##// END OF EJS Templates
update fix axes, test de prueba de canales
jespinoza -
r1476:d08bdce68e00
parent child
Show More
@@ -0,0 +1,362
1 #!python
2 '''
3 '''
4
5 import os, sys
6 import datetime
7 import time
8
9 #path = os.path.dirname(os.getcwd())
10 #path = os.path.dirname(path)
11 #sys.path.insert(0, path)
12
13 from schainpy.controller import Project
14
15 desc = "USRP_test"
16 filename = "USRP_processing.xml"
17 controllerObj = Project()
18 controllerObj.setup(id = '191', name='Test_USRP', description=desc)
19
20 ############## USED TO PLOT IQ VOLTAGE, POWER AND SPECTRA #############
21
22 #######################################################################
23 ######PATH DE LECTURA, ESCRITURA, GRAFICOS Y ENVIO WEB#################
24 #######################################################################
25 #path = '/media/data/data/vientos/57.2063km/echoes/NCO_Woodman'
26 #path = '/DATA_RM/TEST_INTEGRACION'
27 #path = '/DATA_RM/PRUEBA_USRP_RP'
28 #path = '/DATA_RM/PRUEBA_USRP_RP'
29
30 path = '/DATA_RM/TEST_2M'
31 path = '/DATA_RM/TEST_2M_UD'
32 path = '/DATA_RM/2MHZ17022022'
33 path = '/DATA_RM/10MHZTEST/'
34 path = '/DATA_RM/10MHZDRONE/'
35
36
37 path= '/home/soporte/TEST_500mVPP'
38 path= '/home/soporte/TEST_1VPP+500mVDC'
39 path = '/home/soporte/TEST_500mVPP+500mVDC'
40 path = '/home/soporte/TEST_1.5VPP'
41 path = '/home/soporte/TEST_2VPP'
42 path= '/home/soporte/TEST_1VPP'
43 path = '/home/soporte/Documents/HUANCAYO/TEST_HYO_PM@2022-05-14T11-28-19/rawdata'
44
45 #HYO_PM@2022-05-28T00-00-17
46 path = '/DATA_RM/DATA/HYO_PM@2022-05-28T00-00-17/rawdata'
47
48 #figpath = '/home/soporte/Pictures/TEST_RP_0001'
49 #figpath = '/home/soporte/Pictures/TEST_RP_6000'
50 figpath = '/home/soporte/Pictures/USRP_TEST_2M'
51 figpath = '/home/soporte/Pictures/USRP_TEST_2M_UD'
52 figpath = '/home/soporte/Pictures/10MHZDRONE'
53 figpath = '/home/soporte/Pictures/500mVPP'
54 figpath = '/home/soporte/Pictures/1VPP+500mVDC'
55 figpath = '/home/soporte/Pictures/TEST_500mVPP+500mVDC'
56 figpath = '/home/soporte/Pictures/TEST_1.5VPP'
57 figpath = '/home/soporte/Pictures/TEST_2VPP'
58 figpath = '/home/soporte/Pictures/TEST_1VPP'
59
60
61
62
63 #remotefolder = "/home/wmaster/graficos"
64 #######################################################################
65 ################# RANGO DE PLOTEO######################################
66 #######################################################################
67 dBmin = '-60'#'-20'
68 dBmax = '-5'#'-85'
69 xmin = '0'
70 xmax ='24'
71 ymin = '0'
72 ymax = '10'
73 #######################################################################
74 ########################FECHA##########################################
75 #######################################################################
76 str = datetime.date.today()
77 today = str.strftime("%Y/%m/%d")
78 str2 = str - datetime.timedelta(days=1)
79 yesterday = str2.strftime("%Y/%m/%d")
80 #######################################################################
81 ######################## UNIDAD DE LECTURA#############################
82 #######################################################################
83 readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader',
84 path=path,
85 startDate="2022/05/28",#today,
86 endDate="2022/05/28",#today,
87 startTime='00:00:00',# inicio libre
88 #startTime='00:00:00',
89 endTime='23:59:59',
90 delay=0,
91 #set=0,
92 online=0,
93 walk=1,
94 ippKm = 60)
95
96 opObj11 = readUnitConfObj.addOperation(name='printInfo')
97 #opObj11 = readUnitConfObj.addOperation(name='printNumberOfBlock')
98 #######################################################################
99 ################ OPERACIONES DOMINIO DEL TIEMPO########################
100 #######################################################################
101
102 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
103
104 op3 = procUnitConfObjA.addOperation(name='ProfileSelector', optype='other')
105 op3.addParameter(name='profileRangeList', value='1,123')
106
107
108 code=[[1]]
109
110 opObj11 = procUnitConfObjA.addOperation(name='Decoder', optype='other')
111 opObj11.addParameter(name='code', value=code)
112 opObj11.addParameter(name='nCode', value='1', format='int')
113 opObj11.addParameter(name='nBaud', value='1', format='int')
114
115
116 '''
117 op3 = procUnitConfObjA.addOperation(name='ProfileSelector', optype='other')
118 op3.addParameter(name='profileRangeList', value='122,249')
119 code8=[[1,1,1,0,1,1,0,1],[1,1,1,0,0,0,1,0]]
120
121 opObj11 = procUnitConfObjA.addOperation(name='Decoder', optype='other')
122 opObj11.addParameter(name='code', value=code8)
123 opObj11.addParameter(name='nCode', value='2', format='int')
124 opObj11.addParameter(name='nBaud', value='8', format='int')
125 '''
126 op = procUnitConfObjA.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario
127 op.addParameter(name='n', value=2, format='int')
128
129
130 '''
131
132 # OJO SCOPE
133 opObj10 = procUnitConfObjA.addOperation(name='ScopePlot', optype='external')
134 opObj10.addParameter(name='id', value='10', format='int')
135 opObj10.addParameter(name='xmin', value='0', format='int')
136 opObj10.addParameter(name='xmax', value='60', format='int')
137 opObj10.addParameter(name='type', value='iq')
138 #opObj10.addParameter(name='ymin', value='-0.20000', format='int')
139 #opObj10.addParameter(name='ymax', value='0.20000', format='int')
140 opObj10.addParameter(name='save', value=figpath, format='str')
141 opObj10.addParameter(name='save_period', value=1, format='int')
142 '''
143 '''
144 opObj11 = procUnitConfObjA.addOperation(name='selectHeights')
145 opObj11.addParameter(name='minIndex', value='1', format='int')
146 # opObj11.addParameter(name='maxIndex', value='10000', format='int')
147 opObj11.addParameter(name='maxIndex', value='200', format='int')
148 '''
149 #
150 # codigo64='1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,0,'+\
151 # '1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1'
152
153 #opObj11 = procUnitConfObjA.addOperation(name='setRadarFrequency')
154 #opObj11.addParameter(name='frequency', value='49920000')
155
156 '''
157 opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other')
158 opObj11.addParameter(name='n', value='625', format='int')#10
159 opObj11.addParameter(name='removeDC', value=1, format='int')
160 '''
161
162 # Ploteo TEST
163 '''
164 opObj11 = procUnitConfObjA.addOperation(name='PulsepairPowerPlot', optype='other')
165 opObj11 = procUnitConfObjA.addOperation(name='PulsepairSignalPlot', optype='other')
166 opObj11 = procUnitConfObjA.addOperation(name='PulsepairVelocityPlot', optype='other')
167 #opObj11.addParameter(name='xmax', value=8)
168 opObj11 = procUnitConfObjA.addOperation(name='PulsepairSpecwidthPlot', optype='other')
169 '''
170 # OJO SCOPE
171 #opObj10 = procUnitConfObjA.addOperation(name='ScopePlot', optype='external')
172 #opObj10.addParameter(name='id', value='10', format='int')
173 ##opObj10.addParameter(name='xmin', value='0', format='int')
174 ##opObj10.addParameter(name='xmax', value='50', format='int')
175 #opObj10.addParameter(name='type', value='iq')
176 ##opObj10.addParameter(name='ymin', value='-5000', format='int')
177 ##opObj10.addParameter(name='ymax', value='8500', format='int')
178 #opObj11.addParameter(name='save', value=figpath, format='str')
179 #opObj11.addParameter(name='save_period', value=10, format='int')
180
181 #opObj10 = procUnitConfObjA.addOperation(name='setH0')
182 #opObj10.addParameter(name='h0', value='-5000', format='float')
183
184 #opObj11 = procUnitConfObjA.addOperation(name='filterByHeights')
