@@ -1,339 +1,339 | |||||
1 | import numpy |
|
1 | import numpy | |
2 |
|
2 | |||
3 | from jroproc_base import ProcessingUnit, Operation |
|
3 | from jroproc_base import ProcessingUnit, Operation | |
4 | from model.data.jrodata import SpectraHeis |
|
4 | from model.data.jrodata import SpectraHeis | |
5 |
|
5 | |||
6 | class SpectraHeisProc(ProcessingUnit): |
|
6 | class SpectraHeisProc(ProcessingUnit): | |
7 |
|
7 | |||
8 | def __init__(self): |
|
8 | def __init__(self): | |
9 |
|
9 | |||
10 | ProcessingUnit.__init__(self) |
|
10 | ProcessingUnit.__init__(self) | |
11 |
|
11 | |||
12 | # self.buffer = None |
|
12 | # self.buffer = None | |
13 | # self.firstdatatime = None |
|
13 | # self.firstdatatime = None | |
14 | # self.profIndex = 0 |
|
14 | # self.profIndex = 0 | |
15 | self.dataOut = SpectraHeis() |
|
15 | self.dataOut = SpectraHeis() | |
16 |
|
16 | |||
17 | def __updateObjFromInput(self): |
|
17 | def __updateObjFromInput(self): | |
18 |
|
18 | |||
19 | self.dataOut.timeZone = self.dataIn.timeZone |
|
19 | self.dataOut.timeZone = self.dataIn.timeZone | |
20 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
20 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
21 | self.dataOut.errorCount = self.dataIn.errorCount |
|
21 | self.dataOut.errorCount = self.dataIn.errorCount | |
22 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
22 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
23 |
|
23 | |||
24 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()# |
|
24 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()# | |
25 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()# |
|
25 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()# | |
26 | self.dataOut.channelList = self.dataIn.channelList |
|
26 | self.dataOut.channelList = self.dataIn.channelList | |
27 | self.dataOut.heightList = self.dataIn.heightList |
|
27 | self.dataOut.heightList = self.dataIn.heightList | |
28 | # self.dataOut.dtype = self.dataIn.dtype |
|
28 | # self.dataOut.dtype = self.dataIn.dtype | |
29 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
29 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
30 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
30 | # self.dataOut.nHeights = self.dataIn.nHeights | |
31 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
31 | # self.dataOut.nChannels = self.dataIn.nChannels | |
32 | self.dataOut.nBaud = self.dataIn.nBaud |
|
32 | self.dataOut.nBaud = self.dataIn.nBaud | |
33 | self.dataOut.nCode = self.dataIn.nCode |
|
33 | self.dataOut.nCode = self.dataIn.nCode | |
34 | self.dataOut.code = self.dataIn.code |
|
34 | self.dataOut.code = self.dataIn.code | |
35 | # self.dataOut.nProfiles = 1 |
|
35 | # self.dataOut.nProfiles = 1 | |
36 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
36 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
37 | self.dataOut.nFFTPoints = self.dataIn.nHeights |
|
37 | self.dataOut.nFFTPoints = self.dataIn.nHeights | |
38 | # self.dataOut.channelIndexList = self.dataIn.channelIndexList |
|
38 | # self.dataOut.channelIndexList = self.dataIn.channelIndexList | |
39 | # self.dataOut.flagNoData = self.dataIn.flagNoData |
|
39 | # self.dataOut.flagNoData = self.dataIn.flagNoData | |
40 | self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock |
|
40 | self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock | |
41 | self.dataOut.utctime = self.dataIn.utctime |
|
41 | self.dataOut.utctime = self.dataIn.utctime | |
42 | # self.dataOut.utctime = self.firstdatatime |
|
42 | # self.dataOut.utctime = self.firstdatatime | |
43 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
43 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
44 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
44 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
45 | # self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT |
|
45 | # self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT | |
46 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
46 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
47 | self.dataOut.nIncohInt = 1 |
|
47 | self.dataOut.nIncohInt = 1 | |
48 | # self.dataOut.ippSeconds= self.dataIn.ippSeconds |
|
48 | # self.dataOut.ippSeconds= self.dataIn.ippSeconds | |
49 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
49 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
50 |
|
50 | |||
51 | self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nIncohInt |
|
51 | self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nIncohInt | |
52 | # self.dataOut.set=self.dataIn.set |
|
52 | # self.dataOut.set=self.dataIn.set | |
53 | # self.dataOut.deltaHeight=self.dataIn.deltaHeight |
|
53 | # self.dataOut.deltaHeight=self.dataIn.deltaHeight | |
54 |
|
54 | |||
55 |
|
55 | |||
56 | def __updateObjFromFits(self): |
|
56 | def __updateObjFromFits(self): | |
57 | self.dataOut.utctime = self.dataIn.utctime |
|
57 | self.dataOut.utctime = self.dataIn.utctime | |
58 | self.dataOut.channelIndexList = self.dataIn.channelIndexList |
|
58 | self.dataOut.channelIndexList = self.dataIn.channelIndexList | |
59 |
|
59 | |||
60 | self.dataOut.channelList = self.dataIn.channelList |
|
60 | self.dataOut.channelList = self.dataIn.channelList | |
61 | self.dataOut.heightList = self.dataIn.heightList |
|
61 | self.dataOut.heightList = self.dataIn.heightList | |
62 | self.dataOut.data_spc = self.dataIn.data |
|
62 | self.dataOut.data_spc = self.dataIn.data | |
63 | self.dataOut.timeInterval = self.dataIn.timeInterval |
|
63 | self.dataOut.timeInterval = self.dataIn.timeInterval | |
64 | self.dataOut.timeZone = self.dataIn.timeZone |
|
64 | self.dataOut.timeZone = self.dataIn.timeZone | |
65 | self.dataOut.useLocalTime = True |
|
65 | self.dataOut.useLocalTime = True | |
66 | # self.dataOut. |
|
66 | # self.dataOut. | |
67 | # self.dataOut. |
|
67 | # self.dataOut. | |
68 |
|
68 | |||
69 | def __getFft(self): |
|
69 | def __getFft(self): | |
70 |
|
70 | |||
71 | fft_volt = numpy.fft.fft(self.dataIn.data, axis=1) |
|
71 | fft_volt = numpy.fft.fft(self.dataIn.data, axis=1) | |
72 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) |
|
72 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) | |
73 | spc = numpy.abs(fft_volt * numpy.conjugate(fft_volt))/(self.dataOut.nFFTPoints) |
|
73 | spc = numpy.abs(fft_volt * numpy.conjugate(fft_volt))/(self.dataOut.nFFTPoints) | |
74 | self.dataOut.data_spc = spc |
|
74 | self.dataOut.data_spc = spc | |
75 |
|
75 | |||
76 | def run(self): |
|
76 | def run(self): | |
77 |
|
77 | |||
78 | self.dataOut.flagNoData = True |
|
78 | self.dataOut.flagNoData = True | |
79 |
|
79 | |||
80 | if self.dataIn.type == "Fits": |
|
80 | if self.dataIn.type == "Fits": | |
81 | self.__updateObjFromFits() |
|
81 | self.__updateObjFromFits() | |
82 | self.dataOut.flagNoData = False |
|
82 | self.dataOut.flagNoData = False | |
83 | return |
|
83 | return | |
84 |
|
84 | |||
85 | if self.dataIn.type == "SpectraHeis": |
|
85 | if self.dataIn.type == "SpectraHeis": | |
86 | self.dataOut.copy(self.dataIn) |
|
86 | self.dataOut.copy(self.dataIn) | |
87 | return |
|
87 | return | |
88 |
|
88 | |||
89 | if self.dataIn.type == "Voltage": |
|
89 | if self.dataIn.type == "Voltage": | |
90 | self.__updateObjFromInput() |
|
90 | self.__updateObjFromInput() | |
91 | self.__getFft() |
|
91 | self.__getFft() | |
92 | self.dataOut.flagNoData = False |
|
92 | self.dataOut.flagNoData = False | |
93 |
|
93 | |||
94 | return |
|
94 | return | |
95 |
|
95 | |||
96 | raise ValueError, "The type object %s is not valid"%(self.dataIn.type) |
|
96 | raise ValueError, "The type object %s is not valid"%(self.dataIn.type) | |
97 |
|
97 | |||
98 |
|
98 | |||
99 | def selectChannels(self, channelList): |
|
99 | def selectChannels(self, channelList): | |
100 |
|
100 | |||
101 | channelIndexList = [] |
|
101 | channelIndexList = [] | |
102 |
|
102 | |||
103 | for channel in channelList: |
|
103 | for channel in channelList: | |
104 | index = self.dataOut.channelList.index(channel) |
|
104 | index = self.dataOut.channelList.index(channel) | |
105 | channelIndexList.append(index) |
|
105 | channelIndexList.append(index) | |
106 |
|
106 | |||
107 | self.selectChannelsByIndex(channelIndexList) |
|
107 | self.selectChannelsByIndex(channelIndexList) | |
108 |
|
108 | |||
109 | def selectChannelsByIndex(self, channelIndexList): |
|
109 | def selectChannelsByIndex(self, channelIndexList): | |
110 | """ |
|
110 | """ | |
111 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
111 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
112 |
|
112 | |||
113 | Input: |
|
113 | Input: | |
114 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
114 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
115 |
|
115 | |||
116 | Affected: |
|
116 | Affected: | |
117 | self.dataOut.data |
|
117 | self.dataOut.data | |
118 | self.dataOut.channelIndexList |
|
118 | self.dataOut.channelIndexList | |
119 | self.dataOut.nChannels |
|
119 | self.dataOut.nChannels | |
120 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
120 | self.dataOut.m_ProcessingHeader.totalSpectra | |
121 | self.dataOut.systemHeaderObj.numChannels |
|
121 | self.dataOut.systemHeaderObj.numChannels | |
122 | self.dataOut.m_ProcessingHeader.blockSize |
|
122 | self.dataOut.m_ProcessingHeader.blockSize | |
123 |
|
123 | |||
124 | Return: |
|
124 | Return: | |
125 | None |
|
125 | None | |
126 | """ |
|
126 | """ | |
127 |
|
127 | |||
128 | for channelIndex in channelIndexList: |
|
128 | for channelIndex in channelIndexList: | |
129 | if channelIndex not in self.dataOut.channelIndexList: |
|
129 | if channelIndex not in self.dataOut.channelIndexList: | |
130 | print channelIndexList |
|
130 | print channelIndexList | |
131 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
131 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex | |
132 |
|
132 | |||
133 | # nChannels = len(channelIndexList) |
|
133 | # nChannels = len(channelIndexList) | |
134 |
|
134 | |||
135 | data_spc = self.dataOut.data_spc[channelIndexList,:] |
|
135 | data_spc = self.dataOut.data_spc[channelIndexList,:] | |
136 |
|
136 | |||
137 | self.dataOut.data_spc = data_spc |
|
137 | self.dataOut.data_spc = data_spc | |
138 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
138 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
139 |
|
139 | |||
140 | return 1 |
|
140 | return 1 | |
141 |
|
141 | |||
142 | class IncohInt4SpectraHeis(Operation): |
|
142 | class IncohInt4SpectraHeis(Operation): | |
143 |
|
143 | |||
144 | isConfig = False |
|
144 | isConfig = False | |
145 |
|
145 | |||
