##// END OF EJS Templates
modifiacion de la clase pulse pair, correcion de errores del Noise con removeDC y los 4 momentos
avaldez -
r1314:d42d076a7255
parent child
Show More
@@ -1,1604 +1,1627
1 1 import sys
2 2 import numpy,math
3 3 from scipy import interpolate
4 4 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
5 from schainpy.model.data.jrodata import Voltage
5 from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon
6 6 from schainpy.utils import log
7 7 from time import time
8 8
9 9
10 10
11 11 class VoltageProc(ProcessingUnit):
12 12
13 13 def __init__(self):
14 14
15 15 ProcessingUnit.__init__(self)
16 16
17 17 self.dataOut = Voltage()
18 18 self.flip = 1
19 19 self.setupReq = False
20 20
21 21 def run(self):
22 22
23 23 if self.dataIn.type == 'AMISR':
24 24 self.__updateObjFromAmisrInput()
25 25
26 26 if self.dataIn.type == 'Voltage':
27 27 self.dataOut.copy(self.dataIn)
28 28
29 29 def __updateObjFromAmisrInput(self):
30 30
31 31 self.dataOut.timeZone = self.dataIn.timeZone
32 32 self.dataOut.dstFlag = self.dataIn.dstFlag
33 33 self.dataOut.errorCount = self.dataIn.errorCount
34 34 self.dataOut.useLocalTime = self.dataIn.useLocalTime
35 35
36 36 self.dataOut.flagNoData = self.dataIn.flagNoData
37 37 self.dataOut.data = self.dataIn.data
38 38 self.dataOut.utctime = self.dataIn.utctime
39 39 self.dataOut.channelList = self.dataIn.channelList
40 40 #self.dataOut.timeInterval = self.dataIn.timeInterval
41 41 self.dataOut.heightList = self.dataIn.heightList
42 42 self.dataOut.nProfiles = self.dataIn.nProfiles
43 43
44 44 self.dataOut.nCohInt = self.dataIn.nCohInt
45 45 self.dataOut.ippSeconds = self.dataIn.ippSeconds
46 46 self.dataOut.frequency = self.dataIn.frequency
47 47
48 48 self.dataOut.azimuth = self.dataIn.azimuth
49 49 self.dataOut.zenith = self.dataIn.zenith
50 50
51 51 self.dataOut.beam.codeList = self.dataIn.beam.codeList
52 52 self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList
53 53 self.dataOut.beam.zenithList = self.dataIn.beam.zenithList
54 54
55 55
56 56 class selectChannels(Operation):
57 57
58 58 def run(self, dataOut, channelList):
59 59
60 60 channelIndexList = []
61 61 self.dataOut = dataOut
62 62 for channel in channelList:
63 63 if channel not in self.dataOut.channelList:
64 64 raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList)))
65 65
66 66 index = self.dataOut.channelList.index(channel)
67 67 channelIndexList.append(index)
68 68 self.selectChannelsByIndex(channelIndexList)
69 69 return self.dataOut
70 70
71 71 def selectChannelsByIndex(self, channelIndexList):
72 72 """
73 73 Selecciona un bloque de datos en base a canales segun el channelIndexList
74 74
75 75 Input:
76 76 channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
77 77
78 78 Affected:
79 79 self.dataOut.data
80 80 self.dataOut.channelIndexList
81 81 self.dataOut.nChannels
82 82 self.dataOut.m_ProcessingHeader.totalSpectra
83 83 self.dataOut.systemHeaderObj.numChannels
84 84 self.dataOut.m_ProcessingHeader.blockSize
85 85
86 86 Return:
87 87 None
88 88 """
89 89
90 90 for channelIndex in channelIndexList:
91 91 if channelIndex not in self.dataOut.channelIndexList:
92 92 raise ValueError("The value %d in channelIndexList is not valid" %channelIndex)
93 93
94 94 if self.dataOut.type == 'Voltage':
95 95 if self.dataOut.flagDataAsBlock:
96 96 """
97 97 Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
98 98 """
99 99 data = self.dataOut.data[channelIndexList,:,:]
100 100 else:
101 101 data = self.dataOut.data[channelIndexList,:]
102 102
103 103 self.dataOut.data = data
104 104 # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
105 105 self.dataOut.channelList = range(len(channelIndexList))
106 106
107 107 elif self.dataOut.type == 'Spectra':
108 108 data_spc = self.dataOut.data_spc[channelIndexList, :]
109 109 data_dc = self.dataOut.data_dc[channelIndexList, :]
110 110
111 111 self.dataOut.data_spc = data_spc
112 112 self.dataOut.data_dc = data_dc
113 113
114 114 # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
115 115 self.dataOut.channelList = range(len(channelIndexList))
116 116 self.__selectPairsByChannel(channelIndexList)
117 117
118 118 return 1
119 119
120 120 def __selectPairsByChannel(self, channelList=None):
121 121
122 122 if channelList == None:
123 123 return
124 124
125 125 pairsIndexListSelected = []
126 126 for pairIndex in self.dataOut.pairsIndexList:
127 127 # First pair
128 128 if self.dataOut.pairsList[pairIndex][0] not in channelList:
129 129 continue
130 130 # Second pair
131 131 if self.dataOut.pairsList[pairIndex][1] not in channelList:
132 132 continue
133 133
134 134 pairsIndexListSelected.append(pairIndex)
135 135
136 136 if not pairsIndexListSelected:
137 137 self.dataOut.data_cspc = None
138 138 self.dataOut.pairsList = []
139 139 return
140 140
141 141 self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected]
142 142 self.dataOut.pairsList = [self.dataOut.pairsList[i]
143 143 for i in pairsIndexListSelected]
144 144
145 145 return
146 146
147 147 class selectHeights(Operation):
148 148
149 149 def run(self, dataOut, minHei=None, maxHei=None):
150 150 """
151 151 Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
152 152 minHei <= height <= maxHei
153 153
154 154 Input:
155 155 minHei : valor minimo de altura a considerar
156 156 maxHei : valor maximo de altura a considerar
157 157
158 158 Affected:
159 159 Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
160 160
161 161 Return:
162 162 1 si el metodo se ejecuto con exito caso contrario devuelve 0
163 163 """
164 164
165 165 self.dataOut = dataOut
166 166
167 167 if minHei == None:
168 168 minHei = self.dataOut.heightList[0]
169 169
170 170 if maxHei == None:
171 171 maxHei = self.dataOut.heightList[-1]
172 172
173 173 if (minHei < self.dataOut.heightList[0]):
174 174 minHei = self.dataOut.heightList[0]
175 175
176 176 if (maxHei > self.dataOut.heightList[-1]):
177 177 maxHei = self.dataOut.heightList[-1]
178 178
179 179 minIndex = 0
180 180 maxIndex = 0
181 181 heights = self.dataOut.heightList
182 182
183 183 inda = numpy.where(heights >= minHei)
184 184 indb = numpy.where(heights <= maxHei)
185 185
186 186 try:
187 187 minIndex = inda[0][0]
188 188 except:
189 189 minIndex = 0
190 190
191 191 try:
192 192 maxIndex = indb[0][-1]
193 193 except:
194 194 maxIndex = len(heights)
195 195
196 196 self.selectHeightsByIndex(minIndex, maxIndex)
197 197
198 198 return self.dataOut
199 199
200 200 def selectHeightsByIndex(self, minIndex, maxIndex):
201 201 """
202 202 Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
203 203 minIndex <= index <= maxIndex
204 204
205 205 Input:
206 206 minIndex : valor de indice minimo de altura a considerar
207 207 maxIndex : valor de indice maximo de altura a considerar
208 208
209 209 Affected:
210 210 self.dataOut.data
211 211 self.dataOut.heightList