185 #opObj11.addParameter(name='window', value='1', format='int')
186
187 #codigo='1,1,-1,1,1,-1,1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1'
188 #opObj11 = procUnitConfObjSousy.addOperation(name='Decoder', optype='other')
189 #opObj11.addParameter(name='code', value=codigo, format='floatlist')
190 #opObj11.addParameter(name='nCode', value='1', format='int')
191 #opObj11.addParameter(name='nBaud', value='28', format='int')
192
193 #opObj11 = procUnitConfObjA.addOperation(name='CohInt', optype='other')
194 #opObj11.addParameter(name='n', value='100', format='int')
195
196 #######################################################################
197 ########## OPERACIONES ParametersProc########################
198 #######################################################################
199 ###procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId())
200 '''
201
202 opObj11 = procUnitConfObjA.addOperation(name='PedestalInformation')
203 opObj11.addParameter(name='path_ped', value=path_ped)
204 opObj11.addParameter(name='path_adq', value=path_adq)
205 opObj11.addParameter(name='t_Interval_p', value='0.01', format='float')
206 opObj11.addParameter(name='n_Muestras_p', value='100', format='float')
207 opObj11.addParameter(name='blocksPerfile', value='100', format='int')
208 opObj11.addParameter(name='f_a_p', value='25', format='int')
209 opObj11.addParameter(name='online', value='0', format='int')
210
211 opObj11 = procUnitConfObjA.addOperation(name='Block360')
212 opObj11.addParameter(name='n', value='40', format='int')
213
214 opObj11= procUnitConfObjA.addOperation(name='WeatherPlot',optype='other')
215 opObj11.addParameter(name='save', value=figpath)
216 opObj11.addParameter(name='save_period', value=1)
217
218 8
219 '''
220
221
222 '''
223 opObj11 = procUnitConfObjA.addOperation(name='CohInt', optype='other')
224 opObj11.addParameter(name='n', value='250', format='int')
225 '''
226 #######################################################################
227 ########## OPERACIONES DOMINIO DE LA FRECUENCIA########################
228 #######################################################################
229 '''
230 procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId())
231 procUnitConfObjB.addParameter(name='nFFTPoints', value='64', format='int')
232 procUnitConfObjB.addParameter(name='nProfiles', value='64', format='int')
233 '''
234
235 procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId())
236 procUnitConfObjB.addParameter(name='nFFTPoints', value='61', format='int')
237 procUnitConfObjB.addParameter(name='nProfiles', value='61', format='int')
238
239 '''
240 procUnitConfObjC = controllerObj.addProcUnit(datatype='SpectraHeisProc', inputId=procUnitConfObjA.getId())
241 #procUnitConfObjB.addParameter(name='nFFTPoints', value='64', format='int')
242 #procUnitConfObjB.addParameter(name='nProfiles', value='64', format='int')
243 opObj11 = procUnitConfObjC.addOperation(name='IncohInt4SpectraHeis', optype='other')
244 #opObj11.addParameter(name='timeInterval', value='4', format='int')
245 opObj11.addParameter(name='n', value='100', format='int')
246
247 #procUnitConfObjB.addParameter(name='pairsList', value='(0,0),(1,1),(0,1)', format='pairsList')
248
249 #opObj13 = procUnitConfObjB.addOperation(name='removeDC')
250 #opObj13.addParameter(name='mode', value='2', format='int')
251
252 #opObj11 = procUnitConfObjB.addOperation(name='IncohInt', optype='other')
253 #opObj11.addParameter(name='n', value='8', format='float')
254 #######################################################################
255 ########## PLOTEO DOMINIO DE LA FRECUENCIA#############################
256 #######################################################################
257 #----
258 '''
259 '''
260 opObj11 = procUnitConfObjC.addOperation(name='SpectraHeisPlot')
261 opObj11.addParameter(name='id', value='10', format='int')
262 opObj11.addParameter(name='wintitle', value='Spectra_Alturas', format='str')
263 #opObj11.addParameter(name='xmin', value=-100000, format='float')
264 #opObj11.addParameter(name='xmax', value=100000, format='float')
265 opObj11.addParameter(name='oneFigure', value=False,format='bool')
266 #opObj11.addParameter(name='zmin', value=-10, format='int')
267 #opObj11.addParameter(name='zmax', value=40, format='int')
268 opObj11.addParameter(name='ymin', value=10, format='int')
269 opObj11.addParameter(name='ymax', value=55, format='int')
270 opObj11.addParameter(name='grid', value=True, format
271 [Reading] 2022-05-23 12:27:32.732775: 21333 samples <> 0.010667 sec
272 ='bool')
273 #opObj11.addParameter(name='showprofile', value='1', format='int')
274 opObj11.addParameter(name='save', value=figpath, format='str')
275 #opObj11.addParameter(name='save_period', value=10, format='int')
276 '''
277 '''
278 opObj11 = procUnitConfObjC.addOperation(name='RTIHeisPlot')
279 opObj11.addParameter(name='id', value='10', format='int')
280 opObj11.addParameter(name='wintitle', value='RTI_Alturas', format='str')
281 opObj11.addParameter(name='xmin', value=11.0, format='float')
282 opObj11.addParameter(name='xmax', value=18.0, format='float')
283 opObj11.addParameter(name='zmin', value=10, format='int')
284 opObj11.addParameter(name='zmax', value=30, format='int')
285 opObj11.addParameter(name='ymin', value=5, format='int')
286 opObj11.addParameter(name='ymax', value=28, format='int')
287 opObj11.addParameter(name='showprofile', value='1', format='int')
288 opObj11.addParameter(name='save', value=figpath, format='str')
289 opObj11.addParameter(name='save_period', value=10, format='int')
290 '''
291
292 #SpectraPlot
293
294 opObj11 = procUnitConfObjB.addOperation(name='SpectraPlot', optype='external')
295 opObj11.addParameter(name='id', value='1', format='int')
296 opObj11.addParameter(name='wintitle', value='Spectra', format='str')
297 #opObj11.addParameter(name='xmin', value=-0.01, format='float')
298 #opObj11.addParameter(name='xmax', value=0.01, format='float')
299 opObj11.addParameter(name='zmin', value=dBmin, format='int')
300 opObj11.addParameter(name='zmax', value=dBmax, format='int')
301 opObj11.addParameter(name='ymin', value=ymin, format='int')
302 opObj11.addParameter(name='ymax', value=ymax, format='int')
303 opObj11.addParameter(name='showprofile', value='1', format='int')
304 opObj11.addParameter(name='save', value=figpath, format='str')
305 opObj11.addParameter(name='save_period', value=10, format='int')
306
307
308 #RTIPLOT
309 '''
310 opObj11 = procUnitConfObjB.addOperation(name='RTIPlot', optype='external')
311 opObj11.addParameter(name='id', value='2', format='int')
312 opObj11.addParameter(name='wintitle', value='RTIPlot', format='str')
313 opObj11.addParameter(name='zmin', value=dBmin, format='int')
314 opObj11.addParameter(name='zmax', value=dBmax, format='int')
315 #opObj11.addParameter(name='ymin', value=ymin, format='int')
316 #opObj11.addParameter(name='ymax', value=ymax, format='int')
317 #opObj11.addParameter(name='xmin', value=15, format='int')
318 #opObj11.addParameter(name='xmax', value=16, format='int')
319 opObj11.addParameter(name='zmin', value=dBmin, format='int')
320 opObj11.addParameter(name='zmax', value=dBmax, format='int')
321
322 opObj11.addParameter(name='showprofile', value='1', format='int')
323 opObj11.addParameter(name='save', value=figpath, format='str')
324 opObj11.addParameter(name='save_period', value=10, format='int')
325 '''
326 '''
327 # opObj11 = procUnitConfObjB.addOperation(name='CrossSpectraPlot', optype='other')
328 # opObj11.addParameter(name='id', value='3', format='int')
