@@ -1,752 +1,768 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Base class to create plot operations |
|
5 | """Base class to create plot operations | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import sys |
|
10 | import sys | |
11 | import zmq |
|
11 | import zmq | |
12 | import time |
|
12 | import time | |
13 | import numpy |
|
13 | import numpy | |
14 | import datetime |
|
14 | import datetime | |
15 | from collections import deque |
|
15 | from collections import deque | |
16 | from functools import wraps |
|
16 | from functools import wraps | |
17 | from threading import Thread |
|
17 | from threading import Thread | |
18 | import matplotlib,re |
|
18 | import matplotlib,re | |
19 |
|
19 | |||
20 | if 'BACKEND' in os.environ: |
|
20 | if 'BACKEND' in os.environ: | |
21 | matplotlib.use(os.environ['BACKEND']) |
|
21 | matplotlib.use(os.environ['BACKEND']) | |
22 | elif 'linux' in sys.platform: |
|
22 | elif 'linux' in sys.platform: | |
23 | matplotlib.use("TkAgg") |
|
23 | matplotlib.use("TkAgg") | |
24 | elif 'darwin' in sys.platform: |
|
24 | elif 'darwin' in sys.platform: | |
25 | matplotlib.use('MacOSX') |
|
25 | matplotlib.use('MacOSX') | |
26 | else: |
|
26 | else: | |
27 | from schainpy.utils import log |
|
27 | from schainpy.utils import log | |
28 | log.warning('Using default Backend="Agg"', 'INFO') |
|
28 | log.warning('Using default Backend="Agg"', 'INFO') | |
29 | matplotlib.use('Agg') |
|
29 | matplotlib.use('Agg') | |
30 |
|
30 | |||
31 | import matplotlib.pyplot as plt |
|
31 | import matplotlib.pyplot as plt | |
32 | from matplotlib.patches import Polygon |
|
32 | from matplotlib.patches import Polygon | |
33 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
33 | from mpl_toolkits.axes_grid1 import make_axes_locatable | |
34 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator |
|
34 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator | |
35 |
|
35 | |||
|
36 | import cartopy.crs as ccrs | |||
|
37 | ||||
36 | from .plotting_codes import register_cmap |
|
38 | from .plotting_codes import register_cmap | |
37 |
|
39 | |||
38 | from schainpy.model.data.jrodata import PlotterData |
|
40 | from schainpy.model.data.jrodata import PlotterData | |
39 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
41 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
40 | from schainpy.utils import log |
|
42 | from schainpy.utils import log | |
41 |
|
43 | |||
42 |
|
44 | |||
43 | EARTH_RADIUS = 6.3710e3 |
|
45 | EARTH_RADIUS = 6.3710e3 | |
44 |
|
46 | |||
45 | register_cmap() |
|
47 | register_cmap() | |
46 |
|
48 | |||
47 | def ll2xy(lat1, lon1, lat2, lon2): |
|
49 | def ll2xy(lat1, lon1, lat2, lon2): | |
48 |
|
50 | |||
49 | p = 0.017453292519943295 |
|
51 | p = 0.017453292519943295 | |
50 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
52 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
51 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
53 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
52 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
54 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
53 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
55 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
54 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
56 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
55 | theta = -theta + numpy.pi/2 |
|
57 | theta = -theta + numpy.pi/2 | |
56 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
58 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
57 |
|
59 | |||
58 |
|
60 | |||
59 | def km2deg(km): |
|
61 | def km2deg(km): | |
60 | ''' |
|
62 | ''' | |
61 | Convert distance in km to degrees |
|
63 | Convert distance in km to degrees | |
62 | ''' |
|
64 | ''' | |
63 |
|
65 | |||
64 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
66 | return numpy.rad2deg(km/EARTH_RADIUS) | |
65 |
|
67 | |||
66 |
|
68 | |||
67 | def figpause(interval): |
|
69 | def figpause(interval): | |
68 | backend = plt.rcParams['backend'] |
|
70 | backend = plt.rcParams['backend'] | |
69 | if backend in matplotlib.rcsetup.interactive_bk: |
|
71 | if backend in matplotlib.rcsetup.interactive_bk: | |
70 | figManager = matplotlib._pylab_helpers.Gcf.get_active() |
|
72 | figManager = matplotlib._pylab_helpers.Gcf.get_active() | |
71 | if figManager is not None: |
|
73 | if figManager is not None: | |
72 | canvas = figManager.canvas |
|
74 | canvas = figManager.canvas | |
73 | if canvas.figure.stale: |
|
75 | if canvas.figure.stale: | |
74 | canvas.draw() |
|
76 | canvas.draw() | |
75 | try: |
|
77 | try: | |
76 | canvas.start_event_loop(interval) |
|
78 | canvas.start_event_loop(interval) | |
77 | except: |
|
79 | except: | |
78 | pass |
|
80 | pass | |
79 | return |
|
81 | return | |
80 |
|
82 | |||
81 | def popup(message): |
|
83 | def popup(message): | |
82 | ''' |
|
84 | ''' | |
83 | ''' |
|
85 | ''' | |
84 |
|
86 | |||
85 | fig = plt.figure(figsize=(12, 8), facecolor='r') |
|
87 | fig = plt.figure(figsize=(12, 8), facecolor='r') | |
86 | text = '\n'.join([s.strip() for s in message.split(':')]) |
|
88 | text = '\n'.join([s.strip() for s in message.split(':')]) | |
87 | fig.text(0.01, 0.5, text, ha='left', va='center', |
|
89 | fig.text(0.01, 0.5, text, ha='left', va='center', | |
88 | size='20', weight='heavy', color='w') |
|
90 | size='20', weight='heavy', color='w') | |
89 | fig.show() |
|
91 | fig.show() | |
90 | figpause(1000) |
|
92 | figpause(1000) | |
91 |
|
93 | |||
92 |
|
94 | |||
93 | class Throttle(object): |
|
95 | class Throttle(object): | |
94 | ''' |
|
96 | ''' | |
95 | Decorator that prevents a function from being called more than once every |
|
97 | Decorator that prevents a function from being called more than once every | |
96 | time period. |
|
98 | time period. | |
97 | To create a function that cannot be called more than once a minute, but |
|
99 | To create a function that cannot be called more than once a minute, but | |
98 | will sleep until it can be called: |
|
100 | will sleep until it can be called: | |
99 | @Throttle(minutes=1) |
|
101 | @Throttle(minutes=1) | |
100 | def foo(): |
|
102 | def foo(): | |
101 | pass |
|
103 | pass | |
102 |
|
104 | |||
103 | for i in range(10): |
|
105 | for i in range(10): | |
104 | foo() |
|
106 | foo() | |
105 | print "This function has run %s times." % i |
|
107 | print "This function has run %s times." % i | |
106 | ''' |
|
108 | ''' | |
107 |
|
109 | |||
108 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
110 | def __init__(self, seconds=0, minutes=0, hours=0): | |
109 | self.throttle_period = datetime.timedelta( |
|
111 | self.throttle_period = datetime.timedelta( | |
110 | seconds=seconds, minutes=minutes, hours=hours |
|
112 | seconds=seconds, minutes=minutes, hours=hours | |
111 | ) |
|
113 | ) | |
112 |
|
114 | |||
113 | self.time_of_last_call = datetime.datetime.min |
|
115 | self.time_of_last_call = datetime.datetime.min | |
114 |
|
116 | |||
115 | def __call__(self, fn): |
|
117 | def __call__(self, fn): | |
116 | @wraps(fn) |
|
118 | @wraps(fn) | |
117 | def wrapper(*args, **kwargs): |
|
119 | def wrapper(*args, **kwargs): | |
118 | coerce = kwargs.pop('coerce', None) |
|
120 | coerce = kwargs.pop('coerce', None) | |
119 | if coerce: |
|
121 | if coerce: | |
120 | self.time_of_last_call = datetime.datetime.now() |
|
122 | self.time_of_last_call = datetime.datetime.now() | |
121 | return fn(*args, **kwargs) |
|
123 | return fn(*args, **kwargs) | |
122 | else: |
|
124 | else: | |
123 | now = datetime.datetime.now() |
|
125 | now = datetime.datetime.now() | |
124 | time_since_last_call = now - self.time_of_last_call |
|
126 | time_since_last_call = now - self.time_of_last_call | |
125 | time_left = self.throttle_period - time_since_last_call |
|
127 | time_left = self.throttle_period - time_since_last_call | |
126 |
|
128 | |||
127 | if time_left > datetime.timedelta(seconds=0): |
|
129 | if time_left > datetime.timedelta(seconds=0): | |
128 | return |
|
130 | return | |
129 |
|
131 | |||
130 | self.time_of_last_call = datetime.datetime.now() |
|
132 | self.time_of_last_call = datetime.datetime.now() | |
131 | return fn(*args, **kwargs) |
|
133 | return fn(*args, **kwargs) | |
132 |
|
134 | |||
133 | return wrapper |
|
135 | return wrapper | |
134 |
|
136 | |||
135 | def apply_throttle(value): |
|
137 | def apply_throttle(value): | |
136 |
|
138 | |||
137 | @Throttle(seconds=value) |
|
139 | @Throttle(seconds=value) | |
138 | def fnThrottled(fn): |
|
140 | def fnThrottled(fn): | |
139 | fn() |
|
141 | fn() | |
140 |
|
142 | |||
141 | return fnThrottled |
|
143 | return fnThrottled | |
142 |
|
144 | |||
143 |
|
145 | |||
144 | @MPDecorator |
|
146 | @MPDecorator | |
145 | class Plot(Operation): |
|
147 | class Plot(Operation): | |
146 | """Base class for Schain plotting operations |
|
148 | """Base class for Schain plotting operations | |
147 |
|
149 | |||
148 | This class should never be use directtly you must subclass a new operation, |
|
150 | This class should never be use directtly you must subclass a new operation, | |
149 | children classes must be defined as follow: |
|
151 | children classes must be defined as follow: | |
150 |
|
152 | |||
151 | ExamplePlot(Plot): |
|
153 | ExamplePlot(Plot): | |
152 |
|
154 | |||
153 | CODE = 'code' |
|
155 | CODE = 'code' | |
154 | colormap = 'jet' |
|
156 | colormap = 'jet' | |
155 | plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer') |
|
157 | plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer') | |
156 |
|
158 | |||
157 | def setup(self): |
|
159 | def setup(self): | |
158 | pass |
|
160 | pass | |
159 |
|
161 | |||
160 | def plot(self): |
|
162 | def plot(self): | |
161 | pass |
|
163 | pass | |
162 |
|
164 | |||
163 | """ |
|
165 | """ | |
164 |
|
166 | |||
165 | CODE = 'Figure' |
|
167 | CODE = 'Figure' | |
166 | colormap = 'jet' |
|
168 | colormap = 'jet' | |
167 | bgcolor = 'white' |
|
169 | bgcolor = 'white' | |
168 | buffering = True |
|
170 | buffering = True | |
169 | __missing = 1E30 |
|
171 | __missing = 1E30 | |
170 | projection = None |
|
172 | projection = None | |
171 |
|
173 | |||
172 | __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title', |
|
174 | __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title', | |
173 | 'showprofile'] |
|
175 | 'showprofile'] | |
174 |
|
176 | |||
175 | def __init__(self): |
|
177 | def __init__(self): | |
176 |
|
178 | |||
177 | Operation.__init__(self) |
|
179 | Operation.__init__(self) | |
178 | self.isConfig = False |
|
180 | self.isConfig = False | |
179 | self.isPlotConfig = False |
|
181 | self.isPlotConfig = False | |
180 | self.save_time = 0 |
|
182 | self.save_time = 0 | |
181 | self.sender_time = 0 |
|
183 | self.sender_time = 0 | |
182 | self.data = None |
|
184 | self.data = None | |
183 | self.firsttime = True |
|
185 | self.firsttime = True | |
184 | self.sender_queue = deque(maxlen=10) |
|
186 | self.sender_queue = deque(maxlen=10) | |
185 | self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2} |
|
187 | self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2} | |
186 |
|
188 | |||
187 | def __fmtTime(self, x, pos): |
|
189 | def __fmtTime(self, x, pos): | |
188 | ''' |
|
190 | ''' | |
189 | ''' |
|
191 | ''' | |
190 |
|
192 | |||
191 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) |
|
193 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) | |
192 |
|
194 | |||
193 | def __setup(self, **kwargs): |
|
195 | def __setup(self, **kwargs): | |
194 | ''' |
|
196 | ''' | |
195 | Initialize variables |
|
197 | Initialize variables | |
196 | ''' |
|
198 | ''' | |
197 |
|
199 | |||
198 | self.figures = [] |
|
200 | self.figures = [] | |
199 | self.axes = [] |
|
201 | self.axes = [] | |
200 | self.cb_axes = [] |
|
202 | self.cb_axes = [] | |
201 | self.localtime = kwargs.pop('localtime', True) |
|
203 | self.localtime = kwargs.pop('localtime', True) | |
202 | self.show = kwargs.get('show', True) |
|
204 | self.show = kwargs.get('show', True) | |
203 | self.save = kwargs.get('save', False) |
|
205 | self.save = kwargs.get('save', False) | |
204 | self.save_period = kwargs.get('save_period', 0) |
|
206 | self.save_period = kwargs.get('save_period', 0) | |
205 | self.colormap = kwargs.get('colormap', self.colormap) |
|
207 | self.colormap = kwargs.get('colormap', self.colormap) | |
206 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
208 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') | |
207 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
209 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') | |
208 | self.colormaps = kwargs.get('colormaps', None) |
|
210 | self.colormaps = kwargs.get('colormaps', None) | |
209 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) |
|
211 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) | |
210 | self.showprofile = kwargs.get('showprofile', False) |
|
212 | self.showprofile = kwargs.get('showprofile', False) | |
211 | self.title = kwargs.get('wintitle', self.CODE.upper()) |
|
