@@ -939,11 +939,20 class CoherenceMap(Figure): | |||||
939 | for i in range(self.nplots): |
|
939 | for i in range(self.nplots): | |
940 |
|
940 | |||
941 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
941 | pair = dataOut.pairsList[pairsIndexList[i]] | |
942 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:]) |
|
942 | # coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:]) | |
943 | avgcoherenceComplex = numpy.average(coherenceComplex, axis=0) |
|
943 | # avgcoherenceComplex = numpy.average(coherenceComplex, axis=0) | |
|
944 | # coherence = numpy.abs(avgcoherenceComplex) | |||
|
945 | ||||
|
946 | ## coherence = numpy.abs(coherenceComplex) | |||
|
947 | ## avg = numpy.average(coherence, axis=0) | |||
|
948 | ||||
|
949 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0) | |||
|
950 | powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0) | |||
|
951 | powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0) | |||
|
952 | ||||
|
953 | ||||
|
954 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |||
944 | coherence = numpy.abs(avgcoherenceComplex) |
|
955 | coherence = numpy.abs(avgcoherenceComplex) | |
945 | # coherence = numpy.abs(coherenceComplex) |
|
|||
946 | # avg = numpy.average(coherence, axis=0) |
|
|||
947 |
|
956 | |||
948 | z = coherence.reshape((1,-1)) |
|
957 | z = coherence.reshape((1,-1)) | |
949 |
|
958 |
General Comments 0
You need to be logged in to leave comments.
Login now