329 # opObj11.addParameter(name='wintitle', value='CrossSpectraPlot', format='str')
330 # opObj11.addParameter(name='ymin', value=ymin, format='int')
331 # opObj11.addParameter(name='ymax', value=ymax, format='int')
332 # opObj11.addParameter(name='phase_cmap', value='jet', format='str')
333 # opObj11.addParameter(name='zmin', value=dBmin, format='int')
334 # opObj11.addParameter(name='zmax', value=dBmax, format='int')
335 # opObj11.addParameter(name='figpath', value=figures_path, format='str')
336 # opObj11.addParameter(name='save', value=0, format='bool')
337 # opObj11.addParameter(name='pairsList', value='(0,1)', format='pairsList')
338 # #
339 # opObj11 = procUnitConfObjB.addOperation(name='CoherenceMap', optype='other')
340 # opObj11.addParameter(name='id', value='4', format='int')
341 # opObj11.addParameter(name='wintitle', value='Coherence', format='str')
342 # opObj11.addParameter(name='phase_cmap', value='jet', format='str')
343 # opObj11.addParameter(name='xmin', value=xmin, format='float')
344 # opObj11.addParameter(name='xmax', value=xmax, format='float')
345 # opObj11.addParameter(name='figpath', value=figures_path, format='str')
346 # opObj11.addParameter(name='save', value=0, format='bool')
347 # opObj11.addParameter(name='pairsList', value='(0,1)', format='pairsList')
348 #
349 '''
350 '''
351 #######################################################################
352 ############### UNIDAD DE ESCRITURA ###################################
353 #######################################################################
354 #opObj11 = procUnitConfObjB.addOperation(name='SpectraWriter', optype='other')
355 #opObj11.addParameter(name='path', value=wr_path)
356 #opObj11.addParameter(name='blocksPerFile', value='50', format='int')
357 print ("Escribiendo el archivo XML")
358 print ("Leyendo el archivo XML")
359 '''
360
361
362 controllerObj.start()
@@ -1,716 +1,716
1 # Copyright (c) 2012-2020 Jicamarca Radio Observatory
1 # Copyright (c) 2012-2020 Jicamarca Radio Observatory
2 # All rights reserved.
2 # All rights reserved.
3 #
3 #
4 # Distributed under the terms of the BSD 3-clause license.
4 # Distributed under the terms of the BSD 3-clause license.
5 """Base class to create plot operations
5 """Base class to create plot operations
6
6
7 """
7 """
8
8
9 import os
9 import os
10 import sys
10 import sys
11 import zmq
11 import zmq
12 import time
12 import time
13 import numpy
13 import numpy
14 import datetime
14 import datetime
15 from collections import deque
15 from collections import deque
16 from functools import wraps
16 from functools import wraps
17 from threading import Thread
17 from threading import Thread
18 import matplotlib
18 import matplotlib
19
19
20 if 'BACKEND' in os.environ:
20 if 'BACKEND' in os.environ:
21 matplotlib.use(os.environ['BACKEND'])
21 matplotlib.use(os.environ['BACKEND'])
22 elif 'linux' in sys.platform:
22 elif 'linux' in sys.platform:
23 matplotlib.use("TkAgg")
23 matplotlib.use("TkAgg")
24 elif 'darwin' in sys.platform:
24 elif 'darwin' in sys.platform:
25 matplotlib.use('MacOSX')
25 matplotlib.use('MacOSX')
26 else:
26 else:
27 from schainpy.utils import log
27 from schainpy.utils import log
28 log.warning('Using default Backend="Agg"', 'INFO')
28 log.warning('Using default Backend="Agg"', 'INFO')
29 matplotlib.use('Agg')
29 matplotlib.use('Agg')
30
30
31 import matplotlib.pyplot as plt
31 import matplotlib.pyplot as plt
32 from matplotlib.patches import Polygon
32 from matplotlib.patches import Polygon
33 from mpl_toolkits.axes_grid1 import make_axes_locatable
33 from mpl_toolkits.axes_grid1 import make_axes_locatable
34 from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator
34 from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator
35
35
36 from schainpy.model.data.jrodata import PlotterData
36 from schainpy.model.data.jrodata import PlotterData
37 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
37 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
38 from schainpy.utils import log
38 from schainpy.utils import log
39
39
40 jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90]
40 jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90]
41 blu_values = matplotlib.pyplot.get_cmap(
41 blu_values = matplotlib.pyplot.get_cmap(
42 'seismic_r', 20)(numpy.arange(20))[10:15]
42 'seismic_r', 20)(numpy.arange(20))[10:15]
43 ncmap = matplotlib.colors.LinearSegmentedColormap.from_list(
43 ncmap = matplotlib.colors.LinearSegmentedColormap.from_list(
44 'jro', numpy.vstack((blu_values, jet_values)))
44 'jro', numpy.vstack((blu_values, jet_values)))
45 matplotlib.pyplot.register_cmap(cmap=ncmap)
45 matplotlib.pyplot.register_cmap(cmap=ncmap)
46
46
47 CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis',
47 CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis',
48 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')]
48 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')]
49
49
50 EARTH_RADIUS = 6.3710e3
50 EARTH_RADIUS = 6.3710e3
51
51
52 def ll2xy(lat1, lon1, lat2, lon2):
52 def ll2xy(lat1, lon1, lat2, lon2):
53
53
54 p = 0.017453292519943295
54 p = 0.017453292519943295
55 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
55 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
56 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
56 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
57 r = 12742 * numpy.arcsin(numpy.sqrt(a))
57 r = 12742 * numpy.arcsin(numpy.sqrt(a))
58 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
58 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
59 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
59 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
60 theta = -theta + numpy.pi/2
60 theta = -theta + numpy.pi/2
61 return r*numpy.cos(theta), r*numpy.sin(theta)
61 return r*numpy.cos(theta), r*numpy.sin(theta)
62
62
63
63
64 def km2deg(km):
64 def km2deg(km):
65 '''
65 '''
66 Convert distance in km to degrees
66 Convert distance in km to degrees
67 '''
67 '''
68
68
69 return numpy.rad2deg(km/EARTH_RADIUS)
69 return numpy.rad2deg(km/EARTH_RADIUS)
70
70
71
71
72 def figpause(interval):
72 def figpause(interval):
73 backend = plt.rcParams['backend']
73 backend = plt.rcParams['backend']
74 if backend in matplotlib.rcsetup.interactive_bk:
74 if backend in matplotlib.rcsetup.interactive_bk:
75 figManager = matplotlib._pylab_helpers.Gcf.get_active()
75 figManager = matplotlib._pylab_helpers.Gcf.get_active()
76 if figManager is not None:
76 if figManager is not None:
77 canvas = figManager.canvas
77 canvas = figManager.canvas
78 if canvas.figure.stale:
78 if canvas.figure.stale:
79 canvas.draw()
79 canvas.draw()
80 try:
80 try:
81 canvas.start_event_loop(interval)
81 canvas.start_event_loop(interval)
82 except:
82 except:
83 pass
83 pass
84 return
84 return
85
85
86 def popup(message):
86 def popup(message):
87 '''
87 '''
88 '''
88 '''
89
89
90 fig = plt.figure(figsize=(12, 8), facecolor='r')
90 fig = plt.figure(figsize=(12, 8), facecolor='r')
91 text = '\n'.join([s.strip() for s in message.split(':')])
91 text = '\n'.join([s.strip() for s in message.split(':')])
92 fig.text(0.01, 0.5, text, ha='left', va='center',
92 fig.text(0.01, 0.5, text, ha='left', va='center',
93 size='20', weight='heavy', color='w')
93 size='20', weight='heavy', color='w')
94 fig.show()
94 fig.show()
95 figpause(1000)
95 figpause(1000)
96
96
97
97
98 class Throttle(object):
98 class Throttle(object):
99 '''
99 '''
100 Decorator that prevents a function from being called more than once every
100 Decorator that prevents a function from being called more than once every
101 time period.