212 212
213 213 Return:
214 214 1 si el metodo se ejecuto con exito caso contrario devuelve 0
215 215 """
216 216
217 217 if self.dataOut.type == 'Voltage':
218 218 if (minIndex < 0) or (minIndex > maxIndex):
219 219 raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex))
220 220
221 221 if (maxIndex >= self.dataOut.nHeights):
222 222 maxIndex = self.dataOut.nHeights
223 223
224 224 #voltage
225 225 if self.dataOut.flagDataAsBlock:
226 226 """
227 227 Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
228 228 """
229 229 data = self.dataOut.data[:,:, minIndex:maxIndex]
230 230 else:
231 231 data = self.dataOut.data[:, minIndex:maxIndex]
232 232
233 233 # firstHeight = self.dataOut.heightList[minIndex]
234 234
235 235 self.dataOut.data = data
236 236 self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex]
237 237
238 238 if self.dataOut.nHeights <= 1:
239 239 raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights))
240 240 elif self.dataOut.type == 'Spectra':
241 241 if (minIndex < 0) or (minIndex > maxIndex):
242 242 raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (
243 243 minIndex, maxIndex))
244 244
245 245 if (maxIndex >= self.dataOut.nHeights):
246 246 maxIndex = self.dataOut.nHeights - 1
247 247
248 248 # Spectra
249 249 data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1]
250 250
251 251 data_cspc = None
252 252 if self.dataOut.data_cspc is not None:
253 253 data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1]
254 254
255 255 data_dc = None
256 256 if self.dataOut.data_dc is not None:
257 257 data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1]
258 258
259 259 self.dataOut.data_spc = data_spc
260 260 self.dataOut.data_cspc = data_cspc
261 261 self.dataOut.data_dc = data_dc
262 262
263 263 self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1]
264 264
265 265 return 1
266 266
267 267
268 268 class filterByHeights(Operation):
269 269
270 270 def run(self, dataOut, window):
271 271
272 272 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
273 273
274 274 if window == None:
275 275 window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight
276 276
277 277 newdelta = deltaHeight * window
278 278 r = dataOut.nHeights % window
279 279 newheights = (dataOut.nHeights-r)/window
280 280
281 281 if newheights <= 1:
282 282 raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window))
283 283
284 284 if dataOut.flagDataAsBlock:
285 285 """
286 286 Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
287 287 """
288 288 buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)]
289 289 buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window)
290 290 buffer = numpy.sum(buffer,3)
291 291
292 292 else:
293 293 buffer = dataOut.data[:,0:int(dataOut.nHeights-r)]
294 294 buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window))
295 295 buffer = numpy.sum(buffer,2)
296 296
297 297 dataOut.data = buffer
298 298 dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta
299 299 dataOut.windowOfFilter = window
300 300
301 301 return dataOut
302 302
303 303
304 304 class setH0(Operation):
305 305
306 306 def run(self, dataOut, h0, deltaHeight = None):
307 307
308 308 if not deltaHeight:
309 309 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
310 310
311 311 nHeights = dataOut.nHeights
312 312
313 313 newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight
314 314
315 315 dataOut.heightList = newHeiRange
316 316
317 317 return dataOut
318 318
319 319
320 320 class deFlip(Operation):
321 321
322 322 def run(self, dataOut, channelList = []):
323 323
324 324 data = dataOut.data.copy()
325 325
326 326 if dataOut.flagDataAsBlock:
327 327 flip = self.flip
328 328 profileList = list(range(dataOut.nProfiles))
329 329
330 330 if not channelList:
331 331 for thisProfile in profileList:
332 332 data[:,thisProfile,:] = data[:,thisProfile,:]*flip
333 333 flip *= -1.0
334 334 else:
335 335 for thisChannel in channelList:
336 336 if thisChannel not in dataOut.channelList:
337 337 continue
338 338
339 339 for thisProfile in profileList:
340 340 data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip
341 341 flip *= -1.0
342 342
343 343 self.flip = flip
344 344
345 345 else:
346 346 if not channelList:
347 347 data[:,:] = data[:,:]*self.flip
348 348 else:
349 349 for thisChannel in channelList:
350 350 if thisChannel not in dataOut.channelList:
351 351 continue
352 352
353 353 data[thisChannel,:] = data[thisChannel,:]*self.flip
354 354
355 355 self.flip *= -1.
356 356
357 357 dataOut.data = data
358 358
359 359 return dataOut
360 360
361 361
362 362 class setAttribute(Operation):
363 363 '''
364 364 Set an arbitrary attribute(s) to dataOut
365 365 '''
366 366
367 367 def __init__(self):
368 368
369 369 Operation.__init__(self)
370 370 self._ready = False
371 371
372 372 def run(self, dataOut, **kwargs):
373 373
374 374 for key, value in kwargs.items():
375 375 setattr(dataOut, key, value)
376 376
377 377 return dataOut
378 378
379 379
380 380 @MPDecorator
381 381 class printAttribute(Operation):
382 382 '''
383 383 Print an arbitrary attribute of dataOut
384 384 '''
385 385
386 386 def __init__(self):
387 387
388 388 Operation.__init__(self)
389 389
390 390 def run(self, dataOut, attributes):
391 391
392 392 for attr in attributes:
393 393 if hasattr(dataOut, attr):
394 394 log.log(getattr(dataOut, attr), attr)
395 395
396 396
397 397 class interpolateHeights(Operation):
398 398
399 399 def run(self, dataOut, topLim, botLim):
400 400 #69 al 72 para julia
401 401 #82-84 para meteoros
402 402 if len(numpy.shape(dataOut.data))==2:
403 403 sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2
404 404 sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1)))
405 405 #dataOut.data[:,botLim:limSup+1] = sampInterp
406 406 dataOut.data[:,botLim:topLim+1] = sampInterp
407 407 else:
408 408 nHeights = dataOut.data.shape[2]
409 409 x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights)))
410 410 y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))]
411 411 f = interpolate.interp1d(x, y, axis = 2)
412 412 xnew = numpy.arange(botLim,topLim+1)
413 413 ynew = f(xnew)
414 414 dataOut.data[:,:,botLim:topLim+1] = ynew
415 415
416 416 return dataOut
417 417
418 418
419 419 class CohInt(Operation):
420 420
421 421 isConfig = False
422 422 __profIndex = 0
423 423 __byTime = False
424 424 __initime = None
425 425 __lastdatatime = None
426 426 __integrationtime = None
427 427 __buffer = None
428 428 __bufferStride = []
429 429 __dataReady = False
430 430 __profIndexStride = 0
431 431 __dataToPutStride = False
432 432 n = None
433 433
434 434 def __init__(self, **kwargs):
435 435
436 436 Operation.__init__(self, **kwargs)
437 437
438 438 def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False):
439 439 """
440 440 Set the parameters of the integration class.
