@@ -1,1216 +1,1218 | |||||
1 | ''' |
|
1 | ''' | |
2 |
|
2 | |||
3 | $Author: murco $ |
|
3 | $Author: murco $ | |
4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | import copy |
|
7 | import copy | |
8 | import numpy |
|
8 | import numpy | |
9 | import datetime |
|
9 | import datetime | |
10 |
|
10 | |||
11 | from jroheaderIO import SystemHeader, RadarControllerHeader |
|
11 | from jroheaderIO import SystemHeader, RadarControllerHeader | |
12 | from schainpy import cSchain |
|
12 | from schainpy import cSchain | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | def getNumpyDtype(dataTypeCode): |
|
15 | def getNumpyDtype(dataTypeCode): | |
16 |
|
16 | |||
17 | if dataTypeCode == 0: |
|
17 | if dataTypeCode == 0: | |
18 | numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')]) |
|
18 | numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')]) | |
19 | elif dataTypeCode == 1: |
|
19 | elif dataTypeCode == 1: | |
20 | numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')]) |
|
20 | numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')]) | |
21 | elif dataTypeCode == 2: |
|
21 | elif dataTypeCode == 2: | |
22 | numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')]) |
|
22 | numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')]) | |
23 | elif dataTypeCode == 3: |
|
23 | elif dataTypeCode == 3: | |
24 | numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')]) |
|
24 | numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')]) | |
25 | elif dataTypeCode == 4: |
|
25 | elif dataTypeCode == 4: | |
26 | numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
26 | numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
27 | elif dataTypeCode == 5: |
|
27 | elif dataTypeCode == 5: | |
28 | numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')]) |
|
28 | numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')]) | |
29 | else: |
|
29 | else: | |
30 | raise ValueError, 'dataTypeCode was not defined' |
|
30 | raise ValueError, 'dataTypeCode was not defined' | |
31 |
|
31 | |||
32 | return numpyDtype |
|
32 | return numpyDtype | |
33 |
|
33 | |||
34 | def getDataTypeCode(numpyDtype): |
|
34 | def getDataTypeCode(numpyDtype): | |
35 |
|
35 | |||
36 | if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]): |
|
36 | if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]): | |
37 | datatype = 0 |
|
37 | datatype = 0 | |
38 | elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]): |
|
38 | elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]): | |
39 | datatype = 1 |
|
39 | datatype = 1 | |
40 | elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]): |
|
40 | elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]): | |
41 | datatype = 2 |
|
41 | datatype = 2 | |
42 | elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]): |
|
42 | elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]): | |
43 | datatype = 3 |
|
43 | datatype = 3 | |
44 | elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]): |
|
44 | elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]): | |
45 | datatype = 4 |
|
45 | datatype = 4 | |
46 | elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]): |
|
46 | elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]): | |
47 | datatype = 5 |
|
47 | datatype = 5 | |
48 | else: |
|
48 | else: | |
49 | datatype = None |
|
49 | datatype = None | |
50 |
|
50 | |||
51 | return datatype |
|
51 | return datatype | |
52 |
|
52 | |||
53 | def hildebrand_sekhon(data, navg): |
|
53 | def hildebrand_sekhon(data, navg): | |
54 | """ |
|
54 | """ | |
55 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
55 | This method is for the objective determination of the noise level in Doppler spectra. This | |
56 | implementation technique is based on the fact that the standard deviation of the spectral |
|
56 | implementation technique is based on the fact that the standard deviation of the spectral | |
57 | densities is equal to the mean spectral density for white Gaussian noise |
|
57 | densities is equal to the mean spectral density for white Gaussian noise | |
58 |
|
58 | |||
59 | Inputs: |
|
59 | Inputs: | |
60 | Data : heights |
|
60 | Data : heights | |
61 | navg : numbers of averages |
|
61 | navg : numbers of averages | |
62 |
|
62 | |||
63 | Return: |
|
63 | Return: | |
64 | -1 : any error |
|
64 | -1 : any error | |
65 | anoise : noise's level |
|
65 | anoise : noise's level | |
66 | """ |
|
66 | """ | |
67 |
|
67 | |||
68 | sortdata = numpy.sort(data,axis=None) |
|
68 | sortdata = numpy.sort(data,axis=None) | |
69 | # lenOfData = len(sortdata) |
|
69 | # lenOfData = len(sortdata) | |
70 | # nums_min = lenOfData*0.2 |
|
70 | # nums_min = lenOfData*0.2 | |
71 | # |
|
71 | # | |
72 | # if nums_min <= 5: |
|
72 | # if nums_min <= 5: | |
73 | # nums_min = 5 |
|
73 | # nums_min = 5 | |
74 | # |
|
74 | # | |
75 | # sump = 0. |
|
75 | # sump = 0. | |
76 | # |
|
76 | # | |
77 | # sumq = 0. |
|
77 | # sumq = 0. | |
78 | # |
|
78 | # | |
79 | # j = 0 |
|
79 | # j = 0 | |
80 | # |
|
80 | # | |
81 | # cont = 1 |
|
81 | # cont = 1 | |
82 | # |
|
82 | # | |
83 | # while((cont==1)and(j<lenOfData)): |
|
83 | # while((cont==1)and(j<lenOfData)): | |
84 | # |
|
84 | # | |
85 | # sump += sortdata[j] |
|
85 | # sump += sortdata[j] | |
86 | # |
|
86 | # | |
87 | # sumq += sortdata[j]**2 |
|
87 | # sumq += sortdata[j]**2 | |
88 | # |
|
88 | # | |
89 | # if j > nums_min: |
|
89 | # if j > nums_min: | |
90 | # rtest = float(j)/(j-1) + 1.0/navg |
|
90 | # rtest = float(j)/(j-1) + 1.0/navg | |
91 | # if ((sumq*j) > (rtest*sump**2)): |
|
91 | # if ((sumq*j) > (rtest*sump**2)): | |
92 | # j = j - 1 |
|
92 | # j = j - 1 | |
93 | # sump = sump - sortdata[j] |
|
93 | # sump = sump - sortdata[j] | |
94 | # sumq = sumq - sortdata[j]**2 |
|
94 | # sumq = sumq - sortdata[j]**2 | |
95 | # cont = 0 |
|
95 | # cont = 0 | |
96 | # |
|
96 | # | |
97 | # j += 1 |
|
97 | # j += 1 | |
98 | # |
|
98 | # | |
99 | # lnoise = sump /j |
|
99 | # lnoise = sump /j | |
100 | # |
|
100 | # | |
101 | # return lnoise |
|
101 | # return lnoise | |
102 |
|
102 | |||
103 | return cSchain.hildebrand_sekhon(sortdata, navg) |
|
103 | return cSchain.hildebrand_sekhon(sortdata, navg) | |
104 |
|
104 | |||
105 |
|
105 | |||
106 | class Beam: |
|
106 | class Beam: | |
107 |
|
107 | |||
108 | def __init__(self): |
|
108 | def __init__(self): | |
109 | self.codeList = [] |
|
109 | self.codeList = [] | |
110 | self.azimuthList = [] |
|
110 | self.azimuthList = [] | |
111 | self.zenithList = [] |
|
111 | self.zenithList = [] | |
112 |
|
112 | |||
113 | class GenericData(object): |
|
113 | class GenericData(object): | |
114 |
|
114 | |||
115 | flagNoData = True |
|
115 | flagNoData = True | |
116 |
|
116 | |||
117 | def __init__(self): |
|
117 | def __init__(self): | |
118 |
|
118 | |||
119 | raise NotImplementedError |
|
119 | raise NotImplementedError | |
120 |
|
120 | |||
121 | def copy(self, inputObj=None): |
|
121 | def copy(self, inputObj=None): | |
122 |
|
122 | |||
123 | if inputObj == None: |
|
123 | if inputObj == None: | |
124 | return copy.deepcopy(self) |
|
124 | return copy.deepcopy(self) | |
125 |
|
125 | |||
126 | for key in inputObj.__dict__.keys(): |
|
126 | for key in inputObj.__dict__.keys(): | |
127 |
|
127 | |||
128 | attribute = inputObj.__dict__[key] |
|
128 | attribute = inputObj.__dict__[key] | |
129 |
|
129 | |||
130 | #If this attribute is a tuple or list |
|
130 | #If this attribute is a tuple or list | |
131 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
131 | if type(inputObj.__dict__[key]) in (tuple, list): | |
132 | self.__dict__[key] = attribute[:] |
|
132 | self.__dict__[key] = attribute[:] | |
133 | continue |
|
133 | continue | |
134 |
|
134 | |||
135 | #If this attribute is another object or instance |
|
135 | #If this attribute is another object or instance | |
136 | if hasattr(attribute, '__dict__'): |
|
136 | if hasattr(attribute, '__dict__'): | |
137 | self.__dict__[key] = attribute.copy() |
|
137 | self.__dict__[key] = attribute.copy() | |
138 | continue |
|
138 | continue | |
139 |
|
139 | |||
140 | self.__dict__[key] = inputObj.__dict__[key] |
|
140 | self.__dict__[key] = inputObj.__dict__[key] | |
141 |
|
141 | |||
142 | def deepcopy(self): |
|
142 | def deepcopy(self): | |
143 |
|
143 | |||
144 | return copy.deepcopy(self) |
|
144 | return copy.deepcopy(self) | |
145 |
|
145 | |||
146 | def isEmpty(self): |
|
146 | def isEmpty(self): | |
147 |
|
147 | |||
148 | return self.flagNoData |
|
148 | return self.flagNoData | |
149 |
|
149 | |||
150 | class JROData(GenericData): |
|
150 | class JROData(GenericData): | |
151 |
|
151 | |||
152 | # m_BasicHeader = BasicHeader() |
|
152 | # m_BasicHeader = BasicHeader() | |
153 | # m_ProcessingHeader = ProcessingHeader() |
|
153 | # m_ProcessingHeader = ProcessingHeader() | |
154 |
|
154 | |||
155 | systemHeaderObj = SystemHeader() |
|
155 | systemHeaderObj = SystemHeader() | |
156 |
|
156 | |||
157 | radarControllerHeaderObj = RadarControllerHeader() |
|
157 | radarControllerHeaderObj = RadarControllerHeader() | |
158 |
|
158 | |||
159 | # data = None |
|
159 | # data = None | |
160 |
|
160 | |||
161 | type = None |
|
161 | type = None | |
162 |
|
162 | |||
163 | datatype = None #dtype but in string |
|
163 | datatype = None #dtype but in string | |
164 |
|
164 | |||
165 | # dtype = None |
|
165 | # dtype = None | |
166 |
|
166 | |||
167 | # nChannels = None |
|
167 | # nChannels = None | |
168 |
|
168 | |||
169 | # nHeights = None |
|
169 | # nHeights = None | |
170 |
|
170 | |||
171 | nProfiles = None |
|
171 | nProfiles = None | |
172 |
|
172 | |||
173 | heightList = None |
|
173 | heightList = None | |
174 |
|
174 | |||
175 | channelList = None |
|
175 | channelList = None | |
176 |
|
176 | |||
177 | flagDiscontinuousBlock = False |
|
177 | flagDiscontinuousBlock = False | |
178 |
|
178 | |||
179 | useLocalTime = False |
|
179 | useLocalTime = False | |
180 |
|
180 | |||
181 | utctime = None |
|
181 | utctime = None | |
182 |
|
182 | |||
183 | timeZone = None |
|
183 | timeZone = None | |
184 |
|
184 | |||
185 | dstFlag = None |
|
185 | dstFlag = None | |
186 |
|
186 | |||
187 | errorCount = None |
|
187 | errorCount = None | |
188 |
|
188 | |||
189 | blocksize = None |
|
189 | blocksize = None | |
190 |
|
190 | |||
191 | # nCode = None |
|
191 | # nCode = None | |
192 | # |
|
192 | # | |
193 | # nBaud = None |
|
193 | # nBaud = None | |
194 | # |
|
194 | # | |
195 | # code = None |
|
195 | # code = None | |
196 |
|
196 | |||
197 | flagDecodeData = False #asumo q la data no esta decodificada |
|
197 | flagDecodeData = False #asumo q la data no esta decodificada | |
198 |
|
198 | |||
199 | flagDeflipData = False #asumo q la data no esta sin flip |
|
199 | flagDeflipData = False #asumo q la data no esta sin flip | |
200 |
|
200 | |||
201 | flagShiftFFT = False |
|
201 | flagShiftFFT = False | |
202 |
|
202 | |||
203 | # ippSeconds = None |
|
203 | # ippSeconds = None | |
204 |
|
204 | |||
205 | # timeInterval = None |
|
205 | # timeInterval = None | |
206 |
|
206 | |||
207 | nCohInt = None |
|
207 | nCohInt = None | |
208 |
|
208 | |||
209 | # noise = None |
|
209 | # noise = None | |
210 |
|
210 | |||
211 | windowOfFilter = 1 |
|
211 | windowOfFilter = 1 | |
212 |
|
212 | |||
213 | #Speed of ligth |
|
213 | #Speed of ligth | |
214 | C = 3e8 |
|
214 | C = 3e8 | |
215 |
|
215 | |||
216 | frequency = 49.92e6 |
|
216 | frequency = 49.92e6 | |
217 |
|
217 | |||
218 | realtime = False |
|
218 | realtime = False | |
219 |
|
219 | |||
220 | beacon_heiIndexList = None |
|
220 | beacon_heiIndexList = None | |
221 |
|
221 | |||
222 | last_block = None |
|
222 | last_block = None | |
223 |
|
223 | |||
224 | blocknow = None |
|
224 | blocknow = None | |
225 |
|
225 | |||
226 | azimuth = None |
|
226 | azimuth = None | |
227 |
|
227 | |||
228 | zenith = None |
|
228 | zenith = None | |
229 |
|
229 | |||
230 | beam = Beam() |
|
230 | beam = Beam() | |
231 |
|
231 | |||
232 | profileIndex = None |
|
232 | profileIndex = None | |
233 |
|
233 | |||
234 | def __init__(self): |
|
234 | def __init__(self): | |
235 |
|
235 | |||
236 | raise NotImplementedError |
|
236 | raise NotImplementedError | |
237 |
|
237 | |||
238 | def getNoise(self): |
|
238 | def getNoise(self): | |
239 |
|
239 | |||
240 | raise NotImplementedError |
|
240 | raise NotImplementedError | |
241 |
|
241 | |||
242 | def getNChannels(self): |
|
242 | def getNChannels(self): | |
243 |
|
243 | |||
244 | return len(self.channelList) |
|
244 | return len(self.channelList) | |
245 |
|
245 | |||
246 | def getChannelIndexList(self): |
|
246 | def getChannelIndexList(self): | |
247 |
|
247 | |||
248 | return range(self.nChannels) |
|
248 | return range(self.nChannels) | |
249 |
|
249 | |||
250 | def getNHeights(self): |
|
250 | def getNHeights(self): | |
251 |
|
251 | |||
252 | return len(self.heightList) |
|
252 | return len(self.heightList) | |
253 |
|
253 | |||
254 | def getHeiRange(self, extrapoints=0): |
|
254 | def getHeiRange(self, extrapoints=0): | |
255 |
|
255 | |||
256 | heis = self.heightList |
|
256 | heis = self.heightList | |
257 | # deltah = self.heightList[1] - self.heightList[0] |
|
257 | # deltah = self.heightList[1] - self.heightList[0] | |
258 | # |
|
258 | # | |
259 | # heis.append(self.heightList[-1]) |
|
259 | # heis.append(self.heightList[-1]) | |
260 |
|
260 | |||
261 | return heis |
|
261 | return heis | |
262 |
|
262 | |||
263 | def getDeltaH(self): |
|
263 | def getDeltaH(self): | |
264 |
|
264 | |||
265 | delta = self.heightList[1] - self.heightList[0] |
|
265 | delta = self.heightList[1] - self.heightList[0] | |
266 |
|
266 | |||
267 | return delta |
|
267 | return delta | |
268 |
|
268 | |||
269 | def getltctime(self): |
|
269 | def getltctime(self): | |
270 |
|
270 | |||
271 | if self.useLocalTime: |
|
271 | if self.useLocalTime: | |
272 | return self.utctime - self.timeZone*60 |
|
272 | return self.utctime - self.timeZone*60 | |
273 |
|
273 | |||
274 | return self.utctime |
|
274 | return self.utctime | |
275 |
|
275 | |||
276 | def getDatatime(self): |
|
276 | def getDatatime(self): | |
277 |
|
277 | |||
278 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
278 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) | |
279 | return datatimeValue |
|
279 | return datatimeValue | |
280 |
|
280 | |||
281 | def getTimeRange(self): |
|
281 | def getTimeRange(self): | |
282 |
|
282 | |||
283 | datatime = [] |
|
283 | datatime = [] | |
284 |
|
284 | |||
285 | datatime.append(self.ltctime) |
|
285 | datatime.append(self.ltctime) | |
286 | datatime.append(self.ltctime + self.timeInterval+1) |
|
286 | datatime.append(self.ltctime + self.timeInterval+1) | |
287 |
|
287 | |||
288 | datatime = numpy.array(datatime) |
|
288 | datatime = numpy.array(datatime) | |
289 |
|
289 | |||
290 | return datatime |
|
290 | return datatime | |
291 |
|
291 | |||
292 | def getFmaxTimeResponse(self): |
|
292 | def getFmaxTimeResponse(self): | |
293 |
|
293 | |||
294 | period = (10**-6)*self.getDeltaH()/(0.15) |
|
294 | period = (10**-6)*self.getDeltaH()/(0.15) | |
295 |
|
295 | |||
296 | PRF = 1./(period * self.nCohInt) |
|
296 | PRF = 1./(period * self.nCohInt) | |
297 |
|
297 | |||
298 | fmax = PRF |
|
298 | fmax = PRF | |
299 |
|
299 | |||
300 | return fmax |
|
300 | return fmax | |
301 |
|
301 | |||
302 | def getFmax(self): |
|
302 | def getFmax(self): | |
303 |
|
303 | |||
304 | PRF = 1./(self.ippSeconds * self.nCohInt) |
|
304 | PRF = 1./(self.ippSeconds * self.nCohInt) | |
305 |
|
305 | |||
306 | fmax = PRF |
|
306 | fmax = PRF | |
307 |
|
307 | |||
308 | return fmax |
|
308 | return fmax | |
309 |
|
309 | |||
310 | def getVmax(self): |
|
310 | def getVmax(self): | |
311 |
|
311 | |||
312 | _lambda = self.C/self.frequency |
|
312 | _lambda = self.C/self.frequency | |
313 |
|
313 | |||
314 | vmax = self.getFmax() * _lambda/2 |
|
314 | vmax = self.getFmax() * _lambda/2 | |
315 |
|
315 | |||
316 | return vmax |
|
316 | return vmax | |
317 |
|
317 | |||
318 | def get_ippSeconds(self): |
|
318 | def get_ippSeconds(self): | |
319 | ''' |
|
319 | ''' | |
320 | ''' |
|
320 | ''' | |
321 | return self.radarControllerHeaderObj.ippSeconds |
|
321 | return self.radarControllerHeaderObj.ippSeconds | |
322 |
|
322 | |||
323 | def set_ippSeconds(self, ippSeconds): |
|
323 | def set_ippSeconds(self, ippSeconds): | |
324 | ''' |
|
324 | ''' | |
325 | ''' |
|
325 | ''' | |
326 |
|
326 | |||
327 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
327 | self.radarControllerHeaderObj.ippSeconds = ippSeconds | |
328 |
|
328 | |||
329 | return |
|
329 | return | |
330 |
|
330 | |||
331 | def get_dtype(self): |
|
331 | def get_dtype(self): | |
332 | ''' |
|
332 | ''' | |
333 | ''' |
|
333 | ''' | |
334 | return getNumpyDtype(self.datatype) |
|
334 | return getNumpyDtype(self.datatype) | |
335 |
|
335 | |||
336 | def set_dtype(self, numpyDtype): |
|
336 | def set_dtype(self, numpyDtype): | |
337 | ''' |
|
337 | ''' | |
338 | ''' |
|
338 | ''' | |
339 |
|
339 | |||
340 | self.datatype = getDataTypeCode(numpyDtype) |
|
340 | self.datatype = getDataTypeCode(numpyDtype) | |
341 |
|
341 | |||
342 | def get_code(self): |
|
342 | def get_code(self): | |
343 | ''' |
|
343 | ''' | |
344 | ''' |
|
344 | ''' | |
345 | return self.radarControllerHeaderObj.code |
|
345 | return self.radarControllerHeaderObj.code | |
346 |
|
346 | |||
347 | def set_code(self, code): |
|
347 | def set_code(self, code): | |
348 | ''' |
|
348 | ''' | |
349 | ''' |
|
349 | ''' | |
350 | self.radarControllerHeaderObj.code = code |
|
350 | self.radarControllerHeaderObj.code = code | |
351 |
|
351 | |||
352 | return |
|
352 | return | |
353 |
|
353 | |||
354 | def get_ncode(self): |
|
354 | def get_ncode(self): | |
355 | ''' |
|
355 | ''' | |
356 | ''' |
|
356 | ''' | |
357 | return self.radarControllerHeaderObj.nCode |
|
357 | return self.radarControllerHeaderObj.nCode | |
358 |
|
358 | |||
359 | def set_ncode(self, nCode): |
|
359 | def set_ncode(self, nCode): | |
360 | ''' |
|
360 | ''' | |
361 | ''' |
|
361 | ''' | |
362 | self.radarControllerHeaderObj.nCode = nCode |
|
362 | self.radarControllerHeaderObj.nCode = nCode | |
363 |
|
363 | |||
364 | return |
|
364 | return | |
365 |
|
365 | |||
366 | def get_nbaud(self): |
|
366 | def get_nbaud(self): | |
367 | ''' |
|
367 | ''' | |
368 | ''' |
|
368 | ''' | |
369 | return self.radarControllerHeaderObj.nBaud |
|
369 | return self.radarControllerHeaderObj.nBaud | |
370 |
|
370 | |||
371 | def set_nbaud(self, nBaud): |
|
371 | def set_nbaud(self, nBaud): | |
372 | ''' |
|
372 | ''' | |
373 | ''' |
|
373 | ''' | |
374 | self.radarControllerHeaderObj.nBaud = nBaud |
|
374 | self.radarControllerHeaderObj.nBaud = nBaud | |
375 |
|
375 | |||
376 | return |
|
376 | return | |
377 |
|
377 | |||
378 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
378 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") | |
379 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
379 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") | |
380 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
380 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") | |
381 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
381 | #noise = property(getNoise, "I'm the 'nHeights' property.") | |
382 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
382 | datatime = property(getDatatime, "I'm the 'datatime' property") | |
383 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
383 | ltctime = property(getltctime, "I'm the 'ltctime' property") | |
384 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
384 | ippSeconds = property(get_ippSeconds, set_ippSeconds) | |
385 | dtype = property(get_dtype, set_dtype) |
|
385 | dtype = property(get_dtype, set_dtype) | |
386 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
386 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
387 | code = property(get_code, set_code) |
|
387 | code = property(get_code, set_code) | |
388 | nCode = property(get_ncode, set_ncode) |
|
388 | nCode = property(get_ncode, set_ncode) | |
389 | nBaud = property(get_nbaud, set_nbaud) |
|
389 | nBaud = property(get_nbaud, set_nbaud) | |
390 |
|
390 | |||
391 | class Voltage(JROData): |
|
391 | class Voltage(JROData): | |
392 |
|
392 | |||
393 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
393 | #data es un numpy array de 2 dmensiones (canales, alturas) | |
394 | data = None |
|
394 | data = None | |
395 |
|
395 | |||
396 | def __init__(self): |
|
396 | def __init__(self): | |
397 | ''' |
|
397 | ''' | |
398 | Constructor |
|
398 | Constructor | |
399 | ''' |
|
399 | ''' | |
400 |
|
400 | |||
401 | self.useLocalTime = True |
|
401 | self.useLocalTime = True | |
402 |
|
402 | |||
403 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
403 | self.radarControllerHeaderObj = RadarControllerHeader() | |
404 |
|
404 | |||
405 | self.systemHeaderObj = SystemHeader() |
|
405 | self.systemHeaderObj = SystemHeader() | |
406 |
|
406 | |||
407 | self.type = "Voltage" |
|
407 | self.type = "Voltage" | |
408 |
|
408 | |||
409 | self.data = None |
|
409 | self.data = None | |
410 |
|
410 | |||
411 | # self.dtype = None |
|
411 | # self.dtype = None | |
412 |
|
412 | |||
413 | # self.nChannels = 0 |
|
413 | # self.nChannels = 0 | |
414 |
|
414 | |||
415 | # self.nHeights = 0 |
|
415 | # self.nHeights = 0 | |
416 |
|
416 | |||
417 | self.nProfiles = None |
|
417 | self.nProfiles = None | |
418 |
|
418 | |||
419 | self.heightList = None |
|
419 | self.heightList = None | |
420 |
|
420 | |||
421 | self.channelList = None |
|
421 | self.channelList = None | |
422 |
|
422 | |||
423 | # self.channelIndexList = None |
|
423 | # self.channelIndexList = None | |
424 |
|
424 | |||
425 | self.flagNoData = True |
|
425 | self.flagNoData = True | |
426 |
|
426 | |||
427 | self.flagDiscontinuousBlock = False |
|
427 | self.flagDiscontinuousBlock = False | |
428 |
|
428 | |||
429 | self.utctime = None |
|
429 | self.utctime = None | |
430 |
|
430 | |||
431 | self.timeZone = None |
|
431 | self.timeZone = None | |
432 |
|
432 | |||
433 | self.dstFlag = None |
|
433 | self.dstFlag = None | |
434 |
|
434 | |||
435 | self.errorCount = None |
|
435 | self.errorCount = None | |
436 |
|
436 | |||
437 | self.nCohInt = None |
|
437 | self.nCohInt = None | |
438 |
|
438 | |||
439 | self.blocksize = None |
|
439 | self.blocksize = None | |
440 |
|
440 | |||
441 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
441 | self.flagDecodeData = False #asumo q la data no esta decodificada | |
442 |
|
442 | |||
443 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
443 | self.flagDeflipData = False #asumo q la data no esta sin flip | |
444 |
|
444 | |||
445 | self.flagShiftFFT = False |
|
445 | self.flagShiftFFT = False | |
446 |
|
446 | |||
447 | self.flagDataAsBlock = False #Asumo que la data es leida perfil a perfil |
|
447 | self.flagDataAsBlock = False #Asumo que la data es leida perfil a perfil | |
448 |
|
448 | |||
449 | self.profileIndex = 0 |
|
449 | self.profileIndex = 0 | |
450 |
|
450 | |||
451 | def getNoisebyHildebrand(self, channel = None): |
|
451 | def getNoisebyHildebrand(self, channel = None): | |
452 | """ |
|
452 | """ | |
453 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
453 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
454 |
|
454 | |||
455 | Return: |
|
455 | Return: | |
456 | noiselevel |
|
456 | noiselevel | |
457 | """ |
|
457 | """ | |
458 |
|
458 | |||
459 | if channel != None: |
|
459 | if channel != None: | |
460 | data = self.data[channel] |
|
460 | data = self.data[channel] | |
461 | nChannels = 1 |
|
461 | nChannels = 1 | |
462 | else: |
|
462 | else: | |
463 | data = self.data |
|
463 | data = self.data | |
464 | nChannels = self.nChannels |
|
464 | nChannels = self.nChannels | |
465 |
|
465 | |||
466 | noise = numpy.zeros(nChannels) |
|
466 | noise = numpy.zeros(nChannels) | |
467 | power = data * numpy.conjugate(data) |
|
467 | power = data * numpy.conjugate(data) | |
468 |
|
468 | |||
469 | for thisChannel in range(nChannels): |
|
469 | for thisChannel in range(nChannels): | |
470 | if nChannels == 1: |
|
470 | if nChannels == 1: | |
471 | daux = power[:].real |
|
471 | daux = power[:].real | |
472 | else: |
|
472 | else: | |
473 | daux = power[thisChannel,:].real |
|
473 | daux = power[thisChannel,:].real | |
474 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
474 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) | |
475 |
|
475 | |||
476 | return noise |
|
476 | return noise | |
477 |
|
477 | |||
478 | def getNoise(self, type = 1, channel = None): |
|
478 | def getNoise(self, type = 1, channel = None): | |
479 |
|
479 | |||
480 | if type == 1: |
|
480 | if type == 1: | |
481 | noise = self.getNoisebyHildebrand(channel) |
|
481 | noise = self.getNoisebyHildebrand(channel) | |
482 |
|
482 | |||
483 | return noise |
|
483 | return noise | |
484 |
|
484 | |||
485 | def getPower(self, channel = None): |
|
485 | def getPower(self, channel = None): | |
486 |
|
486 | |||
487 | if channel != None: |
|
487 | if channel != None: | |
488 | data = self.data[channel] |
|
488 | data = self.data[channel] | |
489 | else: |
|
489 | else: | |
490 | data = self.data |
|
490 | data = self.data | |
491 |
|
491 | |||
492 | power = data * numpy.conjugate(data) |
|
492 | power = data * numpy.conjugate(data) | |
493 | powerdB = 10*numpy.log10(power.real) |
|
493 | powerdB = 10*numpy.log10(power.real) | |
494 | powerdB = numpy.squeeze(powerdB) |
|
494 | powerdB = numpy.squeeze(powerdB) | |
495 |
|
495 | |||
496 | return powerdB |
|
496 | return powerdB | |
497 |
|
497 | |||
498 | def getTimeInterval(self): |
|
498 | def getTimeInterval(self): | |
499 |
|
499 | |||
500 | timeInterval = self.ippSeconds * self.nCohInt |
|
500 | timeInterval = self.ippSeconds * self.nCohInt | |
501 |
|
501 | |||
502 | return timeInterval |
|
502 | return timeInterval | |
503 |
|
503 | |||
504 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
504 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
505 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
505 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
506 |
|
506 | |||
507 | class Spectra(JROData): |
|
507 | class Spectra(JROData): | |
508 |
|
508 | |||
509 | #data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
509 | #data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) | |
510 | data_spc = None |
|
510 | data_spc = None | |
511 |
|
511 | |||
512 | #data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
512 | #data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) | |
513 | data_cspc = None |
|
513 | data_cspc = None | |
514 |
|
514 | |||
515 | #data dc es un numpy array de 2 dmensiones (canales, alturas) |
|
515 | #data dc es un numpy array de 2 dmensiones (canales, alturas) | |
516 | data_dc = None |
|
516 | data_dc = None | |
517 |
|
517 | |||
518 | #data power |
|
518 | #data power | |
519 | data_pwr = None |
|
519 | data_pwr = None | |
520 |
|
520 | |||
521 | nFFTPoints = None |
|
521 | nFFTPoints = None | |
522 |
|
522 | |||
523 | # nPairs = None |
|
523 | # nPairs = None | |
524 |
|
524 | |||
525 | pairsList = None |
|
525 | pairsList = None | |
526 |
|
526 | |||
527 | nIncohInt = None |
|
527 | nIncohInt = None | |
528 |
|
528 | |||
529 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia |
|
529 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia | |
530 |
|
530 | |||
531 | nCohInt = None #se requiere para determinar el valor de timeInterval |
|
531 | nCohInt = None #se requiere para determinar el valor de timeInterval | |
532 |
|
532 | |||
533 | ippFactor = None |
|
533 | ippFactor = None | |
534 |
|
534 | |||
535 | profileIndex = 0 |
|
535 | profileIndex = 0 | |
536 |
|
536 | |||
537 | plotting = "spectra" |
|
537 | plotting = "spectra" | |
538 |
|
538 | |||
539 | def __init__(self): |
|
539 | def __init__(self): | |
540 | ''' |
|
540 | ''' | |
541 | Constructor |
|
541 | Constructor | |
542 | ''' |
|
542 | ''' | |
543 |
|
543 | |||
544 | self.useLocalTime = True |
|
544 | self.useLocalTime = True | |
545 |
|
545 | |||
546 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
546 | self.radarControllerHeaderObj = RadarControllerHeader() | |
547 |
|
547 | |||
548 | self.systemHeaderObj = SystemHeader() |
|
548 | self.systemHeaderObj = SystemHeader() | |
549 |
|
549 | |||
550 | self.type = "Spectra" |
|
550 | self.type = "Spectra" | |
551 |
|
551 | |||
552 | # self.data = None |
|
552 | # self.data = None | |
553 |
|
553 | |||
554 | # self.dtype = None |
|
554 | # self.dtype = None | |
555 |
|
555 | |||
556 | # self.nChannels = 0 |
|
556 | # self.nChannels = 0 | |
557 |
|
557 | |||
558 | # self.nHeights = 0 |
|
558 | # self.nHeights = 0 | |
559 |
|
559 | |||
560 | self.nProfiles = None |
|
560 | self.nProfiles = None | |
561 |
|
561 | |||
562 | self.heightList = None |
|
562 | self.heightList = None | |
563 |
|
563 | |||
564 | self.channelList = None |
|
564 | self.channelList = None | |
565 |
|
565 | |||
566 | # self.channelIndexList = None |
|
566 | # self.channelIndexList = None | |
567 |
|
567 | |||
568 | self.pairsList = None |
|
568 | self.pairsList = None | |
569 |
|
569 | |||
570 | self.flagNoData = True |
|
570 | self.flagNoData = True | |
571 |
|
571 | |||
572 | self.flagDiscontinuousBlock = False |
|
572 | self.flagDiscontinuousBlock = False | |
573 |
|
573 | |||
574 | self.utctime = None |
|
574 | self.utctime = None | |
575 |
|
575 | |||
576 | self.nCohInt = None |
|
576 | self.nCohInt = None | |
577 |
|
577 | |||
578 | self.nIncohInt = None |
|
578 | self.nIncohInt = None | |
579 |
|
579 | |||
580 | self.blocksize = None |
|
580 | self.blocksize = None | |
581 |
|
581 | |||
582 | self.nFFTPoints = None |
|
582 | self.nFFTPoints = None | |
583 |
|
583 | |||
584 | self.wavelength = None |
|
584 | self.wavelength = None | |
585 |
|
585 | |||
586 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
586 | self.flagDecodeData = False #asumo q la data no esta decodificada | |
587 |
|
587 | |||
588 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
588 | self.flagDeflipData = False #asumo q la data no esta sin flip | |
589 |
|
589 | |||
590 | self.flagShiftFFT = False |
|
590 | self.flagShiftFFT = False | |
591 |
|
591 | |||
592 | self.ippFactor = 1 |
|
592 | self.ippFactor = 1 | |
593 |
|
593 | |||
594 | #self.noise = None |
|
594 | #self.noise = None | |
595 |
|
595 | |||
596 | self.beacon_heiIndexList = [] |
|
596 | self.beacon_heiIndexList = [] | |
597 |
|
597 | |||
598 | self.noise_estimation = None |
|
598 | self.noise_estimation = None | |
599 |
|
599 | |||
600 |
|
600 | |||
601 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
601 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
602 | """ |
|
602 | """ | |
603 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
603 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
604 |
|
604 | |||
605 | Return: |
|
605 | Return: | |
606 | noiselevel |
|
606 | noiselevel | |
607 | """ |
|
607 | """ | |
608 |
|
608 | |||
609 | noise = numpy.zeros(self.nChannels) |
|
609 | noise = numpy.zeros(self.nChannels) | |
610 |
|
610 | |||
611 | for channel in range(self.nChannels): |
|
611 | for channel in range(self.nChannels): | |
612 | daux = self.data_spc[channel,xmin_index:xmax_index,ymin_index:ymax_index] |
|
612 | daux = self.data_spc[channel,xmin_index:xmax_index,ymin_index:ymax_index] | |
613 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
613 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) | |
614 |
|
614 | |||
615 | return noise |
|
615 | return noise | |
616 |
|
616 | |||
617 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
617 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
618 |
|
618 | |||
619 | if self.noise_estimation is not None: |
|
619 | if self.noise_estimation is not None: | |
620 | return self.noise_estimation #this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
620 | return self.noise_estimation #this was estimated by getNoise Operation defined in jroproc_spectra.py | |
621 | else: |
|
621 | else: | |
622 | noise = self.getNoisebyHildebrand(xmin_index, xmax_index, ymin_index, ymax_index) |
|
622 | noise = self.getNoisebyHildebrand(xmin_index, xmax_index, ymin_index, ymax_index) | |
623 | return noise |
|
623 | return noise | |
624 |
|
624 | |||
625 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
625 | def getFreqRangeTimeResponse(self, extrapoints=0): | |
626 |
|
626 | |||
627 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints*self.ippFactor) |
|
627 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints*self.ippFactor) | |
628 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
628 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 | |
629 |
|
629 | |||
630 | return freqrange |
|
630 | return freqrange | |
631 |
|
631 | |||
632 | def getAcfRange(self, extrapoints=0): |
|
632 | def getAcfRange(self, extrapoints=0): | |
633 |
|
633 | |||
634 | deltafreq = 10./(self.getFmax() / (self.nFFTPoints*self.ippFactor)) |
|
634 | deltafreq = 10./(self.getFmax() / (self.nFFTPoints*self.ippFactor)) | |
635 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
635 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 | |
636 |
|
636 | |||
637 | return freqrange |
|
637 | return freqrange | |
638 |
|
638 | |||
639 | def getFreqRange(self, extrapoints=0): |
|
639 | def getFreqRange(self, extrapoints=0): | |
640 |
|
640 | |||
641 | deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor) |
|
641 | deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor) | |
642 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
642 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 | |
643 |
|
643 | |||
644 | return freqrange |
|
644 | return freqrange | |
645 |
|
645 | |||
646 | def getVelRange(self, extrapoints=0): |
|
646 | def getVelRange(self, extrapoints=0): | |
647 |
|
647 | |||
648 | deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor) |
|
648 | deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor) | |
649 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) #- deltav/2 |
|
649 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) #- deltav/2 | |
650 |
|
650 | |||
651 | return velrange |
|
651 | return velrange | |
652 |
|
652 | |||
653 | def getNPairs(self): |
|
653 | def getNPairs(self): | |
654 |
|
654 | |||
655 | return len(self.pairsList) |
|
655 | return len(self.pairsList) | |
656 |
|
656 | |||
657 | def getPairsIndexList(self): |
|
657 | def getPairsIndexList(self): | |
658 |
|
658 | |||
659 | return range(self.nPairs) |
|
659 | return range(self.nPairs) | |
660 |
|
660 | |||
661 | def getNormFactor(self): |
|
661 | def getNormFactor(self): | |
662 |
|
662 | |||
663 | pwcode = 1 |
|
663 | pwcode = 1 | |
664 |
|
664 | |||
665 | if self.flagDecodeData: |
|
665 | if self.flagDecodeData: | |
666 | pwcode = numpy.sum(self.code[0]**2) |
|
666 | pwcode = numpy.sum(self.code[0]**2) | |
667 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
667 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter | |
668 | normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
668 | normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter | |
669 |
|
669 | |||
670 | return normFactor |
|
670 | return normFactor | |
671 |
|
671 | |||
672 | def getFlagCspc(self): |
|
672 | def getFlagCspc(self): | |
673 |
|
673 | |||
674 | if self.data_cspc is None: |
|
674 | if self.data_cspc is None: | |
675 | return True |
|
675 | return True | |
676 |
|
676 | |||
677 | return False |
|
677 | return False | |
678 |
|
678 | |||
679 | def getFlagDc(self): |
|
679 | def getFlagDc(self): | |
680 |
|
680 | |||
681 | if self.data_dc is None: |
|
681 | if self.data_dc is None: | |
682 | return True |
|
682 | return True | |
683 |
|
683 | |||
684 | return False |
|
684 | return False | |
685 |
|
685 | |||
686 | def getTimeInterval(self): |
|
686 | def getTimeInterval(self): | |
687 |
|
687 | |||
688 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles |
|
688 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles | |
689 |
|
689 | |||
690 | return timeInterval |
|
690 | return timeInterval | |
691 |
|
691 | |||
692 | def getPower(self): |
|
692 | def getPower(self): | |
693 |
|
693 | |||
694 | factor = self.normFactor |
|
694 | factor = self.normFactor | |
695 | z = self.data_spc/factor |
|
695 | z = self.data_spc/factor | |
696 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
696 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
697 | avg = numpy.average(z, axis=1) |
|
697 | avg = numpy.average(z, axis=1) | |
698 |
|
698 | |||
699 | return 10*numpy.log10(avg) |
|
699 | return 10*numpy.log10(avg) | |
700 |
|
700 | |||
701 | def getCoherence(self, pairsList=None, phase=False): |
|
701 | def getCoherence(self, pairsList=None, phase=False): | |
702 |
|
702 | |||
703 | z = [] |
|
703 | z = [] | |
704 | if pairsList is None: |
|
704 | if pairsList is None: | |
705 | pairsIndexList = self.pairsIndexList |
|
705 | pairsIndexList = self.pairsIndexList | |
706 | else: |
|
706 | else: | |
707 | pairsIndexList = [] |
|
707 | pairsIndexList = [] | |
708 | for pair in pairsList: |
|
708 | for pair in pairsList: | |
709 | if pair not in self.pairsList: |
|
709 | if pair not in self.pairsList: | |
710 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
710 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) | |
711 | pairsIndexList.append(self.pairsList.index(pair)) |
|
711 | pairsIndexList.append(self.pairsList.index(pair)) | |
712 | for i in range(len(pairsIndexList)): |
|
712 | for i in range(len(pairsIndexList)): | |
713 | pair = self.pairsList[pairsIndexList[i]] |
|
713 | pair = self.pairsList[pairsIndexList[i]] | |
714 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
714 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) | |
715 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
715 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) | |
716 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
716 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) | |
717 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
717 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
718 | if phase: |
|
718 | if phase: | |
719 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
719 | data = numpy.arctan2(avgcoherenceComplex.imag, | |
720 | avgcoherenceComplex.real)*180/numpy.pi |
|
720 | avgcoherenceComplex.real)*180/numpy.pi | |
721 | else: |
|
721 | else: | |
722 | data = numpy.abs(avgcoherenceComplex) |
|
722 | data = numpy.abs(avgcoherenceComplex) | |
723 |
|
723 | |||
724 | z.append(data) |
|
724 | z.append(data) | |
725 |
|
725 | |||
726 | return numpy.array(z) |
|
726 | return numpy.array(z) | |
727 |
|
727 | |||
728 | def setValue(self, value): |
|
728 | def setValue(self, value): | |
729 |
|
729 | |||
730 | print "This property should not be initialized" |
|
730 | print "This property should not be initialized" | |
731 |
|
731 | |||
732 | return |
|
732 | return | |
733 |
|
733 | |||
734 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
734 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") | |
735 | pairsIndexList = property(getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") |
|
735 | pairsIndexList = property(getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") | |
736 | normFactor = property(getNormFactor, setValue, "I'm the 'getNormFactor' property.") |
|
736 | normFactor = property(getNormFactor, setValue, "I'm the 'getNormFactor' property.") | |
737 | flag_cspc = property(getFlagCspc, setValue) |
|
737 | flag_cspc = property(getFlagCspc, setValue) | |
738 | flag_dc = property(getFlagDc, setValue) |
|
738 | flag_dc = property(getFlagDc, setValue) | |
739 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
739 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") | |
740 | timeInterval = property(getTimeInterval, setValue, "I'm the 'timeInterval' property") |
|
740 | timeInterval = property(getTimeInterval, setValue, "I'm the 'timeInterval' property") | |
741 |
|
741 | |||
742 | class SpectraHeis(Spectra): |
|
742 | class SpectraHeis(Spectra): | |
743 |
|
743 | |||
744 | data_spc = None |
|
744 | data_spc = None | |
745 |
|
745 | |||
746 | data_cspc = None |
|
746 | data_cspc = None | |
747 |
|
747 | |||
748 | data_dc = None |
|
748 | data_dc = None | |
749 |
|
749 | |||
750 | nFFTPoints = None |
|
750 | nFFTPoints = None | |
751 |
|
751 | |||
752 | # nPairs = None |
|
752 | # nPairs = None | |
753 |
|
753 | |||
754 | pairsList = None |
|
754 | pairsList = None | |
755 |
|
755 | |||
756 | nCohInt = None |
|
756 | nCohInt = None | |
757 |
|
757 | |||
758 | nIncohInt = None |
|
758 | nIncohInt = None | |
759 |
|
759 | |||
760 | def __init__(self): |
|
760 | def __init__(self): | |
761 |
|
761 | |||
762 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
762 | self.radarControllerHeaderObj = RadarControllerHeader() | |
763 |
|
763 | |||
764 | self.systemHeaderObj = SystemHeader() |
|
764 | self.systemHeaderObj = SystemHeader() | |
765 |
|
765 | |||
766 | self.type = "SpectraHeis" |
|
766 | self.type = "SpectraHeis" | |
767 |
|
767 | |||
768 | # self.dtype = None |
|
768 | # self.dtype = None | |
769 |
|
769 | |||
770 | # self.nChannels = 0 |
|
770 | # self.nChannels = 0 | |
771 |
|
771 | |||
772 | # self.nHeights = 0 |
|
772 | # self.nHeights = 0 | |
773 |
|
773 | |||
774 | self.nProfiles = None |
|
774 | self.nProfiles = None | |
775 |
|
775 | |||
776 | self.heightList = None |
|
