@@ -1,358 +1,357 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | 6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot |
|
7 | 7 | from schainpy.utils import log |
|
8 | 8 | |
|
9 | 9 | EARTH_RADIUS = 6.3710e3 |
|
10 | 10 | |
|
11 | 11 | |
|
12 | 12 | def ll2xy(lat1, lon1, lat2, lon2): |
|
13 | 13 | |
|
14 | 14 | p = 0.017453292519943295 |
|
15 | 15 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
16 | 16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
17 | 17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
18 | 18 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
19 | 19 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
20 | 20 | theta = -theta + numpy.pi/2 |
|
21 | 21 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def km2deg(km): |
|
25 | 25 | ''' |
|
26 | 26 | Convert distance in km to degrees |
|
27 | 27 | ''' |
|
28 | 28 | |
|
29 | 29 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
30 | 30 | |
|
31 | 31 | |
|
32 | 32 | |
|
33 | 33 | class SpectralMomentsPlot(SpectraPlot): |
|
34 | 34 | ''' |
|
35 | 35 | Plot for Spectral Moments |
|
36 | 36 | ''' |
|
37 | 37 | CODE = 'spc_moments' |
|
38 | 38 | colormap = 'jet' |
|
39 | 39 | plot_type = 'pcolor' |
|
40 | 40 | |
|
41 | 41 | |
|
42 | 42 | class SnrPlot(RTIPlot): |
|
43 | 43 | ''' |
|
44 | 44 | Plot for SNR Data |
|
45 | 45 | ''' |
|
46 | 46 | |
|
47 | 47 | CODE = 'snr' |
|
48 | 48 | colormap = 'jet' |
|
49 | 49 | |
|
50 | 50 | def update(self, dataOut): |
|
51 | 51 | |
|
52 | 52 | data = { |
|
53 | 53 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
54 | 54 | } |
|
55 | 55 | |
|
56 | 56 | return data, {} |
|
57 | 57 | |
|
58 | 58 | class DopplerPlot(RTIPlot): |
|
59 | 59 | ''' |
|
60 | 60 | Plot for DOPPLER Data (1st moment) |
|
61 | 61 | ''' |
|
62 | 62 | |
|
63 | 63 | CODE = 'dop' |
|
64 | 64 | colormap = 'jet' |
|
65 | 65 | |
|
66 | 66 | def update(self, dataOut): |
|
67 | 67 | |
|
68 | 68 | data = { |
|
69 | 69 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
70 | 70 | } |
|
71 | 71 | |
|
72 | 72 | return data, {} |
|
73 | 73 | |
|
74 | 74 | class PowerPlot(RTIPlot): |
|
75 | 75 | ''' |
|
76 | 76 | Plot for Power Data (0 moment) |
|
77 | 77 | ''' |
|
78 | 78 | |
|
79 | 79 | CODE = 'pow' |
|
80 | 80 | colormap = 'jet' |
|
81 | 81 | |
|
82 | 82 | def update(self, dataOut): |
|
83 | 83 | |
|
84 | 84 | data = { |
|
85 | 85 | 'pow': 10*numpy.log10(dataOut.data_pow) |
|
86 | 86 | } |
|
87 | 87 | |
|
88 | 88 | return data, {} |
|
89 | 89 | |
|
90 | 90 | class SpectralWidthPlot(RTIPlot): |
|
91 | 91 | ''' |
|
92 | 92 | Plot for Spectral Width Data (2nd moment) |
|
93 | 93 | ''' |
|
94 | 94 | |
|
95 | 95 | CODE = 'width' |
|
96 | 96 | colormap = 'jet' |
|
97 | 97 | |
|
98 | 98 | def update(self, dataOut): |
|
99 | 99 | |
|
100 | 100 | data = { |
|
101 | 101 | 'width': dataOut.data_width |
|
102 | 102 | } |
|
103 | 103 | |
|
104 | 104 | return data, {} |
|
105 | 105 | |
|
106 | 106 | class SkyMapPlot(Plot): |
|
107 | 107 | ''' |
|
108 | 108 | Plot for meteors detection data |
|
109 | 109 | ''' |
|
110 | 110 | |
|
111 | 111 | CODE = 'param' |
|
112 | 112 | |
|
113 | 113 | def setup(self): |
|
114 | 114 | |
|
115 | 115 | self.ncols = 1 |
|
116 | 116 | self.nrows = 1 |
|
117 | 117 | self.width = 7.2 |
|
118 | 118 | self.height = 7.2 |
|
119 | 119 | self.nplots = 1 |
|
120 | 120 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
121 | 121 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
122 | 122 | self.polar = True |
|
123 | 123 | self.ymin = -180 |
|
124 | 124 | self.ymax = 180 |
|
125 | 125 | self.colorbar = False |
|
126 | 126 | |
|
127 | 127 | def plot(self): |
|
128 | 128 | |
|
129 | 129 | arrayParameters = numpy.concatenate(self.data['param']) |
|
130 | 130 | error = arrayParameters[:, -1] |
|
131 | 131 | indValid = numpy.where(error == 0)[0] |
|
132 | 132 | finalMeteor = arrayParameters[indValid, :] |
|
133 | 133 | finalAzimuth = finalMeteor[:, 3] |
|
134 | 134 | finalZenith = finalMeteor[:, 4] |
|
135 | 135 | |
|
136 | 136 | x = finalAzimuth * numpy.pi / 180 |
|
137 | 137 | y = finalZenith |
|
138 | 138 | |
|
139 | 139 | ax = self.axes[0] |
|
140 | 140 | |
|
141 | 141 | if ax.firsttime: |
|
142 | 142 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
143 | 143 | else: |
|
144 | 144 | ax.plot.set_data(x, y) |
|
145 | 145 | |
|
146 | 146 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
147 | 147 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
148 | 148 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
149 | 149 | dt2, |
|
150 | 150 | len(x)) |
|
151 | 151 | self.titles[0] = title |
|
152 | 152 | |
|
153 | 153 | |
|
154 | 154 | class GenericRTIPlot(Plot): |
|
155 | 155 | ''' |
|
156 | 156 | Plot for data_xxxx object |
|
157 | 157 | ''' |
|
158 | 158 | |
|
159 | 159 | CODE = 'param' |
|
160 | 160 | colormap = 'viridis' |
|
161 | 161 | plot_type = 'pcolorbuffer' |
|
162 | 162 | |
|
163 | 163 | def setup(self): |
|
164 | 164 | self.xaxis = 'time' |
|
165 | 165 | self.ncols = 1 |
|
166 | 166 | self.nrows = self.data.shape('param')[0] |
|
167 | 167 | self.nplots = self.nrows |
|
168 | 168 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
169 | 169 | |
|
170 | 170 | if not self.xlabel: |
|
171 | 171 | self.xlabel = 'Time' |
|
172 | 172 | |
|
173 | 173 | self.ylabel = 'Height [km]' |
|
174 | 174 | if not self.titles: |
|
175 | self.titles = self.data.parameters \ | |
|
176 | if self.data.parameters else ['Param {}'.format(x) for x in range(self.nrows)] | |
|
175 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] | |
|
177 | 176 | |
|
178 | 177 | def update(self, dataOut): |
|
179 | 178 | |
|
180 | 179 | data = { |
|
181 | 180 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
182 | 181 | } |
|
183 | 182 | |
|
184 | 183 | meta = {} |
|
185 | 184 | |
|
186 | 185 | return data, meta |
|
187 | 186 | |
|
188 | 187 | def plot(self): |
|
189 | 188 | # self.data.normalize_heights() |
|
190 | 189 | self.x = self.data.times |
|
191 | 190 | self.y = self.data.yrange |
|
192 | 191 | self.z = self.data['param'] |
|
193 | 192 | |
|
194 | 193 | self.z = numpy.ma.masked_invalid(self.z) |
|
195 | 194 | |
|
196 | 195 | if self.decimation is None: |
|
197 | 196 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
198 | 197 | else: |
|
199 | 198 | x, y, z = self.fill_gaps(*self.decimate()) |
|
200 | 199 | |
|
201 | 200 | for n, ax in enumerate(self.axes): |
|
202 | 201 | |
|
203 | 202 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
204 | 203 | self.z[n]) |
|
205 | 204 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
206 | 205 | self.z[n]) |
|
207 | 206 | |
|
208 | 207 | if ax.firsttime: |
|
209 | 208 | if self.zlimits is not None: |
|
210 | 209 | self.zmin, self.zmax = self.zlimits[n] |
|
211 | 210 | |
|
212 | 211 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
213 | 212 | vmin=self.zmin, |
|
214 | 213 | vmax=self.zmax, |
|
215 | 214 | cmap=self.cmaps[n] |
|
216 | 215 | ) |
|
217 | 216 | else: |
|
218 | 217 | if self.zlimits is not None: |
|
219 | 218 | self.zmin, self.zmax = self.zlimits[n] |
|
220 | 219 | ax.collections.remove(ax.collections[0]) |
|
221 | 220 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
222 | 221 | vmin=self.zmin, |
|
223 | 222 | vmax=self.zmax, |
|
224 | 223 | cmap=self.cmaps[n] |
|
225 | 224 | ) |
|
226 | 225 | |
|
227 | 226 | |
|
228 | 227 | class PolarMapPlot(Plot): |
|
229 | 228 | ''' |
|
230 | 229 | Plot for weather radar |
|
231 | 230 | ''' |
|
232 | 231 | |
|
233 | 232 | CODE = 'param' |
|
234 | 233 | colormap = 'seismic' |
|
235 | 234 | |
|
236 | 235 | def setup(self): |
|
237 | 236 | self.ncols = 1 |
|
238 | 237 | self.nrows = 1 |
|
239 | 238 | self.width = 9 |
|
240 | 239 | self.height = 8 |
|
241 | 240 | self.mode = self.data.meta['mode'] |
|
242 | 241 | if self.channels is not None: |
|
243 | 242 | self.nplots = len(self.channels) |
|
244 | 243 | self.nrows = len(self.channels) |
|
245 | 244 | else: |
|
246 | 245 | self.nplots = self.data.shape(self.CODE)[0] |
|
247 | 246 | self.nrows = self.nplots |
|
248 | 247 | self.channels = list(range(self.nplots)) |
|
249 | 248 | if self.mode == 'E': |
|
250 | 249 | self.xlabel = 'Longitude' |
|
251 | 250 | self.ylabel = 'Latitude' |
|
252 | 251 | else: |
|
253 | 252 | self.xlabel = 'Range (km)' |
|
254 | 253 | self.ylabel = 'Height (km)' |
|
255 | 254 | self.bgcolor = 'white' |
|
256 | 255 | self.cb_labels = self.data.meta['units'] |
|
257 | 256 | self.lat = self.data.meta['latitude'] |
|
258 | 257 | self.lon = self.data.meta['longitude'] |
|
259 | 258 | self.xmin, self.xmax = float( |
|
260 | 259 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
261 | 260 | self.ymin, self.ymax = float( |
|
262 | 261 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
263 | 262 | # self.polar = True |
|
264 | 263 | |
|
265 | 264 | def plot(self): |
|
266 | 265 | |
|
267 | 266 | for n, ax in enumerate(self.axes): |
|
268 | 267 | data = self.data['param'][self.channels[n]] |
|
269 | 268 | |
|
270 | 269 | zeniths = numpy.linspace( |
|
271 | 270 | 0, self.data.meta['max_range'], data.shape[1]) |
|
272 | 271 | if self.mode == 'E': |
|
273 | 272 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
274 | 273 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
275 | 274 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
276 | 275 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