101 time period.
102 To create a function that cannot be called more than once a minute, but
102 To create a function that cannot be called more than once a minute, but
103 will sleep until it can be called:
103 will sleep until it can be called:
104 @Throttle(minutes=1)
104 @Throttle(minutes=1)
105 def foo():
105 def foo():
106 pass
106 pass
107
107
108 for i in range(10):
108 for i in range(10):
109 foo()
109 foo()
110 print "This function has run %s times." % i
110 print "This function has run %s times." % i
111 '''
111 '''
112
112
113 def __init__(self, seconds=0, minutes=0, hours=0):
113 def __init__(self, seconds=0, minutes=0, hours=0):
114 self.throttle_period = datetime.timedelta(
114 self.throttle_period = datetime.timedelta(
115 seconds=seconds, minutes=minutes, hours=hours
115 seconds=seconds, minutes=minutes, hours=hours
116 )
116 )
117
117
118 self.time_of_last_call = datetime.datetime.min
118 self.time_of_last_call = datetime.datetime.min
119
119
120 def __call__(self, fn):
120 def __call__(self, fn):
121 @wraps(fn)
121 @wraps(fn)
122 def wrapper(*args, **kwargs):
122 def wrapper(*args, **kwargs):
123 coerce = kwargs.pop('coerce', None)
123 coerce = kwargs.pop('coerce', None)
124 if coerce:
124 if coerce:
125 self.time_of_last_call = datetime.datetime.now()
125 self.time_of_last_call = datetime.datetime.now()
126 return fn(*args, **kwargs)
126 return fn(*args, **kwargs)
127 else:
127 else:
128 now = datetime.datetime.now()
128 now = datetime.datetime.now()
129 time_since_last_call = now - self.time_of_last_call
129 time_since_last_call = now - self.time_of_last_call
130 time_left = self.throttle_period - time_since_last_call
130 time_left = self.throttle_period - time_since_last_call
131
131
132 if time_left > datetime.timedelta(seconds=0):
132 if time_left > datetime.timedelta(seconds=0):
133 return
133 return
134
134
135 self.time_of_last_call = datetime.datetime.now()
135 self.time_of_last_call = datetime.datetime.now()
136 return fn(*args, **kwargs)
136 return fn(*args, **kwargs)
137
137
138 return wrapper
138 return wrapper
139
139
140 def apply_throttle(value):
140 def apply_throttle(value):
141
141
142 @Throttle(seconds=value)
142 @Throttle(seconds=value)
143 def fnThrottled(fn):
143 def fnThrottled(fn):
144 fn()
144 fn()
145
145
146 return fnThrottled
146 return fnThrottled
147
147
148
148
149 @MPDecorator
149 @MPDecorator
150 class Plot(Operation):
150 class Plot(Operation):
151 """Base class for Schain plotting operations
151 """Base class for Schain plotting operations
152
152
153 This class should never be use directtly you must subclass a new operation,
153 This class should never be use directtly you must subclass a new operation,
154 children classes must be defined as follow:
154 children classes must be defined as follow:
155
155
156 ExamplePlot(Plot):
156 ExamplePlot(Plot):
157
157
158 CODE = 'code'
158 CODE = 'code'
159 colormap = 'jet'
159 colormap = 'jet'
160 plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer')
160 plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer')
161
161
162 def setup(self):
162 def setup(self):
163 pass
163 pass
164
164
165 def plot(self):
165 def plot(self):
166 pass
166 pass
167
167
168 """
168 """
169
169
170 CODE = 'Figure'
170 CODE = 'Figure'
171 colormap = 'jet'
171 colormap = 'jet'
172 bgcolor = 'white'
172 bgcolor = 'white'
173 buffering = True
173 buffering = True
174 __missing = 1E30
174 __missing = 1E30
175
175
176 __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title',
176 __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title',
177 'showprofile']
177 'showprofile']
178
178
179 def __init__(self):
179 def __init__(self):
180
180
181 Operation.__init__(self)
181 Operation.__init__(self)
182 self.isConfig = False
182 self.isConfig = False
183 self.isPlotConfig = False
183 self.isPlotConfig = False
184 self.save_time = 0
184 self.save_time = 0
185 self.sender_time = 0
185 self.sender_time = 0
186 self.data = None
186 self.data = None
187 self.firsttime = True
187 self.firsttime = True
188 self.sender_queue = deque(maxlen=10)
188 self.sender_queue = deque(maxlen=10)
189 self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2}
189 self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2}
190
190
191 def __fmtTime(self, x, pos):
191 def __fmtTime(self, x, pos):
192 '''
192 '''
193 '''
193 '''
194
194
195 return '{}'.format(self.getDateTime(x).strftime('%H:%M'))
195 return '{}'.format(self.getDateTime(x).strftime('%H:%M'))
196
196
197 def __setup(self, **kwargs):
197 def __setup(self, **kwargs):
198 '''
198 '''
199 Initialize variables
199 Initialize variables
200 '''
200 '''
201
201
202 self.figures = []
202 self.figures = []
203 self.axes = []
203 self.axes = []
204 self.cb_axes = []
204 self.cb_axes = []
205 self.localtime = kwargs.pop('localtime', True)
205 self.localtime = kwargs.pop('localtime', True)
206 self.show = kwargs.get('show', True)
206 self.show = kwargs.get('show', True)
207 self.save = kwargs.get('save', False)
207 self.save = kwargs.get('save', False)
208 self.save_period = kwargs.get('save_period', 0)
208 self.save_period = kwargs.get('save_period', 0)
209 self.colormap = kwargs.get('colormap', self.colormap)
209 self.colormap = kwargs.get('colormap', self.colormap)
210 self.colormap_coh = kwargs.get('colormap_coh', 'jet')
210 self.colormap_coh = kwargs.get('colormap_coh', 'jet')
211 self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r')
211 self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r')
212 self.colormaps = kwargs.get('colormaps', None)
212 self.colormaps = kwargs.get('colormaps', None)
213 self.bgcolor = kwargs.get('bgcolor', self.bgcolor)
213 self.bgcolor = kwargs.get('bgcolor', self.bgcolor)
214 self.showprofile = kwargs.get('showprofile', False)
214 self.showprofile = kwargs.get('showprofile', False)
215 self.title = kwargs.get('wintitle', self.CODE.upper())
215 self.title = kwargs.get('wintitle', self.CODE.upper())
216 self.cb_label = kwargs.get('cb_label', None)
216 self.cb_label = kwargs.get('cb_label', None)
217 self.cb_labels = kwargs.get('cb_labels', None)
217 self.cb_labels = kwargs.get('cb_labels', None)
218 self.labels = kwargs.get('labels', None)
218 self.labels = kwargs.get('labels', None)
219 self.xaxis = kwargs.get('xaxis', 'frequency')
219 self.xaxis = kwargs.get('xaxis', 'frequency')
220 self.zmin = kwargs.get('zmin', None)
220 self.zmin = kwargs.get('zmin', None)
221 self.zmax = kwargs.get('zmax', None)
221 self.zmax = kwargs.get('zmax', None)
222 self.zlimits = kwargs.get('zlimits', None)
222 self.zlimits = kwargs.get('zlimits', None)
223 self.xmin = kwargs.get('xmin', None)
223 self.xmin = kwargs.get('xmin', None)
224 self.xmax = kwargs.get('xmax', None)
224 self.xmax = kwargs.get('xmax', None)
225 self.xrange = kwargs.get('xrange', 12)
225 self.xrange = kwargs.get('xrange', 12)
226 self.xscale = kwargs.get('xscale', None)
226 self.xscale = kwargs.get('xscale', None)
227 self.ymin = kwargs.get('ymin', None)
