The requested changes are too big and content was truncated. Show full diff
@@ -1,723 +1,749 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Base class to create plot operations |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import sys |
|
11 | 11 | import zmq |
|
12 | 12 | import time |
|
13 | 13 | import numpy |
|
14 | 14 | import datetime |
|
15 | 15 | from collections import deque |
|
16 | 16 | from functools import wraps |
|
17 | 17 | from threading import Thread |
|
18 | 18 | import matplotlib,re |
|
19 | 19 | |
|
20 | 20 | if 'BACKEND' in os.environ: |
|
21 | 21 | matplotlib.use(os.environ['BACKEND']) |
|
22 | 22 | elif 'linux' in sys.platform: |
|
23 |
matplotlib.use(" |
|
|
23 | matplotlib.use("Agg") | |
|
24 | 24 | elif 'darwin' in sys.platform: |
|
25 | 25 | matplotlib.use('MacOSX') |
|
26 | 26 | else: |
|
27 | 27 | from schainpy.utils import log |
|
28 | 28 | log.warning('Using default Backend="Agg"', 'INFO') |
|
29 | 29 | matplotlib.use('Agg') |
|
30 | 30 | |
|
31 | 31 | import matplotlib.pyplot as plt |
|
32 | 32 | from matplotlib.patches import Polygon |
|
33 | 33 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
34 | 34 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator |
|
35 | 35 | |
|
36 | 36 | from .plotting_codes import * |
|
37 | 37 | |
|
38 | 38 | from schainpy.model.data.jrodata import PlotterData |
|
39 | 39 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
40 | 40 | from schainpy.utils import log |
|
41 | 41 | |
|
42 | 42 | for name, cb_table in sophy_cb_tables: |
|
43 | 43 | ncmap = matplotlib.colors.ListedColormap(cb_table, name=name) |
|
44 | 44 | matplotlib.pyplot.register_cmap(cmap=ncmap) |
|
45 | 45 | |
|
46 | 46 | EARTH_RADIUS = 6.3710e3 |
|
47 | 47 | |
|
48 | 48 | def ll2xy(lat1, lon1, lat2, lon2): |
|
49 | 49 | |
|
50 | 50 | p = 0.017453292519943295 |
|
51 | 51 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
52 | 52 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
53 | 53 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
54 | 54 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
55 | 55 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
56 | 56 | theta = -theta + numpy.pi/2 |
|
57 | 57 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
58 | 58 | |
|
59 | 59 | |
|
60 | 60 | def km2deg(km): |
|
61 | 61 | ''' |
|
62 | 62 | Convert distance in km to degrees |
|
63 | 63 | ''' |
|
64 | 64 | |
|
65 | 65 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
66 | 66 | |
|
67 | 67 | |
|
68 | 68 | def figpause(interval): |
|
69 | 69 | backend = plt.rcParams['backend'] |
|
70 | 70 | if backend in matplotlib.rcsetup.interactive_bk: |
|
71 | 71 | figManager = matplotlib._pylab_helpers.Gcf.get_active() |
|
72 | 72 | if figManager is not None: |
|
73 | 73 | canvas = figManager.canvas |
|
74 | 74 | if canvas.figure.stale: |
|
75 | 75 | canvas.draw() |
|
76 | 76 | try: |
|
77 | 77 | canvas.start_event_loop(interval) |
|
78 | 78 | except: |
|
79 | 79 | pass |
|
80 | 80 | return |
|
81 | 81 | |
|
82 | 82 | def popup(message): |
|
83 | 83 | ''' |
|
84 | 84 | ''' |
|
85 | 85 | |
|
86 | 86 | fig = plt.figure(figsize=(12, 8), facecolor='r') |
|
87 | 87 | text = '\n'.join([s.strip() for s in message.split(':')]) |
|
88 | 88 | fig.text(0.01, 0.5, text, ha='left', va='center', |
|
89 | 89 | size='20', weight='heavy', color='w') |
|
90 | 90 | fig.show() |
|
91 | 91 | figpause(1000) |
|
92 | 92 | |
|
93 | 93 | |
|
94 | 94 | class Throttle(object): |
|
95 | 95 | ''' |
|
96 | 96 | Decorator that prevents a function from being called more than once every |
|
97 | 97 | time period. |
|
98 | 98 | To create a function that cannot be called more than once a minute, but |
|
99 | 99 | will sleep until it can be called: |
|
100 | 100 | @Throttle(minutes=1) |
|
101 | 101 | def foo(): |
|
102 | 102 | pass |
|
103 | 103 | |
|
104 | 104 | for i in range(10): |
|
105 | 105 | foo() |
|
106 | 106 | print "This function has run %s times." % i |
|
107 | 107 | ''' |
|
108 | 108 | |
|
109 | 109 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
110 | 110 | self.throttle_period = datetime.timedelta( |
|
111 | 111 | seconds=seconds, minutes=minutes, hours=hours |
|
112 | 112 | ) |
|
113 | 113 | |
|
114 | 114 | self.time_of_last_call = datetime.datetime.min |
|
115 | 115 | |
|
116 | 116 | def __call__(self, fn): |
|
117 | 117 | @wraps(fn) |
|
118 | 118 | def wrapper(*args, **kwargs): |
|
119 | 119 | coerce = kwargs.pop('coerce', None) |
|
120 | 120 | if coerce: |
|
121 | 121 | self.time_of_last_call = datetime.datetime.now() |
|
122 | 122 | return fn(*args, **kwargs) |
|
123 | 123 | else: |
|
124 | 124 | now = datetime.datetime.now() |
|
125 | 125 | time_since_last_call = now - self.time_of_last_call |
|
126 | 126 | time_left = self.throttle_period - time_since_last_call |
|
127 | 127 | |
|
128 | 128 | if time_left > datetime.timedelta(seconds=0): |
|
129 | 129 | return |
|
130 | 130 | |
|
131 | 131 | self.time_of_last_call = datetime.datetime.now() |
|
132 | 132 | return fn(*args, **kwargs) |
|
133 | 133 | |
|
134 | 134 | return wrapper |
|
135 | 135 | |
|
136 | 136 | def apply_throttle(value): |
|
137 | 137 | |
|
138 | 138 | @Throttle(seconds=value) |
|
139 | 139 | def fnThrottled(fn): |
|
140 | 140 | fn() |
|
141 | 141 | |
|
142 | 142 | return fnThrottled |
|
143 | 143 | |
|
144 | 144 | |
|
145 | 145 | @MPDecorator |
|
146 | 146 | class Plot(Operation): |
|
147 | 147 | """Base class for Schain plotting operations |
|
148 | 148 | |
|
149 | 149 | This class should never be use directtly you must subclass a new operation, |
|
150 | 150 | children classes must be defined as follow: |
|
151 | 151 | |
|
152 | 152 | ExamplePlot(Plot): |
|
153 | 153 | |
|
154 | 154 | CODE = 'code' |
|
155 | 155 | colormap = 'jet' |
|
156 | 156 | plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer') |
|
157 | 157 | |
|
158 | 158 | def setup(self): |
|
159 | 159 | pass |
|
160 | 160 | |
|
161 | 161 | def plot(self): |
|
162 | 162 | pass |
|
163 | 163 | |
|
164 | 164 | """ |
|
165 | 165 | |
|
166 | 166 | CODE = 'Figure' |
|
167 | 167 | colormap = 'jet' |
|
168 | 168 | bgcolor = 'white' |
|
169 | 169 | buffering = True |
|
170 | 170 | __missing = 1E30 |
|
171 | projection = None | |
|
171 | 172 | |
|
172 | 173 | __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title', |
|
173 | 174 | 'showprofile'] |
|
174 | 175 | |
|
175 | 176 | def __init__(self): |
|
176 | 177 | |
|
177 | 178 | Operation.__init__(self) |
|
178 | 179 | self.isConfig = False |
|
179 | 180 | self.isPlotConfig = False |
|
180 | 181 | self.save_time = 0 |
|
181 | 182 | self.sender_time = 0 |
|
182 | 183 | self.data = None |
|
183 | 184 | self.firsttime = True |
|
184 | 185 | self.sender_queue = deque(maxlen=10) |
|
185 | 186 | self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2} |
|
186 | 187 | |
|
187 | 188 | def __fmtTime(self, x, pos): |
|
188 | 189 | ''' |
|
189 | 190 | ''' |
|
190 | 191 | |
|
191 | 192 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) |
|
192 | 193 | |
|
193 | 194 | def __setup(self, **kwargs): |
|
194 | 195 | ''' |
|
195 | 196 | Initialize variables |
|
196 | 197 | ''' |
|
197 | 198 | |
|
198 | 199 | self.figures = [] |
|
199 | 200 | self.axes = [] |
|
200 | 201 | self.cb_axes = [] |
|
201 | 202 | self.localtime = kwargs.pop('localtime', True) |
|
202 | 203 | self.show = kwargs.get('show', True) |
|
203 | 204 | self.save = kwargs.get('save', False) |
|
204 | 205 | self.save_period = kwargs.get('save_period', 0) |
|
205 | 206 | self.colormap = kwargs.get('colormap', self.colormap) |
|
206 | 207 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
207 | 208 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
208 | 209 | self.colormaps = kwargs.get('colormaps', None) |
|
209 | 210 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) |
|
210 | 211 | self.showprofile = kwargs.get('showprofile', False) |
|
211 | 212 | self.title = kwargs.get('wintitle', self.CODE.upper()) |
|
212 | 213 | self.cb_label = kwargs.get('cb_label', None) |
|
213 | 214 | self.cb_labels = kwargs.get('cb_labels', None) |
|
214 | 215 | self.labels = kwargs.get('labels', None) |
|
215 | 216 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
216 | 217 | self.zmin = kwargs.get('zmin', None) |
|
217 | 218 | self.zmax = kwargs.get('zmax', None) |
|
218 | 219 | self.zlimits = kwargs.get('zlimits', None) |
|
219 | 220 | self.xmin = kwargs.get('xmin', None) |
|
220 | 221 | self.xmax = kwargs.get('xmax', None) |
|
221 | 222 | self.xrange = kwargs.get('xrange', 12) |
|
222 | 223 | self.xscale = kwargs.get('xscale', None) |
|
223 | 224 | self.ymin = kwargs.get('ymin', None) |
|
224 | 225 | self.ymax = kwargs.get('ymax', None) |
|
225 | 226 | self.yscale = kwargs.get('yscale', None) |
|
226 | 227 | self.xlabel = kwargs.get('xlabel', None) |
|
227 | 228 | self.attr_time = kwargs.get('attr_time', 'utctime') |
|
228 | 229 | self.attr_data = kwargs.get('attr_data', 'data_param') |
|
229 | 230 | self.decimation = kwargs.get('decimation', None) |
|
230 | 231 | self.oneFigure = kwargs.get('oneFigure', True) |
|
231 | 232 | self.width = kwargs.get('width', None) |
|
232 | 233 | self.height = kwargs.get('height', None) |
|
233 | 234 | self.colorbar = kwargs.get('colorbar', True) |
|
234 | 235 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) |
|
235 | 236 | self.channels = kwargs.get('channels', None) |
|
236 | 237 | self.titles = kwargs.get('titles', []) |
|
237 | 238 | self.polar = False |
|
238 | 239 | self.type = kwargs.get('type', 'iq') |
|
239 | 240 | self.grid = kwargs.get('grid', False) |
|
240 | 241 | self.pause = kwargs.get('pause', False) |
|
241 | 242 | self.save_code = kwargs.get('save_code', self.CODE) |
|
242 | 243 | self.throttle = kwargs.get('throttle', 0) |
|
243 | 244 | self.exp_code = kwargs.get('exp_code', None) |
|
244 | 245 | self.server = kwargs.get('server', False) |
|
245 | 246 | self.sender_period = kwargs.get('sender_period', 60) |
|
246 | 247 | self.tag = kwargs.get('tag', '') |
|
247 | 248 | self.height_index = kwargs.get('height_index', None) |
|
248 | 249 | self.__throttle_plot = apply_throttle(self.throttle) |
|
249 | 250 | code = self.attr_data if self.attr_data else self.CODE |
|
250 | 251 | self.data = PlotterData(self.CODE, self.exp_code, self.localtime) |
|
251 | 252 | self.ang_min = kwargs.get('ang_min', None) |
|
252 | 253 | self.ang_max = kwargs.get('ang_max', None) |
|
253 | 254 | self.mode = kwargs.get('mode', None) |
|
254 | 255 | self.mask = kwargs.get('mask', False) |
|
255 | ||
|
256 | self.shapes = kwargs.get('shapes', './') | |
|
256 | 257 | |
|
257 | 258 | if self.server: |
|
258 | 259 | if not self.server.startswith('tcp://'): |
|
259 | 260 | self.server = 'tcp://{}'.format(self.server) |
|
260 | 261 | log.success( |
|
261 | 262 | 'Sending to server: {}'.format(self.server), |
|
262 | 263 | self.name |
|
263 | 264 | ) |
|
264 | 265 | |
|
265 | 266 | if isinstance(self.attr_data, str): |
|
266 | 267 | self.attr_data = [self.attr_data] |
|
267 | 268 | |
|
268 | 269 | def __setup_plot(self): |
|
269 | 270 | ''' |
|
270 | 271 | Common setup for all figures, here figures and axes are created |
|
271 | 272 | ''' |
|
272 | 273 | |
|
273 | 274 | self.setup() |
|
274 | 275 | |
|
275 | 276 | self.time_label = 'LT' if self.localtime else 'UTC' |