277 | 276 | x = km2deg(x) + self.lon |
|
278 | 277 | y = km2deg(y) + self.lat |
|
279 | 278 | else: |
|
280 | 279 | azimuths = numpy.radians(self.data.yrange) |
|
281 | 280 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
282 | 281 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
283 | 282 | self.y = zeniths |
|
284 | 283 | |
|
285 | 284 | if ax.firsttime: |
|
286 | 285 | if self.zlimits is not None: |
|
287 | 286 | self.zmin, self.zmax = self.zlimits[n] |
|
288 | 287 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
289 | 288 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
290 | 289 | vmin=self.zmin, |
|
291 | 290 | vmax=self.zmax, |
|
292 | 291 | cmap=self.cmaps[n]) |
|
293 | 292 | else: |
|
294 | 293 | if self.zlimits is not None: |
|
295 | 294 | self.zmin, self.zmax = self.zlimits[n] |
|
296 | 295 | ax.collections.remove(ax.collections[0]) |
|
297 | 296 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
298 | 297 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
299 | 298 | vmin=self.zmin, |
|
300 | 299 | vmax=self.zmax, |
|
301 | 300 | cmap=self.cmaps[n]) |
|
302 | 301 | |
|
303 | 302 | if self.mode == 'A': |
|
304 | 303 | continue |
|
305 | 304 | |
|
306 | 305 | # plot district names |
|
307 | 306 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
308 | 307 | for line in f: |
|
309 | 308 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
310 | 309 | lat = float(lat) |
|
311 | 310 | lon = float(lon) |
|
312 | 311 | # ax.plot(lon, lat, '.b', ms=2) |
|
313 | 312 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
314 | 313 | va='bottom', size='8', color='black') |
|
315 | 314 | |
|
316 | 315 | # plot limites |
|
317 | 316 | limites = [] |
|
318 | 317 | tmp = [] |
|
319 | 318 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
320 | 319 | if '#' in line: |
|
321 | 320 | if tmp: |
|
322 | 321 | limites.append(tmp) |
|
323 | 322 | tmp = [] |
|
324 | 323 | continue |
|
325 | 324 | values = line.strip().split(',') |
|
326 | 325 | tmp.append((float(values[0]), float(values[1]))) |
|
327 | 326 | for points in limites: |
|
328 | 327 | ax.add_patch( |
|
329 | 328 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
330 | 329 | |
|
331 | 330 | # plot Cuencas |
|
332 | 331 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
333 | 332 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
334 | 333 | values = [line.strip().split(',') for line in f] |
|
335 | 334 | points = [(float(s[0]), float(s[1])) for s in values] |
|
336 | 335 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
337 | 336 | |
|
338 | 337 | # plot grid |
|
339 | 338 | for r in (15, 30, 45, 60): |
|
340 | 339 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
341 | 340 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
342 | 341 | ax.text( |
|
343 | 342 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
344 | 343 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
345 | 344 | '{}km'.format(r), |
|
346 | 345 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
347 | 346 | |
|
348 | 347 | if self.mode == 'E': |
|
349 | 348 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
350 | 349 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
351 | 350 | else: |
|
352 | 351 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
353 | 352 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
354 | 353 | |
|
355 | 354 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
356 | 355 | self.titles = ['{} {}'.format( |
|
357 | 356 | self.data.parameters[x], title) for x in self.channels] |
|
358 | 357 |
@@ -1,462 +1,453 | |||
|
1 | 1 | import os |
|
2 | 2 | import sys |
|
3 | 3 | import glob |
|
4 | import fnmatch | |
|
5 | import datetime | |
|
6 | import time | |
|
7 | import re | |
|
8 | import h5py | |
|
9 | 4 | import numpy |
|
10 | 5 | |
|
11 | import pylab as plb | |
|
12 | from scipy.optimize import curve_fit | |
|
13 | from scipy import asarray as ar, exp | |
|
14 | 6 | |
|
15 | 7 | SPEED_OF_LIGHT = 299792458 |
|
16 | 8 | SPEED_OF_LIGHT = 3e8 |
|
17 | 9 | |
|
18 | 10 | from .utils import folder_in_range |
|
19 | 11 | |
|
20 | 12 | import schainpy.admin |
|
21 | 13 | from schainpy.model.data.jrodata import Spectra |
|
22 |
from schainpy.model.proc.jroproc_base import ProcessingUnit |
|
|
14 | from schainpy.model.proc.jroproc_base import ProcessingUnit | |
|
23 | 15 | from schainpy.utils import log |
|
24 | from schainpy.model.io.jroIO_base import JRODataReader | |
|
16 | ||
|
25 | 17 | |
|
26 | 18 | def pol2cart(rho, phi): |
|
27 | 19 | x = rho * numpy.cos(phi) |
|
28 | 20 | y = rho * numpy.sin(phi) |
|
29 | 21 | return(x, y) |
|
30 | 22 | |
|
31 | 23 | FILE_STRUCTURE = numpy.dtype([ # HEADER 48bytes |
|
32 | 24 | ('FileMgcNumber', '<u4'), # 0x23020100 |
|
33 | 25 | ('nFDTdataRecors', '<u4'), |
|
34 | 26 | ('OffsetStartHeader', '<u4'), |
|
35 | 27 | ('RadarUnitId', '<u4'), |
|
36 | 28 | ('SiteName', 'S32'), # Null terminated |
|
37 | 29 | ]) |
|
38 | 30 | |
|
39 | 31 | |
|
40 | 32 | class FileHeaderBLTR(): |
|
41 | 33 | |
|
42 | 34 | def __init__(self, fo): |
|
43 | 35 | |
|
44 | 36 | self.fo = fo |
|
45 | 37 | self.size = 48 |
|
46 | 38 | self.read() |
|
47 | 39 | |
|
48 | 40 | def read(self): |
|
49 | 41 | |
|
50 | 42 | header = numpy.fromfile(self.fo, FILE_STRUCTURE, 1) |
|
51 | 43 | self.FileMgcNumber = hex(header['FileMgcNumber'][0]) |
|
52 | 44 | self.nFDTdataRecors = int(header['nFDTdataRecors'][0]) |
|
53 | 45 | self.RadarUnitId = int(header['RadarUnitId'][0]) |
|
54 | 46 | self.OffsetStartHeader = int(header['OffsetStartHeader'][0]) |
|
55 | 47 | self.SiteName = header['SiteName'][0] |
|
56 | 48 | |
|
57 | 49 | def write(self, fp): |
|
58 | 50 | |
|
59 | 51 | headerTuple = (self.FileMgcNumber, |
|
60 | 52 | self.nFDTdataRecors, |
|
61 | 53 | self.RadarUnitId, |
|
62 | 54 | self.SiteName, |
|
63 | 55 | self.size) |
|
64 | 56 | |
|
65 | 57 | header = numpy.array(headerTuple, FILE_STRUCTURE) |
|
66 | 58 | header.tofile(fp) |
|
67 | 59 | ''' ndarray.tofile(fid, sep, format) Write array to a file as text or binary (default). |
|
68 | 60 | |
|
69 | 61 | fid : file or str |
|
70 | 62 | An open file object, or a string containing a filename. |
|
71 | 63 | |
|
72 | 64 | sep : str |
|
73 | 65 | Separator between array items for text output. If "" (empty), a binary file is written, |
|
74 | 66 | equivalent to file.write(a.tobytes()). |
|
75 | 67 | |
|
76 | 68 | format : str |
|
77 | 69 | Format string for text file output. Each entry in the array is formatted to text by |
|
78 | 70 | first converting it to the closest Python type, and then using "format" % item. |
|
79 | 71 | |
|
80 | 72 | ''' |
|
81 | 73 | |
|
82 | 74 | return 1 |
|
83 | 75 | |
|
84 | 76 | |
|
85 | 77 | RECORD_STRUCTURE = numpy.dtype([ # RECORD HEADER 180+20N bytes |
|
86 | 78 | ('RecMgcNumber', '<u4'), # 0x23030001 |
|
87 | 79 | ('RecCounter', '<u4'), # Record counter(0,1, ...) |
|
88 | 80 | # Offset to start of next record form start of this record |
|
89 | 81 | ('Off2StartNxtRec', '<u4'), |
|
90 | 82 | # Offset to start of data from start of this record |
|
91 | 83 | ('Off2StartData', '<u4'), |
|
92 | 84 | # Epoch time stamp of start of acquisition (seconds) |
|
93 | 85 | ('nUtime', '<i4'), |
|
94 | 86 | # Millisecond component of time stamp (0,...,999) |
|
95 | 87 | ('nMilisec', '<u4'), |
|
96 | 88 | # Experiment tag name (null terminated) |
|
97 | 89 | ('ExpTagName', 'S32'), |
|
98 | 90 | # Experiment comment (null terminated) |
|
99 | 91 | ('ExpComment', 'S32'), |
|
100 | 92 | # Site latitude (from GPS) in degrees (positive implies North) |
|
101 | 93 | ('SiteLatDegrees', '<f4'), |
|
102 | 94 | # Site longitude (from GPS) in degrees (positive implies East) |
|
103 | 95 | ('SiteLongDegrees', '<f4'), |
|
104 | 96 | # RTC GPS engine status (0=SEEK, 1=LOCK, 2=NOT FITTED, 3=UNAVAILABLE) |
|
105 | 97 | ('RTCgpsStatus', '<u4'), |
|
106 | 98 | ('TransmitFrec', '<u4'), # Transmit frequency (Hz) |
|
107 | 99 | ('ReceiveFrec', '<u4'), # Receive frequency |
|
108 | 100 | # First local oscillator frequency (Hz) |
|
109 | 101 | ('FirstOsciFrec', '<u4'), |
|
110 | 102 | # (0="O", 1="E", 2="linear 1", 3="linear2") |
|
111 | 103 | ('Polarisation', '<u4'), |
|
112 | 104 | # Receiver filter settings (0,1,2,3) |
|
113 | 105 | ('ReceiverFiltSett', '<u4'), |
|
114 | 106 | # Number of modes in use (1 or 2) |
|
115 | 107 | ('nModesInUse', '<u4'), |
|
116 | 108 | # Dual Mode index number for these data (0 or 1) |
|
117 | 109 | ('DualModeIndex', '<u4'), |
|
118 | 110 | # Dual Mode range correction for these data (m) |
|
119 | 111 | ('DualModeRange', '<u4'), |
|
120 | 112 | # Number of digital channels acquired (2*N) |
|
121 | 113 | ('nDigChannels', '<u4'), |
|
122 | 114 | # Sampling resolution (meters) |
|
123 | 115 | ('SampResolution', '<u4'), |
|
124 | 116 | # Number of range gates sampled |
|
125 | 117 | ('nHeights', '<u4'), |
|
126 | 118 | # Start range of sampling (meters) |
|
127 | 119 | ('StartRangeSamp', '<u4'), |
|
128 | 120 | ('PRFhz', '<u4'), # PRF (Hz) |
|
129 | 121 | ('nCohInt', '<u4'), # Integrations |
|
130 | 122 | # Number of data points transformed |
|
131 | 123 | ('nProfiles', '<u4'), |
|
132 | 124 | # Number of receive beams stored in file (1 or N) |
|
133 | 125 | ('nChannels', '<u4'), |
|
134 | 126 | ('nIncohInt', '<u4'), # Number of spectral averages |
|