776 | self.heightList = None | |
777 |
|
777 | |||
778 | self.channelList = None |
|
778 | self.channelList = None | |
779 |
|
779 | |||
780 | # self.channelIndexList = None |
|
780 | # self.channelIndexList = None | |
781 |
|
781 | |||
782 | self.flagNoData = True |
|
782 | self.flagNoData = True | |
783 |
|
783 | |||
784 | self.flagDiscontinuousBlock = False |
|
784 | self.flagDiscontinuousBlock = False | |
785 |
|
785 | |||
786 | # self.nPairs = 0 |
|
786 | # self.nPairs = 0 | |
787 |
|
787 | |||
788 | self.utctime = None |
|
788 | self.utctime = None | |
789 |
|
789 | |||
790 | self.blocksize = None |
|
790 | self.blocksize = None | |
791 |
|
791 | |||
792 | self.profileIndex = 0 |
|
792 | self.profileIndex = 0 | |
793 |
|
793 | |||
794 | self.nCohInt = 1 |
|
794 | self.nCohInt = 1 | |
795 |
|
795 | |||
796 | self.nIncohInt = 1 |
|
796 | self.nIncohInt = 1 | |
797 |
|
797 | |||
798 | def getNormFactor(self): |
|
798 | def getNormFactor(self): | |
799 | pwcode = 1 |
|
799 | pwcode = 1 | |
800 | if self.flagDecodeData: |
|
800 | if self.flagDecodeData: | |
801 | pwcode = numpy.sum(self.code[0]**2) |
|
801 | pwcode = numpy.sum(self.code[0]**2) | |
802 |
|
802 | |||
803 | normFactor = self.nIncohInt*self.nCohInt*pwcode |
|
803 | normFactor = self.nIncohInt*self.nCohInt*pwcode | |
804 |
|
804 | |||
805 | return normFactor |
|
805 | return normFactor | |
806 |
|
806 | |||
807 | def getTimeInterval(self): |
|
807 | def getTimeInterval(self): | |
808 |
|
808 | |||
809 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
809 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt | |
810 |
|
810 | |||
811 | return timeInterval |
|
811 | return timeInterval | |
812 |
|
812 | |||
813 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
813 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") | |
814 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
814 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
815 |
|
815 | |||
816 | class Fits(JROData): |
|
816 | class Fits(JROData): | |
817 |
|
817 | |||
818 | heightList = None |
|
818 | heightList = None | |
819 |
|
819 | |||
820 | channelList = None |
|
820 | channelList = None | |
821 |
|
821 | |||
822 | flagNoData = True |
|
822 | flagNoData = True | |
823 |
|
823 | |||
824 | flagDiscontinuousBlock = False |
|
824 | flagDiscontinuousBlock = False | |
825 |
|
825 | |||
826 | useLocalTime = False |
|
826 | useLocalTime = False | |
827 |
|
827 | |||
828 | utctime = None |
|
828 | utctime = None | |
829 |
|
829 | |||
830 | timeZone = None |
|
830 | timeZone = None | |
831 |
|
831 | |||
832 | # ippSeconds = None |
|
832 | # ippSeconds = None | |
833 |
|
833 | |||
834 | # timeInterval = None |
|
834 | # timeInterval = None | |
835 |
|
835 | |||
836 | nCohInt = None |
|
836 | nCohInt = None | |
837 |
|
837 | |||
838 | nIncohInt = None |
|
838 | nIncohInt = None | |
839 |
|
839 | |||
840 | noise = None |
|
840 | noise = None | |
841 |
|
841 | |||
842 | windowOfFilter = 1 |
|
842 | windowOfFilter = 1 | |
843 |
|
843 | |||
844 | #Speed of ligth |
|
844 | #Speed of ligth | |
845 | C = 3e8 |
|
845 | C = 3e8 | |
846 |
|
846 | |||
847 | frequency = 49.92e6 |
|
847 | frequency = 49.92e6 | |
848 |
|
848 | |||
849 | realtime = False |
|
849 | realtime = False | |
850 |
|
850 | |||
851 |
|
851 | |||
852 | def __init__(self): |
|
852 | def __init__(self): | |
853 |
|
853 | |||
854 | self.type = "Fits" |
|
854 | self.type = "Fits" | |
855 |
|
855 | |||
856 | self.nProfiles = None |
|
856 | self.nProfiles = None | |
857 |
|
857 | |||
858 | self.heightList = None |
|
858 | self.heightList = None | |
859 |
|
859 | |||
860 | self.channelList = None |
|
860 | self.channelList = None | |
861 |
|
861 | |||
862 | # self.channelIndexList = None |
|
862 | # self.channelIndexList = None | |
863 |
|
863 | |||
864 | self.flagNoData = True |
|
864 | self.flagNoData = True | |
865 |
|
865 | |||
866 | self.utctime = None |
|
866 | self.utctime = None | |
867 |
|
867 | |||
868 | self.nCohInt = 1 |
|
868 | self.nCohInt = 1 | |
869 |
|
869 | |||
870 | self.nIncohInt = 1 |
|
870 | self.nIncohInt = 1 | |
871 |
|
871 | |||
872 | self.useLocalTime = True |
|
872 | self.useLocalTime = True | |
873 |
|
873 | |||
874 | self.profileIndex = 0 |
|
874 | self.profileIndex = 0 | |
875 |
|
875 | |||
876 | # self.utctime = None |
|
876 | # self.utctime = None | |
877 | # self.timeZone = None |
|
877 | # self.timeZone = None | |
878 | # self.ltctime = None |
|
878 | # self.ltctime = None | |
879 | # self.timeInterval = None |
|
879 | # self.timeInterval = None | |
880 | # self.header = None |
|
880 | # self.header = None | |
881 | # self.data_header = None |
|
881 | # self.data_header = None | |
882 | # self.data = None |
|
882 | # self.data = None | |
883 | # self.datatime = None |
|
883 | # self.datatime = None | |
884 | # self.flagNoData = False |
|
884 | # self.flagNoData = False | |
885 | # self.expName = '' |
|
885 | # self.expName = '' | |
886 | # self.nChannels = None |
|
886 | # self.nChannels = None | |
887 | # self.nSamples = None |
|
887 | # self.nSamples = None | |
888 | # self.dataBlocksPerFile = None |
|
888 | # self.dataBlocksPerFile = None | |
889 | # self.comments = '' |
|
889 | # self.comments = '' | |
890 | # |
|
890 | # | |
891 |
|
891 | |||
892 |
|
892 | |||
893 | def getltctime(self): |
|
893 | def getltctime(self): | |
894 |
|
894 | |||
895 | if self.useLocalTime: |
|
895 | if self.useLocalTime: | |
896 | return self.utctime - self.timeZone*60 |
|
896 | return self.utctime - self.timeZone*60 | |
897 |
|
897 | |||
898 | return self.utctime |
|
898 | return self.utctime | |
899 |
|
899 | |||
900 | def getDatatime(self): |
|
900 | def getDatatime(self): | |
901 |
|
901 | |||
902 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
902 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) | |
903 | return datatime |
|
903 | return datatime | |
904 |
|
904 | |||
905 | def getTimeRange(self): |
|
905 | def getTimeRange(self): | |
906 |
|
906 | |||
907 | datatime = [] |
|
907 | datatime = [] | |
908 |
|
908 | |||
909 | datatime.append(self.ltctime) |
|
909 | datatime.append(self.ltctime) | |
910 | datatime.append(self.ltctime + self.timeInterval) |
|
910 | datatime.append(self.ltctime + self.timeInterval) | |
911 |
|
911 | |||
912 | datatime = numpy.array(datatime) |
|
912 | datatime = numpy.array(datatime) | |
913 |
|
913 | |||
914 | return datatime |
|
914 | return datatime | |
915 |
|
915 | |||
916 | def getHeiRange(self): |
|
916 | def getHeiRange(self): | |
917 |
|
917 | |||
918 | heis = self.heightList |
|
918 | heis = self.heightList | |
919 |
|
919 | |||
920 | return heis |
|
920 | return heis | |
921 |
|
921 | |||
922 | def getNHeights(self): |
|
922 | def getNHeights(self): | |
923 |
|
923 | |||
924 | return len(self.heightList) |
|
924 | return len(self.heightList) | |
925 |
|
925 | |||
926 | def getNChannels(self): |
|
926 | def getNChannels(self): | |
927 |
|
927 | |||
928 | return len(self.channelList) |
|
928 | return len(self.channelList) | |
929 |
|
929 | |||
930 | def getChannelIndexList(self): |
|
930 | def getChannelIndexList(self): | |
931 |
|
931 | |||
932 | return range(self.nChannels) |
|
932 | return range(self.nChannels) | |
933 |
|
933 | |||
934 | def getNoise(self, type = 1): |
|
934 | def getNoise(self, type = 1): | |
935 |
|
935 | |||
936 | #noise = numpy.zeros(self.nChannels) |
|
936 | #noise = numpy.zeros(self.nChannels) | |
937 |
|
937 | |||
938 | if type == 1: |
|
938 | if type == 1: | |
939 | noise = self.getNoisebyHildebrand() |
|
939 | noise = self.getNoisebyHildebrand() | |
940 |
|
940 | |||
941 | if type == 2: |
|
941 | if type == 2: | |
942 | noise = self.getNoisebySort() |
|
942 | noise = self.getNoisebySort() | |
943 |
|
943 | |||
944 | if type == 3: |
|
944 | if type == 3: | |
945 | noise = self.getNoisebyWindow() |
|
945 | noise = self.getNoisebyWindow() | |
946 |
|
946 | |||
947 | return noise |
|
947 | return noise | |
948 |
|
948 | |||
949 | def getTimeInterval(self): |
|
949 | def getTimeInterval(self): | |
950 |
|
950 | |||
951 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
951 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt | |
952 |
|
952 | |||
953 | return timeInterval |
|
953 | return timeInterval | |
954 |
|
954 | |||
955 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
955 | datatime = property(getDatatime, "I'm the 'datatime' property") | |
956 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
956 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") | |
957 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
957 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") | |
958 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
958 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") | |
959 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
959 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
960 |
|
960 | |||
961 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
961 | ltctime = property(getltctime, "I'm the 'ltctime' property") | |
962 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
962 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
963 |
|
963 | |||
964 |
|
964 | |||
965 | class Correlation(JROData): |
|
965 | class Correlation(JROData): | |
966 |
|
966 | |||
967 | noise = None |
|
967 | noise = None | |
968 |
|
968 | |||
969 | SNR = None |
|
969 | SNR = None | |
970 |
|
970 | |||
971 | #-------------------------------------------------- |
|
971 | #-------------------------------------------------- | |
972 |
|
972 | |||
973 | mode = None |
|
973 | mode = None | |
974 |
|
974 | |||
975 | split = False |
|
975 | split = False | |
976 |
|
976 | |||
977 | data_cf = None |
|
977 | data_cf = None | |
978 |
|
978 | |||
979 | lags = None |
|
979 | lags = None | |
980 |
|
980 | |||
981 | lagRange = None |
|
981 | lagRange = None | |
982 |
|
982 | |||
983 | pairsList = None |
|
983 | pairsList = None | |
984 |
|
984 | |||
985 | normFactor = None |
|
985 | normFactor = None | |
986 |
|
986 | |||
987 | #-------------------------------------------------- |
|
987 | #-------------------------------------------------- | |
988 |
|
988 | |||
989 | # calculateVelocity = None |
|
989 | # calculateVelocity = None | |
990 |
|
990 | |||
991 | nLags = None |
|
991 | nLags = None | |
992 |
|
992 | |||
993 | nPairs = None |
|
993 | nPairs = None | |
994 |
|
994 | |||
995 | nAvg = None |
|
995 | nAvg = None | |
996 |
|
996 | |||
997 |
|
997 | |||
998 | def __init__(self): |
|
998 | def __init__(self): | |
999 | ''' |
|
999 | ''' | |
1000 | Constructor |
|
1000 | Constructor | |
1001 | ''' |
|
1001 | ''' | |
1002 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1002 | self.radarControllerHeaderObj = RadarControllerHeader() | |
1003 |
|
1003 | |||
1004 | self.systemHeaderObj = SystemHeader() |
|
1004 | self.systemHeaderObj = SystemHeader() | |
1005 |
|
1005 | |||
1006 | self.type = "Correlation" |
|
1006 | self.type = "Correlation" | |
1007 |
|
1007 | |||
1008 | self.data = None |
|
1008 | self.data = None | |
1009 |
|
1009 | |||
1010 | self.dtype = None |
|
1010 | self.dtype = None | |
1011 |
|
1011 | |||
1012 | self.nProfiles = None |
|
1012 | self.nProfiles = None | |
1013 |
|
1013 | |||
1014 | self.heightList = None |
|
1014 | self.heightList = None | |
1015 |
|
1015 | |||
1016 | self.channelList = None |
|
1016 | self.channelList = None | |
1017 |
|
1017 | |||
1018 | self.flagNoData = True |
|
1018 | self.flagNoData = True | |
1019 |
|
1019 | |||
1020 | self.flagDiscontinuousBlock = False |
|
1020 | self.flagDiscontinuousBlock = False | |
1021 |
|
1021 | |||
1022 | self.utctime = None |
|
1022 | self.utctime = None | |
1023 |
|
1023 | |||
1024 | self.timeZone = None |
|
1024 | self.timeZone = None | |
1025 |
|
1025 | |||
1026 | self.dstFlag = None |
|
1026 | self.dstFlag = None | |
1027 |
|
1027 | |||
1028 | self.errorCount = None |
|
1028 | self.errorCount = None | |
1029 |
|
1029 | |||
1030 | self.blocksize = None |
|
1030 | self.blocksize = None | |
1031 |
|
1031 | |||
1032 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
1032 | self.flagDecodeData = False #asumo q la data no esta decodificada | |
1033 |
|
1033 | |||
1034 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
1034 | self.flagDeflipData = False #asumo q la data no esta sin flip | |
1035 |
|
1035 | |||
1036 | self.pairsList = None |
|
1036 | self.pairsList = None | |
1037 |
|
1037 | |||
1038 | self.nPoints = None |
|
1038 | self.nPoints = None | |
1039 |
|
1039 | |||
1040 | def getPairsList(self): |
|
1040 | def getPairsList(self): | |
1041 |
|
1041 | |||
1042 | return self.pairsList |
|
1042 | return self.pairsList | |
1043 |
|
1043 | |||
1044 | def getNoise(self, mode = 2): |
|
1044 | def getNoise(self, mode = 2): | |
1045 |
|
1045 | |||
1046 | indR = numpy.where(self.lagR == 0)[0][0] |
|
1046 | indR = numpy.where(self.lagR == 0)[0][0] | |
1047 | indT = numpy.where(self.lagT == 0)[0][0] |
|
1047 | indT = numpy.where(self.lagT == 0)[0][0] | |
1048 |
|
1048 | |||
1049 | jspectra0 = self.data_corr[:,:,indR,:] |
|
1049 | jspectra0 = self.data_corr[:,:,indR,:] | |
1050 | jspectra = copy.copy(jspectra0) |
|
1050 | jspectra = copy.copy(jspectra0) | |
1051 |
|
1051 | |||
1052 | num_chan = jspectra.shape[0] |
|
1052 | num_chan = jspectra.shape[0] | |
1053 | num_hei = jspectra.shape[2] |
|
1053 | num_hei = jspectra.shape[2] | |
1054 |
|
1054 | |||
1055 | freq_dc = jspectra.shape[1]/2 |
|
1055 | freq_dc = jspectra.shape[1]/2 | |
1056 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
1056 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc | |
1057 |
|
1057 | |||
1058 | if ind_vel[0]<0: |
|
1058 | if ind_vel[0]<0: | |
1059 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
1059 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof | |
1060 |
|
1060 | |||
1061 | if mode == 1: |
|
1061 | if mode == 1: | |
1062 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
1062 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION | |
1063 |
|
1063 | |||
1064 | if mode == 2: |
|
1064 | if mode == 2: | |
1065 |
|
1065 | |||
1066 | vel = numpy.array([-2,-1,1,2]) |
|
1066 | vel = numpy.array([-2,-1,1,2]) | |
1067 | xx = numpy.zeros([4,4]) |
|
1067 | xx = numpy.zeros([4,4]) | |
1068 |
|
1068 | |||
1069 | for fil in range(4): |
|
1069 | for fil in range(4): | |
1070 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
1070 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) | |
1071 |
|
1071 | |||
1072 | xx_inv = numpy.linalg.inv(xx) |
|
1072 | xx_inv = numpy.linalg.inv(xx) | |
1073 | xx_aux = xx_inv[0,:] |
|
1073 | xx_aux = xx_inv[0,:] | |
1074 |
|
1074 | |||
1075 | for ich in range(num_chan): |
|
1075 | for ich in range(num_chan): | |
1076 | yy = jspectra[ich,ind_vel,:] |
|
1076 | yy = jspectra[ich,ind_vel,:] | |
1077 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
1077 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) | |
1078 |
|
1078 | |||
1079 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
1079 | junkid = jspectra[ich,freq_dc,:]<=0 | |
1080 | cjunkid = sum(junkid) |
|
1080 | cjunkid = sum(junkid) | |
1081 |
|
1081 | |||
1082 | if cjunkid.any(): |
|
1082 | if cjunkid.any(): | |
1083 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
1083 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 | |
1084 |
|
1084 | |||
1085 | noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:] |
|
1085 | noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:] | |
1086 |
|
1086 | |||
1087 | return noise |
|
1087 | return noise | |
1088 |
|
1088 | |||
1089 | def getTimeInterval(self): |
|
1089 | def getTimeInterval(self): | |
1090 |
|
1090 | |||
1091 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles |
|
1091 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles | |
1092 |
|
1092 | |||
1093 | return timeInterval |
|
1093 | return timeInterval | |
1094 |
|
1094 | |||
1095 | def splitFunctions(self): |
|
1095 | def splitFunctions(self): | |
1096 |
|
1096 | |||
1097 | pairsList = self.pairsList |
|
1097 | pairsList = self.pairsList | |
1098 | ccf_pairs = [] |
|
1098 | ccf_pairs = [] | |
1099 | acf_pairs = [] |
|
1099 | acf_pairs = [] | |
1100 | ccf_ind = [] |
|
1100 | ccf_ind = [] | |
1101 | acf_ind = [] |
|
1101 | acf_ind = [] | |
1102 | for l in range(len(pairsList)): |
|
1102 | for l in range(len(pairsList)): | |
1103 | chan0 = pairsList[l][0] |
|
1103 | chan0 = pairsList[l][0] | |
1104 | chan1 = pairsList[l][1] |
|
1104 | chan1 = pairsList[l][1] | |
1105 |
|
1105 | |||
1106 | #Obteniendo pares de Autocorrelacion |
|
1106 | #Obteniendo pares de Autocorrelacion | |
1107 | if chan0 == chan1: |
|
1107 | if chan0 == chan1: | |
1108 | acf_pairs.append(chan0) |
|
1108 | acf_pairs.append(chan0) | |
1109 | acf_ind.append(l) |
|
1109 | acf_ind.append(l) | |
1110 | else: |
|
1110 | else: | |
1111 | ccf_pairs.append(pairsList[l]) |
|
1111 | ccf_pairs.append(pairsList[l]) | |
1112 | ccf_ind.append(l) |
|
1112 | ccf_ind.append(l) | |
1113 |
|
1113 | |||
1114 | data_acf = self.data_cf[acf_ind] |
|
1114 | data_acf = self.data_cf[acf_ind] | |
1115 | data_ccf = self.data_cf[ccf_ind] |
|
1115 | data_ccf = self.data_cf[ccf_ind] | |
1116 |
|
1116 | |||
1117 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
1117 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf | |
1118 |
|
1118 | |||
1119 | def getNormFactor(self): |
|
1119 | def getNormFactor(self): | |
1120 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
1120 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() | |
1121 | acf_pairs = numpy.array(acf_pairs) |
|
1121 | acf_pairs = numpy.array(acf_pairs) | |
1122 | normFactor = numpy.zeros((self.nPairs,self.nHeights)) |
|
1122 | normFactor = numpy.zeros((self.nPairs,self.nHeights)) | |
1123 |
|
1123 | |||
1124 | for p in range(self.nPairs): |
|
1124 | for p in range(self.nPairs): | |
1125 | pair = self.pairsList[p] |
|
1125 | pair = self.pairsList[p] | |
1126 |
|
1126 | |||
1127 | ch0 = pair[0] |
|
1127 | ch0 = pair[0] | |
1128 | ch1 = pair[1] |
|
1128 | ch1 = pair[1] | |
1129 |
|
1129 | |||
1130 | ch0_max = numpy.max(data_acf[acf_pairs==ch0,:,:], axis=1) |
|
1130 | ch0_max = numpy.max(data_acf[acf_pairs==ch0,:,:], axis=1) | |
1131 | ch1_max = numpy.max(data_acf[acf_pairs==ch1,:,:], axis=1) |
|
1131 | ch1_max = numpy.max(data_acf[acf_pairs==ch1,:,:], axis=1) | |
1132 | normFactor[p,:] = numpy.sqrt(ch0_max*ch1_max) |
|
1132 | normFactor[p,:] = numpy.sqrt(ch0_max*ch1_max) | |
1133 |
|
1133 | |||
1134 | return normFactor |
|
1134 | return normFactor | |
1135 |
|
1135 | |||
1136 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1136 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
1137 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") |
|
1137 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") | |
1138 |
|
1138 | |||
1139 |
class Parameters( |
|
1139 | class Parameters(Spectra): | |
1140 |
|
1140 | |||
1141 | experimentInfo = None #Information about the experiment |
|
1141 | experimentInfo = None #Information about the experiment | |
1142 |
|
1142 | |||
1143 | #Information from previous data |
|
1143 | #Information from previous data | |
1144 |
|
1144 | |||
1145 | inputUnit = None #Type of data to be processed |
|
1145 | inputUnit = None #Type of data to be processed | |
1146 |
|
1146 | |||
1147 | operation = None #Type of operation to parametrize |
|
1147 | operation = None #Type of operation to parametrize | |
1148 |
|
1148 | |||
1149 | normFactor = None #Normalization Factor |
|
1149 | #normFactor = None #Normalization Factor | |
1150 |
|
1150 | |||
1151 | groupList = None #List of Pairs, Groups, etc |
|
1151 | groupList = None #List of Pairs, Groups, etc | |
1152 |
|
1152 | |||
1153 | #Parameters |
|
1153 | #Parameters | |
1154 |
|
1154 | |||
1155 | data_param = None #Parameters obtained |
|
1155 | data_param = None #Parameters obtained | |
1156 |
|
1156 | |||
1157 | data_pre = None #Data Pre Parametrization |
|
1157 | data_pre = None #Data Pre Parametrization | |
1158 |
|
1158 | |||
1159 | data_SNR = None #Signal to Noise Ratio |
|
1159 | data_SNR = None #Signal to Noise Ratio | |
1160 |
|
1160 | |||
1161 | # heightRange = None #Heights |
|
1161 | # heightRange = None #Heights | |
1162 |
|
1162 | |||
1163 | abscissaList = None #Abscissa, can be velocities, lags or time |
|
1163 | abscissaList = None #Abscissa, can be velocities, lags or time | |
1164 |
|
1164 | |||
1165 | noise = None #Noise Potency |
|
1165 | #noise = None #Noise Potency | |
1166 |
|
1166 | |||
1167 | utctimeInit = None #Initial UTC time |
|
1167 | utctimeInit = None #Initial UTC time | |
1168 |
|
1168 | |||
1169 | paramInterval = None #Time interval to calculate Parameters in seconds |
|
1169 | paramInterval = None #Time interval to calculate Parameters in seconds | |
1170 |
|
1170 | |||
1171 | useLocalTime = True |
|
1171 | useLocalTime = True | |
1172 |
|
1172 | |||
1173 | #Fitting |
|
1173 | #Fitting | |
1174 |
|
1174 | |||
1175 | data_error = None #Error of the estimation |
|
1175 | data_error = None #Error of the estimation | |
1176 |
|
1176 | |||
1177 | constants = None |
|
1177 | constants = None | |
1178 |
|
1178 | |||
1179 | library = None |
|
1179 | library = None | |
1180 |
|
1180 | |||
1181 | #Output signal |
|
1181 | #Output signal | |
1182 |
|
1182 | |||
1183 | outputInterval = None #Time interval to calculate output signal in seconds |
|
1183 | outputInterval = None #Time interval to calculate output signal in seconds | |
1184 |
|
1184 | |||
1185 | data_output = None #Out signal |
|
1185 | data_output = None #Out signal | |
1186 |
|
1186 | |||
1187 | nAvg = None |
|
1187 | nAvg = None | |
1188 |
|
1188 | |||
|
1189 | noise_estimation = None | |||
|
1190 | ||||
1189 |
|
1191 | |||
1190 | def __init__(self): |
|
1192 | def __init__(self): | |
1191 | ''' |
|
1193 | ''' | |
1192 | Constructor |
|
1194 | Constructor | |
1193 | ''' |
|
1195 | ''' | |
1194 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1196 | self.radarControllerHeaderObj = RadarControllerHeader() | |
1195 |
|
1197 | |||
1196 | self.systemHeaderObj = SystemHeader() |
|
1198 | self.systemHeaderObj = SystemHeader() | |
1197 |
|
1199 | |||
1198 | self.type = "Parameters" |
|
1200 | self.type = "Parameters" | |
1199 |
|
1201 | |||
1200 | def getTimeRange1(self, interval): |
|
1202 | def getTimeRange1(self, interval): | |
1201 |
|
1203 | |||
1202 | datatime = [] |
|
1204 | datatime = [] | |
1203 |
|
1205 | |||
1204 | if self.useLocalTime: |
|
1206 | if self.useLocalTime: | |
1205 | time1 = self.utctimeInit - self.timeZone*60 |
|
1207 | time1 = self.utctimeInit - self.timeZone*60 | |
1206 | else: |
|
1208 | else: | |
1207 | time1 = self.utctimeInit |
|
1209 | time1 = self.utctimeInit | |
1208 |
|
1210 | |||
1209 | # datatime.append(self.utctimeInit) |
|
1211 | # datatime.append(self.utctimeInit) | |
1210 | # datatime.append(self.utctimeInit + self.outputInterval) |
|
1212 | # datatime.append(self.utctimeInit + self.outputInterval) | |
1211 | datatime.append(time1) |
|
1213 | datatime.append(time1) | |
1212 | datatime.append(time1 + interval) |
|
1214 | datatime.append(time1 + interval) | |
1213 |
|
1215 | |||
1214 | datatime = numpy.array(datatime) |
|
1216 | datatime = numpy.array(datatime) | |
1215 |
|
1217 | |||
1216 |
return datatime |
|
1218 | return datatime |
@@ -1,426 +1,604 | |||||
1 |
|
1 | |||
2 | import os |
|
2 | import os | |
3 | import zmq |
|
3 | import zmq | |
4 | import time |
|
4 | import time | |
5 | import numpy |
|
5 | import numpy | |
6 | import datetime |
|
6 | import datetime | |
7 | import numpy as np |
|
7 | import numpy as np | |
8 | import matplotlib.pyplot as plt |
|
8 | import matplotlib.pyplot as plt | |
9 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
9 | from mpl_toolkits.axes_grid1 import make_axes_locatable | |
10 | from matplotlib.ticker import FuncFormatter, LinearLocator |
|
10 | from matplotlib.ticker import FuncFormatter, LinearLocator | |
11 | from multiprocessing import Process |
|
11 | from multiprocessing import Process | |
12 |
|
12 | |||
13 | from schainpy.model.proc.jroproc_base import Operation |
|
13 | from schainpy.model.proc.jroproc_base import Operation | |
14 |
|
14 | |||
15 | #plt.ion() |
|
15 | #plt.ion() | |
16 |
|
16 | |||
17 |
func = lambda x, pos: ('%s') %(datetime.datetime. |
|
17 | func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime('%H:%M')) | |
18 |
|
18 | |||
19 | d1970 = datetime.datetime(1970,1,1) |
|
19 | d1970 = datetime.datetime(1970,1,1) | |
20 |
|
20 | |||
21 | class PlotData(Operation, Process): |
|
21 | class PlotData(Operation, Process): | |
22 |
|
22 | |||
23 | CODE = 'Figure' |
|
23 | CODE = 'Figure' | |
24 |
colormap = 'j |
|
24 | colormap = 'jro' | |
25 | CONFLATE = True |
|
25 | CONFLATE = True | |
26 | __MAXNUMX = 80 |
|
26 | __MAXNUMX = 80 | |
27 | __MAXNUMY = 80 |
|
27 | __MAXNUMY = 80 | |
28 | __missing = 1E30 |
|
28 | __missing = 1E30 | |
29 |
|
29 | |||
30 | def __init__(self, **kwargs): |
|
30 | def __init__(self, **kwargs): | |
31 |
|
31 | |||
32 | Operation.__init__(self, plot=True, **kwargs) |
|
32 | Operation.__init__(self, plot=True, **kwargs) | |
33 | Process.__init__(self) |
|
33 | Process.__init__(self) | |
34 | self.kwargs['code'] = self.CODE |
|
34 | self.kwargs['code'] = self.CODE | |
35 | self.mp = False |
|
35 | self.mp = False | |
36 | self.dataOut = None |
|
36 | self.dataOut = None | |
37 | self.isConfig = False |
|
37 | self.isConfig = False | |
38 | self.figure = None |
|
38 | self.figure = None | |
39 | self.axes = [] |
|
39 | self.axes = [] | |
40 | self.localtime = kwargs.pop('localtime', True) |
|
40 | self.localtime = kwargs.pop('localtime', True) | |
41 | self.show = kwargs.get('show', True) |
|
41 | self.show = kwargs.get('show', True) | |
42 | self.save = kwargs.get('save', False) |
|
42 | self.save = kwargs.get('save', False) | |
43 | self.colormap = kwargs.get('colormap', self.colormap) |
|
43 | self.colormap = kwargs.get('colormap', self.colormap) | |
|
44 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') | |||
|
45 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') | |||
44 | self.showprofile = kwargs.get('showprofile', True) |
|
46 | self.showprofile = kwargs.get('showprofile', True) | |
45 | self.title = kwargs.get('wintitle', '') |
|
47 | self.title = kwargs.get('wintitle', '') | |
46 |
self.xaxis = kwargs.get('xaxis', ' |
|
48 | self.xaxis = kwargs.get('xaxis', 'frequency') | |
47 | self.zmin = kwargs.get('zmin', None) |
|
49 | self.zmin = kwargs.get('zmin', None) | |
48 | self.zmax = kwargs.get('zmax', None) |
|
50 | self.zmax = kwargs.get('zmax', None) | |
49 | self.xmin = kwargs.get('xmin', None) |
|
51 | self.xmin = kwargs.get('xmin', None) | |
50 | self.xmax = kwargs.get('xmax', None) |
|
52 | self.xmax = kwargs.get('xmax', None) | |
51 | self.xrange = kwargs.get('xrange', 24) |
|
53 | self.xrange = kwargs.get('xrange', 24) | |
52 | self.ymin = kwargs.get('ymin', None) |
|
54 | self.ymin = kwargs.get('ymin', None) | |
53 | self.ymax = kwargs.get('ymax', None) |
|
55 | self.ymax = kwargs.get('ymax', None) | |
54 | self.throttle_value = 5 |
|
56 | self.throttle_value = 5 | |
|
57 | ||||
55 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
58 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): | |
56 |
|
59 | |||
57 | if x_buffer.shape[0] < 2: |
|
60 | if x_buffer.shape[0] < 2: | |
58 | return x_buffer, y_buffer, z_buffer |
|
61 | return x_buffer, y_buffer, z_buffer | |
59 |
|
62 | |||
60 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
63 | deltas = x_buffer[1:] - x_buffer[0:-1] | |
61 | x_median = np.median(deltas) |
|
64 | x_median = np.median(deltas) | |
62 |
|
65 | |||
63 | index = np.where(deltas > 5*x_median) |
|
66 | index = np.where(deltas > 5*x_median) | |
64 |
|
67 | |||
65 | if len(index[0]) != 0: |
|
68 | if len(index[0]) != 0: | |
66 | z_buffer[::, index[0], ::] = self.__missing |
|
69 | z_buffer[::, index[0], ::] = self.__missing | |
67 | z_buffer = np.ma.masked_inside(z_buffer, |
|
70 | z_buffer = np.ma.masked_inside(z_buffer, | |
68 | 0.99*self.__missing, |
|
71 | 0.99*self.__missing, | |
69 | 1.01*self.__missing) |
|
72 | 1.01*self.__missing) | |
70 |
|
73 | |||
71 | return x_buffer, y_buffer, z_buffer |
|
74 | return x_buffer, y_buffer, z_buffer | |
72 |
|
75 | |||
73 | def decimate(self): |
|
76 | def decimate(self): | |
74 |
|
77 | |||
75 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
78 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 | |
76 | dy = int(len(self.y)/self.__MAXNUMY) + 1 |
|
79 | dy = int(len(self.y)/self.__MAXNUMY) + 1 | |
77 |
|
80 | |||
78 | # x = self.x[::dx] |
|
81 | # x = self.x[::dx] | |
79 | x = self.x |
|
82 | x = self.x | |
80 | y = self.y[::dy] |
|
83 | y = self.y[::dy] | |
81 | z = self.z[::, ::, ::dy] |
|
84 | z = self.z[::, ::, ::dy] | |
82 |
|
85 | |||
83 | return x, y, z |
|
86 | return x, y, z | |
84 |
|
87 | |||
85 | def __plot(self): |
|
88 | def __plot(self): | |
86 |
|
89 | |||
87 | print 'plotting...{}'.format(self.CODE) |
|
90 | print 'plotting...{}'.format(self.CODE) | |
88 |
|
91 | |||
89 | if self.show: |
|
92 | if self.show: | |
90 | self.figure.show() |
|
93 | self.figure.show() | |
91 |
|
94 | |||
92 | self.plot() |
|
95 | self.plot() | |
93 | self.figure.suptitle('{} {} - Date:{}'.format(self.title, self.CODE.upper(), |
|
96 | plt.tight_layout() | |
94 | datetime.datetime.utcfromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S'))) |
|
97 | self.figure.canvas.manager.set_window_title('{} {} - Date:{}'.format(self.title, self.CODE.upper(), | |
|
98 | datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S'))) | |||
95 |
|
99 | |||
96 | if self.save: |
|
100 | if self.save: | |
97 | figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE, |
|
101 | figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE, | |
98 |
datetime.datetime. |
|
102 | datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S'))) | |
99 | print 'Saving figure: {}'.format(figname) |
|
103 | print 'Saving figure: {}'.format(figname) | |
100 | self.figure.savefig(figname) |
|
104 | self.figure.savefig(figname) | |
101 |
|
105 | |||
102 | self.figure.canvas.draw() |
|
106 | self.figure.canvas.draw() | |
103 |
|
107 | |||
104 | def plot(self): |
|
108 | def plot(self): | |
105 |
|
109 | |||
106 | print 'plotting...{}'.format(self.CODE.upper()) |
|
110 | print 'plotting...{}'.format(self.CODE.upper()) | |
107 | return |
|
111 | return | |
108 |
|
112 | |||
109 | def run(self): |
|
113 | def run(self): | |
110 |
|
114 | |||
111 | print '[Starting] {}'.format(self.name) |
|
115 | print '[Starting] {}'.format(self.name) | |
112 | context = zmq.Context() |
|
116 | context = zmq.Context() | |
113 | receiver = context.socket(zmq.SUB) |
|
117 | receiver = context.socket(zmq.SUB) | |
114 | receiver.setsockopt(zmq.SUBSCRIBE, '') |
|
118 | receiver.setsockopt(zmq.SUBSCRIBE, '') | |
115 | receiver.setsockopt(zmq.CONFLATE, self.CONFLATE) |
|
119 | receiver.setsockopt(zmq.CONFLATE, self.CONFLATE) | |
116 | receiver.connect("ipc:///tmp/zmq.plots") |
|
120 | receiver.connect("ipc:///tmp/zmq.plots") | |
117 |
|
121 | |||
118 | while True: |
|
122 | while True: | |
119 | try: |
|
123 | try: | |
120 | #if True: |
|
|||
121 | self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) |
|
124 | self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) | |
122 | self.dataOut = self.data['dataOut'] |
|
125 | self.dataOut = self.data['dataOut'] | |
123 | self.times = self.data['times'] |
|
126 | self.times = self.data['times'] | |
124 | self.times.sort() |
|
127 | self.times.sort() | |
125 | self.throttle_value = self.data['throttle'] |
|
128 | self.throttle_value = self.data['throttle'] | |
126 | self.min_time = self.times[0] |
|
129 | self.min_time = self.times[0] | |
127 | self.max_time = self.times[-1] |
|
130 | self.max_time = self.times[-1] | |
128 |
|
131 | |||
129 | if self.isConfig is False: |
|
132 | if self.isConfig is False: | |
130 | self.setup() |
|
133 | self.setup() | |
131 | self.isConfig = True |
|
134 | self.isConfig = True | |
132 | self.__plot() |
|
135 | self.__plot() | |
133 |
|
136 | |||
134 | if self.data['ENDED'] is True: |
|
137 | if self.data['ENDED'] is True: | |
135 | # self.__plot() |
|
|||
136 | self.isConfig = False |
|
138 | self.isConfig = False | |
137 |
|
139 | |||
138 | except zmq.Again as e: |
|
140 | except zmq.Again as e: | |
139 | print 'Waiting for data...' |
|
141 | print 'Waiting for data...' | |
140 | plt.pause(self.throttle_value) |
|
142 | plt.pause(self.throttle_value) | |
141 | # time.sleep(3) |
|
|||
142 |
|
143 | |||
143 | def close(self): |
|
144 | def close(self): | |
144 | if self.dataOut: |
|
145 | if self.dataOut: | |
145 | self._plot() |
|
146 | self.__plot() | |
146 |
|
147 | |||
147 |
|
148 | |||
148 | class PlotSpectraData(PlotData): |
|
149 | class PlotSpectraData(PlotData): | |
149 |
|
150 | |||
150 | CODE = 'spc' |
|
151 | CODE = 'spc' | |
151 | colormap = 'jro' |
|
152 | colormap = 'jro' | |
152 | CONFLATE = False |
|
153 | CONFLATE = False | |
|
154 | ||||
153 | def setup(self): |
|
155 | def setup(self): | |
154 |
|
156 | |||
155 | ncolspan = 1 |
|
157 | ncolspan = 1 | |
156 | colspan = 1 |
|
158 | colspan = 1 | |
157 | self.ncols = int(numpy.sqrt(self.dataOut.nChannels)+0.9) |
|
159 | self.ncols = int(numpy.sqrt(self.dataOut.nChannels)+0.9) | |
158 | self.nrows = int(self.dataOut.nChannels*1./self.ncols + 0.9) |
|
160 | self.nrows = int(self.dataOut.nChannels*1./self.ncols + 0.9) | |
159 | self.width = 3.6*self.ncols |
|
161 | self.width = 3.6*self.ncols | |
160 | self.height = 3.2*self.nrows |
|
162 | self.height = 3.2*self.nrows | |
161 | if self.showprofile: |
|
163 | if self.showprofile: | |
162 | ncolspan = 3 |
|
164 | ncolspan = 3 | |
163 | colspan = 2 |
|
165 | colspan = 2 | |
164 | self.width += 1.2*self.ncols |
|
166 | self.width += 1.2*self.ncols | |
165 |
|
167 | |||
166 | self.ylabel = 'Range [Km]' |
|
168 | self.ylabel = 'Range [Km]' | |
167 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] |
|
169 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] | |
168 |
|
170 | |||
169 | if self.figure is None: |
|
171 | if self.figure is None: | |
170 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
172 | self.figure = plt.figure(figsize=(self.width, self.height), | |
171 | edgecolor='k', |
|
173 | edgecolor='k', | |
172 | facecolor='w') |
|
174 | facecolor='w') | |
173 | else: |
|
175 | else: | |
174 | self.figure.clf() |
|
176 | self.figure.clf() | |
175 |
|
177 | |||
176 | n = 0 |
|
178 | n = 0 | |
177 | for y in range(self.nrows): |
|
179 | for y in range(self.nrows): | |
178 | for x in range(self.ncols): |
|
180 | for x in range(self.ncols): | |
179 | if n >= self.dataOut.nChannels: |
|
181 | if n >= self.dataOut.nChannels: | |
180 | break |
|
182 | break | |
181 | ax = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan), 1, colspan) |
|
183 | ax = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan), 1, colspan) | |
182 | if self.showprofile: |
|
184 | if self.showprofile: | |
183 | ax.ax_profile = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan+colspan), 1, 1) |
|
185 | ax.ax_profile = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan+colspan), 1, 1) | |
184 |
|
186 | |||
185 | ax.firsttime = True |
|
187 | ax.firsttime = True | |
186 | self.axes.append(ax) |
|
188 | self.axes.append(ax) | |
187 | n += 1 |
|
189 | n += 1 | |
188 |
|
190 | |||
189 | self.figure.subplots_adjust(left=0.1, right=0.95, bottom=0.15, top=0.85, wspace=0.9, hspace=0.5) |
|
|||
190 |
|
||||
191 | def plot(self): |
|
191 | def plot(self): | |
192 |
|
192 | |||
193 | if self.xaxis == "frequency": |
|
193 | if self.xaxis == "frequency": | |
194 | x = self.dataOut.getFreqRange(1)/1000. |
|
194 | x = self.dataOut.getFreqRange(1)/1000. | |
195 | xlabel = "Frequency (kHz)" |
|
195 | xlabel = "Frequency (kHz)" | |
196 | elif self.xaxis == "time": |
|
196 | elif self.xaxis == "time": | |
197 | x = self.dataOut.getAcfRange(1) |
|
197 | x = self.dataOut.getAcfRange(1) | |
198 | xlabel = "Time (ms)" |
|
198 | xlabel = "Time (ms)" | |
199 | else: |
|
199 | else: | |
200 | x = self.dataOut.getVelRange(1) |
|
200 | x = self.dataOut.getVelRange(1) | |
201 | xlabel = "Velocity (m/s)" |
|
201 | xlabel = "Velocity (m/s)" | |
202 |
|
202 | |||
203 | y = self.dataOut.getHeiRange() |
|
203 | y = self.dataOut.getHeiRange() | |
204 | z = self.data[self.CODE] |
|
204 | z = self.data[self.CODE] | |
205 |
|
205 | |||
206 | for n, ax in enumerate(self.axes): |
|
206 | for n, ax in enumerate(self.axes): | |
207 |
|
207 | |||
208 | if ax.firsttime: |
|
208 | if ax.firsttime: | |
209 | self.xmax = self.xmax if self.xmax else np.nanmax(x) |
|
209 | self.xmax = self.xmax if self.xmax else np.nanmax(x) | |
210 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
210 | self.xmin = self.xmin if self.xmin else -self.xmax | |
211 | self.ymin = self.ymin if self.ymin else np.nanmin(y) |
|
211 | self.ymin = self.ymin if self.ymin else np.nanmin(y) | |
212 | self.ymax = self.ymax if self.ymax else np.nanmax(y) |
|
212 | self.ymax = self.ymax if self.ymax else np.nanmax(y) | |
213 | self.zmin = self.zmin if self.zmin else np.nanmin(z) |
|
213 | self.zmin = self.zmin if self.zmin else np.nanmin(z) | |
214 | self.zmax = self.zmax if self.zmax else np.nanmax(z) |
|
214 | self.zmax = self.zmax if self.zmax else np.nanmax(z) | |
215 | ax.plot = ax.pcolormesh(x, y, z[n].T, |
|
215 | ax.plot = ax.pcolormesh(x, y, z[n].T, | |
216 | vmin=self.zmin, |
|
216 | vmin=self.zmin, | |
217 | vmax=self.zmax, |
|
217 | vmax=self.zmax, | |
218 | cmap=plt.get_cmap(self.colormap) |
|
218 | cmap=plt.get_cmap(self.colormap) | |
219 | ) |
|
219 | ) | |
220 | divider = make_axes_locatable(ax) |
|
220 | divider = make_axes_locatable(ax) | |
221 | cax = divider.new_horizontal(size='3%', pad=0.05) |
|
221 | cax = divider.new_horizontal(size='3%', pad=0.05) | |
222 | self.figure.add_axes(cax) |
|
222 | self.figure.add_axes(cax) | |
223 | plt.colorbar(ax.plot, cax) |
|
223 | plt.colorbar(ax.plot, cax) | |
224 |
|
224 | |||
225 | ax.set_xlim(self.xmin, self.xmax) |
|
225 | ax.set_xlim(self.xmin, self.xmax) | |
226 | ax.set_ylim(self.ymin, self.ymax) |
|
226 | ax.set_ylim(self.ymin, self.ymax) | |
227 |
|
227 | |||
228 | ax.xaxis.set_major_locator(LinearLocator(5)) |
|
|||
229 | #ax.yaxis.set_major_locator(LinearLocator(4)) |
|
|||
230 |
|
||||
231 | ax.set_ylabel(self.ylabel) |
|
228 | ax.set_ylabel(self.ylabel) | |
232 | ax.set_xlabel(xlabel) |
|
229 | ax.set_xlabel(xlabel) | |
233 |
|
230 | |||
234 | ax.firsttime = False |
|
231 | ax.firsttime = False | |
235 |
|
232 | |||
236 | if self.showprofile: |
|
233 | if self.showprofile: | |
237 | ax.plot_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0] |
|
234 | ax.plot_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0] | |
238 | ax.ax_profile.set_xlim(self.zmin, self.zmax) |
|
235 | ax.ax_profile.set_xlim(self.zmin, self.zmax) | |
239 | ax.ax_profile.set_ylim(self.ymin, self.ymax) |
|
236 | ax.ax_profile.set_ylim(self.ymin, self.ymax) | |
240 | ax.ax_profile.set_xlabel('dB') |
|
237 | ax.ax_profile.set_xlabel('dB') | |
241 | ax.ax_profile.grid(b=True, axis='x') |
|
238 | ax.ax_profile.grid(b=True, axis='x') | |
242 | ax.plot_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y, |
|
239 | ax.plot_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y, | |
243 | color="k", linestyle="dashed", lw=2)[0] |
|
240 | color="k", linestyle="dashed", lw=2)[0] | |
244 | [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()] |
|
241 | [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()] | |
245 | else: |
|
242 | else: | |
246 | ax.plot.set_array(z[n].T.ravel()) |
|
243 | ax.plot.set_array(z[n].T.ravel()) | |
247 | if self.showprofile: |
|
244 | if self.showprofile: | |
248 | ax.plot_profile.set_data(self.data['rti'][self.max_time][n], y) |
|
245 | ax.plot_profile.set_data(self.data['rti'][self.max_time][n], y) | |
249 | ax.plot_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y) |
|
246 | ax.plot_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y) | |
250 |
|
247 | |||
251 | ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]), |
|
248 | ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]), | |
252 | size=8) |
|
249 | size=8) | |
|
250 | self.saveTime = self.max_time | |||
|
251 | ||||
|
252 | ||||
|
253 | class PlotCrossSpectraData(PlotData): | |||
|
254 | ||||
|
255 | CODE = 'cspc' | |||
|
256 | zmin_coh = None | |||
|
257 | zmax_coh = None | |||
|
258 | zmin_phase = None | |||
|
259 | zmax_phase = None | |||
|
260 | CONFLATE = False | |||
|
261 | ||||
|
262 | def setup(self): | |||
|
263 | ||||
|
264 | ncolspan = 1 | |||
|
265 | colspan = 1 | |||
|
266 | self.ncols = 2 | |||
|
267 | self.nrows = self.dataOut.nPairs | |||
|
268 | self.width = 3.6*self.ncols | |||
|
269 | self.height = 3.2*self.nrows | |||
|
270 | ||||
|
271 | self.ylabel = 'Range [Km]' | |||
|
272 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] | |||
|
273 | ||||
|
274 | if self.figure is None: | |||
|
275 | self.figure = plt.figure(figsize=(self.width, self.height), | |||
|
276 | edgecolor='k', | |||
|
277 | facecolor='w') | |||
|
278 | else: | |||
|
279 | self.figure.clf() | |||
|
280 | ||||
|
281 | for y in range(self.nrows): | |||
|
282 | for x in range(self.ncols): | |||
|
283 | ax = plt.subplot2grid((self.nrows, self.ncols), (y, x), 1, 1) | |||
|
284 | ax.firsttime = True | |||
|
285 | self.axes.append(ax) | |||
|
286 | ||||
|
287 | def plot(self): | |||
|