213 | self.title = kwargs.get('wintitle', self.CODE.upper()) | |
212 | self.cb_label = kwargs.get('cb_label', None) |
|
214 | self.cb_label = kwargs.get('cb_label', None) | |
213 | self.cb_labels = kwargs.get('cb_labels', None) |
|
215 | self.cb_labels = kwargs.get('cb_labels', None) | |
214 | self.labels = kwargs.get('labels', None) |
|
216 | self.labels = kwargs.get('labels', None) | |
215 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
217 | self.xaxis = kwargs.get('xaxis', 'frequency') | |
216 | self.zmin = kwargs.get('zmin', None) |
|
218 | self.zmin = kwargs.get('zmin', None) | |
217 | self.zmax = kwargs.get('zmax', None) |
|
219 | self.zmax = kwargs.get('zmax', None) | |
218 | self.zlimits = kwargs.get('zlimits', None) |
|
220 | self.zlimits = kwargs.get('zlimits', None) | |
219 | self.xmin = kwargs.get('xmin', None) |
|
221 | self.xmin = kwargs.get('xmin', None) | |
220 | self.xmax = kwargs.get('xmax', None) |
|
222 | self.xmax = kwargs.get('xmax', None) | |
221 |
self. |
|
223 | self.yrange = kwargs.get('yrange', None) | |
|
224 | self.xrange = kwargs.get('xrange', None) | |||
222 | self.xscale = kwargs.get('xscale', None) |
|
225 | self.xscale = kwargs.get('xscale', None) | |
223 | self.ymin = kwargs.get('ymin', None) |
|
226 | self.ymin = kwargs.get('ymin', None) | |
224 | self.ymax = kwargs.get('ymax', None) |
|
227 | self.ymax = kwargs.get('ymax', None) | |
225 | self.yscale = kwargs.get('yscale', None) |
|
228 | self.yscale = kwargs.get('yscale', None) | |
226 | self.xlabel = kwargs.get('xlabel', None) |
|
229 | self.xlabel = kwargs.get('xlabel', None) | |
227 | self.attr_time = kwargs.get('attr_time', 'utctime') |
|
230 | self.attr_time = kwargs.get('attr_time', 'utctime') | |
228 | self.attr_data = kwargs.get('attr_data', 'data_param') |
|
231 | self.attr_data = kwargs.get('attr_data', 'data_param') | |
229 | self.decimation = kwargs.get('decimation', None) |
|
232 | self.decimation = kwargs.get('decimation', None) | |
230 | self.oneFigure = kwargs.get('oneFigure', True) |
|
233 | self.oneFigure = kwargs.get('oneFigure', True) | |
231 | self.width = kwargs.get('width', None) |
|
234 | self.width = kwargs.get('width', None) | |
232 | self.height = kwargs.get('height', None) |
|
235 | self.height = kwargs.get('height', None) | |
233 | self.colorbar = kwargs.get('colorbar', True) |
|
236 | self.colorbar = kwargs.get('colorbar', True) | |
234 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) |
|
237 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) | |
235 | self.channels = kwargs.get('channels', None) |
|
238 | self.channels = kwargs.get('channels', None) | |
236 | self.titles = kwargs.get('titles', []) |
|
239 | self.titles = kwargs.get('titles', []) | |
237 | self.polar = False |
|
240 | self.polar = False | |
238 | self.type = kwargs.get('type', 'iq') |
|
241 | self.type = kwargs.get('type', 'iq') | |
239 | self.grid = kwargs.get('grid', False) |
|
242 | self.grid = kwargs.get('grid', False) | |
240 | self.pause = kwargs.get('pause', False) |
|
243 | self.pause = kwargs.get('pause', False) | |
241 | self.save_code = kwargs.get('save_code', self.CODE) |
|
244 | self.save_code = kwargs.get('save_code', self.CODE) | |
242 | self.throttle = kwargs.get('throttle', 0) |
|
245 | self.throttle = kwargs.get('throttle', 0) | |
243 | self.exp_code = kwargs.get('exp_code', None) |
|
246 | self.exp_code = kwargs.get('exp_code', None) | |
244 | self.server = kwargs.get('server', False) |
|
247 | self.server = kwargs.get('server', False) | |
245 | self.sender_period = kwargs.get('sender_period', 60) |
|
248 | self.sender_period = kwargs.get('sender_period', 60) | |
246 | self.tag = kwargs.get('tag', '') |
|
249 | self.tag = kwargs.get('tag', '') | |
247 | self.height_index = kwargs.get('height_index', None) |
|
250 | self.height_index = kwargs.get('height_index', None) | |
248 | self.__throttle_plot = apply_throttle(self.throttle) |
|
251 | self.__throttle_plot = apply_throttle(self.throttle) | |
249 | code = self.attr_data if self.attr_data else self.CODE |
|
252 | code = self.attr_data if self.attr_data else self.CODE | |
250 | self.data = PlotterData(self.CODE, self.exp_code, self.localtime) |
|
253 | self.data = PlotterData(self.CODE, self.exp_code, self.localtime) | |
251 | self.ang_min = kwargs.get('ang_min', None) |
|
254 | self.ang_min = kwargs.get('ang_min', None) | |
252 | self.ang_max = kwargs.get('ang_max', None) |
|
255 | self.ang_max = kwargs.get('ang_max', None) | |
253 | self.mode = kwargs.get('mode', None) |
|
256 | self.mode = kwargs.get('mode', None) | |
254 | self.mask = kwargs.get('mask', False) |
|
257 | self.mask = kwargs.get('mask', False) | |
255 | self.shapes = kwargs.get('shapes', './') |
|
258 | self.shapes = kwargs.get('shapes', './') | |
|
259 | self.map = kwargs.get('map', False) | |||
|
260 | self.latitude = kwargs.get('latitude', -12) | |||
|
261 | self.longitude = kwargs.get('longitude', -74) | |||
256 |
|
262 | |||
257 | if self.server: |
|
263 | if self.server: | |
258 | if not self.server.startswith('tcp://'): |
|
264 | if not self.server.startswith('tcp://'): | |
259 | self.server = 'tcp://{}'.format(self.server) |
|
265 | self.server = 'tcp://{}'.format(self.server) | |
260 | log.success( |
|
266 | log.success( | |
261 | 'Sending to server: {}'.format(self.server), |
|
267 | 'Sending to server: {}'.format(self.server), | |
262 | self.name |
|
268 | self.name | |
263 | ) |
|
269 | ) | |
264 |
|
270 | |||
265 | if isinstance(self.attr_data, str): |
|
271 | if isinstance(self.attr_data, str): | |
266 | self.attr_data = [self.attr_data] |
|
272 | self.attr_data = [self.attr_data] | |
267 |
|
273 | |||
|
274 | ||||
268 | def __setup_plot(self): |
|
275 | def __setup_plot(self): | |
269 | ''' |
|
276 | ''' | |
270 | Common setup for all figures, here figures and axes are created |
|
277 | Common setup for all figures, here figures and axes are created | |
271 | ''' |
|
278 | ''' | |
272 |
|
279 | |||
273 | self.setup() |
|
280 | self.setup() | |
274 |
|
281 | |||
275 | self.time_label = 'LT' if self.localtime else 'UTC' |
|
282 | self.time_label = 'LT' if self.localtime else 'UTC' | |
276 |
|
283 | |||
277 | if self.width is None: |
|
284 | if self.width is None: | |
278 | self.width = 8 |
|
285 | self.width = 8 | |
279 |
|
286 | |||
280 | self.figures = {'PPI':[], 'RHI':[]} |
|
287 | self.figures = {'PPI':[], 'RHI':[]} | |
281 | self.axes = {'PPI':[], 'RHI':[]} |
|
288 | self.axes = {'PPI':[], 'RHI':[]} | |
282 | self.cb_axes = [] |
|
289 | self.cb_axes = [] | |
283 | self.pf_axes = [] |
|
290 | self.pf_axes = [] | |
284 | self.cmaps = [] |
|
291 | self.cmaps = [] | |
285 |
|
292 | |||
286 | size = '15%' if self.ncols == 1 else '30%' |
|
293 | size = '15%' if self.ncols == 1 else '30%' | |
287 | pad = '4%' if self.ncols == 1 else '8%' |
|
294 | pad = '4%' if self.ncols == 1 else '8%' | |
288 |
|
295 | |||
289 | if self.oneFigure: |
|
296 | if self.oneFigure: | |
290 | if self.height is None: |
|
297 | if self.height is None: | |
291 | self.height = 1.4 * self.nrows + 1 |
|
298 | self.height = 1.4 * self.nrows + 1 | |
292 | fig_p = plt.figure(figsize=(self.width, self.height), |
|
299 | fig_p = plt.figure(figsize=(self.width, self.height), | |
293 | edgecolor='k', |
|
300 | edgecolor='k', | |
294 | facecolor='w') |
|
301 | facecolor='w') | |
295 | fig_r = plt.figure(figsize=(self.width, 4), |
|
302 | fig_r = plt.figure(figsize=(self.width, 4), | |
296 | edgecolor='k', |
|
303 | edgecolor='k', | |
297 | facecolor='w') |
|
304 | facecolor='w') | |
298 | self.figures['PPI'].append(fig_p) |
|
305 | self.figures['PPI'].append(fig_p) | |
299 | self.figures['RHI'].append(fig_r) |
|
306 | self.figures['RHI'].append(fig_r) | |
300 |
for n in range(self.nplots): |
|
307 | for n in range(self.nplots): | |
301 | ax_p = fig_p.add_subplot(self.nrows, self.ncols, n+1, polar=self.polar, projection=self.projection) |
|
308 | if self.map: | |
|
309 | ax_p = fig_p.add_subplot(self.nrows, self.ncols, n+1, polar=self.polar, projection=ccrs.PlateCarree()) | |||
|
310 | else: | |||
|
311 | ax_p = fig_p.add_subplot(self.nrows, self.ncols, n+1, polar=self.polar) | |||
|
312 | print('sin projection') | |||
302 | ax_r = fig_r.add_subplot(self.nrows, self.ncols, n+1, polar=self.polar) |
|
313 | ax_r = fig_r.add_subplot(self.nrows, self.ncols, n+1, polar=self.polar) | |
303 | ax_p.tick_params(labelsize=8) |
|
314 | ax_p.tick_params(labelsize=8) | |
304 | ax_p.firsttime = True |
|
315 | ax_p.firsttime = True | |
305 | ax_p.index = 0 |
|
316 | ax_p.index = 0 | |
306 | ax_p.press = None |
|
317 | ax_p.press = None | |
307 | ax_r.tick_params(labelsize=8) |
|
318 | ax_r.tick_params(labelsize=8) | |
308 | ax_r.firsttime = True |
|
319 | ax_r.firsttime = True | |
309 | ax_r.index = 0 |
|
320 | ax_r.index = 0 | |
310 | ax_r.press = None |
|
321 | ax_r.press = None | |
311 |
|
322 | |||
312 | self.axes['PPI'].append(ax_p) |
|
323 | self.axes['PPI'].append(ax_p) | |
313 | self.axes['RHI'].append(ax_r) |
|
324 | self.axes['RHI'].append(ax_r) | |
314 |
|
325 | |||
315 | if self.showprofile: |
|
326 | if self.showprofile: | |
316 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
327 | cax = self.__add_axes(ax, size=size, pad=pad) | |
317 | cax.tick_params(labelsize=8) |
|
328 | cax.tick_params(labelsize=8) | |
318 | self.pf_axes.append(cax) |
|
329 | self.pf_axes.append(cax) | |
319 | else: |
|
330 | else: | |
320 | if self.height is None: |
|
331 | if self.height is None: | |
321 | self.height = 3 |
|
332 | self.height = 3 | |
322 | for n in range(self.nplots): |
|
333 | for n in range(self.nplots): | |
323 | fig = plt.figure(figsize=(self.width, self.height), |
|
334 | fig = plt.figure(figsize=(self.width, self.height), | |
324 | edgecolor='k', |
|
335 | edgecolor='k', | |
325 | facecolor='w') |
|
336 | facecolor='w') | |
326 | ax_p = fig.add_subplot(1, 1, 1, polar=self.polar, projection=self.projection) |
|
337 | if self.map: | |
|
338 | ax_p = fig.add_subplot(1, 1, 1, polar=self.polar, projection=ccrs.PlateCarree()) | |||
|
339 | else: | |||
|
340 | ax_p = fig.add_subplot(1, 1, 1, polar=self.polar) | |||
|
341 | print('sin projection') | |||
|
342 | ||||
327 | ax_r = fig.add_subplot(1, 1, 1, polar=self.polar) |
|
343 | ax_r = fig.add_subplot(1, 1, 1, polar=self.polar) | |
328 | ax_p.tick_params(labelsize=8) |
|
344 | ax_p.tick_params(labelsize=8) | |
329 | ax_p.firsttime = True |
|
345 | ax_p.firsttime = True | |
330 | ax_p.index = 0 |
|
346 | ax_p.index = 0 | |
331 | ax_p.press = None |
|
347 | ax_p.press = None | |
332 | ax_r.tick_params(labelsize=8) |
|
348 | ax_r.tick_params(labelsize=8) | |
333 | ax_r.firsttime = True |
|
349 | ax_r.firsttime = True | |
334 | ax_r.index = 0 |
|
350 | ax_r.index = 0 | |
335 | ax_r.press = None |
|
351 | ax_r.press = None | |
336 | self.figures.append(fig) |
|
352 | self.figures.append(fig) | |
337 | self.axes['PPI'].append(ax_p) |
|
353 | self.axes['PPI'].append(ax_p) | |
338 | self.axes['RHI'].append(ax_r) |
|
354 | self.axes['RHI'].append(ax_r) | |
339 | if self.showprofile: |
|
355 | if self.showprofile: | |
340 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
356 | cax = self.__add_axes(ax, size=size, pad=pad) | |
341 | cax.tick_params(labelsize=8) |
|
357 | cax.tick_params(labelsize=8) | |
342 | self.pf_axes.append(cax) |
|
358 | self.pf_axes.append(cax) | |
343 |
|
359 | |||
344 | # for n in range(self.nrows): |
|
360 | # for n in range(self.nrows): | |
345 | # if self.colormaps is not None: |
|
361 | # if self.colormaps is not None: | |
346 | # cmap = plt.get_cmap(self.colormaps[n]) |
|
362 | # cmap = plt.get_cmap(self.colormaps[n]) | |
347 | # else: |
|
363 | # else: | |
348 | # cmap = plt.get_cmap(self.colormap) |
|
364 | # cmap = plt.get_cmap(self.colormap) | |
349 | # cmap.set_bad(self.bgcolor, 1.) |
|
365 | # cmap.set_bad(self.bgcolor, 1.) | |
350 | # self.cmaps.append(cmap) |
|
366 | # self.cmaps.append(cmap) | |
351 |
|
367 | |||
352 | def __add_axes(self, ax, size='30%', pad='8%'): |
|
368 | def __add_axes(self, ax, size='30%', pad='8%'): | |
353 | ''' |
|
369 | ''' | |
354 | Add new axes to the given figure |
|
370 | Add new axes to the given figure | |
355 | ''' |
|
371 | ''' | |
356 | divider = make_axes_locatable(ax) |
|
372 | divider = make_axes_locatable(ax) | |
357 | nax = divider.new_horizontal(size=size, pad=pad) |
|
373 | nax = divider.new_horizontal(size=size, pad=pad) | |
358 | ax.figure.add_axes(nax) |
|
374 | ax.figure.add_axes(nax) | |
359 | return nax |
|
375 | return nax | |
360 |
|
376 | |||
361 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
377 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): | |
362 | ''' |
|
378 | ''' | |
363 | Create a masked array for missing data |
|
379 | Create a masked array for missing data | |
364 | ''' |
|
380 | ''' | |
365 | if x_buffer.shape[0] < 2: |
|
381 | if x_buffer.shape[0] < 2: | |
366 | return x_buffer, y_buffer, z_buffer |
|
382 | return x_buffer, y_buffer, z_buffer | |
367 |
|
383 | |||
368 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
384 | deltas = x_buffer[1:] - x_buffer[0:-1] | |
