##// END OF EJS Templates
update y revision RHI
avaldezp -
r1411:e3b451d0f24e
parent child
Show More

The requested changes are too big and content was truncated. Show full diff

@@ -0,0 +1,122
1 # Ing. AVP
2 # 04/01/2022
3 # ARCHIVO DE LECTURA
4 #---- DATA RHI --- 23 DE NOVIEMBRE DEL 2021 --- 23/11/2021---
5 #---- PEDESTAL ----------------------------------------------
6 #------- HORA 143826 /DATA_RM/TEST_PEDESTAL/P20211123-143826 14:38-15:10
7 #---- RADAR ----------------------------------------------
8 #------- 14:26-15:00
9 #------- /DATA_RM/DRONE/2MHZ_5V_ELEVACION/
10 #------- /DATA_RM/DRONE/2MHZ_5V_ELEVACION/ch0/2021-11-23T19-00-00
11
12 import os, sys
13 import datetime
14 import time
15 import numpy
16 from ext_met import getfirstFilefromPath,getDatavaluefromDirFilename
17 from schainpy.controller import Project
18 #-----------------------------------------------------------------------------------------
19 print("[SETUP]-RADAR METEOROLOGICO-")
20 path_ped = "/DATA_RM/TEST_PEDESTAL/P20211123-143826"
21 print("PATH PEDESTAL :",path_ped)
22 path_adq = "/DATA_RM/DRONE/2MHZ_5V_ELEVACION/"
23 print("PATH DATA :",path_adq)
24 figpath_pp_rti = "/home/soporte/Pictures/TEST_PP_RHI"
25 print("PATH PP RTI :",figpath_pp_rti)
26 figpath_pp_rhi = "/home/soporte/Pictures/TEST_PP_RHI"
27 print("PATH PP RHI :",figpath_pp_rhi)
28 path_pp_save_int = "/DATA_RM/TEST_SAVE_PP_INT_RHI"
29 print("PATH SAVE PP INT :",path_pp_save_int)
30 print(" ")
31 #-------------------------------------------------------------------------------------------
32 print("SELECCIONAR MODO: PPI (0) O RHI (1)")
33 mode_wr = 1
34 if mode_wr==0:
35 print("[ ON ] MODE PPI")
36 list_ped = getfirstFilefromPath(path=path_ped,meta="PE",ext=".hdf5")
37 ff_pedestal = list_ped[2]
38 azi_vel = getDatavaluefromDirFilename(path=path_ped,file=ff_pedestal,value="azi_vel")
39 V = round(azi_vel[0])
40 print("VELOCIDAD AZI :", int(numpy.mean(azi_vel)),"Β°/seg")
41 else:
42 print("[ ON ] MODE RHI")
43 list_ped = getfirstFilefromPath(path=path_ped,meta="PE",ext=".hdf5")
44 ff_pedestal = list_ped[2]
45 ele_vel = getDatavaluefromDirFilename(path=path_ped,file=ff_pedestal,value="ele_vel")
46 V = round(ele_vel[0])
47 V = 10.0
48 print("VELOCIDAD ELE :", int(numpy.mean(ele_vel)),"Β°/seg")
49 print(" ")
50 #---------------------------------------------------------------------------------------
51 print("SELECCIONAR MODO: PULSE PAIR (0) O FREQUENCY (1)")
52 mode_proc = 0
53 if mode_proc==0:
54 print("[ ON ] MODE PULSEPAIR")
55 else:
56 print("[ ON ] MODE FREQUENCY")
57 ipp = 60.0
58 print("IPP(Km.) : %1.2f"%ipp)
59 ipp_sec = (ipp*1.0e3/150.0)*1.0e-6
60 print("IPP(useg.) : %1.2f"%(ipp_sec*(1.0e6)))
61 VEL=V
62 n= int(1/(VEL*ipp_sec))
63 print("NΒ° Profiles : ", n)
64 #--------------------------------------------
65 plot_rti = 0
66 plot_rhi = 1
67 integration = 1
68 save = 0
69 #---------------------------RANGO DE PLOTEO----------------------------------
70 dBmin = '1'
71 dBmax = '85'
72 xmin = '17'
73 xmax = '17.25'
74 ymin = '0'
75 ymax = '600'
76 #----------------------------------------------------------------------------
77 time.sleep(3)
78 #---------------------SIGNAL CHAIN ------------------------------------
79 desc = "USRP_WEATHER_RADAR"
80 filename = "USRP_processing.xml"
81 controllerObj = Project()
82 controllerObj.setup(id = '191', name='Test_USRP', description=desc)
83 #---------------------UNIDAD DE LECTURA--------------------------------
84 readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader',
85 path=path_adq,
86 startDate="2021/11/10",#today,
87 endDate="2021/12/30",#today,
88 startTime='17:10:25',
89 endTime='23:59:59',
90 delay=0,
91 #set=0,
92 online=0,
93 walk=1,
94 ippKm=ipp)
95
96 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc',inputId=readUnitConfObj.getId())
97
98 opObj11 = procUnitConfObjA.addOperation(name='selectHeights')
99 opObj11.addParameter(name='minIndex', value='1', format='int')
100 # opObj11.addParameter(name='maxIndex', value='10000', format='int')
101 opObj11.addParameter(name='maxIndex', value='400', format='int')
102
103 if mode_proc==0:
104 opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other')
105 opObj11.addParameter(name='n', value=int(n), format='int')
106 procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId())
107
108 if integration==1:
109 opObj11 = procUnitConfObjB.addOperation(name='PedestalInformation')
110 opObj11.addParameter(name='path_ped', value=path_ped)
111 opObj11.addParameter(name='t_Interval_p', value='0.01', format='float')
112
113 if plot_rhi==1:
114 opObj11 = procUnitConfObjB.addOperation(name='Block360')
115 opObj11.addParameter(name='n', value='10', format='int')
116 opObj11.addParameter(name='mode', value=mode_proc, format='int')
117 # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180
118 opObj11= procUnitConfObjB.addOperation(name='WeatherRHIPlot',optype='other')
119 opObj11.addParameter(name='save', value=figpath_pp_rhi)
120 opObj11.addParameter(name='save_period', value=1)
121
122 controllerObj.start()
@@ -0,0 +1,57
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import wradlib as wrl
4 import warnings
5 # libreia nueva
6 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
7 warnings.filterwarnings('ignore')
8 # lectura de gaMIC hdf5 file
9 filename = wrl.util.get_wradlib_data_file("/home/soporte/Downloads/2014-06-09--185000.rhi.mvol")
10 data1, metadata = wrl.io.read_gamic_hdf5(filename)
11 print(data1)
12 data1 = data1['SCAN0']['ZH']['data']
13 print(data1)
14 print("SHAPE Data",np.array(data1).shape)
15 r = metadata['SCAN0']['r']
16 print("r",r)
17 print("longitud r",len(r))
18 th = metadata['SCAN0']['el']
19 print("th",th)
20 print("longitud th",len(th))
21 az = metadata['SCAN0']['az']
22 print("az",az)
23 site = (metadata['VOL']['Longitude'], metadata['VOL']['Latitude'],
24 metadata['VOL']['Height'])
25
26 print("Longitud,Latitud,Altura",site)
27 ma1 = np.array(data1)
28 '''
29 mask_ind = np.where(data1 <= np.nanmin(data1))
30 data1[mask_ind] = np.nan
31 ma1 = np.ma.array(data1, mask=np.isnan(data1))
32 '''
33 #cgax, pm = wrl.vis.plot_rhi(ma1,r=r,th=th,rf=1e3)
34 fig = plt.figure(figsize=(10,8))
35 cgax, pm = wrl.vis.plot_rhi(ma1,r=r,th=th,rf=1e3,fig=fig, ax=111,proj='cg')
36 caax = cgax.parasites[0]
37 paax = cgax.parasites[1]
38 cgax.set_ylim(0, 14)
39 #caax = cgax.parasites[0]
40 #paax = cgax.parasites[1]
41 #cgax, pm = wrl.vis.plot_rhi(ma1, r=r, th=th, rf=1e3, fig=fig, ax=111, proj='cg')
42 txt = plt.title('Simple RHI',y=1.05)
43 #cbar = plt.gcf().colorbar(pm, pad=0.05, ax=paax)
44 cbar = plt.gcf().colorbar(pm, pad=0.05)
45 cbar.set_label('reflectivity [dBZ]')
46 caax.set_xlabel('x_range [km]')
47 caax.set_ylabel('y_range [km]')
48 plt.text(1.0, 1.05, 'azimuth', transform=caax.transAxes, va='bottom',ha='right')
49 gh = cgax.get_grid_helper()
50
51 # set theta to some nice values
52 locs = [0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14.,
53 15., 16., 17., 18., 20., 22., 25., 30., 35., 40., 50., 60., 70., 80., 90.]