|
276 | 277 | |
|
277 | 278 | if self.width is None: |
|
278 | 279 | self.width = 8 |
|
279 | 280 | |
|
280 | self.figures = [] | |
|
281 | self.axes = [] | |
|
281 | self.figures = {'PPI':[], 'RHI':[]} | |
|
282 | self.axes = {'PPI':[], 'RHI':[]} | |
|
282 | 283 | self.cb_axes = [] |
|
283 | 284 | self.pf_axes = [] |
|
284 | 285 | self.cmaps = [] |
|
285 | 286 | |
|
286 | 287 | size = '15%' if self.ncols == 1 else '30%' |
|
287 | 288 | pad = '4%' if self.ncols == 1 else '8%' |
|
288 | 289 | |
|
289 | 290 | if self.oneFigure: |
|
290 | 291 | if self.height is None: |
|
291 | 292 | self.height = 1.4 * self.nrows + 1 |
|
292 | fig = plt.figure(figsize=(self.width, self.height), | |
|
293 | fig_p = plt.figure(figsize=(self.width, self.height), | |
|
293 | 294 | edgecolor='k', |
|
294 | 295 | facecolor='w') |
|
295 | self.figures.append(fig) | |
|
296 | for n in range(self.nplots): | |
|
297 | ax = fig.add_subplot(self.nrows, self.ncols, | |
|
298 | n + 1, polar=self.polar) | |
|
299 | ax.tick_params(labelsize=8) | |
|
300 | ax.firsttime = True | |
|
301 | ax.index = 0 | |
|
302 | ax.press = None | |
|
303 | self.axes.append(ax) | |
|
296 | fig_r = plt.figure(figsize=(self.width, self.height), | |
|
297 | edgecolor='k', | |
|
298 | facecolor='w') | |
|
299 | self.figures['PPI'].append(fig_p) | |
|
300 | self.figures['RHI'].append(fig_r) | |
|
301 | for n in range(self.nplots): | |
|
302 | ax_p = fig_p.add_subplot(self.nrows, self.ncols, n+1, polar=self.polar, projection=self.projection) | |
|
303 | ax_r = fig_r.add_subplot(self.nrows, self.ncols, n+1, polar=self.polar) | |
|
304 | ax_p.tick_params(labelsize=8) | |
|
305 | ax_p.firsttime = True | |
|
306 | ax_p.index = 0 | |
|
307 | ax_p.press = None | |
|
308 | ax_r.tick_params(labelsize=8) | |
|
309 | ax_r.firsttime = True | |
|
310 | ax_r.index = 0 | |
|
311 | ax_r.press = None | |
|
312 | ||
|
313 | self.axes['PPI'].append(ax_p) | |
|
314 | self.axes['RHI'].append(ax_r) | |
|
315 | ||
|
304 | 316 | if self.showprofile: |
|
305 | 317 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
306 | 318 | cax.tick_params(labelsize=8) |
|
307 | 319 | self.pf_axes.append(cax) |
|
308 | 320 | else: |
|
309 | 321 | if self.height is None: |
|
310 | 322 | self.height = 3 |
|
311 | 323 | for n in range(self.nplots): |
|
312 | 324 | fig = plt.figure(figsize=(self.width, self.height), |
|
313 | 325 | edgecolor='k', |
|
314 | 326 | facecolor='w') |
|
315 | ax = fig.add_subplot(1, 1, 1, polar=self.polar) | |
|
316 | ax.tick_params(labelsize=8) | |
|
317 |
ax. |
|
|
318 |
ax. |
|
|
319 |
ax. |
|
|
327 | ax_p = fig.add_subplot(1, 1, 1, polar=self.polar, projection=self.projection) | |
|
328 | ax_r = fig.add_subplot(1, 1, 1, polar=self.polar) | |
|
329 | ax_p.tick_params(labelsize=8) | |
|
330 | ax_p.firsttime = True | |
|
331 | ax_p.index = 0 | |
|
332 | ax_p.press = None | |
|
333 | ax_r.tick_params(labelsize=8) | |
|
334 | ax_r.firsttime = True | |
|
335 | ax_r.index = 0 | |
|
336 | ax_r.press = None | |
|
320 | 337 | self.figures.append(fig) |
|
321 | self.axes.append(ax) | |
|
338 | self.axes['PPI'].append(ax_p) | |
|
339 | self.axes['RHI'].append(ax_r) | |
|
322 | 340 | if self.showprofile: |
|
323 | 341 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
324 | 342 | cax.tick_params(labelsize=8) |
|
325 | 343 | self.pf_axes.append(cax) |
|
326 | 344 | |
|
327 | 345 | for n in range(self.nrows): |
|
328 | 346 | if self.colormaps is not None: |
|
329 | 347 | cmap = plt.get_cmap(self.colormaps[n]) |
|
330 | 348 | else: |
|
331 | 349 | cmap = plt.get_cmap(self.colormap) |
|
332 | 350 | cmap.set_bad(self.bgcolor, 1.) |
|
333 | 351 | self.cmaps.append(cmap) |
|
334 | 352 | |
|
335 | 353 | def __add_axes(self, ax, size='30%', pad='8%'): |
|
336 | 354 | ''' |
|
337 | 355 | Add new axes to the given figure |
|
338 | 356 | ''' |
|
339 | 357 | divider = make_axes_locatable(ax) |
|
340 | 358 | nax = divider.new_horizontal(size=size, pad=pad) |
|
341 | 359 | ax.figure.add_axes(nax) |
|
342 | 360 | return nax |
|
343 | 361 | |
|
344 | 362 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
345 | 363 | ''' |
|
346 | 364 | Create a masked array for missing data |
|
347 | 365 | ''' |
|
348 | 366 | if x_buffer.shape[0] < 2: |
|
349 | 367 | return x_buffer, y_buffer, z_buffer |
|
350 | 368 | |
|
351 | 369 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
352 | 370 | x_median = numpy.median(deltas) |
|
353 | 371 | |
|
354 | 372 | index = numpy.where(deltas > 5 * x_median) |
|
355 | 373 | |
|
356 | 374 | if len(index[0]) != 0: |
|
357 | 375 | z_buffer[::, index[0], ::] = self.__missing |
|
358 | 376 | z_buffer = numpy.ma.masked_inside(z_buffer, |
|
359 | 377 | 0.99 * self.__missing, |
|
360 | 378 | 1.01 * self.__missing) |
|
361 | 379 | |
|
362 | 380 | return x_buffer, y_buffer, z_buffer |
|
363 | 381 | |
|
364 | 382 | def decimate(self): |
|
365 | 383 | |
|
366 | 384 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
367 | 385 | dy = int(len(self.y) / self.decimation) + 1 |
|
368 | 386 | |
|
369 | 387 | # x = self.x[::dx] |
|
370 | 388 | x = self.x |
|
371 | 389 | y = self.y[::dy] |
|
372 | 390 | z = self.z[::, ::, ::dy] |
|
373 | 391 | |
|
374 | 392 | return x, y, z |
|
375 | 393 | |
|
376 | 394 | def format(self): |
|
377 | 395 | ''' |
|
378 | 396 | Set min and max values, labels, ticks and titles |
|
379 | 397 | ''' |
|
380 | 398 | |
|
381 | for n, ax in enumerate(self.axes): | |
|
399 | for n, ax in enumerate(self.axes[self.mode]): | |
|
382 | 400 | if ax.firsttime: |
|
383 | 401 | if self.xaxis != 'time': |
|
384 | 402 | xmin = self.xmin |
|
385 | 403 | xmax = self.xmax |
|
386 | 404 | else: |
|
387 | 405 | xmin = self.tmin |
|
388 | 406 | xmax = self.tmin + self.xrange*60*60 |
|
389 | 407 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) |
|
390 | 408 | ax.xaxis.set_major_locator(LinearLocator(9)) |
|
391 | 409 | ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)]) |
|
392 | 410 | ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)]) |
|
411 | ||
|
393 | 412 | ax.set_facecolor(self.bgcolor) |
|
413 | ||
|
394 | 414 | if self.xscale: |
|
395 | 415 | ax.xaxis.set_major_formatter(FuncFormatter( |
|
396 | 416 | lambda x, pos: '{0:g}'.format(x*self.xscale))) |
|
397 | 417 | if self.yscale: |
|
398 | 418 | ax.yaxis.set_major_formatter(FuncFormatter( |
|
399 | 419 | lambda x, pos: '{0:g}'.format(x*self.yscale))) |
|
400 | 420 | if self.xlabel is not None: |
|
401 | 421 | ax.set_xlabel(self.xlabel) |
|
402 | 422 | if self.ylabel is not None: |
|
403 | 423 | ax.set_ylabel(self.ylabel) |
|
404 | 424 | if self.showprofile: |
|
405 | 425 | self.pf_axes[n].set_ylim(ymin, ymax) |
|
406 | 426 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) |
|
407 | 427 | self.pf_axes[n].set_xlabel('dB') |
|
408 | 428 | self.pf_axes[n].grid(b=True, axis='x') |
|
409 | 429 | [tick.set_visible(False) |
|
410 |
|
|
|
430 | for tick in self.pf_axes[n].get_yticklabels()] | |
|
411 | 431 | if self.colorbar: |
|
412 | 432 | ax.cbar = plt.colorbar( |
|
413 | 433 | ax.plt, ax=ax, fraction=0.05, pad=0.06, aspect=10) |
|
414 | 434 | ax.cbar.ax.tick_params(labelsize=8) |
|
415 | 435 | ax.cbar.ax.press = None |
|
416 | 436 | if self.cb_label: |
|
417 | 437 | ax.cbar.set_label(self.cb_label, size=8) |
|
418 | 438 | elif self.cb_labels: |
|
419 | 439 | ax.cbar.set_label(self.cb_labels[n], size=8) |
|
420 | 440 | else: |
|
421 | 441 | ax.cbar = None |
|
422 | ax.set_xlim(xmin, xmax) | |
|
423 |
ax.set_ |
|
|
442 | if self.mode == 'RHI': | |
|
443 | ax.set_xlim(xmin, xmax) | |
|
444 | ax.set_ylim(ymin, ymax) | |
|
424 | 445 | ax.firsttime = False |
|
425 | 446 | if self.grid: |
|
426 | 447 | ax.grid(True) |
|
427 | 448 | if not self.polar: |
|
428 | 449 | ax.set_title('{} {} {}'.format( |
|
429 | 450 | self.titles[n], |
|
430 | 451 | self.getDateTime(self.data.max_time).strftime( |
|
431 | 452 | '%Y-%m-%d %H:%M:%S'), |
|
432 | 453 | self.time_label), |
|
433 | 454 | size=8) |
|
434 | 455 | else: |
|
435 | 456 | #ax.set_title('{}'.format(self.titles[n]), size=8) |
|
436 | 457 | ax.set_title('{} {} {}'.format( |
|
437 | 458 | self.titles[n], |
|
438 | 459 | self.getDateTime(self.data.max_time).strftime( |
|
439 | 460 | '%Y-%m-%d %H:%M:%S'), |
|
440 | 461 | self.time_label), |
|
441 | 462 | size=8) |
|
442 | 463 | ax.set_ylim(0, self.ymax) |
|
443 | 464 | if self.mode == 'PPI': |
|
444 | 465 | ax.set_yticks(ax.get_yticks(), labels=ax.get_yticks(), color='white') |
|
445 | 466 | ax.yaxis.labelpad = 28 |
|
446 | 467 | elif self.mode == 'RHI': |
|
447 | 468 | ax.xaxis.labelpad = 16 |
|
448 | 469 | |
|
449 | 470 | if self.firsttime: |
|
450 |
for |
|
|
471 | for fig in self.figures['PPI'] + self.figures['RHI']: | |
|
451 | 472 | fig.subplots_adjust(**self.plots_adjust) |
|
452 | 473 | self.firsttime = False |
|
453 | 474 | |
|
454 | 475 | def clear_figures(self): |
|
455 | 476 | ''' |
|
456 | 477 | Reset axes for redraw plots |
|
457 | 478 | ''' |
|
458 | 479 | |
|
459 |
|
|
|
480 | axes = self.pf_axes + self.cb_axes + self.axes[self.mode] | |
|
481 | ||
|
482 | for ax in axes: | |
|
460 | 483 | ax.clear() |
|
461 | 484 | ax.firsttime = True |
|
462 | 485 | if hasattr(ax, 'cbar') and ax.cbar: |
|
463 | 486 | ax.cbar.remove() |
|
464 | 487 | |
|
465 | 488 | def __plot(self): |
|
466 | 489 | ''' |
|
467 | 490 | Main function to plot, format and save figures |
|
468 | 491 | ''' |
|
469 | 492 | |
|
470 | 493 | self.plot() |
|
471 | 494 | self.format() |
|
472 | ||
|
473 |
for n, fig in enumerate( |
|
|
495 | figures = self.figures[self.mode] | |
|
496 | for n, fig in enumerate(figures): | |
|
474 | 497 | if self.nrows == 0 or self.nplots == 0: |
|
475 | 498 | log.warning('No data', self.name) |
|
476 | 499 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') |
|
477 | 500 | fig.canvas.manager.set_window_title(self.CODE) |
|
478 | 501 | continue |
|
479 | 502 | |
|
480 | 503 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, |
|
481 | 504 | self.getDateTime(self.data.max_time).strftime('%Y/%m/%d'))) |
|
482 | 505 | fig.canvas.draw() |
|
483 | 506 | if self.show: |
|
484 | 507 | fig.show() |
|
485 | 508 | figpause(0.01) |
|
486 | 509 | |
|
487 | 510 | if self.save: |
|
488 | 511 | self.save_figure(n) |
|
489 | 512 | |
|
490 | 513 | if self.server: |
|
491 | 514 | if self.mode and self.mode == 'RHI': |
|
492 | 515 | return |
|
493 | 516 | self.send_to_server() |
|
494 | 517 | |
|
495 | 518 | def __update(self, dataOut, timestamp): |
|
496 | 519 | ''' |
|
497 | 520 | ''' |
|
498 | 521 | |
|
499 | 522 | metadata = { |
|
500 | 523 | 'yrange': dataOut.heightList, |
|
501 | 524 | 'interval': dataOut.timeInterval, |
|
502 | 525 | 'channels': dataOut.channelList |
|
503 | 526 | } |
|
504 | 527 | |
|
505 | 528 | data, meta = self.update(dataOut) |
|
506 | 529 | metadata.update(meta) |
|
507 | 530 | self.data.update(data, timestamp, metadata) |
|
508 | 531 | |
|
509 | 532 | def save_figure(self, n): |
|
510 | 533 | ''' |
|
511 | 534 | ''' |
|
512 | 535 | if self.mode is not None: |
|
513 | 536 | ang = 'AZ' if self.mode == 'RHI' else 'EL' |
|
514 |
|
|
|
537 | folder = '_{}_{}_{}'.format(self.mode, ang, self.mode_value) | |
|
538 | label = '{}{}_{}'.format(ang[0], self.mode_value, self.save_code) | |
|
515 | 539 | else: |
|
540 | folder = '' | |