135 | 127 | # FFT windowing index (0 = no window) |
|
136 | 128 | ('FFTwindowingInd', '<u4'), |
|
137 | 129 | # Beam steer angle (azimuth) in degrees (clockwise from true North) |
|
138 | 130 | ('BeamAngleAzim', '<f4'), |
|
139 | 131 | # Beam steer angle (zenith) in degrees (0=> vertical) |
|
140 | 132 | ('BeamAngleZen', '<f4'), |
|
141 | 133 | # Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs |
|
142 | 134 | ('AntennaCoord0', '<f4'), |
|
143 | 135 | # Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs |
|
144 | 136 | ('AntennaAngl0', '<f4'), |
|
145 | 137 | # Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs |
|
146 | 138 | ('AntennaCoord1', '<f4'), |
|
147 | 139 | # Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs |
|
148 | 140 | ('AntennaAngl1', '<f4'), |
|
149 | 141 | # Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs |
|
150 | 142 | ('AntennaCoord2', '<f4'), |
|
151 | 143 | # Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs |
|
152 | 144 | ('AntennaAngl2', '<f4'), |
|
153 | 145 | # Receiver phase calibration (degrees) - N values |
|
154 | 146 | ('RecPhaseCalibr0', '<f4'), |
|
155 | 147 | # Receiver phase calibration (degrees) - N values |
|
156 | 148 | ('RecPhaseCalibr1', '<f4'), |
|
157 | 149 | # Receiver phase calibration (degrees) - N values |
|
158 | 150 | ('RecPhaseCalibr2', '<f4'), |
|
159 | 151 | # Receiver amplitude calibration (ratio relative to receiver one) - N values |
|
160 | 152 | ('RecAmpCalibr0', '<f4'), |
|
161 | 153 | # Receiver amplitude calibration (ratio relative to receiver one) - N values |
|
162 | 154 | ('RecAmpCalibr1', '<f4'), |
|
163 | 155 | # Receiver amplitude calibration (ratio relative to receiver one) - N values |
|
164 | 156 | ('RecAmpCalibr2', '<f4'), |
|
165 | 157 | # Receiver gains in dB - N values |
|
166 | 158 | ('ReceiverGaindB0', '<i4'), |
|
167 | 159 | # Receiver gains in dB - N values |
|
168 | 160 | ('ReceiverGaindB1', '<i4'), |
|
169 | 161 | # Receiver gains in dB - N values |
|
170 | 162 | ('ReceiverGaindB2', '<i4'), |
|
171 | 163 | ]) |
|
172 | 164 | |
|
173 | 165 | |
|
174 | 166 | class RecordHeaderBLTR(): |
|
175 | 167 | |
|
176 | 168 | def __init__(self, fo): |
|
177 | 169 | |
|
178 | 170 | self.fo = fo |
|
179 | 171 | self.OffsetStartHeader = 48 |
|
180 | 172 | self.Off2StartNxtRec = 811248 |
|
181 | 173 | |
|
182 | 174 | def read(self, block): |
|
183 | 175 | OffRHeader = self.OffsetStartHeader + block * self.Off2StartNxtRec |
|
184 | 176 | self.fo.seek(OffRHeader, os.SEEK_SET) |
|
185 | 177 | header = numpy.fromfile(self.fo, RECORD_STRUCTURE, 1) |
|
186 | 178 | self.RecMgcNumber = hex(header['RecMgcNumber'][0]) # 0x23030001 |
|
187 | 179 | self.RecCounter = int(header['RecCounter'][0]) |
|
188 | 180 | self.Off2StartNxtRec = int(header['Off2StartNxtRec'][0]) |
|
189 | 181 | self.Off2StartData = int(header['Off2StartData'][0]) |
|
190 | 182 | self.nUtime = header['nUtime'][0] |
|
191 | 183 | self.nMilisec = header['nMilisec'][0] |
|
192 | 184 | self.ExpTagName = '' # str(header['ExpTagName'][0]) |
|
193 | 185 | self.ExpComment = '' # str(header['ExpComment'][0]) |
|
194 | 186 | self.SiteLatDegrees = header['SiteLatDegrees'][0] |
|
195 | 187 | self.SiteLongDegrees = header['SiteLongDegrees'][0] |
|
196 | 188 | self.RTCgpsStatus = header['RTCgpsStatus'][0] |
|
197 | 189 | self.TransmitFrec = header['TransmitFrec'][0] |
|
198 | 190 | self.ReceiveFrec = header['ReceiveFrec'][0] |
|
199 | 191 | self.FirstOsciFrec = header['FirstOsciFrec'][0] |
|
200 | 192 | self.Polarisation = header['Polarisation'][0] |
|
201 | 193 | self.ReceiverFiltSett = header['ReceiverFiltSett'][0] |
|
202 | 194 | self.nModesInUse = header['nModesInUse'][0] |
|
203 | 195 | self.DualModeIndex = header['DualModeIndex'][0] |
|
204 | 196 | self.DualModeRange = header['DualModeRange'][0] |
|
205 | 197 | self.nDigChannels = header['nDigChannels'][0] |
|
206 | 198 | self.SampResolution = header['SampResolution'][0] |
|
207 | 199 | self.nHeights = header['nHeights'][0] |
|
208 | 200 | self.StartRangeSamp = header['StartRangeSamp'][0] |
|
209 | 201 | self.PRFhz = header['PRFhz'][0] |
|
210 | 202 | self.nCohInt = header['nCohInt'][0] |
|
211 | 203 | self.nProfiles = header['nProfiles'][0] |
|
212 | 204 | self.nChannels = header['nChannels'][0] |
|
213 | 205 | self.nIncohInt = header['nIncohInt'][0] |
|
214 | 206 | self.FFTwindowingInd = header['FFTwindowingInd'][0] |
|
215 | 207 | self.BeamAngleAzim = header['BeamAngleAzim'][0] |
|
216 | 208 | self.BeamAngleZen = header['BeamAngleZen'][0] |
|
217 | 209 | self.AntennaCoord0 = header['AntennaCoord0'][0] |
|
218 | 210 | self.AntennaAngl0 = header['AntennaAngl0'][0] |
|
219 | 211 | self.AntennaCoord1 = header['AntennaCoord1'][0] |
|
220 | 212 | self.AntennaAngl1 = header['AntennaAngl1'][0] |
|
221 | 213 | self.AntennaCoord2 = header['AntennaCoord2'][0] |
|
222 | 214 | self.AntennaAngl2 = header['AntennaAngl2'][0] |
|
223 | 215 | self.RecPhaseCalibr0 = header['RecPhaseCalibr0'][0] |
|
224 | 216 | self.RecPhaseCalibr1 = header['RecPhaseCalibr1'][0] |
|
225 | 217 | self.RecPhaseCalibr2 = header['RecPhaseCalibr2'][0] |
|
226 | 218 | self.RecAmpCalibr0 = header['RecAmpCalibr0'][0] |
|
227 | 219 | self.RecAmpCalibr1 = header['RecAmpCalibr1'][0] |
|
228 | 220 | self.RecAmpCalibr2 = header['RecAmpCalibr2'][0] |
|
229 | 221 | self.ReceiverGaindB0 = header['ReceiverGaindB0'][0] |
|
230 | 222 | self.ReceiverGaindB1 = header['ReceiverGaindB1'][0] |
|
231 | 223 | self.ReceiverGaindB2 = header['ReceiverGaindB2'][0] |
|
232 | 224 | self.ipp = 0.5 * (SPEED_OF_LIGHT / self.PRFhz) |
|
233 | 225 | self.RHsize = 180 + 20 * self.nChannels |
|
234 | 226 | self.Datasize = self.nProfiles * self.nChannels * self.nHeights * 2 * 4 |
|
235 | 227 | endFp = self.OffsetStartHeader + self.RecCounter * self.Off2StartNxtRec |
|
236 | 228 | |
|
237 | 229 | |
|
238 | 230 | if OffRHeader > endFp: |
|
239 | 231 | sys.stderr.write( |
|
240 | 232 | "Warning %s: Size value read from System Header is lower than it has to be\n" % fp) |
|
241 | 233 | return 0 |
|
242 | 234 | |
|
243 | 235 | if OffRHeader < endFp: |
|
244 | 236 | sys.stderr.write( |
|
245 | 237 | "Warning %s: Size value read from System Header size is greater than it has to be\n" % fp) |
|
246 | 238 | return 0 |
|
247 | 239 | |
|
248 | 240 | return 1 |
|
249 | 241 | |
|
250 | 242 | |
|
251 | 243 | class BLTRSpectraReader (ProcessingUnit): |
|
252 | 244 | |
|
253 | 245 | def __init__(self): |
|
254 | 246 | |
|
255 | 247 | ProcessingUnit.__init__(self) |
|
256 | 248 | |
|
257 | 249 | self.ext = ".fdt" |
|
258 | 250 | self.optchar = "P" |
|
259 | 251 | self.fpFile = None |
|
260 | 252 | self.fp = None |
|
261 | 253 | self.BlockCounter = 0 |
|
262 | 254 | self.fileSizeByHeader = None |
|
263 | 255 | self.filenameList = [] |
|
264 | 256 | self.fileSelector = 0 |
|
265 | 257 | self.Off2StartNxtRec = 0 |
|
266 | 258 | self.RecCounter = 0 |
|
267 | 259 | self.flagNoMoreFiles = 0 |
|
268 | 260 | self.data_spc = None |
|
269 | 261 | self.data_cspc = None |
|
270 | 262 | self.path = None |
|
271 | 263 | self.OffsetStartHeader = 0 |
|
272 | 264 | self.Off2StartData = 0 |
|
273 | 265 | self.ipp = 0 |
|
274 | 266 | self.nFDTdataRecors = 0 |
|
275 | 267 | self.blocksize = 0 |
|
276 | 268 | self.dataOut = Spectra() |
|
277 | 269 | self.dataOut.flagNoData = False |
|
278 | 270 | |
|
279 | 271 | def search_files(self): |
|
280 | 272 | ''' |
|
281 | 273 | Function that indicates the number of .fdt files that exist in the folder to be read. |
|
282 | 274 | It also creates an organized list with the names of the files to read. |
|
283 | 275 | ''' |
|
284 | 276 | |
|
285 | 277 | files = glob.glob(os.path.join(self.path, '*{}'.format(self.ext))) |
|
286 | 278 | files = sorted(files) |
|
287 | 279 | for f in files: |
|
288 | 280 | filename = f.split('/')[-1] |
|
289 | 281 | if folder_in_range(filename.split('.')[1], self.startDate, self.endDate, '%Y%m%d'): |
|
290 | 282 | self.filenameList.append(f) |
|
291 | 283 | |
|
292 | 284 | def run(self, **kwargs): |
|
293 | 285 | ''' |
|
294 | 286 | This method will be the one that will initiate the data entry, will be called constantly. |
|
295 | 287 | You should first verify that your Setup () is set up and then continue to acquire |
|
296 | 288 | the data to be processed with getData (). |
|
297 | 289 | ''' |
|
298 | 290 | if not self.isConfig: |
|
299 | 291 | self.setup(**kwargs) |
|
300 | 292 | self.isConfig = True |
|
301 | 293 | |
|
302 | 294 | self.getData() |
|
303 | 295 | |
|
304 | 296 | def setup(self, |
|
305 | 297 | path=None, |
|
306 | 298 | startDate=None, |
|
307 | 299 | endDate=None, |
|
308 | 300 | startTime=None, |
|
309 | 301 | endTime=None, |
|
310 | 302 | walk=True, |
|
311 | 303 | code=None, |
|
312 | 304 | online=False, |
|
313 | 305 | mode=None, |
|
314 | 306 | **kwargs): |
|
315 | 307 | |
|
316 | 308 | self.isConfig = True |
|
317 | 309 | |
|
318 | 310 | self.path = path |
|
319 | 311 | self.startDate = startDate |
|
320 | 312 | self.endDate = endDate |
|
321 | 313 | self.startTime = startTime |
|
322 | 314 | self.endTime = endTime |
|
323 | 315 | self.walk = walk |
|
324 | 316 | self.mode = int(mode) |
|
325 | 317 | self.search_files() |
|
326 | 318 | if self.filenameList: |
|
327 | 319 | self.readFile() |
|
328 | 320 | |
|
329 | 321 | def getData(self): |
|
330 | 322 | ''' |
|