54 gh.grid_finder.grid_locator1 = FixedLocator(locs)
55 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
56
57 plt.show()
@@ -1,687 +1,707
1 import os
1 import os
2 import datetime
2 import datetime
3 import numpy
3 import numpy
4
4
5 from schainpy.model.graphics.jroplot_base import Plot, plt
5 from schainpy.model.graphics.jroplot_base import Plot, plt
6 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
6 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
7 from schainpy.utils import log
7 from schainpy.utils import log
8 # libreria wradlib
8 # libreria wradlib
9 import wradlib as wrl
9 import wradlib as wrl
10
10
11 EARTH_RADIUS = 6.3710e3
11 EARTH_RADIUS = 6.3710e3
12
12
13
13
14 def ll2xy(lat1, lon1, lat2, lon2):
14 def ll2xy(lat1, lon1, lat2, lon2):
15
15
16 p = 0.017453292519943295
16 p = 0.017453292519943295
17 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
17 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
18 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
18 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
19 r = 12742 * numpy.arcsin(numpy.sqrt(a))
19 r = 12742 * numpy.arcsin(numpy.sqrt(a))
20 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
20 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
21 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
21 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
22 theta = -theta + numpy.pi/2
22 theta = -theta + numpy.pi/2
23 return r*numpy.cos(theta), r*numpy.sin(theta)
23 return r*numpy.cos(theta), r*numpy.sin(theta)
24
24
25
25
26 def km2deg(km):
26 def km2deg(km):
27 '''
27 '''
28 Convert distance in km to degrees
28 Convert distance in km to degrees
29 '''
29 '''
30
30
31 return numpy.rad2deg(km/EARTH_RADIUS)
31 return numpy.rad2deg(km/EARTH_RADIUS)
32
32
33
33
34
34
35 class SpectralMomentsPlot(SpectraPlot):
35 class SpectralMomentsPlot(SpectraPlot):
36 '''
36 '''
37 Plot for Spectral Moments
37 Plot for Spectral Moments
38 '''
38 '''
39 CODE = 'spc_moments'
39 CODE = 'spc_moments'
40 # colormap = 'jet'
40 # colormap = 'jet'
41 # plot_type = 'pcolor'
41 # plot_type = 'pcolor'
42
42
43 class DobleGaussianPlot(SpectraPlot):
43 class DobleGaussianPlot(SpectraPlot):
44 '''
44 '''
45 Plot for Double Gaussian Plot
45 Plot for Double Gaussian Plot
46 '''
46 '''
47 CODE = 'gaussian_fit'
47 CODE = 'gaussian_fit'
48 # colormap = 'jet'
48 # colormap = 'jet'
49 # plot_type = 'pcolor'
49 # plot_type = 'pcolor'
50
50
51 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
51 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
52 '''
52 '''
53 Plot SpectraCut with Double Gaussian Fit
53 Plot SpectraCut with Double Gaussian Fit
54 '''
54 '''
55 CODE = 'cut_gaussian_fit'
55 CODE = 'cut_gaussian_fit'
56
56
57 class SnrPlot(RTIPlot):
57 class SnrPlot(RTIPlot):
58 '''
58 '''
59 Plot for SNR Data
59 Plot for SNR Data
60 '''
60 '''
61
61
62 CODE = 'snr'
62 CODE = 'snr'
63 colormap = 'jet'
63 colormap = 'jet'
64
64
65 def update(self, dataOut):
65 def update(self, dataOut):
66
66
67 data = {
67 data = {
68 'snr': 10*numpy.log10(dataOut.data_snr)
68 'snr': 10*numpy.log10(dataOut.data_snr)
69 }
69 }
70
70
71 return data, {}
71 return data, {}
72
72
73 class DopplerPlot(RTIPlot):
73 class DopplerPlot(RTIPlot):
74 '''
74 '''
75 Plot for DOPPLER Data (1st moment)
75 Plot for DOPPLER Data (1st moment)
76 '''
76 '''
77
77
78 CODE = 'dop'
78 CODE = 'dop'
79 colormap = 'jet'
79 colormap = 'jet'
80
80
81 def update(self, dataOut):
81 def update(self, dataOut):
82
82
83 data = {
83 data = {
84 'dop': 10*numpy.log10(dataOut.data_dop)
84 'dop': 10*numpy.log10(dataOut.data_dop)
85 }
85 }
86
86
87 return data, {}
87 return data, {}
88
88
89 class PowerPlot(RTIPlot):
89 class PowerPlot(RTIPlot):
90 '''
90 '''
91 Plot for Power Data (0 moment)
91 Plot for Power Data (0 moment)
92 '''
92 '''
93
93
94 CODE = 'pow'
94 CODE = 'pow'
95 colormap = 'jet'
95 colormap = 'jet'
96
96
97 def update(self, dataOut):
97 def update(self, dataOut):
98 data = {
98 data = {
99 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
99 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
100 }
100 }
101 return data, {}
101 return data, {}
102
102
103 class SpectralWidthPlot(RTIPlot):
103 class SpectralWidthPlot(RTIPlot):
104 '''
104 '''
105 Plot for Spectral Width Data (2nd moment)
105 Plot for Spectral Width Data (2nd moment)
106 '''
106 '''
107
107
108 CODE = 'width'
108 CODE = 'width'
109 colormap = 'jet'
109 colormap = 'jet'
110
110
111 def update(self, dataOut):
111 def update(self, dataOut):
112
112
113 data = {
113 data = {
114 'width': dataOut.data_width
114 'width': dataOut.data_width
115 }
115 }
116
116
117 return data, {}
117 return data, {}
118
118
119 class SkyMapPlot(Plot):
119 class SkyMapPlot(Plot):
120 '''
120 '''
121 Plot for meteors detection data
121 Plot for meteors detection data
122 '''
122 '''
123
123
124 CODE = 'param'
124 CODE = 'param'
125
125
126 def setup(self):
126 def setup(self):
127
127
128 self.ncols = 1
128 self.ncols = 1
129 self.nrows = 1
129 self.nrows = 1
130 self.width = 7.2
130 self.width = 7.2
131 self.height = 7.2
131 self.height = 7.2
132 self.nplots = 1
132 self.nplots = 1
133 self.xlabel = 'Zonal Zenith Angle (deg)'
133 self.xlabel = 'Zonal Zenith Angle (deg)'
134 self.ylabel = 'Meridional Zenith Angle (deg)'
134 self.ylabel = 'Meridional Zenith Angle (deg)'
135 self.polar = True
135 self.polar = True
136 self.ymin = -180
136 self.ymin = -180
137 self.ymax = 180
137 self.ymax = 180
138 self.colorbar = False
138 self.colorbar = False
139
139
140 def plot(self):
140 def plot(self):
141
141
142 arrayParameters = numpy.concatenate(self.data['param'])
142 arrayParameters = numpy.concatenate(self.data['param'])
143 error = arrayParameters[:, -1]
143 error = arrayParameters[:, -1]
144 indValid = numpy.where(error == 0)[0]
144 indValid = numpy.where(error == 0)[0]
145 finalMeteor = arrayParameters[indValid, :]
145 finalMeteor = arrayParameters[indValid, :]
146 finalAzimuth = finalMeteor[:, 3]
146 finalAzimuth = finalMeteor[:, 3]
147 finalZenith = finalMeteor[:, 4]
147 finalZenith = finalMeteor[:, 4]
148
148
149 x = finalAzimuth * numpy.pi / 180
149 x = finalAzimuth * numpy.pi / 180
150 y = finalZenith
150 y = finalZenith
151
151
152 ax = self.axes[0]
152 ax = self.axes[0]
153
153
154 if ax.firsttime:
154 if ax.firsttime:
155 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
155 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
156 else:
156 else:
157 ax.plot.set_data(x, y)
157 ax.plot.set_data(x, y)
158
158
159 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
159 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
160 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
160 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
161 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
161 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
162 dt2,
162 dt2,
163 len(x))
163 len(x))
164 self.titles[0] = title
164 self.titles[0] = title
165
165
166
166