|
516 | 541 | label = '' |
|
517 | 542 | |
|
518 | 543 | if self.oneFigure: |
|
519 | 544 | if (self.data.max_time - self.save_time) <= self.save_period: |
|
520 | 545 | return |
|
521 | 546 | |
|
522 | 547 | self.save_time = self.data.max_time |
|
523 | 548 | |
|
524 | fig = self.figures[n] | |
|
549 | fig = self.figures[self.mode][n] | |
|
525 | 550 | |
|
526 | 551 | if self.throttle == 0: |
|
527 | 552 | if self.oneFigure: |
|
528 | 553 | figname = os.path.join( |
|
529 | 554 | self.save, |
|
530 |
self.save_code + |
|
|
531 | '{}_{}.png'.format( | |
|
532 |
|
|
|
555 | self.save_code + folder, | |
|
556 | '{}_{}_{}.png'.format( | |
|
557 | 'SOPHY', | |
|
533 | 558 | self.getDateTime(self.data.max_time).strftime( |
|
534 | 559 | '%Y%m%d_%H%M%S' |
|
535 | 560 | ), |
|
561 | label | |
|
536 | 562 | ) |
|
537 | 563 | ) |
|
538 | 564 | else: |
|
539 | 565 | figname = os.path.join( |
|
540 | 566 | self.save, |
|
541 | 567 | self.save_code, |
|
542 | 568 | '{}_ch{}_{}.png'.format( |
|
543 | 569 | self.save_code, n, |
|
544 | 570 | self.getDateTime(self.data.max_time).strftime( |
|
545 | 571 | '%Y%m%d_%H%M%S' |
|
546 | 572 | ), |
|
547 | 573 | ) |
|
548 | 574 | ) |
|
549 | 575 | log.log('Saving figure: {}'.format(figname), self.name) |
|
550 | 576 | if not os.path.isdir(os.path.dirname(figname)): |
|
551 | 577 | os.makedirs(os.path.dirname(figname)) |
|
552 | 578 | fig.savefig(figname) |
|
553 | 579 | |
|
554 | 580 | figname = os.path.join( |
|
555 | 581 | self.save, |
|
556 | 582 | '{}_{}.png'.format( |
|
557 | 583 | self.save_code, |
|
558 | 584 | self.getDateTime(self.data.min_time).strftime( |
|
559 | 585 | '%Y%m%d' |
|
560 | 586 | ), |
|
561 | 587 | ) |
|
562 | 588 | ) |
|
563 | 589 | |
|
564 | 590 | log.log('Saving figure: {}'.format(figname), self.name) |
|
565 | 591 | if not os.path.isdir(os.path.dirname(figname)): |
|
566 | 592 | os.makedirs(os.path.dirname(figname)) |
|
567 | 593 | fig.savefig(figname) |
|
568 | 594 | |
|
569 | 595 | def send_to_server(self): |
|
570 | 596 | ''' |
|
571 | 597 | ''' |
|
572 | 598 | |
|
573 | 599 | if self.exp_code == None: |
|
574 | 600 | log.warning('Missing `exp_code` skipping sending to server...') |
|
575 | 601 | |
|
576 | 602 | last_time = self.data.max_time |
|
577 | 603 | interval = last_time - self.sender_time |
|
578 | 604 | if interval < self.sender_period: |
|
579 | 605 | return |
|
580 | 606 | |
|
581 | 607 | self.sender_time = last_time |
|
582 | 608 | |
|
583 | 609 | attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax'] |
|
584 | 610 | for attr in attrs: |
|
585 | 611 | value = getattr(self, attr) |
|
586 | 612 | if value: |
|
587 | 613 | if isinstance(value, (numpy.float32, numpy.float64)): |
|
588 | 614 | value = round(float(value), 2) |
|
589 | 615 | self.data.meta[attr] = value |
|
590 | 616 | if self.colormap == 'jet' or self.colormap == 'sophy_w': |
|
591 | 617 | self.data.meta['colormap'] = 'Jet' |
|
592 | 618 | elif 'sophy_v' in self.colormap: |
|
593 | 619 | self.data.meta['colormap'] = 'RdBu' |
|
594 | 620 | else: |
|
595 | 621 | self.data.meta['colormap'] = 'Viridis' |
|
596 | 622 | self.data.meta['interval'] = int(interval) |
|
597 | 623 | |
|
598 | 624 | self.sender_queue.append(last_time) |
|
599 | 625 | |
|
600 | 626 | while True: |
|
601 | 627 | try: |
|
602 | 628 | tm = self.sender_queue.popleft() |
|
603 | 629 | except IndexError: |
|
604 | 630 | break |
|
605 | 631 | msg = self.data.jsonify(tm, self.save_code, self.plot_type, key='var') |
|
606 | 632 | self.socket.send_string(msg) |
|
607 | 633 | socks = dict(self.poll.poll(2000)) |
|
608 | 634 | if socks.get(self.socket) == zmq.POLLIN: |
|
609 | 635 | reply = self.socket.recv_string() |
|
610 | 636 | if reply == 'ok': |
|
611 | 637 | log.log("Response from server ok", self.name) |
|
612 | 638 | time.sleep(0.1) |
|
613 | 639 | continue |
|
614 | 640 | else: |
|
615 | 641 | log.warning( |
|
616 | 642 | "Malformed reply from server: {}".format(reply), self.name) |
|
617 | 643 | else: |
|
618 | 644 | log.warning( |
|
619 | 645 | "No response from server, retrying...", self.name) |
|
620 | 646 | self.sender_queue.appendleft(tm) |
|
621 | 647 | self.socket.setsockopt(zmq.LINGER, 0) |
|
622 | 648 | self.socket.close() |
|
623 | 649 | self.poll.unregister(self.socket) |
|
624 | 650 | self.socket = self.context.socket(zmq.REQ) |
|
625 | 651 | self.socket.connect(self.server) |
|
626 | 652 | self.poll.register(self.socket, zmq.POLLIN) |
|
627 | 653 | break |
|
628 | 654 | |
|
629 | 655 | def setup(self): |
|
630 | 656 | ''' |
|
631 | 657 | This method should be implemented in the child class, the following |
|
632 | 658 | attributes should be set: |
|
633 | 659 | |
|
634 | 660 | self.nrows: number of rows |
|
635 | 661 | self.ncols: number of cols |
|
636 | 662 | self.nplots: number of plots (channels or pairs) |
|
637 | 663 | self.ylabel: label for Y axes |
|
638 | 664 | self.titles: list of axes title |
|
639 | 665 | |
|
640 | 666 | ''' |
|
641 | 667 | raise NotImplementedError |
|
642 | 668 | |
|
643 | 669 | def plot(self): |
|
644 | 670 | ''' |
|
645 | 671 | Must be defined in the child class, the actual plotting method |
|
646 | 672 | ''' |
|
647 | 673 | raise NotImplementedError |
|
648 | 674 | |
|
649 | 675 | def update(self, dataOut): |
|
650 | 676 | ''' |
|
651 | 677 | Must be defined in the child class, update self.data with new data |
|
652 | 678 | ''' |
|
653 | 679 | |
|
654 | 680 | data = { |
|
655 | 681 | self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE)) |
|
656 | 682 | } |
|
657 | 683 | meta = {} |
|
658 | 684 | |
|
659 | 685 | return data, meta |
|
660 | 686 | |
|
661 | 687 | def run(self, dataOut, **kwargs): |
|
662 | 688 | ''' |
|
663 | 689 | Main plotting routine |
|
664 | 690 | ''' |
|
665 | 691 | |
|
666 | 692 | if self.isConfig is False: |
|
667 | 693 | self.__setup(**kwargs) |
|
668 | 694 | |
|
669 | 695 | if self.localtime: |
|
670 | 696 | self.getDateTime = datetime.datetime.fromtimestamp |
|
671 | 697 | else: |
|
672 | 698 | self.getDateTime = datetime.datetime.utcfromtimestamp |
|
673 | 699 | |
|
674 | 700 | self.data.setup() |
|
675 | 701 | self.isConfig = True |
|
676 | 702 | if self.server: |
|
677 | 703 | self.context = zmq.Context() |
|
678 | 704 | self.socket = self.context.socket(zmq.REQ) |
|
679 | 705 | self.socket.connect(self.server) |
|
680 | 706 | self.poll = zmq.Poller() |
|
681 | 707 | self.poll.register(self.socket, zmq.POLLIN) |
|
682 | 708 | |
|
683 | 709 | tm = getattr(dataOut, self.attr_time) |
|
684 | 710 | |
|
685 | 711 | if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60: |
|
686 | 712 | self.save_time = tm |
|
687 | 713 | self.__plot() |
|
688 | 714 | self.tmin += self.xrange*60*60 |
|
689 | 715 | self.data.setup() |
|
690 | 716 | self.clear_figures() |
|
691 | 717 | |
|
692 | 718 | self.__update(dataOut, tm) |
|
693 | 719 | |
|
694 | 720 | if self.isPlotConfig is False: |
|
695 | 721 | self.__setup_plot() |
|
696 | 722 | self.isPlotConfig = True |
|
697 | 723 | if self.xaxis == 'time': |
|
698 | 724 | dt = self.getDateTime(tm) |
|
699 | 725 | if self.xmin is None: |
|
700 | 726 | self.tmin = tm |
|
701 | 727 | self.xmin = dt.hour |
|
702 | 728 | minutes = (self.xmin-int(self.xmin)) * 60 |
|
703 | 729 | seconds = (minutes - int(minutes)) * 60 |
|
704 | 730 | self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) - |
|
705 | 731 | datetime.datetime(1970, 1, 1)).total_seconds() |
|
706 | 732 | if self.localtime: |
|
707 | 733 | self.tmin += time.timezone |
|
708 | 734 | |
|
709 | 735 | if self.xmin is not None and self.xmax is not None: |
|
710 | 736 | self.xrange = self.xmax - self.xmin |
|
711 | 737 | |
|
712 | 738 | if self.throttle == 0: |
|
713 | 739 | self.__plot() |
|
714 | 740 | else: |
|
715 | 741 | self.__throttle_plot(self.__plot)#, coerce=coerce) |
|
716 | 742 | |
|
717 | 743 | def close(self): |
|
718 | 744 | |
|
719 | 745 | if self.data and not self.data.flagNoData: |
|
720 | 746 | self.save_time = 0 |
|
721 | 747 | self.__plot() |
|
722 | 748 | if self.data and not self.data.flagNoData and self.pause: |
|
723 | 749 | figpause(10) |
@@ -1,697 +1,716 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import warnings |
|
4 | 4 | import numpy |
|
5 | 5 | from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter |
|
6 | from matplotlib.patches import Circle | |
|
7 | import cartopy.crs as ccrs | |
|
8 | from cartopy.feature import ShapelyFeature | |
|
9 | import cartopy.io.shapereader as shpreader | |
|
6 | 10 | |
|
7 | 11 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
8 | 12 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
9 | 13 | from schainpy.utils import log |
|
10 | 14 | |
|
11 | 15 | |
|
12 | 16 | EARTH_RADIUS = 6.3710e3 |
|
13 | 17 | |
|
14 | 18 | |
|
15 | 19 | def antenna_to_cartesian(ranges, azimuths, elevations): |
|
16 | 20 | """ |
|
17 | 21 | Return Cartesian coordinates from antenna coordinates. |
|
18 | 22 | |
|
19 | 23 | Parameters |
|
20 | 24 | ---------- |
|
21 | 25 | ranges : array |
|
22 | 26 | Distances to the center of the radar gates (bins) in kilometers. |
|
23 | 27 | azimuths : array |
|
24 | 28 | Azimuth angle of the radar in degrees. |
|
25 | 29 | elevations : array |
|
26 | 30 | Elevation angle of the radar in degrees. |
|
27 | 31 | |
|
28 | 32 | Returns |
|
29 | 33 | ------- |
|
30 | 34 | x, y, z : array |
|
31 | 35 | Cartesian coordinates in meters from the radar. |
|
32 | 36 | |
|
33 | 37 | Notes |
|
34 | 38 | ----- |
|
35 | 39 | The calculation for Cartesian coordinate is adapted from equations |
|
36 | 40 | 2.28(b) and 2.28(c) of Doviak and Zrnic [1]_ assuming a |
|
37 | 41 | standard atmosphere (4/3 Earth's radius model). |
|
38 | 42 | |
|
39 | 43 | .. math:: |
|
40 | 44 | |
|
41 | 45 | z = \\sqrt{r^2+R^2+2*r*R*sin(\\theta_e)} - R |
|
42 | 46 | |
|
43 | 47 | s = R * arcsin(\\frac{r*cos(\\theta_e)}{R+z}) |
|
44 | 48 | |
|
45 | 49 | x = s * sin(\\theta_a) |
|
46 | 50 | |
|
47 | 51 | y = s * cos(\\theta_a) |
|
48 | 52 | |
|
49 | 53 | Where r is the distance from the radar to the center of the gate, |
|
50 | 54 | :math:`\\theta_a` is the azimuth angle, :math:`\\theta_e` is the |
|
51 | 55 | elevation angle, s is the arc length, and R is the effective radius |
|
52 | 56 | of the earth, taken to be 4/3 the mean radius of earth (6371 km). |
|
53 | 57 | |
|
54 | 58 | References |
|
55 | 59 | ---------- |
|
56 | 60 | .. [1] Doviak and Zrnic, Doppler Radar and Weather Observations, Second |
|
57 | 61 | Edition, 1993, p. 21. |
|
58 | 62 | |
|
59 | 63 | """ |
|
60 | 64 | theta_e = numpy.deg2rad(elevations) # elevation angle in radians. |
|
61 | 65 | theta_a = numpy.deg2rad(azimuths) # azimuth angle in radians. |
|
62 | 66 | R = 6371.0 * 1000.0 * 4.0 / 3.0 # effective radius of earth in meters. |
|
63 | 67 | r = ranges * 1000.0 # distances to gates in meters. |
|
64 | 68 | |
|
65 | 69 | z = (r ** 2 + R ** 2 + 2.0 * r * R * numpy.sin(theta_e)) ** 0.5 - R |
|
66 | 70 | s = R * numpy.arcsin(r * numpy.cos(theta_e) / (R + z)) # arc length in m. |
|
67 | 71 | x = s * numpy.sin(theta_a) |
|
68 | 72 | y = s * numpy.cos(theta_a) |
|
69 | 73 | return x, y, z |
|
70 | 74 | |
|
71 | 75 | def cartesian_to_geographic_aeqd(x, y, lon_0, lat_0, R=EARTH_RADIUS): |
|
72 | 76 | """ |
|
73 | 77 | Azimuthal equidistant Cartesian to geographic coordinate transform. |