146 | __profIndex = 0 |
|
146 | __profIndex = 0 | |
147 | __withOverapping = False |
|
147 | __withOverapping = False | |
148 |
|
148 | |||
149 | __byTime = False |
|
149 | __byTime = False | |
150 | __initime = None |
|
150 | __initime = None | |
151 | __lastdatatime = None |
|
151 | __lastdatatime = None | |
152 | __integrationtime = None |
|
152 | __integrationtime = None | |
153 |
|
153 | |||
154 | __buffer = None |
|
154 | __buffer = None | |
155 |
|
155 | |||
156 | __dataReady = False |
|
156 | __dataReady = False | |
157 |
|
157 | |||
158 | n = None |
|
158 | n = None | |
159 |
|
159 | |||
160 |
|
160 | |||
161 | def __init__(self): |
|
161 | def __init__(self): | |
162 |
|
162 | |||
163 | Operation.__init__(self) |
|
163 | Operation.__init__(self) | |
164 | # self.isConfig = False |
|
164 | # self.isConfig = False | |
165 |
|
165 | |||
166 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
166 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
167 | """ |
|
167 | """ | |
168 | Set the parameters of the integration class. |
|
168 | Set the parameters of the integration class. | |
169 |
|
169 | |||
170 | Inputs: |
|
170 | Inputs: | |
171 |
|
171 | |||
172 | n : Number of coherent integrations |
|
172 | n : Number of coherent integrations | |
173 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
173 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
174 | overlapping : |
|
174 | overlapping : | |
175 |
|
175 | |||
176 | """ |
|
176 | """ | |
177 |
|
177 | |||
178 | self.__initime = None |
|
178 | self.__initime = None | |
179 | self.__lastdatatime = 0 |
|
179 | self.__lastdatatime = 0 | |
180 | self.__buffer = None |
|
180 | self.__buffer = None | |
181 | self.__dataReady = False |
|
181 | self.__dataReady = False | |
182 |
|
182 | |||
183 |
|
183 | |||
184 | if n == None and timeInterval == None: |
|
184 | if n == None and timeInterval == None: | |
185 | raise ValueError, "n or timeInterval should be specified ..." |
|
185 | raise ValueError, "n or timeInterval should be specified ..." | |
186 |
|
186 | |||
187 | if n != None: |
|
187 | if n != None: | |
188 | self.n = n |
|
188 | self.n = n | |
189 | self.__byTime = False |
|
189 | self.__byTime = False | |
190 | else: |
|
190 | else: | |
191 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
191 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line | |
192 | self.n = 9999 |
|
192 | self.n = 9999 | |
193 | self.__byTime = True |
|
193 | self.__byTime = True | |
194 |
|
194 | |||
195 | if overlapping: |
|
195 | if overlapping: | |
196 | self.__withOverapping = True |
|
196 | self.__withOverapping = True | |
197 | self.__buffer = None |
|
197 | self.__buffer = None | |
198 | else: |
|
198 | else: | |
199 | self.__withOverapping = False |
|
199 | self.__withOverapping = False | |
200 | self.__buffer = 0 |
|
200 | self.__buffer = 0 | |
201 |
|
201 | |||
202 | self.__profIndex = 0 |
|
202 | self.__profIndex = 0 | |
203 |
|
203 | |||
204 | def putData(self, data): |
|
204 | def putData(self, data): | |
205 |
|
205 | |||
206 | """ |
|
206 | """ | |
207 | Add a profile to the __buffer and increase in one the __profileIndex |
|
207 | Add a profile to the __buffer and increase in one the __profileIndex | |
208 |
|
208 | |||
209 | """ |
|
209 | """ | |
210 |
|
210 | |||
211 | if not self.__withOverapping: |
|
211 | if not self.__withOverapping: | |
212 | self.__buffer += data.copy() |
|
212 | self.__buffer += data.copy() | |
213 | self.__profIndex += 1 |
|
213 | self.__profIndex += 1 | |
214 | return |
|
214 | return | |
215 |
|
215 | |||
216 | #Overlapping data |
|
216 | #Overlapping data | |
217 | nChannels, nHeis = data.shape |
|
217 | nChannels, nHeis = data.shape | |
218 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
218 | data = numpy.reshape(data, (1, nChannels, nHeis)) | |
219 |
|
219 | |||
220 | #If the buffer is empty then it takes the data value |
|
220 | #If the buffer is empty then it takes the data value | |
221 | if self.__buffer == None: |
|
221 | if self.__buffer == None: | |
222 | self.__buffer = data |
|
222 | self.__buffer = data | |
223 | self.__profIndex += 1 |
|
223 | self.__profIndex += 1 | |
224 | return |
|
224 | return | |
225 |
|
225 | |||
226 | #If the buffer length is lower than n then stakcing the data value |
|
226 | #If the buffer length is lower than n then stakcing the data value | |
227 | if self.__profIndex < self.n: |
|
227 | if self.__profIndex < self.n: | |
228 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
228 | self.__buffer = numpy.vstack((self.__buffer, data)) | |
229 | self.__profIndex += 1 |
|
229 | self.__profIndex += 1 | |
230 | return |
|
230 | return | |
231 |
|
231 | |||
232 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
232 | #If the buffer length is equal to n then replacing the last buffer value with the data value | |
233 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
233 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) | |
234 | self.__buffer[self.n-1] = data |
|
234 | self.__buffer[self.n-1] = data | |
235 | self.__profIndex = self.n |
|
235 | self.__profIndex = self.n | |
236 | return |
|
236 | return | |
237 |
|
237 | |||
238 |
|
238 | |||
239 | def pushData(self): |
|
239 | def pushData(self): | |
240 | """ |
|
240 | """ | |
241 | Return the sum of the last profiles and the profiles used in the sum. |
|
241 | Return the sum of the last profiles and the profiles used in the sum. | |
242 |
|
242 | |||
243 | Affected: |
|
243 | Affected: | |
244 |
|
244 | |||
245 | self.__profileIndex |
|
245 | self.__profileIndex | |
246 |
|
246 | |||
247 | """ |
|
247 | """ | |
248 |
|
248 | |||
249 | if not self.__withOverapping: |
|
249 | if not self.__withOverapping: | |
250 | data = self.__buffer |
|
250 | data = self.__buffer | |
251 | n = self.__profIndex |
|
251 | n = self.__profIndex | |
252 |
|
252 | |||
253 | self.__buffer = 0 |
|
253 | self.__buffer = 0 | |
254 | self.__profIndex = 0 |
|
254 | self.__profIndex = 0 | |
255 |
|
255 | |||
256 | return data, n |
|
256 | return data, n | |
257 |
|
257 | |||
258 | #Integration with Overlapping |
|
258 | #Integration with Overlapping | |
259 | data = numpy.sum(self.__buffer, axis=0) |
|
259 | data = numpy.sum(self.__buffer, axis=0) | |
260 | n = self.__profIndex |
|
260 | n = self.__profIndex | |
261 |
|
261 | |||
262 | return data, n |
|
262 | return data, n | |
263 |
|
263 | |||
264 | def byProfiles(self, data): |
|
264 | def byProfiles(self, data): | |
265 |
|
265 | |||
266 | self.__dataReady = False |
|
266 | self.__dataReady = False | |
267 | avgdata = None |
|
267 | avgdata = None | |
268 | # n = None |
|
268 | # n = None | |
269 |
|
269 | |||
270 | self.putData(data) |
|
270 | self.putData(data) | |
271 |
|
271 | |||
272 | if self.__profIndex == self.n: |
|
272 | if self.__profIndex == self.n: | |
273 |
|
273 | |||
274 | avgdata, n = self.pushData() |
|
274 | avgdata, n = self.pushData() | |
275 | self.__dataReady = True |
|
275 | self.__dataReady = True | |
276 |
|
276 | |||
277 | return avgdata |
|
277 | return avgdata | |
278 |
|
278 | |||
279 | def byTime(self, data, datatime): |
|
279 | def byTime(self, data, datatime): | |
280 |
|
280 | |||
281 | self.__dataReady = False |
|
281 | self.__dataReady = False | |
282 | avgdata = None |
|
282 | avgdata = None | |
283 | n = None |
|
283 | n = None | |
284 |
|
284 | |||
285 | self.putData(data) |
|
285 | self.putData(data) | |
286 |
|
286 | |||
287 | if (datatime - self.__initime) >= self.__integrationtime: |
|
287 | if (datatime - self.__initime) >= self.__integrationtime: | |
288 | avgdata, n = self.pushData() |
|
288 | avgdata, n = self.pushData() | |
289 | self.n = n |
|
289 | self.n = n | |
290 | self.__dataReady = True |
|
290 | self.__dataReady = True | |
291 |
|
291 | |||
292 | return avgdata |
|
292 | return avgdata | |
293 |
|
293 | |||
294 | def integrate(self, data, datatime=None): |
|
294 | def integrate(self, data, datatime=None): | |
295 |
|
295 | |||
296 | if self.__initime == None: |
|
296 | if self.__initime == None: | |
297 | self.__initime = datatime |
|
297 | self.__initime = datatime | |
298 |
|
298 | |||
299 | if self.__byTime: |
|
299 | if self.__byTime: | |
300 | avgdata = self.byTime(data, datatime) |
|
300 | avgdata = self.byTime(data, datatime) | |
301 | else: |
|
301 | else: | |
302 | avgdata = self.byProfiles(data) |
|
302 | avgdata = self.byProfiles(data) | |
303 |
|
303 | |||
304 |
|
304 | |||
305 | self.__lastdatatime = datatime |
|
305 | self.__lastdatatime = datatime | |
306 |
|
306 | |||
307 | if avgdata == None: |
|
307 | if avgdata == None: | |
308 | return None, None |
|
308 | return None, None | |
309 |
|
309 | |||
310 | avgdatatime = self.__initime |
|
310 | avgdatatime = self.__initime | |
311 |
|
311 | |||
312 | deltatime = datatime -self.__lastdatatime |
|
312 | deltatime = datatime -self.__lastdatatime | |
313 |
|
313 | |||
314 | if not self.__withOverapping: |
|
314 | if not self.__withOverapping: | |
315 | self.__initime = datatime |
|
315 | self.__initime = datatime | |
316 | else: |
|
316 | else: | |
317 | self.__initime += deltatime |
|
317 | self.__initime += deltatime | |
318 |
|
318 | |||
319 | return avgdata, avgdatatime |
|
319 | return avgdata, avgdatatime | |
320 |
|
320 | |||
321 | def run(self, dataOut, **kwargs): |
|
321 | def run(self, dataOut, **kwargs): | |
322 |
|
322 | |||
323 | if not self.isConfig: |
|
323 | if not self.isConfig: | |
324 | self.setup(**kwargs) |
|
324 | self.setup(**kwargs) | |
325 | self.isConfig = True |
|
325 | self.isConfig = True | |
326 |
|
326 | |||
327 | avgdata, avgdatatime = self.integrate(dataOut.data_spc, dataOut.utctime) |
|
327 | avgdata, avgdatatime = self.integrate(dataOut.data_spc, dataOut.utctime) | |
328 |
|
328 | |||
329 | # dataOut.timeInterval *= n |
|
329 | # dataOut.timeInterval *= n | |
330 | dataOut.flagNoData = True |
|
330 | dataOut.flagNoData = True | |
331 |
|
331 | |||
332 | if self.__dataReady: |
|
332 | if self.__dataReady: | |
333 | dataOut.data_spc = avgdata |
|
333 | dataOut.data_spc = avgdata | |
334 | dataOut.nIncohInt *= self.n |
|
334 | dataOut.nIncohInt *= self.n | |
335 | # dataOut.nCohInt *= self.n |
|
335 | # dataOut.nCohInt *= self.n | |
336 | dataOut.utctime = avgdatatime |
|
336 | dataOut.utctime = avgdatatime | |
337 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nIncohInt |
|
337 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nIncohInt | |
338 | # dataOut.timeInterval = self.__timeInterval*self.n |
|
338 | # dataOut.timeInterval = self.__timeInterval*self.n | |