369 | x_median = numpy.median(deltas) |
|
385 | x_median = numpy.median(deltas) | |
370 |
|
386 | |||
371 | index = numpy.where(deltas > 5 * x_median) |
|
387 | index = numpy.where(deltas > 5 * x_median) | |
372 |
|
388 | |||
373 | if len(index[0]) != 0: |
|
389 | if len(index[0]) != 0: | |
374 | z_buffer[::, index[0], ::] = self.__missing |
|
390 | z_buffer[::, index[0], ::] = self.__missing | |
375 | z_buffer = numpy.ma.masked_inside(z_buffer, |
|
391 | z_buffer = numpy.ma.masked_inside(z_buffer, | |
376 | 0.99 * self.__missing, |
|
392 | 0.99 * self.__missing, | |
377 | 1.01 * self.__missing) |
|
393 | 1.01 * self.__missing) | |
378 |
|
394 | |||
379 | return x_buffer, y_buffer, z_buffer |
|
395 | return x_buffer, y_buffer, z_buffer | |
380 |
|
396 | |||
381 | def decimate(self): |
|
397 | def decimate(self): | |
382 |
|
398 | |||
383 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
399 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 | |
384 | dy = int(len(self.y) / self.decimation) + 1 |
|
400 | dy = int(len(self.y) / self.decimation) + 1 | |
385 |
|
401 | |||
386 | # x = self.x[::dx] |
|
402 | # x = self.x[::dx] | |
387 | x = self.x |
|
403 | x = self.x | |
388 | y = self.y[::dy] |
|
404 | y = self.y[::dy] | |
389 | z = self.z[::, ::, ::dy] |
|
405 | z = self.z[::, ::, ::dy] | |
390 |
|
406 | |||
391 | return x, y, z |
|
407 | return x, y, z | |
392 |
|
408 | |||
393 | def format(self): |
|
409 | def format(self): | |
394 | ''' |
|
410 | ''' | |
395 | Set min and max values, labels, ticks and titles |
|
411 | Set min and max values, labels, ticks and titles | |
396 | ''' |
|
412 | ''' | |
397 |
|
413 | |||
398 | for n, ax in enumerate(self.axes[self.mode]): |
|
414 | for n, ax in enumerate(self.axes[self.mode]): | |
399 | if ax.firsttime: |
|
415 | if ax.firsttime: | |
400 | if self.xaxis != 'time': |
|
416 | if self.xaxis != 'time': | |
401 | xmin = self.xmin |
|
417 | xmin = self.xmin | |
402 | xmax = self.xmax |
|
418 | xmax = self.xmax | |
403 | else: |
|
419 | else: | |
404 | xmin = self.tmin |
|
420 | xmin = self.tmin | |
405 | xmax = self.tmin + self.xrange*60*60 |
|
421 | xmax = self.tmin + self.xrange*60*60 | |
406 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) |
|
422 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) | |
407 | ax.xaxis.set_major_locator(LinearLocator(9)) |
|
423 | ax.xaxis.set_major_locator(LinearLocator(9)) | |
408 | ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)]) |
|
424 | ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)]) | |
409 | ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)]) |
|
425 | ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)]) | |
410 |
|
426 | |||
411 | ax.set_facecolor(self.bgcolor) |
|
427 | ax.set_facecolor(self.bgcolor) | |
412 |
|
428 | |||
413 | if self.xscale: |
|
429 | if self.xscale: | |
414 | ax.xaxis.set_major_formatter(FuncFormatter( |
|
430 | ax.xaxis.set_major_formatter(FuncFormatter( | |
415 | lambda x, pos: '{0:g}'.format(x*self.xscale))) |
|
431 | lambda x, pos: '{0:g}'.format(x*self.xscale))) | |
416 | if self.yscale: |
|
432 | if self.yscale: | |
417 | ax.yaxis.set_major_formatter(FuncFormatter( |
|
433 | ax.yaxis.set_major_formatter(FuncFormatter( | |
418 | lambda x, pos: '{0:g}'.format(x*self.yscale))) |
|
434 | lambda x, pos: '{0:g}'.format(x*self.yscale))) | |
419 | if self.xlabel is not None: |
|
435 | if self.xlabel is not None: | |
420 | ax.set_xlabel(self.xlabel) |
|
436 | ax.set_xlabel(self.xlabel) | |
421 | if self.ylabel is not None: |
|
437 | if self.ylabel is not None: | |
422 | ax.set_ylabel(self.ylabel) |
|
438 | ax.set_ylabel(self.ylabel) | |
423 | if self.showprofile: |
|
439 | if self.showprofile: | |
424 | self.pf_axes[n].set_ylim(ymin, ymax) |
|
440 | self.pf_axes[n].set_ylim(ymin, ymax) | |
425 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) |
|
441 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) | |
426 | self.pf_axes[n].set_xlabel('dB') |
|
442 | self.pf_axes[n].set_xlabel('dB') | |
427 | self.pf_axes[n].grid(b=True, axis='x') |
|
443 | self.pf_axes[n].grid(b=True, axis='x') | |
428 | [tick.set_visible(False) |
|
444 | [tick.set_visible(False) | |
429 | for tick in self.pf_axes[n].get_yticklabels()] |
|
445 | for tick in self.pf_axes[n].get_yticklabels()] | |
430 | if self.colorbar: |
|
446 | if self.colorbar: | |
431 | ax.cbar = plt.colorbar( |
|
447 | ax.cbar = plt.colorbar( | |
432 | ax.plt, ax=ax, fraction=0.05, pad=0.06, aspect=10) |
|
448 | ax.plt, ax=ax, fraction=0.05, pad=0.06, aspect=10) | |
433 | if self.colormap=='sophy_r': |
|
449 | if self.colormap=='sophy_r': | |
434 | ax.cbar.set_ticks([0.2, 0.73, 0.83, 0.93, 0.96, 0.99, 1.02, 1.05]) |
|
450 | ax.cbar.set_ticks([0.2, 0.73, 0.83, 0.93, 0.96, 0.99, 1.02, 1.05]) | |
435 | elif self.colormap=='sophy_d': |
|
451 | elif self.colormap=='sophy_d': | |
436 | ax.cbar.set_ticks([-9, -6, -3, 0, 3, 6, 9, 12]) |
|
452 | ax.cbar.set_ticks([-9, -6, -3, 0, 3, 6, 9, 12]) | |
437 | ax.cbar.ax.tick_params(labelsize=8) |
|
453 | ax.cbar.ax.tick_params(labelsize=8) | |
438 | ax.cbar.ax.press = None |
|
454 | ax.cbar.ax.press = None | |
439 | if self.cb_label: |
|
455 | if self.cb_label: | |
440 | ax.cbar.set_label(self.cb_label, size=8) |
|
456 | ax.cbar.set_label(self.cb_label, size=8) | |
441 | elif self.cb_labels: |
|
457 | elif self.cb_labels: | |
442 | ax.cbar.set_label(self.cb_labels[n], size=8) |
|
458 | ax.cbar.set_label(self.cb_labels[n], size=8) | |
443 | else: |
|
459 | else: | |
444 | ax.cbar = None |
|
460 | ax.cbar = None | |
445 | if self.mode == 'RHI': |
|
461 | #if self.mode == 'RHI': | |
446 |
|
|
462 | ax.set_xlim(xmin, xmax) | |
447 |
|
|
463 | ax.set_ylim(ymin, ymax) | |
|
464 | ||||
448 | ax.firsttime = False |
|
465 | ax.firsttime = False | |
449 | if self.grid: |
|
466 | if self.grid: | |
450 | ax.grid(True) |
|
467 | ax.grid(True) | |
451 | if not self.polar: |
|
468 | if not self.polar: | |
452 | ax.set_title('{} {} {}'.format( |
|
469 | ax.set_title('{} {} {}'.format( | |
453 | self.titles[n], |
|
470 | self.titles[n], | |
454 | self.getDateTime(self.data.max_time).strftime( |
|
471 | self.getDateTime(self.data.max_time).strftime( | |
455 | '%Y-%m-%d %H:%M:%S'), |
|
472 | '%Y-%m-%d %H:%M:%S'), | |
456 | self.time_label), |
|
473 | self.time_label), | |
457 | size=8) |
|
474 | size=8) | |
458 | else: |
|
475 | else: | |
459 | #ax.set_title('{}'.format(self.titles[n]), size=8) |
|
476 | #ax.set_title('{}'.format(self.titles[n]), size=8) | |
460 | ax.set_title('{} {} {}'.format( |
|
477 | ax.set_title('{} {} {}'.format( | |
461 | self.titles[n], |
|
478 | self.titles[n], | |
462 | self.getDateTime(self.data.max_time).strftime( |
|
479 | self.getDateTime(self.data.max_time).strftime( | |
463 | '%Y-%m-%d %H:%M:%S'), |
|
480 | '%Y-%m-%d %H:%M:%S'), | |
464 | self.time_label), |
|
481 | self.time_label), | |
465 | size=8) |
|
482 | size=8) | |
466 | ax.set_ylim(0, self.ymax) |
|
|||
467 | if self.mode == 'PPI': |
|
483 | if self.mode == 'PPI': | |
468 | ax.set_yticks(ax.get_yticks(), labels=ax.get_yticks(), color='white') |
|
484 | ax.set_yticks(ax.get_yticks(), labels=ax.get_yticks(), color='white') | |
469 | ax.yaxis.labelpad = 28 |
|
485 | ax.yaxis.labelpad = 28 | |
470 | elif self.mode == 'RHI': |
|
486 | elif self.mode == 'RHI': | |
471 | ax.xaxis.labelpad = 16 |
|
487 | ax.xaxis.labelpad = 16 | |
472 |
|
488 | |||
473 | if self.firsttime: |
|
489 | if self.firsttime: | |
474 | for fig in self.figures['PPI'] + self.figures['RHI']: |
|
490 | for fig in self.figures['PPI'] + self.figures['RHI']: | |
475 | fig.subplots_adjust(**self.plots_adjust) |
|
491 | fig.subplots_adjust(**self.plots_adjust) | |
476 | self.firsttime = False |
|
492 | self.firsttime = False | |
477 |
|
493 | |||
478 | def clear_figures(self): |
|
494 | def clear_figures(self): | |
479 | ''' |
|
495 | ''' | |
480 | Reset axes for redraw plots |
|
496 | Reset axes for redraw plots | |
481 | ''' |
|
497 | ''' | |
482 |
|
498 | |||
483 | axes = self.pf_axes + self.cb_axes + self.axes[self.mode] |
|
499 | axes = self.pf_axes + self.cb_axes + self.axes[self.mode] | |
484 |
|
500 | |||
485 | for ax in axes: |
|
501 | for ax in axes: | |
486 | ax.clear() |
|
502 | ax.clear() | |
487 | ax.firsttime = True |
|
503 | ax.firsttime = True | |
488 | if hasattr(ax, 'cbar') and ax.cbar: |
|
504 | if hasattr(ax, 'cbar') and ax.cbar: | |
489 | ax.cbar.remove() |
|
505 | ax.cbar.remove() | |
490 |
|
506 | |||
491 | def __plot(self): |
|
507 | def __plot(self): | |
492 | ''' |
|
508 | ''' | |
493 | Main function to plot, format and save figures |
|
509 | Main function to plot, format and save figures | |
494 | ''' |
|
510 | ''' | |
495 |
|
511 | |||
496 | self.plot() |
|
512 | self.plot() | |
497 | self.format() |
|
513 | self.format() | |
498 | figures = self.figures[self.mode] |
|
514 | figures = self.figures[self.mode] | |
499 | for n, fig in enumerate(figures): |
|
515 | for n, fig in enumerate(figures): | |
500 | if self.nrows == 0 or self.nplots == 0: |
|
516 | if self.nrows == 0 or self.nplots == 0: | |
501 | log.warning('No data', self.name) |
|
517 | log.warning('No data', self.name) | |
502 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') |
|
518 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') | |
503 | fig.canvas.manager.set_window_title(self.CODE) |
|
519 | fig.canvas.manager.set_window_title(self.CODE) | |
504 | continue |
|
520 | continue | |
505 |
|
521 | |||
506 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, |
|
522 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, | |
507 | self.getDateTime(self.data.max_time).strftime('%Y/%m/%d'))) |
|
523 | self.getDateTime(self.data.max_time).strftime('%Y/%m/%d'))) | |
508 | fig.canvas.draw() |
|
524 | fig.canvas.draw() | |
509 | if self.show: |
|
525 | if self.show: | |
510 | fig.show() |
|
526 | fig.show() | |
511 | figpause(0.01) |
|
527 | figpause(0.01) | |
512 |
|
528 | |||
513 | if self.save: |
|
529 | if self.save: | |
514 | self.save_figure(n) |
|
530 | self.save_figure(n) | |
515 |
|
531 | |||
516 | if self.server: |
|
532 | if self.server: | |
517 | if self.mode and self.mode == 'RHI': |
|
533 | if self.mode and self.mode == 'RHI': | |
518 | return |
|
534 | return | |
519 | self.send_to_server() |
|
535 | self.send_to_server() | |
520 |
|
536 | |||
521 | def __update(self, dataOut, timestamp): |
|
537 | def __update(self, dataOut, timestamp): | |
522 | ''' |
|
538 | ''' | |
523 | ''' |
|
539 | ''' | |
524 |
|
540 | |||
525 | metadata = { |
|
541 | metadata = { | |
526 | 'yrange': dataOut.heightList, |
|
542 | 'yrange': dataOut.heightList, | |
527 | 'interval': dataOut.timeInterval, |
|
543 | 'interval': dataOut.timeInterval, | |
528 | 'channels': dataOut.channelList |
|
544 | 'channels': dataOut.channelList | |
529 | } |
|
545 | } | |
530 |
|
546 | |||
531 | data, meta = self.update(dataOut) |
|
547 | data, meta = self.update(dataOut) | |
532 | metadata.update(meta) |
|
548 | metadata.update(meta) | |
533 | self.data.update(data, timestamp, metadata) |
|
549 | self.data.update(data, timestamp, metadata) | |
534 |
|
550 | |||
535 | def save_figure(self, n): |
|
551 | def save_figure(self, n): | |
536 | ''' |
|
552 | ''' | |
537 | ''' |
|
553 | ''' | |
538 | if self.mode is not None: |
|
554 | if self.mode is not None: | |
539 | ang = 'AZ' if self.mode == 'RHI' else 'EL' |
|
555 | ang = 'AZ' if self.mode == 'RHI' else 'EL' | |
540 | folder = '_{}_{}_{}'.format(self.mode, ang, self.mode_value) |
|
556 | folder = '_{}_{}_{}'.format(self.mode, ang, self.mode_value) | |
541 | label = '{}{}_{}'.format(ang[0], self.mode_value, self.save_code) |
|
557 | label = '{}{}_{}'.format(ang[0], self.mode_value, self.save_code) | |
542 | else: |
|
558 | else: | |
543 | folder = '' |
|
559 | folder = '' | |
544 | label = '' |
|
560 | label = '' | |
545 |
|
561 | |||
546 | if self.oneFigure: |
|
562 | if self.oneFigure: | |
547 | if (self.data.max_time - self.save_time) <= self.save_period: |
|
563 | if (self.data.max_time - self.save_time) <= self.save_period: | |
548 | return |
|
564 | return | |
549 |
|
565 | |||
550 | self.save_time = self.data.max_time |
|
566 | self.save_time = self.data.max_time | |
551 |
|
567 | |||
552 | fig = self.figures[self.mode][n] |
|
568 | fig = self.figures[self.mode][n] | |
553 |
|
569 | |||
554 | if self.throttle == 0: |
|
570 | if self.throttle == 0: | |
555 | if self.oneFigure: |
|
571 | if self.oneFigure: | |
556 | figname = os.path.join( |
|
572 | figname = os.path.join( | |
557 | self.save, |
|
573 | self.save, | |
558 | self.save_code + folder, |
|
574 | self.save_code + folder, | |
559 | '{}_{}_{}.png'.format( |
|
575 | '{}_{}_{}.png'.format( | |
560 | 'SOPHY', |
|
576 | 'SOPHY', | |
561 | self.getDateTime(self.data.max_time).strftime( |
|
577 | self.getDateTime(self.data.max_time).strftime( | |
562 | '%Y%m%d_%H%M%S' |
|
578 | '%Y%m%d_%H%M%S' | |
563 | ), |
|
579 | ), | |
564 | label |
|
580 | label | |
565 | ) |
|
581 | ) | |
566 | ) |
|
582 | ) | |
567 | else: |
|
583 | else: | |