288 | ||||
|
289 | if self.xaxis == "frequency": | |||
|
290 | x = self.dataOut.getFreqRange(1)/1000. | |||
|
291 | xlabel = "Frequency (kHz)" | |||
|
292 | elif self.xaxis == "time": | |||
|
293 | x = self.dataOut.getAcfRange(1) | |||
|
294 | xlabel = "Time (ms)" | |||
|
295 | else: | |||
|
296 | x = self.dataOut.getVelRange(1) | |||
|
297 | xlabel = "Velocity (m/s)" | |||
|
298 | ||||
|
299 | y = self.dataOut.getHeiRange() | |||
|
300 | z_coh = self.data['cspc_coh'] | |||
|
301 | z_phase = self.data['cspc_phase'] | |||
|
302 | ||||
|
303 | for n in range(self.nrows): | |||
|
304 | ax = self.axes[2*n] | |||
|
305 | ax1 = self.axes[2*n+1] | |||
|
306 | if ax.firsttime: | |||
|
307 | self.xmax = self.xmax if self.xmax else np.nanmax(x) | |||
|
308 | self.xmin = self.xmin if self.xmin else -self.xmax | |||
|
309 | self.ymin = self.ymin if self.ymin else np.nanmin(y) | |||
|
310 | self.ymax = self.ymax if self.ymax else np.nanmax(y) | |||
|
311 | self.zmin_coh = self.zmin_coh if self.zmin_coh else 0.0 | |||
|
312 | self.zmax_coh = self.zmax_coh if self.zmax_coh else 1.0 | |||
|
313 | self.zmin_phase = self.zmin_phase if self.zmin_phase else -180 | |||
|
314 | self.zmax_phase = self.zmax_phase if self.zmax_phase else 180 | |||
|
315 | ||||
|
316 | ax.plot = ax.pcolormesh(x, y, z_coh[n].T, | |||
|
317 | vmin=self.zmin_coh, | |||
|
318 | vmax=self.zmax_coh, | |||
|
319 | cmap=plt.get_cmap(self.colormap_coh) | |||
|
320 | ) | |||
|
321 | divider = make_axes_locatable(ax) | |||
|
322 | cax = divider.new_horizontal(size='3%', pad=0.05) | |||
|
323 | self.figure.add_axes(cax) | |||
|
324 | plt.colorbar(ax.plot, cax) | |||
|
325 | ||||
|
326 | ax.set_xlim(self.xmin, self.xmax) | |||
|
327 | ax.set_ylim(self.ymin, self.ymax) | |||
|
328 | ||||
|
329 | ax.set_ylabel(self.ylabel) | |||
|
330 | ax.set_xlabel(xlabel) | |||
|
331 | ax.firsttime = False | |||
|
332 | ||||
|
333 | ax1.plot = ax1.pcolormesh(x, y, z_phase[n].T, | |||
|
334 | vmin=self.zmin_phase, | |||
|
335 | vmax=self.zmax_phase, | |||
|
336 | cmap=plt.get_cmap(self.colormap_phase) | |||
|
337 | ) | |||
|
338 | divider = make_axes_locatable(ax1) | |||
|
339 | cax = divider.new_horizontal(size='3%', pad=0.05) | |||
|
340 | self.figure.add_axes(cax) | |||
|
341 | plt.colorbar(ax1.plot, cax) | |||
|
342 | ||||
|
343 | ax1.set_xlim(self.xmin, self.xmax) | |||
|
344 | ax1.set_ylim(self.ymin, self.ymax) | |||
|
345 | ||||
|
346 | ax1.set_ylabel(self.ylabel) | |||
|
347 | ax1.set_xlabel(xlabel) | |||
|
348 | ax1.firsttime = False | |||
|
349 | else: | |||
|
350 | ax.plot.set_array(z_coh[n].T.ravel()) | |||
|
351 | ax1.plot.set_array(z_phase[n].T.ravel()) | |||
|
352 | ||||
|
353 | ax.set_title('Coherence Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8) | |||
|
354 | ax1.set_title('Phase Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8) | |||
|
355 | self.saveTime = self.max_time | |||
|
356 | ||||
|
357 | ||||
|
358 | class PlotSpectraMeanData(PlotSpectraData): | |||
|
359 | ||||
|
360 | CODE = 'spc_mean' | |||
|
361 | colormap = 'jet' | |||
|
362 | ||||
|
363 | def plot(self): | |||
|
364 | ||||
|
365 | if self.xaxis == "frequency": | |||
|
366 | x = self.dataOut.getFreqRange(1)/1000. | |||
|
367 | xlabel = "Frequency (kHz)" | |||
|
368 | elif self.xaxis == "time": | |||
|
369 | x = self.dataOut.getAcfRange(1) | |||
|
370 | xlabel = "Time (ms)" | |||
|
371 | else: | |||
|
372 | x = self.dataOut.getVelRange(1) | |||
|
373 | xlabel = "Velocity (m/s)" | |||
|
374 | ||||
|
375 | y = self.dataOut.getHeiRange() | |||
|
376 | z = self.data['spc'] | |||
|
377 | mean = self.data['mean'][self.max_time] | |||
|
378 | ||||
|
379 | for n, ax in enumerate(self.axes): | |||
|
380 | ||||
|
381 | if ax.firsttime: | |||
|
382 | self.xmax = self.xmax if self.xmax else np.nanmax(x) | |||
|
383 | self.xmin = self.xmin if self.xmin else -self.xmax | |||
|
384 | self.ymin = self.ymin if self.ymin else np.nanmin(y) | |||
|
385 | self.ymax = self.ymax if self.ymax else np.nanmax(y) | |||
|
386 | self.zmin = self.zmin if self.zmin else np.nanmin(z) | |||
|
387 | self.zmax = self.zmax if self.zmax else np.nanmax(z) | |||
|
388 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |||
|
389 | vmin=self.zmin, | |||
|
390 | vmax=self.zmax, | |||
|
391 | cmap=plt.get_cmap(self.colormap) | |||
|
392 | ) | |||
|
393 | ax.plt_dop = ax.plot(mean[n], y, | |||
|
394 | color='k')[0] | |||
|
395 | ||||
|
396 | divider = make_axes_locatable(ax) | |||
|
397 | cax = divider.new_horizontal(size='3%', pad=0.05) | |||
|
398 | self.figure.add_axes(cax) | |||
|
399 | plt.colorbar(ax.plt, cax) | |||
|
400 | ||||
|
401 | ax.set_xlim(self.xmin, self.xmax) | |||
|
402 | ax.set_ylim(self.ymin, self.ymax) | |||
|
403 | ||||
|
404 | ax.set_ylabel(self.ylabel) | |||
|
405 | ax.set_xlabel(xlabel) | |||
|
406 | ||||
|
407 | ax.firsttime = False | |||
|
408 | ||||
|
409 | if self.showprofile: | |||
|
410 | ax.plt_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0] | |||
|
411 | ax.ax_profile.set_xlim(self.zmin, self.zmax) | |||
|
412 | ax.ax_profile.set_ylim(self.ymin, self.ymax) | |||
|
413 | ax.ax_profile.set_xlabel('dB') | |||
|
414 | ax.ax_profile.grid(b=True, axis='x') | |||
|
415 | ax.plt_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y, | |||
|
416 | color="k", linestyle="dashed", lw=2)[0] | |||
|
417 | [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()] | |||
|
418 | else: | |||
|
419 | ax.plt.set_array(z[n].T.ravel()) | |||
|
420 | ax.plt_dop.set_data(mean[n], y) | |||
|
421 | if self.showprofile: | |||
|
422 | ax.plt_profile.set_data(self.data['rti'][self.max_time][n], y) | |||
|
423 | ax.plt_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y) | |||
|
424 | ||||
|
425 | ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]), | |||
|
426 | size=8) | |||
|
427 | self.saveTime = self.max_time | |||
|
428 | ||||
253 |
|
429 | |||
254 | class PlotRTIData(PlotData): |
|
430 | class PlotRTIData(PlotData): | |
255 |
|
431 | |||
256 | CODE = 'rti' |
|
432 | CODE = 'rti' | |
257 | colormap = 'jro' |
|
433 | colormap = 'jro' | |
258 |
|
434 | |||
259 | def setup(self): |
|
435 | def setup(self): | |
260 | self.ncols = 1 |
|
436 | self.ncols = 1 | |
261 | self.nrows = self.dataOut.nChannels |
|
437 | self.nrows = self.dataOut.nChannels | |
262 | self.width = 10 |
|
438 | self.width = 10 | |
263 | self.height = 2.2*self.nrows |
|
439 | self.height = 2.2*self.nrows if self.nrows<6 else 12 | |
264 | if self.nrows==1: |
|
440 | if self.nrows==1: | |
265 | self.height += 1 |
|
441 | self.height += 1 | |
266 | self.ylabel = 'Range [Km]' |
|
442 | self.ylabel = 'Range [Km]' | |
267 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] |
|
443 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] | |
268 |
|
444 | |||
269 | if self.figure is None: |
|
445 | if self.figure is None: | |
270 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
446 | self.figure = plt.figure(figsize=(self.width, self.height), | |
271 | edgecolor='k', |
|
447 | edgecolor='k', | |
272 | facecolor='w') |
|
448 | facecolor='w') | |
273 | else: |
|
449 | else: | |
274 | self.figure.clf() |
|
450 | self.figure.clf() | |
275 | self.axes = [] |
|
451 | self.axes = [] | |
276 |
|
452 | |||
277 | for n in range(self.nrows): |
|
453 | for n in range(self.nrows): | |
278 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) |
|
454 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) | |
279 | ax.firsttime = True |
|
455 | ax.firsttime = True | |
280 | self.axes.append(ax) |
|
456 | self.axes.append(ax) | |
281 | self.figure.subplots_adjust(hspace=0.5) |
|
|||
282 |
|
457 | |||
283 | def plot(self): |
|
458 | def plot(self): | |
284 |
|
459 | |||
285 | self.x = np.array(self.times) |
|
460 | self.x = np.array(self.times) | |
286 | self.y = self.dataOut.getHeiRange() |
|
461 | self.y = self.dataOut.getHeiRange() | |
287 | self.z = [] |
|
462 | self.z = [] | |
288 |
|
463 | |||
289 | for ch in range(self.nrows): |
|
464 | for ch in range(self.nrows): | |
290 | self.z.append([self.data[self.CODE][t][ch] for t in self.times]) |
|
465 | self.z.append([self.data[self.CODE][t][ch] for t in self.times]) | |
291 |
|
466 | |||
292 | self.z = np.array(self.z) |
|
467 | self.z = np.array(self.z) | |
293 | for n, ax in enumerate(self.axes): |
|
468 | for n, ax in enumerate(self.axes): | |
294 |
|
469 | |||
295 | x, y, z = self.fill_gaps(*self.decimate()) |
|
470 | x, y, z = self.fill_gaps(*self.decimate()) | |
296 | xmin = self.min_time |
|
471 | xmin = self.min_time | |
297 | xmax = xmin+self.xrange*60*60 |
|
472 | xmax = xmin+self.xrange*60*60 | |
298 | if ax.firsttime: |
|
473 | if ax.firsttime: | |
299 | self.ymin = self.ymin if self.ymin else np.nanmin(self.y) |
|
474 | self.ymin = self.ymin if self.ymin else np.nanmin(self.y) | |
300 | self.ymax = self.ymax if self.ymax else np.nanmax(self.y) |
|
475 | self.ymax = self.ymax if self.ymax else np.nanmax(self.y) | |
301 | self.zmin = self.zmin if self.zmin else np.nanmin(self.z) |
|
476 | self.zmin = self.zmin if self.zmin else np.nanmin(self.z) | |
302 | self.zmax = self.zmax if self.zmax else np.nanmax(self.z) |
|
477 | self.zmax = self.zmax if self.zmax else np.nanmax(self.z) | |
303 | plot = ax.pcolormesh(x, y, z[n].T, |
|
478 | plot = ax.pcolormesh(x, y, z[n].T, | |
304 | vmin=self.zmin, |
|
479 | vmin=self.zmin, | |
305 | vmax=self.zmax, |
|
480 | vmax=self.zmax, | |
306 | cmap=plt.get_cmap(self.colormap) |
|
481 | cmap=plt.get_cmap(self.colormap) | |
307 | ) |
|
482 | ) | |
308 | divider = make_axes_locatable(ax) |
|
483 | divider = make_axes_locatable(ax) | |
309 | cax = divider.new_horizontal(size='2%', pad=0.05) |
|
484 | cax = divider.new_horizontal(size='2%', pad=0.05) | |
310 | self.figure.add_axes(cax) |
|
485 | self.figure.add_axes(cax) | |
311 | plt.colorbar(plot, cax) |
|
486 | plt.colorbar(plot, cax) | |
312 | ax.set_ylim(self.ymin, self.ymax) |
|
487 | ax.set_ylim(self.ymin, self.ymax) | |
313 | if self.xaxis == 'time': |
|
|||
314 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
|||
315 | ax.xaxis.set_major_locator(LinearLocator(6)) |
|
|||
316 |
|
488 | |||
317 |
|
|
489 | ax.xaxis.set_major_formatter(FuncFormatter(func)) | |
|
490 | ax.xaxis.set_major_locator(LinearLocator(6)) | |||
318 |
|
491 | |||
319 | ax.set_ylabel(self.ylabel) |
|
492 | ax.set_ylabel(self.ylabel) | |
320 |
|
493 | |||
321 | # if self.xmin is None: |
|
494 | # if self.xmin is None: | |
322 | # xmin = self.min_time |
|
495 | # xmin = self.min_time | |
323 | # else: |
|
496 | # else: | |
324 | # xmin = (datetime.datetime.combine(self.dataOut.datatime.date(), |
|
497 | # xmin = (datetime.datetime.combine(self.dataOut.datatime.date(), | |
325 | # datetime.time(self.xmin, 0, 0))-d1970).total_seconds() |
|
498 | # datetime.time(self.xmin, 0, 0))-d1970).total_seconds() | |
326 |
|
499 | |||
327 | ax.set_xlim(xmin, xmax) |
|
500 | ax.set_xlim(xmin, xmax) | |
328 | ax.firsttime = False |
|
501 | ax.firsttime = False | |
329 | else: |
|
502 | else: | |
330 | ax.collections.remove(ax.collections[0]) |
|
503 | ax.collections.remove(ax.collections[0]) | |
331 | ax.set_xlim(xmin, xmax) |
|
504 | ax.set_xlim(xmin, xmax) | |
332 | plot = ax.pcolormesh(x, y, z[n].T, |
|
505 | plot = ax.pcolormesh(x, y, z[n].T, | |
333 | vmin=self.zmin, |
|
506 | vmin=self.zmin, | |
334 | vmax=self.zmax, |
|
507 | vmax=self.zmax, | |
335 | cmap=plt.get_cmap(self.colormap) |
|
508 | cmap=plt.get_cmap(self.colormap) | |
336 | ) |
|
509 | ) | |
337 |
|
|
510 | ax.set_title('{} {}'.format(self.titles[n], | |
338 |
|
|
511 | datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')), | |
339 |
|
|
512 | size=8) | |
|
513 | ||||
|
514 | self.saveTime = self.min_time | |||
340 |
|
515 | |||
341 |
|
516 | |||
342 | class PlotCOHData(PlotRTIData): |
|
517 | class PlotCOHData(PlotRTIData): | |
343 |
|
518 | |||
344 | CODE = 'coh' |
|
519 | CODE = 'coh' | |
345 |
|
520 | |||
346 | def setup(self): |
|
521 | def setup(self): | |
347 |
|
522 | |||
348 | self.ncols = 1 |
|
523 | self.ncols = 1 | |
349 | self.nrows = self.dataOut.nPairs |
|
524 | self.nrows = self.dataOut.nPairs | |
350 | self.width = 10 |
|
525 | self.width = 10 | |
351 | self.height = 2.2*self.nrows |
|
526 | self.height = 2.2*self.nrows if self.nrows<6 else 12 | |
352 | if self.nrows==1: |
|
527 | if self.nrows==1: | |
353 | self.height += 1 |
|
528 | self.height += 1 | |
354 | self.ylabel = 'Range [Km]' |
|
529 | self.ylabel = 'Range [Km]' | |
355 |
self.titles = [' |
|
530 | self.titles = ['{} Ch{} * Ch{}'.format(self.CODE.upper(), x[0], x[1]) for x in self.dataOut.pairsList] | |
356 |
|
531 | |||
357 | if self.figure is None: |
|
532 | if self.figure is None: | |
358 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
533 | self.figure = plt.figure(figsize=(self.width, self.height), | |
359 | edgecolor='k', |
|
534 | edgecolor='k', | |
360 | facecolor='w') |
|
535 | facecolor='w') | |
361 | else: |
|
536 | else: | |
362 | self.figure.clf() |
|
537 | self.figure.clf() | |
363 | self.axes = [] |
|
538 | self.axes = [] | |
364 |
|
539 | |||
365 | for n in range(self.nrows): |
|
540 | for n in range(self.nrows): | |
366 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) |
|
541 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) | |
367 | ax.firsttime = True |
|
542 | ax.firsttime = True | |
368 | self.axes.append(ax) |
|
543 | self.axes.append(ax) | |
369 |
|
544 | |||
370 | self.figure.subplots_adjust(hspace=0.5) |
|
|||
371 |
|
545 | |||
372 | class PlotNoiseData(PlotData): |
|
546 | class PlotNoiseData(PlotData): | |
373 | CODE = 'noise' |
|
547 | CODE = 'noise' | |
374 |
|
548 | |||
375 | def setup(self): |
|
549 | def setup(self): | |
376 |
|
550 | |||
377 | self.ncols = 1 |
|
551 | self.ncols = 1 | |
378 | self.nrows = 1 |
|
552 | self.nrows = 1 | |
379 | self.width = 10 |
|
553 | self.width = 10 | |
380 | self.height = 3.2 |
|
554 | self.height = 3.2 | |
381 | self.ylabel = 'Intensity [dB]' |
|
555 | self.ylabel = 'Intensity [dB]' | |
382 | self.titles = ['Noise'] |
|
556 | self.titles = ['Noise'] | |
383 |
|
557 | |||
384 | if self.figure is None: |
|
558 | if self.figure is None: | |
385 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
559 | self.figure = plt.figure(figsize=(self.width, self.height), | |
386 | edgecolor='k', |
|
560 | edgecolor='k', | |
387 | facecolor='w') |
|
561 | facecolor='w') | |
388 | else: |
|
562 | else: | |
389 | self.figure.clf() |
|
563 | self.figure.clf() | |
390 | self.axes = [] |
|
564 | self.axes = [] | |
391 |
|
565 | |||
392 | self.ax = self.figure.add_subplot(self.nrows, self.ncols, 1) |
|
566 | self.ax = self.figure.add_subplot(self.nrows, self.ncols, 1) | |
393 | self.ax.firsttime = True |
|
567 | self.ax.firsttime = True | |
394 |
|
568 | |||
395 | def plot(self): |
|
569 | def plot(self): | |
396 |
|
570 | |||
397 | x = self.times |
|
571 | x = self.times | |
398 | xmin = self.min_time |
|
572 | xmin = self.min_time | |
399 | xmax = xmin+self.xrange*60*60 |
|
573 | xmax = xmin+self.xrange*60*60 | |
400 | if self.ax.firsttime: |
|
574 | if self.ax.firsttime: | |
401 | for ch in self.dataOut.channelList: |
|
575 | for ch in self.dataOut.channelList: | |
402 | y = [self.data[self.CODE][t][ch] for t in self.times] |
|
576 | y = [self.data[self.CODE][t][ch] for t in self.times] | |
403 | self.ax.plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
577 | self.ax.plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
404 | self.ax.firsttime = False |
|
578 | self.ax.firsttime = False | |
405 | self.ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
579 | self.ax.xaxis.set_major_formatter(FuncFormatter(func)) | |
406 | self.ax.xaxis.set_major_locator(LinearLocator(6)) |
|
580 | self.ax.xaxis.set_major_locator(LinearLocator(6)) | |
407 | self.ax.set_ylabel(self.ylabel) |
|
581 | self.ax.set_ylabel(self.ylabel) | |
408 | plt.legend() |
|
582 | plt.legend() | |
409 | else: |
|
583 | else: | |
410 | for ch in self.dataOut.channelList: |
|
584 | for ch in self.dataOut.channelList: | |
411 | y = [self.data[self.CODE][t][ch] for t in self.times] |
|
585 | y = [self.data[self.CODE][t][ch] for t in self.times] | |
412 | self.ax.lines[ch].set_data(x, y) |
|
586 | self.ax.lines[ch].set_data(x, y) | |
413 |
|
587 | |||
414 | self.ax.set_xlim(xmin, xmax) |
|
588 | self.ax.set_xlim(xmin, xmax) | |
415 | self.ax.set_ylim(min(y)-5, max(y)+5) |
|
589 | self.ax.set_ylim(min(y)-5, max(y)+5) | |
|
590 | self.saveTime = self.min_time | |||
|
591 | ||||
416 |
|
592 | |||
417 | class PlotSNRData(PlotRTIData): |
|
593 | class PlotSNRData(PlotRTIData): | |
418 | CODE = 'snr' |
|
594 | CODE = 'snr' | |
|
595 | colormap = 'jet' | |||
419 |
|
596 | |||
420 | class PlotDOPData(PlotRTIData): |
|
597 | class PlotDOPData(PlotRTIData): | |
421 | CODE = 'dop' |
|
598 | CODE = 'dop' | |
422 | colormap = 'jet' |
|
599 | colormap = 'jet' | |
423 |
|
600 | |||
|
601 | ||||
424 | class PlotPHASEData(PlotCOHData): |
|
602 | class PlotPHASEData(PlotCOHData): | |
425 | CODE = 'phase' |
|
603 | CODE = 'phase' | |
426 | colormap = 'seismic' |
|
604 | colormap = 'seismic' |
@@ -1,2741 +1,2749 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import math |
|
2 | import math | |
3 | from scipy import optimize, interpolate, signal, stats, ndimage |
|
3 | from scipy import optimize, interpolate, signal, stats, ndimage | |
4 | import re |
|
4 | import re | |
5 | import datetime |
|
5 | import datetime | |
6 | import copy |
|
6 | import copy | |
7 | import sys |
|
7 | import sys | |
8 | import importlib |
|
8 | import importlib | |
9 | import itertools |
|
9 | import itertools | |
10 |
|
10 | |||
11 | from jroproc_base import ProcessingUnit, Operation |
|
11 | from jroproc_base import ProcessingUnit, Operation | |
12 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon |
|
12 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | class ParametersProc(ProcessingUnit): |
|
15 | class ParametersProc(ProcessingUnit): | |
16 |
|
16 | |||
17 | nSeconds = None |
|
17 | nSeconds = None | |
18 |
|
18 | |||
19 | def __init__(self): |
|
19 | def __init__(self): | |
20 | ProcessingUnit.__init__(self) |
|
20 | ProcessingUnit.__init__(self) | |
21 |
|
21 | |||
22 | # self.objectDict = {} |
|
22 | # self.objectDict = {} | |
23 | self.buffer = None |
|
23 | self.buffer = None | |
24 | self.firstdatatime = None |
|
24 | self.firstdatatime = None | |
25 | self.profIndex = 0 |
|
25 | self.profIndex = 0 | |
26 | self.dataOut = Parameters() |
|
26 | self.dataOut = Parameters() | |
27 |
|
27 | |||
28 | def __updateObjFromInput(self): |
|
28 | def __updateObjFromInput(self): | |
29 |
|
29 | |||
30 | self.dataOut.inputUnit = self.dataIn.type |
|
30 | self.dataOut.inputUnit = self.dataIn.type | |
31 |
|
31 | |||
32 | self.dataOut.timeZone = self.dataIn.timeZone |
|
32 | self.dataOut.timeZone = self.dataIn.timeZone | |
33 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
33 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
34 | self.dataOut.errorCount = self.dataIn.errorCount |
|
34 | self.dataOut.errorCount = self.dataIn.errorCount | |
35 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
35 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
36 |
|
36 | |||
37 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
37 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
38 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
38 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
39 | self.dataOut.channelList = self.dataIn.channelList |
|
39 | self.dataOut.channelList = self.dataIn.channelList | |
40 | self.dataOut.heightList = self.dataIn.heightList |
|
40 | self.dataOut.heightList = self.dataIn.heightList | |
41 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
41 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
42 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
42 | # self.dataOut.nHeights = self.dataIn.nHeights | |
43 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
43 | # self.dataOut.nChannels = self.dataIn.nChannels | |
44 | self.dataOut.nBaud = self.dataIn.nBaud |
|
44 | self.dataOut.nBaud = self.dataIn.nBaud | |
45 | self.dataOut.nCode = self.dataIn.nCode |
|
45 | self.dataOut.nCode = self.dataIn.nCode | |
46 | self.dataOut.code = self.dataIn.code |
|
46 | self.dataOut.code = self.dataIn.code | |
47 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
47 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
48 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
48 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
49 | # self.dataOut.utctime = self.firstdatatime |
|
49 | # self.dataOut.utctime = self.firstdatatime | |
50 | self.dataOut.utctime = self.dataIn.utctime |
|
50 | self.dataOut.utctime = self.dataIn.utctime | |
51 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
51 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
52 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
52 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
53 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
53 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
54 | # self.dataOut.nIncohInt = 1 |
|
54 | # self.dataOut.nIncohInt = 1 | |
55 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
55 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
56 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
56 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
57 | self.dataOut.timeInterval = self.dataIn.timeInterval |
|
57 | # self.dataOut.timeInterval = self.dataIn.timeInterval | |
58 | self.dataOut.heightList = self.dataIn.getHeiRange() |
|
58 | self.dataOut.heightList = self.dataIn.getHeiRange() | |
59 | self.dataOut.frequency = self.dataIn.frequency |
|
59 | self.dataOut.frequency = self.dataIn.frequency | |
60 | self.dataOut.noise = self.dataIn.noise |
|
60 | #self.dataOut.noise = self.dataIn.noise | |
61 |
|
61 | |||
62 | def run(self): |
|
62 | def run(self): | |
63 |
|
63 | |||
64 | #---------------------- Voltage Data --------------------------- |
|
64 | #---------------------- Voltage Data --------------------------- | |
65 |
|
65 | |||
66 | if self.dataIn.type == "Voltage": |
|
66 | if self.dataIn.type == "Voltage": | |
67 |
|
67 | |||
68 | self.__updateObjFromInput() |
|
68 | self.__updateObjFromInput() | |
69 | self.dataOut.data_pre = self.dataIn.data.copy() |
|
69 | self.dataOut.data_pre = self.dataIn.data.copy() | |
70 | self.dataOut.flagNoData = False |
|
70 | self.dataOut.flagNoData = False | |
71 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
71 | self.dataOut.utctimeInit = self.dataIn.utctime | |
72 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds |
|
72 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds | |
73 | return |
|
73 | return | |
74 |
|
74 | |||
75 | #---------------------- Spectra Data --------------------------- |
|
75 | #---------------------- Spectra Data --------------------------- | |
76 |
|
76 | |||
77 | if self.dataIn.type == "Spectra": |
|
77 | if self.dataIn.type == "Spectra": | |
78 |
|
78 | |||
79 | self.dataOut.data_pre = (self.dataIn.data_spc,self.dataIn.data_cspc) |
|
79 | self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc) | |
80 |
self.dataOut. |
|
80 | self.dataOut.data_spc = self.dataIn.data_spc | |
81 |
|
|
81 | self.dataOut.data_cspc = self.dataIn.data_cspc | |
82 |
self.dataOut.n |
|
82 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
|
83 | self.dataOut.nIncohInt = self.dataIn.nIncohInt | |||
|
84 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints | |||
|
85 | self.dataOut.ippFactor = self.dataIn.ippFactor | |||
|
86 | #self.dataOut.normFactor = self.dataIn.getNormFactor() | |||
|
87 | self.dataOut.pairsList = self.dataIn.pairsList | |||
83 | self.dataOut.groupList = self.dataIn.pairsList |
|
88 | self.dataOut.groupList = self.dataIn.pairsList | |
|
89 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |||
84 | self.dataOut.flagNoData = False |
|
90 | self.dataOut.flagNoData = False | |
85 |
|
91 | |||
86 | #---------------------- Correlation Data --------------------------- |
|
92 | #---------------------- Correlation Data --------------------------- | |
87 |
|
93 | |||
88 | if self.dataIn.type == "Correlation": |
|
94 | if self.dataIn.type == "Correlation": | |
89 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() |
|
95 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() | |
90 |
|
96 | |||
91 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) |
|
97 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) | |
92 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) |
|
98 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) | |
93 | self.dataOut.groupList = (acf_pairs, ccf_pairs) |
|
99 | self.dataOut.groupList = (acf_pairs, ccf_pairs) | |
94 |
|
100 | |||
95 | self.dataOut.abscissaList = self.dataIn.lagRange |
|
101 | self.dataOut.abscissaList = self.dataIn.lagRange | |
96 | self.dataOut.noise = self.dataIn.noise |
|
102 | self.dataOut.noise = self.dataIn.noise | |
97 | self.dataOut.data_SNR = self.dataIn.SNR |
|
103 | self.dataOut.data_SNR = self.dataIn.SNR | |
98 | self.dataOut.flagNoData = False |
|
104 | self.dataOut.flagNoData = False | |
99 | self.dataOut.nAvg = self.dataIn.nAvg |
|
105 | self.dataOut.nAvg = self.dataIn.nAvg | |
100 |
|
106 | |||
101 | #---------------------- Parameters Data --------------------------- |
|
107 | #---------------------- Parameters Data --------------------------- | |
102 |
|
108 | |||
103 | if self.dataIn.type == "Parameters": |
|
109 | if self.dataIn.type == "Parameters": | |
104 | self.dataOut.copy(self.dataIn) |
|
110 | self.dataOut.copy(self.dataIn) | |
105 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
111 | self.dataOut.utctimeInit = self.dataIn.utctime | |
106 | self.dataOut.flagNoData = False |
|
112 | self.dataOut.flagNoData = False | |
107 |
|
113 | |||
108 | return True |
|
114 | return True | |
109 |
|
115 | |||
110 | self.__updateObjFromInput() |
|
116 | self.__updateObjFromInput() | |
111 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
117 | self.dataOut.utctimeInit = self.dataIn.utctime | |
112 | self.dataOut.paramInterval = self.dataIn.timeInterval |
|
118 | self.dataOut.paramInterval = self.dataIn.timeInterval | |
113 |
|
119 | |||
114 | return |
|
120 | return | |
115 |
|
121 | |||
116 | class SpectralMoments(Operation): |
|
122 | class SpectralMoments(Operation): | |
117 |
|
123 | |||
118 | ''' |
|
124 | ''' | |
119 | Function SpectralMoments() |
|
125 | Function SpectralMoments() | |
120 |
|
126 | |||
121 | Calculates moments (power, mean, standard deviation) and SNR of the signal |
|
127 | Calculates moments (power, mean, standard deviation) and SNR of the signal | |
122 |
|
128 | |||
123 | Type of dataIn: Spectra |
|
129 | Type of dataIn: Spectra | |
124 |
|
130 | |||
125 | Configuration Parameters: |
|
131 | Configuration Parameters: | |
126 |
|
132 | |||
127 | dirCosx : Cosine director in X axis |
|
133 | dirCosx : Cosine director in X axis | |
128 | dirCosy : Cosine director in Y axis |
|
134 | dirCosy : Cosine director in Y axis | |
129 |
|
135 | |||
130 | elevation : |
|
136 | elevation : | |
131 | azimuth : |
|
137 | azimuth : | |
132 |
|
138 | |||
133 | Input: |
|
139 | Input: | |
134 | channelList : simple channel list to select e.g. [2,3,7] |
|
140 | channelList : simple channel list to select e.g. [2,3,7] | |
135 | self.dataOut.data_pre : Spectral data |
|
141 | self.dataOut.data_pre : Spectral data | |
136 | self.dataOut.abscissaList : List of frequencies |
|
142 | self.dataOut.abscissaList : List of frequencies | |
137 | self.dataOut.noise : Noise level per channel |
|
143 | self.dataOut.noise : Noise level per channel | |
138 |
|
144 | |||
139 | Affected: |
|
145 | Affected: | |
140 | self.dataOut.data_param : Parameters per channel |
|
146 | self.dataOut.data_param : Parameters per channel | |
141 | self.dataOut.data_SNR : SNR per channel |
|
147 | self.dataOut.data_SNR : SNR per channel | |
142 |
|
148 | |||
143 | ''' |
|
149 | ''' | |
144 |
|
150 | |||
145 | def run(self, dataOut): |
|
151 | def run(self, dataOut): | |
146 |
|
152 | |||
147 | dataOut.data_pre = dataOut.data_pre[0] |
|
153 | #dataOut.data_pre = dataOut.data_pre[0] | |
148 | data = dataOut.data_pre |
|
154 | data = dataOut.data_pre[0] | |
149 | absc = dataOut.abscissaList[:-1] |
|
155 | absc = dataOut.abscissaList[:-1] | |
150 | noise = dataOut.noise |
|
156 | noise = dataOut.noise | |
151 | nChannel = data.shape[0] |
|
157 | nChannel = data.shape[0] | |
152 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) |
|
158 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) | |
153 |
|
159 | |||
154 | for ind in range(nChannel): |
|
160 | for ind in range(nChannel): | |
155 | data_param[ind,:,:] = self.__calculateMoments(data[ind,:,:], absc, noise[ind]) |
|
161 | data_param[ind,:,:] = self.__calculateMoments(data[ind,:,:], absc, noise[ind]) | |
156 |
|
162 | |||
157 | dataOut.data_param = data_param[:,1:,:] |
|
163 | dataOut.data_param = data_param[:,1:,:] | |
158 | dataOut.data_SNR = data_param[:,0] |
|
164 | dataOut.data_SNR = data_param[:,0] | |
159 | dataOut.data_DOP = data_param[:,1] |
|
165 | dataOut.data_DOP = data_param[:,1] | |
|
166 | dataOut.data_MEAN = data_param[:,2] | |||
|
167 | dataOut.data_STD = data_param[:,3] | |||
160 | return |
|
168 | return | |
161 |
|
169 | |||
162 | def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
170 | def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |
163 |
|
171 | |||
164 | if (nicoh is None): nicoh = 1 |
|
172 | if (nicoh is None): nicoh = 1 | |
165 | if (graph is None): graph = 0 |
|
173 | if (graph is None): graph = 0 | |
166 | if (smooth is None): smooth = 0 |
|
174 | if (smooth is None): smooth = 0 | |
167 | elif (self.smooth < 3): smooth = 0 |
|
175 | elif (self.smooth < 3): smooth = 0 | |
168 |
|
176 | |||
169 | if (type1 is None): type1 = 0 |
|
177 | if (type1 is None): type1 = 0 | |
170 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 |
|
178 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 | |
171 | if (snrth is None): snrth = -3 |
|
179 | if (snrth is None): snrth = -3 | |
172 | if (dc is None): dc = 0 |
|
180 | if (dc is None): dc = 0 | |
173 | if (aliasing is None): aliasing = 0 |
|
181 | if (aliasing is None): aliasing = 0 | |
174 | if (oldfd is None): oldfd = 0 |
|
182 | if (oldfd is None): oldfd = 0 | |
175 | if (wwauto is None): wwauto = 0 |
|
183 | if (wwauto is None): wwauto = 0 | |
176 |
|
184 | |||
177 | if (n0 < 1.e-20): n0 = 1.e-20 |
|
185 | if (n0 < 1.e-20): n0 = 1.e-20 | |
178 |
|
186 | |||
179 | freq = oldfreq |
|
187 | freq = oldfreq | |
180 | vec_power = numpy.zeros(oldspec.shape[1]) |
|
188 | vec_power = numpy.zeros(oldspec.shape[1]) | |
181 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
189 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
182 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
190 | vec_w = numpy.zeros(oldspec.shape[1]) | |
183 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
191 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
184 |
|
192 | |||
185 | for ind in range(oldspec.shape[1]): |
|
193 | for ind in range(oldspec.shape[1]): | |
186 |
|
194 | |||
187 | spec = oldspec[:,ind] |
|
195 | spec = oldspec[:,ind] | |
188 | aux = spec*fwindow |
|
196 | aux = spec*fwindow | |
189 | max_spec = aux.max() |
|
197 | max_spec = aux.max() | |
190 | m = list(aux).index(max_spec) |
|
198 | m = list(aux).index(max_spec) | |
191 |
|
199 | |||
192 | #Smooth |
|
200 | #Smooth | |
193 | if (smooth == 0): spec2 = spec |
|
201 | if (smooth == 0): spec2 = spec | |
194 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
202 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
195 |
|
203 | |||
196 | # Calculo de Momentos |
|
204 | # Calculo de Momentos | |
197 | bb = spec2[range(m,spec2.size)] |
|
205 | bb = spec2[range(m,spec2.size)] | |
198 | bb = (bb<n0).nonzero() |
|
206 | bb = (bb<n0).nonzero() | |
199 | bb = bb[0] |
|
207 | bb = bb[0] | |
200 |
|
208 | |||
201 | ss = spec2[range(0,m + 1)] |
|
209 | ss = spec2[range(0,m + 1)] | |
202 | ss = (ss<n0).nonzero() |
|
210 | ss = (ss<n0).nonzero() | |
203 | ss = ss[0] |
|
211 | ss = ss[0] | |
204 |
|
212 | |||
205 | if (bb.size == 0): |
|
213 | if (bb.size == 0): | |
206 | bb0 = spec.size - 1 - m |
|
214 | bb0 = spec.size - 1 - m | |
207 | else: |
|
215 | else: | |
208 | bb0 = bb[0] - 1 |
|
216 | bb0 = bb[0] - 1 | |
209 | if (bb0 < 0): |
|
217 | if (bb0 < 0): | |
210 | bb0 = 0 |
|
218 | bb0 = 0 | |
211 |
|
219 | |||
212 | if (ss.size == 0): ss1 = 1 |
|
220 | if (ss.size == 0): ss1 = 1 | |
213 | else: ss1 = max(ss) + 1 |
|
221 | else: ss1 = max(ss) + 1 | |
214 |
|
222 | |||
215 | if (ss1 > m): ss1 = m |
|
223 | if (ss1 > m): ss1 = m | |
216 |
|
224 | |||
217 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 |
|
225 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 | |
218 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() |
|
226 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() | |
219 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power |
|
227 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power | |
220 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) |
|
228 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |
221 | snr = (spec2.mean()-n0)/n0 |
|
229 | snr = (spec2.mean()-n0)/n0 | |
222 |
|
230 | |||
223 | if (snr < 1.e-20) : |
|
231 | if (snr < 1.e-20) : | |
224 | snr = 1.e-20 |
|
232 | snr = 1.e-20 | |
225 |
|
233 | |||
226 | vec_power[ind] = power |
|
234 | vec_power[ind] = power | |
227 | vec_fd[ind] = fd |
|
235 | vec_fd[ind] = fd | |
228 | vec_w[ind] = w |
|
236 | vec_w[ind] = w | |
229 | vec_snr[ind] = snr |
|
237 | vec_snr[ind] = snr | |
230 |
|
238 | |||
231 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
239 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
232 | return moments |
|
240 | return moments | |
233 |
|
241 | |||
234 | #------------------ Get SA Parameters -------------------------- |
|
242 | #------------------ Get SA Parameters -------------------------- | |
235 |
|
243 | |||
236 | def GetSAParameters(self): |
|
244 | def GetSAParameters(self): | |
237 | #SA en frecuencia |
|
245 | #SA en frecuencia | |
238 | pairslist = self.dataOut.groupList |
|
246 | pairslist = self.dataOut.groupList | |
239 | num_pairs = len(pairslist) |
|
247 | num_pairs = len(pairslist) | |
240 |
|
248 | |||
241 | vel = self.dataOut.abscissaList |
|
249 | vel = self.dataOut.abscissaList | |
242 | spectra = self.dataOut.data_pre |
|
250 | spectra = self.dataOut.data_pre[0] | |
243 |
cspectra = self.data |
|
251 | cspectra = self.dataOut.data_pre[1] | |
244 | delta_v = vel[1] - vel[0] |
|
252 | delta_v = vel[1] - vel[0] | |
245 |
|
253 | |||
246 | #Calculating the power spectrum |
|
254 | #Calculating the power spectrum | |
247 | spc_pow = numpy.sum(spectra, 3)*delta_v |
|
255 | spc_pow = numpy.sum(spectra, 3)*delta_v | |
248 | #Normalizing Spectra |
|
256 | #Normalizing Spectra | |
249 | norm_spectra = spectra/spc_pow |
|
257 | norm_spectra = spectra/spc_pow | |
250 | #Calculating the norm_spectra at peak |
|
258 | #Calculating the norm_spectra at peak | |
251 | max_spectra = numpy.max(norm_spectra, 3) |
|
259 | max_spectra = numpy.max(norm_spectra, 3) | |
252 |
|
260 | |||
253 | #Normalizing Cross Spectra |
|
261 | #Normalizing Cross Spectra | |
254 | norm_cspectra = numpy.zeros(cspectra.shape) |
|
262 | norm_cspectra = numpy.zeros(cspectra.shape) | |
255 |
|
263 | |||
256 | for i in range(num_chan): |
|
264 | for i in range(num_chan): | |
257 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) |
|
265 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) | |
258 |
|
266 | |||
259 | max_cspectra = numpy.max(norm_cspectra,2) |
|
267 | max_cspectra = numpy.max(norm_cspectra,2) | |
260 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) |
|
268 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) | |
261 |
|
269 | |||
262 | for i in range(num_pairs): |
|
270 | for i in range(num_pairs): | |
263 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) |
|
271 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) | |
264 | #------------------- Get Lags ---------------------------------- |
|
272 | #------------------- Get Lags ---------------------------------- | |
265 |
|
273 | |||
266 | class SALags(Operation): |
|
274 | class SALags(Operation): | |
267 | ''' |
|
275 | ''' | |
268 | Function GetMoments() |
|
276 | Function GetMoments() | |
269 |
|
277 | |||
270 | Input: |
|
278 | Input: | |
271 | self.dataOut.data_pre |
|
279 | self.dataOut.data_pre | |
272 | self.dataOut.abscissaList |
|
280 | self.dataOut.abscissaList | |
273 | self.dataOut.noise |
|
281 | self.dataOut.noise | |
274 | self.dataOut.normFactor |
|
282 | self.dataOut.normFactor | |
275 | self.dataOut.data_SNR |
|
283 | self.dataOut.data_SNR | |
276 | self.dataOut.groupList |
|
284 | self.dataOut.groupList | |
277 | self.dataOut.nChannels |
|
285 | self.dataOut.nChannels | |
278 |
|
286 | |||
279 | Affected: |
|
287 | Affected: | |
280 | self.dataOut.data_param |
|
288 | self.dataOut.data_param | |
281 |
|
289 | |||
282 | ''' |
|
290 | ''' | |
283 | def run(self, dataOut): |
|
291 | def run(self, dataOut): | |
284 | data_acf = dataOut.data_pre[0] |
|
292 | data_acf = dataOut.data_pre[0] | |
285 | data_ccf = dataOut.data_pre[1] |
|
293 | data_ccf = dataOut.data_pre[1] | |
286 | normFactor_acf = dataOut.normFactor[0] |
|
294 | normFactor_acf = dataOut.normFactor[0] | |
287 | normFactor_ccf = dataOut.normFactor[1] |
|
295 | normFactor_ccf = dataOut.normFactor[1] | |
288 | pairs_acf = dataOut.groupList[0] |
|
296 | pairs_acf = dataOut.groupList[0] | |
289 | pairs_ccf = dataOut.groupList[1] |
|
297 | pairs_ccf = dataOut.groupList[1] | |
290 |
|
298 | |||
291 | nHeights = dataOut.nHeights |
|
299 | nHeights = dataOut.nHeights | |
292 | absc = dataOut.abscissaList |
|
300 | absc = dataOut.abscissaList | |
293 | noise = dataOut.noise |
|
301 | noise = dataOut.noise | |
294 | SNR = dataOut.data_SNR |
|
302 | SNR = dataOut.data_SNR | |
295 | nChannels = dataOut.nChannels |
|
303 | nChannels = dataOut.nChannels | |
296 | # pairsList = dataOut.groupList |
|
304 | # pairsList = dataOut.groupList | |
297 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
305 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
298 |
|
306 | |||
299 | for l in range(len(pairs_acf)): |
|
307 | for l in range(len(pairs_acf)): | |
300 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] |
|
308 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] | |
301 |
|
309 | |||
302 | for l in range(len(pairs_ccf)): |
|
310 | for l in range(len(pairs_ccf)): | |
303 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] |
|
311 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] | |
304 |
|
312 | |||
305 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) |
|
313 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) | |
306 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) |
|
314 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) | |
307 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) |
|
315 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) | |
308 | return |
|
316 | return | |
309 |
|
317 | |||
310 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
318 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
311 | # |
|
319 | # | |
312 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
320 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
313 | # |
|
321 | # | |
314 | # for l in range(len(pairsList)): |
|
322 | # for l in range(len(pairsList)): | |
315 | # firstChannel = pairsList[l][0] |
|
323 | # firstChannel = pairsList[l][0] | |
316 | # secondChannel = pairsList[l][1] |
|
324 | # secondChannel = pairsList[l][1] | |
317 | # |
|
325 | # | |
318 | # #Obteniendo pares de Autocorrelacion |
|
326 | # #Obteniendo pares de Autocorrelacion | |
319 | # if firstChannel == secondChannel: |
|
327 | # if firstChannel == secondChannel: | |
320 | # pairsAutoCorr[firstChannel] = int(l) |
|
328 | # pairsAutoCorr[firstChannel] = int(l) | |
321 | # |
|
329 | # | |
322 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
330 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
323 | # |
|
331 | # | |
324 | # pairsCrossCorr = range(len(pairsList)) |
|
332 | # pairsCrossCorr = range(len(pairsList)) | |
325 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
333 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
326 | # |
|
334 | # | |
327 | # return pairsAutoCorr, pairsCrossCorr |
|
335 | # return pairsAutoCorr, pairsCrossCorr | |
328 |
|
336 | |||
329 | def __calculateTaus(self, data_acf, data_ccf, lagRange): |
|
337 | def __calculateTaus(self, data_acf, data_ccf, lagRange): | |
330 |
|
338 | |||
331 | lag0 = data_acf.shape[1]/2 |
|
339 | lag0 = data_acf.shape[1]/2 | |
332 | #Funcion de Autocorrelacion |
|
340 | #Funcion de Autocorrelacion | |
333 | mean_acf = stats.nanmean(data_acf, axis = 0) |
|
341 | mean_acf = stats.nanmean(data_acf, axis = 0) | |
334 |
|
342 | |||
335 | #Obtencion Indice de TauCross |
|
343 | #Obtencion Indice de TauCross | |
336 | ind_ccf = data_ccf.argmax(axis = 1) |
|
344 | ind_ccf = data_ccf.argmax(axis = 1) | |
337 | #Obtencion Indice de TauAuto |
|
345 | #Obtencion Indice de TauAuto | |
338 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') |
|
346 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') | |
339 | ccf_lag0 = data_ccf[:,lag0,:] |
|
347 | ccf_lag0 = data_ccf[:,lag0,:] | |
340 |
|
348 | |||
