario?? | |
768 |
|
767 | |||
769 |
|
768 | |||
770 | def run(self, **kwargs): |
|
769 | def run(self, **kwargs): | |
771 | ''' |
|
770 | ''' | |
772 | This method will be called many times so here you should put all your code |
|
771 | This method will be called many times so here you should put all your code | |
773 | ''' |
|
772 | ''' | |
774 | #print("running kamisr") |
|
773 | #print("running kamisr") | |
775 | if not self.isConfig: |
|
774 | if not self.isConfig: | |
776 | self.setup(**kwargs) |
|
775 | self.setup(**kwargs) | |
777 | self.isConfig = True |
|
776 | self.isConfig = True | |
778 |
|
777 | |||
779 | self.getData() |
|
778 | self.getData() |
@@ -1,1735 +1,1737 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Spectra processing Unit and operations |
|
5 | """Spectra processing Unit and operations | |
6 |
|
6 | |||
7 | Here you will find the processing unit `SpectraProc` and several operations |
|
7 | Here you will find the processing unit `SpectraProc` and several operations | |
8 | to work with Spectra data type |
|
8 | to work with Spectra data type | |
9 | """ |
|
9 | """ | |
10 |
|
10 | |||
11 | import time |
|
11 | import time | |
12 | import itertools |
|
12 | import itertools | |
13 |
|
13 | |||
14 | import numpy |
|
14 | import numpy | |
15 |
|
15 | |||
16 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
16 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation | |
17 | from schainpy.model.data.jrodata import Spectra |
|
17 | from schainpy.model.data.jrodata import Spectra | |
18 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
18 | from schainpy.model.data.jrodata import hildebrand_sekhon | |
19 | from schainpy.model.data import _noise |
|
19 | from schainpy.model.data import _noise | |
20 | from schainpy.utils import log |
|
20 | from schainpy.utils import log | |
21 | import matplotlib.pyplot as plt |
|
21 | import matplotlib.pyplot as plt | |
22 | from schainpy.model.io.utilsIO import getHei_index |
|
22 | from schainpy.model.io.utilsIO import getHei_index | |
23 | import datetime |
|
23 | import datetime | |
24 |
|
24 | |||
25 | class SpectraProc(ProcessingUnit): |
|
25 | class SpectraProc(ProcessingUnit): | |
26 |
|
26 | |||
27 | def __init__(self): |
|
27 | def __init__(self): | |
28 |
|
28 | |||
29 | ProcessingUnit.__init__(self) |
|
29 | ProcessingUnit.__init__(self) | |
30 |
|
30 | |||
31 | self.buffer = None |
|
31 | self.buffer = None | |
32 | self.firstdatatime = None |
|
32 | self.firstdatatime = None | |
33 | self.profIndex = 0 |
|
33 | self.profIndex = 0 | |
34 | self.dataOut = Spectra() |
|
34 | self.dataOut = Spectra() | |
|
35 | self.dataOut.error=False | |||
35 | self.id_min = None |
|
36 | self.id_min = None | |
36 | self.id_max = None |
|
37 | self.id_max = None | |
37 | self.setupReq = False #Agregar a todas las unidades de proc |
|
38 | self.setupReq = False #Agregar a todas las unidades de proc | |
38 | self.nsamplesFFT = 0 |
|
39 | self.nsamplesFFT = 0 | |
39 |
|
40 | |||
40 | def __updateSpecFromVoltage(self): |
|
41 | def __updateSpecFromVoltage(self): | |
41 |
|
42 | |||
42 | self.dataOut.timeZone = self.dataIn.timeZone |
|
43 | self.dataOut.timeZone = self.dataIn.timeZone | |
43 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
44 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
44 | self.dataOut.errorCount = self.dataIn.errorCount |
|
45 | self.dataOut.errorCount = self.dataIn.errorCount | |
45 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
46 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
46 | try: |
|
47 | try: | |
47 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
48 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
48 | except: |
|
49 | except: | |
49 | pass |
|
50 | pass | |
50 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
51 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
51 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
52 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
52 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
53 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
53 | self.dataOut.ipp = self.dataIn.ipp |
|
54 | self.dataOut.ipp = self.dataIn.ipp | |
54 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
55 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
55 | self.dataOut.channelList = self.dataIn.channelList |
|
56 | self.dataOut.channelList = self.dataIn.channelList | |
56 | self.dataOut.heightList = self.dataIn.heightList |
|
57 | self.dataOut.heightList = self.dataIn.heightList | |
57 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
58 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
58 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
59 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
59 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
60 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
60 | self.dataOut.utctime = self.firstdatatime |
|
61 | self.dataOut.utctime = self.firstdatatime | |
61 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
62 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData | |
62 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
63 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData | |
63 | self.dataOut.flagShiftFFT = False |
|
64 | self.dataOut.flagShiftFFT = False | |
64 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
65 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
65 | self.dataOut.nIncohInt = 1 |
|
66 | self.dataOut.nIncohInt = 1 | |
66 | self.dataOut.deltaHeight = self.dataIn.deltaHeight |
|
67 | self.dataOut.deltaHeight = self.dataIn.deltaHeight | |
67 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
68 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
68 | self.dataOut.frequency = self.dataIn.frequency |
|
69 | self.dataOut.frequency = self.dataIn.frequency | |
69 | self.dataOut.realtime = self.dataIn.realtime |
|
70 | self.dataOut.realtime = self.dataIn.realtime | |
70 | self.dataOut.azimuth = self.dataIn.azimuth |
|
71 | self.dataOut.azimuth = self.dataIn.azimuth | |
71 | self.dataOut.zenith = self.dataIn.zenith |
|
72 | self.dataOut.zenith = self.dataIn.zenith | |
72 | self.dataOut.codeList = self.dataIn.codeList |
|
73 | self.dataOut.codeList = self.dataIn.codeList | |
73 | self.dataOut.azimuthList = self.dataIn.azimuthList |
|
74 | self.dataOut.azimuthList = self.dataIn.azimuthList | |
74 | self.dataOut.elevationList = self.dataIn.elevationList |
|
75 | self.dataOut.elevationList = self.dataIn.elevationList | |
75 | self.dataOut.code = self.dataIn.code |
|
76 | self.dataOut.code = self.dataIn.code | |
76 | self.dataOut.nCode = self.dataIn.nCode |
|
77 | self.dataOut.nCode = self.dataIn.nCode | |
77 | self.dataOut.flagProfilesByRange = self.dataIn.flagProfilesByRange |
|
78 | self.dataOut.flagProfilesByRange = self.dataIn.flagProfilesByRange | |
78 | self.dataOut.nProfilesByRange = self.dataIn.nProfilesByRange |
|
79 | self.dataOut.nProfilesByRange = self.dataIn.nProfilesByRange | |
79 | self.dataOut.runNextUnit = self.dataIn.runNextUnit |
|
80 | self.dataOut.runNextUnit = self.dataIn.runNextUnit | |
80 | try: |
|
81 | try: | |
81 | self.dataOut.step = self.dataIn.step |
|
82 | self.dataOut.step = self.dataIn.step | |
82 | except: |
|
83 | except: | |
83 | pass |
|
84 | pass | |
84 |
|
85 | |||
85 | def __getFft(self): |
|
86 | def __getFft(self): | |
86 | """ |
|
87 | """ | |
87 | Convierte valores de Voltaje a Spectra |
|
88 | Convierte valores de Voltaje a Spectra | |
88 |
|
89 | |||
89 | Affected: |
|
90 | Affected: | |
90 | self.dataOut.data_spc |
|
91 | self.dataOut.data_spc | |
91 | self.dataOut.data_cspc |
|
92 | self.dataOut.data_cspc | |
92 | self.dataOut.data_dc |
|
93 | self.dataOut.data_dc | |
93 | self.dataOut.heightList |
|
94 | self.dataOut.heightList | |
94 | self.profIndex |
|
95 | self.profIndex | |
95 | self.buffer |
|
96 | self.buffer | |
96 | self.dataOut.flagNoData |
|
97 | self.dataOut.flagNoData | |
97 | """ |
|
98 | """ | |
98 | fft_volt = numpy.fft.fft( |
|
99 | fft_volt = numpy.fft.fft( | |
99 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
100 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) | |
100 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
101 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |
101 | dc = fft_volt[:, 0, :] |
|
102 | dc = fft_volt[:, 0, :] | |
102 |
|
103 | |||
103 | # calculo de self-spectra |
|
104 | # calculo de self-spectra | |
104 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
105 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) | |
105 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
106 | spc = fft_volt * numpy.conjugate(fft_volt) | |
106 | spc = spc.real |
|
107 | spc = spc.real | |
107 |
|
108 | |||
108 | blocksize = 0 |
|
109 | blocksize = 0 | |
109 | blocksize += dc.size |
|
110 | blocksize += dc.size | |
110 | blocksize += spc.size |
|
111 | blocksize += spc.size | |
111 |
|
112 | |||
112 | cspc = None |
|
113 | cspc = None | |
113 | pairIndex = 0 |
|
114 | pairIndex = 0 | |
114 | if self.dataOut.pairsList != None: |
|
115 | if self.dataOut.pairsList != None: | |
115 | # calculo de cross-spectra |
|
116 | # calculo de cross-spectra | |
116 | cspc = numpy.zeros( |
|
117 | cspc = numpy.zeros( | |
117 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
118 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |
118 | for pair in self.dataOut.pairsList: |
|
119 | for pair in self.dataOut.pairsList: | |
119 | if pair[0] not in self.dataOut.channelList: |
|
120 | if pair[0] not in self.dataOut.channelList: | |
120 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
121 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( | |
121 | str(pair), str(self.dataOut.channelList))) |
|
122 | str(pair), str(self.dataOut.channelList))) | |
122 | if pair[1] not in self.dataOut.channelList: |
|
123 | if pair[1] not in self.dataOut.channelList: | |
123 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
124 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( | |
124 | str(pair), str(self.dataOut.channelList))) |
|
125 | str(pair), str(self.dataOut.channelList))) | |
125 |
|
126 | |||
126 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
127 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ | |
127 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
128 | numpy.conjugate(fft_volt[pair[1], :, :]) | |
128 | pairIndex += 1 |
|
129 | pairIndex += 1 | |
129 | blocksize += cspc.size |
|
130 | blocksize += cspc.size | |
130 |
|
131 | |||
131 | self.dataOut.data_spc = spc |
|
132 | self.dataOut.data_spc = spc | |
132 | self.dataOut.data_cspc = cspc |
|
133 | self.dataOut.data_cspc = cspc | |
133 | self.dataOut.data_dc = dc |
|
134 | self.dataOut.data_dc = dc | |
134 | self.dataOut.blockSize = blocksize |
|
135 | self.dataOut.blockSize = blocksize | |
135 | self.dataOut.flagShiftFFT = False |
|
136 | self.dataOut.flagShiftFFT = False | |
136 |
|
137 | |||
137 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False, |
|
138 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False, | |
138 |
zeroPad=False, zeroPoints=0, runNextUnit |
|
139 | zeroPad=False, zeroPoints=0, runNextUnit=0): | |
139 |
|
||||
140 | self.dataIn.runNextUnit = runNextUnit |
|
140 | self.dataIn.runNextUnit = runNextUnit | |
141 | try: |
|
141 | try: | |
142 | type = self.dataIn.type.decode("utf-8") |
|
142 | type = self.dataIn.type.decode("utf-8") | |
143 | self.dataIn.type = type |
|
143 | self.dataIn.type = type | |
144 | except: |
|
144 | except Exception as e: | |
|
145 | # print("spc -> ",e) | |||
145 | pass |
|
146 | pass | |
146 |
|
147 | |||
147 | if self.dataIn.type == "Spectra": |
|
148 | if self.dataIn.type == "Spectra": | |
|
149 | #print("AQUI") | |||
148 | try: |
|
150 | try: | |
149 | self.dataOut.copy(self.dataIn) |
|
151 | self.dataOut.copy(self.dataIn) | |
150 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
152 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
151 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
153 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
152 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
154 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
153 | #self.dataOut.nHeights = len(self.dataOut.heightList) |
|
155 | #self.dataOut.nHeights = len(self.dataOut.heightList) | |
154 | except Exception as e: |
|
156 | except Exception as e: | |
155 | print("Error dataIn ",e) |
|
157 | print("Error dataIn ",e) | |
156 |
|
158 | |||
157 | if shift_fft: |
|
159 | if shift_fft: | |
158 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
160 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
159 | shift = int(self.dataOut.nFFTPoints/2) |
|
161 | shift = int(self.dataOut.nFFTPoints/2) | |
160 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
162 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) | |
161 |
|
163 | |||
162 | if self.dataOut.data_cspc is not None: |
|
164 | if self.dataOut.data_cspc is not None: | |
163 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
165 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
164 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
166 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) | |
165 | if pairsList: |
|
167 | if pairsList: | |
166 | self.__selectPairs(pairsList) |
|
168 | self.__selectPairs(pairsList) | |
167 |
|
169 | |||
168 | elif self.dataIn.type == "Voltage": |
|
170 | elif self.dataIn.type == "Voltage": | |
169 |
|
171 | |||
170 | self.dataOut.flagNoData = True |
|
172 | self.dataOut.flagNoData = True | |
171 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
173 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
172 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
174 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
173 |
|
175 | |||
174 | if nFFTPoints == None: |
|
176 | if nFFTPoints == None: | |
175 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
177 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") | |
176 |
|
178 | |||
177 | if nProfiles == None: |
|
179 | if nProfiles == None: | |
178 | nProfiles = nFFTPoints |
|
180 | nProfiles = nFFTPoints | |
179 |
|
181 | |||
180 | if ippFactor == None: |
|
182 | if ippFactor == None: | |
181 | self.dataOut.ippFactor = self.dataIn.ippFactor |
|
183 | self.dataOut.ippFactor = self.dataIn.ippFactor | |
182 | else: |
|
184 | else: | |
183 | self.dataOut.ippFactor = ippFactor |
|
185 | self.dataOut.ippFactor = ippFactor | |
184 |
|
186 | |||
185 | if self.buffer is None: |
|
187 | if self.buffer is None: | |
186 | if not zeroPad: |
|
188 | if not zeroPad: | |
187 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
189 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
188 | nProfiles, |
|
190 | nProfiles, | |
189 | self.dataIn.nHeights), |
|
191 | self.dataIn.nHeights), | |
190 | dtype='complex') |
|
192 | dtype='complex') | |
191 | zeroPoints = 0 |
|
193 | zeroPoints = 0 | |
192 | else: |
|
194 | else: | |
193 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
195 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
194 | nFFTPoints+int(zeroPoints), |
|
196 | nFFTPoints+int(zeroPoints), | |
195 | self.dataIn.nHeights), |
|
197 | self.dataIn.nHeights), | |
196 | dtype='complex') |
|
198 | dtype='complex') | |
