##// END OF EJS Templates
Now we can merge ProcUnits for Double Pulse Experiments
rflores -
r1452:d596eb625435
parent child
Show More

The requested changes are too big and content was truncated. Show full diff

@@ -1,662 +1,665
1 1 # Copyright (c) 2012-2020 Jicamarca Radio Observatory
2 2 # All rights reserved.
3 3 #
4 4 # Distributed under the terms of the BSD 3-clause license.
5 5 """API to create signal chain projects
6 6
7 7 The API is provide through class: Project
8 8 """
9 9
10 10 import re
11 11 import sys
12 12 import ast
13 13 import datetime
14 14 import traceback
15 15 import time
16 16 import multiprocessing
17 17 from multiprocessing import Process, Queue
18 18 from threading import Thread
19 19 from xml.etree.ElementTree import ElementTree, Element, SubElement
20 20
21 21 from schainpy.admin import Alarm, SchainWarning
22 22 from schainpy.model import *
23 23 from schainpy.utils import log
24 24
25 25 if 'darwin' in sys.platform and sys.version_info[0] == 3 and sys.version_info[1] > 7:
26 26 multiprocessing.set_start_method('fork')
27 27
28 28 class ConfBase():
29 29
30 30 def __init__(self):
31 31
32 32 self.id = '0'
33 33 self.name = None
34 34 self.priority = None
35 35 self.parameters = {}
36 36 self.object = None
37 37 self.operations = []
38 38
39 39 def getId(self):
40 40
41 41 return self.id
42 42
43 43 def getNewId(self):
44 44
45 45 return int(self.id) * 10 + len(self.operations) + 1
46 46
47 47 def updateId(self, new_id):
48 48
49 49 self.id = str(new_id)
50 50
51 51 n = 1
52 52 for conf in self.operations:
53 53 conf_id = str(int(new_id) * 10 + n)
54 54 conf.updateId(conf_id)
55 55 n += 1
56 56
57 57 def getKwargs(self):
58 58
59 59 params = {}
60 60
61 61 for key, value in self.parameters.items():
62 62 if value not in (None, '', ' '):
63 63 params[key] = value
64 64
65 65 return params
66 66
67 67 def update(self, **kwargs):
68 68
69 69 if 'format' not in kwargs:
70 70 kwargs['format'] = None
71 71 for key, value, fmt in kwargs.items():
72 72 self.addParameter(name=key, value=value, format=fmt)
73 73
74 74 def addParameter(self, name, value, format=None):
75 75 '''
76 76 '''
77 77 if format is not None:
78 78 self.parameters[name] = eval(format)(value)
79 79 elif isinstance(value, str) and re.search(r'(\d+/\d+/\d+)', value):
80 80 self.parameters[name] = datetime.date(*[int(x) for x in value.split('/')])
81 81 elif isinstance(value, str) and re.search(r'(\d+:\d+:\d+)', value):
82 82 self.parameters[name] = datetime.time(*[int(x) for x in value.split(':')])
83 83 else:
84 84 try:
85 85 self.parameters[name] = ast.literal_eval(value)
86 86 except:
87 87 if isinstance(value, str) and ',' in value:
88 88 self.parameters[name] = value.split(',')
89 89 else:
90 90 self.parameters[name] = value
91 91
92 92 def getParameters(self):
93 93
94 94 params = {}
95 95 for key, value in self.parameters.items():
96 96 s = type(value).__name__
97 97 if s == 'date':
98 98 params[key] = value.strftime('%Y/%m/%d')
99 99 elif s == 'time':
100 100 params[key] = value.strftime('%H:%M:%S')
101 101 else:
102 102 params[key] = str(value)
103 103
104 104 return params
105 105
106 106 def makeXml(self, element):
107 107
108 108 xml = SubElement(element, self.ELEMENTNAME)
109 109 for label in self.xml_labels:
110 110 xml.set(label, str(getattr(self, label)))
111 111
112 112 for key, value in self.getParameters().items():
113 113 xml_param = SubElement(xml, 'Parameter')
114 114 xml_param.set('name', key)
115 115 xml_param.set('value', value)
116 116
117 117 for conf in self.operations:
118 118 conf.makeXml(xml)
119 119
120 120 def __str__(self):
121 121
122 122 if self.ELEMENTNAME == 'Operation':
123 123 s = ' {}[id={}]\n'.format(self.name, self.id)
124 124 else:
125 125 s = '{}[id={}, inputId={}]\n'.format(self.name, self.id, self.inputId)
126 126
127 127 for key, value in self.parameters.items():
128 128 if self.ELEMENTNAME == 'Operation':
129 129 s += ' {}: {}\n'.format(key, value)
130 130 else:
131 131 s += ' {}: {}\n'.format(key, value)
132 132
133 133 for conf in self.operations:
134 134 s += str(conf)
135 135
136 136 return s
137 137
138 138 class OperationConf(ConfBase):
139 139
140 140 ELEMENTNAME = 'Operation'
141 141 xml_labels = ['id', 'name']
142 142
143 143 def setup(self, id, name, priority, project_id, err_queue):
144 144
145 145 self.id = str(id)
146 146 self.project_id = project_id
147 147 self.name = name
148 148 self.type = 'other'
149 149 self.err_queue = err_queue
150 150
151 151 def readXml(self, element, project_id, err_queue):
152 152
153 153 self.id = element.get('id')
154 154 self.name = element.get('name')
155 155 self.type = 'other'
156 156 self.project_id = str(project_id)
157 157 self.err_queue = err_queue
158 158
159 159 for elm in element.iter('Parameter'):
160 160 self.addParameter(elm.get('name'), elm.get('value'))
161 161
162 162 def createObject(self):
163 163
164 164 className = eval(self.name)
165 165
166 166 if 'Plot' in self.name or 'Writer' in self.name or 'Send' in self.name or 'print' in self.name:
167 167 kwargs = self.getKwargs()
168 168 opObj = className(self.id, self.id, self.project_id, self.err_queue, **kwargs)
169 169 opObj.start()
170 170 self.type = 'external'
171 171 else:
172 172 opObj = className()
173 173
174 174 self.object = opObj
175 175 return opObj
176 176
177 177 class ProcUnitConf(ConfBase):
178 178
179 179 ELEMENTNAME = 'ProcUnit'
180 180 xml_labels = ['id', 'inputId', 'name']
181 181
182 182 def setup(self, project_id, id, name, datatype, inputId, err_queue):
183 183 '''
184 184 '''
185 185
186 186 if datatype == None and name == None:
187 187 raise ValueError('datatype or name should be defined')
188 188
189 189 if name == None:
190 190 if 'Proc' in datatype:
191 191 name = datatype
192 192 else:
193 193 name = '%sProc' % (datatype)
194 194
195 195 if datatype == None:
196 196 datatype = name.replace('Proc', '')
197 197
198 198 self.id = str(id)
199 199 self.project_id = project_id
200 200 self.name = name
201 201 self.datatype = datatype
202 202 self.inputId = inputId
203 203 self.err_queue = err_queue
204 204 self.operations = []
205 205 self.parameters = {}
206 206
207 207 def removeOperation(self, id):
208 208
209 209 i = [1 if x.id==id else 0 for x in self.operations]
210 210 self.operations.pop(i.index(1))
211 211
212 212 def getOperation(self, id):
213 213
214 214 for conf in self.operations:
215 215 if conf.id == id:
216 216 return conf
217 217
218 218 def addOperation(self, name, optype='self'):
219 219 '''
220 220 '''
221 221
222 222 id = self.getNewId()
223 223 conf = OperationConf()
224 224 conf.setup(id, name=name, priority='0', project_id=self.project_id, err_queue=self.err_queue)
225 225 self.operations.append(conf)
226 226
227 227 return conf
228 228
229 229 def readXml(self, element, project_id, err_queue):
230 230
231 231 self.id = element.get('id')
232 232 self.name = element.get('name')
233 233 self.inputId = None if element.get('inputId') == 'None' else element.get('inputId')
234 234 self.datatype = element.get('datatype', self.name.replace(self.ELEMENTNAME.replace('Unit', ''), ''))
235 235 self.project_id = str(project_id)
236 236 self.err_queue = err_queue
237 237 self.operations = []
238 238 self.parameters = {}
239 239
240 240 for elm in element:
241 241 if elm.tag == 'Parameter':
242 242 self.addParameter(elm.get('name'), elm.get('value'))
243 243 elif elm.tag == 'Operation':
244 244 conf = OperationConf()
245 245 conf.readXml(elm, project_id, err_queue)
246 246 self.operations.append(conf)
247 247
248 248 def createObjects(self):
249 249 '''
250 250 Instancia de unidades de procesamiento.
251 251 '''
252 252
253 253 className = eval(self.name)
254 254 kwargs = self.getKwargs()
255 255 procUnitObj = className()
256 256 procUnitObj.name = self.name
257 257 log.success('creating process...', self.name)
258 258
259 259 for conf in self.operations:
260 260
261 261 opObj = conf.createObject()
262 262
263 263 log.success('adding operation: {}, type:{}'.format(
264 264 conf.name,
265 265 conf.type), self.name)
266 266
267 267 procUnitObj.addOperation(conf, opObj)
268 268
269 269 self.object = procUnitObj
270 270
271 271 def run(self):
272 272 '''
273 273 '''
274 274
275 275 return self.object.call(**self.getKwargs())
276 276
277 277
278 278 class ReadUnitConf(ProcUnitConf):
279 279
280 280 ELEMENTNAME = 'ReadUnit'
281 281
282 282 def __init__(self):
283 283
284 284 self.id = None
285 285 self.datatype = None
286 286 self.name = None
287 287 self.inputId = None
288 288 self.operations = []
289 289 self.parameters = {}
290 290
291 291 def setup(self, project_id, id, name, datatype, err_queue, path='', startDate='', endDate='',
292 292 startTime='', endTime='', server=None, **kwargs):
293 293
294 294 if datatype == None and name == None:
295 295 raise ValueError('datatype or name should be defined')
296 296 if name == None:
297 297 if 'Reader' in datatype:
298 298 name = datatype
299 299 datatype = name.replace('Reader','')
300 300 else:
301 301 name = '{}Reader'.format(datatype)
302 302 if datatype == None:
303 303 if 'Reader' in name:
304 304 datatype = name.replace('Reader','')
305 305 else:
306 306 datatype = name
307 307 name = '{}Reader'.format(name)
308 308
309 309 self.id = id
310 310 self.project_id = project_id
311 311 self.name = name
312 312 self.datatype = datatype
313 313 self.err_queue = err_queue
314 314
315 315 self.addParameter(name='path', value=path, format='str')
316 316 self.addParameter(name='startDate', value=startDate)
317 317 self.addParameter(name='endDate', value=endDate)
318 318 self.addParameter(name='startTime', value=startTime)
319 319 self.addParameter(name='endTime', value=endTime)
320 320
321 321 for key, value in kwargs.items():
322 322 self.addParameter(name=key, value=value)
323 323
324 324
325 325 class Project(Process):
326 326 """API to create signal chain projects"""
327 327
328 328 ELEMENTNAME = 'Project'
329 329
330 330 def __init__(self, name=''):
331 331
332 332 Process.__init__(self)
333 333 self.id = '1'
334 334 if name:
335 335 self.name = '{} ({})'.format(Process.__name__, name)
336 336 self.filename = None
337 337 self.description = None
338 338 self.email = None
339 339 self.alarm = []
340 340 self.configurations = {}
341 341 # self.err_queue = Queue()
342 342 self.err_queue = None
343 343 self.started = False
344 344
345 345 def getNewId(self):
346 346
347 347 idList = list(self.configurations.keys())
348 348 id = int(self.id) * 10
349 349
350 350 while True:
351 351 id += 1
352 352
353 353 if str(id) in idList:
354 354 continue
355 355
356 356 break
357 357
358 358 return str(id)
359 359
360 360 def updateId(self, new_id):
361 361
362 362 self.id = str(new_id)
363 363
364 364 keyList = list(self.configurations.keys())
365 365 keyList.sort()
366 366
367 367 n = 1
368 368 new_confs = {}
369 369
370 370 for procKey in keyList:
371 371
372 372 conf = self.configurations[procKey]
373 373 idProcUnit = str(int(self.id) * 10 + n)
374 374 conf.updateId(idProcUnit)
375 375 new_confs[idProcUnit] = conf
376 376 n += 1
377 377
378 378 self.configurations = new_confs
379 379
380 380 def setup(self, id=1, name='', description='', email=None, alarm=[]):
381 381
382 382 self.id = str(id)
383 383 self.description = description
384 384 self.email = email
385 385 self.alarm = alarm
386 386 if name:
387 387 self.name = '{} ({})'.format(Process.__name__, name)
388 388
389 389 def update(self, **kwargs):
390 390
391 391 for key, value in kwargs.items():
392 392 setattr(self, key, value)
393 393
394 394 def clone(self):
395 395
396 396 p = Project()
397 397 p.id = self.id
398 398 p.name = self.name
399 399 p.description = self.description
400 400 p.configurations = self.configurations.copy()
401 401
402 402 return p
403 403
404 404 def addReadUnit(self, id=None, datatype=None, name=None, **kwargs):
405 405
406 406 '''
407 407 '''
408 408
409 409 if id is None:
410 410 idReadUnit = self.getNewId()
411 411 else:
412 412 idReadUnit = str(id)
413 413
414 414 conf = ReadUnitConf()
415 415 conf.setup(self.id, idReadUnit, name, datatype, self.err_queue, **kwargs)
416 416 self.configurations[conf.id] = conf
417 417
418 418 return conf
419 419
420 420 def addProcUnit(self, id=None, inputId='0', datatype=None, name=None):
421 421
422 422 '''
423 423 '''
424 424
425 425 if id is None:
426 426 idProcUnit = self.getNewId()
427 427 else:
428 428 idProcUnit = id
429 429
430 430 conf = ProcUnitConf()
431 431 conf.setup(self.id, idProcUnit, name, datatype, inputId, self.err_queue)
432 432 self.configurations[conf.id] = conf
433 433
434 434 return conf
435 435
436 436 def removeProcUnit(self, id):
437 437
438 438 if id in self.configurations:
439 439 self.configurations.pop(id)
440 440
441 441 def getReadUnit(self):
442 442
443 443 for obj in list(self.configurations.values()):
444 444 if obj.ELEMENTNAME == 'ReadUnit':
445 445 return obj
446 446
447 447 return None
448 448
449 449 def getProcUnit(self, id):
450 450
451 451 return self.configurations[id]
452 452
453 453 def getUnits(self):
454 454
455 455 keys = list(self.configurations)
456 456 keys.sort()
457 457
458 458 for key in keys:
459 459 yield self.configurations[key]
460 460
461 461 def updateUnit(self, id, **kwargs):
462 462
463 463 conf = self.configurations[id].update(**kwargs)
464 464
465 465 def makeXml(self):
466 466
467 467 xml = Element('Project')
468 468 xml.set('id', str(self.id))
469 469 xml.set('name', self.name)
470 470 xml.set('description', self.description)
471 471
472 472 for conf in self.configurations.values():
473 473 conf.makeXml(xml)
474 474
475 475 self.xml = xml
476 476
477 477 def writeXml(self, filename=None):
478 478
479 479 if filename == None:
480 480 if self.filename:
481 481 filename = self.filename
482 482 else:
483 483 filename = 'schain.xml'
484 484
485 485 if not filename:
486 486 print('filename has not been defined. Use setFilename(filename) for do it.')