341 | for i in range(ccf_lag0.shape[0]): |
|
349 | for i in range(ccf_lag0.shape[0]): | |
342 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) |
|
350 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) | |
343 |
|
351 | |||
344 | #Obtencion de TauCross y TauAuto |
|
352 | #Obtencion de TauCross y TauAuto | |
345 | tau_ccf = lagRange[ind_ccf] |
|
353 | tau_ccf = lagRange[ind_ccf] | |
346 | tau_acf = lagRange[ind_acf] |
|
354 | tau_acf = lagRange[ind_acf] | |
347 |
|
355 | |||
348 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) |
|
356 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) | |
349 |
|
357 | |||
350 | tau_ccf[Nan1,Nan2] = numpy.nan |
|
358 | tau_ccf[Nan1,Nan2] = numpy.nan | |
351 | tau_acf[Nan1,Nan2] = numpy.nan |
|
359 | tau_acf[Nan1,Nan2] = numpy.nan | |
352 | tau = numpy.vstack((tau_ccf,tau_acf)) |
|
360 | tau = numpy.vstack((tau_ccf,tau_acf)) | |
353 |
|
361 | |||
354 | return tau |
|
362 | return tau | |
355 |
|
363 | |||
356 | def __calculateLag1Phase(self, data, lagTRange): |
|
364 | def __calculateLag1Phase(self, data, lagTRange): | |
357 | data1 = stats.nanmean(data, axis = 0) |
|
365 | data1 = stats.nanmean(data, axis = 0) | |
358 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 |
|
366 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |
359 |
|
367 | |||
360 | phase = numpy.angle(data1[lag1,:]) |
|
368 | phase = numpy.angle(data1[lag1,:]) | |
361 |
|
369 | |||
362 | return phase |
|
370 | return phase | |
363 |
|
371 | |||
364 | class SpectralFitting(Operation): |
|
372 | class SpectralFitting(Operation): | |
365 | ''' |
|
373 | ''' | |
366 | Function GetMoments() |
|
374 | Function GetMoments() | |
367 |
|
375 | |||
368 | Input: |
|
376 | Input: | |
369 | Output: |
|
377 | Output: | |
370 | Variables modified: |
|
378 | Variables modified: | |
371 | ''' |
|
379 | ''' | |
372 |
|
380 | |||
373 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): |
|
381 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): | |
374 |
|
382 | |||
375 |
|
383 | |||
376 | if path != None: |
|
384 | if path != None: | |
377 | sys.path.append(path) |
|
385 | sys.path.append(path) | |
378 | self.dataOut.library = importlib.import_module(file) |
|
386 | self.dataOut.library = importlib.import_module(file) | |
379 |
|
387 | |||
380 | #To be inserted as a parameter |
|
388 | #To be inserted as a parameter | |
381 | groupArray = numpy.array(groupList) |
|
389 | groupArray = numpy.array(groupList) | |
382 | # groupArray = numpy.array([[0,1],[2,3]]) |
|
390 | # groupArray = numpy.array([[0,1],[2,3]]) | |
383 | self.dataOut.groupList = groupArray |
|
391 | self.dataOut.groupList = groupArray | |
384 |
|
392 | |||
385 | nGroups = groupArray.shape[0] |
|
393 | nGroups = groupArray.shape[0] | |
386 | nChannels = self.dataIn.nChannels |
|
394 | nChannels = self.dataIn.nChannels | |
387 | nHeights=self.dataIn.heightList.size |
|
395 | nHeights=self.dataIn.heightList.size | |
388 |
|
396 | |||
389 | #Parameters Array |
|
397 | #Parameters Array | |
390 | self.dataOut.data_param = None |
|
398 | self.dataOut.data_param = None | |
391 |
|
399 | |||
392 | #Set constants |
|
400 | #Set constants | |
393 | constants = self.dataOut.library.setConstants(self.dataIn) |
|
401 | constants = self.dataOut.library.setConstants(self.dataIn) | |
394 | self.dataOut.constants = constants |
|
402 | self.dataOut.constants = constants | |
395 | M = self.dataIn.normFactor |
|
403 | M = self.dataIn.normFactor | |
396 | N = self.dataIn.nFFTPoints |
|
404 | N = self.dataIn.nFFTPoints | |
397 | ippSeconds = self.dataIn.ippSeconds |
|
405 | ippSeconds = self.dataIn.ippSeconds | |
398 | K = self.dataIn.nIncohInt |
|
406 | K = self.dataIn.nIncohInt | |
399 | pairsArray = numpy.array(self.dataIn.pairsList) |
|
407 | pairsArray = numpy.array(self.dataIn.pairsList) | |
400 |
|
408 | |||
401 | #List of possible combinations |
|
409 | #List of possible combinations | |
402 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) |
|
410 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |
403 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') |
|
411 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |
404 |
|
412 | |||
405 | if getSNR: |
|
413 | if getSNR: | |
406 | listChannels = groupArray.reshape((groupArray.size)) |
|
414 | listChannels = groupArray.reshape((groupArray.size)) | |
407 | listChannels.sort() |
|
415 | listChannels.sort() | |
408 | noise = self.dataIn.getNoise() |
|
416 | noise = self.dataIn.getNoise() | |
409 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) |
|
417 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) | |
410 |
|
418 | |||
411 | for i in range(nGroups): |
|
419 | for i in range(nGroups): | |
412 | coord = groupArray[i,:] |
|
420 | coord = groupArray[i,:] | |
413 |
|
421 | |||
414 | #Input data array |
|
422 | #Input data array | |
415 | data = self.dataIn.data_spc[coord,:,:]/(M*N) |
|
423 | data = self.dataIn.data_spc[coord,:,:]/(M*N) | |
416 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) |
|
424 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |
417 |
|
425 | |||
418 | #Cross Spectra data array for Covariance Matrixes |
|
426 | #Cross Spectra data array for Covariance Matrixes | |
419 | ind = 0 |
|
427 | ind = 0 | |
420 | for pairs in listComb: |
|
428 | for pairs in listComb: | |
421 | pairsSel = numpy.array([coord[x],coord[y]]) |
|
429 | pairsSel = numpy.array([coord[x],coord[y]]) | |
422 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) |
|
430 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |
423 | ind += 1 |
|
431 | ind += 1 | |
424 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) |
|
432 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) | |
425 | dataCross = dataCross**2/K |
|
433 | dataCross = dataCross**2/K | |
426 |
|
434 | |||
427 | for h in range(nHeights): |
|
435 | for h in range(nHeights): | |
428 | # print self.dataOut.heightList[h] |
|
436 | # print self.dataOut.heightList[h] | |
429 |
|
437 | |||
430 | #Input |
|
438 | #Input | |
431 | d = data[:,h] |
|
439 | d = data[:,h] | |
432 |
|
440 | |||
433 | #Covariance Matrix |
|
441 | #Covariance Matrix | |
434 | D = numpy.diag(d**2/K) |
|
442 | D = numpy.diag(d**2/K) | |
435 | ind = 0 |
|
443 | ind = 0 | |
436 | for pairs in listComb: |
|
444 | for pairs in listComb: | |
437 | #Coordinates in Covariance Matrix |
|
445 | #Coordinates in Covariance Matrix | |
438 | x = pairs[0] |
|
446 | x = pairs[0] | |
439 | y = pairs[1] |
|
447 | y = pairs[1] | |
440 | #Channel Index |
|
448 | #Channel Index | |
441 | S12 = dataCross[ind,:,h] |
|
449 | S12 = dataCross[ind,:,h] | |
442 | D12 = numpy.diag(S12) |
|
450 | D12 = numpy.diag(S12) | |
443 | #Completing Covariance Matrix with Cross Spectras |
|
451 | #Completing Covariance Matrix with Cross Spectras | |
444 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 |
|
452 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |
445 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 |
|
453 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |
446 | ind += 1 |
|
454 | ind += 1 | |
447 | Dinv=numpy.linalg.inv(D) |
|
455 | Dinv=numpy.linalg.inv(D) | |
448 | L=numpy.linalg.cholesky(Dinv) |
|
456 | L=numpy.linalg.cholesky(Dinv) | |
449 | LT=L.T |
|
457 | LT=L.T | |
450 |
|
458 | |||
451 | dp = numpy.dot(LT,d) |
|
459 | dp = numpy.dot(LT,d) | |
452 |
|
460 | |||
453 | #Initial values |
|
461 | #Initial values | |
454 | data_spc = self.dataIn.data_spc[coord,:,h] |
|
462 | data_spc = self.dataIn.data_spc[coord,:,h] | |
455 |
|
463 | |||
456 | if (h>0)and(error1[3]<5): |
|
464 | if (h>0)and(error1[3]<5): | |
457 | p0 = self.dataOut.data_param[i,:,h-1] |
|
465 | p0 = self.dataOut.data_param[i,:,h-1] | |
458 | else: |
|
466 | else: | |
459 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) |
|
467 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) | |
460 |
|
468 | |||
461 | try: |
|
469 | try: | |
462 | #Least Squares |
|
470 | #Least Squares | |
463 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) |
|
471 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |
464 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) |
|
472 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |
465 | #Chi square error |
|
473 | #Chi square error | |
466 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) |
|
474 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |
467 | #Error with Jacobian |
|
475 | #Error with Jacobian | |
468 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) |
|
476 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) | |
469 | except: |
|
477 | except: | |
470 | minp = p0*numpy.nan |
|
478 | minp = p0*numpy.nan | |
471 | error0 = numpy.nan |
|
479 | error0 = numpy.nan | |
472 | error1 = p0*numpy.nan |
|
480 | error1 = p0*numpy.nan | |
473 |
|
481 | |||
474 | #Save |
|
482 | #Save | |
475 | if self.dataOut.data_param is None: |
|
483 | if self.dataOut.data_param is None: | |
476 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan |
|
484 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |
477 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan |
|
485 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |
478 |
|
486 | |||
479 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) |
|
487 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |
480 | self.dataOut.data_param[i,:,h] = minp |
|
488 | self.dataOut.data_param[i,:,h] = minp | |
481 | return |
|
489 | return | |
482 |
|
490 | |||
483 | def __residFunction(self, p, dp, LT, constants): |
|
491 | def __residFunction(self, p, dp, LT, constants): | |
484 |
|
492 | |||
485 | fm = self.dataOut.library.modelFunction(p, constants) |
|
493 | fm = self.dataOut.library.modelFunction(p, constants) | |
486 | fmp=numpy.dot(LT,fm) |
|
494 | fmp=numpy.dot(LT,fm) | |
487 |
|
495 | |||
488 | return dp-fmp |
|
496 | return dp-fmp | |
489 |
|
497 | |||
490 | def __getSNR(self, z, noise): |
|
498 | def __getSNR(self, z, noise): | |
491 |
|
499 | |||
492 | avg = numpy.average(z, axis=1) |
|
500 | avg = numpy.average(z, axis=1) | |
493 | SNR = (avg.T-noise)/noise |
|
501 | SNR = (avg.T-noise)/noise | |
494 | SNR = SNR.T |
|
502 | SNR = SNR.T | |
495 | return SNR |
|
503 | return SNR | |
496 |
|
504 | |||
497 | def __chisq(p,chindex,hindex): |
|
505 | def __chisq(p,chindex,hindex): | |
498 | #similar to Resid but calculates CHI**2 |
|
506 | #similar to Resid but calculates CHI**2 | |
499 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) |
|
507 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |
500 | dp=numpy.dot(LT,d) |
|
508 | dp=numpy.dot(LT,d) | |
501 | fmp=numpy.dot(LT,fm) |
|
509 | fmp=numpy.dot(LT,fm) | |
502 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) |
|
510 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |
503 | return chisq |
|
511 | return chisq | |
504 |
|
512 | |||
505 | class WindProfiler(Operation): |
|
513 | class WindProfiler(Operation): | |
506 |
|
514 | |||
507 | __isConfig = False |
|
515 | __isConfig = False | |
508 |
|
516 | |||
509 | __initime = None |
|
517 | __initime = None | |
510 | __lastdatatime = None |
|
518 | __lastdatatime = None | |
511 | __integrationtime = None |
|
519 | __integrationtime = None | |
512 |
|
520 | |||
513 | __buffer = None |
|
521 | __buffer = None | |
514 |
|
522 | |||
515 | __dataReady = False |
|
523 | __dataReady = False | |
516 |
|
524 | |||
517 | __firstdata = None |
|
525 | __firstdata = None | |
518 |
|
526 | |||
519 | n = None |
|
527 | n = None | |
520 |
|
528 | |||
521 | def __calculateCosDir(self, elev, azim): |
|
529 | def __calculateCosDir(self, elev, azim): | |
522 | zen = (90 - elev)*numpy.pi/180 |
|
530 | zen = (90 - elev)*numpy.pi/180 | |
523 | azim = azim*numpy.pi/180 |
|
531 | azim = azim*numpy.pi/180 | |
524 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) |
|
532 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |
525 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) |
|
533 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |
526 |
|
534 | |||
527 | signX = numpy.sign(numpy.cos(azim)) |
|
535 | signX = numpy.sign(numpy.cos(azim)) | |
528 | signY = numpy.sign(numpy.sin(azim)) |
|
536 | signY = numpy.sign(numpy.sin(azim)) | |
529 |
|
537 | |||
530 | cosDirX = numpy.copysign(cosDirX, signX) |
|
538 | cosDirX = numpy.copysign(cosDirX, signX) | |
531 | cosDirY = numpy.copysign(cosDirY, signY) |
|
539 | cosDirY = numpy.copysign(cosDirY, signY) | |
532 | return cosDirX, cosDirY |
|
540 | return cosDirX, cosDirY | |
533 |
|
541 | |||
534 | def __calculateAngles(self, theta_x, theta_y, azimuth): |
|
542 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |
535 |
|
543 | |||
536 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) |
|
544 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |
537 | zenith_arr = numpy.arccos(dir_cosw) |
|
545 | zenith_arr = numpy.arccos(dir_cosw) | |
538 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 |
|
546 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |
539 |
|
547 | |||
540 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) |
|
548 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |
541 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) |
|
549 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |
542 |
|
550 | |||
543 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw |
|
551 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |
544 |
|
552 | |||
545 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): |
|
553 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |
546 |
|
554 | |||
547 | # |
|
555 | # | |
548 | if horOnly: |
|
556 | if horOnly: | |
549 | A = numpy.c_[dir_cosu,dir_cosv] |
|
557 | A = numpy.c_[dir_cosu,dir_cosv] | |
550 | else: |
|
558 | else: | |
551 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] |
|
559 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] | |
552 | A = numpy.asmatrix(A) |
|
560 | A = numpy.asmatrix(A) | |
553 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() |
|
561 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() | |
554 |
|
562 | |||
555 | return A1 |
|
563 | return A1 | |
556 |
|
564 | |||
557 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
565 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
558 | listPhi = phi.tolist() |
|
566 | listPhi = phi.tolist() | |
559 | maxid = listPhi.index(max(listPhi)) |
|
567 | maxid = listPhi.index(max(listPhi)) | |
560 | minid = listPhi.index(min(listPhi)) |
|
568 | minid = listPhi.index(min(listPhi)) | |
561 |
|
569 | |||
562 | rango = range(len(phi)) |
|
570 | rango = range(len(phi)) | |
563 | # rango = numpy.delete(rango,maxid) |
|
571 | # rango = numpy.delete(rango,maxid) | |
564 |
|
572 | |||
565 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
573 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
566 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
574 | heiRangAux = heiRang*math.cos(phi[minid]) | |
567 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
575 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
568 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
576 | heiRang1 = numpy.delete(heiRang1,indOut) | |
569 |
|
577 | |||
570 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
578 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
571 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
579 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
572 |
|
580 | |||
573 | for i in rango: |
|
581 | for i in rango: | |
574 | x = heiRang*math.cos(phi[i]) |
|
582 | x = heiRang*math.cos(phi[i]) | |
575 | y1 = velRadial[i,:] |
|
583 | y1 = velRadial[i,:] | |
576 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
584 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
577 |
|
585 | |||
578 | x1 = heiRang1 |
|
586 | x1 = heiRang1 | |
579 | y11 = f1(x1) |
|
587 | y11 = f1(x1) | |
580 |
|
588 | |||
581 | y2 = SNR[i,:] |
|
589 | y2 = SNR[i,:] | |
582 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
590 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
583 | y21 = f2(x1) |
|
591 | y21 = f2(x1) | |
584 |
|
592 | |||
585 | velRadial1[i,:] = y11 |
|
593 | velRadial1[i,:] = y11 | |
586 | SNR1[i,:] = y21 |
|
594 | SNR1[i,:] = y21 | |
587 |
|
595 | |||
588 | return heiRang1, velRadial1, SNR1 |
|
596 | return heiRang1, velRadial1, SNR1 | |
589 |
|
597 | |||
590 | def __calculateVelUVW(self, A, velRadial): |
|
598 | def __calculateVelUVW(self, A, velRadial): | |
591 |
|
599 | |||
592 | #Operacion Matricial |
|
600 | #Operacion Matricial | |
593 | # velUVW = numpy.zeros((velRadial.shape[1],3)) |
|
601 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |
594 | # for ind in range(velRadial.shape[1]): |
|
602 | # for ind in range(velRadial.shape[1]): | |
595 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) |
|
603 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) | |
596 | # velUVW = velUVW.transpose() |
|
604 | # velUVW = velUVW.transpose() | |
597 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) |
|
605 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |
598 | velUVW[:,:] = numpy.dot(A,velRadial) |
|
606 | velUVW[:,:] = numpy.dot(A,velRadial) | |
599 |
|
607 | |||
600 |
|
608 | |||
601 | return velUVW |
|
609 | return velUVW | |
602 |
|
610 | |||
603 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): |
|
611 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |
604 |
|
612 | |||
605 | def techniqueDBS(self, kwargs): |
|
613 | def techniqueDBS(self, kwargs): | |
606 | """ |
|
614 | """ | |
607 | Function that implements Doppler Beam Swinging (DBS) technique. |
|
615 | Function that implements Doppler Beam Swinging (DBS) technique. | |
608 |
|
616 | |||
609 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
617 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
610 | Direction correction (if necessary), Ranges and SNR |
|
618 | Direction correction (if necessary), Ranges and SNR | |
611 |
|
619 | |||
612 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
620 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
613 |
|
621 | |||
614 | Parameters affected: Winds, height range, SNR |
|
622 | Parameters affected: Winds, height range, SNR | |
615 | """ |
|
623 | """ | |
616 | velRadial0 = kwargs['velRadial'] |
|
624 | velRadial0 = kwargs['velRadial'] | |
617 | heiRang = kwargs['heightList'] |
|
625 | heiRang = kwargs['heightList'] | |
618 | SNR0 = kwargs['SNR'] |
|
626 | SNR0 = kwargs['SNR'] | |
619 |
|
627 | |||
620 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): |
|
628 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): | |
621 | theta_x = numpy.array(kwargs['dirCosx']) |
|
629 | theta_x = numpy.array(kwargs['dirCosx']) | |
622 | theta_y = numpy.array(kwargs['dirCosy']) |
|
630 | theta_y = numpy.array(kwargs['dirCosy']) | |
623 | else: |
|
631 | else: | |
624 | elev = numpy.array(kwargs['elevation']) |
|
632 | elev = numpy.array(kwargs['elevation']) | |
625 | azim = numpy.array(kwargs['azimuth']) |
|
633 | azim = numpy.array(kwargs['azimuth']) | |
626 | theta_x, theta_y = self.__calculateCosDir(elev, azim) |
|
634 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |
627 | azimuth = kwargs['correctAzimuth'] |
|
635 | azimuth = kwargs['correctAzimuth'] | |
628 | if kwargs.has_key('horizontalOnly'): |
|
636 | if kwargs.has_key('horizontalOnly'): | |
629 | horizontalOnly = kwargs['horizontalOnly'] |
|
637 | horizontalOnly = kwargs['horizontalOnly'] | |
630 | else: horizontalOnly = False |
|
638 | else: horizontalOnly = False | |
631 | if kwargs.has_key('correctFactor'): |
|
639 | if kwargs.has_key('correctFactor'): | |
632 | correctFactor = kwargs['correctFactor'] |
|
640 | correctFactor = kwargs['correctFactor'] | |
633 | else: correctFactor = 1 |
|
641 | else: correctFactor = 1 | |
634 | if kwargs.has_key('channelList'): |
|
642 | if kwargs.has_key('channelList'): | |
635 | channelList = kwargs['channelList'] |
|
643 | channelList = kwargs['channelList'] | |
636 | if len(channelList) == 2: |
|
644 | if len(channelList) == 2: | |
637 | horizontalOnly = True |
|
645 | horizontalOnly = True | |
638 | arrayChannel = numpy.array(channelList) |
|
646 | arrayChannel = numpy.array(channelList) | |
639 | param = param[arrayChannel,:,:] |
|
647 | param = param[arrayChannel,:,:] | |
640 | theta_x = theta_x[arrayChannel] |
|
648 | theta_x = theta_x[arrayChannel] | |
641 | theta_y = theta_y[arrayChannel] |
|
649 | theta_y = theta_y[arrayChannel] | |
642 |
|
650 | |||
643 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
651 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
644 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) |
|
652 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) | |
645 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) |
|
653 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |
646 |
|
654 | |||
647 | #Calculo de Componentes de la velocidad con DBS |
|
655 | #Calculo de Componentes de la velocidad con DBS | |
648 | winds = self.__calculateVelUVW(A,velRadial1) |
|
656 | winds = self.__calculateVelUVW(A,velRadial1) | |
649 |
|
657 | |||
650 | return winds, heiRang1, SNR1 |
|
658 | return winds, heiRang1, SNR1 | |
651 |
|
659 | |||
652 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): |
|
660 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): | |
653 |
|
661 | |||
654 | nPairs = len(pairs_ccf) |
|
662 | nPairs = len(pairs_ccf) | |
655 | posx = numpy.asarray(posx) |
|
663 | posx = numpy.asarray(posx) | |
656 | posy = numpy.asarray(posy) |
|
664 | posy = numpy.asarray(posy) | |
657 |
|
665 | |||
658 | #Rotacion Inversa para alinear con el azimuth |
|
666 | #Rotacion Inversa para alinear con el azimuth | |
659 | if azimuth!= None: |
|
667 | if azimuth!= None: | |
660 | azimuth = azimuth*math.pi/180 |
|
668 | azimuth = azimuth*math.pi/180 | |
661 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) |
|
669 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) | |
662 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) |
|
670 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) | |
663 | else: |
|
671 | else: | |
664 | posx1 = posx |
|
672 | posx1 = posx | |
665 | posy1 = posy |
|
673 | posy1 = posy | |
666 |
|
674 | |||
667 | #Calculo de Distancias |
|
675 | #Calculo de Distancias | |
668 | distx = numpy.zeros(nPairs) |
|
676 | distx = numpy.zeros(nPairs) | |
669 | disty = numpy.zeros(nPairs) |
|
677 | disty = numpy.zeros(nPairs) | |
670 | dist = numpy.zeros(nPairs) |
|
678 | dist = numpy.zeros(nPairs) | |
671 | ang = numpy.zeros(nPairs) |
|
679 | ang = numpy.zeros(nPairs) | |
672 |
|
680 | |||
673 | for i in range(nPairs): |
|
681 | for i in range(nPairs): | |
674 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] |
|
682 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] | |
675 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] |
|
683 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] | |
676 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) |
|
684 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |
677 | ang[i] = numpy.arctan2(disty[i],distx[i]) |
|
685 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |
678 |
|
686 | |||
679 | return distx, disty, dist, ang |
|
687 | return distx, disty, dist, ang | |
680 | #Calculo de Matrices |
|
688 | #Calculo de Matrices | |
681 | # nPairs = len(pairs) |
|
689 | # nPairs = len(pairs) | |
682 | # ang1 = numpy.zeros((nPairs, 2, 1)) |
|
690 | # ang1 = numpy.zeros((nPairs, 2, 1)) | |
683 | # dist1 = numpy.zeros((nPairs, 2, 1)) |
|
691 | # dist1 = numpy.zeros((nPairs, 2, 1)) | |
684 | # |
|
692 | # | |
685 | # for j in range(nPairs): |
|
693 | # for j in range(nPairs): | |
686 | # dist1[j,0,0] = dist[pairs[j][0]] |
|
694 | # dist1[j,0,0] = dist[pairs[j][0]] | |
687 | # dist1[j,1,0] = dist[pairs[j][1]] |
|
695 | # dist1[j,1,0] = dist[pairs[j][1]] | |
688 | # ang1[j,0,0] = ang[pairs[j][0]] |
|
696 | # ang1[j,0,0] = ang[pairs[j][0]] | |
689 | # ang1[j,1,0] = ang[pairs[j][1]] |
|
697 | # ang1[j,1,0] = ang[pairs[j][1]] | |
690 | # |
|
698 | # | |
691 | # return distx,disty, dist1,ang1 |
|
699 | # return distx,disty, dist1,ang1 | |
692 |
|
700 | |||
693 |
|
701 | |||
694 | def __calculateVelVer(self, phase, lagTRange, _lambda): |
|
702 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |
695 |
|
703 | |||
696 | Ts = lagTRange[1] - lagTRange[0] |
|
704 | Ts = lagTRange[1] - lagTRange[0] | |
697 | velW = -_lambda*phase/(4*math.pi*Ts) |
|
705 | velW = -_lambda*phase/(4*math.pi*Ts) | |
698 |
|
706 | |||
699 | return velW |
|
707 | return velW | |
700 |
|
708 | |||
701 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): |
|
709 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |
702 | nPairs = tau1.shape[0] |
|
710 | nPairs = tau1.shape[0] | |
703 | nHeights = tau1.shape[1] |
|
711 | nHeights = tau1.shape[1] | |
704 | vel = numpy.zeros((nPairs,3,nHeights)) |
|
712 | vel = numpy.zeros((nPairs,3,nHeights)) | |
705 | dist1 = numpy.reshape(dist, (dist.size,1)) |
|
713 | dist1 = numpy.reshape(dist, (dist.size,1)) | |
706 |
|
714 | |||
707 | angCos = numpy.cos(ang) |
|
715 | angCos = numpy.cos(ang) | |
708 | angSin = numpy.sin(ang) |
|
716 | angSin = numpy.sin(ang) | |
709 |
|
717 | |||
710 | vel0 = dist1*tau1/(2*tau2**2) |
|
718 | vel0 = dist1*tau1/(2*tau2**2) | |
711 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) |
|
719 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |
712 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) |
|
720 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |
713 |
|
721 | |||
714 | ind = numpy.where(numpy.isinf(vel)) |
|
722 | ind = numpy.where(numpy.isinf(vel)) | |
715 | vel[ind] = numpy.nan |
|
723 | vel[ind] = numpy.nan | |
716 |
|
724 | |||
717 | return vel |
|
725 | return vel | |
718 |
|
726 | |||
719 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
727 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
720 | # |
|
728 | # | |
721 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
729 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
722 | # |
|
730 | # | |
723 | # for l in range(len(pairsList)): |
|
731 | # for l in range(len(pairsList)): | |
724 | # firstChannel = pairsList[l][0] |
|
732 | # firstChannel = pairsList[l][0] | |
725 | # secondChannel = pairsList[l][1] |
|
733 | # secondChannel = pairsList[l][1] | |
726 | # |
|
734 | # | |
727 | # #Obteniendo pares de Autocorrelacion |
|
735 | # #Obteniendo pares de Autocorrelacion | |
728 | # if firstChannel == secondChannel: |
|
736 | # if firstChannel == secondChannel: | |
729 | # pairsAutoCorr[firstChannel] = int(l) |
|
737 | # pairsAutoCorr[firstChannel] = int(l) | |
730 | # |
|
738 | # | |
731 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
739 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
732 | # |
|
740 | # | |
733 | # pairsCrossCorr = range(len(pairsList)) |
|
741 | # pairsCrossCorr = range(len(pairsList)) | |
734 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
742 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
735 | # |
|
743 | # | |
736 | # return pairsAutoCorr, pairsCrossCorr |
|
744 | # return pairsAutoCorr, pairsCrossCorr | |
737 |
|
745 | |||
738 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): |
|
746 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |
739 | def techniqueSA(self, kwargs): |
|
747 | def techniqueSA(self, kwargs): | |
740 |
|
748 | |||
741 | """ |
|
749 | """ | |
742 | Function that implements Spaced Antenna (SA) technique. |
|
750 | Function that implements Spaced Antenna (SA) technique. | |
743 |
|
751 | |||
744 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
752 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
745 | Direction correction (if necessary), Ranges and SNR |
|
753 | Direction correction (if necessary), Ranges and SNR | |
746 |
|
754 | |||
747 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
755 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
748 |
|
756 | |||
749 | Parameters affected: Winds |
|
757 | Parameters affected: Winds | |
750 | """ |
|
758 | """ | |
751 | position_x = kwargs['positionX'] |
|
759 | position_x = kwargs['positionX'] | |
752 | position_y = kwargs['positionY'] |
|
760 | position_y = kwargs['positionY'] | |
753 | azimuth = kwargs['azimuth'] |
|
761 | azimuth = kwargs['azimuth'] | |
754 |
|
762 | |||
755 | if kwargs.has_key('correctFactor'): |
|
763 | if kwargs.has_key('correctFactor'): | |
756 | correctFactor = kwargs['correctFactor'] |
|
764 | correctFactor = kwargs['correctFactor'] | |
757 | else: |
|
765 | else: | |
758 | correctFactor = 1 |
|
766 | correctFactor = 1 | |
759 |
|
767 | |||
760 | groupList = kwargs['groupList'] |
|
768 | groupList = kwargs['groupList'] | |
761 | pairs_ccf = groupList[1] |
|
769 | pairs_ccf = groupList[1] | |
762 | tau = kwargs['tau'] |
|
770 | tau = kwargs['tau'] | |
763 | _lambda = kwargs['_lambda'] |
|
771 | _lambda = kwargs['_lambda'] | |
764 |
|
772 | |||
765 | #Cross Correlation pairs obtained |
|
773 | #Cross Correlation pairs obtained | |
766 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) |
|
774 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) | |
767 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] |
|
775 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |
768 | # pairsSelArray = numpy.array(pairsSelected) |
|
776 | # pairsSelArray = numpy.array(pairsSelected) | |
769 | # pairs = [] |
|
777 | # pairs = [] | |
770 | # |
|
778 | # | |
771 | # #Wind estimation pairs obtained |
|
779 | # #Wind estimation pairs obtained | |
772 | # for i in range(pairsSelArray.shape[0]/2): |
|
780 | # for i in range(pairsSelArray.shape[0]/2): | |
773 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] |
|
781 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |
774 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] |
|
782 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |
775 | # pairs.append((ind1,ind2)) |
|
783 | # pairs.append((ind1,ind2)) | |
776 |
|
784 | |||
777 | indtau = tau.shape[0]/2 |
|
785 | indtau = tau.shape[0]/2 | |
778 | tau1 = tau[:indtau,:] |
|
786 | tau1 = tau[:indtau,:] | |
779 | tau2 = tau[indtau:-1,:] |
|
787 | tau2 = tau[indtau:-1,:] | |
780 | # tau1 = tau1[pairs,:] |
|
788 | # tau1 = tau1[pairs,:] | |
781 | # tau2 = tau2[pairs,:] |
|
789 | # tau2 = tau2[pairs,:] | |
782 | phase1 = tau[-1,:] |
|
790 | phase1 = tau[-1,:] | |
783 |
|
791 | |||
784 | #--------------------------------------------------------------------- |
|
792 | #--------------------------------------------------------------------- | |
785 | #Metodo Directo |
|
793 | #Metodo Directo | |
786 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) |
|
794 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) | |
787 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) |
|
795 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |
788 | winds = stats.nanmean(winds, axis=0) |
|
796 | winds = stats.nanmean(winds, axis=0) | |
789 | #--------------------------------------------------------------------- |
|
797 | #--------------------------------------------------------------------- | |
790 | #Metodo General |
|
798 | #Metodo General | |
791 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) |
|
799 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) | |
792 | # #Calculo Coeficientes de Funcion de Correlacion |
|
800 | # #Calculo Coeficientes de Funcion de Correlacion | |
793 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) |
|
801 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) | |
794 | # #Calculo de Velocidades |
|
802 | # #Calculo de Velocidades | |
795 | # winds = self.calculateVelUV(F,G,A,B,H) |
|
803 | # winds = self.calculateVelUV(F,G,A,B,H) | |
796 |
|
804 | |||
797 | #--------------------------------------------------------------------- |
|
805 | #--------------------------------------------------------------------- | |
798 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) |
|
806 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |
799 | winds = correctFactor*winds |
|
807 | winds = correctFactor*winds | |
800 | return winds |
|
808 | return winds | |
801 |
|
809 | |||
802 | def __checkTime(self, currentTime, paramInterval, outputInterval): |
|
810 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |
803 |
|
811 | |||
804 | dataTime = currentTime + paramInterval |
|
812 | dataTime = currentTime + paramInterval | |
805 | deltaTime = dataTime - self.__initime |
|
813 | deltaTime = dataTime - self.__initime | |
806 |
|
814 | |||
807 | if deltaTime >= outputInterval or deltaTime < 0: |
|
815 | if deltaTime >= outputInterval or deltaTime < 0: | |
808 | self.__dataReady = True |
|
816 | self.__dataReady = True | |
809 | return |
|
817 | return | |
810 |
|
818 | |||
811 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax, binkm=2): |
|
819 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax, binkm=2): | |
812 | ''' |
|
820 | ''' | |
813 | Function that implements winds estimation technique with detected meteors. |
|
821 | Function that implements winds estimation technique with detected meteors. | |
814 |
|
822 | |||
815 | Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
823 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |
816 |
|
824 | |||
817 | Output: Winds estimation (Zonal and Meridional) |
|
825 | Output: Winds estimation (Zonal and Meridional) | |
818 |
|
826 | |||
819 | Parameters affected: Winds |
|
827 | Parameters affected: Winds | |
820 | ''' |
|
828 | ''' | |
821 | # print arrayMeteor.shape |
|
829 | # print arrayMeteor.shape | |
822 | #Settings |
|
830 | #Settings | |
823 | nInt = (heightMax - heightMin)/binkm |
|
831 | nInt = (heightMax - heightMin)/binkm | |
824 | # print nInt |
|
832 | # print nInt | |
825 | nInt = int(nInt) |
|
833 | nInt = int(nInt) | |
826 | # print nInt |
|
834 | # print nInt | |
827 | winds = numpy.zeros((2,nInt))*numpy.nan |
|
835 | winds = numpy.zeros((2,nInt))*numpy.nan | |
828 |
|
836 | |||
829 | #Filter errors |
|
837 | #Filter errors | |
830 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] |
|
838 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] | |
831 | finalMeteor = arrayMeteor[error,:] |
|
839 | finalMeteor = arrayMeteor[error,:] | |
832 |
|
840 | |||
833 | #Meteor Histogram |
|
841 | #Meteor Histogram | |
834 | finalHeights = finalMeteor[:,2] |
|
842 | finalHeights = finalMeteor[:,2] | |
835 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) |
|
843 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |
836 | nMeteorsPerI = hist[0] |
|
844 | nMeteorsPerI = hist[0] | |
837 | heightPerI = hist[1] |
|
845 | heightPerI = hist[1] | |
838 |
|
846 | |||
839 | #Sort of meteors |
|
847 | #Sort of meteors | |
840 | indSort = finalHeights.argsort() |
|
848 | indSort = finalHeights.argsort() | |
841 | finalMeteor2 = finalMeteor[indSort,:] |
|
849 | finalMeteor2 = finalMeteor[indSort,:] | |
842 |
|
850 | |||
843 | # Calculating winds |
|
851 | # Calculating winds | |
844 | ind1 = 0 |
|
852 | ind1 = 0 | |
845 | ind2 = 0 |
|
853 | ind2 = 0 | |
846 |
|
854 | |||
847 | for i in range(nInt): |
|
855 | for i in range(nInt): | |
848 | nMet = nMeteorsPerI[i] |
|
856 | nMet = nMeteorsPerI[i] | |
849 | ind1 = ind2 |
|
857 | ind1 = ind2 | |
850 | ind2 = ind1 + nMet |
|
858 | ind2 = ind1 + nMet | |
851 |
|
859 | |||
852 | meteorAux = finalMeteor2[ind1:ind2,:] |
|
860 | meteorAux = finalMeteor2[ind1:ind2,:] | |
853 |
|
861 | |||
854 | if meteorAux.shape[0] >= meteorThresh: |
|
862 | if meteorAux.shape[0] >= meteorThresh: | |
855 | vel = meteorAux[:, 6] |
|
863 | vel = meteorAux[:, 6] | |
856 | zen = meteorAux[:, 4]*numpy.pi/180 |
|
864 | zen = meteorAux[:, 4]*numpy.pi/180 | |
857 | azim = meteorAux[:, 3]*numpy.pi/180 |
|
865 | azim = meteorAux[:, 3]*numpy.pi/180 | |
858 |
|
866 | |||
859 | n = numpy.cos(zen) |
|
867 | n = numpy.cos(zen) | |
860 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) |
|
868 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |
861 | # l = m*numpy.tan(azim) |
|
869 | # l = m*numpy.tan(azim) | |
862 | l = numpy.sin(zen)*numpy.sin(azim) |
|
870 | l = numpy.sin(zen)*numpy.sin(azim) | |
863 | m = numpy.sin(zen)*numpy.cos(azim) |
|
871 | m = numpy.sin(zen)*numpy.cos(azim) | |
864 |
|
872 | |||
865 | A = numpy.vstack((l, m)).transpose() |
|
873 | A = numpy.vstack((l, m)).transpose() | |
866 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) |
|
874 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |
867 | windsAux = numpy.dot(A1, vel) |
|
875 | windsAux = numpy.dot(A1, vel) | |
868 |
|
876 | |||
869 | winds[0,i] = windsAux[0] |
|
877 | winds[0,i] = windsAux[0] | |
870 | winds[1,i] = windsAux[1] |
|
878 | winds[1,i] = windsAux[1] | |
871 |
|
879 | |||
872 | return winds, heightPerI[:-1] |
|
880 | return winds, heightPerI[:-1] | |
873 |
|
881 | |||
874 | def techniqueNSM_SA(self, **kwargs): |
|
882 | def techniqueNSM_SA(self, **kwargs): | |
875 | metArray = kwargs['metArray'] |
|
883 | metArray = kwargs['metArray'] | |
876 | heightList = kwargs['heightList'] |
|
884 | heightList = kwargs['heightList'] | |
877 | timeList = kwargs['timeList'] |
|
885 | timeList = kwargs['timeList'] | |
878 |
|
886 | |||
879 | rx_location = kwargs['rx_location'] |
|
887 | rx_location = kwargs['rx_location'] | |
880 | groupList = kwargs['groupList'] |
|
888 | groupList = kwargs['groupList'] | |
881 | azimuth = kwargs['azimuth'] |
|
889 | azimuth = kwargs['azimuth'] | |
882 | dfactor = kwargs['dfactor'] |
|
890 | dfactor = kwargs['dfactor'] | |
883 | k = kwargs['k'] |
|
891 | k = kwargs['k'] | |
884 |
|
892 | |||
885 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) |
|
893 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) | |
886 | d = dist*dfactor |
|
894 | d = dist*dfactor | |
887 | #Phase calculation |
|
895 | #Phase calculation | |
888 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) |
|
896 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) | |
889 |
|
897 | |||
890 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities |
|
898 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities | |
891 |
|
899 | |||
892 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
900 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
893 | azimuth1 = azimuth1*numpy.pi/180 |
|
901 | azimuth1 = azimuth1*numpy.pi/180 | |
894 |
|
902 | |||
895 | for i in range(heightList.size): |
|
903 | for i in range(heightList.size): | |
896 | h = heightList[i] |
|
904 | h = heightList[i] | |
897 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] |
|
905 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] | |
898 | metHeight = metArray1[indH,:] |
|
906 | metHeight = metArray1[indH,:] | |
899 | if metHeight.shape[0] >= 2: |
|
907 | if metHeight.shape[0] >= 2: | |
900 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities |
|
908 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities | |
901 | iazim = metHeight[:,1].astype(int) |
|
909 | iazim = metHeight[:,1].astype(int) | |
902 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths |
|
910 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths | |
903 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) |
|
911 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) | |
904 | A = numpy.asmatrix(A) |
|
912 | A = numpy.asmatrix(A) | |
905 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() |
|
913 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() | |
906 | velHor = numpy.dot(A1,velAux) |
|
914 | velHor = numpy.dot(A1,velAux) | |
907 |
|
915 | |||
908 | velEst[i,:] = numpy.squeeze(velHor) |
|
916 | velEst[i,:] = numpy.squeeze(velHor) | |
909 | return velEst |
|
917 | return velEst | |
910 |
|
918 | |||
911 | def __getPhaseSlope(self, metArray, heightList, timeList): |
|
919 | def __getPhaseSlope(self, metArray, heightList, timeList): | |
912 | meteorList = [] |
|
920 | meteorList = [] | |
913 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 |
|
921 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 | |
914 | #Putting back together the meteor matrix |
|
922 | #Putting back together the meteor matrix | |
915 | utctime = metArray[:,0] |
|
923 | utctime = metArray[:,0] | |
916 | uniqueTime = numpy.unique(utctime) |
|
924 | uniqueTime = numpy.unique(utctime) | |
917 |
|
925 | |||
918 | phaseDerThresh = 0.5 |
|
926 | phaseDerThresh = 0.5 | |
919 | ippSeconds = timeList[1] - timeList[0] |
|
927 | ippSeconds = timeList[1] - timeList[0] | |
920 | sec = numpy.where(timeList>1)[0][0] |
|
928 | sec = numpy.where(timeList>1)[0][0] | |
921 | nPairs = metArray.shape[1] - 6 |
|
929 | nPairs = metArray.shape[1] - 6 | |
922 | nHeights = len(heightList) |
|
930 | nHeights = len(heightList) | |
923 |
|
931 | |||
924 | for t in uniqueTime: |
|
932 | for t in uniqueTime: | |
925 | metArray1 = metArray[utctime==t,:] |
|
933 | metArray1 = metArray[utctime==t,:] | |
926 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh |
|
934 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh | |
927 | tmet = metArray1[:,1].astype(int) |
|
935 | tmet = metArray1[:,1].astype(int) | |
928 | hmet = metArray1[:,2].astype(int) |
|
936 | hmet = metArray1[:,2].astype(int) | |
929 |
|
937 | |||
930 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) |
|
938 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) | |
931 | metPhase[:,:] = numpy.nan |
|
939 | metPhase[:,:] = numpy.nan | |
932 | metPhase[:,hmet,tmet] = metArray1[:,6:].T |
|
940 | metPhase[:,hmet,tmet] = metArray1[:,6:].T | |
933 |
|
941 | |||
934 | #Delete short trails |
|
942 | #Delete short trails | |
