##// END OF EJS Templates
En esta version se tiene:...
Daniel Valdez -
r439:da26a7ca9b43
parent child
Show More
@@ -1,626 +1,721
1 1 '''
2 2
3 3 $Author: murco $
4 4 $Id: JROData.py 173 2012-11-20 15:06:21Z murco $
5 5 '''
6 6
7 7 import os, sys
8 8 import copy
9 9 import numpy
10 10 import datetime
11 11
12 12 from jroheaderIO import SystemHeader, RadarControllerHeader
13 13
14 14 def hildebrand_sekhon(data, navg):
15 15 """
16 16 This method is for the objective determination of de noise level in Doppler spectra. This
17 17 implementation technique is based on the fact that the standard deviation of the spectral
18 18 densities is equal to the mean spectral density for white Gaussian noise
19 19
20 20 Inputs:
21 21 Data : heights
22 22 navg : numbers of averages
23 23
24 24 Return:
25 25 -1 : any error
26 26 anoise : noise's level
27 27 """
28 28
29 29 dataflat = data.copy().reshape(-1)
30 30 dataflat.sort()
31 31 npts = dataflat.size #numbers of points of the data
32 32 npts_noise = 0.2*npts
33 33
34 34 if npts < 32:
35 35 print "error in noise - requires at least 32 points"
36 36 return -1.0
37 37
38 38 dataflat2 = numpy.power(dataflat,2)
39 39
40 40 cs = numpy.cumsum(dataflat)
41 41 cs2 = numpy.cumsum(dataflat2)
42 42
43 43 # data sorted in ascending order
44 44 nmin = int((npts + 7.)/8)
45 45
46 46 for i in range(nmin, npts):
47 47 s = cs[i]
48 48 s2 = cs2[i]
49 49 p = s / float(i);
50 50 p2 = p**2;
51 51 q = s2 / float(i) - p2;
52 52 leftc = p2;
53 53 rightc = q * float(navg);
54 54 R2 = leftc/rightc
55 55
56 56 # Signal detect: R2 < 1 (R2 = leftc/rightc)
57 57 if R2 < 1:
58 58 npts_noise = i
59 59 break
60 60
61 61
62 62 anoise = numpy.average(dataflat[0:npts_noise])
63 63
64 64 return anoise;
65 65
66 66 def sorting_bruce(data, navg):
67 67
68 68 data = data.copy()
69 69
70 70 sortdata = numpy.sort(data)
71 71 lenOfData = len(data)
72 72 nums_min = lenOfData/10
73 73
74 74 if (lenOfData/10) > 0:
75 75 nums_min = lenOfData/10
76 76 else:
77 77 nums_min = 0
78 78
79 79 rtest = 1.0 + 1.0/navg
80 80
81 81 sum = 0.
82 82
83 83 sumq = 0.
84 84
85 85 j = 0
86 86
87 87 cont = 1
88 88
89 89 while((cont==1)and(j<lenOfData)):
90 90
91 91 sum += sortdata[j]
92 92
93 93 sumq += sortdata[j]**2
94 94
95 95 j += 1
96 96
97 97 if j > nums_min:
98 98 if ((sumq*j) <= (rtest*sum**2)):
99 99 lnoise = sum / j
100 100 else:
101 101 j = j - 1
102 102 sum = sum - sordata[j]
103 103 sumq = sumq - sordata[j]**2
104 104 cont = 0
105 105
106 106 if j == nums_min:
107 107 lnoise = sum /j
108 108
109 109 return lnoise
110 110
111 111 class JROData:
112 112
113 113 # m_BasicHeader = BasicHeader()
114 114 # m_ProcessingHeader = ProcessingHeader()
115 115
116 116 systemHeaderObj = SystemHeader()
117 117
118 118 radarControllerHeaderObj = RadarControllerHeader()
119 119
120 120 # data = None
121 121
122 122 type = None
123 123
124 124 dtype = None
125 125
126 126 # nChannels = None
127 127
128 128 # nHeights = None
129 129
130 130 nProfiles = None
131 131
132 132 heightList = None
133 133
134 134 channelList = None
135 135
136 136 flagNoData = True
137 137
138 138 flagTimeBlock = False
139 139
140 140 useLocalTime = False
141 141
142 142 utctime = None
143 143
144 144 timeZone = None
145 145
146 146 dstFlag = None
147 147
148 148 errorCount = None
149 149
150 150 blocksize = None
151 151
152 152 nCode = None
153 153
154 154 nBaud = None
155 155
156 156 code = None
157 157
158 158 flagDecodeData = False #asumo q la data no esta decodificada
159 159
160 160 flagDeflipData = False #asumo q la data no esta sin flip
161 161
162 162 flagShiftFFT = False
163 163
164 164 ippSeconds = None
165 165
166 166 timeInterval = None
167 167
168 168 nCohInt = None
169 169
170 170 noise = None
171 171
172 172 windowOfFilter = 1
173 173
174 174 #Speed of ligth
175 175 C = 3e8
176 176
177 177 frequency = 49.92e6
178 178
179 179 realtime = False
180 180
181 181 def __init__(self):
182 182
183 183 raise ValueError, "This class has not been implemented"
184 184
185 185 def copy(self, inputObj=None):
186 186
187 187 if inputObj == None:
188 188 return copy.deepcopy(self)
189 189
190 190 for key in inputObj.__dict__.keys():
191 191 self.__dict__[key] = inputObj.__dict__[key]
192 192
193 193 def deepcopy(self):
194 194
195 195 return copy.deepcopy(self)
196 196
197 197 def isEmpty(self):
198 198
199 199 return self.flagNoData
200 200
201 201 def getNoise(self):
202 202
203 203 raise ValueError, "Not implemented"
204 204
205 205 def getNChannels(self):
206 206
207 207 return len(self.channelList)
208 208
209 209 def getChannelIndexList(self):
210 210
211 211 return range(self.nChannels)
212 212
213 213 def getNHeights(self):
214 214
215 215 return len(self.heightList)
216 216
217 217 def getHeiRange(self, extrapoints=0):
218 218
219 219 heis = self.heightList
220 220 # deltah = self.heightList[1] - self.heightList[0]
221 221 #
222 222 # heis.append(self.heightList[-1])
223 223
224 224 return heis
225 225
226 226 def getltctime(self):
227 227
228 228 if self.useLocalTime:
229 229 return self.utctime - self.timeZone*60
230 230
231 231 return self.utctime
232 232
233 233 def getDatatime(self):
234 234
235 235 datatime = datetime.datetime.utcfromtimestamp(self.ltctime)
236 236 return datatime
237 237
238 238 def getTimeRange(self):
239 239
240 240 datatime = []
241 241
242 242 datatime.append(self.ltctime)
243 243 datatime.append(self.ltctime + self.timeInterval)
244 244
245 245 datatime = numpy.array(datatime)
246 246
247 247 return datatime
248 248
249 249 def getFmax(self):
250 250
251 251 PRF = 1./(self.ippSeconds * self.nCohInt)
252 252
253 253 fmax = PRF/2.
254 254
255 255 return fmax
256 256
257 257 def getVmax(self):
258 258
259 259 _lambda = self.C/self.frequency
260 260
261 261 vmax = self.getFmax() * _lambda
262 262
263 263 return vmax
264 264
265 265 nChannels = property(getNChannels, "I'm the 'nChannel' property.")
266 266 channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.")
267 267 nHeights = property(getNHeights, "I'm the 'nHeights' property.")
268 268 noise = property(getNoise, "I'm the 'nHeights' property.")
269 269 datatime = property(getDatatime, "I'm the 'datatime' property")
270 270 ltctime = property(getltctime, "I'm the 'ltctime' property")
271 271
272 272 class Voltage(JROData):
273 273
274 274 #data es un numpy array de 2 dmensiones (canales, alturas)
275 275 data = None
276 276
277 277 def __init__(self):
278 278 '''
279 279 Constructor
280 280 '''
281 281
282 282 self.radarControllerHeaderObj = RadarControllerHeader()
283 283
284 284 self.systemHeaderObj = SystemHeader()
285 285
286 286 self.type = "Voltage"
287 287
288 288 self.data = None
289 289
290 290 self.dtype = None
291 291
292 292 # self.nChannels = 0
293 293
294 294 # self.nHeights = 0
295 295
296 296 self.nProfiles = None
297 297
298 298 self.heightList = None
299 299
300 300 self.channelList = None
301 301
302 302 # self.channelIndexList = None
303 303
304 304 self.flagNoData = True
305 305
306 306 self.flagTimeBlock = False
307 307
308 308 self.utctime = None
309 309
310 310 self.timeZone = None
311 311
312 312 self.dstFlag = None
313 313
314 314 self.errorCount = None
315 315
316 316 self.nCohInt = None
317 317
318 318 self.blocksize = None
319 319
320 320 self.flagDecodeData = False #asumo q la data no esta decodificada
321 321
322 322 self.flagDeflipData = False #asumo q la data no esta sin flip
323 323
324 324 self.flagShiftFFT = False
325 325
326 326
327 327 def getNoisebyHildebrand(self):
328 328 """
329 329 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
330 330
331 331 Return:
332 332 noiselevel
333 333 """
334 334
335 335 for channel in range(self.nChannels):
336 336 daux = self.data_spc[channel,:,:]
337 337 self.noise[channel] = hildebrand_sekhon(daux, self.nCohInt)
338 338
339 339 return self.noise
340 340
341 341 def getNoise(self, type = 1):
342 342
343 343 self.noise = numpy.zeros(self.nChannels)
344 344
345 345 if type == 1:
346 346 noise = self.getNoisebyHildebrand()
347 347
348 348 return 10*numpy.log10(noise)
349 349
350 350 class Spectra(JROData):
351 351
352 352 #data es un numpy array de 2 dmensiones (canales, perfiles, alturas)
353 353 data_spc = None
354 354
355 355 #data es un numpy array de 2 dmensiones (canales, pares, alturas)
356 356 data_cspc = None
357 357
358 358 #data es un numpy array de 2 dmensiones (canales, alturas)
359 359 data_dc = None
360 360
361 361 nFFTPoints = None
362 362
363 363 nPairs = None
364 364
365 365 pairsList = None
366 366
367 367 nIncohInt = None
368 368
369 369 wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia
370 370
371 371 nCohInt = None #se requiere para determinar el valor de timeInterval
372 372
373 373 def __init__(self):
374 374 '''
375 375 Constructor
376 376 '''
377 377
378 378 self.radarControllerHeaderObj = RadarControllerHeader()
379 379
380 380 self.systemHeaderObj = SystemHeader()
381 381
382 382 self.type = "Spectra"
383 383
384 384 # self.data = None
385 385
386 386 self.dtype = None
387 387
388 388 # self.nChannels = 0
389 389
390 390 # self.nHeights = 0
391 391
392 392 self.nProfiles = None
393 393
394 394 self.heightList = None
395 395
396 396 self.channelList = None
397 397
398 398 # self.channelIndexList = None
399 399
400 400 self.flagNoData = True
401 401
402 402 self.flagTimeBlock = False
403 403
404 404 self.utctime = None
405 405
406 406 self.nCohInt = None
407 407
408 408 self.nIncohInt = None
409 409
410 410 self.blocksize = None
411 411
412 412 self.nFFTPoints = None
413 413
414 414 self.wavelength = None
415 415
416 416 self.flagDecodeData = False #asumo q la data no esta decodificada
417 417
418 418 self.flagDeflipData = False #asumo q la data no esta sin flip
419 419
420 420 self.flagShiftFFT = False
421 421
422 422 def getNoisebyHildebrand(self):
423 423 """
424 424 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
425 425
426 426 Return:
427 427 noiselevel
428 428 """
429 429
430 430 for channel in range(self.nChannels):
431 431 daux = self.data_spc[channel,:,:]
432 432 self.noise[channel] = hildebrand_sekhon(daux, self.nIncohInt)
433 433
434 434 return self.noise
435 435
436 436 def getNoisebyWindow(self, heiIndexMin=0, heiIndexMax=-1, freqIndexMin=0, freqIndexMax=-1):
437 437 """
438 438 Determina el ruido del canal utilizando la ventana indicada con las coordenadas:
439 439 (heiIndexMIn, freqIndexMin) hasta (heiIndexMax, freqIndexMAx)
440 440
441 441 Inputs:
442 442 heiIndexMin: Limite inferior del eje de alturas
443 443 heiIndexMax: Limite superior del eje de alturas
444 444 freqIndexMin: Limite inferior del eje de frecuencia
445 445 freqIndexMax: Limite supoerior del eje de frecuencia
446 446 """
447 447
448 448 data = self.data_spc[:, heiIndexMin:heiIndexMax, freqIndexMin:freqIndexMax]
449 449
450 450 for channel in range(self.nChannels):
451 451 daux = data[channel,:,:]
452 452 self.noise[channel] = numpy.average(daux)
453 453
454 454 return self.noise
455 455
456 456 def getNoisebySort(self):
457 457
458 458 for channel in range(self.nChannels):
459 459 daux = self.data_spc[channel,:,:]
460 460 self.noise[channel] = sorting_bruce(daux, self.nIncohInt)
461 461
462 462 return self.noise
463 463
464 464 def getNoise(self, type = 1):
465 465
466 466 self.noise = numpy.zeros(self.nChannels)
467 467
468 468 if type == 1:
469 469 noise = self.getNoisebyHildebrand()
470 470
471 471 if type == 2:
472 472 noise = self.getNoisebySort()
473 473
474 474 if type == 3:
475 475 noise = self.getNoisebyWindow()
476 476
477 477 return noise
478 478
479 479
480 480 def getFreqRange(self, extrapoints=0):
481 481
482 482 deltafreq = self.getFmax() / self.nFFTPoints
483 483 freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2
484 484
485 485 return freqrange
486 486
487 487 def getVelRange(self, extrapoints=0):
488 488
489 489 deltav = self.getVmax() / self.nFFTPoints
490 490 velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltav/2
491 491
492 492 return velrange
493 493
494 494 def getNPairs(self):
495 495
496 496 return len(self.pairsList)
497 497
498 498 def getPairsIndexList(self):
499 499
500 500 return range(self.nPairs)
501 501
502 502 def getNormFactor(self):
503 503 pwcode = 1
504 504 if self.flagDecodeData:
505 505 pwcode = numpy.sum(self.code[0]**2)
506 506 normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode
507 507
508 508 return normFactor
509 509
510 510 def getFlagCspc(self):
511 511
512 512 if self.data_cspc == None:
513 513 return True
514 514
515 515 return False
516 516
517 517 def getFlagDc(self):
518 518
519 519 if self.data_dc == None:
520 520 return True
521 521
522 522 return False
523 523
524 524 nPairs = property(getNPairs, "I'm the 'nPairs' property.")
525 525 pairsIndexList = property(getPairsIndexList, "I'm the 'pairsIndexList' property.")
526 526 normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.")
527 527 flag_cspc = property(getFlagCspc)
528 528 flag_dc = property(getFlagDc)
529 529
530 530 class SpectraHeis(JROData):
531 531
532 532 data_spc = None
533 533
534 534 data_cspc = None
535 535
536 536 data_dc = None
537 537
538 538 nFFTPoints = None
539 539
540 540 nPairs = None
541 541
542 542 pairsList = None
543 543
544 544 nIncohInt = None
545 545
546 546 def __init__(self):
547 547
548 548 self.radarControllerHeaderObj = RadarControllerHeader()
549 549
550 550 self.systemHeaderObj = SystemHeader()
551 551
552 552 self.type = "SpectraHeis"
553 553
554 554 self.dtype = None
555 555
556 556 # self.nChannels = 0
557 557
558 558 # self.nHeights = 0
559 559
560 560 self.nProfiles = None
561 561
562 562 self.heightList = None
563 563
564 564 self.channelList = None
565 565
566 566 # self.channelIndexList = None
567 567
568 568 self.flagNoData = True
569 569
570 570 self.flagTimeBlock = False
571 571
572 572 self.nPairs = 0
573 573
574 574 self.utctime = None
575 575
576 576 self.blocksize = None
577 577
578 578 class Fits:
579 579
580 heightList = None
581
582 channelList = None
583
584 flagNoData = True
585
586 flagTimeBlock = False
587
588 useLocalTime = False
589
590 utctime = None
591
592 timeZone = None
593
594 ippSeconds = None
595
596 timeInterval = None
597
598 nCohInt = None
599
600 nIncohInt = None
601
602 noise = None
603
604 windowOfFilter = 1
605
606 #Speed of ligth
607 C = 3e8
608
609 frequency = 49.92e6
610
611 realtime = False
612
613
580 614 def __init__(self):
581 self.useLocalTime = False
615
616 self.type = "Fits"
617
618 self.nProfiles = None
619
620 self.heightList = None
621
622 self.channelList = None
623
624 # self.channelIndexList = None
625
626 self.flagNoData = True
627
582 628 self.utctime = None
583 self.timeZone = None
584 self.ltctime = None
585 self.timeInterval = None
586 self.header = None
587 self.data_header = None
588 self.data = None
589 self.datatime = None
590 self.flagNoData = False
591 self.expName = ''
592 self.nChannels = None
593 self.nSamples = None
594 self.dataBlocksPerFile = None
595 self.comments = ''
629
630 self.nCohInt = None
631
632 self.nIncohInt = None
633
634 self.useLocalTime = True
635
636 # self.utctime = None
637 # self.timeZone = None
638 # self.ltctime = None
639 # self.timeInterval = None
640 # self.header = None
641 # self.data_header = None
642 # self.data = None
643 # self.datatime = None
644 # self.flagNoData = False
645 # self.expName = ''
646 # self.nChannels = None
647 # self.nSamples = None
648 # self.dataBlocksPerFile = None
649 # self.comments = ''
650 #
596 651
597 652
598 653 def getltctime(self):
599 654
600 655 if self.useLocalTime:
601 656 return self.utctime - self.timeZone*60
602 657
603 658 return self.utctime
604 659
605 660 def getDatatime(self):
606 661
607 662 datatime = datetime.datetime.utcfromtimestamp(self.ltctime)
608 663 return datatime
609 664
610 665 def getTimeRange(self):
611 666
612 667 datatime = []
613 668
614 669 datatime.append(self.ltctime)
615 670 datatime.append(self.ltctime + self.timeInterval)
616 671
617 672 datatime = numpy.array(datatime)
618 673
619 674 return datatime
620 675
676 def getHeiRange(self):
677
678 heis = self.heightList
679
680 return heis
681
621 682 def isEmpty(self):
622 683
623 684 return self.flagNoData
624 685
686 def getNHeights(self):
687
688 return len(self.heightList)
689
690 def getNChannels(self):
691
692 return len(self.channelList)
693
694 def getChannelIndexList(self):
695
696 return range(self.nChannels)
697
698 def getNoise(self, type = 1):
699
700 self.noise = numpy.zeros(self.nChannels)
701
702 if type == 1:
703 noise = self.getNoisebyHildebrand()
704
705 if type == 2:
706 noise = self.getNoisebySort()
707
708 if type == 3:
709 noise = self.getNoisebyWindow()
710
711 return noise
712
625 713 datatime = property(getDatatime, "I'm the 'datatime' property")
714 nHeights = property(getNHeights, "I'm the 'nHeights' property.")
715 nChannels = property(getNChannels, "I'm the 'nChannel' property.")
716 channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.")
717 noise = property(getNoise, "I'm the 'nHeights' property.")
718 datatime = property(getDatatime, "I'm the 'datatime' property")
719 ltctime = property(getltctime, "I'm the 'ltctime' property")
720
626 721 ltctime = property(getltctime, "I'm the 'ltctime' property") No newline at end of file
@@ -1,3405 +1,3452
1 1 '''
2 2
3 3 $Author: murco $
4 4 $Id: JRODataIO.py 169 2012-11-19 21:57:03Z murco $
5 5 '''
6 6
7 7 import os, sys
8 8 import glob
9 9 import time
10 10 import numpy
11 11 import fnmatch
12 12 import time, datetime
13 13 from xml.etree.ElementTree import Element, SubElement, ElementTree
14 14 try:
15 15 import pyfits
16 16 except:
17 17 print "pyfits module has not been imported, it should be installed to save files in fits format"
18 18
19 19 from jrodata import *
20 20 from jroheaderIO import *
21 21 from jroprocessing import *
22 22
23 23 LOCALTIME = True #-18000
24 24
25 25 def isNumber(str):
26 26 """
27 27 Chequea si el conjunto de caracteres que componen un string puede ser convertidos a un numero.
28 28
29 29 Excepciones:
30 30 Si un determinado string no puede ser convertido a numero
31 31 Input:
32 32 str, string al cual se le analiza para determinar si convertible a un numero o no
33 33
34 34 Return:
35 35 True : si el string es uno numerico
36 36 False : no es un string numerico
37 37 """
38 38 try:
39 39 float( str )
40 40 return True
41 41 except:
42 42 return False
43 43
44 44 def isThisFileinRange(filename, startUTSeconds, endUTSeconds):
45 45 """
46 46 Esta funcion determina si un archivo de datos se encuentra o no dentro del rango de fecha especificado.
47 47
48 48 Inputs:
49 49 filename : nombre completo del archivo de datos en formato Jicamarca (.r)
50 50
51 51 startUTSeconds : fecha inicial del rango seleccionado. La fecha esta dada en
52 52 segundos contados desde 01/01/1970.
53 53 endUTSeconds : fecha final del rango seleccionado. La fecha esta dada en
54 54 segundos contados desde 01/01/1970.
55 55
56 56 Return:
57 57 Boolean : Retorna True si el archivo de datos contiene datos en el rango de
58 58 fecha especificado, de lo contrario retorna False.
59 59
60 60 Excepciones:
61 61 Si el archivo no existe o no puede ser abierto
62 62 Si la cabecera no puede ser leida.
63 63
64 64 """
65 65 basicHeaderObj = BasicHeader(LOCALTIME)
66 66
67 67 try:
68 68 fp = open(filename,'rb')
69 69 except:
70 70 raise IOError, "The file %s can't be opened" %(filename)
71 71
72 72 sts = basicHeaderObj.read(fp)
73 73 fp.close()
74 74
75 75 if not(sts):
76 76 print "Skipping the file %s because it has not a valid header" %(filename)
77 77 return 0
78 78
79 79 if not ((startUTSeconds <= basicHeaderObj.utc) and (endUTSeconds > basicHeaderObj.utc)):
80 80 return 0
81 81
82 82 return 1
83 83
84 84 def isFileinThisTime(filename, startTime, endTime):
85 85 """
86 86 Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado.
87 87
88 88 Inputs:
89 89 filename : nombre completo del archivo de datos en formato Jicamarca (.r)
90 90
91 91 startTime : tiempo inicial del rango seleccionado en formato datetime.time
92 92
93 93 endTime : tiempo final del rango seleccionado en formato datetime.time
94 94
95 95 Return:
96 96 Boolean : Retorna True si el archivo de datos contiene datos en el rango de
97 97 fecha especificado, de lo contrario retorna False.
98 98
99 99 Excepciones:
100 100 Si el archivo no existe o no puede ser abierto
101 101 Si la cabecera no puede ser leida.
102 102
103 103 """
104 104
105 105
106 106 try:
107 107 fp = open(filename,'rb')
108 108 except:
109 109 raise IOError, "The file %s can't be opened" %(filename)
110 110
111 111 basicHeaderObj = BasicHeader(LOCALTIME)
112 112 sts = basicHeaderObj.read(fp)
113 113 fp.close()
114 114
115 115 thisDatetime = basicHeaderObj.datatime
116 116 thisTime = basicHeaderObj.datatime.time()
117 117
118 118 if not(sts):
119 119 print "Skipping the file %s because it has not a valid header" %(filename)
120 120 return None
121 121
122 122 if not ((startTime <= thisTime) and (endTime > thisTime)):
123 123 return None
124 124
125 125 return thisDatetime
126 126
127 127 def getFileFromSet(path,ext,set):
128 128 validFilelist = []
129 129 fileList = os.listdir(path)
130 130
131 131 # 0 1234 567 89A BCDE
132 132 # H YYYY DDD SSS .ext
133 133
134 134 for file in fileList:
135 135 try:
136 136 year = int(file[1:5])
137 137 doy = int(file[5:8])
138 138
139 139
140 140 except:
141 141 continue
142 142
143 143 if (os.path.splitext(file)[-1].lower() != ext.lower()):
144 144 continue
145 145
146 146 validFilelist.append(file)
147 147
148 148 myfile = fnmatch.filter(validFilelist,'*%4.4d%3.3d%3.3d*'%(year,doy,set))
149 149
150 150 if len(myfile)!= 0:
151 151 return myfile[0]
152 152 else:
153 153 filename = '*%4.4d%3.3d%3.3d%s'%(year,doy,set,ext.lower())
154 154 print 'the filename %s does not exist'%filename
155 155 print '...going to the last file: '
156 156
157 157 if validFilelist:
158 158 validFilelist = sorted( validFilelist, key=str.lower )
159 159 return validFilelist[-1]
160 160
161 161 return None
162 162
163 163
164 164 def getlastFileFromPath(path, ext):
165 165 """
166 166 Depura el fileList dejando solo los que cumplan el formato de "PYYYYDDDSSS.ext"
167 167 al final de la depuracion devuelve el ultimo file de la lista que quedo.
168 168
169 169 Input:
170 170 fileList : lista conteniendo todos los files (sin path) que componen una determinada carpeta
171 171 ext : extension de los files contenidos en una carpeta
172 172
173 173 Return:
174 174 El ultimo file de una determinada carpeta, no se considera el path.
175 175 """
176 176 validFilelist = []
177 177 fileList = os.listdir(path)
178 178
179 179 # 0 1234 567 89A BCDE
180 180 # H YYYY DDD SSS .ext
181 181
182 182 for file in fileList:
183 183 try:
184 184 year = int(file[1:5])
185 185 doy = int(file[5:8])
186 186
187 187
188 188 except:
189 189 continue
190 190
191 191 if (os.path.splitext(file)[-1].lower() != ext.lower()):
192 192 continue
193 193
194 194 validFilelist.append(file)
195 195
196 196 if validFilelist:
197 197 validFilelist = sorted( validFilelist, key=str.lower )
198 198 return validFilelist[-1]
199 199
200 200 return None
201 201
202 202 def checkForRealPath(path, foldercounter, year, doy, set, ext):
203 203 """
204 204 Por ser Linux Case Sensitive entonces checkForRealPath encuentra el nombre correcto de un path,
205 205 Prueba por varias combinaciones de nombres entre mayusculas y minusculas para determinar
206 206 el path exacto de un determinado file.
207 207
208 208 Example :
209 209 nombre correcto del file es .../.../D2009307/P2009307367.ext
210 210
211 211 Entonces la funcion prueba con las siguientes combinaciones
212 212 .../.../y2009307367.ext
213 213 .../.../Y2009307367.ext
214 214 .../.../x2009307/y2009307367.ext
215 215 .../.../x2009307/Y2009307367.ext
216 216 .../.../X2009307/y2009307367.ext
217 217 .../.../X2009307/Y2009307367.ext
218 218 siendo para este caso, la ultima combinacion de letras, identica al file buscado
219 219
220 220 Return:
221 221 Si encuentra la cobinacion adecuada devuelve el path completo y el nombre del file
222 222 caso contrario devuelve None como path y el la ultima combinacion de nombre en mayusculas
223 223 para el filename
224 224 """
225 225 fullfilename = None
226 226 find_flag = False
227 227 filename = None
228 228
229 229 prefixDirList = [None,'d','D']
230 230 if ext.lower() == ".r": #voltage
231 231 prefixFileList = ['d','D']
232 232 elif ext.lower() == ".pdata": #spectra
233 233 prefixFileList = ['p','P']
234 234 else:
235 235 return None, filename
236 236
237 237 #barrido por las combinaciones posibles
238 238 for prefixDir in prefixDirList:
239 239 thispath = path
240 240 if prefixDir != None:
241 241 #formo el nombre del directorio xYYYYDDD (x=d o x=D)
242 242 if foldercounter == 0:
243 243 thispath = os.path.join(path, "%s%04d%03d" % ( prefixDir, year, doy ))
244 244 else:
245 245 thispath = os.path.join(path, "%s%04d%03d_%02d" % ( prefixDir, year, doy , foldercounter))
246 246 for prefixFile in prefixFileList: #barrido por las dos combinaciones posibles de "D"
247 247 filename = "%s%04d%03d%03d%s" % ( prefixFile, year, doy, set, ext ) #formo el nombre del file xYYYYDDDSSS.ext
248 248 fullfilename = os.path.join( thispath, filename ) #formo el path completo
249 249
250 250 if os.path.exists( fullfilename ): #verifico que exista
251 251 find_flag = True
252 252 break
253 253 if find_flag:
254 254 break
255 255
256 256 if not(find_flag):
257 257 return None, filename
258 258
259 259 return fullfilename, filename
260 260
261 261 def isDoyFolder(folder):
262 262 try:
263 263 year = int(folder[1:5])
264 264 except:
265 265 return 0
266 266
267 267 try:
268 268 doy = int(folder[5:8])
269 269 except:
270 270 return 0
271 271
272 272 return 1
273 273
274 274 class JRODataIO:
275 275
276 276 c = 3E8
277 277
278 278 isConfig = False
279 279
280 280 basicHeaderObj = BasicHeader(LOCALTIME)
281 281
282 282 systemHeaderObj = SystemHeader()
283 283
284 284 radarControllerHeaderObj = RadarControllerHeader()
285 285
286 286 processingHeaderObj = ProcessingHeader()
287 287
288 288 online = 0
289 289
290 290 dtype = None
291 291
292 292 pathList = []
293 293
294 294 filenameList = []
295 295
296 296 filename = None
297 297
298 298 ext = None
299 299
300 300 flagIsNewFile = 1
301 301
302 302 flagTimeBlock = 0
303 303
304 304 flagIsNewBlock = 0
305 305
306 306 fp = None
307 307
308 308 firstHeaderSize = 0
309 309
310 310 basicHeaderSize = 24
311 311
312 312 versionFile = 1103
313 313
314 314 fileSize = None
315 315
316 316 ippSeconds = None
317 317
318 318 fileSizeByHeader = None
319 319
320 320 fileIndex = None
321 321
322 322 profileIndex = None
323 323
324 324 blockIndex = None
325 325
326 326 nTotalBlocks = None
327 327
328 328 maxTimeStep = 30
329 329
330 330 lastUTTime = None
331 331
332 332 datablock = None
333 333
334 334 dataOut = None
335 335
336 336 blocksize = None
337 337
338 338 def __init__(self):
339 339
340 340 raise ValueError, "Not implemented"
341 341
342 342 def run(self):
343 343
344 344 raise ValueError, "Not implemented"
345 345
346 346 def getOutput(self):
347 347
348 348 return self.dataOut
349 349
350 350 class JRODataReader(JRODataIO, ProcessingUnit):
351 351
352 352 nReadBlocks = 0
353 353
354 354 delay = 10 #number of seconds waiting a new file
355 355
356 356 nTries = 3 #quantity tries
357 357
358 358 nFiles = 3 #number of files for searching
359 359
360 360 path = None
361 361
362 362 foldercounter = 0
363 363
364 364 flagNoMoreFiles = 0
365 365
366 366 datetimeList = []
367 367
368 368 __isFirstTimeOnline = 1
369 369
370 370 __printInfo = True
371 371
372 372 profileIndex = None
373 373
374 374 def __init__(self):
375 375
376 376 """
377 377
378 378 """
379 379
380 380 raise ValueError, "This method has not been implemented"
381 381
382 382
383 383 def createObjByDefault(self):
384 384 """
385 385
386 386 """
387 387 raise ValueError, "This method has not been implemented"
388 388
389 389 def getBlockDimension(self):
390 390
391 391 raise ValueError, "No implemented"
392 392
393 393 def __searchFilesOffLine(self,
394 394 path,
395 395 startDate,
396 396 endDate,
397 397 startTime=datetime.time(0,0,0),
398 398 endTime=datetime.time(23,59,59),
399 399 set=None,
400 400 expLabel='',
401 401 ext='.r',
402 402 walk=True):
403 403
404 404 pathList = []
405 405
406 406 if not walk:
407 407 pathList.append(path)
408 408
409 409 else:
410 410 dirList = []
411 411 for thisPath in os.listdir(path):
412 412 if not os.path.isdir(os.path.join(path,thisPath)):
413 413 continue
414 414 if not isDoyFolder(thisPath):
415 415 continue
416 416
417 417 dirList.append(thisPath)
418 418
419 419 if not(dirList):
420 420 return None, None
421 421
422 422 thisDate = startDate
423 423
424 424 while(thisDate <= endDate):
425 425 year = thisDate.timetuple().tm_year
426 426 doy = thisDate.timetuple().tm_yday
427 427
428 428 matchlist = fnmatch.filter(dirList, '?' + '%4.4d%3.3d' % (year,doy) + '*')
429 429 if len(matchlist) == 0:
430 430 thisDate += datetime.timedelta(1)
431 431 continue
432 432 for match in matchlist:
433 433 pathList.append(os.path.join(path,match,expLabel))
434 434
435 435 thisDate += datetime.timedelta(1)
436 436
437 437 if pathList == []:
438 438 print "Any folder was found for the date range: %s-%s" %(startDate, endDate)
439 439 return None, None
440 440
441 441 print "%d folder(s) was(were) found for the date range: %s - %s" %(len(pathList), startDate, endDate)
442 442
443 443 filenameList = []
444 444 datetimeList = []
445 445
446 446 for i in range(len(pathList)):
447 447
448 448 thisPath = pathList[i]
449 449
450 450 fileList = glob.glob1(thisPath, "*%s" %ext)
451 451 fileList.sort()
452 452
453 453 for file in fileList:
454 454
455 455 filename = os.path.join(thisPath,file)
456 456 thisDatetime = isFileinThisTime(filename, startTime, endTime)
457 457
458 458 if not(thisDatetime):
459 459 continue
460 460
461 461 filenameList.append(filename)
462 462 datetimeList.append(thisDatetime)
463 463
464 464 if not(filenameList):
465 465 print "Any file was found for the time range %s - %s" %(startTime, endTime)
466 466 return None, None
467 467
468 468 print "%d file(s) was(were) found for the time range: %s - %s" %(len(filenameList), startTime, endTime)
469 469 print
470 470
471 471 for i in range(len(filenameList)):
472 472 print "%s -> [%s]" %(filenameList[i], datetimeList[i].ctime())
473 473
474 474 self.filenameList = filenameList
475 475 self.datetimeList = datetimeList
476 476
477 477 return pathList, filenameList
478 478
479 479 def __searchFilesOnLine(self, path, expLabel = "", ext = None, walk=True, set=None):
480 480
481 481 """
482 482 Busca el ultimo archivo de la ultima carpeta (determinada o no por startDateTime) y
483 483 devuelve el archivo encontrado ademas de otros datos.