227 self.ymin = kwargs.get('ymin', None)
228 self.ymax = kwargs.get('ymax', None)
228 self.ymax = kwargs.get('ymax', None)
229 self.yscale = kwargs.get('yscale', None)
229 self.yscale = kwargs.get('yscale', None)
230 self.xlabel = kwargs.get('xlabel', None)
230 self.xlabel = kwargs.get('xlabel', None)
231 self.attr_time = kwargs.get('attr_time', 'utctime')
231 self.attr_time = kwargs.get('attr_time', 'utctime')
232 self.attr_data = kwargs.get('attr_data', 'data_param')
232 self.attr_data = kwargs.get('attr_data', 'data_param')
233 self.decimation = kwargs.get('decimation', None)
233 self.decimation = kwargs.get('decimation', None)
234 self.oneFigure = kwargs.get('oneFigure', True)
234 self.oneFigure = kwargs.get('oneFigure', True)
235 self.width = kwargs.get('width', None)
235 self.width = kwargs.get('width', None)
236 self.height = kwargs.get('height', None)
236 self.height = kwargs.get('height', None)
237 self.colorbar = kwargs.get('colorbar', True)
237 self.colorbar = kwargs.get('colorbar', True)
238 self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1])
238 self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1])
239 self.channels = kwargs.get('channels', None)
239 self.channels = kwargs.get('channels', None)
240 self.titles = kwargs.get('titles', [])
240 self.titles = kwargs.get('titles', [])
241 self.polar = False
241 self.polar = False
242 self.type = kwargs.get('type', 'iq')
242 self.type = kwargs.get('type', 'iq')
243 self.grid = kwargs.get('grid', False)
243 self.grid = kwargs.get('grid', False)
244 self.pause = kwargs.get('pause', False)
244 self.pause = kwargs.get('pause', False)
245 self.save_code = kwargs.get('save_code', self.CODE)
245 self.save_code = kwargs.get('save_code', self.CODE)
246 self.throttle = kwargs.get('throttle', 0)
246 self.throttle = kwargs.get('throttle', 0)
247 self.exp_code = kwargs.get('exp_code', None)
247 self.exp_code = kwargs.get('exp_code', None)
248 self.server = kwargs.get('server', False)
248 self.server = kwargs.get('server', False)
249 self.sender_period = kwargs.get('sender_period', 60)
249 self.sender_period = kwargs.get('sender_period', 60)
250 self.tag = kwargs.get('tag', '')
250 self.tag = kwargs.get('tag', '')
251 self.height_index = kwargs.get('height_index', None)
251 self.height_index = kwargs.get('height_index', None)
252 self.__throttle_plot = apply_throttle(self.throttle)
252 self.__throttle_plot = apply_throttle(self.throttle)
253 code = self.attr_data if self.attr_data else self.CODE
253 code = self.attr_data if self.attr_data else self.CODE
254 self.data = PlotterData(self.CODE, self.exp_code, self.localtime)
254 self.data = PlotterData(self.CODE, self.exp_code, self.localtime)
255 self.ang_min = kwargs.get('ang_min', None)
255 self.ang_min = kwargs.get('ang_min', None)
256 self.ang_max = kwargs.get('ang_max', None)
256 self.ang_max = kwargs.get('ang_max', None)
257 self.mode = kwargs.get('mode', None)
257 self.mode = kwargs.get('mode', None)
258
258
259
259
260
260
261 if self.server:
261 if self.server:
262 if not self.server.startswith('tcp://'):
262 if not self.server.startswith('tcp://'):
263 self.server = 'tcp://{}'.format(self.server)
263 self.server = 'tcp://{}'.format(self.server)
264 log.success(
264 log.success(
265 'Sending to server: {}'.format(self.server),
265 'Sending to server: {}'.format(self.server),
266 self.name
266 self.name
267 )
267 )
268
268
269 if isinstance(self.attr_data, str):
269 if isinstance(self.attr_data, str):
270 self.attr_data = [self.attr_data]
270 self.attr_data = [self.attr_data]
271
271
272 def __setup_plot(self):
272 def __setup_plot(self):
273 '''
273 '''
274 Common setup for all figures, here figures and axes are created
274 Common setup for all figures, here figures and axes are created
275 '''
275 '''
276
276
277 self.setup()
277 self.setup()
278
278
279 self.time_label = 'LT' if self.localtime else 'UTC'
279 self.time_label = 'LT' if self.localtime else 'UTC'
280
280
281 if self.width is None:
281 if self.width is None:
282 self.width = 8
282 self.width = 8
283
283
284 self.figures = []
284 self.figures = []
285 self.axes = []
285 self.axes = []
286 self.cb_axes = []
286 self.cb_axes = []
287 self.pf_axes = []
287 self.pf_axes = []
288 self.cmaps = []
288 self.cmaps = []
289
289
290 size = '15%' if self.ncols == 1 else '30%'
290 size = '15%' if self.ncols == 1 else '30%'
291 pad = '4%' if self.ncols == 1 else '8%'
291 pad = '4%' if self.ncols == 1 else '8%'
292
292
293 if self.oneFigure:
293 if self.oneFigure:
294 if self.height is None:
294 if self.height is None:
295 self.height = 1.4 * self.nrows + 1
295 self.height = 1.4 * self.nrows + 1
296 fig = plt.figure(figsize=(self.width, self.height),
296 fig = plt.figure(figsize=(self.width, self.height),
297 edgecolor='k',
297 edgecolor='k',
298 facecolor='w')
298 facecolor='w')
299 self.figures.append(fig)
299 self.figures.append(fig)
300 for n in range(self.nplots):
300 for n in range(self.nplots):
301 ax = fig.add_subplot(self.nrows, self.ncols,
301 ax = fig.add_subplot(self.nrows, self.ncols,
302 n + 1, polar=self.polar)
302 n + 1, polar=self.polar)
303 ax.tick_params(labelsize=8)
303 ax.tick_params(labelsize=8)
304 ax.firsttime = True
304 ax.firsttime = True
305 ax.index = 0
305 ax.index = 0
306 ax.press = None
306 ax.press = None
307 self.axes.append(ax)
307 self.axes.append(ax)
308 if self.showprofile:
308 if self.showprofile:
309 cax = self.__add_axes(ax, size=size, pad=pad)
309 cax = self.__add_axes(ax, size=size, pad=pad)
310 cax.tick_params(labelsize=8)
310 cax.tick_params(labelsize=8)
311 self.pf_axes.append(cax)
311 self.pf_axes.append(cax)
312 else:
312 else:
313 if self.height is None:
313 if self.height is None:
314 self.height = 3
314 self.height = 3
315 for n in range(self.nplots):
315 for n in range(self.nplots):
316 fig = plt.figure(figsize=(self.width, self.height),
316 fig = plt.figure(figsize=(self.width, self.height),
317 edgecolor='k',
317 edgecolor='k',
318 facecolor='w')
318 facecolor='w')
319 ax = fig.add_subplot(1, 1, 1, polar=self.polar)
319 ax = fig.add_subplot(1, 1, 1, polar=self.polar)
320 ax.tick_params(labelsize=8)
320 ax.tick_params(labelsize=8)
321 ax.firsttime = True
321 ax.firsttime = True
322 ax.index = 0
322 ax.index = 0
323 ax.press = None
323 ax.press = None
324 self.figures.append(fig)
324 self.figures.append(fig)
325 self.axes.append(ax)
325 self.axes.append(ax)
326 if self.showprofile:
326 if self.showprofile:
327 cax = self.__add_axes(ax, size=size, pad=pad)
327 cax = self.__add_axes(ax, size=size, pad=pad)
328 cax.tick_params(labelsize=8)
328 cax.tick_params(labelsize=8)
329 self.pf_axes.append(cax)
329 self.pf_axes.append(cax)
330
330
331 for n in range(self.nrows):
331 for n in range(self.nrows):
332 if self.colormaps is not None:
332 if self.colormaps is not None:
333 cmap = plt.get_cmap(self.colormaps[n])
333 cmap = plt.get_cmap(self.colormaps[n])
334 else:
334 else:
335 cmap = plt.get_cmap(self.colormap)
335 cmap = plt.get_cmap(self.colormap)
336 cmap.set_bad(self.bgcolor, 1.)