935 | metBool = ~numpy.isnan(metPhase[0,:,:]) |
|
943 | metBool = ~numpy.isnan(metPhase[0,:,:]) | |
936 | heightVect = numpy.sum(metBool, axis = 1) |
|
944 | heightVect = numpy.sum(metBool, axis = 1) | |
937 | metBool[heightVect<sec,:] = False |
|
945 | metBool[heightVect<sec,:] = False | |
938 | metPhase[:,heightVect<sec,:] = numpy.nan |
|
946 | metPhase[:,heightVect<sec,:] = numpy.nan | |
939 |
|
947 | |||
940 | #Derivative |
|
948 | #Derivative | |
941 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) |
|
949 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) | |
942 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) |
|
950 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) | |
943 | metPhase[phDerAux] = numpy.nan |
|
951 | metPhase[phDerAux] = numpy.nan | |
944 |
|
952 | |||
945 | #--------------------------METEOR DETECTION ----------------------------------------- |
|
953 | #--------------------------METEOR DETECTION ----------------------------------------- | |
946 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] |
|
954 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] | |
947 |
|
955 | |||
948 | for p in numpy.arange(nPairs): |
|
956 | for p in numpy.arange(nPairs): | |
949 | phase = metPhase[p,:,:] |
|
957 | phase = metPhase[p,:,:] | |
950 | phDer = metDer[p,:,:] |
|
958 | phDer = metDer[p,:,:] | |
951 |
|
959 | |||
952 | for h in indMet: |
|
960 | for h in indMet: | |
953 | height = heightList[h] |
|
961 | height = heightList[h] | |
954 | phase1 = phase[h,:] #82 |
|
962 | phase1 = phase[h,:] #82 | |
955 | phDer1 = phDer[h,:] |
|
963 | phDer1 = phDer[h,:] | |
956 |
|
964 | |||
957 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap |
|
965 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap | |
958 |
|
966 | |||
959 | indValid = numpy.where(~numpy.isnan(phase1))[0] |
|
967 | indValid = numpy.where(~numpy.isnan(phase1))[0] | |
960 | initMet = indValid[0] |
|
968 | initMet = indValid[0] | |
961 | endMet = 0 |
|
969 | endMet = 0 | |
962 |
|
970 | |||
963 | for i in range(len(indValid)-1): |
|
971 | for i in range(len(indValid)-1): | |
964 |
|
972 | |||
965 | #Time difference |
|
973 | #Time difference | |
966 | inow = indValid[i] |
|
974 | inow = indValid[i] | |
967 | inext = indValid[i+1] |
|
975 | inext = indValid[i+1] | |
968 | idiff = inext - inow |
|
976 | idiff = inext - inow | |
969 | #Phase difference |
|
977 | #Phase difference | |
970 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) |
|
978 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) | |
971 |
|
979 | |||
972 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor |
|
980 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor | |
973 | sizeTrail = inow - initMet + 1 |
|
981 | sizeTrail = inow - initMet + 1 | |
974 | if sizeTrail>3*sec: #Too short meteors |
|
982 | if sizeTrail>3*sec: #Too short meteors | |
975 | x = numpy.arange(initMet,inow+1)*ippSeconds |
|
983 | x = numpy.arange(initMet,inow+1)*ippSeconds | |
976 | y = phase1[initMet:inow+1] |
|
984 | y = phase1[initMet:inow+1] | |
977 | ynnan = ~numpy.isnan(y) |
|
985 | ynnan = ~numpy.isnan(y) | |
978 | x = x[ynnan] |
|
986 | x = x[ynnan] | |
979 | y = y[ynnan] |
|
987 | y = y[ynnan] | |
980 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) |
|
988 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) | |
981 | ylin = x*slope + intercept |
|
989 | ylin = x*slope + intercept | |
982 | rsq = r_value**2 |
|
990 | rsq = r_value**2 | |
983 | if rsq > 0.5: |
|
991 | if rsq > 0.5: | |
984 | vel = slope#*height*1000/(k*d) |
|
992 | vel = slope#*height*1000/(k*d) | |
985 | estAux = numpy.array([utctime,p,height, vel, rsq]) |
|
993 | estAux = numpy.array([utctime,p,height, vel, rsq]) | |
986 | meteorList.append(estAux) |
|
994 | meteorList.append(estAux) | |
987 | initMet = inext |
|
995 | initMet = inext | |
988 | metArray2 = numpy.array(meteorList) |
|
996 | metArray2 = numpy.array(meteorList) | |
989 |
|
997 | |||
990 | return metArray2 |
|
998 | return metArray2 | |
991 |
|
999 | |||
992 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): |
|
1000 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): | |
993 |
|
1001 | |||
994 | azimuth1 = numpy.zeros(len(pairslist)) |
|
1002 | azimuth1 = numpy.zeros(len(pairslist)) | |
995 | dist = numpy.zeros(len(pairslist)) |
|
1003 | dist = numpy.zeros(len(pairslist)) | |
996 |
|
1004 | |||
997 | for i in range(len(rx_location)): |
|
1005 | for i in range(len(rx_location)): | |
998 | ch0 = pairslist[i][0] |
|
1006 | ch0 = pairslist[i][0] | |
999 | ch1 = pairslist[i][1] |
|
1007 | ch1 = pairslist[i][1] | |
1000 |
|
1008 | |||
1001 | diffX = rx_location[ch0][0] - rx_location[ch1][0] |
|
1009 | diffX = rx_location[ch0][0] - rx_location[ch1][0] | |
1002 | diffY = rx_location[ch0][1] - rx_location[ch1][1] |
|
1010 | diffY = rx_location[ch0][1] - rx_location[ch1][1] | |
1003 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi |
|
1011 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi | |
1004 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) |
|
1012 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) | |
1005 |
|
1013 | |||
1006 | azimuth1 -= azimuth0 |
|
1014 | azimuth1 -= azimuth0 | |
1007 | return azimuth1, dist |
|
1015 | return azimuth1, dist | |
1008 |
|
1016 | |||
1009 | def techniqueNSM_DBS(self, **kwargs): |
|
1017 | def techniqueNSM_DBS(self, **kwargs): | |
1010 | metArray = kwargs['metArray'] |
|
1018 | metArray = kwargs['metArray'] | |
1011 | heightList = kwargs['heightList'] |
|
1019 | heightList = kwargs['heightList'] | |
1012 | timeList = kwargs['timeList'] |
|
1020 | timeList = kwargs['timeList'] | |
1013 | zenithList = kwargs['zenithList'] |
|
1021 | zenithList = kwargs['zenithList'] | |
1014 | nChan = numpy.max(cmet) + 1 |
|
1022 | nChan = numpy.max(cmet) + 1 | |
1015 | nHeights = len(heightList) |
|
1023 | nHeights = len(heightList) | |
1016 |
|
1024 | |||
1017 | utctime = metArray[:,0] |
|
1025 | utctime = metArray[:,0] | |
1018 | cmet = metArray[:,1] |
|
1026 | cmet = metArray[:,1] | |
1019 | hmet = metArray1[:,3].astype(int) |
|
1027 | hmet = metArray1[:,3].astype(int) | |
1020 | h1met = heightList[hmet]*zenithList[cmet] |
|
1028 | h1met = heightList[hmet]*zenithList[cmet] | |
1021 | vmet = metArray1[:,5] |
|
1029 | vmet = metArray1[:,5] | |
1022 |
|
1030 | |||
1023 | for i in range(nHeights - 1): |
|
1031 | for i in range(nHeights - 1): | |
1024 | hmin = heightList[i] |
|
1032 | hmin = heightList[i] | |
1025 | hmax = heightList[i + 1] |
|
1033 | hmax = heightList[i + 1] | |
1026 |
|
1034 | |||
1027 | vthisH = vmet[(h1met>=hmin) & (h1met<hmax)] |
|
1035 | vthisH = vmet[(h1met>=hmin) & (h1met<hmax)] | |
1028 |
|
1036 | |||
1029 |
|
1037 | |||
1030 |
|
1038 | |||
1031 | return data_output |
|
1039 | return data_output | |
1032 |
|
1040 | |||
1033 | def run(self, dataOut, technique, **kwargs): |
|
1041 | def run(self, dataOut, technique, **kwargs): | |
1034 |
|
1042 | |||
1035 | param = dataOut.data_param |
|
1043 | param = dataOut.data_param | |
1036 | if dataOut.abscissaList != None: |
|
1044 | if dataOut.abscissaList != None: | |
1037 | absc = dataOut.abscissaList[:-1] |
|
1045 | absc = dataOut.abscissaList[:-1] | |
1038 | noise = dataOut.noise |
|
1046 | noise = dataOut.noise | |
1039 | heightList = dataOut.heightList |
|
1047 | heightList = dataOut.heightList | |
1040 | SNR = dataOut.data_SNR |
|
1048 | SNR = dataOut.data_SNR | |
1041 |
|
1049 | |||
1042 | if technique == 'DBS': |
|
1050 | if technique == 'DBS': | |
1043 |
|
1051 | |||
1044 | kwargs['velRadial'] = param[:,1,:] #Radial velocity |
|
1052 | kwargs['velRadial'] = param[:,1,:] #Radial velocity | |
1045 | kwargs['heightList'] = heightList |
|
1053 | kwargs['heightList'] = heightList | |
1046 | kwargs['SNR'] = SNR |
|
1054 | kwargs['SNR'] = SNR | |
1047 |
|
1055 | |||
1048 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function |
|
1056 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function | |
1049 | dataOut.utctimeInit = dataOut.utctime |
|
1057 | dataOut.utctimeInit = dataOut.utctime | |
1050 | dataOut.outputInterval = dataOut.paramInterval |
|
1058 | dataOut.outputInterval = dataOut.paramInterval | |
1051 |
|
1059 | |||
1052 | elif technique == 'SA': |
|
1060 | elif technique == 'SA': | |
1053 |
|
1061 | |||
1054 | #Parameters |
|
1062 | #Parameters | |
1055 | # position_x = kwargs['positionX'] |
|
1063 | # position_x = kwargs['positionX'] | |
1056 | # position_y = kwargs['positionY'] |
|
1064 | # position_y = kwargs['positionY'] | |
1057 | # azimuth = kwargs['azimuth'] |
|
1065 | # azimuth = kwargs['azimuth'] | |
1058 | # |
|
1066 | # | |
1059 | # if kwargs.has_key('crosspairsList'): |
|
1067 | # if kwargs.has_key('crosspairsList'): | |
1060 | # pairs = kwargs['crosspairsList'] |
|
1068 | # pairs = kwargs['crosspairsList'] | |
1061 | # else: |
|
1069 | # else: | |
1062 | # pairs = None |
|
1070 | # pairs = None | |
1063 | # |
|
1071 | # | |
1064 | # if kwargs.has_key('correctFactor'): |
|
1072 | # if kwargs.has_key('correctFactor'): | |
1065 | # correctFactor = kwargs['correctFactor'] |
|
1073 | # correctFactor = kwargs['correctFactor'] | |
1066 | # else: |
|
1074 | # else: | |
1067 | # correctFactor = 1 |
|
1075 | # correctFactor = 1 | |
1068 |
|
1076 | |||
1069 | # tau = dataOut.data_param |
|
1077 | # tau = dataOut.data_param | |
1070 | # _lambda = dataOut.C/dataOut.frequency |
|
1078 | # _lambda = dataOut.C/dataOut.frequency | |
1071 | # pairsList = dataOut.groupList |
|
1079 | # pairsList = dataOut.groupList | |
1072 | # nChannels = dataOut.nChannels |
|
1080 | # nChannels = dataOut.nChannels | |
1073 |
|
1081 | |||
1074 | kwargs['groupList'] = dataOut.groupList |
|
1082 | kwargs['groupList'] = dataOut.groupList | |
1075 | kwargs['tau'] = dataOut.data_param |
|
1083 | kwargs['tau'] = dataOut.data_param | |
1076 | kwargs['_lambda'] = dataOut.C/dataOut.frequency |
|
1084 | kwargs['_lambda'] = dataOut.C/dataOut.frequency | |
1077 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) |
|
1085 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) | |
1078 | dataOut.data_output = self.techniqueSA(kwargs) |
|
1086 | dataOut.data_output = self.techniqueSA(kwargs) | |
1079 | dataOut.utctimeInit = dataOut.utctime |
|
1087 | dataOut.utctimeInit = dataOut.utctime | |
1080 | dataOut.outputInterval = dataOut.timeInterval |
|
1088 | dataOut.outputInterval = dataOut.timeInterval | |
1081 |
|
1089 | |||
1082 | elif technique == 'Meteors': |
|
1090 | elif technique == 'Meteors': | |
1083 | dataOut.flagNoData = True |
|
1091 | dataOut.flagNoData = True | |
1084 | self.__dataReady = False |
|
1092 | self.__dataReady = False | |
1085 |
|
1093 | |||
1086 | if kwargs.has_key('nHours'): |
|
1094 | if kwargs.has_key('nHours'): | |
1087 | nHours = kwargs['nHours'] |
|
1095 | nHours = kwargs['nHours'] | |
1088 | else: |
|
1096 | else: | |
1089 | nHours = 1 |
|
1097 | nHours = 1 | |
1090 |
|
1098 | |||
1091 | if kwargs.has_key('meteorsPerBin'): |
|
1099 | if kwargs.has_key('meteorsPerBin'): | |
1092 | meteorThresh = kwargs['meteorsPerBin'] |
|
1100 | meteorThresh = kwargs['meteorsPerBin'] | |
1093 | else: |
|
1101 | else: | |
1094 | meteorThresh = 6 |
|
1102 | meteorThresh = 6 | |
1095 |
|
1103 | |||
1096 | if kwargs.has_key('hmin'): |
|
1104 | if kwargs.has_key('hmin'): | |
1097 | hmin = kwargs['hmin'] |
|
1105 | hmin = kwargs['hmin'] | |
1098 | else: hmin = 70 |
|
1106 | else: hmin = 70 | |
1099 | if kwargs.has_key('hmax'): |
|
1107 | if kwargs.has_key('hmax'): | |
1100 | hmax = kwargs['hmax'] |
|
1108 | hmax = kwargs['hmax'] | |
1101 | else: hmax = 110 |
|
1109 | else: hmax = 110 | |
1102 |
|
1110 | |||
1103 | if kwargs.has_key('BinKm'): |
|
1111 | if kwargs.has_key('BinKm'): | |
1104 | binkm = kwargs['BinKm'] |
|
1112 | binkm = kwargs['BinKm'] | |
1105 | else: |
|
1113 | else: | |
1106 | binkm = 2 |
|
1114 | binkm = 2 | |
1107 |
|
1115 | |||
1108 | dataOut.outputInterval = nHours*3600 |
|
1116 | dataOut.outputInterval = nHours*3600 | |
1109 |
|
1117 | |||
1110 | if self.__isConfig == False: |
|
1118 | if self.__isConfig == False: | |
1111 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
1119 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
1112 | #Get Initial LTC time |
|
1120 | #Get Initial LTC time | |
1113 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
1121 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
1114 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
1122 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
1115 |
|
1123 | |||
1116 | self.__isConfig = True |
|
1124 | self.__isConfig = True | |
1117 |
|
1125 | |||
1118 | if self.__buffer is None: |
|
1126 | if self.__buffer is None: | |
1119 | self.__buffer = dataOut.data_param |
|
1127 | self.__buffer = dataOut.data_param | |
1120 | self.__firstdata = copy.copy(dataOut) |
|
1128 | self.__firstdata = copy.copy(dataOut) | |
1121 |
|
1129 | |||
1122 | else: |
|
1130 | else: | |
1123 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
1131 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
1124 |
|
1132 | |||
1125 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
1133 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
1126 |
|
1134 | |||
1127 | if self.__dataReady: |
|
1135 | if self.__dataReady: | |
1128 | dataOut.utctimeInit = self.__initime |
|
1136 | dataOut.utctimeInit = self.__initime | |
1129 |
|
1137 | |||
1130 | self.__initime += dataOut.outputInterval #to erase time offset |
|
1138 | self.__initime += dataOut.outputInterval #to erase time offset | |
1131 |
|
1139 | |||
1132 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax, binkm) |
|
1140 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax, binkm) | |
1133 | dataOut.flagNoData = False |
|
1141 | dataOut.flagNoData = False | |
1134 | self.__buffer = None |
|
1142 | self.__buffer = None | |
1135 |
|
1143 | |||
1136 | elif technique == 'Meteors1': |
|
1144 | elif technique == 'Meteors1': | |
1137 | dataOut.flagNoData = True |
|
1145 | dataOut.flagNoData = True | |
1138 | self.__dataReady = False |
|
1146 | self.__dataReady = False | |
1139 |
|
1147 | |||
1140 | if kwargs.has_key('nMins'): |
|
1148 | if kwargs.has_key('nMins'): | |
1141 | nMins = kwargs['nMins'] |
|
1149 | nMins = kwargs['nMins'] | |
1142 | else: nMins = 20 |
|
1150 | else: nMins = 20 | |
1143 | if kwargs.has_key('rx_location'): |
|
1151 | if kwargs.has_key('rx_location'): | |
1144 | rx_location = kwargs['rx_location'] |
|
1152 | rx_location = kwargs['rx_location'] | |
1145 | else: rx_location = [(0,1),(1,1),(1,0)] |
|
1153 | else: rx_location = [(0,1),(1,1),(1,0)] | |
1146 | if kwargs.has_key('azimuth'): |
|
1154 | if kwargs.has_key('azimuth'): | |
1147 | azimuth = kwargs['azimuth'] |
|
1155 | azimuth = kwargs['azimuth'] | |
1148 | else: azimuth = 51 |
|
1156 | else: azimuth = 51 | |
1149 | if kwargs.has_key('dfactor'): |
|
1157 | if kwargs.has_key('dfactor'): | |
1150 | dfactor = kwargs['dfactor'] |
|
1158 | dfactor = kwargs['dfactor'] | |
1151 | if kwargs.has_key('mode'): |
|
1159 | if kwargs.has_key('mode'): | |
1152 | mode = kwargs['mode'] |
|
1160 | mode = kwargs['mode'] | |
1153 | else: mode = 'SA' |
|
1161 | else: mode = 'SA' | |
1154 |
|
1162 | |||
1155 | #Borrar luego esto |
|
1163 | #Borrar luego esto | |
1156 | if dataOut.groupList is None: |
|
1164 | if dataOut.groupList is None: | |
1157 | dataOut.groupList = [(0,1),(0,2),(1,2)] |
|
1165 | dataOut.groupList = [(0,1),(0,2),(1,2)] | |
1158 | groupList = dataOut.groupList |
|
1166 | groupList = dataOut.groupList | |
1159 | C = 3e8 |
|
1167 | C = 3e8 | |
1160 | freq = 50e6 |
|
1168 | freq = 50e6 | |
1161 | lamb = C/freq |
|
1169 | lamb = C/freq | |
1162 | k = 2*numpy.pi/lamb |
|
1170 | k = 2*numpy.pi/lamb | |
1163 |
|
1171 | |||
1164 | timeList = dataOut.abscissaList |
|
1172 | timeList = dataOut.abscissaList | |
1165 | heightList = dataOut.heightList |
|
1173 | heightList = dataOut.heightList | |
1166 |
|
1174 | |||
1167 | if self.__isConfig == False: |
|
1175 | if self.__isConfig == False: | |
1168 | dataOut.outputInterval = nMins*60 |
|
1176 | dataOut.outputInterval = nMins*60 | |
1169 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
1177 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
1170 | #Get Initial LTC time |
|
1178 | #Get Initial LTC time | |
1171 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
1179 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
1172 | minuteAux = initime.minute |
|
1180 | minuteAux = initime.minute | |
1173 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) |
|
1181 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) | |
1174 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
1182 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
1175 |
|
1183 | |||
1176 | self.__isConfig = True |
|
1184 | self.__isConfig = True | |
1177 |
|
1185 | |||
1178 | if self.__buffer is None: |
|
1186 | if self.__buffer is None: | |
1179 | self.__buffer = dataOut.data_param |
|
1187 | self.__buffer = dataOut.data_param | |
1180 | self.__firstdata = copy.copy(dataOut) |
|
1188 | self.__firstdata = copy.copy(dataOut) | |
1181 |
|
1189 | |||
1182 | else: |
|
1190 | else: | |
1183 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
1191 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
1184 |
|
1192 | |||
1185 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
1193 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
1186 |
|
1194 | |||
1187 | if self.__dataReady: |
|
1195 | if self.__dataReady: | |
1188 | dataOut.utctimeInit = self.__initime |
|
1196 | dataOut.utctimeInit = self.__initime | |
1189 | self.__initime += dataOut.outputInterval #to erase time offset |
|
1197 | self.__initime += dataOut.outputInterval #to erase time offset | |
1190 |
|
1198 | |||
1191 | metArray = self.__buffer |
|
1199 | metArray = self.__buffer | |
1192 | if mode == 'SA': |
|
1200 | if mode == 'SA': | |
1193 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) |
|
1201 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) | |
1194 | elif mode == 'DBS': |
|
1202 | elif mode == 'DBS': | |
1195 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList) |
|
1203 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList) | |
1196 | dataOut.data_output = dataOut.data_output.T |
|
1204 | dataOut.data_output = dataOut.data_output.T | |
1197 | dataOut.flagNoData = False |
|
1205 | dataOut.flagNoData = False | |
1198 | self.__buffer = None |
|
1206 | self.__buffer = None | |
1199 |
|
1207 | |||
1200 | return |
|
1208 | return | |
1201 |
|
1209 | |||
1202 | class EWDriftsEstimation(Operation): |
|
1210 | class EWDriftsEstimation(Operation): | |
1203 |
|
1211 | |||
1204 |
|
1212 | |||
1205 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
1213 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
1206 | listPhi = phi.tolist() |
|
1214 | listPhi = phi.tolist() | |
1207 | maxid = listPhi.index(max(listPhi)) |
|
1215 | maxid = listPhi.index(max(listPhi)) | |
1208 | minid = listPhi.index(min(listPhi)) |
|
1216 | minid = listPhi.index(min(listPhi)) | |
1209 |
|
1217 | |||
1210 | rango = range(len(phi)) |
|
1218 | rango = range(len(phi)) | |
1211 | # rango = numpy.delete(rango,maxid) |
|
1219 | # rango = numpy.delete(rango,maxid) | |
1212 |
|
1220 | |||
1213 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
1221 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
1214 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
1222 | heiRangAux = heiRang*math.cos(phi[minid]) | |
1215 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
1223 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
1216 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
1224 | heiRang1 = numpy.delete(heiRang1,indOut) | |
1217 |
|
1225 | |||
1218 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1226 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1219 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1227 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1220 |
|
1228 | |||
1221 | for i in rango: |
|
1229 | for i in rango: | |
1222 | x = heiRang*math.cos(phi[i]) |
|
1230 | x = heiRang*math.cos(phi[i]) | |
1223 | y1 = velRadial[i,:] |
|
1231 | y1 = velRadial[i,:] | |
1224 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
1232 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
1225 |
|
1233 | |||
1226 | x1 = heiRang1 |
|
1234 | x1 = heiRang1 | |
1227 | y11 = f1(x1) |
|
1235 | y11 = f1(x1) | |
1228 |
|
1236 | |||
1229 | y2 = SNR[i,:] |
|
1237 | y2 = SNR[i,:] | |
1230 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
1238 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
1231 | y21 = f2(x1) |
|
1239 | y21 = f2(x1) | |
1232 |
|
1240 | |||
1233 | velRadial1[i,:] = y11 |
|
1241 | velRadial1[i,:] = y11 | |
1234 | SNR1[i,:] = y21 |
|
1242 | SNR1[i,:] = y21 | |
1235 |
|
1243 | |||
1236 | return heiRang1, velRadial1, SNR1 |
|
1244 | return heiRang1, velRadial1, SNR1 | |
1237 |
|
1245 | |||
1238 | def run(self, dataOut, zenith, zenithCorrection): |
|
1246 | def run(self, dataOut, zenith, zenithCorrection): | |
1239 | heiRang = dataOut.heightList |
|
1247 | heiRang = dataOut.heightList | |
1240 | velRadial = dataOut.data_param[:,3,:] |
|
1248 | velRadial = dataOut.data_param[:,3,:] | |
1241 | SNR = dataOut.data_SNR |
|
1249 | SNR = dataOut.data_SNR | |
1242 |
|
1250 | |||
1243 | zenith = numpy.array(zenith) |
|
1251 | zenith = numpy.array(zenith) | |
1244 | zenith -= zenithCorrection |
|
1252 | zenith -= zenithCorrection | |
1245 | zenith *= numpy.pi/180 |
|
1253 | zenith *= numpy.pi/180 | |
1246 |
|
1254 | |||
1247 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) |
|
1255 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |
1248 |
|
1256 | |||
1249 | alp = zenith[0] |
|
1257 | alp = zenith[0] | |
1250 | bet = zenith[1] |
|
1258 | bet = zenith[1] | |
1251 |
|
1259 | |||
1252 | w_w = velRadial1[0,:] |
|
1260 | w_w = velRadial1[0,:] | |
1253 | w_e = velRadial1[1,:] |
|
1261 | w_e = velRadial1[1,:] | |
1254 |
|
1262 | |||
1255 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) |
|
1263 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |
1256 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) |
|
1264 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |
1257 |
|
1265 | |||
1258 | winds = numpy.vstack((u,w)) |
|
1266 | winds = numpy.vstack((u,w)) | |
1259 |
|
1267 | |||
1260 | dataOut.heightList = heiRang1 |
|
1268 | dataOut.heightList = heiRang1 | |
1261 | dataOut.data_output = winds |
|
1269 | dataOut.data_output = winds | |
1262 | dataOut.data_SNR = SNR1 |
|
1270 | dataOut.data_SNR = SNR1 | |
1263 |
|
1271 | |||
1264 | dataOut.utctimeInit = dataOut.utctime |
|
1272 | dataOut.utctimeInit = dataOut.utctime | |
1265 | dataOut.outputInterval = dataOut.timeInterval |
|
1273 | dataOut.outputInterval = dataOut.timeInterval | |
1266 | return |
|
1274 | return | |
1267 |
|
1275 | |||
1268 | #--------------- Non Specular Meteor ---------------- |
|
1276 | #--------------- Non Specular Meteor ---------------- | |
1269 |
|
1277 | |||
1270 | class NonSpecularMeteorDetection(Operation): |
|
1278 | class NonSpecularMeteorDetection(Operation): | |
1271 |
|
1279 | |||
1272 | def run(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): |
|
1280 | def run(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): | |
1273 | data_acf = self.dataOut.data_pre[0] |
|
1281 | data_acf = self.dataOut.data_pre[0] | |
1274 | data_ccf = self.dataOut.data_pre[1] |
|
1282 | data_ccf = self.dataOut.data_pre[1] | |
1275 |
|
1283 | |||
1276 | lamb = self.dataOut.C/self.dataOut.frequency |
|
1284 | lamb = self.dataOut.C/self.dataOut.frequency | |
1277 | tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt |
|
1285 | tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt | |
1278 | paramInterval = self.dataOut.paramInterval |
|
1286 | paramInterval = self.dataOut.paramInterval | |
1279 |
|
1287 | |||
1280 | nChannels = data_acf.shape[0] |
|
1288 | nChannels = data_acf.shape[0] | |
1281 | nLags = data_acf.shape[1] |
|
1289 | nLags = data_acf.shape[1] | |
1282 | nProfiles = data_acf.shape[2] |
|
1290 | nProfiles = data_acf.shape[2] | |
1283 | nHeights = self.dataOut.nHeights |
|
1291 | nHeights = self.dataOut.nHeights | |
1284 | nCohInt = self.dataOut.nCohInt |
|
1292 | nCohInt = self.dataOut.nCohInt | |
1285 | sec = numpy.round(nProfiles/self.dataOut.paramInterval) |
|
1293 | sec = numpy.round(nProfiles/self.dataOut.paramInterval) | |
1286 | heightList = self.dataOut.heightList |
|
1294 | heightList = self.dataOut.heightList | |
1287 | ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg |
|
1295 | ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg | |
1288 | utctime = self.dataOut.utctime |
|
1296 | utctime = self.dataOut.utctime | |
1289 |
|
1297 | |||
1290 | self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) |
|
1298 | self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) | |
1291 |
|
1299 | |||
1292 | #------------------------ SNR -------------------------------------- |
|
1300 | #------------------------ SNR -------------------------------------- | |
1293 | power = data_acf[:,0,:,:].real |
|
1301 | power = data_acf[:,0,:,:].real | |
1294 | noise = numpy.zeros(nChannels) |
|
1302 | noise = numpy.zeros(nChannels) | |
1295 | SNR = numpy.zeros(power.shape) |
|
1303 | SNR = numpy.zeros(power.shape) | |
1296 | for i in range(nChannels): |
|
1304 | for i in range(nChannels): | |
1297 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) |
|
1305 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) | |
1298 | SNR[i] = (power[i]-noise[i])/noise[i] |
|
1306 | SNR[i] = (power[i]-noise[i])/noise[i] | |
1299 | SNRm = numpy.nanmean(SNR, axis = 0) |
|
1307 | SNRm = numpy.nanmean(SNR, axis = 0) | |
1300 | SNRdB = 10*numpy.log10(SNR) |
|
1308 | SNRdB = 10*numpy.log10(SNR) | |
1301 |
|
1309 | |||
1302 | if mode == 'SA': |
|
1310 | if mode == 'SA': | |
1303 | nPairs = data_ccf.shape[0] |
|
1311 | nPairs = data_ccf.shape[0] | |
1304 | #---------------------- Coherence and Phase -------------------------- |
|
1312 | #---------------------- Coherence and Phase -------------------------- | |
1305 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
1313 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) | |
1306 | # phase1 = numpy.copy(phase) |
|
1314 | # phase1 = numpy.copy(phase) | |
1307 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
1315 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) | |
1308 |
|
1316 | |||
1309 | for p in range(nPairs): |
|
1317 | for p in range(nPairs): | |
1310 | ch0 = self.dataOut.groupList[p][0] |
|
1318 | ch0 = self.dataOut.groupList[p][0] | |
1311 | ch1 = self.dataOut.groupList[p][1] |
|
1319 | ch1 = self.dataOut.groupList[p][1] | |
1312 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) |
|
1320 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) | |
1313 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter |
|
1321 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter | |
1314 | # phase1[p,:,:] = numpy.angle(ccf) #median filter |
|
1322 | # phase1[p,:,:] = numpy.angle(ccf) #median filter | |
1315 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter |
|
1323 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter | |
1316 | # coh1[p,:,:] = numpy.abs(ccf) #median filter |
|
1324 | # coh1[p,:,:] = numpy.abs(ccf) #median filter | |
1317 | coh = numpy.nanmax(coh1, axis = 0) |
|
1325 | coh = numpy.nanmax(coh1, axis = 0) | |
1318 | # struc = numpy.ones((5,1)) |
|
1326 | # struc = numpy.ones((5,1)) | |
1319 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) |
|
1327 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) | |
1320 | #---------------------- Radial Velocity ---------------------------- |
|
1328 | #---------------------- Radial Velocity ---------------------------- | |
1321 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) |
|
1329 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) | |
1322 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) |
|
1330 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) | |
1323 |
|
1331 | |||
1324 | if allData: |
|
1332 | if allData: | |
1325 | boolMetFin = ~numpy.isnan(SNRm) |
|
1333 | boolMetFin = ~numpy.isnan(SNRm) | |
1326 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
1334 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
1327 | else: |
|
1335 | else: | |
1328 | #------------------------ Meteor mask --------------------------------- |
|
1336 | #------------------------ Meteor mask --------------------------------- | |
1329 | # #SNR mask |
|
1337 | # #SNR mask | |
1330 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) |
|
1338 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) | |
1331 | # |
|
1339 | # | |
1332 | # #Erase small objects |
|
1340 | # #Erase small objects | |
1333 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) |
|
1341 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) | |
1334 | # |
|
1342 | # | |
1335 | # auxEEJ = numpy.sum(boolMet1,axis=0) |
|
1343 | # auxEEJ = numpy.sum(boolMet1,axis=0) | |
1336 | # indOver = auxEEJ>nProfiles*0.8 #Use this later |
|
1344 | # indOver = auxEEJ>nProfiles*0.8 #Use this later | |
1337 | # indEEJ = numpy.where(indOver)[0] |
|
1345 | # indEEJ = numpy.where(indOver)[0] | |
1338 | # indNEEJ = numpy.where(~indOver)[0] |
|
1346 | # indNEEJ = numpy.where(~indOver)[0] | |
1339 | # |
|
1347 | # | |
1340 | # boolMetFin = boolMet1 |
|
1348 | # boolMetFin = boolMet1 | |
1341 | # |
|
1349 | # | |
1342 | # if indEEJ.size > 0: |
|
1350 | # if indEEJ.size > 0: | |
1343 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ |
|
1351 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ | |
1344 | # |
|
1352 | # | |
1345 | # boolMet2 = coh > cohThresh |
|
1353 | # boolMet2 = coh > cohThresh | |
1346 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) |
|
1354 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) | |
1347 | # |
|
1355 | # | |
1348 | # #Final Meteor mask |
|
1356 | # #Final Meteor mask | |
1349 | # boolMetFin = boolMet1|boolMet2 |
|
1357 | # boolMetFin = boolMet1|boolMet2 | |
1350 |
|
1358 | |||
1351 | #Coherence mask |
|
1359 | #Coherence mask | |
1352 | boolMet1 = coh > 0.75 |
|
1360 | boolMet1 = coh > 0.75 | |
1353 | struc = numpy.ones((30,1)) |
|
1361 | struc = numpy.ones((30,1)) | |
1354 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) |
|
1362 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) | |
1355 |
|
1363 | |||
1356 | #Derivative mask |
|
1364 | #Derivative mask | |
1357 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
1365 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
1358 | boolMet2 = derPhase < 0.2 |
|
1366 | boolMet2 = derPhase < 0.2 | |
1359 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) |
|
1367 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) | |
1360 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) |
|
1368 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) | |
1361 | boolMet2 = ndimage.median_filter(boolMet2,size=5) |
|
1369 | boolMet2 = ndimage.median_filter(boolMet2,size=5) | |
1362 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) |
|
1370 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) | |
1363 | # #Final mask |
|
1371 | # #Final mask | |
1364 | # boolMetFin = boolMet2 |
|
1372 | # boolMetFin = boolMet2 | |
1365 | boolMetFin = boolMet1&boolMet2 |
|
1373 | boolMetFin = boolMet1&boolMet2 | |
1366 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) |
|
1374 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) | |
1367 | #Creating data_param |
|
1375 | #Creating data_param | |
1368 | coordMet = numpy.where(boolMetFin) |
|
1376 | coordMet = numpy.where(boolMetFin) | |
1369 |
|
1377 | |||
1370 | tmet = coordMet[0] |
|
1378 | tmet = coordMet[0] | |
1371 | hmet = coordMet[1] |
|
1379 | hmet = coordMet[1] | |
1372 |
|
1380 | |||
1373 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) |
|
1381 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) | |
1374 | data_param[:,0] = utctime |
|
1382 | data_param[:,0] = utctime | |
1375 | data_param[:,1] = tmet |
|
1383 | data_param[:,1] = tmet | |
1376 | data_param[:,2] = hmet |
|
1384 | data_param[:,2] = hmet | |
1377 | data_param[:,3] = SNRm[tmet,hmet] |
|
1385 | data_param[:,3] = SNRm[tmet,hmet] | |
1378 | data_param[:,4] = velRad[tmet,hmet] |
|
1386 | data_param[:,4] = velRad[tmet,hmet] | |
1379 | data_param[:,5] = coh[tmet,hmet] |
|
1387 | data_param[:,5] = coh[tmet,hmet] | |
1380 | data_param[:,6:] = phase[:,tmet,hmet].T |
|
1388 | data_param[:,6:] = phase[:,tmet,hmet].T | |
1381 |
|
1389 | |||
1382 | elif mode == 'DBS': |
|
1390 | elif mode == 'DBS': | |
1383 | self.dataOut.groupList = numpy.arange(nChannels) |
|
1391 | self.dataOut.groupList = numpy.arange(nChannels) | |
1384 |
|
1392 | |||
1385 | #Radial Velocities |
|
1393 | #Radial Velocities | |
1386 | # phase = numpy.angle(data_acf[:,1,:,:]) |
|
1394 | # phase = numpy.angle(data_acf[:,1,:,:]) | |
1387 | phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) |
|
1395 | phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) | |
1388 | velRad = phase*lamb/(4*numpy.pi*tSamp) |
|
1396 | velRad = phase*lamb/(4*numpy.pi*tSamp) | |
1389 |
|
1397 | |||
1390 | #Spectral width |
|
1398 | #Spectral width | |
1391 | acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) |
|
1399 | acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) | |
1392 | acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) |
|
1400 | acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) | |
1393 |
|
1401 | |||
1394 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) |
|
1402 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) | |
1395 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) |
|
1403 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) | |
1396 | if allData: |
|
1404 | if allData: | |
1397 | boolMetFin = ~numpy.isnan(SNRdB) |
|
1405 | boolMetFin = ~numpy.isnan(SNRdB) | |
1398 | else: |
|
1406 | else: | |
1399 | #SNR |
|
1407 | #SNR | |
1400 | boolMet1 = (SNRdB>SNRthresh) #SNR mask |
|
1408 | boolMet1 = (SNRdB>SNRthresh) #SNR mask | |
1401 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) |
|
1409 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) | |
1402 |
|
1410 | |||
1403 | #Radial velocity |
|
1411 | #Radial velocity | |
1404 | boolMet2 = numpy.abs(velRad) < 30 |
|
1412 | boolMet2 = numpy.abs(velRad) < 30 | |
1405 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) |
|
1413 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) | |
1406 |
|
1414 | |||
1407 | #Spectral Width |
|
1415 | #Spectral Width | |
1408 | boolMet3 = spcWidth < 30 |
|
1416 | boolMet3 = spcWidth < 30 | |
1409 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) |
|
1417 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) | |
1410 | # boolMetFin = self.__erase_small(boolMet1, 10,5) |
|
1418 | # boolMetFin = self.__erase_small(boolMet1, 10,5) | |
1411 | boolMetFin = boolMet1&boolMet2&boolMet3 |
|
1419 | boolMetFin = boolMet1&boolMet2&boolMet3 | |
1412 |
|
1420 | |||
1413 | #Creating data_param |
|
1421 | #Creating data_param | |
1414 | coordMet = numpy.where(boolMetFin) |
|
1422 | coordMet = numpy.where(boolMetFin) | |
1415 |
|
1423 | |||
1416 | cmet = coordMet[0] |
|
1424 | cmet = coordMet[0] | |
1417 | tmet = coordMet[1] |
|
1425 | tmet = coordMet[1] | |
1418 | hmet = coordMet[2] |
|
1426 | hmet = coordMet[2] | |
1419 |
|
1427 | |||
1420 | data_param = numpy.zeros((tmet.size, 7)) |
|
1428 | data_param = numpy.zeros((tmet.size, 7)) | |
1421 | data_param[:,0] = utctime |
|
1429 | data_param[:,0] = utctime | |
1422 | data_param[:,1] = cmet |
|
1430 | data_param[:,1] = cmet | |
1423 | data_param[:,2] = tmet |
|
1431 | data_param[:,2] = tmet | |
1424 | data_param[:,3] = hmet |
|
1432 | data_param[:,3] = hmet | |
1425 | data_param[:,4] = SNR[cmet,tmet,hmet].T |
|
1433 | data_param[:,4] = SNR[cmet,tmet,hmet].T | |
1426 | data_param[:,5] = velRad[cmet,tmet,hmet].T |
|
1434 | data_param[:,5] = velRad[cmet,tmet,hmet].T | |
1427 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T |
|
1435 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T | |
1428 |
|
1436 | |||
1429 | # self.dataOut.data_param = data_int |
|
1437 | # self.dataOut.data_param = data_int | |
1430 | if len(data_param) == 0: |
|
1438 | if len(data_param) == 0: | |
1431 | self.dataOut.flagNoData = True |
|
1439 | self.dataOut.flagNoData = True | |
1432 | else: |
|
1440 | else: | |
1433 | self.dataOut.data_param = data_param |
|
1441 | self.dataOut.data_param = data_param | |
1434 |
|
1442 | |||
1435 | def __erase_small(self, binArray, threshX, threshY): |
|
1443 | def __erase_small(self, binArray, threshX, threshY): | |
1436 | labarray, numfeat = ndimage.measurements.label(binArray) |
|
1444 | labarray, numfeat = ndimage.measurements.label(binArray) | |
1437 | binArray1 = numpy.copy(binArray) |
|
1445 | binArray1 = numpy.copy(binArray) | |
1438 |
|
1446 | |||
1439 | for i in range(1,numfeat + 1): |
|
1447 | for i in range(1,numfeat + 1): | |
1440 | auxBin = (labarray==i) |
|
1448 | auxBin = (labarray==i) | |
1441 | auxSize = auxBin.sum() |
|
1449 | auxSize = auxBin.sum() | |
1442 |
|
1450 | |||
1443 | x,y = numpy.where(auxBin) |
|
1451 | x,y = numpy.where(auxBin) | |
1444 | widthX = x.max() - x.min() |
|
1452 | widthX = x.max() - x.min() | |
1445 | widthY = y.max() - y.min() |
|
1453 | widthY = y.max() - y.min() | |
1446 |
|
1454 | |||
1447 | #width X: 3 seg -> 12.5*3 |
|
1455 | #width X: 3 seg -> 12.5*3 | |
1448 | #width Y: |
|
1456 | #width Y: | |
1449 |
|
1457 | |||
1450 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): |
|
1458 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): | |
1451 | binArray1[auxBin] = False |
|
1459 | binArray1[auxBin] = False | |
1452 |
|
1460 | |||
1453 | return binArray1 |
|
1461 | return binArray1 | |
1454 |
|
1462 | |||
1455 | #--------------- Specular Meteor ---------------- |
|
1463 | #--------------- Specular Meteor ---------------- | |
1456 |
|
1464 | |||
1457 | class SMDetection(Operation): |
|
1465 | class SMDetection(Operation): | |
1458 | ''' |
|
1466 | ''' | |
1459 | Function DetectMeteors() |
|
1467 | Function DetectMeteors() | |
1460 | Project developed with paper: |
|
1468 | Project developed with paper: | |
1461 | HOLDSWORTH ET AL. 2004 |
|
1469 | HOLDSWORTH ET AL. 2004 | |
1462 |
|
1470 | |||
1463 | Input: |
|
1471 | Input: | |
1464 | self.dataOut.data_pre |
|
1472 | self.dataOut.data_pre | |
1465 |
|
1473 | |||
1466 | centerReceiverIndex: From the channels, which is the center receiver |
|
1474 | centerReceiverIndex: From the channels, which is the center receiver | |
1467 |
|
1475 | |||
1468 | hei_ref: Height reference for the Beacon signal extraction |
|
1476 | hei_ref: Height reference for the Beacon signal extraction | |
1469 | tauindex: |
|
1477 | tauindex: | |
1470 | predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
1478 | predefinedPhaseShifts: Predefined phase offset for the voltge signals | |
1471 |
|
1479 | |||
1472 | cohDetection: Whether to user Coherent detection or not |
|
1480 | cohDetection: Whether to user Coherent detection or not | |
1473 | cohDet_timeStep: Coherent Detection calculation time step |
|
1481 | cohDet_timeStep: Coherent Detection calculation time step | |
1474 | cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
1482 | cohDet_thresh: Coherent Detection phase threshold to correct phases | |
1475 |
|
1483 | |||
1476 | noise_timeStep: Noise calculation time step |
|
1484 | noise_timeStep: Noise calculation time step | |
1477 | noise_multiple: Noise multiple to define signal threshold |
|
1485 | noise_multiple: Noise multiple to define signal threshold | |
1478 |
|
1486 | |||
1479 | multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
1487 | multDet_timeLimit: Multiple Detection Removal time limit in seconds | |
1480 | multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
1488 | multDet_rangeLimit: Multiple Detection Removal range limit in km | |
1481 |
|
1489 | |||
1482 | phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
1490 | phaseThresh: Maximum phase difference between receiver to be consider a meteor | |
1483 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
1491 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |
1484 |
|
1492 | |||
1485 | hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
1493 | hmin: Minimum Height of the meteor to use it in the further wind estimations | |
1486 | hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
1494 | hmax: Maximum Height of the meteor to use it in the further wind estimations | |
1487 | azimuth: Azimuth angle correction |
|
1495 | azimuth: Azimuth angle correction | |
1488 |
|
1496 | |||
1489 | Affected: |
|
1497 | Affected: | |
1490 | self.dataOut.data_param |
|
1498 | self.dataOut.data_param | |
1491 |
|
1499 | |||
1492 | Rejection Criteria (Errors): |
|
1500 | Rejection Criteria (Errors): | |
1493 | 0: No error; analysis OK |
|
1501 | 0: No error; analysis OK | |
1494 | 1: SNR < SNR threshold |
|
1502 | 1: SNR < SNR threshold | |
1495 | 2: angle of arrival (AOA) ambiguously determined |
|
1503 | 2: angle of arrival (AOA) ambiguously determined | |
1496 | 3: AOA estimate not feasible |
|
1504 | 3: AOA estimate not feasible | |
1497 | 4: Large difference in AOAs obtained from different antenna baselines |
|
1505 | 4: Large difference in AOAs obtained from different antenna baselines | |
1498 | 5: echo at start or end of time series |
|