441 441
442 442 Inputs:
443 443
444 444 n : Number of coherent integrations
445 445 timeInterval : Time of integration. If the parameter "n" is selected this one does not work
446 446 overlapping :
447 447 """
448 448
449 449 self.__initime = None
450 450 self.__lastdatatime = 0
451 451 self.__buffer = None
452 452 self.__dataReady = False
453 453 self.byblock = byblock
454 454 self.stride = stride
455 455
456 456 if n == None and timeInterval == None:
457 457 raise ValueError("n or timeInterval should be specified ...")
458 458
459 459 if n != None:
460 460 self.n = n
461 461 self.__byTime = False
462 462 else:
463 463 self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line
464 464 self.n = 9999
465 465 self.__byTime = True
466 466
467 467 if overlapping:
468 468 self.__withOverlapping = True
469 469 self.__buffer = None
470 470 else:
471 471 self.__withOverlapping = False
472 472 self.__buffer = 0
473 473
474 474 self.__profIndex = 0
475 475
476 476 def putData(self, data):
477 477
478 478 """
479 479 Add a profile to the __buffer and increase in one the __profileIndex
480 480
481 481 """
482 482
483 483 if not self.__withOverlapping:
484 484 self.__buffer += data.copy()
485 485 self.__profIndex += 1
486 486 return
487 487
488 488 #Overlapping data
489 489 nChannels, nHeis = data.shape
490 490 data = numpy.reshape(data, (1, nChannels, nHeis))
491 491
492 492 #If the buffer is empty then it takes the data value
493 493 if self.__buffer is None:
494 494 self.__buffer = data
495 495 self.__profIndex += 1
496 496 return
497 497
498 498 #If the buffer length is lower than n then stakcing the data value
499 499 if self.__profIndex < self.n:
500 500 self.__buffer = numpy.vstack((self.__buffer, data))
501 501 self.__profIndex += 1
502 502 return
503 503
504 504 #If the buffer length is equal to n then replacing the last buffer value with the data value
505 505 self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
506 506 self.__buffer[self.n-1] = data
507 507 self.__profIndex = self.n
508 508 return
509 509
510 510
511 511 def pushData(self):
512 512 """
513 513 Return the sum of the last profiles and the profiles used in the sum.
514 514
515 515 Affected:
516 516
517 517 self.__profileIndex
518 518
519 519 """
520 520
521 521 if not self.__withOverlapping:
522 522 data = self.__buffer
523 523 n = self.__profIndex
524 524
525 525 self.__buffer = 0
526 526 self.__profIndex = 0
527 527
528 528 return data, n
529 529
530 530 #Integration with Overlapping
531 531 data = numpy.sum(self.__buffer, axis=0)
532 532 # print data
533 533 # raise
534 534 n = self.__profIndex
535 535
536 536 return data, n
537 537
538 538 def byProfiles(self, data):
539 539
540 540 self.__dataReady = False
541 541 avgdata = None
542 542 # n = None
543 543 # print data
544 544 # raise
545 545 self.putData(data)
546 546
547 547 if self.__profIndex == self.n:
548 548 avgdata, n = self.pushData()
549 549 self.__dataReady = True
550 550
551 551 return avgdata
552 552
553 553 def byTime(self, data, datatime):
554 554
555 555 self.__dataReady = False
556 556 avgdata = None
557 557 n = None
558 558
559 559 self.putData(data)
560 560
561 561 if (datatime - self.__initime) >= self.__integrationtime:
562 562 avgdata, n = self.pushData()
563 563 self.n = n
564 564 self.__dataReady = True
565 565
566 566 return avgdata
567 567
568 568 def integrateByStride(self, data, datatime):
569 569 # print data
570 570 if self.__profIndex == 0:
571 571 self.__buffer = [[data.copy(), datatime]]
572 572 else:
573 573 self.__buffer.append([data.copy(),datatime])
574 574 self.__profIndex += 1
575 575 self.__dataReady = False
576 576
577 577 if self.__profIndex == self.n * self.stride :
578 578 self.__dataToPutStride = True
579 579 self.__profIndexStride = 0
580 580 self.__profIndex = 0
581 581 self.__bufferStride = []
582 582 for i in range(self.stride):
583 583 current = self.__buffer[i::self.stride]
584 584 data = numpy.sum([t[0] for t in current], axis=0)
585 585 avgdatatime = numpy.average([t[1] for t in current])
586 586 # print data
587 587 self.__bufferStride.append((data, avgdatatime))
588 588
589 589 if self.__dataToPutStride:
590 590 self.__dataReady = True
591 591 self.__profIndexStride += 1
592 592 if self.__profIndexStride == self.stride:
593 593 self.__dataToPutStride = False
594 594 # print self.__bufferStride[self.__profIndexStride - 1]
595 595 # raise
596 596 return self.__bufferStride[self.__profIndexStride - 1]
597 597
598 598
599 599 return None, None
600 600
601 601 def integrate(self, data, datatime=None):
602 602
603 603 if self.__initime == None:
604 604 self.__initime = datatime
605 605
606 606 if self.__byTime:
607 607 avgdata = self.byTime(data, datatime)
608 608 else:
609 609 avgdata = self.byProfiles(data)
610 610
611 611
612 612 self.__lastdatatime = datatime
613 613
614 614 if avgdata is None:
615 615 return None, None
616 616
617 617 avgdatatime = self.__initime
618 618
619 619 deltatime = datatime - self.__lastdatatime
620 620
621 621 if not self.__withOverlapping:
622 622 self.__initime = datatime
623 623 else:
624 624 self.__initime += deltatime
625 625
626 626 return avgdata, avgdatatime
627 627
628 628 def integrateByBlock(self, dataOut):
629 629
630 630 times = int(dataOut.data.shape[1]/self.n)
631 631 avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex)
632 632
633 633 id_min = 0
634 634 id_max = self.n
635 635
636 636 for i in range(times):
637 637 junk = dataOut.data[:,id_min:id_max,:]
638 638 avgdata[:,i,:] = junk.sum(axis=1)
639 639 id_min += self.n
640 640 id_max += self.n
641 641
642 642 timeInterval = dataOut.ippSeconds*self.n
643 643 avgdatatime = (times - 1) * timeInterval + dataOut.utctime
644 644 self.__dataReady = True
645 645 return avgdata, avgdatatime
646 646
647 647 def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs):
648 648
649 649 if not self.isConfig:
650 650 self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs)
651 651 self.isConfig = True
652 652
653 653 if dataOut.flagDataAsBlock:
654 654 """
655 655 Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis]
656 656 """
657 657 avgdata, avgdatatime = self.integrateByBlock(dataOut)
658 658 dataOut.nProfiles /= self.n
659 659 else:
660 660 if stride is None:
661 661 avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime)
662 662 else:
663 663 avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime)
664 664
665 665
666 666 # dataOut.timeInterval *= n
667 667 dataOut.flagNoData = True
668 668
669 669 if self.__dataReady:
670 670 dataOut.data = avgdata
671 671 if not dataOut.flagCohInt:
672 672 dataOut.nCohInt *= self.n
673 673 dataOut.flagCohInt = True
674 674 dataOut.utctime = avgdatatime
675 675 # print avgdata, avgdatatime
676 676 # raise
677 677 # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt
678 678 dataOut.flagNoData = False
679 679 return dataOut
680 680
681 681 class Decoder(Operation):
682 682
683 683 isConfig = False
684 684 __profIndex = 0
685 685
686 686 code = None
687 687
688 688 nCode = None
689 689 nBaud = None
690 690
691 691 def __init__(self, **kwargs):
692 692
693 693 Operation.__init__(self, **kwargs)
694 694
695 695 self.times = None
696 696 self.osamp = None
697 697 # self.__setValues = False
698 698 self.isConfig = False
699 699 self.setupReq = False
700 700 def setup(self, code, osamp, dataOut):
701 701
702 702 self.__profIndex = 0
703 703
704 704 self.code = code
705 705
706 706 self.nCode = len(code)
707 707 self.nBaud = len(code[0])
708 708
709 709 if (osamp != None) and (osamp >1):
710 710 self.osamp = osamp
711 711 self.code = numpy.repeat(code, repeats=self.osamp, axis=1)
712 712 self.nBaud = self.nBaud*self.osamp
713 713
714 714 self.__nChannels = dataOut.nChannels
715 715 self.__nProfiles = dataOut.nProfiles
716 716 self.__nHeis = dataOut.nHeights
717 717
718 718 if self.__nHeis < self.nBaud:
719 719 raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud))
720 720
721 721 #Frequency
722 722 __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex)
723 723
724 724 __codeBuffer[:,0:self.nBaud] = self.code
725 725
726 726 self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1))
727 727
728 728 if dataOut.flagDataAsBlock:
729 729
730 730 self.ndatadec = self.__nHeis #- self.nBaud + 1
731 731
732 732 self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex)
733 733
734 734 else:
735 735
736 736 #Time
737 737 self.ndatadec = self.__nHeis #- self.nBaud + 1
738 738
739 739 self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex)
740 740
741 741 def __convolutionInFreq(self, data):
742 742
743 743 fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
744 744
745 745 fft_data = numpy.fft.fft(data, axis=1)
746 746
747 747 conv = fft_data*fft_code
748 748
749 749 data = numpy.fft.ifft(conv,axis=1)
750 750
751 751 return data
752 752
753 753 def __convolutionInFreqOpt(self, data):
754 754
755 755 raise NotImplementedError
756 756
757 757 def __convolutionInTime(self, data):
758 758
759 759 code = self.code[self.__profIndex]
760 760 for i in range(self.__nChannels):
761 761 self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:]
762 762
763 763 return self.datadecTime
764 764
765 765 def __convolutionByBlockInTime(self, data):
766 766
767 767 repetitions = int(self.__nProfiles / self.nCode)
768 768 junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize))
769 769 junk = junk.flatten()
770 770 code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud))
771 771 profilesList = range(self.__nProfiles)
772 772
773 773 for i in range(self.__nChannels):
774 774 for j in profilesList:
775 775 self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:]
776 776 return self.datadecTime
777 777
778 778 def __convolutionByBlockInFreq(self, data):
779 779
780 780 raise NotImplementedError("Decoder by frequency fro Blocks not implemented")
781 781
782 782
783 783 fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
784 784
785 785 fft_data = numpy.fft.fft(data, axis=2)
786 786
787 787 conv = fft_data*fft_code
788 788
789 789 data = numpy.fft.ifft(conv,axis=2)
790 790
791 791 return data
792 792
793 793
794 794 def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None):
795 795
796 796 if dataOut.flagDecodeData:
797 797 print("This data is already decoded, recoding again ...")
798 798
799 799 if not self.isConfig:
800 800
801 801 if code is None:
802 802 if dataOut.code is None:
803 803 raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type)
804 804
805 805 code = dataOut.code
806 806 else:
807 807 code = numpy.array(code).reshape(nCode,nBaud)
808 808 self.setup(code, osamp, dataOut)
809 809
810 810 self.isConfig = True
811 811
812 812 if mode == 3:
813 813 sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode)
814 814
815 815 if times != None:
816 816 sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n")
817 817
818 818 if self.code is None:
819 819 print("Fail decoding: Code is not defined.")
820 820 return
821 821
822 822 self.__nProfiles = dataOut.nProfiles
823 823 datadec = None
824 824
825 825 if mode == 3:
826 826 mode = 0
827 827
828 828 if dataOut.flagDataAsBlock:
829 829 """
830 830 Decoding when data have been read as block,
831 831 """
832 832
833 833 if mode == 0:
834 834 datadec = self.__convolutionByBlockInTime(dataOut.data)
835 835 if mode == 1:
836 836 datadec = self.__convolutionByBlockInFreq(dataOut.data)
837 837 else:
838 838 """
839 839 Decoding when data have been read profile by profile
840 840 """
841 841 if mode == 0:
842 842 datadec = self.__convolutionInTime(dataOut.data)
843 843
844 844 if mode == 1:
845 845 datadec = self.__convolutionInFreq(dataOut.data)
846 846
847 847 if mode == 2:
848 848 datadec = self.__convolutionInFreqOpt(dataOut.data)
849 849
850 850 if datadec is None:
851 851 raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode)
852 852
853 853 dataOut.code = self.code
854 854 dataOut.nCode = self.nCode
855 855 dataOut.nBaud = self.nBaud
856 856
857 857 dataOut.data = datadec
858 858
859 859 dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]]
860 860
861 861 dataOut.flagDecodeData = True #asumo q la data esta decodificada
862 862
863 863 if self.__profIndex == self.nCode-1:
864 864 self.__profIndex = 0
865 865 return dataOut
866 866
867 867 self.__profIndex += 1
868 868
869 869 return dataOut
870 870 # dataOut.flagDeflipData = True #asumo q la data no esta sin flip
871 871
872 872
873 873 class ProfileConcat(Operation):
874 874
875 875 isConfig = False
876 876 buffer = None
877 877
878 878 def __init__(self, **kwargs):
879 879
880 880 Operation.__init__(self, **kwargs)
881 881 self.profileIndex = 0
882 882
883 883 def reset(self):
884 884 self.buffer = numpy.zeros_like(self.buffer)
885 885 self.start_index = 0
886 886 self.times = 1
887 887
888 888 def setup(self, data, m, n=1):
889 889 self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0]))
890 890 self.nHeights = data.shape[1]#.nHeights
891 891 self.start_index = 0
892 892 self.times = 1
893 893
894 894 def concat(self, data):
895 895
896 896 self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy()
897 897 self.start_index = self.start_index + self.nHeights
898 898
899 899 def run(self, dataOut, m):