484 484
485 485 Input:
486 486 path : carpeta donde estan contenidos los files que contiene data
487 487
488 488 expLabel : Nombre del subexperimento (subfolder)
489 489
490 490 ext : extension de los files
491 491
492 492 walk : Si es habilitado no realiza busquedas dentro de los ubdirectorios (doypath)
493 493
494 494 Return:
495 495 directory : eL directorio donde esta el file encontrado
496 496 filename : el ultimo file de una determinada carpeta
497 497 year : el anho
498 498 doy : el numero de dia del anho
499 499 set : el set del archivo
500 500
501 501
502 502 """
503 503 dirList = []
504 504
505 505 if not walk:
506 506 fullpath = path
507 507 foldercounter = 0
508 508 else:
509 509 #Filtra solo los directorios
510 510 for thisPath in os.listdir(path):
511 511 if not os.path.isdir(os.path.join(path,thisPath)):
512 512 continue
513 513 if not isDoyFolder(thisPath):
514 514 continue
515 515
516 516 dirList.append(thisPath)
517 517
518 518 if not(dirList):
519 519 return None, None, None, None, None, None
520 520
521 521 dirList = sorted( dirList, key=str.lower )
522 522
523 523 doypath = dirList[-1]
524 524 foldercounter = int(doypath.split('_')[1]) if len(doypath.split('_'))>1 else 0
525 525 fullpath = os.path.join(path, doypath, expLabel)
526 526
527 527
528 528 print "%s folder was found: " %(fullpath )
529 529
530 530 if set == None:
531 531 filename = getlastFileFromPath(fullpath, ext)
532 532 else:
533 533 filename = getFileFromSet(fullpath, ext, set)
534 534
535 535 if not(filename):
536 536 return None, None, None, None, None, None
537 537
538 538 print "%s file was found" %(filename)
539 539
540 540 if not(self.__verifyFile(os.path.join(fullpath, filename))):
541 541 return None, None, None, None, None, None
542 542
543 543 year = int( filename[1:5] )
544 544 doy = int( filename[5:8] )
545 545 set = int( filename[8:11] )
546 546
547 547 return fullpath, foldercounter, filename, year, doy, set
548 548
549 549 def __setNextFileOffline(self):
550 550
551 551 idFile = self.fileIndex
552 552
553 553 while (True):
554 554 idFile += 1
555 555 if not(idFile < len(self.filenameList)):
556 556 self.flagNoMoreFiles = 1
557 557 print "No more Files"
558 558 return 0
559 559
560 560 filename = self.filenameList[idFile]
561 561
562 562 if not(self.__verifyFile(filename)):
563 563 continue
564 564
565 565 fileSize = os.path.getsize(filename)
566 566 fp = open(filename,'rb')
567 567 break
568 568
569 569 self.flagIsNewFile = 1
570 570 self.fileIndex = idFile
571 571 self.filename = filename
572 572 self.fileSize = fileSize
573 573 self.fp = fp
574 574
575 575 print "Setting the file: %s"%self.filename
576 576
577 577 return 1
578 578
579 579 def __setNextFileOnline(self):
580 580 """
581 581 Busca el siguiente file que tenga suficiente data para ser leida, dentro de un folder especifico, si
582 582 no encuentra un file valido espera un tiempo determinado y luego busca en los posibles n files
583 583 siguientes.
584 584
585 585 Affected:
586 586 self.flagIsNewFile
587 587 self.filename
588 588 self.fileSize
589 589 self.fp
590 590 self.set
591 591 self.flagNoMoreFiles
592 592
593 593 Return:
594 594 0 : si luego de una busqueda del siguiente file valido este no pudo ser encontrado
595 595 1 : si el file fue abierto con exito y esta listo a ser leido
596 596
597 597 Excepciones:
598 598 Si un determinado file no puede ser abierto
599 599 """
600 600 nFiles = 0
601 601 fileOk_flag = False
602 602 firstTime_flag = True
603 603
604 604 self.set += 1
605 605
606 606 if self.set > 999:
607 607 self.set = 0
608 608 self.foldercounter += 1
609 609
610 610 #busca el 1er file disponible
611 611 fullfilename, filename = checkForRealPath( self.path, self.foldercounter, self.year, self.doy, self.set, self.ext )
612 612 if fullfilename:
613 613 if self.__verifyFile(fullfilename, False):
614 614 fileOk_flag = True
615 615
616 616 #si no encuentra un file entonces espera y vuelve a buscar
617 617 if not(fileOk_flag):
618 618 for nFiles in range(self.nFiles+1): #busco en los siguientes self.nFiles+1 files posibles
619 619
620 620 if firstTime_flag: #si es la 1era vez entonces hace el for self.nTries veces
621 621 tries = self.nTries
622 622 else:
623 623 tries = 1 #si no es la 1era vez entonces solo lo hace una vez
624 624
625 625 for nTries in range( tries ):
626 626 if firstTime_flag:
627 627 print "\tWaiting %0.2f sec for the file \"%s\" , try %03d ..." % ( self.delay, filename, nTries+1 )
628 628 time.sleep( self.delay )
629 629 else:
630 630 print "\tSearching next \"%s%04d%03d%03d%s\" file ..." % (self.optchar, self.year, self.doy, self.set, self.ext)
631 631
632 632 fullfilename, filename = checkForRealPath( self.path, self.foldercounter, self.year, self.doy, self.set, self.ext )
633 633 if fullfilename:
634 634 if self.__verifyFile(fullfilename):
635 635 fileOk_flag = True
636 636 break
637 637
638 638 if fileOk_flag:
639 639 break
640 640
641 641 firstTime_flag = False
642 642
643 643 print "\tSkipping the file \"%s\" due to this file doesn't exist" % filename
644 644 self.set += 1
645 645
646 646 if nFiles == (self.nFiles-1): #si no encuentro el file buscado cambio de carpeta y busco en la siguiente carpeta
647 647 self.set = 0
648 648 self.doy += 1
649 649 self.foldercounter = 0
650 650
651 651 if fileOk_flag:
652 652 self.fileSize = os.path.getsize( fullfilename )
653 653 self.filename = fullfilename
654 654 self.flagIsNewFile = 1
655 655 if self.fp != None: self.fp.close()
656 656 self.fp = open(fullfilename, 'rb')
657 657 self.flagNoMoreFiles = 0
658 658 print 'Setting the file: %s' % fullfilename
659 659 else:
660 660 self.fileSize = 0
661 661 self.filename = None
662 662 self.flagIsNewFile = 0
663 663 self.fp = None
664 664 self.flagNoMoreFiles = 1
665 665 print 'No more Files'
666 666
667 667 return fileOk_flag
668 668
669 669
670 670 def setNextFile(self):
671 671 if self.fp != None:
672 672 self.fp.close()
673 673
674 674 if self.online:
675 675 newFile = self.__setNextFileOnline()
676 676 else:
677 677 newFile = self.__setNextFileOffline()
678 678
679 679 if not(newFile):
680 680 return 0
681 681
682 682 self.__readFirstHeader()
683 683 self.nReadBlocks = 0
684 684 return 1
685 685
686 686 def __waitNewBlock(self):
687 687 """
688 688 Return 1 si se encontro un nuevo bloque de datos, 0 de otra forma.
689 689
690 690 Si el modo de lectura es OffLine siempre retorn 0
691 691 """
692 692 if not self.online:
693 693 return 0
694 694
695 695 if (self.nReadBlocks >= self.processingHeaderObj.dataBlocksPerFile):
696 696 return 0
697 697
698 698 currentPointer = self.fp.tell()
699 699
700 700 neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize
701 701
702 702 for nTries in range( self.nTries ):
703 703
704 704 self.fp.close()
705 705 self.fp = open( self.filename, 'rb' )
706 706 self.fp.seek( currentPointer )
707 707
708 708 self.fileSize = os.path.getsize( self.filename )
709 709 currentSize = self.fileSize - currentPointer
710 710
711 711 if ( currentSize >= neededSize ):
712 712 self.__rdBasicHeader()
713 713 return 1
714 714
715 715 if self.fileSize == self.fileSizeByHeader:
716 716 # self.flagEoF = True
717 717 return 0
718 718
719 719 print "\tWaiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries+1)
720 720 time.sleep( self.delay )
721 721
722 722
723 723 return 0
724 724
725 725 def waitDataBlock(self,pointer_location):
726 726
727 727 currentPointer = pointer_location
728 728
729 729 neededSize = self.processingHeaderObj.blockSize #+ self.basicHeaderSize
730 730
731 731 for nTries in range( self.nTries ):
732 732 self.fp.close()
733 733 self.fp = open( self.filename, 'rb' )
734 734 self.fp.seek( currentPointer )
735 735
736 736 self.fileSize = os.path.getsize( self.filename )
737 737 currentSize = self.fileSize - currentPointer
738 738
739 739 if ( currentSize >= neededSize ):
740 740 return 1
741 741
742 742 print "\tWaiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries+1)
743 743 time.sleep( self.delay )
744 744
745 745 return 0
746 746
747 747
748 748 def __jumpToLastBlock(self):
749 749
750 750 if not(self.__isFirstTimeOnline):
751 751 return
752 752
753 753 csize = self.fileSize - self.fp.tell()
754 754 blocksize = self.processingHeaderObj.blockSize
755 755
756 756 #salta el primer bloque de datos
757 757 if csize > self.processingHeaderObj.blockSize:
758 758 self.fp.seek(self.fp.tell() + blocksize)
759 759 else:
760 760 return
761 761
762 762 csize = self.fileSize - self.fp.tell()
763 763 neededsize = self.processingHeaderObj.blockSize + self.basicHeaderSize
764 764 while True:
765 765
766 766 if self.fp.tell()<self.fileSize:
767 767 self.fp.seek(self.fp.tell() + neededsize)
768 768 else:
769 769 self.fp.seek(self.fp.tell() - neededsize)
770 770 break
771 771
772 772 # csize = self.fileSize - self.fp.tell()
773 773 # neededsize = self.processingHeaderObj.blockSize + self.basicHeaderSize
774 774 # factor = int(csize/neededsize)
775 775 # if factor > 0:
776 776 # self.fp.seek(self.fp.tell() + factor*neededsize)
777 777
778 778 self.flagIsNewFile = 0
779 779 self.__isFirstTimeOnline = 0
780 780
781 781
782 782 def __setNewBlock(self):
783 783
784 784 if self.fp == None:
785 785 return 0
786 786
787 787 if self.online:
788 788 self.__jumpToLastBlock()
789 789
790 790 if self.flagIsNewFile:
791 791 return 1
792 792
793 793 self.lastUTTime = self.basicHeaderObj.utc
794 794 currentSize = self.fileSize - self.fp.tell()
795 795 neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize
796 796
797 797 if (currentSize >= neededSize):
798 798 self.__rdBasicHeader()
799 799 return 1
800 800
801 801 if self.__waitNewBlock():
802 802 return 1
803 803
804 804 if not(self.setNextFile()):
805 805 return 0
806 806
807 807 deltaTime = self.basicHeaderObj.utc - self.lastUTTime #
808 808
809 809 self.flagTimeBlock = 0
810 810
811 811 if deltaTime > self.maxTimeStep:
812 812 self.flagTimeBlock = 1
813 813
814 814 return 1
815 815
816 816
817 817 def readNextBlock(self):
818 818 if not(self.__setNewBlock()):
819 819 return 0
820 820
821 821 if not(self.readBlock()):
822 822 return 0
823 823
824 824 return 1
825 825
826 826 def __rdProcessingHeader(self, fp=None):
827 827 if fp == None:
828 828 fp = self.fp
829 829
830 830 self.processingHeaderObj.read(fp)
831 831
832 832 def __rdRadarControllerHeader(self, fp=None):
833 833 if fp == None:
834 834 fp = self.fp
835 835
836 836 self.radarControllerHeaderObj.read(fp)
837 837
838 838 def __rdSystemHeader(self, fp=None):
839 839 if fp == None:
840 840 fp = self.fp
841 841
842 842 self.systemHeaderObj.read(fp)
843 843
844 844 def __rdBasicHeader(self, fp=None):
845 845 if fp == None:
846 846 fp = self.fp
847 847
848 848 self.basicHeaderObj.read(fp)
849 849
850 850
851 851 def __readFirstHeader(self):
852 852 self.__rdBasicHeader()
853 853 self.__rdSystemHeader()
854 854 self.__rdRadarControllerHeader()
855 855 self.__rdProcessingHeader()
856 856
857 857 self.firstHeaderSize = self.basicHeaderObj.size
858 858
859 859 datatype = int(numpy.log2((self.processingHeaderObj.processFlags & PROCFLAG.DATATYPE_MASK))-numpy.log2(PROCFLAG.DATATYPE_CHAR))
860 860 if datatype == 0:
861 861 datatype_str = numpy.dtype([('real','<i1'),('imag','<i1')])
862 862 elif datatype == 1:
863 863 datatype_str = numpy.dtype([('real','<i2'),('imag','<i2')])
864 864 elif datatype == 2:
865 865 datatype_str = numpy.dtype([('real','<i4'),('imag','<i4')])
866 866 elif datatype == 3:
867 867 datatype_str = numpy.dtype([('real','<i8'),('imag','<i8')])
868 868 elif datatype == 4:
869 869 datatype_str = numpy.dtype([('real','<f4'),('imag','<f4')])
870 870 elif datatype == 5:
871 871 datatype_str = numpy.dtype([('real','<f8'),('imag','<f8')])
872 872 else:
873 873 raise ValueError, 'Data type was not defined'
874 874
875 875 self.dtype = datatype_str
876 876 self.ippSeconds = 2 * 1000 * self.radarControllerHeaderObj.ipp / self.c
877 877 self.fileSizeByHeader = self.processingHeaderObj.dataBlocksPerFile * self.processingHeaderObj.blockSize + self.firstHeaderSize + self.basicHeaderSize*(self.processingHeaderObj.dataBlocksPerFile - 1)
878 878 # self.dataOut.channelList = numpy.arange(self.systemHeaderObj.numChannels)
879 879 # self.dataOut.channelIndexList = numpy.arange(self.systemHeaderObj.numChannels)
880 880 self.getBlockDimension()
881 881
882 882
883 883 def __verifyFile(self, filename, msgFlag=True):
884 884 msg = None
885 885 try:
886 886 fp = open(filename, 'rb')
887 887 currentPosition = fp.tell()
888 888 except:
889 889 if msgFlag:
890 890 print "The file %s can't be opened" % (filename)
891 891 return False
892 892
893 893 neededSize = self.processingHeaderObj.blockSize + self.firstHeaderSize
894 894
895 895 if neededSize == 0:
896 896 basicHeaderObj = BasicHeader(LOCALTIME)
897 897 systemHeaderObj = SystemHeader()
898 898 radarControllerHeaderObj = RadarControllerHeader()
899 899 processingHeaderObj = ProcessingHeader()
900 900
901 901 try:
902 902 if not( basicHeaderObj.read(fp) ): raise IOError
903 903 if not( systemHeaderObj.read(fp) ): raise IOError
904 904 if not( radarControllerHeaderObj.read(fp) ): raise IOError
905 905 if not( processingHeaderObj.read(fp) ): raise IOError
906 906 data_type = int(numpy.log2((processingHeaderObj.processFlags & PROCFLAG.DATATYPE_MASK))-numpy.log2(PROCFLAG.DATATYPE_CHAR))
907 907
908 908 neededSize = processingHeaderObj.blockSize + basicHeaderObj.size
909 909
910 910 except:
911 911 if msgFlag:
912 912 print "\tThe file %s is empty or it hasn't enough data" % filename
913 913
914 914 fp.close()
915 915 return False
916 916 else:
917 917 msg = "\tSkipping the file %s due to it hasn't enough data" %filename
918 918
919 919 fp.close()
920 920 fileSize = os.path.getsize(filename)
921 921 currentSize = fileSize - currentPosition
922 922 if currentSize < neededSize:
923 923 if msgFlag and (msg != None):
924 924 print msg #print"\tSkipping the file %s due to it hasn't enough data" %filename
925 925 return False
926 926
927 927 return True
928 928
929 929 def setup(self,
930 930 path=None,
931 931 startDate=None,
932 932 endDate=None,
933 933 startTime=datetime.time(0,0,0),
934 934 endTime=datetime.time(23,59,59),
935 935 set=None,
936 936 expLabel = "",
937 937 ext = None,
938 938 online = False,
939 939 delay = 60,
940 940 walk = True):
941 941
942 942 if path == None:
943 943 raise ValueError, "The path is not valid"
944 944
945 945 if ext == None:
946 946 ext = self.ext
947 947
948 948 if online:
949 949 print "Searching files in online mode..."
950 950
951 951 for nTries in range( self.nTries ):
952 952 fullpath, foldercounter, file, year, doy, set = self.__searchFilesOnLine(path=path, expLabel=expLabel, ext=ext, walk=walk, set=set)
953 953
954 954 if fullpath:
955 955 break
956 956
957 957 print '\tWaiting %0.2f sec for an valid file in %s: try %02d ...' % (self.delay, path, nTries+1)
958 958 time.sleep( self.delay )
959 959
960 960 if not(fullpath):
961 961 print "There 'isn't valied files in %s" % path
962 962 return None
963 963
964 964 self.year = year
965 965 self.doy = doy
966 966 self.set = set - 1
967 967 self.path = path
968 968 self.foldercounter = foldercounter
969 969
970 970 else:
971 971 print "Searching files in offline mode ..."
972 972 pathList, filenameList = self.__searchFilesOffLine(path, startDate=startDate, endDate=endDate,
973 973 startTime=startTime, endTime=endTime,
974 974 set=set, expLabel=expLabel, ext=ext,
975 975 walk=walk)
976 976
977 977 if not(pathList):
978 978 print "No *%s files into the folder %s \nfor the range: %s - %s"%(ext, path,
979 979 datetime.datetime.combine(startDate,startTime).ctime(),
980 980 datetime.datetime.combine(endDate,endTime).ctime())
981 981
982 982 sys.exit(-1)
983 983
984 984
985 985 self.fileIndex = -1
986 986 self.pathList = pathList
987 987 self.filenameList = filenameList
988 988
989 989 self.online = online
990 990 self.delay = delay
991 991 ext = ext.lower()
992 992 self.ext = ext
993 993
994 994 if not(self.setNextFile()):
995 995 if (startDate!=None) and (endDate!=None):
996 996 print "No files in range: %s - %s" %(datetime.datetime.combine(startDate,startTime).ctime(), datetime.datetime.combine(endDate,endTime).ctime())
997 997 elif startDate != None:
998 998 print "No files in range: %s" %(datetime.datetime.combine(startDate,startTime).ctime())
999 999 else:
1000 1000 print "No files"
1001 1001
1002 1002 sys.exit(-1)
1003 1003
1004 1004 # self.updateDataHeader()
1005 1005
1006 1006 return self.dataOut
1007 1007
1008 1008 def getBasicHeader(self):
1009 1009
1010 1010 self.dataOut.utctime = self.basicHeaderObj.utc + self.basicHeaderObj.miliSecond/1000. + self.profileIndex * self.ippSeconds
1011 1011
1012 1012 self.dataOut.flagTimeBlock = self.flagTimeBlock
1013 1013
1014 1014 self.dataOut.timeZone = self.basicHeaderObj.timeZone
1015 1015
1016 1016 self.dataOut.dstFlag = self.basicHeaderObj.dstFlag
1017 1017
1018 1018 self.dataOut.errorCount = self.basicHeaderObj.errorCount
1019 1019
1020 1020 self.dataOut.useLocalTime = self.basicHeaderObj.useLocalTime
1021 1021
1022 1022 def getFirstHeader(self):
1023 1023
1024 1024 raise ValueError, "This method has not been implemented"
1025 1025
1026 1026 def getData():
1027 1027
1028 1028 raise ValueError, "This method has not been implemented"
1029 1029
1030 1030 def hasNotDataInBuffer():
1031 1031
1032 1032 raise ValueError, "This method has not been implemented"
1033 1033
1034 1034 def readBlock():
1035 1035
1036 1036 raise ValueError, "This method has not been implemented"
1037 1037
1038 1038 def isEndProcess(self):
1039 1039
1040 1040 return self.flagNoMoreFiles
1041 1041
1042 1042 def printReadBlocks(self):
1043 1043
1044 1044 print "Number of read blocks per file %04d" %self.nReadBlocks
1045 1045
1046 1046 def printTotalBlocks(self):
1047 1047
1048 1048 print "Number of read blocks %04d" %self.nTotalBlocks
1049 1049
1050 1050 def printNumberOfBlock(self):
1051 1051
1052 1052 if self.flagIsNewBlock:
1053 1053 print "Block No. %04d, Total blocks %04d -> %s" %(self.basicHeaderObj.dataBlock, self.nTotalBlocks, self.dataOut.datatime.ctime())
1054 1054
1055 1055 def printInfo(self):
1056 1056
1057 1057 if self.__printInfo == False:
1058 1058 return
1059 1059
1060 1060 self.basicHeaderObj.printInfo()
1061 1061 self.systemHeaderObj.printInfo()
1062 1062 self.radarControllerHeaderObj.printInfo()
1063 1063 self.processingHeaderObj.printInfo()
1064 1064
1065 1065 self.__printInfo = False
1066 1066
1067 1067
1068 1068 def run(self, **kwargs):
1069 1069
1070 1070 if not(self.isConfig):
1071 1071
1072 1072 # self.dataOut = dataOut
1073 1073 self.setup(**kwargs)
1074 1074 self.isConfig = True
1075 1075
1076 1076 self.getData()
1077 1077
1078 1078 class JRODataWriter(JRODataIO, Operation):
1079 1079
1080 1080 """
1081 1081 Esta clase permite escribir datos a archivos procesados (.r o ,pdata). La escritura
1082 1082 de los datos siempre se realiza por bloques.
1083 1083 """
1084 1084
1085 1085 blockIndex = 0
1086 1086
1087 1087 path = None
1088 1088
1089 1089 setFile = None
1090 1090
1091 1091 profilesPerBlock = None
1092 1092
1093 1093 blocksPerFile = None
1094 1094
1095 1095 nWriteBlocks = 0
1096 1096
1097 1097 def __init__(self, dataOut=None):
1098 1098 raise ValueError, "Not implemented"
1099 1099
1100 1100
1101 1101 def hasAllDataInBuffer(self):
1102 1102 raise ValueError, "Not implemented"
1103 1103
1104 1104
1105 1105 def setBlockDimension(self):
1106 1106 raise ValueError, "Not implemented"
1107 1107
1108 1108
1109 1109 def writeBlock(self):
1110 1110 raise ValueError, "No implemented"
1111 1111
1112 1112
1113 1113 def putData(self):
1114 1114 raise ValueError, "No implemented"
1115 1115
1116 1116
1117 1117 def setBasicHeader(self):
1118 1118
1119 1119 self.basicHeaderObj.size = self.basicHeaderSize #bytes
1120 1120 self.basicHeaderObj.version = self.versionFile
1121 1121 self.basicHeaderObj.dataBlock = self.nTotalBlocks
1122 1122
1123 1123 utc = numpy.floor(self.dataOut.utctime)
1124 1124 milisecond = (self.dataOut.utctime - utc)* 1000.0
1125 1125
1126 1126 self.basicHeaderObj.utc = utc
1127 1127 self.basicHeaderObj.miliSecond = milisecond
1128 1128 self.basicHeaderObj.timeZone = self.dataOut.timeZone
1129 1129 self.basicHeaderObj.dstFlag = self.dataOut.dstFlag
1130 1130 self.basicHeaderObj.errorCount = self.dataOut.errorCount
1131 1131
1132 1132 def setFirstHeader(self):
1133 1133 """
1134 1134 Obtiene una copia del First Header
1135 1135
1136 1136 Affected:
1137 1137
1138 1138 self.basicHeaderObj
1139 1139 self.systemHeaderObj
1140 1140 self.radarControllerHeaderObj
1141 1141 self.processingHeaderObj self.
1142 1142
1143 1143 Return:
1144 1144 None
1145 1145 """
1146 1146
1147 1147 raise ValueError, "No implemented"
1148 1148
1149 1149 def __writeFirstHeader(self):
1150 1150 """
1151 1151 Escribe el primer header del file es decir el Basic header y el Long header (SystemHeader, RadarControllerHeader, ProcessingHeader)
1152 1152
1153 1153 Affected:
1154 1154 __dataType
1155 1155
1156 1156 Return:
1157 1157 None
1158 1158 """
1159 1159
1160 1160 # CALCULAR PARAMETROS
1161 1161
1162 1162 sizeLongHeader = self.systemHeaderObj.size + self.radarControllerHeaderObj.size + self.processingHeaderObj.size
1163 1163 self.basicHeaderObj.size = self.basicHeaderSize + sizeLongHeader
1164 1164
1165 1165 self.basicHeaderObj.write(self.fp)
1166 1166 self.systemHeaderObj.write(self.fp)
1167 1167 self.radarControllerHeaderObj.write(self.fp)
1168 1168 self.processingHeaderObj.write(self.fp)
1169 1169
1170 1170 self.dtype = self.dataOut.dtype
1171 1171
1172 1172 def __setNewBlock(self):
1173 1173 """
1174 1174 Si es un nuevo file escribe el First Header caso contrario escribe solo el Basic Header
1175 1175
1176 1176 Return:
1177 1177 0 : si no pudo escribir nada
1178 1178 1 : Si escribio el Basic el First Header
1179 1179 """
1180 1180 if self.fp == None:
1181 1181 self.setNextFile()
1182 1182
1183 1183 if self.flagIsNewFile:
1184 1184 return 1
1185 1185
1186 1186 if self.blockIndex < self.processingHeaderObj.dataBlocksPerFile:
1187 1187 self.basicHeaderObj.write(self.fp)
1188 1188 return 1
1189 1189
1190 1190 if not( self.setNextFile() ):
1191 1191 return 0
1192 1192
1193 1193 return 1
1194 1194
1195 1195
1196 1196 def writeNextBlock(self):
1197 1197 """
1198 1198 Selecciona el bloque siguiente de datos y los escribe en un file
1199 1199
1200 1200 Return:
1201 1201 0 : Si no hizo pudo escribir el bloque de datos
1202 1202 1 : Si no pudo escribir el bloque de datos
1203 1203 """
1204 1204 if not( self.__setNewBlock() ):
1205 1205 return 0
1206 1206
1207 1207 self.writeBlock()
1208 1208
1209 1209 return 1
1210 1210
1211 1211 def setNextFile(self):
1212 1212 """
1213 1213 Determina el siguiente file que sera escrito
1214 1214
1215 1215 Affected:
1216 1216 self.filename
1217 1217 self.subfolder
1218 1218 self.fp
1219 1219 self.setFile
1220 1220 self.flagIsNewFile
1221 1221
1222 1222 Return:
1223 1223 0 : Si el archivo no puede ser escrito
1224 1224 1 : Si el archivo esta listo para ser escrito
1225 1225 """
1226 1226 ext = self.ext
1227 1227 path = self.path
1228 1228
1229 1229 if self.fp != None:
1230 1230 self.fp.close()
1231 1231
1232 1232 timeTuple = time.localtime( self.dataOut.utctime)
1233 1233 subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday)
1234 1234
1235 1235 fullpath = os.path.join( path, subfolder )
1236 1236 if not( os.path.exists(fullpath) ):
1237 1237 os.mkdir(fullpath)
1238 1238 self.setFile = -1 #inicializo mi contador de seteo
1239 1239 else:
1240 1240 filesList = os.listdir( fullpath )
1241 1241 if len( filesList ) > 0:
1242 1242 filesList = sorted( filesList, key=str.lower )
1243 1243 filen = filesList[-1]
1244 1244 # el filename debera tener el siguiente formato
1245 1245 # 0 1234 567 89A BCDE (hex)
1246 1246 # x YYYY DDD SSS .ext
1247 1247 if isNumber( filen[8:11] ):
1248 1248 self.setFile = int( filen[8:11] ) #inicializo mi contador de seteo al seteo del ultimo file
1249 1249 else:
1250 1250 self.setFile = -1
1251 1251 else:
1252 1252 self.setFile = -1 #inicializo mi contador de seteo
1253 1253
1254 1254 setFile = self.setFile
1255 1255 setFile += 1
1256 1256
1257 1257 file = '%s%4.4d%3.3d%3.3d%s' % (self.optchar,
1258 1258 timeTuple.tm_year,
1259 1259 timeTuple.tm_yday,
1260 1260 setFile,
1261 1261 ext )
1262 1262
1263 1263 filename = os.path.join( path, subfolder, file )
1264 1264
1265 1265 fp = open( filename,'wb' )
1266 1266
1267 1267 self.blockIndex = 0
1268 1268
1269 1269 #guardando atributos
1270 1270 self.filename = filename
1271 1271 self.subfolder = subfolder
1272 1272 self.fp = fp
1273 1273 self.setFile = setFile
1274 1274 self.flagIsNewFile = 1
1275 1275
1276 1276 self.setFirstHeader()
1277 1277
1278 1278 print 'Writing the file: %s'%self.filename
1279 1279
1280 1280 self.__writeFirstHeader()
1281 1281
1282 1282 return 1
1283 1283
1284 1284 def setup(self, dataOut, path, blocksPerFile, profilesPerBlock=64, set=0, ext=None):
1285 1285 """
1286 1286 Setea el tipo de formato en la cual sera guardada la data y escribe el First Header
1287 1287
1288 1288 Inputs:
1289 1289 path : el path destino en el cual se escribiran los files a crear
1290 1290 format : formato en el cual sera salvado un file
1291 1291 set : el setebo del file
1292 1292
1293 1293 Return:
1294 1294 0 : Si no realizo un buen seteo
1295 1295 1 : Si realizo un buen seteo
1296 1296 """
1297 1297
1298 1298 if ext == None:
1299 1299 ext = self.ext
1300 1300
1301 1301 ext = ext.lower()
1302 1302
1303 1303 self.ext = ext
1304 1304
1305 1305 self.path = path
1306 1306
1307 1307 self.setFile = set - 1
1308 1308
1309 1309 self.blocksPerFile = blocksPerFile
1310 1310
1311 1311 self.profilesPerBlock = profilesPerBlock
1312 1312
1313 1313 self.dataOut = dataOut
1314 1314
1315 1315 if not(self.setNextFile()):
1316 1316 print "There isn't a next file"
1317 1317 return 0
1318 1318
1319 1319 self.setBlockDimension()
1320 1320
1321 1321 return 1
1322 1322
1323 1323 def run(self, dataOut, **kwargs):
1324 1324
1325 1325 if not(self.isConfig):
1326 1326
1327 1327 self.setup(dataOut, **kwargs)
1328 1328 self.isConfig = True
1329 1329
1330 1330 self.putData()
1331 1331
1332 1332 class VoltageReader(JRODataReader):
1333 1333 """
1334 1334 Esta clase permite leer datos de voltage desde archivos en formato rawdata (.r). La lectura
1335 1335 de los datos siempre se realiza por bloques. Los datos leidos (array de 3 dimensiones:
1336 1336 perfiles*alturas*canales) son almacenados en la variable "buffer".