331 | 323 | Before starting this function, you should check that there is still an unread file, |
|
332 | 324 | If there are still blocks to read or if the data block is empty. |
|
333 | 325 | |
|
334 | 326 | You should call the file "read". |
|
335 | 327 | |
|
336 | 328 | ''' |
|
337 | 329 | |
|
338 | 330 | if self.flagNoMoreFiles: |
|
339 | 331 | self.dataOut.flagNoData = True |
|
340 | 332 | raise schainpy.admin.SchainError('No more files') |
|
341 | 333 | |
|
342 | 334 | self.readBlock() |
|
343 | 335 | |
|
344 | 336 | def readFile(self): |
|
345 | 337 | ''' |
|
346 | 338 | You must indicate if you are reading in Online or Offline mode and load the |
|
347 | 339 | The parameters for this file reading mode. |
|
348 | 340 | |
|
349 | 341 | Then you must do 2 actions: |
|
350 | 342 | |
|
351 | 343 | 1. Get the BLTR FileHeader. |
|
352 | 344 | 2. Start reading the first block. |
|
353 | 345 | ''' |
|
354 | 346 | |
|
355 | 347 | if self.fileSelector < len(self.filenameList): |
|
356 | 348 | log.success('Opening file: {}'.format(self.filenameList[self.fileSelector]), self.name) |
|
357 | 349 | self.fp = open(self.filenameList[self.fileSelector]) |
|
358 | 350 | self.fheader = FileHeaderBLTR(self.fp) |
|
359 | 351 | self.rheader = RecordHeaderBLTR(self.fp) |
|
360 | 352 | self.nFDTdataRecors = self.fheader.nFDTdataRecors |
|
361 | 353 | self.fileSelector += 1 |
|
362 | 354 | self.BlockCounter = 0 |
|
363 | 355 | return 1 |
|
364 | 356 | else: |
|
365 | 357 | self.flagNoMoreFiles = True |
|
366 | 358 | self.dataOut.flagNoData = True |
|
367 | 359 | return 0 |
|
368 | 360 | |
|
369 | 361 | def readBlock(self): |
|
370 | 362 | ''' |
|
371 | 363 | It should be checked if the block has data, if it is not passed to the next file. |
|
372 | 364 | |
|
373 | 365 | Then the following is done: |
|
374 | 366 | |
|
375 | 367 | 1. Read the RecordHeader |
|
376 | 368 | 2. Fill the buffer with the current block number. |
|
377 | 369 | |
|
378 | 370 | ''' |
|
379 | 371 | |
|
380 | 372 | if self.BlockCounter == self.nFDTdataRecors: |
|
381 | 373 | if not self.readFile(): |
|
382 | 374 | return |
|
383 | 375 | |
|
384 | 376 | if self.mode == 1: |
|
385 | 377 | self.rheader.read(self.BlockCounter+1) |
|
386 | 378 | elif self.mode == 0: |
|
387 | 379 | self.rheader.read(self.BlockCounter) |
|
388 | 380 | |
|
389 | 381 | self.RecCounter = self.rheader.RecCounter |
|
390 | 382 | self.OffsetStartHeader = self.rheader.OffsetStartHeader |
|
391 | 383 | self.Off2StartNxtRec = self.rheader.Off2StartNxtRec |
|
392 | 384 | self.Off2StartData = self.rheader.Off2StartData |
|
393 | 385 | self.nProfiles = self.rheader.nProfiles |
|
394 | 386 | self.nChannels = self.rheader.nChannels |
|
395 | 387 | self.nHeights = self.rheader.nHeights |
|
396 | 388 | self.frequency = self.rheader.TransmitFrec |
|
397 | 389 | self.DualModeIndex = self.rheader.DualModeIndex |
|
398 | 390 | self.pairsList = [(0, 1), (0, 2), (1, 2)] |
|
399 | 391 | self.dataOut.pairsList = self.pairsList |
|
400 | 392 | self.nRdPairs = len(self.dataOut.pairsList) |
|
401 | 393 | self.dataOut.nRdPairs = self.nRdPairs |
|
402 | 394 | self.dataOut.heightList = (self.rheader.StartRangeSamp + numpy.arange(self.nHeights) * self.rheader.SampResolution) / 1000. |
|
403 | 395 | self.dataOut.channelList = range(self.nChannels) |
|
404 | 396 | self.dataOut.nProfiles=self.rheader.nProfiles |
|
405 | 397 | self.dataOut.nIncohInt=self.rheader.nIncohInt |
|
406 | 398 | self.dataOut.nCohInt=self.rheader.nCohInt |
|
407 | 399 | self.dataOut.ippSeconds= 1/float(self.rheader.PRFhz) |
|
408 | 400 | self.dataOut.PRF=self.rheader.PRFhz |
|
409 | 401 | self.dataOut.nFFTPoints=self.rheader.nProfiles |
|
410 | 402 | self.dataOut.utctime = self.rheader.nUtime + self.rheader.nMilisec/1000. |
|
411 | 403 | self.dataOut.timeZone = 0 |
|
412 | 404 | self.dataOut.useLocalTime = False |
|
413 | 405 | self.dataOut.nmodes = 2 |
|
414 | 406 | log.log('Reading block {} - {}'.format(self.BlockCounter, self.dataOut.datatime), self.name) |
|
415 | 407 | OffDATA = self.OffsetStartHeader + self.RecCounter * \ |
|
416 | 408 | self.Off2StartNxtRec + self.Off2StartData |
|
417 | 409 | self.fp.seek(OffDATA, os.SEEK_SET) |
|
418 | 410 | |
|
419 | 411 | self.data_fft = numpy.fromfile(self.fp, [('complex','<c8')], self.nProfiles*self.nChannels*self.nHeights ) |
|
420 | 412 | self.data_fft = self.data_fft.astype(numpy.dtype('complex')) |
|
421 | 413 | self.data_block = numpy.reshape(self.data_fft,(self.nHeights, self.nChannels, self.nProfiles)) |
|
422 | 414 | self.data_block = numpy.transpose(self.data_block, (1,2,0)) |
|
423 | 415 | copy = self.data_block.copy() |
|
424 | 416 | spc = copy * numpy.conjugate(copy) |
|
425 | 417 | self.data_spc = numpy.absolute(spc) # valor absoluto o magnitud |
|
426 | self.dataOut.data_spc = self.data_spc | |
|
427 | 418 | |
|
428 | 419 | cspc = self.data_block.copy() |
|
429 | 420 | self.data_cspc = self.data_block.copy() |
|
430 | 421 | |
|
431 | 422 | for i in range(self.nRdPairs): |
|
432 | 423 | |
|
433 | 424 | chan_index0 = self.dataOut.pairsList[i][0] |
|
434 | 425 | chan_index1 = self.dataOut.pairsList[i][1] |
|
435 | 426 | |
|
436 | 427 | self.data_cspc[i, :, :] = cspc[chan_index0, :, :] * numpy.conjugate(cspc[chan_index1, :, :]) |
|
437 | 428 | |
|
438 | 429 | '''Getting Eij and Nij''' |
|
439 | 430 | (AntennaX0, AntennaY0) = pol2cart( |
|
440 | 431 | self.rheader.AntennaCoord0, self.rheader.AntennaAngl0 * numpy.pi / 180) |
|
441 | 432 | (AntennaX1, AntennaY1) = pol2cart( |
|
442 | 433 | self.rheader.AntennaCoord1, self.rheader.AntennaAngl1 * numpy.pi / 180) |
|
443 | 434 | (AntennaX2, AntennaY2) = pol2cart( |
|
444 | 435 | self.rheader.AntennaCoord2, self.rheader.AntennaAngl2 * numpy.pi / 180) |
|
445 | 436 | |
|
446 | 437 | E01 = AntennaX0 - AntennaX1 |
|
447 | 438 | N01 = AntennaY0 - AntennaY1 |
|
448 | 439 | |
|
449 | 440 | E02 = AntennaX0 - AntennaX2 |
|
450 | 441 | N02 = AntennaY0 - AntennaY2 |
|
451 | 442 | |
|
452 | 443 | E12 = AntennaX1 - AntennaX2 |
|
453 | 444 | N12 = AntennaY1 - AntennaY2 |
|
454 | 445 | |
|
455 | 446 | self.ChanDist = numpy.array( |
|
456 | 447 | [[E01, N01], [E02, N02], [E12, N12]]) |
|
457 | 448 | |
|
458 | 449 | self.dataOut.ChanDist = self.ChanDist |
|
459 | 450 | |
|
460 | 451 | self.BlockCounter += 2 |
|
461 | 452 | self.dataOut.data_spc = self.data_spc |
|
462 | 453 | self.dataOut.data_cspc =self.data_cspc |
@@ -1,627 +1,627 | |||
|
1 | 1 | import os |
|
2 | 2 | import time |
|
3 | 3 | import datetime |
|
4 | 4 | |
|
5 | 5 | import numpy |
|
6 | 6 | import h5py |
|
7 | 7 | |
|
8 | 8 | import schainpy.admin |
|
9 | 9 | from schainpy.model.data.jrodata import * |
|
10 | 10 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
11 | 11 | from schainpy.model.io.jroIO_base import * |
|
12 | 12 | from schainpy.utils import log |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class HDFReader(Reader, ProcessingUnit): |
|
16 | 16 | """Processing unit to read HDF5 format files |
|
17 | 17 | |
|
18 | 18 | This unit reads HDF5 files created with `HDFWriter` operation contains |
|
19 | 19 | by default two groups Data and Metadata all variables would be saved as `dataOut` |
|
20 | 20 | attributes. |
|
21 | 21 | It is possible to read any HDF5 file by given the structure in the `description` |
|
22 | 22 | parameter, also you can add extra values to metadata with the parameter `extras`. |
|
23 | 23 | |
|
24 | 24 | Parameters: |
|
25 | 25 | ----------- |
|
26 | 26 | path : str |
|
27 | 27 | Path where files are located. |
|
28 | 28 | startDate : date |
|
29 | 29 | Start date of the files |
|
30 | 30 | endDate : list |
|
31 | 31 | End date of the files |
|
32 | 32 | startTime : time |
|
33 | 33 | Start time of the files |
|
34 | 34 | endTime : time |
|
35 | 35 | End time of the files |
|
36 | 36 | description : dict, optional |
|
37 | 37 | Dictionary with the description of the HDF5 file |
|
38 | 38 | extras : dict, optional |
|
39 | 39 | Dictionary with extra metadata to be be added to `dataOut` |
|
40 | 40 | |
|
41 | 41 | Examples |
|
42 | 42 | -------- |
|
43 | 43 | |
|
44 | 44 | desc = { |
|
45 | 45 | 'Data': { |
|
46 | 46 | 'data_output': ['u', 'v', 'w'], |
|
47 | 47 | 'utctime': 'timestamps', |
|
48 | 48 | } , |
|
49 | 49 | 'Metadata': { |
|
50 | 50 | 'heightList': 'heights' |
|
51 | 51 | } |
|
52 | 52 | } |
|
53 | 53 | |
|
54 | 54 | desc = { |
|
55 | 55 | 'Data': { |
|
56 | 56 | 'data_output': 'winds', |
|
57 | 57 | 'utctime': 'timestamps' |
|
58 | 58 | }, |
|
59 | 59 | 'Metadata': { |
|
60 | 60 | 'heightList': 'heights' |
|
61 | 61 | } |
|
62 | 62 | } |
|
63 | 63 | |
|
64 | 64 | extras = { |
|
65 | 65 | 'timeZone': 300 |
|
66 | 66 | } |
|
67 | 67 | |
|
68 | 68 | reader = project.addReadUnit( |
|
69 | 69 | name='HDFReader', |
|
70 | 70 | path='/path/to/files', |
|
71 | 71 | startDate='2019/01/01', |
|
72 | 72 | endDate='2019/01/31', |
|
73 | 73 | startTime='00:00:00', |
|
74 | 74 | endTime='23:59:59', |
|
75 | 75 | # description=json.dumps(desc), |
|
76 | 76 | # extras=json.dumps(extras), |
|
77 | 77 | ) |
|
78 | 78 | |
|
79 | 79 | """ |
|
80 | 80 | |
|
81 | 81 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras'] |
|
82 | 82 | |
|
83 | 83 | def __init__(self): |
|
84 | 84 | ProcessingUnit.__init__(self) |
|
85 | 85 | self.dataOut = Parameters() |
|
86 | 86 | self.ext = ".hdf5" |
|
87 | 87 | self.optchar = "D" |
|