197 |
|
199 | |||
198 | self.dataOut.nFFTPoints = nFFTPoints |
|
200 | self.dataOut.nFFTPoints = nFFTPoints | |
199 |
|
201 | |||
200 | if self.buffer is None: |
|
202 | if self.buffer is None: | |
201 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
203 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
202 | nProfiles, |
|
204 | nProfiles, | |
203 | self.dataIn.nHeights), |
|
205 | self.dataIn.nHeights), | |
204 | dtype='complex') |
|
206 | dtype='complex') | |
205 |
|
207 | |||
206 | if self.dataIn.flagDataAsBlock: |
|
208 | if self.dataIn.flagDataAsBlock: | |
207 | nVoltProfiles = self.dataIn.data.shape[1] |
|
209 | nVoltProfiles = self.dataIn.data.shape[1] | |
208 | zeroPoints = 0 |
|
210 | zeroPoints = 0 | |
209 | if nVoltProfiles == nProfiles or zeroPad: |
|
211 | if nVoltProfiles == nProfiles or zeroPad: | |
210 | self.buffer = self.dataIn.data.copy() |
|
212 | self.buffer = self.dataIn.data.copy() | |
211 | self.profIndex = nVoltProfiles |
|
213 | self.profIndex = nVoltProfiles | |
212 |
|
214 | |||
213 | elif nVoltProfiles < nProfiles: |
|
215 | elif nVoltProfiles < nProfiles: | |
214 |
|
216 | |||
215 | if self.profIndex == 0: |
|
217 | if self.profIndex == 0: | |
216 | self.id_min = 0 |
|
218 | self.id_min = 0 | |
217 | self.id_max = nVoltProfiles |
|
219 | self.id_max = nVoltProfiles | |
218 |
|
220 | |||
219 | self.buffer[:, self.id_min:self.id_max, |
|
221 | self.buffer[:, self.id_min:self.id_max, | |
220 | :] = self.dataIn.data |
|
222 | :] = self.dataIn.data | |
221 | self.profIndex += nVoltProfiles |
|
223 | self.profIndex += nVoltProfiles | |
222 | self.id_min += nVoltProfiles |
|
224 | self.id_min += nVoltProfiles | |
223 | self.id_max += nVoltProfiles |
|
225 | self.id_max += nVoltProfiles | |
224 | elif nVoltProfiles > nProfiles: |
|
226 | elif nVoltProfiles > nProfiles: | |
225 | self.reader.bypass = True |
|
227 | self.reader.bypass = True | |
226 | if self.profIndex == 0: |
|
228 | if self.profIndex == 0: | |
227 | self.id_min = 0 |
|
229 | self.id_min = 0 | |
228 | self.id_max = nProfiles |
|
230 | self.id_max = nProfiles | |
229 |
|
231 | |||
230 | self.buffer = self.dataIn.data[:, self.id_min:self.id_max,:] |
|
232 | self.buffer = self.dataIn.data[:, self.id_min:self.id_max,:] | |
231 | self.profIndex += nProfiles |
|
233 | self.profIndex += nProfiles | |
232 | self.id_min += nProfiles |
|
234 | self.id_min += nProfiles | |
233 | self.id_max += nProfiles |
|
235 | self.id_max += nProfiles | |
234 | if self.id_max == nVoltProfiles: |
|
236 | if self.id_max == nVoltProfiles: | |
235 | self.reader.bypass = False |
|
237 | self.reader.bypass = False | |
236 |
|
238 | |||
237 | else: |
|
239 | else: | |
238 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
240 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( | |
239 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
241 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) | |
240 | self.dataOut.flagNoData = True |
|
242 | self.dataOut.flagNoData = True | |
241 | else: |
|
243 | else: | |
242 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
244 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() | |
243 | self.profIndex += 1 |
|
245 | self.profIndex += 1 | |
244 |
|
246 | |||
245 | if self.firstdatatime == None: |
|
247 | if self.firstdatatime == None: | |
246 | self.firstdatatime = self.dataIn.utctime |
|
248 | self.firstdatatime = self.dataIn.utctime | |
247 |
|
249 | |||
248 | if self.profIndex == nProfiles or (zeroPad and zeroPoints==0): |
|
250 | if self.profIndex == nProfiles or (zeroPad and zeroPoints==0): | |
249 |
|
251 | |||
250 | self.__updateSpecFromVoltage() |
|
252 | self.__updateSpecFromVoltage() | |
251 | if pairsList == None: |
|
253 | if pairsList == None: | |
252 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
254 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] | |
253 | else: |
|
255 | else: | |
254 | self.dataOut.pairsList = pairsList |
|
256 | self.dataOut.pairsList = pairsList | |
255 | self.__getFft() |
|
257 | self.__getFft() | |
256 | self.dataOut.flagNoData = False |
|
258 | self.dataOut.flagNoData = False | |
257 | self.firstdatatime = None |
|
259 | self.firstdatatime = None | |
258 | self.nsamplesFFT = self.profIndex |
|
260 | self.nsamplesFFT = self.profIndex | |
259 | #if not self.reader.bypass: |
|
261 | #if not self.reader.bypass: | |
260 | self.profIndex = 0 |
|
262 | self.profIndex = 0 | |
261 | #update Processing Header: |
|
263 | #update Processing Header: | |
262 | self.dataOut.processingHeaderObj.dtype = "Spectra" |
|
264 | self.dataOut.processingHeaderObj.dtype = "Spectra" | |
263 | self.dataOut.processingHeaderObj.nFFTPoints = self.dataOut.nFFTPoints |
|
265 | self.dataOut.processingHeaderObj.nFFTPoints = self.dataOut.nFFTPoints | |
264 | self.dataOut.processingHeaderObj.nSamplesFFT = self.nsamplesFFT |
|
266 | self.dataOut.processingHeaderObj.nSamplesFFT = self.nsamplesFFT | |
265 | self.dataOut.processingHeaderObj.nIncohInt = 1 |
|
267 | self.dataOut.processingHeaderObj.nIncohInt = 1 | |
266 |
|
268 | |||
267 | elif self.dataIn.type == "Parameters": #when get data from h5 spc file |
|
269 | elif self.dataIn.type == "Parameters": #when get data from h5 spc file | |
268 |
|
270 | |||
269 | self.dataOut.data_spc = self.dataIn.data_spc |
|
271 | self.dataOut.data_spc = self.dataIn.data_spc | |
270 | self.dataOut.data_cspc = self.dataIn.data_cspc |
|
272 | self.dataOut.data_cspc = self.dataIn.data_cspc | |
271 | self.dataOut.data_outlier = self.dataIn.data_outlier |
|
273 | self.dataOut.data_outlier = self.dataIn.data_outlier | |
272 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
274 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
273 | self.dataOut.nIncohInt = self.dataIn.nIncohInt |
|
275 | self.dataOut.nIncohInt = self.dataIn.nIncohInt | |
274 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints |
|
276 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints | |
275 | self.dataOut.ippFactor = self.dataIn.ippFactor |
|
277 | self.dataOut.ippFactor = self.dataIn.ippFactor | |
276 | self.dataOut.max_nIncohInt = self.dataIn.max_nIncohInt |
|
278 | self.dataOut.max_nIncohInt = self.dataIn.max_nIncohInt | |
277 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
279 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
278 | self.dataOut.ProcessingHeader = self.dataIn.ProcessingHeader.copy() |
|
280 | self.dataOut.ProcessingHeader = self.dataIn.ProcessingHeader.copy() | |
279 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
281 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
280 | self.dataOut.ipp = self.dataIn.ipp |
|
282 | self.dataOut.ipp = self.dataIn.ipp | |
281 | #self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
283 | #self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
282 | #self.dataOut.spc_noise = self.dataIn.getNoise() |
|
284 | #self.dataOut.spc_noise = self.dataIn.getNoise() | |
283 | #self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) |
|
285 | #self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) | |
284 | # self.dataOut.normFactor = self.dataIn.normFactor |
|
286 | # self.dataOut.normFactor = self.dataIn.normFactor | |
285 | if hasattr(self.dataIn, 'channelList'): |
|
287 | if hasattr(self.dataIn, 'channelList'): | |
286 | self.dataOut.channelList = self.dataIn.channelList |
|
288 | self.dataOut.channelList = self.dataIn.channelList | |
287 | if hasattr(self.dataIn, 'pairsList'): |
|
289 | if hasattr(self.dataIn, 'pairsList'): | |
288 | self.dataOut.pairsList = self.dataIn.pairsList |
|
290 | self.dataOut.pairsList = self.dataIn.pairsList | |
289 | self.dataOut.groupList = self.dataIn.pairsList |
|
291 | self.dataOut.groupList = self.dataIn.pairsList | |
290 |
|
292 | |||
291 | self.dataOut.flagNoData = False |
|
293 | self.dataOut.flagNoData = False | |
292 |
|
294 | |||
293 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
295 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels | |
294 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
296 | self.dataOut.ChanDist = self.dataIn.ChanDist | |
295 | else: self.dataOut.ChanDist = None |
|
297 | else: self.dataOut.ChanDist = None | |
296 |
|
298 | |||
297 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
299 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range | |
298 | # self.dataOut.VelRange = self.dataIn.VelRange |
|
300 | # self.dataOut.VelRange = self.dataIn.VelRange | |
299 | #else: self.dataOut.VelRange = None |
|
301 | #else: self.dataOut.VelRange = None | |
300 |
|
302 | |||
301 | else: |
|
303 | else: | |
302 | raise ValueError("The type of input object '%s' is not valid".format( |
|
304 | raise ValueError("The type of input object '%s' is not valid".format( | |
303 | self.dataIn.type)) |
|
305 | self.dataIn.type)) | |
304 |
|
306 | # print("SPC done") | ||
305 |
|
307 | |||
306 | def __selectPairs(self, pairsList): |
|
308 | def __selectPairs(self, pairsList): | |
307 |
|
309 | |||
308 | if not pairsList: |
|
310 | if not pairsList: | |
309 | return |
|
311 | return | |
310 |
|
312 | |||
311 | pairs = [] |
|
313 | pairs = [] | |
312 | pairsIndex = [] |
|
314 | pairsIndex = [] | |
313 |
|
315 | |||
314 | for pair in pairsList: |
|
316 | for pair in pairsList: | |
315 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
317 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: | |
316 | continue |
|
318 | continue | |
317 | pairs.append(pair) |
|
319 | pairs.append(pair) | |
318 | pairsIndex.append(pairs.index(pair)) |
|
320 | pairsIndex.append(pairs.index(pair)) | |
319 |
|
321 | |||
320 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
322 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] | |
321 | self.dataOut.pairsList = pairs |
|
323 | self.dataOut.pairsList = pairs | |
322 |
|
324 | |||
323 | return |
|
325 | return | |
324 |
|
326 | |||
325 | def selectFFTs(self, minFFT, maxFFT ): |
|
327 | def selectFFTs(self, minFFT, maxFFT ): | |
326 | """ |
|
328 | """ | |
327 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
329 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |
328 | minFFT<= FFT <= maxFFT |
|
330 | minFFT<= FFT <= maxFFT | |
329 | """ |
|
331 | """ | |
330 |
|
332 | |||
331 | if (minFFT > maxFFT): |
|
333 | if (minFFT > maxFFT): | |
332 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
334 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) | |
333 |
|
335 | |||
334 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
336 | if (minFFT < self.dataOut.getFreqRange()[0]): | |
335 | minFFT = self.dataOut.getFreqRange()[0] |
|
337 | minFFT = self.dataOut.getFreqRange()[0] | |
336 |
|
338 | |||
337 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
339 | if (maxFFT > self.dataOut.getFreqRange()[-1]): | |
338 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
340 | maxFFT = self.dataOut.getFreqRange()[-1] | |
339 |
|
341 | |||
340 | minIndex = 0 |
|
342 | minIndex = 0 | |
341 | maxIndex = 0 |
|
343 | maxIndex = 0 | |
342 | FFTs = self.dataOut.getFreqRange() |
|
344 | FFTs = self.dataOut.getFreqRange() | |
343 |
|
345 | |||
344 | inda = numpy.where(FFTs >= minFFT) |
|
346 | inda = numpy.where(FFTs >= minFFT) | |
345 | indb = numpy.where(FFTs <= maxFFT) |
|
347 | indb = numpy.where(FFTs <= maxFFT) | |
346 |
|
348 | |||
347 | try: |
|
349 | try: | |
348 | minIndex = inda[0][0] |
|
350 | minIndex = inda[0][0] | |
349 | except: |
|
351 | except: | |
350 | minIndex = 0 |
|
352 | minIndex = 0 | |
351 |
|
353 | |||
352 | try: |
|
354 | try: | |
353 | maxIndex = indb[0][-1] |
|
355 | maxIndex = indb[0][-1] | |
354 | except: |
|
356 | except: | |
355 | maxIndex = len(FFTs) |
|
357 | maxIndex = len(FFTs) | |
356 |
|
358 | |||
357 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
359 | self.selectFFTsByIndex(minIndex, maxIndex) | |
358 |
|
360 | |||
359 | return 1 |
|
361 | return 1 | |
360 |
|
362 | |||
361 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
363 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): | |
362 | newheis = numpy.where( |
|
364 | newheis = numpy.where( | |
363 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
365 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
364 |
|
366 | |||
365 | if hei_ref != None: |
|
367 | if hei_ref != None: | |
366 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
368 | newheis = numpy.where(self.dataOut.heightList > hei_ref) | |
367 |
|
369 | |||
368 | minIndex = min(newheis[0]) |
|
370 | minIndex = min(newheis[0]) | |
369 | maxIndex = max(newheis[0]) |
|
371 | maxIndex = max(newheis[0]) | |
370 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
372 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
371 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
373 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
372 |
|
374 | |||
373 | # determina indices |
|
375 | # determina indices | |
374 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
376 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / | |
375 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
377 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) | |
376 | avg_dB = 10 * \ |
|
378 | avg_dB = 10 * \ | |
377 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
379 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) | |
378 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
380 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |
379 | beacon_heiIndexList = [] |
|
381 | beacon_heiIndexList = [] | |
380 | for val in avg_dB.tolist(): |
|
382 | for val in avg_dB.tolist(): | |
381 | if val >= beacon_dB[0]: |
|
383 | if val >= beacon_dB[0]: | |
382 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
384 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |
383 |
|
385 | |||
384 | data_cspc = None |
|
386 | data_cspc = None | |
385 | if self.dataOut.data_cspc is not None: |
|
387 | if self.dataOut.data_cspc is not None: | |
386 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
388 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
387 |
|
389 | |||
388 | data_dc = None |
|
390 | data_dc = None | |
389 | if self.dataOut.data_dc is not None: |
|
391 | if self.dataOut.data_dc is not None: | |
390 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
392 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
391 |
|
393 | |||
392 | self.dataOut.data_spc = data_spc |
|
394 | self.dataOut.data_spc = data_spc | |
393 | self.dataOut.data_cspc = data_cspc |
|
395 | self.dataOut.data_cspc = data_cspc | |
394 | self.dataOut.data_dc = data_dc |
|
396 | self.dataOut.data_dc = data_dc | |
395 | self.dataOut.heightList = heightList |
|
397 | self.dataOut.heightList = heightList | |
396 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
398 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |
397 |
|
399 | |||
398 | return 1 |
|
400 | return 1 | |
399 |
|
401 | |||
400 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
402 | def selectFFTsByIndex(self, minIndex, maxIndex): | |
401 | """ |
|
403 | """ | |
402 |
|
404 | |||
403 | """ |
|
405 | """ | |
404 |
|
406 | |||
405 | if (minIndex < 0) or (minIndex > maxIndex): |
|
407 | if (minIndex < 0) or (minIndex > maxIndex): | |
406 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
408 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