1506 | 5: echo at start or end of time series | |
1499 | 6: echo less than 5 examples long; too short for analysis |
|
1507 | 6: echo less than 5 examples long; too short for analysis | |
1500 | 7: echo rise exceeds 0.3s |
|
1508 | 7: echo rise exceeds 0.3s | |
1501 | 8: echo decay time less than twice rise time |
|
1509 | 8: echo decay time less than twice rise time | |
1502 | 9: large power level before echo |
|
1510 | 9: large power level before echo | |
1503 | 10: large power level after echo |
|
1511 | 10: large power level after echo | |
1504 | 11: poor fit to amplitude for estimation of decay time |
|
1512 | 11: poor fit to amplitude for estimation of decay time | |
1505 | 12: poor fit to CCF phase variation for estimation of radial drift velocity |
|
1513 | 12: poor fit to CCF phase variation for estimation of radial drift velocity | |
1506 | 13: height unresolvable echo: not valid height within 70 to 110 km |
|
1514 | 13: height unresolvable echo: not valid height within 70 to 110 km | |
1507 | 14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
1515 | 14: height ambiguous echo: more then one possible height within 70 to 110 km | |
1508 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
1516 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |
1509 | 16: oscilatory echo, indicating event most likely not an underdense echo |
|
1517 | 16: oscilatory echo, indicating event most likely not an underdense echo | |
1510 |
|
1518 | |||
1511 | 17: phase difference in meteor Reestimation |
|
1519 | 17: phase difference in meteor Reestimation | |
1512 |
|
1520 | |||
1513 | Data Storage: |
|
1521 | Data Storage: | |
1514 | Meteors for Wind Estimation (8): |
|
1522 | Meteors for Wind Estimation (8): | |
1515 | Utc Time | Range Height |
|
1523 | Utc Time | Range Height | |
1516 | Azimuth Zenith errorCosDir |
|
1524 | Azimuth Zenith errorCosDir | |
1517 | VelRad errorVelRad |
|
1525 | VelRad errorVelRad | |
1518 | Phase0 Phase1 Phase2 Phase3 |
|
1526 | Phase0 Phase1 Phase2 Phase3 | |
1519 | TypeError |
|
1527 | TypeError | |
1520 |
|
1528 | |||
1521 | ''' |
|
1529 | ''' | |
1522 |
|
1530 | |||
1523 | def run(self, dataOut, hei_ref = None, tauindex = 0, |
|
1531 | def run(self, dataOut, hei_ref = None, tauindex = 0, | |
1524 | phaseOffsets = None, |
|
1532 | phaseOffsets = None, | |
1525 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, |
|
1533 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |
1526 | noise_timeStep = 4, noise_multiple = 4, |
|
1534 | noise_timeStep = 4, noise_multiple = 4, | |
1527 | multDet_timeLimit = 1, multDet_rangeLimit = 3, |
|
1535 | multDet_timeLimit = 1, multDet_rangeLimit = 3, | |
1528 | phaseThresh = 20, SNRThresh = 5, |
|
1536 | phaseThresh = 20, SNRThresh = 5, | |
1529 | hmin = 50, hmax=150, azimuth = 0, |
|
1537 | hmin = 50, hmax=150, azimuth = 0, | |
1530 | channelPositions = None) : |
|
1538 | channelPositions = None) : | |
1531 |
|
1539 | |||
1532 |
|
1540 | |||
1533 | #Getting Pairslist |
|
1541 | #Getting Pairslist | |
1534 | if channelPositions is None: |
|
1542 | if channelPositions is None: | |
1535 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
1543 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
1536 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
1544 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
1537 | meteorOps = SMOperations() |
|
1545 | meteorOps = SMOperations() | |
1538 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
1546 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
1539 | heiRang = dataOut.getHeiRange() |
|
1547 | heiRang = dataOut.getHeiRange() | |
1540 | #Get Beacon signal - No Beacon signal anymore |
|
1548 | #Get Beacon signal - No Beacon signal anymore | |
1541 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
1549 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
1542 | # |
|
1550 | # | |
1543 | # if hei_ref != None: |
|
1551 | # if hei_ref != None: | |
1544 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
1552 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
1545 | # |
|
1553 | # | |
1546 |
|
1554 | |||
1547 |
|
1555 | |||
1548 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** |
|
1556 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |
1549 | # see if the user put in pre defined phase shifts |
|
1557 | # see if the user put in pre defined phase shifts | |
1550 | voltsPShift = dataOut.data_pre.copy() |
|
1558 | voltsPShift = dataOut.data_pre.copy() | |
1551 |
|
1559 | |||
1552 | # if predefinedPhaseShifts != None: |
|
1560 | # if predefinedPhaseShifts != None: | |
1553 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 |
|
1561 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |
1554 | # |
|
1562 | # | |
1555 | # # elif beaconPhaseShifts: |
|
1563 | # # elif beaconPhaseShifts: | |
1556 | # # #get hardware phase shifts using beacon signal |
|
1564 | # # #get hardware phase shifts using beacon signal | |
1557 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) |
|
1565 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |
1558 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) |
|
1566 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |
1559 | # |
|
1567 | # | |
1560 | # else: |
|
1568 | # else: | |
1561 | # hardwarePhaseShifts = numpy.zeros(5) |
|
1569 | # hardwarePhaseShifts = numpy.zeros(5) | |
1562 | # |
|
1570 | # | |
1563 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') |
|
1571 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |
1564 | # for i in range(self.dataOut.data_pre.shape[0]): |
|
1572 | # for i in range(self.dataOut.data_pre.shape[0]): | |
1565 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) |
|
1573 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |
1566 |
|
1574 | |||
1567 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* |
|
1575 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |
1568 |
|
1576 | |||
1569 | #Remove DC |
|
1577 | #Remove DC | |
1570 | voltsDC = numpy.mean(voltsPShift,1) |
|
1578 | voltsDC = numpy.mean(voltsPShift,1) | |
1571 | voltsDC = numpy.mean(voltsDC,1) |
|
1579 | voltsDC = numpy.mean(voltsDC,1) | |
1572 | for i in range(voltsDC.shape[0]): |
|
1580 | for i in range(voltsDC.shape[0]): | |
1573 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] |
|
1581 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |
1574 |
|
1582 | |||
1575 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift |
|
1583 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |
1576 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] |
|
1584 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |
1577 |
|
1585 | |||
1578 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** |
|
1586 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |
1579 | #Coherent Detection |
|
1587 | #Coherent Detection | |
1580 | if cohDetection: |
|
1588 | if cohDetection: | |
1581 | #use coherent detection to get the net power |
|
1589 | #use coherent detection to get the net power | |
1582 | cohDet_thresh = cohDet_thresh*numpy.pi/180 |
|
1590 | cohDet_thresh = cohDet_thresh*numpy.pi/180 | |
1583 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) |
|
1591 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) | |
1584 |
|
1592 | |||
1585 | #Non-coherent detection! |
|
1593 | #Non-coherent detection! | |
1586 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) |
|
1594 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |
1587 | #********** END OF COH/NON-COH POWER CALCULATION********************** |
|
1595 | #********** END OF COH/NON-COH POWER CALCULATION********************** | |
1588 |
|
1596 | |||
1589 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** |
|
1597 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |
1590 | #Get noise |
|
1598 | #Get noise | |
1591 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) |
|
1599 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) | |
1592 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) |
|
1600 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) | |
1593 | #Get signal threshold |
|
1601 | #Get signal threshold | |
1594 | signalThresh = noise_multiple*noise |
|
1602 | signalThresh = noise_multiple*noise | |
1595 | #Meteor echoes detection |
|
1603 | #Meteor echoes detection | |
1596 | listMeteors = self.__findMeteors(powerNet, signalThresh) |
|
1604 | listMeteors = self.__findMeteors(powerNet, signalThresh) | |
1597 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** |
|
1605 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |
1598 |
|
1606 | |||
1599 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** |
|
1607 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |
1600 | #Parameters |
|
1608 | #Parameters | |
1601 | heiRange = dataOut.getHeiRange() |
|
1609 | heiRange = dataOut.getHeiRange() | |
1602 | rangeInterval = heiRange[1] - heiRange[0] |
|
1610 | rangeInterval = heiRange[1] - heiRange[0] | |
1603 | rangeLimit = multDet_rangeLimit/rangeInterval |
|
1611 | rangeLimit = multDet_rangeLimit/rangeInterval | |
1604 | timeLimit = multDet_timeLimit/dataOut.timeInterval |
|
1612 | timeLimit = multDet_timeLimit/dataOut.timeInterval | |
1605 | #Multiple detection removals |
|
1613 | #Multiple detection removals | |
1606 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) |
|
1614 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |
1607 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** |
|
1615 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |
1608 |
|
1616 | |||
1609 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** |
|
1617 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |
1610 | #Parameters |
|
1618 | #Parameters | |
1611 | phaseThresh = phaseThresh*numpy.pi/180 |
|
1619 | phaseThresh = phaseThresh*numpy.pi/180 | |
1612 | thresh = [phaseThresh, noise_multiple, SNRThresh] |
|
1620 | thresh = [phaseThresh, noise_multiple, SNRThresh] | |
1613 | #Meteor reestimation (Errors N 1, 6, 12, 17) |
|
1621 | #Meteor reestimation (Errors N 1, 6, 12, 17) | |
1614 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) |
|
1622 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) | |
1615 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) |
|
1623 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) | |
1616 | #Estimation of decay times (Errors N 7, 8, 11) |
|
1624 | #Estimation of decay times (Errors N 7, 8, 11) | |
1617 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) |
|
1625 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) | |
1618 | #******************* END OF METEOR REESTIMATION ******************* |
|
1626 | #******************* END OF METEOR REESTIMATION ******************* | |
1619 |
|
1627 | |||
1620 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** |
|
1628 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |
1621 | #Calculating Radial Velocity (Error N 15) |
|
1629 | #Calculating Radial Velocity (Error N 15) | |
1622 | radialStdThresh = 10 |
|
1630 | radialStdThresh = 10 | |
1623 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) |
|
1631 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) | |
1624 |
|
1632 | |||
1625 | if len(listMeteors4) > 0: |
|
1633 | if len(listMeteors4) > 0: | |
1626 | #Setting New Array |
|
1634 | #Setting New Array | |
1627 | date = dataOut.utctime |
|
1635 | date = dataOut.utctime | |
1628 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) |
|
1636 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |
1629 |
|
1637 | |||
1630 | #Correcting phase offset |
|
1638 | #Correcting phase offset | |
1631 | if phaseOffsets != None: |
|
1639 | if phaseOffsets != None: | |
1632 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
1640 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
1633 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
1641 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
1634 |
|
1642 | |||
1635 | #Second Pairslist |
|
1643 | #Second Pairslist | |
1636 | pairsList = [] |
|
1644 | pairsList = [] | |
1637 | pairx = (0,1) |
|
1645 | pairx = (0,1) | |
1638 | pairy = (2,3) |
|
1646 | pairy = (2,3) | |
1639 | pairsList.append(pairx) |
|
1647 | pairsList.append(pairx) | |
1640 | pairsList.append(pairy) |
|
1648 | pairsList.append(pairy) | |
1641 |
|
1649 | |||
1642 | jph = numpy.array([0,0,0,0]) |
|
1650 | jph = numpy.array([0,0,0,0]) | |
1643 | h = (hmin,hmax) |
|
1651 | h = (hmin,hmax) | |
1644 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
1652 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
1645 |
|
1653 | |||
1646 | # #Calculate AOA (Error N 3, 4) |
|
1654 | # #Calculate AOA (Error N 3, 4) | |
1647 | # #JONES ET AL. 1998 |
|
1655 | # #JONES ET AL. 1998 | |
1648 | # error = arrayParameters[:,-1] |
|
1656 | # error = arrayParameters[:,-1] | |
1649 | # AOAthresh = numpy.pi/8 |
|
1657 | # AOAthresh = numpy.pi/8 | |
1650 | # phases = -arrayParameters[:,9:13] |
|
1658 | # phases = -arrayParameters[:,9:13] | |
1651 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
1659 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |
1652 | # |
|
1660 | # | |
1653 | # #Calculate Heights (Error N 13 and 14) |
|
1661 | # #Calculate Heights (Error N 13 and 14) | |
1654 | # error = arrayParameters[:,-1] |
|
1662 | # error = arrayParameters[:,-1] | |
1655 | # Ranges = arrayParameters[:,2] |
|
1663 | # Ranges = arrayParameters[:,2] | |
1656 | # zenith = arrayParameters[:,5] |
|
1664 | # zenith = arrayParameters[:,5] | |
1657 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) |
|
1665 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) | |
1658 | # error = arrayParameters[:,-1] |
|
1666 | # error = arrayParameters[:,-1] | |
1659 | #********************* END OF PARAMETERS CALCULATION ************************** |
|
1667 | #********************* END OF PARAMETERS CALCULATION ************************** | |
1660 |
|
1668 | |||
1661 | #***************************+ PASS DATA TO NEXT STEP ********************** |
|
1669 | #***************************+ PASS DATA TO NEXT STEP ********************** | |
1662 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) |
|
1670 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) | |
1663 | dataOut.data_param = arrayParameters |
|
1671 | dataOut.data_param = arrayParameters | |
1664 |
|
1672 | |||
1665 | if arrayParameters is None: |
|
1673 | if arrayParameters is None: | |
1666 | dataOut.flagNoData = True |
|
1674 | dataOut.flagNoData = True | |
1667 | else: |
|
1675 | else: | |
1668 | dataOut.flagNoData = True |
|
1676 | dataOut.flagNoData = True | |
1669 |
|
1677 | |||
1670 | return |
|
1678 | return | |
1671 |
|
1679 | |||
1672 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): |
|
1680 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |
1673 |
|
1681 | |||
1674 | minIndex = min(newheis[0]) |
|
1682 | minIndex = min(newheis[0]) | |
1675 | maxIndex = max(newheis[0]) |
|
1683 | maxIndex = max(newheis[0]) | |
1676 |
|
1684 | |||
1677 | voltage = voltage0[:,:,minIndex:maxIndex+1] |
|
1685 | voltage = voltage0[:,:,minIndex:maxIndex+1] | |
1678 | nLength = voltage.shape[1]/n |
|
1686 | nLength = voltage.shape[1]/n | |
1679 | nMin = 0 |
|
1687 | nMin = 0 | |
1680 | nMax = 0 |
|
1688 | nMax = 0 | |
1681 | phaseOffset = numpy.zeros((len(pairslist),n)) |
|
1689 | phaseOffset = numpy.zeros((len(pairslist),n)) | |
1682 |
|
1690 | |||
1683 | for i in range(n): |
|
1691 | for i in range(n): | |
1684 | nMax += nLength |
|
1692 | nMax += nLength | |
1685 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) |
|
1693 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |
1686 | phaseCCF = numpy.mean(phaseCCF, axis = 2) |
|
1694 | phaseCCF = numpy.mean(phaseCCF, axis = 2) | |
1687 | phaseOffset[:,i] = phaseCCF.transpose() |
|
1695 | phaseOffset[:,i] = phaseCCF.transpose() | |
1688 | nMin = nMax |
|
1696 | nMin = nMax | |
1689 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) |
|
1697 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |
1690 |
|
1698 | |||
1691 | #Remove Outliers |
|
1699 | #Remove Outliers | |
1692 | factor = 2 |
|
1700 | factor = 2 | |
1693 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) |
|
1701 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |
1694 | dw = numpy.std(wt,axis = 1) |
|
1702 | dw = numpy.std(wt,axis = 1) | |
1695 | dw = dw.reshape((dw.size,1)) |
|
1703 | dw = dw.reshape((dw.size,1)) | |
1696 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) |
|
1704 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |
1697 | phaseOffset[ind] = numpy.nan |
|
1705 | phaseOffset[ind] = numpy.nan | |
1698 | phaseOffset = stats.nanmean(phaseOffset, axis=1) |
|
1706 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |
1699 |
|
1707 | |||
1700 | return phaseOffset |
|
1708 | return phaseOffset | |
1701 |
|
1709 | |||
1702 | def __shiftPhase(self, data, phaseShift): |
|
1710 | def __shiftPhase(self, data, phaseShift): | |
1703 | #this will shift the phase of a complex number |
|
1711 | #this will shift the phase of a complex number | |
1704 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) |
|
1712 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |
1705 | return dataShifted |
|
1713 | return dataShifted | |
1706 |
|
1714 | |||
1707 | def __estimatePhaseDifference(self, array, pairslist): |
|
1715 | def __estimatePhaseDifference(self, array, pairslist): | |
1708 | nChannel = array.shape[0] |
|
1716 | nChannel = array.shape[0] | |
1709 | nHeights = array.shape[2] |
|
1717 | nHeights = array.shape[2] | |
1710 | numPairs = len(pairslist) |
|
1718 | numPairs = len(pairslist) | |
1711 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) |
|
1719 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |
1712 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) |
|
1720 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |
1713 |
|
1721 | |||
1714 | #Correct phases |
|
1722 | #Correct phases | |
1715 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] |
|
1723 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |
1716 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
1724 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
1717 |
|
1725 | |||
1718 | if indDer[0].shape[0] > 0: |
|
1726 | if indDer[0].shape[0] > 0: | |
1719 | for i in range(indDer[0].shape[0]): |
|
1727 | for i in range(indDer[0].shape[0]): | |
1720 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) |
|
1728 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |
1721 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi |
|
1729 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |
1722 |
|
1730 | |||
1723 | # for j in range(numSides): |
|
1731 | # for j in range(numSides): | |
1724 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) |
|
1732 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |
1725 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) |
|
1733 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |
1726 | # |
|
1734 | # | |
1727 | #Linear |
|
1735 | #Linear | |
1728 | phaseInt = numpy.zeros((numPairs,1)) |
|
1736 | phaseInt = numpy.zeros((numPairs,1)) | |
1729 | angAllCCF = phaseCCF[:,[0,1,3,4],0] |
|
1737 | angAllCCF = phaseCCF[:,[0,1,3,4],0] | |
1730 | for j in range(numPairs): |
|
1738 | for j in range(numPairs): | |
1731 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) |
|
1739 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) | |
1732 | phaseInt[j] = fit[1] |
|
1740 | phaseInt[j] = fit[1] | |
1733 | #Phase Differences |
|
1741 | #Phase Differences | |
1734 | phaseDiff = phaseInt - phaseCCF[:,2,:] |
|
1742 | phaseDiff = phaseInt - phaseCCF[:,2,:] | |
1735 | phaseArrival = phaseInt.reshape(phaseInt.size) |
|
1743 | phaseArrival = phaseInt.reshape(phaseInt.size) | |
1736 |
|
1744 | |||
1737 | #Dealias |
|
1745 | #Dealias | |
1738 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) |
|
1746 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) | |
1739 | # indAlias = numpy.where(phaseArrival > numpy.pi) |
|
1747 | # indAlias = numpy.where(phaseArrival > numpy.pi) | |
1740 | # phaseArrival[indAlias] -= 2*numpy.pi |
|
1748 | # phaseArrival[indAlias] -= 2*numpy.pi | |
1741 | # indAlias = numpy.where(phaseArrival < -numpy.pi) |
|
1749 | # indAlias = numpy.where(phaseArrival < -numpy.pi) | |
1742 | # phaseArrival[indAlias] += 2*numpy.pi |
|
1750 | # phaseArrival[indAlias] += 2*numpy.pi | |
1743 |
|
1751 | |||
1744 | return phaseDiff, phaseArrival |
|
1752 | return phaseDiff, phaseArrival | |
1745 |
|
1753 | |||
1746 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): |
|
1754 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |
1747 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power |
|
1755 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |
1748 | #find the phase shifts of each channel over 1 second intervals |
|
1756 | #find the phase shifts of each channel over 1 second intervals | |
1749 | #only look at ranges below the beacon signal |
|
1757 | #only look at ranges below the beacon signal | |
1750 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
1758 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
1751 | numBlocks = int(volts.shape[1]/numProfPerBlock) |
|
1759 | numBlocks = int(volts.shape[1]/numProfPerBlock) | |
1752 | numHeights = volts.shape[2] |
|
1760 | numHeights = volts.shape[2] | |
1753 | nChannel = volts.shape[0] |
|
1761 | nChannel = volts.shape[0] | |
1754 | voltsCohDet = volts.copy() |
|
1762 | voltsCohDet = volts.copy() | |
1755 |
|
1763 | |||
1756 | pairsarray = numpy.array(pairslist) |
|
1764 | pairsarray = numpy.array(pairslist) | |
1757 | indSides = pairsarray[:,1] |
|
1765 | indSides = pairsarray[:,1] | |
1758 | # indSides = numpy.array(range(nChannel)) |
|
1766 | # indSides = numpy.array(range(nChannel)) | |
1759 | # indSides = numpy.delete(indSides, indCenter) |
|
1767 | # indSides = numpy.delete(indSides, indCenter) | |
1760 | # |
|
1768 | # | |
1761 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) |
|
1769 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |
1762 | listBlocks = numpy.array_split(volts, numBlocks, 1) |
|
1770 | listBlocks = numpy.array_split(volts, numBlocks, 1) | |
1763 |
|
1771 | |||
1764 | startInd = 0 |
|
1772 | startInd = 0 | |
1765 | endInd = 0 |
|
1773 | endInd = 0 | |
1766 |
|
1774 | |||
1767 | for i in range(numBlocks): |
|
1775 | for i in range(numBlocks): | |
1768 | startInd = endInd |
|
1776 | startInd = endInd | |
1769 | endInd = endInd + listBlocks[i].shape[1] |
|
1777 | endInd = endInd + listBlocks[i].shape[1] | |
1770 |
|
1778 | |||
1771 | arrayBlock = listBlocks[i] |
|
1779 | arrayBlock = listBlocks[i] | |
1772 | # arrayBlockCenter = listCenter[i] |
|
1780 | # arrayBlockCenter = listCenter[i] | |
1773 |
|
1781 | |||
1774 | #Estimate the Phase Difference |
|
1782 | #Estimate the Phase Difference | |
1775 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) |
|
1783 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |
1776 | #Phase Difference RMS |
|
1784 | #Phase Difference RMS | |
1777 | arrayPhaseRMS = numpy.abs(phaseDiff) |
|
1785 | arrayPhaseRMS = numpy.abs(phaseDiff) | |
1778 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) |
|
1786 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) | |
1779 | indPhase = numpy.where(phaseRMSaux==4) |
|
1787 | indPhase = numpy.where(phaseRMSaux==4) | |
1780 | #Shifting |
|
1788 | #Shifting | |
1781 | if indPhase[0].shape[0] > 0: |
|
1789 | if indPhase[0].shape[0] > 0: | |
1782 | for j in range(indSides.size): |
|
1790 | for j in range(indSides.size): | |
1783 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) |
|
1791 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |
1784 | voltsCohDet[:,startInd:endInd,:] = arrayBlock |
|
1792 | voltsCohDet[:,startInd:endInd,:] = arrayBlock | |
1785 |
|
1793 | |||
1786 | return voltsCohDet |
|
1794 | return voltsCohDet | |
1787 |
|
1795 | |||
1788 | def __calculateCCF(self, volts, pairslist ,laglist): |
|
1796 | def __calculateCCF(self, volts, pairslist ,laglist): | |
1789 |
|
1797 | |||
1790 | nHeights = volts.shape[2] |
|
1798 | nHeights = volts.shape[2] | |
1791 | nPoints = volts.shape[1] |
|
1799 | nPoints = volts.shape[1] | |
1792 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') |
|
1800 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |
1793 |
|
1801 | |||
1794 | for i in range(len(pairslist)): |
|
1802 | for i in range(len(pairslist)): | |
1795 | volts1 = volts[pairslist[i][0]] |
|
1803 | volts1 = volts[pairslist[i][0]] | |
1796 | volts2 = volts[pairslist[i][1]] |
|
1804 | volts2 = volts[pairslist[i][1]] | |
1797 |
|
1805 | |||
1798 | for t in range(len(laglist)): |
|
1806 | for t in range(len(laglist)): | |
1799 | idxT = laglist[t] |
|
1807 | idxT = laglist[t] | |
1800 | if idxT >= 0: |
|
1808 | if idxT >= 0: | |
1801 | vStacked = numpy.vstack((volts2[idxT:,:], |
|
1809 | vStacked = numpy.vstack((volts2[idxT:,:], | |
1802 | numpy.zeros((idxT, nHeights),dtype='complex'))) |
|
1810 | numpy.zeros((idxT, nHeights),dtype='complex'))) | |
1803 | else: |
|
1811 | else: | |
1804 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), |
|
1812 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |
1805 | volts2[:(nPoints + idxT),:])) |
|
1813 | volts2[:(nPoints + idxT),:])) | |
1806 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) |
|
1814 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |
1807 |
|
1815 | |||
1808 | vStacked = None |
|
1816 | vStacked = None | |
1809 | return voltsCCF |
|
1817 | return voltsCCF | |
1810 |
|
1818 | |||
1811 | def __getNoise(self, power, timeSegment, timeInterval): |
|
1819 | def __getNoise(self, power, timeSegment, timeInterval): | |
1812 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
1820 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
1813 | numBlocks = int(power.shape[0]/numProfPerBlock) |
|
1821 | numBlocks = int(power.shape[0]/numProfPerBlock) | |
1814 | numHeights = power.shape[1] |
|
1822 | numHeights = power.shape[1] | |
1815 |
|
1823 | |||
1816 | listPower = numpy.array_split(power, numBlocks, 0) |
|
1824 | listPower = numpy.array_split(power, numBlocks, 0) | |
1817 | noise = numpy.zeros((power.shape[0], power.shape[1])) |
|
1825 | noise = numpy.zeros((power.shape[0], power.shape[1])) | |
1818 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) |
|
1826 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |
1819 |
|
1827 | |||
1820 | startInd = 0 |
|
1828 | startInd = 0 | |
1821 | endInd = 0 |
|
1829 | endInd = 0 | |
1822 |
|
1830 | |||
1823 | for i in range(numBlocks): #split por canal |
|
1831 | for i in range(numBlocks): #split por canal | |
1824 | startInd = endInd |
|
1832 | startInd = endInd | |
1825 | endInd = endInd + listPower[i].shape[0] |
|
1833 | endInd = endInd + listPower[i].shape[0] | |
1826 |
|
1834 | |||
1827 | arrayBlock = listPower[i] |
|
1835 | arrayBlock = listPower[i] | |
1828 | noiseAux = numpy.mean(arrayBlock, 0) |
|
1836 | noiseAux = numpy.mean(arrayBlock, 0) | |
1829 | # noiseAux = numpy.median(noiseAux) |
|
1837 | # noiseAux = numpy.median(noiseAux) | |
1830 | # noiseAux = numpy.mean(arrayBlock) |
|
1838 | # noiseAux = numpy.mean(arrayBlock) | |
1831 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux |
|
1839 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |
1832 |
|
1840 | |||
1833 | noiseAux1 = numpy.mean(arrayBlock) |
|
1841 | noiseAux1 = numpy.mean(arrayBlock) | |
1834 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 |
|
1842 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |
1835 |
|
1843 | |||
1836 | return noise, noise1 |
|
1844 | return noise, noise1 | |
1837 |
|
1845 | |||
1838 | def __findMeteors(self, power, thresh): |
|
1846 | def __findMeteors(self, power, thresh): | |
1839 | nProf = power.shape[0] |
|
1847 | nProf = power.shape[0] | |
1840 | nHeights = power.shape[1] |
|
1848 | nHeights = power.shape[1] | |
1841 | listMeteors = [] |
|
1849 | listMeteors = [] | |
1842 |
|
1850 | |||
1843 | for i in range(nHeights): |
|
1851 | for i in range(nHeights): | |
1844 | powerAux = power[:,i] |
|
1852 | powerAux = power[:,i] | |
1845 | threshAux = thresh[:,i] |
|
1853 | threshAux = thresh[:,i] | |
1846 |
|
1854 | |||
1847 | indUPthresh = numpy.where(powerAux > threshAux)[0] |
|
1855 | indUPthresh = numpy.where(powerAux > threshAux)[0] | |
1848 | indDNthresh = numpy.where(powerAux <= threshAux)[0] |
|
1856 | indDNthresh = numpy.where(powerAux <= threshAux)[0] | |
1849 |
|
1857 | |||
1850 | j = 0 |
|
1858 | j = 0 | |
1851 |
|
1859 | |||
1852 | while (j < indUPthresh.size - 2): |
|
1860 | while (j < indUPthresh.size - 2): | |
1853 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): |
|
1861 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |
1854 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) |
|
1862 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |
1855 | indDNthresh = indDNthresh[indDNAux] |
|
1863 | indDNthresh = indDNthresh[indDNAux] | |
1856 |
|
1864 | |||
1857 | if (indDNthresh.size > 0): |
|
1865 | if (indDNthresh.size > 0): | |
1858 | indEnd = indDNthresh[0] - 1 |
|
1866 | indEnd = indDNthresh[0] - 1 | |
1859 | indInit = indUPthresh[j] if isinstance(indUPthresh[j], (int, float)) else indUPthresh[j][0] ##CHECK!!!! |
|
1867 | indInit = indUPthresh[j] if isinstance(indUPthresh[j], (int, float)) else indUPthresh[j][0] ##CHECK!!!! | |
1860 |
|
1868 | |||
1861 | meteor = powerAux[indInit:indEnd + 1] |
|
1869 | meteor = powerAux[indInit:indEnd + 1] | |
1862 | indPeak = meteor.argmax() + indInit |
|
1870 | indPeak = meteor.argmax() + indInit | |
1863 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) |
|
1871 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |
1864 |
|
1872 | |||
1865 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! |
|
1873 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |
1866 | j = numpy.where(indUPthresh == indEnd)[0] + 1 |
|
1874 | j = numpy.where(indUPthresh == indEnd)[0] + 1 | |
1867 | else: j+=1 |
|
1875 | else: j+=1 | |
1868 | else: j+=1 |
|
1876 | else: j+=1 | |
1869 |
|
1877 | |||
1870 | return listMeteors |
|
1878 | return listMeteors | |
1871 |
|
1879 | |||
1872 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): |
|
1880 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |
1873 |
|
1881 | |||
1874 | arrayMeteors = numpy.asarray(listMeteors) |
|
1882 | arrayMeteors = numpy.asarray(listMeteors) | |
1875 | listMeteors1 = [] |
|
1883 | listMeteors1 = [] | |
1876 |
|
1884 | |||
1877 | while arrayMeteors.shape[0] > 0: |
|
1885 | while arrayMeteors.shape[0] > 0: | |
1878 | FLAs = arrayMeteors[:,4] |
|
1886 | FLAs = arrayMeteors[:,4] | |
1879 | maxFLA = FLAs.argmax() |
|
1887 | maxFLA = FLAs.argmax() | |
1880 | listMeteors1.append(arrayMeteors[maxFLA,:]) |
|
1888 | listMeteors1.append(arrayMeteors[maxFLA,:]) | |
1881 |
|
1889 | |||
1882 | MeteorInitTime = arrayMeteors[maxFLA,1] |
|
1890 | MeteorInitTime = arrayMeteors[maxFLA,1] | |
1883 | MeteorEndTime = arrayMeteors[maxFLA,3] |
|
1891 | MeteorEndTime = arrayMeteors[maxFLA,3] | |
1884 | MeteorHeight = arrayMeteors[maxFLA,0] |
|
1892 | MeteorHeight = arrayMeteors[maxFLA,0] | |
1885 |
|
1893 | |||
1886 | #Check neighborhood |
|
1894 | #Check neighborhood | |
1887 | maxHeightIndex = MeteorHeight + rangeLimit |
|
1895 | maxHeightIndex = MeteorHeight + rangeLimit | |
1888 | minHeightIndex = MeteorHeight - rangeLimit |
|
1896 | minHeightIndex = MeteorHeight - rangeLimit | |
1889 | minTimeIndex = MeteorInitTime - timeLimit |
|
1897 | minTimeIndex = MeteorInitTime - timeLimit | |
1890 | maxTimeIndex = MeteorEndTime + timeLimit |
|
1898 | maxTimeIndex = MeteorEndTime + timeLimit | |
1891 |
|
1899 | |||
1892 | #Check Heights |
|
1900 | #Check Heights | |
1893 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) |
|
1901 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |
1894 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) |
|
1902 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |
1895 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) |
|
1903 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |
1896 |
|
1904 | |||
1897 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) |
|
1905 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |
1898 |
|
1906 | |||
1899 | return listMeteors1 |
|
1907 | return listMeteors1 | |
1900 |
|
1908 | |||
1901 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): |
|
1909 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |
1902 | numHeights = volts.shape[2] |
|
1910 | numHeights = volts.shape[2] | |
1903 | nChannel = volts.shape[0] |
|
1911 | nChannel = volts.shape[0] | |
1904 |
|
1912 | |||
1905 | thresholdPhase = thresh[0] |
|
1913 | thresholdPhase = thresh[0] | |
1906 | thresholdNoise = thresh[1] |
|
1914 | thresholdNoise = thresh[1] | |
1907 | thresholdDB = float(thresh[2]) |
|
1915 | thresholdDB = float(thresh[2]) | |
1908 |
|
1916 | |||
1909 | thresholdDB1 = 10**(thresholdDB/10) |
|
1917 | thresholdDB1 = 10**(thresholdDB/10) | |
1910 | pairsarray = numpy.array(pairslist) |
|
1918 | pairsarray = numpy.array(pairslist) | |
1911 | indSides = pairsarray[:,1] |
|
1919 | indSides = pairsarray[:,1] | |
1912 |
|
1920 | |||
1913 | pairslist1 = list(pairslist) |
|
1921 | pairslist1 = list(pairslist) | |
1914 | pairslist1.append((0,4)) |
|
1922 | pairslist1.append((0,4)) | |
1915 | pairslist1.append((1,3)) |
|
1923 | pairslist1.append((1,3)) | |
1916 |
|
1924 | |||
1917 | listMeteors1 = [] |
|
1925 | listMeteors1 = [] | |
1918 | listPowerSeries = [] |
|
1926 | listPowerSeries = [] | |
1919 | listVoltageSeries = [] |
|
1927 | listVoltageSeries = [] | |
1920 | #volts has the war data |
|
1928 | #volts has the war data | |
1921 |
|
1929 | |||
1922 | if frequency == 30.175e6: |
|
1930 | if frequency == 30.175e6: | |
1923 | timeLag = 45*10**-3 |
|
1931 | timeLag = 45*10**-3 | |
1924 | else: |
|
1932 | else: | |
1925 | timeLag = 15*10**-3 |
|
1933 | timeLag = 15*10**-3 | |
1926 | lag = int(numpy.ceil(timeLag/timeInterval)) |
|
1934 | lag = int(numpy.ceil(timeLag/timeInterval)) | |
1927 |
|
1935 | |||
1928 | for i in range(len(listMeteors)): |
|
1936 | for i in range(len(listMeteors)): | |
1929 |
|
1937 | |||
1930 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### |
|
1938 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |
1931 | meteorAux = numpy.zeros(16) |
|
1939 | meteorAux = numpy.zeros(16) | |
1932 |
|
1940 | |||
1933 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) |
|
1941 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |
1934 | mHeight = int(listMeteors[i][0]) |
|
1942 | mHeight = int(listMeteors[i][0]) | |
1935 | mStart = int(listMeteors[i][1]) |
|
1943 | mStart = int(listMeteors[i][1]) | |
1936 | mPeak = int(listMeteors[i][2]) |
|
1944 | mPeak = int(listMeteors[i][2]) | |
1937 | mEnd = int(listMeteors[i][3]) |
|
1945 | mEnd = int(listMeteors[i][3]) | |
1938 |
|
1946 | |||
1939 | #get the volt data between the start and end times of the meteor |
|
1947 | #get the volt data between the start and end times of the meteor | |
1940 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] |
|
1948 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |
1941 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
1949 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
1942 |
|
1950 | |||
1943 | #3.6. Phase Difference estimation |
|
1951 | #3.6. Phase Difference estimation | |
1944 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) |
|
1952 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |
1945 |
|
1953 | |||
1946 | #3.7. Phase difference removal & meteor start, peak and end times reestimated |
|
1954 | #3.7. Phase difference removal & meteor start, peak and end times reestimated | |
1947 | #meteorVolts0.- all Channels, all Profiles |
|
1955 | #meteorVolts0.- all Channels, all Profiles | |
1948 | meteorVolts0 = volts[:,:,mHeight] |
|
1956 | meteorVolts0 = volts[:,:,mHeight] | |
1949 | meteorThresh = noise[:,mHeight]*thresholdNoise |
|
1957 | meteorThresh = noise[:,mHeight]*thresholdNoise | |
1950 | meteorNoise = noise[:,mHeight] |
|
1958 | meteorNoise = noise[:,mHeight] | |
1951 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting |
|
1959 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |
1952 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power |
|
1960 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |
1953 |
|
1961 | |||
1954 | #Times reestimation |
|
1962 | #Times reestimation | |
1955 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] |
|
1963 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |
1956 | if mStart1.size > 0: |
|
1964 | if mStart1.size > 0: | |
1957 | mStart1 = mStart1[-1] + 1 |
|
1965 | mStart1 = mStart1[-1] + 1 | |
1958 |
|
1966 | |||
1959 | else: |
|
1967 | else: | |
1960 | mStart1 = mPeak |
|
1968 | mStart1 = mPeak | |
1961 |
|
1969 | |||
1962 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 |
|
1970 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |
1963 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] |
|
1971 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |
1964 | if mEndDecayTime1.size == 0: |
|
1972 | if mEndDecayTime1.size == 0: | |
1965 | mEndDecayTime1 = powerNet0.size |
|
1973 | mEndDecayTime1 = powerNet0.size | |
1966 | else: |
|
1974 | else: | |
1967 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 |
|
1975 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |
1968 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() |
|
1976 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |
1969 |
|
1977 | |||
1970 | #meteorVolts1.- all Channels, from start to end |
|
1978 | #meteorVolts1.- all Channels, from start to end | |
1971 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] |
|
1979 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |
1972 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] |
|
1980 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |
1973 | if meteorVolts2.shape[1] == 0: |
|
1981 | if meteorVolts2.shape[1] == 0: | |
1974 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] |
|
1982 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] | |
1975 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) |
|
1983 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |
1976 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) |
|
1984 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |
1977 | ##################### END PARAMETERS REESTIMATION ######################### |
|
1985 | ##################### END PARAMETERS REESTIMATION ######################### | |
1978 |
|
1986 | |||
1979 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## |
|
1987 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |
1980 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis |
|
1988 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |
1981 | if meteorVolts2.shape[1] > 0: |
|
1989 | if meteorVolts2.shape[1] > 0: | |
1982 | #Phase Difference re-estimation |
|
1990 | #Phase Difference re-estimation | |
1983 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation |
|
1991 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |
1984 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) |
|
1992 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |
1985 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) |
|
1993 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |
1986 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) |
|
1994 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |
1987 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting |
|
1995 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |
1988 |
|
1996 | |||
1989 | #Phase Difference RMS |
|
1997 | #Phase Difference RMS | |
1990 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) |
|
1998 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |
1991 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) |
|
1999 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |
1992 | #Data from Meteor |
|
2000 | #Data from Meteor | |
1993 | mPeak1 = powerNet1.argmax() + mStart1 |
|
2001 | mPeak1 = powerNet1.argmax() + mStart1 | |
1994 | mPeakPower1 = powerNet1.max() |
|
2002 | mPeakPower1 = powerNet1.max() | |
1995 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) |
|
2003 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) | |
1996 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux |
|
2004 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux | |
1997 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) |
|
2005 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) | |
1998 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) |
|
2006 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) | |
1999 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] |
|
2007 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] | |
2000 | #Vectorize |
|
2008 | #Vectorize | |
2001 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] |
|
2009 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |
2002 | meteorAux[7:11] = phaseDiffint[0:4] |
|
2010 | meteorAux[7:11] = phaseDiffint[0:4] | |
2003 |
|
2011 | |||
2004 | #Rejection Criterions |
|
2012 | #Rejection Criterions | |
2005 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation |
|
2013 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |
2006 | meteorAux[-1] = 17 |
|
2014 | meteorAux[-1] = 17 | |
2007 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB |
|
2015 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |
2008 | meteorAux[-1] = 1 |
|
2016 | meteorAux[-1] = 1 | |
2009 |
|
2017 | |||