88 | 88 | self.meta = {} |
|
89 | 89 | self.data = {} |
|
90 | 90 | self.open_file = h5py.File |
|
91 | 91 | self.open_mode = 'r' |
|
92 | 92 | self.description = {} |
|
93 | 93 | self.extras = {} |
|
94 | 94 | self.filefmt = "*%Y%j***" |
|
95 | 95 | self.folderfmt = "*%Y%j" |
|
96 | 96 | |
|
97 | 97 | def setup(self, **kwargs): |
|
98 | 98 | |
|
99 | 99 | self.set_kwargs(**kwargs) |
|
100 | 100 | if not self.ext.startswith('.'): |
|
101 | 101 | self.ext = '.{}'.format(self.ext) |
|
102 | 102 | |
|
103 | 103 | if self.online: |
|
104 | 104 | log.log("Searching files in online mode...", self.name) |
|
105 | 105 | |
|
106 | 106 | for nTries in range(self.nTries): |
|
107 | 107 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
108 | 108 | self.endDate, self.expLabel, self.ext, self.walk, |
|
109 | 109 | self.filefmt, self.folderfmt) |
|
110 | 110 | try: |
|
111 | 111 | fullpath = next(fullpath) |
|
112 | 112 | except: |
|
113 | 113 | fullpath = None |
|
114 | 114 | |
|
115 | 115 | if fullpath: |
|
116 | 116 | break |
|
117 | 117 | |
|
118 | 118 | log.warning( |
|
119 | 119 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
120 | 120 | self.delay, self.path, nTries + 1), |
|
121 | 121 | self.name) |
|
122 | 122 | time.sleep(self.delay) |
|
123 | 123 | |
|
124 | 124 | if not(fullpath): |
|
125 | 125 | raise schainpy.admin.SchainError( |
|
126 | 126 | 'There isn\'t any valid file in {}'.format(self.path)) |
|
127 | 127 | |
|
128 | 128 | pathname, filename = os.path.split(fullpath) |
|
129 | 129 | self.year = int(filename[1:5]) |
|
130 | 130 | self.doy = int(filename[5:8]) |
|
131 | 131 | self.set = int(filename[8:11]) - 1 |
|
132 | 132 | else: |
|
133 | 133 | log.log("Searching files in {}".format(self.path), self.name) |
|
134 | 134 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
135 | 135 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
136 | 136 | |
|
137 | 137 | self.setNextFile() |
|
138 | 138 | |
|
139 | 139 | return |
|
140 | 140 | |
|
141 | 141 | def readFirstHeader(self): |
|
142 | 142 | '''Read metadata and data''' |
|
143 | 143 | |
|
144 | 144 | self.__readMetadata() |
|
145 | 145 | self.__readData() |
|
146 | 146 | self.__setBlockList() |
|
147 | 147 | |
|
148 | 148 | if 'type' in self.meta: |
|
149 | 149 | self.dataOut = eval(self.meta['type'])() |
|
150 | 150 | |
|
151 | 151 | for attr in self.meta: |
|
152 | 152 | setattr(self.dataOut, attr, self.meta[attr]) |
|
153 | 153 | |
|
154 | 154 | self.blockIndex = 0 |
|
155 | 155 | |
|
156 | 156 | return |
|
157 | 157 | |
|
158 | 158 | def __setBlockList(self): |
|
159 | 159 | ''' |
|
160 | 160 | Selects the data within the times defined |
|
161 | 161 | |
|
162 | 162 | self.fp |
|
163 | 163 | self.startTime |
|
164 | 164 | self.endTime |
|
165 | 165 | self.blockList |
|
166 | 166 | self.blocksPerFile |
|
167 | 167 | |
|
168 | 168 | ''' |
|
169 | 169 | |
|
170 | 170 | startTime = self.startTime |
|
171 | 171 | endTime = self.endTime |
|
172 | 172 | |
|
173 | 173 | thisUtcTime = self.data['utctime'] |
|
174 | 174 | self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1]) |
|
175 | 175 | |
|
176 | 176 | thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0]) |
|
177 | 177 | |
|
178 | 178 | thisDate = thisDatetime.date() |
|
179 | 179 | thisTime = thisDatetime.time() |
|
180 | 180 | |
|
181 | 181 | startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
182 | 182 | endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
183 | 183 | |
|
184 | 184 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] |
|
185 | 185 | |
|
186 | 186 | self.blockList = ind |
|
187 | 187 | self.blocksPerFile = len(ind) |
|
188 | 188 | return |
|
189 | 189 | |
|
190 | 190 | def __readMetadata(self): |
|
191 | 191 | ''' |
|
192 | 192 | Reads Metadata |
|
193 | 193 | ''' |
|
194 | 194 | |
|
195 | 195 | meta = {} |
|
196 | 196 | |
|
197 | 197 | if self.description: |
|
198 | 198 | for key, value in self.description['Metadata'].items(): |
|
199 |
meta[key] = self.fp[value] |
|
|
199 | meta[key] = self.fp[value][()] | |
|
200 | 200 | else: |
|
201 | 201 | grp = self.fp['Metadata'] |
|
202 | 202 | for name in grp: |
|
203 |
meta[name] = grp[name] |
|
|
203 | meta[name] = grp[name][()] | |
|
204 | 204 | |
|
205 | 205 | if self.extras: |
|
206 | 206 | for key, value in self.extras.items(): |
|
207 | 207 | meta[key] = value |
|
208 | 208 | self.meta = meta |
|
209 | 209 | |
|
210 | 210 | return |
|
211 | 211 | |
|
212 | 212 | def __readData(self): |
|
213 | 213 | |
|
214 | 214 | data = {} |
|
215 | 215 | |
|
216 | 216 | if self.description: |
|
217 | 217 | for key, value in self.description['Data'].items(): |
|
218 | 218 | if isinstance(value, str): |
|
219 | 219 | if isinstance(self.fp[value], h5py.Dataset): |
|
220 |
data[key] = self.fp[value] |
|
|
220 | data[key] = self.fp[value][()] | |
|
221 | 221 | elif isinstance(self.fp[value], h5py.Group): |
|
222 | 222 | array = [] |
|
223 | 223 | for ch in self.fp[value]: |
|
224 |
array.append(self.fp[value][ch] |
|
|
224 | array.append(self.fp[value][ch][()]) | |
|
225 | 225 | data[key] = numpy.array(array) |
|
226 | 226 | elif isinstance(value, list): |
|
227 | 227 | array = [] |
|
228 | 228 | for ch in value: |
|
229 |
array.append(self.fp[ch] |
|
|
229 | array.append(self.fp[ch][()]) | |
|
230 | 230 | data[key] = numpy.array(array) |
|
231 | 231 | else: |
|
232 | 232 | grp = self.fp['Data'] |
|
233 | 233 | for name in grp: |
|
234 | 234 | if isinstance(grp[name], h5py.Dataset): |
|
235 |
array = grp[name] |
|
|
235 | array = grp[name][()] | |
|
236 | 236 | elif isinstance(grp[name], h5py.Group): |
|
237 | 237 | array = [] |
|
238 | 238 | for ch in grp[name]: |
|
239 |
array.append(grp[name][ch] |
|
|
239 | array.append(grp[name][ch][()]) | |
|
240 | 240 | array = numpy.array(array) |
|
241 | 241 | else: |
|
242 | 242 | log.warning('Unknown type: {}'.format(name)) |
|
243 | 243 | |
|
244 | 244 | if name in self.description: |
|
245 | 245 | key = self.description[name] |
|
246 | 246 | else: |
|
247 | 247 | key = name |
|
248 | 248 | data[key] = array |
|
249 | 249 | |
|
250 | 250 | self.data = data |
|
251 | 251 | return |
|
252 | 252 | |
|
253 | 253 | def getData(self): |
|
254 | 254 | |
|
255 | 255 | for attr in self.data: |
|
256 | 256 | if self.data[attr].ndim == 1: |
|
257 | 257 | setattr(self.dataOut, attr, self.data[attr][self.blockIndex]) |
|
258 | 258 | else: |
|
259 | 259 | setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex]) |
|
260 | 260 | |
|
261 | 261 | self.dataOut.flagNoData = False |
|
262 | 262 | self.blockIndex += 1 |
|
263 | 263 | |
|
264 | 264 | log.log("Block No. {}/{} -> {}".format( |
|
265 | 265 | self.blockIndex, |
|
266 | 266 | self.blocksPerFile, |
|
267 | 267 | self.dataOut.datatime.ctime()), self.name) |
|
268 | 268 | |
|
269 | 269 | return |
|
270 | 270 | |
|
271 | 271 | def run(self, **kwargs): |
|
272 | 272 | |
|
273 | 273 | if not(self.isConfig): |
|
274 | 274 | self.setup(**kwargs) |
|
275 | 275 | self.isConfig = True |
|
276 | 276 | |
|
277 | 277 | if self.blockIndex == self.blocksPerFile: |
|
278 | 278 | self.setNextFile() |
|
279 | 279 | |
|
280 | 280 | self.getData() |
|
281 | 281 | |
|
282 | 282 | return |
|
283 | 283 | |
|
284 | 284 | @MPDecorator |
|
285 | 285 | class HDFWriter(Operation): |
|
286 | 286 | """Operation to write HDF5 files. |
|
287 | 287 | |
|
288 | 288 | The HDF5 file contains by default two groups Data and Metadata where |
|
289 | 289 | you can save any `dataOut` attribute specified by `dataList` and `metadataList` |
|
290 | 290 | parameters, data attributes are normaly time dependent where the metadata |
|
291 | 291 | are not. |
|
292 | 292 | It is possible to customize the structure of the HDF5 file with the |
|
293 | 293 | optional description parameter see the examples. |
|
294 | 294 | |
|
295 | 295 | Parameters: |
|
296 | 296 | ----------- |
|
297 | 297 | path : str |
|
298 | 298 | Path where files will be saved. |
|
299 | 299 | blocksPerFile : int |
|
300 | 300 | Number of blocks per file |
|
301 | 301 | metadataList : list |
|
302 | 302 | List of the dataOut attributes that will be saved as metadata |
|
303 | 303 | dataList : int |
|
304 | 304 | List of the dataOut attributes that will be saved as data |
|
305 | 305 | setType : bool |
|
306 | 306 | If True the name of the files corresponds to the timestamp of the data |
|
307 | 307 | description : dict, optional |
|
308 | 308 | Dictionary with the desired description of the HDF5 file |
|
309 | 309 | |
|
310 | 310 | Examples |
|
311 | 311 | -------- |
|
312 | 312 | |
|
313 | 313 | desc = { |
|
314 | 314 | 'data_output': {'winds': ['z', 'w', 'v']}, |
|
315 | 315 | 'utctime': 'timestamps', |
|
316 | 316 | 'heightList': 'heights' |
|
317 | 317 | } |
|
318 | 318 | desc = { |
|
319 | 319 | 'data_output': ['z', 'w', 'v'], |
|
320 | 320 | 'utctime': 'timestamps', |
|
321 | 321 | 'heightList': 'heights' |
|
322 | 322 | } |
|
323 | 323 | desc = { |
|
324 | 324 | 'Data': { |
|
325 | 325 | 'data_output': 'winds', |
|
326 | 326 | 'utctime': 'timestamps' |
|
327 | 327 | }, |
|
328 | 328 | 'Metadata': { |
|
329 | 329 | 'heightList': 'heights' |
|
330 | 330 | } |
|
331 | 331 | } |
|
332 | 332 | |
|
333 | 333 | writer = proc_unit.addOperation(name='HDFWriter') |
|
334 | 334 | writer.addParameter(name='path', value='/path/to/file') |
|
335 | 335 | writer.addParameter(name='blocksPerFile', value='32') |