336 cmap.set_bad(self.bgcolor, 1.)
337 self.cmaps.append(cmap)
337 self.cmaps.append(cmap)
338
338
339 def __add_axes(self, ax, size='30%', pad='8%'):
339 def __add_axes(self, ax, size='30%', pad='8%'):
340 '''
340 '''
341 Add new axes to the given figure
341 Add new axes to the given figure
342 '''
342 '''
343 divider = make_axes_locatable(ax)
343 divider = make_axes_locatable(ax)
344 nax = divider.new_horizontal(size=size, pad=pad)
344 nax = divider.new_horizontal(size=size, pad=pad)
345 ax.figure.add_axes(nax)
345 ax.figure.add_axes(nax)
346 return nax
346 return nax
347
347
348 def fill_gaps(self, x_buffer, y_buffer, z_buffer):
348 def fill_gaps(self, x_buffer, y_buffer, z_buffer):
349 '''
349 '''
350 Create a masked array for missing data
350 Create a masked array for missing data
351 '''
351 '''
352 if x_buffer.shape[0] < 2:
352 if x_buffer.shape[0] < 2:
353 return x_buffer, y_buffer, z_buffer
353 return x_buffer, y_buffer, z_buffer
354
354
355 deltas = x_buffer[1:] - x_buffer[0:-1]
355 deltas = x_buffer[1:] - x_buffer[0:-1]
356 x_median = numpy.median(deltas)
356 x_median = numpy.median(deltas)
357
357
358 index = numpy.where(deltas > 5 * x_median)
358 index = numpy.where(deltas > 5 * x_median)
359
359
360 if len(index[0]) != 0:
360 if len(index[0]) != 0:
361 z_buffer[::, index[0], ::] = self.__missing
361 z_buffer[::, index[0], ::] = self.__missing
362 z_buffer = numpy.ma.masked_inside(z_buffer,
362 z_buffer = numpy.ma.masked_inside(z_buffer,
363 0.99 * self.__missing,
363 0.99 * self.__missing,
364 1.01 * self.__missing)
364 1.01 * self.__missing)
365
365
366 return x_buffer, y_buffer, z_buffer
366 return x_buffer, y_buffer, z_buffer
367
367
368 def decimate(self):
368 def decimate(self):
369
369
370 # dx = int(len(self.x)/self.__MAXNUMX) + 1
370 # dx = int(len(self.x)/self.__MAXNUMX) + 1
371 dy = int(len(self.y) / self.decimation) + 1
371 dy = int(len(self.y) / self.decimation) + 1
372
372
373 # x = self.x[::dx]
373 # x = self.x[::dx]
374 x = self.x
374 x = self.x
375 y = self.y[::dy]
375 y = self.y[::dy]
376 z = self.z[::, ::, ::dy]
376 z = self.z[::, ::, ::dy]
377
377
378 return x, y, z
378 return x, y, z
379
379
380 def format(self):
380 def format(self):
381 '''
381 '''
382 Set min and max values, labels, ticks and titles
382 Set min and max values, labels, ticks and titles
383 '''
383 '''
384
384
385 for n, ax in enumerate(self.axes):
385 for n, ax in enumerate(self.axes):
386 if ax.firsttime:
386 if ax.firsttime:
387 if self.xaxis != 'time':
387 if self.xaxis != 'time':
388 xmin = self.xmin
388 xmin = self.xmin
389 xmax = self.xmax
389 xmax = self.xmax
390 else:
390 else:
391 xmin = self.tmin
391 xmin = self.tmin
392 xmax = self.tmin + self.xrange*60*60
392 xmax = self.tmin + self.xrange*60*60
393 ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime))
393 ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime))
394 ax.xaxis.set_major_locator(LinearLocator(9))
394 ax.xaxis.set_major_locator(LinearLocator(9))
395 ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)])
395 ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)])
396 ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)])
396 ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)])
397 ax.set_facecolor(self.bgcolor)
397 ax.set_facecolor(self.bgcolor)
398 if self.xscale:
398 if self.xscale:
399 ax.xaxis.set_major_formatter(FuncFormatter(
399 ax.xaxis.set_major_formatter(FuncFormatter(
400 lambda x, pos: '{0:g}'.format(x*self.xscale)))
400 lambda x, pos: '{0:g}'.format(x*self.xscale)))
401 if self.yscale:
401 if self.yscale:
402 ax.yaxis.set_major_formatter(FuncFormatter(
402 ax.yaxis.set_major_formatter(FuncFormatter(
403 lambda x, pos: '{0:g}'.format(x*self.yscale)))
403 lambda x, pos: '{0:g}'.format(x*self.yscale)))
404 if self.xlabel is not None:
404 if self.xlabel is not None:
405 ax.set_xlabel(self.xlabel)
405 ax.set_xlabel(self.xlabel)
406 if self.ylabel is not None:
406 if self.ylabel is not None:
407 ax.set_ylabel(self.ylabel)
407 ax.set_ylabel(self.ylabel)
408 if self.showprofile:
408 if self.showprofile:
409 self.pf_axes[n].set_ylim(ymin, ymax)
409 self.pf_axes[n].set_ylim(ymin, ymax)
410 self.pf_axes[n].set_xlim(self.zmin, self.zmax)
410 self.pf_axes[n].set_xlim(self.zmin, self.zmax)
411 self.pf_axes[n].set_xlabel('dB')
411 self.pf_axes[n].set_xlabel('dB')
412 self.pf_axes[n].grid(b=True, axis='x')
412 self.pf_axes[n].grid(b=True, axis='x')
413 [tick.set_visible(False)
413 [tick.set_visible(False)
414 for tick in self.pf_axes[n].get_yticklabels()]
414 for tick in self.pf_axes[n].get_yticklabels()]
415 if self.colorbar:
415 if self.colorbar:
416 ax.cbar = plt.colorbar(
416 ax.cbar = plt.colorbar(
417 ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10)
417 ax.plt, ax=ax, fraction=0.05, pad=0.06, aspect=10)
418 ax.cbar.ax.tick_params(labelsize=8)
418 ax.cbar.ax.tick_params(labelsize=8)
419 ax.cbar.ax.press = None
419 ax.cbar.ax.press = None
420 if self.cb_label:
420 if self.cb_label:
421 ax.cbar.set_label(self.cb_label, size=8)
421 ax.cbar.set_label(self.cb_label, size=8)
422 elif self.cb_labels:
422 elif self.cb_labels:
423 ax.cbar.set_label(self.cb_labels[n], size=8)
423 ax.cbar.set_label(self.cb_labels[n], size=8)
424 else:
424 else:
425 ax.cbar = None
425 ax.cbar = None
426 ax.set_xlim(xmin, xmax)
426 ax.set_xlim(xmin, xmax)
427 ax.set_ylim(ymin, ymax)
427 ax.set_ylim(ymin, ymax)
428 ax.firsttime = False
428 ax.firsttime = False
429 if self.grid:
429 if self.grid:
430 ax.grid(True)
430 ax.grid(True)
431 if not self.polar:
431 if not self.polar:
432 ax.set_title('{} {} {}'.format(
432 ax.set_title('{} {} {}'.format(
433 self.titles[n],
433 self.titles[n],
434 self.getDateTime(self.data.max_time).strftime(
434 self.getDateTime(self.data.max_time).strftime(
435 '%Y-%m-%d %H:%M:%S'),
435 '%Y-%m-%d %H:%M:%S'),
436 self.time_label),
436 self.time_label),
437 size=8)
437 size=8)
438 else:
438 else:
439 #ax.set_title('{}'.format(self.titles[n]), size=8)
439 #ax.set_title('{}'.format(self.titles[n]), size=8)
440 ax.set_title('{} {} {}'.format(