167 class GenericRTIPlot(Plot):
167 class GenericRTIPlot(Plot):
168 '''
168 '''
169 Plot for data_xxxx object
169 Plot for data_xxxx object
170 '''
170 '''
171
171
172 CODE = 'param'
172 CODE = 'param'
173 colormap = 'viridis'
173 colormap = 'viridis'
174 plot_type = 'pcolorbuffer'
174 plot_type = 'pcolorbuffer'
175
175
176 def setup(self):
176 def setup(self):
177 self.xaxis = 'time'
177 self.xaxis = 'time'
178 self.ncols = 1
178 self.ncols = 1
179 self.nrows = self.data.shape('param')[0]
179 self.nrows = self.data.shape('param')[0]
180 self.nplots = self.nrows
180 self.nplots = self.nrows
181 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
181 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
182
182
183 if not self.xlabel:
183 if not self.xlabel:
184 self.xlabel = 'Time'
184 self.xlabel = 'Time'
185
185
186 self.ylabel = 'Range [km]'
186 self.ylabel = 'Range [km]'
187 if not self.titles:
187 if not self.titles:
188 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
188 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
189
189
190 def update(self, dataOut):
190 def update(self, dataOut):
191
191
192 data = {
192 data = {
193 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
193 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
194 }
194 }
195
195
196 meta = {}
196 meta = {}
197
197
198 return data, meta
198 return data, meta
199
199
200 def plot(self):
200 def plot(self):
201 # self.data.normalize_heights()
201 # self.data.normalize_heights()
202 self.x = self.data.times
202 self.x = self.data.times
203 self.y = self.data.yrange
203 self.y = self.data.yrange
204 self.z = self.data['param']
204 self.z = self.data['param']
205 self.z = 10*numpy.log10(self.z)
205 self.z = 10*numpy.log10(self.z)
206 self.z = numpy.ma.masked_invalid(self.z)
206 self.z = numpy.ma.masked_invalid(self.z)
207
207
208 if self.decimation is None:
208 if self.decimation is None:
209 x, y, z = self.fill_gaps(self.x, self.y, self.z)
209 x, y, z = self.fill_gaps(self.x, self.y, self.z)
210 else:
210 else:
211 x, y, z = self.fill_gaps(*self.decimate())
211 x, y, z = self.fill_gaps(*self.decimate())
212
212
213 for n, ax in enumerate(self.axes):
213 for n, ax in enumerate(self.axes):
214
214
215 self.zmax = self.zmax if self.zmax is not None else numpy.max(
215 self.zmax = self.zmax if self.zmax is not None else numpy.max(
216 self.z[n])
216 self.z[n])
217 self.zmin = self.zmin if self.zmin is not None else numpy.min(
217 self.zmin = self.zmin if self.zmin is not None else numpy.min(
218 self.z[n])
218 self.z[n])
219
219
220 if ax.firsttime:
220 if ax.firsttime:
221 if self.zlimits is not None:
221 if self.zlimits is not None:
222 self.zmin, self.zmax = self.zlimits[n]
222 self.zmin, self.zmax = self.zlimits[n]
223
223
224 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
224 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
225 vmin=self.zmin,
225 vmin=self.zmin,
226 vmax=self.zmax,
226 vmax=self.zmax,
227 cmap=self.cmaps[n]
227 cmap=self.cmaps[n]
228 )
228 )
229 else:
229 else:
230 if self.zlimits is not None:
230 if self.zlimits is not None:
231 self.zmin, self.zmax = self.zlimits[n]
231 self.zmin, self.zmax = self.zlimits[n]
232 ax.collections.remove(ax.collections[0])
232 ax.collections.remove(ax.collections[0])
233 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
233 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
234 vmin=self.zmin,
234 vmin=self.zmin,
235 vmax=self.zmax,
235 vmax=self.zmax,
236 cmap=self.cmaps[n]
236 cmap=self.cmaps[n]
237 )
237 )
238
238
239
239
240 class PolarMapPlot(Plot):
240 class PolarMapPlot(Plot):
241 '''
241 '''
242 Plot for weather radar
242 Plot for weather radar
243 '''
243 '''
244
244
245 CODE = 'param'
245 CODE = 'param'
246 colormap = 'seismic'
246 colormap = 'seismic'
247
247
248 def setup(self):
248 def setup(self):
249 self.ncols = 1
249 self.ncols = 1
250 self.nrows = 1
250 self.nrows = 1
251 self.width = 9
251 self.width = 9
252 self.height = 8
252 self.height = 8
253 self.mode = self.data.meta['mode']
253 self.mode = self.data.meta['mode']
254 if self.channels is not None:
254 if self.channels is not None:
255 self.nplots = len(self.channels)
255 self.nplots = len(self.channels)
256 self.nrows = len(self.channels)
256 self.nrows = len(self.channels)
257 else:
257 else:
258 self.nplots = self.data.shape(self.CODE)[0]
258 self.nplots = self.data.shape(self.CODE)[0]
259 self.nrows = self.nplots
259 self.nrows = self.nplots
260 self.channels = list(range(self.nplots))
260 self.channels = list(range(self.nplots))
261 if self.mode == 'E':
261 if self.mode == 'E':
262 self.xlabel = 'Longitude'
262 self.xlabel = 'Longitude'
263 self.ylabel = 'Latitude'
263 self.ylabel = 'Latitude'
264 else:
264 else:
265 self.xlabel = 'Range (km)'
265 self.xlabel = 'Range (km)'
266 self.ylabel = 'Height (km)'
266 self.ylabel = 'Height (km)'
267 self.bgcolor = 'white'
267 self.bgcolor = 'white'
268 self.cb_labels = self.data.meta['units']
268 self.cb_labels = self.data.meta['units']
269 self.lat = self.data.meta['latitude']
269 self.lat = self.data.meta['latitude']
270 self.lon = self.data.meta['longitude']
270 self.lon = self.data.meta['longitude']
271 self.xmin, self.xmax = float(
271 self.xmin, self.xmax = float(
272 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
272 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
273 self.ymin, self.ymax = float(
273 self.ymin, self.ymax = float(
274 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
274 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
275 # self.polar = True
275 # self.polar = True
276
276
277 def plot(self):
277 def plot(self):
278
278
279 for n, ax in enumerate(self.axes):
279 for n, ax in enumerate(self.axes):
280 data = self.data['param'][self.channels[n]]
280 data = self.data['param'][self.channels[n]]
281
281
282 zeniths = numpy.linspace(
282 zeniths = numpy.linspace(
283 0, self.data.meta['max_range'], data.shape[1])
283 0, self.data.meta['max_range'], data.shape[1])
284 if self.mode == 'E':
284 if self.mode == 'E':
285 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
285 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
286 r, theta = numpy.meshgrid(zeniths, azimuths)
286 r, theta = numpy.meshgrid(zeniths, azimuths)
287 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
287 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
288 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
288 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
289 x = km2deg(x) + self.lon
289 x = km2deg(x) + self.lon
290 y = km2deg(y) + self.lat
290 y = km2deg(y) + self.lat
291 else:
291 else:
292 azimuths = numpy.radians(self.data.yrange)
292 azimuths = numpy.radians(self.data.yrange)
293 r, theta = numpy.meshgrid(zeniths, azimuths)
293 r, theta = numpy.meshgrid(zeniths, azimuths)
294 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
294 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
295 self.y = zeniths
295 self.y = zeniths
296
296