568 | figname = os.path.join( |
|
584 | figname = os.path.join( | |
569 | self.save, |
|
585 | self.save, | |
570 | self.save_code, |
|
586 | self.save_code, | |
571 | '{}_ch{}_{}.png'.format( |
|
587 | '{}_ch{}_{}.png'.format( | |
572 | self.save_code, n, |
|
588 | self.save_code, n, | |
573 | self.getDateTime(self.data.max_time).strftime( |
|
589 | self.getDateTime(self.data.max_time).strftime( | |
574 | '%Y%m%d_%H%M%S' |
|
590 | '%Y%m%d_%H%M%S' | |
575 | ), |
|
591 | ), | |
576 | ) |
|
592 | ) | |
577 | ) |
|
593 | ) | |
578 | log.log('Saving figure: {}'.format(figname), self.name) |
|
594 | log.log('Saving figure: {}'.format(figname), self.name) | |
579 | if not os.path.isdir(os.path.dirname(figname)): |
|
595 | if not os.path.isdir(os.path.dirname(figname)): | |
580 | os.makedirs(os.path.dirname(figname)) |
|
596 | os.makedirs(os.path.dirname(figname)) | |
581 | fig.savefig(figname) |
|
597 | fig.savefig(figname) | |
582 |
|
598 | |||
583 | figname = os.path.join( |
|
599 | figname = os.path.join( | |
584 | self.save, |
|
600 | self.save, | |
585 | '{}_{}.png'.format( |
|
601 | '{}_{}.png'.format( | |
586 | self.save_code, |
|
602 | self.save_code, | |
587 | self.getDateTime(self.data.min_time).strftime( |
|
603 | self.getDateTime(self.data.min_time).strftime( | |
588 | '%Y%m%d' |
|
604 | '%Y%m%d' | |
589 | ), |
|
605 | ), | |
590 | ) |
|
606 | ) | |
591 | ) |
|
607 | ) | |
592 |
|
608 | |||
593 | log.log('Saving figure: {}'.format(figname), self.name) |
|
609 | log.log('Saving figure: {}'.format(figname), self.name) | |
594 | if not os.path.isdir(os.path.dirname(figname)): |
|
610 | if not os.path.isdir(os.path.dirname(figname)): | |
595 | os.makedirs(os.path.dirname(figname)) |
|
611 | os.makedirs(os.path.dirname(figname)) | |
596 | fig.savefig(figname) |
|
612 | fig.savefig(figname) | |
597 |
|
613 | |||
598 | def send_to_server(self): |
|
614 | def send_to_server(self): | |
599 | ''' |
|
615 | ''' | |
600 | ''' |
|
616 | ''' | |
601 |
|
617 | |||
602 | if self.exp_code == None: |
|
618 | if self.exp_code == None: | |
603 | log.warning('Missing `exp_code` skipping sending to server...') |
|
619 | log.warning('Missing `exp_code` skipping sending to server...') | |
604 |
|
620 | |||
605 | last_time = self.data.max_time |
|
621 | last_time = self.data.max_time | |
606 | interval = last_time - self.sender_time |
|
622 | interval = last_time - self.sender_time | |
607 | if interval < self.sender_period: |
|
623 | if interval < self.sender_period: | |
608 | return |
|
624 | return | |
609 |
|
625 | |||
610 | self.sender_time = last_time |
|
626 | self.sender_time = last_time | |
611 |
|
627 | |||
612 | attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax'] |
|
628 | attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax'] | |
613 | for attr in attrs: |
|
629 | for attr in attrs: | |
614 | value = getattr(self, attr) |
|
630 | value = getattr(self, attr) | |
615 | if value: |
|
631 | if value: | |
616 | if isinstance(value, (numpy.float32, numpy.float64)): |
|
632 | if isinstance(value, (numpy.float32, numpy.float64)): | |
617 | value = round(float(value), 2) |
|
633 | value = round(float(value), 2) | |
618 | self.data.meta[attr] = value |
|
634 | self.data.meta[attr] = value | |
619 | if self.colormap == 'jet' or self.colormap == 'sophy_w': |
|
635 | if self.colormap == 'jet' or self.colormap == 'sophy_w': | |
620 | self.data.meta['colormap'] = 'Jet' |
|
636 | self.data.meta['colormap'] = 'Jet' | |
621 | elif 'sophy_v' in self.colormap: |
|
637 | elif 'sophy_v' in self.colormap: | |
622 | self.data.meta['colormap'] = 'RdBu' |
|
638 | self.data.meta['colormap'] = 'RdBu' | |
623 | else: |
|
639 | else: | |
624 | self.data.meta['colormap'] = 'Viridis' |
|
640 | self.data.meta['colormap'] = 'Viridis' | |
625 | self.data.meta['interval'] = int(interval) |
|
641 | self.data.meta['interval'] = int(interval) | |
626 |
|
642 | |||
627 | self.sender_queue.append(last_time) |
|
643 | self.sender_queue.append(last_time) | |
628 |
|
644 | |||
629 | while True: |
|
645 | while True: | |
630 | try: |
|
646 | try: | |
631 | tm = self.sender_queue.popleft() |
|
647 | tm = self.sender_queue.popleft() | |
632 | except IndexError: |
|
648 | except IndexError: | |
633 | break |
|
649 | break | |
634 | msg = self.data.jsonify(tm, self.save_code, self.plot_type, key='var') |
|
650 | msg = self.data.jsonify(tm, self.save_code, self.plot_type, key='var') | |
635 | self.socket.send_string(msg) |
|
651 | self.socket.send_string(msg) | |
636 | socks = dict(self.poll.poll(2000)) |
|
652 | socks = dict(self.poll.poll(2000)) | |
637 | if socks.get(self.socket) == zmq.POLLIN: |
|
653 | if socks.get(self.socket) == zmq.POLLIN: | |
638 | reply = self.socket.recv_string() |
|
654 | reply = self.socket.recv_string() | |
639 | if reply == 'ok': |
|
655 | if reply == 'ok': | |
640 | log.log("Response from server ok", self.name) |
|
656 | log.log("Response from server ok", self.name) | |
641 | time.sleep(0.1) |
|
657 | time.sleep(0.1) | |
642 | continue |
|
658 | continue | |
643 | else: |
|
659 | else: | |
644 | log.warning( |
|
660 | log.warning( | |
645 | "Malformed reply from server: {}".format(reply), self.name) |
|
661 | "Malformed reply from server: {}".format(reply), self.name) | |
646 | else: |
|
662 | else: | |
647 | log.warning( |
|
663 | log.warning( | |
648 | "No response from server, retrying...", self.name) |
|
664 | "No response from server, retrying...", self.name) | |
649 | self.sender_queue.appendleft(tm) |
|
665 | self.sender_queue.appendleft(tm) | |
650 | self.socket.setsockopt(zmq.LINGER, 0) |
|
666 | self.socket.setsockopt(zmq.LINGER, 0) | |
651 | self.socket.close() |
|
667 | self.socket.close() | |
652 | self.poll.unregister(self.socket) |
|
668 | self.poll.unregister(self.socket) | |
653 | self.socket = self.context.socket(zmq.REQ) |
|
669 | self.socket = self.context.socket(zmq.REQ) | |
654 | self.socket.connect(self.server) |
|
670 | self.socket.connect(self.server) | |
655 | self.poll.register(self.socket, zmq.POLLIN) |
|
671 | self.poll.register(self.socket, zmq.POLLIN) | |
656 | break |
|
672 | break | |
657 |
|
673 | |||
658 | def setup(self): |
|
674 | def setup(self): | |
659 | ''' |
|
675 | ''' | |
660 | This method should be implemented in the child class, the following |
|
676 | This method should be implemented in the child class, the following | |
661 | attributes should be set: |
|
677 | attributes should be set: | |
662 |
|
678 | |||
663 | self.nrows: number of rows |
|
679 | self.nrows: number of rows | |
664 | self.ncols: number of cols |
|
680 | self.ncols: number of cols | |
665 | self.nplots: number of plots (channels or pairs) |
|
681 | self.nplots: number of plots (channels or pairs) | |
666 | self.ylabel: label for Y axes |
|
682 | self.ylabel: label for Y axes | |
667 | self.titles: list of axes title |
|
683 | self.titles: list of axes title | |
668 |
|
684 | |||
669 | ''' |
|
685 | ''' | |
670 | raise NotImplementedError |
|
686 | raise NotImplementedError | |
671 |
|
687 | |||
672 | def plot(self): |
|
688 | def plot(self): | |
673 | ''' |
|
689 | ''' | |
674 | Must be defined in the child class, the actual plotting method |
|
690 | Must be defined in the child class, the actual plotting method | |
675 | ''' |
|
691 | ''' | |
676 | raise NotImplementedError |
|
692 | raise NotImplementedError | |
677 |
|
693 | |||
678 | def update(self, dataOut): |
|
694 | def update(self, dataOut): | |
679 | ''' |
|
695 | ''' | |
680 | Must be defined in the child class, update self.data with new data |
|
696 | Must be defined in the child class, update self.data with new data | |
681 | ''' |
|
697 | ''' | |
682 |
|
698 | |||
683 | data = { |
|
699 | data = { | |
684 | self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE)) |
|
700 | self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE)) | |
685 | } |
|
701 | } | |
686 | meta = {} |
|
702 | meta = {} | |
687 |
|
703 | |||
688 | return data, meta |
|
704 | return data, meta | |
689 |
|
705 | |||
690 | def run(self, dataOut, **kwargs): |
|
706 | def run(self, dataOut, **kwargs): | |
691 | ''' |
|
707 | ''' | |
692 | Main plotting routine |
|
708 | Main plotting routine | |
693 | ''' |
|
709 | ''' | |
694 |
|
710 | |||
695 | if self.isConfig is False: |
|
711 | if self.isConfig is False: | |
696 | self.__setup(**kwargs) |
|
712 | self.__setup(**kwargs) | |
697 |
|
713 | |||
698 | if self.localtime: |
|
714 | if self.localtime: | |
699 | self.getDateTime = datetime.datetime.fromtimestamp |
|
715 | self.getDateTime = datetime.datetime.fromtimestamp | |
700 | else: |
|
716 | else: | |
701 | self.getDateTime = datetime.datetime.utcfromtimestamp |
|
717 | self.getDateTime = datetime.datetime.utcfromtimestamp | |
702 |
|
718 | |||
703 | self.data.setup() |
|
719 | self.data.setup() | |
704 | self.isConfig = True |
|
720 | self.isConfig = True | |
705 | if self.server: |
|
721 | if self.server: | |
706 | self.context = zmq.Context() |
|
722 | self.context = zmq.Context() | |
707 | self.socket = self.context.socket(zmq.REQ) |
|
723 | self.socket = self.context.socket(zmq.REQ) | |
708 | self.socket.connect(self.server) |
|
724 | self.socket.connect(self.server) | |
709 | self.poll = zmq.Poller() |
|
725 | self.poll = zmq.Poller() | |
710 | self.poll.register(self.socket, zmq.POLLIN) |
|
726 | self.poll.register(self.socket, zmq.POLLIN) | |
711 |
|
727 | |||
712 | tm = getattr(dataOut, self.attr_time) |
|
728 | tm = getattr(dataOut, self.attr_time) | |
713 |
|
729 | |||
714 | if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60: |
|
730 | if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60: | |
715 | self.save_time = tm |
|
731 | self.save_time = tm | |
716 | self.__plot() |
|
732 | self.__plot() | |
717 | self.tmin += self.xrange*60*60 |
|
733 | self.tmin += self.xrange*60*60 | |
718 | self.data.setup() |
|
734 | self.data.setup() | |
719 | self.clear_figures() |
|
735 | self.clear_figures() | |
720 |
|
736 | |||
721 | self.__update(dataOut, tm) |
|
737 | self.__update(dataOut, tm) | |
722 |
|
738 | |||
723 | if self.isPlotConfig is False: |
|
739 | if self.isPlotConfig is False: | |
724 | self.__setup_plot() |
|
740 | self.__setup_plot() | |
725 | self.isPlotConfig = True |
|
741 | self.isPlotConfig = True | |
726 | if self.xaxis == 'time': |
|
742 | if self.xaxis == 'time': | |
727 | dt = self.getDateTime(tm) |
|
743 | dt = self.getDateTime(tm) | |
728 | if self.xmin is None: |
|
744 | if self.xmin is None: | |
729 | self.tmin = tm |
|
745 | self.tmin = tm | |
730 | self.xmin = dt.hour |
|
746 | self.xmin = dt.hour | |
731 | minutes = (self.xmin-int(self.xmin)) * 60 |
|
747 | minutes = (self.xmin-int(self.xmin)) * 60 | |
732 | seconds = (minutes - int(minutes)) * 60 |
|
748 | seconds = (minutes - int(minutes)) * 60 | |
733 | self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) - |
|
749 | self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) - | |
734 | datetime.datetime(1970, 1, 1)).total_seconds() |
|
750 | datetime.datetime(1970, 1, 1)).total_seconds() | |
735 | if self.localtime: |
|
751 | if self.localtime: | |
736 | self.tmin += time.timezone |
|
752 | self.tmin += time.timezone | |
737 |
|
753 | |||
738 | if self.xmin is not None and self.xmax is not None: |
|
754 | if self.xmin is not None and self.xmax is not None: | |
739 | self.xrange = self.xmax - self.xmin |
|
755 | self.xrange = self.xmax - self.xmin | |
740 |
|
756 | |||
741 | if self.throttle == 0: |
|
757 | if self.throttle == 0: | |
742 | self.__plot() |
|
758 | self.__plot() | |
743 | else: |
|
759 | else: | |
744 | self.__throttle_plot(self.__plot)#, coerce=coerce) |
|
760 | self.__throttle_plot(self.__plot)#, coerce=coerce) | |
745 |
|
761 | |||
746 | def close(self): |
|
762 | def close(self): | |
747 |
|
763 | |||
748 | if self.data and not self.data.flagNoData: |
|
764 | if self.data and not self.data.flagNoData: | |
749 | self.save_time = 0 |
|
765 | self.save_time = 0 | |
750 | self.__plot() |
|
766 | self.__plot() | |
751 | if self.data and not self.data.flagNoData and self.pause: |
|
767 | if self.data and not self.data.flagNoData and self.pause: | |
752 | figpause(10) |
|
768 | figpause(10) |
@@ -1,736 +1,757 | |||||
1 | import os |
|
1 | import os | |
2 | import datetime |
|
2 | import datetime | |
3 | import warnings |
|
3 | import warnings | |
4 | import numpy |
|
4 | import numpy | |
5 | from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter |
|
5 | from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter | |
6 | from matplotlib.patches import Circle |
|
6 | from matplotlib.patches import Circle | |
7 | import cartopy.crs as ccrs |
|
|||
8 | from cartopy.feature import ShapelyFeature |
|
7 | from cartopy.feature import ShapelyFeature | |
9 | import cartopy.io.shapereader as shpreader |
|
8 | import cartopy.io.shapereader as shpreader | |
10 |
|
9 | |||
11 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
10 | from schainpy.model.graphics.jroplot_base import Plot, plt, ccrs | |
12 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