1337 1337
1338 1338 perfiles * alturas * canales
1339 1339
1340 1340 Esta clase contiene instancias (objetos) de las clases BasicHeader, SystemHeader,
1341 1341 RadarControllerHeader y Voltage. Los tres primeros se usan para almacenar informacion de la
1342 1342 cabecera de datos (metadata), y el cuarto (Voltage) para obtener y almacenar un perfil de
1343 1343 datos desde el "buffer" cada vez que se ejecute el metodo "getData".
1344 1344
1345 1345 Example:
1346 1346
1347 1347 dpath = "/home/myuser/data"
1348 1348
1349 1349 startTime = datetime.datetime(2010,1,20,0,0,0,0,0,0)
1350 1350
1351 1351 endTime = datetime.datetime(2010,1,21,23,59,59,0,0,0)
1352 1352
1353 1353 readerObj = VoltageReader()
1354 1354
1355 1355 readerObj.setup(dpath, startTime, endTime)
1356 1356
1357 1357 while(True):
1358 1358
1359 1359 #to get one profile
1360 1360 profile = readerObj.getData()
1361 1361
1362 1362 #print the profile
1363 1363 print profile
1364 1364
1365 1365 #If you want to see all datablock
1366 1366 print readerObj.datablock
1367 1367
1368 1368 if readerObj.flagNoMoreFiles:
1369 1369 break
1370 1370
1371 1371 """
1372 1372
1373 1373 ext = ".r"
1374 1374
1375 1375 optchar = "D"
1376 1376 dataOut = None
1377 1377
1378 1378
1379 1379 def __init__(self):
1380 1380 """
1381 1381 Inicializador de la clase VoltageReader para la lectura de datos de voltage.
1382 1382
1383 1383 Input:
1384 1384 dataOut : Objeto de la clase Voltage. Este objeto sera utilizado para
1385 1385 almacenar un perfil de datos cada vez que se haga un requerimiento
1386 1386 (getData). El perfil sera obtenido a partir del buffer de datos,
1387 1387 si el buffer esta vacio se hara un nuevo proceso de lectura de un
1388 1388 bloque de datos.
1389 1389 Si este parametro no es pasado se creara uno internamente.
1390 1390
1391 1391 Variables afectadas:
1392 1392 self.dataOut
1393 1393
1394 1394 Return:
1395 1395 None
1396 1396 """
1397 1397
1398 1398 self.isConfig = False
1399 1399
1400 1400 self.datablock = None
1401 1401
1402 1402 self.utc = 0
1403 1403
1404 1404 self.ext = ".r"
1405 1405
1406 1406 self.optchar = "D"
1407 1407
1408 1408 self.basicHeaderObj = BasicHeader(LOCALTIME)
1409 1409
1410 1410 self.systemHeaderObj = SystemHeader()
1411 1411
1412 1412 self.radarControllerHeaderObj = RadarControllerHeader()
1413 1413
1414 1414 self.processingHeaderObj = ProcessingHeader()
1415 1415
1416 1416 self.online = 0
1417 1417
1418 1418 self.fp = None
1419 1419
1420 1420 self.idFile = None
1421 1421
1422 1422 self.dtype = None
1423 1423
1424 1424 self.fileSizeByHeader = None
1425 1425
1426 1426 self.filenameList = []
1427 1427
1428 1428 self.filename = None
1429 1429
1430 1430 self.fileSize = None
1431 1431
1432 1432 self.firstHeaderSize = 0
1433 1433
1434 1434 self.basicHeaderSize = 24
1435 1435
1436 1436 self.pathList = []
1437 1437
1438 1438 self.filenameList = []
1439 1439
1440 1440 self.lastUTTime = 0
1441 1441
1442 1442 self.maxTimeStep = 30
1443 1443
1444 1444 self.flagNoMoreFiles = 0
1445 1445
1446 1446 self.set = 0
1447 1447
1448 1448 self.path = None
1449 1449
1450 1450 self.profileIndex = 2**32-1
1451 1451
1452 1452 self.delay = 3 #seconds
1453 1453
1454 1454 self.nTries = 3 #quantity tries
1455 1455
1456 1456 self.nFiles = 3 #number of files for searching
1457 1457
1458 1458 self.nReadBlocks = 0
1459 1459
1460 1460 self.flagIsNewFile = 1
1461 1461
1462 1462 self.__isFirstTimeOnline = 1
1463 1463
1464 1464 self.ippSeconds = 0
1465 1465
1466 1466 self.flagTimeBlock = 0
1467 1467
1468 1468 self.flagIsNewBlock = 0
1469 1469
1470 1470 self.nTotalBlocks = 0
1471 1471
1472 1472 self.blocksize = 0
1473 1473
1474 1474 self.dataOut = self.createObjByDefault()
1475 1475
1476 1476 def createObjByDefault(self):
1477 1477
1478 1478 dataObj = Voltage()
1479 1479
1480 1480 return dataObj
1481 1481
1482 1482 def __hasNotDataInBuffer(self):
1483 1483 if self.profileIndex >= self.processingHeaderObj.profilesPerBlock:
1484 1484 return 1
1485 1485 return 0
1486 1486
1487 1487
1488 1488 def getBlockDimension(self):
1489 1489 """
1490 1490 Obtiene la cantidad de puntos a leer por cada bloque de datos
1491 1491
1492 1492 Affected:
1493 1493 self.blocksize
1494 1494
1495 1495 Return:
1496 1496 None
1497 1497 """
1498 1498 pts2read = self.processingHeaderObj.profilesPerBlock * self.processingHeaderObj.nHeights * self.systemHeaderObj.nChannels
1499 1499 self.blocksize = pts2read
1500 1500
1501 1501
1502 1502 def readBlock(self):
1503 1503 """
1504 1504 readBlock lee el bloque de datos desde la posicion actual del puntero del archivo
1505 1505 (self.fp) y actualiza todos los parametros relacionados al bloque de datos
1506 1506 (metadata + data). La data leida es almacenada en el buffer y el contador del buffer
1507 1507 es seteado a 0
1508 1508
1509 1509 Inputs:
1510 1510 None
1511 1511
1512 1512 Return:
1513 1513 None
1514 1514
1515 1515 Affected:
1516 1516 self.profileIndex
1517 1517 self.datablock
1518 1518 self.flagIsNewFile
1519 1519 self.flagIsNewBlock
1520 1520 self.nTotalBlocks
1521 1521
1522 1522 Exceptions:
1523 1523 Si un bloque leido no es un bloque valido
1524 1524 """
1525 1525 current_pointer_location = self.fp.tell()
1526 1526 junk = numpy.fromfile( self.fp, self.dtype, self.blocksize )
1527 1527
1528 1528 try:
1529 1529 junk = junk.reshape( (self.processingHeaderObj.profilesPerBlock, self.processingHeaderObj.nHeights, self.systemHeaderObj.nChannels) )
1530 1530 except:
1531 1531 #print "The read block (%3d) has not enough data" %self.nReadBlocks
1532 1532
1533 1533 if self.waitDataBlock(pointer_location=current_pointer_location):
1534 1534 junk = numpy.fromfile( self.fp, self.dtype, self.blocksize )
1535 1535 junk = junk.reshape( (self.processingHeaderObj.profilesPerBlock, self.processingHeaderObj.nHeights, self.systemHeaderObj.nChannels) )
1536 1536 # return 0
1537 1537
1538 1538 junk = numpy.transpose(junk, (2,0,1))
1539 1539 self.datablock = junk['real'] + junk['imag']*1j
1540 1540
1541 1541 self.profileIndex = 0
1542 1542
1543 1543 self.flagIsNewFile = 0
1544 1544 self.flagIsNewBlock = 1
1545 1545
1546 1546 self.nTotalBlocks += 1
1547 1547 self.nReadBlocks += 1
1548 1548
1549 1549 return 1
1550 1550
1551 1551 def getFirstHeader(self):
1552 1552
1553 1553 self.dataOut.dtype = self.dtype
1554 1554
1555 1555 self.dataOut.nProfiles = self.processingHeaderObj.profilesPerBlock
1556 1556
1557 1557 xf = self.processingHeaderObj.firstHeight + self.processingHeaderObj.nHeights*self.processingHeaderObj.deltaHeight
1558 1558
1559 1559 self.dataOut.heightList = numpy.arange(self.processingHeaderObj.firstHeight, xf, self.processingHeaderObj.deltaHeight)
1560 1560
1561 1561 self.dataOut.channelList = range(self.systemHeaderObj.nChannels)
1562 1562
1563 1563 self.dataOut.ippSeconds = self.ippSeconds
1564 1564
1565 1565 self.dataOut.timeInterval = self.ippSeconds * self.processingHeaderObj.nCohInt
1566 1566
1567 1567 self.dataOut.nCohInt = self.processingHeaderObj.nCohInt
1568 1568
1569 1569 self.dataOut.flagShiftFFT = False
1570 1570
1571 1571 if self.radarControllerHeaderObj.code != None:
1572 1572
1573 1573 self.dataOut.nCode = self.radarControllerHeaderObj.nCode
1574 1574
1575 1575 self.dataOut.nBaud = self.radarControllerHeaderObj.nBaud
1576 1576
1577 1577 self.dataOut.code = self.radarControllerHeaderObj.code
1578 1578
1579 1579 self.dataOut.systemHeaderObj = self.systemHeaderObj.copy()
1580 1580
1581 1581 self.dataOut.radarControllerHeaderObj = self.radarControllerHeaderObj.copy()
1582 1582
1583 1583 self.dataOut.flagDecodeData = False #asumo q la data no esta decodificada
1584 1584
1585 1585 self.dataOut.flagDeflipData = False #asumo q la data no esta sin flip
1586 1586
1587 1587 self.dataOut.flagShiftFFT = False
1588 1588
1589 1589 def getData(self):
1590 1590 """
1591 1591 getData obtiene una unidad de datos del buffer de lectura y la copia a la clase "Voltage"
1592 1592 con todos los parametros asociados a este (metadata). cuando no hay datos en el buffer de
1593 1593 lectura es necesario hacer una nueva lectura de los bloques de datos usando "readNextBlock"
1594 1594
1595 1595 Ademas incrementa el contador del buffer en 1.
1596 1596
1597 1597 Return:
1598 1598 data : retorna un perfil de voltages (alturas * canales) copiados desde el
1599 1599 buffer. Si no hay mas archivos a leer retorna None.
1600 1600
1601 1601 Variables afectadas:
1602 1602 self.dataOut
1603 1603 self.profileIndex
1604 1604
1605 1605 Affected:
1606 1606 self.dataOut
1607 1607 self.profileIndex
1608 1608 self.flagTimeBlock
1609 1609 self.flagIsNewBlock
1610 1610 """
1611 1611
1612 1612 if self.flagNoMoreFiles:
1613 1613 self.dataOut.flagNoData = True
1614 1614 print 'Process finished'
1615 1615 return 0
1616 1616
1617 1617 self.flagTimeBlock = 0
1618 1618 self.flagIsNewBlock = 0
1619 1619
1620 1620 if self.__hasNotDataInBuffer():
1621 1621
1622 1622 if not( self.readNextBlock() ):
1623 1623 return 0
1624 1624
1625 1625 self.getFirstHeader()
1626 1626
1627 1627 if self.datablock == None:
1628 1628 self.dataOut.flagNoData = True
1629 1629 return 0
1630 1630
1631 1631 self.dataOut.data = self.datablock[:,self.profileIndex,:]
1632 1632
1633 1633 self.dataOut.flagNoData = False
1634 1634
1635 1635 self.getBasicHeader()
1636 1636
1637 1637 self.profileIndex += 1
1638 1638
1639 1639 self.dataOut.realtime = self.online
1640 1640
1641 1641 return self.dataOut.data
1642 1642
1643 1643
1644 1644 class VoltageWriter(JRODataWriter):
1645 1645 """
1646 1646 Esta clase permite escribir datos de voltajes a archivos procesados (.r). La escritura
1647 1647 de los datos siempre se realiza por bloques.
1648 1648 """
1649 1649
1650 1650 ext = ".r"
1651 1651
1652 1652 optchar = "D"
1653 1653
1654 1654 shapeBuffer = None
1655 1655
1656 1656
1657 1657 def __init__(self):
1658 1658 """
1659 1659 Inicializador de la clase VoltageWriter para la escritura de datos de espectros.
1660 1660
1661 1661 Affected:
1662 1662 self.dataOut
1663 1663
1664 1664 Return: None
1665 1665 """
1666 1666
1667 1667 self.nTotalBlocks = 0
1668 1668
1669 1669 self.profileIndex = 0
1670 1670
1671 1671 self.isConfig = False
1672 1672
1673 1673 self.fp = None
1674 1674
1675 1675 self.flagIsNewFile = 1
1676 1676
1677 1677 self.nTotalBlocks = 0
1678 1678
1679 1679 self.flagIsNewBlock = 0
1680 1680
1681 1681 self.setFile = None
1682 1682
1683 1683 self.dtype = None
1684 1684
1685 1685 self.path = None
1686 1686
1687 1687 self.filename = None
1688 1688
1689 1689 self.basicHeaderObj = BasicHeader(LOCALTIME)
1690 1690
1691 1691 self.systemHeaderObj = SystemHeader()
1692 1692
1693 1693 self.radarControllerHeaderObj = RadarControllerHeader()
1694 1694
1695 1695 self.processingHeaderObj = ProcessingHeader()
1696 1696
1697 1697 def hasAllDataInBuffer(self):
1698 1698 if self.profileIndex >= self.processingHeaderObj.profilesPerBlock:
1699 1699 return 1
1700 1700 return 0
1701 1701
1702 1702
1703 1703 def setBlockDimension(self):
1704 1704 """
1705 1705 Obtiene las formas dimensionales del los subbloques de datos que componen un bloque
1706 1706
1707 1707 Affected:
1708 1708 self.shape_spc_Buffer
1709 1709 self.shape_cspc_Buffer
1710 1710 self.shape_dc_Buffer
1711 1711
1712 1712 Return: None
1713 1713 """
1714 1714 self.shapeBuffer = (self.processingHeaderObj.profilesPerBlock,
1715 1715 self.processingHeaderObj.nHeights,
1716 1716 self.systemHeaderObj.nChannels)
1717 1717
1718 1718 self.datablock = numpy.zeros((self.systemHeaderObj.nChannels,
1719 1719 self.processingHeaderObj.profilesPerBlock,
1720 1720 self.processingHeaderObj.nHeights),
1721 1721 dtype=numpy.dtype('complex64'))
1722 1722
1723 1723
1724 1724 def writeBlock(self):
1725 1725 """
1726 1726 Escribe el buffer en el file designado
1727 1727
1728 1728 Affected:
1729 1729 self.profileIndex
1730 1730 self.flagIsNewFile
1731 1731 self.flagIsNewBlock
1732 1732 self.nTotalBlocks
1733 1733 self.blockIndex
1734 1734
1735 1735 Return: None
1736 1736 """
1737 1737 data = numpy.zeros( self.shapeBuffer, self.dtype )
1738 1738
1739 1739 junk = numpy.transpose(self.datablock, (1,2,0))
1740 1740
1741 1741 data['real'] = junk.real
1742 1742 data['imag'] = junk.imag
1743 1743
1744 1744 data = data.reshape( (-1) )
1745 1745
1746 1746 data.tofile( self.fp )
1747 1747
1748 1748 self.datablock.fill(0)
1749 1749
1750 1750 self.profileIndex = 0
1751 1751 self.flagIsNewFile = 0
1752 1752 self.flagIsNewBlock = 1
1753 1753
1754 1754 self.blockIndex += 1
1755 1755 self.nTotalBlocks += 1
1756 1756
1757 1757 def putData(self):
1758 1758 """
1759 1759 Setea un bloque de datos y luego los escribe en un file
1760 1760
1761 1761 Affected:
1762 1762 self.flagIsNewBlock
1763 1763 self.profileIndex
1764 1764
1765 1765 Return:
1766 1766 0 : Si no hay data o no hay mas files que puedan escribirse
1767 1767 1 : Si se escribio la data de un bloque en un file
1768 1768 """
1769 1769 if self.dataOut.flagNoData:
1770 1770 return 0
1771 1771
1772 1772 self.flagIsNewBlock = 0
1773 1773
1774 1774 if self.dataOut.flagTimeBlock:
1775 1775
1776 1776 self.datablock.fill(0)
1777 1777 self.profileIndex = 0
1778 1778 self.setNextFile()
1779 1779
1780 1780 if self.profileIndex == 0:
1781 1781 self.setBasicHeader()
1782 1782
1783 1783 self.datablock[:,self.profileIndex,:] = self.dataOut.data
1784 1784
1785 1785 self.profileIndex += 1
1786 1786
1787 1787 if self.hasAllDataInBuffer():
1788 1788 #if self.flagIsNewFile:
1789 1789 self.writeNextBlock()
1790 1790 # self.setFirstHeader()
1791 1791
1792 1792 return 1
1793 1793
1794 1794 def __getProcessFlags(self):
1795 1795
1796 1796 processFlags = 0
1797 1797
1798 1798 dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')])
1799 1799 dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')])
1800 1800 dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')])
1801 1801 dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')])
1802 1802 dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
1803 1803 dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')])
1804 1804
1805 1805 dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5]
1806 1806
1807 1807
1808 1808
1809 1809 datatypeValueList = [PROCFLAG.DATATYPE_CHAR,
1810 1810 PROCFLAG.DATATYPE_SHORT,
1811 1811 PROCFLAG.DATATYPE_LONG,
1812 1812 PROCFLAG.DATATYPE_INT64,
1813 1813 PROCFLAG.DATATYPE_FLOAT,
1814 1814 PROCFLAG.DATATYPE_DOUBLE]
1815 1815
1816 1816
1817 1817 for index in range(len(dtypeList)):
1818 1818 if self.dataOut.dtype == dtypeList[index]:
1819 1819 dtypeValue = datatypeValueList[index]
1820 1820 break
1821 1821
1822 1822 processFlags += dtypeValue
1823 1823
1824 1824 if self.dataOut.flagDecodeData:
1825 1825 processFlags += PROCFLAG.DECODE_DATA
1826 1826
1827 1827 if self.dataOut.flagDeflipData:
1828 1828 processFlags += PROCFLAG.DEFLIP_DATA
1829 1829
1830 1830 if self.dataOut.code != None:
1831 1831 processFlags += PROCFLAG.DEFINE_PROCESS_CODE
1832 1832
1833 1833 if self.dataOut.nCohInt > 1:
1834 1834 processFlags += PROCFLAG.COHERENT_INTEGRATION
1835 1835
1836 1836 return processFlags
1837 1837
1838 1838
1839 1839 def __getBlockSize(self):
1840 1840 '''
1841 1841 Este metodos determina el cantidad de bytes para un bloque de datos de tipo Voltage
1842 1842 '''
1843 1843
1844 1844 dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')])
1845 1845 dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')])
1846 1846 dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')])
1847 1847 dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')])
1848 1848 dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
1849 1849 dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')])
1850 1850
1851 1851 dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5]
1852 1852 datatypeValueList = [1,2,4,8,4,8]
1853 1853 for index in range(len(dtypeList)):
1854 1854 if self.dataOut.dtype == dtypeList[index]:
1855 1855 datatypeValue = datatypeValueList[index]
1856 1856 break
1857 1857
1858 1858 blocksize = int(self.dataOut.nHeights * self.dataOut.nChannels * self.profilesPerBlock * datatypeValue * 2)
1859 1859
1860 1860 return blocksize
1861 1861
1862 1862 def setFirstHeader(self):
1863 1863
1864 1864 """
1865 1865 Obtiene una copia del First Header
1866 1866
1867 1867 Affected:
1868 1868 self.systemHeaderObj
1869 1869 self.radarControllerHeaderObj
1870 1870 self.dtype
1871 1871
1872 1872 Return:
1873 1873 None
1874 1874 """
1875 1875
1876 1876 self.systemHeaderObj = self.dataOut.systemHeaderObj.copy()
1877 1877 self.systemHeaderObj.nChannels = self.dataOut.nChannels
1878 1878 self.radarControllerHeaderObj = self.dataOut.radarControllerHeaderObj.copy()
1879 1879
1880 1880 self.setBasicHeader()
1881 1881
1882 1882 processingHeaderSize = 40 # bytes
1883 1883 self.processingHeaderObj.dtype = 0 # Voltage
1884 1884 self.processingHeaderObj.blockSize = self.__getBlockSize()
1885 1885 self.processingHeaderObj.profilesPerBlock = self.profilesPerBlock
1886 1886 self.processingHeaderObj.dataBlocksPerFile = self.blocksPerFile
1887 1887 self.processingHeaderObj.nWindows = 1 #podria ser 1 o self.dataOut.processingHeaderObj.nWindows
1888 1888 self.processingHeaderObj.processFlags = self.__getProcessFlags()
1889 1889 self.processingHeaderObj.nCohInt = self.dataOut.nCohInt
1890 1890 self.processingHeaderObj.nIncohInt = 1 # Cuando la data de origen es de tipo Voltage
1891 1891 self.processingHeaderObj.totalSpectra = 0 # Cuando la data de origen es de tipo Voltage
1892 1892
1893 1893 # if self.dataOut.code != None:
1894 1894 # self.processingHeaderObj.code = self.dataOut.code
1895 1895 # self.processingHeaderObj.nCode = self.dataOut.nCode
1896 1896 # self.processingHeaderObj.nBaud = self.dataOut.nBaud
1897 1897 # codesize = int(8 + 4 * self.dataOut.nCode * self.dataOut.nBaud)
1898 1898 # processingHeaderSize += codesize
1899 1899
1900 1900 if self.processingHeaderObj.nWindows != 0:
1901 1901 self.processingHeaderObj.firstHeight = self.dataOut.heightList[0]
1902 1902 self.processingHeaderObj.deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
1903 1903 self.processingHeaderObj.nHeights = self.dataOut.nHeights
1904 1904 self.processingHeaderObj.samplesWin = self.dataOut.nHeights
1905 1905 processingHeaderSize += 12
1906 1906
1907 1907 self.processingHeaderObj.size = processingHeaderSize
1908 1908
1909 1909 class SpectraReader(JRODataReader):
1910 1910 """
1911 1911 Esta clase permite leer datos de espectros desde archivos procesados (.pdata). La lectura
1912 1912 de los datos siempre se realiza por bloques. Los datos leidos (array de 3 dimensiones)
1913 1913 son almacenados en tres buffer's para el Self Spectra, el Cross Spectra y el DC Channel.
1914 1914
1915 1915 paresCanalesIguales * alturas * perfiles (Self Spectra)
1916 1916 paresCanalesDiferentes * alturas * perfiles (Cross Spectra)
1917 1917 canales * alturas (DC Channels)
1918 1918
1919 1919 Esta clase contiene instancias (objetos) de las clases BasicHeader, SystemHeader,
1920 1920 RadarControllerHeader y Spectra. Los tres primeros se usan para almacenar informacion de la
1921 1921 cabecera de datos (metadata), y el cuarto (Spectra) para obtener y almacenar un bloque de
1922 1922 datos desde el "buffer" cada vez que se ejecute el metodo "getData".
1923 1923
1924 1924 Example:
1925 1925 dpath = "/home/myuser/data"
1926 1926
1927 1927 startTime = datetime.datetime(2010,1,20,0,0,0,0,0,0)
1928 1928
1929 1929 endTime = datetime.datetime(2010,1,21,23,59,59,0,0,0)
1930 1930
1931 1931 readerObj = SpectraReader()
1932 1932
1933 1933 readerObj.setup(dpath, startTime, endTime)
1934 1934
1935 1935 while(True):
1936 1936
1937 1937 readerObj.getData()
1938 1938
1939 1939 print readerObj.data_spc
1940 1940
1941 1941 print readerObj.data_cspc
1942 1942
1943 1943 print readerObj.data_dc
1944 1944
1945 1945 if readerObj.flagNoMoreFiles:
1946 1946 break
1947 1947
1948 1948 """
1949 1949
1950 1950 pts2read_SelfSpectra = 0
1951 1951
1952 1952 pts2read_CrossSpectra = 0
1953 1953
1954 1954 pts2read_DCchannels = 0
1955 1955
1956 1956 ext = ".pdata"
1957 1957
1958 1958 optchar = "P"
1959 1959
1960 1960 dataOut = None
1961 1961
1962 1962 nRdChannels = None
1963 1963
1964 1964 nRdPairs = None
1965 1965
1966 1966 rdPairList = []
1967 1967
1968 1968 def __init__(self):
1969 1969 """
1970 1970 Inicializador de la clase SpectraReader para la lectura de datos de espectros.
1971 1971
1972 1972 Inputs:
1973 1973 dataOut : Objeto de la clase Spectra. Este objeto sera utilizado para
1974 1974 almacenar un perfil de datos cada vez que se haga un requerimiento
1975 1975 (getData). El perfil sera obtenido a partir del buffer de datos,
1976 1976 si el buffer esta vacio se hara un nuevo proceso de lectura de un
1977 1977 bloque de datos.
1978 1978 Si este parametro no es pasado se creara uno internamente.
1979 1979
1980 1980 Affected:
1981 1981 self.dataOut
1982 1982
1983 1983 Return : None
1984 1984 """
1985 1985
1986 1986 self.isConfig = False
1987 1987
1988 1988 self.pts2read_SelfSpectra = 0
1989 1989
1990 1990 self.pts2read_CrossSpectra = 0
1991 1991
1992 1992 self.pts2read_DCchannels = 0
1993 1993
1994 1994 self.datablock = None
1995 1995
1996 1996 self.utc = None
1997 1997
1998 1998 self.ext = ".pdata"
1999 1999
2000 2000 self.optchar = "P"
2001 2001
2002 2002 self.basicHeaderObj = BasicHeader(LOCALTIME)
2003 2003
2004 2004 self.systemHeaderObj = SystemHeader()
2005 2005
2006 2006 self.radarControllerHeaderObj = RadarControllerHeader()
2007 2007
2008 2008 self.processingHeaderObj = ProcessingHeader()
2009 2009
2010 2010 self.online = 0
2011 2011
2012 2012 self.fp = None
2013 2013
2014 2014 self.idFile = None
2015 2015
2016 2016 self.dtype = None
2017 2017
2018 2018 self.fileSizeByHeader = None
2019 2019
2020 2020 self.filenameList = []
2021 2021
2022 2022 self.filename = None
2023 2023
2024 2024 self.fileSize = None
2025 2025
2026 2026 self.firstHeaderSize = 0
2027 2027
2028 2028 self.basicHeaderSize = 24
2029 2029
2030 2030 self.pathList = []
2031 2031
2032 2032 self.lastUTTime = 0
2033 2033
2034 2034 self.maxTimeStep = 30
2035 2035
2036 2036 self.flagNoMoreFiles = 0
2037 2037
2038 2038 self.set = 0
2039 2039
2040 2040 self.path = None
2041 2041
2042 2042 self.delay = 60 #seconds
2043 2043
2044 2044 self.nTries = 3 #quantity tries
2045 2045
2046 2046 self.nFiles = 3 #number of files for searching
2047 2047
2048 2048 self.nReadBlocks = 0
2049 2049
2050 2050 self.flagIsNewFile = 1
2051 2051
2052 2052 self.__isFirstTimeOnline = 1
2053 2053
2054 2054 self.ippSeconds = 0
2055 2055
2056 2056 self.flagTimeBlock = 0
2057 2057
2058 2058 self.flagIsNewBlock = 0
2059 2059
2060 2060 self.nTotalBlocks = 0
2061 2061
2062 2062 self.blocksize = 0
2063 2063
2064 2064 self.dataOut = self.createObjByDefault()
2065 2065
2066 2066 self.profileIndex = 1 #Always
2067 2067
2068 2068
2069 2069 def createObjByDefault(self):
2070 2070
2071 2071 dataObj = Spectra()
2072 2072
2073 2073 return dataObj
2074 2074
2075 2075 def __hasNotDataInBuffer(self):
2076 2076 return 1
2077 2077
2078 2078
2079 2079 def getBlockDimension(self):
2080 2080 """
2081 2081 Obtiene la cantidad de puntos a leer por cada bloque de datos
2082 2082
2083 2083 Affected:
2084 2084 self.nRdChannels
2085 2085 self.nRdPairs
2086 2086 self.pts2read_SelfSpectra
2087 2087 self.pts2read_CrossSpectra
2088 2088 self.pts2read_DCchannels
2089 2089 self.blocksize
2090 2090 self.dataOut.nChannels
2091 2091 self.dataOut.nPairs
2092 2092
2093 2093 Return:
2094 2094 None
2095 2095 """
2096 2096 self.nRdChannels = 0
2097 2097 self.nRdPairs = 0
2098 2098 self.rdPairList = []
2099 2099
2100 2100 for i in range(0, self.processingHeaderObj.totalSpectra*2, 2):
2101 2101 if self.processingHeaderObj.spectraComb[i] == self.processingHeaderObj.spectraComb[i+1]:
2102 2102 self.nRdChannels = self.nRdChannels + 1 #par de canales iguales
2103 2103 else:
2104 2104 self.nRdPairs = self.nRdPairs + 1 #par de canales diferentes
2105 2105 self.rdPairList.append((self.processingHeaderObj.spectraComb[i], self.processingHeaderObj.spectraComb[i+1]))
2106 2106
2107 2107 pts2read = self.processingHeaderObj.nHeights * self.processingHeaderObj.profilesPerBlock
2108 2108
2109 2109 self.pts2read_SelfSpectra = int(self.nRdChannels * pts2read)
2110 2110 self.blocksize = self.pts2read_SelfSpectra
2111 2111
2112 2112 if self.processingHeaderObj.flag_cspc:
2113 2113 self.pts2read_CrossSpectra = int(self.nRdPairs * pts2read)
2114 2114 self.blocksize += self.pts2read_CrossSpectra
2115 2115
2116 2116 if self.processingHeaderObj.flag_dc:
2117 2117 self.pts2read_DCchannels = int(self.systemHeaderObj.nChannels * self.processingHeaderObj.nHeights)
2118 2118 self.blocksize += self.pts2read_DCchannels
2119 2119
2120 2120 # self.blocksize = self.pts2read_SelfSpectra + self.pts2read_CrossSpectra + self.pts2read_DCchannels
2121 2121
2122 2122
2123 2123 def readBlock(self):
2124 2124 """
2125 2125 Lee el bloque de datos desde la posicion actual del puntero del archivo
2126 2126 (self.fp) y actualiza todos los parametros relacionados al bloque de datos
2127 2127 (metadata + data). La data leida es almacenada en el buffer y el contador del buffer
2128 2128 es seteado a 0
2129 2129
2130 2130 Return: None
2131 2131
2132 2132 Variables afectadas:
2133 2133
2134 2134 self.flagIsNewFile
2135 2135 self.flagIsNewBlock
2136 2136 self.nTotalBlocks
2137 2137 self.data_spc
2138 2138 self.data_cspc
2139 2139 self.data_dc
2140 2140
2141 2141 Exceptions:
2142 2142 Si un bloque leido no es un bloque valido
2143 2143 """
2144 2144 blockOk_flag = False
2145 2145 fpointer = self.fp.tell()
2146 2146
2147 2147 spc = numpy.fromfile( self.fp, self.dtype[0], self.pts2read_SelfSpectra )
2148 2148 spc = spc.reshape( (self.nRdChannels, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) ) #transforma a un arreglo 3D
2149 2149
2150 2150 if self.processingHeaderObj.flag_cspc:
2151 2151 cspc = numpy.fromfile( self.fp, self.dtype, self.pts2read_CrossSpectra )
2152 2152 cspc = cspc.reshape( (self.nRdPairs, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) ) #transforma a un arreglo 3D
2153 2153
2154 2154 if self.processingHeaderObj.flag_dc:
2155 2155 dc = numpy.fromfile( self.fp, self.dtype, self.pts2read_DCchannels ) #int(self.processingHeaderObj.nHeights*self.systemHeaderObj.nChannels) )
2156 2156 dc = dc.reshape( (self.systemHeaderObj.nChannels, self.processingHeaderObj.nHeights) ) #transforma a un arreglo 2D
2157 2157
2158 2158
2159 2159 if not(self.processingHeaderObj.shif_fft):
2160 2160 #desplaza a la derecha en el eje 2 determinadas posiciones
2161 2161 shift = int(self.processingHeaderObj.profilesPerBlock/2)
2162 2162 spc = numpy.roll( spc, shift , axis=2 )
2163 2163
2164 2164 if self.processingHeaderObj.flag_cspc:
2165 2165 #desplaza a la derecha en el eje 2 determinadas posiciones
2166 2166 cspc = numpy.roll( cspc, shift, axis=2 )
2167 2167
2168 2168 # self.processingHeaderObj.shif_fft = True
2169 2169
2170 2170 spc = numpy.transpose( spc, (0,2,1) )
2171 2171 self.data_spc = spc
2172 2172
2173 2173 if self.processingHeaderObj.flag_cspc:
2174 2174 cspc = numpy.transpose( cspc, (0,2,1) )
2175 2175 self.data_cspc = cspc['real'] + cspc['imag']*1j
2176 2176 else:
2177 2177 self.data_cspc = None
2178 2178
2179 2179 if self.processingHeaderObj.flag_dc:
2180 2180 self.data_dc = dc['real'] + dc['imag']*1j
2181 2181 else:
2182 2182 self.data_dc = None
2183 2183
2184 2184 self.flagIsNewFile = 0
2185 2185 self.flagIsNewBlock = 1
2186 2186
2187 2187 self.nTotalBlocks += 1
2188 2188 self.nReadBlocks += 1
2189 2189
2190 2190 return 1
2191 2191
2192 2192 def getFirstHeader(self):
2193 2193
2194 2194 self.dataOut.dtype = self.dtype
2195 2195
2196 2196 self.dataOut.nPairs = self.nRdPairs
2197 2197
2198 2198 self.dataOut.pairsList = self.rdPairList
2199 2199
2200 2200 self.dataOut.nProfiles = self.processingHeaderObj.profilesPerBlock
2201 2201
2202 2202 self.dataOut.nFFTPoints = self.processingHeaderObj.profilesPerBlock
2203 2203
2204 2204 self.dataOut.nCohInt = self.processingHeaderObj.nCohInt
2205 2205
2206 2206 self.dataOut.nIncohInt = self.processingHeaderObj.nIncohInt
2207 2207
2208 2208 xf = self.processingHeaderObj.firstHeight + self.processingHeaderObj.nHeights*self.processingHeaderObj.deltaHeight
2209 2209
2210 2210 self.dataOut.heightList = numpy.arange(self.processingHeaderObj.firstHeight, xf, self.processingHeaderObj.deltaHeight)
2211 2211
2212 2212 self.dataOut.channelList = range(self.systemHeaderObj.nChannels)
2213 2213
2214 2214 self.dataOut.ippSeconds = self.ippSeconds
2215 2215
2216 2216 self.dataOut.timeInterval = self.ippSeconds * self.processingHeaderObj.nCohInt * self.processingHeaderObj.nIncohInt * self.dataOut.nFFTPoints
2217 2217
2218 2218 self.dataOut.systemHeaderObj = self.systemHeaderObj.copy()
2219 2219
2220 2220 self.dataOut.radarControllerHeaderObj = self.radarControllerHeaderObj.copy()
2221 2221
2222 2222 self.dataOut.flagShiftFFT = self.processingHeaderObj.shif_fft
2223 2223
2224 2224 self.dataOut.flagDecodeData = False #asumo q la data no esta decodificada
2225 2225
2226 2226 self.dataOut.flagDeflipData = True #asumo q la data no esta sin flip
2227 2227
2228 2228 if self.processingHeaderObj.code != None:
2229 2229
2230 2230 self.dataOut.nCode = self.processingHeaderObj.nCode
2231 2231
2232 2232 self.dataOut.nBaud = self.processingHeaderObj.nBaud
2233 2233
2234 2234 self.dataOut.code = self.processingHeaderObj.code
2235 2235
2236 2236 self.dataOut.flagDecodeData = True
2237 2237
2238 2238 def getData(self):
2239 2239 """
2240 2240 Copia el buffer de lectura a la clase "Spectra",
2241 2241 con todos los parametros asociados a este (metadata). cuando no hay datos en el buffer de
2242 2242 lectura es necesario hacer una nueva lectura de los bloques de datos usando "readNextBlock"
2243 2243
2244 2244 Return:
2245 2245 0 : Si no hay mas archivos disponibles
2246 2246 1 : Si hizo una buena copia del buffer
2247 2247
2248 2248 Affected:
2249 2249 self.dataOut
2250 2250
2251 2251 self.flagTimeBlock
2252 2252 self.flagIsNewBlock
2253 2253 """
2254 2254
2255 2255 if self.flagNoMoreFiles:
2256 2256 self.dataOut.flagNoData = True
2257 2257 print 'Process finished'
2258 2258 return 0
2259 2259
2260 2260 self.flagTimeBlock = 0
2261 2261 self.flagIsNewBlock = 0
2262 2262
2263 2263 if self.__hasNotDataInBuffer():
2264 2264
2265 2265 if not( self.readNextBlock() ):
2266 2266 self.dataOut.flagNoData = True
2267 2267 return 0
2268 2268
2269 2269 #data es un numpy array de 3 dmensiones (perfiles, alturas y canales)
2270 2270
2271 2271 if self.data_dc == None:
2272 2272 self.dataOut.flagNoData = True
2273 2273 return 0
2274 2274
2275 2275 self.getBasicHeader()
2276 2276
2277 2277 self.getFirstHeader()
2278 2278
2279 2279 self.dataOut.data_spc = self.data_spc
2280 2280
2281 2281 self.dataOut.data_cspc = self.data_cspc
2282 2282
2283 2283 self.dataOut.data_dc = self.data_dc
2284 2284
2285 2285 self.dataOut.flagNoData = False
2286 2286
2287 2287 self.dataOut.realtime = self.online
2288 2288
2289 2289 return self.dataOut.data_spc
2290 2290
2291 2291
2292 2292 class SpectraWriter(JRODataWriter):
2293 2293
2294 2294 """
2295 2295 Esta clase permite escribir datos de espectros a archivos procesados (.pdata). La escritura
2296 2296 de los datos siempre se realiza por bloques.