297 if ax.firsttime:
297 if ax.firsttime:
298 if self.zlimits is not None:
298 if self.zlimits is not None:
299 self.zmin, self.zmax = self.zlimits[n]
299 self.zmin, self.zmax = self.zlimits[n]
300 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
300 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
301 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
301 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
302 vmin=self.zmin,
302 vmin=self.zmin,
303 vmax=self.zmax,
303 vmax=self.zmax,
304 cmap=self.cmaps[n])
304 cmap=self.cmaps[n])
305 else:
305 else:
306 if self.zlimits is not None:
306 if self.zlimits is not None:
307 self.zmin, self.zmax = self.zlimits[n]
307 self.zmin, self.zmax = self.zlimits[n]
308 ax.collections.remove(ax.collections[0])
308 ax.collections.remove(ax.collections[0])
309 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
309 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
310 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
310 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
311 vmin=self.zmin,
311 vmin=self.zmin,
312 vmax=self.zmax,
312 vmax=self.zmax,
313 cmap=self.cmaps[n])
313 cmap=self.cmaps[n])
314
314
315 if self.mode == 'A':
315 if self.mode == 'A':
316 continue
316 continue
317
317
318 # plot district names
318 # plot district names
319 f = open('/data/workspace/schain_scripts/distrito.csv')
319 f = open('/data/workspace/schain_scripts/distrito.csv')
320 for line in f:
320 for line in f:
321 label, lon, lat = [s.strip() for s in line.split(',') if s]
321 label, lon, lat = [s.strip() for s in line.split(',') if s]
322 lat = float(lat)
322 lat = float(lat)
323 lon = float(lon)
323 lon = float(lon)
324 # ax.plot(lon, lat, '.b', ms=2)
324 # ax.plot(lon, lat, '.b', ms=2)
325 ax.text(lon, lat, label.decode('utf8'), ha='center',
325 ax.text(lon, lat, label.decode('utf8'), ha='center',
326 va='bottom', size='8', color='black')
326 va='bottom', size='8', color='black')
327
327
328 # plot limites
328 # plot limites
329 limites = []
329 limites = []
330 tmp = []
330 tmp = []
331 for line in open('/data/workspace/schain_scripts/lima.csv'):
331 for line in open('/data/workspace/schain_scripts/lima.csv'):
332 if '#' in line:
332 if '#' in line:
333 if tmp:
333 if tmp:
334 limites.append(tmp)
334 limites.append(tmp)
335 tmp = []
335 tmp = []
336 continue
336 continue
337 values = line.strip().split(',')
337 values = line.strip().split(',')
338 tmp.append((float(values[0]), float(values[1])))
338 tmp.append((float(values[0]), float(values[1])))
339 for points in limites:
339 for points in limites:
340 ax.add_patch(
340 ax.add_patch(
341 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
341 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
342
342
343 # plot Cuencas
343 # plot Cuencas
344 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
344 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
345 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
345 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
346 values = [line.strip().split(',') for line in f]
346 values = [line.strip().split(',') for line in f]
347 points = [(float(s[0]), float(s[1])) for s in values]
347 points = [(float(s[0]), float(s[1])) for s in values]
348 ax.add_patch(Polygon(points, ec='b', fc='none'))
348 ax.add_patch(Polygon(points, ec='b', fc='none'))
349
349
350 # plot grid
350 # plot grid
351 for r in (15, 30, 45, 60):
351 for r in (15, 30, 45, 60):
352 ax.add_artist(plt.Circle((self.lon, self.lat),
352 ax.add_artist(plt.Circle((self.lon, self.lat),
353 km2deg(r), color='0.6', fill=False, lw=0.2))
353 km2deg(r), color='0.6', fill=False, lw=0.2))
354 ax.text(
354 ax.text(
355 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
355 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
356 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
356 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
357 '{}km'.format(r),
357 '{}km'.format(r),
358 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
358 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
359
359
360 if self.mode == 'E':
360 if self.mode == 'E':
361 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
361 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
362 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
362 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
363 else:
363 else:
364 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
364 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
365 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
365 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
366
366
367 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
367 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
368 self.titles = ['{} {}'.format(
368 self.titles = ['{} {}'.format(
369 self.data.parameters[x], title) for x in self.channels]
369 self.data.parameters[x], title) for x in self.channels]
370
370
371 class WeatherPlot(Plot):
371 class WeatherPlot(Plot):
372 CODE = 'weather'
372 CODE = 'weather'
373 plot_name = 'weather'
373 plot_name = 'weather'
374 plot_type = 'ppistyle'
374 plot_type = 'ppistyle'
375 buffering = False
375 buffering = False
376
376
377 def setup(self):
377 def setup(self):
378 self.ncols = 1
378 self.ncols = 1
379 self.nrows = 1
379 self.nrows = 1
380 self.nplots= 1
380 self.nplots= 1
381 self.ylabel= 'Range [Km]'
381 self.ylabel= 'Range [Km]'
382 self.titles= ['Weather']
382 self.titles= ['Weather']
383 self.colorbar=False
383 self.colorbar=False
384 self.width =8
384 self.width =8
385 self.height =8
385 self.height =8
386 self.ini =0
386 self.ini =0
387 self.len_azi =0
387 self.len_azi =0
388 self.buffer_ini = None
388 self.buffer_ini = None
389 self.buffer_azi = None
389 self.buffer_azi = None
390 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
390 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
391 self.flag =0
391 self.flag =0
392 self.indicador= 0
392 self.indicador= 0
393 self.last_data_azi = None
393 self.last_data_azi = None
394 self.val_mean = None
394 self.val_mean = None
395
395
396 def update(self, dataOut):
396 def update(self, dataOut):
397
397
398 data = {}
398 data = {}
399 meta = {}
399 meta = {}
400 if hasattr(dataOut, 'dataPP_POWER'):
400 if hasattr(dataOut, 'dataPP_POWER'):
401 factor = 1
401 factor = 1
402
403 if hasattr(dataOut, 'nFFTPoints'):
402 if hasattr(dataOut, 'nFFTPoints'):
404 factor = dataOut.normFactor
403 factor = dataOut.normFactor
405
406 ####print("factor",factor)
407 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
404 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
408 ####print("weather",data['weather'])
409 data['azi'] = dataOut.data_azi
405 data['azi'] = dataOut.data_azi
410
411 data['ele'] = dataOut.data_ele
406 data['ele'] = dataOut.data_ele
412 return data, meta
407 return data, meta
413
408
414 def get2List(self,angulos):
409 def get2List(self,angulos):
415 list1=[]
410 list1=[]
416 list2=[]
411 list2=[]