339 | dataOut.flagNoData = False No newline at end of file |
|
339 | dataOut.flagNoData = False |
@@ -1,935 +1,935 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import math |
|
2 | import math | |
3 |
|
3 | |||
4 | from jroproc_base import ProcessingUnit, Operation |
|
4 | from jroproc_base import ProcessingUnit, Operation | |
5 | from model.data.jrodata import Spectra |
|
5 | from model.data.jrodata import Spectra | |
6 | from model.data.jrodata import hildebrand_sekhon |
|
6 | from model.data.jrodata import hildebrand_sekhon | |
7 |
|
7 | |||
8 | class SpectraProc(ProcessingUnit): |
|
8 | class SpectraProc(ProcessingUnit): | |
9 |
|
9 | |||
10 | def __init__(self): |
|
10 | def __init__(self): | |
11 |
|
11 | |||
12 | ProcessingUnit.__init__(self) |
|
12 | ProcessingUnit.__init__(self) | |
13 |
|
13 | |||
14 | self.buffer = None |
|
14 | self.buffer = None | |
15 | self.firstdatatime = None |
|
15 | self.firstdatatime = None | |
16 | self.profIndex = 0 |
|
16 | self.profIndex = 0 | |
17 | self.dataOut = Spectra() |
|
17 | self.dataOut = Spectra() | |
18 | self.id_min = None |
|
18 | self.id_min = None | |
19 | self.id_max = None |
|
19 | self.id_max = None | |
20 |
|
20 | |||
21 | def __updateObjFromInput(self): |
|
21 | def __updateObjFromInput(self): | |
22 |
|
22 | |||
23 | self.dataOut.timeZone = self.dataIn.timeZone |
|
23 | self.dataOut.timeZone = self.dataIn.timeZone | |
24 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
24 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
25 | self.dataOut.errorCount = self.dataIn.errorCount |
|
25 | self.dataOut.errorCount = self.dataIn.errorCount | |
26 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
26 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
27 |
|
27 | |||
28 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
28 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
29 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
29 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
30 | self.dataOut.channelList = self.dataIn.channelList |
|
30 | self.dataOut.channelList = self.dataIn.channelList | |
31 | self.dataOut.heightList = self.dataIn.heightList |
|
31 | self.dataOut.heightList = self.dataIn.heightList | |
32 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
32 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
33 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
33 | # self.dataOut.nHeights = self.dataIn.nHeights | |
34 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
34 | # self.dataOut.nChannels = self.dataIn.nChannels | |
35 | self.dataOut.nBaud = self.dataIn.nBaud |
|
35 | self.dataOut.nBaud = self.dataIn.nBaud | |
36 | self.dataOut.nCode = self.dataIn.nCode |
|
36 | self.dataOut.nCode = self.dataIn.nCode | |
37 | self.dataOut.code = self.dataIn.code |
|
37 | self.dataOut.code = self.dataIn.code | |
38 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
38 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
39 | # self.dataOut.channelIndexList = self.dataIn.channelIndexList |
|
39 | # self.dataOut.channelIndexList = self.dataIn.channelIndexList | |
40 | self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock |
|
40 | self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock | |
41 | self.dataOut.utctime = self.firstdatatime |
|
41 | self.dataOut.utctime = self.firstdatatime | |
42 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
42 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
43 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
43 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
44 | # self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT |
|
44 | # self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT | |
45 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
45 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
46 | self.dataOut.nIncohInt = 1 |
|
46 | self.dataOut.nIncohInt = 1 | |
47 | # self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
47 | # self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
48 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
48 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
49 |
|
49 | |||
50 | self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nFFTPoints*self.dataOut.nIncohInt |
|
50 | # self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nFFTPoints*self.dataOut.nIncohInt | |
51 | self.dataOut.frequency = self.dataIn.frequency |
|
51 | self.dataOut.frequency = self.dataIn.frequency | |
52 | self.dataOut.realtime = self.dataIn.realtime |
|
52 | self.dataOut.realtime = self.dataIn.realtime | |
53 |
|
53 | |||
54 | self.dataOut.azimuth = self.dataIn.azimuth |
|
54 | self.dataOut.azimuth = self.dataIn.azimuth | |
55 | self.dataOut.zenith = self.dataIn.zenith |
|
55 | self.dataOut.zenith = self.dataIn.zenith | |
56 |
|
56 | |||
57 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
57 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |
58 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
58 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |
59 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
59 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |
60 |
|
60 | |||
61 | def __getFft(self): |
|
61 | def __getFft(self): | |
62 | """ |
|
62 | """ | |
63 | Convierte valores de Voltaje a Spectra |
|
63 | Convierte valores de Voltaje a Spectra | |
64 |
|
64 | |||
65 | Affected: |
|
65 | Affected: | |
66 | self.dataOut.data_spc |
|
66 | self.dataOut.data_spc | |
67 | self.dataOut.data_cspc |
|
67 | self.dataOut.data_cspc | |
68 | self.dataOut.data_dc |
|
68 | self.dataOut.data_dc | |
69 | self.dataOut.heightList |
|
69 | self.dataOut.heightList | |
70 | self.profIndex |
|
70 | self.profIndex | |
71 | self.buffer |
|
71 | self.buffer | |
72 | self.dataOut.flagNoData |
|
72 | self.dataOut.flagNoData | |
73 | """ |
|
73 | """ | |
74 | fft_volt = numpy.fft.fft(self.buffer,n=self.dataOut.nFFTPoints,axis=1) |
|
74 | fft_volt = numpy.fft.fft(self.buffer,n=self.dataOut.nFFTPoints,axis=1) | |
75 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
75 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |
76 | dc = fft_volt[:,0,:] |
|
76 | dc = fft_volt[:,0,:] | |
77 |
|
77 | |||
78 | #calculo de self-spectra |
|
78 | #calculo de self-spectra | |
79 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) |
|
79 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) | |
80 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
80 | spc = fft_volt * numpy.conjugate(fft_volt) | |
81 | spc = spc.real |
|
81 | spc = spc.real | |
82 |
|
82 | |||
83 | blocksize = 0 |
|
83 | blocksize = 0 | |
84 | blocksize += dc.size |
|
84 | blocksize += dc.size | |
85 | blocksize += spc.size |
|
85 | blocksize += spc.size | |
86 |
|
86 | |||
87 | cspc = None |
|
87 | cspc = None | |
88 | pairIndex = 0 |
|
88 | pairIndex = 0 | |
89 | if self.dataOut.pairsList != None: |
|
89 | if self.dataOut.pairsList != None: | |
90 | #calculo de cross-spectra |
|
90 | #calculo de cross-spectra | |
91 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
91 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |
92 | for pair in self.dataOut.pairsList: |
|
92 | for pair in self.dataOut.pairsList: | |
93 | cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:]) |
|
93 | cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:]) | |
94 | pairIndex += 1 |
|
94 | pairIndex += 1 | |
95 | blocksize += cspc.size |
|
95 | blocksize += cspc.size | |
96 |
|
96 | |||
97 | self.dataOut.data_spc = spc |
|
97 | self.dataOut.data_spc = spc | |
98 | self.dataOut.data_cspc = cspc |
|
98 | self.dataOut.data_cspc = cspc | |
99 | self.dataOut.data_dc = dc |
|
99 | self.dataOut.data_dc = dc | |
100 | self.dataOut.blockSize = blocksize |
|
100 | self.dataOut.blockSize = blocksize | |
101 | self.dataOut.flagShiftFFT = False |
|
101 | self.dataOut.flagShiftFFT = False | |
102 |
|
102 | |||
103 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None): |
|
103 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None): | |
104 |
|
104 | |||
105 | self.dataOut.flagNoData = True |
|
105 | self.dataOut.flagNoData = True | |
106 |
|
106 | |||
107 | if self.dataIn.type == "Spectra": |
|
107 | if self.dataIn.type == "Spectra": | |
108 | self.dataOut.copy(self.dataIn) |
|
108 | self.dataOut.copy(self.dataIn) | |
109 | return True |
|
109 | return True | |
110 |
|
110 | |||
111 | if self.dataIn.type == "Voltage": |
|
111 | if self.dataIn.type == "Voltage": | |
112 |
|
112 | |||
113 | if nFFTPoints == None: |
|
113 | if nFFTPoints == None: | |
114 | raise ValueError, "This SpectraProc.run() need nFFTPoints input variable" |
|
114 | raise ValueError, "This SpectraProc.run() need nFFTPoints input variable" | |
115 |
|
115 | |||
116 | if nProfiles == None: |
|
116 | if nProfiles == None: | |
117 | raise ValueError, "This SpectraProc.run() need nProfiles input variable" |
|
117 | raise ValueError, "This SpectraProc.run() need nProfiles input variable" | |
118 |
|
118 | |||
119 |
|
119 | |||
120 | if ippFactor == None: |
|
120 | if ippFactor == None: | |
121 | ippFactor = 1 |
|
121 | ippFactor = 1 | |
122 | self.dataOut.ippFactor = ippFactor |
|
122 | self.dataOut.ippFactor = ippFactor | |
123 |
|
123 | |||
124 | self.dataOut.nFFTPoints = nFFTPoints |
|
124 | self.dataOut.nFFTPoints = nFFTPoints | |
125 | self.dataOut.pairsList = pairsList |
|
125 | self.dataOut.pairsList = pairsList | |
126 |
|
126 | |||
127 | if self.buffer == None: |
|
127 | if self.buffer == None: | |
128 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
128 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
129 | nProfiles, |
|
129 | nProfiles, | |
130 | self.dataIn.nHeights), |
|
130 | self.dataIn.nHeights), | |
131 | dtype='complex') |
|
131 | dtype='complex') | |
132 | self.id_min = 0 |
|
132 | self.id_min = 0 | |
133 | self.id_max = self.dataIn.data.shape[1] |
|
133 | self.id_max = self.dataIn.data.shape[1] | |
134 |
|
134 | |||
135 | if len(self.dataIn.data.shape) == 2: |
|
135 | if len(self.dataIn.data.shape) == 2: | |
136 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() |
|
136 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() | |
137 | self.profIndex += 1 |
|
137 | self.profIndex += 1 | |
138 | else: |
|
138 | else: | |
139 | if self.dataIn.data.shape[1] == nProfiles: |
|
139 | if self.dataIn.data.shape[1] == nProfiles: | |
140 | self.buffer = self.dataIn.data.copy() |
|
140 | self.buffer = self.dataIn.data.copy() | |
141 | self.profIndex = nProfiles |
|
141 | self.profIndex = nProfiles | |
142 | elif self.dataIn.data.shape[1] < nProfiles: |
|