2297 2297 """
2298 2298
2299 2299 ext = ".pdata"
2300 2300
2301 2301 optchar = "P"
2302 2302
2303 2303 shape_spc_Buffer = None
2304 2304
2305 2305 shape_cspc_Buffer = None
2306 2306
2307 2307 shape_dc_Buffer = None
2308 2308
2309 2309 data_spc = None
2310 2310
2311 2311 data_cspc = None
2312 2312
2313 2313 data_dc = None
2314 2314
2315 2315 # dataOut = None
2316 2316
2317 2317 def __init__(self):
2318 2318 """
2319 2319 Inicializador de la clase SpectraWriter para la escritura de datos de espectros.
2320 2320
2321 2321 Affected:
2322 2322 self.dataOut
2323 2323 self.basicHeaderObj
2324 2324 self.systemHeaderObj
2325 2325 self.radarControllerHeaderObj
2326 2326 self.processingHeaderObj
2327 2327
2328 2328 Return: None
2329 2329 """
2330 2330
2331 2331 self.isConfig = False
2332 2332
2333 2333 self.nTotalBlocks = 0
2334 2334
2335 2335 self.data_spc = None
2336 2336
2337 2337 self.data_cspc = None
2338 2338
2339 2339 self.data_dc = None
2340 2340
2341 2341 self.fp = None
2342 2342
2343 2343 self.flagIsNewFile = 1
2344 2344
2345 2345 self.nTotalBlocks = 0
2346 2346
2347 2347 self.flagIsNewBlock = 0
2348 2348
2349 2349 self.setFile = None
2350 2350
2351 2351 self.dtype = None
2352 2352
2353 2353 self.path = None
2354 2354
2355 2355 self.noMoreFiles = 0
2356 2356
2357 2357 self.filename = None
2358 2358
2359 2359 self.basicHeaderObj = BasicHeader(LOCALTIME)
2360 2360
2361 2361 self.systemHeaderObj = SystemHeader()
2362 2362
2363 2363 self.radarControllerHeaderObj = RadarControllerHeader()
2364 2364
2365 2365 self.processingHeaderObj = ProcessingHeader()
2366 2366
2367 2367
2368 2368 def hasAllDataInBuffer(self):
2369 2369 return 1
2370 2370
2371 2371
2372 2372 def setBlockDimension(self):
2373 2373 """
2374 2374 Obtiene las formas dimensionales del los subbloques de datos que componen un bloque
2375 2375
2376 2376 Affected:
2377 2377 self.shape_spc_Buffer
2378 2378 self.shape_cspc_Buffer
2379 2379 self.shape_dc_Buffer
2380 2380
2381 2381 Return: None
2382 2382 """
2383 2383 self.shape_spc_Buffer = (self.dataOut.nChannels,
2384 2384 self.processingHeaderObj.nHeights,
2385 2385 self.processingHeaderObj.profilesPerBlock)
2386 2386
2387 2387 self.shape_cspc_Buffer = (self.dataOut.nPairs,
2388 2388 self.processingHeaderObj.nHeights,
2389 2389 self.processingHeaderObj.profilesPerBlock)
2390 2390
2391 2391 self.shape_dc_Buffer = (self.dataOut.nChannels,
2392 2392 self.processingHeaderObj.nHeights)
2393 2393
2394 2394
2395 2395 def writeBlock(self):
2396 2396 """
2397 2397 Escribe el buffer en el file designado
2398 2398
2399 2399 Affected:
2400 2400 self.data_spc
2401 2401 self.data_cspc
2402 2402 self.data_dc
2403 2403 self.flagIsNewFile
2404 2404 self.flagIsNewBlock
2405 2405 self.nTotalBlocks
2406 2406 self.nWriteBlocks
2407 2407
2408 2408 Return: None
2409 2409 """
2410 2410
2411 2411 spc = numpy.transpose( self.data_spc, (0,2,1) )
2412 2412 if not( self.processingHeaderObj.shif_fft ):
2413 2413 spc = numpy.roll( spc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones
2414 2414 data = spc.reshape((-1))
2415 2415 data = data.astype(self.dtype[0])
2416 2416 data.tofile(self.fp)
2417 2417
2418 2418 if self.data_cspc != None:
2419 2419 data = numpy.zeros( self.shape_cspc_Buffer, self.dtype )
2420 2420 cspc = numpy.transpose( self.data_cspc, (0,2,1) )
2421 2421 if not( self.processingHeaderObj.shif_fft ):
2422 2422 cspc = numpy.roll( cspc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones
2423 2423 data['real'] = cspc.real
2424 2424 data['imag'] = cspc.imag
2425 2425 data = data.reshape((-1))
2426 2426 data.tofile(self.fp)
2427 2427
2428 2428 if self.data_dc != None:
2429 2429 data = numpy.zeros( self.shape_dc_Buffer, self.dtype )
2430 2430 dc = self.data_dc
2431 2431 data['real'] = dc.real
2432 2432 data['imag'] = dc.imag
2433 2433 data = data.reshape((-1))
2434 2434 data.tofile(self.fp)
2435 2435
2436 2436 self.data_spc.fill(0)
2437 2437
2438 2438 if self.data_dc != None:
2439 2439 self.data_dc.fill(0)
2440 2440
2441 2441 if self.data_cspc != None:
2442 2442 self.data_cspc.fill(0)
2443 2443
2444 2444 self.flagIsNewFile = 0
2445 2445 self.flagIsNewBlock = 1
2446 2446 self.nTotalBlocks += 1
2447 2447 self.nWriteBlocks += 1
2448 2448 self.blockIndex += 1
2449 2449
2450 2450
2451 2451 def putData(self):
2452 2452 """
2453 2453 Setea un bloque de datos y luego los escribe en un file
2454 2454
2455 2455 Affected:
2456 2456 self.data_spc
2457 2457 self.data_cspc
2458 2458 self.data_dc
2459 2459
2460 2460 Return:
2461 2461 0 : Si no hay data o no hay mas files que puedan escribirse
2462 2462 1 : Si se escribio la data de un bloque en un file
2463 2463 """
2464 2464
2465 2465 if self.dataOut.flagNoData:
2466 2466 return 0
2467 2467
2468 2468 self.flagIsNewBlock = 0
2469 2469
2470 2470 if self.dataOut.flagTimeBlock:
2471 2471 self.data_spc.fill(0)
2472 2472 self.data_cspc.fill(0)
2473 2473 self.data_dc.fill(0)
2474 2474 self.setNextFile()
2475 2475
2476 2476 if self.flagIsNewFile == 0:
2477 2477 self.setBasicHeader()
2478 2478
2479 2479 self.data_spc = self.dataOut.data_spc.copy()
2480 2480 if self.dataOut.data_cspc != None:
2481 2481 self.data_cspc = self.dataOut.data_cspc.copy()
2482 2482 self.data_dc = self.dataOut.data_dc.copy()
2483 2483
2484 2484 # #self.processingHeaderObj.dataBlocksPerFile)
2485 2485 if self.hasAllDataInBuffer():
2486 2486 # self.setFirstHeader()
2487 2487 self.writeNextBlock()
2488 2488
2489 2489 return 1
2490 2490
2491 2491
2492 2492 def __getProcessFlags(self):
2493 2493
2494 2494 processFlags = 0
2495 2495
2496 2496 dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')])
2497 2497 dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')])
2498 2498 dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')])
2499 2499 dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')])
2500 2500 dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
2501 2501 dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')])
2502 2502
2503 2503 dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5]
2504 2504
2505 2505
2506 2506
2507 2507 datatypeValueList = [PROCFLAG.DATATYPE_CHAR,
2508 2508 PROCFLAG.DATATYPE_SHORT,
2509 2509 PROCFLAG.DATATYPE_LONG,
2510 2510 PROCFLAG.DATATYPE_INT64,
2511 2511 PROCFLAG.DATATYPE_FLOAT,
2512 2512 PROCFLAG.DATATYPE_DOUBLE]
2513 2513
2514 2514
2515 2515 for index in range(len(dtypeList)):
2516 2516 if self.dataOut.dtype == dtypeList[index]:
2517 2517 dtypeValue = datatypeValueList[index]
2518 2518 break
2519 2519
2520 2520 processFlags += dtypeValue
2521 2521
2522 2522 if self.dataOut.flagDecodeData:
2523 2523 processFlags += PROCFLAG.DECODE_DATA
2524 2524
2525 2525 if self.dataOut.flagDeflipData:
2526 2526 processFlags += PROCFLAG.DEFLIP_DATA
2527 2527
2528 2528 if self.dataOut.code != None:
2529 2529 processFlags += PROCFLAG.DEFINE_PROCESS_CODE
2530 2530
2531 2531 if self.dataOut.nIncohInt > 1:
2532 2532 processFlags += PROCFLAG.INCOHERENT_INTEGRATION
2533 2533
2534 2534 if self.dataOut.data_dc != None:
2535 2535 processFlags += PROCFLAG.SAVE_CHANNELS_DC
2536 2536
2537 2537 return processFlags
2538 2538
2539 2539
2540 2540 def __getBlockSize(self):
2541 2541 '''
2542 2542 Este metodos determina el cantidad de bytes para un bloque de datos de tipo Spectra
2543 2543 '''
2544 2544
2545 2545 dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')])
2546 2546 dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')])
2547 2547 dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')])
2548 2548 dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')])
2549 2549 dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
2550 2550 dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')])
2551 2551
2552 2552 dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5]
2553 2553 datatypeValueList = [1,2,4,8,4,8]
2554 2554 for index in range(len(dtypeList)):
2555 2555 if self.dataOut.dtype == dtypeList[index]:
2556 2556 datatypeValue = datatypeValueList[index]
2557 2557 break
2558 2558
2559 2559
2560 2560 pts2write = self.dataOut.nHeights * self.dataOut.nFFTPoints
2561 2561
2562 2562 pts2write_SelfSpectra = int(self.dataOut.nChannels * pts2write)
2563 2563 blocksize = (pts2write_SelfSpectra*datatypeValue)
2564 2564
2565 2565 if self.dataOut.data_cspc != None:
2566 2566 pts2write_CrossSpectra = int(self.dataOut.nPairs * pts2write)
2567 2567 blocksize += (pts2write_CrossSpectra*datatypeValue*2)
2568 2568
2569 2569 if self.dataOut.data_dc != None:
2570 2570 pts2write_DCchannels = int(self.dataOut.nChannels * self.dataOut.nHeights)
2571 2571 blocksize += (pts2write_DCchannels*datatypeValue*2)
2572 2572
2573 2573 blocksize = blocksize #* datatypeValue * 2 #CORREGIR ESTO
2574 2574
2575 2575 return blocksize
2576 2576
2577 2577 def setFirstHeader(self):
2578 2578
2579 2579 """
2580 2580 Obtiene una copia del First Header
2581 2581
2582 2582 Affected:
2583 2583 self.systemHeaderObj
2584 2584 self.radarControllerHeaderObj
2585 2585 self.dtype
2586 2586
2587 2587 Return:
2588 2588 None
2589 2589 """
2590 2590
2591 2591 self.systemHeaderObj = self.dataOut.systemHeaderObj.copy()
2592 2592 self.systemHeaderObj.nChannels = self.dataOut.nChannels
2593 2593 self.radarControllerHeaderObj = self.dataOut.radarControllerHeaderObj.copy()
2594 2594
2595 2595 self.setBasicHeader()
2596 2596
2597 2597 processingHeaderSize = 40 # bytes
2598 2598 self.processingHeaderObj.dtype = 1 # Spectra
2599 2599 self.processingHeaderObj.blockSize = self.__getBlockSize()
2600 2600 self.processingHeaderObj.profilesPerBlock = self.dataOut.nFFTPoints
2601 2601 self.processingHeaderObj.dataBlocksPerFile = self.blocksPerFile
2602 2602 self.processingHeaderObj.nWindows = 1 #podria ser 1 o self.dataOut.processingHeaderObj.nWindows
2603 2603 self.processingHeaderObj.processFlags = self.__getProcessFlags()
2604 2604 self.processingHeaderObj.nCohInt = self.dataOut.nCohInt# Se requiere para determinar el valor de timeInterval
2605 2605 self.processingHeaderObj.nIncohInt = self.dataOut.nIncohInt
2606 2606 self.processingHeaderObj.totalSpectra = self.dataOut.nPairs + self.dataOut.nChannels
2607 2607 self.processingHeaderObj.shif_fft = self.dataOut.flagShiftFFT
2608 2608
2609 2609 if self.processingHeaderObj.totalSpectra > 0:
2610 2610 channelList = []
2611 2611 for channel in range(self.dataOut.nChannels):
2612 2612 channelList.append(channel)
2613 2613 channelList.append(channel)
2614 2614
2615 2615 pairsList = []
2616 2616 if self.dataOut.nPairs > 0:
2617 2617 for pair in self.dataOut.pairsList:
2618 2618 pairsList.append(pair[0])
2619 2619 pairsList.append(pair[1])
2620 2620
2621 2621 spectraComb = channelList + pairsList
2622 2622 spectraComb = numpy.array(spectraComb,dtype="u1")
2623 2623 self.processingHeaderObj.spectraComb = spectraComb
2624 2624 sizeOfSpcComb = len(spectraComb)
2625 2625 processingHeaderSize += sizeOfSpcComb
2626 2626
2627 2627 # The processing header should not have information about code
2628 2628 # if self.dataOut.code != None:
2629 2629 # self.processingHeaderObj.code = self.dataOut.code
2630 2630 # self.processingHeaderObj.nCode = self.dataOut.nCode
2631 2631 # self.processingHeaderObj.nBaud = self.dataOut.nBaud
2632 2632 # nCodeSize = 4 # bytes
2633 2633 # nBaudSize = 4 # bytes
2634 2634 # codeSize = 4 # bytes
2635 2635 # sizeOfCode = int(nCodeSize + nBaudSize + codeSize * self.dataOut.nCode * self.dataOut.nBaud)
2636 2636 # processingHeaderSize += sizeOfCode
2637 2637
2638 2638 if self.processingHeaderObj.nWindows != 0:
2639 2639 self.processingHeaderObj.firstHeight = self.dataOut.heightList[0]
2640 2640 self.processingHeaderObj.deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
2641 2641 self.processingHeaderObj.nHeights = self.dataOut.nHeights
2642 2642 self.processingHeaderObj.samplesWin = self.dataOut.nHeights
2643 2643 sizeOfFirstHeight = 4
2644 2644 sizeOfdeltaHeight = 4
2645 2645 sizeOfnHeights = 4
2646 2646 sizeOfWindows = (sizeOfFirstHeight + sizeOfdeltaHeight + sizeOfnHeights)*self.processingHeaderObj.nWindows
2647 2647 processingHeaderSize += sizeOfWindows
2648 2648
2649 2649 self.processingHeaderObj.size = processingHeaderSize
2650 2650
2651 2651 class SpectraHeisWriter(Operation):
2652 2652 # set = None
2653 2653 setFile = None
2654 2654 idblock = None
2655 2655 doypath = None
2656 2656 subfolder = None
2657 2657
2658 2658 def __init__(self):
2659 2659 self.wrObj = FITS()
2660 2660 # self.dataOut = dataOut
2661 2661 self.nTotalBlocks=0
2662 2662 # self.set = None
2663 2663 self.setFile = None
2664 2664 self.idblock = 0
2665 2665 self.wrpath = None
2666 2666 self.doypath = None
2667 2667 self.subfolder = None
2668 2668 self.isConfig = False
2669 2669
2670 2670 def isNumber(str):
2671 2671 """
2672 2672 Chequea si el conjunto de caracteres que componen un string puede ser convertidos a un numero.
2673 2673
2674 2674 Excepciones:
2675 2675 Si un determinado string no puede ser convertido a numero
2676 2676 Input:
2677 2677 str, string al cual se le analiza para determinar si convertible a un numero o no
2678 2678
2679 2679 Return:
2680 2680 True : si el string es uno numerico
2681 2681 False : no es un string numerico
2682 2682 """
2683 2683 try:
2684 2684 float( str )
2685 2685 return True
2686 2686 except:
2687 2687 return False
2688 2688
2689 2689 def setup(self, dataOut, wrpath):
2690 2690
2691 2691 if not(os.path.exists(wrpath)):
2692 2692 os.mkdir(wrpath)
2693 2693
2694 2694 self.wrpath = wrpath
2695 2695 # self.setFile = 0
2696 2696 self.dataOut = dataOut
2697 2697
2698 2698 def putData(self):
2699 2699 name= time.localtime( self.dataOut.utctime)
2700 2700 ext=".fits"
2701 2701
2702 2702 if self.doypath == None:
2703 2703 self.subfolder = 'F%4.4d%3.3d_%d' % (name.tm_year,name.tm_yday,time.mktime(datetime.datetime.now().timetuple()))
2704 2704 self.doypath = os.path.join( self.wrpath, self.subfolder )
2705 2705 os.mkdir(self.doypath)
2706 2706
2707 2707 if self.setFile == None:
2708 2708 # self.set = self.dataOut.set
2709 2709 self.setFile = 0
2710 2710 # if self.set != self.dataOut.set:
2711 2711 ## self.set = self.dataOut.set
2712 2712 # self.setFile = 0
2713 2713
2714 2714 #make the filename
2715 2715 file = 'D%4.4d%3.3d_%3.3d%s' % (name.tm_year,name.tm_yday,self.setFile,ext)
2716 2716
2717 2717 filename = os.path.join(self.wrpath,self.subfolder, file)
2718 2718
2719 2719 idblock = numpy.array([self.idblock],dtype="int64")
2720 2720 header=self.wrObj.cFImage(idblock=idblock,
2721 2721 year=time.gmtime(self.dataOut.utctime).tm_year,
2722 2722 month=time.gmtime(self.dataOut.utctime).tm_mon,
2723 2723 day=time.gmtime(self.dataOut.utctime).tm_mday,
2724 2724 hour=time.gmtime(self.dataOut.utctime).tm_hour,
2725 2725 minute=time.gmtime(self.dataOut.utctime).tm_min,
2726 2726 second=time.gmtime(self.dataOut.utctime).tm_sec)
2727 2727
2728 2728 c=3E8
2729 2729 deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
2730 2730 freq=numpy.arange(-1*self.dataOut.nHeights/2.,self.dataOut.nHeights/2.)*(c/(2*deltaHeight*1000))
2731 2731
2732 2732 colList = []
2733 2733
2734 2734 colFreq=self.wrObj.setColF(name="freq", format=str(self.dataOut.nFFTPoints)+'E', array=freq)
2735 2735
2736 2736 colList.append(colFreq)
2737 2737
2738 2738 nchannel=self.dataOut.nChannels
2739 2739
2740 2740 for i in range(nchannel):
2741 2741 col = self.wrObj.writeData(name="PCh"+str(i+1),
2742 2742 format=str(self.dataOut.nFFTPoints)+'E',
2743 2743 data=10*numpy.log10(self.dataOut.data_spc[i,:]))
2744 2744
2745 2745 colList.append(col)
2746 2746
2747 2747 data=self.wrObj.Ctable(colList=colList)
2748 2748
2749 2749 self.wrObj.CFile(header,data)
2750 2750
2751 2751 self.wrObj.wFile(filename)
2752 2752
2753 2753 #update the setFile
2754 2754 self.setFile += 1
2755 2755 self.idblock += 1
2756 2756
2757 2757 return 1
2758 2758
2759 2759 def run(self, dataOut, **kwargs):
2760 2760
2761 2761 if not(self.isConfig):
2762 2762
2763 2763 self.setup(dataOut, **kwargs)
2764 2764 self.isConfig = True
2765 2765
2766 2766 self.putData()
2767 2767
2768 2768
2769 2769 class FITS:
2770 2770 name=None
2771 2771 format=None
2772 2772 array =None
2773 2773 data =None
2774 2774 thdulist=None
2775 2775 prihdr=None
2776 2776 hdu=None
2777 2777
2778 2778 def __init__(self):
2779 2779
2780 2780 pass
2781 2781
2782 2782 def setColF(self,name,format,array):
2783 2783 self.name=name
2784 2784 self.format=format
2785 2785 self.array=array
2786 2786 a1=numpy.array([self.array],dtype=numpy.float32)
2787 2787 self.col1 = pyfits.Column(name=self.name, format=self.format, array=a1)
2788 2788 return self.col1
2789 2789
2790 2790 # def setColP(self,name,format,data):
2791 2791 # self.name=name
2792 2792 # self.format=format
2793 2793 # self.data=data
2794 2794 # a2=numpy.array([self.data],dtype=numpy.float32)
2795 2795 # self.col2 = pyfits.Column(name=self.name, format=self.format, array=a2)
2796 2796 # return self.col2
2797 2797
2798 2798
2799 2799 def writeData(self,name,format,data):
2800 2800 self.name=name
2801 2801 self.format=format
2802 2802 self.data=data
2803 2803 a2=numpy.array([self.data],dtype=numpy.float32)
2804 2804 self.col2 = pyfits.Column(name=self.name, format=self.format, array=a2)
2805 2805 return self.col2
2806 2806
2807 2807 def cFImage(self,idblock,year,month,day,hour,minute,second):
2808 2808 self.hdu= pyfits.PrimaryHDU(idblock)
2809 2809 self.hdu.header.set("Year",year)
2810 2810 self.hdu.header.set("Month",month)
2811 2811 self.hdu.header.set("Day",day)
2812 2812 self.hdu.header.set("Hour",hour)
2813 2813 self.hdu.header.set("Minute",minute)
2814 2814 self.hdu.header.set("Second",second)
2815 2815 return self.hdu
2816 2816
2817 2817
2818 2818 def Ctable(self,colList):
2819 2819 self.cols=pyfits.ColDefs(colList)
2820 2820 self.tbhdu = pyfits.new_table(self.cols)
2821 2821 return self.tbhdu
2822 2822
2823 2823
2824 2824 def CFile(self,hdu,tbhdu):
2825 2825 self.thdulist=pyfits.HDUList([hdu,tbhdu])
2826 2826
2827 2827 def wFile(self,filename):
2828 2828 if os.path.isfile(filename):
2829 2829 os.remove(filename)
2830 2830 self.thdulist.writeto(filename)
2831 2831
2832 2832
2833 2833 class ParameterConf:
2834 2834 ELEMENTNAME = 'Parameter'
2835 2835 def __init__(self):
2836 2836 self.name = ''
2837 2837 self.value = ''
2838 2838
2839 2839 def readXml(self, parmElement):
2840 2840 self.name = parmElement.get('name')
2841 2841 self.value = parmElement.get('value')
2842 2842
2843 2843 def getElementName(self):
2844 2844 return self.ELEMENTNAME
2845 2845
2846 2846 class Metadata:
2847 2847
2848 2848 def __init__(self, filename):
2849 2849 self.parmConfObjList = []
2850 2850 self.readXml(filename)
2851 2851
2852 2852 def readXml(self, filename):
2853 2853 self.projectElement = None
2854 2854 self.procUnitConfObjDict = {}
2855 2855 self.projectElement = ElementTree().parse(filename)
2856 2856 self.project = self.projectElement.tag
2857 2857
2858 2858 parmElementList = self.projectElement.getiterator(ParameterConf().getElementName())
2859 2859
2860 2860 for parmElement in parmElementList:
2861 2861 parmConfObj = ParameterConf()
2862 2862 parmConfObj.readXml(parmElement)
2863 2863 self.parmConfObjList.append(parmConfObj)
2864 2864
2865 2865 class FitsWriter(Operation):
2866 2866
2867 2867 def __init__(self):
2868 2868 self.isConfig = False
2869 2869 self.dataBlocksPerFile = None
2870 2870 self.blockIndex = 0
2871 2871 self.flagIsNewFile = 1
2872 2872 self.fitsObj = None
2873 2873 self.optchar = 'P'
2874 2874 self.ext = '.fits'
2875 2875 self.setFile = 0
2876 2876
2877 2877 def setFitsHeader(self, dataOut, metadatafile):
2878 2878
2879 2879 header_data = pyfits.PrimaryHDU()
2880 2880
2881 2881 metadata4fits = Metadata(metadatafile)
2882 2882 for parameter in metadata4fits.parmConfObjList:
2883 2883 parm_name = parameter.name
2884 2884 parm_value = parameter.value
2885 2885
2886 if parm_value == 'fromdatadatetime':
2887 value = time.strftime("%b %d %Y %H:%M:%S", dataOut.datatime.timetuple())
2888 elif parm_value == 'fromdataheights':
2889 value = dataOut.nHeights
2890 elif parm_value == 'fromdatachannel':
2891 value = dataOut.nChannels
2892 elif parm_value == 'fromdatasamples':
2893 value = dataOut.nFFTPoints
2894 else:
2895 value = parm_value
2886 # if parm_value == 'fromdatadatetime':
2887 # value = time.strftime("%b %d %Y %H:%M:%S", dataOut.datatime.timetuple())
2888 # elif parm_value == 'fromdataheights':
2889 # value = dataOut.nHeights
2890 # elif parm_value == 'fromdatachannel':
2891 # value = dataOut.nChannels
2892 # elif parm_value == 'fromdatasamples':
2893 # value = dataOut.nFFTPoints
2894 # else:
2895 # value = parm_value
2896 2896
2897 header_data.header[parm_name] = value
2897 header_data.header[parm_name] = parm_value
2898 2898
2899
2900 header_data.header['DATETIME'] = time.strftime("%b %d %Y %H:%M:%S", dataOut.datatime.timetuple())
2901 header_data.header['CHANNELLIST'] = str(dataOut.channelList)
2902 header_data.header['NCHANNELS'] = dataOut.nChannels
2903 #header_data.header['HEIGHTS'] = dataOut.heightList
2904 header_data.header['NHEIGHTS'] = dataOut.nHeights
2905
2906 header_data.header['IPPSECONDS'] = dataOut.ippSeconds
2907 header_data.header['NCOHINT'] = dataOut.nCohInt
2908 header_data.header['NINCOHINT'] = dataOut.nIncohInt
2909 header_data.header['TIMEZONE'] = dataOut.timeZone
2899 2910 header_data.header['NBLOCK'] = self.blockIndex
2900 2911
2901 2912 header_data.writeto(self.filename)
2902 2913
2914 self.addExtension(dataOut.heightList,'HEIGHTLIST')
2915
2903 2916
2904 2917 def setup(self, dataOut, path, dataBlocksPerFile, metadatafile):
2905 2918
2906 2919 self.path = path
2907 2920 self.dataOut = dataOut
2908 2921 self.metadatafile = metadatafile
2909 2922 self.dataBlocksPerFile = dataBlocksPerFile
2910 2923
2911 2924 def open(self):
2912 2925 self.fitsObj = pyfits.open(self.filename, mode='update')
2913 2926
2914 2927
2928 def addExtension(self, data, tagname):
2929 self.open()
2930 extension = pyfits.ImageHDU(data=data, name=tagname)
2931 #extension.header['TAG'] = tagname
2932 self.fitsObj.append(extension)
2933 self.write()
2934
2915 2935 def addData(self, data):
2916 2936 self.open()
2917 extension = pyfits.ImageHDU(data=data, name=self.fitsObj[0].header['DATA'])
2937 extension = pyfits.ImageHDU(data=data, name=self.fitsObj[0].header['DATATYPE'])
2918 2938 extension.header['UTCTIME'] = self.dataOut.utctime
2919 2939 self.fitsObj.append(extension)
2920 2940 self.blockIndex += 1
2921 2941 self.fitsObj[0].header['NBLOCK'] = self.blockIndex
2922 2942
2923 2943 self.write()
2924 2944
2925 2945 def write(self):
2926 2946
2927 2947 self.fitsObj.flush(verbose=True)
2928 2948 self.fitsObj.close()
2929 2949
2930 2950
2931 2951 def setNextFile(self):
2932 2952
2933 2953 ext = self.ext
2934 2954 path = self.path
2935 2955
2936 2956 timeTuple = time.localtime( self.dataOut.utctime)
2937 2957 subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday)
2938 2958
2939 2959 fullpath = os.path.join( path, subfolder )
2940 2960 if not( os.path.exists(fullpath) ):
2941 2961 os.mkdir(fullpath)
2942 2962 self.setFile = -1 #inicializo mi contador de seteo
2943 2963 else:
2944 2964 filesList = os.listdir( fullpath )
2945 2965 if len( filesList ) > 0:
2946 2966 filesList = sorted( filesList, key=str.lower )
2947 2967 filen = filesList[-1]
2948 2968
2949 2969 if isNumber( filen[8:11] ):
2950 2970 self.setFile = int( filen[8:11] ) #inicializo mi contador de seteo al seteo del ultimo file
2951 2971 else:
2952 2972 self.setFile = -1
2953 2973 else:
2954 2974 self.setFile = -1 #inicializo mi contador de seteo
2955 2975
2956 2976 setFile = self.setFile
2957 2977 setFile += 1
2958 2978
2959 2979 file = '%s%4.4d%3.3d%3.3d%s' % (self.optchar,
2960 2980 timeTuple.tm_year,
2961 2981 timeTuple.tm_yday,
2962 2982 setFile,
2963 2983 ext )
2964 2984
2965 2985 filename = os.path.join( path, subfolder, file )
2966 2986
2967 2987 self.blockIndex = 0
2968 2988 self.filename = filename
2969 2989 self.setFile = setFile
2970 2990 self.flagIsNewFile = 1
2971 2991
2972 2992 print 'Writing the file: %s'%self.filename
2973 2993
2974 2994 self.setFitsHeader(self.dataOut, self.metadatafile)
2975 2995
2976 2996 return 1
2977 2997
2978 2998 def writeBlock(self):
2979 2999 self.addData(self.dataOut.data_spc)
2980 3000 self.flagIsNewFile = 0
2981 3001
2982 3002
2983 3003 def __setNewBlock(self):
2984 3004
2985 3005 if self.flagIsNewFile:
2986 3006 return 1
2987 3007
2988 3008 if self.blockIndex < self.dataBlocksPerFile:
2989 3009 return 1
2990 3010
2991 3011 if not( self.setNextFile() ):
2992 3012 return 0
2993 3013
2994 3014 return 1
2995 3015
2996 3016 def writeNextBlock(self):
2997 3017 if not( self.__setNewBlock() ):
2998 3018 return 0
2999 3019 self.writeBlock()
3000 3020 return 1
3001 3021
3002 3022 def putData(self):
3003 3023 if self.flagIsNewFile:
3004 3024 self.setNextFile()
3005 3025 self.writeNextBlock()
3006 3026
3007 3027 def run(self, dataOut, **kwargs):
3008 3028 if not(self.isConfig):
3009 3029 self.setup(dataOut, **kwargs)
3010 3030 self.isConfig = True
3011 3031 self.putData()
3012 3032
3013 3033
3014 3034 class FitsReader(ProcessingUnit):
3015 3035
3016 __TIMEZONE = time.timezone
3036 # __TIMEZONE = time.timezone
3017 3037
3018 3038 expName = None
3019 3039 datetimestr = None
3020 3040 utc = None
3021 3041 nChannels = None
3022 3042 nSamples = None
3023 3043 dataBlocksPerFile = None
3024 3044 comments = None
3025 3045 lastUTTime = None
3026 3046 header_dict = None
3027 3047 data = None
3028 3048 data_header_dict = None
3029 3049
3030 3050 def __init__(self):
3031 3051 self.isConfig = False
3032 3052 self.ext = '.fits'
3033 3053 self.setFile = 0
3034 3054 self.flagNoMoreFiles = 0
3035 3055 self.flagIsNewFile = 1
3036 3056 self.flagTimeBlock = None
3037 3057 self.fileIndex = None
3038 3058 self.filename = None
3039 3059 self.fileSize = None
3040 3060 self.fitsObj = None
3061 self.timeZone = None
3041 3062 self.nReadBlocks = 0
3042 3063 self.nTotalBlocks = 0
3043 3064 self.dataOut = self.createObjByDefault()
3044 3065 self.maxTimeStep = 10# deberia ser definido por el usuario usando el metodo setup()
3045 3066 self.blockIndex = 1
3046 3067
3047 3068 def createObjByDefault(self):
3048 3069
3049 3070 dataObj = Fits()
3050 3071
3051 3072 return dataObj
3052 3073
3053 3074 def isFileinThisTime(self, filename, startTime, endTime, useLocalTime=False):
3054 3075 try:
3055 3076 fitsObj = pyfits.open(filename,'readonly')
3056 3077 except:
3057 3078 raise IOError, "The file %s can't be opened" %(filename)
3058 3079
3059 3080 header = fitsObj[0].header
3060 3081 struct_time = time.strptime(header['DATETIME'], "%b %d %Y %H:%M:%S")
3061 3082 utc = time.mktime(struct_time) - time.timezone #TIMEZONE debe ser un parametro del header FITS
3062 3083
3063 3084 ltc = utc
3064 3085 if useLocalTime:
3065 3086 ltc -= time.timezone
3066 3087 thisDatetime = datetime.datetime.utcfromtimestamp(ltc)
3067 3088 thisTime = thisDatetime.time()
3068 3089
3069 3090 if not ((startTime <= thisTime) and (endTime > thisTime)):
3070 3091 return None
3071 3092
3072 3093 return thisDatetime
3073 3094
3074 3095 def __setNextFileOnline(self):
3075 3096 raise ValueError, "No implemented"
3076 3097
3077 3098 def __setNextFileOffline(self):
3078 3099 idFile = self.fileIndex
3079 3100
3080 3101 while (True):
3081 3102 idFile += 1
3082 3103 if not(idFile < len(self.filenameList)):
3083 3104 self.flagNoMoreFiles = 1
3084 3105 print "No more Files"
3085 3106 return 0
3086 3107
3087 3108 filename = self.filenameList[idFile]
3088 3109
3089 3110 # if not(self.__verifyFile(filename)):
3090 3111 # continue
3091 3112
3092 3113 fileSize = os.path.getsize(filename)
3093 3114 fitsObj = pyfits.open(filename,'readonly')
3094 3115 break
3095 3116
3096 3117 self.flagIsNewFile = 1
3097 3118 self.fileIndex = idFile
3098 3119 self.filename = filename
3099 3120 self.fileSize = fileSize
3100 3121 self.fitsObj = fitsObj
3101
3122 self.blockIndex = 0
3102 3123 print "Setting the file: %s"%self.filename
3103 3124
3104 3125 return 1
3105 3126
3106 3127 def readHeader(self):
3107 3128 headerObj = self.fitsObj[0]
3108 3129
3109 3130 self.header_dict = headerObj.header
3110 self.expName = headerObj.header['EXPNAME']
3131 if 'EXPNAME' in headerObj.header.keys():
3132 self.expName = headerObj.header['EXPNAME']
3133
3134 if 'DATATYPE' in headerObj.header.keys():
3135 self.dataType = headerObj.header['DATATYPE']
3136
3111 3137 self.datetimestr = headerObj.header['DATETIME']
3112 struct_time = time.strptime(headerObj.header['DATETIME'], "%b %d %Y %H:%M:%S")
3113 # self.utc = time.mktime(struct_time) - self.__TIMEZONE
3114 self.nChannels = headerObj.header['NCHANNEL']
3115 self.nSamples = headerObj.header['NSAMPLE']
3138 self.channelList = headerObj.header['CHANNELLIST']
3139 self.nChannels = headerObj.header['NCHANNELS']
3140 self.nHeights = headerObj.header['NHEIGHTS']
3141 self.ippSeconds = headerObj.header['IPPSECONDS']
3142 self.nCohInt = headerObj.header['NCOHINT']