417 for i in reversed(range(len(angulos))):
412 for i in reversed(range(len(angulos))):
418 diff_ = angulos[i]-angulos[i-1]
413 diff_ = angulos[i]-angulos[i-1]
419 if diff_ >1.5:
414 if diff_ >1.5:
420 list1.append(i-1)
415 list1.append(i-1)
421 list2.append(diff_)
416 list2.append(diff_)
422 return list(reversed(list1)),list(reversed(list2))
417 return list(reversed(list1)),list(reversed(list2))
423
418
424 def fixData360(self,list_,ang_):
419 def fixData360(self,list_,ang_):
425 if list_[0]==-1:
420 if list_[0]==-1:
426 vec = numpy.where(ang_<ang_[0])
421 vec = numpy.where(ang_<ang_[0])
427 ang_[vec] = ang_[vec]+360
422 ang_[vec] = ang_[vec]+360
428 return ang_
423 return ang_
429 return ang_
424 return ang_
430
425
431
432 def fixData360HL(self,angulos):
426 def fixData360HL(self,angulos):
433 vec = numpy.where(angulos>=360)
427 vec = numpy.where(angulos>=360)
434 angulos[vec]=angulos[vec]-360
428 angulos[vec]=angulos[vec]-360
435 return angulos
429 return angulos
436
430
437 def search_pos(self,pos,list_):
431 def search_pos(self,pos,list_):
438 for i in range(len(list_)):
432 for i in range(len(list_)):
439 if pos == list_[i]:
433 if pos == list_[i]:
440 return True,i
434 return True,i
441 i=None
435 i=None
442 return False,i
436 return False,i
443
437
444 def fixDataComp(self,ang_,list1_,list2_):
438 def fixDataComp(self,ang_,list1_,list2_):
445 size = len(ang_)
439 size = len(ang_)
446 size2 = 0
440 size2 = 0
447 for i in range(len(list2_)):
441 for i in range(len(list2_)):
448 size2=size2+round(list2_[i])-1
442 size2=size2+round(list2_[i])-1
449 new_size= size+size2
443 new_size= size+size2
450 ang_new = numpy.zeros(new_size)
444 ang_new = numpy.zeros(new_size)
451 ang_new2 = numpy.zeros(new_size)
445 ang_new2 = numpy.zeros(new_size)
452
446
453 tmp = 0
447 tmp = 0
454 c = 0
448 c = 0
455 for i in range(len(ang_)):
449 for i in range(len(ang_)):
456 ang_new[tmp +c] = ang_[i]
450 ang_new[tmp +c] = ang_[i]
457 ang_new2[tmp+c] = ang_[i]
451 ang_new2[tmp+c] = ang_[i]
458 condition , value = self.search_pos(i,list1_)
452 condition , value = self.search_pos(i,list1_)
459 if condition:
453 if condition:
460 pos = tmp + c + 1
454 pos = tmp + c + 1
461 for k in range(round(list2_[value])-1):
455 for k in range(round(list2_[value])-1):
462 ang_new[pos+k] = ang_new[pos+k-1]+1
456 ang_new[pos+k] = ang_new[pos+k-1]+1
463 ang_new2[pos+k] = numpy.nan
457 ang_new2[pos+k] = numpy.nan
464 tmp = pos +k
458 tmp = pos +k
465 c = 0
459 c = 0
466 c=c+1
460 c=c+1
467 return ang_new,ang_new2
461 return ang_new,ang_new2
468
462
469
470 def globalCheckPED(self,angulos):
463 def globalCheckPED(self,angulos):
471 l1,l2 = self.get2List(angulos)
464 l1,l2 = self.get2List(angulos)
472 if len(l1)>0:
465 if len(l1)>0:
473 angulos2 = self.fixData360(list_=l1,ang_=angulos)
466 angulos2 = self.fixData360(list_=l1,ang_=angulos)
474 l1,l2 = self.get2List(angulos2)
467 l1,l2 = self.get2List(angulos2)
475
468
476 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
469 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
477 ang1_ = self.fixData360HL(ang1_)
470 ang1_ = self.fixData360HL(ang1_)
478 ang2_ = self.fixData360HL(ang2_)
471 ang2_ = self.fixData360HL(ang2_)
479
480 else:
472 else:
481 ang1_= angulos
473 ang1_= angulos
482 ang2_= angulos
474 ang2_= angulos
483 return ang1_,ang2_
475 return ang1_,ang2_
484
476
485 def analizeDATA(self,data_azi):
477 def analizeDATA(self,data_azi):
486 list1 = []
478 list1 = []
487 list2 = []
479 list2 = []
488 dat = data_azi
480 dat = data_azi
489 for i in reversed(range(1,len(dat))):
481 for i in reversed(range(1,len(dat))):
490 if dat[i]>dat[i-1]:
482 if dat[i]>dat[i-1]:
491 diff = int(dat[i])-int(dat[i-1])
483 diff = int(dat[i])-int(dat[i-1])
492 else:
484 else:
493 diff = 360+int(dat[i])-int(dat[i-1])
485 diff = 360+int(dat[i])-int(dat[i-1])
494 if diff > 1:
486 if diff > 1:
495 list1.append(i-1)
487 list1.append(i-1)
496 list2.append(diff-1)
488 list2.append(diff-1)
497 return list1,list2
489 return list1,list2
498
490
499 def fixDATANEW(self,data_azi,data_weather):
491 def fixDATANEW(self,data_azi,data_weather):
500 list1,list2 = self.analizeDATA(data_azi)
492 list1,list2 = self.analizeDATA(data_azi)
501 if len(list1)== 0:
493 if len(list1)== 0:
502 return data_azi,data_weather
494 return data_azi,data_weather
503 else:
495 else:
504 resize = 0
496 resize = 0
505 for i in range(len(list2)):
497 for i in range(len(list2)):
506 resize= resize + list2[i]
498 resize= resize + list2[i]
507 new_data_azi = numpy.resize(data_azi,resize)
499 new_data_azi = numpy.resize(data_azi,resize)
508 new_data_weather= numpy.resize(date_weather,resize)
500 new_data_weather= numpy.resize(date_weather,resize)
509
501
510 for i in range(len(list2)):
502 for i in range(len(list2)):
511 j=0
503 j=0
512 position=list1[i]+1
504 position=list1[i]+1
513 for j in range(list2[i]):
505 for j in range(list2[i]):
514 new_data_azi[position+j]=new_data_azi[position+j-1]+1
506 new_data_azi[position+j]=new_data_azi[position+j-1]+1
515
516 return new_data_azi
507 return new_data_azi
517
508
518 def fixDATA(self,data_azi):
509 def fixDATA(self,data_azi):
519 data=data_azi
510 data=data_azi
520 for i in range(len(data)):
511 for i in range(len(data)):
521 if numpy.isnan(data[i]):
512 if numpy.isnan(data[i]):
522 data[i]=data[i-1]+1
513 data[i]=data[i-1]+1
523 return data
514 return data
524
515
525 def replaceNAN(self,data_weather,data_azi,val):
516 def replaceNAN(self,data_weather,data_azi,val):
526 data= data_azi
517 data= data_azi
527 data_T= data_weather
518 data_T= data_weather
528 if data.shape[0]> data_T.shape[0]:
519 if data.shape[0]> data_T.shape[0]:
529 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
520 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
530 c = 0
521 c = 0
531 for i in range(len(data)):
522 for i in range(len(data)):
532 if numpy.isnan(data[i]):
523 if numpy.isnan(data[i]):
533 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
524 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
534 else:
525 else:
535 data_N[i,:]=data_T[c,:]
526 data_N[i,:]=data_T[c,:]
536 sc=c+1
527 sc=c+1
537 else:
528 else:
538 for i in range(len(data)):
529 for i in range(len(data)):
539 if numpy.isnan(data[i]):
530 if numpy.isnan(data[i]):
540 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
531 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
541 return data_T
532 return data_T
542
533
543 def const_ploteo(self,data_weather,data_azi,step,res):
534 def const_ploteo(self,data_weather,data_azi,step,res):
544 if self.ini==0:
535 if self.ini==0:
545 #------- AZIMUTH
536 #-------
546 n = (360/res)-len(data_azi)
537 n = (360/res)-len(data_azi)
547 #--------------------- new -------------------------
538 #--------------------- new -------------------------
548 ####data_azi_old = data_azi
549 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
539 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
550 #------------------------
540 #------------------------