2010 |
|
2018 | |||
2011 | else: |
|
2019 | else: | |
2012 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] |
|
2020 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |
2013 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis |
|
2021 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |
2014 | PowerSeries = 0 |
|
2022 | PowerSeries = 0 | |
2015 |
|
2023 | |||
2016 | listMeteors1.append(meteorAux) |
|
2024 | listMeteors1.append(meteorAux) | |
2017 | listPowerSeries.append(PowerSeries) |
|
2025 | listPowerSeries.append(PowerSeries) | |
2018 | listVoltageSeries.append(meteorVolts1) |
|
2026 | listVoltageSeries.append(meteorVolts1) | |
2019 |
|
2027 | |||
2020 | return listMeteors1, listPowerSeries, listVoltageSeries |
|
2028 | return listMeteors1, listPowerSeries, listVoltageSeries | |
2021 |
|
2029 | |||
2022 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): |
|
2030 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |
2023 |
|
2031 | |||
2024 | threshError = 10 |
|
2032 | threshError = 10 | |
2025 | #Depending if it is 30 or 50 MHz |
|
2033 | #Depending if it is 30 or 50 MHz | |
2026 | if frequency == 30.175e6: |
|
2034 | if frequency == 30.175e6: | |
2027 | timeLag = 45*10**-3 |
|
2035 | timeLag = 45*10**-3 | |
2028 | else: |
|
2036 | else: | |
2029 | timeLag = 15*10**-3 |
|
2037 | timeLag = 15*10**-3 | |
2030 | lag = int(numpy.ceil(timeLag/timeInterval)) |
|
2038 | lag = int(numpy.ceil(timeLag/timeInterval)) | |
2031 |
|
2039 | |||
2032 | listMeteors1 = [] |
|
2040 | listMeteors1 = [] | |
2033 |
|
2041 | |||
2034 | for i in range(len(listMeteors)): |
|
2042 | for i in range(len(listMeteors)): | |
2035 | meteorPower = listPower[i] |
|
2043 | meteorPower = listPower[i] | |
2036 | meteorAux = listMeteors[i] |
|
2044 | meteorAux = listMeteors[i] | |
2037 |
|
2045 | |||
2038 | if meteorAux[-1] == 0: |
|
2046 | if meteorAux[-1] == 0: | |
2039 |
|
2047 | |||
2040 | try: |
|
2048 | try: | |
2041 | indmax = meteorPower.argmax() |
|
2049 | indmax = meteorPower.argmax() | |
2042 | indlag = indmax + lag |
|
2050 | indlag = indmax + lag | |
2043 |
|
2051 | |||
2044 | y = meteorPower[indlag:] |
|
2052 | y = meteorPower[indlag:] | |
2045 | x = numpy.arange(0, y.size)*timeLag |
|
2053 | x = numpy.arange(0, y.size)*timeLag | |
2046 |
|
2054 | |||
2047 | #first guess |
|
2055 | #first guess | |
2048 | a = y[0] |
|
2056 | a = y[0] | |
2049 | tau = timeLag |
|
2057 | tau = timeLag | |
2050 | #exponential fit |
|
2058 | #exponential fit | |
2051 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) |
|
2059 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) | |
2052 | y1 = self.__exponential_function(x, *popt) |
|
2060 | y1 = self.__exponential_function(x, *popt) | |
2053 | #error estimation |
|
2061 | #error estimation | |
2054 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) |
|
2062 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |
2055 |
|
2063 | |||
2056 | decayTime = popt[1] |
|
2064 | decayTime = popt[1] | |
2057 | riseTime = indmax*timeInterval |
|
2065 | riseTime = indmax*timeInterval | |
2058 | meteorAux[11:13] = [decayTime, error] |
|
2066 | meteorAux[11:13] = [decayTime, error] | |
2059 |
|
2067 | |||
2060 | #Table items 7, 8 and 11 |
|
2068 | #Table items 7, 8 and 11 | |
2061 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s |
|
2069 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |
2062 | meteorAux[-1] = 7 |
|
2070 | meteorAux[-1] = 7 | |
2063 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time |
|
2071 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |
2064 | meteorAux[-1] = 8 |
|
2072 | meteorAux[-1] = 8 | |
2065 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time |
|
2073 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |
2066 | meteorAux[-1] = 11 |
|
2074 | meteorAux[-1] = 11 | |
2067 |
|
2075 | |||
2068 |
|
2076 | |||
2069 | except: |
|
2077 | except: | |
2070 | meteorAux[-1] = 11 |
|
2078 | meteorAux[-1] = 11 | |
2071 |
|
2079 | |||
2072 |
|
2080 | |||
2073 | listMeteors1.append(meteorAux) |
|
2081 | listMeteors1.append(meteorAux) | |
2074 |
|
2082 | |||
2075 | return listMeteors1 |
|
2083 | return listMeteors1 | |
2076 |
|
2084 | |||
2077 | #Exponential Function |
|
2085 | #Exponential Function | |
2078 |
|
2086 | |||
2079 | def __exponential_function(self, x, a, tau): |
|
2087 | def __exponential_function(self, x, a, tau): | |
2080 | y = a*numpy.exp(-x/tau) |
|
2088 | y = a*numpy.exp(-x/tau) | |
2081 | return y |
|
2089 | return y | |
2082 |
|
2090 | |||
2083 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): |
|
2091 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |
2084 |
|
2092 | |||
2085 | pairslist1 = list(pairslist) |
|
2093 | pairslist1 = list(pairslist) | |
2086 | pairslist1.append((0,4)) |
|
2094 | pairslist1.append((0,4)) | |
2087 | pairslist1.append((1,3)) |
|
2095 | pairslist1.append((1,3)) | |
2088 | numPairs = len(pairslist1) |
|
2096 | numPairs = len(pairslist1) | |
2089 | #Time Lag |
|
2097 | #Time Lag | |
2090 | timeLag = 45*10**-3 |
|
2098 | timeLag = 45*10**-3 | |
2091 | c = 3e8 |
|
2099 | c = 3e8 | |
2092 | lag = numpy.ceil(timeLag/timeInterval) |
|
2100 | lag = numpy.ceil(timeLag/timeInterval) | |
2093 | freq = 30.175e6 |
|
2101 | freq = 30.175e6 | |
2094 |
|
2102 | |||
2095 | listMeteors1 = [] |
|
2103 | listMeteors1 = [] | |
2096 |
|
2104 | |||
2097 | for i in range(len(listMeteors)): |
|
2105 | for i in range(len(listMeteors)): | |
2098 | meteorAux = listMeteors[i] |
|
2106 | meteorAux = listMeteors[i] | |
2099 | if meteorAux[-1] == 0: |
|
2107 | if meteorAux[-1] == 0: | |
2100 | mStart = listMeteors[i][1] |
|
2108 | mStart = listMeteors[i][1] | |
2101 | mPeak = listMeteors[i][2] |
|
2109 | mPeak = listMeteors[i][2] | |
2102 | mLag = mPeak - mStart + lag |
|
2110 | mLag = mPeak - mStart + lag | |
2103 |
|
2111 | |||
2104 | #get the volt data between the start and end times of the meteor |
|
2112 | #get the volt data between the start and end times of the meteor | |
2105 | meteorVolts = listVolts[i] |
|
2113 | meteorVolts = listVolts[i] | |
2106 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
2114 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
2107 |
|
2115 | |||
2108 | #Get CCF |
|
2116 | #Get CCF | |
2109 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) |
|
2117 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |
2110 |
|
2118 | |||
2111 | #Method 2 |
|
2119 | #Method 2 | |
2112 | slopes = numpy.zeros(numPairs) |
|
2120 | slopes = numpy.zeros(numPairs) | |
2113 | time = numpy.array([-2,-1,1,2])*timeInterval |
|
2121 | time = numpy.array([-2,-1,1,2])*timeInterval | |
2114 | angAllCCF = numpy.angle(allCCFs[:,[0,4,2,3],0]) |
|
2122 | angAllCCF = numpy.angle(allCCFs[:,[0,4,2,3],0]) | |
2115 |
|
2123 | |||
2116 | #Correct phases |
|
2124 | #Correct phases | |
2117 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] |
|
2125 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |
2118 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
2126 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
2119 |
|
2127 | |||
2120 | if indDer[0].shape[0] > 0: |
|
2128 | if indDer[0].shape[0] > 0: | |
2121 | for i in range(indDer[0].shape[0]): |
|
2129 | for i in range(indDer[0].shape[0]): | |
2122 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) |
|
2130 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |
2123 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi |
|
2131 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |
2124 |
|
2132 | |||
2125 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) |
|
2133 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) | |
2126 | for j in range(numPairs): |
|
2134 | for j in range(numPairs): | |
2127 | fit = stats.linregress(time, angAllCCF[j,:]) |
|
2135 | fit = stats.linregress(time, angAllCCF[j,:]) | |
2128 | slopes[j] = fit[0] |
|
2136 | slopes[j] = fit[0] | |
2129 |
|
2137 | |||
2130 | #Remove Outlier |
|
2138 | #Remove Outlier | |
2131 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
2139 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
2132 | # slopes = numpy.delete(slopes,indOut) |
|
2140 | # slopes = numpy.delete(slopes,indOut) | |
2133 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
2141 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
2134 | # slopes = numpy.delete(slopes,indOut) |
|
2142 | # slopes = numpy.delete(slopes,indOut) | |
2135 |
|
2143 | |||
2136 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) |
|
2144 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |
2137 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) |
|
2145 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |
2138 | meteorAux[-2] = radialError |
|
2146 | meteorAux[-2] = radialError | |
2139 | meteorAux[-3] = radialVelocity |
|
2147 | meteorAux[-3] = radialVelocity | |
2140 |
|
2148 | |||
2141 | #Setting Error |
|
2149 | #Setting Error | |
2142 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s |
|
2150 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |
2143 | if numpy.abs(radialVelocity) > 200: |
|
2151 | if numpy.abs(radialVelocity) > 200: | |
2144 | meteorAux[-1] = 15 |
|
2152 | meteorAux[-1] = 15 | |
2145 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity |
|
2153 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |
2146 | elif radialError > radialStdThresh: |
|
2154 | elif radialError > radialStdThresh: | |
2147 | meteorAux[-1] = 12 |
|
2155 | meteorAux[-1] = 12 | |
2148 |
|
2156 | |||
2149 | listMeteors1.append(meteorAux) |
|
2157 | listMeteors1.append(meteorAux) | |
2150 | return listMeteors1 |
|
2158 | return listMeteors1 | |
2151 |
|
2159 | |||
2152 | def __setNewArrays(self, listMeteors, date, heiRang): |
|
2160 | def __setNewArrays(self, listMeteors, date, heiRang): | |
2153 |
|
2161 | |||
2154 | #New arrays |
|
2162 | #New arrays | |
2155 | arrayMeteors = numpy.array(listMeteors) |
|
2163 | arrayMeteors = numpy.array(listMeteors) | |
2156 | arrayParameters = numpy.zeros((len(listMeteors), 13)) |
|
2164 | arrayParameters = numpy.zeros((len(listMeteors), 13)) | |
2157 |
|
2165 | |||
2158 | #Date inclusion |
|
2166 | #Date inclusion | |
2159 | # date = re.findall(r'\((.*?)\)', date) |
|
2167 | # date = re.findall(r'\((.*?)\)', date) | |
2160 | # date = date[0].split(',') |
|
2168 | # date = date[0].split(',') | |
2161 | # date = map(int, date) |
|
2169 | # date = map(int, date) | |
2162 | # |
|
2170 | # | |
2163 | # if len(date)<6: |
|
2171 | # if len(date)<6: | |
2164 | # date.append(0) |
|
2172 | # date.append(0) | |
2165 | # |
|
2173 | # | |
2166 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] |
|
2174 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |
2167 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) |
|
2175 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |
2168 | arrayDate = numpy.tile(date, (len(listMeteors))) |
|
2176 | arrayDate = numpy.tile(date, (len(listMeteors))) | |
2169 |
|
2177 | |||
2170 | #Meteor array |
|
2178 | #Meteor array | |
2171 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] |
|
2179 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |
2172 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) |
|
2180 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |
2173 |
|
2181 | |||
2174 | #Parameters Array |
|
2182 | #Parameters Array | |
2175 | arrayParameters[:,0] = arrayDate #Date |
|
2183 | arrayParameters[:,0] = arrayDate #Date | |
2176 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range |
|
2184 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range | |
2177 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error |
|
2185 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error | |
2178 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases |
|
2186 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases | |
2179 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error |
|
2187 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error | |
2180 |
|
2188 | |||
2181 |
|
2189 | |||
2182 | return arrayParameters |
|
2190 | return arrayParameters | |
2183 |
|
2191 | |||
2184 | class CorrectSMPhases(Operation): |
|
2192 | class CorrectSMPhases(Operation): | |
2185 |
|
2193 | |||
2186 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): |
|
2194 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): | |
2187 |
|
2195 | |||
2188 | arrayParameters = dataOut.data_param |
|
2196 | arrayParameters = dataOut.data_param | |
2189 | pairsList = [] |
|
2197 | pairsList = [] | |
2190 | pairx = (0,1) |
|
2198 | pairx = (0,1) | |
2191 | pairy = (2,3) |
|
2199 | pairy = (2,3) | |
2192 | pairsList.append(pairx) |
|
2200 | pairsList.append(pairx) | |
2193 | pairsList.append(pairy) |
|
2201 | pairsList.append(pairy) | |
2194 | jph = numpy.zeros(4) |
|
2202 | jph = numpy.zeros(4) | |
2195 |
|
2203 | |||
2196 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
2204 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
2197 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
2205 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
2198 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) |
|
2206 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) | |
2199 |
|
2207 | |||
2200 | meteorOps = SMOperations() |
|
2208 | meteorOps = SMOperations() | |
2201 | if channelPositions is None: |
|
2209 | if channelPositions is None: | |
2202 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
2210 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
2203 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
2211 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
2204 |
|
2212 | |||
2205 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
2213 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
2206 | h = (hmin,hmax) |
|
2214 | h = (hmin,hmax) | |
2207 |
|
2215 | |||
2208 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
2216 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
2209 |
|
2217 | |||
2210 | dataOut.data_param = arrayParameters |
|
2218 | dataOut.data_param = arrayParameters | |
2211 | return |
|
2219 | return | |
2212 |
|
2220 | |||
2213 | class SMPhaseCalibration(Operation): |
|
2221 | class SMPhaseCalibration(Operation): | |
2214 |
|
2222 | |||
2215 | __buffer = None |
|
2223 | __buffer = None | |
2216 |
|
2224 | |||
2217 | __initime = None |
|
2225 | __initime = None | |
2218 |
|
2226 | |||
2219 | __dataReady = False |
|
2227 | __dataReady = False | |
2220 |
|
2228 | |||
2221 | __isConfig = False |
|
2229 | __isConfig = False | |
2222 |
|
2230 | |||
2223 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): |
|
2231 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): | |
2224 |
|
2232 | |||
2225 | dataTime = currentTime + paramInterval |
|
2233 | dataTime = currentTime + paramInterval | |
2226 | deltaTime = dataTime - initTime |
|
2234 | deltaTime = dataTime - initTime | |
2227 |
|
2235 | |||
2228 | if deltaTime >= outputInterval or deltaTime < 0: |
|
2236 | if deltaTime >= outputInterval or deltaTime < 0: | |
2229 | return True |
|
2237 | return True | |
2230 |
|
2238 | |||
2231 | return False |
|
2239 | return False | |
2232 |
|
2240 | |||
2233 | def __getGammas(self, pairs, d, phases): |
|
2241 | def __getGammas(self, pairs, d, phases): | |
2234 | gammas = numpy.zeros(2) |
|
2242 | gammas = numpy.zeros(2) | |
2235 |
|
2243 | |||
2236 | for i in range(len(pairs)): |
|
2244 | for i in range(len(pairs)): | |
2237 |
|
2245 | |||
2238 | pairi = pairs[i] |
|
2246 | pairi = pairs[i] | |
2239 |
|
2247 | |||
2240 | phip3 = phases[:,pairi[1]] |
|
2248 | phip3 = phases[:,pairi[1]] | |
2241 | d3 = d[pairi[1]] |
|
2249 | d3 = d[pairi[1]] | |
2242 | phip2 = phases[:,pairi[0]] |
|
2250 | phip2 = phases[:,pairi[0]] | |
2243 | d2 = d[pairi[0]] |
|
2251 | d2 = d[pairi[0]] | |
2244 | #Calculating gamma |
|
2252 | #Calculating gamma | |
2245 | # jdcos = alp1/(k*d1) |
|
2253 | # jdcos = alp1/(k*d1) | |
2246 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) |
|
2254 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) | |
2247 | jgamma = -phip2*d3/d2 - phip3 |
|
2255 | jgamma = -phip2*d3/d2 - phip3 | |
2248 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) |
|
2256 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) | |
2249 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi |
|
2257 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi | |
2250 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi |
|
2258 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi | |
2251 |
|
2259 | |||
2252 | #Revised distribution |
|
2260 | #Revised distribution | |
2253 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) |
|
2261 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) | |
2254 |
|
2262 | |||
2255 | #Histogram |
|
2263 | #Histogram | |
2256 | nBins = 64.0 |
|
2264 | nBins = 64.0 | |
2257 | rmin = -0.5*numpy.pi |
|
2265 | rmin = -0.5*numpy.pi | |
2258 | rmax = 0.5*numpy.pi |
|
2266 | rmax = 0.5*numpy.pi | |
2259 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) |
|
2267 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) | |
2260 |
|
2268 | |||
2261 | meteorsY = phaseHisto[0] |
|
2269 | meteorsY = phaseHisto[0] | |
2262 | phasesX = phaseHisto[1][:-1] |
|
2270 | phasesX = phaseHisto[1][:-1] | |
2263 | width = phasesX[1] - phasesX[0] |
|
2271 | width = phasesX[1] - phasesX[0] | |
2264 | phasesX += width/2 |
|
2272 | phasesX += width/2 | |
2265 |
|
2273 | |||
2266 | #Gaussian aproximation |
|
2274 | #Gaussian aproximation | |
2267 | bpeak = meteorsY.argmax() |
|
2275 | bpeak = meteorsY.argmax() | |
2268 | peak = meteorsY.max() |
|
2276 | peak = meteorsY.max() | |
2269 | jmin = bpeak - 5 |
|
2277 | jmin = bpeak - 5 | |
2270 | jmax = bpeak + 5 + 1 |
|
2278 | jmax = bpeak + 5 + 1 | |
2271 |
|
2279 | |||
2272 | if jmin<0: |
|
2280 | if jmin<0: | |
2273 | jmin = 0 |
|
2281 | jmin = 0 | |
2274 | jmax = 6 |
|
2282 | jmax = 6 | |
2275 | elif jmax > meteorsY.size: |
|
2283 | elif jmax > meteorsY.size: | |
2276 | jmin = meteorsY.size - 6 |
|
2284 | jmin = meteorsY.size - 6 | |
2277 | jmax = meteorsY.size |
|
2285 | jmax = meteorsY.size | |
2278 |
|
2286 | |||
2279 | x0 = numpy.array([peak,bpeak,50]) |
|
2287 | x0 = numpy.array([peak,bpeak,50]) | |
2280 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) |
|
2288 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) | |
2281 |
|
2289 | |||
2282 | #Gammas |
|
2290 | #Gammas | |
2283 | gammas[i] = coeff[0][1] |
|
2291 | gammas[i] = coeff[0][1] | |
2284 |
|
2292 | |||
2285 | return gammas |
|
2293 | return gammas | |
2286 |
|
2294 | |||
2287 | def __residualFunction(self, coeffs, y, t): |
|
2295 | def __residualFunction(self, coeffs, y, t): | |
2288 |
|
2296 | |||
2289 | return y - self.__gauss_function(t, coeffs) |
|
2297 | return y - self.__gauss_function(t, coeffs) | |
2290 |
|
2298 | |||
2291 | def __gauss_function(self, t, coeffs): |
|
2299 | def __gauss_function(self, t, coeffs): | |
2292 |
|
2300 | |||
2293 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) |
|
2301 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) | |
2294 |
|
2302 | |||
2295 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): |
|
2303 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): | |
2296 | meteorOps = SMOperations() |
|
2304 | meteorOps = SMOperations() | |
2297 | nchan = 4 |
|
2305 | nchan = 4 | |
2298 | pairx = pairsList[0] |
|
2306 | pairx = pairsList[0] | |
2299 | pairy = pairsList[1] |
|
2307 | pairy = pairsList[1] | |
2300 | center_xangle = 0 |
|
2308 | center_xangle = 0 | |
2301 | center_yangle = 0 |
|
2309 | center_yangle = 0 | |
2302 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) |
|
2310 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) | |
2303 | ntimes = len(range_angle) |
|
2311 | ntimes = len(range_angle) | |
2304 |
|
2312 | |||
2305 | nstepsx = 20.0 |
|
2313 | nstepsx = 20.0 | |
2306 | nstepsy = 20.0 |
|
2314 | nstepsy = 20.0 | |
2307 |
|
2315 | |||
2308 | for iz in range(ntimes): |
|
2316 | for iz in range(ntimes): | |
2309 | min_xangle = -range_angle[iz]/2 + center_xangle |
|
2317 | min_xangle = -range_angle[iz]/2 + center_xangle | |
2310 | max_xangle = range_angle[iz]/2 + center_xangle |
|
2318 | max_xangle = range_angle[iz]/2 + center_xangle | |
2311 | min_yangle = -range_angle[iz]/2 + center_yangle |
|
2319 | min_yangle = -range_angle[iz]/2 + center_yangle | |
2312 | max_yangle = range_angle[iz]/2 + center_yangle |
|
2320 | max_yangle = range_angle[iz]/2 + center_yangle | |
2313 |
|
2321 | |||
2314 | inc_x = (max_xangle-min_xangle)/nstepsx |
|
2322 | inc_x = (max_xangle-min_xangle)/nstepsx | |
2315 | inc_y = (max_yangle-min_yangle)/nstepsy |
|
2323 | inc_y = (max_yangle-min_yangle)/nstepsy | |
2316 |
|
2324 | |||
2317 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle |
|
2325 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle | |
2318 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle |
|
2326 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle | |
2319 | penalty = numpy.zeros((nstepsx,nstepsy)) |
|
2327 | penalty = numpy.zeros((nstepsx,nstepsy)) | |
2320 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) |
|
2328 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) | |
2321 | jph = numpy.zeros(nchan) |
|
2329 | jph = numpy.zeros(nchan) | |
2322 |
|
2330 | |||
2323 | # Iterations looking for the offset |
|
2331 | # Iterations looking for the offset | |
2324 | for iy in range(int(nstepsy)): |
|
2332 | for iy in range(int(nstepsy)): | |
2325 | for ix in range(int(nstepsx)): |
|
2333 | for ix in range(int(nstepsx)): | |
2326 | jph[pairy[1]] = alpha_y[iy] |
|
2334 | jph[pairy[1]] = alpha_y[iy] | |
2327 | jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] |
|
2335 | jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] | |
2328 |
|
2336 | |||
2329 | jph[pairx[1]] = alpha_x[ix] |
|
2337 | jph[pairx[1]] = alpha_x[ix] | |
2330 | jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] |
|
2338 | jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] | |
2331 |
|
2339 | |||
2332 | jph_array[:,ix,iy] = jph |
|
2340 | jph_array[:,ix,iy] = jph | |
2333 |
|
2341 | |||
2334 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) |
|
2342 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) | |
2335 | error = meteorsArray1[:,-1] |
|
2343 | error = meteorsArray1[:,-1] | |
2336 | ind1 = numpy.where(error==0)[0] |
|
2344 | ind1 = numpy.where(error==0)[0] | |
2337 | penalty[ix,iy] = ind1.size |
|
2345 | penalty[ix,iy] = ind1.size | |
2338 |
|
2346 | |||
2339 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) |
|
2347 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) | |
2340 | phOffset = jph_array[:,i,j] |
|
2348 | phOffset = jph_array[:,i,j] | |
2341 |
|
2349 | |||
2342 | center_xangle = phOffset[pairx[1]] |
|
2350 | center_xangle = phOffset[pairx[1]] | |
2343 | center_yangle = phOffset[pairy[1]] |
|
2351 | center_yangle = phOffset[pairy[1]] | |
2344 |
|
2352 | |||
2345 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) |
|
2353 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) | |
2346 | phOffset = phOffset*180/numpy.pi |
|
2354 | phOffset = phOffset*180/numpy.pi | |
2347 | return phOffset |
|
2355 | return phOffset | |
2348 |
|
2356 | |||
2349 |
|
2357 | |||
2350 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): |
|
2358 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): | |
2351 |
|
2359 | |||
2352 | dataOut.flagNoData = True |
|
2360 | dataOut.flagNoData = True | |
2353 | self.__dataReady = False |
|
2361 | self.__dataReady = False | |
2354 | dataOut.outputInterval = nHours*3600 |
|
2362 | dataOut.outputInterval = nHours*3600 | |
2355 |
|
2363 | |||
2356 | if self.__isConfig == False: |
|
2364 | if self.__isConfig == False: | |
2357 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2365 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2358 | #Get Initial LTC time |
|
2366 | #Get Initial LTC time | |
2359 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2367 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2360 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2368 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2361 |
|
2369 | |||
2362 | self.__isConfig = True |
|
2370 | self.__isConfig = True | |
2363 |
|
2371 | |||
2364 | if self.__buffer is None: |
|
2372 | if self.__buffer is None: | |
2365 | self.__buffer = dataOut.data_param.copy() |
|
2373 | self.__buffer = dataOut.data_param.copy() | |
2366 |
|
2374 | |||
2367 | else: |
|
2375 | else: | |
2368 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2376 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2369 |
|
2377 | |||
2370 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2378 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2371 |
|
2379 | |||
2372 | if self.__dataReady: |
|
2380 | if self.__dataReady: | |
2373 | dataOut.utctimeInit = self.__initime |
|
2381 | dataOut.utctimeInit = self.__initime | |
2374 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2382 | self.__initime += dataOut.outputInterval #to erase time offset | |
2375 |
|
2383 | |||
2376 | freq = dataOut.frequency |
|
2384 | freq = dataOut.frequency | |
2377 | c = dataOut.C #m/s |
|
2385 | c = dataOut.C #m/s | |
2378 | lamb = c/freq |
|
2386 | lamb = c/freq | |
2379 | k = 2*numpy.pi/lamb |
|
2387 | k = 2*numpy.pi/lamb | |
2380 | azimuth = 0 |
|
2388 | azimuth = 0 | |
2381 | h = (hmin, hmax) |
|
2389 | h = (hmin, hmax) | |
2382 | pairs = ((0,1),(2,3)) |
|
2390 | pairs = ((0,1),(2,3)) | |
2383 |
|
2391 | |||
2384 | if channelPositions is None: |
|
2392 | if channelPositions is None: | |
2385 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
2393 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
2386 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
2394 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
2387 | meteorOps = SMOperations() |
|
2395 | meteorOps = SMOperations() | |
2388 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
2396 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
2389 |
|
2397 | |||
2390 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] |
|
2398 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] | |
2391 |
|
2399 | |||
2392 | meteorsArray = self.__buffer |
|
2400 | meteorsArray = self.__buffer | |
2393 | error = meteorsArray[:,-1] |
|
2401 | error = meteorsArray[:,-1] | |
2394 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) |
|
2402 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) | |
2395 | ind1 = numpy.where(boolError)[0] |
|
2403 | ind1 = numpy.where(boolError)[0] | |
2396 | meteorsArray = meteorsArray[ind1,:] |
|
2404 | meteorsArray = meteorsArray[ind1,:] | |
2397 | meteorsArray[:,-1] = 0 |
|
2405 | meteorsArray[:,-1] = 0 | |
2398 | phases = meteorsArray[:,8:12] |
|
2406 | phases = meteorsArray[:,8:12] | |
2399 |
|
2407 | |||
2400 | #Calculate Gammas |
|
2408 | #Calculate Gammas | |
2401 | gammas = self.__getGammas(pairs, distances, phases) |
|
2409 | gammas = self.__getGammas(pairs, distances, phases) | |
2402 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 |
|
2410 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 | |
2403 | #Calculate Phases |
|
2411 | #Calculate Phases | |
2404 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) |
|
2412 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) | |
2405 | phasesOff = phasesOff.reshape((1,phasesOff.size)) |
|
2413 | phasesOff = phasesOff.reshape((1,phasesOff.size)) | |
2406 | dataOut.data_output = -phasesOff |
|
2414 | dataOut.data_output = -phasesOff | |
2407 | dataOut.flagNoData = False |
|
2415 | dataOut.flagNoData = False | |
2408 | dataOut.channelList = pairslist0 |
|
2416 | dataOut.channelList = pairslist0 | |
2409 | self.__buffer = None |
|
2417 | self.__buffer = None | |
2410 |
|
2418 | |||
2411 |
|
2419 | |||
2412 | return |
|
2420 | return | |
2413 |
|
2421 | |||
2414 | class SMOperations(): |
|
2422 | class SMOperations(): | |
2415 |
|
2423 | |||
2416 | def __init__(self): |
|
2424 | def __init__(self): | |
2417 |
|
2425 | |||
2418 | return |
|
2426 | return | |
2419 |
|
2427 | |||
2420 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): |
|
2428 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): | |
2421 |
|
2429 | |||
2422 | arrayParameters = arrayParameters0.copy() |
|
2430 | arrayParameters = arrayParameters0.copy() | |
2423 | hmin = h[0] |
|
2431 | hmin = h[0] | |
2424 | hmax = h[1] |
|
2432 | hmax = h[1] | |
2425 |
|
2433 | |||
2426 | #Calculate AOA (Error N 3, 4) |
|
2434 | #Calculate AOA (Error N 3, 4) | |
2427 | #JONES ET AL. 1998 |
|
2435 | #JONES ET AL. 1998 | |
2428 | AOAthresh = numpy.pi/8 |
|
2436 | AOAthresh = numpy.pi/8 | |
2429 | error = arrayParameters[:,-1] |
|
2437 | error = arrayParameters[:,-1] | |
2430 | phases = -arrayParameters[:,8:12] + jph |
|
2438 | phases = -arrayParameters[:,8:12] + jph | |
2431 | # phases = numpy.unwrap(phases) |
|
2439 | # phases = numpy.unwrap(phases) | |
2432 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) |
|
2440 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) | |
2433 |
|
2441 | |||
2434 | #Calculate Heights (Error N 13 and 14) |
|
2442 | #Calculate Heights (Error N 13 and 14) | |
2435 | error = arrayParameters[:,-1] |
|
2443 | error = arrayParameters[:,-1] | |
2436 | Ranges = arrayParameters[:,1] |
|
2444 | Ranges = arrayParameters[:,1] | |
2437 | zenith = arrayParameters[:,4] |
|
2445 | zenith = arrayParameters[:,4] | |
2438 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) |
|
2446 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |
2439 |
|
2447 | |||
2440 | #----------------------- Get Final data ------------------------------------ |
|
2448 | #----------------------- Get Final data ------------------------------------ | |
2441 | # error = arrayParameters[:,-1] |
|
2449 | # error = arrayParameters[:,-1] | |
2442 | # ind1 = numpy.where(error==0)[0] |
|
2450 | # ind1 = numpy.where(error==0)[0] | |
2443 | # arrayParameters = arrayParameters[ind1,:] |
|
2451 | # arrayParameters = arrayParameters[ind1,:] | |
2444 |
|
2452 | |||
2445 | return arrayParameters |
|
2453 | return arrayParameters | |
2446 |
|
2454 | |||
2447 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): |
|
2455 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): | |
2448 |
|
2456 | |||
2449 | arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
2457 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |
2450 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) |
|
2458 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) | |
2451 |
|
2459 | |||
2452 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
2460 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
2453 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
2461 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
2454 | arrayAOA[:,2] = cosDirError |
|
2462 | arrayAOA[:,2] = cosDirError | |
2455 |
|
2463 | |||
2456 | azimuthAngle = arrayAOA[:,0] |
|
2464 | azimuthAngle = arrayAOA[:,0] | |
2457 | zenithAngle = arrayAOA[:,1] |
|
2465 | zenithAngle = arrayAOA[:,1] | |
2458 |
|
2466 | |||
2459 | #Setting Error |
|
2467 | #Setting Error | |
2460 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] |
|
2468 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] | |
2461 | error[indError] = 0 |
|
2469 | error[indError] = 0 | |
2462 | #Number 3: AOA not fesible |
|
2470 | #Number 3: AOA not fesible | |
2463 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
2471 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
2464 | error[indInvalid] = 3 |
|
2472 | error[indInvalid] = 3 | |
2465 | #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
2473 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |
2466 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
2474 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
2467 | error[indInvalid] = 4 |
|
2475 | error[indInvalid] = 4 | |
2468 | return arrayAOA, error |
|
2476 | return arrayAOA, error | |
2469 |
|
2477 | |||
2470 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): |
|
2478 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): | |
2471 |
|
2479 | |||
2472 | #Initializing some variables |
|
2480 | #Initializing some variables | |
2473 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
2481 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
2474 | ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
2482 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |
2475 |
|
2483 | |||
2476 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
2484 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
2477 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
2485 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
2478 |
|
2486 | |||
2479 |
|
2487 | |||
2480 | for i in range(2): |
|
2488 | for i in range(2): | |
2481 | ph0 = arrayPhase[:,pairsList[i][0]] |
|
2489 | ph0 = arrayPhase[:,pairsList[i][0]] | |
2482 | ph1 = arrayPhase[:,pairsList[i][1]] |
|
2490 | ph1 = arrayPhase[:,pairsList[i][1]] | |
2483 | d0 = distances[pairsList[i][0]] |
|
2491 | d0 = distances[pairsList[i][0]] | |
2484 | d1 = distances[pairsList[i][1]] |
|
2492 | d1 = distances[pairsList[i][1]] | |
2485 |
|
2493 | |||
2486 | ph0_aux = ph0 + ph1 |
|
2494 | ph0_aux = ph0 + ph1 | |
2487 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) |
|
2495 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) | |
2488 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi |
|
2496 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi | |
2489 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi |
|
2497 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi | |
2490 | #First Estimation |
|
2498 | #First Estimation | |
2491 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) |
|
2499 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) | |
2492 |
|
2500 | |||
2493 | #Most-Accurate Second Estimation |
|
2501 | #Most-Accurate Second Estimation | |
2494 | phi1_aux = ph0 - ph1 |
|
2502 | phi1_aux = ph0 - ph1 | |
2495 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
2503 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
2496 | #Direction Cosine 1 |
|
2504 | #Direction Cosine 1 | |
2497 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) |
|
2505 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) | |
2498 |
|
2506 | |||
2499 | #Searching the correct Direction Cosine |
|
2507 | #Searching the correct Direction Cosine | |
2500 | cosdir0_aux = cosdir0[:,i] |
|
2508 | cosdir0_aux = cosdir0[:,i] | |
2501 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
2509 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
2502 | #Minimum Distance |
|
2510 | #Minimum Distance | |
2503 | cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
2511 | cosDiff = (cosdir1 - cosdir0_aux)**2 | |
2504 | indcos = cosDiff.argmin(axis = 1) |
|
2512 | indcos = cosDiff.argmin(axis = 1) | |
2505 | #Saving Value obtained |
|
2513 | #Saving Value obtained | |
2506 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
2514 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
2507 |
|
2515 | |||
2508 | return cosdir0, cosdir |
|
2516 | return cosdir0, cosdir | |
2509 |
|
2517 | |||
2510 | def __calculateAOA(self, cosdir, azimuth): |
|
2518 | def __calculateAOA(self, cosdir, azimuth): | |
2511 | cosdirX = cosdir[:,0] |
|
2519 | cosdirX = cosdir[:,0] | |
2512 | cosdirY = cosdir[:,1] |
|
2520 | cosdirY = cosdir[:,1] | |
2513 |
|
2521 | |||
2514 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
2522 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
2515 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east |
|
2523 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east | |
2516 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
2524 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
2517 |
|
2525 | |||
2518 | return angles |
|
2526 | return angles | |
2519 |
|
2527 | |||
2520 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
2528 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
2521 |
|
2529 | |||
2522 | Ramb = 375 #Ramb = c/(2*PRF) |
|
2530 | Ramb = 375 #Ramb = c/(2*PRF) | |
2523 | Re = 6371 #Earth Radius |
|
2531 | Re = 6371 #Earth Radius | |
2524 | heights = numpy.zeros(Ranges.shape) |
|
2532 | heights = numpy.zeros(Ranges.shape) | |
2525 |
|
2533 | |||
2526 | R_aux = numpy.array([0,1,2])*Ramb |
|
2534 | R_aux = numpy.array([0,1,2])*Ramb | |
2527 | R_aux = R_aux.reshape(1,R_aux.size) |
|
2535 | R_aux = R_aux.reshape(1,R_aux.size) | |
2528 |
|
2536 | |||
2529 | Ranges = Ranges.reshape(Ranges.size,1) |
|
2537 | Ranges = Ranges.reshape(Ranges.size,1) | |
2530 |
|
2538 | |||
2531 | Ri = Ranges + R_aux |
|
2539 | Ri = Ranges + R_aux | |
2532 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
2540 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
2533 |
|
2541 | |||
2534 | #Check if there is a height between 70 and 110 km |
|
2542 | #Check if there is a height between 70 and 110 km | |
2535 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
2543 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
2536 | ind_h = numpy.where(h_bool == 1)[0] |
|
2544 | ind_h = numpy.where(h_bool == 1)[0] | |
2537 |
|
2545 | |||
2538 | hCorr = hi[ind_h, :] |
|
2546 | hCorr = hi[ind_h, :] | |
2539 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
2547 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
2540 |
|
2548 | |||
2541 | hCorr = hi[ind_hCorr] |
|
2549 | hCorr = hi[ind_hCorr] | |
2542 | heights[ind_h] = hCorr |
|
2550 | heights[ind_h] = hCorr | |
2543 |
|
2551 | |||
2544 | #Setting Error |
|
2552 | #Setting Error | |
2545 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
2553 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
2546 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
2554 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
2547 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] |
|
2555 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] | |
2548 | error[indError] = 0 |
|
2556 | error[indError] = 0 | |
2549 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
2557 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
2550 | error[indInvalid2] = 14 |
|
2558 | error[indInvalid2] = 14 | |
2551 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
2559 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
2552 | error[indInvalid1] = 13 |
|
2560 | error[indInvalid1] = 13 | |
2553 |
|
2561 | |||
2554 | return heights, error |
|
2562 | return heights, error | |
2555 |
|
2563 | |||
2556 | def getPhasePairs(self, channelPositions): |
|
2564 | def getPhasePairs(self, channelPositions): | |
2557 | chanPos = numpy.array(channelPositions) |
|
2565 | chanPos = numpy.array(channelPositions) | |
2558 | listOper = list(itertools.combinations(range(5),2)) |
|
2566 | listOper = list(itertools.combinations(range(5),2)) | |
2559 |
|
2567 | |||
2560 | distances = numpy.zeros(4) |
|
2568 | distances = numpy.zeros(4) | |
2561 | axisX = [] |
|
2569 | axisX = [] | |
2562 | axisY = [] |
|
2570 | axisY = [] | |
2563 | distX = numpy.zeros(3) |
|
2571 | distX = numpy.zeros(3) | |
2564 | distY = numpy.zeros(3) |
|
2572 | distY = numpy.zeros(3) | |
2565 | ix = 0 |
|
2573 | ix = 0 | |
2566 | iy = 0 |
|
2574 | iy = 0 | |
2567 |
|
2575 | |||
2568 | pairX = numpy.zeros((2,2)) |
|
2576 | pairX = numpy.zeros((2,2)) | |
2569 | pairY = numpy.zeros((2,2)) |
|
2577 | pairY = numpy.zeros((2,2)) | |
2570 |
|
2578 | |||
2571 | for i in range(len(listOper)): |
|
2579 | for i in range(len(listOper)): | |
2572 | pairi = listOper[i] |
|
2580 | pairi = listOper[i] | |
2573 |
|
2581 | |||
2574 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) |
|
2582 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) | |
2575 |
|
2583 | |||
2576 | if posDif[0] == 0: |
|
2584 | if posDif[0] == 0: | |
2577 | axisY.append(pairi) |
|
2585 | axisY.append(pairi) | |
2578 | distY[iy] = posDif[1] |
|
2586 | distY[iy] = posDif[1] | |
2579 | iy += 1 |
|
2587 | iy += 1 | |
2580 | elif posDif[1] == 0: |
|
2588 | elif posDif[1] == 0: | |
2581 | axisX.append(pairi) |
|
2589 | axisX.append(pairi) | |
2582 | distX[ix] = posDif[0] |
|
2590 | distX[ix] = posDif[0] | |
2583 | ix += 1 |
|
2591 | ix += 1 | |
2584 |
|
2592 | |||
2585 | for i in range(2): |
|
2593 | for i in range(2): | |
2586 | if i==0: |
|
2594 | if i==0: | |
2587 | dist0 = distX |
|
2595 | dist0 = distX | |
2588 | axis0 = axisX |
|
2596 | axis0 = axisX | |
2589 | else: |
|
2597 | else: | |
2590 | dist0 = distY |
|
2598 | dist0 = distY | |
2591 | axis0 = axisY |
|
2599 | axis0 = axisY | |
2592 |
|
2600 | |||
2593 | side = numpy.argsort(dist0)[:-1] |
|
2601 | side = numpy.argsort(dist0)[:-1] | |
2594 | axis0 = numpy.array(axis0)[side,:] |
|
2602 | axis0 = numpy.array(axis0)[side,:] | |
2595 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) |
|
2603 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) | |
2596 | axis1 = numpy.unique(numpy.reshape(axis0,4)) |
|
2604 | axis1 = numpy.unique(numpy.reshape(axis0,4)) | |
2597 | side = axis1[axis1 != chanC] |
|
2605 | side = axis1[axis1 != chanC] | |
2598 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] |
|
2606 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] | |
2599 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] |
|
2607 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] | |
2600 | if diff1<0: |
|
2608 | if diff1<0: | |
2601 | chan2 = side[0] |
|
2609 | chan2 = side[0] | |
2602 | d2 = numpy.abs(diff1) |
|
2610 | d2 = numpy.abs(diff1) | |
2603 | chan1 = side[1] |
|