3143 self.nIncohInt = headerObj.header['NINCOHINT']
3116 3144 self.dataBlocksPerFile = headerObj.header['NBLOCK']
3117 self.comments = headerObj.header['COMMENT']
3145 self.timeZone = headerObj.header['TIMEZONE']
3146
3147 self.timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt
3148
3149 if 'COMMENT' in headerObj.header.keys():
3150 self.comments = headerObj.header['COMMENT']
3118 3151
3152 self.readHeightList()
3153
3154 def readHeightList(self):
3155 self.blockIndex = self.blockIndex + 1
3156 obj = self.fitsObj[self.blockIndex]
3157 self.heightList = obj.data
3158 self.blockIndex = self.blockIndex + 1
3159
3160 def readExtension(self):
3161 obj = self.fitsObj[self.blockIndex]
3162 self.heightList = obj.data
3163 self.blockIndex = self.blockIndex + 1
3119 3164
3120 3165 def setNextFile(self):
3121 3166
3122 3167 if self.online:
3123 3168 newFile = self.__setNextFileOnline()
3124 3169 else:
3125 3170 newFile = self.__setNextFileOffline()
3126 3171
3127 3172 if not(newFile):
3128 3173 return 0
3129 3174
3130 3175 self.readHeader()
3131 3176
3132 3177 self.nReadBlocks = 0
3133 self.blockIndex = 1
3178 # self.blockIndex = 1
3134 3179 return 1
3135 3180
3136 3181 def __searchFilesOffLine(self,
3137 3182 path,
3138 3183 startDate,
3139 3184 endDate,
3140 3185 startTime=datetime.time(0,0,0),
3141 3186 endTime=datetime.time(23,59,59),
3142 3187 set=None,
3143 3188 expLabel='',
3144 3189 ext='.fits',
3145 3190 walk=True):
3146 3191
3147 3192 pathList = []
3148 3193
3149 3194 if not walk:
3150 3195 pathList.append(path)
3151 3196
3152 3197 else:
3153 3198 dirList = []
3154 3199 for thisPath in os.listdir(path):
3155 3200 if not os.path.isdir(os.path.join(path,thisPath)):
3156 3201 continue
3157 3202 if not isDoyFolder(thisPath):
3158 3203 continue
3159 3204
3160 3205 dirList.append(thisPath)
3161 3206
3162 3207 if not(dirList):
3163 3208 return None, None
3164 3209
3165 3210 thisDate = startDate
3166 3211
3167 3212 while(thisDate <= endDate):
3168 3213 year = thisDate.timetuple().tm_year
3169 3214 doy = thisDate.timetuple().tm_yday
3170 3215
3171 3216 matchlist = fnmatch.filter(dirList, '?' + '%4.4d%3.3d' % (year,doy) + '*')
3172 3217 if len(matchlist) == 0:
3173 3218 thisDate += datetime.timedelta(1)
3174 3219 continue
3175 3220 for match in matchlist:
3176 3221 pathList.append(os.path.join(path,match,expLabel))
3177 3222
3178 3223 thisDate += datetime.timedelta(1)
3179 3224
3180 3225 if pathList == []:
3181 3226 print "Any folder was found for the date range: %s-%s" %(startDate, endDate)
3182 3227 return None, None
3183 3228
3184 3229 print "%d folder(s) was(were) found for the date range: %s - %s" %(len(pathList), startDate, endDate)
3185 3230
3186 3231 filenameList = []
3187 3232 datetimeList = []
3188 3233
3189 3234 for i in range(len(pathList)):
3190 3235
3191 3236 thisPath = pathList[i]
3192 3237
3193 3238 fileList = glob.glob1(thisPath, "*%s" %ext)
3194 3239 fileList.sort()
3195 3240
3196 3241 for file in fileList:
3197 3242
3198 3243 filename = os.path.join(thisPath,file)
3199 3244 thisDatetime = self.isFileinThisTime(filename, startTime, endTime, useLocalTime=True)
3200 3245
3201 3246 if not(thisDatetime):
3202 3247 continue
3203 3248
3204 3249 filenameList.append(filename)
3205 3250 datetimeList.append(thisDatetime)
3206 3251
3207 3252 if not(filenameList):
3208 3253 print "Any file was found for the time range %s - %s" %(startTime, endTime)
3209 3254 return None, None
3210 3255
3211 3256 print "%d file(s) was(were) found for the time range: %s - %s" %(len(filenameList), startTime, endTime)
3212 3257 print
3213 3258
3214 3259 for i in range(len(filenameList)):
3215 3260 print "%s -> [%s]" %(filenameList[i], datetimeList[i].ctime())
3216 3261
3217 3262 self.filenameList = filenameList
3218 3263 self.datetimeList = datetimeList
3219 3264
3220 3265 return pathList, filenameList
3221 3266
3222 3267 def setup(self, path=None,
3223 3268 startDate=None,
3224 3269 endDate=None,
3225 3270 startTime=datetime.time(0,0,0),
3226 3271 endTime=datetime.time(23,59,59),
3227 3272 set=0,
3228 3273 expLabel = "",
3229 3274 ext = None,
3230 3275 online = False,
3231 3276 delay = 60,
3232 3277 walk = True):
3233 3278
3234 3279 if path == None:
3235 3280 raise ValueError, "The path is not valid"
3236 3281
3237 3282 if ext == None:
3238 3283 ext = self.ext
3239 3284
3240 3285 if not(online):
3241 3286 print "Searching files in offline mode ..."
3242 3287 pathList, filenameList = self.__searchFilesOffLine(path, startDate=startDate, endDate=endDate,
3243 3288 startTime=startTime, endTime=endTime,
3244 3289 set=set, expLabel=expLabel, ext=ext,
3245 3290 walk=walk)
3246 3291
3247 3292 if not(pathList):
3248 3293 print "No *%s files into the folder %s \nfor the range: %s - %s"%(ext, path,
3249 3294 datetime.datetime.combine(startDate,startTime).ctime(),
3250 3295 datetime.datetime.combine(endDate,endTime).ctime())
3251 3296
3252 3297 sys.exit(-1)
3253 3298
3254 3299 self.fileIndex = -1
3255 3300 self.pathList = pathList
3256 3301 self.filenameList = filenameList
3257 3302
3258 3303 self.online = online
3259 3304 self.delay = delay
3260 3305 ext = ext.lower()
3261 3306 self.ext = ext
3262 3307
3263 3308 if not(self.setNextFile()):
3264 3309 if (startDate!=None) and (endDate!=None):
3265 3310 print "No files in range: %s - %s" %(datetime.datetime.combine(startDate,startTime).ctime(), datetime.datetime.combine(endDate,endTime).ctime())
3266 3311 elif startDate != None:
3267 3312 print "No files in range: %s" %(datetime.datetime.combine(startDate,startTime).ctime())
3268 3313 else:
3269 3314 print "No files"
3270 3315
3271 3316 sys.exit(-1)
3272 3317
3273 3318
3274 3319
3275 3320 def readBlock(self):
3276 3321 dataObj = self.fitsObj[self.blockIndex]
3277 3322
3278 3323 self.data = dataObj.data
3279 3324 self.data_header_dict = dataObj.header
3280 3325 self.utc = self.data_header_dict['UTCTIME']
3281 3326
3282 3327 self.flagIsNewFile = 0
3283 3328 self.blockIndex += 1
3284 3329 self.nTotalBlocks += 1
3285 3330 self.nReadBlocks += 1
3286 3331
3287 3332 return 1
3288 3333
3289 3334 def __jumpToLastBlock(self):
3290 3335 raise ValueError, "No implemented"
3291 3336
3292 3337 def __waitNewBlock(self):
3293 3338 """
3294 3339 Return 1 si se encontro un nuevo bloque de datos, 0 de otra forma.
3295 3340
3296 3341 Si el modo de lectura es OffLine siempre retorn 0
3297 3342 """
3298 3343 if not self.online:
3299 3344 return 0
3300 3345
3301 if (self.nReadBlocks >= self.processingHeaderObj.dataBlocksPerFile):
3346 if (self.nReadBlocks >= self.dataBlocksPerFile):
3302 3347 return 0
3303 3348
3304 3349 currentPointer = self.fp.tell()
3305 3350
3306 3351 neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize
3307 3352
3308 3353 for nTries in range( self.nTries ):
3309 3354
3310 3355 self.fp.close()
3311 3356 self.fp = open( self.filename, 'rb' )
3312 3357 self.fp.seek( currentPointer )
3313 3358
3314 3359 self.fileSize = os.path.getsize( self.filename )
3315 3360 currentSize = self.fileSize - currentPointer
3316 3361
3317 3362 if ( currentSize >= neededSize ):
3318 3363 self.__rdBasicHeader()
3319 3364 return 1
3320 3365
3321 3366 print "\tWaiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries+1)
3322 3367 time.sleep( self.delay )
3323 3368
3324 3369
3325 3370 return 0
3326 3371
3327 3372 def __setNewBlock(self):
3328 3373
3329 3374 if self.online:
3330 3375 self.__jumpToLastBlock()
3331 3376
3332 3377 if self.flagIsNewFile:
3333 3378 return 1
3334 3379
3335 3380 self.lastUTTime = self.utc
3336 3381
3337 3382 if self.online:
3338 3383 if self.__waitNewBlock():
3339 3384 return 1
3340 3385
3341 3386 if self.nReadBlocks < self.dataBlocksPerFile:
3342 3387 return 1
3343 3388
3344 3389 if not(self.setNextFile()):
3345 3390 return 0
3346 3391
3347 3392 deltaTime = self.utc - self.lastUTTime
3348 3393
3349 3394 self.flagTimeBlock = 0
3350 3395
3351 3396 if deltaTime > self.maxTimeStep:
3352 3397 self.flagTimeBlock = 1
3353 3398
3354 3399 return 1
3355 3400
3356 3401
3357 3402 def readNextBlock(self):
3358 3403 if not(self.__setNewBlock()):
3359 3404 return 0
3360 3405
3361 3406 if not(self.readBlock()):
3362 3407 return 0
3363 3408
3364 3409 return 1
3365 3410
3366 3411
3367 3412 def getData(self):
3368 3413
3369 3414 if self.flagNoMoreFiles:
3370 3415 self.dataOut.flagNoData = True
3371 3416 print 'Process finished'
3372 3417 return 0
3373 3418
3374 3419 self.flagTimeBlock = 0
3375 3420 self.flagIsNewBlock = 0
3376 3421
3377 3422 if not(self.readNextBlock()):
3378 3423 return 0
3379 3424
3380 3425 if self.data == None:
3381 3426 self.dataOut.flagNoData = True
3382 3427 return 0
3383 3428
3384 3429 self.dataOut.data = self.data
3385 3430 self.dataOut.data_header = self.data_header_dict
3386 3431 self.dataOut.utctime = self.utc
3387 3432
3388 3433 self.dataOut.header = self.header_dict
3389 3434 self.dataOut.expName = self.expName
3390 3435 self.dataOut.nChannels = self.nChannels
3391 self.dataOut.nSamples = self.nSamples
3436 self.dataOut.timeZone = self.timeZone
3392 3437 self.dataOut.dataBlocksPerFile = self.dataBlocksPerFile
3393 3438 self.dataOut.comments = self.comments
3394
3439 self.dataOut.timeInterval = self.timeInterval
3440 self.dataOut.channelList = self.channelList
3441 self.dataOut.heightList = self.heightList
3395 3442 self.dataOut.flagNoData = False
3396 3443
3397 3444 return self.dataOut.data
3398 3445
3399 3446 def run(self, **kwargs):
3400 3447
3401 3448 if not(self.isConfig):
3402 3449 self.setup(**kwargs)
3403 3450 self.isConfig = True
3404 3451
3405 3452 self.getData() No newline at end of file
@@ -1,1530 +1,1530
1 1 import numpy
2 2 import time, datetime, os
3 3 from graphics.figure import *
4 4 def isRealtime(utcdatatime):
5 5 utcnow = time.mktime(time.localtime())
6 6 delta = abs(utcnow - utcdatatime) # abs
7 7 if delta >= 30.:
8 8 return False
9 9 return True
10 10
11 11 class CrossSpectraPlot(Figure):
12 12
13 13 __isConfig = None
14 14 __nsubplots = None
15 15
16 16 WIDTH = None
17 17 HEIGHT = None
18 18 WIDTHPROF = None
19 19 HEIGHTPROF = None
20 20 PREFIX = 'cspc'
21 21
22 22 def __init__(self):
23 23
24 24 self.__isConfig = False
25 25 self.__nsubplots = 4
26 26 self.counter_imagwr = 0
27 27 self.WIDTH = 250
28 28 self.HEIGHT = 250
29 29 self.WIDTHPROF = 0
30 30 self.HEIGHTPROF = 0
31 31
32 32 self.PLOT_CODE = 1
33 33 self.FTP_WEI = None
34 34 self.EXP_CODE = None
35 35 self.SUB_EXP_CODE = None
36 36 self.PLOT_POS = None
37 37
38 38 def getSubplots(self):
39 39
40 40 ncol = 4
41 41 nrow = self.nplots
42 42
43 43 return nrow, ncol
44 44
45 45 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
46 46
47 47 self.__showprofile = showprofile
48 48 self.nplots = nplots
49 49
50 50 ncolspan = 1
51 51 colspan = 1
52 52
53 53 self.createFigure(id = id,
54 54 wintitle = wintitle,
55 55 widthplot = self.WIDTH + self.WIDTHPROF,
56 56 heightplot = self.HEIGHT + self.HEIGHTPROF,
57 57 show=True)
58 58
59 59 nrow, ncol = self.getSubplots()
60 60
61 61 counter = 0
62 62 for y in range(nrow):
63 63 for x in range(ncol):
64 64 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
65 65
66 66 counter += 1
67 67
68 68 def run(self, dataOut, id, wintitle="", pairsList=None,
69 69 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
70 70 save=False, figpath='./', figfile=None, ftp=False, wr_period=1,
71 71 power_cmap='jet', coherence_cmap='jet', phase_cmap='RdBu_r', show=True,
72 72 server=None, folder=None, username=None, password=None,
73 73 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
74 74
75 75 """
76 76
77 77 Input:
78 78 dataOut :
79 79 id :
80 80 wintitle :
81 81 channelList :
82 82 showProfile :
83 83 xmin : None,
84 84 xmax : None,
85 85 ymin : None,
86 86 ymax : None,
87 87 zmin : None,
88 88 zmax : None
89 89 """
90 90
91 91 if pairsList == None:
92 92 pairsIndexList = dataOut.pairsIndexList
93 93 else:
94 94 pairsIndexList = []
95 95 for pair in pairsList:
96 96 if pair not in dataOut.pairsList:
97 97 raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair)
98 98 pairsIndexList.append(dataOut.pairsList.index(pair))
99 99
100 100 if pairsIndexList == []:
101 101 return
102 102
103 103 if len(pairsIndexList) > 4:
104 104 pairsIndexList = pairsIndexList[0:4]
105 105 factor = dataOut.normFactor
106 106 x = dataOut.getVelRange(1)
107 107 y = dataOut.getHeiRange()
108 108 z = dataOut.data_spc[:,:,:]/factor
109 109 # z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
110 110 avg = numpy.abs(numpy.average(z, axis=1))
111 111 noise = dataOut.getNoise()/factor
112 112
113 113 zdB = 10*numpy.log10(z)
114 114 avgdB = 10*numpy.log10(avg)
115 115 noisedB = 10*numpy.log10(noise)
116 116
117 117
118 118 #thisDatetime = dataOut.datatime
119 119 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
120 120 title = wintitle + " Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
121 121 xlabel = "Velocity (m/s)"
122 122 ylabel = "Range (Km)"
123 123
124 124 if not self.__isConfig:
125 125
126 126 nplots = len(pairsIndexList)
127 127
128 128 self.setup(id=id,
129 129 nplots=nplots,
130 130 wintitle=wintitle,
131 131 showprofile=False,
132 132 show=show)
133 133
134 134 if xmin == None: xmin = numpy.nanmin(x)
135 135 if xmax == None: xmax = numpy.nanmax(x)
136 136 if ymin == None: ymin = numpy.nanmin(y)
137 137 if ymax == None: ymax = numpy.nanmax(y)
138 138 if zmin == None: zmin = numpy.nanmin(avgdB)*0.9
139 139 if zmax == None: zmax = numpy.nanmax(avgdB)*0.9
140 140
141 141 self.FTP_WEI = ftp_wei
142 142 self.EXP_CODE = exp_code
143 143 self.SUB_EXP_CODE = sub_exp_code
144 144 self.PLOT_POS = plot_pos
145 145
146 146 self.__isConfig = True
147 147
148 148 self.setWinTitle(title)
149 149
150 150 for i in range(self.nplots):
151 151 pair = dataOut.pairsList[pairsIndexList[i]]
152 152 str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
153 153 title = "Ch%d: %4.2fdB: %s" %(pair[0], noisedB[pair[0]], str_datetime)
154 154 zdB = 10.*numpy.log10(dataOut.data_spc[pair[0],:,:]/factor)
155 155 axes0 = self.axesList[i*self.__nsubplots]
156 156 axes0.pcolor(x, y, zdB,
157 157 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
158 158 xlabel=xlabel, ylabel=ylabel, title=title,
159 159 ticksize=9, colormap=power_cmap, cblabel='')
160 160
161 161 title = "Ch%d: %4.2fdB: %s" %(pair[1], noisedB[pair[1]], str_datetime)
162 162 zdB = 10.*numpy.log10(dataOut.data_spc[pair[1],:,:]/factor)
163 163 axes0 = self.axesList[i*self.__nsubplots+1]
164 164 axes0.pcolor(x, y, zdB,
165 165 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
166 166 xlabel=xlabel, ylabel=ylabel, title=title,
167 167 ticksize=9, colormap=power_cmap, cblabel='')
168 168
169 169 coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:])
170 170 coherence = numpy.abs(coherenceComplex)
171 171 # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi
172 172 phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi
173 173
174 174 title = "Coherence %d%d" %(pair[0], pair[1])
175 175 axes0 = self.axesList[i*self.__nsubplots+2]
176 176 axes0.pcolor(x, y, coherence,
177 177 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=0, zmax=1,
178 178 xlabel=xlabel, ylabel=ylabel, title=title,
179 179 ticksize=9, colormap=coherence_cmap, cblabel='')
180 180
181 181 title = "Phase %d%d" %(pair[0], pair[1])
182 182 axes0 = self.axesList[i*self.__nsubplots+3]
183 183 axes0.pcolor(x, y, phase,
184 184 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=-180, zmax=180,
185 185 xlabel=xlabel, ylabel=ylabel, title=title,
186 186 ticksize=9, colormap=phase_cmap, cblabel='')
187 187
188 188
189 189
190 190 self.draw()
191 191
192 192 if save:
193 193
194 194 self.counter_imagwr += 1
195 195 if (self.counter_imagwr==wr_period):
196 196 if figfile == None:
197 197 str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S")
198 198 figfile = self.getFilename(name = str_datetime)
199 199
200 200 self.saveFigure(figpath, figfile)
201 201
202 202 if ftp:
203 203 #provisionalmente envia archivos en el formato de la web en tiempo real
204 204 name = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS)
205 205 path = '%s%03d' %(self.PREFIX, self.id)
206 206 ftp_file = os.path.join(path,'ftp','%s.png'%name)
207 207 self.saveFigure(figpath, ftp_file)
208 208 ftp_filename = os.path.join(figpath,ftp_file)
209 209
210 210 try:
211 211 self.sendByFTP(ftp_filename, server, folder, username, password)
212 212 except:
213 213 self.counter_imagwr = 0
214 214 print ValueError, 'Error FTP'
215 215
216 216 self.counter_imagwr = 0
217 217
218 218
219 219 class RTIPlot(Figure):
220 220
221 221 __isConfig = None
222 222 __nsubplots = None
223 223
224 224 WIDTHPROF = None
225 225 HEIGHTPROF = None
226 226 PREFIX = 'rti'
227 227
228 228 def __init__(self):
229 229
230 230 self.timerange = 2*60*60
231 231 self.__isConfig = False
232 232 self.__nsubplots = 1
233 233
234 234 self.WIDTH = 800
235 235 self.HEIGHT = 150
236 236 self.WIDTHPROF = 120
237 237 self.HEIGHTPROF = 0
238 238 self.counter_imagwr = 0
239 239
240 240 self.PLOT_CODE = 0
241 241 self.FTP_WEI = None
242 242 self.EXP_CODE = None
243 243 self.SUB_EXP_CODE = None
244 244 self.PLOT_POS = None
245 245
246 246 def getSubplots(self):
247 247
248 248 ncol = 1
249 249 nrow = self.nplots
250 250
251 251 return nrow, ncol
252 252
253 253 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
254 254
255 255 self.__showprofile = showprofile
256 256 self.nplots = nplots
257 257
258 258 ncolspan = 1
259 259 colspan = 1
260 260 if showprofile:
261 261 ncolspan = 7
262 262 colspan = 6
263 263 self.__nsubplots = 2
264 264
265 265 self.createFigure(id = id,
266 266 wintitle = wintitle,
267 267 widthplot = self.WIDTH + self.WIDTHPROF,
268 268 heightplot = self.HEIGHT + self.HEIGHTPROF,
269 269 show=show)
270 270
271 271 nrow, ncol = self.getSubplots()
272 272
273 273 counter = 0
274 274 for y in range(nrow):
275 275 for x in range(ncol):
276 276
277 277 if counter >= self.nplots:
278 278 break
279 279
280 280 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
281 281
282 282 if showprofile:
283 283 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
284 284
285 285 counter += 1
286 286
287 287 def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True',
288 288 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
289 289 timerange=None,
290 290 save=False, figpath='./', figfile=None, ftp=False, wr_period=1, show=True,
291 291 server=None, folder=None, username=None, password=None,
292 292 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
293 293
294 294 """
295 295
296 296 Input:
297 297 dataOut :
298 298 id :
299 299 wintitle :
300 300 channelList :
301 301 showProfile :
302 302 xmin : None,
303 303 xmax : None,
304 304 ymin : None,
305 305 ymax : None,
306 306 zmin : None,
307 307 zmax : None
308 308 """
309 309
310 310 if channelList == None:
311 311 channelIndexList = dataOut.channelIndexList
312 312 else:
313 313 channelIndexList = []
314 314 for channel in channelList:
315 315 if channel not in dataOut.channelList:
316 316 raise ValueError, "Channel %d is not in dataOut.channelList"
317 317 channelIndexList.append(dataOut.channelList.index(channel))
318 318
319 319 if timerange != None:
320 320 self.timerange = timerange
321 321
322 322 tmin = None
323 323 tmax = None
324 324 factor = dataOut.normFactor
325 325 x = dataOut.getTimeRange()
326 326 y = dataOut.getHeiRange()
327 327
328 328 z = dataOut.data_spc[channelIndexList,:,:]/factor
329 329 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
330 330 avg = numpy.average(z, axis=1)
331 331
332 332 avgdB = 10.*numpy.log10(avg)
333 333
334 334
335 335 # thisDatetime = dataOut.datatime
336 336 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
337 337 title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y"))
338 338 xlabel = ""
339 339 ylabel = "Range (Km)"
340 340
341 341 if not self.__isConfig:
342 342
343 343 nplots = len(channelIndexList)
344 344
345 345 self.setup(id=id,
346 346 nplots=nplots,
347 347 wintitle=wintitle,
348 348 showprofile=showprofile,
349 349 show=show)
350 350
351 351 tmin, tmax = self.getTimeLim(x, xmin, xmax)
352 352 if ymin == None: ymin = numpy.nanmin(y)
353 353 if ymax == None: ymax = numpy.nanmax(y)
354 354 if zmin == None: zmin = numpy.nanmin(avgdB)*0.9
355 355 if zmax == None: zmax = numpy.nanmax(avgdB)*0.9
356 356
357 357 self.FTP_WEI = ftp_wei
358 358 self.EXP_CODE = exp_code
359 359 self.SUB_EXP_CODE = sub_exp_code
360 360 self.PLOT_POS = plot_pos
361 361
362 362 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
363 363 self.__isConfig = True
364 364
365 365
366 366 self.setWinTitle(title)
367 367
368 368 for i in range(self.nplots):
369 369 title = "Channel %d: %s" %(dataOut.channelList[i]+1, thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
370 370 axes = self.axesList[i*self.__nsubplots]
371 371 zdB = avgdB[i].reshape((1,-1))
372 372 axes.pcolorbuffer(x, y, zdB,
373 373 xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
374 374 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
375 375 ticksize=9, cblabel='', cbsize="1%")
376 376
377 377 if self.__showprofile:
378 378 axes = self.axesList[i*self.__nsubplots +1]
379 379 axes.pline(avgdB[i], y,
380 380 xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax,
381 381 xlabel='dB', ylabel='', title='',
382 382 ytick_visible=False,
383 383 grid='x')
384 384
385 385 self.draw()
386 386
387 387 if save:
388 388
389 389 self.counter_imagwr += 1
390 390 if (self.counter_imagwr==wr_period):
391 391 if figfile == None:
392 392 figfile = self.getFilename(name = self.name)
393 393 self.saveFigure(figpath, figfile)
394 394
395 395 if ftp:
396 396 #provisionalmente envia archivos en el formato de la web en tiempo real
397 397 name = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS)
398 398 path = '%s%03d' %(self.PREFIX, self.id)
399 399 ftp_file = os.path.join(path,'ftp','%s.png'%name)
400 400 self.saveFigure(figpath, ftp_file)
401 401 ftp_filename = os.path.join(figpath,ftp_file)
402 402 try:
403 403 self.sendByFTP(ftp_filename, server, folder, username, password)
404 404 except:
405 405 self.counter_imagwr = 0
406 406 print ValueError, 'Error FTP'
407 407
408 408 self.counter_imagwr = 0
409 409
410 410 if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax:
411 411 self.__isConfig = False
412 412
413 413 class SpectraPlot(Figure):
414 414
415 415 __isConfig = None
416 416 __nsubplots = None
417 417
418 418 WIDTHPROF = None
419 419 HEIGHTPROF = None
420 420 PREFIX = 'spc'
421 421
422 422 def __init__(self):
423 423
424 424 self.__isConfig = False
425 425 self.__nsubplots = 1
426 426
427 427 self.WIDTH = 280
428 428 self.HEIGHT = 250
429 429 self.WIDTHPROF = 120
430 430 self.HEIGHTPROF = 0
431 431 self.counter_imagwr = 0
432 432
433 433 self.PLOT_CODE = 1
434 434 self.FTP_WEI = None
435 435 self.EXP_CODE = None
436 436 self.SUB_EXP_CODE = None
437 437 self.PLOT_POS = None
438 438
439 439 def getSubplots(self):
440 440
441 441 ncol = int(numpy.sqrt(self.nplots)+0.9)
442 442 nrow = int(self.nplots*1./ncol + 0.9)
443 443
444 444 return nrow, ncol
445 445
446 446 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
447 447
448 448 self.__showprofile = showprofile
449 449 self.nplots = nplots
450 450
451 451 ncolspan = 1
452 452 colspan = 1
453 453 if showprofile:
454 454 ncolspan = 3
455 455 colspan = 2
456 456 self.__nsubplots = 2
457 457
458 458 self.createFigure(id = id,
459 459 wintitle = wintitle,
460 460 widthplot = self.WIDTH + self.WIDTHPROF,
461 461 heightplot = self.HEIGHT + self.HEIGHTPROF,
462 462 show=show)
463 463
464 464 nrow, ncol = self.getSubplots()
465 465
466 466 counter = 0
467 467 for y in range(nrow):
468 468 for x in range(ncol):
469 469
470 470 if counter >= self.nplots:
471 471 break
472 472
473 473 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
474 474
475 475 if showprofile:
476 476 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
477 477
478 478 counter += 1
479 479
480 480 def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True,
481 481 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
482 482 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
483 483 server=None, folder=None, username=None, password=None,
484 484 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False):
485 485
486 486 """
487 487
488 488 Input:
489 489 dataOut :
490 490 id :
491 491 wintitle :
492 492 channelList :
493 493 showProfile :
494 494 xmin : None,
495 495 xmax : None,
496 496 ymin : None,
497 497 ymax : None,
498 498 zmin : None,
499 499 zmax : None
500 500 """
501 501
502 502 if realtime:
503 503 if not(isRealtime(utcdatatime = dataOut.utctime)):
504 504 print 'Skipping this plot function'
505 505 return
506 506
507 507 if channelList == None:
508 508 channelIndexList = dataOut.channelIndexList
509 509 else:
510 510 channelIndexList = []
511 511 for channel in channelList:
512 512 if channel not in dataOut.channelList:
513 513 raise ValueError, "Channel %d is not in dataOut.channelList"
514 514 channelIndexList.append(dataOut.channelList.index(channel))
515 515 factor = dataOut.normFactor
516 516 x = dataOut.getVelRange(1)
517 517 y = dataOut.getHeiRange()
518 518
519 519 z = dataOut.data_spc[channelIndexList,:,:]/factor
520 520 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
521 521 avg = numpy.average(z, axis=1)
522 522 noise = dataOut.getNoise()/factor
523 523
524 524 zdB = 10*numpy.log10(z)
525 525 avgdB = 10*numpy.log10(avg)
526 526 noisedB = 10*numpy.log10(noise)
527 527
528 528 #thisDatetime = dataOut.datatime
529 529 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
530 530 title = wintitle + " Spectra"
531 531 xlabel = "Velocity (m/s)"
532 532 ylabel = "Range (Km)"
533 533
534 534 if not self.__isConfig:
535 535
536 536 nplots = len(channelIndexList)
537 537
538 538 self.setup(id=id,
539 539 nplots=nplots,
540 540 wintitle=wintitle,
541 541 showprofile=showprofile,
542 542 show=show)
543 543
544 544 if xmin == None: xmin = numpy.nanmin(x)
545 545 if xmax == None: xmax = numpy.nanmax(x)
546 546 if ymin == None: ymin = numpy.nanmin(y)
547 547 if ymax == None: ymax = numpy.nanmax(y)
548 548 if zmin == None: zmin = numpy.nanmin(avgdB)*0.9
549 549 if zmax == None: zmax = numpy.nanmax(avgdB)*0.9
550 550
551 551 self.FTP_WEI = ftp_wei
552 552 self.EXP_CODE = exp_code
553 553 self.SUB_EXP_CODE = sub_exp_code
554 554 self.PLOT_POS = plot_pos
555 555
556 556 self.__isConfig = True
557 557
558 558 self.setWinTitle(title)
559 559
560 560 for i in range(self.nplots):
561 561 str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
562 562 title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[i]+1, noisedB[i], str_datetime)
563 563 axes = self.axesList[i*self.__nsubplots]
564 564 axes.pcolor(x, y, zdB[i,:,:],
565 565 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
566 566 xlabel=xlabel, ylabel=ylabel, title=title,
567 567 ticksize=9, cblabel='')
568 568
569 569 if self.__showprofile:
570 570 axes = self.axesList[i*self.__nsubplots +1]
571 571 axes.pline(avgdB[i], y,
572 572 xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax,
573 573 xlabel='dB', ylabel='', title='',
574 574 ytick_visible=False,
575 575 grid='x')
576 576
577 577 noiseline = numpy.repeat(noisedB[i], len(y))
578 578 axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2)
579 579
580 580 self.draw()
581 581
582 582 if save:
583 583
584 584 self.counter_imagwr += 1
585 585 if (self.counter_imagwr==wr_period):
586 586 if figfile == None:
587 587 str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S")
588 588 figfile = self.getFilename(name = str_datetime)
589 589
590 590 self.saveFigure(figpath, figfile)
591 591
592 592 if ftp:
593 593 #provisionalmente envia archivos en el formato de la web en tiempo real
594 594 name = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS)
595 595 path = '%s%03d' %(self.PREFIX, self.id)
596 596 ftp_file = os.path.join(path,'ftp','%s.png'%name)
597 597 self.saveFigure(figpath, ftp_file)
598 598 ftp_filename = os.path.join(figpath,ftp_file)
599 599 self.sendByFTP_Thread(ftp_filename, server, folder, username, password)
600 600 self.counter_imagwr = 0
601 601
602 602
603 603 self.counter_imagwr = 0
604 604
605 605
606 606 class Scope(Figure):
607 607
608 608 __isConfig = None
609 609
610 610 def __init__(self):
611 611
612 612 self.__isConfig = False
613 613 self.WIDTH = 600
614 614 self.HEIGHT = 200
615 615
616 616 def getSubplots(self):
617 617
618 618 nrow = self.nplots
619 619 ncol = 3
620 620 return nrow, ncol
621 621
622 622 def setup(self, id, nplots, wintitle, show):
623 623
624 624 self.nplots = nplots
625 625
626 626 self.createFigure(id=id,
627 627 wintitle=wintitle,
628 628 show=show)
629 629
630 630 nrow,ncol = self.getSubplots()
631 631 colspan = 3
632 632 rowspan = 1
633 633
634 634 for i in range(nplots):