551 ####data_azi_new = self.fixDATA(data_azi)
552 #ata_azi_new = self.fixDATANEW(data_azi)
553 start = data_azi_new[-1] + res
541 start = data_azi_new[-1] + res
554 end = data_azi_new[0] - res
542 end = data_azi_new[0] - res
555 ##### new
543 #------ new
556 self.last_data_azi = end
544 self.last_data_azi = end
557 if start>end:
545 if start>end:
558 end = end + 360
546 end = end + 360
559 azi_vacia = numpy.linspace(start,end,int(n))
547 azi_vacia = numpy.linspace(start,end,int(n))
560 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
548 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
561 data_azi = numpy.hstack((data_azi_new,azi_vacia))
549 data_azi = numpy.hstack((data_azi_new,azi_vacia))
562 # RADAR
550 # RADAR
563 val_mean = numpy.mean(data_weather[:,-1])
551 val_mean = numpy.mean(data_weather[:,-1])
564 self.val_mean = val_mean
552 self.val_mean = val_mean
565 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
553 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
566 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
554 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
567 data_weather = numpy.vstack((data_weather,data_weather_cmp))
555 data_weather = numpy.vstack((data_weather,data_weather_cmp))
568 else:
556 else:
569 # azimuth
557 # azimuth
570 flag=0
558 flag=0
571 start_azi = self.res_azi[0]
559 start_azi = self.res_azi[0]
572 #-----------new------------
560 #-----------new------------
573 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
561 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
574 print("---------------------------------------------------")
575 print("data_azi",data_azi)
576 print("data_azi_old",data_azi_old)
577 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
562 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
578 #--------------------------
563 #--------------------------
579 ####data_azi_old = data_azi
580 ### weather ###
581 ####data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
582
583 ####if numpy.isnan(data_azi[0]):
584 #### data_azi[0]=self.last_data_azi+1
585 ####data_azi = self.fixDATA(data_azi)
586 start = data_azi[0]
564 start = data_azi[0]
587 end = data_azi[-1]
565 end = data_azi[-1]
588 self.last_data_azi= end
566 self.last_data_azi= end
589 ####print("start",start)
590 ####print("end",end)
591 if start< start_azi:
567 if start< start_azi:
592 start = start +360
568 start = start +360
593 if end <start_azi:
569 if end <start_azi:
594 end = end +360
570 end = end +360
595 ####print("start",start)
571
596 ####print("end",end)
597 #### AQUI SERA LA MAGIA
598 pos_ini = int((start-start_azi)/res)
572 pos_ini = int((start-start_azi)/res)
599 len_azi = len(data_azi)
573 len_azi = len(data_azi)
600 if (360-pos_ini)<len_azi:
574 if (360-pos_ini)<len_azi:
601 if pos_ini+1==360:
575 if pos_ini+1==360:
602 pos_ini=0
576 pos_ini=0
603 else:
577 else:
604 flag=1
578 flag=1
605 dif= 360-pos_ini
579 dif= 360-pos_ini
606 comp= len_azi-dif
580 comp= len_azi-dif
607
608 #-----------------
581 #-----------------
609 ####print(pos_ini)
610 ####print(len_azi)
611 ####print("shape",self.res_azi.shape)
612 if flag==0:
582 if flag==0:
613 # AZIMUTH
583 # AZIMUTH
614 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
584 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
615 # RADAR
585 # RADAR
616 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
586 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
617 else:
587 else:
618 # AZIMUTH
588 # AZIMUTH
619 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
589 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
620 self.res_azi[0:comp] = data_azi[dif:]
590 self.res_azi[0:comp] = data_azi[dif:]
621 # RADAR
591 # RADAR
622 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
592 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
623 self.res_weather[0:comp,:] = data_weather[dif:,:]
593 self.res_weather[0:comp,:] = data_weather[dif:,:]
624 flag=0
594 flag=0
625 data_azi = self.res_azi
595 data_azi = self.res_azi
626 data_weather = self.res_weather
596 data_weather = self.res_weather
627
597
628 return data_weather,data_azi
598 return data_weather,data_azi
629
599
630 def plot(self):
600 def plot(self):
631 #print("--------------------------------------",self.ini,"-----------------------------------")
632 #numpy.set_printoptions(suppress=True)
633 ####print("times: ",self.data.times)
634 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
601 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
635 #print("times: ",thisDatetime)
636 data = self.data[-1]
602 data = self.data[-1]
637 ####ALTURA altura_tmp_h
638 ###print("Y RANGES",self.data.yrange,len(self.data.yrange))
639 ###altura_h = (data['weather'].shape[1])/10.0
640 ###stoprange = float(altura_h*0.3)#stoprange = float(33*1.5) por ahora 400
641 ###rangestep = float(0.03)
642 ###r = numpy.arange(0, stoprange, rangestep)
643 ###print("r",r,len(r))
644 #-----------------------------update----------------------
645 r= self.data.yrange
603 r = self.data.yrange
646 delta_height = r[1]-r[0]
604 delta_height = r[1]-r[0]
647 #print("1",r)
648 r_mask= numpy.where(r>=0)[0]
605 r_mask = numpy.where(r>=0)[0]
649 r = numpy.arange(len(r_mask))*delta_height
606 r = numpy.arange(len(r_mask))*delta_height
650 #print("2",r)
651 self.y = 2*r
607 self.y = 2*r
652 ######self.y = self.data.yrange
653 # RADAR
608 # RADAR
654 #data_weather = data['weather']
609 #data_weather = data['weather']
655 # PEDESTAL
610 # PEDESTAL
656 #data_azi = data['azi']
611 #data_azi = data['azi']
657 res = 1
612 res = 1
658 # STEP
613 # STEP
659 step = (360/(res*data['weather'].shape[0]))
614 step = (360/(res*data['weather'].shape[0]))
660 #print("shape wr_data", wr_data.shape)
615
661 #print("shape wr_azi",wr_azi.shape)
662 #print("step",step)
663 ####print("Time---->",self.data.times[-1],thisDatetime)
664 #print("alturas", len(self.y))numpy.where(r>=0)
665 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
616 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
666 #numpy.set_printoptions(suppress=True)
667 #print("resultado",self.res_azi)
668 self.res_ele =numpy.mean(data['ele'])
617 self.res_ele = numpy.mean(data['ele'])
669 ###########################/DATA_RM/10_tmp/ch0###############################
670 ################# PLOTEO ###################
618 ################# PLOTEO ###################
671 ##########################################################
672
619
673 for i,ax in enumerate(self.axes):
620 for i,ax in enumerate(self.axes):
674 if ax.firsttime:
621 if ax.firsttime:
675 plt.clf()
622 plt.clf()
676 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=8, vmax=35)
623 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=8, vmax=35)
677 else:
624 else:
678 plt.clf()
625 plt.clf()
679 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=8, vmax=35)
626 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=8, vmax=35)
680 caax = cgax.parasites[0]
627 caax = cgax.parasites[0]
681 paax = cgax.parasites[1]