2611 | chan1 = side[1] | |
2604 | d1 = numpy.abs(diff2) |
|
2612 | d1 = numpy.abs(diff2) | |
2605 | else: |
|
2613 | else: | |
2606 | chan2 = side[1] |
|
2614 | chan2 = side[1] | |
2607 | d2 = numpy.abs(diff2) |
|
2615 | d2 = numpy.abs(diff2) | |
2608 | chan1 = side[0] |
|
2616 | chan1 = side[0] | |
2609 | d1 = numpy.abs(diff1) |
|
2617 | d1 = numpy.abs(diff1) | |
2610 |
|
2618 | |||
2611 | if i==0: |
|
2619 | if i==0: | |
2612 | chanCX = chanC |
|
2620 | chanCX = chanC | |
2613 | chan1X = chan1 |
|
2621 | chan1X = chan1 | |
2614 | chan2X = chan2 |
|
2622 | chan2X = chan2 | |
2615 | distances[0:2] = numpy.array([d1,d2]) |
|
2623 | distances[0:2] = numpy.array([d1,d2]) | |
2616 | else: |
|
2624 | else: | |
2617 | chanCY = chanC |
|
2625 | chanCY = chanC | |
2618 | chan1Y = chan1 |
|
2626 | chan1Y = chan1 | |
2619 | chan2Y = chan2 |
|
2627 | chan2Y = chan2 | |
2620 | distances[2:4] = numpy.array([d1,d2]) |
|
2628 | distances[2:4] = numpy.array([d1,d2]) | |
2621 | # axisXsides = numpy.reshape(axisX[ix,:],4) |
|
2629 | # axisXsides = numpy.reshape(axisX[ix,:],4) | |
2622 | # |
|
2630 | # | |
2623 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) |
|
2631 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) | |
2624 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) |
|
2632 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) | |
2625 | # |
|
2633 | # | |
2626 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] |
|
2634 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] | |
2627 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] |
|
2635 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] | |
2628 | # channel25X = int(pairX[0,ind25X]) |
|
2636 | # channel25X = int(pairX[0,ind25X]) | |
2629 | # channel20X = int(pairX[1,ind20X]) |
|
2637 | # channel20X = int(pairX[1,ind20X]) | |
2630 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] |
|
2638 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] | |
2631 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] |
|
2639 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] | |
2632 | # channel25Y = int(pairY[0,ind25Y]) |
|
2640 | # channel25Y = int(pairY[0,ind25Y]) | |
2633 | # channel20Y = int(pairY[1,ind20Y]) |
|
2641 | # channel20Y = int(pairY[1,ind20Y]) | |
2634 |
|
2642 | |||
2635 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] |
|
2643 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] | |
2636 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] |
|
2644 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] | |
2637 |
|
2645 | |||
2638 | return pairslist, distances |
|
2646 | return pairslist, distances | |
2639 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
2647 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |
2640 | # |
|
2648 | # | |
2641 | # arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
2649 | # arrayAOA = numpy.zeros((phases.shape[0],3)) | |
2642 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
2650 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |
2643 | # |
|
2651 | # | |
2644 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
2652 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
2645 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
2653 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
2646 | # arrayAOA[:,2] = cosDirError |
|
2654 | # arrayAOA[:,2] = cosDirError | |
2647 | # |
|
2655 | # | |
2648 | # azimuthAngle = arrayAOA[:,0] |
|
2656 | # azimuthAngle = arrayAOA[:,0] | |
2649 | # zenithAngle = arrayAOA[:,1] |
|
2657 | # zenithAngle = arrayAOA[:,1] | |
2650 | # |
|
2658 | # | |
2651 | # #Setting Error |
|
2659 | # #Setting Error | |
2652 | # #Number 3: AOA not fesible |
|
2660 | # #Number 3: AOA not fesible | |
2653 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
2661 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
2654 | # error[indInvalid] = 3 |
|
2662 | # error[indInvalid] = 3 | |
2655 | # #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
2663 | # #Number 4: Large difference in AOAs obtained from different antenna baselines | |
2656 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
2664 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
2657 | # error[indInvalid] = 4 |
|
2665 | # error[indInvalid] = 4 | |
2658 | # return arrayAOA, error |
|
2666 | # return arrayAOA, error | |
2659 | # |
|
2667 | # | |
2660 | # def __getDirectionCosines(self, arrayPhase, pairsList): |
|
2668 | # def __getDirectionCosines(self, arrayPhase, pairsList): | |
2661 | # |
|
2669 | # | |
2662 | # #Initializing some variables |
|
2670 | # #Initializing some variables | |
2663 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
2671 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
2664 | # ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
2672 | # ang_aux = ang_aux.reshape(1,ang_aux.size) | |
2665 | # |
|
2673 | # | |
2666 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
2674 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
2667 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
2675 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
2668 | # |
|
2676 | # | |
2669 | # |
|
2677 | # | |
2670 | # for i in range(2): |
|
2678 | # for i in range(2): | |
2671 | # #First Estimation |
|
2679 | # #First Estimation | |
2672 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
2680 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |
2673 | # #Dealias |
|
2681 | # #Dealias | |
2674 | # indcsi = numpy.where(phi0_aux > numpy.pi) |
|
2682 | # indcsi = numpy.where(phi0_aux > numpy.pi) | |
2675 | # phi0_aux[indcsi] -= 2*numpy.pi |
|
2683 | # phi0_aux[indcsi] -= 2*numpy.pi | |
2676 | # indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
2684 | # indcsi = numpy.where(phi0_aux < -numpy.pi) | |
2677 | # phi0_aux[indcsi] += 2*numpy.pi |
|
2685 | # phi0_aux[indcsi] += 2*numpy.pi | |
2678 | # #Direction Cosine 0 |
|
2686 | # #Direction Cosine 0 | |
2679 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
2687 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |
2680 | # |
|
2688 | # | |
2681 | # #Most-Accurate Second Estimation |
|
2689 | # #Most-Accurate Second Estimation | |
2682 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
2690 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |
2683 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
2691 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
2684 | # #Direction Cosine 1 |
|
2692 | # #Direction Cosine 1 | |
2685 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) |
|
2693 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |
2686 | # |
|
2694 | # | |
2687 | # #Searching the correct Direction Cosine |
|
2695 | # #Searching the correct Direction Cosine | |
2688 | # cosdir0_aux = cosdir0[:,i] |
|
2696 | # cosdir0_aux = cosdir0[:,i] | |
2689 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
2697 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
2690 | # #Minimum Distance |
|
2698 | # #Minimum Distance | |
2691 | # cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
2699 | # cosDiff = (cosdir1 - cosdir0_aux)**2 | |
2692 | # indcos = cosDiff.argmin(axis = 1) |
|
2700 | # indcos = cosDiff.argmin(axis = 1) | |
2693 | # #Saving Value obtained |
|
2701 | # #Saving Value obtained | |
2694 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
2702 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
2695 | # |
|
2703 | # | |
2696 | # return cosdir0, cosdir |
|
2704 | # return cosdir0, cosdir | |
2697 | # |
|
2705 | # | |
2698 | # def __calculateAOA(self, cosdir, azimuth): |
|
2706 | # def __calculateAOA(self, cosdir, azimuth): | |
2699 | # cosdirX = cosdir[:,0] |
|
2707 | # cosdirX = cosdir[:,0] | |
2700 | # cosdirY = cosdir[:,1] |
|
2708 | # cosdirY = cosdir[:,1] | |
2701 | # |
|
2709 | # | |
2702 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
2710 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
2703 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east |
|
2711 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |
2704 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
2712 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
2705 | # |
|
2713 | # | |
2706 | # return angles |
|
2714 | # return angles | |
2707 | # |
|
2715 | # | |
2708 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
2716 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
2709 | # |
|
2717 | # | |
2710 | # Ramb = 375 #Ramb = c/(2*PRF) |
|
2718 | # Ramb = 375 #Ramb = c/(2*PRF) | |
2711 | # Re = 6371 #Earth Radius |
|
2719 | # Re = 6371 #Earth Radius | |
2712 | # heights = numpy.zeros(Ranges.shape) |
|
2720 | # heights = numpy.zeros(Ranges.shape) | |
2713 | # |
|
2721 | # | |
2714 | # R_aux = numpy.array([0,1,2])*Ramb |
|
2722 | # R_aux = numpy.array([0,1,2])*Ramb | |
2715 | # R_aux = R_aux.reshape(1,R_aux.size) |
|
2723 | # R_aux = R_aux.reshape(1,R_aux.size) | |
2716 | # |
|
2724 | # | |
2717 | # Ranges = Ranges.reshape(Ranges.size,1) |
|
2725 | # Ranges = Ranges.reshape(Ranges.size,1) | |
2718 | # |
|
2726 | # | |
2719 | # Ri = Ranges + R_aux |
|
2727 | # Ri = Ranges + R_aux | |
2720 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
2728 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
2721 | # |
|
2729 | # | |
2722 | # #Check if there is a height between 70 and 110 km |
|
2730 | # #Check if there is a height between 70 and 110 km | |
2723 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
2731 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
2724 | # ind_h = numpy.where(h_bool == 1)[0] |
|
2732 | # ind_h = numpy.where(h_bool == 1)[0] | |
2725 | # |
|
2733 | # | |
2726 | # hCorr = hi[ind_h, :] |
|
2734 | # hCorr = hi[ind_h, :] | |
2727 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
2735 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
2728 | # |
|
2736 | # | |
2729 | # hCorr = hi[ind_hCorr] |
|
2737 | # hCorr = hi[ind_hCorr] | |
2730 | # heights[ind_h] = hCorr |
|
2738 | # heights[ind_h] = hCorr | |
2731 | # |
|
2739 | # | |
2732 | # #Setting Error |
|
2740 | # #Setting Error | |
2733 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
2741 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
2734 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
2742 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
2735 | # |
|
2743 | # | |
2736 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
2744 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
2737 | # error[indInvalid2] = 14 |
|
2745 | # error[indInvalid2] = 14 | |
2738 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
2746 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
2739 | # error[indInvalid1] = 13 |
|
2747 | # error[indInvalid1] = 13 | |
2740 | # |
|
2748 | # | |
2741 | # return heights, error |
|
2749 | # return heights, error |
@@ -1,425 +1,437 | |||||
1 | ''' |
|
1 | ''' | |
2 | @author: Juan C. Espinoza |
|
2 | @author: Juan C. Espinoza | |
3 | ''' |
|
3 | ''' | |
4 |
|
4 | |||
5 | import time |
|
5 | import time | |
6 | import json |
|
6 | import json | |
7 | import numpy |
|
7 | import numpy | |
8 | import paho.mqtt.client as mqtt |
|
8 | import paho.mqtt.client as mqtt | |
9 | import zmq |
|
9 | import zmq | |
10 | import cPickle as pickle |
|
10 | import cPickle as pickle | |
11 | import datetime |
|
11 | import datetime | |
12 | from zmq.utils.monitor import recv_monitor_message |
|
12 | from zmq.utils.monitor import recv_monitor_message | |
13 | from functools import wraps |
|
13 | from functools import wraps | |
14 | from threading import Thread |
|
14 | from threading import Thread | |
15 | from multiprocessing import Process |
|
15 | from multiprocessing import Process | |
16 |
|
16 | |||
17 | from schainpy.model.proc.jroproc_base import Operation, ProcessingUnit |
|
17 | from schainpy.model.proc.jroproc_base import Operation, ProcessingUnit | |
18 |
|
18 | |||
19 | MAXNUMX = 100 |
|
19 | MAXNUMX = 100 | |
20 | MAXNUMY = 100 |
|
20 | MAXNUMY = 100 | |
21 |
|
21 | |||
22 | class PrettyFloat(float): |
|
22 | class PrettyFloat(float): | |
23 | def __repr__(self): |
|
23 | def __repr__(self): | |
24 | return '%.2f' % self |
|
24 | return '%.2f' % self | |
25 |
|
25 | |||
26 | def roundFloats(obj): |
|
26 | def roundFloats(obj): | |
27 | if isinstance(obj, list): |
|
27 | if isinstance(obj, list): | |
28 | return map(roundFloats, obj) |
|
28 | return map(roundFloats, obj) | |
29 | elif isinstance(obj, float): |
|
29 | elif isinstance(obj, float): | |
30 | return round(obj, 2) |
|
30 | return round(obj, 2) | |
31 |
|
31 | |||
32 | def decimate(z): |
|
32 | def decimate(z): | |
33 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
33 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 | |
34 |
|
34 | |||
35 | dy = int(len(z[0])/MAXNUMY) + 1 |
|
35 | dy = int(len(z[0])/MAXNUMY) + 1 | |
36 |
|
36 | |||
37 | return z[::, ::dy] |
|
37 | return z[::, ::dy] | |
38 |
|
38 | |||
39 | class throttle(object): |
|
39 | class throttle(object): | |
40 | """Decorator that prevents a function from being called more than once every |
|
40 | """Decorator that prevents a function from being called more than once every | |
41 | time period. |
|
41 | time period. | |
42 | To create a function that cannot be called more than once a minute, but |
|
42 | To create a function that cannot be called more than once a minute, but | |
43 | will sleep until it can be called: |
|
43 | will sleep until it can be called: | |
44 | @throttle(minutes=1) |
|
44 | @throttle(minutes=1) | |
45 | def foo(): |
|
45 | def foo(): | |
46 | pass |
|
46 | pass | |
47 |
|
47 | |||
48 | for i in range(10): |
|
48 | for i in range(10): | |
49 | foo() |
|
49 | foo() | |
50 | print "This function has run %s times." % i |
|
50 | print "This function has run %s times." % i | |
51 | """ |
|
51 | """ | |
52 |
|
52 | |||
53 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
53 | def __init__(self, seconds=0, minutes=0, hours=0): | |
54 | self.throttle_period = datetime.timedelta( |
|
54 | self.throttle_period = datetime.timedelta( | |
55 | seconds=seconds, minutes=minutes, hours=hours |
|
55 | seconds=seconds, minutes=minutes, hours=hours | |
56 | ) |
|
56 | ) | |
57 |
|
57 | |||
58 | self.time_of_last_call = datetime.datetime.min |
|
58 | self.time_of_last_call = datetime.datetime.min | |
59 |
|
59 | |||
60 | def __call__(self, fn): |
|
60 | def __call__(self, fn): | |
61 | @wraps(fn) |
|
61 | @wraps(fn) | |
62 | def wrapper(*args, **kwargs): |
|
62 | def wrapper(*args, **kwargs): | |
63 | now = datetime.datetime.now() |
|
63 | now = datetime.datetime.now() | |
64 | time_since_last_call = now - self.time_of_last_call |
|
64 | time_since_last_call = now - self.time_of_last_call | |
65 | time_left = self.throttle_period - time_since_last_call |
|
65 | time_left = self.throttle_period - time_since_last_call | |
66 |
|
66 | |||
67 | if time_left > datetime.timedelta(seconds=0): |
|
67 | if time_left > datetime.timedelta(seconds=0): | |
68 | return |
|
68 | return | |
69 |
|
69 | |||
70 | self.time_of_last_call = datetime.datetime.now() |
|
70 | self.time_of_last_call = datetime.datetime.now() | |
71 | return fn(*args, **kwargs) |
|
71 | return fn(*args, **kwargs) | |
72 |
|
72 | |||
73 | return wrapper |
|
73 | return wrapper | |
74 |
|
74 | |||
75 |
|
75 | |||
76 | class PublishData(Operation): |
|
76 | class PublishData(Operation): | |
77 | """Clase publish.""" |
|
77 | """Clase publish.""" | |
78 |
|
78 | |||
79 | def __init__(self, **kwargs): |
|
79 | def __init__(self, **kwargs): | |
80 | """Inicio.""" |
|
80 | """Inicio.""" | |
81 | Operation.__init__(self, **kwargs) |
|
81 | Operation.__init__(self, **kwargs) | |
82 | self.isConfig = False |
|
82 | self.isConfig = False | |
83 | self.client = None |
|
83 | self.client = None | |
84 | self.zeromq = None |
|
84 | self.zeromq = None | |
85 | self.mqtt = None |
|
85 | self.mqtt = None | |
86 |
|
86 | |||
87 | def on_disconnect(self, client, userdata, rc): |
|
87 | def on_disconnect(self, client, userdata, rc): | |
88 | if rc != 0: |
|
88 | if rc != 0: | |
89 | print("Unexpected disconnection.") |
|
89 | print("Unexpected disconnection.") | |
90 | self.connect() |
|
90 | self.connect() | |
91 |
|
91 | |||
92 | def connect(self): |
|
92 | def connect(self): | |
93 | print 'trying to connect' |
|
93 | print 'trying to connect' | |
94 | try: |
|
94 | try: | |
95 | self.client.connect( |
|
95 | self.client.connect( | |
96 | host=self.host, |
|
96 | host=self.host, | |
97 | port=self.port, |
|
97 | port=self.port, | |
98 | keepalive=60*10, |
|
98 | keepalive=60*10, | |
99 | bind_address='') |
|
99 | bind_address='') | |
100 | self.client.loop_start() |
|
100 | self.client.loop_start() | |
101 | # self.client.publish( |
|
101 | # self.client.publish( | |
102 | # self.topic + 'SETUP', |
|
102 | # self.topic + 'SETUP', | |
103 | # json.dumps(setup), |
|
103 | # json.dumps(setup), | |
104 | # retain=True |
|
104 | # retain=True | |
105 | # ) |
|
105 | # ) | |
106 | except: |
|
106 | except: | |
107 | print "MQTT Conection error." |
|
107 | print "MQTT Conection error." | |
108 | self.client = False |
|
108 | self.client = False | |
109 |
|
109 | |||
110 | def setup(self, port=1883, username=None, password=None, clientId="user", zeromq=1, **kwargs): |
|
110 | def setup(self, port=1883, username=None, password=None, clientId="user", zeromq=1, **kwargs): | |
111 | self.counter = 0 |
|
111 | self.counter = 0 | |
112 | self.topic = kwargs.get('topic', 'schain') |
|
112 | self.topic = kwargs.get('topic', 'schain') | |
113 | self.delay = kwargs.get('delay', 0) |
|
113 | self.delay = kwargs.get('delay', 0) | |
114 | self.plottype = kwargs.get('plottype', 'spectra') |
|
114 | self.plottype = kwargs.get('plottype', 'spectra') | |
115 | self.host = kwargs.get('host', "10.10.10.82") |
|
115 | self.host = kwargs.get('host', "10.10.10.82") | |
116 | self.port = kwargs.get('port', 3000) |
|
116 | self.port = kwargs.get('port', 3000) | |
117 | self.clientId = clientId |
|
117 | self.clientId = clientId | |
118 | self.cnt = 0 |
|
118 | self.cnt = 0 | |
119 | self.zeromq = zeromq |
|
119 | self.zeromq = zeromq | |
120 | self.mqtt = kwargs.get('plottype', 0) |
|
120 | self.mqtt = kwargs.get('plottype', 0) | |
121 | self.client = None |
|
121 | self.client = None | |
122 | setup = [] |
|
122 | setup = [] | |
123 | if mqtt is 1: |
|
123 | if mqtt is 1: | |
124 | self.client = mqtt.Client( |
|
124 | self.client = mqtt.Client( | |
125 | client_id=self.clientId + self.topic + 'SCHAIN', |
|
125 | client_id=self.clientId + self.topic + 'SCHAIN', | |
126 | clean_session=True) |
|
126 | clean_session=True) | |
127 | self.client.on_disconnect = self.on_disconnect |
|
127 | self.client.on_disconnect = self.on_disconnect | |
128 | self.connect() |
|
128 | self.connect() | |
129 | for plot in self.plottype: |
|
129 | for plot in self.plottype: | |
130 | setup.append({ |
|
130 | setup.append({ | |
131 | 'plot': plot, |
|
131 | 'plot': plot, | |
132 | 'topic': self.topic + plot, |
|
132 | 'topic': self.topic + plot, | |
133 | 'title': getattr(self, plot + '_' + 'title', False), |
|
133 | 'title': getattr(self, plot + '_' + 'title', False), | |
134 | 'xlabel': getattr(self, plot + '_' + 'xlabel', False), |
|
134 | 'xlabel': getattr(self, plot + '_' + 'xlabel', False), | |
135 | 'ylabel': getattr(self, plot + '_' + 'ylabel', False), |
|
135 | 'ylabel': getattr(self, plot + '_' + 'ylabel', False), | |
136 | 'xrange': getattr(self, plot + '_' + 'xrange', False), |
|
136 | 'xrange': getattr(self, plot + '_' + 'xrange', False), | |
137 | 'yrange': getattr(self, plot + '_' + 'yrange', False), |
|
137 | 'yrange': getattr(self, plot + '_' + 'yrange', False), | |
138 | 'zrange': getattr(self, plot + '_' + 'zrange', False), |
|
138 | 'zrange': getattr(self, plot + '_' + 'zrange', False), | |
139 | }) |
|
139 | }) | |
140 | if zeromq is 1: |
|
140 | if zeromq is 1: | |
141 | context = zmq.Context() |
|
141 | context = zmq.Context() | |
142 | self.zmq_socket = context.socket(zmq.PUSH) |
|
142 | self.zmq_socket = context.socket(zmq.PUSH) | |
143 | server = kwargs.get('server', 'zmq.pipe') |
|
143 | server = kwargs.get('server', 'zmq.pipe') | |
144 |
|
144 | |||
145 | if 'tcp://' in server: |
|
145 | if 'tcp://' in server: | |
146 | address = server |
|
146 | address = server | |
147 | else: |
|
147 | else: | |
148 | address = 'ipc:///tmp/%s' % server |
|
148 | address = 'ipc:///tmp/%s' % server | |
149 |
|
149 | |||
150 | self.zmq_socket.connect(address) |
|
150 | self.zmq_socket.connect(address) | |
151 | time.sleep(1) |
|
151 | time.sleep(1) | |
152 |
|
152 | |||
153 | def publish_data(self): |
|
153 | def publish_data(self): | |
154 | self.dataOut.finished = False |
|
154 | self.dataOut.finished = False | |
155 | if self.mqtt is 1: |
|
155 | if self.mqtt is 1: | |
156 | yData = self.dataOut.heightList[:2].tolist() |
|
156 | yData = self.dataOut.heightList[:2].tolist() | |
157 | if self.plottype == 'spectra': |
|
157 | if self.plottype == 'spectra': | |
158 | data = getattr(self.dataOut, 'data_spc') |
|
158 | data = getattr(self.dataOut, 'data_spc') | |
159 | z = data/self.dataOut.normFactor |
|
159 | z = data/self.dataOut.normFactor | |
160 | zdB = 10*numpy.log10(z) |
|
160 | zdB = 10*numpy.log10(z) | |
161 | xlen, ylen = zdB[0].shape |
|
161 | xlen, ylen = zdB[0].shape | |
162 | dx = int(xlen/MAXNUMX) + 1 |
|
162 | dx = int(xlen/MAXNUMX) + 1 | |
163 | dy = int(ylen/MAXNUMY) + 1 |
|
163 | dy = int(ylen/MAXNUMY) + 1 | |
164 | Z = [0 for i in self.dataOut.channelList] |
|
164 | Z = [0 for i in self.dataOut.channelList] | |
165 | for i in self.dataOut.channelList: |
|
165 | for i in self.dataOut.channelList: | |
166 | Z[i] = zdB[i][::dx, ::dy].tolist() |
|
166 | Z[i] = zdB[i][::dx, ::dy].tolist() | |
167 | payload = { |
|
167 | payload = { | |
168 | 'timestamp': self.dataOut.utctime, |
|
168 | 'timestamp': self.dataOut.utctime, | |
169 | 'data': roundFloats(Z), |
|
169 | 'data': roundFloats(Z), | |
170 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
170 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], | |
171 | 'interval': self.dataOut.getTimeInterval(), |
|
171 | 'interval': self.dataOut.getTimeInterval(), | |
172 | 'type': self.plottype, |
|
172 | 'type': self.plottype, | |
173 | 'yData': yData |
|
173 | 'yData': yData | |
174 | } |
|
174 | } | |
175 | # print payload |
|
175 | # print payload | |
176 |
|
176 | |||
177 | elif self.plottype in ('rti', 'power'): |
|
177 | elif self.plottype in ('rti', 'power'): | |
178 | data = getattr(self.dataOut, 'data_spc') |
|
178 | data = getattr(self.dataOut, 'data_spc') | |
179 | z = data/self.dataOut.normFactor |
|
179 | z = data/self.dataOut.normFactor | |
180 | avg = numpy.average(z, axis=1) |
|
180 | avg = numpy.average(z, axis=1) | |
181 | avgdB = 10*numpy.log10(avg) |
|
181 | avgdB = 10*numpy.log10(avg) | |
182 | xlen, ylen = z[0].shape |
|
182 | xlen, ylen = z[0].shape | |
183 | dy = numpy.floor(ylen/self.__MAXNUMY) + 1 |
|
183 | dy = numpy.floor(ylen/self.__MAXNUMY) + 1 | |
184 | AVG = [0 for i in self.dataOut.channelList] |
|
184 | AVG = [0 for i in self.dataOut.channelList] | |
185 | for i in self.dataOut.channelList: |
|
185 | for i in self.dataOut.channelList: | |
186 | AVG[i] = avgdB[i][::dy].tolist() |
|
186 | AVG[i] = avgdB[i][::dy].tolist() | |
187 | payload = { |
|
187 | payload = { | |
188 | 'timestamp': self.dataOut.utctime, |
|
188 | 'timestamp': self.dataOut.utctime, | |
189 | 'data': roundFloats(AVG), |
|
189 | 'data': roundFloats(AVG), | |
190 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
190 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], | |
191 | 'interval': self.dataOut.getTimeInterval(), |
|
191 | 'interval': self.dataOut.getTimeInterval(), | |
192 | 'type': self.plottype, |
|
192 | 'type': self.plottype, | |
193 | 'yData': yData |
|
193 | 'yData': yData | |
194 | } |
|
194 | } | |
195 | elif self.plottype == 'noise': |
|
195 | elif self.plottype == 'noise': | |
196 | noise = self.dataOut.getNoise()/self.dataOut.normFactor |
|
196 | noise = self.dataOut.getNoise()/self.dataOut.normFactor | |
197 | noisedB = 10*numpy.log10(noise) |
|
197 | noisedB = 10*numpy.log10(noise) | |
198 | payload = { |
|
198 | payload = { | |
199 | 'timestamp': self.dataOut.utctime, |
|
199 | 'timestamp': self.dataOut.utctime, | |
200 | 'data': roundFloats(noisedB.reshape(-1, 1).tolist()), |
|
200 | 'data': roundFloats(noisedB.reshape(-1, 1).tolist()), | |
201 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
201 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], | |
202 | 'interval': self.dataOut.getTimeInterval(), |
|
202 | 'interval': self.dataOut.getTimeInterval(), | |
203 | 'type': self.plottype, |
|
203 | 'type': self.plottype, | |
204 | 'yData': yData |
|
204 | 'yData': yData | |
205 | } |
|
205 | } | |
206 | elif self.plottype == 'snr': |
|
206 | elif self.plottype == 'snr': | |
207 | data = getattr(self.dataOut, 'data_SNR') |
|
207 | data = getattr(self.dataOut, 'data_SNR') | |
208 | avgdB = 10*numpy.log10(data) |
|
208 | avgdB = 10*numpy.log10(data) | |
209 |
|
209 | |||
210 | ylen = data[0].size |
|
210 | ylen = data[0].size | |
211 | dy = numpy.floor(ylen/self.__MAXNUMY) + 1 |
|
211 | dy = numpy.floor(ylen/self.__MAXNUMY) + 1 | |
212 | AVG = [0 for i in self.dataOut.channelList] |
|
212 | AVG = [0 for i in self.dataOut.channelList] | |
213 | for i in self.dataOut.channelList: |
|
213 | for i in self.dataOut.channelList: | |
214 | AVG[i] = avgdB[i][::dy].tolist() |
|
214 | AVG[i] = avgdB[i][::dy].tolist() | |
215 | payload = { |
|
215 | payload = { | |
216 | 'timestamp': self.dataOut.utctime, |
|
216 | 'timestamp': self.dataOut.utctime, | |
217 | 'data': roundFloats(AVG), |
|
217 | 'data': roundFloats(AVG), | |
218 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
218 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], | |
219 | 'type': self.plottype, |
|
219 | 'type': self.plottype, | |
220 | 'yData': yData |
|
220 | 'yData': yData | |
221 | } |
|
221 | } | |
222 | else: |
|
222 | else: | |
223 | print "Tipo de grafico invalido" |
|
223 | print "Tipo de grafico invalido" | |
224 | payload = { |
|
224 | payload = { | |
225 | 'data': 'None', |
|
225 | 'data': 'None', | |
226 | 'timestamp': 'None', |
|
226 | 'timestamp': 'None', | |
227 | 'type': None |
|
227 | 'type': None | |
228 | } |
|
228 | } | |
229 | # print 'Publishing data to {}'.format(self.host) |
|
229 | # print 'Publishing data to {}'.format(self.host) | |
230 | self.client.publish(self.topic + self.plottype, json.dumps(payload), qos=0) |
|
230 | self.client.publish(self.topic + self.plottype, json.dumps(payload), qos=0) | |
231 |
|
231 | |||
232 | if self.zeromq is 1: |
|
232 | if self.zeromq is 1: | |
233 | print '[Sending] {} - {}'.format(self.dataOut.type, self.dataOut.datatime) |
|
233 | print '[Sending] {} - {}'.format(self.dataOut.type, self.dataOut.datatime) | |
234 | self.zmq_socket.send_pyobj(self.dataOut) |
|
234 | self.zmq_socket.send_pyobj(self.dataOut) | |
235 |
|
235 | |||
236 | def run(self, dataOut, **kwargs): |
|
236 | def run(self, dataOut, **kwargs): | |
237 | self.dataOut = dataOut |
|
237 | self.dataOut = dataOut | |
238 | if not self.isConfig: |
|
238 | if not self.isConfig: | |
239 | self.setup(**kwargs) |
|
239 | self.setup(**kwargs) | |
240 | self.isConfig = True |
|
240 | self.isConfig = True | |
241 |
|
241 | |||
242 | self.publish_data() |
|
242 | self.publish_data() | |
243 | time.sleep(self.delay) |
|
243 | time.sleep(self.delay) | |
244 |
|
244 | |||
245 | def close(self): |
|
245 | def close(self): | |
246 | if self.zeromq is 1: |
|
246 | if self.zeromq is 1: | |
247 | self.dataOut.finished = True |
|
247 | self.dataOut.finished = True | |
248 | self.zmq_socket.send_pyobj(self.dataOut) |
|
248 | self.zmq_socket.send_pyobj(self.dataOut) | |
249 |
|
249 | |||
250 | if self.client: |
|
250 | if self.client: | |
251 | self.client.loop_stop() |
|
251 | self.client.loop_stop() | |
252 | self.client.disconnect() |
|
252 | self.client.disconnect() | |
253 |
|
253 | |||
254 |
|
254 | |||
255 | class ReceiverData(ProcessingUnit, Process): |
|
255 | class ReceiverData(ProcessingUnit, Process): | |
256 |
|
256 | |||
257 | throttle_value = 5 |
|
257 | throttle_value = 5 | |
258 |
|
258 | |||
259 | def __init__(self, **kwargs): |
|
259 | def __init__(self, **kwargs): | |
260 |
|
260 | |||
261 | ProcessingUnit.__init__(self, **kwargs) |
|
261 | ProcessingUnit.__init__(self, **kwargs) | |
262 | Process.__init__(self) |
|
262 | Process.__init__(self) | |
263 | self.mp = False |
|
263 | self.mp = False | |
264 | self.isConfig = False |
|
264 | self.isConfig = False | |
265 | self.isWebConfig = False |
|
265 | self.isWebConfig = False | |
266 | self.plottypes =[] |
|
266 | self.plottypes =[] | |
267 | self.connections = 0 |
|
267 | self.connections = 0 | |
268 | server = kwargs.get('server', 'zmq.pipe') |
|
268 | server = kwargs.get('server', 'zmq.pipe') | |
269 | plot_server = kwargs.get('plot_server', 'zmq.web') |
|
269 | plot_server = kwargs.get('plot_server', 'zmq.web') | |
270 | if 'tcp://' in server: |
|
270 | if 'tcp://' in server: | |
271 | address = server |
|
271 | address = server | |
272 | else: |
|
272 | else: | |
273 | address = 'ipc:///tmp/%s' % server |
|
273 | address = 'ipc:///tmp/%s' % server | |
274 |
|
274 | |||
275 | if 'tcp://' in plot_server: |
|
275 | if 'tcp://' in plot_server: | |
276 | plot_address = plot_server |
|
276 | plot_address = plot_server | |
277 | else: |
|
277 | else: | |
278 | plot_address = 'ipc:///tmp/%s' % plot_server |
|
278 | plot_address = 'ipc:///tmp/%s' % plot_server | |
279 |
|
279 | |||
280 | self.address = address |
|
280 | self.address = address | |
281 | self.plot_address = plot_address |
|
281 | self.plot_address = plot_address | |
282 | self.plottypes = [s.strip() for s in kwargs.get('plottypes', 'rti').split(',')] |
|
282 | self.plottypes = [s.strip() for s in kwargs.get('plottypes', 'rti').split(',')] | |
283 | self.realtime = kwargs.get('realtime', False) |
|
283 | self.realtime = kwargs.get('realtime', False) | |
284 |
self.throttle_value = kwargs.get('throttle', |
|
284 | self.throttle_value = kwargs.get('throttle', 5) | |
285 | self.sendData = self.initThrottle(self.throttle_value) |
|
285 | self.sendData = self.initThrottle(self.throttle_value) | |
286 | self.setup() |
|
286 | self.setup() | |
287 |
|
287 | |||
288 | def setup(self): |
|
288 | def setup(self): | |
289 |
|
289 | |||
290 | self.data = {} |
|
290 | self.data = {} | |
291 | self.data['times'] = [] |
|
291 | self.data['times'] = [] | |
292 | for plottype in self.plottypes: |
|
292 | for plottype in self.plottypes: | |
293 | self.data[plottype] = {} |
|
293 | self.data[plottype] = {} | |
294 | self.data['noise'] = {} |
|
294 | self.data['noise'] = {} | |
295 | self.data['throttle'] = self.throttle_value |
|
295 | self.data['throttle'] = self.throttle_value | |
296 | self.data['ENDED'] = False |
|
296 | self.data['ENDED'] = False | |
297 | self.isConfig = True |
|
297 | self.isConfig = True | |
298 | self.data_web = {} |
|
298 | self.data_web = {} | |
299 |
|
299 | |||
300 | def event_monitor(self, monitor): |
|
300 | def event_monitor(self, monitor): | |
301 |
|
301 | |||
302 | events = {} |
|
302 | events = {} | |
303 |
|
303 | |||
304 | for name in dir(zmq): |
|
304 | for name in dir(zmq): | |
305 | if name.startswith('EVENT_'): |
|
305 | if name.startswith('EVENT_'): | |
306 | value = getattr(zmq, name) |
|
306 | value = getattr(zmq, name) | |
307 | events[value] = name |
|
307 | events[value] = name | |
308 |
|
308 | |||
309 | while monitor.poll(): |
|
309 | while monitor.poll(): | |
310 | evt = recv_monitor_message(monitor) |
|
310 | evt = recv_monitor_message(monitor) | |
311 | if evt['event'] == 32: |
|
311 | if evt['event'] == 32: | |
312 | self.connections += 1 |
|
312 | self.connections += 1 | |
313 | if evt['event'] == 512: |
|
313 | if evt['event'] == 512: | |
314 | pass |
|
314 | pass | |
315 | if self.connections == 0 and self.started is True: |
|
315 | if self.connections == 0 and self.started is True: | |
316 | self.ended = True |
|
316 | self.ended = True | |
317 | # send('ENDED') |
|
317 | # send('ENDED') | |
318 | evt.update({'description': events[evt['event']]}) |
|
318 | evt.update({'description': events[evt['event']]}) | |
319 |
|
319 | |||
320 | if evt['event'] == zmq.EVENT_MONITOR_STOPPED: |
|
320 | if evt['event'] == zmq.EVENT_MONITOR_STOPPED: | |
321 | break |
|
321 | break | |
322 | monitor.close() |
|
322 | monitor.close() | |
323 | print("event monitor thread done!") |
|
323 | print("event monitor thread done!") | |
324 |
|
324 | |||
325 | def initThrottle(self, throttle_value): |
|
325 | def initThrottle(self, throttle_value): | |
326 |
|
326 | |||
327 | @throttle(seconds=throttle_value) |
|
327 | @throttle(seconds=throttle_value) | |
328 | def sendDataThrottled(fn_sender, data): |
|
328 | def sendDataThrottled(fn_sender, data): | |
329 | fn_sender(data) |
|
329 | fn_sender(data) | |
330 |
|
330 | |||
331 | return sendDataThrottled |
|
331 | return sendDataThrottled | |
332 |
|
332 | |||
333 | def send(self, data): |
|
333 | def send(self, data): | |
334 | # print '[sending] data=%s size=%s' % (data.keys(), len(data['times'])) |
|
334 | # print '[sending] data=%s size=%s' % (data.keys(), len(data['times'])) | |
335 | self.sender.send_pyobj(data) |
|
335 | self.sender.send_pyobj(data) | |
336 |
|
336 | |||
337 | def update(self): |
|
337 | def update(self): | |
338 | t = self.dataOut.utctime |
|
338 | t = self.dataOut.utctime | |
339 | self.data['times'].append(t) |
|
339 | self.data['times'].append(t) | |
340 | self.data['dataOut'] = self.dataOut |
|
340 | self.data['dataOut'] = self.dataOut | |
341 | for plottype in self.plottypes: |
|
341 | for plottype in self.plottypes: | |
342 | if plottype == 'spc': |
|
342 | if plottype == 'spc': | |
343 | z = self.dataOut.data_spc/self.dataOut.normFactor |
|
343 | z = self.dataOut.data_spc/self.dataOut.normFactor | |
344 | self.data[plottype] = 10*numpy.log10(z) |
|
344 | self.data[plottype] = 10*numpy.log10(z) | |
345 | self.data['noise'][t] = 10*numpy.log10(self.dataOut.getNoise()/self.dataOut.normFactor) |
|
345 | self.data['noise'][t] = 10*numpy.log10(self.dataOut.getNoise()/self.dataOut.normFactor) | |
|
346 | if plottype == 'cspc': | |||
|
347 | jcoherence = self.dataOut.data_cspc/numpy.sqrt(self.dataOut.data_spc*self.dataOut.data_spc) | |||
|
348 | self.data['cspc_coh'] = numpy.abs(jcoherence) | |||
|
349 | self.data['cspc_phase'] = numpy.arctan2(jcoherence.imag, jcoherence.real)*180/numpy.pi | |||
346 | if plottype == 'rti': |
|
350 | if plottype == 'rti': | |
347 | self.data[plottype][t] = self.dataOut.getPower() |
|
351 | self.data[plottype][t] = self.dataOut.getPower() | |
348 | if plottype == 'snr': |
|
352 | if plottype == 'snr': | |
349 | self.data[plottype][t] = 10*numpy.log10(self.dataOut.data_SNR) |
|
353 | self.data[plottype][t] = 10*numpy.log10(self.dataOut.data_SNR) | |
350 | if plottype == 'dop': |
|
354 | if plottype == 'dop': | |
351 | self.data[plottype][t] = 10*numpy.log10(self.dataOut.data_DOP) |
|
355 | self.data[plottype][t] = 10*numpy.log10(self.dataOut.data_DOP) | |
|
356 | if plottype == 'mean': | |||
|
357 | self.data[plottype][t] = self.dataOut.data_MEAN | |||
|
358 | if plottype == 'std': | |||
|
359 | self.data[plottype][t] = self.dataOut.data_STD | |||
352 | if plottype == 'coh': |
|
360 | if plottype == 'coh': | |
353 | self.data[plottype][t] = self.dataOut.getCoherence() |
|
361 | self.data[plottype][t] = self.dataOut.getCoherence() | |
354 | if plottype == 'phase': |
|
362 | if plottype == 'phase': | |
355 | self.data[plottype][t] = self.dataOut.getCoherence(phase=True) |
|
363 | self.data[plottype][t] = self.dataOut.getCoherence(phase=True) | |
356 | if self.realtime: |
|
364 | if self.realtime: | |
357 | self.data_web[plottype] = roundFloats(decimate(self.data[plottype][t]).tolist()) |
|
365 | self.data_web['timestamp'] = t | |
358 | self.data_web['timestamp'] = t |
|
|||
359 | if plottype == 'spc': |
|
366 | if plottype == 'spc': | |
360 | self.data_web[plottype] = roundFloats(decimate(self.data[plottype]).tolist()) |
|
367 | self.data_web[plottype] = roundFloats(decimate(self.data[plottype]).tolist()) | |
|
368 | elif plottype == 'cspc': | |||
|
369 | self.data_web['cspc_coh'] = roundFloats(decimate(self.data['cspc_coh']).tolist()) | |||
|
370 | self.data_web['cspc_phase'] = roundFloats(decimate(self.data['cspc_phase']).tolist()) | |||
|
371 | elif plottype == 'noise': | |||
|
372 | self.data_web['noise'] = roundFloats(self.data['noise'][t].tolist()) | |||
361 | else: |
|
373 | else: | |
362 | self.data_web[plottype] = roundFloats(decimate(self.data[plottype][t]).tolist()) |
|
374 | self.data_web[plottype] = roundFloats(decimate(self.data[plottype][t]).tolist()) | |
363 | self.data_web['interval'] = self.dataOut.getTimeInterval() |
|
375 | self.data_web['interval'] = self.dataOut.getTimeInterval() | |
364 | self.data_web['type'] = plottype |
|
376 | self.data_web['type'] = plottype | |
365 |
|
377 | |||
366 | def run(self): |
|
378 | def run(self): | |
367 |
|
379 | |||
368 | print '[Starting] {} from {}'.format(self.name, self.address) |
|
380 | print '[Starting] {} from {}'.format(self.name, self.address) | |
369 |
|
381 | |||
370 | self.context = zmq.Context() |
|
382 | self.context = zmq.Context() | |
371 | self.receiver = self.context.socket(zmq.PULL) |
|
383 | self.receiver = self.context.socket(zmq.PULL) | |
372 | self.receiver.bind(self.address) |
|
384 | self.receiver.bind(self.address) | |
373 | monitor = self.receiver.get_monitor_socket() |
|
385 | monitor = self.receiver.get_monitor_socket() | |
374 | self.sender = self.context.socket(zmq.PUB) |
|
386 | self.sender = self.context.socket(zmq.PUB) | |
375 | if self.realtime: |
|
387 | if self.realtime: | |
376 | self.sender_web = self.context.socket(zmq.PUB) |
|
388 | self.sender_web = self.context.socket(zmq.PUB) | |
377 | self.sender_web.connect(self.plot_address) |
|
389 | self.sender_web.connect(self.plot_address) | |
378 | time.sleep(1) |
|
390 | time.sleep(1) | |
379 | self.sender.bind("ipc:///tmp/zmq.plots") |
|
391 | self.sender.bind("ipc:///tmp/zmq.plots") | |
380 |
|
392 | |||
381 | t = Thread(target=self.event_monitor, args=(monitor,)) |
|
393 | t = Thread(target=self.event_monitor, args=(monitor,)) | |
382 | t.start() |
|
394 | t.start() | |
383 |
|
395 | |||
384 | while True: |
|
396 | while True: | |
385 | self.dataOut = self.receiver.recv_pyobj() |
|
397 | self.dataOut = self.receiver.recv_pyobj() | |
386 | # print '[Receiving] {} - {}'.format(self.dataOut.type, |
|
398 | # print '[Receiving] {} - {}'.format(self.dataOut.type, | |
387 | # self.dataOut.datatime.ctime()) |
|
399 | # self.dataOut.datatime.ctime()) | |
388 |
|
400 | |||
389 | self.update() |
|
401 | self.update() | |
390 |
|
402 | |||
391 | if self.dataOut.finished is True: |
|
403 | if self.dataOut.finished is True: | |
392 | self.send(self.data) |
|
404 | self.send(self.data) | |
393 | self.connections -= 1 |
|
405 | self.connections -= 1 | |
394 | if self.connections == 0 and self.started: |
|
406 | if self.connections == 0 and self.started: | |
395 | self.ended = True |
|
407 | self.ended = True | |
396 | self.data['ENDED'] = True |
|
408 | self.data['ENDED'] = True | |
397 | self.send(self.data) |
|
409 | self.send(self.data) | |
398 | self.setup() |
|
410 | self.setup() | |
399 | else: |
|
411 | else: | |
400 | if self.realtime: |
|
412 | if self.realtime: | |
401 | self.send(self.data) |
|
413 | self.send(self.data) | |
402 | self.sender_web.send_string(json.dumps(self.data_web)) |
|
414 | self.sender_web.send_string(json.dumps(self.data_web)) | |
403 | else: |
|
415 | else: | |
404 | self.sendData(self.send, self.data) |
|
416 | self.sendData(self.send, self.data) | |
405 | self.started = True |
|
417 | self.started = True | |
406 |
|
418 | |||
407 | return |
|
419 | return | |
408 |
|
420 | |||
409 | def sendToWeb(self): |
|
421 | def sendToWeb(self): | |
410 |
|
422 | |||
411 | if not self.isWebConfig: |
|
423 | if not self.isWebConfig: | |
412 | context = zmq.Context() |
|
424 | context = zmq.Context() | |
413 | sender_web_config = context.socket(zmq.PUB) |
|
425 | sender_web_config = context.socket(zmq.PUB) | |
414 | if 'tcp://' in self.plot_address: |
|
426 | if 'tcp://' in self.plot_address: | |
415 | dum, address, port = self.plot_address.split(':') |
|
427 | dum, address, port = self.plot_address.split(':') | |
416 | conf_address = '{}:{}:{}'.format(dum, address, int(port)+1) |
|
428 | conf_address = '{}:{}:{}'.format(dum, address, int(port)+1) | |
417 | else: |
|
429 | else: | |
418 | conf_address = self.plot_address + '.config' |
|
430 | conf_address = self.plot_address + '.config' | |
419 | sender_web_config.bind(conf_address) |
|
431 | sender_web_config.bind(conf_address) | |
420 | time.sleep(1) |
|
432 | time.sleep(1) | |
421 | for kwargs in self.operationKwargs.values(): |
|
433 | for kwargs in self.operationKwargs.values(): | |
422 | if 'plot' in kwargs: |
|
434 | if 'plot' in kwargs: | |
423 | print '[Sending] Config data to web for {}'.format(kwargs['code'].upper()) |
|
435 | print '[Sending] Config data to web for {}'.format(kwargs['code'].upper()) | |
424 | sender_web_config.send_string(json.dumps(kwargs)) |
|
436 | sender_web_config.send_string(json.dumps(kwargs)) | |
425 | self.isWebConfig = True |
|
437 | self.isWebConfig = True |
General Comments 0
You need to be logged in to leave comments.
Login now