635 635 self.addAxes(nrow, ncol, i, 0, colspan, rowspan)
636 636
637 637
638 638
639 639 def run(self, dataOut, id, wintitle="", channelList=None,
640 640 xmin=None, xmax=None, ymin=None, ymax=None, save=False,
641 641 figpath='./', figfile=None, show=True):
642 642
643 643 """
644 644
645 645 Input:
646 646 dataOut :
647 647 id :
648 648 wintitle :
649 649 channelList :
650 650 xmin : None,
651 651 xmax : None,
652 652 ymin : None,
653 653 ymax : None,
654 654 """
655 655
656 656 if channelList == None:
657 657 channelIndexList = dataOut.channelIndexList
658 658 else:
659 659 channelIndexList = []
660 660 for channel in channelList:
661 661 if channel not in dataOut.channelList:
662 662 raise ValueError, "Channel %d is not in dataOut.channelList"
663 663 channelIndexList.append(dataOut.channelList.index(channel))
664 664
665 665 x = dataOut.heightList
666 666 y = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:])
667 667 y = y.real
668 668
669 669 #thisDatetime = dataOut.datatime
670 670 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
671 671 title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
672 672 xlabel = "Range (Km)"
673 673 ylabel = "Intensity"
674 674
675 675 if not self.__isConfig:
676 676 nplots = len(channelIndexList)
677 677
678 678 self.setup(id=id,
679 679 nplots=nplots,
680 680 wintitle=wintitle,
681 681 show=show)
682 682
683 683 if xmin == None: xmin = numpy.nanmin(x)
684 684 if xmax == None: xmax = numpy.nanmax(x)
685 685 if ymin == None: ymin = numpy.nanmin(y)
686 686 if ymax == None: ymax = numpy.nanmax(y)
687 687
688 688 self.__isConfig = True
689 689
690 690 self.setWinTitle(title)
691 691
692 692 for i in range(len(self.axesList)):
693 693 title = "Channel %d" %(i)
694 694 axes = self.axesList[i]
695 695 ychannel = y[i,:]
696 696 axes.pline(x, ychannel,
697 697 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
698 698 xlabel=xlabel, ylabel=ylabel, title=title)
699 699
700 700 self.draw()
701 701
702 702 if save:
703 703 date = thisDatetime.strftime("%Y%m%d_%H%M%S")
704 704 if figfile == None:
705 705 figfile = self.getFilename(name = date)
706 706
707 707 self.saveFigure(figpath, figfile)
708 708
709 709 class PowerProfilePlot(Figure):
710 710 __isConfig = None
711 711 __nsubplots = None
712 712
713 713 WIDTHPROF = None
714 714 HEIGHTPROF = None
715 715 PREFIX = 'spcprofile'
716 716
717 717 def __init__(self):
718 718 self.__isConfig = False
719 719 self.__nsubplots = 1
720 720
721 721 self.WIDTH = 300
722 722 self.HEIGHT = 500
723 723
724 724 def getSubplots(self):
725 725 ncol = 1
726 726 nrow = 1
727 727
728 728 return nrow, ncol
729 729
730 730 def setup(self, id, nplots, wintitle, show):
731 731
732 732 self.nplots = nplots
733 733
734 734 ncolspan = 1
735 735 colspan = 1
736 736
737 737 self.createFigure(id = id,
738 738 wintitle = wintitle,
739 739 widthplot = self.WIDTH,
740 740 heightplot = self.HEIGHT,
741 741 show=show)
742 742
743 743 nrow, ncol = self.getSubplots()
744 744
745 745 counter = 0
746 746 for y in range(nrow):
747 747 for x in range(ncol):
748 748 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
749 749
750 750 def run(self, dataOut, id, wintitle="", channelList=None,
751 751 xmin=None, xmax=None, ymin=None, ymax=None,
752 752 save=False, figpath='./', figfile=None, show=True):
753 753
754 754 if channelList == None:
755 755 channelIndexList = dataOut.channelIndexList
756 756 channelList = dataOut.channelList
757 757 else:
758 758 channelIndexList = []
759 759 for channel in channelList:
760 760 if channel not in dataOut.channelList:
761 761 raise ValueError, "Channel %d is not in dataOut.channelList"
762 762 channelIndexList.append(dataOut.channelList.index(channel))
763 763
764 764 factor = dataOut.normFactor
765 765 y = dataOut.getHeiRange()
766 766 x = dataOut.data_spc[channelIndexList,:,:]/factor
767 767 x = numpy.where(numpy.isfinite(x), x, numpy.NAN)
768 768 avg = numpy.average(x, axis=1)
769 769
770 770 avgdB = 10*numpy.log10(avg)
771 771
772 772 #thisDatetime = dataOut.datatime
773 773 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
774 774 title = wintitle + " Power Profile %s" %(thisDatetime.strftime("%d-%b-%Y"))
775 775 xlabel = "dB"
776 776 ylabel = "Range (Km)"
777 777
778 778 if not self.__isConfig:
779 779
780 780 nplots = 1
781 781
782 782 self.setup(id=id,
783 783 nplots=nplots,
784 784 wintitle=wintitle,
785 785 show=show)
786 786
787 787 if ymin == None: ymin = numpy.nanmin(y)
788 788 if ymax == None: ymax = numpy.nanmax(y)
789 789 if xmin == None: xmin = numpy.nanmin(avgdB)*0.9
790 790 if xmax == None: xmax = numpy.nanmax(avgdB)*0.9
791 791
792 792 self.__isConfig = True
793 793
794 794 self.setWinTitle(title)
795 795
796 796
797 797 title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
798 798 axes = self.axesList[0]
799 799
800 800 legendlabels = ["channel %d"%x for x in channelList]
801 801 axes.pmultiline(avgdB, y,
802 802 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
803 803 xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels,
804 804 ytick_visible=True, nxticks=5,
805 805 grid='x')
806 806
807 807 self.draw()
808 808
809 809 if save:
810 810 date = thisDatetime.strftime("%Y%m%d")
811 811 if figfile == None:
812 812 figfile = self.getFilename(name = date)
813 813
814 814 self.saveFigure(figpath, figfile)
815 815
816 816 class CoherenceMap(Figure):
817 817 __isConfig = None
818 818 __nsubplots = None
819 819
820 820 WIDTHPROF = None
821 821 HEIGHTPROF = None
822 822 PREFIX = 'cmap'
823 823
824 824 def __init__(self):
825 825 self.timerange = 2*60*60
826 826 self.__isConfig = False
827 827 self.__nsubplots = 1
828 828
829 829 self.WIDTH = 800
830 830 self.HEIGHT = 150
831 831 self.WIDTHPROF = 120
832 832 self.HEIGHTPROF = 0
833 833 self.counter_imagwr = 0
834 834
835 835 self.PLOT_CODE = 3
836 836 self.FTP_WEI = None
837 837 self.EXP_CODE = None
838 838 self.SUB_EXP_CODE = None
839 839 self.PLOT_POS = None
840 840 self.counter_imagwr = 0
841 841
842 842 def getSubplots(self):
843 843 ncol = 1
844 844 nrow = self.nplots*2
845 845
846 846 return nrow, ncol
847 847
848 848 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
849 849 self.__showprofile = showprofile
850 850 self.nplots = nplots
851 851
852 852 ncolspan = 1
853 853 colspan = 1
854 854 if showprofile:
855 855 ncolspan = 7
856 856 colspan = 6
857 857 self.__nsubplots = 2
858 858
859 859 self.createFigure(id = id,
860 860 wintitle = wintitle,
861 861 widthplot = self.WIDTH + self.WIDTHPROF,
862 862 heightplot = self.HEIGHT + self.HEIGHTPROF,
863 863 show=True)
864 864
865 865 nrow, ncol = self.getSubplots()
866 866
867 867 for y in range(nrow):
868 868 for x in range(ncol):
869 869
870 870 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
871 871
872 872 if showprofile:
873 873 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
874 874
875 875 def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True',
876 876 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
877 877 timerange=None,
878 878 save=False, figpath='./', figfile=None, ftp=False, wr_period=1,
879 879 coherence_cmap='jet', phase_cmap='RdBu_r', show=True,
880 880 server=None, folder=None, username=None, password=None,
881 881 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
882 882
883 883 if pairsList == None:
884 884 pairsIndexList = dataOut.pairsIndexList
885 885 else:
886 886 pairsIndexList = []
887 887 for pair in pairsList:
888 888 if pair not in dataOut.pairsList:
889 889 raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair)
890 890 pairsIndexList.append(dataOut.pairsList.index(pair))
891 891
892 892 if timerange != None:
893 893 self.timerange = timerange
894 894
895 895 if pairsIndexList == []:
896 896 return
897 897
898 898 if len(pairsIndexList) > 4:
899 899 pairsIndexList = pairsIndexList[0:4]
900 900
901 901 tmin = None
902 902 tmax = None
903 903 x = dataOut.getTimeRange()
904 904 y = dataOut.getHeiRange()
905 905
906 906 #thisDatetime = dataOut.datatime
907 907 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
908 908 title = wintitle + " CoherenceMap" #: %s" %(thisDatetime.strftime("%d-%b-%Y"))
909 909 xlabel = ""
910 910 ylabel = "Range (Km)"
911 911
912 912 if not self.__isConfig:
913 913 nplots = len(pairsIndexList)
914 914 self.setup(id=id,
915 915 nplots=nplots,
916 916 wintitle=wintitle,
917 917 showprofile=showprofile,
918 918 show=show)
919 919
920 920 tmin, tmax = self.getTimeLim(x, xmin, xmax)
921 921 if ymin == None: ymin = numpy.nanmin(y)
922 922 if ymax == None: ymax = numpy.nanmax(y)
923 923 if zmin == None: zmin = 0.
924 924 if zmax == None: zmax = 1.
925 925
926 926 self.FTP_WEI = ftp_wei
927 927 self.EXP_CODE = exp_code
928 928 self.SUB_EXP_CODE = sub_exp_code
929 929 self.PLOT_POS = plot_pos
930 930
931 931 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
932 932
933 933 self.__isConfig = True
934 934
935 935 self.setWinTitle(title)
936 936
937 937 for i in range(self.nplots):
938 938
939 939 pair = dataOut.pairsList[pairsIndexList[i]]
940 940 # coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:])
941 941 # avgcoherenceComplex = numpy.average(coherenceComplex, axis=0)
942 942 # coherence = numpy.abs(avgcoherenceComplex)
943 943
944 944 ## coherence = numpy.abs(coherenceComplex)
945 945 ## avg = numpy.average(coherence, axis=0)
946 946
947 947 ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0)
948 948 powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0)
949 949 powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0)
950 950
951 951
952 952 avgcoherenceComplex = ccf/numpy.sqrt(powa*powb)
953 953 coherence = numpy.abs(avgcoherenceComplex)
954 954
955 955 z = coherence.reshape((1,-1))
956 956
957 957 counter = 0
958 958
959 959 title = "Coherence %d%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
960 960 axes = self.axesList[i*self.__nsubplots*2]
961 961 axes.pcolorbuffer(x, y, z,
962 962 xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
963 963 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
964 964 ticksize=9, cblabel='', colormap=coherence_cmap, cbsize="1%")
965 965
966 966 if self.__showprofile:
967 967 counter += 1
968 968 axes = self.axesList[i*self.__nsubplots*2 + counter]
969 969 axes.pline(coherence, y,
970 970 xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax,
971 971 xlabel='', ylabel='', title='', ticksize=7,
972 972 ytick_visible=False, nxticks=5,
973 973 grid='x')
974 974
975 975 counter += 1
976 976 # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi
977 977 phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi
978 978 # avg = numpy.average(phase, axis=0)
979 979 z = phase.reshape((1,-1))
980 980
981 981 title = "Phase %d%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
982 982 axes = self.axesList[i*self.__nsubplots*2 + counter]
983 983 axes.pcolorbuffer(x, y, z,
984 984 xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=-180, zmax=180,
985 985 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
986 986 ticksize=9, cblabel='', colormap=phase_cmap, cbsize="1%")
987 987
988 988 if self.__showprofile:
989 989 counter += 1
990 990 axes = self.axesList[i*self.__nsubplots*2 + counter]
991 991 axes.pline(phase, y,
992 992 xmin=-180, xmax=180, ymin=ymin, ymax=ymax,
993 993 xlabel='', ylabel='', title='', ticksize=7,
994 994 ytick_visible=False, nxticks=4,
995 995 grid='x')
996 996
997 997 self.draw()
998 998
999 999 if save:
1000 1000
1001 1001 self.counter_imagwr += 1
1002 1002 if (self.counter_imagwr==wr_period):
1003 1003 if figfile == None:
1004 1004 figfile = self.getFilename(name = self.name)
1005 1005 self.saveFigure(figpath, figfile)
1006 1006
1007 1007 if ftp:
1008 1008 #provisionalmente envia archivos en el formato de la web en tiempo real
1009 1009 name = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS)
1010 1010 path = '%s%03d' %(self.PREFIX, self.id)
1011 1011 ftp_file = os.path.join(path,'ftp','%s.png'%name)
1012 1012 self.saveFigure(figpath, ftp_file)
1013 1013 ftp_filename = os.path.join(figpath,ftp_file)
1014 1014 try:
1015 1015 self.sendByFTP(ftp_filename, server, folder, username, password)
1016 1016 except:
1017 1017 self.counter_imagwr = 0
1018 1018 print ValueError, 'Error FTP'
1019 1019
1020 1020 self.counter_imagwr = 0
1021 1021
1022 1022
1023 1023 if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax:
1024 1024 self.__isConfig = False
1025 1025
1026 1026 class Noise(Figure):
1027 1027
1028 1028 __isConfig = None
1029 1029 __nsubplots = None
1030 1030
1031 1031 PREFIX = 'noise'
1032 1032
1033 1033 def __init__(self):
1034 1034
1035 1035 self.timerange = 24*60*60
1036 1036 self.__isConfig = False
1037 1037 self.__nsubplots = 1
1038 1038 self.counter_imagwr = 0
1039 1039 self.WIDTH = 600
1040 1040 self.HEIGHT = 300
1041 1041 self.WIDTHPROF = 120
1042 1042 self.HEIGHTPROF = 0
1043 1043 self.xdata = None
1044 1044 self.ydata = None
1045 1045
1046 1046 self.PLOT_CODE = 77
1047 1047 self.FTP_WEI = None
1048 1048 self.EXP_CODE = None
1049 1049 self.SUB_EXP_CODE = None
1050 1050 self.PLOT_POS = None
1051 1051
1052 1052 def getSubplots(self):
1053 1053
1054 1054 ncol = 1
1055 1055 nrow = 1
1056 1056
1057 1057 return nrow, ncol
1058 1058
1059 1059 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
1060 1060
1061 1061 self.__showprofile = showprofile
1062 1062 self.nplots = nplots
1063 1063
1064 1064 ncolspan = 7
1065 1065 colspan = 6
1066 1066 self.__nsubplots = 2
1067 1067
1068 1068 self.createFigure(id = id,
1069 1069 wintitle = wintitle,
1070 1070 widthplot = self.WIDTH+self.WIDTHPROF,
1071 1071 heightplot = self.HEIGHT+self.HEIGHTPROF,
1072 1072 show=show)
1073 1073
1074 1074 nrow, ncol = self.getSubplots()
1075 1075
1076 1076 self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1)
1077 1077
1078 1078
1079 1079 def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True',
1080 1080 xmin=None, xmax=None, ymin=None, ymax=None,
1081 1081 timerange=None,
1082 1082 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
1083 1083 server=None, folder=None, username=None, password=None,
1084 1084 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
1085 1085
1086 1086 if channelList == None:
1087 1087 channelIndexList = dataOut.channelIndexList
1088 1088 channelList = dataOut.channelList
1089 1089 else:
1090 1090 channelIndexList = []
1091 1091 for channel in channelList:
1092 1092 if channel not in dataOut.channelList:
1093 1093 raise ValueError, "Channel %d is not in dataOut.channelList"
1094 1094 channelIndexList.append(dataOut.channelList.index(channel))
1095 1095
1096 1096 if timerange != None:
1097 1097 self.timerange = timerange
1098 1098
1099 1099 tmin = None
1100 1100 tmax = None
1101 1101 x = dataOut.getTimeRange()
1102 1102 y = dataOut.getHeiRange()
1103 1103 factor = dataOut.normFactor
1104 1104 noise = dataOut.getNoise()/factor
1105 1105 noisedB = 10*numpy.log10(noise)
1106 1106
1107 1107 #thisDatetime = dataOut.datatime
1108 1108 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
1109 1109 title = wintitle + " Noise" # : %s" %(thisDatetime.strftime("%d-%b-%Y"))
1110 1110 xlabel = ""
1111 1111 ylabel = "Intensity (dB)"
1112 1112
1113 1113 if not self.__isConfig:
1114 1114
1115 1115 nplots = 1
1116 1116
1117 1117 self.setup(id=id,
1118 1118 nplots=nplots,
1119 1119 wintitle=wintitle,
1120 1120 showprofile=showprofile,
1121 1121 show=show)
1122 1122
1123 1123 tmin, tmax = self.getTimeLim(x, xmin, xmax)
1124 1124 if ymin == None: ymin = numpy.nanmin(noisedB) - 10.0
1125 1125 if ymax == None: ymax = numpy.nanmax(noisedB) + 10.0
1126 1126
1127 1127 self.FTP_WEI = ftp_wei
1128 1128 self.EXP_CODE = exp_code
1129 1129 self.SUB_EXP_CODE = sub_exp_code
1130 1130 self.PLOT_POS = plot_pos
1131 1131
1132 1132 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
1133 1133
1134 1134
1135 1135 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
1136 1136 self.__isConfig = True
1137 1137
1138 1138 self.xdata = numpy.array([])
1139 1139 self.ydata = numpy.array([])
1140 1140
1141 1141 self.setWinTitle(title)
1142 1142
1143 1143
1144 1144 title = "Noise %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1145 1145
1146 1146 legendlabels = ["channel %d"%(idchannel+1) for idchannel in channelList]
1147 1147 axes = self.axesList[0]
1148 1148
1149 1149 self.xdata = numpy.hstack((self.xdata, x[0:1]))
1150 1150
1151 1151 if len(self.ydata)==0:
1152 1152 self.ydata = noisedB[channelIndexList].reshape(-1,1)
1153 1153 else:
1154 1154 self.ydata = numpy.hstack((self.ydata, noisedB[channelIndexList].reshape(-1,1)))
1155 1155
1156 1156
1157 1157 axes.pmultilineyaxis(x=self.xdata, y=self.ydata,
1158 1158 xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax,
1159 1159 xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid",
1160 1160 XAxisAsTime=True, grid='both'
1161 1161 )
1162 1162
1163 1163 self.draw()
1164 1164
1165 1165 # if save:
1166 1166 #
1167 1167 # if figfile == None:
1168 1168 # figfile = self.getFilename(name = self.name)
1169 1169 #
1170 1170 # self.saveFigure(figpath, figfile)
1171 1171
1172 1172 if save:
1173 1173
1174 1174 self.counter_imagwr += 1
1175 1175 if (self.counter_imagwr==wr_period):
1176 1176 if figfile == None:
1177 1177 figfile = self.getFilename(name = self.name)
1178 1178 self.saveFigure(figpath, figfile)
1179 1179
1180 1180 if ftp:
1181 1181 #provisionalmente envia archivos en el formato de la web en tiempo real
1182 1182 name = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS)
1183 1183 path = '%s%03d' %(self.PREFIX, self.id)
1184 1184 ftp_file = os.path.join(path,'ftp','%s.png'%name)
1185 1185 self.saveFigure(figpath, ftp_file)
1186 1186 ftp_filename = os.path.join(figpath,ftp_file)
1187 1187 try:
1188 1188 self.sendByFTP(ftp_filename, server, folder, username, password)
1189 1189 except:
1190 1190 self.counter_imagwr = 0
1191 1191 print ValueError, 'Error FTP'
1192 1192
1193 1193 self.counter_imagwr = 0
1194 1194
1195 1195 if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax:
1196 1196 self.__isConfig = False
1197 1197 del self.xdata
1198 1198 del self.ydata
1199 1199
1200 1200
1201 1201 class SpectraHeisScope(Figure):
1202 1202
1203 1203
1204 1204 __isConfig = None
1205 1205 __nsubplots = None
1206 1206
1207 1207 WIDTHPROF = None
1208 1208 HEIGHTPROF = None
1209 1209 PREFIX = 'spc'
1210 1210
1211 1211 def __init__(self):
1212 1212
1213 1213 self.__isConfig = False
1214 1214 self.__nsubplots = 1
1215 1215
1216 1216 self.WIDTH = 230
1217 1217 self.HEIGHT = 250
1218 1218 self.WIDTHPROF = 120
1219 1219 self.HEIGHTPROF = 0
1220 1220 self.counter_imagwr = 0
1221 1221
1222 1222 def getSubplots(self):
1223 1223
1224 1224 ncol = int(numpy.sqrt(self.nplots)+0.9)
1225 1225 nrow = int(self.nplots*1./ncol + 0.9)
1226 1226
1227 1227 return nrow, ncol
1228 1228
1229 1229 def setup(self, id, nplots, wintitle, show):
1230 1230
1231 1231 showprofile = False
1232 1232 self.__showprofile = showprofile
1233 1233 self.nplots = nplots
1234 1234
1235 1235 ncolspan = 1
1236 1236 colspan = 1
1237 1237 if showprofile:
1238 1238 ncolspan = 3
1239 1239 colspan = 2
1240 1240 self.__nsubplots = 2
1241 1241
1242 1242 self.createFigure(id = id,
1243 1243 wintitle = wintitle,
1244 1244 widthplot = self.WIDTH + self.WIDTHPROF,
1245 1245 heightplot = self.HEIGHT + self.HEIGHTPROF,
1246 1246 show = show)
1247 1247
1248 1248 nrow, ncol = self.getSubplots()
1249 1249
1250 1250 counter = 0
1251 1251 for y in range(nrow):
1252 1252 for x in range(ncol):
1253 1253
1254 1254 if counter >= self.nplots:
1255 1255 break
1256 1256
1257 1257 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
1258 1258
1259 1259 if showprofile:
1260 1260 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
1261 1261
1262 1262 counter += 1
1263 1263
1264 1264 # __isConfig = None
1265 1265 # def __init__(self):
1266 1266 #
1267 1267 # self.__isConfig = False
1268 1268 # self.WIDTH = 600
1269 1269 # self.HEIGHT = 200
1270 1270 #
1271 1271 # def getSubplots(self):
1272 1272 #
1273 1273 # nrow = self.nplots
1274 1274 # ncol = 3
1275 1275 # return nrow, ncol
1276 1276 #
1277 1277 # def setup(self, id, nplots, wintitle):
1278 1278 #
1279 1279 # self.nplots = nplots
1280 1280 #
1281 1281 # self.createFigure(id, wintitle)
1282 1282 #
1283 1283 # nrow,ncol = self.getSubplots()
1284 1284 # colspan = 3
1285 1285 # rowspan = 1
1286 1286 #
1287 1287 # for i in range(nplots):
1288 1288 # self.addAxes(nrow, ncol, i, 0, colspan, rowspan)
1289 1289
1290 1290 def run(self, dataOut, id, wintitle="", channelList=None,
1291 1291 xmin=None, xmax=None, ymin=None, ymax=None, save=False,
1292 1292 figpath='./', figfile=None, ftp=False, wr_period=1, show=True):
1293 1293
1294 1294 """
1295 1295
1296 1296 Input:
1297 1297 dataOut :
1298 1298 id :
1299 1299 wintitle :
1300 1300 channelList :
1301 1301 xmin : None,
1302 1302 xmax : None,
1303 1303 ymin : None,
1304 1304 ymax : None,
1305 1305 """
1306 1306
1307 1307 if dataOut.realtime:
1308 1308 if not(isRealtime(utcdatatime = dataOut.utctime)):
1309 1309 print 'Skipping this plot function'
1310 1310 return
1311 1311
1312 1312 if channelList == None:
1313 1313 channelIndexList = dataOut.channelIndexList
1314 1314 else:
1315 1315 channelIndexList = []
1316 1316 for channel in channelList:
1317 1317 if channel not in dataOut.channelList:
1318 1318 raise ValueError, "Channel %d is not in dataOut.channelList"
1319 1319 channelIndexList.append(dataOut.channelList.index(channel))
1320 1320
1321 1321 # x = dataOut.heightList
1322 1322 c = 3E8
1323 1323 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1324 1324 #deberia cambiar para el caso de 1Mhz y 100KHz
1325 1325 x = numpy.arange(-1*dataOut.nHeights/2.,dataOut.nHeights/2.)*(c/(2*deltaHeight*dataOut.nHeights*1000))
1326 1326 x= x/(10000.0)
1327 1327 # y = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:])
1328 1328 # y = y.real
1329 1329 datadB = 10.*numpy.log10(dataOut.data_spc)
1330 1330 y = datadB
1331 1331
1332 1332 #thisDatetime = dataOut.datatime
1333 1333 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
1334 1334 title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
1335 1335 xlabel = "Frequency x 10000"
1336 1336 ylabel = "Intensity (dB)"
1337 1337
1338 1338 if not self.__isConfig:
1339 1339 nplots = len(channelIndexList)
1340 1340
1341 1341 self.setup(id=id,
1342 1342 nplots=nplots,
1343 1343 wintitle=wintitle,
1344 1344 show=show)
1345 1345
1346 1346 if xmin == None: xmin = numpy.nanmin(x)
1347 1347 if xmax == None: xmax = numpy.nanmax(x)
1348 1348 if ymin == None: ymin = numpy.nanmin(y)
1349 1349 if ymax == None: ymax = numpy.nanmax(y)
1350 1350
1351 1351 self.__isConfig = True
1352 1352
1353 1353 self.setWinTitle(title)
1354 1354
1355 1355 for i in range(len(self.axesList)):
1356 1356 ychannel = y[i,:]
1357 1357 title = "Channel %d - peak:%.2f" %(i,numpy.max(ychannel))
1358 1358 axes = self.axesList[i]
1359 1359 axes.pline(x, ychannel,
1360 1360 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
1361 1361 xlabel=xlabel, ylabel=ylabel, title=title, grid='both')
1362 1362
1363 1363
1364 1364 self.draw()
1365 1365
1366 1366 if save:
1367 1367 date = thisDatetime.strftime("%Y%m%d_%H%M%S")
1368 1368 if figfile == None:
1369 1369 figfile = self.getFilename(name = date)
1370 1370
1371 1371 self.saveFigure(figpath, figfile)
1372 1372
1373 1373 self.counter_imagwr += 1
1374 1374 if (ftp and (self.counter_imagwr==wr_period)):
1375 1375 figfilename = os.path.join(figpath,figfile)
1376 1376 self.sendByFTP(figfilename)
1377 1377 self.counter_imagwr = 0
1378 1378
1379 1379
1380 1380 class RTIfromSpectraHeis(Figure):
1381 1381
1382 1382 __isConfig = None
1383 1383 __nsubplots = None
1384 1384
1385 1385 PREFIX = 'rtinoise'
1386 1386
1387 1387 def __init__(self):
1388 1388
1389 1389 self.timerange = 24*60*60
1390 1390 self.__isConfig = False
1391 1391 self.__nsubplots = 1
1392 1392
1393 1393 self.WIDTH = 820
1394 1394 self.HEIGHT = 200
1395 1395 self.WIDTHPROF = 120
1396 1396 self.HEIGHTPROF = 0
1397 1397 self.counter_imagwr = 0
1398 1398 self.xdata = None
1399 1399 self.ydata = None
1400 1400
1401 1401 def getSubplots(self):
1402 1402
1403 1403 ncol = 1
1404 1404 nrow = 1
1405 1405
1406 1406 return nrow, ncol
1407 1407
1408 1408 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
1409 1409
1410 1410 self.__showprofile = showprofile
1411 1411 self.nplots = nplots
1412 1412
1413 1413 ncolspan = 7
1414 1414 colspan = 6
1415 1415 self.__nsubplots = 2
1416 1416
1417 1417 self.createFigure(id = id,
1418 1418 wintitle = wintitle,
1419 1419 widthplot = self.WIDTH+self.WIDTHPROF,
1420 1420 heightplot = self.HEIGHT+self.HEIGHTPROF,
1421 1421 show = show)
1422 1422
1423 1423 nrow, ncol = self.getSubplots()
1424 1424
1425 1425 self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1)
1426 1426
1427 1427
1428 1428 def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True',
1429 1429 xmin=None, xmax=None, ymin=None, ymax=None,
1430 1430 timerange=None,
1431 1431 save=False, figpath='./', figfile=None, ftp=False, wr_period=1, show=True):
1432 1432
1433 1433 if channelList == None:
1434 1434 channelIndexList = dataOut.channelIndexList
1435 1435 channelList = dataOut.channelList
1436 1436 else:
1437 1437 channelIndexList = []
1438 1438 for channel in channelList:
1439 1439 if channel not in dataOut.channelList:
1440 1440 raise ValueError, "Channel %d is not in dataOut.channelList"
1441 1441 channelIndexList.append(dataOut.channelList.index(channel))
1442 1442
1443 1443 if timerange != None:
1444 1444 self.timerange = timerange
1445 1445
1446 1446 tmin = None
1447 1447 tmax = None
1448 1448 x = dataOut.getTimeRange()
1449 1449 y = dataOut.getHeiRange()
1450 1450
1451 1451 factor = 1
1452 1452 data = dataOut.data_spc/factor
1453 1453 data = numpy.average(data,axis=1)
1454 1454 datadB = 10*numpy.log10(data)
1455 1455
1456 1456 # factor = dataOut.normFactor
1457 1457 # noise = dataOut.getNoise()/factor
1458 1458 # noisedB = 10*numpy.log10(noise)
1459 1459
1460 1460 #thisDatetime = dataOut.datatime
1461 1461 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
1462 1462 title = wintitle + " RTI: %s" %(thisDatetime.strftime("%d-%b-%Y"))
1463 1463 xlabel = "Local Time"
1464 1464 ylabel = "Intensity (dB)"
1465 1465
1466 1466 if not self.__isConfig:
1467 1467
1468 1468 nplots = 1
1469 1469
1470 1470 self.setup(id=id,
1471 1471 nplots=nplots,
1472 1472 wintitle=wintitle,
1473 1473 showprofile=showprofile,
1474 1474 show=show)
1475 1475
1476 1476 tmin, tmax = self.getTimeLim(x, xmin, xmax)
1477 1477 if ymin == None: ymin = numpy.nanmin(datadB)
1478 1478 if ymax == None: ymax = numpy.nanmax(datadB)
1479 1479
1480 1480 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
1481 1481 self.__isConfig = True
1482 1482
1483 1483 self.xdata = numpy.array([])
1484 1484 self.ydata = numpy.array([])
1485 1485
1486 1486 self.setWinTitle(title)
1487 1487
1488 1488
1489 1489 # title = "RTI %s" %(thisDatetime.strftime("%d-%b-%Y"))
1490 title = "RTI-Noise - %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
1490 title = "RTI - %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
1491 1491
1492 legendlabels = ["channel %d"%idchannel for idchannel in channelList]
1492 legendlabels = ["channel %d"%idchannel for idchannel in channelIndexList]
1493 1493 axes = self.axesList[0]
1494 1494
1495 1495 self.xdata = numpy.hstack((self.xdata, x[0:1]))
1496 1496
1497 1497 if len(self.ydata)==0:
1498 1498 self.ydata = datadB[channelIndexList].reshape(-1,1)
1499 1499 else:
1500 1500 self.ydata = numpy.hstack((self.ydata, datadB[channelIndexList].reshape(-1,1)))
1501 1501
1502 1502
1503 1503 axes.pmultilineyaxis(x=self.xdata, y=self.ydata,
1504 1504 xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax,
1505 1505 xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='.', markersize=8, linestyle="solid", grid='both',
1506 1506 XAxisAsTime=True
1507 1507 )
1508 1508
1509 1509 self.draw()
1510 1510
1511 1511 if save:
1512 1512
1513 1513 if figfile == None:
1514 1514 figfile = self.getFilename(name = self.name)
1515 1515
1516 1516 self.saveFigure(figpath, figfile)
1517 1517
1518 1518 self.counter_imagwr += 1
1519 1519 if (ftp and (self.counter_imagwr==wr_period)):
1520 1520 figfilename = os.path.join(figpath,figfile)
1521 1521 self.sendByFTP(figfilename)
1522 1522 self.counter_imagwr = 0
1523 1523
1524 1524 if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax:
1525 1525 self.__isConfig = False
1526 1526 del self.xdata
1527 1527 del self.ydata
1528 1528
1529 1529
1530 1530 No newline at end of file
@@ -1,1702 +1,1720
1 1 '''
2 2
3 3 $Author: dsuarez $
4 4 $Id: Processor.py 1 2012-11-12 18:56:07Z dsuarez $
5 5 '''
6 6 import os
7 7 import numpy
8 8 import datetime
9 9 import time
10 10
11 11 from jrodata import *
12 12 from jrodataIO import *
13 13 from jroplot import *
14 14
15 15 try:
16 16 import cfunctions
17 17 except:
18 18 pass