|
336 | 336 | writer.addParameter(name='metadataList', value='heightList,timeZone') |
|
337 | 337 | writer.addParameter(name='dataList',value='data_output,utctime') |
|
338 | 338 | # writer.addParameter(name='description',value=json.dumps(desc)) |
|
339 | 339 | |
|
340 | 340 | """ |
|
341 | 341 | |
|
342 | 342 | ext = ".hdf5" |
|
343 | 343 | optchar = "D" |
|
344 | 344 | filename = None |
|
345 | 345 | path = None |
|
346 | 346 | setFile = None |
|
347 | 347 | fp = None |
|
348 | 348 | firsttime = True |
|
349 | 349 | #Configurations |
|
350 | 350 | blocksPerFile = None |
|
351 | 351 | blockIndex = None |
|
352 | 352 | dataOut = None |
|
353 | 353 | #Data Arrays |
|
354 | 354 | dataList = None |
|
355 | 355 | metadataList = None |
|
356 | 356 | currentDay = None |
|
357 | 357 | lastTime = None |
|
358 | 358 | |
|
359 | 359 | def __init__(self): |
|
360 | 360 | |
|
361 | 361 | Operation.__init__(self) |
|
362 | 362 | return |
|
363 | 363 | |
|
364 | 364 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None): |
|
365 | 365 | self.path = path |
|
366 | 366 | self.blocksPerFile = blocksPerFile |
|
367 | 367 | self.metadataList = metadataList |
|
368 | 368 | self.dataList = [s.strip() for s in dataList] |
|
369 | 369 | self.setType = setType |
|
370 | 370 | self.description = description |
|
371 | 371 | |
|
372 | 372 | if self.metadataList is None: |
|
373 | 373 | self.metadataList = self.dataOut.metadata_list |
|
374 | 374 | |
|
375 | 375 | tableList = [] |
|
376 | 376 | dsList = [] |
|
377 | 377 | |
|
378 | 378 | for i in range(len(self.dataList)): |
|
379 | 379 | dsDict = {} |
|
380 | 380 | if hasattr(self.dataOut, self.dataList[i]): |
|
381 | 381 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
382 | 382 | dsDict['variable'] = self.dataList[i] |
|
383 | 383 | else: |
|
384 | 384 | log.warning('Attribute {} not found in dataOut', self.name) |
|
385 | 385 | continue |
|
386 | 386 | |
|
387 | 387 | if dataAux is None: |
|
388 | 388 | continue |
|
389 | 389 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
|
390 | 390 | dsDict['nDim'] = 0 |
|
391 | 391 | else: |
|
392 | 392 | dsDict['nDim'] = len(dataAux.shape) |
|
393 | 393 | dsDict['shape'] = dataAux.shape |
|
394 | 394 | dsDict['dsNumber'] = dataAux.shape[0] |
|
395 | 395 | dsDict['dtype'] = dataAux.dtype |
|
396 | 396 | |
|
397 | 397 | dsList.append(dsDict) |
|
398 | 398 | |
|
399 | 399 | self.dsList = dsList |
|
400 | 400 | self.currentDay = self.dataOut.datatime.date() |
|
401 | 401 | |
|
402 | 402 | def timeFlag(self): |
|
403 | 403 | currentTime = self.dataOut.utctime |
|
404 | 404 | timeTuple = time.localtime(currentTime) |
|
405 | 405 | dataDay = timeTuple.tm_yday |
|
406 | 406 | |
|
407 | 407 | if self.lastTime is None: |
|
408 | 408 | self.lastTime = currentTime |
|
409 | 409 | self.currentDay = dataDay |
|
410 | 410 | return False |
|
411 | 411 | |
|
412 | 412 | timeDiff = currentTime - self.lastTime |
|
413 | 413 | |
|
414 | 414 | #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora |
|
415 | 415 | if dataDay != self.currentDay: |
|
416 | 416 | self.currentDay = dataDay |
|
417 | 417 | return True |
|
418 | 418 | elif timeDiff > 3*60*60: |
|
419 | 419 | self.lastTime = currentTime |
|
420 | 420 | return True |
|
421 | 421 | else: |
|
422 | 422 | self.lastTime = currentTime |
|
423 | 423 | return False |
|
424 | 424 | |
|
425 | 425 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, |
|
426 | 426 | dataList=[], setType=None, description={}): |
|
427 | 427 | |
|
428 | 428 | self.dataOut = dataOut |
|
429 | 429 | if not(self.isConfig): |
|
430 | 430 | self.setup(path=path, blocksPerFile=blocksPerFile, |
|
431 | 431 | metadataList=metadataList, dataList=dataList, |
|
432 | 432 | setType=setType, description=description) |
|
433 | 433 | |
|
434 | 434 | self.isConfig = True |
|
435 | 435 | self.setNextFile() |
|
436 | 436 | |
|
437 | 437 | self.putData() |
|
438 | 438 | return |
|
439 | 439 | |
|
440 | 440 | def setNextFile(self): |
|
441 | 441 | |
|
442 | 442 | ext = self.ext |
|
443 | 443 | path = self.path |
|
444 | 444 | setFile = self.setFile |
|
445 | 445 | |
|
446 | 446 | timeTuple = time.localtime(self.dataOut.utctime) |
|
447 | 447 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
448 | 448 | fullpath = os.path.join(path, subfolder) |
|
449 | 449 | |
|
450 | 450 | if os.path.exists(fullpath): |
|
451 | 451 | filesList = os.listdir(fullpath) |
|
452 | 452 | filesList = [k for k in filesList if k.startswith(self.optchar)] |
|
453 | 453 | if len( filesList ) > 0: |
|
454 | 454 | filesList = sorted(filesList, key=str.lower) |
|
455 | 455 | filen = filesList[-1] |
|
456 | 456 | # el filename debera tener el siguiente formato |
|
457 | 457 | # 0 1234 567 89A BCDE (hex) |
|
458 | 458 | # x YYYY DDD SSS .ext |
|
459 | 459 | if isNumber(filen[8:11]): |
|
460 | 460 | setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file |
|
461 | 461 | else: |
|
462 | 462 | setFile = -1 |
|
463 | 463 | else: |
|
464 | 464 | setFile = -1 #inicializo mi contador de seteo |
|
465 | 465 | else: |
|
466 | 466 | os.makedirs(fullpath) |
|
467 | 467 | setFile = -1 #inicializo mi contador de seteo |
|
468 | 468 | |
|
469 | 469 | if self.setType is None: |
|
470 | 470 | setFile += 1 |
|
471 | 471 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, |
|
472 | 472 | timeTuple.tm_year, |
|
473 | 473 | timeTuple.tm_yday, |
|
474 | 474 | setFile, |
|
475 | 475 | ext ) |
|
476 | 476 | else: |
|
477 | 477 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min |
|
478 | 478 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, |
|
479 | 479 | timeTuple.tm_year, |
|
480 | 480 | timeTuple.tm_yday, |
|
481 | 481 | setFile, |
|
482 | 482 | ext ) |
|
483 | 483 | |
|
484 | 484 | self.filename = os.path.join( path, subfolder, file ) |
|
485 | 485 | |
|
486 | 486 | #Setting HDF5 File |
|
487 | 487 | self.fp = h5py.File(self.filename, 'w') |
|
488 | 488 | #write metadata |
|
489 | 489 | self.writeMetadata(self.fp) |
|
490 | 490 | #Write data |
|
491 | 491 | self.writeData(self.fp) |
|
492 | 492 | |
|
493 | 493 | def getLabel(self, name, x=None): |
|
494 | 494 | |
|
495 | 495 | if x is None: |
|
496 | 496 | if 'Data' in self.description: |
|
497 | 497 | data = self.description['Data'] |
|
498 | 498 | if 'Metadata' in self.description: |
|
499 | 499 | data.update(self.description['Metadata']) |
|
500 | 500 | else: |
|
501 | 501 | data = self.description |
|
502 | 502 | if name in data: |
|
503 | 503 | if isinstance(data[name], str): |
|
504 | 504 | return data[name] |
|
505 | 505 | elif isinstance(data[name], list): |
|
506 | 506 | return None |
|
507 | 507 | elif isinstance(data[name], dict): |
|
508 | 508 | for key, value in data[name].items(): |
|
509 | 509 | return key |
|
510 | 510 | return name |
|
511 | 511 | else: |
|
512 | 512 | if 'Metadata' in self.description: |
|
513 | 513 | meta = self.description['Metadata'] |
|
514 | 514 | else: |
|
515 | 515 | meta = self.description |
|
516 | 516 | if name in meta: |
|
517 | 517 | if isinstance(meta[name], list): |
|
518 | 518 | return meta[name][x] |
|
519 | 519 | elif isinstance(meta[name], dict): |
|
520 | 520 | for key, value in meta[name].items(): |
|
521 | 521 | return value[x] |
|
522 | 522 | if 'cspc' in name: |
|
523 | 523 | return 'pair{:02d}'.format(x) |
|
524 | 524 | else: |
|
525 | 525 | return 'channel{:02d}'.format(x) |
|
526 | 526 | |
|
527 | 527 | def writeMetadata(self, fp): |
|
528 | 528 | |
|
529 | 529 | if self.description: |
|
530 | 530 | if 'Metadata' in self.description: |
|
531 | 531 | grp = fp.create_group('Metadata') |
|
532 | 532 | else: |
|
533 | 533 | grp = fp |
|
534 | 534 | else: |
|
535 | 535 | grp = fp.create_group('Metadata') |
|
536 | 536 | |
|
537 | 537 | for i in range(len(self.metadataList)): |
|
538 | 538 | if not hasattr(self.dataOut, self.metadataList[i]): |
|
539 | 539 | log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name) |
|
540 | 540 | continue |
|
541 | 541 | value = getattr(self.dataOut, self.metadataList[i]) |
|
542 | 542 | if isinstance(value, bool): |
|
543 | 543 | if value is True: |
|
544 | 544 | value = 1 |
|
545 | 545 | else: |
|
546 | 546 | value = 0 |
|
547 | 547 | grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) |
|
548 | 548 | return |
|
549 | 549 | |
|
550 | 550 | def writeData(self, fp): |
|
551 | 551 | |
|
552 | 552 | if self.description: |
|
553 | 553 | if 'Data' in self.description: |
|
554 | 554 | grp = fp.create_group('Data') |
|
555 | 555 | else: |
|
556 | 556 | grp = fp |
|
557 | 557 | else: |
|
558 | 558 | grp = fp.create_group('Data') |
|
559 | 559 | |
|
560 | 560 | dtsets = [] |
|
561 | 561 | data = [] |
|
562 | 562 | |
|
563 | 563 | for dsInfo in self.dsList: |
|
564 | 564 | if dsInfo['nDim'] == 0: |
|
565 | 565 | ds = grp.create_dataset( |
|
566 | 566 | self.getLabel(dsInfo['variable']), |
|
567 | 567 | (self.blocksPerFile, ), |
|
568 | 568 | chunks=True, |
|
569 | 569 | dtype=numpy.float64) |
|
570 | 570 | dtsets.append(ds) |
|
571 | 571 | data.append((dsInfo['variable'], -1)) |
|
572 | 572 | else: |
|
573 | 573 | label = self.getLabel(dsInfo['variable']) |
|
574 | 574 | if label is not None: |
|
575 | 575 | sgrp = grp.create_group(label) |
|
576 | 576 | else: |
|
577 | 577 | sgrp = grp |
|
578 | 578 | for i in range(dsInfo['dsNumber']): |
|