407 |
|
409 | |||
408 | if (maxIndex >= self.dataOut.nProfiles): |
|
410 | if (maxIndex >= self.dataOut.nProfiles): | |
409 | maxIndex = self.dataOut.nProfiles-1 |
|
411 | maxIndex = self.dataOut.nProfiles-1 | |
410 |
|
412 | |||
411 | #Spectra |
|
413 | #Spectra | |
412 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
414 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] | |
413 |
|
415 | |||
414 | data_cspc = None |
|
416 | data_cspc = None | |
415 | if self.dataOut.data_cspc is not None: |
|
417 | if self.dataOut.data_cspc is not None: | |
416 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
418 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] | |
417 |
|
419 | |||
418 | data_dc = None |
|
420 | data_dc = None | |
419 | if self.dataOut.data_dc is not None: |
|
421 | if self.dataOut.data_dc is not None: | |
420 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
422 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] | |
421 |
|
423 | |||
422 | self.dataOut.data_spc = data_spc |
|
424 | self.dataOut.data_spc = data_spc | |
423 | self.dataOut.data_cspc = data_cspc |
|
425 | self.dataOut.data_cspc = data_cspc | |
424 | self.dataOut.data_dc = data_dc |
|
426 | self.dataOut.data_dc = data_dc | |
425 |
|
427 | |||
426 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
428 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) | |
427 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
429 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] | |
428 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
430 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] | |
429 |
|
431 | |||
430 | return 1 |
|
432 | return 1 | |
431 |
|
433 | |||
432 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
434 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |
433 | # validacion de rango |
|
435 | # validacion de rango | |
434 | if minHei == None: |
|
436 | if minHei == None: | |
435 | minHei = self.dataOut.heightList[0] |
|
437 | minHei = self.dataOut.heightList[0] | |
436 |
|
438 | |||
437 | if maxHei == None: |
|
439 | if maxHei == None: | |
438 | maxHei = self.dataOut.heightList[-1] |
|
440 | maxHei = self.dataOut.heightList[-1] | |
439 |
|
441 | |||
440 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
442 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
441 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
443 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
442 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
444 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
443 | minHei = self.dataOut.heightList[0] |
|
445 | minHei = self.dataOut.heightList[0] | |
444 |
|
446 | |||
445 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
447 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
446 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
448 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
447 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
449 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
448 | maxHei = self.dataOut.heightList[-1] |
|
450 | maxHei = self.dataOut.heightList[-1] | |
449 |
|
451 | |||
450 | # validacion de velocidades |
|
452 | # validacion de velocidades | |
451 | velrange = self.dataOut.getVelRange(1) |
|
453 | velrange = self.dataOut.getVelRange(1) | |
452 |
|
454 | |||
453 | if minVel == None: |
|
455 | if minVel == None: | |
454 | minVel = velrange[0] |
|
456 | minVel = velrange[0] | |
455 |
|
457 | |||
456 | if maxVel == None: |
|
458 | if maxVel == None: | |
457 | maxVel = velrange[-1] |
|
459 | maxVel = velrange[-1] | |
458 |
|
460 | |||
459 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
461 | if (minVel < velrange[0]) or (minVel > maxVel): | |
460 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
462 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |
461 | print('minVel is setting to %.2f' % (velrange[0])) |
|
463 | print('minVel is setting to %.2f' % (velrange[0])) | |
462 | minVel = velrange[0] |
|
464 | minVel = velrange[0] | |
463 |
|
465 | |||
464 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
466 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
465 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
467 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |
466 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
468 | print('maxVel is setting to %.2f' % (velrange[-1])) | |
467 | maxVel = velrange[-1] |
|
469 | maxVel = velrange[-1] | |
468 |
|
470 | |||
469 | # seleccion de indices para rango |
|
471 | # seleccion de indices para rango | |
470 | minIndex = 0 |
|
472 | minIndex = 0 | |
471 | maxIndex = 0 |
|
473 | maxIndex = 0 | |
472 | heights = self.dataOut.heightList |
|
474 | heights = self.dataOut.heightList | |
473 |
|
475 | |||
474 | inda = numpy.where(heights >= minHei) |
|
476 | inda = numpy.where(heights >= minHei) | |
475 | indb = numpy.where(heights <= maxHei) |
|
477 | indb = numpy.where(heights <= maxHei) | |
476 |
|
478 | |||
477 | try: |
|
479 | try: | |
478 | minIndex = inda[0][0] |
|
480 | minIndex = inda[0][0] | |
479 | except: |
|
481 | except: | |
480 | minIndex = 0 |
|
482 | minIndex = 0 | |
481 |
|
483 | |||
482 | try: |
|
484 | try: | |
483 | maxIndex = indb[0][-1] |
|
485 | maxIndex = indb[0][-1] | |
484 | except: |
|
486 | except: | |
485 | maxIndex = len(heights) |
|
487 | maxIndex = len(heights) | |
486 |
|
488 | |||
487 | if (minIndex < 0) or (minIndex > maxIndex): |
|
489 | if (minIndex < 0) or (minIndex > maxIndex): | |
488 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
490 | raise ValueError("some value in (%d,%d) is not valid" % ( | |
489 | minIndex, maxIndex)) |
|
491 | minIndex, maxIndex)) | |
490 |
|
492 | |||
491 | if (maxIndex >= self.dataOut.nHeights): |
|
493 | if (maxIndex >= self.dataOut.nHeights): | |
492 | maxIndex = self.dataOut.nHeights - 1 |
|
494 | maxIndex = self.dataOut.nHeights - 1 | |
493 |
|
495 | |||
494 | # seleccion de indices para velocidades |
|
496 | # seleccion de indices para velocidades | |
495 | indminvel = numpy.where(velrange >= minVel) |
|
497 | indminvel = numpy.where(velrange >= minVel) | |
496 | indmaxvel = numpy.where(velrange <= maxVel) |
|
498 | indmaxvel = numpy.where(velrange <= maxVel) | |
497 | try: |
|
499 | try: | |
498 | minIndexVel = indminvel[0][0] |
|
500 | minIndexVel = indminvel[0][0] | |
499 | except: |
|
501 | except: | |
500 | minIndexVel = 0 |
|
502 | minIndexVel = 0 | |
501 |
|
503 | |||
502 | try: |
|
504 | try: | |
503 | maxIndexVel = indmaxvel[0][-1] |
|
505 | maxIndexVel = indmaxvel[0][-1] | |
504 | except: |
|
506 | except: | |
505 | maxIndexVel = len(velrange) |
|
507 | maxIndexVel = len(velrange) | |
506 |
|
508 | |||
507 | # seleccion del espectro |
|
509 | # seleccion del espectro | |
508 | data_spc = self.dataOut.data_spc[:, |
|
510 | data_spc = self.dataOut.data_spc[:, | |
509 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
511 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] | |
510 | # estimacion de ruido |
|
512 | # estimacion de ruido | |
511 | noise = numpy.zeros(self.dataOut.nChannels) |
|
513 | noise = numpy.zeros(self.dataOut.nChannels) | |
512 |
|
514 | |||
513 | for channel in range(self.dataOut.nChannels): |
|
515 | for channel in range(self.dataOut.nChannels): | |
514 | daux = data_spc[channel, :, :] |
|
516 | daux = data_spc[channel, :, :] | |
515 | sortdata = numpy.sort(daux, axis=None) |
|
517 | sortdata = numpy.sort(daux, axis=None) | |
516 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
518 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) | |
517 |
|
519 | |||
518 | self.dataOut.noise_estimation = noise.copy() |
|
520 | self.dataOut.noise_estimation = noise.copy() | |
519 |
|
521 | |||
520 | return 1 |
|
522 | return 1 | |
521 |
|
523 | |||
522 | class GetSNR(Operation): |
|
524 | class GetSNR(Operation): | |
523 | ''' |
|
525 | ''' | |
524 | Written by R. Flores |
|
526 | Written by R. Flores | |
525 | ''' |
|
527 | ''' | |
526 | """Operation to get SNR. |
|
528 | """Operation to get SNR. | |
527 |
|
529 | |||
528 | Parameters: |
|
530 | Parameters: | |
529 | ----------- |
|
531 | ----------- | |
530 |
|
532 | |||
531 | Example |
|
533 | Example | |
532 | -------- |
|
534 | -------- | |
533 |
|
535 | |||
534 | op = proc_unit.addOperation(name='GetSNR', optype='other') |
|
536 | op = proc_unit.addOperation(name='GetSNR', optype='other') | |
535 |
|
537 | |||
536 | """ |
|
538 | """ | |
537 |
|
539 | |||
538 | def __init__(self, **kwargs): |
|
540 | def __init__(self, **kwargs): | |
539 |
|
541 | |||
540 | Operation.__init__(self, **kwargs) |
|
542 | Operation.__init__(self, **kwargs) | |
541 |
|
543 | |||
542 | def run(self,dataOut): |
|
544 | def run(self,dataOut): | |
543 |
|
545 | |||
544 | noise = dataOut.getNoise(ymin_index=-10) #RegiΓ³n superior donde solo deberΓa de haber ruido |
|
546 | noise = dataOut.getNoise(ymin_index=-10) #RegiΓ³n superior donde solo deberΓa de haber ruido | |
545 | dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None]*dataOut.nFFTPoints)/(noise[:,None]*dataOut.nFFTPoints) #It works apparently |
|
547 | dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None]*dataOut.nFFTPoints)/(noise[:,None]*dataOut.nFFTPoints) #It works apparently | |
546 | dataOut.snl = numpy.log10(dataOut.data_snr) |
|
548 | dataOut.snl = numpy.log10(dataOut.data_snr) | |
547 | dataOut.snl = numpy.where(dataOut.data_snr<.01, numpy.nan, dataOut.snl) |
|
549 | dataOut.snl = numpy.where(dataOut.data_snr<.01, numpy.nan, dataOut.snl) | |
548 |
|
550 | |||
549 | return dataOut |
|
551 | return dataOut | |
550 |
|
552 | |||
551 | class removeDC(Operation): |
|
553 | class removeDC(Operation): | |
552 |
|
554 | |||
553 | def run(self, dataOut, mode=2): |
|
555 | def run(self, dataOut, mode=2): | |
554 | self.dataOut = dataOut |
|
556 | self.dataOut = dataOut | |
555 | jspectra = self.dataOut.data_spc |
|
557 | jspectra = self.dataOut.data_spc | |
556 | jcspectra = self.dataOut.data_cspc |
|
558 | jcspectra = self.dataOut.data_cspc | |
557 |
|
559 | |||
558 | num_chan = jspectra.shape[0] |
|
560 | num_chan = jspectra.shape[0] | |
559 | num_hei = jspectra.shape[2] |
|
561 | num_hei = jspectra.shape[2] | |
560 |
|
562 | |||
561 | if jcspectra is not None: |
|
563 | if jcspectra is not None: | |
562 | jcspectraExist = True |
|
564 | jcspectraExist = True | |
563 | num_pairs = jcspectra.shape[0] |
|
565 | num_pairs = jcspectra.shape[0] | |
564 | else: |
|
566 | else: | |
565 | jcspectraExist = False |
|
567 | jcspectraExist = False | |
566 |
|
568 | |||
567 | freq_dc = int(jspectra.shape[1] / 2) |
|
569 | freq_dc = int(jspectra.shape[1] / 2) | |
568 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
570 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
569 | ind_vel = ind_vel.astype(int) |
|
571 | ind_vel = ind_vel.astype(int) | |
570 |
|
572 | |||
571 | if ind_vel[0] < 0: |
|
573 | if ind_vel[0] < 0: | |
572 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
574 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof | |
573 |
|
575 | |||
574 | if mode == 1: |
|
576 | if mode == 1: | |
575 | jspectra[:, freq_dc, :] = ( |
|
577 | jspectra[:, freq_dc, :] = ( | |
576 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
578 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
577 |
|
579 | |||
578 | if jcspectraExist: |
|
580 | if jcspectraExist: | |
579 | jcspectra[:, freq_dc, :] = ( |
|
581 | jcspectra[:, freq_dc, :] = ( | |
580 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
582 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 | |
581 |
|
583 | |||
582 | if mode == 2: |
|
584 | if mode == 2: | |
583 |
|
585 | |||
584 | vel = numpy.array([-2, -1, 1, 2]) |
|
586 | vel = numpy.array([-2, -1, 1, 2]) | |
585 | xx = numpy.zeros([4, 4]) |
|
587 | xx = numpy.zeros([4, 4]) | |
586 |
|
588 | |||
587 | for fil in range(4): |
|
589 | for fil in range(4): | |
588 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
590 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
589 |
|
591 | |||
590 | xx_inv = numpy.linalg.inv(xx) |
|
592 | xx_inv = numpy.linalg.inv(xx) | |
591 | xx_aux = xx_inv[0, :] |
|
593 | xx_aux = xx_inv[0, :] | |
592 |
|
594 | |||
593 | for ich in range(num_chan): |
|
595 | for ich in range(num_chan): | |
594 | yy = jspectra[ich, ind_vel, :] |
|
596 | yy = jspectra[ich, ind_vel, :] | |
595 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
597 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
596 |
|
598 | |||
597 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
599 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
598 | cjunkid = sum(junkid) |
|
600 | cjunkid = sum(junkid) | |
599 |
|
601 | |||
600 | if cjunkid.any(): |
|
602 | if cjunkid.any(): | |
601 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
603 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
602 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
604 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
603 |
|
605 | |||
604 | if jcspectraExist: |
|
606 | if jcspectraExist: | |
605 | for ip in range(num_pairs): |
|
607 | for ip in range(num_pairs): | |
606 | yy = jcspectra[ip, ind_vel, :] |
|
608 | yy = jcspectra[ip, ind_vel, :] | |
607 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
609 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) | |
608 |
|
610 | |||
609 | self.dataOut.data_spc = jspectra |
|
611 | self.dataOut.data_spc = jspectra | |
610 | self.dataOut.data_cspc = jcspectra |
|
612 | self.dataOut.data_cspc = jcspectra | |
611 |
|
613 | |||
612 | return self.dataOut |
|
614 | return self.dataOut | |
613 | class getNoiseB(Operation): |
|
615 | class getNoiseB(Operation): | |
614 | """ |
|
616 | """ | |
615 | Get noise from custom heights and frequency ranges, |
|
617 | Get noise from custom heights and frequency ranges, | |
616 | offset for additional manual correction |
|
618 | offset for additional manual correction | |
617 | J. Apaza -> developed to amisr isr spectra |
|
619 | J. Apaza -> developed to amisr isr spectra | |
618 |
|
620 | |||
619 | """ |
|
621 | """ | |
620 | __slots__ =('offset','warnings', 'isConfig', 'minIndex','maxIndex','minIndexFFT','maxIndexFFT') |
|
622 | __slots__ =('offset','warnings', 'isConfig', 'minIndex','maxIndex','minIndexFFT','maxIndexFFT') | |
621 | def __init__(self): |
|
623 | def __init__(self): | |
622 |
|
624 | |||
623 | Operation.__init__(self) |
|
625 | Operation.__init__(self) | |
624 | self.isConfig = False |
|
626 | self.isConfig = False | |
625 |
|
627 | |||
626 | def setup(self, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): |
|
628 | def setup(self, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): | |
627 |
|
629 | |||
628 | self.warnings = warnings |
|
630 | self.warnings = warnings | |
629 | if minHei == None: |
|
631 | if minHei == None: | |
630 | minHei = self.dataOut.heightList[0] |
|
632 | minHei = self.dataOut.heightList[0] | |
631 |
|
633 | |||
632 | if maxHei == None: |
|
634 | if maxHei == None: | |
633 | maxHei = self.dataOut.heightList[-1] |
|
635 | maxHei = self.dataOut.heightList[-1] | |
634 |
|
636 | |||
635 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
637 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
636 | if self.warnings: |
|