487 487 return 0
488 488
489 489 abs_file = os.path.abspath(filename)
490 490
491 491 if not os.access(os.path.dirname(abs_file), os.W_OK):
492 492 print('No write permission on %s' % os.path.dirname(abs_file))
493 493 return 0
494 494
495 495 if os.path.isfile(abs_file) and not(os.access(abs_file, os.W_OK)):
496 496 print('File %s already exists and it could not be overwriten' % abs_file)
497 497 return 0
498 498
499 499 self.makeXml()
500 500
501 501 ElementTree(self.xml).write(abs_file, method='xml')
502 502
503 503 self.filename = abs_file
504 504
505 505 return 1
506 506
507 507 def readXml(self, filename):
508 508
509 509 abs_file = os.path.abspath(filename)
510 510
511 511 self.configurations = {}
512 512
513 513 try:
514 514 self.xml = ElementTree().parse(abs_file)
515 515 except:
516 516 log.error('Error reading %s, verify file format' % filename)
517 517 return 0
518 518
519 519 self.id = self.xml.get('id')
520 520 self.name = self.xml.get('name')
521 521 self.description = self.xml.get('description')
522 522
523 523 for element in self.xml:
524 524 if element.tag == 'ReadUnit':
525 525 conf = ReadUnitConf()
526 526 conf.readXml(element, self.id, self.err_queue)
527 527 self.configurations[conf.id] = conf
528 528 elif element.tag == 'ProcUnit':
529 529 conf = ProcUnitConf()
530 530 input_proc = self.configurations[element.get('inputId')]
531 531 conf.readXml(element, self.id, self.err_queue)
532 532 self.configurations[conf.id] = conf
533 533
534 534 self.filename = abs_file
535 535
536 536 return 1
537 537
538 538 def __str__(self):
539 539
540 540 text = '\nProject[id=%s, name=%s, description=%s]\n\n' % (
541 541 self.id,
542 542 self.name,
543 543 self.description,
544 544 )
545 545
546 546 for conf in self.configurations.values():
547 547 text += '{}'.format(conf)
548 548
549 549 return text
550 550
551 551 def createObjects(self):
552 552
553 553 keys = list(self.configurations.keys())
554 554 keys.sort()
555 555 for key in keys:
556 556 conf = self.configurations[key]
557 557 conf.createObjects()
558 558 if conf.inputId is not None:
559 conf.object.setInput(self.configurations[conf.inputId].object)
559 if isinstance(conf.inputId, list):
560 conf.object.setInput([self.configurations[x].object for x in conf.inputId])
561 else:
562 conf.object.setInput([self.configurations[conf.inputId].object])
560 563
561 564 def monitor(self):
562 565
563 566 t = Thread(target=self._monitor, args=(self.err_queue, self.ctx))
564 567 t.start()
565 568
566 569 def _monitor(self, queue, ctx):
567 570
568 571 import socket
569 572
570 573 procs = 0
571 574 err_msg = ''
572 575
573 576 while True:
574 577 msg = queue.get()
575 578 if '#_start_#' in msg:
576 579 procs += 1
577 580 elif '#_end_#' in msg:
578 581 procs -=1
579 582 else:
580 583 err_msg = msg
581 584
582 585 if procs == 0 or 'Traceback' in err_msg:
583 586 break
584 587 time.sleep(0.1)
585 588
586 589 if '|' in err_msg:
587 590 name, err = err_msg.split('|')
588 591 if 'SchainWarning' in err:
589 592 log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), name)
590 593 elif 'SchainError' in err:
591 594 log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), name)
592 595 else:
593 596 log.error(err, name)
594 597 else:
595 598 name, err = self.name, err_msg
596 599
597 600 time.sleep(1)
598 601
599 602 ctx.term()
600 603
601 604 message = ''.join(err)
602 605
603 606 if err_msg:
604 607 subject = 'SChain v%s: Error running %s\n' % (
605 608 schainpy.__version__, self.name)
606 609
607 610 subtitle = 'Hostname: %s\n' % socket.gethostbyname(
608 611 socket.gethostname())
609 612 subtitle += 'Working directory: %s\n' % os.path.abspath('./')
610 613 subtitle += 'Configuration file: %s\n' % self.filename
611 614 subtitle += 'Time: %s\n' % str(datetime.datetime.now())
612 615
613 616 readUnitConfObj = self.getReadUnit()
614 617 if readUnitConfObj:
615 618 subtitle += '\nInput parameters:\n'
616 619 subtitle += '[Data path = %s]\n' % readUnitConfObj.parameters['path']
617 620 subtitle += '[Start date = %s]\n' % readUnitConfObj.parameters['startDate']
618 621 subtitle += '[End date = %s]\n' % readUnitConfObj.parameters['endDate']
619 622 subtitle += '[Start time = %s]\n' % readUnitConfObj.parameters['startTime']
620 623 subtitle += '[End time = %s]\n' % readUnitConfObj.parameters['endTime']
621 624
622 625 a = Alarm(
623 626 modes=self.alarm,
624 627 email=self.email,
625 628 message=message,
626 629 subject=subject,
627 630 subtitle=subtitle,
628 631 filename=self.filename
629 632 )
630 633
631 634 a.start()
632 635
633 636 def setFilename(self, filename):
634 637
635 638 self.filename = filename
636 639
637 640 def runProcs(self):
638 641
639 642 err = False
640 643 n = len(self.configurations)
641 644
642 645 while not err:
643 646 for conf in self.getUnits():
644 647 ok = conf.run()
645 648 if ok == 'Error':
646 649 n -= 1
647 650 continue
648 651 elif not ok:
649 652 break
650 653 if n == 0:
651 654 err = True
652 655
653 656 def run(self):
654 657
655 658 log.success('\nStarting Project {} [id={}]'.format(self.name, self.id), tag='')
656 659 self.started = True
657 660 self.start_time = time.time()
658 661 self.createObjects()
659 662 self.runProcs()
660 663 log.success('{} Done (Time: {:4.2f}s)'.format(
661 664 self.name,
662 665 time.time()-self.start_time), '')
@@ -1,1788 +1,1788
1 1 import os
2 2 import datetime
3 3 import numpy
4 4 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
5 5
6 6 from schainpy.model.graphics.jroplot_base import Plot, plt
7 7 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
8 8 from schainpy.utils import log
9 9 # libreria wradlib
10 10 import wradlib as wrl
11 11
12 12 EARTH_RADIUS = 6.3710e3
13 13
14 14
15 15 def ll2xy(lat1, lon1, lat2, lon2):
16 16
17 17 p = 0.017453292519943295
18 18 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
19 19 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
20 20 r = 12742 * numpy.arcsin(numpy.sqrt(a))
21 21 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
22 22 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
23 23 theta = -theta + numpy.pi/2
24 24 return r*numpy.cos(theta), r*numpy.sin(theta)
25 25
26 26
27 27 def km2deg(km):
28 28 '''
29 29 Convert distance in km to degrees
30 30 '''
31 31
32 32 return numpy.rad2deg(km/EARTH_RADIUS)
33 33
34 34
35 35
36 36 class SpectralMomentsPlot(SpectraPlot):
37 37 '''
38 38 Plot for Spectral Moments
39 39 '''
40 40 CODE = 'spc_moments'
41 41 # colormap = 'jet'
42 42 # plot_type = 'pcolor'
43 43
44 44 class DobleGaussianPlot(SpectraPlot):
45 45 '''
46 46 Plot for Double Gaussian Plot
47 47 '''
48 48 CODE = 'gaussian_fit'
49 49 # colormap = 'jet'
50 50 # plot_type = 'pcolor'
51 51
52 52 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
53 53 '''
54 54 Plot SpectraCut with Double Gaussian Fit
55 55 '''
56 56 CODE = 'cut_gaussian_fit'
57 57
58 58 class SnrPlot(RTIPlot):
59 59 '''
60 60 Plot for SNR Data
61 61 '''
62 62
63 63 CODE = 'snr'
64 64 colormap = 'jet'
65 65
66 66 def update(self, dataOut):
67 67
68 68 data = {
69 69 'snr': 10*numpy.log10(dataOut.data_snr)
70 70 }
71 71
72 72 return data, {}
73 73
74 74 class DopplerPlot(RTIPlot):
75 75 '''
76 76 Plot for DOPPLER Data (1st moment)
77 77 '''
78 78
79 79 CODE = 'dop'
80 80 colormap = 'jet'
81 81
82 82 def update(self, dataOut):
83 83
84 84 data = {
85 85 'dop': 10*numpy.log10(dataOut.data_dop)
86 86 }
87 87
88 88 return data, {}
89 89
90 90 class PowerPlot(RTIPlot):
91 91 '''
92 92 Plot for Power Data (0 moment)
93 93 '''
94 94
95 95 CODE = 'pow'
96 96 colormap = 'jet'
97 97
98 98 def update(self, dataOut):
99 99 data = {
100 100 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
101 101 }
102 102 return data, {}
103 103
104 104 class SpectralWidthPlot(RTIPlot):
105 105 '''
106 106 Plot for Spectral Width Data (2nd moment)
107 107 '''
108 108
109 109 CODE = 'width'
110 110 colormap = 'jet'
111 111
112 112 def update(self, dataOut):
113 113
114 114 data = {
115 115 'width': dataOut.data_width
116 116 }
117 117
118 118 return data, {}
119 119
120 120 class SkyMapPlot(Plot):
121 121 '''
122 122 Plot for meteors detection data
123 123 '''
124 124
125 125 CODE = 'param'
126 126
127 127 def setup(self):
128 128
129 129 self.ncols = 1
130 130 self.nrows = 1
131 131 self.width = 7.2
132 132 self.height = 7.2
133 133 self.nplots = 1
134 134 self.xlabel = 'Zonal Zenith Angle (deg)'
135 135 self.ylabel = 'Meridional Zenith Angle (deg)'
136 136 self.polar = True
137 137 self.ymin = -180
138 138 self.ymax = 180
139 139 self.colorbar = False
140 140
141 141 def plot(self):
142 142
143 143 arrayParameters = numpy.concatenate(self.data['param'])
144 144 error = arrayParameters[:, -1]
145 145 indValid = numpy.where(error == 0)[0]
146 146 finalMeteor = arrayParameters[indValid, :]
147 147 finalAzimuth = finalMeteor[:, 3]
148 148 finalZenith = finalMeteor[:, 4]
149 149
150 150 x = finalAzimuth * numpy.pi / 180
151 151 y = finalZenith
152 152
153 153 ax = self.axes[0]
154 154
155 155 if ax.firsttime:
156 156 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
157 157 else:
158 158 ax.plot.set_data(x, y)
159 159
160 160 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
161 161 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
162 162 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
163 163 dt2,
164 164 len(x))
165 165 self.titles[0] = title
166 166
167 167
168 168 class GenericRTIPlot(Plot):
169 169 '''
170 170 Plot for data_xxxx object
171 171 '''
172 172
173 173 CODE = 'param'
174 174 colormap = 'viridis'
175 175 plot_type = 'pcolorbuffer'
176 176
177 177 def setup(self):
178 178 self.xaxis = 'time'
179 179 self.ncols = 1
180 180 self.nrows = self.data.shape('param')[0]
181 181 self.nplots = self.nrows
182 182 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
183 183
184 184 if not self.xlabel:
185 185 self.xlabel = 'Time'
186 186
187 187 self.ylabel = 'Range [km]'
188 188 if not self.titles:
189 189 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
190 190
191 191 def update(self, dataOut):
192 192
193 193 data = {
194 194 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
195 195 }
196 196
197 197 meta = {}
198 198
199 199 return data, meta
200 200
201 201 def plot(self):
202 202 # self.data.normalize_heights()
203 203 self.x = self.data.times
204 204 self.y = self.data.yrange
205 205 self.z = self.data['param']
206 206 self.z = 10*numpy.log10(self.z)
207 207 self.z = numpy.ma.masked_invalid(self.z)
208 208
209 209 if self.decimation is None:
210 210 x, y, z = self.fill_gaps(self.x, self.y, self.z)
211 211 else:
212 212 x, y, z = self.fill_gaps(*self.decimate())
213 213
214 214 for n, ax in enumerate(self.axes):
215 215
216 216 self.zmax = self.zmax if self.zmax is not None else numpy.max(
217 217 self.z[n])
218 218 self.zmin = self.zmin if self.zmin is not None else numpy.min(
219 219 self.z[n])
220 220
221 221 if ax.firsttime:
222 222 if self.zlimits is not None:
223 223 self.zmin, self.zmax = self.zlimits[n]
224 224
225 225 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
226 226 vmin=self.zmin,
227 227 vmax=self.zmax,
228 228 cmap=self.cmaps[n]
229 229 )
230 230 else:
231 231 if self.zlimits is not None:
232 232 self.zmin, self.zmax = self.zlimits[n]
233 233 ax.collections.remove(ax.collections[0])
234 234 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
235 235 vmin=self.zmin,
236 236 vmax=self.zmax,
237 237 cmap=self.cmaps[n]
238 238 )
239 239
240 240
241 241 class PolarMapPlot(Plot):
242 242 '''
243 243 Plot for weather radar
244 244 '''
245 245
246 246 CODE = 'param'
247 247 colormap = 'seismic'
248 248
249 249 def setup(self):
250 250 self.ncols = 1
251 251 self.nrows = 1
252 252 self.width = 9
253 253 self.height = 8
254 254 self.mode = self.data.meta['mode']
255 255 if self.channels is not None:
256 256 self.nplots = len(self.channels)
257 257 self.nrows = len(self.channels)
258 258 else:
259 259 self.nplots = self.data.shape(self.CODE)[0]
260 260 self.nrows = self.nplots
261 261 self.channels = list(range(self.nplots))
262 262 if self.mode == 'E':
263 263 self.xlabel = 'Longitude'
264 264 self.ylabel = 'Latitude'
265 265 else:
266 266 self.xlabel = 'Range (km)'
267 267 self.ylabel = 'Height (km)'
268 268 self.bgcolor = 'white'
269 269 self.cb_labels = self.data.meta['units']
270 270 self.lat = self.data.meta['latitude']
271 271 self.lon = self.data.meta['longitude']
272 272 self.xmin, self.xmax = float(
273 273 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
274 274 self.ymin, self.ymax = float(
275 275 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
276 276 # self.polar = True
277 277
278 278 def plot(self):
279 279
280 280 for n, ax in enumerate(self.axes):
281 281 data = self.data['param'][self.channels[n]]
282 282
283 283 zeniths = numpy.linspace(
284 284 0, self.data.meta['max_range'], data.shape[1])
285 285 if self.mode == 'E':
286 286 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
287 287 r, theta = numpy.meshgrid(zeniths, azimuths)
288 288 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
289 289 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
290 290 x = km2deg(x) + self.lon
291 291 y = km2deg(y) + self.lat
292 292 else:
293 293 azimuths = numpy.radians(self.data.yrange)
294 294 r, theta = numpy.meshgrid(zeniths, azimuths)
295 295 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
296 296 self.y = zeniths
297 297
298 298 if ax.firsttime:
299 299 if self.zlimits is not None:
300 300 self.zmin, self.zmax = self.zlimits[n]
301 301 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
302 302 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
303 303 vmin=self.zmin,
304 304 vmax=self.zmax,
305 305 cmap=self.cmaps[n])
306 306 else:
307 307 if self.zlimits is not None:
308 308 self.zmin, self.zmax = self.zlimits[n]
309 309 ax.collections.remove(ax.collections[0])
310 310 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
311 311 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
312 312 vmin=self.zmin,
313 313 vmax=self.zmax,
314 314 cmap=self.cmaps[n])
315 315
316 316 if self.mode == 'A':
317 317 continue
318 318
319 319 # plot district names
320 320 f = open('/data/workspace/schain_scripts/distrito.csv')
321 321 for line in f:
322 322 label, lon, lat = [s.strip() for s in line.split(',') if s]
323 323 lat = float(lat)
324 324 lon = float(lon)
325 325 # ax.plot(lon, lat, '.b', ms=2)
326 326 ax.text(lon, lat, label.decode('utf8'), ha='center',
327 327 va='bottom', size='8', color='black')
328 328
329 329 # plot limites
330 330 limites = []
331 331 tmp = []
332 332 for line in open('/data/workspace/schain_scripts/lima.csv'):
333 333 if '#' in line:
334 334 if tmp:
335 335 limites.append(tmp)
336 336 tmp = []
337 337 continue
338 338 values = line.strip().split(',')
339 339 tmp.append((float(values[0]), float(values[1])))
340 340 for points in limites:
341 341 ax.add_patch(
342 342 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
343 343
344 344 # plot Cuencas
345 345 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
346 346 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
347 347 values = [line.strip().split(',') for line in f]
348 348 points = [(float(s[0]), float(s[1])) for s in values]
349 349 ax.add_patch(Polygon(points, ec='b', fc='none'))
350 350
351 351 # plot grid
352 352 for r in (15, 30, 45, 60):
353 353 ax.add_artist(plt.Circle((self.lon, self.lat),
354 354 km2deg(r), color='0.6', fill=False, lw=0.2))
355 355 ax.text(
356 356 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
357 357 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
358 358 '{}km'.format(r),
359 359 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
360 360
361 361 if self.mode == 'E':
362 362 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
363 363 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
364 364 else:
365 365 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
366 366 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
367 367
368 368 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
369 369 self.titles = ['{} {}'.format(
370 370 self.data.parameters[x], title) for x in self.channels]
371 371
372 372 class WeatherPlot(Plot):
373 373 CODE = 'weather'
374 374 plot_name = 'weather'
375 375 plot_type = 'ppistyle'
376 376 buffering = False
377 377
378 378 def setup(self):
379 379 self.ncols = 1
380 380 self.nrows = 1
381 381 self.width =8
382 382 self.height =8
383 383 self.nplots= 1
384 384 self.ylabel= 'Range [Km]'
385 385 self.titles= ['Weather']
386 386 self.colorbar=False
387 387 self.ini =0
388 388 self.len_azi =0
389 389 self.buffer_ini = None
390 390 self.buffer_azi = None
391 391 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
392 392 self.flag =0
393 393 self.indicador= 0
394 394 self.last_data_azi = None
395 395 self.val_mean = None
396 396
397 397 def update(self, dataOut):
398 398
399 399 data = {}
400 400 meta = {}
401 401 if hasattr(dataOut, 'dataPP_POWER'):
402 402 factor = 1
403 403 if hasattr(dataOut, 'nFFTPoints'):
404 404 factor = dataOut.normFactor
405 405 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
406 406 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
407 407 data['azi'] = dataOut.data_azi
408 408 data['ele'] = dataOut.data_ele
409 409 return data, meta
410 410
411 411 def get2List(self,angulos):
412 412 list1=[]
413 413 list2=[]
414 414 for i in reversed(range(len(angulos))):
415 415 diff_ = angulos[i]-angulos[i-1]
416 416 if diff_ >1.5:
417 417 list1.append(i-1)
418 418 list2.append(diff_)
419 419 return list(reversed(list1)),list(reversed(list2))
420 420
421 421 def fixData360(self,list_,ang_):
422 422 if list_[0]==-1:
423 423 vec = numpy.where(ang_<ang_[0])
424 424 ang_[vec] = ang_[vec]+360
425 425 return ang_
426 426 return ang_
427 427
428 428 def fixData360HL(self,angulos):
429 429 vec = numpy.where(angulos>=360)
430 430 angulos[vec]=angulos[vec]-360
431 431 return angulos
432 432
433 433 def search_pos(self,pos,list_):
434 434 for i in range(len(list_)):
435 435 if pos == list_[i]:
436 436 return True,i
437 437 i=None
438 438 return False,i
439 439
440 440 def fixDataComp(self,ang_,list1_,list2_):
441 441 size = len(ang_)
442 442 size2 = 0
443 443 for i in range(len(list2_)):
444 444 size2=size2+round(list2_[i])-1
445 445 new_size= size+size2
446 446 ang_new = numpy.zeros(new_size)
447 447 ang_new2 = numpy.zeros(new_size)
448 448
449 449 tmp = 0
450 450 c = 0
451 451 for i in range(len(ang_)):
452 452 ang_new[tmp +c] = ang_[i]
453 453 ang_new2[tmp+c] = ang_[i]
454 454 condition , value = self.search_pos(i,list1_)
455 455 if condition:
456 456 pos = tmp + c + 1
457 457 for k in range(round(list2_[value])-1):
458 458 ang_new[pos+k] = ang_new[pos+k-1]+1
459 459 ang_new2[pos+k] = numpy.nan
460 460 tmp = pos +k
461 461 c = 0
462 462 c=c+1
463 463 return ang_new,ang_new2
464 464
465 465 def globalCheckPED(self,angulos):
466 466 l1,l2 = self.get2List(angulos)
467 467 if len(l1)>0:
468 468 angulos2 = self.fixData360(list_=l1,ang_=angulos)
469 469 l1,l2 = self.get2List(angulos2)
470 470
471 471 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
472 472 ang1_ = self.fixData360HL(ang1_)
473 473 ang2_ = self.fixData360HL(ang2_)
474 474 else:
475 475 ang1_= angulos
476 476 ang2_= angulos
477 477 return ang1_,ang2_
478 478
479 479 def analizeDATA(self,data_azi):
480 480 list1 = []
481 481 list2 = []
482 482 dat = data_azi
483 483 for i in reversed(range(1,len(dat))):
484 484 if dat[i]>dat[i-1]:
485 485 diff = int(dat[i])-int(dat[i-1])
486 486 else:
487 487 diff = 360+int(dat[i])-int(dat[i-1])
488 488 if diff > 1:
489 489 list1.append(i-1)
490 490 list2.append(diff-1)
491 491 return list1,list2
492 492
493 493 def fixDATANEW(self,data_azi,data_weather):
494 494 list1,list2 = self.analizeDATA(data_azi)
495 495 if len(list1)== 0:
496 496 return data_azi,data_weather
497 497 else:
498 498 resize = 0
499 499 for i in range(len(list2)):
500 500 resize= resize + list2[i]
501 501 new_data_azi = numpy.resize(data_azi,resize)
502 502 new_data_weather= numpy.resize(date_weather,resize)
503 503
504 504 for i in range(len(list2)):
505 505 j=0
506 506 position=list1[i]+1
507 507 for j in range(list2[i]):
508 508 new_data_azi[position+j]=new_data_azi[position+j-1]+1
509 509 return new_data_azi
510 510
511 511 def fixDATA(self,data_azi):
512 512 data=data_azi
513 513 for i in range(len(data)):
514 514 if numpy.isnan(data[i]):
515 515 data[i]=data[i-1]+1
516 516 return data
517 517
518 518 def replaceNAN(self,data_weather,data_azi,val):
519 519 data= data_azi
520 520 data_T= data_weather
521 521 if data.shape[0]> data_T.shape[0]:
522 522 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
523 523 c = 0
524 524 for i in range(len(data)):
525 525 if numpy.isnan(data[i]):
526 526 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
527 527 else:
528 528 data_N[i,:]=data_T[c,:]
529 529 c=c+1
530 530 return data_N
531 531 else:
532 532 for i in range(len(data)):
533 533 if numpy.isnan(data[i]):
534 534 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
535 535 return data_T
536 536
537 537 def const_ploteo(self,data_weather,data_azi,step,res):
538 538 if self.ini==0:
539 539 #-------
540 540 n = (360/res)-len(data_azi)
541 541 #--------------------- new -------------------------
542 542 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
543 543 #------------------------
544 544 start = data_azi_new[-1] + res
545 545 end = data_azi_new[0] - res
546 546 #------ new
547 547 self.last_data_azi = end
548 548 if start>end:
549 549 end = end + 360
550 550 azi_vacia = numpy.linspace(start,end,int(n))
551 551 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
552 552 data_azi = numpy.hstack((data_azi_new,azi_vacia))
553 553 # RADAR
554 554 val_mean = numpy.mean(data_weather[:,-1])
555 555 self.val_mean = val_mean
556 556 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
557 557 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
558 558 data_weather = numpy.vstack((data_weather,data_weather_cmp))
559 559 else:
560 560 # azimuth
561 561 flag=0
562 562 start_azi = self.res_azi[0]
563 563 #-----------new------------
564 564 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
565 565 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
566 566 #--------------------------
567 567 start = data_azi[0]
568 568 end = data_azi[-1]
569 569 self.last_data_azi= end
570 570 if start< start_azi:
571 571 start = start +360
572 572 if end <start_azi:
573 573 end = end +360
574 574
575 575 pos_ini = int((start-start_azi)/res)
576 576 len_azi = len(data_azi)
577 577 if (360-pos_ini)<len_azi:
578 578 if pos_ini+1==360:
579 579 pos_ini=0
580 580 else:
581 581 flag=1
582 582 dif= 360-pos_ini
583 583 comp= len_azi-dif
584 584 #-----------------
585 585 if flag==0:
586 586 # AZIMUTH
587 587 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
588 588 # RADAR
589 589 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
590 590 else:
591 591 # AZIMUTH
592 592 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
593 593 self.res_azi[0:comp] = data_azi[dif:]
594 594 # RADAR
595 595 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
596 596 self.res_weather[0:comp,:] = data_weather[dif:,:]
597 597 flag=0
598 598 data_azi = self.res_azi
599 599 data_weather = self.res_weather
600 600
601 601 return data_weather,data_azi
602 602
603 603 def plot(self):
604 604 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
605 605 data = self.data[-1]
606 606 r = self.data.yrange
607 607 delta_height = r[1]-r[0]
608 608 r_mask = numpy.where(r>=0)[0]
609 609 r = numpy.arange(len(r_mask))*delta_height
610 610 self.y = 2*r
611 611 # RADAR
612 612 #data_weather = data['weather']
613 613 # PEDESTAL
614 614 #data_azi = data['azi']
615 615 res = 1
616 616 # STEP
617 617 step = (360/(res*data['weather'].shape[0]))
618 618
619 619 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
620 620 self.res_ele = numpy.mean(data['ele'])
621 621 ################# PLOTEO ###################
622 622 for i,ax in enumerate(self.axes):
623 623 self.zmin = self.zmin if self.zmin else 20
624 624 self.zmax = self.zmax if self.zmax else 80
625 625 if ax.firsttime:
626 626 plt.clf()
627 627 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=self.zmin, vmax=self.zmax)
628 628 else:
629 629 plt.clf()
630 630 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=self.zmin, vmax=self.zmax)
631 631 caax = cgax.parasites[0]
632 632 paax = cgax.parasites[1]
633 633 cbar = plt.gcf().colorbar(pm, pad=0.075)
634 634 caax.set_xlabel('x_range [km]')
635 635 caax.set_ylabel('y_range [km]')
636 636 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " EL: "+str(round(self.res_ele, 1)), transform=caax.transAxes, va='bottom',ha='right')
637 637
638 638 self.ini= self.ini+1
639 639
640 640
641 641 class WeatherRHIPlot(Plot):
642 642 CODE = 'weather'
643 643 plot_name = 'weather'
644 644 plot_type = 'rhistyle'
645 645 buffering = False
646 646 data_ele_tmp = None
647 647
648 648 def setup(self):
649 649 print("********************")
650 650 print("********************")
651 651 print("********************")
652 652 print("SETUP WEATHER PLOT")
653 653 self.ncols = 1
654 654 self.nrows = 1
655 655 self.nplots= 1
656 656 self.ylabel= 'Range [Km]'
657 657 self.titles= ['Weather']
658 658 if self.channels is not None:
659 659 self.nplots = len(self.channels)
660 660 self.nrows = len(self.channels)
661 661 else:
662 662 self.nplots = self.data.shape(self.CODE)[0]
663 663 self.nrows = self.nplots
664 664 self.channels = list(range(self.nplots))
665 665 print("channels",self.channels)
666 666 print("que saldra", self.data.shape(self.CODE)[0])
667 667 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
668 668 print("self.titles",self.titles)
669 669 self.colorbar=False
670 670 self.width =12
671 671 self.height =8
672 672 self.ini =0
673 673 self.len_azi =0
674 674 self.buffer_ini = None
675 675 self.buffer_ele = None
676 676 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
677 677 self.flag =0
678 678 self.indicador= 0
679 679 self.last_data_ele = None
680 680 self.val_mean = None
681 681
682 682 def update(self, dataOut):
683 683
684 684 data = {}
685 685 meta = {}
686 686 if hasattr(dataOut, 'dataPP_POWER'):
687 687 factor = 1
688 688 if hasattr(dataOut, 'nFFTPoints'):
689 689 factor = dataOut.normFactor
690 690 print("dataOut",dataOut.data_360.shape)
691 691 #
692 692 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
693 693 #
694 694 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
695 695 data['azi'] = dataOut.data_azi
696 696 data['ele'] = dataOut.data_ele
697 697 #print("UPDATE")
698 698 #print("data[weather]",data['weather'].shape)
699 699 #print("data[azi]",data['azi'])
700 700 return data, meta
701 701
702 702 def get2List(self,angulos):
703 703 list1=[]
704 704 list2=[]
705 705 for i in reversed(range(len(angulos))):
706 706 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
707 707 diff_ = angulos[i]-angulos[i-1]
708 708 if abs(diff_) >1.5:
709 709 list1.append(i-1)
710 710 list2.append(diff_)
711 711 return list(reversed(list1)),list(reversed(list2))
712 712
713 713 def fixData90(self,list_,ang_):
714 714 if list_[0]==-1:
715 715 vec = numpy.where(ang_<ang_[0])
716 716 ang_[vec] = ang_[vec]+90
717 717 return ang_
718 718 return ang_
719 719
720 720 def fixData90HL(self,angulos):
721 721 vec = numpy.where(angulos>=90)
722 722 angulos[vec]=angulos[vec]-90
723 723 return angulos
724 724
725 725
726 726 def search_pos(self,pos,list_):
727 727 for i in range(len(list_)):
728 728 if pos == list_[i]:
729 729 return True,i
730 730 i=None
731 731 return False,i
732 732
733 733 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
734 734 size = len(ang_)
735 735 size2 = 0
736 736 for i in range(len(list2_)):
737 737 size2=size2+round(abs(list2_[i]))-1
738 738 new_size= size+size2
739 739 ang_new = numpy.zeros(new_size)
740 740 ang_new2 = numpy.zeros(new_size)
741 741
742 742 tmp = 0
743 743 c = 0
744 744 for i in range(len(ang_)):
745 745 ang_new[tmp +c] = ang_[i]
746 746 ang_new2[tmp+c] = ang_[i]
747 747 condition , value = self.search_pos(i,list1_)
748 748 if condition:
749 749 pos = tmp + c + 1
750 750 for k in range(round(abs(list2_[value]))-1):
751 751 if tipo_case==0 or tipo_case==3:#subida
752 752 ang_new[pos+k] = ang_new[pos+k-1]+1
753 753 ang_new2[pos+k] = numpy.nan
754 754 elif tipo_case==1 or tipo_case==2:#bajada
755 755 ang_new[pos+k] = ang_new[pos+k-1]-1
756 756 ang_new2[pos+k] = numpy.nan
757 757
758 758 tmp = pos +k
759 759 c = 0
760 760 c=c+1
761 761 return ang_new,ang_new2
762 762
763 763 def globalCheckPED(self,angulos,tipo_case):
764 764 l1,l2 = self.get2List(angulos)
765 765 ##print("l1",l1)
766 766 ##print("l2",l2)
767 767 if len(l1)>0:
768 768 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
769 769 #l1,l2 = self.get2List(angulos2)
770 770 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
771 771 #ang1_ = self.fixData90HL(ang1_)
772 772 #ang2_ = self.fixData90HL(ang2_)
773 773 else:
774 774 ang1_= angulos
775 775 ang2_= angulos
776 776 return ang1_,ang2_
777 777
778 778
779 779 def replaceNAN(self,data_weather,data_ele,val):
780 780 data= data_ele
781 781 data_T= data_weather
782 782 if data.shape[0]> data_T.shape[0]:
783 783 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
784 784 c = 0
785 785 for i in range(len(data)):
786 786 if numpy.isnan(data[i]):
787 787 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
788 788 else:
789 789 data_N[i,:]=data_T[c,:]
790 790 c=c+1
791 791 return data_N
792 792 else:
793 793 for i in range(len(data)):
794 794 if numpy.isnan(data[i]):
795 795 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
796 796 return data_T
797 797
798 798 def check_case(self,data_ele,ang_max,ang_min):
799 799 start = data_ele[0]
800 800 end = data_ele[-1]
801 801 number = (end-start)
802 802 len_ang=len(data_ele)
803 803 print("start",start)
804 804 print("end",end)
805 805 print("number",number)
806 806
807 807 print("len_ang",len_ang)
808 808
809 809 #exit(1)
810 810
811 811 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
812 812 return 0
813 813 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
814 814 # return 1
815 815 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
816 816 return 1
817 817 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
818 818 return 2
819 819 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
820 820 return 3
821 821
822 822
823 823 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
824 824 ang_max= ang_max
825 825 ang_min= ang_min
826 826 data_weather=data_weather
827 827 val_ch=val_ch
828 828 ##print("*********************DATA WEATHER**************************************")
829 829 ##print(data_weather)
830 830 if self.ini==0:
831 831 '''
832 832 print("**********************************************")
833 833 print("**********************************************")
834 834 print("***************ini**************")
835 835 print("**********************************************")
836 836 print("**********************************************")
837 837 '''
838 838 #print("data_ele",data_ele)
839 839 #----------------------------------------------------------
840 840 tipo_case = self.check_case(data_ele,ang_max,ang_min)
841 841 print("check_case",tipo_case)
842 842 #exit(1)
843 843 #--------------------- new -------------------------
844 844 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
845 845
846 846 #-------------------------CAMBIOS RHI---------------------------------
847 847 start= ang_min
848 848 end = ang_max
849 849 n= (ang_max-ang_min)/res
850 850 #------ new
851 851 self.start_data_ele = data_ele_new[0]
852 852 self.end_data_ele = data_ele_new[-1]
853 853 if tipo_case==0 or tipo_case==3: # SUBIDA
854 854 n1= round(self.start_data_ele)- start
855 855 n2= end - round(self.end_data_ele)
856 856 print(self.start_data_ele)
857 857 print(self.end_data_ele)
858 858 if n1>0:
859 859 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
860 860 ele1_nan= numpy.ones(n1)*numpy.nan
861 861 data_ele = numpy.hstack((ele1,data_ele_new))
862 862 print("ele1_nan",ele1_nan.shape)
863 863 print("data_ele_old",data_ele_old.shape)
864 864 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
865 865 if n2>0:
866 866 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
867 867 ele2_nan= numpy.ones(n2)*numpy.nan
868 868 data_ele = numpy.hstack((data_ele,ele2))
869 869 print("ele2_nan",ele2_nan.shape)
870 870 print("data_ele_old",data_ele_old.shape)
871 871 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
872 872
873 873 if tipo_case==1 or tipo_case==2: # BAJADA
874 874 data_ele_new = data_ele_new[::-1] # reversa
875 875 data_ele_old = data_ele_old[::-1]# reversa
876 876 data_weather = data_weather[::-1,:]# reversa
877 877 vec= numpy.where(data_ele_new<ang_max)
878 878 data_ele_new = data_ele_new[vec]
879 879 data_ele_old = data_ele_old[vec]
880 880 data_weather = data_weather[vec[0]]
881 881 vec2= numpy.where(0<data_ele_new)
882 882 data_ele_new = data_ele_new[vec2]
883 883 data_ele_old = data_ele_old[vec2]
884 884 data_weather = data_weather[vec2[0]]
885 885 self.start_data_ele = data_ele_new[0]
886 886 self.end_data_ele = data_ele_new[-1]
887 887
888 888 n1= round(self.start_data_ele)- start
889 889 n2= end - round(self.end_data_ele)-1
890 890 print(self.start_data_ele)
891 891 print(self.end_data_ele)
892 892 if n1>0:
893 893 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
894 894 ele1_nan= numpy.ones(n1)*numpy.nan
895 895 data_ele = numpy.hstack((ele1,data_ele_new))
896 896 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
897 897 if n2>0:
898 898 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
899 899 ele2_nan= numpy.ones(n2)*numpy.nan
900 900 data_ele = numpy.hstack((data_ele,ele2))
901 901 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
902 902 # RADAR
903 903 # NOTA data_ele y data_weather es la variable que retorna
904 904 val_mean = numpy.mean(data_weather[:,-1])
905 905 self.val_mean = val_mean
906 906 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
907 907 self.data_ele_tmp[val_ch]= data_ele_old
908 908 else:
909 909 #print("**********************************************")
910 910 #print("****************VARIABLE**********************")
911 911 #-------------------------CAMBIOS RHI---------------------------------
912 912 #---------------------------------------------------------------------
913 913 ##print("INPUT data_ele",data_ele)
914 914 flag=0
915 915 start_ele = self.res_ele[0]
916 916 tipo_case = self.check_case(data_ele,ang_max,ang_min)
917 917 #print("TIPO DE DATA",tipo_case)
918 918 #-----------new------------
919 919 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
920 920 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
921 921
922 922 #-------------------------------NEW RHI ITERATIVO-------------------------
923 923
924 924 if tipo_case==0 : # SUBIDA
925 925 vec = numpy.where(data_ele<ang_max)
926 926 data_ele = data_ele[vec]
927 927 data_ele_old = data_ele_old[vec]
928 928 data_weather = data_weather[vec[0]]
929 929
930 930 vec2 = numpy.where(0<data_ele)
931 931 data_ele= data_ele[vec2]
932 932 data_ele_old= data_ele_old[vec2]
933 933 ##print(data_ele_new)
934 934 data_weather= data_weather[vec2[0]]
935 935
936 936 new_i_ele = int(round(data_ele[0]))
937 937 new_f_ele = int(round(data_ele[-1]))
938 938 #print(new_i_ele)
939 939 #print(new_f_ele)
940 940 #print(data_ele,len(data_ele))
941 941 #print(data_ele_old,len(data_ele_old))
942 942 if new_i_ele< 2:
943 943 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
944 944 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
945 945 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
946 946 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
947 947 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
948 948 data_ele = self.res_ele
949 949 data_weather = self.res_weather[val_ch]
950 950
951 951 elif tipo_case==1 : #BAJADA
952 952 data_ele = data_ele[::-1] # reversa
953 953 data_ele_old = data_ele_old[::-1]# reversa
954 954 data_weather = data_weather[::-1,:]# reversa
955 955 vec= numpy.where(data_ele<ang_max)
956 956 data_ele = data_ele[vec]
957 957 data_ele_old = data_ele_old[vec]
958 958 data_weather = data_weather[vec[0]]
959 959 vec2= numpy.where(0<data_ele)
960 960 data_ele = data_ele[vec2]
961 961 data_ele_old = data_ele_old[vec2]
962 962 data_weather = data_weather[vec2[0]]
963 963
964 964
965 965 new_i_ele = int(round(data_ele[0]))
966 966 new_f_ele = int(round(data_ele[-1]))
967 967 #print(data_ele)
968 968 #print(ang_max)
969 969 #print(data_ele_old)
970 970 if new_i_ele <= 1:
971 971 new_i_ele = 1
972 972 if round(data_ele[-1])>=ang_max-1:
973 973 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
974 974 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
975 975 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
976 976 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
977 977 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
978 978 data_ele = self.res_ele
979 979 data_weather = self.res_weather[val_ch]
980 980
981 981 elif tipo_case==2: #bajada
982 982 vec = numpy.where(data_ele<ang_max)
983 983 data_ele = data_ele[vec]
984 984 data_weather= data_weather[vec[0]]
985 985
986 986 len_vec = len(vec)
987 987 data_ele_new = data_ele[::-1] # reversa
988 988 data_weather = data_weather[::-1,:]
989 989 new_i_ele = int(data_ele_new[0])
990 990 new_f_ele = int(data_ele_new[-1])
991 991
992 992 n1= new_i_ele- ang_min
993 993 n2= ang_max - new_f_ele-1
994 994 if n1>0:
995 995 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
996 996 ele1_nan= numpy.ones(n1)*numpy.nan
997 997 data_ele = numpy.hstack((ele1,data_ele_new))
998 998 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
999 999 if n2>0:
1000 1000 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1001 1001 ele2_nan= numpy.ones(n2)*numpy.nan
1002 1002 data_ele = numpy.hstack((data_ele,ele2))
1003 1003 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1004 1004
1005 1005 self.data_ele_tmp[val_ch] = data_ele_old
1006 1006 self.res_ele = data_ele
1007 1007 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1008 1008 data_ele = self.res_ele
1009 1009 data_weather = self.res_weather[val_ch]
1010 1010
1011 1011 elif tipo_case==3:#subida
1012 1012 vec = numpy.where(0<data_ele)
1013 1013 data_ele= data_ele[vec]
1014 1014 data_ele_new = data_ele
1015 1015 data_ele_old= data_ele_old[vec]
1016 1016 data_weather= data_weather[vec[0]]
1017 1017 pos_ini = numpy.argmin(data_ele)
1018 1018 if pos_ini>0:
1019 1019 len_vec= len(data_ele)
1020 1020 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1021 1021 #print(vec3)
1022 1022 data_ele= data_ele[vec3]
1023 1023 data_ele_new = data_ele
1024 1024 data_ele_old= data_ele_old[vec3]
1025 1025 data_weather= data_weather[vec3]
1026 1026
1027 1027 new_i_ele = int(data_ele_new[0])
1028 1028 new_f_ele = int(data_ele_new[-1])
1029 1029 n1= new_i_ele- ang_min
1030 1030 n2= ang_max - new_f_ele-1
1031 1031 if n1>0:
1032 1032 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1033 1033 ele1_nan= numpy.ones(n1)*numpy.nan
1034 1034 data_ele = numpy.hstack((ele1,data_ele_new))
1035 1035 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1036 1036 if n2>0:
1037 1037 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1038 1038 ele2_nan= numpy.ones(n2)*numpy.nan
1039 1039 data_ele = numpy.hstack((data_ele,ele2))
1040 1040 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1041 1041
1042 1042 self.data_ele_tmp[val_ch] = data_ele_old
1043 1043 self.res_ele = data_ele
1044 1044 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1045 1045 data_ele = self.res_ele
1046 1046 data_weather = self.res_weather[val_ch]
1047 1047 #print("self.data_ele_tmp",self.data_ele_tmp)
1048 1048 return data_weather,data_ele
1049 1049
1050 1050
1051 1051 def plot(self):
1052 1052 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1053 1053 data = self.data[-1]
1054 1054 r = self.data.yrange
1055 1055 delta_height = r[1]-r[0]
1056 1056 r_mask = numpy.where(r>=0)[0]
1057 1057 ##print("delta_height",delta_height)
1058 1058 #print("r_mask",r_mask,len(r_mask))
1059 1059 r = numpy.arange(len(r_mask))*delta_height
1060 1060 self.y = 2*r
1061 1061 res = 1
1062 1062 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1063 1063 ang_max = self.ang_max
1064 1064 ang_min = self.ang_min
1065 1065 var_ang =ang_max - ang_min
1066 1066 step = (int(var_ang)/(res*data['weather'].shape[0]))
1067 1067 ###print("step",step)
1068 1068 #--------------------------------------------------------
1069 1069 ##print('weather',data['weather'].shape)
1070 1070 ##print('ele',data['ele'].shape)
1071 1071
1072 1072 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1073 1073 ###self.res_azi = numpy.mean(data['azi'])
1074 1074 ###print("self.res_ele",self.res_ele)
1075 1075 plt.clf()
1076 1076 subplots = [121, 122]
1077 1077 cg={'angular_spacing': 20.}
1078 1078 if self.ini==0:
1079 1079 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1080 1080 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1081 1081 print("SHAPE",self.data_ele_tmp.shape)
1082 1082
1083 1083 for i,ax in enumerate(self.axes):
1084 1084 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1085 1085 self.res_azi = numpy.mean(data['azi'])
1086 1086 if i==0:
1087 1087 print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
1088 1088 self.zmin = self.zmin if self.zmin else 20
1089 1089 self.zmax = self.zmax if self.zmax else 80
1090 1090 if ax.firsttime:
1091 1091 #plt.clf()
1092 1092 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj=cg,vmin=self.zmin, vmax=self.zmax)
1093 1093 #fig=self.figures[0]
1094 1094 else:
1095 1095 #plt.clf()
1096 1096 if i==0:
1097 1097 print(self.res_weather[i])
1098 1098 print(self.res_ele)
1099 1099 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj=cg,vmin=self.zmin, vmax=self.zmax)
1100 1100 caax = cgax.parasites[0]
1101 1101 paax = cgax.parasites[1]
1102 1102 cbar = plt.gcf().colorbar(pm, pad=0.075)
1103 1103 caax.set_xlabel('x_range [km]')
1104 1104 caax.set_ylabel('y_range [km]')
1105 1105 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1106 1106 print("***************************self.ini****************************",self.ini)
1107 1107 self.ini= self.ini+1
1108 1108
1109 1109 class Weather_vRF_Plot(Plot):
1110 1110 CODE = 'PPI'
1111 1111 plot_name = 'PPI'
1112 1112 #plot_type = 'ppistyle'
1113 1113 buffering = False
1114 1114
1115 1115 def setup(self):
1116 1116
1117 1117 self.ncols = 1
1118 1118 self.nrows = 1
1119 1119 self.width =8
1120 1120 self.height =8
1121 1121 self.nplots= 1
1122 1122 self.ylabel= 'Range [Km]'
1123 1123 self.xlabel= 'Range [Km]'
1124 1124 self.titles= ['PPI']
1125 1125 self.polar = True
1126 1126 if self.channels is not None:
1127 1127 self.nplots = len(self.channels)
1128 1128 self.nrows = len(self.channels)
1129 1129 else:
1130 1130 self.nplots = self.data.shape(self.CODE)[0]
1131 1131 self.nrows = self.nplots
1132 1132 self.channels = list(range(self.nplots))
1133 1133
1134 1134 if self.CODE == 'POWER':
1135 1135 self.cb_label = r'Power (dB)'
1136 1136 elif self.CODE == 'DOPPLER':
1137 1137 self.cb_label = r'Velocity (m/s)'
1138 1138 self.colorbar=True
1139 1139 self.width = 9
1140 1140 self.height =8
1141 1141 self.ini =0
1142 1142 self.len_azi =0
1143 1143 self.buffer_ini = None
1144 1144 self.buffer_ele = None
1145 1145 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.15, 'right': 0.9, 'bottom': 0.08})
1146 1146 self.flag =0
1147 1147 self.indicador= 0
1148 1148 self.last_data_ele = None
1149 1149 self.val_mean = None
1150 1150
1151 1151 def update(self, dataOut):
1152 1152
1153 1153 data = {}
1154 1154 meta = {}
1155 1155 if hasattr(dataOut, 'dataPP_POWER'):
1156 1156 factor = 1
1157 1157 if hasattr(dataOut, 'nFFTPoints'):
1158 1158 factor = dataOut.normFactor
1159 1159
1160 1160 if 'pow' in self.attr_data[0].lower():
1161 1161 data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor))
1162 1162 else:
1163 1163 data['data'] = getattr(dataOut, self.attr_data[0])/(factor)
1164 1164
1165 1165 data['azi'] = dataOut.data_azi
1166 1166 data['ele'] = dataOut.data_ele
1167 1167
1168 1168 return data, meta
1169 1169
1170 1170 def plot(self):
1171 1171 data = self.data[-1]
1172 1172 r = self.data.yrange
1173 1173 delta_height = r[1]-r[0]
1174 1174 r_mask = numpy.where(r>=0)[0]
1175 1175 self.r_mask = r_mask
1176 1176 r = numpy.arange(len(r_mask))*delta_height
1177 1177 self.y = 2*r
1178 1178
1179 1179 z = data['data'][self.channels[0]][:,r_mask]
1180 1180
1181 1181 self.titles = []
1182 1182
1183 1183 self.ymax = self.ymax if self.ymax else numpy.nanmax(r)
1184 1184 self.ymin = self.ymin if self.ymin else numpy.nanmin(r)
1185 1185 self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
1186 1186 self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
1187 1187 self.ang_min = self.ang_min if self.ang_min else 0
1188 1188 self.ang_max = self.ang_max if self.ang_max else 360
1189 1189
1190 1190 r, theta = numpy.meshgrid(r, numpy.radians(data['azi']) )
1191 1191
1192 1192 for i,ax in enumerate(self.axes):
1193 1193
1194 1194 if ax.firsttime:
1195 1195 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
1196 1196 ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
1197 1197
1198 1198 else:
1199 1199 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
1200 1200 ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
1201
1201
1202 1202 ax.grid(True)
1203
1203
1204 1204 if len(self.channels) !=1:
1205 1205 self.titles = ['PPI {} at EL: {} Channel {}'.format(self.self.labels[x], str(round(numpy.mean(data['ele']),1)), x) for x in range(self.nrows)]
1206 1206 else:
1207 1207 self.titles = ['PPI {} at EL: {} Channel {}'.format(self.labels[0], str(round(numpy.mean(data['ele']),1)), self.channels[0])]
1208 1208
1209 1209 class WeatherRHI_vRF2_Plot(Plot):
1210 1210 CODE = 'weather'
1211 1211 plot_name = 'weather'
1212 1212 plot_type = 'rhistyle'
1213 1213 buffering = False
1214 1214 data_ele_tmp = None
1215 1215
1216 1216 def setup(self):
1217 1217 print("********************")
1218 1218 print("********************")
1219 1219 print("********************")
1220 1220 print("SETUP WEATHER PLOT")
1221 1221 self.ncols = 1
1222 1222 self.nrows = 1
1223 1223 self.nplots= 1
1224 1224 self.ylabel= 'Range [Km]'
1225 1225 self.titles= ['Weather']
1226 1226 if self.channels is not None:
1227 1227 self.nplots = len(self.channels)
1228 1228 self.nrows = len(self.channels)
1229 1229 else:
1230 1230 self.nplots = self.data.shape(self.CODE)[0]
1231 1231 self.nrows = self.nplots
1232 1232 self.channels = list(range(self.nplots))
1233 1233 print("channels",self.channels)
1234 1234 print("que saldra", self.data.shape(self.CODE)[0])
1235 1235 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1236 1236 print("self.titles",self.titles)
1237 1237 self.colorbar=False
1238 1238 self.width =8
1239 1239 self.height =8
1240 1240 self.ini =0
1241 1241 self.len_azi =0
1242 1242 self.buffer_ini = None
1243 1243 self.buffer_ele = None
1244 1244 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1245 1245 self.flag =0
1246 1246 self.indicador= 0
1247 1247 self.last_data_ele = None
1248 1248 self.val_mean = None
1249 1249
1250 1250 def update(self, dataOut):
1251 1251
1252 1252 data = {}
1253 1253 meta = {}
1254 1254 if hasattr(dataOut, 'dataPP_POWER'):
1255 1255 factor = 1
1256 1256 if hasattr(dataOut, 'nFFTPoints'):
1257 1257 factor = dataOut.normFactor
1258 1258 print("dataOut",dataOut.data_360.shape)
1259 1259 #
1260 1260 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1261 1261 #
1262 1262 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1263 1263 data['azi'] = dataOut.data_azi
1264 1264 data['ele'] = dataOut.data_ele
1265 1265 data['case_flag'] = dataOut.case_flag
1266 1266 #print("UPDATE")
1267 1267 #print("data[weather]",data['weather'].shape)
1268 1268 #print("data[azi]",data['azi'])
1269 1269 return data, meta
1270 1270
1271 1271 def get2List(self,angulos):
1272 1272 list1=[]
1273 1273 list2=[]
1274 1274 for i in reversed(range(len(angulos))):
1275 1275 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1276 1276 diff_ = angulos[i]-angulos[i-1]
1277 1277 if abs(diff_) >1.5:
1278 1278 list1.append(i-1)
1279 1279 list2.append(diff_)
1280 1280 return list(reversed(list1)),list(reversed(list2))
1281 1281
1282 1282 def fixData90(self,list_,ang_):
1283 1283 if list_[0]==-1:
1284 1284 vec = numpy.where(ang_<ang_[0])
1285 1285 ang_[vec] = ang_[vec]+90
1286 1286 return ang_
1287 1287 return ang_
1288 1288
1289 1289 def fixData90HL(self,angulos):
1290 1290 vec = numpy.where(angulos>=90)
1291 1291 angulos[vec]=angulos[vec]-90
1292 1292 return angulos
1293 1293
1294 1294
1295 1295 def search_pos(self,pos,list_):
1296 1296 for i in range(len(list_)):
1297 1297 if pos == list_[i]:
1298 1298 return True,i
1299 1299 i=None
1300 1300 return False,i
1301 1301
1302 1302 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1303 1303 size = len(ang_)
1304 1304 size2 = 0
1305 1305 for i in range(len(list2_)):
1306 1306 size2=size2+round(abs(list2_[i]))-1
1307 1307 new_size= size+size2
1308 1308 ang_new = numpy.zeros(new_size)
1309 1309 ang_new2 = numpy.zeros(new_size)
1310 1310
1311 1311 tmp = 0
1312 1312 c = 0
1313 1313 for i in range(len(ang_)):
1314 1314 ang_new[tmp +c] = ang_[i]
1315 1315 ang_new2[tmp+c] = ang_[i]
1316 1316 condition , value = self.search_pos(i,list1_)
1317 1317 if condition:
1318 1318 pos = tmp + c + 1
1319 1319 for k in range(round(abs(list2_[value]))-1):
1320 1320 if tipo_case==0 or tipo_case==3:#subida
1321 1321 ang_new[pos+k] = ang_new[pos+k-1]+1
1322 1322 ang_new2[pos+k] = numpy.nan
1323 1323 elif tipo_case==1 or tipo_case==2:#bajada
1324 1324 ang_new[pos+k] = ang_new[pos+k-1]-1
1325 1325 ang_new2[pos+k] = numpy.nan
1326 1326
1327 1327 tmp = pos +k
1328 1328 c = 0
1329 1329 c=c+1
1330 1330 return ang_new,ang_new2
1331 1331
1332 1332 def globalCheckPED(self,angulos,tipo_case):
1333 1333 l1,l2 = self.get2List(angulos)
1334 1334 ##print("l1",l1)
1335 1335 ##print("l2",l2)
1336 1336 if len(l1)>0:
1337 1337 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1338 1338 #l1,l2 = self.get2List(angulos2)
1339 1339 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1340 1340 #ang1_ = self.fixData90HL(ang1_)
1341 1341 #ang2_ = self.fixData90HL(ang2_)
1342 1342 else:
1343 1343 ang1_= angulos
1344 1344 ang2_= angulos
1345 1345 return ang1_,ang2_
1346 1346
1347 1347
1348 1348 def replaceNAN(self,data_weather,data_ele,val):
1349 1349 data= data_ele
1350 1350 data_T= data_weather
1351 1351 if data.shape[0]> data_T.shape[0]:
1352 1352 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1353 1353 c = 0
1354 1354 for i in range(len(data)):
1355 1355 if numpy.isnan(data[i]):
1356 1356 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1357 1357 else:
1358 1358 data_N[i,:]=data_T[c,:]
1359 1359 c=c+1
1360 1360 return data_N
1361 1361 else:
1362 1362 for i in range(len(data)):
1363 1363 if numpy.isnan(data[i]):
1364 1364 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1365 1365 return data_T
1366 1366
1367 1367 def check_case(self,data_ele,ang_max,ang_min):
1368 1368 start = data_ele[0]
1369 1369 end = data_ele[-1]
1370 1370 number = (end-start)
1371 1371 len_ang=len(data_ele)
1372 1372 print("start",start)
1373 1373 print("end",end)
1374 1374 print("number",number)
1375 1375
1376 1376 print("len_ang",len_ang)
1377 1377
1378 1378 #exit(1)
1379 1379
1380 1380 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
1381 1381 return 0
1382 1382 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
1383 1383 # return 1
1384 1384 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
1385 1385 return 1
1386 1386 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
1387 1387 return 2
1388 1388 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
1389 1389 return 3
1390 1390
1391 1391
1392 1392 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1393 1393 ang_max= ang_max
1394 1394 ang_min= ang_min
1395 1395 data_weather=data_weather
1396 1396 val_ch=val_ch
1397 1397 ##print("*********************DATA WEATHER**************************************")
1398 1398 ##print(data_weather)
1399 1399 if self.ini==0:
1400 1400 '''
1401 1401 print("**********************************************")
1402 1402 print("**********************************************")
1403 1403 print("***************ini**************")
1404 1404 print("**********************************************")
1405 1405 print("**********************************************")
1406 1406 '''
1407 1407 #print("data_ele",data_ele)
1408 1408 #----------------------------------------------------------
1409 1409 tipo_case = case_flag[-1]
1410 1410 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1411 1411 print("check_case",tipo_case)
1412 1412 #exit(1)
1413 1413 #--------------------- new -------------------------
1414 1414 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1415 1415
1416 1416 #-------------------------CAMBIOS RHI---------------------------------
1417 1417 start= ang_min
1418 1418 end = ang_max
1419 1419 n= (ang_max-ang_min)/res
1420 1420 #------ new
1421 1421 self.start_data_ele = data_ele_new[0]
1422 1422 self.end_data_ele = data_ele_new[-1]
1423 1423 if tipo_case==0 or tipo_case==3: # SUBIDA
1424 1424 n1= round(self.start_data_ele)- start
1425 1425 n2= end - round(self.end_data_ele)
1426 1426 print(self.start_data_ele)
1427 1427 print(self.end_data_ele)
1428 1428 if n1>0:
1429 1429 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1430 1430 ele1_nan= numpy.ones(n1)*numpy.nan
1431 1431 data_ele = numpy.hstack((ele1,data_ele_new))
1432 1432 print("ele1_nan",ele1_nan.shape)
1433 1433 print("data_ele_old",data_ele_old.shape)
1434 1434 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1435 1435 if n2>0:
1436 1436 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1437 1437 ele2_nan= numpy.ones(n2)*numpy.nan
1438 1438 data_ele = numpy.hstack((data_ele,ele2))
1439 1439 print("ele2_nan",ele2_nan.shape)
1440 1440 print("data_ele_old",data_ele_old.shape)
1441 1441 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1442 1442
1443 1443 if tipo_case==1 or tipo_case==2: # BAJADA
1444 1444 data_ele_new = data_ele_new[::-1] # reversa
1445 1445 data_ele_old = data_ele_old[::-1]# reversa
1446 1446 data_weather = data_weather[::-1,:]# reversa
1447 1447 vec= numpy.where(data_ele_new<ang_max)
1448 1448 data_ele_new = data_ele_new[vec]
1449 1449 data_ele_old = data_ele_old[vec]
1450 1450 data_weather = data_weather[vec[0]]
1451 1451 vec2= numpy.where(0<data_ele_new)
1452 1452 data_ele_new = data_ele_new[vec2]
1453 1453 data_ele_old = data_ele_old[vec2]
1454 1454 data_weather = data_weather[vec2[0]]
1455 1455 self.start_data_ele = data_ele_new[0]
1456 1456 self.end_data_ele = data_ele_new[-1]
1457 1457
1458 1458 n1= round(self.start_data_ele)- start
1459 1459 n2= end - round(self.end_data_ele)-1
1460 1460 print(self.start_data_ele)
1461 1461 print(self.end_data_ele)
1462 1462 if n1>0:
1463 1463 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1464 1464 ele1_nan= numpy.ones(n1)*numpy.nan
1465 1465 data_ele = numpy.hstack((ele1,data_ele_new))
1466 1466 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1467 1467 if n2>0:
1468 1468 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1469 1469 ele2_nan= numpy.ones(n2)*numpy.nan
1470 1470 data_ele = numpy.hstack((data_ele,ele2))
1471 1471 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1472 1472 # RADAR
1473 1473 # NOTA data_ele y data_weather es la variable que retorna
1474 1474 val_mean = numpy.mean(data_weather[:,-1])
1475 1475 self.val_mean = val_mean
1476 1476 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1477 1477 print("eleold",data_ele_old)
1478 1478 print(self.data_ele_tmp[val_ch])
1479 1479 print(data_ele_old.shape[0])
1480 1480 print(self.data_ele_tmp[val_ch].shape[0])
1481 1481 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
1482 1482 import sys
1483 1483 print("EXIT",self.ini)
1484 1484
1485 1485 sys.exit(1)
1486 1486 self.data_ele_tmp[val_ch]= data_ele_old
1487 1487 else:
1488 1488 #print("**********************************************")
1489 1489 #print("****************VARIABLE**********************")
1490 1490 #-------------------------CAMBIOS RHI---------------------------------
1491 1491 #---------------------------------------------------------------------
1492 1492 ##print("INPUT data_ele",data_ele)
1493 1493 flag=0
1494 1494 start_ele = self.res_ele[0]
1495 1495 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1496 1496 tipo_case = case_flag[-1]
1497 1497 #print("TIPO DE DATA",tipo_case)
1498 1498 #-----------new------------
1499 1499 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
1500 1500 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1501 1501
1502 1502 #-------------------------------NEW RHI ITERATIVO-------------------------
1503 1503
1504 1504 if tipo_case==0 : # SUBIDA
1505 1505 vec = numpy.where(data_ele<ang_max)
1506 1506 data_ele = data_ele[vec]
1507 1507 data_ele_old = data_ele_old[vec]
1508 1508 data_weather = data_weather[vec[0]]
1509 1509
1510 1510 vec2 = numpy.where(0<data_ele)
1511 1511 data_ele= data_ele[vec2]
1512 1512 data_ele_old= data_ele_old[vec2]
1513 1513 ##print(data_ele_new)
1514 1514 data_weather= data_weather[vec2[0]]
1515 1515
1516 1516 new_i_ele = int(round(data_ele[0]))
1517 1517 new_f_ele = int(round(data_ele[-1]))
1518 1518 #print(new_i_ele)
1519 1519 #print(new_f_ele)
1520 1520 #print(data_ele,len(data_ele))
1521 1521 #print(data_ele_old,len(data_ele_old))
1522 1522 if new_i_ele< 2:
1523 1523 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1524 1524 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1525 1525 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
1526 1526 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
1527 1527 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
1528 1528 data_ele = self.res_ele
1529 1529 data_weather = self.res_weather[val_ch]
1530 1530
1531 1531 elif tipo_case==1 : #BAJADA
1532 1532 data_ele = data_ele[::-1] # reversa
1533 1533 data_ele_old = data_ele_old[::-1]# reversa
1534 1534 data_weather = data_weather[::-1,:]# reversa
1535 1535 vec= numpy.where(data_ele<ang_max)
1536 1536 data_ele = data_ele[vec]
1537 1537 data_ele_old = data_ele_old[vec]
1538 1538 data_weather = data_weather[vec[0]]
1539 1539 vec2= numpy.where(0<data_ele)
1540 1540 data_ele = data_ele[vec2]
1541 1541 data_ele_old = data_ele_old[vec2]