|
74 | 78 | |
|
75 | 79 | Transform a set of Cartesian/Cartographic coordinates (x, y) to |
|
76 | 80 | geographic coordinate system (lat, lon) using a azimuthal equidistant |
|
77 | 81 | map projection [1]_. |
|
78 | 82 | |
|
79 | 83 | .. math:: |
|
80 | 84 | |
|
81 | 85 | lat = \\arcsin(\\cos(c) * \\sin(lat_0) + |
|
82 | 86 | (y * \\sin(c) * \\cos(lat_0) / \\rho)) |
|
83 | 87 | |
|
84 | 88 | lon = lon_0 + \\arctan2( |
|
85 | 89 | x * \\sin(c), |
|
86 | 90 | \\rho * \\cos(lat_0) * \\cos(c) - y * \\sin(lat_0) * \\sin(c)) |
|
87 | 91 | |
|
88 | 92 | \\rho = \\sqrt(x^2 + y^2) |
|
89 | 93 | |
|
90 | 94 | c = \\rho / R |
|
91 | 95 | |
|
92 | 96 | Where x, y are the Cartesian position from the center of projection; |
|
93 | 97 | lat, lon the corresponding latitude and longitude; lat_0, lon_0 are the |
|
94 | 98 | latitude and longitude of the center of the projection; R is the radius of |
|
95 | 99 | the earth (defaults to ~6371 km). lon is adjusted to be between -180 and |
|
96 | 100 | 180. |
|
97 | 101 | |
|
98 | 102 | Parameters |
|
99 | 103 | ---------- |
|
100 | 104 | x, y : array-like |
|
101 | 105 | Cartesian coordinates in the same units as R, typically meters. |
|
102 | 106 | lon_0, lat_0 : float |
|
103 | 107 | Longitude and latitude, in degrees, of the center of the projection. |
|
104 | 108 | R : float, optional |
|
105 | 109 | Earth radius in the same units as x and y. The default value is in |
|
106 | 110 | units of meters. |
|
107 | 111 | |
|
108 | 112 | Returns |
|
109 | 113 | ------- |
|
110 | 114 | lon, lat : array |
|
111 | 115 | Longitude and latitude of Cartesian coordinates in degrees. |
|
112 | 116 | |
|
113 | 117 | References |
|
114 | 118 | ---------- |
|
115 | 119 | .. [1] Snyder, J. P. Map Projections--A Working Manual. U. S. Geological |
|
116 | 120 | Survey Professional Paper 1395, 1987, pp. 191-202. |
|
117 | 121 | |
|
118 | 122 | """ |
|
119 | 123 | x = numpy.atleast_1d(numpy.asarray(x)) |
|
120 | 124 | y = numpy.atleast_1d(numpy.asarray(y)) |
|
121 | 125 | |
|
122 | 126 | lat_0_rad = numpy.deg2rad(lat_0) |
|
123 | 127 | lon_0_rad = numpy.deg2rad(lon_0) |
|
124 | 128 | |
|
125 | 129 | rho = numpy.sqrt(x*x + y*y) |
|
126 | 130 | c = rho / R |
|
127 | 131 | |
|
128 | 132 | with warnings.catch_warnings(): |
|
129 | 133 | # division by zero may occur here but is properly addressed below so |
|
130 | 134 | # the warnings can be ignored |
|
131 | 135 | warnings.simplefilter("ignore", RuntimeWarning) |
|
132 | 136 | lat_rad = numpy.arcsin(numpy.cos(c) * numpy.sin(lat_0_rad) + |
|
133 | 137 | y * numpy.sin(c) * numpy.cos(lat_0_rad) / rho) |
|
134 | 138 | lat_deg = numpy.rad2deg(lat_rad) |
|
135 | 139 | # fix cases where the distance from the center of the projection is zero |
|
136 | 140 | lat_deg[rho == 0] = lat_0 |
|
137 | 141 | |
|
138 | 142 | x1 = x * numpy.sin(c) |
|
139 | 143 | x2 = rho*numpy.cos(lat_0_rad)*numpy.cos(c) - y*numpy.sin(lat_0_rad)*numpy.sin(c) |
|
140 | 144 | lon_rad = lon_0_rad + numpy.arctan2(x1, x2) |
|
141 | 145 | lon_deg = numpy.rad2deg(lon_rad) |
|
142 | 146 | # Longitudes should be from -180 to 180 degrees |
|
143 | 147 | lon_deg[lon_deg > 180] -= 360. |
|
144 | 148 | lon_deg[lon_deg < -180] += 360. |
|
145 | 149 | |
|
146 | 150 | return lon_deg, lat_deg |
|
147 | 151 | |
|
148 | 152 | def antenna_to_geographic(ranges, azimuths, elevations, site): |
|
149 | 153 | |
|
150 | 154 | x, y, z = antenna_to_cartesian(numpy.array(ranges), numpy.array(azimuths), numpy.array(elevations)) |
|
151 | 155 | lon, lat = cartesian_to_geographic_aeqd(x, y, site[0], site[1], R=6370997.) |
|
152 | 156 | |
|
153 | 157 | return lon, lat |
|
154 | 158 | |
|
155 | 159 | def ll2xy(lat1, lon1, lat2, lon2): |
|
156 | 160 | |
|
157 | 161 | p = 0.017453292519943295 |
|
158 | 162 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
159 | 163 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
160 | 164 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
161 | 165 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
162 | 166 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
163 | 167 | theta = -theta + numpy.pi/2 |
|
164 | 168 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
165 | 169 | |
|
166 | 170 | |
|
167 | 171 | def km2deg(km): |
|
168 | 172 | ''' |
|
169 | 173 | Convert distance in km to degrees |
|
170 | 174 | ''' |
|
171 | 175 | |
|
172 | 176 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
173 | 177 | |
|
174 | 178 | |
|
175 | 179 | |
|
176 | 180 | class SpectralMomentsPlot(SpectraPlot): |
|
177 | 181 | ''' |
|
178 | 182 | Plot for Spectral Moments |
|
179 | 183 | ''' |
|
180 | 184 | CODE = 'spc_moments' |
|
181 | 185 | # colormap = 'jet' |
|
182 | 186 | # plot_type = 'pcolor' |
|
183 | 187 | |
|
184 | 188 | class DobleGaussianPlot(SpectraPlot): |
|
185 | 189 | ''' |
|
186 | 190 | Plot for Double Gaussian Plot |
|
187 | 191 | ''' |
|
188 | 192 | CODE = 'gaussian_fit' |
|
189 | 193 | # colormap = 'jet' |
|
190 | 194 | # plot_type = 'pcolor' |
|
191 | 195 | |
|
192 | 196 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
193 | 197 | ''' |
|
194 | 198 | Plot SpectraCut with Double Gaussian Fit |
|
195 | 199 | ''' |
|
196 | 200 | CODE = 'cut_gaussian_fit' |
|
197 | 201 | |
|
198 | 202 | class SnrPlot(RTIPlot): |
|
199 | 203 | ''' |
|
200 | 204 | Plot for SNR Data |
|
201 | 205 | ''' |
|
202 | 206 | |
|
203 | 207 | CODE = 'snr' |
|
204 | 208 | colormap = 'jet' |
|
205 | 209 | |
|
206 | 210 | def update(self, dataOut): |
|
207 | 211 | |
|
208 | 212 | data = { |
|
209 | 213 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
210 | 214 | } |
|
211 | 215 | |
|
212 | 216 | return data, {} |
|
213 | 217 | |
|
214 | 218 | class DopplerPlot(RTIPlot): |
|
215 | 219 | ''' |
|
216 | 220 | Plot for DOPPLER Data (1st moment) |
|
217 | 221 | ''' |
|
218 | 222 | |
|
219 | 223 | CODE = 'dop' |
|
220 | 224 | colormap = 'jet' |
|
221 | 225 | |
|
222 | 226 | def update(self, dataOut): |
|
223 | 227 | |
|
224 | 228 | data = { |
|
225 | 229 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
226 | 230 | } |
|
227 | 231 | |
|
228 | 232 | return data, {} |
|
229 | 233 | |
|
230 | 234 | class PowerPlot(RTIPlot): |
|
231 | 235 | ''' |
|
232 | 236 | Plot for Power Data (0 moment) |
|
233 | 237 | ''' |
|
234 | 238 | |
|
235 | 239 | CODE = 'pow' |
|
236 | 240 | colormap = 'jet' |
|
237 | 241 | |
|
238 | 242 | def update(self, dataOut): |
|
239 | 243 | data = { |
|
240 | 244 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
241 | 245 | } |
|
242 | 246 | return data, {} |
|
243 | 247 | |
|
244 | 248 | class SpectralWidthPlot(RTIPlot): |
|
245 | 249 | ''' |
|
246 | 250 | Plot for Spectral Width Data (2nd moment) |
|
247 | 251 | ''' |
|
248 | 252 | |
|
249 | 253 | CODE = 'width' |
|
250 | 254 | colormap = 'jet' |
|
251 | 255 | |
|
252 | 256 | def update(self, dataOut): |
|
253 | 257 | |
|
254 | 258 | data = { |
|
255 | 259 | 'width': dataOut.data_width |
|
256 | 260 | } |
|
257 | 261 | |
|
258 | 262 | return data, {} |
|
259 | 263 | |
|
260 | 264 | class SkyMapPlot(Plot): |
|
261 | 265 | ''' |
|
262 | 266 | Plot for meteors detection data |
|
263 | 267 | ''' |
|
264 | 268 | |
|
265 | 269 | CODE = 'param' |
|
266 | 270 | |
|
267 | 271 | def setup(self): |
|
268 | 272 | |
|
269 | 273 | self.ncols = 1 |
|
270 | 274 | self.nrows = 1 |
|
271 | 275 | self.width = 7.2 |
|
272 | 276 | self.height = 7.2 |
|
273 | 277 | self.nplots = 1 |
|
274 | 278 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
275 | 279 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
276 | 280 | self.polar = True |
|
277 | 281 | self.ymin = -180 |
|
278 | 282 | self.ymax = 180 |
|
279 | 283 | self.colorbar = False |
|
280 | 284 | |
|
281 | 285 | def plot(self): |
|
282 | 286 | |
|
283 | 287 | arrayParameters = numpy.concatenate(self.data['param']) |
|
284 | 288 | error = arrayParameters[:, -1] |
|
285 | 289 | indValid = numpy.where(error == 0)[0] |
|
286 | 290 | finalMeteor = arrayParameters[indValid, :] |
|
287 | 291 | finalAzimuth = finalMeteor[:, 3] |
|
288 | 292 | finalZenith = finalMeteor[:, 4] |
|
289 | 293 | |
|
290 | 294 | x = finalAzimuth * numpy.pi / 180 |
|
291 | 295 | y = finalZenith |
|
292 | 296 | |
|
293 | 297 | ax = self.axes[0] |
|
294 | 298 | |
|
295 | 299 | if ax.firsttime: |
|
296 | 300 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
297 | 301 | else: |
|
298 | 302 | ax.plot.set_data(x, y) |
|
299 | 303 | |
|
300 | 304 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
301 | 305 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
302 | 306 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
303 | 307 | dt2, |
|
304 | 308 | len(x)) |
|
305 | 309 | self.titles[0] = title |
|
306 | 310 | |
|
307 | 311 | |
|
308 | 312 | class GenericRTIPlot(Plot): |
|
309 | 313 | ''' |
|
310 | 314 | Plot for data_xxxx object |
|
311 | 315 | ''' |
|
312 | 316 | |
|
313 | 317 | CODE = 'param' |
|
314 | 318 | colormap = 'viridis' |
|
315 | 319 | plot_type = 'pcolorbuffer' |
|
316 | 320 | |
|
317 | 321 | def setup(self): |
|
318 | 322 | self.xaxis = 'time' |
|
319 | 323 | self.ncols = 1 |
|
320 | 324 | self.nrows = self.data.shape('param')[0] |
|
321 | 325 | self.nplots = self.nrows |
|
322 | 326 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
323 | 327 | |
|
324 | 328 | if not self.xlabel: |
|
325 | 329 | self.xlabel = 'Time' |
|
326 | 330 | |
|
327 | 331 | self.ylabel = 'Range [km]' |
|
328 | 332 | if not self.titles: |
|
329 | 333 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
330 | 334 | |
|
331 | 335 | def update(self, dataOut): |
|
332 | 336 | |
|
333 | 337 | data = { |
|
334 | 338 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
335 | 339 | } |
|
336 | 340 | |
|
337 | 341 | meta = {} |
|
338 | 342 | |
|
339 | 343 | return data, meta |
|
340 | 344 | |
|
341 | 345 | def plot(self): |
|
342 | 346 | # self.data.normalize_heights() |
|
343 | 347 | self.x = self.data.times |
|
344 | 348 | self.y = self.data.yrange |
|
345 | 349 | self.z = self.data['param'] |
|
346 | 350 | self.z = 10*numpy.log10(self.z) |
|
347 | 351 | self.z = numpy.ma.masked_invalid(self.z) |
|
348 | 352 | |
|
349 | 353 | if self.decimation is None: |
|
350 | 354 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
351 | 355 | else: |
|
352 | 356 | x, y, z = self.fill_gaps(*self.decimate()) |
|
353 | 357 | |
|
354 | 358 | for n, ax in enumerate(self.axes): |
|
355 | 359 | |
|
356 | 360 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
357 | 361 | self.z[n]) |
|
358 | 362 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
359 | 363 | self.z[n]) |
|
360 | 364 | |
|
361 | 365 | if ax.firsttime: |
|
362 | 366 | if self.zlimits is not None: |
|
363 | 367 | self.zmin, self.zmax = self.zlimits[n] |
|
364 | 368 | |
|
365 | 369 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
366 | 370 | vmin=self.zmin, |
|
367 | 371 | vmax=self.zmax, |
|
368 | 372 | cmap=self.cmaps[n] |
|
369 | 373 | ) |
|
370 | 374 | else: |
|
371 | 375 | if self.zlimits is not None: |
|
372 | 376 | self.zmin, self.zmax = self.zlimits[n] |
|
373 | 377 | ax.collections.remove(ax.collections[0]) |
|
374 | 378 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
375 | 379 | vmin=self.zmin, |
|
376 | 380 | vmax=self.zmax, |
|
377 | 381 | cmap=self.cmaps[n] |