900 900 dataOut.flagNoData = True
901 901
902 902 if not self.isConfig:
903 903 self.setup(dataOut.data, m, 1)
904 904 self.isConfig = True
905 905
906 906 if dataOut.flagDataAsBlock:
907 907 raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False")
908 908
909 909 else:
910 910 self.concat(dataOut.data)
911 911 self.times += 1
912 912 if self.times > m:
913 913 dataOut.data = self.buffer
914 914 self.reset()
915 915 dataOut.flagNoData = False
916 916 # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas
917 917 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
918 918 xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m
919 919 dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight)
920 920 dataOut.ippSeconds *= m
921 921 return dataOut
922 922
923 923 class ProfileSelector(Operation):
924 924
925 925 profileIndex = None
926 926 # Tamanho total de los perfiles
927 927 nProfiles = None
928 928
929 929 def __init__(self, **kwargs):
930 930
931 931 Operation.__init__(self, **kwargs)
932 932 self.profileIndex = 0
933 933
934 934 def incProfileIndex(self):
935 935
936 936 self.profileIndex += 1
937 937
938 938 if self.profileIndex >= self.nProfiles:
939 939 self.profileIndex = 0
940 940
941 941 def isThisProfileInRange(self, profileIndex, minIndex, maxIndex):
942 942
943 943 if profileIndex < minIndex:
944 944 return False
945 945
946 946 if profileIndex > maxIndex:
947 947 return False
948 948
949 949 return True
950 950
951 951 def isThisProfileInList(self, profileIndex, profileList):
952 952
953 953 if profileIndex not in profileList:
954 954 return False
955 955
956 956 return True
957 957
958 958 def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None):
959 959
960 960 """
961 961 ProfileSelector:
962 962
963 963 Inputs:
964 964 profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8)
965 965
966 966 profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30)
967 967
968 968 rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256))
969 969
970 970 """
971 971
972 972 if rangeList is not None:
973 973 if type(rangeList[0]) not in (tuple, list):
974 974 rangeList = [rangeList]
975 975
976 976 dataOut.flagNoData = True
977 977
978 978 if dataOut.flagDataAsBlock:
979 979 """
980 980 data dimension = [nChannels, nProfiles, nHeis]
981 981 """
982 982 if profileList != None:
983 983 dataOut.data = dataOut.data[:,profileList,:]
984 984
985 985 if profileRangeList != None:
986 986 minIndex = profileRangeList[0]
987 987 maxIndex = profileRangeList[1]
988 988 profileList = list(range(minIndex, maxIndex+1))
989 989
990 990 dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:]
991 991
992 992 if rangeList != None:
993 993
994 994 profileList = []
995 995
996 996 for thisRange in rangeList:
997 997 minIndex = thisRange[0]
998 998 maxIndex = thisRange[1]
999 999
1000 1000 profileList.extend(list(range(minIndex, maxIndex+1)))
1001 1001
1002 1002 dataOut.data = dataOut.data[:,profileList,:]
1003 1003
1004 1004 dataOut.nProfiles = len(profileList)
1005 1005 dataOut.profileIndex = dataOut.nProfiles - 1
1006 1006 dataOut.flagNoData = False
1007 1007
1008 1008 return dataOut
1009 1009
1010 1010 """
1011 1011 data dimension = [nChannels, nHeis]
1012 1012 """
1013 1013
1014 1014 if profileList != None:
1015 1015
1016 1016 if self.isThisProfileInList(dataOut.profileIndex, profileList):
1017 1017
1018 1018 self.nProfiles = len(profileList)
1019 1019 dataOut.nProfiles = self.nProfiles
1020 1020 dataOut.profileIndex = self.profileIndex
1021 1021 dataOut.flagNoData = False
1022 1022
1023 1023 self.incProfileIndex()
1024 1024 return dataOut
1025 1025
1026 1026 if profileRangeList != None:
1027 1027
1028 1028 minIndex = profileRangeList[0]
1029 1029 maxIndex = profileRangeList[1]
1030 1030
1031 1031 if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex):
1032 1032
1033 1033 self.nProfiles = maxIndex - minIndex + 1
1034 1034 dataOut.nProfiles = self.nProfiles
1035 1035 dataOut.profileIndex = self.profileIndex
1036 1036 dataOut.flagNoData = False
1037 1037
1038 1038 self.incProfileIndex()
1039 1039 return dataOut
1040 1040
1041 1041 if rangeList != None:
1042 1042
1043 1043 nProfiles = 0
1044 1044
1045 1045 for thisRange in rangeList:
1046 1046 minIndex = thisRange[0]
1047 1047 maxIndex = thisRange[1]
1048 1048
1049 1049 nProfiles += maxIndex - minIndex + 1
1050 1050
1051 1051 for thisRange in rangeList:
1052 1052
1053 1053 minIndex = thisRange[0]
1054 1054 maxIndex = thisRange[1]
1055 1055
1056 1056 if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex):
1057 1057
1058 1058 self.nProfiles = nProfiles
1059 1059 dataOut.nProfiles = self.nProfiles
1060 1060 dataOut.profileIndex = self.profileIndex
1061 1061 dataOut.flagNoData = False
1062 1062
1063 1063 self.incProfileIndex()
1064 1064
1065 1065 break
1066 1066
1067 1067 return dataOut
1068 1068
1069 1069
1070 1070 if beam != None: #beam is only for AMISR data
1071 1071 if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]):
1072 1072 dataOut.flagNoData = False
1073 1073 dataOut.profileIndex = self.profileIndex
1074 1074
1075 1075 self.incProfileIndex()
1076 1076
1077 1077 return dataOut
1078 1078
1079 1079 raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter")
1080 1080
1081 1081
1082 1082 class Reshaper(Operation):
1083 1083
1084 1084 def __init__(self, **kwargs):
1085 1085
1086 1086 Operation.__init__(self, **kwargs)
1087 1087
1088 1088 self.__buffer = None
1089 1089 self.__nitems = 0
1090 1090
1091 1091 def __appendProfile(self, dataOut, nTxs):
1092 1092
1093 1093 if self.__buffer is None:
1094 1094 shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) )
1095 1095 self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype)
1096 1096
1097 1097 ini = dataOut.nHeights * self.__nitems
1098 1098 end = ini + dataOut.nHeights
1099 1099
1100 1100 self.__buffer[:, ini:end] = dataOut.data
1101 1101
1102 1102 self.__nitems += 1
1103 1103
1104 1104 return int(self.__nitems*nTxs)
1105 1105
1106 1106 def __getBuffer(self):
1107 1107
1108 1108 if self.__nitems == int(1./self.__nTxs):
1109 1109
1110 1110 self.__nitems = 0
1111 1111
1112 1112 return self.__buffer.copy()
1113 1113
1114 1114 return None
1115 1115
1116 1116 def __checkInputs(self, dataOut, shape, nTxs):
1117 1117
1118 1118 if shape is None and nTxs is None:
1119 1119 raise ValueError("Reshaper: shape of factor should be defined")
1120 1120
1121 1121 if nTxs:
1122 1122 if nTxs < 0:
1123 1123 raise ValueError("nTxs should be greater than 0")
1124 1124
1125 1125 if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0:
1126 1126 raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs)))
1127 1127
1128 1128 shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs]
1129 1129
1130 1130 return shape, nTxs
1131 1131
1132 1132 if len(shape) != 2 and len(shape) != 3:
1133 1133 raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights))
1134 1134
1135 1135 if len(shape) == 2:
1136 1136 shape_tuple = [dataOut.nChannels]
1137 1137 shape_tuple.extend(shape)
1138 1138 else:
1139 1139 shape_tuple = list(shape)
1140 1140
1141 1141 nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles
1142 1142
1143 1143 return shape_tuple, nTxs
1144 1144
1145 1145 def run(self, dataOut, shape=None, nTxs=None):
1146 1146
1147 1147 shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs)
1148 1148
1149 1149 dataOut.flagNoData = True
1150 1150 profileIndex = None
1151 1151
1152 1152 if dataOut.flagDataAsBlock:
1153 1153
1154 1154 dataOut.data = numpy.reshape(dataOut.data, shape_tuple)
1155 1155 dataOut.flagNoData = False
1156 1156
1157 1157 profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1
1158 1158
1159 1159 else:
1160 1160
1161 1161 if self.__nTxs < 1:
1162 1162
1163 1163 self.__appendProfile(dataOut, self.__nTxs)
1164 1164 new_data = self.__getBuffer()
1165 1165
1166 1166 if new_data is not None:
1167 1167 dataOut.data = new_data
1168 1168 dataOut.flagNoData = False
1169 1169
1170 1170 profileIndex = dataOut.profileIndex*nTxs
1171 1171
1172 1172 else:
1173 1173 raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)")
1174 1174
1175 1175 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1176 1176
1177 1177 dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0]
1178 1178
1179 1179 dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs)
1180 1180
1181 1181 dataOut.profileIndex = profileIndex
1182 1182
1183 1183 dataOut.ippSeconds /= self.__nTxs
1184 1184
1185 1185 return dataOut
1186 1186
1187 1187 class SplitProfiles(Operation):
1188 1188
1189 1189 def __init__(self, **kwargs):
1190 1190
1191 1191 Operation.__init__(self, **kwargs)
1192 1192
1193 1193 def run(self, dataOut, n):
1194 1194
1195 1195 dataOut.flagNoData = True
1196 1196 profileIndex = None
1197 1197
1198 1198 if dataOut.flagDataAsBlock:
1199 1199
1200 1200 #nchannels, nprofiles, nsamples
1201 1201 shape = dataOut.data.shape
1202 1202
1203 1203 if shape[2] % n != 0:
1204 1204 raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2]))
1205 1205
1206 1206 new_shape = shape[0], shape[1]*n, int(shape[2]/n)
1207 1207
1208 1208 dataOut.data = numpy.reshape(dataOut.data, new_shape)
1209 1209 dataOut.flagNoData = False
1210 1210
1211 1211 profileIndex = int(dataOut.nProfiles/n) - 1
1212 1212
1213 1213 else:
1214 1214
1215 1215 raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)")
1216 1216
1217 1217 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1218 1218
1219 1219 dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0]
1220 1220
1221 1221 dataOut.nProfiles = int(dataOut.nProfiles*n)
1222 1222
1223 1223 dataOut.profileIndex = profileIndex
1224 1224
1225 1225 dataOut.ippSeconds /= n
1226 1226
1227 1227 return dataOut
1228 1228
1229 1229 class CombineProfiles(Operation):
1230 1230 def __init__(self, **kwargs):
1231 1231
1232 1232 Operation.__init__(self, **kwargs)
1233 1233
1234 1234 self.__remData = None
1235 1235 self.__profileIndex = 0
1236 1236
1237 1237 def run(self, dataOut, n):
1238 1238
1239 1239 dataOut.flagNoData = True
1240 1240 profileIndex = None
1241 1241
1242 1242 if dataOut.flagDataAsBlock:
1243 1243
1244 1244 #nchannels, nprofiles, nsamples
1245 1245 shape = dataOut.data.shape
1246 1246 new_shape = shape[0], shape[1]/n, shape[2]*n
1247 1247
1248 1248 if shape[1] % n != 0:
1249 1249 raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1]))
1250 1250
1251 1251 dataOut.data = numpy.reshape(dataOut.data, new_shape)
1252 1252 dataOut.flagNoData = False
1253 1253
1254 1254 profileIndex = int(dataOut.nProfiles*n) - 1
1255 1255
1256 1256 else:
1257 1257
1258 1258 #nchannels, nsamples
1259 1259 if self.__remData is None:
1260 1260 newData = dataOut.data
1261 1261 else:
1262 1262 newData = numpy.concatenate((self.__remData, dataOut.data), axis=1)
1263 1263
1264 1264 self.__profileIndex += 1
1265 1265
1266 1266 if self.__profileIndex < n:
1267 1267 self.__remData = newData
1268 1268 #continue
1269 1269 return
1270 1270
1271 1271 self.__profileIndex = 0
1272 1272 self.__remData = None
1273 1273
1274 1274 dataOut.data = newData
1275 1275 dataOut.flagNoData = False
1276 1276
1277 1277 profileIndex = dataOut.profileIndex/n
1278 1278
1279 1279
1280 1280 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1281 1281
1282 1282 dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0]
1283 1283
1284 1284 dataOut.nProfiles = int(dataOut.nProfiles/n)
1285 1285
1286 1286 dataOut.profileIndex = profileIndex
1287 1287
1288 1288 dataOut.ippSeconds *= n
1289 1289
1290 1290 return dataOut
1291 1291
1292 1292 class PulsePairVoltage(Operation):
1293 1293 '''
1294 1294 Function PulsePair(Signal Power, Velocity)
1295 1295 The real component of Lag[0] provides Intensity Information
1296 1296 The imag component of Lag[1] Phase provides Velocity Information
1297 1297
1298 1298 Configuration Parameters:
1299 1299 nPRF = Number of Several PRF
1300 1300 theta = Degree Azimuth angel Boundaries
1301 1301
1302 1302 Input:
1303 1303 self.dataOut
1304 1304 lag[N]
1305 1305 Affected:
1306 1306 self.dataOut.spc
1307 1307 '''
1308 1308 isConfig = False
1309 1309 __profIndex = 0
1310 1310 __initime = None
1311 1311 __lastdatatime = None
1312 1312 __buffer = None
1313 1313 noise = None
1314 1314 __dataReady = False
1315 1315 n = None
1316 1316 __nch = 0
1317 1317 __nHeis = 0
1318 1318 removeDC = False
1319 1319 ipp = None
1320 1320 lambda_ = 0
1321 1321
1322 1322 def __init__(self,**kwargs):
1323 1323 Operation.__init__(self,**kwargs)
1324 1324
1325 1325 def setup(self, dataOut, n = None, removeDC=False):
1326 1326 '''
1327 1327 n= Numero de PRF's de entrada
1328 1328 '''
1329 1329 self.__initime = None
1330 1330 self.__lastdatatime = 0
1331 1331 self.__dataReady = False
1332 1332 self.__buffer = 0
1333 1333 self.__profIndex = 0
1334 1334 self.noise = None
1335 1335 self.__nch = dataOut.nChannels
1336 1336 self.__nHeis = dataOut.nHeights
1337 1337 self.removeDC = removeDC
1338 1338 self.lambda_ = 3.0e8/(9345.0e6)
1339 1339 self.ippSec = dataOut.ippSeconds
1340 1340 self.nCohInt = dataOut.nCohInt
1341 1341 print("IPPseconds",dataOut.ippSeconds)
1342 1342
1343 1343 print("ELVALOR DE n es:", n)
1344 1344 if n == None:
1345 1345 raise ValueError("n should be specified.")