579 | 579 | ds = sgrp.create_dataset( |
|
580 | 580 | self.getLabel(dsInfo['variable'], i), |
|
581 | 581 | (self.blocksPerFile, ) + dsInfo['shape'][1:], |
|
582 | 582 | chunks=True, |
|
583 | 583 | dtype=dsInfo['dtype']) |
|
584 | 584 | dtsets.append(ds) |
|
585 | 585 | data.append((dsInfo['variable'], i)) |
|
586 | 586 | fp.flush() |
|
587 | 587 | |
|
588 | 588 | log.log('Creating file: {}'.format(fp.filename), self.name) |
|
589 | 589 | |
|
590 | 590 | self.ds = dtsets |
|
591 | 591 | self.data = data |
|
592 | 592 | self.firsttime = True |
|
593 | 593 | self.blockIndex = 0 |
|
594 | 594 | return |
|
595 | 595 | |
|
596 | 596 | def putData(self): |
|
597 | 597 | |
|
598 | 598 | if (self.blockIndex == self.blocksPerFile) or self.timeFlag(): |
|
599 | 599 | self.closeFile() |
|
600 | 600 | self.setNextFile() |
|
601 | 601 | |
|
602 | 602 | for i, ds in enumerate(self.ds): |
|
603 | 603 | attr, ch = self.data[i] |
|
604 | 604 | if ch == -1: |
|
605 | 605 | ds[self.blockIndex] = getattr(self.dataOut, attr) |
|
606 | 606 | else: |
|
607 | 607 | ds[self.blockIndex] = getattr(self.dataOut, attr)[ch] |
|
608 | 608 | |
|
609 | 609 | self.fp.flush() |
|
610 | 610 | self.blockIndex += 1 |
|
611 | 611 | log.log('Block No. {}/{}'.format(self.blockIndex, self.blocksPerFile), self.name) |
|
612 | 612 | |
|
613 | 613 | return |
|
614 | 614 | |
|
615 | 615 | def closeFile(self): |
|
616 | 616 | |
|
617 | 617 | if self.blockIndex != self.blocksPerFile: |
|
618 | 618 | for ds in self.ds: |
|
619 | 619 | ds.resize(self.blockIndex, axis=0) |
|
620 | 620 | |
|
621 | 621 | if self.fp: |
|
622 | 622 | self.fp.flush() |
|
623 | 623 | self.fp.close() |
|
624 | 624 | |
|
625 | 625 | def close(self): |
|
626 | 626 | |
|
627 | 627 | self.closeFile() |
@@ -1,402 +1,399 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Oct 24, 2016 |
|
3 | 3 | |
|
4 | 4 | @author: roj- LouVD |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import numpy |
|
8 | import copy | |
|
9 | 8 | import datetime |
|
10 | 9 | import time |
|
11 | from time import gmtime | |
|
12 | 10 | |
|
13 | from numpy import transpose | |
|
14 | ||
|
15 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
|
11 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation | |
|
16 | 12 | from schainpy.model.data.jrodata import Parameters |
|
17 | 13 | |
|
18 | 14 | |
|
19 | 15 | class BLTRParametersProc(ProcessingUnit): |
|
20 | 16 | ''' |
|
21 | 17 | Processing unit for BLTR parameters data (winds) |
|
22 | 18 | |
|
23 | 19 | Inputs: |
|
24 | 20 | self.dataOut.nmodes - Number of operation modes |
|
25 | 21 | self.dataOut.nchannels - Number of channels |
|
26 | 22 | self.dataOut.nranges - Number of ranges |
|
27 | 23 | |
|
28 | 24 | self.dataOut.data_snr - SNR array |
|
29 | 25 | self.dataOut.data_output - Zonal, Vertical and Meridional velocity array |
|
30 | 26 | self.dataOut.height - Height array (km) |
|
31 | 27 | self.dataOut.time - Time array (seconds) |
|
32 | 28 | |
|
33 | 29 | self.dataOut.fileIndex -Index of the file currently read |
|
34 | 30 | self.dataOut.lat - Latitude coordinate of BLTR location |
|
35 | 31 | |
|
36 | 32 | self.dataOut.doy - Experiment doy (number of the day in the current year) |
|
37 | 33 | self.dataOut.month - Experiment month |
|
38 | 34 | self.dataOut.day - Experiment day |
|
39 | 35 | self.dataOut.year - Experiment year |
|
40 | 36 | ''' |
|
41 | 37 | |
|
42 | 38 | def __init__(self): |
|
43 | 39 | ''' |
|
44 | 40 | Inputs: None |
|
45 | 41 | ''' |
|
46 | 42 | ProcessingUnit.__init__(self) |
|
47 | 43 | self.dataOut = Parameters() |
|
48 | 44 | |
|
49 | 45 | def setup(self, mode): |
|
50 | 46 | ''' |
|
51 | 47 | ''' |
|
52 | 48 | self.dataOut.mode = mode |
|
53 | 49 | |
|
54 | 50 | def run(self, mode, snr_threshold=None): |
|
55 | 51 | ''' |
|
56 | 52 | Inputs: |
|
57 | 53 | mode = High resolution (0) or Low resolution (1) data |
|
58 | 54 | snr_threshold = snr filter value |
|
59 | 55 | ''' |
|
60 | 56 | |
|
61 | 57 | if not self.isConfig: |
|
62 | 58 | self.setup(mode) |
|
63 | 59 | self.isConfig = True |
|
64 | 60 | |
|
65 | 61 | if self.dataIn.type == 'Parameters': |
|
66 | 62 | self.dataOut.copy(self.dataIn) |
|
67 | 63 | |
|
68 | 64 | self.dataOut.data_param = self.dataOut.data[mode] |
|
69 | 65 | self.dataOut.heightList = self.dataOut.height[0] |
|
70 | 66 | self.dataOut.data_snr = self.dataOut.data_snr[mode] |
|
71 | ||
|
72 | if snr_threshold is not None: | |
|
73 | 67 |
|
|
74 | 68 |
|
|
69 | self.dataOut.data_snr_avg_db = SNRavgdB.reshape(1, *SNRavgdB.shape) | |
|
70 | ||
|
71 | if snr_threshold is not None: | |
|
75 | 72 | for i in range(3): |
|
76 | 73 | self.dataOut.data_param[i][SNRavgdB <= snr_threshold] = numpy.nan |
|
77 | 74 | |
|
78 | 75 | # TODO |
|
79 | 76 | |
|
80 | 77 | class OutliersFilter(Operation): |
|
81 | 78 | |
|
82 | 79 | def __init__(self): |
|
83 | 80 | ''' |
|
84 | 81 | ''' |
|
85 | 82 | Operation.__init__(self) |
|
86 | 83 | |
|
87 | 84 | def run(self, svalue2, method, factor, filter, npoints=9): |
|
88 | 85 | ''' |
|
89 | 86 | Inputs: |
|
90 | 87 | svalue - string to select array velocity |
|
91 | 88 | svalue2 - string to choose axis filtering |
|
92 | 89 | method - 0 for SMOOTH or 1 for MEDIAN |
|
93 | 90 | factor - number used to set threshold |
|
94 | 91 | filter - 1 for data filtering using the standard deviation criteria else 0 |
|
95 | 92 | npoints - number of points for mask filter |
|
96 | 93 | ''' |
|
97 | 94 | |
|
98 | 95 | print(' Outliers Filter {} {} / threshold = {}'.format(svalue, svalue, factor)) |
|
99 | 96 | |
|
100 | 97 | |
|
101 | 98 | yaxis = self.dataOut.heightList |
|
102 | 99 | xaxis = numpy.array([[self.dataOut.utctime]]) |
|
103 | 100 | |
|
104 | 101 | # Zonal |
|
105 | 102 | value_temp = self.dataOut.data_output[0] |
|
106 | 103 | |
|
107 | 104 | # Zonal |
|
108 | 105 | value_temp = self.dataOut.data_output[1] |
|
109 | 106 | |
|
110 | 107 | # Vertical |
|
111 | 108 | value_temp = numpy.transpose(self.dataOut.data_output[2]) |
|
112 | 109 | |
|
113 | 110 | htemp = yaxis |
|
114 | 111 | std = value_temp |
|
115 | 112 | for h in range(len(htemp)): |
|
116 | 113 | nvalues_valid = len(numpy.where(numpy.isfinite(value_temp[h]))[0]) |
|
117 | 114 | minvalid = npoints |
|
118 | 115 | |
|
119 | 116 | #only if valid values greater than the minimum required (10%) |
|
120 | 117 | if nvalues_valid > minvalid: |
|
121 | 118 | |
|
122 | 119 | if method == 0: |
|
123 | 120 | #SMOOTH |
|
124 | 121 | w = value_temp[h] - self.Smooth(input=value_temp[h], width=npoints, edge_truncate=1) |
|
125 | 122 | |
|
126 | 123 | |
|
127 | 124 | if method == 1: |
|
128 | 125 | #MEDIAN |
|
129 | 126 | w = value_temp[h] - self.Median(input=value_temp[h], width = npoints) |
|
130 | 127 | |
|
131 | 128 | dw = numpy.std(w[numpy.where(numpy.isfinite(w))],ddof = 1) |
|
132 | 129 | |
|
133 | 130 | threshold = dw*factor |
|
134 | 131 | value_temp[numpy.where(w > threshold),h] = numpy.nan |
|
135 | 132 | value_temp[numpy.where(w < -1*threshold),h] = numpy.nan |
|
136 | 133 | |
|
137 | 134 | |
|
138 | 135 | #At the end |
|
139 | 136 | if svalue2 == 'inHeight': |
|
140 | 137 | value_temp = numpy.transpose(value_temp) |
|
141 | 138 | output_array[:,m] = value_temp |
|
142 | 139 | |
|
143 | 140 | if svalue == 'zonal': |
|
144 | 141 | self.dataOut.data_output[0] = output_array |
|
145 | 142 | |
|
146 | 143 | elif svalue == 'meridional': |
|
147 | 144 | self.dataOut.data_output[1] = output_array |
|
148 | 145 | |
|
149 | 146 | elif svalue == 'vertical': |
|
150 | 147 | self.dataOut.data_output[2] = output_array |
|
151 | 148 | |
|
152 | 149 | return self.dataOut.data_output |
|
153 | 150 | |
|
154 | 151 | |
|
155 | 152 | def Median(self,input,width): |
|
156 | 153 | ''' |
|
157 | 154 | Inputs: |
|
158 | 155 | input - Velocity array |
|
159 | 156 | width - Number of points for mask filter |
|
160 | 157 | |
|
161 | 158 | ''' |
|
162 | 159 | |
|
163 | 160 | if numpy.mod(width,2) == 1: |
|
164 | 161 | pc = int((width - 1) / 2) |
|
165 | 162 | cont = 0 |
|
166 | 163 | output = [] |
|
167 | 164 | |
|
168 | 165 | for i in range(len(input)): |
|
169 | 166 | if i >= pc and i < len(input) - pc: |
|
170 | 167 | new2 = input[i-pc:i+pc+1] |
|
171 | 168 | temp = numpy.where(numpy.isfinite(new2)) |
|
172 | 169 | new = new2[temp] |
|
173 | 170 | value = numpy.median(new) |
|
174 | 171 | output.append(value) |
|
175 | 172 | |
|
176 | 173 | output = numpy.array(output) |
|
177 | 174 | output = numpy.hstack((input[0:pc],output)) |
|
178 | 175 | output = numpy.hstack((output,input[-pc:len(input)])) |
|
179 | 176 | |
|
180 | 177 | return output |
|
181 | 178 | |
|
182 | 179 | def Smooth(self,input,width,edge_truncate = None): |
|
183 | 180 | ''' |
|
184 | 181 | Inputs: |
|
185 | 182 | input - Velocity array |
|
186 | 183 | width - Number of points for mask filter |
|
187 | 184 | edge_truncate - 1 for truncate the convolution product else |
|
188 | 185 | |
|
189 | 186 | ''' |
|
190 | 187 | |
|
191 | 188 | if numpy.mod(width,2) == 0: |
|
192 | 189 | real_width = width + 1 |
|
193 | 190 | nzeros = width / 2 |
|
194 | 191 | else: |
|
195 | 192 | real_width = width |
|
196 | 193 | nzeros = (width - 1) / 2 |
|
197 | 194 | |
|
198 | 195 | half_width = int(real_width)/2 |
|
199 | 196 | length = len(input) |
|
200 | 197 | |
|
201 | 198 | gate = numpy.ones(real_width,dtype='float') |
|