|
378 | 382 | ) |
|
379 | 383 | |
|
380 | 384 | |
|
381 | 385 | class PolarMapPlot(Plot): |
|
382 | 386 | ''' |
|
383 | 387 | Plot for weather radar |
|
384 | 388 | ''' |
|
385 | 389 | |
|
386 | 390 | CODE = 'param' |
|
387 | 391 | colormap = 'seismic' |
|
388 | 392 | |
|
389 | 393 | def setup(self): |
|
390 | 394 | self.ncols = 1 |
|
391 | 395 | self.nrows = 1 |
|
392 | 396 | self.width = 9 |
|
393 | 397 | self.height = 8 |
|
394 | 398 | self.mode = self.data.meta['mode'] |
|
395 | 399 | if self.channels is not None: |
|
396 | 400 | self.nplots = len(self.channels) |
|
397 | 401 | self.nrows = len(self.channels) |
|
398 | 402 | else: |
|
399 | 403 | self.nplots = self.data.shape(self.CODE)[0] |
|
400 | 404 | self.nrows = self.nplots |
|
401 | 405 | self.channels = list(range(self.nplots)) |
|
402 | 406 | if self.mode == 'E': |
|
403 | 407 | self.xlabel = 'Longitude' |
|
404 | 408 | self.ylabel = 'Latitude' |
|
405 | 409 | else: |
|
406 | 410 | self.xlabel = 'Range (km)' |
|
407 | 411 | self.ylabel = 'Height (km)' |
|
408 | 412 | self.bgcolor = 'white' |
|
409 | 413 | self.cb_labels = self.data.meta['units'] |
|
410 | 414 | self.lat = self.data.meta['latitude'] |
|
411 | 415 | self.lon = self.data.meta['longitude'] |
|
412 | 416 | self.xmin, self.xmax = float( |
|
413 | 417 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
414 | 418 | self.ymin, self.ymax = float( |
|
415 | 419 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
416 | 420 | # self.polar = True |
|
417 | 421 | |
|
418 | 422 | def plot(self): |
|
419 | 423 | |
|
420 | 424 | for n, ax in enumerate(self.axes): |
|
421 | 425 | data = self.data['param'][self.channels[n]] |
|
422 | 426 | |
|
423 | 427 | zeniths = numpy.linspace( |
|
424 | 428 | 0, self.data.meta['max_range'], data.shape[1]) |
|
425 | 429 | if self.mode == 'E': |
|
426 | 430 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
427 | 431 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
428 | 432 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
429 | 433 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
430 | 434 | x = km2deg(x) + self.lon |
|
431 | 435 | y = km2deg(y) + self.lat |
|
432 | 436 | else: |
|
433 | 437 | azimuths = numpy.radians(self.data.yrange) |
|
434 | 438 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
435 | 439 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
436 | 440 | self.y = zeniths |
|
437 | 441 | |
|
438 | 442 | if ax.firsttime: |
|
439 | 443 | if self.zlimits is not None: |
|
440 | 444 | self.zmin, self.zmax = self.zlimits[n] |
|
441 | 445 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
442 | 446 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
443 | 447 | vmin=self.zmin, |
|
444 | 448 | vmax=self.zmax, |
|
445 | 449 | cmap=self.cmaps[n]) |
|
446 | 450 | else: |
|
447 | 451 | if self.zlimits is not None: |
|
448 | 452 | self.zmin, self.zmax = self.zlimits[n] |
|
449 | 453 | ax.collections.remove(ax.collections[0]) |
|
450 | 454 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
451 | 455 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
452 | 456 | vmin=self.zmin, |
|
453 | 457 | vmax=self.zmax, |
|
454 | 458 | cmap=self.cmaps[n]) |
|
455 | 459 | |
|
456 | 460 | if self.mode == 'A': |
|
457 | 461 | continue |
|
458 | 462 | |
|
459 | 463 | # plot district names |
|
460 | 464 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
461 | 465 | for line in f: |
|
462 | 466 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
463 | 467 | lat = float(lat) |
|
464 | 468 | lon = float(lon) |
|
465 | 469 | # ax.plot(lon, lat, '.b', ms=2) |
|
466 | 470 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
467 | 471 | va='bottom', size='8', color='black') |
|
468 | 472 | |
|
469 | 473 | # plot limites |
|
470 | 474 | limites = [] |
|
471 | 475 | tmp = [] |
|
472 | 476 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
473 | 477 | if '#' in line: |
|
474 | 478 | if tmp: |
|
475 | 479 | limites.append(tmp) |
|
476 | 480 | tmp = [] |
|
477 | 481 | continue |
|
478 | 482 | values = line.strip().split(',') |
|
479 | 483 | tmp.append((float(values[0]), float(values[1]))) |
|
480 | 484 | for points in limites: |
|
481 | 485 | ax.add_patch( |
|
482 | 486 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
483 | 487 | |
|
484 | 488 | # plot Cuencas |
|
485 | 489 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
486 | 490 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
487 | 491 | values = [line.strip().split(',') for line in f] |
|
488 | 492 | points = [(float(s[0]), float(s[1])) for s in values] |
|
489 | 493 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
490 | 494 | |
|
491 | 495 | # plot grid |
|
492 | 496 | for r in (15, 30, 45, 60): |
|
493 | 497 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
494 | 498 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
495 | 499 | ax.text( |
|
496 | 500 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
497 | 501 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
498 | 502 | '{}km'.format(r), |
|
499 | 503 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
500 | 504 | |
|
501 | 505 | if self.mode == 'E': |
|
502 | 506 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
503 | 507 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
504 | 508 | else: |
|
505 | 509 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
506 | 510 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
507 | 511 | |
|
508 | 512 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
509 | 513 | self.titles = ['{} {}'.format( |
|
510 | 514 | self.data.parameters[x], title) for x in self.channels] |
|
511 | 515 | |
|
512 | 516 | class WeatherParamsPlot(Plot): |
|
513 | 517 | #CODE = 'RHI' |
|
514 | 518 | #plot_name = 'RHI' |
|
515 | 519 | plot_type = 'scattermap' |
|
516 | 520 | buffering = False |
|
521 | projection = ccrs.PlateCarree() | |
|
517 | 522 | |
|
518 | 523 | def setup(self): |
|
519 | 524 | |
|
520 | 525 | self.ncols = 1 |
|
521 | 526 | self.nrows = 1 |
|
522 | 527 | self.nplots= 1 |
|
523 | 528 | self.ylabel= 'Range [km]' |
|
524 | 529 | self.xlabel= 'Range [km]' |
|
525 | self.polar = True | |
|
526 | self.grid = True | |
|
530 | ||
|
527 | 531 | if self.channels is not None: |
|
528 | 532 | self.nplots = len(self.channels) |
|
529 | 533 | self.ncols = len(self.channels) |
|
530 | 534 | else: |
|
531 | 535 | self.nplots = self.data.shape(self.CODE)[0] |
|
532 | 536 | self.ncols = self.nplots |
|
533 | 537 | self.channels = list(range(self.nplots)) |
|
534 | 538 | |
|
535 | 539 | self.colorbar=True |
|
536 | 540 | if len(self.channels)>1: |
|
537 | 541 | self.width = 12 |
|
538 | 542 | else: |
|
539 | 543 | self.width =8 |
|
540 |
self.height = |
|
|
544 | self.height =7 | |
|
541 | 545 | self.ini =0 |
|
542 | 546 | self.len_azi =0 |
|
543 | 547 | self.buffer_ini = None |
|
544 | 548 | self.buffer_ele = None |
|
545 | 549 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
546 | 550 | self.flag =0 |
|
547 | 551 | self.indicador= 0 |
|
548 | 552 | self.last_data_ele = None |
|
549 | 553 | self.val_mean = None |
|
550 | 554 | |
|
551 | 555 | def update(self, dataOut): |
|
552 | 556 | |
|
553 | 557 | vars = { |
|
554 | 558 | 'S' : 0, |
|
555 | 559 | 'V' : 1, |
|
556 | 560 | 'W' : 2, |
|
557 | 561 | 'SNR' : 3, |
|
558 | 562 | 'Z' : 4, |
|
559 | 563 | 'D' : 5, |
|
560 | 564 | 'P' : 6, |
|
561 | 565 | 'R' : 7, |
|
562 | 566 | } |
|
563 | 567 | |
|
564 | 568 | data = {} |
|
565 | 569 | meta = {} |
|
566 | 570 | |
|
567 | 571 | if hasattr(dataOut, 'nFFTPoints'): |
|
568 | 572 | factor = dataOut.normFactor |
|
569 | 573 | else: |
|
570 | 574 | factor = 1 |
|
571 | 575 | |
|
572 | 576 | if hasattr(dataOut, 'dparam'): |
|
573 | 577 | tmp = getattr(dataOut, 'data_param') |
|
574 | 578 | else: |
|
575 | 579 | |
|
576 | 580 | if 'S' in self.attr_data[0]: |
|
577 | 581 | tmp = 10*numpy.log10(10.0*getattr(dataOut, 'data_param')[:,0,:]/(factor)) |
|
578 | 582 | else: |
|
579 | 583 | tmp = getattr(dataOut, 'data_param')[:,vars[self.attr_data[0]],:] |
|
580 | 584 | |
|
581 | 585 | if self.mask: |
|
582 | 586 | mask = dataOut.data_param[:,3,:] < self.mask |
|
583 | 587 | tmp = numpy.ma.masked_array(tmp, mask=mask) |
|
584 | 588 | |
|
585 | 589 | r = dataOut.heightList |
|
586 | 590 | delta_height = r[1]-r[0] |
|
587 | 591 | valid = numpy.where(r>=0)[0] |
|
588 | 592 | data['r'] = numpy.arange(len(valid))*delta_height |
|
589 | 593 | |
|
590 | 594 | data['data'] = [0, 0] |
|
591 | 595 | |
|
592 |
|
|
|
593 | data['data'][0] = tmp[0][:,valid] | |
|
594 | data['data'][1] = tmp[1][:,valid] | |
|
595 |
|
|
|
596 |
|
|
|
596 | try: | |
|
597 | data['data'][0] = tmp[0][:,valid] | |
|
598 | data['data'][1] = tmp[1][:,valid] | |
|
599 | except: | |
|
600 | data['data'][0] = tmp[0][:,valid] | |
|
601 | data['data'][1] = tmp[0][:,valid] | |
|
597 | 602 | |
|
598 | 603 | if dataOut.mode_op == 'PPI': |
|
599 | 604 | self.CODE = 'PPI' |
|
600 | 605 | self.title = self.CODE |
|
601 | 606 | elif dataOut.mode_op == 'RHI': |
|
602 | 607 | self.CODE = 'RHI' |
|
603 | 608 | self.title = self.CODE |
|
604 | 609 | |
|
605 | 610 | data['azi'] = dataOut.data_azi |
|
606 | 611 | data['ele'] = dataOut.data_ele |
|
607 | 612 | data['mode_op'] = dataOut.mode_op |
|
608 | 613 | self.mode = dataOut.mode_op |
|
609 | var = data['data'][0].flatten() | |
|
610 | r = numpy.tile(data['r'], data['data'][0].shape[0]) | |
|
611 | az = numpy.repeat(data['azi'], data['data'][0].shape[1]) | |
|
612 | el = numpy.repeat(data['ele'], data['data'][0].shape[1]) | |
|
613 | ||
|
614 | # lla = georef.spherical_to_proj(r, data['azi'], data['ele'], (-75.295893, -12.040436, 3379.2147)) | |
|
615 | ||
|
616 | latlon = antenna_to_geographic(r, az, el, (-75.295893, -12.040436)) | |
|
617 | ||
|
618 | if self.mask: | |
|
619 | meta['lat'] = latlon[1][var.mask==False] | |
|
620 | meta['lon'] = latlon[0][var.mask==False] | |
|
621 | data['var'] = numpy.array([var[var.mask==False]]) | |
|
622 | else: | |
|
623 | meta['lat'] = latlon[1] | |
|
624 | meta['lon'] = latlon[0] | |
|
625 | data['var'] = numpy.array([var]) | |
|
626 | 614 | |
|
627 | 615 | return data, meta |
|
628 | 616 | |
|
629 | 617 | def plot(self): |
|
630 | 618 | data = self.data[-1] |
|
631 | 619 | z = data['data'] |
|
632 | 620 | r = data['r'] |
|
633 | 621 | self.titles = [] |
|
634 | 622 | |
|
635 | 623 | self.ymax = self.ymax if self.ymax else numpy.nanmax(r) |
|
636 | 624 | self.ymin = self.ymin if self.ymin else numpy.nanmin(r) |
|
637 | 625 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
638 | 626 | self.zmin = self.zmin if self.zmin is not None else numpy.nanmin(z) |
|
639 | 627 | |
|
640 | 628 | if isinstance(data['mode_op'], bytes): |
|
641 | 629 | data['mode_op'] = data['mode_op'].decode() |
|
642 | 630 | |
|
643 | 631 | if data['mode_op'] == 'RHI': |
|
644 | try: | |
|
645 | if self.data['mode_op'][-2] == 'PPI': | |
|
646 | self.ang_min = None | |
|
647 | self.ang_max = None | |
|
648 | except: | |
|
649 | pass | |
|
650 | self.ang_min = self.ang_min if self.ang_min else 0 | |
|
651 | self.ang_max = self.ang_max if self.ang_max else 90 | |
|
652 | r, theta = numpy.meshgrid(r, numpy.radians(data['ele']) ) | |
|
653 | elif data['mode_op'] == 'PPI': | |
|
654 | try: | |
|