19 19
20 20 class ProcessingUnit:
21 21
22 22 """
23 23 Esta es la clase base para el procesamiento de datos.
24 24
25 25 Contiene el metodo "call" para llamar operaciones. Las operaciones pueden ser:
26 26 - Metodos internos (callMethod)
27 27 - Objetos del tipo Operation (callObject). Antes de ser llamados, estos objetos
28 28 tienen que ser agreagados con el metodo "add".
29 29
30 30 """
31 31 # objeto de datos de entrada (Voltage, Spectra o Correlation)
32 32 dataIn = None
33 33
34 34 # objeto de datos de entrada (Voltage, Spectra o Correlation)
35 35 dataOut = None
36 36
37 37
38 38 objectDict = None
39 39
40 40 def __init__(self):
41 41
42 42 self.objectDict = {}
43 43
44 44 def init(self):
45 45
46 46 raise ValueError, "Not implemented"
47 47
48 48 def addOperation(self, object, objId):
49 49
50 50 """
51 51 Agrega el objeto "object" a la lista de objetos "self.objectList" y retorna el
52 52 identificador asociado a este objeto.
53 53
54 54 Input:
55 55
56 56 object : objeto de la clase "Operation"
57 57
58 58 Return:
59 59
60 60 objId : identificador del objeto, necesario para ejecutar la operacion
61 61 """
62 62
63 63 self.objectDict[objId] = object
64 64
65 65 return objId
66 66
67 67 def operation(self, **kwargs):
68 68
69 69 """
70 70 Operacion directa sobre la data (dataOut.data). Es necesario actualizar los valores de los
71 71 atributos del objeto dataOut
72 72
73 73 Input:
74 74
75 75 **kwargs : Diccionario de argumentos de la funcion a ejecutar
76 76 """
77 77
78 78 raise ValueError, "ImplementedError"
79 79
80 80 def callMethod(self, name, **kwargs):
81 81
82 82 """
83 83 Ejecuta el metodo con el nombre "name" y con argumentos **kwargs de la propia clase.
84 84
85 85 Input:
86 86 name : nombre del metodo a ejecutar
87 87
88 88 **kwargs : diccionario con los nombres y valores de la funcion a ejecutar.
89 89
90 90 """
91 91 if name != 'run':
92 92
93 93 if name == 'init' and self.dataIn.isEmpty():
94 94 self.dataOut.flagNoData = True
95 95 return False
96 96
97 97 if name != 'init' and self.dataOut.isEmpty():
98 98 return False
99 99
100 100 methodToCall = getattr(self, name)
101 101
102 102 methodToCall(**kwargs)
103 103
104 104 if name != 'run':
105 105 return True
106 106
107 107 if self.dataOut.isEmpty():
108 108 return False
109 109
110 110 return True
111 111
112 112 def callObject(self, objId, **kwargs):
113 113
114 114 """
115 115 Ejecuta la operacion asociada al identificador del objeto "objId"
116 116
117 117 Input:
118 118
119 119 objId : identificador del objeto a ejecutar
120 120
121 121 **kwargs : diccionario con los nombres y valores de la funcion a ejecutar.
122 122
123 123 Return:
124 124
125 125 None
126 126 """
127 127
128 128 if self.dataOut.isEmpty():
129 129 return False
130 130
131 131 object = self.objectDict[objId]
132 132
133 133 object.run(self.dataOut, **kwargs)
134 134
135 135 return True
136 136
137 137 def call(self, operationConf, **kwargs):
138 138
139 139 """
140 140 Return True si ejecuta la operacion "operationConf.name" con los
141 141 argumentos "**kwargs". False si la operacion no se ha ejecutado.
142 142 La operacion puede ser de dos tipos:
143 143
144 144 1. Un metodo propio de esta clase:
145 145
146 146 operation.type = "self"
147 147
148 148 2. El metodo "run" de un objeto del tipo Operation o de un derivado de ella:
149 149 operation.type = "other".
150 150
151 151 Este objeto de tipo Operation debe de haber sido agregado antes con el metodo:
152 152 "addOperation" e identificado con el operation.id
153 153
154 154
155 155 con el id de la operacion.
156 156
157 157 Input:
158 158
159 159 Operation : Objeto del tipo operacion con los atributos: name, type y id.
160 160
161 161 """
162 162
163 163 if operationConf.type == 'self':
164 164 sts = self.callMethod(operationConf.name, **kwargs)
165 165
166 166 if operationConf.type == 'other':
167 167 sts = self.callObject(operationConf.id, **kwargs)
168 168
169 169 return sts
170 170
171 171 def setInput(self, dataIn):
172 172
173 173 self.dataIn = dataIn
174 174
175 175 def getOutput(self):
176 176
177 177 return self.dataOut
178 178
179 179 class Operation():
180 180
181 181 """
182 182 Clase base para definir las operaciones adicionales que se pueden agregar a la clase ProcessingUnit
183 183 y necesiten acumular informacion previa de los datos a procesar. De preferencia usar un buffer de
184 184 acumulacion dentro de esta clase
185 185
186 186 Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer)
187 187
188 188 """
189 189
190 190 __buffer = None
191 191 __isConfig = False
192 192
193 193 def __init__(self):
194 194
195 195 pass
196 196
197 197 def run(self, dataIn, **kwargs):
198 198
199 199 """
200 200 Realiza las operaciones necesarias sobre la dataIn.data y actualiza los atributos del objeto dataIn.
201 201
202 202 Input:
203 203
204 204 dataIn : objeto del tipo JROData
205 205
206 206 Return:
207 207
208 208 None
209 209
210 210 Affected:
211 211 __buffer : buffer de recepcion de datos.
212 212
213 213 """
214 214
215 215 raise ValueError, "ImplementedError"
216 216
217 217 class VoltageProc(ProcessingUnit):
218 218
219 219
220 220 def __init__(self):
221 221
222 222 self.objectDict = {}
223 223 self.dataOut = Voltage()
224 224 self.flip = 1
225 225
226 226 def init(self):
227 227
228 228 self.dataOut.copy(self.dataIn)
229 229 # No necesita copiar en cada init() los atributos de dataIn
230 230 # la copia deberia hacerse por cada nuevo bloque de datos
231 231
232 232 def selectChannels(self, channelList):
233 233
234 234 channelIndexList = []
235 235
236 236 for channel in channelList:
237 237 index = self.dataOut.channelList.index(channel)
238 238 channelIndexList.append(index)
239 239
240 240 self.selectChannelsByIndex(channelIndexList)
241 241
242 242 def selectChannelsByIndex(self, channelIndexList):
243 243 """
244 244 Selecciona un bloque de datos en base a canales segun el channelIndexList
245 245
246 246 Input:
247 247 channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
248 248
249 249 Affected:
250 250 self.dataOut.data
251 251 self.dataOut.channelIndexList
252 252 self.dataOut.nChannels
253 253 self.dataOut.m_ProcessingHeader.totalSpectra
254 254 self.dataOut.systemHeaderObj.numChannels
255 255 self.dataOut.m_ProcessingHeader.blockSize
256 256
257 257 Return:
258 258 None
259 259 """
260 260
261 261 for channelIndex in channelIndexList:
262 262 if channelIndex not in self.dataOut.channelIndexList:
263 263 print channelIndexList
264 264 raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
265 265
266 266 nChannels = len(channelIndexList)
267 267
268 268 data = self.dataOut.data[channelIndexList,:]
269 269
270 270 self.dataOut.data = data
271 271 self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
272 272 # self.dataOut.nChannels = nChannels
273 273
274 274 return 1
275 275
276 276 def selectHeights(self, minHei=None, maxHei=None):
277 277 """
278 278 Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
279 279 minHei <= height <= maxHei
280 280
281 281 Input:
282 282 minHei : valor minimo de altura a considerar
283 283 maxHei : valor maximo de altura a considerar
284 284
285 285 Affected:
286 286 Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
287 287
288 288 Return:
289 289 1 si el metodo se ejecuto con exito caso contrario devuelve 0
290 290 """
291 291
292 292 if minHei == None:
293 293 minHei = self.dataOut.heightList[0]
294 294
295 295 if maxHei == None:
296 296 maxHei = self.dataOut.heightList[-1]
297 297
298 298 if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
299 299 raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
300 300
301 301
302 302 if (maxHei > self.dataOut.heightList[-1]):
303 303 maxHei = self.dataOut.heightList[-1]
304 304 # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
305 305
306 306 minIndex = 0
307 307 maxIndex = 0
308 308 heights = self.dataOut.heightList
309 309
310 310 inda = numpy.where(heights >= minHei)
311 311 indb = numpy.where(heights <= maxHei)
312 312
313 313 try:
314 314 minIndex = inda[0][0]
315 315 except:
316 316 minIndex = 0
317 317
318 318 try:
319 319 maxIndex = indb[0][-1]
320 320 except:
321 321 maxIndex = len(heights)
322 322
323 323 self.selectHeightsByIndex(minIndex, maxIndex)
324 324
325 325 return 1
326 326
327 327
328 328 def selectHeightsByIndex(self, minIndex, maxIndex):
329 329 """
330 330 Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
331 331 minIndex <= index <= maxIndex
332 332
333 333 Input:
334 334 minIndex : valor de indice minimo de altura a considerar
335 335 maxIndex : valor de indice maximo de altura a considerar
336 336
337 337 Affected:
338 338 self.dataOut.data
339 339 self.dataOut.heightList
340 340
341 341 Return:
342 342 1 si el metodo se ejecuto con exito caso contrario devuelve 0
343 343 """
344 344
345 345 if (minIndex < 0) or (minIndex > maxIndex):
346 346 raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
347 347
348 348 if (maxIndex >= self.dataOut.nHeights):
349 349 maxIndex = self.dataOut.nHeights-1
350 350 # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
351 351
352 352 nHeights = maxIndex - minIndex + 1
353 353
354 354 #voltage
355 355 data = self.dataOut.data[:,minIndex:maxIndex+1]
356 356
357 357 firstHeight = self.dataOut.heightList[minIndex]
358 358
359 359 self.dataOut.data = data
360 360 self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1]
361 361
362 362 return 1
363 363
364 364
365 365 def filterByHeights(self, window):
366 366 deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
367 367
368 368 if window == None:
369 369 window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight
370 370
371 371 newdelta = deltaHeight * window
372 372 r = self.dataOut.data.shape[1] % window
373 373 buffer = self.dataOut.data[:,0:self.dataOut.data.shape[1]-r]
374 374 buffer = buffer.reshape(self.dataOut.data.shape[0],self.dataOut.data.shape[1]/window,window)
375 375 buffer = numpy.sum(buffer,2)
376 376 self.dataOut.data = buffer
377 377 self.dataOut.heightList = numpy.arange(self.dataOut.heightList[0],newdelta*(self.dataOut.nHeights-r)/window,newdelta)
378 378 self.dataOut.windowOfFilter = window
379 379
380 380 def deFlip(self):
381 381 self.dataOut.data *= self.flip
382 382 self.flip *= -1.
383 383
384 384 def setRadarFrequency(self, frequency=None):
385 385 if frequency != None:
386 386 self.dataOut.frequency = frequency
387 387
388 388 return 1
389 389
390 390 class CohInt(Operation):
391 391
392 392 __isConfig = False
393 393
394 394 __profIndex = 0
395 395 __withOverapping = False
396 396
397 397 __byTime = False
398 398 __initime = None
399 399 __lastdatatime = None
400 400 __integrationtime = None
401 401
402 402 __buffer = None
403 403
404 404 __dataReady = False
405 405
406 406 n = None
407 407
408 408
409 409 def __init__(self):
410 410
411 411 self.__isConfig = False
412 412
413 413 def setup(self, n=None, timeInterval=None, overlapping=False):
414 414 """
415 415 Set the parameters of the integration class.
416 416
417 417 Inputs:
418 418
419 419 n : Number of coherent integrations
420 420 timeInterval : Time of integration. If the parameter "n" is selected this one does not work
421 421 overlapping :
422 422
423 423 """
424 424
425 425 self.__initime = None
426 426 self.__lastdatatime = 0
427 427 self.__buffer = None
428 428 self.__dataReady = False
429 429
430 430
431 431 if n == None and timeInterval == None:
432 432 raise ValueError, "n or timeInterval should be specified ..."
433 433
434 434 if n != None:
435 435 self.n = n
436 436 self.__byTime = False
437 437 else:
438 438 self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line
439 439 self.n = 9999
440 440 self.__byTime = True
441 441
442 442 if overlapping:
443 443 self.__withOverapping = True
444 444 self.__buffer = None
445 445 else:
446 446 self.__withOverapping = False
447 447 self.__buffer = 0
448 448
449 449 self.__profIndex = 0
450 450
451 451 def putData(self, data):
452 452
453 453 """
454 454 Add a profile to the __buffer and increase in one the __profileIndex
455 455
456 456 """
457 457
458 458 if not self.__withOverapping:
459 459 self.__buffer += data.copy()
460 460 self.__profIndex += 1
461 461 return
462 462
463 463 #Overlapping data
464 464 nChannels, nHeis = data.shape
465 465 data = numpy.reshape(data, (1, nChannels, nHeis))
466 466
467 467 #If the buffer is empty then it takes the data value
468 468 if self.__buffer == None:
469 469 self.__buffer = data
470 470 self.__profIndex += 1
471 471 return
472 472
473 473 #If the buffer length is lower than n then stakcing the data value
474 474 if self.__profIndex < self.n:
475 475 self.__buffer = numpy.vstack((self.__buffer, data))
476 476 self.__profIndex += 1
477 477 return
478 478
479 479 #If the buffer length is equal to n then replacing the last buffer value with the data value
480 480 self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
481 481 self.__buffer[self.n-1] = data
482 482 self.__profIndex = self.n
483 483 return
484 484
485 485
486 486 def pushData(self):
487 487 """
488 488 Return the sum of the last profiles and the profiles used in the sum.
489 489
490 490 Affected:
491 491
492 492 self.__profileIndex
493 493
494 494 """
495 495
496 496 if not self.__withOverapping:
497 497 data = self.__buffer
498 498 n = self.__profIndex
499 499
500 500 self.__buffer = 0
501 501 self.__profIndex = 0
502 502
503 503 return data, n
504 504
505 505 #Integration with Overlapping
506 506 data = numpy.sum(self.__buffer, axis=0)
507 507 n = self.__profIndex
508 508
509 509 return data, n
510 510
511 511 def byProfiles(self, data):
512 512
513 513 self.__dataReady = False
514 514 avgdata = None
515 515 n = None
516 516
517 517 self.putData(data)
518 518
519 519 if self.__profIndex == self.n:
520 520
521 521 avgdata, n = self.pushData()
522 522 self.__dataReady = True
523 523
524 524 return avgdata
525 525
526 526 def byTime(self, data, datatime):
527 527
528 528 self.__dataReady = False
529 529 avgdata = None
530 530 n = None
531 531
532 532 self.putData(data)
533 533
534 534 if (datatime - self.__initime) >= self.__integrationtime:
535 535 avgdata, n = self.pushData()
536 536 self.n = n
537 537 self.__dataReady = True
538 538
539 539 return avgdata
540 540
541 541 def integrate(self, data, datatime=None):
542 542
543 543 if self.__initime == None:
544 544 self.__initime = datatime
545 545
546 546 if self.__byTime:
547 547 avgdata = self.byTime(data, datatime)
548 548 else:
549 549 avgdata = self.byProfiles(data)
550 550
551 551
552 552 self.__lastdatatime = datatime
553 553
554 554 if avgdata == None:
555 555 return None, None
556 556
557 557 avgdatatime = self.__initime
558 558
559 559 deltatime = datatime -self.__lastdatatime
560 560
561 561 if not self.__withOverapping:
562 562 self.__initime = datatime
563 563 else:
564 564 self.__initime += deltatime
565 565
566 566 return avgdata, avgdatatime
567 567
568 568 def run(self, dataOut, **kwargs):
569 569
570 570 if not self.__isConfig:
571 571 self.setup(**kwargs)
572 572 self.__isConfig = True
573 573
574 574 avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime)
575 575
576 576 # dataOut.timeInterval *= n
577 577 dataOut.flagNoData = True
578 578
579 579 if self.__dataReady:
580 580 dataOut.data = avgdata
581 581 dataOut.nCohInt *= self.n
582 582 dataOut.utctime = avgdatatime
583 583 dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt
584 584 dataOut.flagNoData = False
585 585
586 586
587 587 class Decoder(Operation):
588 588
589 589 __isConfig = False
590 590 __profIndex = 0
591 591
592 592 code = None
593 593
594 594 nCode = None
595 595 nBaud = None
596 596
597 597 def __init__(self):
598 598
599 599 self.__isConfig = False
600 600
601 601 def setup(self, code, shape):
602 602
603 603 self.__profIndex = 0
604 604
605 605 self.code = code
606 606
607 607 self.nCode = len(code)
608 608 self.nBaud = len(code[0])
609 609
610 610 self.__nChannels, self.__nHeis = shape
611 611
612 612 __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex)
613 613
614 614 __codeBuffer[:,0:self.nBaud] = self.code
615 615
616 616 self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1))
617 617
618 618 self.ndatadec = self.__nHeis - self.nBaud + 1
619 619
620 620 self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex)
621 621
622 622 def convolutionInFreq(self, data):
623 623
624 624 fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
625 625
626 626 fft_data = numpy.fft.fft(data, axis=1)
627 627
628 628 conv = fft_data*fft_code
629 629
630 630 data = numpy.fft.ifft(conv,axis=1)
631 631
632 632 datadec = data[:,:-self.nBaud+1]
633 633
634 634 return datadec
635 635
636 636 def convolutionInFreqOpt(self, data):
637 637
638 638 fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
639 639
640 640 data = cfunctions.decoder(fft_code, data)
641 641
642 642 datadec = data[:,:-self.nBaud+1]
643 643
644 644 return datadec
645 645
646 646 def convolutionInTime(self, data):
647 647
648 648 code = self.code[self.__profIndex]
649 649
650 650 for i in range(self.__nChannels):
651 651 self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='valid')
652 652
653 653 return self.datadecTime
654 654
655 655 def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0):
656 656
657 657 if not self.__isConfig:
658 658
659 659 if code == None:
660 660 code = dataOut.code
661 661 else:
662 662 code = numpy.array(code).reshape(nCode,nBaud)
663 663 dataOut.code = code
664 664 dataOut.nCode = nCode
665 665 dataOut.nBaud = nBaud
666 666
667 667 if code == None:
668 668 return 1
669 669
670 670 self.setup(code, dataOut.data.shape)
671 671 self.__isConfig = True
672 672
673 673 if mode == 0:
674 674 datadec = self.convolutionInTime(dataOut.data)
675 675
676 676 if mode == 1:
677 677 datadec = self.convolutionInFreq(dataOut.data)
678 678
679 679 if mode == 2:
680 680 datadec = self.convolutionInFreqOpt(dataOut.data)
681 681
682 682 dataOut.data = datadec
683 683
684 684 dataOut.heightList = dataOut.heightList[0:self.ndatadec]
685 685
686 686 dataOut.flagDecodeData = True #asumo q la data no esta decodificada
687 687
688 688 if self.__profIndex == self.nCode-1:
689 689 self.__profIndex = 0
690 690 return 1
691 691
692 692 self.__profIndex += 1
693 693
694 694 return 1
695 695 # dataOut.flagDeflipData = True #asumo q la data no esta sin flip
696 696
697 697
698 698
699 699 class SpectraProc(ProcessingUnit):
700 700
701 701 def __init__(self):
702 702
703 703 self.objectDict = {}
704 704 self.buffer = None
705 705 self.firstdatatime = None
706 706 self.profIndex = 0
707 707 self.dataOut = Spectra()
708 708
709 709 def __updateObjFromInput(self):
710 710
711 711 self.dataOut.timeZone = self.dataIn.timeZone
712 712 self.dataOut.dstFlag = self.dataIn.dstFlag
713 713 self.dataOut.errorCount = self.dataIn.errorCount
714 714 self.dataOut.useLocalTime = self.dataIn.useLocalTime
715 715
716 716 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
717 717 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
718 718 self.dataOut.channelList = self.dataIn.channelList
719 719 self.dataOut.heightList = self.dataIn.heightList
720 720 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
721 721 # self.dataOut.nHeights = self.dataIn.nHeights
722 722 # self.dataOut.nChannels = self.dataIn.nChannels
723 723 self.dataOut.nBaud = self.dataIn.nBaud
724 724 self.dataOut.nCode = self.dataIn.nCode
725 725 self.dataOut.code = self.dataIn.code
726 726 self.dataOut.nProfiles = self.dataOut.nFFTPoints
727 727 # self.dataOut.channelIndexList = self.dataIn.channelIndexList
728 728 self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock
729 729 self.dataOut.utctime = self.firstdatatime
730 730 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
731 731 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
732 732 # self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT
733 733 self.dataOut.nCohInt = self.dataIn.nCohInt
734 734 self.dataOut.nIncohInt = 1
735 735 self.dataOut.ippSeconds = self.dataIn.ippSeconds
736 736 self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
737 737
738 738 self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nFFTPoints*self.dataOut.nIncohInt
739 739 self.dataOut.frequency = self.dataIn.frequency
740 740 self.dataOut.realtime = self.dataIn.realtime
741 741
742 742 def __getFft(self):
743 743 """
744 744 Convierte valores de Voltaje a Spectra
745 745
746 746 Affected:
747 747 self.dataOut.data_spc
748 748 self.dataOut.data_cspc
749 749 self.dataOut.data_dc
750 750 self.dataOut.heightList
751 751 self.profIndex
752 752 self.buffer
753 753 self.dataOut.flagNoData
754 754 """
755 755 fft_volt = numpy.fft.fft(self.buffer,n=self.dataOut.nFFTPoints,axis=1)
756 756 fft_volt = fft_volt.astype(numpy.dtype('complex'))
757 757 dc = fft_volt[:,0,:]
758 758
759 759 #calculo de self-spectra
760 760 fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,))
761 761 spc = fft_volt * numpy.conjugate(fft_volt)
762 762 spc = spc.real
763 763
764 764 blocksize = 0
765 765 blocksize += dc.size
766 766 blocksize += spc.size
767 767
768 768 cspc = None
769 769 pairIndex = 0
770 770 if self.dataOut.pairsList != None:
771 771 #calculo de cross-spectra
772 772 cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex')
773 773 for pair in self.dataOut.pairsList:
774 774 cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:])
775 775 pairIndex += 1
776 776 blocksize += cspc.size
777 777
778 778 self.dataOut.data_spc = spc
779 779 self.dataOut.data_cspc = cspc
780 780 self.dataOut.data_dc = dc
781 781 self.dataOut.blockSize = blocksize
782 782 self.dataOut.flagShiftFFT = False
783 783
784 784 def init(self, nProfiles=None, nFFTPoints=None, pairsList=None):
785 785
786 786 self.dataOut.flagNoData = True
787 787
788 788 if self.dataIn.type == "Spectra":
789 789 self.dataOut.copy(self.dataIn)
790 790 return
791 791
792 792 if self.dataIn.type == "Voltage":
793 793
794 794 if nFFTPoints == None:
795 795 raise ValueError, "This SpectraProc.init() need nFFTPoints input variable"
796 796
797 797 if pairsList == None:
798 798 nPairs = 0
799 799 else:
800 800 nPairs = len(pairsList)
801 801
802 802 self.dataOut.nFFTPoints = nFFTPoints
803 803 self.dataOut.pairsList = pairsList
804 804 self.dataOut.nPairs = nPairs
805 805
806 806 if self.buffer == None:
807 807 self.buffer = numpy.zeros((self.dataIn.nChannels,
808 808 nProfiles,
809 809 self.dataIn.nHeights),
810 810 dtype='complex')
811 811
812 812
813 813 self.buffer[:,self.profIndex,:] = self.dataIn.data.copy()
814 814 self.profIndex += 1
815 815
816 816 if self.firstdatatime == None:
817 817 self.firstdatatime = self.dataIn.utctime
818 818
819 819 if self.profIndex == nProfiles:
820 820 self.__updateObjFromInput()
821 821 self.__getFft()
822 822
823 823 self.dataOut.flagNoData = False
824 824
825 825 self.buffer = None
826 826 self.firstdatatime = None
827 827 self.profIndex = 0
828 828
829 829 return
830 830
831 831 raise ValuError, "The type object %s is not valid"%(self.dataIn.type)
832 832
833 833 def selectChannels(self, channelList):
834 834
835 835 channelIndexList = []
836 836
837 837 for channel in channelList:
838 838 index = self.dataOut.channelList.index(channel)
839 839 channelIndexList.append(index)
840 840
841 841 self.selectChannelsByIndex(channelIndexList)
842 842
843 843 def selectChannelsByIndex(self, channelIndexList):
844 844 """
845 845 Selecciona un bloque de datos en base a canales segun el channelIndexList
846 846
847 847 Input:
848 848 channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
849 849
850 850 Affected:
851 851 self.dataOut.data_spc
852 852 self.dataOut.channelIndexList
853 853 self.dataOut.nChannels
854 854
855 855 Return:
856 856 None
857 857 """
858 858
859 859 for channelIndex in channelIndexList:
860 860 if channelIndex not in self.dataOut.channelIndexList:
861 861 print channelIndexList
862 862 raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
863 863
864 864 nChannels = len(channelIndexList)
865 865
866 866 data_spc = self.dataOut.data_spc[channelIndexList,:]
867 867
868 868 self.dataOut.data_spc = data_spc
869 869 self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
870 870 # self.dataOut.nChannels = nChannels
871 871
872 872 return 1
873 873
874 874 def selectHeights(self, minHei, maxHei):
875 875 """
876 876 Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
877 877 minHei <= height <= maxHei
878 878
879 879 Input:
880 880 minHei : valor minimo de altura a considerar
881 881 maxHei : valor maximo de altura a considerar
882 882
883 883 Affected:
884 884 Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
885 885
886 886 Return:
887 887 1 si el metodo se ejecuto con exito caso contrario devuelve 0
888 888 """
889 889 if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
890 890 raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
891 891
892 892 if (maxHei > self.dataOut.heightList[-1]):
893 893 maxHei = self.dataOut.heightList[-1]
894 894 # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
895 895
896 896 minIndex = 0
897 897 maxIndex = 0
898 898 heights = self.dataOut.heightList
899 899
900 900 inda = numpy.where(heights >= minHei)
901 901 indb = numpy.where(heights <= maxHei)
902 902
903 903 try:
904 904 minIndex = inda[0][0]
905 905 except:
906 906 minIndex = 0
907 907
908 908 try:
909 909 maxIndex = indb[0][-1]
910 910 except:
911 911 maxIndex = len(heights)
912 912
913 913 self.selectHeightsByIndex(minIndex, maxIndex)
914 914
915 915 return 1
916 916
917 917
918 918 def selectHeightsByIndex(self, minIndex, maxIndex):
919 919 """
920 920 Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
921 921 minIndex <= index <= maxIndex
922 922
923 923 Input:
924 924 minIndex : valor de indice minimo de altura a considerar
925 925 maxIndex : valor de indice maximo de altura a considerar
926 926
927 927 Affected:
928 928 self.dataOut.data_spc
929 929 self.dataOut.data_cspc
930 930 self.dataOut.data_dc
931 931 self.dataOut.heightList
932 932
933 933 Return:
934 934 1 si el metodo se ejecuto con exito caso contrario devuelve 0
935 935 """
936 936
937 937 if (minIndex < 0) or (minIndex > maxIndex):
938 938 raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
939 939
940 940 if (maxIndex >= self.dataOut.nHeights):
941 941 maxIndex = self.dataOut.nHeights-1
942 942 # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
943 943
944 944 nHeights = maxIndex - minIndex + 1
945 945
946 946 #Spectra
947 947 data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1]
948 948
949 949 data_cspc = None
950 950 if self.dataOut.data_cspc != None:
951 951 data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1]
952 952
953 953 data_dc = None
954 954 if self.dataOut.data_dc != None:
955 955 data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1]
956 956
957 957 self.dataOut.data_spc = data_spc
958 958 self.dataOut.data_cspc = data_cspc
959 959 self.dataOut.data_dc = data_dc
960 960
961 961 self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1]
962 962
963 963 return 1
964 964
965 965 def removeDC(self, mode = 1):
966 966
967 967 dc_index = 0
968 968 freq_index = numpy.array([-2,-1,1,2])
969 969 data_spc = self.dataOut.data_spc
970 970 data_cspc = self.dataOut.data_cspc
971 971 data_dc = self.dataOut.data_dc
972 972
973 973 if self.dataOut.flagShiftFFT:
974 974 dc_index += self.dataOut.nFFTPoints/2
975 975 freq_index += self.dataOut.nFFTPoints/2
976 976
977 977 if mode == 1:
978 978 data_spc[dc_index] = (data_spc[:,freq_index[1],:] + data_spc[:,freq_index[2],:])/2
979 979 if data_cspc != None:
980 980 data_cspc[dc_index] = (data_cspc[:,freq_index[1],:] + data_cspc[:,freq_index[2],:])/2
981 981 return 1
982 982
983 983 if mode == 2:
984 984 pass
985 985
986 986 if mode == 3:
987 987 pass
988 988
989 989 raise ValueError, "mode parameter has to be 1, 2 or 3"
990 990
991 991 def removeInterference(self):
992 992
993 993 pass
994 994
995 995 def setRadarFrequency(self, frequency=None):
996 996 if frequency != None:
997 997 self.dataOut.frequency = frequency
998 998
999 999 return 1
1000 1000
1001 1001
1002 1002 class IncohInt(Operation):
1003 1003
1004 1004
1005 1005 __profIndex = 0
1006 1006 __withOverapping = False
1007 1007
1008 1008 __byTime = False
1009 1009 __initime = None
1010 1010 __lastdatatime = None
1011 1011 __integrationtime = None
1012 1012
1013 1013 __buffer_spc = None
1014 1014 __buffer_cspc = None
1015 1015 __buffer_dc = None
1016 1016
1017 1017 __dataReady = False
1018 1018
1019 1019 __timeInterval = None
1020 1020
1021 1021 n = None
1022 1022
1023 1023
1024 1024
1025 1025 def __init__(self):
1026 1026
1027 1027 self.__isConfig = False
1028 1028
1029 1029 def setup(self, n=None, timeInterval=None, overlapping=False):
1030 1030 """
1031 1031 Set the parameters of the integration class.