142 | elif self.dataIn.data.shape[1] < nProfiles: | |
143 | self.buffer[:,self.id_min:self.id_max,:] = self.dataIn.data |
|
143 | self.buffer[:,self.id_min:self.id_max,:] = self.dataIn.data | |
144 | self.profIndex += self.dataIn.data.shape[1] |
|
144 | self.profIndex += self.dataIn.data.shape[1] | |
145 | self.id_min += self.dataIn.data.shape[1] |
|
145 | self.id_min += self.dataIn.data.shape[1] | |
146 | self.id_max += self.dataIn.data.shape[1] |
|
146 | self.id_max += self.dataIn.data.shape[1] | |
147 | else: |
|
147 | else: | |
148 | raise ValueError, "The type object %s has %d profiles, it should be equal to %d profiles"%(self.dataIn.type,self.dataIn.data.shape[1],nProfiles) |
|
148 | raise ValueError, "The type object %s has %d profiles, it should be equal to %d profiles"%(self.dataIn.type,self.dataIn.data.shape[1],nProfiles) | |
149 | self.dataOut.flagNoData = True |
|
149 | self.dataOut.flagNoData = True | |
150 | return 0 |
|
150 | return 0 | |
151 |
|
151 | |||
152 |
|
152 | |||
153 | if self.firstdatatime == None: |
|
153 | if self.firstdatatime == None: | |
154 | self.firstdatatime = self.dataIn.utctime |
|
154 | self.firstdatatime = self.dataIn.utctime | |
155 |
|
155 | |||
156 | if self.profIndex == nProfiles: |
|
156 | if self.profIndex == nProfiles: | |
157 | self.__updateObjFromInput() |
|
157 | self.__updateObjFromInput() | |
158 | self.__getFft() |
|
158 | self.__getFft() | |
159 |
|
159 | |||
160 | self.dataOut.flagNoData = False |
|
160 | self.dataOut.flagNoData = False | |
161 |
|
161 | |||
162 | self.buffer = None |
|
162 | self.buffer = None | |
163 | self.firstdatatime = None |
|
163 | self.firstdatatime = None | |
164 | self.profIndex = 0 |
|
164 | self.profIndex = 0 | |
165 |
|
165 | |||
166 | return True |
|
166 | return True | |
167 |
|
167 | |||
168 | raise ValueError, "The type object %s is not valid"%(self.dataIn.type) |
|
168 | raise ValueError, "The type object %s is not valid"%(self.dataIn.type) | |
169 |
|
169 | |||
170 | def selectChannels(self, channelList): |
|
170 | def selectChannels(self, channelList): | |
171 |
|
171 | |||
172 | channelIndexList = [] |
|
172 | channelIndexList = [] | |
173 |
|
173 | |||
174 | for channel in channelList: |
|
174 | for channel in channelList: | |
175 | index = self.dataOut.channelList.index(channel) |
|
175 | index = self.dataOut.channelList.index(channel) | |
176 | channelIndexList.append(index) |
|
176 | channelIndexList.append(index) | |
177 |
|
177 | |||
178 | self.selectChannelsByIndex(channelIndexList) |
|
178 | self.selectChannelsByIndex(channelIndexList) | |
179 |
|
179 | |||
180 | def selectChannelsByIndex(self, channelIndexList): |
|
180 | def selectChannelsByIndex(self, channelIndexList): | |
181 | """ |
|
181 | """ | |
182 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
182 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
183 |
|
183 | |||
184 | Input: |
|
184 | Input: | |
185 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
185 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
186 |
|
186 | |||
187 | Affected: |
|
187 | Affected: | |
188 | self.dataOut.data_spc |
|
188 | self.dataOut.data_spc | |
189 | self.dataOut.channelIndexList |
|
189 | self.dataOut.channelIndexList | |
190 | self.dataOut.nChannels |
|
190 | self.dataOut.nChannels | |
191 |
|
191 | |||
192 | Return: |
|
192 | Return: | |
193 | None |
|
193 | None | |
194 | """ |
|
194 | """ | |
195 |
|
195 | |||
196 | for channelIndex in channelIndexList: |
|
196 | for channelIndex in channelIndexList: | |
197 | if channelIndex not in self.dataOut.channelIndexList: |
|
197 | if channelIndex not in self.dataOut.channelIndexList: | |
198 | print channelIndexList |
|
198 | print channelIndexList | |
199 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
199 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex | |
200 |
|
200 | |||
201 | # nChannels = len(channelIndexList) |
|
201 | # nChannels = len(channelIndexList) | |
202 |
|
202 | |||
203 | data_spc = self.dataOut.data_spc[channelIndexList,:] |
|
203 | data_spc = self.dataOut.data_spc[channelIndexList,:] | |
204 |
|
204 | |||
205 | self.dataOut.data_spc = data_spc |
|
205 | self.dataOut.data_spc = data_spc | |
206 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
206 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
207 | # self.dataOut.nChannels = nChannels |
|
207 | # self.dataOut.nChannels = nChannels | |
208 |
|
208 | |||
209 | return 1 |
|
209 | return 1 | |
210 |
|
210 | |||
211 | def selectHeights(self, minHei, maxHei): |
|
211 | def selectHeights(self, minHei, maxHei): | |
212 | """ |
|
212 | """ | |
213 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
213 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
214 | minHei <= height <= maxHei |
|
214 | minHei <= height <= maxHei | |
215 |
|
215 | |||
216 | Input: |
|
216 | Input: | |
217 | minHei : valor minimo de altura a considerar |
|
217 | minHei : valor minimo de altura a considerar | |
218 | maxHei : valor maximo de altura a considerar |
|
218 | maxHei : valor maximo de altura a considerar | |
219 |
|
219 | |||
220 | Affected: |
|
220 | Affected: | |
221 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
221 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |
222 |
|
222 | |||
223 | Return: |
|
223 | Return: | |
224 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
224 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
225 | """ |
|
225 | """ | |
226 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
226 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
227 | raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) |
|
227 | raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) | |
228 |
|
228 | |||
229 | if (maxHei > self.dataOut.heightList[-1]): |
|
229 | if (maxHei > self.dataOut.heightList[-1]): | |
230 | maxHei = self.dataOut.heightList[-1] |
|
230 | maxHei = self.dataOut.heightList[-1] | |
231 | # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) |
|
231 | # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) | |
232 |
|
232 | |||
233 | minIndex = 0 |
|
233 | minIndex = 0 | |
234 | maxIndex = 0 |
|
234 | maxIndex = 0 | |
235 | heights = self.dataOut.heightList |
|
235 | heights = self.dataOut.heightList | |
236 |
|
236 | |||
237 | inda = numpy.where(heights >= minHei) |
|
237 | inda = numpy.where(heights >= minHei) | |
238 | indb = numpy.where(heights <= maxHei) |
|
238 | indb = numpy.where(heights <= maxHei) | |
239 |
|
239 | |||
240 | try: |
|
240 | try: | |
241 | minIndex = inda[0][0] |
|
241 | minIndex = inda[0][0] | |
242 | except: |
|
242 | except: | |
243 | minIndex = 0 |
|
243 | minIndex = 0 | |
244 |
|
244 | |||
245 | try: |
|
245 | try: | |
246 | maxIndex = indb[0][-1] |
|
246 | maxIndex = indb[0][-1] | |
247 | except: |
|
247 | except: | |
248 | maxIndex = len(heights) |
|
248 | maxIndex = len(heights) | |
249 |
|
249 | |||
250 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
250 | self.selectHeightsByIndex(minIndex, maxIndex) | |
251 |
|
251 | |||
252 | return 1 |
|
252 | return 1 | |
253 |
|
253 | |||
254 | def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None): |
|
254 | def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None): | |
255 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
255 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
256 |
|
256 | |||
257 | if hei_ref != None: |
|
257 | if hei_ref != None: | |
258 | newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
258 | newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
259 |
|
259 | |||
260 | minIndex = min(newheis[0]) |
|
260 | minIndex = min(newheis[0]) | |
261 | maxIndex = max(newheis[0]) |
|
261 | maxIndex = max(newheis[0]) | |
262 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] |
|
262 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] | |
263 | heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
263 | heightList = self.dataOut.heightList[minIndex:maxIndex+1] | |
264 |
|
264 | |||
265 | # determina indices |
|
265 | # determina indices | |
266 | nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0])) |
|
266 | nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0])) | |
267 | avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0)) |
|
267 | avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0)) | |
268 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
268 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |
269 | beacon_heiIndexList = [] |
|
269 | beacon_heiIndexList = [] | |
270 | for val in avg_dB.tolist(): |
|
270 | for val in avg_dB.tolist(): | |
271 | if val >= beacon_dB[0]: |
|
271 | if val >= beacon_dB[0]: | |
272 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
272 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |
273 |
|
273 | |||
274 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
274 | #data_spc = data_spc[:,:,beacon_heiIndexList] | |
275 | data_cspc = None |
|
275 | data_cspc = None | |
276 | if self.dataOut.data_cspc != None: |
|
276 | if self.dataOut.data_cspc != None: | |
277 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] |
|
277 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] | |
278 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
278 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] | |
279 |
|
279 | |||
280 | data_dc = None |
|
280 | data_dc = None | |
281 | if self.dataOut.data_dc != None: |
|
281 | if self.dataOut.data_dc != None: | |
282 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] |
|
282 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] | |
283 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
283 | #data_dc = data_dc[:,beacon_heiIndexList] | |
284 |
|
284 | |||
285 | self.dataOut.data_spc = data_spc |
|
285 | self.dataOut.data_spc = data_spc | |
286 | self.dataOut.data_cspc = data_cspc |
|
286 | self.dataOut.data_cspc = data_cspc | |
287 | self.dataOut.data_dc = data_dc |
|
287 | self.dataOut.data_dc = data_dc | |
288 | self.dataOut.heightList = heightList |
|
288 | self.dataOut.heightList = heightList | |
289 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
289 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |
290 |
|
290 | |||
291 | return 1 |
|
291 | return 1 | |
292 |
|
292 | |||
293 |
|
293 | |||
294 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
294 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
295 | """ |
|
295 | """ | |
296 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
296 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
297 | minIndex <= index <= maxIndex |
|
297 | minIndex <= index <= maxIndex | |