655 | if self.data['mode_op'][-2] == 'RHI': | |
|
656 | self.ang_min = None | |
|
657 | self.ang_max = None | |
|
658 | except: | |
|
659 | pass | |
|
660 | self.ang_min = self.ang_min if self.ang_min else 0 | |
|
661 | self.ang_max = self.ang_max if self.ang_max else 360 | |
|
662 | r, theta = numpy.meshgrid(r, numpy.radians(data['azi']) ) | |
|
632 | r, theta = numpy.meshgrid(r, numpy.radians(data['ele'])) | |
|
633 | len_aux = int(data['azi'].shape[0]/4) | |
|
634 | mean = numpy.mean(data['azi'][len_aux:-len_aux]) | |
|
635 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
|
636 | elif data['mode_op'] == 'PPI': | |
|
637 | r, theta = numpy.meshgrid(r, -numpy.radians(data['azi'])+numpy.pi/2) | |
|
638 | len_aux = int(data['ele'].shape[0]/4) | |
|
639 | mean = numpy.mean(data['ele'][len_aux:-len_aux]) | |
|
640 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(mean)), r*numpy.sin( | |
|
641 | theta)*numpy.cos(numpy.radians(mean)) | |
|
642 | x = km2deg(x) + -75.295893 | |
|
643 | y = km2deg(y) + -12.040436 | |
|
663 | 644 | |
|
664 | 645 | self.clear_figures() |
|
665 | 646 | |
|
666 | for i,ax in enumerate(self.axes): | |
|
667 | ||
|
668 | if ax.firsttime: | |
|
669 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) | |
|
670 | ax.plt = ax.pcolormesh(theta, r, z[i], cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) | |
|
671 | if data['mode_op'] == 'PPI': | |
|
672 | ax.set_theta_direction(-1) | |
|
673 | ax.set_theta_offset(numpy.pi/2) | |
|
647 | if data['mode_op'] == 'PPI': | |
|
648 | axes = self.axes['PPI'] | |
|
649 | else: | |
|
650 | axes = self.axes['RHI'] | |
|
674 | 651 | |
|
675 | else: | |
|
676 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) | |
|
677 | ax.plt = ax.pcolormesh(theta, r, z[i], cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) | |
|
678 | if data['mode_op'] == 'PPI': | |
|
679 | ax.set_theta_direction(-1) | |
|
680 | ax.set_theta_offset(numpy.pi/2) | |
|
652 | for i, ax in enumerate(axes): | |
|
653 | if data['mode_op'] == 'PPI': | |
|
654 | ax.set_extent([-75.745893, -74.845893, -12.490436, -11.590436]) | |
|
655 | ||
|
656 | ax.plt = ax.pcolormesh(x, y, z[i], cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) | |
|
681 | 657 | |
|
682 | ax.grid(True) | |
|
683 | 658 | if data['mode_op'] == 'RHI': |
|
684 | 659 | len_aux = int(data['azi'].shape[0]/4) |
|
685 | 660 | mean = numpy.mean(data['azi'][len_aux:-len_aux]) |
|
686 | 661 | if len(self.channels) !=1: |
|
687 | 662 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in self.channels] |
|
688 | 663 | else: |
|
689 | 664 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] |
|
690 | 665 | elif data['mode_op'] == 'PPI': |
|
691 | 666 | len_aux = int(data['ele'].shape[0]/4) |
|
692 | 667 | mean = numpy.mean(data['ele'][len_aux:-len_aux]) |
|
693 | 668 | if len(self.channels) !=1: |
|
694 | 669 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in self.channels] |
|
695 | 670 | else: |
|
696 | 671 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] |
|
697 | self.mode_value = round(mean,1) No newline at end of file | |
|
672 | self.mode_value = round(mean,1) | |
|
673 | ||
|
674 | if data['mode_op'] == 'PPI': | |
|
675 | gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, | |
|
676 | linewidth=1, color='gray', alpha=0.5, linestyle='--') | |
|
677 | gl.xlabel_style = {'size': 8} | |
|
678 | gl.ylabel_style = {'size': 8} | |
|
679 | gl.xlabels_top = False | |
|
680 | gl.ylabels_right = False | |
|
681 | shape_p = os.path.join(self.shapes,'PER_ADM2/PER_ADM2.shp') | |
|
682 | shape_d = os.path.join(self.shapes,'PER_ADM1/PER_ADM1.shp') | |
|
683 | capitales = os.path.join(self.shapes,'CAPITALES/cap_provincia.shp') | |
|
684 | vias = os.path.join(self.shapes,'Carreteras/VIAS_NACIONAL_250000.shp') | |
|
685 | reader_d = shpreader.BasicReader(shape_p, encoding='latin1') | |
|
686 | reader_p = shpreader.BasicReader(shape_d, encoding='latin1') | |
|
687 | reader_c = shpreader.BasicReader(capitales, encoding='latin1') | |
|
688 | reader_v = shpreader.BasicReader(vias, encoding='latin1') | |
|
689 | caps = [x for x in reader_c.records() if x.attributes["Departa"] in ("JUNIN", "LIMA", "AYACUCHO", "HUANCAVELICA")] | |
|
690 | districts = [x for x in reader_d.records() if x.attributes["Name"] in ("JUNÍN", "CHANCHAMAYO", "CHUPACA", "CONCEPCIÓN", "HUANCAYO", "JAUJA", "SATIPO", "TARMA", "YAUYOS", "HUAROCHIRÍ", "CANTA", "HUANTA", "TAYACAJA")] | |
|
691 | provs = [x for x in reader_p.records() if x.attributes["NAME"] in ("Junín", "Lima")] | |
|
692 | vias = [x for x in reader_v.records() if x.attributes["DEP"] in ("JUNIN", "LIMA")] | |
|
693 | ||
|
694 | # Display Kenya's shape | |
|
695 | shape_feature = ShapelyFeature([x.geometry for x in districts], ccrs.PlateCarree(), facecolor="none", edgecolor='grey', lw=0.5) | |
|
696 | ax.add_feature(shape_feature) | |
|
697 | shape_feature = ShapelyFeature([x.geometry for x in provs], ccrs.PlateCarree(), facecolor="none", edgecolor='white', lw=1) | |
|
698 | ax.add_feature(shape_feature) | |
|
699 | shape_feature = ShapelyFeature([x.geometry for x in vias], ccrs.PlateCarree(), facecolor="none", edgecolor='yellow', lw=1) | |
|
700 | ax.add_feature(shape_feature) | |
|
701 | ||
|
702 | for cap in caps: | |
|
703 | if cap.attributes['Nombre'] in ("LA OROYA", "CONCEPCIÓN", "HUANCAYO", "JAUJA", "CHUPACA", "YAUYOS", "HUANTA", "PAMPAS"): | |
|
704 | ax.text(cap.attributes['X'], cap.attributes['Y'], cap.attributes['Nombre'].title(), size=7, color='white') | |
|
705 | ax.text(-75.052003, -11.915552, 'Huaytapallana', size=7, color='cyan') | |
|
706 | ax.plot(-75.052003, -11.915552, '*') | |
|
707 | ||
|
708 | for R in (10, 20, 30 , 40, 50): | |
|
709 | circle = Circle((-75.295893, -12.040436), km2deg(R), facecolor='none', | |
|
710 | edgecolor='skyblue', linewidth=1, alpha=0.5) | |
|
711 | ax.add_patch(circle) | |
|
712 | ax.text(km2deg(R)*numpy.cos(numpy.radians(45))-75.295893, | |
|
713 | km2deg(R)*numpy.sin(numpy.radians(45))-12.040436, | |
|
714 | '{}km'.format(R), color='skyblue', size=7) | |
|
715 | elif data['mode_op'] == 'RHI': | |
|
716 | ax.grid(color='grey', alpha=0.5, linestyle='--', linewidth=1) |
@@ -1,733 +1,739 | |||
|
1 | 1 | from email.utils import localtime |
|
2 | 2 | import os |
|
3 | 3 | import time |
|
4 | 4 | import datetime |
|
5 | 5 | |
|
6 | 6 | import numpy |
|
7 | 7 | import h5py |
|
8 | 8 | |
|
9 | 9 | import schainpy.admin |
|
10 | 10 | from schainpy.model.data.jrodata import * |
|
11 | 11 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
12 | 12 | from schainpy.model.io.jroIO_base import * |
|
13 | 13 | from schainpy.utils import log |
|
14 | 14 | |
|
15 | 15 | |
|
16 | 16 | class HDFReader(Reader, ProcessingUnit): |
|
17 | 17 | """Processing unit to read HDF5 format files |
|
18 | 18 | |
|
19 | 19 | This unit reads HDF5 files created with `HDFWriter` operation contains |
|
20 | 20 | by default two groups Data and Metadata all variables would be saved as `dataOut` |
|
21 | 21 | attributes. |
|
22 | 22 | It is possible to read any HDF5 file by given the structure in the `description` |
|
23 | 23 | parameter, also you can add extra values to metadata with the parameter `extras`. |
|
24 | 24 | |
|
25 | 25 | Parameters: |
|
26 | 26 | ----------- |
|
27 | 27 | path : str |
|
28 | 28 | Path where files are located. |
|
29 | 29 | startDate : date |
|
30 | 30 | Start date of the files |
|
31 | 31 | endDate : list |
|
32 | 32 | End date of the files |
|
33 | 33 | startTime : time |
|
34 | 34 | Start time of the files |
|
35 | 35 | endTime : time |
|
36 | 36 | End time of the files |
|
37 | 37 | description : dict, optional |
|
38 | 38 | Dictionary with the description of the HDF5 file |
|
39 | 39 | extras : dict, optional |
|
40 | 40 | Dictionary with extra metadata to be be added to `dataOut` |
|
41 | 41 | |
|
42 | 42 | Examples |
|
43 | 43 | -------- |
|
44 | 44 | |
|
45 | 45 | desc = { |
|
46 | 46 | 'Data': { |
|
47 | 47 | 'data_output': ['u', 'v', 'w'], |
|
48 | 48 | 'utctime': 'timestamps', |
|
49 | 49 | } , |
|
50 | 50 | 'Metadata': { |
|
51 | 51 | 'heightList': 'heights' |
|
52 | 52 | } |
|
53 | 53 | } |
|
54 | 54 | |
|
55 | 55 | desc = { |
|
56 | 56 | 'Data': { |
|
57 | 57 | 'data_output': 'winds', |
|
58 | 58 | 'utctime': 'timestamps' |
|
59 | 59 | }, |
|
60 | 60 | 'Metadata': { |
|
61 | 61 | 'heightList': 'heights' |
|
62 | 62 | } |
|
63 | 63 | } |
|
64 | 64 | |
|
65 | 65 | extras = { |
|
66 | 66 | 'timeZone': 300 |
|
67 | 67 | } |
|
68 | 68 | |
|
69 | 69 | reader = project.addReadUnit( |
|
70 | 70 | name='HDFReader', |
|
71 | 71 | path='/path/to/files', |
|
72 | 72 | startDate='2019/01/01', |
|
73 | 73 | endDate='2019/01/31', |
|
74 | 74 | startTime='00:00:00', |
|
75 | 75 | endTime='23:59:59', |
|
76 | 76 | # description=json.dumps(desc), |
|
77 | 77 | # extras=json.dumps(extras), |
|
78 | 78 | ) |
|
79 | 79 | |
|
80 | 80 | """ |
|
81 | 81 | |
|
82 | 82 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras'] |
|
83 | 83 | |
|
84 | 84 | def __init__(self): |
|
85 | 85 | ProcessingUnit.__init__(self) |
|
86 | 86 | self.dataOut = Parameters() |
|
87 | 87 | self.ext = ".hdf5" |
|
88 | 88 | self.optchar = "D" |
|
89 | 89 | self.meta = {} |
|
90 | 90 | self.data = {} |
|
91 | 91 | self.open_file = h5py.File |
|
92 | 92 | self.open_mode = 'r' |
|
93 | 93 | self.description = {} |
|
94 | 94 | self.extras = {} |
|
95 | 95 | self.filefmt = "*%Y%j***" |
|
96 | 96 | self.folderfmt = "*%Y%j" |
|
97 | 97 | self.utcoffset = 0 |
|
98 | 98 | self.filter = None |
|
99 | 99 | self.dparam = None |
|
100 | 100 | |
|
101 | 101 | def setup(self, **kwargs): |
|
102 | 102 | |
|
103 | 103 | self.set_kwargs(**kwargs) |
|
104 | 104 | if not self.ext.startswith('.'): |
|
105 | 105 | self.ext = '.{}'.format(self.ext) |
|
106 | 106 | |
|
107 | 107 | if self.online: |
|
108 | 108 | log.log("Searching files in online mode...", self.name) |
|
109 | 109 | |
|
110 | 110 | for nTries in range(self.nTries): |
|
111 | 111 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
112 | 112 | self.endDate, self.expLabel, self.ext, self.walk, |
|
113 | 113 | self.filefmt, self.folderfmt,self.filter) |
|
114 | 114 | try: |
|
115 | 115 | fullpath = next(fullpath) |
|
116 | 116 | except: |
|
117 | 117 | fullpath = None |
|
118 | 118 | |
|
119 | 119 | if fullpath: |
|
120 | 120 | break |
|
121 | 121 | |
|
122 | 122 | log.warning( |
|
123 | 123 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
124 | 124 | self.delay, self.path, nTries + 1), |
|
125 | 125 | self.name) |
|
126 | 126 | time.sleep(self.delay) |
|
127 | 127 | |
|
128 | 128 | if not(fullpath): |
|
129 | 129 | raise schainpy.admin.SchainError( |
|
130 | 130 | 'There isn\'t any valid file in {}'.format(self.path)) |
|
131 | 131 | |
|
132 | 132 | pathname, filename = os.path.split(fullpath) |
|
133 | 133 | self.year = int(filename[1:5]) |
|
134 | 134 | self.doy = int(filename[5:8]) |
|
135 | 135 | self.set = int(filename[8:11]) - 1 |
|
136 | 136 | else: |
|
137 | 137 | log.log("Searching files in {}".format(self.path), self.name) |
|
138 | 138 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
139 | 139 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt,self.filter) |
|
140 | 140 | |
|
141 | 141 | self.setNextFile() |
|
142 | 142 | |
|
143 | 143 | return |
|
144 | 144 | |