440 ax.set_title('{} {} {}'.format(
441 self.titles[n],
441 self.titles[n],
442 self.getDateTime(self.data.max_time).strftime(
442 self.getDateTime(self.data.max_time).strftime(
443 '%Y-%m-%d %H:%M:%S'),
443 '%Y-%m-%d %H:%M:%S'),
444 self.time_label),
444 self.time_label),
445 size=8)
445 size=8)
446 ax.set_ylim(0, self.ymax)
446 ax.set_ylim(0, self.ymax)
447 #ax.set_yticks(numpy.arange(0, self.ymax, 20))
447 #ax.set_yticks(numpy.arange(0, self.ymax, 20))
448 ax.yaxis.labelpad = 20
448 ax.yaxis.labelpad = 28
449
449
450 if self.firsttime:
450 if self.firsttime:
451 for n, fig in enumerate(self.figures):
451 for n, fig in enumerate(self.figures):
452 fig.subplots_adjust(**self.plots_adjust)
452 fig.subplots_adjust(**self.plots_adjust)
453 self.firsttime = False
453 self.firsttime = False
454
454
455 def clear_figures(self):
455 def clear_figures(self):
456 '''
456 '''
457 Reset axes for redraw plots
457 Reset axes for redraw plots
458 '''
458 '''
459
459
460 for ax in self.axes+self.pf_axes+self.cb_axes:
460 for ax in self.axes+self.pf_axes+self.cb_axes:
461 ax.clear()
461 ax.clear()
462 ax.firsttime = True
462 ax.firsttime = True
463 if hasattr(ax, 'cbar') and ax.cbar:
463 if hasattr(ax, 'cbar') and ax.cbar:
464 ax.cbar.remove()
464 ax.cbar.remove()
465
465
466 def __plot(self):
466 def __plot(self):
467 '''
467 '''
468 Main function to plot, format and save figures
468 Main function to plot, format and save figures
469 '''
469 '''
470
470
471 self.plot()
471 self.plot()
472 self.format()
472 self.format()
473
473
474 for n, fig in enumerate(self.figures):
474 for n, fig in enumerate(self.figures):
475 if self.nrows == 0 or self.nplots == 0:
475 if self.nrows == 0 or self.nplots == 0:
476 log.warning('No data', self.name)
476 log.warning('No data', self.name)
477 fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center')
477 fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center')
478 fig.canvas.manager.set_window_title(self.CODE)
478 fig.canvas.manager.set_window_title(self.CODE)
479 continue
479 continue
480
480
481 fig.canvas.manager.set_window_title('{} - {}'.format(self.title,
481 fig.canvas.manager.set_window_title('{} - {}'.format(self.title,
482 self.getDateTime(self.data.max_time).strftime('%Y/%m/%d')))
482 self.getDateTime(self.data.max_time).strftime('%Y/%m/%d')))
483 fig.canvas.draw()
483 fig.canvas.draw()
484 if self.show:
484 if self.show:
485 fig.show()
485 fig.show()
486 figpause(0.01)
486 figpause(0.01)
487
487
488 if self.save:
488 if self.save:
489 self.save_figure(n)
489 self.save_figure(n)
490
490
491 if self.server:
491 if self.server:
492 self.send_to_server()
492 self.send_to_server()
493
493
494 def __update(self, dataOut, timestamp):
494 def __update(self, dataOut, timestamp):
495 '''
495 '''
496 '''
496 '''
497
497
498 metadata = {
498 metadata = {
499 'yrange': dataOut.heightList,
499 'yrange': dataOut.heightList,
500 'interval': dataOut.timeInterval,
500 'interval': dataOut.timeInterval,
501 'channels': dataOut.channelList
501 'channels': dataOut.channelList
502 }
502 }
503
503
504 data, meta = self.update(dataOut)
504 data, meta = self.update(dataOut)
505 metadata.update(meta)
505 metadata.update(meta)
506 self.data.update(data, timestamp, metadata)
506 self.data.update(data, timestamp, metadata)
507
507
508 def save_figure(self, n):
508 def save_figure(self, n):
509 '''
509 '''
510 '''
510 '''
511 if self.oneFigure:
511 if self.oneFigure:
512 if (self.data.max_time - self.save_time) <= self.save_period:
512 if (self.data.max_time - self.save_time) <= self.save_period:
513 return
513 return
514
514
515 self.save_time = self.data.max_time
515 self.save_time = self.data.max_time
516
516
517 fig = self.figures[n]
517 fig = self.figures[n]
518
518
519 if self.throttle == 0:
519 if self.throttle == 0:
520 if self.oneFigure:
520 if self.oneFigure:
521 figname = os.path.join(
521 figname = os.path.join(
522 self.save,
522 self.save,
523 self.save_code,
523 self.save_code,
524 '{}_{}.png'.format(
524 '{}_{}.png'.format(
525 self.save_code,
525 self.save_code,
526 self.getDateTime(self.data.max_time).strftime(
526 self.getDateTime(self.data.max_time).strftime(
527 '%Y%m%d_%H%M%S'
527 '%Y%m%d_%H%M%S'
528 ),
528 ),
529 )
529 )
530 )
530 )
531 else:
531 else:
532 figname = os.path.join(
532 figname = os.path.join(
533 self.save,
533 self.save,
534 self.save_code,
534 self.save_code,
535 '{}_ch{}_{}.png'.format(
535 '{}_ch{}_{}.png'.format(
536 self.save_code,n,
536 self.save_code,n,
537 self.getDateTime(self.data.max_time).strftime(
537 self.getDateTime(self.data.max_time).strftime(
538 '%Y%m%d_%H%M%S'
538 '%Y%m%d_%H%M%S'
539 ),
539 ),
540 )
540 )
541 )
541 )
542 log.log('Saving figure: {}'.format(figname), self.name)
542 log.log('Saving figure: {}'.format(figname), self.name)
543 if not os.path.isdir(os.path.dirname(figname)):
543 if not os.path.isdir(os.path.dirname(figname)):
544 os.makedirs(os.path.dirname(figname))
544 os.makedirs(os.path.dirname(figname))
545 fig.savefig(figname)
545 fig.savefig(figname)
546
546
547 figname = os.path.join(
547 figname = os.path.join(
548 self.save,
548 self.save,
549 '{}_{}.png'.format(
549 '{}_{}.png'.format(
550 self.save_code,
550 self.save_code,
551 self.getDateTime(self.data.min_time).strftime(
551 self.getDateTime(self.data.min_time).strftime(
552 '%Y%m%d'
552 '%Y%m%d'
553 ),
553 ),
554 )
554 )
555 )
555 )
556
556
557 log.log('Saving figure: {}'.format(figname), self.name)
557 log.log('Saving figure: {}'.format(figname), self.name)
558 if not os.path.isdir(os.path.dirname(figname)):
558 if not os.path.isdir(os.path.dirname(figname)):
559 os.makedirs(os.path.dirname(figname))
559 os.makedirs(os.path.dirname(figname))
560 fig.savefig(figname)
560 fig.savefig(figname)
561
561
562 def send_to_server(self):
562 def send_to_server(self):
563 '''
563 '''
564 '''
564 '''
565
565
566 if self.exp_code == None:
566 if self.exp_code == None:
567 log.warning('Missing `exp_code` skipping sending to server...')
567 log.warning('Missing `exp_code` skipping sending to server...')