1032 1032
1033 1033 Inputs:
1034 1034
1035 1035 n : Number of coherent integrations
1036 1036 timeInterval : Time of integration. If the parameter "n" is selected this one does not work
1037 1037 overlapping :
1038 1038
1039 1039 """
1040 1040
1041 1041 self.__initime = None
1042 1042 self.__lastdatatime = 0
1043 1043 self.__buffer_spc = None
1044 1044 self.__buffer_cspc = None
1045 1045 self.__buffer_dc = None
1046 1046 self.__dataReady = False
1047 1047
1048 1048
1049 1049 if n == None and timeInterval == None:
1050 1050 raise ValueError, "n or timeInterval should be specified ..."
1051 1051
1052 1052 if n != None:
1053 1053 self.n = n
1054 1054 self.__byTime = False
1055 1055 else:
1056 1056 self.__integrationtime = timeInterval #if (type(timeInterval)!=integer) -> change this line
1057 1057 self.n = 9999
1058 1058 self.__byTime = True
1059 1059
1060 1060 if overlapping:
1061 1061 self.__withOverapping = True
1062 1062 else:
1063 1063 self.__withOverapping = False
1064 1064 self.__buffer_spc = 0
1065 1065 self.__buffer_cspc = 0
1066 1066 self.__buffer_dc = 0
1067 1067
1068 1068 self.__profIndex = 0
1069 1069
1070 1070 def putData(self, data_spc, data_cspc, data_dc):
1071 1071
1072 1072 """
1073 1073 Add a profile to the __buffer_spc and increase in one the __profileIndex
1074 1074
1075 1075 """
1076 1076
1077 1077 if not self.__withOverapping:
1078 1078 self.__buffer_spc += data_spc
1079 1079
1080 1080 if data_cspc == None:
1081 1081 self.__buffer_cspc = None
1082 1082 else:
1083 1083 self.__buffer_cspc += data_cspc
1084 1084
1085 1085 if data_dc == None:
1086 1086 self.__buffer_dc = None
1087 1087 else:
1088 1088 self.__buffer_dc += data_dc
1089 1089
1090 1090 self.__profIndex += 1
1091 1091 return
1092 1092
1093 1093 #Overlapping data
1094 1094 nChannels, nFFTPoints, nHeis = data_spc.shape
1095 1095 data_spc = numpy.reshape(data_spc, (1, nChannels, nFFTPoints, nHeis))
1096 1096 if data_cspc != None:
1097 1097 data_cspc = numpy.reshape(data_cspc, (1, -1, nFFTPoints, nHeis))
1098 1098 if data_dc != None:
1099 1099 data_dc = numpy.reshape(data_dc, (1, -1, nHeis))
1100 1100
1101 1101 #If the buffer is empty then it takes the data value
1102 1102 if self.__buffer_spc == None:
1103 1103 self.__buffer_spc = data_spc
1104 1104
1105 1105 if data_cspc == None:
1106 1106 self.__buffer_cspc = None
1107 1107 else:
1108 1108 self.__buffer_cspc += data_cspc
1109 1109
1110 1110 if data_dc == None:
1111 1111 self.__buffer_dc = None
1112 1112 else:
1113 1113 self.__buffer_dc += data_dc
1114 1114
1115 1115 self.__profIndex += 1
1116 1116 return
1117 1117
1118 1118 #If the buffer length is lower than n then stakcing the data value
1119 1119 if self.__profIndex < self.n:
1120 1120 self.__buffer_spc = numpy.vstack((self.__buffer_spc, data_spc))
1121 1121
1122 1122 if data_cspc != None:
1123 1123 self.__buffer_cspc = numpy.vstack((self.__buffer_cspc, data_cspc))
1124 1124
1125 1125 if data_dc != None:
1126 1126 self.__buffer_dc = numpy.vstack((self.__buffer_dc, data_dc))
1127 1127
1128 1128 self.__profIndex += 1
1129 1129 return
1130 1130
1131 1131 #If the buffer length is equal to n then replacing the last buffer value with the data value
1132 1132 self.__buffer_spc = numpy.roll(self.__buffer_spc, -1, axis=0)
1133 1133 self.__buffer_spc[self.n-1] = data_spc
1134 1134
1135 1135 if data_cspc != None:
1136 1136 self.__buffer_cspc = numpy.roll(self.__buffer_cspc, -1, axis=0)
1137 1137 self.__buffer_cspc[self.n-1] = data_cspc
1138 1138
1139 1139 if data_dc != None:
1140 1140 self.__buffer_dc = numpy.roll(self.__buffer_dc, -1, axis=0)
1141 1141 self.__buffer_dc[self.n-1] = data_dc
1142 1142
1143 1143 self.__profIndex = self.n
1144 1144 return
1145 1145
1146 1146
1147 1147 def pushData(self):
1148 1148 """
1149 1149 Return the sum of the last profiles and the profiles used in the sum.
1150 1150
1151 1151 Affected:
1152 1152
1153 1153 self.__profileIndex
1154 1154
1155 1155 """
1156 1156 data_spc = None
1157 1157 data_cspc = None
1158 1158 data_dc = None
1159 1159
1160 1160 if not self.__withOverapping:
1161 1161 data_spc = self.__buffer_spc
1162 1162 data_cspc = self.__buffer_cspc
1163 1163 data_dc = self.__buffer_dc
1164 1164
1165 1165 n = self.__profIndex
1166 1166
1167 1167 self.__buffer_spc = 0
1168 1168 self.__buffer_cspc = 0
1169 1169 self.__buffer_dc = 0
1170 1170 self.__profIndex = 0
1171 1171
1172 1172 return data_spc, data_cspc, data_dc, n
1173 1173
1174 1174 #Integration with Overlapping
1175 1175 data_spc = numpy.sum(self.__buffer_spc, axis=0)
1176 1176
1177 1177 if self.__buffer_cspc != None:
1178 1178 data_cspc = numpy.sum(self.__buffer_cspc, axis=0)
1179 1179
1180 1180 if self.__buffer_dc != None:
1181 1181 data_dc = numpy.sum(self.__buffer_dc, axis=0)
1182 1182
1183 1183 n = self.__profIndex
1184 1184
1185 1185 return data_spc, data_cspc, data_dc, n
1186 1186
1187 1187 def byProfiles(self, *args):
1188 1188
1189 1189 self.__dataReady = False
1190 1190 avgdata_spc = None
1191 1191 avgdata_cspc = None
1192 1192 avgdata_dc = None
1193 1193 n = None
1194 1194
1195 1195 self.putData(*args)
1196 1196
1197 1197 if self.__profIndex == self.n:
1198 1198
1199 1199 avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
1200 1200 self.__dataReady = True
1201 1201
1202 1202 return avgdata_spc, avgdata_cspc, avgdata_dc
1203 1203
1204 1204 def byTime(self, datatime, *args):
1205 1205
1206 1206 self.__dataReady = False
1207 1207 avgdata_spc = None
1208 1208 avgdata_cspc = None
1209 1209 avgdata_dc = None
1210 1210 n = None
1211 1211
1212 1212 self.putData(*args)
1213 1213
1214 1214 if (datatime - self.__initime) >= self.__integrationtime:
1215 1215 avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
1216 1216 self.n = n
1217 1217 self.__dataReady = True
1218 1218
1219 1219 return avgdata_spc, avgdata_cspc, avgdata_dc
1220 1220
1221 1221 def integrate(self, datatime, *args):
1222 1222
1223 1223 if self.__initime == None:
1224 1224 self.__initime = datatime
1225 1225
1226 1226 if self.__byTime:
1227 1227 avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args)
1228 1228 else:
1229 1229 avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args)
1230 1230
1231 1231 self.__lastdatatime = datatime
1232 1232
1233 1233 if avgdata_spc == None:
1234 1234 return None, None, None, None
1235 1235
1236 1236 avgdatatime = self.__initime
1237 1237 try:
1238 1238 self.__timeInterval = (self.__lastdatatime - self.__initime)/(self.n - 1)
1239 1239 except:
1240 1240 self.__timeInterval = self.__lastdatatime - self.__initime
1241 1241
1242 1242 deltatime = datatime -self.__lastdatatime
1243 1243
1244 1244 if not self.__withOverapping:
1245 1245 self.__initime = datatime
1246 1246 else:
1247 1247 self.__initime += deltatime
1248 1248
1249 1249 return avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc
1250 1250
1251 1251 def run(self, dataOut, n=None, timeInterval=None, overlapping=False):
1252 1252
1253 1253 if n==1:
1254 1254 dataOut.flagNoData = False
1255 1255 return
1256 1256
1257 1257 if not self.__isConfig:
1258 1258 self.setup(n, timeInterval, overlapping)
1259 1259 self.__isConfig = True
1260 1260
1261 1261 avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime,
1262 1262 dataOut.data_spc,
1263 1263 dataOut.data_cspc,
1264 1264 dataOut.data_dc)
1265 1265
1266 1266 # dataOut.timeInterval *= n
1267 1267 dataOut.flagNoData = True
1268 1268
1269 1269 if self.__dataReady:
1270 1270
1271 1271 dataOut.data_spc = avgdata_spc
1272 1272 dataOut.data_cspc = avgdata_cspc
1273 1273 dataOut.data_dc = avgdata_dc
1274 1274
1275 1275 dataOut.nIncohInt *= self.n
1276 1276 dataOut.utctime = avgdatatime
1277 1277 #dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt * dataOut.nIncohInt * dataOut.nFFTPoints
1278 1278 dataOut.timeInterval = self.__timeInterval*self.n
1279 1279 dataOut.flagNoData = False
1280 1280
1281 1281 class ProfileConcat(Operation):
1282 1282
1283 1283 __isConfig = False
1284 1284 buffer = None
1285 1285
1286 1286 def __init__(self):
1287 1287
1288 1288 self.profileIndex = 0
1289 1289
1290 1290 def reset(self):
1291 1291 self.buffer = numpy.zeros_like(self.buffer)
1292 1292 self.start_index = 0
1293 1293 self.times = 1
1294 1294
1295 1295 def setup(self, data, m, n=1):
1296 1296 self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0]))
1297 1297 self.profiles = data.shape[1]
1298 1298 self.start_index = 0
1299 1299 self.times = 1
1300 1300
1301 1301 def concat(self, data):
1302 1302
1303 1303 self.buffer[:,self.start_index:self.profiles*self.times] = data.copy()
1304 1304 self.start_index = self.start_index + self.profiles
1305 1305
1306 1306 def run(self, dataOut, m):
1307 1307
1308 1308 dataOut.flagNoData = True
1309 1309
1310 1310 if not self.__isConfig:
1311 1311 self.setup(dataOut.data, m, 1)
1312 1312 self.__isConfig = True
1313 1313
1314 1314 self.concat(dataOut.data)
1315 1315 self.times += 1
1316 1316 if self.times > m:
1317 1317 dataOut.data = self.buffer
1318 1318 self.reset()
1319 1319 dataOut.flagNoData = False
1320 1320 # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas
1321 1321 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1322 1322 xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * 5
1323 1323 dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight)
1324 1324
1325 1325
1326 1326
1327 1327 class ProfileSelector(Operation):
1328 1328
1329 1329 profileIndex = None
1330 1330 # Tamanho total de los perfiles
1331 1331 nProfiles = None
1332 1332
1333 1333 def __init__(self):
1334 1334
1335 1335 self.profileIndex = 0
1336 1336
1337 1337 def incIndex(self):
1338 1338 self.profileIndex += 1
1339 1339
1340 1340 if self.profileIndex >= self.nProfiles:
1341 1341 self.profileIndex = 0
1342 1342
1343 1343 def isProfileInRange(self, minIndex, maxIndex):
1344 1344
1345 1345 if self.profileIndex < minIndex:
1346 1346 return False
1347 1347
1348 1348 if self.profileIndex > maxIndex:
1349 1349 return False
1350 1350
1351 1351 return True
1352 1352
1353 1353 def isProfileInList(self, profileList):
1354 1354
1355 1355 if self.profileIndex not in profileList:
1356 1356 return False
1357 1357
1358 1358 return True
1359 1359
1360 1360 def run(self, dataOut, profileList=None, profileRangeList=None):
1361 1361
1362 1362 dataOut.flagNoData = True
1363 1363 self.nProfiles = dataOut.nProfiles
1364 1364
1365 1365 if profileList != None:
1366 1366 if self.isProfileInList(profileList):
1367 1367 dataOut.flagNoData = False
1368 1368
1369 1369 self.incIndex()
1370 1370 return 1
1371 1371
1372 1372
1373 1373 elif profileRangeList != None:
1374 1374 minIndex = profileRangeList[0]
1375 1375 maxIndex = profileRangeList[1]
1376 1376 if self.isProfileInRange(minIndex, maxIndex):
1377 1377 dataOut.flagNoData = False
1378 1378
1379 1379 self.incIndex()
1380 1380 return 1
1381 1381
1382 1382 else:
1383 1383 raise ValueError, "ProfileSelector needs profileList or profileRangeList"
1384 1384
1385 1385 return 0
1386 1386
1387 1387 class SpectraHeisProc(ProcessingUnit):
1388 1388 def __init__(self):
1389 1389 self.objectDict = {}
1390 1390 # self.buffer = None
1391 1391 # self.firstdatatime = None
1392 1392 # self.profIndex = 0
1393 1393 self.dataOut = SpectraHeis()
1394 1394
1395 1395 def __updateObjFromInput(self):
1396 1396 self.dataOut.timeZone = self.dataIn.timeZone
1397 1397 self.dataOut.dstFlag = self.dataIn.dstFlag
1398 1398 self.dataOut.errorCount = self.dataIn.errorCount
1399 1399 self.dataOut.useLocalTime = self.dataIn.useLocalTime
1400 1400
1401 1401 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()#
1402 1402 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()#
1403 1403 self.dataOut.channelList = self.dataIn.channelList
1404 1404 self.dataOut.heightList = self.dataIn.heightList
1405 1405 # self.dataOut.dtype = self.dataIn.dtype
1406 1406 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
1407 1407 # self.dataOut.nHeights = self.dataIn.nHeights
1408 1408 # self.dataOut.nChannels = self.dataIn.nChannels
1409 1409 self.dataOut.nBaud = self.dataIn.nBaud
1410 1410 self.dataOut.nCode = self.dataIn.nCode
1411 1411 self.dataOut.code = self.dataIn.code
1412 1412 # self.dataOut.nProfiles = 1
1413 1413 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
1414 1414 self.dataOut.nFFTPoints = self.dataIn.nHeights
1415 1415 # self.dataOut.channelIndexList = self.dataIn.channelIndexList
1416 1416 # self.dataOut.flagNoData = self.dataIn.flagNoData
1417 1417 self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock
1418 1418 self.dataOut.utctime = self.dataIn.utctime
1419 1419 # self.dataOut.utctime = self.firstdatatime
1420 1420 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
1421 1421 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
1422 1422 # self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT
1423 1423 self.dataOut.nCohInt = self.dataIn.nCohInt
1424 1424 self.dataOut.nIncohInt = 1
1425 1425 self.dataOut.ippSeconds= self.dataIn.ippSeconds
1426 1426 self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
1427 1427
1428 1428 self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nIncohInt
1429 1429 # self.dataOut.set=self.dataIn.set
1430 1430 # self.dataOut.deltaHeight=self.dataIn.deltaHeight
1431 1431
1432 1432
1433 def __updateObjFromFits(self):
1434 self.dataOut.utctime = self.dataIn.utctime
1435 self.dataOut.channelIndexList = self.dataIn.channelIndexList
1436
1437 self.dataOut.channelList = self.dataIn.channelList
1438 self.dataOut.heightList = self.dataIn.heightList
1439 self.dataOut.data_spc = self.dataIn.data
1440 self.dataOut.timeInterval = self.dataIn.timeInterval
1441 self.dataOut.timeZone = self.dataIn.timeZone
1442 self.dataOut.useLocalTime = True
1443 # self.dataOut.
1444 # self.dataOut.
1445
1433 1446 def __getFft(self):
1434 1447
1435 1448 fft_volt = numpy.fft.fft(self.dataIn.data, axis=1)
1436 1449 fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,))
1437 1450 spc = numpy.abs(fft_volt * numpy.conjugate(fft_volt))/(self.dataOut.nFFTPoints)
1438 1451 self.dataOut.data_spc = spc
1439 1452
1440 1453 def init(self):
1441 1454
1442 1455 self.dataOut.flagNoData = True
1443 1456
1457 if self.dataIn.type == "Fits":
1458 self.__updateObjFromFits()
1459 self.dataOut.flagNoData = False
1460 return
1461
1444 1462 if self.dataIn.type == "SpectraHeis":
1445 1463 self.dataOut.copy(self.dataIn)
1446 1464 return
1447 1465
1448 1466 if self.dataIn.type == "Voltage":
1449 1467 self.__updateObjFromInput()
1450 1468 self.__getFft()
1451 1469 self.dataOut.flagNoData = False
1452 1470
1453 1471 return
1454 1472
1455 1473 raise ValuError, "The type object %s is not valid"%(self.dataIn.type)
1456 1474
1457 1475
1458 1476 def selectChannels(self, channelList):
1459 1477
1460 1478 channelIndexList = []
1461 1479
1462 1480 for channel in channelList:
1463 1481 index = self.dataOut.channelList.index(channel)
1464 1482 channelIndexList.append(index)
1465 1483
1466 1484 self.selectChannelsByIndex(channelIndexList)
1467 1485
1468 1486 def selectChannelsByIndex(self, channelIndexList):
1469 1487 """
1470 1488 Selecciona un bloque de datos en base a canales segun el channelIndexList
1471 1489
1472 1490 Input:
1473 1491 channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
1474 1492
1475 1493 Affected:
1476 1494 self.dataOut.data
1477 1495 self.dataOut.channelIndexList
1478 1496 self.dataOut.nChannels
1479 1497 self.dataOut.m_ProcessingHeader.totalSpectra
1480 1498 self.dataOut.systemHeaderObj.numChannels
1481 1499 self.dataOut.m_ProcessingHeader.blockSize
1482 1500
1483 1501 Return:
1484 1502 None
1485 1503 """
1486 1504
1487 1505 for channelIndex in channelIndexList:
1488 1506 if channelIndex not in self.dataOut.channelIndexList:
1489 1507 print channelIndexList
1490 1508 raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
1491 1509
1492 1510 nChannels = len(channelIndexList)
1493 1511
1494 1512 data_spc = self.dataOut.data_spc[channelIndexList,:]
1495 1513
1496 1514 self.dataOut.data_spc = data_spc
1497 1515 self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
1498 1516
1499 1517 return 1
1500 1518
1501 1519 class IncohInt4SpectraHeis(Operation):
1502 1520
1503 1521 __isConfig = False
1504 1522
1505 1523 __profIndex = 0
1506 1524 __withOverapping = False
1507 1525
1508 1526 __byTime = False
1509 1527 __initime = None
1510 1528 __lastdatatime = None
1511 1529 __integrationtime = None
1512 1530
1513 1531 __buffer = None
1514 1532
1515 1533 __dataReady = False
1516 1534
1517 1535 n = None
1518 1536
1519 1537
1520 1538 def __init__(self):
1521 1539
1522 1540 self.__isConfig = False
1523 1541
1524 1542 def setup(self, n=None, timeInterval=None, overlapping=False):
1525 1543 """
1526 1544 Set the parameters of the integration class.
1527 1545
1528 1546 Inputs:
1529 1547
1530 1548 n : Number of coherent integrations
1531 1549 timeInterval : Time of integration. If the parameter "n" is selected this one does not work
1532 1550 overlapping :
1533 1551
1534 1552 """
1535 1553
1536 1554 self.__initime = None
1537 1555 self.__lastdatatime = 0
1538 1556 self.__buffer = None
1539 1557 self.__dataReady = False
1540 1558
1541 1559
1542 1560 if n == None and timeInterval == None:
1543 1561 raise ValueError, "n or timeInterval should be specified ..."
1544 1562
1545 1563 if n != None:
1546 1564 self.n = n
1547 1565 self.__byTime = False
1548 1566 else:
1549 1567 self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line
1550 1568 self.n = 9999
1551 1569 self.__byTime = True
1552 1570
1553 1571 if overlapping:
1554 1572 self.__withOverapping = True
1555 1573 self.__buffer = None
1556 1574 else:
1557 1575 self.__withOverapping = False
1558 1576 self.__buffer = 0
1559 1577
1560 1578 self.__profIndex = 0
1561 1579
1562 1580 def putData(self, data):
1563 1581
1564 1582 """
1565 1583 Add a profile to the __buffer and increase in one the __profileIndex
1566 1584
1567 1585 """
1568 1586
1569 1587 if not self.__withOverapping:
1570 1588 self.__buffer += data.copy()
1571 1589 self.__profIndex += 1
1572 1590 return
1573 1591
1574 1592 #Overlapping data
1575 1593 nChannels, nHeis = data.shape
1576 1594 data = numpy.reshape(data, (1, nChannels, nHeis))
1577 1595
1578 1596 #If the buffer is empty then it takes the data value
1579 1597 if self.__buffer == None:
1580 1598 self.__buffer = data
1581 1599 self.__profIndex += 1
1582 1600 return
1583 1601
1584 1602 #If the buffer length is lower than n then stakcing the data value
1585 1603 if self.__profIndex < self.n:
1586 1604 self.__buffer = numpy.vstack((self.__buffer, data))
1587 1605 self.__profIndex += 1
1588 1606 return
1589 1607
1590 1608 #If the buffer length is equal to n then replacing the last buffer value with the data value
1591 1609 self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
1592 1610 self.__buffer[self.n-1] = data
1593 1611 self.__profIndex = self.n
1594 1612 return
1595 1613
1596 1614
1597 1615 def pushData(self):
1598 1616 """
1599 1617 Return the sum of the last profiles and the profiles used in the sum.
1600 1618
1601 1619 Affected:
1602 1620
1603 1621 self.__profileIndex
1604 1622
1605 1623 """
1606 1624
1607 1625 if not self.__withOverapping:
1608 1626 data = self.__buffer
1609 1627 n = self.__profIndex
1610 1628
1611 1629 self.__buffer = 0
1612 1630 self.__profIndex = 0
1613 1631
1614 1632 return data, n
1615 1633
1616 1634 #Integration with Overlapping
1617 1635 data = numpy.sum(self.__buffer, axis=0)
1618 1636 n = self.__profIndex
1619 1637
1620 1638 return data, n
1621 1639
1622 1640 def byProfiles(self, data):
1623 1641
1624 1642 self.__dataReady = False
1625 1643 avgdata = None
1626 1644 n = None
1627 1645
1628 1646 self.putData(data)
1629 1647
1630 1648 if self.__profIndex == self.n:
1631 1649
1632 1650 avgdata, n = self.pushData()
1633 1651 self.__dataReady = True
1634 1652
1635 1653 return avgdata
1636 1654
1637 1655 def byTime(self, data, datatime):
1638 1656
1639 1657 self.__dataReady = False
1640 1658 avgdata = None
1641 1659 n = None
1642 1660
1643 1661 self.putData(data)
1644 1662
1645 1663 if (datatime - self.__initime) >= self.__integrationtime:
1646 1664 avgdata, n = self.pushData()
1647 1665 self.n = n
1648 1666 self.__dataReady = True
1649 1667
1650 1668 return avgdata
1651 1669
1652 1670 def integrate(self, data, datatime=None):
1653 1671
1654 1672 if self.__initime == None:
1655 1673 self.__initime = datatime
1656 1674
1657 1675 if self.__byTime:
1658 1676 avgdata = self.byTime(data, datatime)
1659 1677 else:
1660 1678 avgdata = self.byProfiles(data)
1661 1679
1662 1680
1663 1681 self.__lastdatatime = datatime
1664 1682
1665 1683 if avgdata == None:
1666 1684 return None, None
1667 1685
1668 1686 avgdatatime = self.__initime
1669 1687
1670 1688 deltatime = datatime -self.__lastdatatime
1671 1689
1672 1690 if not self.__withOverapping:
1673 1691 self.__initime = datatime
1674 1692 else:
1675 1693 self.__initime += deltatime
1676 1694
1677 1695 return avgdata, avgdatatime
1678 1696
1679 1697 def run(self, dataOut, **kwargs):
1680 1698
1681 1699 if not self.__isConfig:
1682 1700 self.setup(**kwargs)
1683 1701 self.__isConfig = True
1684 1702
1685 1703 avgdata, avgdatatime = self.integrate(dataOut.data_spc, dataOut.utctime)
1686 1704
1687 1705 # dataOut.timeInterval *= n
1688 1706 dataOut.flagNoData = True
1689 1707
1690 1708 if self.__dataReady:
1691 1709 dataOut.data_spc = avgdata
1692 1710 dataOut.nIncohInt *= self.n
1693 1711 # dataOut.nCohInt *= self.n
1694 1712 dataOut.utctime = avgdatatime
1695 1713 dataOut.timeInterval = dataOut.ippSeconds * dataOut.nIncohInt
1696 1714 # dataOut.timeInterval = self.__timeInterval*self.n
1697 1715 dataOut.flagNoData = False
1698 1716
1699 1717
1700 1718
1701 1719
1702 1720 No newline at end of file
General Comments 0
You need to be logged in to leave comments. Login now