1542 1542 data_weather = data_weather[vec2[0]]
1543 1543
1544 1544
1545 1545 new_i_ele = int(round(data_ele[0]))
1546 1546 new_f_ele = int(round(data_ele[-1]))
1547 1547 #print(data_ele)
1548 1548 #print(ang_max)
1549 1549 #print(data_ele_old)
1550 1550 if new_i_ele <= 1:
1551 1551 new_i_ele = 1
1552 1552 if round(data_ele[-1])>=ang_max-1:
1553 1553 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1554 1554 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1555 1555 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
1556 1556 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
1557 1557 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
1558 1558 data_ele = self.res_ele
1559 1559 data_weather = self.res_weather[val_ch]
1560 1560
1561 1561 elif tipo_case==2: #bajada
1562 1562 vec = numpy.where(data_ele<ang_max)
1563 1563 data_ele = data_ele[vec]
1564 1564 data_weather= data_weather[vec[0]]
1565 1565
1566 1566 len_vec = len(vec)
1567 1567 data_ele_new = data_ele[::-1] # reversa
1568 1568 data_weather = data_weather[::-1,:]
1569 1569 new_i_ele = int(data_ele_new[0])
1570 1570 new_f_ele = int(data_ele_new[-1])
1571 1571
1572 1572 n1= new_i_ele- ang_min
1573 1573 n2= ang_max - new_f_ele-1
1574 1574 if n1>0:
1575 1575 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1576 1576 ele1_nan= numpy.ones(n1)*numpy.nan
1577 1577 data_ele = numpy.hstack((ele1,data_ele_new))
1578 1578 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1579 1579 if n2>0:
1580 1580 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1581 1581 ele2_nan= numpy.ones(n2)*numpy.nan
1582 1582 data_ele = numpy.hstack((data_ele,ele2))
1583 1583 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1584 1584
1585 1585 self.data_ele_tmp[val_ch] = data_ele_old
1586 1586 self.res_ele = data_ele
1587 1587 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1588 1588 data_ele = self.res_ele
1589 1589 data_weather = self.res_weather[val_ch]
1590 1590
1591 1591 elif tipo_case==3:#subida
1592 1592 vec = numpy.where(0<data_ele)
1593 1593 data_ele= data_ele[vec]
1594 1594 data_ele_new = data_ele
1595 1595 data_ele_old= data_ele_old[vec]
1596 1596 data_weather= data_weather[vec[0]]
1597 1597 pos_ini = numpy.argmin(data_ele)
1598 1598 if pos_ini>0:
1599 1599 len_vec= len(data_ele)
1600 1600 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1601 1601 #print(vec3)
1602 1602 data_ele= data_ele[vec3]
1603 1603 data_ele_new = data_ele
1604 1604 data_ele_old= data_ele_old[vec3]
1605 1605 data_weather= data_weather[vec3]
1606 1606
1607 1607 new_i_ele = int(data_ele_new[0])
1608 1608 new_f_ele = int(data_ele_new[-1])
1609 1609 n1= new_i_ele- ang_min
1610 1610 n2= ang_max - new_f_ele-1
1611 1611 if n1>0:
1612 1612 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1613 1613 ele1_nan= numpy.ones(n1)*numpy.nan
1614 1614 data_ele = numpy.hstack((ele1,data_ele_new))
1615 1615 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1616 1616 if n2>0:
1617 1617 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1618 1618 ele2_nan= numpy.ones(n2)*numpy.nan
1619 1619 data_ele = numpy.hstack((data_ele,ele2))
1620 1620 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1621 1621
1622 1622 self.data_ele_tmp[val_ch] = data_ele_old
1623 1623 self.res_ele = data_ele
1624 1624 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1625 1625 data_ele = self.res_ele
1626 1626 data_weather = self.res_weather[val_ch]
1627 1627 #print("self.data_ele_tmp",self.data_ele_tmp)
1628 1628 return data_weather,data_ele
1629 1629
1630 1630
1631 1631 def plot(self):
1632 1632 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1633 1633 data = self.data[-1]
1634 1634 r = self.data.yrange
1635 1635 delta_height = r[1]-r[0]
1636 1636 r_mask = numpy.where(r>=0)[0]
1637 1637 ##print("delta_height",delta_height)
1638 1638 #print("r_mask",r_mask,len(r_mask))
1639 1639 r = numpy.arange(len(r_mask))*delta_height
1640 1640 self.y = 2*r
1641 1641 res = 1
1642 1642 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1643 1643 ang_max = self.ang_max
1644 1644 ang_min = self.ang_min
1645 1645 var_ang =ang_max - ang_min
1646 1646 step = (int(var_ang)/(res*data['weather'].shape[0]))
1647 1647 ###print("step",step)
1648 1648 #--------------------------------------------------------
1649 1649 ##print('weather',data['weather'].shape)
1650 1650 ##print('ele',data['ele'].shape)
1651 1651
1652 1652 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1653 1653 ###self.res_azi = numpy.mean(data['azi'])
1654 1654 ###print("self.res_ele",self.res_ele)
1655 1655 plt.clf()
1656 1656 subplots = [121, 122]
1657 1657 try:
1658 1658 if self.data[-2]['ele'].max()<data['ele'].max():
1659 1659 self.ini=0
1660 1660 except:
1661 1661 pass
1662 1662 if self.ini==0:
1663 1663 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1664 1664 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1665 1665 print("SHAPE",self.data_ele_tmp.shape)
1666 1666
1667 1667 for i,ax in enumerate(self.axes):
1668 1668 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1669 1669 self.res_azi = numpy.mean(data['azi'])
1670 1670
1671 1671 if ax.firsttime:
1672 1672 #plt.clf()
1673 1673 print("Frist Plot")
1674 1674 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1675 1675 #fig=self.figures[0]
1676 1676 else:
1677 1677 #plt.clf()
1678 1678 print("ELSE PLOT")
1679 1679 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1680 1680 caax = cgax.parasites[0]
1681 1681 paax = cgax.parasites[1]
1682 1682 cbar = plt.gcf().colorbar(pm, pad=0.075)
1683 1683 caax.set_xlabel('x_range [km]')
1684 1684 caax.set_ylabel('y_range [km]')
1685 1685 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1686 1686 print("***************************self.ini****************************",self.ini)
1687 1687 self.ini= self.ini+1
1688 1688
1689 1689
1690 1690
1691 1691
1692 1692
1693 1693 class WeatherRHI_vRF4_Plot(Plot):
1694 1694 CODE = 'RHI'
1695 1695 plot_name = 'RHI'
1696 1696 #plot_type = 'rhistyle'
1697 1697 buffering = False
1698 1698
1699 1699 def setup(self):
1700 1700
1701 1701 self.ncols = 1
1702 1702 self.nrows = 1
1703 1703 self.nplots= 1
1704 1704 self.ylabel= 'Range [Km]'
1705 1705 self.xlabel= 'Range [Km]'
1706 1706 self.titles= ['RHI']
1707 1707 self.polar = True
1708 1708 self.grid = True
1709 1709 if self.channels is not None:
1710 1710 self.nplots = len(self.channels)
1711 1711 self.nrows = len(self.channels)
1712 1712 else:
1713 1713 self.nplots = self.data.shape(self.CODE)[0]
1714 1714 self.nrows = self.nplots
1715 1715 self.channels = list(range(self.nplots))
1716 1716
1717 1717 if self.CODE == 'Power':
1718 1718 self.cb_label = r'Power (dB)'
1719 1719 elif self.CODE == 'Doppler':
1720 1720 self.cb_label = r'Velocity (m/s)'
1721 1721 self.colorbar=True
1722 1722 self.width =8
1723 1723 self.height =8
1724 1724 self.ini =0
1725 1725 self.len_azi =0
1726 1726 self.buffer_ini = None
1727 1727 self.buffer_ele = None
1728 1728 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1729 1729 self.flag =0
1730 1730 self.indicador= 0
1731 1731 self.last_data_ele = None
1732 1732 self.val_mean = None
1733 1733
1734 1734 def update(self, dataOut):
1735 1735
1736 1736 data = {}
1737 1737 meta = {}
1738 1738 if hasattr(dataOut, 'dataPP_POWER'):
1739 1739 factor = 1
1740 1740 if hasattr(dataOut, 'nFFTPoints'):
1741 1741 factor = dataOut.normFactor
1742 1742
1743 1743 if 'pow' in self.attr_data[0].lower():
1744 1744 data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor))
1745 1745 else:
1746 1746 data['data'] = getattr(dataOut, self.attr_data[0])/(factor)
1747 1747
1748 1748 data['azi'] = dataOut.data_azi
1749 1749 data['ele'] = dataOut.data_ele
1750 1750
1751 1751 return data, meta
1752 1752
1753 1753 def plot(self):
1754 1754 data = self.data[-1]
1755 1755 r = self.data.yrange
1756 1756 delta_height = r[1]-r[0]
1757 1757 r_mask = numpy.where(r>=0)[0]
1758 1758 self.r_mask =r_mask
1759 1759 r = numpy.arange(len(r_mask))*delta_height
1760 1760 self.y = 2*r
1761 1761
1762 1762 z = data['data'][self.channels[0]][:,r_mask]
1763 1763
1764 1764 self.titles = []
1765 1765
1766 1766 self.ymax = self.ymax if self.ymax else numpy.nanmax(r)
1767 1767 self.ymin = self.ymin if self.ymin else numpy.nanmin(r)
1768 1768 self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
1769 1769 self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
1770 1770 self.ang_min = self.ang_min if self.ang_min else 0
1771 1771 self.ang_max = self.ang_max if self.ang_max else 90
1772 1772
1773 1773 r, theta = numpy.meshgrid(r, numpy.radians(data['ele']) )
1774 1774
1775 1775 for i,ax in enumerate(self.axes):
1776 1776
1777 1777 if ax.firsttime:
1778 1778 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
1779 1779 ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
1780 1780
1781 1781 else:
1782 1782 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
1783 1783 ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
1784 1784 ax.grid(True)
1785 1785 if len(self.channels) !=1:
1786 1786 self.titles = ['RHI {} at AZ: {} Channel {}'.format(self.labels[x], str(round(numpy.mean(data['azi']),1)), x) for x in range(self.nrows)]
1787 1787 else:
1788 1788 self.titles = ['RHI {} at AZ: {} Channel {}'.format(self.labels[0], str(round(numpy.mean(data['azi']),1)), self.channels[0])]
@@ -1,208 +1,226
1 1 '''
2 2 Base clases to create Processing units and operations, the MPDecorator
3 3 must be used in plotting and writing operations to allow to run as an
4 4 external process.
5 5 '''
6 6
7 7 import os
8 8 import inspect
9 9 import zmq
10 10 import time
11 11 import pickle
12 12 import traceback
13 13 from threading import Thread
14 14 from multiprocessing import Process, Queue
15 15 from schainpy.utils import log
16 16
17 17 QUEUE_SIZE = int(os.environ.get('QUEUE_MAX_SIZE', '10'))
18 18
19 19 class ProcessingUnit(object):
20 20 '''
21 21 Base class to create Signal Chain Units
22 22 '''
23 23
24 24 proc_type = 'processing'
25 25
26 26 def __init__(self):
27 27
28 28 self.dataIn = None
29 29 self.dataOut = None
30 30 self.isConfig = False
31 31 self.operations = []
32 self.name = 'Test'
33 self.inputs = []
32 34
33 35 def setInput(self, unit):
34 36
35 self.dataIn = unit.dataOut
37 attr = 'dataIn'
38 for i, u in enumerate(unit):
39 if i==0:
40 self.dataIn = u.dataOut
41 self.inputs.append('dataIn')
42 else:
43 setattr(self, 'dataIn{}'.format(i), u.dataOut)
44 self.inputs.append('dataIn{}'.format(i))
36 45
37 46 def getAllowedArgs(self):
38 47 if hasattr(self, '__attrs__'):
39 48 return self.__attrs__
40 49 else:
41 50 return inspect.getargspec(self.run).args
42 51
43 52 def addOperation(self, conf, operation):
44 53 '''
45 54 '''
46 55
47 56 self.operations.append((operation, conf.type, conf.getKwargs()))
48 57
49 58 def getOperationObj(self, objId):
50 59
51 60 if objId not in list(self.operations.keys()):
52 61 return None
53 62
54 63 return self.operations[objId]
55 64
56 65 def call(self, **kwargs):
57 66 '''
58 67 '''
59 68
60 69 try:
61 70 if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error:
62 71 return self.dataIn.isReady()
63 72 elif self.dataIn is None or not self.dataIn.error:
64 73 self.run(**kwargs)
65 74 elif self.dataIn.error:
66 75 self.dataOut.error = self.dataIn.error
67 76 self.dataOut.flagNoData = True
68 77 except:
69 78 err = traceback.format_exc()
70 79 if 'SchainWarning' in err:
71 80 log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name)
72 81 elif 'SchainError' in err:
73 82 log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name)
74 83 else:
75 84 log.error(err, self.name)
76 85 self.dataOut.error = True
77 86 ##### correcion de la declaracion Out
78 87 for op, optype, opkwargs in self.operations:
79 88 aux = self.dataOut.copy()
80 89 if optype == 'other' and not self.dataOut.flagNoData:
81 90 self.dataOut = op.run(self.dataOut, **opkwargs)
82 91 elif optype == 'external' and not self.dataOut.flagNoData:
83 92 #op.queue.put(self.dataOut)
84 93 op.queue.put(aux)
85 94 elif optype == 'external' and self.dataOut.error:
86 95 #op.queue.put(self.dataOut)
87 96 op.queue.put(aux)
88 97
89 return 'Error' if self.dataOut.error else self.dataOut.isReady()
98 try:
99 if self.dataOut.runNextUnit:
100 runNextUnit = self.dataOut.runNextUnit
101
102 else:
103 runNextUnit = self.dataOut.isReady()
104 except:
105 runNextUnit = self.dataOut.isReady()
106
107 return 'Error' if self.dataOut.error else runNextUnit
90 108
91 109 def setup(self):
92 110
93 111 raise NotImplementedError
94 112
95 113 def run(self):
96 114
97 115 raise NotImplementedError
98 116
99 117 def close(self):
100 118
101 119 return
102 120
103 121
104 122 class Operation(object):
105 123
106 124 '''
107 125 '''
108 126
109 127 proc_type = 'operation'
110 128
111 129 def __init__(self):
112 130
113 131 self.id = None
114 132 self.isConfig = False
115 133
116 134 if not hasattr(self, 'name'):
117 135 self.name = self.__class__.__name__
118 136
119 137 def getAllowedArgs(self):
120 138 if hasattr(self, '__attrs__'):
121 139 return self.__attrs__
122 140 else:
123 141 return inspect.getargspec(self.run).args
124 142
125 143 def setup(self):
126 144
127 145 self.isConfig = True
128 146
129 147 raise NotImplementedError
130 148
131 149 def run(self, dataIn, **kwargs):
132 150 """
133 151 Realiza las operaciones necesarias sobre la dataIn.data y actualiza los
134 152 atributos del objeto dataIn.
135 153
136 154 Input:
137 155
138 156 dataIn : objeto del tipo JROData
139 157
140 158 Return:
141 159
142 160 None
143 161
144 162 Affected:
145 163 __buffer : buffer de recepcion de datos.
146 164
147 165 """
148 166 if not self.isConfig:
149 167 self.setup(**kwargs)
150 168
151 169 raise NotImplementedError
152 170
153 171 def close(self):
154 172
155 173 return
156 174
157 175
158 176 def MPDecorator(BaseClass):
159 177 """
160 178 Multiprocessing class decorator
161 179
162 180 This function add multiprocessing features to a BaseClass.
163 181 """
164 182
165 183 class MPClass(BaseClass, Process):
166 184
167 185 def __init__(self, *args, **kwargs):
168 186 super(MPClass, self).__init__()
169 187 Process.__init__(self)
170 188
171 189 self.args = args
172 190 self.kwargs = kwargs
173 191 self.t = time.time()
174 192 self.op_type = 'external'
175 193 self.name = BaseClass.__name__
176 194 self.__doc__ = BaseClass.__doc__
177 195
178 196 if 'plot' in self.name.lower() and not self.name.endswith('_'):
179 197 self.name = '{}{}'.format(self.CODE.upper(), 'Plot')
180 198
181 199 self.start_time = time.time()
182 200 self.err_queue = args[3]
183 201 self.queue = Queue(maxsize=QUEUE_SIZE)
184 202 self.myrun = BaseClass.run
185 203
186 204 def run(self):
187 205
188 206 while True:
189 207
190 208 dataOut = self.queue.get()
191 209
192 210 if not dataOut.error:
193 211 try:
194 212 BaseClass.run(self, dataOut, **self.kwargs)
195 213 except:
196 214 err = traceback.format_exc()
197 215 log.error(err, self.name)
198 216 else:
199 217 break
200 218
201 219 self.close()
202 220
203 221 def close(self):
204 222
205 223 BaseClass.close(self)
206 224 log.success('Done...(Time:{:4.2f} secs)'.format(time.time()-self.start_time), self.name)
207 225
208 226 return MPClass
1 NO CONTENT: modified file
The requested commit or file is too big and content was truncated. Show full diff
@@ -1,1862 +1,1860
1 1 import sys
2 2 import numpy,math
3 3 from scipy import interpolate
4 4 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
5 5 from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon
6 6 from schainpy.utils import log
7 7 from time import time
8 8
9 9
10 10
11 11 class VoltageProc(ProcessingUnit):
12 12
13 13 def __init__(self):
14 14
15 15 ProcessingUnit.__init__(self)
16 16
17 17 self.dataOut = Voltage()
18 18 self.flip = 1
19 19 self.setupReq = False
20 20
21 21 def run(self):
22 22
23 23 if self.dataIn.type == 'AMISR':
24 24 self.__updateObjFromAmisrInput()
25 25
26 26 if self.dataIn.type == 'Voltage':
27 27 self.dataOut.copy(self.dataIn)
28 28
29 29 def __updateObjFromAmisrInput(self):
30 30
31 31 self.dataOut.timeZone = self.dataIn.timeZone
32 32 self.dataOut.dstFlag = self.dataIn.dstFlag
33 33 self.dataOut.errorCount = self.dataIn.errorCount
34 34 self.dataOut.useLocalTime = self.dataIn.useLocalTime
35 35
36 36 self.dataOut.flagNoData = self.dataIn.flagNoData
37 37 self.dataOut.data = self.dataIn.data
38 38 self.dataOut.utctime = self.dataIn.utctime
39 39 self.dataOut.channelList = self.dataIn.channelList
40 40 #self.dataOut.timeInterval = self.dataIn.timeInterval
41 41 self.dataOut.heightList = self.dataIn.heightList
42 42 self.dataOut.nProfiles = self.dataIn.nProfiles
43 43
44 44 self.dataOut.nCohInt = self.dataIn.nCohInt
45 45 self.dataOut.ippSeconds = self.dataIn.ippSeconds
46 46 self.dataOut.frequency = self.dataIn.frequency
47 47
48 48 self.dataOut.azimuth = self.dataIn.azimuth
49 49 self.dataOut.zenith = self.dataIn.zenith
50 50
51 51 self.dataOut.beam.codeList = self.dataIn.beam.codeList
52 52 self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList
53 53 self.dataOut.beam.zenithList = self.dataIn.beam.zenithList
54 54
55 55
56 56 class selectChannels(Operation):
57 57
58 58 def run(self, dataOut, channelList):
59 59
60 60 channelIndexList = []
61 61 self.dataOut = dataOut
62 62 for channel in channelList:
63 63 if channel not in self.dataOut.channelList:
64 64 raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList)))
65 65
66 66 index = self.dataOut.channelList.index(channel)
67 67 channelIndexList.append(index)
68 68 self.selectChannelsByIndex(channelIndexList)
69 69 return self.dataOut
70 70
71 71 def selectChannelsByIndex(self, channelIndexList):
72 72 """
73 73 Selecciona un bloque de datos en base a canales segun el channelIndexList
74 74
75 75 Input:
76 76 channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
77 77
78 78 Affected:
79 79 self.dataOut.data
80 80 self.dataOut.channelIndexList
81 81 self.dataOut.nChannels
82 82 self.dataOut.m_ProcessingHeader.totalSpectra
83 83 self.dataOut.systemHeaderObj.numChannels
84 84 self.dataOut.m_ProcessingHeader.blockSize
85 85
86 86 Return:
87 87 None
88 88 """
89 89
90 90 for channelIndex in channelIndexList:
91 91 if channelIndex not in self.dataOut.channelIndexList:
92 92 raise ValueError("The value %d in channelIndexList is not valid" %channelIndex)
93 93
94 94 if self.dataOut.type == 'Voltage':
95 95 if self.dataOut.flagDataAsBlock:
96 96 """
97 97 Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
98 98 """
99 99 data = self.dataOut.data[channelIndexList,:,:]
100 100 else:
101 101 data = self.dataOut.data[channelIndexList,:]
102 102
103 103 self.dataOut.data = data
104 104 # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
105 105 self.dataOut.channelList = range(len(channelIndexList))
106 106
107 107 elif self.dataOut.type == 'Spectra':
108 108 data_spc = self.dataOut.data_spc[channelIndexList, :]
109 109 data_dc = self.dataOut.data_dc[channelIndexList, :]
110 110
111 111 self.dataOut.data_spc = data_spc
112 112 self.dataOut.data_dc = data_dc
113 113
114 114 # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
115 115 self.dataOut.channelList = range(len(channelIndexList))
116 116 self.__selectPairsByChannel(channelIndexList)
117 117
118 118 return 1
119 119
120 120 def __selectPairsByChannel(self, channelList=None):
121 121
122 122 if channelList == None:
123 123 return
124 124
125 125 pairsIndexListSelected = []
126 126 for pairIndex in self.dataOut.pairsIndexList:
127 127 # First pair
128 128 if self.dataOut.pairsList[pairIndex][0] not in channelList:
129 129 continue
130 130 # Second pair
131 131 if self.dataOut.pairsList[pairIndex][1] not in channelList:
132 132 continue
133 133
134 134 pairsIndexListSelected.append(pairIndex)
135 135
136 136 if not pairsIndexListSelected:
137 137 self.dataOut.data_cspc = None
138 138 self.dataOut.pairsList = []
139 139 return
140 140
141 141 self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected]
142 142 self.dataOut.pairsList = [self.dataOut.pairsList[i]
143 143 for i in pairsIndexListSelected]
144 144
145 145 return
146 146
147 147 class selectHeights(Operation):
148 148
149 149 def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None):
150 150 """
151 151 Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
152 152 minHei <= height <= maxHei
153 153
154 154 Input:
155 155 minHei : valor minimo de altura a considerar
156 156 maxHei : valor maximo de altura a considerar
157 157
158 158 Affected:
159 159 Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
160 160
161 161 Return:
162 162 1 si el metodo se ejecuto con exito caso contrario devuelve 0
163 163 """
164 164
165 165 self.dataOut = dataOut
166 166
167 167 if minHei and maxHei:
168 168
169 169 if (minHei < self.dataOut.heightList[0]):
170 170 minHei = self.dataOut.heightList[0]
171 171
172 172 if (maxHei > self.dataOut.heightList[-1]):
173 173 maxHei = self.dataOut.heightList[-1]
174 174
175 175 minIndex = 0
176 176 maxIndex = 0
177 177 heights = self.dataOut.heightList
178 178
179 179 inda = numpy.where(heights >= minHei)
180 180 indb = numpy.where(heights <= maxHei)
181 181
182 182 try:
183 183 minIndex = inda[0][0]
184 184 except:
185 185 minIndex = 0
186 186
187 187 try:
188 188 maxIndex = indb[0][-1]
189 189 except:
190 190 maxIndex = len(heights)
191 191
192 192 self.selectHeightsByIndex(minIndex, maxIndex)
193 193
194 194 return self.dataOut
195 195
196 196 def selectHeightsByIndex(self, minIndex, maxIndex):
197 197 """
198 198 Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
199 199 minIndex <= index <= maxIndex
200 200
201 201 Input:
202 202 minIndex : valor de indice minimo de altura a considerar
203 203 maxIndex : valor de indice maximo de altura a considerar
204 204
205 205 Affected:
206 206 self.dataOut.data
207 207 self.dataOut.heightList
208 208
209 209 Return:
210 210 1 si el metodo se ejecuto con exito caso contrario devuelve 0
211 211 """
212 212
213 213 if self.dataOut.type == 'Voltage':
214 214 if (minIndex < 0) or (minIndex > maxIndex):
215 215 raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex))
216 216
217 217 if (maxIndex >= self.dataOut.nHeights):
218 218 maxIndex = self.dataOut.nHeights
219 219 #print("shapeeee",self.dataOut.data.shape)
220 220 #voltage
221 221 if self.dataOut.flagDataAsBlock:
222 222 """
223 223 Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
224 224 """
225 225 data = self.dataOut.data[:,:, minIndex:maxIndex]
226 226 else:
227 227 data = self.dataOut.data[:, minIndex:maxIndex]
228 228
229 229 # firstHeight = self.dataOut.heightList[minIndex]
230 230
231 231 self.dataOut.data = data
232 232 self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex]
233 233
234 234 if self.dataOut.nHeights <= 1:
235 235 raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights))
236 236 elif self.dataOut.type == 'Spectra':
237 237 if (minIndex < 0) or (minIndex > maxIndex):
238 238 raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (
239 239 minIndex, maxIndex))
240 240
241 241 if (maxIndex >= self.dataOut.nHeights):
242 242 maxIndex = self.dataOut.nHeights - 1
243 243
244 244 # Spectra
245 245 data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1]
246 246
247 247 data_cspc = None
248 248 if self.dataOut.data_cspc is not None:
249 249 data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1]
250 250
251 251 data_dc = None
252 252 if self.dataOut.data_dc is not None:
253 253 data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1]
254 254
255 255 self.dataOut.data_spc = data_spc
256 256 self.dataOut.data_cspc = data_cspc
257 257 self.dataOut.data_dc = data_dc
258 258
259 259 self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1]
260 260
261 261 return 1
262 262
263 263
264 264 class filterByHeights(Operation):
265 265
266 266 def run(self, dataOut, window):
267 267
268 268 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
269 269
270 270 if window == None:
271 271 window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight
272 272
273 273 newdelta = deltaHeight * window
274 274 r = dataOut.nHeights % window
275 275 newheights = (dataOut.nHeights-r)/window
276 276
277 277 if newheights <= 1:
278 278 raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window))
279 279
280 280 if dataOut.flagDataAsBlock:
281 281 """
282 282 Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
283 283 """
284 284 buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)]
285 285 buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window)
286 286 buffer = numpy.sum(buffer,3)
287 287
288 288 else:
289 289 buffer = dataOut.data[:,0:int(dataOut.nHeights-r)]
290 290 buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window))
291 291 buffer = numpy.sum(buffer,2)
292 292
293 293 dataOut.data = buffer
294 294 dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta
295 295 dataOut.windowOfFilter = window
296 296
297 297 return dataOut
298 298
299 299
300 300 class setH0(Operation):
301 301
302 302 def run(self, dataOut, h0, deltaHeight = None):
303 303
304 304 if not deltaHeight:
305 305 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
306 306
307 307 nHeights = dataOut.nHeights
308 308
309 309 newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight
310 310
311 311 dataOut.heightList = newHeiRange
312 312
313 313 return dataOut
314 314
315 315
316 316 class deFlip(Operation):
317 317
318 318 def run(self, dataOut, channelList = []):
319 319
320 320 data = dataOut.data.copy()
321 321
322 322 if dataOut.flagDataAsBlock:
323 323 flip = self.flip
324 324 profileList = list(range(dataOut.nProfiles))
325 325
326 326 if not channelList:
327 327 for thisProfile in profileList:
328 328 data[:,thisProfile,:] = data[:,thisProfile,:]*flip
329 329 flip *= -1.0
330 330 else:
331 331 for thisChannel in channelList:
332 332 if thisChannel not in dataOut.channelList:
333 333 continue
334 334
335 335 for thisProfile in profileList:
336 336 data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip
337 337 flip *= -1.0
338 338
339 339 self.flip = flip
340 340
341 341 else:
342 342 if not channelList:
343 343 data[:,:] = data[:,:]*self.flip
344 344 else:
345 345 for thisChannel in channelList:
346 346 if thisChannel not in dataOut.channelList:
347 347 continue
348 348
349 349 data[thisChannel,:] = data[thisChannel,:]*self.flip
350 350
351 351 self.flip *= -1.
352 352
353 353 dataOut.data = data
354 354
355 355 return dataOut
356 356
357 357
358 358 class setAttribute(Operation):
359 359 '''
360 360 Set an arbitrary attribute(s) to dataOut
361 361 '''
362 362
363 363 def __init__(self):
364 364
365 365 Operation.__init__(self)
366 366 self._ready = False
367 367
368 368 def run(self, dataOut, **kwargs):
369 369
370 370 for key, value in kwargs.items():
371 371 setattr(dataOut, key, value)
372 372
373 373 return dataOut
374 374
375 375
376 376 @MPDecorator
377 377 class printAttribute(Operation):
378 378 '''
379 379 Print an arbitrary attribute of dataOut
380 380 '''
381 381
382 382 def __init__(self):
383 383
384 384 Operation.__init__(self)
385 385
386 386 def run(self, dataOut, attributes):
387 387
388 388 if isinstance(attributes, str):
389 389 attributes = [attributes]
390 390 for attr in attributes:
391 391 if hasattr(dataOut, attr):
392 392 log.log(getattr(dataOut, attr), attr)
393 393
394 394
395 395 class interpolateHeights(Operation):
396 396
397 397 def run(self, dataOut, topLim, botLim):
398 398 #69 al 72 para julia
399 399 #82-84 para meteoros
400 400 if len(numpy.shape(dataOut.data))==2:
401 401 sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2
402 402 sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1)))
403 403 #dataOut.data[:,botLim:limSup+1] = sampInterp
404 404 dataOut.data[:,botLim:topLim+1] = sampInterp
405 405 else:
406 406 nHeights = dataOut.data.shape[2]
407 407 x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights)))
408 408 y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))]
409 409 f = interpolate.interp1d(x, y, axis = 2)
410 410 xnew = numpy.arange(botLim,topLim+1)
411 411 ynew = f(xnew)
412 412 dataOut.data[:,:,botLim:topLim+1] = ynew
413 413
414 414 return dataOut
415 415
416 416
417 417 class CohInt(Operation):
418 418
419 419 isConfig = False
420 420 __profIndex = 0
421 421 __byTime = False
422 422 __initime = None
423 423 __lastdatatime = None
424 424 __integrationtime = None
425 425 __buffer = None
426 426 __bufferStride = []
427 427 __dataReady = False
428 428 __profIndexStride = 0
429 429 __dataToPutStride = False
430 430 n = None
431 431
432 432 def __init__(self, **kwargs):
433 433
434 434 Operation.__init__(self, **kwargs)
435 435
436 436 def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False):
437 437 """
438 438 Set the parameters of the integration class.
439 439
440 440 Inputs:
441 441
442 442 n : Number of coherent integrations
443 443 timeInterval : Time of integration. If the parameter "n" is selected this one does not work
444 444 overlapping :
445 445 """
446 446
447 447 self.__initime = None
448 448 self.__lastdatatime = 0
449 449 self.__buffer = None
450 450 self.__dataReady = False
451 451 self.byblock = byblock
452 452 self.stride = stride
453 453
454 454 if n == None and timeInterval == None:
455 455 raise ValueError("n or timeInterval should be specified ...")
456 456
457 457 if n != None:
458 458 self.n = n
459 459 self.__byTime = False
460 460 else:
461 461 self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line
462 462 self.n = 9999
463 463 self.__byTime = True
464 464
465 465 if overlapping:
466 466 self.__withOverlapping = True
467 467 self.__buffer = None
468 468 else:
469 469 self.__withOverlapping = False
470 470 self.__buffer = 0
471 471
472 472 self.__profIndex = 0
473 473
474 474 def putData(self, data):
475 475
476 476 """
477 477 Add a profile to the __buffer and increase in one the __profileIndex
478 478
479 479 """
480 480
481 481 if not self.__withOverlapping:
482 482 self.__buffer += data.copy()
483 483 self.__profIndex += 1
484 484 return
485 485
486 486 #Overlapping data
487 487 nChannels, nHeis = data.shape
488 488 data = numpy.reshape(data, (1, nChannels, nHeis))
489 489
490 490 #If the buffer is empty then it takes the data value
491 491 if self.__buffer is None:
492 492 self.__buffer = data
493 493 self.__profIndex += 1
494 494 return
495 495
496 496 #If the buffer length is lower than n then stakcing the data value
497 497 if self.__profIndex < self.n:
498 498 self.__buffer = numpy.vstack((self.__buffer, data))
499 499 self.__profIndex += 1
500 500 return
501 501
502 502 #If the buffer length is equal to n then replacing the last buffer value with the data value
503 503 self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
504 504 self.__buffer[self.n-1] = data
505 505 self.__profIndex = self.n
506 506 return
507 507
508 508
509 509 def pushData(self):
510 510 """
511 511 Return the sum of the last profiles and the profiles used in the sum.
512 512
513 513 Affected:
514 514
515 515 self.__profileIndex
516 516
517 517 """
518 518
519 519 if not self.__withOverlapping:
520 520 data = self.__buffer
521 521 n = self.__profIndex
522 522
523 523 self.__buffer = 0
524 524 self.__profIndex = 0
525 525
526 526 return data, n
527 527
528 528 #Integration with Overlapping
529 529 data = numpy.sum(self.__buffer, axis=0)
530 530 # print data
531 531 # raise
532 532 n = self.__profIndex
533 533
534 534 return data, n
535 535
536 536 def byProfiles(self, data):
537 537
538 538 self.__dataReady = False
539 539 avgdata = None
540 540 # n = None
541 541 # print data
542 542 # raise
543 543 self.putData(data)
544 544
545 545 if self.__profIndex == self.n:
546 546 avgdata, n = self.pushData()
547 547 self.__dataReady = True
548 548
549 549 return avgdata
550 550
551 551 def byTime(self, data, datatime):
552 552
553 553 self.__dataReady = False
554 554 avgdata = None
555 555 n = None
556 556
557 557 self.putData(data)
558 558
559 559 if (datatime - self.__initime) >= self.__integrationtime:
560 560 avgdata, n = self.pushData()
561 561 self.n = n
562 562 self.__dataReady = True
563 563
564 564 return avgdata
565 565
566 566 def integrateByStride(self, data, datatime):
567 567 # print data
568 568 if self.__profIndex == 0:
569 569 self.__buffer = [[data.copy(), datatime]]
570 570 else:
571 571 self.__buffer.append([data.copy(),datatime])
572 572 self.__profIndex += 1
573 573 self.__dataReady = False
574 574
575 575 if self.__profIndex == self.n * self.stride :
576 576 self.__dataToPutStride = True
577 577 self.__profIndexStride = 0
578 578 self.__profIndex = 0
579 579 self.__bufferStride = []
580 580 for i in range(self.stride):
581 581 current = self.__buffer[i::self.stride]
582 582 data = numpy.sum([t[0] for t in current], axis=0)
583 583 avgdatatime = numpy.average([t[1] for t in current])
584 584 # print data
585 585 self.__bufferStride.append((data, avgdatatime))
586 586
587 587 if self.__dataToPutStride:
588 588 self.__dataReady = True
589 589 self.__profIndexStride += 1
590 590 if self.__profIndexStride == self.stride:
591 591 self.__dataToPutStride = False
592 592 # print self.__bufferStride[self.__profIndexStride - 1]
593 593 # raise
594 594 return self.__bufferStride[self.__profIndexStride - 1]
595 595
596 596
597 597 return None, None
598 598
599 599 def integrate(self, data, datatime=None):
600 600
601 601 if self.__initime == None:
602 602 self.__initime = datatime
603 603
604 604 if self.__byTime:
605 605 avgdata = self.byTime(data, datatime)
606 606 else:
607 607 avgdata = self.byProfiles(data)
608 608
609 609
610 610 self.__lastdatatime = datatime
611 611
612 612 if avgdata is None:
613 613 return None, None
614 614
615 615 avgdatatime = self.__initime
616 616
617 617 deltatime = datatime - self.__lastdatatime
618 618
619 619 if not self.__withOverlapping:
620 620 self.__initime = datatime
621 621 else:
622 622 self.__initime += deltatime
623 623
624 624 return avgdata, avgdatatime
625 625
626 626 def integrateByBlock(self, dataOut):
627 627
628 628 times = int(dataOut.data.shape[1]/self.n)
629 629 avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex)
630 630
631 631 id_min = 0
632 632 id_max = self.n
633 633
634 634 for i in range(times):
635 635 junk = dataOut.data[:,id_min:id_max,:]
636 636 avgdata[:,i,:] = junk.sum(axis=1)
637 637 id_min += self.n
638 638 id_max += self.n
639 639
640 640 timeInterval = dataOut.ippSeconds*self.n
641 641 avgdatatime = (times - 1) * timeInterval + dataOut.utctime
642 642 self.__dataReady = True
643 643 return avgdata, avgdatatime
644 644
645 645 def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs):
646 646
647 647 if not self.isConfig:
648 648 self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs)
649 649 self.isConfig = True
650 650
651 651 if dataOut.flagDataAsBlock:
652 652 """
653 653 Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis]
654 654 """
655 655 avgdata, avgdatatime = self.integrateByBlock(dataOut)
656 656 dataOut.nProfiles /= self.n
657 657 else:
658 658 if stride is None:
659 659 avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime)
660 660 else:
661 661 avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime)
662 662
663 663
664 664 # dataOut.timeInterval *= n
665 665 dataOut.flagNoData = True
666 666
667 667 if self.__dataReady:
668 668 dataOut.data = avgdata
669 669 if not dataOut.flagCohInt:
670 670 dataOut.nCohInt *= self.n
671 671 dataOut.flagCohInt = True
672 672 dataOut.utctime = avgdatatime
673 673 # print avgdata, avgdatatime
674 674 # raise
675 675 # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt
676 676 dataOut.flagNoData = False
677 677 return dataOut
678 678
679 679 class Decoder(Operation):
680 680
681 681 isConfig = False
682 682 __profIndex = 0
683 683
684 684 code = None
685 685
686 686 nCode = None
687 687 nBaud = None
688 688
689 689 def __init__(self, **kwargs):
690 690
691 691 Operation.__init__(self, **kwargs)
692 692
693 693 self.times = None
694 694 self.osamp = None
695 695 # self.__setValues = False
696 696 self.isConfig = False
697 697 self.setupReq = False
698 698 def setup(self, code, osamp, dataOut):
699 699
700 700 self.__profIndex = 0
701 701
702 702 self.code = code
703 703
704 704 self.nCode = len(code)
705 705 self.nBaud = len(code[0])
706 706
707 707 if (osamp != None) and (osamp >1):
708 708 self.osamp = osamp
709 709 self.code = numpy.repeat(code, repeats=self.osamp, axis=1)
710 710 self.nBaud = self.nBaud*self.osamp
711 711
712 712 self.__nChannels = dataOut.nChannels
713 713 self.__nProfiles = dataOut.nProfiles
714 714 self.__nHeis = dataOut.nHeights
715 715
716 716 if self.__nHeis < self.nBaud:
717 717 raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud))
718 718
719 719 #Frequency
720 720 __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex)
721 721
722 722 __codeBuffer[:,0:self.nBaud] = self.code
723 723
724 724 self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1))
725 725
726 726 if dataOut.flagDataAsBlock:
727 727
728 728 self.ndatadec = self.__nHeis #- self.nBaud + 1
729 729
730 730 self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex)
731 731
732 732 else:
733 733
734 734 #Time
735 735 self.ndatadec = self.__nHeis #- self.nBaud + 1
736 736
737 737 self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex)
738 738
739 739 def __convolutionInFreq(self, data):
740 740
741 741 fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
742 742
743 743 fft_data = numpy.fft.fft(data, axis=1)
744 744
745 745 conv = fft_data*fft_code
746 746
747 747 data = numpy.fft.ifft(conv,axis=1)
748 748
749 749 return data
750 750
751 751 def __convolutionInFreqOpt(self, data):
752 752
753 753 raise NotImplementedError
754 754
755 755 def __convolutionInTime(self, data):
756 756
757 757 code = self.code[self.__profIndex]
758 758 for i in range(self.__nChannels):
759 759 self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:]
760 760
761 761 return self.datadecTime
762 762
763 763 def __convolutionByBlockInTime(self, data):
764 764
765 765 repetitions = int(self.__nProfiles / self.nCode)
766 766 junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize))
767 767 junk = junk.flatten()
768 768 code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud))
769 769 profilesList = range(self.__nProfiles)
770 770
771 771 for i in range(self.__nChannels):
772 772 for j in profilesList:
773 773 self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:]
774 774 return self.datadecTime
775 775
776 776 def __convolutionByBlockInFreq(self, data):
777 777
778 778 raise NotImplementedError("Decoder by frequency fro Blocks not implemented")
779 779
780 780
781 781 fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
782 782
783 783 fft_data = numpy.fft.fft(data, axis=2)
784 784
785 785 conv = fft_data*fft_code
786 786
787 787 data = numpy.fft.ifft(conv,axis=2)
788 788
789 789 return data
790 790
791 791
792 792 def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None):
793 793
794 794 if dataOut.flagDecodeData:
795 795 print("This data is already decoded, recoding again ...")