628 paax = cgax.parasites[1]
682 cbar = plt.gcf().colorbar(pm, pad=0.075)
629 cbar = plt.gcf().colorbar(pm, pad=0.075)
683 caax.set_xlabel('x_range [km]')
630 caax.set_xlabel('x_range [km]')
684 caax.set_ylabel('y_range [km]')
631 caax.set_ylabel('y_range [km]')
685 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right')
632 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right')
686
633
687 self.ini= self.ini+1
634 self.ini= self.ini+1
635
636
637 class WeatherRHIPlot(Plot):
638 CODE = 'weather'
639 plot_name = 'weather'
640 plot_type = 'rhistyle'
641 buffering = False
642
643 def setup(self):
644 self.ncols = 1
645 self.nrows = 1
646 self.nplots= 1
647 self.ylabel= 'Range [Km]'
648 self.titles= ['Weather']
649 self.colorbar=False
650 self.width =8
651 self.height =8
652 self.ini =0
653 self.len_azi =0
654 self.buffer_ini = None
655 self.buffer_azi = None
656 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
657 self.flag =0
658 self.indicador= 0
659 self.last_data_azi = None
660 self.val_mean = None
661
662 def update(self, dataOut):
663
664 data = {}
665 meta = {}
666 if hasattr(dataOut, 'dataPP_POWER'):
667 factor = 1
668 if hasattr(dataOut, 'nFFTPoints'):
669 factor = dataOut.normFactor
670 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
671 data['azi'] = dataOut.data_azi
672 data['ele'] = dataOut.data_ele
673 return data, meta
674
675 def plot(self):
676 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
677 data = self.data[-1]
678 r = self.data.yrange
679 delta_height = r[1]-r[0]
680 r_mask = numpy.where(r>=0)[0]
681 r = numpy.arange(len(r_mask))*delta_height
682 self.y = 2*r
683 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['ele'],step=step,res=res)
684 ###self.res_azi = numpy.mean(data['azi'])
685 #-------------
686 # 90 angulos en el axis 0
687 # 1000 step en el axis 1
688 self.res_weather = numpy.ones([90,1000])
689 r = numpy.linspace(0,1999,1000)
690 self.res_ele = numpy.arange(0,90)
691 self.res_azi = 240
692 #-------------
693 for i,ax in enumerate(self.axes):
694 if ax.firsttime:
695 plt.clf()
696 cgax, pm = wrl.vis.plot_rhi(self.res_weather,r=r,th=self.res_ele,fig=self.figures[0], proj='cg')
697 else:
698 plt.clf()
699 cgax, pm = wrl.vis.plot_rhi(self.res_weather,r=r,th=self.res_ele,fig=self.figures[0], proj='cg')
700 caax = cgax.parasites[0]
701 paax = cgax.parasites[1]
702 cbar = plt.gcf().colorbar(pm, pad=0.075)
703 caax.set_xlabel('x_range [km]')
704 caax.set_ylabel('y_range [km]')
705 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
706
707 self.ini= self.ini+1
1 NO CONTENT: modified file
NO CONTENT: modified file
The requested commit or file is too big and content was truncated. Show full diff
@@ -1,133 +1,133
1 # Ing. AVP
1 # Ing. AVP
2 # 04/01/2022
2 # 04/01/2022
3 # ARCHIVO DE LECTURA
3 # ARCHIVO DE LECTURA
4 import os, sys
4 import os, sys
5 import datetime
5 import datetime
6 import time
6 import time
7 import numpy
7 import numpy
8 from ext_met import getfirstFilefromPath,getDatavaluefromDirFilename
8 from ext_met import getfirstFilefromPath,getDatavaluefromDirFilename
9 from schainpy.controller import Project
9 from schainpy.controller import Project
10 #-----------------------------------------------------------------------------------------
10 #-----------------------------------------------------------------------------------------
11 print("[SETUP]-RADAR METEOROLOGICO-")
11 print("[SETUP]-RADAR METEOROLOGICO-")
12 path_ped = "/DATA_RM/TEST_PEDESTAL/P20211110-171003"
12 path_ped = "/DATA_RM/TEST_PEDESTAL/P20211110-171003"
13 print("PATH PEDESTAL :",path_ped)
13 print("PATH PEDESTAL :",path_ped)
14 path_adq = "/DATA_RM/10"
14 path_adq = "/DATA_RM/10"
15 print("PATH DATA :",path_adq)
15 print("PATH DATA :",path_adq)
16 figpath_pp_rti = "/home/soporte/Pictures/TEST_PP_RTI"
16 figpath_pp_rti = "/home/soporte/Pictures/TEST_PP_RTI"
17 print("PATH PP RTI :",figpath_pp_rti)
17 print("PATH PP RTI :",figpath_pp_rti)
18 figpath_pp_ppi = "/home/soporte/Pictures/TEST_PP_PPI"
18 figpath_pp_ppi = "/home/soporte/Pictures/TEST_PP_PPI"
19 print("PATH PP PPI :",figpath_pp_ppi)
19 print("PATH PP PPI :",figpath_pp_ppi)
20 path_pp_save_int = "/DATA_RM/TEST_SAVE_PP_INT"
20 path_pp_save_int = "/DATA_RM/TEST_SAVE_PP_INT"
21 print("PATH SAVE PP INT :",path_pp_save_int)
21 print("PATH SAVE PP INT :",path_pp_save_int)
22 print(" ")
22 print(" ")
23 #-------------------------------------------------------------------------------------------
23 #-------------------------------------------------------------------------------------------
24 print("SELECCIONAR MODO: PPI (0) O RHI (1)")
24 print("SELECCIONAR MODO: PPI (0) O RHI (1)")
25 mode_wr = 0
25 mode_wr = 0
26 if mode_wr==0:
26 if mode_wr==0:
27 print("[ ON ] MODE PPI")
27 print("[ ON ] MODE PPI")
28 list_ped = getfirstFilefromPath(path=path_ped,meta="PE",ext=".hdf5")
28 list_ped = getfirstFilefromPath(path=path_ped,meta="PE",ext=".hdf5")
29 ff_pedestal = list_ped[2]
29 ff_pedestal = list_ped[2]
30 azi_vel = getDatavaluefromDirFilename(path=path_ped,file=ff_pedestal,value="azi_vel")
30 azi_vel = getDatavaluefromDirFilename(path=path_ped,file=ff_pedestal,value="azi_vel")
31 V = round(azi_vel[0])
31 V = round(azi_vel[0])
32 print("VELOCIDAD AZI :", int(numpy.mean(azi_vel)),"Β°/seg")
32 print("VELOCIDAD AZI :", int(numpy.mean(azi_vel)),"Β°/seg")
33 else:
33 else:
34 print("[ ON ] MODE RHI")
34 print("[ ON ] MODE RHI")
35 list_ped = getfirstFilefromPath(path=path_ped,meta="PE",ext=".hdf5")
35 list_ped = getfirstFilefromPath(path=path_ped,meta="PE",ext=".hdf5")
36 ff_pedestal = list_ped[2]
36 ff_pedestal = list_ped[2]
37 V = round(ele_vel[0])
37 V = round(ele_vel[0])
38 ele_vel = getDatavaluefromDirFilename(path=path_ped,file=ff_pedestal,value="ele_vel")
38 ele_vel = getDatavaluefromDirFilename(path=path_ped,file=ff_pedestal,value="ele_vel")
39 print("VELOCIDAD ELE :", int(numpy.mean(ele_vel)),"Β°/seg")
39 print("VELOCIDAD ELE :", int(numpy.mean(ele_vel)),"Β°/seg")
40 print(" ")
40 print(" ")
41 #---------------------------------------------------------------------------------------
41 #---------------------------------------------------------------------------------------
42 print("SELECCIONAR MODO: PULSE PAIR (0) O FREQUENCY (1)")
42 print("SELECCIONAR MODO: PULSE PAIR (0) O FREQUENCY (1)")
43 mode_proc = 0
43 mode_proc = 0
44 if mode_proc==0:
44 if mode_proc==0:
45 print("[ ON ] MODE PULSEPAIR")
45 print("[ ON ] MODE PULSEPAIR")
46 else:
46 else:
47 print("[ ON ] MODE FREQUENCY")
47 print("[ ON ] MODE FREQUENCY")
48 ipp = 60.0
48 ipp = 60.0
49 print("IPP(Km.) : %1.2f"%ipp)
49 print("IPP(Km.) : %1.2f"%ipp)
50 ipp_sec = (ipp*1.0e3/150.0)*1.0e-6
50 ipp_sec = (ipp*1.0e3/150.0)*1.0e-6
51 print("IPP(useg.) : %1.2f"%(ipp_sec*(1.0e6)))
51 print("IPP(useg.) : %1.2f"%(ipp_sec*(1.0e6)))
52 VEL=V
52 VEL=V
53 n= int(1/(VEL*ipp_sec))
53 n= int(1/(VEL*ipp_sec))
54 print("NΒ° Profiles : ", n)
54 print("NΒ° Profiles : ", n)