638 | if self.warnings: | |
637 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
639 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
638 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
640 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
639 | minHei = self.dataOut.heightList[0] |
|
641 | minHei = self.dataOut.heightList[0] | |
640 |
|
642 | |||
641 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
643 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
642 | if self.warnings: |
|
644 | if self.warnings: | |
643 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
645 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
644 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
646 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
645 | maxHei = self.dataOut.heightList[-1] |
|
647 | maxHei = self.dataOut.heightList[-1] | |
646 |
|
648 | |||
647 |
|
649 | |||
648 | #indices relativos a los puntos de fft, puede ser de acuerdo a velocidad o frecuencia |
|
650 | #indices relativos a los puntos de fft, puede ser de acuerdo a velocidad o frecuencia | |
649 | minIndexFFT = 0 |
|
651 | minIndexFFT = 0 | |
650 | maxIndexFFT = 0 |
|
652 | maxIndexFFT = 0 | |
651 | # validacion de velocidades |
|
653 | # validacion de velocidades | |
652 | indminPoint = None |
|
654 | indminPoint = None | |
653 | indmaxPoint = None |
|
655 | indmaxPoint = None | |
654 | if self.dataOut.type == 'Spectra': |
|
656 | if self.dataOut.type == 'Spectra': | |
655 | if minVel == None and maxVel == None : |
|
657 | if minVel == None and maxVel == None : | |
656 |
|
658 | |||
657 | freqrange = self.dataOut.getFreqRange(1) |
|
659 | freqrange = self.dataOut.getFreqRange(1) | |
658 |
|
660 | |||
659 | if minFreq == None: |
|
661 | if minFreq == None: | |
660 | minFreq = freqrange[0] |
|
662 | minFreq = freqrange[0] | |
661 |
|
663 | |||
662 | if maxFreq == None: |
|
664 | if maxFreq == None: | |
663 | maxFreq = freqrange[-1] |
|
665 | maxFreq = freqrange[-1] | |
664 |
|
666 | |||
665 | if (minFreq < freqrange[0]) or (minFreq > maxFreq): |
|
667 | if (minFreq < freqrange[0]) or (minFreq > maxFreq): | |
666 | if self.warnings: |
|
668 | if self.warnings: | |
667 | print('minFreq: %.2f is out of the frequency range' % (minFreq)) |
|
669 | print('minFreq: %.2f is out of the frequency range' % (minFreq)) | |
668 | print('minFreq is setting to %.2f' % (freqrange[0])) |
|
670 | print('minFreq is setting to %.2f' % (freqrange[0])) | |
669 | minFreq = freqrange[0] |
|
671 | minFreq = freqrange[0] | |
670 |
|
672 | |||
671 | if (maxFreq > freqrange[-1]) or (maxFreq < minFreq): |
|
673 | if (maxFreq > freqrange[-1]) or (maxFreq < minFreq): | |
672 | if self.warnings: |
|
674 | if self.warnings: | |
673 | print('maxFreq: %.2f is out of the frequency range' % (maxFreq)) |
|
675 | print('maxFreq: %.2f is out of the frequency range' % (maxFreq)) | |
674 | print('maxFreq is setting to %.2f' % (freqrange[-1])) |
|
676 | print('maxFreq is setting to %.2f' % (freqrange[-1])) | |
675 | maxFreq = freqrange[-1] |
|
677 | maxFreq = freqrange[-1] | |
676 |
|
678 | |||
677 | indminPoint = numpy.where(freqrange >= minFreq) |
|
679 | indminPoint = numpy.where(freqrange >= minFreq) | |
678 | indmaxPoint = numpy.where(freqrange <= maxFreq) |
|
680 | indmaxPoint = numpy.where(freqrange <= maxFreq) | |
679 |
|
681 | |||
680 | else: |
|
682 | else: | |
681 |
|
683 | |||
682 | velrange = self.dataOut.getVelRange(1) |
|
684 | velrange = self.dataOut.getVelRange(1) | |
683 |
|
685 | |||
684 | if minVel == None: |
|
686 | if minVel == None: | |
685 | minVel = velrange[0] |
|
687 | minVel = velrange[0] | |
686 |
|
688 | |||
687 | if maxVel == None: |
|
689 | if maxVel == None: | |
688 | maxVel = velrange[-1] |
|
690 | maxVel = velrange[-1] | |
689 |
|
691 | |||
690 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
692 | if (minVel < velrange[0]) or (minVel > maxVel): | |
691 | if self.warnings: |
|
693 | if self.warnings: | |
692 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
694 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |
693 | print('minVel is setting to %.2f' % (velrange[0])) |
|
695 | print('minVel is setting to %.2f' % (velrange[0])) | |
694 | minVel = velrange[0] |
|
696 | minVel = velrange[0] | |
695 |
|
697 | |||
696 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
698 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
697 | if self.warnings: |
|
699 | if self.warnings: | |
698 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
700 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |
699 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
701 | print('maxVel is setting to %.2f' % (velrange[-1])) | |
700 | maxVel = velrange[-1] |
|
702 | maxVel = velrange[-1] | |
701 |
|
703 | |||
702 | indminPoint = numpy.where(velrange >= minVel) |
|
704 | indminPoint = numpy.where(velrange >= minVel) | |
703 | indmaxPoint = numpy.where(velrange <= maxVel) |
|
705 | indmaxPoint = numpy.where(velrange <= maxVel) | |
704 |
|
706 | |||
705 |
|
707 | |||
706 | # seleccion de indices para rango REEMPLAZAR FOR FUNCION EXTERNA LUEGO |
|
708 | # seleccion de indices para rango REEMPLAZAR FOR FUNCION EXTERNA LUEGO | |
707 | # minIndex = 0 |
|
709 | # minIndex = 0 | |
708 | # maxIndex = 0 |
|
710 | # maxIndex = 0 | |
709 | # heights = self.dataOut.heightList |
|
711 | # heights = self.dataOut.heightList | |
710 | # inda = numpy.where(heights >= minHei) |
|
712 | # inda = numpy.where(heights >= minHei) | |
711 | # indb = numpy.where(heights <= maxHei) |
|
713 | # indb = numpy.where(heights <= maxHei) | |
712 | # try: |
|
714 | # try: | |
713 | # minIndex = inda[0][0] |
|
715 | # minIndex = inda[0][0] | |
714 | # except: |
|
716 | # except: | |
715 | # minIndex = 0 |
|
717 | # minIndex = 0 | |
716 | # try: |
|
718 | # try: | |
717 | # maxIndex = indb[0][-1] |
|
719 | # maxIndex = indb[0][-1] | |
718 | # except: |
|
720 | # except: | |
719 | # maxIndex = len(heights) |
|
721 | # maxIndex = len(heights) | |
720 | # if (minIndex < 0) or (minIndex > maxIndex): |
|
722 | # if (minIndex < 0) or (minIndex > maxIndex): | |
721 | # raise ValueError("some value in (%d,%d) is not valid" % ( |
|
723 | # raise ValueError("some value in (%d,%d) is not valid" % ( | |
722 | # minIndex, maxIndex)) |
|
724 | # minIndex, maxIndex)) | |
723 | # if (maxIndex >= self.dataOut.nHeights): |
|
725 | # if (maxIndex >= self.dataOut.nHeights): | |
724 | # maxIndex = self.dataOut.nHeights - 1 |
|
726 | # maxIndex = self.dataOut.nHeights - 1 | |
725 |
|
727 | |||
726 | minIndex, maxIndex = getHei_index(minHei,maxHei,self.dataOut.heightList) |
|
728 | minIndex, maxIndex = getHei_index(minHei,maxHei,self.dataOut.heightList) | |
727 |
|
729 | |||
728 |
|
730 | |||
729 | #############################################################3 |
|
731 | #############################################################3 | |
730 | # seleccion de indices para velocidades |
|
732 | # seleccion de indices para velocidades | |
731 | if self.dataOut.type == 'Spectra': |
|
733 | if self.dataOut.type == 'Spectra': | |
732 | try: |
|
734 | try: | |
733 | minIndexFFT = indminPoint[0][0] |
|
735 | minIndexFFT = indminPoint[0][0] | |
734 | except: |
|
736 | except: | |
735 | minIndexFFT = 0 |
|
737 | minIndexFFT = 0 | |
736 |
|
738 | |||
737 | try: |
|
739 | try: | |
738 | maxIndexFFT = indmaxPoint[0][-1] |
|
740 | maxIndexFFT = indmaxPoint[0][-1] | |
739 | except: |
|
741 | except: | |
740 | maxIndexFFT = len( self.dataOut.getFreqRange(1)) |
|
742 | maxIndexFFT = len( self.dataOut.getFreqRange(1)) | |
741 |
|
743 | |||
742 | self.minIndex, self.maxIndex, self.minIndexFFT, self.maxIndexFFT = minIndex, maxIndex, minIndexFFT, maxIndexFFT |
|
744 | self.minIndex, self.maxIndex, self.minIndexFFT, self.maxIndexFFT = minIndex, maxIndex, minIndexFFT, maxIndexFFT | |
743 | self.isConfig = True |
|
745 | self.isConfig = True | |
744 | self.offset = 1 |
|
746 | self.offset = 1 | |
745 | if offset!=None: |
|
747 | if offset!=None: | |
746 | self.offset = 10**(offset/10) |
|
748 | self.offset = 10**(offset/10) | |
747 |
|
749 | |||
748 |
|
750 | |||
749 | def run(self, dataOut, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): |
|
751 | def run(self, dataOut, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): | |
750 | self.dataOut = dataOut |
|
752 | self.dataOut = dataOut | |
751 |
|
753 | |||
752 | if not self.isConfig: |
|
754 | if not self.isConfig: | |
753 | self.setup(offset, minHei, maxHei,minVel, maxVel, minFreq, maxFreq, warnings) |
|
755 | self.setup(offset, minHei, maxHei,minVel, maxVel, minFreq, maxFreq, warnings) | |
754 |
|
756 | |||
755 | self.dataOut.noise_estimation = None |
|
757 | self.dataOut.noise_estimation = None | |
756 | noise = None |
|
758 | noise = None | |
757 | if self.dataOut.type == 'Voltage': |
|
759 | if self.dataOut.type == 'Voltage': | |
758 | noise = self.dataOut.getNoise(ymin_index=self.minIndex, ymax_index=self.maxIndex) |
|
760 | noise = self.dataOut.getNoise(ymin_index=self.minIndex, ymax_index=self.maxIndex) | |
759 | elif self.dataOut.type == 'Spectra': |
|
761 | elif self.dataOut.type == 'Spectra': | |
760 | noise = numpy.zeros( self.dataOut.nChannels) |
|
762 | noise = numpy.zeros( self.dataOut.nChannels) | |
761 | norm = 1 |
|
763 | norm = 1 | |
762 |
|
764 | |||
763 | for channel in range( self.dataOut.nChannels): |
|
765 | for channel in range( self.dataOut.nChannels): | |
764 | if not hasattr(self.dataOut.nIncohInt,'__len__'): |
|
766 | if not hasattr(self.dataOut.nIncohInt,'__len__'): | |
765 | norm = 1 |
|
767 | norm = 1 | |
766 | else: |
|
768 | else: | |
767 | norm = self.dataOut.max_nIncohInt[channel]/self.dataOut.nIncohInt[channel, self.minIndex:self.maxIndex] |
|
769 | norm = self.dataOut.max_nIncohInt[channel]/self.dataOut.nIncohInt[channel, self.minIndex:self.maxIndex] | |
768 |
|
770 | |||
769 | daux = self.dataOut.data_spc[channel,self.minIndexFFT:self.maxIndexFFT, self.minIndex:self.maxIndex] |
|
771 | daux = self.dataOut.data_spc[channel,self.minIndexFFT:self.maxIndexFFT, self.minIndex:self.maxIndex] | |
770 | daux = numpy.multiply(daux, norm) |
|
772 | daux = numpy.multiply(daux, norm) | |
771 | sortdata = numpy.sort(daux, axis=None) |
|
773 | sortdata = numpy.sort(daux, axis=None) | |
772 | noise[channel] = _noise.hildebrand_sekhon(sortdata, self.dataOut.max_nIncohInt[channel])/self.offset |
|
774 | noise[channel] = _noise.hildebrand_sekhon(sortdata, self.dataOut.max_nIncohInt[channel])/self.offset | |
773 |
|
775 | |||
774 | else: |
|
776 | else: | |
775 | noise = self.dataOut.getNoise(xmin_index=self.minIndexFFT, xmax_index=self.maxIndexFFT, ymin_index=self.minIndex, ymax_index=self.maxIndex) |
|
777 | noise = self.dataOut.getNoise(xmin_index=self.minIndexFFT, xmax_index=self.maxIndexFFT, ymin_index=self.minIndex, ymax_index=self.maxIndex) | |
776 |
|
778 | |||
777 | self.dataOut.noise_estimation = noise.copy() # dataOut.noise |
|
779 | self.dataOut.noise_estimation = noise.copy() # dataOut.noise | |
778 |
|
780 | |||
779 | return self.dataOut |
|
781 | return self.dataOut | |
780 |
|
782 | |||
781 | def getNoiseByMean(self,data): |
|
783 | def getNoiseByMean(self,data): | |
782 | #data debe estar ordenado |
|
784 | #data debe estar ordenado | |
783 | data = numpy.mean(data,axis=1) |
|
785 | data = numpy.mean(data,axis=1) | |
784 | sortdata = numpy.sort(data, axis=None) |
|
786 | sortdata = numpy.sort(data, axis=None) | |
785 | pnoise = None |
|
787 | pnoise = None | |
786 | j = 0 |
|
788 | j = 0 | |
787 |
|
789 | |||
788 | mean = numpy.mean(sortdata) |
|
790 | mean = numpy.mean(sortdata) | |
789 | min = numpy.min(sortdata) |
|
791 | min = numpy.min(sortdata) | |
790 | delta = mean - min |
|
792 | delta = mean - min | |
791 | indexes = numpy.where(sortdata > (mean+delta))[0] #only array of indexes |
|
793 | indexes = numpy.where(sortdata > (mean+delta))[0] #only array of indexes | |
792 | #print(len(indexes)) |
|
794 | #print(len(indexes)) | |
793 | if len(indexes)==0: |
|
795 | if len(indexes)==0: | |
794 | pnoise = numpy.mean(sortdata) |
|
796 | pnoise = numpy.mean(sortdata) | |
795 | else: |
|
797 | else: | |
796 | j = indexes[0] |
|
798 | j = indexes[0] | |
797 | pnoise = numpy.mean(sortdata[0:j]) |
|
799 | pnoise = numpy.mean(sortdata[0:j]) | |
798 |
|
800 | |||
799 | return pnoise |
|
801 | return pnoise | |
800 |
|
802 | |||
801 | def getNoiseByHS(self,data, navg): |
|
803 | def getNoiseByHS(self,data, navg): | |
802 | #data debe estar ordenado |
|
804 | #data debe estar ordenado | |
803 | #data = numpy.mean(data,axis=1) |
|
805 | #data = numpy.mean(data,axis=1) | |
804 | sortdata = numpy.sort(data, axis=None) |
|
806 | sortdata = numpy.sort(data, axis=None) | |
805 |
|
807 | |||
806 | lenOfData = len(sortdata) |
|
808 | lenOfData = len(sortdata) | |
807 | nums_min = lenOfData*0.2 |
|
809 | nums_min = lenOfData*0.2 | |
808 |
|
810 | |||
809 | if nums_min <= 5: |
|
811 | if nums_min <= 5: | |
810 |
|
812 | |||
811 | nums_min = 5 |
|
813 | nums_min = 5 | |
812 |
|
814 | |||
813 | sump = 0. |
|
815 | sump = 0. | |
814 | sumq = 0. |
|
816 | sumq = 0. | |
815 |
|
817 | |||
816 | j = 0 |
|
818 | j = 0 | |
817 | cont = 1 |
|
819 | cont = 1 | |
818 |
|
820 | |||
819 | while((cont == 1)and(j < lenOfData)): |
|
821 | while((cont == 1)and(j < lenOfData)): | |
820 |
|
822 | |||
821 | sump += sortdata[j] |
|
823 | sump += sortdata[j] | |
822 | sumq += sortdata[j]**2 |
|
824 | sumq += sortdata[j]**2 | |
823 | #sumq -= sump**2 |
|
825 | #sumq -= sump**2 | |
824 | if j > nums_min: |
|
826 | if j > nums_min: | |
825 | rtest = float(j)/(j-1) + 1.0/navg |
|
827 | rtest = float(j)/(j-1) + 1.0/navg | |
826 | #if ((sumq*j) > (sump**2)): |
|
828 | #if ((sumq*j) > (sump**2)): | |
827 | if ((sumq*j) > (rtest*sump**2)): |
|
829 | if ((sumq*j) > (rtest*sump**2)): | |
828 | j = j - 1 |
|
830 | j = j - 1 | |
829 | sump = sump - sortdata[j] |
|
831 | sump = sump - sortdata[j] | |
830 | sumq = sumq - sortdata[j]**2 |
|
832 | sumq = sumq - sortdata[j]**2 | |
831 | cont = 0 |
|
833 | cont = 0 | |
832 |
|
834 | |||
833 | j += 1 |
|
835 | j += 1 | |
834 |
|
836 | |||
835 | lnoise = sump / j |
|
837 | lnoise = sump / j | |
836 |
|
838 | |||
837 | return lnoise |
|
839 | return lnoise | |
838 |
|
840 | |||
839 | class removeInterference(Operation): |
|
841 | class removeInterference(Operation): | |
840 |
|
842 | |||
841 | def removeInterference2(self): |
|
843 | def removeInterference2(self): | |
842 |
|
844 | |||
843 | cspc = self.dataOut.data_cspc |
|
845 | cspc = self.dataOut.data_cspc | |
844 | spc = self.dataOut.data_spc |
|
846 | spc = self.dataOut.data_spc | |
845 | Heights = numpy.arange(cspc.shape[2]) |
|
847 | Heights = numpy.arange(cspc.shape[2]) | |
846 | realCspc = numpy.abs(cspc) |
|
848 | realCspc = numpy.abs(cspc) | |
847 |
|
849 | |||
848 | for i in range(cspc.shape[0]): |
|
850 | for i in range(cspc.shape[0]): | |
849 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
851 | LinePower= numpy.sum(realCspc[i], axis=0) | |
850 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
852 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] | |
851 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
853 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] | |
852 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
