@@ -939,11 +939,20 class CoherenceMap(Figure): | |||
|
939 | 939 | for i in range(self.nplots): |
|
940 | 940 | |
|
941 | 941 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
942 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:]) | |
|
943 | avgcoherenceComplex = numpy.average(coherenceComplex, axis=0) | |
|
942 | # coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:]) | |
|
943 | # avgcoherenceComplex = numpy.average(coherenceComplex, axis=0) | |
|
944 | # coherence = numpy.abs(avgcoherenceComplex) | |
|
945 | ||
|
946 | ## coherence = numpy.abs(coherenceComplex) | |
|
947 | ## avg = numpy.average(coherence, axis=0) | |
|
948 | ||
|
949 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0) | |
|
950 | powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0) | |
|
951 | powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0) | |
|
952 | ||
|
953 | ||
|
954 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
|
944 | 955 | coherence = numpy.abs(avgcoherenceComplex) |
|
945 | # coherence = numpy.abs(coherenceComplex) | |
|
946 | # avg = numpy.average(coherence, axis=0) | |
|
947 | 956 | |
|
948 | 957 | z = coherence.reshape((1,-1)) |
|
949 | 958 |
General Comments 0
You need to be logged in to leave comments.
Login now