1346 1346
1347 1347 if n != None:
1348 1348 if n<2:
1349 1349 raise ValueError("n should be greater than 2")
1350 1350
1351 1351 self.n = n
1352 1352 self.__nProf = n
1353 1353
1354 1354 self.__buffer = numpy.zeros((dataOut.nChannels,
1355 1355 n,
1356 1356 dataOut.nHeights),
1357 1357 dtype='complex')
1358 #self.noise = numpy.zeros([self.__nch,self.__nHeis])
1359 #for i in range(self.__nch):
1360 # self.noise[i]=dataOut.getNoise(channel=i)
1361 1358
1362 1359 def putData(self,data):
1363 1360 '''
1364 1361 Add a profile to he __buffer and increase in one the __profiel Index
1365 1362 '''
1366 1363 self.__buffer[:,self.__profIndex,:]= data
1367 1364 self.__profIndex += 1
1368 1365 return
1369 1366
1370 1367 def pushData(self,dataOut):
1371 1368 '''
1372 1369 Return the PULSEPAIR and the profiles used in the operation
1373 1370 Affected : self.__profileIndex
1374 1371 '''
1372 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1375 1373 if self.removeDC==True:
1376 1374 mean = numpy.mean(self.__buffer,1)
1377 1375 tmp = mean.reshape(self.__nch,1,self.__nHeis)
1378 1376 dc= numpy.tile(tmp,[1,self.__nProf,1])
1379 1377 self.__buffer = self.__buffer - dc
1378 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Calculo de Potencia Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1379 pair0 = self.__buffer*numpy.conj(self.__buffer)
1380 pair0 = pair0.real
1381 lag_0 = numpy.sum(pair0,1)
1382 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Calculo de Ruido x canalΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1383 self.noise = numpy.zeros(self.__nch)
1384 for i in range(self.__nch):
1385 daux = numpy.sort(pair0[i,:,:],axis= None)
1386 self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt)
1387
1388 self.noise = self.noise.reshape(self.__nch,1)
1389 self.noise = numpy.tile(self.noise,[1,self.__nHeis])
1390 noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis)
1391 noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1])
1392 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Potencia recibida= P , Potencia senal = S , Ruido= NΒ·Β·
1393 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· P= S+N ,P=lag_0/N Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1394 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Power Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1395 data_power = lag_0/(self.n*self.nCohInt)
1396 #------------------ Senal Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1397 data_intensity = pair0 - noise_buffer
1398 data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt)
1399 #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt)
1400 for i in range(self.__nch):
1401 for j in range(self.__nHeis):
1402 if data_intensity[i][j] < 0:
1403 data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j]))
1380 1404
1381 lag_0 = numpy.sum(self.__buffer*numpy.conj(self.__buffer),1)
1382 data_intensity = lag_0/(self.n*self.nCohInt)#*self.nCohInt)
1383
1405 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Calculo de Frecuencia y Velocidad dopplerΒ·Β·Β·Β·Β·Β·Β·Β·
1384 1406 pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:])
1385 1407 lag_1 = numpy.sum(pair1,1)
1386 #angle = numpy.angle(numpy.sum(pair1,1))*180/(math.pi)
1387 data_velocity = (-1.0*self.lambda_/(4*math.pi*self.ippSec))*numpy.angle(lag_1)#self.ippSec*self.nCohInt
1408 data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1)
1409 data_velocity = (self.lambda_/2.0)*data_freq
1388 1410
1389 self.noise = numpy.zeros([self.__nch,self.__nHeis])
1390 for i in range(self.__nch):
1391 self.noise[i]=dataOut.getNoise(channel=i)
1411 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Potencia promedio estimada de la SenalΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1412 lag_0 = lag_0/self.n
1413 S = lag_0-self.noise
1392 1414
1393 lag_0 = lag_0.real/(self.n)
1415 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Frecuencia Doppler promedio Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1394 1416 lag_1 = lag_1/(self.n-1)
1395 1417 R1 = numpy.abs(lag_1)
1396 S = (lag_0-self.noise)
1397 1418
1419 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Calculo del SNRΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1398 1420 data_snrPP = S/self.noise
1399 data_snrPP = numpy.where(data_snrPP<0,1,data_snrPP)
1421 for i in range(self.__nch):
1422 for j in range(self.__nHeis):
1423 if data_snrPP[i][j] < 1.e-20:
1424 data_snrPP[i][j] = 1.e-20
1400 1425
1426 #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Calculo del ancho espectral Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
1401 1427 L = S/R1
1402 1428 L = numpy.where(L<0,1,L)
1403 1429 L = numpy.log(L)
1404
1405 1430 tmp = numpy.sqrt(numpy.absolute(L))
1406
1407 data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec))*tmp*numpy.sign(L)
1408 #data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec))*k
1431 data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L)
1409 1432 n = self.__profIndex
1410 1433
1411 1434 self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex')
1412 1435 self.__profIndex = 0
1413 return data_intensity,data_velocity,data_snrPP,data_specwidth,n
1436 return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n
1437
1414 1438
1415 1439 def pulsePairbyProfiles(self,dataOut):
1416 1440
1417 1441 self.__dataReady = False
1442 data_power = None
1418 1443 data_intensity = None
1419 1444 data_velocity = None
1420 1445 data_specwidth = None
1421 1446 data_snrPP = None
1422 1447 self.putData(data=dataOut.data)
1423 1448 if self.__profIndex == self.n:
1424 #self.noise = numpy.zeros([self.__nch,self.__nHeis])
1425 #for i in range(self.__nch):
1426 # self.noise[i]=data.getNoise(channel=i)
1427 #print(self.noise.shape)
1428 data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut)
1449 data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut)
1429 1450 self.__dataReady = True
1430 1451
1431 return data_intensity, data_velocity,data_snrPP,data_specwidth
1452 return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth
1453
1432 1454
1433 1455 def pulsePairOp(self, dataOut, datatime= None):
1434 1456
1435 1457 if self.__initime == None:
1436 1458 self.__initime = datatime
1437 #print("hola")
1438 data_intensity, data_velocity,data_snrPP,data_specwidth = self.pulsePairbyProfiles(dataOut)
1459 data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut)
1439 1460 self.__lastdatatime = datatime
1440 1461
1441 if data_intensity is None:
1442 return None, None,None,None,None
1462 if data_power is None:
1463 return None, None, None,None,None,None
1443 1464
1444 1465 avgdatatime = self.__initime
1445 1466 deltatime = datatime - self.__lastdatatime
1446 1467 self.__initime = datatime
1447 1468
1448 return data_intensity, data_velocity,data_snrPP,data_specwidth,avgdatatime
1469 return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime
1449 1470
1450 1471 def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs):
1451 1472
1452 1473 if not self.isConfig:
1453 1474 self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs)
1454 1475 self.isConfig = True
1455 data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime)
1476 data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime)
1456 1477 dataOut.flagNoData = True
1457 1478
1458 1479 if self.__dataReady:
1459 1480 dataOut.nCohInt *= self.n
1460 dataOut.data_intensity = data_intensity #valor para intensidad
1461 dataOut.data_velocity = data_velocity #valor para velocidad
1462 dataOut.data_snrPP = data_snrPP # valor para snr
1463 dataOut.data_specwidth = data_specwidth
1481 dataOut.dataPP_POW = data_intensity # S
1482 dataOut.dataPP_POWER = data_power # P
1483 dataOut.dataPP_DOP = data_velocity
1484 dataOut.dataPP_SNR = data_snrPP
1485 dataOut.dataPP_WIDTH = data_specwidth
1464 1486 dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo.