854 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) | |
853 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
855 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] | |
854 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
856 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] | |
855 |
|
857 | |||
856 |
|
858 | |||
857 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
859 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) | |
858 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
860 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) | |
859 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
861 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): | |
860 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
862 | cspc[i,InterferenceRange,:] = numpy.NaN | |
861 |
|
863 | |||
862 | self.dataOut.data_cspc = cspc |
|
864 | self.dataOut.data_cspc = cspc | |
863 |
|
865 | |||
864 | def removeInterference(self, interf=2, hei_interf=None, nhei_interf=None, offhei_interf=None): |
|
866 | def removeInterference(self, interf=2, hei_interf=None, nhei_interf=None, offhei_interf=None): | |
865 |
|
867 | |||
866 | jspectra = self.dataOut.data_spc |
|
868 | jspectra = self.dataOut.data_spc | |
867 | jcspectra = self.dataOut.data_cspc |
|
869 | jcspectra = self.dataOut.data_cspc | |
868 | jnoise = self.dataOut.getNoise() |
|
870 | jnoise = self.dataOut.getNoise() | |
869 | num_incoh = self.dataOut.nIncohInt |
|
871 | num_incoh = self.dataOut.nIncohInt | |
870 |
|
872 | |||
871 | num_channel = jspectra.shape[0] |
|
873 | num_channel = jspectra.shape[0] | |
872 | num_prof = jspectra.shape[1] |
|
874 | num_prof = jspectra.shape[1] | |
873 | num_hei = jspectra.shape[2] |
|
875 | num_hei = jspectra.shape[2] | |
874 |
|
876 | |||
875 | # hei_interf |
|
877 | # hei_interf | |
876 | if hei_interf is None: |
|
878 | if hei_interf is None: | |
877 | count_hei = int(num_hei / 2) |
|
879 | count_hei = int(num_hei / 2) | |
878 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
880 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei | |
879 | hei_interf = numpy.asarray(hei_interf)[0] |
|
881 | hei_interf = numpy.asarray(hei_interf)[0] | |
880 | # nhei_interf |
|
882 | # nhei_interf | |
881 | if (nhei_interf == None): |
|
883 | if (nhei_interf == None): | |
882 | nhei_interf = 5 |
|
884 | nhei_interf = 5 | |
883 | if (nhei_interf < 1): |
|
885 | if (nhei_interf < 1): | |
884 | nhei_interf = 1 |
|
886 | nhei_interf = 1 | |
885 | if (nhei_interf > count_hei): |
|
887 | if (nhei_interf > count_hei): | |
886 | nhei_interf = count_hei |
|
888 | nhei_interf = count_hei | |
887 | if (offhei_interf == None): |
|
889 | if (offhei_interf == None): | |
888 | offhei_interf = 0 |
|
890 | offhei_interf = 0 | |
889 |
|
891 | |||
890 | ind_hei = list(range(num_hei)) |
|
892 | ind_hei = list(range(num_hei)) | |
891 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
893 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |
892 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
894 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |
893 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
895 | mask_prof = numpy.asarray(list(range(num_prof))) | |
894 | num_mask_prof = mask_prof.size |
|
896 | num_mask_prof = mask_prof.size | |
895 | comp_mask_prof = [0, num_prof / 2] |
|
897 | comp_mask_prof = [0, num_prof / 2] | |
896 |
|
898 | |||
897 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
899 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |
898 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
900 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |
899 | jnoise = numpy.nan |
|
901 | jnoise = numpy.nan | |
900 | noise_exist = jnoise[0] < numpy.Inf |
|
902 | noise_exist = jnoise[0] < numpy.Inf | |
901 |
|
903 | |||
902 | # Subrutina de Remocion de la Interferencia |
|
904 | # Subrutina de Remocion de la Interferencia | |
903 | for ich in range(num_channel): |
|
905 | for ich in range(num_channel): | |
904 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
906 | # Se ordena los espectros segun su potencia (menor a mayor) | |
905 | power = jspectra[ich, mask_prof, :] |
|
907 | power = jspectra[ich, mask_prof, :] | |
906 | power = power[:, hei_interf] |
|
908 | power = power[:, hei_interf] | |
907 | power = power.sum(axis=0) |
|
909 | power = power.sum(axis=0) | |
908 | psort = power.ravel().argsort() |
|
910 | psort = power.ravel().argsort() | |
909 |
|
911 | |||
910 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
912 | # Se estima la interferencia promedio en los Espectros de Potencia empleando | |
911 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
913 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( | |
912 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
914 | offhei_interf, nhei_interf + offhei_interf))]]] | |
913 |
|
915 | |||
914 | if noise_exist: |
|
916 | if noise_exist: | |
915 | # tmp_noise = jnoise[ich] / num_prof |
|
917 | # tmp_noise = jnoise[ich] / num_prof | |
916 | tmp_noise = jnoise[ich] |
|
918 | tmp_noise = jnoise[ich] | |
917 | junkspc_interf = junkspc_interf - tmp_noise |
|
919 | junkspc_interf = junkspc_interf - tmp_noise | |
918 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
920 | #junkspc_interf[:,comp_mask_prof] = 0 | |
919 |
|
921 | |||
920 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
922 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf | |
921 | jspc_interf = jspc_interf.transpose() |
|
923 | jspc_interf = jspc_interf.transpose() | |
922 | # Calculando el espectro de interferencia promedio |
|
924 | # Calculando el espectro de interferencia promedio | |
923 | noiseid = numpy.where( |
|
925 | noiseid = numpy.where( | |
924 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
926 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) | |
925 | noiseid = noiseid[0] |
|
927 | noiseid = noiseid[0] | |
926 | cnoiseid = noiseid.size |
|
928 | cnoiseid = noiseid.size | |
927 | interfid = numpy.where( |
|
929 | interfid = numpy.where( | |
928 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
930 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) | |
929 | interfid = interfid[0] |
|
931 | interfid = interfid[0] | |
930 | cinterfid = interfid.size |
|
932 | cinterfid = interfid.size | |
931 |
|
933 | |||
932 | if (cnoiseid > 0): |
|
934 | if (cnoiseid > 0): | |
933 | jspc_interf[noiseid] = 0 |
|
935 | jspc_interf[noiseid] = 0 | |
934 |
|
936 | |||
935 | # Expandiendo los perfiles a limpiar |
|
937 | # Expandiendo los perfiles a limpiar | |
936 | if (cinterfid > 0): |
|
938 | if (cinterfid > 0): | |
937 | new_interfid = ( |
|
939 | new_interfid = ( | |
938 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
940 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof | |
939 | new_interfid = numpy.asarray(new_interfid) |
|
941 | new_interfid = numpy.asarray(new_interfid) | |
940 | new_interfid = {x for x in new_interfid} |
|
942 | new_interfid = {x for x in new_interfid} | |
941 | new_interfid = numpy.array(list(new_interfid)) |
|
943 | new_interfid = numpy.array(list(new_interfid)) | |
942 | new_cinterfid = new_interfid.size |
|
944 | new_cinterfid = new_interfid.size | |
943 | else: |
|
945 | else: | |
944 | new_cinterfid = 0 |
|
946 | new_cinterfid = 0 | |
945 |
|
947 | |||
946 | for ip in range(new_cinterfid): |
|
948 | for ip in range(new_cinterfid): | |
947 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
949 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() | |
948 | jspc_interf[new_interfid[ip] |
|
950 | jspc_interf[new_interfid[ip] | |
949 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
951 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] | |
950 |
|
952 | |||
951 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
953 | jspectra[ich, :, ind_hei] = jspectra[ich, :, | |
952 | ind_hei] - jspc_interf # Corregir indices |
|
954 | ind_hei] - jspc_interf # Corregir indices | |
953 |
|
955 | |||
954 | # Removiendo la interferencia del punto de mayor interferencia |
|
956 | # Removiendo la interferencia del punto de mayor interferencia | |
955 | ListAux = jspc_interf[mask_prof].tolist() |
|
957 | ListAux = jspc_interf[mask_prof].tolist() | |
956 | maxid = ListAux.index(max(ListAux)) |
|
958 | maxid = ListAux.index(max(ListAux)) | |
957 |
|
959 | |||
958 | if cinterfid > 0: |
|
960 | if cinterfid > 0: | |
959 | for ip in range(cinterfid * (interf == 2) - 1): |
|
961 | for ip in range(cinterfid * (interf == 2) - 1): | |
960 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
962 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * | |
961 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
963 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() | |
962 | cind = len(ind) |
|
964 | cind = len(ind) | |
963 |
|
965 | |||
964 | if (cind > 0): |
|
966 | if (cind > 0): | |
965 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
967 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ | |
966 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
968 | (1 + (numpy.random.uniform(cind) - 0.5) / | |
967 | numpy.sqrt(num_incoh)) |
|
969 | numpy.sqrt(num_incoh)) | |
968 |
|
970 | |||
969 | ind = numpy.array([-2, -1, 1, 2]) |
|
971 | ind = numpy.array([-2, -1, 1, 2]) | |
970 | xx = numpy.zeros([4, 4]) |
|
972 | xx = numpy.zeros([4, 4]) | |
971 |
|
973 | |||
972 | for id1 in range(4): |
|
974 | for id1 in range(4): | |
973 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
975 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
974 |
|
976 | |||
975 | xx_inv = numpy.linalg.inv(xx) |
|
977 | xx_inv = numpy.linalg.inv(xx) | |
976 | xx = xx_inv[:, 0] |
|
978 | xx = xx_inv[:, 0] | |
977 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
979 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
978 | yy = jspectra[ich, mask_prof[ind], :] |
|
980 | yy = jspectra[ich, mask_prof[ind], :] | |
979 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
981 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( | |
980 | yy.transpose(), xx) |
|
982 | yy.transpose(), xx) | |
981 |
|
983 | |||
982 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
984 | indAux = (jspectra[ich, :, :] < tmp_noise * | |
983 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
985 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() | |
984 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
986 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ | |
985 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
987 | (1 - 1 / numpy.sqrt(num_incoh)) | |
986 |
|
988 | |||
987 | # Remocion de Interferencia en el Cross Spectra |
|
989 | # Remocion de Interferencia en el Cross Spectra | |
988 | if jcspectra is None: |
|
990 | if jcspectra is None: | |
989 | return jspectra, jcspectra |
|
991 | return jspectra, jcspectra | |
990 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
992 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) | |
991 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
993 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |
992 |
|
994 | |||
993 | for ip in range(num_pairs): |
|
995 | for ip in range(num_pairs): | |
994 |
|
996 | |||
995 | #------------------------------------------- |
|
997 | #------------------------------------------- | |
996 |
|
998 | |||
997 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
999 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) | |
998 | cspower = cspower[:, hei_interf] |
|
1000 | cspower = cspower[:, hei_interf] | |
999 | cspower = cspower.sum(axis=0) |
|
1001 | cspower = cspower.sum(axis=0) | |
1000 |
|
1002 | |||
1001 | cspsort = cspower.ravel().argsort() |
|
1003 | cspsort = cspower.ravel().argsort() | |
1002 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
1004 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( | |
1003 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1005 | offhei_interf, nhei_interf + offhei_interf))]]] | |
1004 | junkcspc_interf = junkcspc_interf.transpose() |
|
1006 | junkcspc_interf = junkcspc_interf.transpose() | |
1005 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
1007 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf | |
1006 |
|
1008 | |||
1007 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1009 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |
1008 |
|
1010 | |||
1009 | median_real = int(numpy.median(numpy.real( |
|
1011 | median_real = int(numpy.median(numpy.real( | |
1010 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1012 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
1011 | median_imag = int(numpy.median(numpy.imag( |
|
1013 | median_imag = int(numpy.median(numpy.imag( | |
1012 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1014 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
1013 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
1015 | comp_mask_prof = [int(e) for e in comp_mask_prof] | |
1014 | junkcspc_interf[comp_mask_prof, :] = numpy.complex_( |
|
1016 | junkcspc_interf[comp_mask_prof, :] = numpy.complex_( | |
1015 | median_real, median_imag) |
|
1017 | median_real, median_imag) | |
1016 |
|
1018 | |||
1017 | for iprof in range(num_prof): |
|
1019 | for iprof in range(num_prof): | |
1018 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
1020 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() | |
1019 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
1021 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] | |
1020 |
|
1022 | |||
1021 | # Removiendo la Interferencia |
|
1023 | # Removiendo la Interferencia | |
1022 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
1024 | jcspectra[ip, :, ind_hei] = jcspectra[ip, | |
1023 | :, ind_hei] - jcspc_interf |
|
1025 | :, ind_hei] - jcspc_interf | |
1024 |
|
1026 | |||
1025 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1027 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |
1026 | maxid = ListAux.index(max(ListAux)) |
|
1028 | maxid = ListAux.index(max(ListAux)) | |
1027 |
|
1029 | |||
1028 | ind = numpy.array([-2, -1, 1, 2]) |
|
1030 | ind = numpy.array([-2, -1, 1, 2]) | |
1029 | xx = numpy.zeros([4, 4]) |
|
1031 | xx = numpy.zeros([4, 4]) | |
1030 |
|
1032 | |||
1031 | for id1 in range(4): |
|
1033 | for id1 in range(4): | |
1032 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1034 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
1033 |
|
1035 | |||
1034 | xx_inv = numpy.linalg.inv(xx) |
|
1036 | xx_inv = numpy.linalg.inv(xx) | |
1035 | xx = xx_inv[:, 0] |
|
1037 | xx = xx_inv[:, 0] | |
1036 |
|
1038 | |||
1037 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1039 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
1038 | yy = jcspectra[ip, mask_prof[ind], :] |
|
1040 | yy = jcspectra[ip, mask_prof[ind], :] | |
1039 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1041 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) | |
1040 |
|
1042 | |||
1041 | # Guardar Resultados |
|
1043 | # Guardar Resultados | |
1042 | self.dataOut.data_spc = jspectra |
|
1044 | self.dataOut.data_spc = jspectra | |
1043 | self.dataOut.data_cspc = jcspectra |
|
1045 | self.dataOut.data_cspc = jcspectra | |
1044 |
|
1046 | |||
1045 | return 1 |
|
1047 | return 1 | |
1046 |
|
1048 | |||
1047 |
|
1049 | |||