55 #---------------------------------------------------------------------------------------
55 #---------------------------------------------------------------------------------------
56 plot_rti = 0
56 plot_rti = 0
57 plot_ppi = 1
57 plot_ppi = 1
58 integration = 1
58 integration = 1
59 save = 0
59 save = 0
60 #---------------------------RANGO DE PLOTEO----------------------------------
60 #---------------------------RANGO DE PLOTEO----------------------------------
61 dBmin = '1'
61 dBmin = '1'
62 dBmax = '85'
62 dBmax = '85'
63 xmin = '17'
63 xmin = '17'
64 xmax = '17.25'
64 xmax = '17.25'
65 ymin = '0'
65 ymin = '0'
66 ymax = '600'
66 ymax = '600'
67 #----------------------------------------------------------------------------
67 #----------------------------------------------------------------------------
68 time.sleep(3)
68 time.sleep(3)
69 #---------------------SIGNAL CHAIN ------------------------------------
69 #---------------------SIGNAL CHAIN ------------------------------------
70 desc = "USRP_WEATHER_RADAR"
70 desc = "USRP_WEATHER_RADAR"
71 filename = "USRP_processing.xml"
71 filename = "USRP_processing.xml"
72 controllerObj = Project()
72 controllerObj = Project()
73 controllerObj.setup(id = '191', name='Test_USRP', description=desc)
73 controllerObj.setup(id = '191', name='Test_USRP', description=desc)
74 #---------------------UNIDAD DE LECTURA--------------------------------
74 #---------------------UNIDAD DE LECTURA--------------------------------
75 readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader',
75 readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader',
76 path=path_adq,
76 path=path_adq,
77 startDate="2021/11/10",#today,
77 startDate="2021/11/10",#today,
78 endDate="2021/12/30",#today,
78 endDate="2021/12/30",#today,
79 startTime='17:10:25',
79 startTime='17:10:25',
80 endTime='23:59:59',
80 endTime='23:59:59',
81 delay=0,
81 delay=0,
82 #set=0,
82 #set=0,
83 online=0,
83 online=0,
84 walk=1,
84 walk=1,
85 ippKm=ipp)
85 ippKm=ipp)
86
86
87 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc',inputId=readUnitConfObj.getId())
87 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc',inputId=readUnitConfObj.getId())
88
88
89 opObj11 = procUnitConfObjA.addOperation(name='selectHeights')
89 opObj11 = procUnitConfObjA.addOperation(name='selectHeights')
90 opObj11.addParameter(name='minIndex', value='1', format='int')
90 opObj11.addParameter(name='minIndex', value='1', format='int')
91 # opObj11.addParameter(name='maxIndex', value='10000', format='int')
91 # opObj11.addParameter(name='maxIndex', value='10000', format='int')
92 opObj11.addParameter(name='maxIndex', value='400', format='int')
92 opObj11.addParameter(name='maxIndex', value='400', format='int')
93
93
94 if mode_proc==0:
94 if mode_proc==0:
95 opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other')
95 opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other')
96 opObj11.addParameter(name='n', value=int(n), format='int')
96 opObj11.addParameter(name='n', value=int(n), format='int')
97 procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId())
97 procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId())
98
98 # REVISAR EL test_sim00013.py
99 if plot_rti==1:
99 if plot_rti==1:
100 opObj11 = procUnitConfObjB.addOperation(name='GenericRTIPlot',optype='external')
100 opObj11 = procUnitConfObjB.addOperation(name='GenericRTIPlot',optype='external')
101 opObj11.addParameter(name='attr_data', value='dataPP_POW')
101 opObj11.addParameter(name='attr_data', value='dataPP_POW')
102 opObj11.addParameter(name='colormap', value='jet')
102 opObj11.addParameter(name='colormap', value='jet')
103 opObj11.addParameter(name='xmin', value=xmin)
103 opObj11.addParameter(name='xmin', value=xmin)
104 opObj11.addParameter(name='xmax', value=xmax)
104 opObj11.addParameter(name='xmax', value=xmax)
105 opObj11.addParameter(name='zmin', value=dBmin)
105 opObj11.addParameter(name='zmin', value=dBmin)
106 opObj11.addParameter(name='zmax', value=dBmax)
106 opObj11.addParameter(name='zmax', value=dBmax)
107 opObj11.addParameter(name='save', value=figpath_pp_rti)
107 opObj11.addParameter(name='save', value=figpath_pp_rti)
108 opObj11.addParameter(name='showprofile', value=0)
108 opObj11.addParameter(name='showprofile', value=0)
109 opObj11.addParameter(name='save_period', value=50)
109 opObj11.addParameter(name='save_period', value=50)
110 if integration==1:
110 if integration==1:
111 opObj11 = procUnitConfObjB.addOperation(name='PedestalInformation')
111 opObj11 = procUnitConfObjB.addOperation(name='PedestalInformation')
112 opObj11.addParameter(name='path_ped', value=path_ped)
112 opObj11.addParameter(name='path_ped', value=path_ped)
113 opObj11.addParameter(name='t_Interval_p', value='0.01', format='float')
113 opObj11.addParameter(name='t_Interval_p', value='0.01', format='float')
114
114
115 if plot_ppi==1:
115 if plot_ppi==1:
116 opObj11 = procUnitConfObjB.addOperation(name='Block360')
116 opObj11 = procUnitConfObjB.addOperation(name='Block360')
117 opObj11.addParameter(name='n', value='10', format='int')
117 opObj11.addParameter(name='n', value='10', format='int')
118 opObj11.addParameter(name='mode', value=mode_proc, format='int')
118 opObj11.addParameter(name='mode', value=mode_proc, format='int')
119 # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180
119 # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180
120 opObj11= procUnitConfObjB.addOperation(name='WeatherPlot',optype='other')
120 opObj11= procUnitConfObjB.addOperation(name='WeatherPlot',optype='other')
121 opObj11.addParameter(name='save', value=figpath_pp_ppi)
121 opObj11.addParameter(name='save', value=figpath_pp_ppi)
122 opObj11.addParameter(name='save_period', value=1)
122 opObj11.addParameter(name='save_period', value=1)
123
123
124 if save==1:
124 if save==1:
125 opObj10 = procUnitConfObjB.addOperation(name='HDFWriter')
125 opObj10 = procUnitConfObjB.addOperation(name='HDFWriter')
126 opObj10.addParameter(name='path',value=path_pp_save_int)
126 opObj10.addParameter(name='path',value=path_pp_save_int)
127 opObj10.addParameter(name='mode',value="weather")
127 opObj10.addParameter(name='mode',value="weather")
128 opObj10.addParameter(name='blocksPerFile',value='360',format='int')
128 opObj10.addParameter(name='blocksPerFile',value='360',format='int')
129 opObj10.addParameter(name='metadataList',value='utctimeInit,timeZone,paramInterval,profileIndex,channelList,heightList,flagDataAsBlock',format='list')
129 opObj10.addParameter(name='metadataList',value='utctimeInit,timeZone,paramInterval,profileIndex,channelList,heightList,flagDataAsBlock',format='list')
130 opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,azimuth,elevation,utctime',format='list')#,format='list'
130 opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,azimuth,elevation,utctime',format='list')#,format='list'
131
131
132
132
133 controllerObj.start()
133 controllerObj.start()
General Comments 0
You need to be logged in to leave comments. Login now