11 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot | |
13 | from schainpy.utils import log |
|
12 | from schainpy.utils import log | |
14 | from schainpy.model.graphics.plotting_codes import cb_tables |
|
13 | from schainpy.model.graphics.plotting_codes import cb_tables | |
15 |
|
14 | |||
16 |
|
15 | |||
17 | EARTH_RADIUS = 6.3710e3 |
|
16 | EARTH_RADIUS = 6.3710e3 | |
18 |
|
17 | |||
19 |
|
18 | |||
20 | def antenna_to_cartesian(ranges, azimuths, elevations): |
|
19 | def antenna_to_cartesian(ranges, azimuths, elevations): | |
21 | """ |
|
20 | """ | |
22 | Return Cartesian coordinates from antenna coordinates. |
|
21 | Return Cartesian coordinates from antenna coordinates. | |
23 |
|
22 | |||
24 | Parameters |
|
23 | Parameters | |
25 | ---------- |
|
24 | ---------- | |
26 | ranges : array |
|
25 | ranges : array | |
27 | Distances to the center of the radar gates (bins) in kilometers. |
|
26 | Distances to the center of the radar gates (bins) in kilometers. | |
28 | azimuths : array |
|
27 | azimuths : array | |
29 | Azimuth angle of the radar in degrees. |
|
28 | Azimuth angle of the radar in degrees. | |
30 | elevations : array |
|
29 | elevations : array | |
31 | Elevation angle of the radar in degrees. |
|
30 | Elevation angle of the radar in degrees. | |
32 |
|
31 | |||
33 | Returns |
|
32 | Returns | |
34 | ------- |
|
33 | ------- | |
35 | x, y, z : array |
|
34 | x, y, z : array | |
36 | Cartesian coordinates in meters from the radar. |
|
35 | Cartesian coordinates in meters from the radar. | |
37 |
|
36 | |||
38 | Notes |
|
37 | Notes | |
39 | ----- |
|
38 | ----- | |
40 | The calculation for Cartesian coordinate is adapted from equations |
|
39 | The calculation for Cartesian coordinate is adapted from equations | |
41 | 2.28(b) and 2.28(c) of Doviak and Zrnic [1]_ assuming a |
|
40 | 2.28(b) and 2.28(c) of Doviak and Zrnic [1]_ assuming a | |
42 | standard atmosphere (4/3 Earth's radius model). |
|
41 | standard atmosphere (4/3 Earth's radius model). | |
43 |
|
42 | |||
44 | .. math:: |
|
43 | .. math:: | |
45 |
|
44 | |||
46 | z = \\sqrt{r^2+R^2+2*r*R*sin(\\theta_e)} - R |
|
45 | z = \\sqrt{r^2+R^2+2*r*R*sin(\\theta_e)} - R | |
47 |
|
46 | |||
48 | s = R * arcsin(\\frac{r*cos(\\theta_e)}{R+z}) |
|
47 | s = R * arcsin(\\frac{r*cos(\\theta_e)}{R+z}) | |
49 |
|
48 | |||
50 | x = s * sin(\\theta_a) |
|
49 | x = s * sin(\\theta_a) | |
51 |
|
50 | |||
52 | y = s * cos(\\theta_a) |
|
51 | y = s * cos(\\theta_a) | |
53 |
|
52 | |||
54 | Where r is the distance from the radar to the center of the gate, |
|
53 | Where r is the distance from the radar to the center of the gate, | |
55 | :math:`\\theta_a` is the azimuth angle, :math:`\\theta_e` is the |
|
54 | :math:`\\theta_a` is the azimuth angle, :math:`\\theta_e` is the | |
56 | elevation angle, s is the arc length, and R is the effective radius |
|
55 | elevation angle, s is the arc length, and R is the effective radius | |
57 | of the earth, taken to be 4/3 the mean radius of earth (6371 km). |
|
56 | of the earth, taken to be 4/3 the mean radius of earth (6371 km). | |
58 |
|
57 | |||
59 | References |
|
58 | References | |
60 | ---------- |
|
59 | ---------- | |
61 | .. [1] Doviak and Zrnic, Doppler Radar and Weather Observations, Second |
|
60 | .. [1] Doviak and Zrnic, Doppler Radar and Weather Observations, Second | |
62 | Edition, 1993, p. 21. |
|
61 | Edition, 1993, p. 21. | |
63 |
|
62 | |||
64 | """ |
|
63 | """ | |
65 | theta_e = numpy.deg2rad(elevations) # elevation angle in radians. |
|
64 | theta_e = numpy.deg2rad(elevations) # elevation angle in radians. | |
66 | theta_a = numpy.deg2rad(azimuths) # azimuth angle in radians. |
|
65 | theta_a = numpy.deg2rad(azimuths) # azimuth angle in radians. | |
67 | R = 6371.0 * 1000.0 * 4.0 / 3.0 # effective radius of earth in meters. |
|
66 | R = 6371.0 * 1000.0 * 4.0 / 3.0 # effective radius of earth in meters. | |
68 | r = ranges * 1000.0 # distances to gates in meters. |
|
67 | r = ranges * 1000.0 # distances to gates in meters. | |
69 |
|
68 | |||
70 | z = (r ** 2 + R ** 2 + 2.0 * r * R * numpy.sin(theta_e)) ** 0.5 - R |
|
69 | z = (r ** 2 + R ** 2 + 2.0 * r * R * numpy.sin(theta_e)) ** 0.5 - R | |
71 | s = R * numpy.arcsin(r * numpy.cos(theta_e) / (R + z)) # arc length in m. |
|
70 | s = R * numpy.arcsin(r * numpy.cos(theta_e) / (R + z)) # arc length in m. | |
72 | x = s * numpy.sin(theta_a) |
|
71 | x = s * numpy.sin(theta_a) | |
73 | y = s * numpy.cos(theta_a) |
|
72 | y = s * numpy.cos(theta_a) | |
74 | return x, y, z |
|
73 | return x, y, z | |
75 |
|
74 | |||
76 | def cartesian_to_geographic_aeqd(x, y, lon_0, lat_0, R=EARTH_RADIUS): |
|
75 | def cartesian_to_geographic_aeqd(x, y, lon_0, lat_0, R=EARTH_RADIUS): | |
77 | """ |
|
76 | """ | |
78 | Azimuthal equidistant Cartesian to geographic coordinate transform. |
|
77 | Azimuthal equidistant Cartesian to geographic coordinate transform. | |
79 |
|
78 | |||
80 | Transform a set of Cartesian/Cartographic coordinates (x, y) to |
|
79 | Transform a set of Cartesian/Cartographic coordinates (x, y) to | |
81 | geographic coordinate system (lat, lon) using a azimuthal equidistant |
|
80 | geographic coordinate system (lat, lon) using a azimuthal equidistant | |
82 | map projection [1]_. |
|
81 | map projection [1]_. | |
83 |
|
82 | |||
84 | .. math:: |
|
83 | .. math:: | |
85 |
|
84 | |||
86 | lat = \\arcsin(\\cos(c) * \\sin(lat_0) + |
|
85 | lat = \\arcsin(\\cos(c) * \\sin(lat_0) + | |
87 | (y * \\sin(c) * \\cos(lat_0) / \\rho)) |
|
86 | (y * \\sin(c) * \\cos(lat_0) / \\rho)) | |
88 |
|
87 | |||
89 | lon = lon_0 + \\arctan2( |
|
88 | lon = lon_0 + \\arctan2( | |
90 | x * \\sin(c), |
|
89 | x * \\sin(c), | |
91 | \\rho * \\cos(lat_0) * \\cos(c) - y * \\sin(lat_0) * \\sin(c)) |
|
90 | \\rho * \\cos(lat_0) * \\cos(c) - y * \\sin(lat_0) * \\sin(c)) | |
92 |
|
91 | |||
93 | \\rho = \\sqrt(x^2 + y^2) |
|
92 | \\rho = \\sqrt(x^2 + y^2) | |
94 |
|
93 | |||
95 | c = \\rho / R |
|
94 | c = \\rho / R | |
96 |
|
95 | |||
97 | Where x, y are the Cartesian position from the center of projection; |
|
96 | Where x, y are the Cartesian position from the center of projection; | |
98 | lat, lon the corresponding latitude and longitude; lat_0, lon_0 are the |
|
97 | lat, lon the corresponding latitude and longitude; lat_0, lon_0 are the | |
99 | latitude and longitude of the center of the projection; R is the radius of |
|
98 | latitude and longitude of the center of the projection; R is the radius of | |
100 | the earth (defaults to ~6371 km). lon is adjusted to be between -180 and |
|
99 | the earth (defaults to ~6371 km). lon is adjusted to be between -180 and | |
101 | 180. |
|
100 | 180. | |
102 |
|
101 | |||
103 | Parameters |
|
102 | Parameters | |
104 | ---------- |
|
103 | ---------- | |
105 | x, y : array-like |
|
104 | x, y : array-like | |
106 | Cartesian coordinates in the same units as R, typically meters. |
|
105 | Cartesian coordinates in the same units as R, typically meters. | |
107 | lon_0, lat_0 : float |
|
106 | lon_0, lat_0 : float | |
108 | Longitude and latitude, in degrees, of the center of the projection. |
|
107 | Longitude and latitude, in degrees, of the center of the projection. | |
109 | R : float, optional |
|
108 | R : float, optional | |
110 | Earth radius in the same units as x and y. The default value is in |
|
109 | Earth radius in the same units as x and y. The default value is in | |
111 | units of meters. |
|
110 | units of meters. | |
112 |
|
111 | |||
113 | Returns |
|
112 | Returns | |
114 | ------- |
|
113 | ------- | |
115 | lon, lat : array |
|
114 | lon, lat : array | |
116 | Longitude and latitude of Cartesian coordinates in degrees. |
|
115 | Longitude and latitude of Cartesian coordinates in degrees. | |
117 |
|
116 | |||
118 | References |
|
117 | References | |
119 | ---------- |
|
118 | ---------- | |
120 | .. [1] Snyder, J. P. Map Projections--A Working Manual. U. S. Geological |
|
119 | .. [1] Snyder, J. P. Map Projections--A Working Manual. U. S. Geological | |
121 | Survey Professional Paper 1395, 1987, pp. 191-202. |
|
120 | Survey Professional Paper 1395, 1987, pp. 191-202. | |
122 |
|
121 | |||
123 | """ |
|
122 | """ | |
124 | x = numpy.atleast_1d(numpy.asarray(x)) |
|
123 | x = numpy.atleast_1d(numpy.asarray(x)) | |
125 | y = numpy.atleast_1d(numpy.asarray(y)) |
|
124 | y = numpy.atleast_1d(numpy.asarray(y)) | |
126 |
|
125 | |||
127 | lat_0_rad = numpy.deg2rad(lat_0) |
|
126 | lat_0_rad = numpy.deg2rad(lat_0) | |
128 | lon_0_rad = numpy.deg2rad(lon_0) |
|
127 | lon_0_rad = numpy.deg2rad(lon_0) | |
129 |
|
128 | |||
130 | rho = numpy.sqrt(x*x + y*y) |
|
129 | rho = numpy.sqrt(x*x + y*y) | |
131 | c = rho / R |
|
130 | c = rho / R | |
132 |
|
131 | |||
133 | with warnings.catch_warnings(): |
|
132 | with warnings.catch_warnings(): | |
134 | # division by zero may occur here but is properly addressed below so |
|
133 | # division by zero may occur here but is properly addressed below so | |
135 | # the warnings can be ignored |
|
134 | # the warnings can be ignored | |
136 | warnings.simplefilter("ignore", RuntimeWarning) |
|
135 | warnings.simplefilter("ignore", RuntimeWarning) | |
137 | lat_rad = numpy.arcsin(numpy.cos(c) * numpy.sin(lat_0_rad) + |
|
136 | lat_rad = numpy.arcsin(numpy.cos(c) * numpy.sin(lat_0_rad) + | |
138 | y * numpy.sin(c) * numpy.cos(lat_0_rad) / rho) |
|
137 | y * numpy.sin(c) * numpy.cos(lat_0_rad) / rho) | |
139 | lat_deg = numpy.rad2deg(lat_rad) |
|
138 | lat_deg = numpy.rad2deg(lat_rad) | |
140 | # fix cases where the distance from the center of the projection is zero |
|
139 | # fix cases where the distance from the center of the projection is zero | |
141 | lat_deg[rho == 0] = lat_0 |
|
140 | lat_deg[rho == 0] = lat_0 | |
142 |
|
141 | |||
143 | x1 = x * numpy.sin(c) |
|
142 | x1 = x * numpy.sin(c) | |
144 | x2 = rho*numpy.cos(lat_0_rad)*numpy.cos(c) - y*numpy.sin(lat_0_rad)*numpy.sin(c) |
|
143 | x2 = rho*numpy.cos(lat_0_rad)*numpy.cos(c) - y*numpy.sin(lat_0_rad)*numpy.sin(c) | |
145 | lon_rad = lon_0_rad + numpy.arctan2(x1, x2) |
|
144 | lon_rad = lon_0_rad + numpy.arctan2(x1, x2) | |
146 | lon_deg = numpy.rad2deg(lon_rad) |
|
145 | lon_deg = numpy.rad2deg(lon_rad) | |
147 | # Longitudes should be from -180 to 180 degrees |
|
146 | # Longitudes should be from -180 to 180 degrees | |
148 | lon_deg[lon_deg > 180] -= 360. |
|
147 | lon_deg[lon_deg > 180] -= 360. | |
149 | lon_deg[lon_deg < -180] += 360. |
|
148 | lon_deg[lon_deg < -180] += 360. | |
150 |
|
149 | |||
151 | return lon_deg, lat_deg |
|
150 | return lon_deg, lat_deg | |
152 |
|
151 | |||
153 | def antenna_to_geographic(ranges, azimuths, elevations, site): |
|
152 | def antenna_to_geographic(ranges, azimuths, elevations, site): | |
154 |
|
153 | |||
155 | x, y, z = antenna_to_cartesian(numpy.array(ranges), numpy.array(azimuths), numpy.array(elevations)) |
|
154 | x, y, z = antenna_to_cartesian(numpy.array(ranges), numpy.array(azimuths), numpy.array(elevations)) | |
156 | lon, lat = cartesian_to_geographic_aeqd(x, y, site[0], site[1], R=6370997.) |
|
155 | lon, lat = cartesian_to_geographic_aeqd(x, y, site[0], site[1], R=6370997.) | |
157 |
|
156 | |||
158 | return lon, lat |
|
157 | return lon, lat | |
159 |
|
158 | |||
160 | def ll2xy(lat1, lon1, lat2, lon2): |
|
159 | def ll2xy(lat1, lon1, lat2, lon2): | |
161 |
|
160 | |||
162 | p = 0.017453292519943295 |
|
161 | p = 0.017453292519943295 | |
163 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
162 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
164 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
163 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
165 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
164 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
166 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
165 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
167 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
166 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
168 | theta = -theta + numpy.pi/2 |
|
167 | theta = -theta + numpy.pi/2 | |
169 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
168 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
170 |
|
169 | |||
171 |
|
170 | |||
172 | def km2deg(km): |
|
171 | def km2deg(km): | |
173 | ''' |
|
172 | ''' | |
174 | Convert distance in km to degrees |
|
173 | Convert distance in km to degrees | |
175 | ''' |
|
174 | ''' | |
176 |
|
175 | |||
177 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
176 | return numpy.rad2deg(km/EARTH_RADIUS) | |
178 |
|
177 | |||
179 |
|
178 | |||
180 |
|
179 | |||
181 | class SpectralMomentsPlot(SpectraPlot): |
|
180 | class SpectralMomentsPlot(SpectraPlot): | |
182 | ''' |
|
181 | ''' | |
183 | Plot for Spectral Moments |
|
182 | Plot for Spectral Moments | |
184 | ''' |
|
183 | ''' | |
185 | CODE = 'spc_moments' |
|
184 | CODE = 'spc_moments' | |
186 | # colormap = 'jet' |
|
185 | # colormap = 'jet' | |
187 | # plot_type = 'pcolor' |
|
186 | # plot_type = 'pcolor' | |
188 |
|