298 |
|
298 | |||
299 | Input: |
|
299 | Input: | |
300 | minIndex : valor de indice minimo de altura a considerar |
|
300 | minIndex : valor de indice minimo de altura a considerar | |
301 | maxIndex : valor de indice maximo de altura a considerar |
|
301 | maxIndex : valor de indice maximo de altura a considerar | |
302 |
|
302 | |||
303 | Affected: |
|
303 | Affected: | |
304 | self.dataOut.data_spc |
|
304 | self.dataOut.data_spc | |
305 | self.dataOut.data_cspc |
|
305 | self.dataOut.data_cspc | |
306 | self.dataOut.data_dc |
|
306 | self.dataOut.data_dc | |
307 | self.dataOut.heightList |
|
307 | self.dataOut.heightList | |
308 |
|
308 | |||
309 | Return: |
|
309 | Return: | |
310 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
310 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
311 | """ |
|
311 | """ | |
312 |
|
312 | |||
313 | if (minIndex < 0) or (minIndex > maxIndex): |
|
313 | if (minIndex < 0) or (minIndex > maxIndex): | |
314 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
314 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) | |
315 |
|
315 | |||
316 | if (maxIndex >= self.dataOut.nHeights): |
|
316 | if (maxIndex >= self.dataOut.nHeights): | |
317 | maxIndex = self.dataOut.nHeights-1 |
|
317 | maxIndex = self.dataOut.nHeights-1 | |
318 | # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
318 | # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) | |
319 |
|
319 | |||
320 | # nHeights = maxIndex - minIndex + 1 |
|
320 | # nHeights = maxIndex - minIndex + 1 | |
321 |
|
321 | |||
322 | #Spectra |
|
322 | #Spectra | |
323 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] |
|
323 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] | |
324 |
|
324 | |||
325 | data_cspc = None |
|
325 | data_cspc = None | |
326 | if self.dataOut.data_cspc != None: |
|
326 | if self.dataOut.data_cspc != None: | |
327 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] |
|
327 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] | |
328 |
|
328 | |||
329 | data_dc = None |
|
329 | data_dc = None | |
330 | if self.dataOut.data_dc != None: |
|
330 | if self.dataOut.data_dc != None: | |
331 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] |
|
331 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] | |
332 |
|
332 | |||
333 | self.dataOut.data_spc = data_spc |
|
333 | self.dataOut.data_spc = data_spc | |
334 | self.dataOut.data_cspc = data_cspc |
|
334 | self.dataOut.data_cspc = data_cspc | |
335 | self.dataOut.data_dc = data_dc |
|
335 | self.dataOut.data_dc = data_dc | |
336 |
|
336 | |||
337 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
337 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] | |
338 |
|
338 | |||
339 | return 1 |
|
339 | return 1 | |
340 |
|
340 | |||
341 | def removeDC(self, mode = 2): |
|
341 | def removeDC(self, mode = 2): | |
342 | jspectra = self.dataOut.data_spc |
|
342 | jspectra = self.dataOut.data_spc | |
343 | jcspectra = self.dataOut.data_cspc |
|
343 | jcspectra = self.dataOut.data_cspc | |
344 |
|
344 | |||
345 |
|
345 | |||
346 | num_chan = jspectra.shape[0] |
|
346 | num_chan = jspectra.shape[0] | |
347 | num_hei = jspectra.shape[2] |
|
347 | num_hei = jspectra.shape[2] | |
348 |
|
348 | |||
349 | if jcspectra != None: |
|
349 | if jcspectra != None: | |
350 | jcspectraExist = True |
|
350 | jcspectraExist = True | |
351 | num_pairs = jcspectra.shape[0] |
|
351 | num_pairs = jcspectra.shape[0] | |
352 | else: jcspectraExist = False |
|
352 | else: jcspectraExist = False | |
353 |
|
353 | |||
354 | freq_dc = jspectra.shape[1]/2 |
|
354 | freq_dc = jspectra.shape[1]/2 | |
355 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
355 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc | |
356 |
|
356 | |||
357 | if ind_vel[0]<0: |
|
357 | if ind_vel[0]<0: | |
358 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
358 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof | |
359 |
|
359 | |||
360 | if mode == 1: |
|
360 | if mode == 1: | |
361 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
361 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION | |
362 |
|
362 | |||
363 | if jcspectraExist: |
|
363 | if jcspectraExist: | |
364 | jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2 |
|
364 | jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2 | |
365 |
|
365 | |||
366 | if mode == 2: |
|
366 | if mode == 2: | |
367 |
|
367 | |||
368 | vel = numpy.array([-2,-1,1,2]) |
|
368 | vel = numpy.array([-2,-1,1,2]) | |
369 | xx = numpy.zeros([4,4]) |
|
369 | xx = numpy.zeros([4,4]) | |
370 |
|
370 | |||
371 | for fil in range(4): |
|
371 | for fil in range(4): | |
372 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
372 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) | |
373 |
|
373 | |||
374 | xx_inv = numpy.linalg.inv(xx) |
|
374 | xx_inv = numpy.linalg.inv(xx) | |
375 | xx_aux = xx_inv[0,:] |
|
375 | xx_aux = xx_inv[0,:] | |
376 |
|
376 | |||
377 | for ich in range(num_chan): |
|
377 | for ich in range(num_chan): | |
378 | yy = jspectra[ich,ind_vel,:] |
|
378 | yy = jspectra[ich,ind_vel,:] | |
379 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
379 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) | |
380 |
|
380 | |||
381 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
381 | junkid = jspectra[ich,freq_dc,:]<=0 | |
382 | cjunkid = sum(junkid) |
|
382 | cjunkid = sum(junkid) | |
383 |
|
383 | |||
384 | if cjunkid.any(): |
|
384 | if cjunkid.any(): | |
385 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
385 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 | |
386 |
|
386 | |||
387 | if jcspectraExist: |
|
387 | if jcspectraExist: | |
388 | for ip in range(num_pairs): |
|
388 | for ip in range(num_pairs): | |
389 | yy = jcspectra[ip,ind_vel,:] |
|
389 | yy = jcspectra[ip,ind_vel,:] | |
390 | jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
390 | jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy) | |
391 |
|
391 | |||
392 |
|
392 | |||
393 | self.dataOut.data_spc = jspectra |
|
393 | self.dataOut.data_spc = jspectra | |
394 | self.dataOut.data_cspc = jcspectra |
|
394 | self.dataOut.data_cspc = jcspectra | |
395 |
|
395 | |||
396 | return 1 |
|
396 | return 1 | |
397 |
|
397 | |||
398 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
398 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): | |
399 |
|
399 | |||
400 | jspectra = self.dataOut.data_spc |
|
400 | jspectra = self.dataOut.data_spc | |
401 | jcspectra = self.dataOut.data_cspc |
|
401 | jcspectra = self.dataOut.data_cspc | |
402 | jnoise = self.dataOut.getNoise() |
|
402 | jnoise = self.dataOut.getNoise() | |
403 | num_incoh = self.dataOut.nIncohInt |
|
403 | num_incoh = self.dataOut.nIncohInt | |
404 |
|
404 | |||
405 | num_channel = jspectra.shape[0] |
|
405 | num_channel = jspectra.shape[0] | |
406 | num_prof = jspectra.shape[1] |
|
406 | num_prof = jspectra.shape[1] | |
407 | num_hei = jspectra.shape[2] |
|
407 | num_hei = jspectra.shape[2] | |
408 |
|
408 | |||
409 | #hei_interf |
|
409 | #hei_interf | |
410 | if hei_interf == None: |
|
410 | if hei_interf == None: | |
411 | count_hei = num_hei/2 #Como es entero no importa |
|
411 | count_hei = num_hei/2 #Como es entero no importa | |
412 | hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei |
|
412 | hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei | |
413 | hei_interf = numpy.asarray(hei_interf)[0] |
|
413 | hei_interf = numpy.asarray(hei_interf)[0] | |
414 | #nhei_interf |
|
414 | #nhei_interf | |
415 | if (nhei_interf == None): |
|
415 | if (nhei_interf == None): | |
416 | nhei_interf = 5 |
|
416 | nhei_interf = 5 | |
417 | if (nhei_interf < 1): |
|
417 | if (nhei_interf < 1): | |
418 | nhei_interf = 1 |
|
418 | nhei_interf = 1 | |
419 | if (nhei_interf > count_hei): |
|
419 | if (nhei_interf > count_hei): | |
420 | nhei_interf = count_hei |
|
420 | nhei_interf = count_hei | |
421 | if (offhei_interf == None): |
|
421 | if (offhei_interf == None): | |
422 | offhei_interf = 0 |
|
422 | offhei_interf = 0 | |
423 |
|
423 | |||
424 | ind_hei = range(num_hei) |
|
424 | ind_hei = range(num_hei) | |
425 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
425 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |
426 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
426 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |
427 | mask_prof = numpy.asarray(range(num_prof)) |
|
427 | mask_prof = numpy.asarray(range(num_prof)) | |
428 | num_mask_prof = mask_prof.size |
|
428 | num_mask_prof = mask_prof.size | |
429 | comp_mask_prof = [0, num_prof/2] |
|
429 | comp_mask_prof = [0, num_prof/2] | |
430 |
|
430 | |||
431 |
|
431 | |||
432 | #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
432 | #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |
433 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
433 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |
434 | jnoise = numpy.nan |
|
434 | jnoise = numpy.nan | |
435 | noise_exist = jnoise[0] < numpy.Inf |
|
435 | noise_exist = jnoise[0] < numpy.Inf | |
436 |
|
436 | |||
437 | #Subrutina de Remocion de la Interferencia |
|
437 | #Subrutina de Remocion de la Interferencia | |
438 | for ich in range(num_channel): |
|
438 | for ich in range(num_channel): | |
439 | #Se ordena los espectros segun su potencia (menor a mayor) |
|
439 | #Se ordena los espectros segun su potencia (menor a mayor) | |
440 | power = jspectra[ich,mask_prof,:] |
|
440 | power = jspectra[ich,mask_prof,:] | |
441 | power = power[:,hei_interf] |
|
441 | power = power[:,hei_interf] | |
442 | power = power.sum(axis = 0) |
|
442 | power = power.sum(axis = 0) | |
443 | psort = power.ravel().argsort() |
|
443 | psort = power.ravel().argsort() | |
444 |
|
444 | |||
445 | #Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
445 | #Se estima la interferencia promedio en los Espectros de Potencia empleando | |
446 | junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]] |
|
446 | junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]] | |
447 |
|
447 | |||
448 | if noise_exist: |
|
448 | if noise_exist: | |
449 | # tmp_noise = jnoise[ich] / num_prof |
|
449 | # tmp_noise = jnoise[ich] / num_prof | |
450 | tmp_noise = jnoise[ich] |
|
450 | tmp_noise = jnoise[ich] | |
451 | junkspc_interf = junkspc_interf - tmp_noise |
|
451 | junkspc_interf = junkspc_interf - tmp_noise | |
452 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
452 | #junkspc_interf[:,comp_mask_prof] = 0 | |
453 |
|
453 | |||
454 | jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf |
|