1465 1487 dataOut.utctime = avgdatatime
1466 1488 dataOut.flagNoData = False
1467 1489 return dataOut
1468 1490
1469 1491
1492
1470 1493 # import collections
1471 1494 # from scipy.stats import mode
1472 1495 #
1473 1496 # class Synchronize(Operation):
1474 1497 #
1475 1498 # isConfig = False
1476 1499 # __profIndex = 0
1477 1500 #
1478 1501 # def __init__(self, **kwargs):
1479 1502 #
1480 1503 # Operation.__init__(self, **kwargs)
1481 1504 # # self.isConfig = False
1482 1505 # self.__powBuffer = None
1483 1506 # self.__startIndex = 0
1484 1507 # self.__pulseFound = False
1485 1508 #
1486 1509 # def __findTxPulse(self, dataOut, channel=0, pulse_with = None):
1487 1510 #
1488 1511 # #Read data
1489 1512 #
1490 1513 # powerdB = dataOut.getPower(channel = channel)
1491 1514 # noisedB = dataOut.getNoise(channel = channel)[0]
1492 1515 #
1493 1516 # self.__powBuffer.extend(powerdB.flatten())
1494 1517 #
1495 1518 # dataArray = numpy.array(self.__powBuffer)
1496 1519 #
1497 1520 # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same")
1498 1521 #
1499 1522 # maxValue = numpy.nanmax(filteredPower)
1500 1523 #
1501 1524 # if maxValue < noisedB + 10:
1502 1525 # #No se encuentra ningun pulso de transmision
1503 1526 # return None
1504 1527 #
1505 1528 # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0]
1506 1529 #
1507 1530 # if len(maxValuesIndex) < 2:
1508 1531 # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX
1509 1532 # return None
1510 1533 #
1511 1534 # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples
1512 1535 #
1513 1536 # #Seleccionar solo valores con un espaciamiento de nSamples
1514 1537 # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex)
1515 1538 #
1516 1539 # if len(pulseIndex) < 2:
1517 1540 # #Solo se encontro un pulso de transmision con ancho mayor a 1
1518 1541 # return None
1519 1542 #
1520 1543 # spacing = pulseIndex[1:] - pulseIndex[:-1]
1521 1544 #
1522 1545 # #remover senales que se distancien menos de 10 unidades o muestras
1523 1546 # #(No deberian existir IPP menor a 10 unidades)
1524 1547 #
1525 1548 # realIndex = numpy.where(spacing > 10 )[0]
1526 1549 #
1527 1550 # if len(realIndex) < 2:
1528 1551 # #Solo se encontro un pulso de transmision con ancho mayor a 1
1529 1552 # return None
1530 1553 #
1531 1554 # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs)
1532 1555 # realPulseIndex = pulseIndex[realIndex]
1533 1556 #
1534 1557 # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0]
1535 1558 #
1536 1559 # print "IPP = %d samples" %period
1537 1560 #
1538 1561 # self.__newNSamples = dataOut.nHeights #int(period)
1539 1562 # self.__startIndex = int(realPulseIndex[0])
1540 1563 #
1541 1564 # return 1
1542 1565 #
1543 1566 #
1544 1567 # def setup(self, nSamples, nChannels, buffer_size = 4):
1545 1568 #
1546 1569 # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float),
1547 1570 # maxlen = buffer_size*nSamples)
1548 1571 #
1549 1572 # bufferList = []
1550 1573 #
1551 1574 # for i in range(nChannels):
1552 1575 # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN,
1553 1576 # maxlen = buffer_size*nSamples)
1554 1577 #
1555 1578 # bufferList.append(bufferByChannel)
1556 1579 #
1557 1580 # self.__nSamples = nSamples
1558 1581 # self.__nChannels = nChannels
1559 1582 # self.__bufferList = bufferList
1560 1583 #
1561 1584 # def run(self, dataOut, channel = 0):
1562 1585 #
1563 1586 # if not self.isConfig:
1564 1587 # nSamples = dataOut.nHeights
1565 1588 # nChannels = dataOut.nChannels
1566 1589 # self.setup(nSamples, nChannels)
1567 1590 # self.isConfig = True
1568 1591 #
1569 1592 # #Append new data to internal buffer
1570 1593 # for thisChannel in range(self.__nChannels):
1571 1594 # bufferByChannel = self.__bufferList[thisChannel]
1572 1595 # bufferByChannel.extend(dataOut.data[thisChannel])
1573 1596 #
1574 1597 # if self.__pulseFound:
1575 1598 # self.__startIndex -= self.__nSamples
1576 1599 #
1577 1600 # #Finding Tx Pulse
1578 1601 # if not self.__pulseFound:
1579 1602 # indexFound = self.__findTxPulse(dataOut, channel)
1580 1603 #
1581 1604 # if indexFound == None:
1582 1605 # dataOut.flagNoData = True
1583 1606 # return
1584 1607 #
1585 1608 # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex)
1586 1609 # self.__pulseFound = True
1587 1610 # self.__startIndex = indexFound
1588 1611 #
1589 1612 # #If pulse was found ...
1590 1613 # for thisChannel in range(self.__nChannels):
1591 1614 # bufferByChannel = self.__bufferList[thisChannel]
1592 1615 # #print self.__startIndex
1593 1616 # x = numpy.array(bufferByChannel)
1594 1617 # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples]
1595 1618 #
1596 1619 # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1597 1620 # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight
1598 1621 # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6
1599 1622 #
1600 1623 # dataOut.data = self.__arrayBuffer
1601 1624 #
1602 1625 # self.__startIndex += self.__newNSamples
1603 1626 #
1604 1627 # return
General Comments 0
You need to be logged in to leave comments. Login now