187 | |||
189 | class DobleGaussianPlot(SpectraPlot): |
|
188 | class DobleGaussianPlot(SpectraPlot): | |
190 | ''' |
|
189 | ''' | |
191 | Plot for Double Gaussian Plot |
|
190 | Plot for Double Gaussian Plot | |
192 | ''' |
|
191 | ''' | |
193 | CODE = 'gaussian_fit' |
|
192 | CODE = 'gaussian_fit' | |
194 | # colormap = 'jet' |
|
193 | # colormap = 'jet' | |
195 | # plot_type = 'pcolor' |
|
194 | # plot_type = 'pcolor' | |
196 |
|
195 | |||
197 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
196 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): | |
198 | ''' |
|
197 | ''' | |
199 | Plot SpectraCut with Double Gaussian Fit |
|
198 | Plot SpectraCut with Double Gaussian Fit | |
200 | ''' |
|
199 | ''' | |
201 | CODE = 'cut_gaussian_fit' |
|
200 | CODE = 'cut_gaussian_fit' | |
202 |
|
201 | |||
203 | class SnrPlot(RTIPlot): |
|
202 | class SnrPlot(RTIPlot): | |
204 | ''' |
|
203 | ''' | |
205 | Plot for SNR Data |
|
204 | Plot for SNR Data | |
206 | ''' |
|
205 | ''' | |
207 |
|
206 | |||
208 | CODE = 'snr' |
|
207 | CODE = 'snr' | |
209 | colormap = 'jet' |
|
208 | colormap = 'jet' | |
210 |
|
209 | |||
211 | def update(self, dataOut): |
|
210 | def update(self, dataOut): | |
212 |
|
211 | |||
213 | data = { |
|
212 | data = { | |
214 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
213 | 'snr': 10*numpy.log10(dataOut.data_snr) | |
215 | } |
|
214 | } | |
216 |
|
215 | |||
217 | return data, {} |
|
216 | return data, {} | |
218 |
|
217 | |||
219 | class DopplerPlot(RTIPlot): |
|
218 | class DopplerPlot(RTIPlot): | |
220 | ''' |
|
219 | ''' | |
221 | Plot for DOPPLER Data (1st moment) |
|
220 | Plot for DOPPLER Data (1st moment) | |
222 | ''' |
|
221 | ''' | |
223 |
|
222 | |||
224 | CODE = 'dop' |
|
223 | CODE = 'dop' | |
225 | colormap = 'jet' |
|
224 | colormap = 'jet' | |
226 |
|
225 | |||
227 | def update(self, dataOut): |
|
226 | def update(self, dataOut): | |
228 |
|
227 | |||
229 | data = { |
|
228 | data = { | |
230 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
229 | 'dop': 10*numpy.log10(dataOut.data_dop) | |
231 | } |
|
230 | } | |
232 |
|
231 | |||
233 | return data, {} |
|
232 | return data, {} | |
234 |
|
233 | |||
235 | class PowerPlot(RTIPlot): |
|
234 | class PowerPlot(RTIPlot): | |
236 | ''' |
|
235 | ''' | |
237 | Plot for Power Data (0 moment) |
|
236 | Plot for Power Data (0 moment) | |
238 | ''' |
|
237 | ''' | |
239 |
|
238 | |||
240 | CODE = 'pow' |
|
239 | CODE = 'pow' | |
241 | colormap = 'jet' |
|
240 | colormap = 'jet' | |
242 |
|
241 | |||
243 | def update(self, dataOut): |
|
242 | def update(self, dataOut): | |
244 | data = { |
|
243 | data = { | |
245 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
244 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) | |
246 | } |
|
245 | } | |
247 | return data, {} |
|
246 | return data, {} | |
248 |
|
247 | |||
249 | class SpectralWidthPlot(RTIPlot): |
|
248 | class SpectralWidthPlot(RTIPlot): | |
250 | ''' |
|
249 | ''' | |
251 | Plot for Spectral Width Data (2nd moment) |
|
250 | Plot for Spectral Width Data (2nd moment) | |
252 | ''' |
|
251 | ''' | |
253 |
|
252 | |||
254 | CODE = 'width' |
|
253 | CODE = 'width' | |
255 | colormap = 'jet' |
|
254 | colormap = 'jet' | |
256 |
|
255 | |||
257 | def update(self, dataOut): |
|
256 | def update(self, dataOut): | |
258 |
|
257 | |||
259 | data = { |
|
258 | data = { | |
260 | 'width': dataOut.data_width |
|
259 | 'width': dataOut.data_width | |
261 | } |
|
260 | } | |
262 |
|
261 | |||
263 | return data, {} |
|
262 | return data, {} | |
264 |
|
263 | |||
265 | class SkyMapPlot(Plot): |
|
264 | class SkyMapPlot(Plot): | |
266 | ''' |
|
265 | ''' | |
267 | Plot for meteors detection data |
|
266 | Plot for meteors detection data | |
268 | ''' |
|
267 | ''' | |
269 |
|
268 | |||
270 | CODE = 'param' |
|
269 | CODE = 'param' | |
271 |
|
270 | |||
272 | def setup(self): |
|
271 | def setup(self): | |
273 |
|
272 | |||
274 | self.ncols = 1 |
|
273 | self.ncols = 1 | |
275 | self.nrows = 1 |
|
274 | self.nrows = 1 | |
276 | self.width = 7.2 |
|
275 | self.width = 7.2 | |
277 | self.height = 7.2 |
|
276 | self.height = 7.2 | |
278 | self.nplots = 1 |
|
277 | self.nplots = 1 | |
279 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
278 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
280 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
279 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
281 | self.polar = True |
|
280 | self.polar = True | |
282 | self.ymin = -180 |
|
281 | self.ymin = -180 | |
283 | self.ymax = 180 |
|
282 | self.ymax = 180 | |
284 | self.colorbar = False |
|
283 | self.colorbar = False | |
285 |
|
284 | |||
286 | def plot(self): |
|
285 | def plot(self): | |
287 |
|
286 | |||
288 | arrayParameters = numpy.concatenate(self.data['param']) |
|
287 | arrayParameters = numpy.concatenate(self.data['param']) | |
289 | error = arrayParameters[:, -1] |
|
288 | error = arrayParameters[:, -1] | |
290 | indValid = numpy.where(error == 0)[0] |
|
289 | indValid = numpy.where(error == 0)[0] | |
291 | finalMeteor = arrayParameters[indValid, :] |
|
290 | finalMeteor = arrayParameters[indValid, :] | |
292 | finalAzimuth = finalMeteor[:, 3] |
|
291 | finalAzimuth = finalMeteor[:, 3] | |
293 | finalZenith = finalMeteor[:, 4] |
|
292 | finalZenith = finalMeteor[:, 4] | |
294 |
|
293 | |||
295 | x = finalAzimuth * numpy.pi / 180 |
|
294 | x = finalAzimuth * numpy.pi / 180 | |
296 | y = finalZenith |
|
295 | y = finalZenith | |
297 |
|
296 | |||
298 | ax = self.axes[0] |
|
297 | ax = self.axes[0] | |
299 |
|
298 | |||
300 | if ax.firsttime: |
|
299 | if ax.firsttime: | |
301 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
300 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] | |
302 | else: |
|
301 | else: | |
303 | ax.plot.set_data(x, y) |
|
302 | ax.plot.set_data(x, y) | |
304 |
|
303 | |||
305 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
304 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | |
306 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
305 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | |
307 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
306 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
308 | dt2, |
|
307 | dt2, | |
309 | len(x)) |
|
308 | len(x)) | |
310 | self.titles[0] = title |
|
309 | self.titles[0] = title | |
311 |
|
310 | |||
312 |
|
311 | |||
313 | class GenericRTIPlot(Plot): |
|
312 | class GenericRTIPlot(Plot): | |
314 | ''' |
|
313 | ''' | |
315 | Plot for data_xxxx object |
|
314 | Plot for data_xxxx object | |
316 | ''' |
|
315 | ''' | |
317 |
|
316 | |||
318 | CODE = 'param' |
|
317 | CODE = 'param' | |
319 | colormap = 'viridis' |
|
318 | colormap = 'viridis' | |
320 | plot_type = 'pcolorbuffer' |
|
319 | plot_type = 'pcolorbuffer' | |
321 |
|
320 | |||
322 | def setup(self): |
|
321 | def setup(self): | |
323 | self.xaxis = 'time' |
|
322 | self.xaxis = 'time' | |
324 | self.ncols = 1 |
|
323 | self.ncols = 1 | |
325 | self.nrows = self.data.shape('param')[0] |
|
324 | self.nrows = self.data.shape('param')[0] | |
326 | self.nplots = self.nrows |
|
325 | self.nplots = self.nrows | |
327 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
326 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) | |
328 |
|
327 | |||
329 | if not self.xlabel: |
|
328 | if not self.xlabel: | |
330 | self.xlabel = 'Time' |
|
329 | self.xlabel = 'Time' | |
331 |
|
330 | |||
332 | self.ylabel = 'Range [km]' |
|
331 | self.ylabel = 'Range [km]' | |
333 | if not self.titles: |
|
332 | if not self.titles: | |
334 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
333 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] | |
335 |
|
334 | |||
336 | def update(self, dataOut): |
|
335 | def update(self, dataOut): | |
337 |
|
336 | |||
338 | data = { |
|
337 | data = { | |
339 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
338 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) | |
340 | } |
|
339 | } | |
341 |
|
340 | |||
342 | meta = {} |
|
341 | meta = {} | |
343 |
|
342 | |||
344 | return data, meta |
|
343 | return data, meta | |
345 |
|
344 | |||
346 | def plot(self): |
|
345 | def plot(self): | |
347 | # self.data.normalize_heights() |
|
346 | # self.data.normalize_heights() | |
348 | self.x = self.data.times |
|
347 | self.x = self.data.times | |
349 | self.y = self.data.yrange |
|
348 | self.y = self.data.yrange | |
350 | self.z = self.data['param'] |
|
349 | self.z = self.data['param'] | |
351 | self.z = 10*numpy.log10(self.z) |
|
350 | self.z = 10*numpy.log10(self.z) | |
352 | self.z = numpy.ma.masked_invalid(self.z) |
|
351 | self.z = numpy.ma.masked_invalid(self.z) | |
353 |
|
352 | |||
354 | if self.decimation is None: |
|
353 | if self.decimation is None: | |
355 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
354 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
356 | else: |
|
355 | else: | |
357 | x, y, z = self.fill_gaps(*self.decimate()) |
|
356 | x, y, z = self.fill_gaps(*self.decimate()) | |
358 |
|
357 | |||
359 | for n, ax in enumerate(self.axes): |
|
358 | for n, ax in enumerate(self.axes): | |
360 |
|
359 | |||
361 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
360 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
362 | self.z[n]) |
|
361 | self.z[n]) | |
363 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
362 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
364 | self.z[n]) |
|
363 | self.z[n]) | |
365 |
|
364 | |||
366 | if ax.firsttime: |
|
365 | if ax.firsttime: | |
367 | if self.zlimits is not None: |
|
366 | if self.zlimits is not None: | |
368 | self.zmin, self.zmax = self.zlimits[n] |
|
367 | self.zmin, self.zmax = self.zlimits[n] | |
369 |
|
368 | |||
370 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
369 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
371 | vmin=self.zmin, |
|
370 | vmin=self.zmin, | |
372 | vmax=self.zmax, |
|
371 | vmax=self.zmax, | |
373 | cmap=self.cmaps[n] |
|
372 | cmap=self.cmaps[n] | |
374 | ) |
|
373 | ) | |
375 | else: |
|
374 | else: | |
376 | if self.zlimits is not None: |
|
375 | if self.zlimits is not None: | |
377 | self.zmin, self.zmax = self.zlimits[n] |
|
376 | self.zmin, self.zmax = self.zlimits[n] | |
378 | ax.collections.remove(ax.collections[0]) |
|
377 | ax.collections.remove(ax.collections[0]) | |
379 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
378 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
380 | vmin=self.zmin, |
|
379 | vmin=self.zmin, | |
381 | vmax=self.zmax, |
|
380 | vmax=self.zmax, | |
382 | cmap=self.cmaps[n] |
|
381 | cmap=self.cmaps[n] | |
383 | ) |
|
382 | ) | |
384 |
|
383 | |||
385 |
|
384 | |||
386 | class PolarMapPlot(Plot): |
|
385 | class PolarMapPlot(Plot): | |
387 | ''' |
|
386 | ''' | |
388 | Plot for weather radar |
|
387 | Plot for weather radar | |
389 | ''' |
|
388 | ''' | |
390 |
|
389 | |||
391 | CODE = 'param' |
|
390 | CODE = 'param' | |
392 | colormap = 'seismic' |
|
391 | colormap = 'seismic' | |
393 |
|
392 | |||
394 | def setup(self): |
|
393 | def setup(self): | |
395 | self.ncols = 1 |
|
394 | self.ncols = 1 | |
396 | self.nrows = 1 |
|
395 | self.nrows = 1 | |
397 | self.width = 9 |
|
396 | self.width = 9 | |
398 | self.height = 8 |
|
397 | self.height = 8 | |
399 | self.mode = self.data.meta['mode'] |
|
398 | self.mode = self.data.meta['mode'] | |
400 | if self.channels is not None: |
|
399 | if self.channels is not None: | |
401 | self.nplots = len(self.channels) |
|
400 | self.nplots = len(self.channels) | |
402 | self.nrows = len(self.channels) |
|
401 | self.nrows = len(self.channels) | |
403 | else: |
|
402 | else: | |
404 | self.nplots = self.data.shape(self.CODE)[0] |
|
403 | self.nplots = self.data.shape(self.CODE)[0] | |
405 | self.nrows = self.nplots |
|
404 | self.nrows = self.nplots | |
406 | self.channels = list(range(self.nplots)) |
|
405 | self.channels = list(range(self.nplots)) | |
407 | if self.mode == 'E': |
|
406 | if self.mode == 'E': | |
408 | self.xlabel = 'Longitude' |
|
407 | self.xlabel = 'Longitude' | |
409 | self.ylabel = 'Latitude' |
|
408 | self.ylabel = 'Latitude' | |
410 | else: |
|
409 | else: | |
411 | self.xlabel = 'Range (km)' |
|
410 | self.xlabel = 'Range (km)' | |
412 | self.ylabel = 'Height (km)' |
|
411 | self.ylabel = 'Height (km)' | |
413 | self.bgcolor = 'white' |
|
412 | self.bgcolor = 'white' | |
414 | self.cb_labels = self.data.meta['units'] |
|
413 | self.cb_labels = self.data.meta['units'] | |
415 | self.lat = self.data.meta['latitude'] |
|
414 | self.lat = self.data.meta['latitude'] | |
416 | self.lon = self.data.meta['longitude'] |
|
415 | self.lon = self.data.meta['longitude'] | |
417 | self.xmin, self.xmax = float( |
|
416 | self.xmin, self.xmax = float( | |
418 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
417 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | |
419 | self.ymin, self.ymax = float( |
|
418 | self.ymin, self.ymax = float( | |
420 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