796 796
797 797 if not self.isConfig:
798 798
799 799 if code is None:
800 800 if dataOut.code is None:
801 801 raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type)
802 802
803 803 code = dataOut.code
804 804 else:
805 805 code = numpy.array(code).reshape(nCode,nBaud)
806 806 self.setup(code, osamp, dataOut)
807 807
808 808 self.isConfig = True
809 809
810 810 if mode == 3:
811 811 sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode)
812 812
813 813 if times != None:
814 814 sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n")
815 815
816 816 if self.code is None:
817 817 print("Fail decoding: Code is not defined.")
818 818 return
819 819
820 820 self.__nProfiles = dataOut.nProfiles
821 821 datadec = None
822 822
823 823 if mode == 3:
824 824 mode = 0
825 825
826 826 if dataOut.flagDataAsBlock:
827 827 """
828 828 Decoding when data have been read as block,
829 829 """
830 830
831 831 if mode == 0:
832 832 datadec = self.__convolutionByBlockInTime(dataOut.data)
833 833 if mode == 1:
834 834 datadec = self.__convolutionByBlockInFreq(dataOut.data)
835 835 else:
836 836 """
837 837 Decoding when data have been read profile by profile
838 838 """
839 839 if mode == 0:
840 840 datadec = self.__convolutionInTime(dataOut.data)
841 841
842 842 if mode == 1:
843 843 datadec = self.__convolutionInFreq(dataOut.data)
844 844
845 845 if mode == 2:
846 846 datadec = self.__convolutionInFreqOpt(dataOut.data)
847 847
848 848 if datadec is None:
849 849 raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode)
850 850
851 851 dataOut.code = self.code
852 852 dataOut.nCode = self.nCode
853 853 dataOut.nBaud = self.nBaud
854 854
855 855 dataOut.data = datadec
856 856
857 857 dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]]
858 858
859 859 dataOut.flagDecodeData = True #asumo q la data esta decodificada
860 860
861 861 if self.__profIndex == self.nCode-1:
862 862 self.__profIndex = 0
863 863 return dataOut
864 864
865 865 self.__profIndex += 1
866 866
867 867 return dataOut
868 868 # dataOut.flagDeflipData = True #asumo q la data no esta sin flip
869 869
870 870
871 871 class ProfileConcat(Operation):
872 872
873 873 isConfig = False
874 874 buffer = None
875 875
876 876 def __init__(self, **kwargs):
877 877
878 878 Operation.__init__(self, **kwargs)
879 879 self.profileIndex = 0
880 880
881 881 def reset(self):
882 882 self.buffer = numpy.zeros_like(self.buffer)
883 883 self.start_index = 0
884 884 self.times = 1
885 885
886 886 def setup(self, data, m, n=1):
887 887 self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0]))
888 888 self.nHeights = data.shape[1]#.nHeights
889 889 self.start_index = 0
890 890 self.times = 1
891 891
892 892 def concat(self, data):
893 893
894 894 self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy()
895 895 self.start_index = self.start_index + self.nHeights
896 896
897 897 def run(self, dataOut, m):
898 898 dataOut.flagNoData = True
899 899
900 900 if not self.isConfig:
901 901 self.setup(dataOut.data, m, 1)
902 902 self.isConfig = True
903 903
904 904 if dataOut.flagDataAsBlock:
905 905 raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False")
906 906
907 907 else:
908 908 self.concat(dataOut.data)
909 909 self.times += 1
910 910 if self.times > m:
911 911 dataOut.data = self.buffer
912 912 self.reset()
913 913 dataOut.flagNoData = False
914 914 # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas
915 915 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
916 916 xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m
917 917 dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight)
918 918 dataOut.ippSeconds *= m
919 919 return dataOut
920 920
921 921 class ProfileSelector(Operation):
922 922
923 923 profileIndex = None
924 924 # Tamanho total de los perfiles
925 925 nProfiles = None
926 926
927 927 def __init__(self, **kwargs):
928 928
929 929 Operation.__init__(self, **kwargs)
930 930 self.profileIndex = 0
931 931
932 932 def incProfileIndex(self):
933 933
934 934 self.profileIndex += 1
935 935
936 936 if self.profileIndex >= self.nProfiles:
937 937 self.profileIndex = 0
938 938
939 939 def isThisProfileInRange(self, profileIndex, minIndex, maxIndex):
940 940
941 941 if profileIndex < minIndex:
942 942 return False
943 943
944 944 if profileIndex > maxIndex:
945 945 return False
946 946
947 947 return True
948 948
949 949 def isThisProfileInList(self, profileIndex, profileList):
950 950
951 951 if profileIndex not in profileList:
952 952 return False
953 953
954 954 return True
955 955
956 956 def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None):
957
957 #print("before",dataOut.data.shape)
958 958 """
959 959 ProfileSelector:
960 960
961 961 Inputs:
962 962 profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8)
963 963
964 964 profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30)
965 965
966 966 rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256))
967 967
968 968 """
969 969
970 970 if rangeList is not None:
971 971 if type(rangeList[0]) not in (tuple, list):
972 972 rangeList = [rangeList]
973 973
974 974 dataOut.flagNoData = True
975 975
976 976 if dataOut.flagDataAsBlock:
977 977 """
978 978 data dimension = [nChannels, nProfiles, nHeis]
979 979 """
980 980 if profileList != None:
981 981 dataOut.data = dataOut.data[:,profileList,:]
982 982
983 983 if profileRangeList != None:
984 984 minIndex = profileRangeList[0]
985 985 maxIndex = profileRangeList[1]
986 986 profileList = list(range(minIndex, maxIndex+1))
987 987
988 988 dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:]
989 989
990 990 if rangeList != None:
991 991
992 992 profileList = []
993 993
994 994 for thisRange in rangeList:
995 995 minIndex = thisRange[0]
996 996 maxIndex = thisRange[1]
997 997
998 998 profileList.extend(list(range(minIndex, maxIndex+1)))
999 999
1000 1000 dataOut.data = dataOut.data[:,profileList,:]
1001 1001
1002 1002 dataOut.nProfiles = len(profileList)
1003 1003 dataOut.profileIndex = dataOut.nProfiles - 1
1004 1004 dataOut.flagNoData = False
1005
1005 #print(dataOut.data.shape)
1006 1006 return dataOut
1007 1007
1008 1008 """
1009 1009 data dimension = [nChannels, nHeis]
1010 1010 """
1011 1011
1012 1012 if profileList != None:
1013 1013
1014 1014 if self.isThisProfileInList(dataOut.profileIndex, profileList):
1015 1015
1016 1016 self.nProfiles = len(profileList)
1017 1017 dataOut.nProfiles = self.nProfiles
1018 1018 dataOut.profileIndex = self.profileIndex
1019 1019 dataOut.flagNoData = False
1020 1020
1021 1021 self.incProfileIndex()
1022 1022 return dataOut
1023 1023
1024 1024 if profileRangeList != None:
1025 1025
1026 1026 minIndex = profileRangeList[0]
1027 1027 maxIndex = profileRangeList[1]
1028 1028
1029 1029 if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex):
1030 1030
1031 1031 self.nProfiles = maxIndex - minIndex + 1
1032 1032 dataOut.nProfiles = self.nProfiles
1033 1033 dataOut.profileIndex = self.profileIndex
1034 1034 dataOut.flagNoData = False
1035 1035
1036 1036 self.incProfileIndex()
1037 1037 return dataOut
1038 1038
1039 1039 if rangeList != None:
1040 1040
1041 1041 nProfiles = 0
1042 1042
1043 1043 for thisRange in rangeList:
1044 1044 minIndex = thisRange[0]
1045 1045 maxIndex = thisRange[1]
1046 1046
1047 1047 nProfiles += maxIndex - minIndex + 1
1048 1048
1049 1049 for thisRange in rangeList:
1050 1050
1051 1051 minIndex = thisRange[0]
1052 1052 maxIndex = thisRange[1]
1053 1053
1054 1054 if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex):
1055 1055
1056 1056 self.nProfiles = nProfiles
1057 1057 dataOut.nProfiles = self.nProfiles
1058 1058 dataOut.profileIndex = self.profileIndex
1059 1059 dataOut.flagNoData = False
1060 1060
1061 1061 self.incProfileIndex()
1062 1062
1063 1063 break
1064 1064
1065 1065 return dataOut
1066 1066
1067 1067
1068 1068 if beam != None: #beam is only for AMISR data
1069 1069 if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]):
1070 1070 dataOut.flagNoData = False
1071 1071 dataOut.profileIndex = self.profileIndex
1072 1072
1073 1073 self.incProfileIndex()
1074 1074
1075 1075 return dataOut
1076 1076
1077 1077 raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter")
1078 1078
1079 1079
1080 1080 class Reshaper(Operation):
1081 1081
1082 1082 def __init__(self, **kwargs):
1083 1083
1084 1084 Operation.__init__(self, **kwargs)
1085 1085
1086 1086 self.__buffer = None
1087 1087 self.__nitems = 0
1088 1088
1089 1089 def __appendProfile(self, dataOut, nTxs):
1090 1090
1091 1091 if self.__buffer is None:
1092 1092 shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) )
1093 1093 self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype)
1094 1094
1095 1095 ini = dataOut.nHeights * self.__nitems
1096 1096 end = ini + dataOut.nHeights
1097 1097
1098 1098 self.__buffer[:, ini:end] = dataOut.data
1099 1099
1100 1100 self.__nitems += 1
1101 1101
1102 1102 return int(self.__nitems*nTxs)
1103 1103
1104 1104 def __getBuffer(self):
1105 1105
1106 1106 if self.__nitems == int(1./self.__nTxs):
1107 1107
1108 1108 self.__nitems = 0
1109 1109
1110 1110 return self.__buffer.copy()
1111 1111
1112 1112 return None
1113 1113
1114 1114 def __checkInputs(self, dataOut, shape, nTxs):
1115 1115
1116 1116 if shape is None and nTxs is None:
1117 1117 raise ValueError("Reshaper: shape of factor should be defined")
1118 1118
1119 1119 if nTxs:
1120 1120 if nTxs < 0:
1121 1121 raise ValueError("nTxs should be greater than 0")
1122 1122
1123 1123 if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0:
1124 1124 raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs)))
1125 1125
1126 1126 shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs]
1127 1127
1128 1128 return shape, nTxs
1129 1129
1130 1130 if len(shape) != 2 and len(shape) != 3:
1131 1131 raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights))
1132 1132
1133 1133 if len(shape) == 2:
1134 1134 shape_tuple = [dataOut.nChannels]
1135 1135 shape_tuple.extend(shape)
1136 1136 else:
1137 1137 shape_tuple = list(shape)
1138 1138
1139 1139 nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles
1140 1140
1141 1141 return shape_tuple, nTxs
1142 1142
1143 1143 def run(self, dataOut, shape=None, nTxs=None):
1144 1144
1145 1145 shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs)
1146 1146
1147 1147 dataOut.flagNoData = True
1148 1148 profileIndex = None
1149 1149
1150 1150 if dataOut.flagDataAsBlock:
1151 1151
1152 1152 dataOut.data = numpy.reshape(dataOut.data, shape_tuple)
1153 1153 dataOut.flagNoData = False
1154 1154
1155 1155 profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1
1156 1156
1157 1157 else:
1158 1158
1159 1159 if self.__nTxs < 1:
1160 1160
1161 1161 self.__appendProfile(dataOut, self.__nTxs)
1162 1162 new_data = self.__getBuffer()
1163 1163
1164 1164 if new_data is not None:
1165 1165 dataOut.data = new_data
1166 1166 dataOut.flagNoData = False
1167 1167
1168 1168 profileIndex = dataOut.profileIndex*nTxs
1169 1169
1170 1170 else:
1171 1171 raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)")
1172 1172
1173 1173 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1174 1174
1175 1175 dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0]
1176 1176
1177 1177 dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs)
1178 1178
1179 1179 dataOut.profileIndex = profileIndex
1180 1180
1181 1181 dataOut.ippSeconds /= self.__nTxs
1182 1182
1183 1183 return dataOut
1184 1184
1185 1185 class SplitProfiles(Operation):
1186 1186
1187 1187 def __init__(self, **kwargs):
1188 1188
1189 1189 Operation.__init__(self, **kwargs)
1190 1190
1191 1191 def run(self, dataOut, n):
1192 1192
1193 1193 dataOut.flagNoData = True
1194 1194 profileIndex = None
1195 1195
1196 1196 if dataOut.flagDataAsBlock:
1197 1197
1198 1198 #nchannels, nprofiles, nsamples
1199 1199 shape = dataOut.data.shape
1200 1200
1201 1201 if shape[2] % n != 0:
1202 1202 raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2]))
1203 1203
1204 1204 new_shape = shape[0], shape[1]*n, int(shape[2]/n)
1205 1205
1206 1206 dataOut.data = numpy.reshape(dataOut.data, new_shape)
1207 1207 dataOut.flagNoData = False
1208 1208
1209 1209 profileIndex = int(dataOut.nProfiles/n) - 1
1210 1210
1211 1211 else:
1212 1212
1213 1213 raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)")
1214 1214
1215 1215 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1216 1216
1217 1217 dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0]
1218 1218
1219 1219 dataOut.nProfiles = int(dataOut.nProfiles*n)
1220 1220
1221 1221 dataOut.profileIndex = profileIndex
1222 1222
1223 1223 dataOut.ippSeconds /= n
1224 1224
1225 1225 return dataOut
1226 1226
1227 1227 class CombineProfiles(Operation):
1228 1228 def __init__(self, **kwargs):
1229 1229
1230 1230 Operation.__init__(self, **kwargs)
1231 1231
1232 1232 self.__remData = None
1233 1233 self.__profileIndex = 0
1234 1234
1235 1235 def run(self, dataOut, n):
1236 1236
1237 1237 dataOut.flagNoData = True
1238 1238 profileIndex = None
1239 1239
1240 1240 if dataOut.flagDataAsBlock:
1241 1241
1242 1242 #nchannels, nprofiles, nsamples
1243 1243 shape = dataOut.data.shape
1244 1244 new_shape = shape[0], shape[1]/n, shape[2]*n
1245 1245
1246 1246 if shape[1] % n != 0:
1247 1247 raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1]))
1248 1248
1249 1249 dataOut.data = numpy.reshape(dataOut.data, new_shape)
1250 1250 dataOut.flagNoData = False
1251 1251
1252 1252 profileIndex = int(dataOut.nProfiles*n) - 1
1253 1253
1254 1254 else:
1255 1255
1256 1256 #nchannels, nsamples
1257 1257 if self.__remData is None:
1258 1258 newData = dataOut.data
1259 1259 else:
1260 1260 newData = numpy.concatenate((self.__remData, dataOut.data), axis=1)
1261 1261
1262 1262 self.__profileIndex += 1
1263 1263
1264 1264 if self.__profileIndex < n:
1265 1265 self.__remData = newData
1266 1266 #continue
1267 1267 return
1268 1268
1269 1269 self.__profileIndex = 0
1270 1270 self.__remData = None
1271 1271
1272 1272 dataOut.data = newData
1273 1273 dataOut.flagNoData = False
1274 1274
1275 1275 profileIndex = dataOut.profileIndex/n
1276 1276
1277 1277
1278 1278 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1279 1279
1280 1280 dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0]
1281 1281
1282 1282 dataOut.nProfiles = int(dataOut.nProfiles/n)
1283 1283
1284 1284 dataOut.profileIndex = profileIndex
1285 1285
1286 1286 dataOut.ippSeconds *= n
1287 1287
1288 1288 return dataOut
1289 1289
1290 1290 class PulsePair(Operation):
1291 1291 '''
1292 1292 Function PulsePair(Signal Power, Velocity)
1293 1293 The real component of Lag[0] provides Intensity Information
1294 1294 The imag component of Lag[1] Phase provides Velocity Information
1295 1295
1296 1296 Configuration Parameters:
1297 1297 nPRF = Number of Several PRF
1298 1298 theta = Degree Azimuth angel Boundaries
1299 1299
1300 1300 Input:
1301 1301 self.dataOut
1302 1302 lag[N]
1303 1303 Affected:
1304 1304 self.dataOut.spc
1305 1305 '''
1306 1306 isConfig = False
1307 1307 __profIndex = 0
1308 1308 __initime = None
1309 1309 __lastdatatime = None
1310 1310 __buffer = None
1311 1311 noise = None
1312 1312 __dataReady = False
1313 1313 n = None
1314 1314 __nch = 0
1315 1315 __nHeis = 0
1316 1316 removeDC = False
1317 1317 ipp = None
1318 1318 lambda_ = 0
1319 1319
1320 1320 def __init__(self,**kwargs):
1321 1321 Operation.__init__(self,**kwargs)
1322 1322
1323 1323 def setup(self, dataOut, n = None, removeDC=False):
1324 1324 '''
1325 1325 n= Numero de PRF's de entrada
1326 1326 '''
1327 1327 self.__initime = None
1328 1328 ####print("[INICIO]-setup del METODO PULSE PAIR")
1329 1329 self.__lastdatatime = 0
1330 1330 self.__dataReady = False
1331 1331 self.__buffer = 0
1332 1332 self.__profIndex = 0
1333 1333 self.noise = None
1334 1334 self.__nch = dataOut.nChannels
1335 1335 self.__nHeis = dataOut.nHeights
1336 1336 self.removeDC = removeDC
1337 1337 self.lambda_ = 3.0e8/(9345.0e6)
1338 1338 self.ippSec = dataOut.ippSeconds
1339 1339 self.nCohInt = dataOut.nCohInt
1340 1340 ####print("IPPseconds",dataOut.ippSeconds)
1341 1341 ####print("ELVALOR DE n es:", n)
1342 1342 if n == None:
1343 1343 raise ValueError("n should be specified.")