454 | jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf | |
455 | jspc_interf = jspc_interf.transpose() |
|
455 | jspc_interf = jspc_interf.transpose() | |
456 | #Calculando el espectro de interferencia promedio |
|
456 | #Calculando el espectro de interferencia promedio | |
457 | noiseid = numpy.where(jspc_interf <= tmp_noise/ math.sqrt(num_incoh)) |
|
457 | noiseid = numpy.where(jspc_interf <= tmp_noise/ math.sqrt(num_incoh)) | |
458 | noiseid = noiseid[0] |
|
458 | noiseid = noiseid[0] | |
459 | cnoiseid = noiseid.size |
|
459 | cnoiseid = noiseid.size | |
460 | interfid = numpy.where(jspc_interf > tmp_noise/ math.sqrt(num_incoh)) |
|
460 | interfid = numpy.where(jspc_interf > tmp_noise/ math.sqrt(num_incoh)) | |
461 | interfid = interfid[0] |
|
461 | interfid = interfid[0] | |
462 | cinterfid = interfid.size |
|
462 | cinterfid = interfid.size | |
463 |
|
463 | |||
464 | if (cnoiseid > 0): jspc_interf[noiseid] = 0 |
|
464 | if (cnoiseid > 0): jspc_interf[noiseid] = 0 | |
465 |
|
465 | |||
466 | #Expandiendo los perfiles a limpiar |
|
466 | #Expandiendo los perfiles a limpiar | |
467 | if (cinterfid > 0): |
|
467 | if (cinterfid > 0): | |
468 | new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof |
|
468 | new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof | |
469 | new_interfid = numpy.asarray(new_interfid) |
|
469 | new_interfid = numpy.asarray(new_interfid) | |
470 | new_interfid = {x for x in new_interfid} |
|
470 | new_interfid = {x for x in new_interfid} | |
471 | new_interfid = numpy.array(list(new_interfid)) |
|
471 | new_interfid = numpy.array(list(new_interfid)) | |
472 | new_cinterfid = new_interfid.size |
|
472 | new_cinterfid = new_interfid.size | |
473 | else: new_cinterfid = 0 |
|
473 | else: new_cinterfid = 0 | |
474 |
|
474 | |||
475 | for ip in range(new_cinterfid): |
|
475 | for ip in range(new_cinterfid): | |
476 | ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort() |
|
476 | ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort() | |
477 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]] |
|
477 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]] | |
478 |
|
478 | |||
479 |
|
479 | |||
480 | jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices |
|
480 | jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices | |
481 |
|
481 | |||
482 | #Removiendo la interferencia del punto de mayor interferencia |
|
482 | #Removiendo la interferencia del punto de mayor interferencia | |
483 | ListAux = jspc_interf[mask_prof].tolist() |
|
483 | ListAux = jspc_interf[mask_prof].tolist() | |
484 | maxid = ListAux.index(max(ListAux)) |
|
484 | maxid = ListAux.index(max(ListAux)) | |
485 |
|
485 | |||
486 |
|
486 | |||
487 | if cinterfid > 0: |
|
487 | if cinterfid > 0: | |
488 | for ip in range(cinterfid*(interf == 2) - 1): |
|
488 | for ip in range(cinterfid*(interf == 2) - 1): | |
489 | ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/math.sqrt(num_incoh))).nonzero() |
|
489 | ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/math.sqrt(num_incoh))).nonzero() | |
490 | cind = len(ind) |
|
490 | cind = len(ind) | |
491 |
|
491 | |||
492 | if (cind > 0): |
|
492 | if (cind > 0): | |
493 | jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/math.sqrt(num_incoh)) |
|
493 | jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/math.sqrt(num_incoh)) | |
494 |
|
494 | |||
495 | ind = numpy.array([-2,-1,1,2]) |
|
495 | ind = numpy.array([-2,-1,1,2]) | |
496 | xx = numpy.zeros([4,4]) |
|
496 | xx = numpy.zeros([4,4]) | |
497 |
|
497 | |||
498 | for id1 in range(4): |
|
498 | for id1 in range(4): | |
499 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) |
|
499 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) | |
500 |
|
500 | |||
501 | xx_inv = numpy.linalg.inv(xx) |
|
501 | xx_inv = numpy.linalg.inv(xx) | |
502 | xx = xx_inv[:,0] |
|
502 | xx = xx_inv[:,0] | |
503 | ind = (ind + maxid + num_mask_prof)%num_mask_prof |
|
503 | ind = (ind + maxid + num_mask_prof)%num_mask_prof | |
504 | yy = jspectra[ich,mask_prof[ind],:] |
|
504 | yy = jspectra[ich,mask_prof[ind],:] | |
505 | jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) |
|
505 | jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) | |
506 |
|
506 | |||
507 |
|
507 | |||
508 | indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/math.sqrt(num_incoh))).nonzero() |
|
508 | indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/math.sqrt(num_incoh))).nonzero() | |
509 | jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/math.sqrt(num_incoh)) |
|
509 | jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/math.sqrt(num_incoh)) | |
510 |
|
510 | |||
511 | #Remocion de Interferencia en el Cross Spectra |
|
511 | #Remocion de Interferencia en el Cross Spectra | |
512 | if jcspectra == None: return jspectra, jcspectra |
|
512 | if jcspectra == None: return jspectra, jcspectra | |
513 | num_pairs = jcspectra.size/(num_prof*num_hei) |
|
513 | num_pairs = jcspectra.size/(num_prof*num_hei) | |
514 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
514 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |
515 |
|
515 | |||
516 | for ip in range(num_pairs): |
|
516 | for ip in range(num_pairs): | |
517 |
|
517 | |||
518 | #------------------------------------------- |
|
518 | #------------------------------------------- | |
519 |
|
519 | |||
520 | cspower = numpy.abs(jcspectra[ip,mask_prof,:]) |
|
520 | cspower = numpy.abs(jcspectra[ip,mask_prof,:]) | |
521 | cspower = cspower[:,hei_interf] |
|
521 | cspower = cspower[:,hei_interf] | |
522 | cspower = cspower.sum(axis = 0) |
|
522 | cspower = cspower.sum(axis = 0) | |
523 |
|
523 | |||
524 | cspsort = cspower.ravel().argsort() |
|
524 | cspsort = cspower.ravel().argsort() | |
525 | junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]] |
|
525 | junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]] | |
526 | junkcspc_interf = junkcspc_interf.transpose() |
|
526 | junkcspc_interf = junkcspc_interf.transpose() | |
527 | jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf |
|
527 | jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf | |
528 |
|
528 | |||
529 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
529 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |
530 |
|
530 | |||
531 | median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) |
|
531 | median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) | |
532 | median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) |
|
532 | median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) | |
533 | junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag) |
|
533 | junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag) | |
534 |
|
534 | |||
535 | for iprof in range(num_prof): |
|
535 | for iprof in range(num_prof): | |
536 | ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort() |
|
536 | ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort() | |
537 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]] |
|
537 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]] | |
538 |
|
538 | |||
539 | #Removiendo la Interferencia |
|
539 | #Removiendo la Interferencia | |
540 | jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf |
|
540 | jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf | |
541 |
|
541 | |||
542 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
542 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |
543 | maxid = ListAux.index(max(ListAux)) |
|
543 | maxid = ListAux.index(max(ListAux)) | |
544 |
|
544 | |||
545 | ind = numpy.array([-2,-1,1,2]) |
|
545 | ind = numpy.array([-2,-1,1,2]) | |
546 | xx = numpy.zeros([4,4]) |
|
546 | xx = numpy.zeros([4,4]) | |
547 |
|
547 | |||
548 | for id1 in range(4): |
|
548 | for id1 in range(4): | |
549 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) |
|
549 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) | |
550 |
|
550 | |||
551 | xx_inv = numpy.linalg.inv(xx) |
|
551 | xx_inv = numpy.linalg.inv(xx) | |
552 | xx = xx_inv[:,0] |
|
552 | xx = xx_inv[:,0] | |
553 |
|
553 | |||
554 | ind = (ind + maxid + num_mask_prof)%num_mask_prof |
|
554 | ind = (ind + maxid + num_mask_prof)%num_mask_prof | |
555 | yy = jcspectra[ip,mask_prof[ind],:] |
|
555 | yy = jcspectra[ip,mask_prof[ind],:] | |
556 | jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) |
|
556 | jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) | |
557 |
|
557 | |||
558 | #Guardar Resultados |
|
558 | #Guardar Resultados | |
559 | self.dataOut.data_spc = jspectra |
|
559 | self.dataOut.data_spc = jspectra | |
560 | self.dataOut.data_cspc = jcspectra |
|
560 | self.dataOut.data_cspc = jcspectra | |
561 |
|
561 | |||
562 | return 1 |
|
562 | return 1 | |
563 |
|
563 | |||
564 | def setRadarFrequency(self, frequency=None): |
|
564 | def setRadarFrequency(self, frequency=None): | |
565 | if frequency != None: |
|
565 | if frequency != None: | |
566 | self.dataOut.frequency = frequency |
|
566 | self.dataOut.frequency = frequency | |
567 |
|
567 | |||
568 | return 1 |
|
568 | return 1 | |
569 |
|
569 | |||
570 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
570 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |
571 | #validacion de rango |
|
571 | #validacion de rango | |
572 | if minHei == None: |
|
572 | if minHei == None: | |
573 | minHei = self.dataOut.heightList[0] |
|
573 | minHei = self.dataOut.heightList[0] | |
574 |
|
574 | |||
575 | if maxHei == None: |
|
575 | if maxHei == None: | |
576 | maxHei = self.dataOut.heightList[-1] |
|
576 | maxHei = self.dataOut.heightList[-1] | |
577 |
|
577 | |||
578 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
578 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
579 | print 'minHei: %.2f is out of the heights range'%(minHei) |
|
579 | print 'minHei: %.2f is out of the heights range'%(minHei) | |
580 | print 'minHei is setting to %.2f'%(self.dataOut.heightList[0]) |
|
580 | print 'minHei is setting to %.2f'%(self.dataOut.heightList[0]) | |
581 | minHei = self.dataOut.heightList[0] |
|
581 | minHei = self.dataOut.heightList[0] | |
582 |
|
582 | |||
583 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
583 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
584 | print 'maxHei: %.2f is out of the heights range'%(maxHei) |
|
584 | print 'maxHei: %.2f is out of the heights range'%(maxHei) | |
585 | print 'maxHei is setting to %.2f'%(self.dataOut.heightList[-1]) |
|
585 | print 'maxHei is setting to %.2f'%(self.dataOut.heightList[-1]) | |
586 | maxHei = self.dataOut.heightList[-1] |
|
586 | maxHei = self.dataOut.heightList[-1] | |