419 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | |
421 | # self.polar = True |
|
420 | # self.polar = True | |
422 |
|
421 | |||
423 | def plot(self): |
|
422 | def plot(self): | |
424 |
|
423 | |||
425 | for n, ax in enumerate(self.axes): |
|
424 | for n, ax in enumerate(self.axes): | |
426 | data = self.data['param'][self.channels[n]] |
|
425 | data = self.data['param'][self.channels[n]] | |
427 |
|
426 | |||
428 | zeniths = numpy.linspace( |
|
427 | zeniths = numpy.linspace( | |
429 | 0, self.data.meta['max_range'], data.shape[1]) |
|
428 | 0, self.data.meta['max_range'], data.shape[1]) | |
430 | if self.mode == 'E': |
|
429 | if self.mode == 'E': | |
431 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
430 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 | |
432 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
431 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
433 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
432 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | |
434 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
433 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | |
435 | x = km2deg(x) + self.lon |
|
434 | x = km2deg(x) + self.lon | |
436 | y = km2deg(y) + self.lat |
|
435 | y = km2deg(y) + self.lat | |
437 | else: |
|
436 | else: | |
438 | azimuths = numpy.radians(self.data.yrange) |
|
437 | azimuths = numpy.radians(self.data.yrange) | |
439 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
438 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
440 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
439 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
441 | self.y = zeniths |
|
440 | self.y = zeniths | |
442 |
|
441 | |||
443 | if ax.firsttime: |
|
442 | if ax.firsttime: | |
444 | if self.zlimits is not None: |
|
443 | if self.zlimits is not None: | |
445 | self.zmin, self.zmax = self.zlimits[n] |
|
444 | self.zmin, self.zmax = self.zlimits[n] | |
446 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
445 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
447 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
446 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
448 | vmin=self.zmin, |
|
447 | vmin=self.zmin, | |
449 | vmax=self.zmax, |
|
448 | vmax=self.zmax, | |
450 | cmap=self.cmaps[n]) |
|
449 | cmap=self.cmaps[n]) | |
451 | else: |
|
450 | else: | |
452 | if self.zlimits is not None: |
|
451 | if self.zlimits is not None: | |
453 | self.zmin, self.zmax = self.zlimits[n] |
|
452 | self.zmin, self.zmax = self.zlimits[n] | |
454 | ax.collections.remove(ax.collections[0]) |
|
453 | ax.collections.remove(ax.collections[0]) | |
455 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
454 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
456 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
455 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
457 | vmin=self.zmin, |
|
456 | vmin=self.zmin, | |
458 | vmax=self.zmax, |
|
457 | vmax=self.zmax, | |
459 | cmap=self.cmaps[n]) |
|
458 | cmap=self.cmaps[n]) | |
460 |
|
459 | |||
461 | if self.mode == 'A': |
|
460 | if self.mode == 'A': | |
462 | continue |
|
461 | continue | |
463 |
|
462 | |||
464 | # plot district names |
|
463 | # plot district names | |
465 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
464 | f = open('/data/workspace/schain_scripts/distrito.csv') | |
466 | for line in f: |
|
465 | for line in f: | |
467 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
466 | label, lon, lat = [s.strip() for s in line.split(',') if s] | |
468 | lat = float(lat) |
|
467 | lat = float(lat) | |
469 | lon = float(lon) |
|
468 | lon = float(lon) | |
470 | # ax.plot(lon, lat, '.b', ms=2) |
|
469 | # ax.plot(lon, lat, '.b', ms=2) | |
471 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
470 | ax.text(lon, lat, label.decode('utf8'), ha='center', | |
472 | va='bottom', size='8', color='black') |
|
471 | va='bottom', size='8', color='black') | |
473 |
|
472 | |||
474 | # plot limites |
|
473 | # plot limites | |
475 | limites = [] |
|
474 | limites = [] | |
476 | tmp = [] |
|
475 | tmp = [] | |
477 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
476 | for line in open('/data/workspace/schain_scripts/lima.csv'): | |
478 | if '#' in line: |
|
477 | if '#' in line: | |
479 | if tmp: |
|
478 | if tmp: | |
480 | limites.append(tmp) |
|
479 | limites.append(tmp) | |
481 | tmp = [] |
|
480 | tmp = [] | |
482 | continue |
|
481 | continue | |
483 | values = line.strip().split(',') |
|
482 | values = line.strip().split(',') | |
484 | tmp.append((float(values[0]), float(values[1]))) |
|
483 | tmp.append((float(values[0]), float(values[1]))) | |
485 | for points in limites: |
|
484 | for points in limites: | |
486 | ax.add_patch( |
|
485 | ax.add_patch( | |
487 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
486 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | |
488 |
|
487 | |||
489 | # plot Cuencas |
|
488 | # plot Cuencas | |
490 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
489 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | |
491 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
490 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) | |
492 | values = [line.strip().split(',') for line in f] |
|
491 | values = [line.strip().split(',') for line in f] | |
493 | points = [(float(s[0]), float(s[1])) for s in values] |
|
492 | points = [(float(s[0]), float(s[1])) for s in values] | |
494 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
493 | ax.add_patch(Polygon(points, ec='b', fc='none')) | |
495 |
|
494 | |||
496 | # plot grid |
|
495 | # plot grid | |
497 | for r in (15, 30, 45, 60): |
|
496 | for r in (15, 30, 45, 60): | |
498 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
497 | ax.add_artist(plt.Circle((self.lon, self.lat), | |
499 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
498 | km2deg(r), color='0.6', fill=False, lw=0.2)) | |
500 | ax.text( |
|
499 | ax.text( | |
501 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
500 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), | |
502 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
501 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), | |
503 | '{}km'.format(r), |
|
502 | '{}km'.format(r), | |
504 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
503 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') | |
505 |
|
504 | |||
506 | if self.mode == 'E': |
|
505 | if self.mode == 'E': | |
507 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
506 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | |
508 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
507 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | |
509 | else: |
|
508 | else: | |
510 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
509 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | |
511 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
510 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | |
512 |
|
511 | |||
513 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
512 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
514 | self.titles = ['{} {}'.format( |
|
513 | self.titles = ['{} {}'.format( | |
515 | self.data.parameters[x], title) for x in self.channels] |
|
514 | self.data.parameters[x], title) for x in self.channels] | |
516 |
|
515 | |||
517 | class WeatherParamsPlot(Plot): |
|
516 | class WeatherParamsPlot(Plot): | |
518 | #CODE = 'RHI' |
|
517 | ||
519 | #plot_name = 'RHI' |
|
|||
520 | plot_type = 'scattermap' |
|
518 | plot_type = 'scattermap' | |
521 | buffering = False |
|
519 | buffering = False | |
522 | projection = ccrs.PlateCarree() |
|
|||
523 |
|
520 | |||
524 | def setup(self): |
|
521 | def setup(self): | |
525 |
|
522 | |||
526 | self.ncols = 1 |
|
523 | self.ncols = 1 | |
527 | self.nrows = 1 |
|
524 | self.nrows = 1 | |
528 | self.nplots= 1 |
|
525 | self.nplots= 1 | |
529 | self.ylabel= 'Height [km]' |
|
|||
530 | self.xlabel= 'Distance from radar [km]' |
|
|||
531 |
|
526 | |||
532 | if self.channels is not None: |
|
527 | if self.channels is not None: | |
533 | self.nplots = len(self.channels) |
|
528 | self.nplots = len(self.channels) | |
534 | self.ncols = len(self.channels) |
|
529 | self.ncols = len(self.channels) | |
535 | else: |
|
530 | else: | |
536 | self.nplots = self.data.shape(self.CODE)[0] |
|
531 | self.nplots = self.data.shape(self.CODE)[0] | |
537 | self.ncols = self.nplots |
|
532 | self.ncols = self.nplots | |
538 | self.channels = list(range(self.nplots)) |
|
533 | self.channels = list(range(self.nplots)) | |
539 |
|
534 | |||
540 | self.colorbar=True |
|
535 | self.colorbar=True | |
541 | if len(self.channels)>1: |
|
536 | if len(self.channels)>1: | |
542 | self.width = 12 |
|
537 | self.width = 12 | |
543 | else: |
|
538 | else: | |
544 | self.width =8 |
|
539 | self.width =8 | |
545 | self.height =7 |
|
540 | self.height =7 | |
546 | self.ini =0 |
|
541 | self.ini =0 | |
547 | self.len_azi =0 |
|
542 | self.len_azi =0 | |
548 | self.buffer_ini = None |
|
543 | self.buffer_ini = None | |
549 | self.buffer_ele = None |
|
544 | self.buffer_ele = None | |
550 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.1}) |
|
545 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.1}) | |
551 | self.flag =0 |
|
546 | self.flag =0 | |
552 | self.indicador= 0 |
|
547 | self.indicador= 0 | |
553 | self.last_data_ele = None |
|
548 | self.last_data_ele = None | |
554 | self.val_mean = None |
|
549 | self.val_mean = None | |
555 |
|
550 | |||
556 | def update(self, dataOut): |
|
551 | def update(self, dataOut): | |
557 |
|
552 | |||
558 | vars = { |
|
553 | vars = { | |
559 | 'S' : 0, |
|
554 | 'S' : 0, | |
560 | 'V' : 1, |
|
555 | 'V' : 1, | |
561 | 'W' : 2, |
|
556 | 'W' : 2, | |
562 | 'SNR' : 3, |
|
557 | 'SNR' : 3, | |
563 | 'Z' : 4, |
|
558 | 'Z' : 4, | |
564 | 'D' : 5, |
|
559 | 'D' : 5, | |
565 | 'P' : 6, |
|
560 | 'P' : 6, | |
566 | 'R' : 7, |
|
561 | 'R' : 7, | |
567 | } |
|
562 | } | |
568 |
|
563 | |||
569 | data = {} |
|
564 | data = {} | |
570 | meta = {} |
|
565 | meta = {} | |
571 |
|
566 | |||
572 | if hasattr(dataOut, 'nFFTPoints'): |
|
567 | if hasattr(dataOut, 'nFFTPoints'): | |
573 | factor = dataOut.normFactor |
|
568 | factor = dataOut.normFactor | |
574 | else: |
|
569 | else: | |
575 | factor = 1 |
|
570 | factor = 1 | |
576 |
|
571 | |||
577 | if hasattr(dataOut, 'dparam'): |
|
572 | if hasattr(dataOut, 'dparam'): | |
578 | tmp = getattr(dataOut, 'data_param') |
|
573 | tmp = getattr(dataOut, 'data_param') | |
579 | else: |
|
574 | else: | |
580 | #print("-------------------self.attr_data[0]",self.attr_data[0]) |
|
575 | #print("-------------------self.attr_data[0]",self.attr_data[0]) | |
581 | if 'S' in self.attr_data[0]: |
|
576 | if 'S' in self.attr_data[0]: | |
582 | if self.attr_data[0]=='S': |
|
577 | if self.attr_data[0]=='S': | |
583 | tmp = 10*numpy.log10(10.0*getattr(dataOut, 'data_param')[:,0,:]/(factor)) |
|
578 | tmp = 10*numpy.log10(10.0*getattr(dataOut, 'data_param')[:,0,:]/(factor)) | |
584 | if self.attr_data[0]=='SNR': |
|
579 | if self.attr_data[0]=='SNR': | |
585 | tmp = 10*numpy.log10(getattr(dataOut, 'data_param')[:,3,:]) |
|
580 | tmp = 10*numpy.log10(getattr(dataOut, 'data_param')[:,3,:]) | |
586 | else: |
|
581 | else: | |
587 | tmp = getattr(dataOut, 'data_param')[:,vars[self.attr_data[0]],:] |
|
582 | tmp = getattr(dataOut, 'data_param')[:,vars[self.attr_data[0]],:] | |
588 |
|
583 | |||
589 | if self.mask: |
|
584 | if self.mask: | |
590 | mask = dataOut.data_param[:,3,:] < self.mask |
|
585 | mask = dataOut.data_param[:,3,:] < self.mask | |
591 | tmp = numpy.ma.masked_array(tmp, mask=mask) |
|
586 | tmp = numpy.ma.masked_array(tmp, mask=mask) | |
592 |
|
587 | |||
593 | r = dataOut.heightList |
|
588 | r = dataOut.heightList | |
594 | delta_height = r[1]-r[0] |
|
589 | delta_height = r[1]-r[0] | |
595 | valid = numpy.where(r>=0)[0] |
|
590 | valid = numpy.where(r>=0)[0] | |
596 | data['r'] = numpy.arange(len(valid))*delta_height |
|
591 | data['r'] = numpy.arange(len(valid))*delta_height | |
597 |
|
592 | |||
598 | data['data'] = [0, 0] |
|
593 | data['data'] = [0, 0] | |
599 |
|
594 | |||
600 | try: |
|
595 | try: | |
601 | data['data'][0] = tmp[0][:,valid] |
|
596 | data['data'][0] = tmp[0][:,valid] | |
602 | data['data'][1] = tmp[1][:,valid] |
|
597 | data['data'][1] = tmp[1][:,valid] | |
603 | except: |
|
598 | except: | |
604 | data['data'][0] = tmp[0][:,valid] |
|
599 | data['data'][0] = tmp[0][:,valid] | |
605 | data['data'][1] = tmp[0][:,valid] |
|
600 | data['data'][1] = tmp[0][:,valid] | |
606 |
|
601 | |||
607 | if dataOut.mode_op == 'PPI': |
|
602 | if dataOut.mode_op == 'PPI': | |
608 | self.CODE = 'PPI' |
|
603 | self.CODE = 'PPI' | |
609 | self.title = self.CODE |
|
604 | self.title = self.CODE | |
610 | elif dataOut.mode_op == 'RHI': |
|
605 | elif dataOut.mode_op == 'RHI': | |
611 | self.CODE = 'RHI' |
|
606 | self.CODE = 'RHI' | |
612 | self.title = self.CODE |
|
607 | self.title = self.CODE | |
613 |
|
608 | |||
614 | data['azi'] = dataOut.data_azi |