1344 1344
1345 1345 if n != None:
1346 1346 if n<2:
1347 1347 raise ValueError("n should be greater than 2")
1348 1348
1349 1349 self.n = n
1350 1350 self.__nProf = n
1351 1351
1352 1352 self.__buffer = numpy.zeros((dataOut.nChannels,
1353 1353 n,
1354 1354 dataOut.nHeights),
1355 1355 dtype='complex')
1356 1356
1357 1357 def putData(self,data):
1358 1358 '''
1359 1359 Add a profile to he __buffer and increase in one the __profiel Index
1360 1360 '''
1361 1361 self.__buffer[:,self.__profIndex,:]= data
1362 1362 self.__profIndex += 1
1363 1363 return
1364 1364
1365 1365 def pushData(self,dataOut):
1366 1366 '''
1367 1367 Return the PULSEPAIR and the profiles used in the operation
1368 1368 Affected : self.__profileIndex
1369 1369 '''
1370 1370 #----------------- Remove DC-----------------------------------
1371 1371 if self.removeDC==True:
1372 1372 mean = numpy.mean(self.__buffer,1)
1373 1373 tmp = mean.reshape(self.__nch,1,self.__nHeis)
1374 1374 dc= numpy.tile(tmp,[1,self.__nProf,1])
1375 1375 self.__buffer = self.__buffer - dc
1376 1376 #------------------Calculo de Potencia ------------------------
1377 1377 pair0 = self.__buffer*numpy.conj(self.__buffer)
1378 1378 pair0 = pair0.real
1379 1379 lag_0 = numpy.sum(pair0,1)
1380 1380 #-----------------Calculo de Cscp------------------------------ New
1381 1381 cspc_pair01 = self.__buffer[0]*self.__buffer[1]
1382 1382 #------------------Calculo de Ruido x canal--------------------
1383 1383 self.noise = numpy.zeros(self.__nch)
1384 1384 for i in range(self.__nch):
1385 1385 daux = numpy.sort(pair0[i,:,:],axis= None)
1386 1386 self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt)
1387 1387
1388 1388 self.noise = self.noise.reshape(self.__nch,1)
1389 1389 self.noise = numpy.tile(self.noise,[1,self.__nHeis])
1390 1390 noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis)
1391 1391 noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1])
1392 1392 #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N--
1393 1393 #------------------ P= S+N ,P=lag_0/N ---------------------------------
1394 1394 #-------------------- Power --------------------------------------------------
1395 1395 data_power = lag_0/(self.n*self.nCohInt)
1396 1396 #--------------------CCF------------------------------------------------------
1397 1397 data_ccf =numpy.sum(cspc_pair01,axis=0)/(self.n*self.nCohInt)
1398 1398 #------------------ Senal --------------------------------------------------
1399 1399 data_intensity = pair0 - noise_buffer
1400 1400 data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt)
1401 1401 #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt)
1402 1402 for i in range(self.__nch):
1403 1403 for j in range(self.__nHeis):
1404 1404 if data_intensity[i][j] < 0:
1405 1405 data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j]))
1406 1406
1407 1407 #----------------- Calculo de Frecuencia y Velocidad doppler--------
1408 1408 pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:])
1409 1409 lag_1 = numpy.sum(pair1,1)
1410 1410 data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1)
1411 1411 data_velocity = (self.lambda_/2.0)*data_freq
1412 1412
1413 1413 #---------------- Potencia promedio estimada de la Senal-----------
1414 1414 lag_0 = lag_0/self.n
1415 1415 S = lag_0-self.noise
1416 1416
1417 1417 #---------------- Frecuencia Doppler promedio ---------------------
1418 1418 lag_1 = lag_1/(self.n-1)
1419 1419 R1 = numpy.abs(lag_1)
1420 1420
1421 1421 #---------------- Calculo del SNR----------------------------------
1422 1422 data_snrPP = S/self.noise
1423 1423 for i in range(self.__nch):
1424 1424 for j in range(self.__nHeis):
1425 1425 if data_snrPP[i][j] < 1.e-20:
1426 1426 data_snrPP[i][j] = 1.e-20
1427 1427
1428 1428 #----------------- Calculo del ancho espectral ----------------------
1429 1429 L = S/R1
1430 1430 L = numpy.where(L<0,1,L)
1431 1431 L = numpy.log(L)
1432 1432 tmp = numpy.sqrt(numpy.absolute(L))
1433 1433 data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L)
1434 1434 n = self.__profIndex
1435 1435
1436 1436 self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex')
1437 1437 self.__profIndex = 0
1438 1438 return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,data_ccf,n
1439 1439
1440 1440
1441 1441 def pulsePairbyProfiles(self,dataOut):
1442 1442
1443 1443 self.__dataReady = False
1444 1444 data_power = None
1445 1445 data_intensity = None
1446 1446 data_velocity = None
1447 1447 data_specwidth = None
1448 1448 data_snrPP = None
1449 1449 data_ccf = None
1450 1450 self.putData(data=dataOut.data)
1451 1451 if self.__profIndex == self.n:
1452 1452 data_power,data_intensity, data_velocity,data_snrPP,data_specwidth,data_ccf, n = self.pushData(dataOut=dataOut)
1453 1453 self.__dataReady = True
1454 1454
1455 1455 return data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf
1456 1456
1457 1457
1458 1458 def pulsePairOp(self, dataOut, datatime= None):
1459 1459
1460 1460 if self.__initime == None:
1461 1461 self.__initime = datatime
1462 1462 data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf = self.pulsePairbyProfiles(dataOut)
1463 1463 self.__lastdatatime = datatime
1464 1464
1465 1465 if data_power is None:
1466 1466 return None, None, None,None,None,None,None
1467 1467
1468 1468 avgdatatime = self.__initime
1469 1469 deltatime = datatime - self.__lastdatatime
1470 1470 self.__initime = datatime
1471 1471
1472 1472 return data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf, avgdatatime
1473 1473
1474 1474 def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs):
1475 1475 #print("hey")
1476 1476 #print(dataOut.data.shape)
1477 1477 #exit(1)
1478 1478 #print(self.__profIndex)
1479 1479 if not self.isConfig:
1480 1480 self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs)
1481 1481 self.isConfig = True
1482 1482 data_power, data_intensity, data_velocity,data_snrPP,data_specwidth,data_ccf, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime)
1483 1483 dataOut.flagNoData = True
1484 1484
1485 1485 if self.__dataReady:
1486 1486 ###print("READY ----------------------------------")
1487 1487 dataOut.nCohInt *= self.n
1488 1488 dataOut.dataPP_POW = data_intensity # S
1489 1489 dataOut.dataPP_POWER = data_power # P valor que corresponde a POTENCIA MOMENTO
1490 1490 dataOut.dataPP_DOP = data_velocity
1491 1491 dataOut.dataPP_SNR = data_snrPP
1492 1492 dataOut.dataPP_WIDTH = data_specwidth
1493 1493 dataOut.dataPP_CCF = data_ccf
1494 1494 dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo.
1495 1495 dataOut.nProfiles = int(dataOut.nProfiles/n)
1496 1496 dataOut.utctime = avgdatatime
1497 1497 dataOut.flagNoData = False
1498 1498 return dataOut
1499 1499
1500 1500 class PulsePair_vRF(Operation):
1501 1501 '''
1502 1502 Function PulsePair(Signal Power, Velocity)
1503 1503 The real component of Lag[0] provides Intensity Information
1504 1504 The imag component of Lag[1] Phase provides Velocity Information
1505 1505
1506 1506 Configuration Parameters:
1507 1507 nPRF = Number of Several PRF
1508 1508 theta = Degree Azimuth angel Boundaries
1509 1509
1510 1510 Input:
1511 1511 self.dataOut
1512 1512 lag[N]
1513 1513 Affected:
1514 1514 self.dataOut.spc
1515 1515 '''
1516 1516 isConfig = False
1517 1517 __profIndex = 0
1518 1518 __initime = None
1519 1519 __lastdatatime = None
1520 1520 __buffer = None
1521 1521 noise = None
1522 1522 __dataReady = False
1523 1523 n = None
1524 1524 __nch = 0
1525 1525 __nHeis = 0
1526 1526 removeDC = False
1527 1527 ipp = None
1528 1528 lambda_ = 0
1529 1529
1530 1530 def __init__(self,**kwargs):
1531 1531 Operation.__init__(self,**kwargs)
1532 1532
1533 1533 def setup(self, dataOut, n = None, removeDC=False):
1534 1534 '''
1535 1535 n= Numero de PRF's de entrada
1536 1536 '''
1537 1537 self.__initime = None
1538 1538 ####print("[INICIO]-setup del METODO PULSE PAIR")
1539 1539 self.__lastdatatime = 0
1540 1540 self.__dataReady = False
1541 1541 self.__buffer = 0
1542 1542 self.__profIndex = 0
1543 1543 self.noise = None
1544 1544 self.__nch = dataOut.nChannels
1545 1545 self.__nHeis = dataOut.nHeights
1546 1546 self.removeDC = removeDC
1547 1547 self.lambda_ = 3.0e8/(9345.0e6)
1548 1548 self.ippSec = dataOut.ippSeconds
1549 1549 self.nCohInt = dataOut.nCohInt
1550 1550 ####print("IPPseconds",dataOut.ippSeconds)
1551 1551 ####print("ELVALOR DE n es:", n)
1552 1552 if n == None:
1553 1553 raise ValueError("n should be specified.")
1554 1554
1555 1555 if n != None:
1556 1556 if n<2:
1557 1557 raise ValueError("n should be greater than 2")
1558 1558
1559 1559 self.n = n
1560 1560 self.__nProf = n
1561 1561
1562 1562 self.__buffer = numpy.zeros((dataOut.nChannels,
1563 1563 n,
1564 1564 dataOut.nHeights),
1565 1565 dtype='complex')
1566 1566
1567 1567 def putData(self,data):
1568 1568 '''
1569 1569 Add a profile to he __buffer and increase in one the __profiel Index
1570 1570 '''
1571 1571 self.__buffer[:,self.__profIndex,:]= data
1572 1572 self.__profIndex += 1
1573 1573 return
1574 1574
1575 1575 def putDataByBlock(self,data,n):
1576 1576 '''
1577 1577 Add a profile to he __buffer and increase in one the __profiel Index
1578 1578 '''
1579 1579 self.__buffer[:]= data
1580 1580 self.__profIndex = n
1581 1581 return
1582 1582
1583 1583 def pushData(self,dataOut):
1584 1584 '''
1585 1585 Return the PULSEPAIR and the profiles used in the operation
1586 1586 Affected : self.__profileIndex
1587 1587 '''
1588 1588 #----------------- Remove DC-----------------------------------
1589 1589 if self.removeDC==True:
1590 1590 mean = numpy.mean(self.__buffer,1)
1591 1591 tmp = mean.reshape(self.__nch,1,self.__nHeis)
1592 1592 dc= numpy.tile(tmp,[1,self.__nProf,1])
1593 1593 self.__buffer = self.__buffer - dc
1594 1594 #------------------Calculo de Potencia ------------------------
1595 1595 pair0 = self.__buffer*numpy.conj(self.__buffer)
1596 1596 pair0 = pair0.real
1597 1597 lag_0 = numpy.sum(pair0,1)
1598 1598 #-----------------Calculo de Cscp------------------------------ New
1599 1599 cspc_pair01 = self.__buffer[0]*self.__buffer[1]
1600 1600 #------------------Calculo de Ruido x canal--------------------
1601 1601 self.noise = numpy.zeros(self.__nch)
1602 1602 for i in range(self.__nch):
1603 1603 daux = numpy.sort(pair0[i,:,:],axis= None)
1604 1604 self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt)
1605 1605
1606 1606 self.noise = self.noise.reshape(self.__nch,1)
1607 1607 self.noise = numpy.tile(self.noise,[1,self.__nHeis])
1608 1608 noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis)
1609 1609 noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1])
1610 1610 #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N--
1611 1611 #------------------ P= S+N ,P=lag_0/N ---------------------------------
1612 1612 #-------------------- Power --------------------------------------------------
1613 1613 data_power = lag_0/(self.n*self.nCohInt)
1614 1614 #--------------------CCF------------------------------------------------------
1615 1615 data_ccf =numpy.sum(cspc_pair01,axis=0)/(self.n*self.nCohInt)
1616 1616 #------------------ Senal --------------------------------------------------
1617 1617 data_intensity = pair0 - noise_buffer
1618 1618 data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt)
1619 1619 #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt)
1620 1620 for i in range(self.__nch):
1621 1621 for j in range(self.__nHeis):
1622 1622 if data_intensity[i][j] < 0:
1623 1623 data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j]))
1624 1624
1625 1625 #----------------- Calculo de Frecuencia y Velocidad doppler--------
1626 1626 pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:])
1627 1627 lag_1 = numpy.sum(pair1,1)
1628 1628 data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1)
1629 1629 data_velocity = (self.lambda_/2.0)*data_freq
1630 1630
1631 1631 #---------------- Potencia promedio estimada de la Senal-----------
1632 1632 lag_0 = lag_0/self.n
1633 1633 S = lag_0-self.noise
1634 1634
1635 1635 #---------------- Frecuencia Doppler promedio ---------------------
1636 1636 lag_1 = lag_1/(self.n-1)
1637 1637 R1 = numpy.abs(lag_1)
1638 1638
1639 1639 #---------------- Calculo del SNR----------------------------------
1640 1640 data_snrPP = S/self.noise
1641 1641 for i in range(self.__nch):
1642 1642 for j in range(self.__nHeis):
1643 1643 if data_snrPP[i][j] < 1.e-20:
1644 1644 data_snrPP[i][j] = 1.e-20
1645 1645
1646 1646 #----------------- Calculo del ancho espectral ----------------------
1647 1647 L = S/R1
1648 1648 L = numpy.where(L<0,1,L)
1649 1649 L = numpy.log(L)
1650 1650 tmp = numpy.sqrt(numpy.absolute(L))
1651 1651 data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L)
1652 1652 n = self.__profIndex
1653 1653
1654 1654 self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex')
1655 1655 self.__profIndex = 0
1656 1656 return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,data_ccf,n
1657 1657
1658 1658
1659 1659 def pulsePairbyProfiles(self,dataOut,n):
1660 1660
1661 1661 self.__dataReady = False
1662 1662 data_power = None
1663 1663 data_intensity = None
1664 1664 data_velocity = None
1665 1665 data_specwidth = None
1666 1666 data_snrPP = None
1667 1667 data_ccf = None
1668 1668
1669 1669 if dataOut.flagDataAsBlock:
1670 1670 self.putDataByBlock(data=dataOut.data,n=n)
1671 1671 else:
1672 1672 self.putData(data=dataOut.data)
1673 1673 if self.__profIndex == self.n:
1674 1674 data_power,data_intensity, data_velocity,data_snrPP,data_specwidth,data_ccf, n = self.pushData(dataOut=dataOut)
1675 1675 self.__dataReady = True
1676 1676
1677 1677 return data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf
1678 1678
1679 1679
1680 1680 def pulsePairOp(self, dataOut, n, datatime= None):
1681 1681
1682 1682 if self.__initime == None:
1683 1683 self.__initime = datatime
1684 1684 data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf = self.pulsePairbyProfiles(dataOut,n)
1685 1685 self.__lastdatatime = datatime
1686 1686
1687 1687 if data_power is None:
1688 1688 return None, None, None,None,None,None,None
1689 1689
1690 1690 avgdatatime = self.__initime
1691 1691 deltatime = datatime - self.__lastdatatime
1692 1692 self.__initime = datatime
1693 1693
1694 1694 return data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf, avgdatatime
1695 1695
1696 1696 def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs):
1697 #print("hey")
1698 #print(dataOut.data.shape)
1699 #exit(1)
1697
1700 1698 if dataOut.flagDataAsBlock:
1701 n = dataOut.nProfileBlocks
1702 #print(self.__profIndex)
1699 n = dataOut.nProfiles
1700
1703 1701 if not self.isConfig:
1704 1702 self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs)
1705 1703 self.isConfig = True
1706 1704
1707 1705
1708 1706 data_power, data_intensity, data_velocity,data_snrPP,data_specwidth,data_ccf, avgdatatime = self.pulsePairOp(dataOut, n, dataOut.utctime)
1709 1707
1710 1708
1711 1709 dataOut.flagNoData = True
1712 1710
1713 1711 if self.__dataReady:
1714 1712 ###print("READY ----------------------------------")
1715 1713 dataOut.nCohInt *= self.n
1716 1714 dataOut.dataPP_POW = data_intensity # S
1717 1715 dataOut.dataPP_POWER = data_power # P valor que corresponde a POTENCIA MOMENTO
1718 1716 dataOut.dataPP_DOP = data_velocity
1719 1717 dataOut.dataPP_SNR = data_snrPP
1720 1718 dataOut.dataPP_WIDTH = data_specwidth
1721 1719 dataOut.dataPP_CCF = data_ccf
1722 1720 dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo.
1723 1721 dataOut.nProfiles = int(dataOut.nProfiles/n)
1724 1722 dataOut.utctime = avgdatatime
1725 1723 dataOut.flagNoData = False
1726 1724 return dataOut
1727 1725
1728 1726 # import collections
1729 1727 # from scipy.stats import mode
1730 1728 #
1731 1729 # class Synchronize(Operation):
1732 1730 #
1733 1731 # isConfig = False
1734 1732 # __profIndex = 0
1735 1733 #
1736 1734 # def __init__(self, **kwargs):
1737 1735 #
1738 1736 # Operation.__init__(self, **kwargs)
1739 1737 # # self.isConfig = False
1740 1738 # self.__powBuffer = None
1741 1739 # self.__startIndex = 0
1742 1740 # self.__pulseFound = False
1743 1741 #
1744 1742 # def __findTxPulse(self, dataOut, channel=0, pulse_with = None):
1745 1743 #
1746 1744 # #Read data
1747 1745 #
1748 1746 # powerdB = dataOut.getPower(channel = channel)
1749 1747 # noisedB = dataOut.getNoise(channel = channel)[0]
1750 1748 #
1751 1749 # self.__powBuffer.extend(powerdB.flatten())
1752 1750 #
1753 1751 # dataArray = numpy.array(self.__powBuffer)
1754 1752 #
1755 1753 # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same")
1756 1754 #
1757 1755 # maxValue = numpy.nanmax(filteredPower)
1758 1756 #
1759 1757 # if maxValue < noisedB + 10:
1760 1758 # #No se encuentra ningun pulso de transmision
1761 1759 # return None
1762 1760 #
1763 1761 # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0]
1764 1762 #
1765 1763 # if len(maxValuesIndex) < 2:
1766 1764 # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX
1767 1765 # return None
1768 1766 #
1769 1767 # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples
1770 1768 #
1771 1769 # #Seleccionar solo valores con un espaciamiento de nSamples
1772 1770 # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex)
1773 1771 #
1774 1772 # if len(pulseIndex) < 2:
1775 1773 # #Solo se encontro un pulso de transmision con ancho mayor a 1
1776 1774 # return None
1777 1775 #
1778 1776 # spacing = pulseIndex[1:] - pulseIndex[:-1]
1779 1777 #
1780 1778 # #remover senales que se distancien menos de 10 unidades o muestras
1781 1779 # #(No deberian existir IPP menor a 10 unidades)
1782 1780 #
1783 1781 # realIndex = numpy.where(spacing > 10 )[0]
1784 1782 #
1785 1783 # if len(realIndex) < 2:
1786 1784 # #Solo se encontro un pulso de transmision con ancho mayor a 1
1787 1785 # return None
1788 1786 #
1789 1787 # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs)
1790 1788 # realPulseIndex = pulseIndex[realIndex]
1791 1789 #
1792 1790 # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0]
1793 1791 #
1794 1792 # print "IPP = %d samples" %period
1795 1793 #
1796 1794 # self.__newNSamples = dataOut.nHeights #int(period)
1797 1795 # self.__startIndex = int(realPulseIndex[0])
1798 1796 #
1799 1797 # return 1
1800 1798 #
1801 1799 #
1802 1800 # def setup(self, nSamples, nChannels, buffer_size = 4):
1803 1801 #
1804 1802 # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float),
1805 1803 # maxlen = buffer_size*nSamples)
1806 1804 #
1807 1805 # bufferList = []
1808 1806 #
1809 1807 # for i in range(nChannels):
1810 1808 # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN,
1811 1809 # maxlen = buffer_size*nSamples)
1812 1810 #
1813 1811 # bufferList.append(bufferByChannel)
1814 1812 #
1815 1813 # self.__nSamples = nSamples
1816 1814 # self.__nChannels = nChannels
1817 1815 # self.__bufferList = bufferList
1818 1816 #
1819 1817 # def run(self, dataOut, channel = 0):
1820 1818 #
1821 1819 # if not self.isConfig:
1822 1820 # nSamples = dataOut.nHeights
1823 1821 # nChannels = dataOut.nChannels
1824 1822 # self.setup(nSamples, nChannels)
1825 1823 # self.isConfig = True
1826 1824 #
1827 1825 # #Append new data to internal buffer
1828 1826 # for thisChannel in range(self.__nChannels):
1829 1827 # bufferByChannel = self.__bufferList[thisChannel]
1830 1828 # bufferByChannel.extend(dataOut.data[thisChannel])
1831 1829 #
1832 1830 # if self.__pulseFound:
1833 1831 # self.__startIndex -= self.__nSamples
1834 1832 #
1835 1833 # #Finding Tx Pulse
1836 1834 # if not self.__pulseFound:
1837 1835 # indexFound = self.__findTxPulse(dataOut, channel)
1838 1836 #
1839 1837 # if indexFound == None:
1840 1838 # dataOut.flagNoData = True
1841 1839 # return
1842 1840 #
1843 1841 # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex)
1844 1842 # self.__pulseFound = True
1845 1843 # self.__startIndex = indexFound
1846 1844 #
1847 1845 # #If pulse was found ...
1848 1846 # for thisChannel in range(self.__nChannels):
1849 1847 # bufferByChannel = self.__bufferList[thisChannel]
1850 1848 # #print self.__startIndex
1851 1849 # x = numpy.array(bufferByChannel)
1852 1850 # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples]
1853 1851 #
1854 1852 # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1855 1853 # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight
1856 1854 # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6
1857 1855 #
1858 1856 # dataOut.data = self.__arrayBuffer
1859 1857 #
1860 1858 # self.__startIndex += self.__newNSamples
1861 1859 #
1862 1860 # return
General Comments 0
You need to be logged in to leave comments. Login now