|
145 | 145 | def readFirstHeader(self): |
|
146 | 146 | '''Read metadata and data''' |
|
147 | 147 | |
|
148 | 148 | self.__readMetadata() |
|
149 | 149 | self.__readData() |
|
150 | 150 | self.__setBlockList() |
|
151 | 151 | |
|
152 | 152 | if 'type' in self.meta: |
|
153 | 153 | self.dataOut = eval(self.meta['type'])() |
|
154 | 154 | |
|
155 | 155 | if self.dparam: |
|
156 | 156 | setattr(self.dataOut, "dparam", 1) |
|
157 | 157 | |
|
158 | 158 | for attr in self.meta: |
|
159 | 159 | setattr(self.dataOut, attr, self.meta[attr]) |
|
160 | 160 | |
|
161 | 161 | self.blockIndex = 0 |
|
162 | 162 | |
|
163 | 163 | return |
|
164 | 164 | |
|
165 | 165 | def __setBlockList(self): |
|
166 | 166 | ''' |
|
167 | 167 | Selects the data within the times defined |
|
168 | 168 | |
|
169 | 169 | self.fp |
|
170 | 170 | self.startTime |
|
171 | 171 | self.endTime |
|
172 | 172 | self.blockList |
|
173 | 173 | self.blocksPerFile |
|
174 | 174 | |
|
175 | 175 | ''' |
|
176 | 176 | |
|
177 | 177 | startTime = self.startTime |
|
178 | 178 | endTime = self.endTime |
|
179 | 179 | thisUtcTime = self.data['utctime'] + self.utcoffset |
|
180 | 180 | try: |
|
181 | 181 | self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1]) |
|
182 | 182 | except: |
|
183 | 183 | self.interval = 0 |
|
184 | 184 | thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0]) |
|
185 | 185 | |
|
186 | 186 | thisDate = thisDatetime.date() |
|
187 | 187 | thisTime = thisDatetime.time() |
|
188 | 188 | |
|
189 | 189 | startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
190 | 190 | endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
191 | 191 | |
|
192 | 192 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] |
|
193 | 193 | |
|
194 | 194 | self.blockList = ind |
|
195 | 195 | self.blocksPerFile = len(ind) |
|
196 | 196 | return |
|
197 | 197 | |
|
198 | 198 | def __readMetadata(self): |
|
199 | 199 | ''' |
|
200 | 200 | Reads Metadata |
|
201 | 201 | ''' |
|
202 | 202 | |
|
203 | 203 | meta = {} |
|
204 | 204 | |
|
205 | 205 | if self.description: |
|
206 | 206 | for key, value in self.description['Metadata'].items(): |
|
207 | 207 | meta[key] = self.fp[value][()] |
|
208 | 208 | else: |
|
209 | 209 | grp = self.fp['Metadata'] |
|
210 | 210 | for name in grp: |
|
211 | 211 | meta[name] = grp[name][()] |
|
212 | 212 | |
|
213 | 213 | if self.extras: |
|
214 | 214 | for key, value in self.extras.items(): |
|
215 | 215 | meta[key] = value |
|
216 | 216 | self.meta = meta |
|
217 | 217 | |
|
218 | 218 | return |
|
219 | 219 | |
|
220 | 220 | def __readData(self): |
|
221 | 221 | |
|
222 | 222 | data = {} |
|
223 | 223 | |
|
224 | 224 | if self.description: |
|
225 | 225 | for key, value in self.description['Data'].items(): |
|
226 | 226 | if isinstance(value, str): |
|
227 | 227 | if isinstance(self.fp[value], h5py.Dataset): |
|
228 | 228 | data[key] = self.fp[value][()] |
|
229 | 229 | elif isinstance(self.fp[value], h5py.Group): |
|
230 | 230 | array = [] |
|
231 | 231 | for ch in self.fp[value]: |
|
232 | 232 | array.append(self.fp[value][ch][()]) |
|
233 | 233 | data[key] = numpy.array(array) |
|
234 | 234 | elif isinstance(value, list): |
|
235 | 235 | array = [] |
|
236 | 236 | for ch in value: |
|
237 | 237 | array.append(self.fp[ch][()]) |
|
238 | 238 | data[key] = numpy.array(array) |
|
239 | 239 | else: |
|
240 | 240 | grp = self.fp['Data'] |
|
241 | 241 | for name in grp: |
|
242 | 242 | if isinstance(grp[name], h5py.Dataset): |
|
243 | 243 | array = grp[name][()] |
|
244 | 244 | elif isinstance(grp[name], h5py.Group): |
|
245 | 245 | array = [] |
|
246 | 246 | for ch in grp[name]: |
|
247 | 247 | array.append(grp[name][ch][()]) |
|
248 | 248 | array = numpy.array(array) |
|
249 | 249 | else: |
|
250 | 250 | log.warning('Unknown type: {}'.format(name)) |
|
251 | 251 | |
|
252 | 252 | if name in self.description: |
|
253 | 253 | key = self.description[name] |
|
254 | 254 | else: |
|
255 | 255 | key = name |
|
256 | 256 | data[key] = array |
|
257 | 257 | |
|
258 | 258 | self.data = data |
|
259 | 259 | return |
|
260 | 260 | |
|
261 | 261 | def getData(self): |
|
262 | 262 | |
|
263 | 263 | for attr in self.data: |
|
264 | 264 | if self.data[attr].ndim == 1: |
|
265 | 265 | setattr(self.dataOut, attr, self.data[attr][self.blockIndex]) |
|
266 | 266 | else: |
|
267 | 267 | if self.dparam: |
|
268 | 268 | setattr(self.dataOut, attr, self.data[attr]) |
|
269 | 269 | else: |
|
270 | 270 | setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex]) |
|
271 | 271 | |
|
272 | 272 | self.dataOut.flagNoData = False |
|
273 | 273 | self.blockIndex += 1 |
|
274 | 274 | |
|
275 | 275 | log.log("Block No. {}/{} -> {}".format( |
|
276 | 276 | self.blockIndex, |
|
277 | 277 | self.blocksPerFile, |
|
278 | 278 | self.dataOut.datatime.ctime()), self.name) |
|
279 | 279 | |
|
280 | 280 | return |
|
281 | 281 | |
|
282 | 282 | def run(self, **kwargs): |
|
283 | 283 | |
|
284 | 284 | if not(self.isConfig): |
|
285 | 285 | self.setup(**kwargs) |
|
286 | 286 | self.isConfig = True |
|
287 | 287 | |
|
288 | 288 | if self.blockIndex == self.blocksPerFile: |
|
289 | 289 | self.setNextFile() |
|
290 | 290 | |
|
291 | 291 | self.getData() |
|
292 | 292 | |
|
293 | 293 | return |
|
294 | 294 | |
|
295 | 295 | @MPDecorator |
|
296 | 296 | class HDFWriter(Operation): |
|
297 | 297 | """Operation to write HDF5 files. |
|
298 | 298 | |
|
299 | 299 | The HDF5 file contains by default two groups Data and Metadata where |
|
300 | 300 | you can save any `dataOut` attribute specified by `dataList` and `metadataList` |
|
301 | 301 | parameters, data attributes are normaly time dependent where the metadata |
|
302 | 302 | are not. |
|
303 | 303 | It is possible to customize the structure of the HDF5 file with the |
|
304 | 304 | optional description parameter see the examples. |
|
305 | 305 | |
|
306 | 306 | Parameters: |
|
307 | 307 | ----------- |
|
308 | 308 | path : str |
|
309 | 309 | Path where files will be saved. |
|
310 | 310 | blocksPerFile : int |
|
311 | 311 | Number of blocks per file |
|
312 | 312 | metadataList : list |
|
313 | 313 | List of the dataOut attributes that will be saved as metadata |
|
314 | 314 | dataList : int |
|
315 | 315 | List of the dataOut attributes that will be saved as data |
|
316 | 316 | setType : bool |
|
317 | 317 | If True the name of the files corresponds to the timestamp of the data |
|
318 | 318 | description : dict, optional |
|
319 | 319 | Dictionary with the desired description of the HDF5 file |
|
320 | 320 | |
|
321 | 321 | Examples |
|
322 | 322 | -------- |
|
323 | 323 | |
|
324 | 324 | desc = { |
|
325 | 325 | 'data_output': {'winds': ['z', 'w', 'v']}, |
|
326 | 326 | 'utctime': 'timestamps', |
|
327 | 327 | 'heightList': 'heights' |
|
328 | 328 | } |
|
329 | 329 | desc = { |
|
330 | 330 | 'data_output': ['z', 'w', 'v'], |
|
331 | 331 | 'utctime': 'timestamps', |
|
332 | 332 | 'heightList': 'heights' |
|
333 | 333 | } |
|
334 | 334 | desc = { |
|
335 | 335 | 'Data': { |
|
336 | 336 | 'data_output': 'winds', |
|
337 | 337 | 'utctime': 'timestamps' |
|
338 | 338 | }, |
|
339 | 339 | 'Metadata': { |
|
340 | 340 | 'heightList': 'heights' |
|
341 | 341 | } |
|
342 | 342 | } |
|
343 | 343 | |
|
344 | 344 | writer = proc_unit.addOperation(name='HDFWriter') |
|
345 | 345 | writer.addParameter(name='path', value='/path/to/file') |
|
346 | 346 | writer.addParameter(name='blocksPerFile', value='32') |
|
347 | 347 | writer.addParameter(name='metadataList', value='heightList,timeZone') |
|
348 | 348 | writer.addParameter(name='dataList',value='data_output,utctime') |
|
349 | 349 | # writer.addParameter(name='description',value=json.dumps(desc)) |
|
350 | 350 | |
|
351 | 351 | """ |
|
352 | 352 | |
|
353 | 353 | ext = ".hdf5" |
|
354 | 354 | optchar = "D" |
|
355 | 355 | filename = None |
|
356 | 356 | path = None |
|
357 | 357 | setFile = None |
|
358 | 358 | fp = None |
|
359 | 359 | firsttime = True |
|
360 | 360 | #Configurations |
|
361 | 361 | blocksPerFile = None |
|
362 | 362 | blockIndex = None |
|
363 | 363 | dataOut = None |
|
364 | 364 | #Data Arrays |
|
365 | 365 | dataList = None |
|
366 | 366 | metadataList = None |
|
367 | 367 | currentDay = None |
|
368 | 368 | lastTime = None |
|
369 | 369 | last_Azipos = None |
|
370 | 370 | last_Elepos = None |
|
371 | 371 | mode = None |
|
372 | 372 | #----------------------- |
|
373 | 373 | Typename = None |
|
374 | 374 | mask = False |
|
375 | 375 | |
|
376 | 376 | def __init__(self): |
|
377 | 377 | |
|
378 | 378 | Operation.__init__(self) |
|
379 | 379 | return |
|
380 | 380 | |
|
381 | 381 | def set_kwargs(self, **kwargs): |
|
382 | 382 | |
|
383 | 383 | for key, value in kwargs.items(): |
|
384 | 384 | setattr(self, key, value) |
|
385 | 385 | |
|
386 | 386 | def set_kwargs_obj(self,obj, **kwargs): |
|
387 | 387 | |
|
388 | 388 | for key, value in kwargs.items(): |
|
389 | 389 | setattr(obj, key, value) |
|
390 | 390 | |
|
391 | 391 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None,type_data=None, localtime=True, **kwargs): |
|
392 | 392 | self.path = path |
|
393 | 393 | self.blocksPerFile = blocksPerFile |
|
394 | 394 | self.metadataList = metadataList |
|
395 | 395 | self.dataList = [s.strip() for s in dataList] |
|
396 | 396 | self.setType = setType |
|
397 | 397 | if self.setType == "weather": |
|
398 | 398 | self.set_kwargs(**kwargs) |
|
399 | 399 | self.set_kwargs_obj(self.dataOut,**kwargs) |
|
400 | 400 | self.weather_vars = { |
|
401 | 401 | 'S' : 0, |
|
402 | 402 | 'V' : 1, |
|
403 | 403 | 'W' : 2, |
|
404 | 404 | 'SNR' : 3, |
|
405 | 405 | 'Z' : 4, |
|
406 | 406 | 'D' : 5, |
|
407 | 407 | 'P' : 6, |
|
408 | 408 | 'R' : 7, |
|
409 | 409 | } |
|
410 | 410 | |
|
411 | 411 | if localtime: |
|
412 | 412 | self.getDateTime = datetime.datetime.fromtimestamp |
|
413 | 413 | else: |
|
414 | 414 | self.getDateTime = datetime.datetime.utcfromtimestamp |
|
415 | 415 | |
|
416 | 416 | self.description = description |
|
417 | 417 | self.type_data=type_data |
|
418 | 418 | |
|
419 | 419 | if self.metadataList is None: |
|
420 | 420 | self.metadataList = self.dataOut.metadata_list |
|
421 | 421 | |
|
422 | 422 | dsList = [] |
|
423 | 423 | |
|
424 | 424 | for i in range(len(self.dataList)): |
|
425 | 425 | dsDict = {} |
|
426 | 426 | if hasattr(self.dataOut, self.dataList[i]): |
|
427 | 427 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
428 | 428 | if self.setType == 'weather' and self.dataList[i] == 'data_param': |
|
429 | 429 | dataAux = dataAux[:,self.weather_vars[self.weather_var],:] |
|
430 | 430 | dsDict['variable'] = self.dataList[i] |
|
431 | 431 | else: |
|
432 | 432 | log.warning('Attribute {} not found in dataOut'.format(self.dataList[i]), self.name) |
|
433 | 433 | continue |
|
434 | 434 | |
|
435 | 435 | if dataAux is None: |
|
436 | 436 | continue |
|
437 | 437 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
|
438 | 438 | dsDict['nDim'] = 0 |
|
439 | 439 | else: |
|
440 | 440 | dsDict['nDim'] = len(dataAux.shape) |
|
441 | 441 | dsDict['shape'] = dataAux.shape |
|
442 | 442 | dsDict['dsNumber'] = dataAux.shape[0] |
|
443 | 443 | dsDict['dtype'] = dataAux.dtype |
|
444 | 444 | dsList.append(dsDict) |
|
445 | 445 | |
|
446 | 446 | self.dsList = dsList |
|