587 |
|
587 | |||
588 | # validacion de velocidades |
|
588 | # validacion de velocidades | |
589 | velrange = self.dataOut.getVelRange(1) |
|
589 | velrange = self.dataOut.getVelRange(1) | |
590 |
|
590 | |||
591 | if minVel == None: |
|
591 | if minVel == None: | |
592 | minVel = velrange[0] |
|
592 | minVel = velrange[0] | |
593 |
|
593 | |||
594 | if maxVel == None: |
|
594 | if maxVel == None: | |
595 | maxVel = velrange[-1] |
|
595 | maxVel = velrange[-1] | |
596 |
|
596 | |||
597 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
597 | if (minVel < velrange[0]) or (minVel > maxVel): | |
598 | print 'minVel: %.2f is out of the velocity range'%(minVel) |
|
598 | print 'minVel: %.2f is out of the velocity range'%(minVel) | |
599 | print 'minVel is setting to %.2f'%(velrange[0]) |
|
599 | print 'minVel is setting to %.2f'%(velrange[0]) | |
600 | minVel = velrange[0] |
|
600 | minVel = velrange[0] | |
601 |
|
601 | |||
602 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
602 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
603 | print 'maxVel: %.2f is out of the velocity range'%(maxVel) |
|
603 | print 'maxVel: %.2f is out of the velocity range'%(maxVel) | |
604 | print 'maxVel is setting to %.2f'%(velrange[-1]) |
|
604 | print 'maxVel is setting to %.2f'%(velrange[-1]) | |
605 | maxVel = velrange[-1] |
|
605 | maxVel = velrange[-1] | |
606 |
|
606 | |||
607 | # seleccion de indices para rango |
|
607 | # seleccion de indices para rango | |
608 | minIndex = 0 |
|
608 | minIndex = 0 | |
609 | maxIndex = 0 |
|
609 | maxIndex = 0 | |
610 | heights = self.dataOut.heightList |
|
610 | heights = self.dataOut.heightList | |
611 |
|
611 | |||
612 | inda = numpy.where(heights >= minHei) |
|
612 | inda = numpy.where(heights >= minHei) | |
613 | indb = numpy.where(heights <= maxHei) |
|
613 | indb = numpy.where(heights <= maxHei) | |
614 |
|
614 | |||
615 | try: |
|
615 | try: | |
616 | minIndex = inda[0][0] |
|
616 | minIndex = inda[0][0] | |
617 | except: |
|
617 | except: | |
618 | minIndex = 0 |
|
618 | minIndex = 0 | |
619 |
|
619 | |||
620 | try: |
|
620 | try: | |
621 | maxIndex = indb[0][-1] |
|
621 | maxIndex = indb[0][-1] | |
622 | except: |
|
622 | except: | |
623 | maxIndex = len(heights) |
|
623 | maxIndex = len(heights) | |
624 |
|
624 | |||
625 | if (minIndex < 0) or (minIndex > maxIndex): |
|
625 | if (minIndex < 0) or (minIndex > maxIndex): | |
626 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
626 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) | |
627 |
|
627 | |||
628 | if (maxIndex >= self.dataOut.nHeights): |
|
628 | if (maxIndex >= self.dataOut.nHeights): | |
629 | maxIndex = self.dataOut.nHeights-1 |
|
629 | maxIndex = self.dataOut.nHeights-1 | |
630 |
|
630 | |||
631 | # seleccion de indices para velocidades |
|
631 | # seleccion de indices para velocidades | |
632 | indminvel = numpy.where(velrange >= minVel) |
|
632 | indminvel = numpy.where(velrange >= minVel) | |
633 | indmaxvel = numpy.where(velrange <= maxVel) |
|
633 | indmaxvel = numpy.where(velrange <= maxVel) | |
634 | try: |
|
634 | try: | |
635 | minIndexVel = indminvel[0][0] |
|
635 | minIndexVel = indminvel[0][0] | |
636 | except: |
|
636 | except: | |
637 | minIndexVel = 0 |
|
637 | minIndexVel = 0 | |
638 |
|
638 | |||
639 | try: |
|
639 | try: | |
640 | maxIndexVel = indmaxvel[0][-1] |
|
640 | maxIndexVel = indmaxvel[0][-1] | |
641 | except: |
|
641 | except: | |
642 | maxIndexVel = len(velrange) |
|
642 | maxIndexVel = len(velrange) | |
643 |
|
643 | |||
644 | #seleccion del espectro |
|
644 | #seleccion del espectro | |
645 | data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1] |
|
645 | data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1] | |
646 | #estimacion de ruido |
|
646 | #estimacion de ruido | |
647 | noise = numpy.zeros(self.dataOut.nChannels) |
|
647 | noise = numpy.zeros(self.dataOut.nChannels) | |
648 |
|
648 | |||
649 | for channel in range(self.dataOut.nChannels): |
|
649 | for channel in range(self.dataOut.nChannels): | |
650 | daux = data_spc[channel,:,:] |
|
650 | daux = data_spc[channel,:,:] | |
651 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) |
|
651 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) | |
652 |
|
652 | |||
653 | self.dataOut.noise_estimation = noise.copy() |
|
653 | self.dataOut.noise_estimation = noise.copy() | |
654 |
|
654 | |||
655 | return 1 |
|
655 | return 1 | |
656 |
|
656 | |||
657 | class IncohInt(Operation): |
|
657 | class IncohInt(Operation): | |
658 |
|
658 | |||
659 |
|
659 | |||
660 | __profIndex = 0 |
|
660 | __profIndex = 0 | |
661 | __withOverapping = False |
|
661 | __withOverapping = False | |
662 |
|
662 | |||
663 | __byTime = False |
|
663 | __byTime = False | |
664 | __initime = None |
|
664 | __initime = None | |
665 | __lastdatatime = None |
|
665 | __lastdatatime = None | |
666 | __integrationtime = None |
|
666 | __integrationtime = None | |
667 |
|
667 | |||
668 | __buffer_spc = None |
|
668 | __buffer_spc = None | |
669 | __buffer_cspc = None |
|
669 | __buffer_cspc = None | |
670 | __buffer_dc = None |
|
670 | __buffer_dc = None | |
671 |
|
671 | |||
672 | __dataReady = False |
|
672 | __dataReady = False | |
673 |
|
673 | |||
674 | __timeInterval = None |
|
674 | __timeInterval = None | |
675 |
|
675 | |||
676 | n = None |
|
676 | n = None | |
677 |
|
677 | |||
678 |
|
678 | |||
679 |
|
679 | |||
680 | def __init__(self): |
|
680 | def __init__(self): | |
681 |
|
681 | |||
682 | Operation.__init__(self) |
|
682 | Operation.__init__(self) | |
683 | # self.isConfig = False |
|
683 | # self.isConfig = False | |
684 |
|
684 | |||
685 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
685 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
686 | """ |
|
686 | """ | |
687 | Set the parameters of the integration class. |
|
687 | Set the parameters of the integration class. | |
688 |
|
688 | |||
689 | Inputs: |
|
689 | Inputs: | |
690 |
|
690 | |||
691 | n : Number of coherent integrations |
|
691 | n : Number of coherent integrations | |
692 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
692 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
693 | overlapping : |
|
693 | overlapping : | |
694 |
|
694 | |||
695 | """ |
|
695 | """ | |
696 |
|
696 | |||
697 | self.__initime = None |
|
697 | self.__initime = None | |
698 | self.__lastdatatime = 0 |
|
698 | self.__lastdatatime = 0 | |
699 | self.__buffer_spc = None |
|
699 | self.__buffer_spc = None | |
700 | self.__buffer_cspc = None |
|
700 | self.__buffer_cspc = None | |
701 | self.__buffer_dc = None |
|
701 | self.__buffer_dc = None | |
702 | self.__dataReady = False |
|
702 | self.__dataReady = False | |
703 |
|
703 | |||
704 |
|
704 | |||
705 | if n == None and timeInterval == None: |
|
705 | if n == None and timeInterval == None: | |
706 | raise ValueError, "n or timeInterval should be specified ..." |
|
706 | raise ValueError, "n or timeInterval should be specified ..." | |
707 |
|
707 | |||
708 | if n != None: |
|
708 | if n != None: | |
709 | self.n = n |
|
709 | self.n = n | |
710 | self.__byTime = False |
|
710 | self.__byTime = False | |
711 | else: |
|
711 | else: | |
712 | self.__integrationtime = timeInterval #if (type(timeInterval)!=integer) -> change this line |
|
712 | self.__integrationtime = timeInterval #if (type(timeInterval)!=integer) -> change this line | |
713 | self.n = 9999 |
|
713 | self.n = 9999 | |
714 | self.__byTime = True |
|
714 | self.__byTime = True | |
715 |
|
715 | |||
716 | if overlapping: |
|
716 | if overlapping: | |
717 | self.__withOverapping = True |
|
717 | self.__withOverapping = True | |
718 | else: |
|
718 | else: | |
719 | self.__withOverapping = False |
|
719 | self.__withOverapping = False | |
720 | self.__buffer_spc = 0 |
|
720 | self.__buffer_spc = 0 | |
721 | self.__buffer_cspc = 0 |
|
721 | self.__buffer_cspc = 0 | |
722 | self.__buffer_dc = 0 |
|
722 | self.__buffer_dc = 0 | |
723 |
|
723 | |||
724 | self.__profIndex = 0 |
|
724 | self.__profIndex = 0 | |
725 |
|
725 | |||
726 | def putData(self, data_spc, data_cspc, data_dc): |
|
726 | def putData(self, data_spc, data_cspc, data_dc): | |
727 |
|
727 | |||
728 | """ |
|
728 | """ | |
729 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
729 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
730 |
|
730 | |||
731 | """ |
|
731 | """ | |
732 |
|
732 | |||
733 | if not self.__withOverapping: |
|
733 | if not self.__withOverapping: | |
734 | self.__buffer_spc += data_spc |
|
734 | self.__buffer_spc += data_spc | |
735 |
|
735 | |||
736 | if data_cspc == None: |
|
736 | if data_cspc == None: | |
737 | self.__buffer_cspc = None |
|
737 | self.__buffer_cspc = None | |
738 | else: |
|
738 | else: | |
739 | self.__buffer_cspc += data_cspc |
|
739 | self.__buffer_cspc += data_cspc | |
740 |
|
740 | |||
741 | if data_dc == None: |
|
741 | if data_dc == None: | |
742 | self.__buffer_dc = None |
|
742 | self.__buffer_dc = None | |
743 | else: |
|
743 | else: | |
744 | self.__buffer_dc += data_dc |
|
744 | self.__buffer_dc += data_dc | |
745 |
|
745 | |||
746 | self.__profIndex += 1 |
|
746 | self.__profIndex += 1 | |
747 | return |
|
747 | return | |
748 |
|
748 | |||
749 | #Overlapping data |
|
749 | #Overlapping data | |
750 | nChannels, nFFTPoints, nHeis = data_spc.shape |
|
750 | nChannels, nFFTPoints, nHeis = data_spc.shape | |
751 | data_spc = numpy.reshape(data_spc, (1, nChannels, nFFTPoints, nHeis)) |
|
751 | data_spc = numpy.reshape(data_spc, (1, nChannels, nFFTPoints, nHeis)) | |
752 | if data_cspc != None: |
|
752 | if data_cspc != None: | |
753 | data_cspc = numpy.reshape(data_cspc, (1, -1, nFFTPoints, nHeis)) |
|
753 | data_cspc = numpy.reshape(data_cspc, (1, -1, nFFTPoints, nHeis)) | |
754 | if data_dc != None: |
|
754 | if data_dc != None: | |
755 | data_dc = numpy.reshape(data_dc, (1, -1, nHeis)) |
|
755 | data_dc = numpy.reshape(data_dc, (1, -1, nHeis)) | |
756 |
|
756 | |||
757 | #If the buffer is empty then it takes the data value |
|
757 | #If the buffer is empty then it takes the data value | |
758 | if self.__buffer_spc == None: |
|
758 | if self.__buffer_spc == None: | |
759 | self.__buffer_spc = data_spc |
|
759 | self.__buffer_spc = data_spc | |
760 |
|
760 | |||
761 | if data_cspc == None: |
|
761 | if data_cspc == None: | |
762 | self.__buffer_cspc = None |
|
762 | self.__buffer_cspc = None | |
763 | else: |
|
763 | else: | |
764 | self.__buffer_cspc += data_cspc |
|
764 | self.__buffer_cspc += data_cspc | |
765 |
|
765 | |||
766 | if data_dc == None: |
|
766 | if data_dc == None: | |