202 | 199 | norm_of_gate = numpy.sum(gate) |
|
203 | 200 | |
|
204 | 201 | nan_process = 0 |
|
205 | 202 | nan_id = numpy.where(numpy.isnan(input)) |
|
206 | 203 | if len(nan_id[0]) > 0: |
|
207 | 204 | nan_process = 1 |
|
208 | 205 | pb = numpy.zeros(len(input)) |
|
209 | 206 | pb[nan_id] = 1. |
|
210 | 207 | input[nan_id] = 0. |
|
211 | 208 | |
|
212 | 209 | if edge_truncate == True: |
|
213 | 210 | output = numpy.convolve(input/norm_of_gate,gate,mode='same') |
|
214 | 211 | elif edge_truncate == False or edge_truncate == None: |
|
215 | 212 | output = numpy.convolve(input/norm_of_gate,gate,mode='valid') |
|
216 | 213 | output = numpy.hstack((input[0:half_width],output)) |
|
217 | 214 | output = numpy.hstack((output,input[len(input)-half_width:len(input)])) |
|
218 | 215 | |
|
219 | 216 | if nan_process: |
|
220 | 217 | pb = numpy.convolve(pb/norm_of_gate,gate,mode='valid') |
|
221 | 218 | pb = numpy.hstack((numpy.zeros(half_width),pb)) |
|
222 | 219 | pb = numpy.hstack((pb,numpy.zeros(half_width))) |
|
223 | 220 | output[numpy.where(pb > 0.9999)] = numpy.nan |
|
224 | 221 | input[nan_id] = numpy.nan |
|
225 | 222 | return output |
|
226 | 223 | |
|
227 | 224 | def Average(self,aver=0,nhaver=1): |
|
228 | 225 | ''' |
|
229 | 226 | Inputs: |
|
230 | 227 | aver - Indicates the time period over which is averaged or consensus data |
|
231 | 228 | nhaver - Indicates the decimation factor in heights |
|
232 | 229 | |
|
233 | 230 | ''' |
|
234 | 231 | nhpoints = 48 |
|
235 | 232 | |
|
236 | 233 | lat_piura = -5.17 |
|
237 | 234 | lat_huancayo = -12.04 |
|
238 | 235 | lat_porcuya = -5.8 |
|
239 | 236 | |
|
240 | 237 | if '%2.2f'%self.dataOut.lat == '%2.2f'%lat_piura: |
|
241 | 238 | hcm = 3. |
|
242 | 239 | if self.dataOut.year == 2003 : |
|
243 | 240 | if self.dataOut.doy >= 25 and self.dataOut.doy < 64: |
|
244 | 241 | nhpoints = 12 |
|
245 | 242 | |
|
246 | 243 | elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_huancayo: |
|
247 | 244 | hcm = 3. |
|
248 | 245 | if self.dataOut.year == 2003 : |
|
249 | 246 | if self.dataOut.doy >= 25 and self.dataOut.doy < 64: |
|
250 | 247 | nhpoints = 12 |
|
251 | 248 | |
|
252 | 249 | |
|
253 | 250 | elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_porcuya: |
|
254 | 251 | hcm = 5.#2 |
|
255 | 252 | |
|
256 | 253 | pdata = 0.2 |
|
257 | 254 | taver = [1,2,3,4,6,8,12,24] |
|
258 | 255 | t0 = 0 |
|
259 | 256 | tf = 24 |
|
260 | 257 | ntime =(tf-t0)/taver[aver] |
|
261 | 258 | ti = numpy.arange(ntime) |
|
262 | 259 | tf = numpy.arange(ntime) + taver[aver] |
|
263 | 260 | |
|
264 | 261 | |
|
265 | 262 | old_height = self.dataOut.heightList |
|
266 | 263 | |
|
267 | 264 | if nhaver > 1: |
|
268 | 265 | num_hei = len(self.dataOut.heightList)/nhaver/self.dataOut.nmodes |
|
269 | 266 | deltha = 0.05*nhaver |
|
270 | 267 | minhvalid = pdata*nhaver |
|
271 | 268 | for im in range(self.dataOut.nmodes): |
|
272 | 269 | new_height = numpy.arange(num_hei)*deltha + self.dataOut.height[im,0] + deltha/2. |
|
273 | 270 | |
|
274 | 271 | |
|
275 | 272 | data_fHeigths_List = [] |
|
276 | 273 | data_fZonal_List = [] |
|
277 | 274 | data_fMeridional_List = [] |
|
278 | 275 | data_fVertical_List = [] |
|
279 | 276 | startDTList = [] |
|
280 | 277 | |
|
281 | 278 | |
|
282 | 279 | for i in range(ntime): |
|
283 | 280 | height = old_height |
|
284 | 281 | |
|
285 | 282 | start = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(ti[i])) - datetime.timedelta(hours = 5) |
|
286 | 283 | stop = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(tf[i])) - datetime.timedelta(hours = 5) |
|
287 | 284 | |
|
288 | 285 | |
|
289 | 286 | limit_sec1 = time.mktime(start.timetuple()) |
|
290 | 287 | limit_sec2 = time.mktime(stop.timetuple()) |
|
291 | 288 | |
|
292 | 289 | t1 = numpy.where(self.f_timesec >= limit_sec1) |
|
293 | 290 | t2 = numpy.where(self.f_timesec < limit_sec2) |
|
294 | 291 | time_select = [] |
|
295 | 292 | for val_sec in t1[0]: |
|
296 | 293 | if val_sec in t2[0]: |
|
297 | 294 | time_select.append(val_sec) |
|
298 | 295 | |
|
299 | 296 | |
|
300 | 297 | time_select = numpy.array(time_select,dtype = 'int') |
|
301 | 298 | minvalid = numpy.ceil(pdata*nhpoints) |
|
302 | 299 | |
|
303 | 300 | zon_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
304 | 301 | mer_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
305 | 302 | ver_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
306 | 303 | |
|
307 | 304 | if nhaver > 1: |
|
308 | 305 | new_zon_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
309 | 306 | new_mer_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
310 | 307 | new_ver_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan |
|
311 | 308 | |
|
312 | 309 | if len(time_select) > minvalid: |
|
313 | 310 | time_average = self.f_timesec[time_select] |
|
314 | 311 | |
|
315 | 312 | for im in range(self.dataOut.nmodes): |
|
316 | 313 | |
|
317 | 314 | for ih in range(self.dataOut.nranges): |
|
318 | 315 | if numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) >= minvalid: |
|
319 | 316 | zon_aver[ih,im] = numpy.nansum(self.f_zon[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) |
|
320 | 317 | |
|
321 | 318 | if numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) >= minvalid: |
|
322 | 319 | mer_aver[ih,im] = numpy.nansum(self.f_mer[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) |
|
323 | 320 | |
|
324 | 321 | if numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) >= minvalid: |
|
325 | 322 | ver_aver[ih,im] = numpy.nansum(self.f_ver[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) |
|
326 | 323 | |
|
327 | 324 | if nhaver > 1: |
|
328 | 325 | for ih in range(num_hei): |
|
329 | 326 | hvalid = numpy.arange(nhaver) + nhaver*ih |
|
330 | 327 | |
|
331 | 328 | if numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) >= minvalid: |
|
332 | 329 | new_zon_aver[ih,im] = numpy.nansum(zon_aver[hvalid,im]) / numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) |
|
333 | 330 | |
|
334 | 331 | if numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) >= minvalid: |
|
335 | 332 | new_mer_aver[ih,im] = numpy.nansum(mer_aver[hvalid,im]) / numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) |
|
336 | 333 | |
|
337 | 334 | if numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) >= minvalid: |
|
338 | 335 | new_ver_aver[ih,im] = numpy.nansum(ver_aver[hvalid,im]) / numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) |
|
339 | 336 | if nhaver > 1: |
|
340 | 337 | zon_aver = new_zon_aver |
|
341 | 338 | mer_aver = new_mer_aver |
|
342 | 339 | ver_aver = new_ver_aver |
|
343 | 340 | height = new_height |
|
344 | 341 | |
|
345 | 342 | |
|
346 | 343 | tstart = time_average[0] |
|
347 | 344 | tend = time_average[-1] |
|
348 | 345 | startTime = time.gmtime(tstart) |
|
349 | 346 | |
|
350 | 347 | year = startTime.tm_year |
|
351 | 348 | month = startTime.tm_mon |
|
352 | 349 | day = startTime.tm_mday |
|
353 | 350 | hour = startTime.tm_hour |
|
354 | 351 | minute = startTime.tm_min |
|
355 | 352 | second = startTime.tm_sec |
|
356 | 353 | |
|
357 | 354 | startDTList.append(datetime.datetime(year,month,day,hour,minute,second)) |
|
358 | 355 | |
|
359 | 356 | |
|
360 | 357 | o_height = numpy.array([]) |
|
361 | 358 | o_zon_aver = numpy.array([]) |
|
362 | 359 | o_mer_aver = numpy.array([]) |
|
363 | 360 | o_ver_aver = numpy.array([]) |
|
364 | 361 | if self.dataOut.nmodes > 1: |
|
365 | 362 | for im in range(self.dataOut.nmodes): |
|
366 | 363 | |
|
367 | 364 | if im == 0: |
|
368 | 365 | h_select = numpy.where(numpy.bitwise_and(height[0,:] >=0,height[0,:] <= hcm,numpy.isfinite(height[0,:]))) |
|
369 | 366 | else: |
|
370 | 367 | h_select = numpy.where(numpy.bitwise_and(height[1,:] > hcm,height[1,:] < 20,numpy.isfinite(height[1,:]))) |
|
371 | 368 | |
|
372 | 369 | |
|
373 | 370 | ht = h_select[0] |
|
374 | 371 | |
|
375 | 372 | o_height = numpy.hstack((o_height,height[im,ht])) |
|
376 | 373 | o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im])) |
|
377 | 374 | o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im])) |
|
378 | 375 | o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im])) |
|
379 | 376 | |
|
380 | 377 | data_fHeigths_List.append(o_height) |
|
381 | 378 | data_fZonal_List.append(o_zon_aver) |
|
382 | 379 | data_fMeridional_List.append(o_mer_aver) |
|
383 | 380 | data_fVertical_List.append(o_ver_aver) |
|
384 | 381 | |
|
385 | 382 | |
|
386 | 383 | else: |
|
387 | 384 | h_select = numpy.where(numpy.bitwise_and(height[0,:] <= hcm,numpy.isfinite(height[0,:]))) |
|
388 | 385 | ht = h_select[0] |
|
389 | 386 | o_height = numpy.hstack((o_height,height[im,ht])) |
|
390 | 387 | o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im])) |
|
391 | 388 | o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im])) |
|
392 | 389 | o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im])) |
|
393 | 390 | |
|
394 | 391 | data_fHeigths_List.append(o_height) |
|
395 | 392 | data_fZonal_List.append(o_zon_aver) |
|
396 | 393 | data_fMeridional_List.append(o_mer_aver) |
|
397 | 394 | data_fVertical_List.append(o_ver_aver) |
|
398 | 395 | |
|
399 | 396 | |
|
400 | 397 | return startDTList, data_fHeigths_List, data_fZonal_List, data_fMeridional_List, data_fVertical_List |
|
401 | 398 | |
|
402 | 399 |
General Comments 0
You need to be logged in to leave comments.
Login now