1048 | def run(self, dataOut, interf=2,hei_interf=None, nhei_interf=None, offhei_interf=None, mode=1): |
|
1050 | def run(self, dataOut, interf=2,hei_interf=None, nhei_interf=None, offhei_interf=None, mode=1): | |
1049 |
|
1051 | |||
1050 | self.dataOut = dataOut |
|
1052 | self.dataOut = dataOut | |
1051 |
|
1053 | |||
1052 | if mode == 1: |
|
1054 | if mode == 1: | |
1053 | self.removeInterference(interf=2,hei_interf=None, nhei_interf=None, offhei_interf=None) |
|
1055 | self.removeInterference(interf=2,hei_interf=None, nhei_interf=None, offhei_interf=None) | |
1054 | elif mode == 2: |
|
1056 | elif mode == 2: | |
1055 | self.removeInterference2() |
|
1057 | self.removeInterference2() | |
1056 |
|
1058 | |||
1057 | return self.dataOut |
|
1059 | return self.dataOut | |
1058 |
|
1060 | |||
1059 |
|
1061 | |||
1060 | class deflip(Operation): |
|
1062 | class deflip(Operation): | |
1061 |
|
1063 | |||
1062 | def run(self, dataOut): |
|
1064 | def run(self, dataOut): | |
1063 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1065 | # arreglo 1: (num_chan, num_profiles, num_heights) | |
1064 | self.dataOut = dataOut |
|
1066 | self.dataOut = dataOut | |
1065 |
|
1067 | |||
1066 | # JULIA-oblicua, indice 2 |
|
1068 | # JULIA-oblicua, indice 2 | |
1067 | # arreglo 2: (num_profiles, num_heights) |
|
1069 | # arreglo 2: (num_profiles, num_heights) | |
1068 | jspectra = self.dataOut.data_spc[2] |
|
1070 | jspectra = self.dataOut.data_spc[2] | |
1069 | jspectra_tmp=numpy.zeros(jspectra.shape) |
|
1071 | jspectra_tmp=numpy.zeros(jspectra.shape) | |
1070 | num_profiles=jspectra.shape[0] |
|
1072 | num_profiles=jspectra.shape[0] | |
1071 | freq_dc = int(num_profiles / 2) |
|
1073 | freq_dc = int(num_profiles / 2) | |
1072 | # Flip con for |
|
1074 | # Flip con for | |
1073 | for j in range(num_profiles): |
|
1075 | for j in range(num_profiles): | |
1074 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1076 | jspectra_tmp[num_profiles-j-1]= jspectra[j] | |
1075 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1077 | # Intercambio perfil de DC con perfil inmediato anterior | |
1076 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1078 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] | |
1077 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1079 | jspectra_tmp[freq_dc]= jspectra[freq_dc] | |
1078 | # canal modificado es re-escrito en el arreglo de canales |
|
1080 | # canal modificado es re-escrito en el arreglo de canales | |
1079 | self.dataOut.data_spc[2] = jspectra_tmp |
|
1081 | self.dataOut.data_spc[2] = jspectra_tmp | |
1080 |
|
1082 | |||
1081 | return self.dataOut |
|
1083 | return self.dataOut | |
1082 |
|
1084 | |||
1083 |
|
1085 | |||
1084 | class IncohInt(Operation): |
|
1086 | class IncohInt(Operation): | |
1085 |
|
1087 | |||
1086 | __profIndex = 0 |
|
1088 | __profIndex = 0 | |
1087 | __withOverapping = False |
|
1089 | __withOverapping = False | |
1088 |
|
1090 | |||
1089 | __byTime = False |
|
1091 | __byTime = False | |
1090 | __initime = None |
|
1092 | __initime = None | |
1091 | __lastdatatime = None |
|
1093 | __lastdatatime = None | |
1092 | __integrationtime = None |
|
1094 | __integrationtime = None | |
1093 |
|
1095 | |||
1094 | __buffer_spc = None |
|
1096 | __buffer_spc = None | |
1095 | __buffer_cspc = None |
|
1097 | __buffer_cspc = None | |
1096 | __buffer_dc = None |
|
1098 | __buffer_dc = None | |
1097 |
|
1099 | |||
1098 | __dataReady = False |
|
1100 | __dataReady = False | |
1099 |
|
1101 | |||
1100 | __timeInterval = None |
|
1102 | __timeInterval = None | |
1101 | incohInt = 0 |
|
1103 | incohInt = 0 | |
1102 | nOutliers = 0 |
|
1104 | nOutliers = 0 | |
1103 | n = None |
|
1105 | n = None | |
1104 |
|
1106 | |||
1105 | _flagProfilesByRange = False |
|
1107 | _flagProfilesByRange = False | |
1106 | _nProfilesByRange = 0 |
|
1108 | _nProfilesByRange = 0 | |
1107 | def __init__(self): |
|
1109 | def __init__(self): | |
1108 |
|
1110 | |||
1109 | Operation.__init__(self) |
|
1111 | Operation.__init__(self) | |
1110 |
|
1112 | |||
1111 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1113 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
1112 | """ |
|
1114 | """ | |
1113 | Set the parameters of the integration class. |
|
1115 | Set the parameters of the integration class. | |
1114 |
|
1116 | |||
1115 | Inputs: |
|
1117 | Inputs: | |
1116 |
|
1118 | |||
1117 | n : Number of coherent integrations |
|
1119 | n : Number of coherent integrations | |
1118 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1120 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
1119 | overlapping : |
|
1121 | overlapping : | |
1120 |
|
1122 | |||
1121 | """ |
|
1123 | """ | |
1122 |
|
1124 | |||
1123 | self.__initime = None |
|
1125 | self.__initime = None | |
1124 | self.__lastdatatime = 0 |
|
1126 | self.__lastdatatime = 0 | |
1125 |
|
1127 | |||
1126 | self.__buffer_spc = 0 |
|
1128 | self.__buffer_spc = 0 | |
1127 | self.__buffer_cspc = 0 |
|
1129 | self.__buffer_cspc = 0 | |
1128 | self.__buffer_dc = 0 |
|
1130 | self.__buffer_dc = 0 | |
1129 |
|
1131 | |||
1130 | self.__profIndex = 0 |
|
1132 | self.__profIndex = 0 | |
1131 | self.__dataReady = False |
|
1133 | self.__dataReady = False | |
1132 | self.__byTime = False |
|
1134 | self.__byTime = False | |
1133 | self.incohInt = 0 |
|
1135 | self.incohInt = 0 | |
1134 | self.nOutliers = 0 |
|
1136 | self.nOutliers = 0 | |
1135 | if n is None and timeInterval is None: |
|
1137 | if n is None and timeInterval is None: | |
1136 | raise ValueError("n or timeInterval should be specified ...") |
|
1138 | raise ValueError("n or timeInterval should be specified ...") | |
1137 |
|
1139 | |||
1138 | if n is not None: |
|
1140 | if n is not None: | |
1139 | self.n = int(n) |
|
1141 | self.n = int(n) | |
1140 | else: |
|
1142 | else: | |
1141 |
|
1143 | |||
1142 | self.__integrationtime = int(timeInterval) |
|
1144 | self.__integrationtime = int(timeInterval) | |
1143 | self.n = None |
|
1145 | self.n = None | |
1144 | self.__byTime = True |
|
1146 | self.__byTime = True | |
1145 |
|
1147 | |||
1146 |
|
1148 | |||
1147 |
|
1149 | |||
1148 | def putData(self, data_spc, data_cspc, data_dc): |
|
1150 | def putData(self, data_spc, data_cspc, data_dc): | |
1149 | """ |
|
1151 | """ | |
1150 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1152 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
1151 |
|
1153 | |||
1152 | """ |
|
1154 | """ | |
1153 | if data_spc.all() == numpy.nan : |
|
1155 | if data_spc.all() == numpy.nan : | |
1154 | print("nan ") |
|
1156 | print("nan ") | |
1155 | return |
|
1157 | return | |
1156 | self.__buffer_spc += data_spc |
|
1158 | self.__buffer_spc += data_spc | |
1157 |
|
1159 | |||
1158 | if data_cspc is None: |
|
1160 | if data_cspc is None: | |
1159 | self.__buffer_cspc = None |
|
1161 | self.__buffer_cspc = None | |
1160 | else: |
|
1162 | else: | |
1161 | self.__buffer_cspc += data_cspc |
|
1163 | self.__buffer_cspc += data_cspc | |
1162 |
|
1164 | |||
1163 | if data_dc is None: |
|
1165 | if data_dc is None: | |
1164 | self.__buffer_dc = None |
|
1166 | self.__buffer_dc = None | |
1165 | else: |
|
1167 | else: | |
1166 | self.__buffer_dc += data_dc |
|
1168 | self.__buffer_dc += data_dc | |
1167 |
|
1169 | |||
1168 | self.__profIndex += 1 |
|
1170 | self.__profIndex += 1 | |
1169 |
|
1171 | |||
1170 | return |
|
1172 | return | |
1171 |
|
1173 | |||
1172 | def pushData(self): |
|
1174 | def pushData(self): | |
1173 | """ |
|
1175 | """ | |
1174 | Return the sum of the last profiles and the profiles used in the sum. |
|
1176 | Return the sum of the last profiles and the profiles used in the sum. | |
1175 |
|
1177 | |||
1176 | Affected: |
|
1178 | Affected: | |
1177 |
|
1179 | |||
1178 | self.__profileIndex |
|
1180 | self.__profileIndex | |
1179 |
|
1181 | |||
1180 | """ |
|
1182 | """ | |
1181 |
|
1183 | |||
1182 | data_spc = self.__buffer_spc |
|
1184 | data_spc = self.__buffer_spc | |
1183 | data_cspc = self.__buffer_cspc |
|
1185 | data_cspc = self.__buffer_cspc | |
1184 | data_dc = self.__buffer_dc |
|
1186 | data_dc = self.__buffer_dc | |
1185 | n = self.__profIndex |
|
1187 | n = self.__profIndex | |
1186 |
|
1188 | |||
1187 | self.__buffer_spc = 0 |
|
1189 | self.__buffer_spc = 0 | |
1188 | self.__buffer_cspc = 0 |
|
1190 | self.__buffer_cspc = 0 | |
1189 | self.__buffer_dc = 0 |
|
1191 | self.__buffer_dc = 0 | |
1190 |
|
1192 | |||
1191 |
|
1193 | |||
1192 | return data_spc, data_cspc, data_dc, n |
|
1194 | return data_spc, data_cspc, data_dc, n | |
1193 |
|
1195 | |||
1194 | def byProfiles(self, *args): |
|
1196 | def byProfiles(self, *args): | |
1195 |
|
1197 | |||
1196 | self.__dataReady = False |
|
1198 | self.__dataReady = False | |
1197 | avgdata_spc = None |
|
1199 | avgdata_spc = None | |
1198 | avgdata_cspc = None |
|
1200 | avgdata_cspc = None | |
1199 | avgdata_dc = None |
|
1201 | avgdata_dc = None | |
1200 |
|
1202 | |||
1201 | self.putData(*args) |
|
1203 | self.putData(*args) | |
1202 |
|
1204 | |||
1203 | if self.__profIndex == self.n: |
|
1205 | if self.__profIndex == self.n: | |
1204 |
|
1206 | |||
1205 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1207 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1206 | self.n = n |
|
1208 | self.n = n | |
1207 | self.__dataReady = True |
|
1209 | self.__dataReady = True | |
1208 |
|
1210 | |||
1209 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1211 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1210 |
|
1212 | |||
1211 | def byTime(self, datatime, *args): |
|
1213 | def byTime(self, datatime, *args): | |
1212 |
|
1214 | |||
1213 | self.__dataReady = False |
|
1215 | self.__dataReady = False | |
1214 | avgdata_spc = None |
|
1216 | avgdata_spc = None | |
1215 | avgdata_cspc = None |
|
1217 | avgdata_cspc = None | |
1216 | avgdata_dc = None |
|
1218 | avgdata_dc = None | |
1217 |
|
1219 | |||
1218 | self.putData(*args) |
|
1220 | self.putData(*args) | |
1219 |
|
1221 | |||
1220 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1222 | if (datatime - self.__initime) >= self.__integrationtime: | |
1221 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1223 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1222 | self.n = n |
|
1224 | self.n = n | |
1223 | self.__dataReady = True |
|
1225 | self.__dataReady = True | |
1224 |
|
1226 | |||
1225 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1227 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1226 |
|
1228 | |||
1227 | def integrate(self, datatime, *args): |
|
1229 | def integrate(self, datatime, *args): | |
1228 |
|
1230 | |||
1229 | if self.__profIndex == 0: |
|
1231 | if self.__profIndex == 0: | |
1230 | self.__initime = datatime |
|
1232 | self.__initime = datatime | |
1231 |
|
1233 | |||
1232 | if self.__byTime: |
|
1234 | if self.__byTime: | |
1233 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1235 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |
1234 | datatime, *args) |
|
1236 | datatime, *args) | |
1235 | else: |
|
1237 | else: | |
1236 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1238 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
1237 |
|
1239 | |||
1238 | if not self.__dataReady: |
|
1240 | if not self.__dataReady: | |
1239 | return None, None, None, None |
|
1241 | return None, None, None, None | |
1240 |
|
1242 | |||
1241 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1243 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |
1242 |
|
1244 | |||
1243 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1245 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | |
1244 | if n == 1: |
|
1246 | if n == 1: | |
1245 | return dataOut |
|
1247 | return dataOut | |
1246 |
|
1248 | |||
1247 | if dataOut.flagNoData == True: |
|
1249 | if dataOut.flagNoData == True: | |
1248 | return dataOut |
|
1250 | return dataOut | |
1249 |
|
1251 | |||
1250 | if dataOut.flagProfilesByRange == True: |
|
1252 | if dataOut.flagProfilesByRange == True: | |
1251 | self._flagProfilesByRange = True |
|
1253 | self._flagProfilesByRange = True | |
1252 |
|
1254 | |||
1253 | dataOut.flagNoData = True |
|
1255 | dataOut.flagNoData = True | |
1254 | dataOut.processingHeaderObj.timeIncohInt = timeInterval |
|
1256 | dataOut.processingHeaderObj.timeIncohInt = timeInterval | |
1255 | if not self.isConfig: |
|
1257 | if not self.isConfig: | |
1256 | self._nProfilesByRange = numpy.zeros((1,len(dataOut.heightList))) |
|
1258 | self._nProfilesByRange = numpy.zeros((1,len(dataOut.heightList))) | |
1257 | self.setup(n, timeInterval, overlapping) |
|
1259 | self.setup(n, timeInterval, overlapping) | |
1258 | self.isConfig = True |
|
1260 | self.isConfig = True | |
1259 |
|
1261 | |||
1260 |
|
1262 | |||
1261 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1263 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |
1262 | dataOut.data_spc, |
|
1264 | dataOut.data_spc, | |
1263 | dataOut.data_cspc, |
|
1265 | dataOut.data_cspc, | |
1264 | dataOut.data_dc) |
|
1266 | dataOut.data_dc) | |
1265 |
|
1267 | |||
1266 | self.incohInt += dataOut.nIncohInt |
|
1268 | self.incohInt += dataOut.nIncohInt | |
1267 |
|
1269 | |||
1268 |
|
1270 | |||
1269 | if isinstance(dataOut.data_outlier,numpy.ndarray) or isinstance(dataOut.data_outlier,int) or isinstance(dataOut.data_outlier, float): |
|
1271 | if isinstance(dataOut.data_outlier,numpy.ndarray) or isinstance(dataOut.data_outlier,int) or isinstance(dataOut.data_outlier, float): | |
1270 | self.nOutliers += dataOut.data_outlier |
|
1272 | self.nOutliers += dataOut.data_outlier | |
1271 |
|
1273 | |||
1272 | if self._flagProfilesByRange: |
|
1274 | if self._flagProfilesByRange: | |
1273 | dataOut.flagProfilesByRange = True |
|
1275 | dataOut.flagProfilesByRange = True | |
1274 | self._nProfilesByRange += dataOut.nProfilesByRange |
|
1276 | self._nProfilesByRange += dataOut.nProfilesByRange | |
1275 |
|
1277 | |||
1276 | if self.__dataReady: |
|
1278 | if self.__dataReady: | |
1277 | #print("prof: ",dataOut.max_nIncohInt,self.__profIndex) |
|
1279 | #print("prof: ",dataOut.max_nIncohInt,self.__profIndex) | |
1278 | dataOut.data_spc = avgdata_spc |
|
1280 | dataOut.data_spc = avgdata_spc | |
1279 | dataOut.data_cspc = avgdata_cspc |
|
1281 | dataOut.data_cspc = avgdata_cspc | |
1280 | dataOut.data_dc = avgdata_dc |
|
1282 | dataOut.data_dc = avgdata_dc | |
1281 | dataOut.nIncohInt = self.incohInt |
|
1283 | dataOut.nIncohInt = self.incohInt | |
1282 | dataOut.data_outlier = self.nOutliers |
|
1284 | dataOut.data_outlier = self.nOutliers | |
1283 | dataOut.utctime = avgdatatime |
|
1285 | dataOut.utctime = avgdatatime | |
1284 | dataOut.flagNoData = False |
|
1286 | dataOut.flagNoData = False | |
1285 | self.incohInt = 0 |
|
1287 | self.incohInt = 0 | |
1286 | self.nOutliers = 0 |
|
1288 | self.nOutliers = 0 | |
1287 | self.__profIndex = 0 |
|
1289 | self.__profIndex = 0 | |
1288 | dataOut.nProfilesByRange = self._nProfilesByRange |
|
1290 | dataOut.nProfilesByRange = self._nProfilesByRange | |
1289 | self._nProfilesByRange = numpy.zeros((1,len(dataOut.heightList))) |
|
1291 | self._nProfilesByRange = numpy.zeros((1,len(dataOut.heightList))) | |
1290 | self._flagProfilesByRange = False |
|
1292 | self._flagProfilesByRange = False | |
1291 | # print("IncohInt Done") |