767 | self.__buffer_dc = None |
|
767 | self.__buffer_dc = None | |
768 | else: |
|
768 | else: | |
769 | self.__buffer_dc += data_dc |
|
769 | self.__buffer_dc += data_dc | |
770 |
|
770 | |||
771 | self.__profIndex += 1 |
|
771 | self.__profIndex += 1 | |
772 | return |
|
772 | return | |
773 |
|
773 | |||
774 | #If the buffer length is lower than n then stakcing the data value |
|
774 | #If the buffer length is lower than n then stakcing the data value | |
775 | if self.__profIndex < self.n: |
|
775 | if self.__profIndex < self.n: | |
776 | self.__buffer_spc = numpy.vstack((self.__buffer_spc, data_spc)) |
|
776 | self.__buffer_spc = numpy.vstack((self.__buffer_spc, data_spc)) | |
777 |
|
777 | |||
778 | if data_cspc != None: |
|
778 | if data_cspc != None: | |
779 | self.__buffer_cspc = numpy.vstack((self.__buffer_cspc, data_cspc)) |
|
779 | self.__buffer_cspc = numpy.vstack((self.__buffer_cspc, data_cspc)) | |
780 |
|
780 | |||
781 | if data_dc != None: |
|
781 | if data_dc != None: | |
782 | self.__buffer_dc = numpy.vstack((self.__buffer_dc, data_dc)) |
|
782 | self.__buffer_dc = numpy.vstack((self.__buffer_dc, data_dc)) | |
783 |
|
783 | |||
784 | self.__profIndex += 1 |
|
784 | self.__profIndex += 1 | |
785 | return |
|
785 | return | |
786 |
|
786 | |||
787 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
787 | #If the buffer length is equal to n then replacing the last buffer value with the data value | |
788 | self.__buffer_spc = numpy.roll(self.__buffer_spc, -1, axis=0) |
|
788 | self.__buffer_spc = numpy.roll(self.__buffer_spc, -1, axis=0) | |
789 | self.__buffer_spc[self.n-1] = data_spc |
|
789 | self.__buffer_spc[self.n-1] = data_spc | |
790 |
|
790 | |||
791 | if data_cspc != None: |
|
791 | if data_cspc != None: | |
792 | self.__buffer_cspc = numpy.roll(self.__buffer_cspc, -1, axis=0) |
|
792 | self.__buffer_cspc = numpy.roll(self.__buffer_cspc, -1, axis=0) | |
793 | self.__buffer_cspc[self.n-1] = data_cspc |
|
793 | self.__buffer_cspc[self.n-1] = data_cspc | |
794 |
|
794 | |||
795 | if data_dc != None: |
|
795 | if data_dc != None: | |
796 | self.__buffer_dc = numpy.roll(self.__buffer_dc, -1, axis=0) |
|
796 | self.__buffer_dc = numpy.roll(self.__buffer_dc, -1, axis=0) | |
797 | self.__buffer_dc[self.n-1] = data_dc |
|
797 | self.__buffer_dc[self.n-1] = data_dc | |
798 |
|
798 | |||
799 | self.__profIndex = self.n |
|
799 | self.__profIndex = self.n | |
800 | return |
|
800 | return | |
801 |
|
801 | |||
802 |
|
802 | |||
803 | def pushData(self): |
|
803 | def pushData(self): | |
804 | """ |
|
804 | """ | |
805 | Return the sum of the last profiles and the profiles used in the sum. |
|
805 | Return the sum of the last profiles and the profiles used in the sum. | |
806 |
|
806 | |||
807 | Affected: |
|
807 | Affected: | |
808 |
|
808 | |||
809 | self.__profileIndex |
|
809 | self.__profileIndex | |
810 |
|
810 | |||
811 | """ |
|
811 | """ | |
812 | data_spc = None |
|
812 | data_spc = None | |
813 | data_cspc = None |
|
813 | data_cspc = None | |
814 | data_dc = None |
|
814 | data_dc = None | |
815 |
|
815 | |||
816 | if not self.__withOverapping: |
|
816 | if not self.__withOverapping: | |
817 | data_spc = self.__buffer_spc |
|
817 | data_spc = self.__buffer_spc | |
818 | data_cspc = self.__buffer_cspc |
|
818 | data_cspc = self.__buffer_cspc | |
819 | data_dc = self.__buffer_dc |
|
819 | data_dc = self.__buffer_dc | |
820 |
|
820 | |||
821 | n = self.__profIndex |
|
821 | n = self.__profIndex | |
822 |
|
822 | |||
823 | self.__buffer_spc = 0 |
|
823 | self.__buffer_spc = 0 | |
824 | self.__buffer_cspc = 0 |
|
824 | self.__buffer_cspc = 0 | |
825 | self.__buffer_dc = 0 |
|
825 | self.__buffer_dc = 0 | |
826 | self.__profIndex = 0 |
|
826 | self.__profIndex = 0 | |
827 |
|
827 | |||
828 | return data_spc, data_cspc, data_dc, n |
|
828 | return data_spc, data_cspc, data_dc, n | |
829 |
|
829 | |||
830 | #Integration with Overlapping |
|
830 | #Integration with Overlapping | |
831 | data_spc = numpy.sum(self.__buffer_spc, axis=0) |
|
831 | data_spc = numpy.sum(self.__buffer_spc, axis=0) | |
832 |
|
832 | |||
833 | if self.__buffer_cspc != None: |
|
833 | if self.__buffer_cspc != None: | |
834 | data_cspc = numpy.sum(self.__buffer_cspc, axis=0) |
|
834 | data_cspc = numpy.sum(self.__buffer_cspc, axis=0) | |
835 |
|
835 | |||
836 | if self.__buffer_dc != None: |
|
836 | if self.__buffer_dc != None: | |
837 | data_dc = numpy.sum(self.__buffer_dc, axis=0) |
|
837 | data_dc = numpy.sum(self.__buffer_dc, axis=0) | |
838 |
|
838 | |||
839 | n = self.__profIndex |
|
839 | n = self.__profIndex | |
840 |
|
840 | |||
841 | return data_spc, data_cspc, data_dc, n |
|
841 | return data_spc, data_cspc, data_dc, n | |
842 |
|
842 | |||
843 | def byProfiles(self, *args): |
|
843 | def byProfiles(self, *args): | |
844 |
|
844 | |||
845 | self.__dataReady = False |
|
845 | self.__dataReady = False | |
846 | avgdata_spc = None |
|
846 | avgdata_spc = None | |
847 | avgdata_cspc = None |
|
847 | avgdata_cspc = None | |
848 | avgdata_dc = None |
|
848 | avgdata_dc = None | |
849 | # n = None |
|
849 | # n = None | |
850 |
|
850 | |||
851 | self.putData(*args) |
|
851 | self.putData(*args) | |
852 |
|
852 | |||
853 | if self.__profIndex == self.n: |
|
853 | if self.__profIndex == self.n: | |
854 |
|
854 | |||
855 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
855 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
856 | self.__dataReady = True |
|
856 | self.__dataReady = True | |
857 |
|
857 | |||
858 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
858 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
859 |
|
859 | |||
860 | def byTime(self, datatime, *args): |
|
860 | def byTime(self, datatime, *args): | |
861 |
|
861 | |||
862 | self.__dataReady = False |
|
862 | self.__dataReady = False | |
863 | avgdata_spc = None |
|
863 | avgdata_spc = None | |
864 | avgdata_cspc = None |
|
864 | avgdata_cspc = None | |
865 | avgdata_dc = None |
|
865 | avgdata_dc = None | |
866 | n = None |
|
866 | n = None | |
867 |
|
867 | |||
868 | self.putData(*args) |
|
868 | self.putData(*args) | |
869 |
|
869 | |||
870 | if (datatime - self.__initime) >= self.__integrationtime: |
|
870 | if (datatime - self.__initime) >= self.__integrationtime: | |
871 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
871 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
872 | self.n = n |
|
872 | self.n = n | |
873 | self.__dataReady = True |
|
873 | self.__dataReady = True | |
874 |
|
874 | |||
875 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
875 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
876 |
|
876 | |||
877 | def integrate(self, datatime, *args): |
|
877 | def integrate(self, datatime, *args): | |
878 |
|
878 | |||
879 | if self.__initime == None: |
|
879 | if self.__initime == None: | |
880 | self.__initime = datatime |
|
880 | self.__initime = datatime | |
881 |
|
881 | |||
882 | if self.__byTime: |
|
882 | if self.__byTime: | |
883 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args) |
|
883 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args) | |
884 | else: |
|
884 | else: | |
885 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
885 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
886 |
|
886 | |||
887 | self.__lastdatatime = datatime |
|
887 | self.__lastdatatime = datatime | |
888 |
|
888 | |||
889 | if avgdata_spc == None: |
|
889 | if avgdata_spc == None: | |
890 | return None, None, None, None |
|
890 | return None, None, None, None | |
891 |
|
891 | |||
892 | avgdatatime = self.__initime |
|
892 | avgdatatime = self.__initime | |
893 | try: |
|
893 | try: | |
894 | self.__timeInterval = (self.__lastdatatime - self.__initime)/(self.n - 1) |
|
894 | self.__timeInterval = (self.__lastdatatime - self.__initime)/(self.n - 1) | |
895 | except: |
|
895 | except: | |
896 | self.__timeInterval = self.__lastdatatime - self.__initime |
|
896 | self.__timeInterval = self.__lastdatatime - self.__initime | |
897 |
|
897 | |||
898 | deltatime = datatime -self.__lastdatatime |
|
898 | deltatime = datatime -self.__lastdatatime | |
899 |
|
899 | |||
900 | if not self.__withOverapping: |
|
900 | if not self.__withOverapping: | |
901 | self.__initime = datatime |
|
901 | self.__initime = datatime | |
902 | else: |
|
902 | else: | |
903 | self.__initime += deltatime |
|
903 | self.__initime += deltatime | |
904 |
|
904 | |||
905 | return avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
905 | return avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc | |
906 |
|
906 | |||
907 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
907 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | |
908 |
|
908 | |||
909 | if n==1: |
|
909 | if n==1: | |
910 | dataOut.flagNoData = False |
|
910 | dataOut.flagNoData = False | |
911 | return |
|
911 | return | |
912 |
|
912 | |||
913 | if not self.isConfig: |
|
913 | if not self.isConfig: | |
914 | self.setup(n, timeInterval, overlapping) |
|
914 | self.setup(n, timeInterval, overlapping) | |
915 | self.isConfig = True |
|
915 | self.isConfig = True | |
916 |
|
916 | |||
917 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
917 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |
918 | dataOut.data_spc, |
|
918 | dataOut.data_spc, | |
919 | dataOut.data_cspc, |
|
919 | dataOut.data_cspc, | |
920 | dataOut.data_dc) |
|
920 | dataOut.data_dc) | |
921 |
|
921 | |||
922 | # dataOut.timeInterval *= n |
|
922 | # dataOut.timeInterval *= n | |
923 | dataOut.flagNoData = True |
|
923 | dataOut.flagNoData = True | |
924 |
|
924 | |||
925 | if self.__dataReady: |
|
925 | if self.__dataReady: | |
926 |
|
926 | |||
927 | dataOut.data_spc = avgdata_spc |
|
927 | dataOut.data_spc = avgdata_spc | |
928 | dataOut.data_cspc = avgdata_cspc |
|
928 | dataOut.data_cspc = avgdata_cspc | |
929 | dataOut.data_dc = avgdata_dc |
|
929 | dataOut.data_dc = avgdata_dc | |
930 |
|
930 | |||
931 | dataOut.nIncohInt *= self.n |
|
931 | dataOut.nIncohInt *= self.n | |
932 | dataOut.utctime = avgdatatime |
|
932 | dataOut.utctime = avgdatatime | |
933 | #dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt * dataOut.nIncohInt * dataOut.nFFTPoints |
|
933 | #dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt * dataOut.nIncohInt * dataOut.nFFTPoints | |
934 | dataOut.timeInterval = self.__timeInterval*self.n |
|
934 | # dataOut.timeInterval = self.__timeInterval*self.n | |
935 | dataOut.flagNoData = False |
|
935 | dataOut.flagNoData = False |
General Comments 0
You need to be logged in to leave comments.
Login now