447 | 447 | self.currentDay = self.dataOut.datatime.date() |
|
448 | 448 | |
|
449 | 449 | def timeFlag(self): |
|
450 | 450 | currentTime = self.dataOut.utctime |
|
451 | 451 | dt = self.getDateTime(currentTime) |
|
452 | 452 | |
|
453 | 453 | dataDay = int(dt.strftime('%j')) |
|
454 | 454 | |
|
455 | 455 | if self.lastTime is None: |
|
456 | 456 | self.lastTime = currentTime |
|
457 | 457 | self.currentDay = dataDay |
|
458 | 458 | return False |
|
459 | 459 | |
|
460 | 460 | timeDiff = currentTime - self.lastTime |
|
461 | 461 | |
|
462 | 462 | #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora |
|
463 | 463 | if dataDay != self.currentDay: |
|
464 | 464 | self.currentDay = dataDay |
|
465 | 465 | return True |
|
466 | 466 | elif timeDiff > 3*60*60: |
|
467 | 467 | self.lastTime = currentTime |
|
468 | 468 | return True |
|
469 | 469 | else: |
|
470 | 470 | self.lastTime = currentTime |
|
471 | 471 | return False |
|
472 | 472 | |
|
473 | 473 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, |
|
474 | 474 | dataList=[], setType=None, description={}, mode= None, |
|
475 | 475 | type_data=None, Reset = False, localtime=True, **kwargs): |
|
476 | 476 | |
|
477 | 477 | if Reset: |
|
478 | 478 | self.isConfig = False |
|
479 | 479 | self.closeFile() |
|
480 | 480 | self.lastTime = None |
|
481 | 481 | self.blockIndex = 0 |
|
482 | 482 | |
|
483 | 483 | self.dataOut = dataOut |
|
484 | 484 | self.mode = mode |
|
485 | 485 | |
|
486 | 486 | if not(self.isConfig): |
|
487 | 487 | self.setup(path=path, blocksPerFile=blocksPerFile, |
|
488 | 488 | metadataList=metadataList, dataList=dataList, |
|
489 | 489 | setType=setType, description=description,type_data=type_data, |
|
490 | 490 | localtime=localtime, **kwargs) |
|
491 | 491 | |
|
492 | 492 | self.isConfig = True |
|
493 | 493 | self.setNextFile() |
|
494 | 494 | |
|
495 | 495 | self.putData() |
|
496 | 496 | return |
|
497 | 497 | |
|
498 | 498 | def setNextFile(self): |
|
499 | 499 | |
|
500 | 500 | ext = self.ext |
|
501 | 501 | path = self.path |
|
502 | 502 | setFile = self.setFile |
|
503 | 503 | |
|
504 | 504 | dt = self.getDateTime(self.dataOut.utctime) |
|
505 | 505 | |
|
506 | 506 | if self.setType == 'weather': |
|
507 | 507 | subfolder = dt.strftime('%Y-%m-%dT%H-00-00') |
|
508 | subfolder = '' | |
|
508 | 509 | else: |
|
509 | 510 | subfolder = dt.strftime('d%Y%j') |
|
510 | 511 | |
|
511 | 512 | fullpath = os.path.join(path, subfolder) |
|
512 | 513 | |
|
513 | 514 | if os.path.exists(fullpath): |
|
514 | 515 | filesList = os.listdir(fullpath) |
|
515 | 516 | filesList = [k for k in filesList if k.startswith(self.optchar)] |
|
516 | 517 | if len( filesList ) > 0: |
|
517 | 518 | filesList = sorted(filesList, key=str.lower) |
|
518 | 519 | filen = filesList[-1] |
|
519 | 520 | # el filename debera tener el siguiente formato |
|
520 | 521 | # 0 1234 567 89A BCDE (hex) |
|
521 | 522 | # x YYYY DDD SSS .ext |
|
522 | 523 | if isNumber(filen[8:11]): |
|
523 | 524 | setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file |
|
524 | 525 | else: |
|
525 | 526 | setFile = -1 |
|
526 | 527 | else: |
|
527 | 528 | setFile = -1 #inicializo mi contador de seteo |
|
528 | 529 | else: |
|
529 | 530 | os.makedirs(fullpath) |
|
530 | 531 | setFile = -1 #inicializo mi contador de seteo |
|
531 | 532 | |
|
532 | 533 | if self.setType is None: |
|
533 | 534 | setFile += 1 |
|
534 | 535 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, |
|
535 | 536 | dt.year, |
|
536 | 537 | int(dt.strftime('%j')), |
|
537 | 538 | setFile, |
|
538 | 539 | ext ) |
|
539 | 540 | elif self.setType == "weather": |
|
540 | 541 | |
|
541 | 542 | #SOPHY_20200505_140215_E10.0_Z.h5 |
|
542 | 543 | #SOPHY_20200505_140215_A40.0_Z.h5 |
|
543 | 544 | if self.dataOut.flagMode == 1: #'AZI' #PPI |
|
544 | ang_type = 'E' | |
|
545 | ang_type = 'EL' | |
|
546 | mode_type = 'PPI' | |
|
545 | 547 | len_aux = int(self.dataOut.data_ele.shape[0]/4) |
|
546 | 548 | mean = numpy.mean(self.dataOut.data_ele[len_aux:-len_aux]) |
|
547 | 549 | ang_ = round(mean,1) |
|
548 | 550 | elif self.dataOut.flagMode == 0: #'ELE' #RHI |
|
549 | ang_type = 'A' | |
|
551 | ang_type = 'AZ' | |
|
552 | mode_type = 'RHI' | |
|
550 | 553 | len_aux = int(self.dataOut.data_azi.shape[0]/4) |
|
551 | 554 | mean = numpy.mean(self.dataOut.data_azi[len_aux:-len_aux]) |
|
552 | 555 | ang_ = round(mean,1) |
|
553 | 556 | |
|
554 | 557 | file = '%s_%2.2d%2.2d%2.2d_%2.2d%2.2d%2.2d_%s%2.1f_%s%s' % ( |
|
555 | 558 | 'SOPHY', |
|
556 | 559 | dt.year, |
|
557 | 560 | dt.month, |
|
558 | 561 | dt.day, |
|
559 | 562 | dt.hour, |
|
560 | 563 | dt.minute, |
|
561 | 564 | dt.second, |
|
562 | ang_type, | |
|
565 | ang_type[0], | |
|
563 | 566 | ang_, |
|
564 | 567 | self.weather_var, |
|
565 | 568 | ext ) |
|
566 | ||
|
569 | subfolder = '{}_{}_{}_{:2.1f}'.format(self.weather_var, mode_type, ang_type, ang_) | |
|
570 | fullpath = os.path.join(path, subfolder) | |
|
571 | if not os.path.exists(fullpath): | |
|
572 | os.makedirs(fullpath) | |
|
567 | 573 | else: |
|
568 | 574 | setFile = dt.hour*60+dt.minute |
|
569 | 575 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, |
|
570 | 576 | dt.year, |
|
571 | 577 | int(dt.strftime('%j')), |
|
572 | 578 | setFile, |
|
573 | 579 | ext ) |
|
574 | 580 | |
|
575 | 581 | self.filename = os.path.join( path, subfolder, file ) |
|
576 | 582 | |
|
577 | 583 | self.fp = h5py.File(self.filename, 'w') |
|
578 | 584 | #write metadata |
|
579 | 585 | self.writeMetadata(self.fp) |
|
580 | 586 | #Write data |
|
581 | 587 | self.writeData(self.fp) |
|
582 | 588 | |
|
583 | 589 | def getLabel(self, name, x=None): |
|
584 | 590 | |
|
585 | 591 | if x is None: |
|
586 | 592 | if 'Data' in self.description: |
|
587 | 593 | data = self.description['Data'] |
|
588 | 594 | if 'Metadata' in self.description: |
|
589 | 595 | data.update(self.description['Metadata']) |
|
590 | 596 | else: |
|
591 | 597 | data = self.description |
|
592 | 598 | if name in data: |
|
593 | 599 | if isinstance(data[name], str): |
|
594 | 600 | return data[name] |
|
595 | 601 | elif isinstance(data[name], list): |
|
596 | 602 | return None |
|
597 | 603 | elif isinstance(data[name], dict): |
|
598 | 604 | for key, value in data[name].items(): |
|
599 | 605 | return key |
|
600 | 606 | return name |
|
601 | 607 | else: |
|
602 | 608 | if 'Data' in self.description: |
|
603 | 609 | data = self.description['Data'] |
|
604 | 610 | if 'Metadata' in self.description: |
|
605 | 611 | data.update(self.description['Metadata']) |
|
606 | 612 | else: |
|
607 | 613 | data = self.description |
|
608 | 614 | if name in data: |
|
609 | 615 | if isinstance(data[name], list): |
|
610 | 616 | return data[name][x] |
|
611 | 617 | elif isinstance(data[name], dict): |
|
612 | 618 | for key, value in data[name].items(): |
|
613 | 619 | return value[x] |
|
614 | 620 | if 'cspc' in name: |
|
615 | 621 | return 'pair{:02d}'.format(x) |
|
616 | 622 | else: |
|
617 | 623 | return 'channel{:02d}'.format(x) |
|
618 | 624 | |
|
619 | 625 | def writeMetadata(self, fp): |
|
620 | 626 | |
|
621 | 627 | if self.description: |
|
622 | 628 | if 'Metadata' in self.description: |
|
623 | 629 | grp = fp.create_group('Metadata') |
|
624 | 630 | else: |
|
625 | 631 | grp = fp |
|
626 | 632 | else: |
|
627 | 633 | grp = fp.create_group('Metadata') |
|
628 | 634 | |
|
629 | 635 | for i in range(len(self.metadataList)): |
|
630 | 636 | if not hasattr(self.dataOut, self.metadataList[i]): |
|
631 | 637 | log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name) |
|
632 | 638 | continue |
|
633 | 639 | value = getattr(self.dataOut, self.metadataList[i]) |
|
634 | 640 | if isinstance(value, bool): |
|
635 | 641 | if value is True: |
|
636 | 642 | value = 1 |
|
637 | 643 | else: |
|
638 | 644 | value = 0 |
|
639 | 645 | grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) |
|
640 | 646 | return |
|
641 | 647 | |
|
642 | 648 | def writeData(self, fp): |
|
643 | 649 | |
|
644 | 650 | if self.description: |
|
645 | 651 | if 'Data' in self.description: |
|
646 | 652 | grp = fp.create_group('Data') |
|
647 | 653 | else: |
|
648 | 654 | grp = fp |
|
649 | 655 | else: |
|
650 | 656 | grp = fp.create_group('Data') |
|
651 | 657 | |
|
652 | 658 | dtsets = [] |
|
653 | 659 | data = [] |
|
654 | 660 | |
|
655 | 661 | for dsInfo in self.dsList: |
|
656 | 662 | |
|
657 | 663 | if dsInfo['nDim'] == 0: |
|
658 | 664 | ds = grp.create_dataset( |
|
659 | 665 | self.getLabel(dsInfo['variable']), |
|
660 | 666 | (self.blocksPerFile, ), |
|
661 | 667 | chunks=True, |
|
662 | 668 | dtype=numpy.float64) |
|
663 | 669 | dtsets.append(ds) |
|
664 | 670 | data.append((dsInfo['variable'], -1)) |
|
665 | 671 | else: |
|
666 | 672 | label = self.getLabel(dsInfo['variable']) |
|
667 | 673 | if label is not None: |
|
668 | 674 | sgrp = grp.create_group(label) |
|
669 | 675 | else: |
|
670 | 676 | sgrp = grp |
|
671 | 677 | if self.blocksPerFile == 1: |
|
672 | 678 | shape = dsInfo['shape'][1:] |
|
673 | 679 | else: |
|
674 | 680 | shape = (self.blocksPerFile, ) + dsInfo['shape'][1:] |
|
675 | 681 | for i in range(dsInfo['dsNumber']): |
|
676 | 682 | ds = sgrp.create_dataset( |
|
677 | 683 | self.getLabel(dsInfo['variable'], i), |
|
678 | 684 | shape, |
|
679 | 685 | chunks=True, |
|
680 | 686 | dtype=dsInfo['dtype'], |
|
681 | 687 | compression='gzip', |
|
682 | 688 | ) |
|
683 | 689 | dtsets.append(ds) |
|
684 | 690 | data.append((dsInfo['variable'], i)) |
|
685 | 691 | fp.flush() |
|
686 | 692 | |
|
687 | 693 | log.log('Creating file: {}'.format(fp.filename), self.name) |
|
688 | 694 | |
|
689 | 695 | self.ds = dtsets |
|
690 | 696 | self.data = data |
|
691 | 697 | self.firsttime = True |
|
692 | 698 | self.blockIndex = 0 |
|
693 | 699 | return |
|
694 | 700 | |
|
695 | 701 | def putData(self): |
|
696 | 702 | |
|
697 | 703 | if (self.blockIndex == self.blocksPerFile) or self.timeFlag(): |
|
698 | 704 | self.closeFile() |
|
699 | 705 | self.setNextFile() |
|
700 | 706 | |
|
701 | 707 | for i, ds in enumerate(self.ds): |
|
702 | 708 | attr, ch = self.data[i] |
|
703 | 709 | if ch == -1: |
|
704 | 710 | ds[self.blockIndex] = getattr(self.dataOut, attr) |
|
705 | 711 | else: |
|
706 | 712 | if self.blocksPerFile == 1: |
|
707 | 713 | mask = self.dataOut.data_param[:,3,:][ch] < self.mask |
|
708 | 714 | tmp = getattr(self.dataOut, attr)[:,self.weather_vars[self.weather_var],:][ch] |
|
709 | 715 | if self.mask: |
|
710 | 716 | tmp[mask] = numpy.nan |
|
711 | 717 | ds[:] = tmp |
|
712 | 718 | else: |
|
713 | 719 | ds[self.blockIndex] = getattr(self.dataOut, attr)[ch] |
|
714 | 720 | |
|
715 | 721 | self.fp.flush() |
|
716 | 722 | self.blockIndex += 1 |
|
717 | 723 | log.log('Block No. {}/{}'.format(self.blockIndex, self.blocksPerFile), self.name) |
|
718 | 724 | |
|
719 | 725 | return |
|
720 | 726 | |
|
721 | 727 | def closeFile(self): |
|
722 | 728 | |
|
723 | 729 | if self.blockIndex != self.blocksPerFile: |
|
724 | 730 | for ds in self.ds: |
|
725 | 731 | ds.resize(self.blockIndex, axis=0) |
|
726 | 732 | |
|
727 | 733 | if self.fp: |
|
728 | 734 | self.fp.flush() |
|
729 | 735 | self.fp.close() |
|
730 | 736 | |
|
731 | 737 | def close(self): |
|
732 | 738 | |
|
733 | 739 | self.closeFile() |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now