|
1293 | # print("IncohInt Done") | |
1292 | return dataOut |
|
1294 | return dataOut | |
1293 |
|
1295 | |||
1294 |
|
1296 | |||
1295 | class IntegrationFaradaySpectra(Operation): |
|
1297 | class IntegrationFaradaySpectra(Operation): | |
1296 |
|
1298 | |||
1297 | __profIndex = 0 |
|
1299 | __profIndex = 0 | |
1298 | __withOverapping = False |
|
1300 | __withOverapping = False | |
1299 |
|
1301 | |||
1300 | __byTime = False |
|
1302 | __byTime = False | |
1301 | __initime = None |
|
1303 | __initime = None | |
1302 | __lastdatatime = None |
|
1304 | __lastdatatime = None | |
1303 | __integrationtime = None |
|
1305 | __integrationtime = None | |
1304 |
|
1306 | |||
1305 | __buffer_spc = None |
|
1307 | __buffer_spc = None | |
1306 | __buffer_cspc = None |
|
1308 | __buffer_cspc = None | |
1307 | __buffer_dc = None |
|
1309 | __buffer_dc = None | |
1308 |
|
1310 | |||
1309 | __dataReady = False |
|
1311 | __dataReady = False | |
1310 |
|
1312 | |||
1311 | __timeInterval = None |
|
1313 | __timeInterval = None | |
1312 | n_ints = None #matriz de numero de integracions (CH,HEI) |
|
1314 | n_ints = None #matriz de numero de integracions (CH,HEI) | |
1313 | n = None |
|
1315 | n = None | |
1314 | minHei_ind = None |
|
1316 | minHei_ind = None | |
1315 | maxHei_ind = None |
|
1317 | maxHei_ind = None | |
1316 | navg = 1.0 |
|
1318 | navg = 1.0 | |
1317 | factor = 0.0 |
|
1319 | factor = 0.0 | |
1318 | dataoutliers = None # (CHANNELS, HEIGHTS) |
|
1320 | dataoutliers = None # (CHANNELS, HEIGHTS) | |
1319 |
|
1321 | |||
1320 | _flagProfilesByRange = False |
|
1322 | _flagProfilesByRange = False | |
1321 | _nProfilesByRange = 0 |
|
1323 | _nProfilesByRange = 0 | |
1322 |
|
1324 | |||
1323 | def __init__(self): |
|
1325 | def __init__(self): | |
1324 |
|
1326 | |||
1325 | Operation.__init__(self) |
|
1327 | Operation.__init__(self) | |
1326 |
|
1328 | |||
1327 | def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None, minHei=None, maxHei=None, avg=1,factor=0.75): |
|
1329 | def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None, minHei=None, maxHei=None, avg=1,factor=0.75): | |
1328 | """ |
|
1330 | """ | |
1329 | Set the parameters of the integration class. |
|
1331 | Set the parameters of the integration class. | |
1330 |
|
1332 | |||
1331 | Inputs: |
|
1333 | Inputs: | |
1332 |
|
1334 | |||
1333 | n : Number of coherent integrations |
|
1335 | n : Number of coherent integrations | |
1334 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1336 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
1335 | overlapping : |
|
1337 | overlapping : | |
1336 |
|
1338 | |||
1337 | """ |
|
1339 | """ | |
1338 |
|
1340 | |||
1339 | self.__initime = None |
|
1341 | self.__initime = None | |
1340 | self.__lastdatatime = 0 |
|
1342 | self.__lastdatatime = 0 | |
1341 |
|
1343 | |||
1342 | self.__buffer_spc = [] |
|
1344 | self.__buffer_spc = [] | |
1343 | self.__buffer_cspc = [] |
|
1345 | self.__buffer_cspc = [] | |
1344 | self.__buffer_dc = 0 |
|
1346 | self.__buffer_dc = 0 | |
1345 |
|
1347 | |||
1346 | self.__profIndex = 0 |
|
1348 | self.__profIndex = 0 | |
1347 | self.__dataReady = False |
|
1349 | self.__dataReady = False | |
1348 | self.__byTime = False |
|
1350 | self.__byTime = False | |
1349 |
|
1351 | |||
1350 | self.factor = factor |
|
1352 | self.factor = factor | |
1351 | self.navg = avg |
|
1353 | self.navg = avg | |
1352 | #self.ByLags = dataOut.ByLags ###REDEFINIR |
|
1354 | #self.ByLags = dataOut.ByLags ###REDEFINIR | |
1353 | self.ByLags = False |
|
1355 | self.ByLags = False | |
1354 | self.maxProfilesInt = 0 |
|
1356 | self.maxProfilesInt = 0 | |
1355 | self.__nChannels = dataOut.nChannels |
|
1357 | self.__nChannels = dataOut.nChannels | |
1356 | if DPL != None: |
|
1358 | if DPL != None: | |
1357 | self.DPL=DPL |
|
1359 | self.DPL=DPL | |
1358 | else: |
|
1360 | else: | |
1359 | #self.DPL=dataOut.DPL ###REDEFINIR |
|
1361 | #self.DPL=dataOut.DPL ###REDEFINIR | |
1360 | self.DPL=0 |
|
1362 | self.DPL=0 | |
1361 |
|
1363 | |||
1362 | if n is None and timeInterval is None: |
|
1364 | if n is None and timeInterval is None: | |
1363 | raise ValueError("n or timeInterval should be specified ...") |
|
1365 | raise ValueError("n or timeInterval should be specified ...") | |
1364 |
|
1366 | |||
1365 | if n is not None: |
|
1367 | if n is not None: | |
1366 | self.n = int(n) |
|
1368 | self.n = int(n) | |
1367 | else: |
|
1369 | else: | |
1368 | self.__integrationtime = int(timeInterval) |
|
1370 | self.__integrationtime = int(timeInterval) | |
1369 | self.n = None |
|
1371 | self.n = None | |
1370 | self.__byTime = True |
|
1372 | self.__byTime = True | |
1371 |
|
1373 | |||
1372 |
|
1374 | |||
1373 | if minHei == None: |
|
1375 | if minHei == None: | |
1374 | minHei = self.dataOut.heightList[0] |
|
1376 | minHei = self.dataOut.heightList[0] | |
1375 |
|
1377 | |||
1376 | if maxHei == None: |
|
1378 | if maxHei == None: | |
1377 | maxHei = self.dataOut.heightList[-1] |
|
1379 | maxHei = self.dataOut.heightList[-1] | |
1378 |
|
1380 | |||
1379 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
1381 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
1380 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
1382 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
1381 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
1383 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
1382 | minHei = self.dataOut.heightList[0] |
|
1384 | minHei = self.dataOut.heightList[0] | |
1383 |
|
1385 | |||
1384 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
1386 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
1385 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
1387 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
1386 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
1388 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
1387 | maxHei = self.dataOut.heightList[-1] |
|
1389 | maxHei = self.dataOut.heightList[-1] | |
1388 |
|
1390 | |||
1389 | ind_list1 = numpy.where(self.dataOut.heightList >= minHei) |
|
1391 | ind_list1 = numpy.where(self.dataOut.heightList >= minHei) | |
1390 | ind_list2 = numpy.where(self.dataOut.heightList <= maxHei) |
|
1392 | ind_list2 = numpy.where(self.dataOut.heightList <= maxHei) | |
1391 | self.minHei_ind = ind_list1[0][0] |
|
1393 | self.minHei_ind = ind_list1[0][0] | |
1392 | self.maxHei_ind = ind_list2[0][-1] |
|
1394 | self.maxHei_ind = ind_list2[0][-1] | |
1393 |
|
1395 | |||
1394 | def putData(self, data_spc, data_cspc, data_dc): |
|
1396 | def putData(self, data_spc, data_cspc, data_dc): | |
1395 | """ |
|
1397 | """ | |
1396 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1398 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
1397 |
|
1399 | |||
1398 | """ |
|
1400 | """ | |
1399 |
|
1401 | |||
1400 | self.__buffer_spc.append(data_spc) |
|
1402 | self.__buffer_spc.append(data_spc) | |
1401 |
|
1403 | |||
1402 | if self.__nChannels < 2: |
|
1404 | if self.__nChannels < 2: | |
1403 | self.__buffer_cspc = None |
|
1405 | self.__buffer_cspc = None | |
1404 | else: |
|
1406 | else: | |
1405 | self.__buffer_cspc.append(data_cspc) |
|
1407 | self.__buffer_cspc.append(data_cspc) | |
1406 |
|
1408 | |||
1407 | if data_dc is None: |
|
1409 | if data_dc is None: | |
1408 | self.__buffer_dc = None |
|
1410 | self.__buffer_dc = None | |
1409 | else: |
|
1411 | else: | |
1410 | self.__buffer_dc += data_dc |
|
1412 | self.__buffer_dc += data_dc | |
1411 |
|
1413 | |||
1412 | self.__profIndex += 1 |
|
1414 | self.__profIndex += 1 | |
1413 |
|
1415 | |||
1414 | return |
|
1416 | return | |
1415 |
|
1417 | |||
1416 | def hildebrand_sekhon_Integration(self,sortdata,navg, factor): |
|
1418 | def hildebrand_sekhon_Integration(self,sortdata,navg, factor): | |
1417 | #data debe estar ordenado |
|
1419 | #data debe estar ordenado | |
1418 | #sortdata = numpy.sort(data, axis=None) |
|
1420 | #sortdata = numpy.sort(data, axis=None) | |
1419 | #sortID=data.argsort() |
|
1421 | #sortID=data.argsort() | |
1420 | lenOfData = len(sortdata) |
|
1422 | lenOfData = len(sortdata) | |
1421 | nums_min = lenOfData*factor |
|
1423 | nums_min = lenOfData*factor | |
1422 | if nums_min <= 5: |
|
1424 | if nums_min <= 5: | |
1423 | nums_min = 5 |
|
1425 | nums_min = 5 | |
1424 | sump = 0. |
|
1426 | sump = 0. | |
1425 | sumq = 0. |
|
1427 | sumq = 0. | |
1426 | j = 0 |
|
1428 | j = 0 | |
1427 | cont = 1 |
|
1429 | cont = 1 | |
1428 | while((cont == 1)and(j < lenOfData)): |
|
1430 | while((cont == 1)and(j < lenOfData)): | |
1429 | sump += sortdata[j] |
|
1431 | sump += sortdata[j] | |
1430 | sumq += sortdata[j]**2 |
|
1432 | sumq += sortdata[j]**2 | |
1431 | if j > nums_min: |
|
1433 | if j > nums_min: | |
1432 | rtest = float(j)/(j-1) + 1.0/navg |
|
1434 | rtest = float(j)/(j-1) + 1.0/navg | |
1433 | if ((sumq*j) > (rtest*sump**2)): |
|
1435 | if ((sumq*j) > (rtest*sump**2)): | |
1434 | j = j - 1 |
|
1436 | j = j - 1 | |
1435 | sump = sump - sortdata[j] |
|
1437 | sump = sump - sortdata[j] | |
1436 | sumq = sumq - sortdata[j]**2 |
|
1438 | sumq = sumq - sortdata[j]**2 | |
1437 | cont = 0 |
|
1439 | cont = 0 | |
1438 | j += 1 |
|
1440 | j += 1 | |
1439 | #lnoise = sump / j |
|
1441 | #lnoise = sump / j | |
1440 | #print("H S done") |
|
1442 | #print("H S done") | |
1441 | #return j,sortID |
|
1443 | #return j,sortID | |
1442 | return j |
|
1444 | return j | |
1443 |
|
1445 | |||
1444 |
|
1446 | |||
1445 | def pushData(self): |
|
1447 | def pushData(self): | |
1446 | """ |
|
1448 | """ | |
1447 | Return the sum of the last profiles and the profiles used in the sum. |
|
1449 | Return the sum of the last profiles and the profiles used in the sum. | |
1448 |
|
1450 | |||
1449 | Affected: |
|
1451 | Affected: | |
1450 |
|
1452 | |||
1451 | self.__profileIndex |
|
1453 | self.__profileIndex | |
1452 |
|
1454 | |||
1453 | """ |
|
1455 | """ | |
1454 | bufferH=None |
|
1456 | bufferH=None | |
1455 | buffer=None |
|
1457 | buffer=None | |
1456 | buffer1=None |
|
1458 | buffer1=None | |
1457 | buffer_cspc=None |
|
1459 | buffer_cspc=None | |
1458 | #print("aes: ", self.__buffer_cspc) |
|
1460 | #print("aes: ", self.__buffer_cspc) | |
1459 | self.__buffer_spc=numpy.array(self.__buffer_spc) |
|
1461 | self.__buffer_spc=numpy.array(self.__buffer_spc) | |
1460 | if self.__nChannels > 1 : |
|
1462 | if self.__nChannels > 1 : | |
1461 | self.__buffer_cspc=numpy.array(self.__buffer_cspc) |
|
1463 | self.__buffer_cspc=numpy.array(self.__buffer_cspc) | |
1462 |
|
1464 | |||
1463 | #print("FREQ_DC",self.__buffer_spc.shape,self.__buffer_cspc.shape) |
|
1465 | #print("FREQ_DC",self.__buffer_spc.shape,self.__buffer_cspc.shape) | |
1464 |
|
1466 | |||
1465 | freq_dc = int(self.__buffer_spc.shape[2] / 2) |
|
1467 | freq_dc = int(self.__buffer_spc.shape[2] / 2) | |
1466 | #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) |
|
1468 | #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) | |
1467 |
|
1469 | |||
1468 | self.dataOutliers = numpy.zeros((self.nChannels,self.nHeights)) # --> almacen de outliers |
|
1470 | self.dataOutliers = numpy.zeros((self.nChannels,self.nHeights)) # --> almacen de outliers | |
1469 |
|
1471 | |||
1470 | for k in range(self.minHei_ind,self.maxHei_ind): |
|
1472 | for k in range(self.minHei_ind,self.maxHei_ind): | |
1471 | if self.__nChannels > 1: |
|
1473 | if self.__nChannels > 1: | |
1472 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) |
|
1474 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) | |
1473 |
|
1475 | |||
1474 | outliers_IDs_cspc=[] |
|
1476 | outliers_IDs_cspc=[] | |
1475 | cspc_outliers_exist=False |
|
1477 | cspc_outliers_exist=False | |
1476 | for i in range(self.nChannels):#dataOut.nChannels): |
|
1478 | for i in range(self.nChannels):#dataOut.nChannels): | |
1477 |
|
1479 | |||
1478 | buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) |
|
1480 | buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) | |
1479 | indexes=[] |
|
1481 | indexes=[] | |
1480 | #sortIDs=[] |
|
1482 | #sortIDs=[] | |
1481 | outliers_IDs=[] |
|
1483 | outliers_IDs=[] | |
1482 |
|
1484 | |||
1483 | for j in range(self.nProfiles): #frecuencias en el tiempo |
|
1485 | for j in range(self.nProfiles): #frecuencias en el tiempo | |
1484 | # if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 |
|
1486 | # if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 | |
1485 | # continue |
|
1487 | # continue | |
1486 | # if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 |
|
1488 | # if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 | |
1487 | # continue |
|
1489 | # continue | |
1488 | buffer=buffer1[:,j] |
|
1490 | buffer=buffer1[:,j] | |
1489 | sortdata = numpy.sort(buffer, axis=None) |
|
1491 | sortdata = numpy.sort(buffer, axis=None) | |
1490 |
|
1492 | |||
1491 | sortID=buffer.argsort() |
|
1493 | sortID=buffer.argsort() | |
1492 | index = _noise.hildebrand_sekhon2(sortdata,self.navg) |
|
1494 | index = _noise.hildebrand_sekhon2(sortdata,self.navg) | |
1493 |
|
1495 | |||
1494 | #index,sortID=self.hildebrand_sekhon_Integration(buffer,1,self.factor) |
|
1496 | #index,sortID=self.hildebrand_sekhon_Integration(buffer,1,self.factor) | |
1495 |
|
1497 | |||
1496 | # fig,ax = plt.subplots() |
|
1498 | # fig,ax = plt.subplots() | |
1497 | # ax.set_title(str(k)+" "+str(j)) |
|
1499 | # ax.set_title(str(k)+" "+str(j)) | |
1498 | # x=range(len(sortdata)) |
|
1500 | # x=range(len(sortdata)) | |
1499 | # ax.scatter(x,sortdata) |
|
1501 | # ax.scatter(x,sortdata) | |
1500 | # ax.axvline(index) |
|
1502 | # ax.axvline(index) | |
1501 | # plt.show() |
|
1503 | # plt.show() | |
1502 |
|
1504 | |||
1503 | indexes.append(index) |
|
1505 | indexes.append(index) | |
1504 | #sortIDs.append(sortID) |
|
1506 | #sortIDs.append(sortID) | |
1505 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) |
|
1507 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) | |
1506 |
|
1508 | |||
1507 | #print("Outliers: ",outliers_IDs) |
|
1509 | #print("Outliers: ",outliers_IDs) | |
1508 | outliers_IDs=numpy.array(outliers_IDs) |
|
1510 | outliers_IDs=numpy.array(outliers_IDs) | |
1509 | outliers_IDs=outliers_IDs.ravel() |
|
1511 | outliers_IDs=outliers_IDs.ravel() | |
1510 | outliers_IDs=numpy.unique(outliers_IDs) |
|
1512 | outliers_IDs=numpy.unique(outliers_IDs) | |
1511 | outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) |
|
1513 | outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) | |
1512 | indexes=numpy.array(indexes) |
|
1514 | indexes=numpy.array(indexes) | |
1513 | indexmin=numpy.min(indexes) |
|
1515 | indexmin=numpy.min(indexes) | |
1514 |
|
1516 | |||
1515 |
|
1517 | |||
1516 | #print(indexmin,buffer1.shape[0], k) |
|
1518 | #print(indexmin,buffer1.shape[0], k) | |
1517 |
|
1519 | |||
1518 | # fig,ax = plt.subplots() |
|
1520 | # fig,ax = plt.subplots() | |
1519 | # ax.plot(sortdata) |
|
1521 | # ax.plot(sortdata) | |
1520 | # ax2 = ax.twinx() |
|
1522 | # ax2 = ax.twinx() | |
1521 | # x=range(len(indexes)) |
|
1523 | # x=range(len(indexes)) | |
1522 | # #plt.scatter(x,indexes) |
|
1524 | # #plt.scatter(x,indexes) | |
1523 | # ax2.scatter(x,indexes) |
|
1525 | # ax2.scatter(x,indexes) | |
1524 | # plt.show() |
|
1526 | # plt.show() | |
1525 |
|
1527 | |||
1526 | if indexmin != buffer1.shape[0]: |