|
609 | data['azi'] = dataOut.data_azi | |
615 | data['ele'] = dataOut.data_ele |
|
610 | data['ele'] = dataOut.data_ele | |
616 |
|
611 | |||
617 | if isinstance(dataOut.mode_op, bytes): |
|
612 | if isinstance(dataOut.mode_op, bytes): | |
618 | try: |
|
613 | try: | |
619 | dataOut.mode_op = dataOut.mode_op.decode() |
|
614 | dataOut.mode_op = dataOut.mode_op.decode() | |
620 | except: |
|
615 | except: | |
621 | dataOut.mode_op = str(dataOut.mode_op, 'utf-8') |
|
616 | dataOut.mode_op = str(dataOut.mode_op, 'utf-8') | |
622 | data['mode_op'] = dataOut.mode_op |
|
617 | data['mode_op'] = dataOut.mode_op | |
623 | self.mode = dataOut.mode_op |
|
618 | self.mode = dataOut.mode_op | |
624 |
|
619 | |||
625 | return data, meta |
|
620 | return data, meta | |
626 |
|
621 | |||
627 | def plot(self): |
|
622 | def plot(self): | |
628 | data = self.data[-1] |
|
623 | data = self.data[-1] | |
629 | z = data['data'] |
|
624 | z = data['data'] | |
630 | r = data['r'] |
|
625 | r = data['r'] | |
631 | self.titles = [] |
|
626 | self.titles = [] | |
632 |
|
627 | |||
633 | self.ymax = self.ymax if self.ymax else numpy.nanmax(r) |
|
|||
634 | self.ymin = self.ymin if self.ymin else numpy.nanmin(r) |
|
|||
635 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
628 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
636 | self.zmin = self.zmin if self.zmin is not None else numpy.nanmin(z) |
|
629 | self.zmin = self.zmin if self.zmin is not None else numpy.nanmin(z) | |
637 |
|
630 | |||
638 | if isinstance(data['mode_op'], bytes): |
|
631 | if isinstance(data['mode_op'], bytes): | |
639 | data['mode_op'] = data['mode_op'].decode() |
|
632 | data['mode_op'] = data['mode_op'].decode() | |
640 |
|
633 | |||
641 | if data['mode_op'] == 'RHI': |
|
634 | if data['mode_op'] == 'RHI': | |
642 | r, theta = numpy.meshgrid(r, numpy.radians(data['ele'])) |
|
635 | r, theta = numpy.meshgrid(r, numpy.radians(data['ele'])) | |
643 | len_aux = int(data['azi'].shape[0]/4) |
|
636 | len_aux = int(data['azi'].shape[0]/4) | |
644 | mean = numpy.mean(data['azi'][len_aux:-len_aux]) |
|
637 | mean = numpy.mean(data['azi'][len_aux:-len_aux]) | |
645 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
638 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
|
639 | if self.yrange: | |||
|
640 | self.ylabel= 'Height [km]' | |||
|
641 | self.xlabel= 'Distance from radar [km]' | |||
|
642 | self.ymax = self.yrange | |||
|
643 | self.ymin = 0 | |||
|
644 | self.xmax = self.xrange if self.xrange else numpy.nanmax(r) | |||
|
645 | self.xmin = -self.xrange if self.xrange else -numpy.nanmax(r) | |||
|
646 | self.setrhilimits = False | |||
|
647 | else: | |||
|
648 | self.ymin = 0 | |||
|
649 | self.ymax = numpy.nanmax(r) | |||
|
650 | self.xmin = -numpy.nanmax(r) | |||
|
651 | self.xmax = numpy.nanmax(r) | |||
|
652 | ||||
646 | elif data['mode_op'] == 'PPI': |
|
653 | elif data['mode_op'] == 'PPI': | |
647 | r, theta = numpy.meshgrid(r, -numpy.radians(data['azi'])+numpy.pi/2) |
|
654 | r, theta = numpy.meshgrid(r, -numpy.radians(data['azi'])+numpy.pi/2) | |
648 | len_aux = int(data['ele'].shape[0]/4) |
|
655 | len_aux = int(data['ele'].shape[0]/4) | |
649 | mean = numpy.mean(data['ele'][len_aux:-len_aux]) |
|
656 | mean = numpy.mean(data['ele'][len_aux:-len_aux]) | |
650 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(mean)), r*numpy.sin( |
|
657 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(mean)), r*numpy.sin( | |
651 | theta)*numpy.cos(numpy.radians(mean)) |
|
658 | theta)*numpy.cos(numpy.radians(mean)) | |
652 |
x = km2deg(x) + |
|
659 | x = km2deg(x) + self.longitude | |
653 |
y = km2deg(y) + |
|
660 | y = km2deg(y) + self.latitude | |
|
661 | if self.xrange: | |||
|
662 | self.ylabel= 'Latitude' | |||
|
663 | self.xlabel= 'Longitude' | |||
|
664 | ||||
|
665 | self.xmin = km2deg(-self.xrange) + self.longitude | |||
|
666 | self.xmax = km2deg(self.xrange) + self.longitude | |||
|
667 | ||||
|
668 | self.ymin = km2deg(-self.xrange) + self.latitude | |||
|
669 | self.ymax = km2deg(self.xrange) + self.latitude | |||
|
670 | else: | |||
|
671 | self.xmin = km2deg(-numpy.nanmax(r)) + self.longitude | |||
|
672 | self.xmax = km2deg(numpy.nanmax(r)) + self.longitude | |||
|
673 | ||||
|
674 | self.ymin = km2deg(-numpy.nanmax(r)) + self.latitude | |||
|
675 | self.ymax = km2deg(numpy.nanmax(r)) + self.latitude | |||
654 |
|
676 | |||
655 | self.clear_figures() |
|
677 | self.clear_figures() | |
656 |
|
678 | |||
657 | if data['mode_op'] == 'PPI': |
|
679 | if data['mode_op'] == 'PPI': | |
658 | axes = self.axes['PPI'] |
|
680 | axes = self.axes['PPI'] | |
659 | else: |
|
681 | else: | |
660 | axes = self.axes['RHI'] |
|
682 | axes = self.axes['RHI'] | |
661 |
|
683 | |||
662 | if self.colormap in cb_tables: |
|
684 | if self.colormap in cb_tables: | |
663 | norm = cb_tables[self.colormap]['norm'] |
|
685 | norm = cb_tables[self.colormap]['norm'] | |
664 | else: |
|
686 | else: | |
665 | norm = None |
|
687 | norm = None | |
666 |
|
688 | |||
667 | for i, ax in enumerate(axes): |
|
689 | for i, ax in enumerate(axes): | |
668 | if data['mode_op'] == 'PPI': |
|
|||
669 | ax.set_extent([-75.745893, -74.845893, -12.490436, -11.590436]) |
|
|||
670 |
|
690 | |||
671 | if norm is None: |
|
691 | if norm is None: | |
672 | ax.plt = ax.pcolormesh(x, y, z[i], cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) |
|
692 | ax.plt = ax.pcolormesh(x, y, z[i], cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) | |
673 | else: |
|
693 | else: | |
674 | ax.plt = ax.pcolormesh(x, y, z[i], cmap=self.colormap, norm=norm) |
|
694 | ax.plt = ax.pcolormesh(x, y, z[i], cmap=self.colormap, norm=norm) | |
675 |
|
695 | |||
676 | if data['mode_op'] == 'RHI': |
|
696 | if data['mode_op'] == 'RHI': | |
677 | len_aux = int(data['azi'].shape[0]/4) |
|
697 | len_aux = int(data['azi'].shape[0]/4) | |
678 | mean = numpy.mean(data['azi'][len_aux:-len_aux]) |
|
698 | mean = numpy.mean(data['azi'][len_aux:-len_aux]) | |
679 | if len(self.channels) !=1: |
|
699 | if len(self.channels) !=1: | |
680 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in self.channels] |
|
700 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in self.channels] | |
681 | else: |
|
701 | else: | |
682 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] |
|
702 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] | |
683 | elif data['mode_op'] == 'PPI': |
|
703 | elif data['mode_op'] == 'PPI': | |
684 | len_aux = int(data['ele'].shape[0]/4) |
|
704 | len_aux = int(data['ele'].shape[0]/4) | |
685 | mean = numpy.mean(data['ele'][len_aux:-len_aux]) |
|
705 | mean = numpy.mean(data['ele'][len_aux:-len_aux]) | |
686 | if len(self.channels) !=1: |
|
706 | if len(self.channels) !=1: | |
687 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in self.channels] |
|
707 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in self.channels] | |
688 | else: |
|
708 | else: | |
689 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] |
|
709 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] | |
690 | self.mode_value = round(mean,1) |
|
710 | self.mode_value = round(mean,1) | |
691 |
|
711 | |||
692 | if data['mode_op'] == 'PPI': |
|
712 | if data['mode_op'] == 'PPI': | |
|
713 | if self.map: | |||
693 | gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, |
|
714 | gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, | |
694 | linewidth=1, color='gray', alpha=0.5, linestyle='--') |
|
715 | linewidth=1, color='gray', alpha=0.5, linestyle='--') | |
695 | gl.xlabel_style = {'size': 8} |
|
716 | gl.xlabel_style = {'size': 8} | |
696 | gl.ylabel_style = {'size': 8} |
|
717 | gl.ylabel_style = {'size': 8} | |
697 | gl.xlabels_top = False |
|
718 | gl.xlabels_top = False | |
698 | gl.ylabels_right = False |
|
719 | gl.ylabels_right = False | |
699 | #self.shapes="/home/soporte/workspace/sirm/volumes/schain/shapes/" |
|
|||
700 | #print("self.shapes",self.shapes) |
|
|||
701 | shape_p = os.path.join(self.shapes,'PER_ADM2/PER_ADM2.shp') |
|
720 | shape_p = os.path.join(self.shapes,'PER_ADM2/PER_ADM2.shp') | |
702 | shape_d = os.path.join(self.shapes,'PER_ADM1/PER_ADM1.shp') |
|
721 | shape_d = os.path.join(self.shapes,'PER_ADM1/PER_ADM1.shp') | |
703 | capitales = os.path.join(self.shapes,'CAPITALES/cap_provincia.shp') |
|
722 | capitales = os.path.join(self.shapes,'CAPITALES/cap_provincia.shp') | |
704 | vias = os.path.join(self.shapes,'Carreteras/VIAS_NACIONAL_250000.shp') |
|
723 | vias = os.path.join(self.shapes,'Carreteras/VIAS_NACIONAL_250000.shp') | |
705 | reader_d = shpreader.BasicReader(shape_p, encoding='latin1') |
|
724 | reader_d = shpreader.BasicReader(shape_p, encoding='latin1') | |
706 | reader_p = shpreader.BasicReader(shape_d, encoding='latin1') |
|
725 | reader_p = shpreader.BasicReader(shape_d, encoding='latin1') | |
707 | reader_c = shpreader.BasicReader(capitales, encoding='latin1') |
|
726 | reader_c = shpreader.BasicReader(capitales, encoding='latin1') | |
708 | reader_v = shpreader.BasicReader(vias, encoding='latin1') |
|
727 | reader_v = shpreader.BasicReader(vias, encoding='latin1') | |
709 |
caps = [x for x in reader_c.records() |
|
728 | caps = [x for x in reader_c.records() ]#if x.attributes["Departa"] in ("JUNIN", "LIMA", "ICA", "PIURA")] | |
710 |
districts = [x for x in reader_d.records() |
|
729 | districts = [x for x in reader_d.records() ]# if x.attributes["Name"] in ("JUNÍN", "CHANCHAMAYO", "CHUPACA", "CONCEPCIÓN", "HUANCAYO", "JAUJA", "SATIPO", "TARMA", "YAUYOS", "HUAROCHIRÍ", "CANTA", "HUANTA", "TAYACAJA")] | |
711 |
provs = [x for x in reader_p.records() |
|
730 | provs = [x for x in reader_p.records()]# if x.attributes["NAME"] in ("Junín", "Lima")] | |
712 |
vias = [x for x in reader_v.records() |
|
731 | vias = [x for x in reader_v.records()]# if x.attributes["DEP"] in ("JUNIN", "LIMA")] | |
713 |
|
732 | |||
714 | # Display limits and streets |
|
733 | # Display limits and streets | |
715 | shape_feature = ShapelyFeature([x.geometry for x in districts], ccrs.PlateCarree(), facecolor="none", edgecolor='grey', lw=0.5) |
|
734 | shape_feature = ShapelyFeature([x.geometry for x in districts], ccrs.PlateCarree(), facecolor="none", edgecolor='grey', lw=0.5) | |
716 | ax.add_feature(shape_feature) |
|
735 | ax.add_feature(shape_feature) | |
717 | shape_feature = ShapelyFeature([x.geometry for x in provs], ccrs.PlateCarree(), facecolor="none", edgecolor='white', lw=1) |
|
736 | shape_feature = ShapelyFeature([x.geometry for x in provs], ccrs.PlateCarree(), facecolor="none", edgecolor='white', lw=1) | |
718 | ax.add_feature(shape_feature) |
|
737 | ax.add_feature(shape_feature) | |
719 | shape_feature = ShapelyFeature([x.geometry for x in vias], ccrs.PlateCarree(), facecolor="none", edgecolor='yellow', lw=1) |
|
738 | shape_feature = ShapelyFeature([x.geometry for x in vias], ccrs.PlateCarree(), facecolor="none", edgecolor='yellow', lw=1) | |
720 | ax.add_feature(shape_feature) |
|
739 | ax.add_feature(shape_feature) | |
721 |
|
740 | |||
722 | for cap in caps: |
|
741 | for cap in caps: | |
723 | if cap.attributes['Nombre'] in ("LA OROYA", "CONCEPCIÓN", "HUANCAYO", "JAUJA", "CHUPACA", "YAUYOS", "HUANTA", "PAMPAS"): |
|
742 | #if cap.attributes['Nombre'] in ("LA OROYA", "CONCEPCIÓN", "HUANCAYO", "JAUJA", "CHUPACA", "YAUYOS", "HUANTA", "PAMPAS"): | |
724 | ax.text(cap.attributes['X'], cap.attributes['Y'], cap.attributes['Nombre'].title(), size=7, color='white') |
|
743 | ax.text(cap.attributes['X'], cap.attributes['Y'], cap.attributes['Nombre'].title(), size=7, color='white') | |
725 | ax.text(-75.052003, -11.915552, 'Huaytapallana', size=7, color='cyan') |
|
744 | #ax.text(-75.052003, -11.915552, 'Huaytapallana', size=7, color='cyan') | |
726 | ax.plot(-75.052003, -11.915552, '*') |
|
745 | #ax.plot(-75.052003, -11.915552, '*') | |
727 |
|
746 | else: | ||
|
747 | ax.grid(color='grey', alpha=0.5, linestyle='--', linewidth=1) | |||
728 | for R in (10, 20, 30 , 40, 50): |
|
748 | for R in (10, 20, 30 , 40, 50): | |
729 | circle = Circle((-75.295893, -12.040436), km2deg(R), facecolor='none', |
|
749 | if R <= self.xrange: | |
|
750 | circle = Circle((self.longitude, self.latitude), km2deg(R), facecolor='none', | |||
730 | edgecolor='skyblue', linewidth=1, alpha=0.5) |
|
751 | edgecolor='skyblue', linewidth=1, alpha=0.5) | |
731 | ax.add_patch(circle) |
|
752 | ax.add_patch(circle) | |
732 |
ax.text(km2deg(R)*numpy.cos(numpy.radians(45)) |
|
753 | ax.text(km2deg(R)*numpy.cos(numpy.radians(45))+self.longitude, | |
733 |
km2deg(R)*numpy.sin(numpy.radians(45)) |
|
754 | km2deg(R)*numpy.sin(numpy.radians(45))+self.latitude, | |
734 | '{}km'.format(R), color='skyblue', size=7) |
|
755 | '{}km'.format(R), color='skyblue', size=7) | |
735 | elif data['mode_op'] == 'RHI': |
|
756 | elif data['mode_op'] == 'RHI': | |
736 | ax.grid(color='grey', alpha=0.5, linestyle='--', linewidth=1) |
|
757 | ax.grid(color='grey', alpha=0.5, linestyle='--', linewidth=1) |
General Comments 0
You need to be logged in to leave comments.
Login now