|
1528 | if indexmin != buffer1.shape[0]: | |
1527 | if self.__nChannels > 1: |
|
1529 | if self.__nChannels > 1: | |
1528 | cspc_outliers_exist= True |
|
1530 | cspc_outliers_exist= True | |
1529 |
|
1531 | |||
1530 | lt=outliers_IDs |
|
1532 | lt=outliers_IDs | |
1531 | #avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) |
|
1533 | #avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) | |
1532 |
|
1534 | |||
1533 | for p in list(outliers_IDs): |
|
1535 | for p in list(outliers_IDs): | |
1534 | #buffer1[p,:]=avg |
|
1536 | #buffer1[p,:]=avg | |
1535 | buffer1[p,:] = numpy.NaN |
|
1537 | buffer1[p,:] = numpy.NaN | |
1536 |
|
1538 | |||
1537 | self.dataOutliers[i,k] = len(outliers_IDs) |
|
1539 | self.dataOutliers[i,k] = len(outliers_IDs) | |
1538 |
|
1540 | |||
1539 |
|
1541 | |||
1540 | self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) |
|
1542 | self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) | |
1541 |
|
1543 | |||
1542 |
|
1544 | |||
1543 | if self.__nChannels > 1: |
|
1545 | if self.__nChannels > 1: | |
1544 | outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) |
|
1546 | outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) | |
1545 |
|
1547 | |||
1546 |
|
1548 | |||
1547 | if self.__nChannels > 1: |
|
1549 | if self.__nChannels > 1: | |
1548 | outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) |
|
1550 | outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) | |
1549 | if cspc_outliers_exist: |
|
1551 | if cspc_outliers_exist: | |
1550 |
|
1552 | |||
1551 | lt=outliers_IDs_cspc |
|
1553 | lt=outliers_IDs_cspc | |
1552 |
|
1554 | |||
1553 | #avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) |
|
1555 | #avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) | |
1554 | for p in list(outliers_IDs_cspc): |
|
1556 | for p in list(outliers_IDs_cspc): | |
1555 | #buffer_cspc[p,:]=avg |
|
1557 | #buffer_cspc[p,:]=avg | |
1556 | buffer_cspc[p,:] = numpy.NaN |
|
1558 | buffer_cspc[p,:] = numpy.NaN | |
1557 |
|
1559 | |||
1558 | if self.__nChannels > 1: |
|
1560 | if self.__nChannels > 1: | |
1559 | self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) |
|
1561 | self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) | |
1560 |
|
1562 | |||
1561 |
|
1563 | |||
1562 |
|
1564 | |||
1563 |
|
1565 | |||
1564 | nOutliers = len(outliers_IDs) |
|
1566 | nOutliers = len(outliers_IDs) | |
1565 | #print("Outliers n: ",self.dataOutliers,nOutliers) |
|
1567 | #print("Outliers n: ",self.dataOutliers,nOutliers) | |
1566 | buffer=None |
|
1568 | buffer=None | |
1567 | bufferH=None |
|
1569 | bufferH=None | |
1568 | buffer1=None |
|
1570 | buffer1=None | |
1569 | buffer_cspc=None |
|
1571 | buffer_cspc=None | |
1570 |
|
1572 | |||
1571 |
|
1573 | |||
1572 | buffer=None |
|
1574 | buffer=None | |
1573 |
|
1575 | |||
1574 | #data_spc = numpy.sum(self.__buffer_spc,axis=0) |
|
1576 | #data_spc = numpy.sum(self.__buffer_spc,axis=0) | |
1575 | data_spc = numpy.nansum(self.__buffer_spc,axis=0) |
|
1577 | data_spc = numpy.nansum(self.__buffer_spc,axis=0) | |
1576 | if self.__nChannels > 1: |
|
1578 | if self.__nChannels > 1: | |
1577 | #data_cspc = numpy.sum(self.__buffer_cspc,axis=0) |
|
1579 | #data_cspc = numpy.sum(self.__buffer_cspc,axis=0) | |
1578 | data_cspc = numpy.nansum(self.__buffer_cspc,axis=0) |
|
1580 | data_cspc = numpy.nansum(self.__buffer_cspc,axis=0) | |
1579 | else: |
|
1581 | else: | |
1580 | data_cspc = None |
|
1582 | data_cspc = None | |
1581 | data_dc = self.__buffer_dc |
|
1583 | data_dc = self.__buffer_dc | |
1582 | #(CH, HEIGH) |
|
1584 | #(CH, HEIGH) | |
1583 | self.maxProfilesInt = self.__profIndex - 1 |
|
1585 | self.maxProfilesInt = self.__profIndex - 1 | |
1584 | n = self.__profIndex - self.dataOutliers # n becomes a matrix |
|
1586 | n = self.__profIndex - self.dataOutliers # n becomes a matrix | |
1585 |
|
1587 | |||
1586 | self.__buffer_spc = [] |
|
1588 | self.__buffer_spc = [] | |
1587 | self.__buffer_cspc = [] |
|
1589 | self.__buffer_cspc = [] | |
1588 | self.__buffer_dc = 0 |
|
1590 | self.__buffer_dc = 0 | |
1589 | self.__profIndex = 0 |
|
1591 | self.__profIndex = 0 | |
1590 | #print("cleaned ",data_cspc) |
|
1592 | #print("cleaned ",data_cspc) | |
1591 | return data_spc, data_cspc, data_dc, n |
|
1593 | return data_spc, data_cspc, data_dc, n | |
1592 |
|
1594 | |||
1593 | def byProfiles(self, *args): |
|
1595 | def byProfiles(self, *args): | |
1594 |
|
1596 | |||
1595 | self.__dataReady = False |
|
1597 | self.__dataReady = False | |
1596 | avgdata_spc = None |
|
1598 | avgdata_spc = None | |
1597 | avgdata_cspc = None |
|
1599 | avgdata_cspc = None | |
1598 | avgdata_dc = None |
|
1600 | avgdata_dc = None | |
1599 |
|
1601 | |||
1600 | self.putData(*args) |
|
1602 | self.putData(*args) | |
1601 |
|
1603 | |||
1602 | if self.__profIndex >= self.n: |
|
1604 | if self.__profIndex >= self.n: | |
1603 |
|
1605 | |||
1604 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1606 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1605 | self.n_ints = n |
|
1607 | self.n_ints = n | |
1606 | self.__dataReady = True |
|
1608 | self.__dataReady = True | |
1607 |
|
1609 | |||
1608 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1610 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1609 |
|
1611 | |||
1610 | def byTime(self, datatime, *args): |
|
1612 | def byTime(self, datatime, *args): | |
1611 |
|
1613 | |||
1612 | self.__dataReady = False |
|
1614 | self.__dataReady = False | |
1613 | avgdata_spc = None |
|
1615 | avgdata_spc = None | |
1614 | avgdata_cspc = None |
|
1616 | avgdata_cspc = None | |
1615 | avgdata_dc = None |
|
1617 | avgdata_dc = None | |
1616 |
|
1618 | |||
1617 | self.putData(*args) |
|
1619 | self.putData(*args) | |
1618 |
|
1620 | |||
1619 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1621 | if (datatime - self.__initime) >= self.__integrationtime: | |
1620 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1622 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1621 | self.n_ints = n |
|
1623 | self.n_ints = n | |
1622 | self.__dataReady = True |
|
1624 | self.__dataReady = True | |
1623 |
|
1625 | |||
1624 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1626 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1625 |
|
1627 | |||
1626 | def integrate(self, datatime, *args): |
|
1628 | def integrate(self, datatime, *args): | |
1627 |
|
1629 | |||
1628 | if self.__profIndex == 0: |
|
1630 | if self.__profIndex == 0: | |
1629 | self.__initime = datatime |
|
1631 | self.__initime = datatime | |
1630 |
|
1632 | |||
1631 | if self.__byTime: |
|
1633 | if self.__byTime: | |
1632 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1634 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |
1633 | datatime, *args) |
|
1635 | datatime, *args) | |
1634 | else: |
|
1636 | else: | |
1635 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1637 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
1636 |
|
1638 | |||
1637 | if not self.__dataReady: |
|
1639 | if not self.__dataReady: | |
1638 | return None, None, None, None |
|
1640 | return None, None, None, None | |
1639 |
|
1641 | |||
1640 | #print("integrate", avgdata_cspc) |
|
1642 | #print("integrate", avgdata_cspc) | |
1641 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1643 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |
1642 |
|
1644 | |||
1643 | def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False, minHei=None, maxHei=None, avg=1, factor=0.75): |
|
1645 | def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False, minHei=None, maxHei=None, avg=1, factor=0.75): | |
1644 | self.dataOut = dataOut |
|
1646 | self.dataOut = dataOut | |
1645 | if n == 1: |
|
1647 | if n == 1: | |
1646 | return self.dataOut |
|
1648 | return self.dataOut | |
1647 | self.dataOut.processingHeaderObj.timeIncohInt = timeInterval |
|
1649 | self.dataOut.processingHeaderObj.timeIncohInt = timeInterval | |
1648 |
|
1650 | |||
1649 | if dataOut.flagProfilesByRange: |
|
1651 | if dataOut.flagProfilesByRange: | |
1650 | self._flagProfilesByRange = True |
|
1652 | self._flagProfilesByRange = True | |
1651 |
|
1653 | |||
1652 | if self.dataOut.nChannels == 1: |
|
1654 | if self.dataOut.nChannels == 1: | |
1653 | self.dataOut.data_cspc = None #si es un solo canal no vale la pena acumular DATOS |
|
1655 | self.dataOut.data_cspc = None #si es un solo canal no vale la pena acumular DATOS | |
1654 | #print("IN spc:", self.dataOut.data_spc.shape, self.dataOut.data_cspc) |
|
1656 | #print("IN spc:", self.dataOut.data_spc.shape, self.dataOut.data_cspc) | |
1655 | if not self.isConfig: |
|
1657 | if not self.isConfig: | |
1656 | self.setup(self.dataOut, n, timeInterval, overlapping,DPL ,minHei, maxHei, avg, factor) |
|
1658 | self.setup(self.dataOut, n, timeInterval, overlapping,DPL ,minHei, maxHei, avg, factor) | |
1657 | self.isConfig = True |
|
1659 | self.isConfig = True | |
1658 |
|
1660 | |||
1659 | if not self.ByLags: |
|
1661 | if not self.ByLags: | |
1660 | self.nProfiles=self.dataOut.nProfiles |
|
1662 | self.nProfiles=self.dataOut.nProfiles | |
1661 | self.nChannels=self.dataOut.nChannels |
|
1663 | self.nChannels=self.dataOut.nChannels | |
1662 | self.nHeights=self.dataOut.nHeights |
|
1664 | self.nHeights=self.dataOut.nHeights | |
1663 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, |
|
1665 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, | |
1664 | self.dataOut.data_spc, |
|
1666 | self.dataOut.data_spc, | |
1665 | self.dataOut.data_cspc, |
|
1667 | self.dataOut.data_cspc, | |
1666 | self.dataOut.data_dc) |
|
1668 | self.dataOut.data_dc) | |
1667 | else: |
|
1669 | else: | |
1668 | self.nProfiles=self.dataOut.nProfiles |
|
1670 | self.nProfiles=self.dataOut.nProfiles | |
1669 | self.nChannels=self.dataOut.nChannels |
|
1671 | self.nChannels=self.dataOut.nChannels | |
1670 | self.nHeights=self.dataOut.nHeights |
|
1672 | self.nHeights=self.dataOut.nHeights | |
1671 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, |
|
1673 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, | |
1672 | self.dataOut.dataLag_spc, |
|
1674 | self.dataOut.dataLag_spc, | |
1673 | self.dataOut.dataLag_cspc, |
|
1675 | self.dataOut.dataLag_cspc, | |
1674 | self.dataOut.dataLag_dc) |
|
1676 | self.dataOut.dataLag_dc) | |
1675 | self.dataOut.flagNoData = True |
|
1677 | self.dataOut.flagNoData = True | |
1676 |
|
1678 | |||
1677 | if self._flagProfilesByRange: |
|
1679 | if self._flagProfilesByRange: | |
1678 | dataOut.flagProfilesByRange = True |
|
1680 | dataOut.flagProfilesByRange = True | |
1679 | self._nProfilesByRange += dataOut.nProfilesByRange |
|
1681 | self._nProfilesByRange += dataOut.nProfilesByRange | |
1680 |
|
1682 | |||
1681 | if self.__dataReady: |
|
1683 | if self.__dataReady: | |
1682 |
|
1684 | |||
1683 | if not self.ByLags: |
|
1685 | if not self.ByLags: | |
1684 | if self.nChannels == 1: |
|
1686 | if self.nChannels == 1: | |
1685 | #print("f int", avgdata_spc.shape) |
|
1687 | #print("f int", avgdata_spc.shape) | |
1686 | self.dataOut.data_spc = avgdata_spc |
|
1688 | self.dataOut.data_spc = avgdata_spc | |
1687 | self.dataOut.data_cspc = None |
|
1689 | self.dataOut.data_cspc = None | |
1688 | else: |
|
1690 | else: | |
1689 | self.dataOut.data_spc = numpy.squeeze(avgdata_spc) |
|
1691 | self.dataOut.data_spc = numpy.squeeze(avgdata_spc) | |
1690 | self.dataOut.data_cspc = numpy.squeeze(avgdata_cspc) |
|
1692 | self.dataOut.data_cspc = numpy.squeeze(avgdata_cspc) | |
1691 | self.dataOut.data_dc = avgdata_dc |
|
1693 | self.dataOut.data_dc = avgdata_dc | |
1692 | self.dataOut.data_outlier = self.dataOutliers |
|
1694 | self.dataOut.data_outlier = self.dataOutliers | |
1693 |
|
1695 | |||
1694 |
|
1696 | |||
1695 | else: |
|
1697 | else: | |
1696 | self.dataOut.dataLag_spc = avgdata_spc |
|
1698 | self.dataOut.dataLag_spc = avgdata_spc | |
1697 | self.dataOut.dataLag_cspc = avgdata_cspc |
|
1699 | self.dataOut.dataLag_cspc = avgdata_cspc | |
1698 | self.dataOut.dataLag_dc = avgdata_dc |
|
1700 | self.dataOut.dataLag_dc = avgdata_dc | |
1699 |
|
1701 | |||
1700 | self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot] |
|
1702 | self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot] | |
1701 | self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] |
|
1703 | self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] | |
1702 | self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] |
|
1704 | self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] | |
1703 |
|
1705 | |||
1704 | self.dataOut.nIncohInt *= self.n_ints |
|
1706 | self.dataOut.nIncohInt *= self.n_ints | |
1705 |
|
1707 | |||
1706 | self.dataOut.utctime = avgdatatime |
|
1708 | self.dataOut.utctime = avgdatatime | |
1707 | self.dataOut.flagNoData = False |
|
1709 | self.dataOut.flagNoData = False | |
1708 |
|
1710 | |||
1709 | dataOut.nProfilesByRange = self._nProfilesByRange |
|
1711 | dataOut.nProfilesByRange = self._nProfilesByRange | |
1710 | self._nProfilesByRange = numpy.zeros((1,len(dataOut.heightList))) |
|
1712 | self._nProfilesByRange = numpy.zeros((1,len(dataOut.heightList))) | |
1711 | self._flagProfilesByRange = False |
|
1713 | self._flagProfilesByRange = False | |
1712 |
|
1714 | |||
1713 | return self.dataOut |
|
1715 | return self.dataOut | |
1714 |
|
1716 | |||
1715 | class dopplerFlip(Operation): |
|
1717 | class dopplerFlip(Operation): | |
1716 |
|
1718 | |||
1717 | def run(self, dataOut, chann = None): |
|
1719 | def run(self, dataOut, chann = None): | |
1718 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1720 | # arreglo 1: (num_chan, num_profiles, num_heights) | |
1719 | self.dataOut = dataOut |
|
1721 | self.dataOut = dataOut | |
1720 | # JULIA-oblicua, indice 2 |
|
1722 | # JULIA-oblicua, indice 2 | |
1721 | # arreglo 2: (num_profiles, num_heights) |
|
1723 | # arreglo 2: (num_profiles, num_heights) | |
1722 | jspectra = self.dataOut.data_spc[chann] |
|
1724 | jspectra = self.dataOut.data_spc[chann] | |
1723 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
1725 | jspectra_tmp = numpy.zeros(jspectra.shape) | |
1724 | num_profiles = jspectra.shape[0] |
|
1726 | num_profiles = jspectra.shape[0] | |
1725 | freq_dc = int(num_profiles / 2) |
|
1727 | freq_dc = int(num_profiles / 2) | |
1726 | # Flip con for |
|
1728 | # Flip con for | |
1727 | for j in range(num_profiles): |
|
1729 | for j in range(num_profiles): | |
1728 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1730 | jspectra_tmp[num_profiles-j-1]= jspectra[j] | |
1729 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1731 | # Intercambio perfil de DC con perfil inmediato anterior | |
1730 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1732 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] | |
1731 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1733 | jspectra_tmp[freq_dc]= jspectra[freq_dc] | |
1732 | # canal modificado es re-escrito en el arreglo de canales |
|
1734 | # canal modificado es re-escrito en el arreglo de canales | |
1733 | self.dataOut.data_spc[chann] = jspectra_tmp |
|
1735 | self.dataOut.data_spc[chann] = jspectra_tmp | |
1734 |
|
1736 | |||
1735 | return self.dataOut No newline at end of file |
|
1737 | return self.dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now