568
568
569 last_time = self.data.max_time
569 last_time = self.data.max_time
570 interval = last_time - self.sender_time
570 interval = last_time - self.sender_time
571 if interval < self.sender_period:
571 if interval < self.sender_period:
572 return
572 return
573
573
574 self.sender_time = last_time
574 self.sender_time = last_time
575
575
576 attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax']
576 attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax']
577 for attr in attrs:
577 for attr in attrs:
578 value = getattr(self, attr)
578 value = getattr(self, attr)
579 if value:
579 if value:
580 if isinstance(value, (numpy.float32, numpy.float64)):
580 if isinstance(value, (numpy.float32, numpy.float64)):
581 value = round(float(value), 2)
581 value = round(float(value), 2)
582 self.data.meta[attr] = value
582 self.data.meta[attr] = value
583 if self.colormap == 'jet':
583 if self.colormap == 'jet':
584 self.data.meta['colormap'] = 'Jet'
584 self.data.meta['colormap'] = 'Jet'
585 elif 'RdBu' in self.colormap:
585 elif 'RdBu' in self.colormap:
586 self.data.meta['colormap'] = 'RdBu'
586 self.data.meta['colormap'] = 'RdBu'
587 else:
587 else:
588 self.data.meta['colormap'] = 'Viridis'
588 self.data.meta['colormap'] = 'Viridis'
589 self.data.meta['interval'] = int(interval)
589 self.data.meta['interval'] = int(interval)
590
590
591 self.sender_queue.append(last_time)
591 self.sender_queue.append(last_time)
592
592
593 while True:
593 while True:
594 try:
594 try:
595 tm = self.sender_queue.popleft()
595 tm = self.sender_queue.popleft()
596 except IndexError:
596 except IndexError:
597 break
597 break
598 msg = self.data.jsonify(tm, self.save_code, self.plot_type)
598 msg = self.data.jsonify(tm, self.save_code, self.plot_type)
599 self.socket.send_string(msg)
599 self.socket.send_string(msg)
600 socks = dict(self.poll.poll(2000))
600 socks = dict(self.poll.poll(2000))
601 if socks.get(self.socket) == zmq.POLLIN:
601 if socks.get(self.socket) == zmq.POLLIN:
602 reply = self.socket.recv_string()
602 reply = self.socket.recv_string()
603 if reply == 'ok':
603 if reply == 'ok':
604 log.log("Response from server ok", self.name)
604 log.log("Response from server ok", self.name)
605 time.sleep(0.1)
605 time.sleep(0.1)
606 continue
606 continue
607 else:
607 else:
608 log.warning(
608 log.warning(
609 "Malformed reply from server: {}".format(reply), self.name)
609 "Malformed reply from server: {}".format(reply), self.name)
610 else:
610 else:
611 log.warning(
611 log.warning(
612 "No response from server, retrying...", self.name)
612 "No response from server, retrying...", self.name)
613 self.sender_queue.appendleft(tm)
613 self.sender_queue.appendleft(tm)
614 self.socket.setsockopt(zmq.LINGER, 0)
614 self.socket.setsockopt(zmq.LINGER, 0)
615 self.socket.close()
615 self.socket.close()
616 self.poll.unregister(self.socket)
616 self.poll.unregister(self.socket)
617 self.socket = self.context.socket(zmq.REQ)
617 self.socket = self.context.socket(zmq.REQ)
618 self.socket.connect(self.server)
618 self.socket.connect(self.server)
619 self.poll.register(self.socket, zmq.POLLIN)
619 self.poll.register(self.socket, zmq.POLLIN)
620 break
620 break
621
621
622 def setup(self):
622 def setup(self):
623 '''
623 '''
624 This method should be implemented in the child class, the following
624 This method should be implemented in the child class, the following
625 attributes should be set:
625 attributes should be set:
626
626
627 self.nrows: number of rows
627 self.nrows: number of rows
628 self.ncols: number of cols
628 self.ncols: number of cols
629 self.nplots: number of plots (channels or pairs)
629 self.nplots: number of plots (channels or pairs)
630 self.ylabel: label for Y axes
630 self.ylabel: label for Y axes
631 self.titles: list of axes title
631 self.titles: list of axes title
632
632
633 '''
633 '''
634 raise NotImplementedError
634 raise NotImplementedError
635
635
636 def plot(self):
636 def plot(self):
637 '''
637 '''
638 Must be defined in the child class, the actual plotting method
638 Must be defined in the child class, the actual plotting method
639 '''
639 '''
640 raise NotImplementedError
640 raise NotImplementedError
641
641
642 def update(self, dataOut):
642 def update(self, dataOut):
643 '''
643 '''
644 Must be defined in the child class, update self.data with new data
644 Must be defined in the child class, update self.data with new data
645 '''
645 '''
646
646
647 data = {
647 data = {
648 self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE))
648 self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE))
649 }
649 }
650 meta = {}
650 meta = {}
651
651
652 return data, meta
652 return data, meta
653
653
654 def run(self, dataOut, **kwargs):
654 def run(self, dataOut, **kwargs):
655 '''
655 '''
656 Main plotting routine
656 Main plotting routine
657 '''
657 '''
658
658
659 if self.isConfig is False:
659 if self.isConfig is False:
660 self.__setup(**kwargs)
660 self.__setup(**kwargs)
661
661
662 if self.localtime:
662 if self.localtime:
663 self.getDateTime = datetime.datetime.fromtimestamp
663 self.getDateTime = datetime.datetime.fromtimestamp
664 else:
664 else:
665 self.getDateTime = datetime.datetime.utcfromtimestamp
665 self.getDateTime = datetime.datetime.utcfromtimestamp
666
666
667 self.data.setup()
667 self.data.setup()
668 self.isConfig = True
668 self.isConfig = True
669 if self.server:
669 if self.server:
670 self.context = zmq.Context()
670 self.context = zmq.Context()
671 self.socket = self.context.socket(zmq.REQ)
671 self.socket = self.context.socket(zmq.REQ)
672 self.socket.connect(self.server)
672 self.socket.connect(self.server)
673 self.poll = zmq.Poller()
673 self.poll = zmq.Poller()
674 self.poll.register(self.socket, zmq.POLLIN)
674 self.poll.register(self.socket, zmq.POLLIN)
675
675
676 tm = getattr(dataOut, self.attr_time)
676 tm = getattr(dataOut, self.attr_time)
677
677
678 if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60:
678 if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60:
679 self.save_time = tm
679 self.save_time = tm
680 self.__plot()
680 self.__plot()
681 self.tmin += self.xrange*60*60
681 self.tmin += self.xrange*60*60
682 self.data.setup()
682 self.data.setup()
683 self.clear_figures()
683 self.clear_figures()
684
684
685 self.__update(dataOut, tm)
685 self.__update(dataOut, tm)
686
686
687 if self.isPlotConfig is False:
687 if self.isPlotConfig is False:
688 self.__setup_plot()
688 self.__setup_plot()
689 self.isPlotConfig = True
689 self.isPlotConfig = True
690 if self.xaxis == 'time':
690 if self.xaxis == 'time':
691 dt = self.getDateTime(tm)
691 dt = self.getDateTime(tm)
692 if self.xmin is None:
692 if self.xmin is None:
693 self.tmin = tm
693 self.tmin = tm
694 self.xmin = dt.hour
694 self.xmin = dt.hour
695 minutes = (self.xmin-int(self.xmin)) * 60
695 minutes = (self.xmin-int(self.xmin)) * 60
696 seconds = (minutes - int(minutes)) * 60
696 seconds = (minutes - int(minutes)) * 60
697 self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) -
697 self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) -
698 datetime.datetime(1970, 1, 1)).total_seconds()
698 datetime.datetime(1970, 1, 1)).total_seconds()
699 if self.localtime:
699 if self.localtime:
700 self.tmin += time.timezone
700 self.tmin += time.timezone
701
701
702 if self.xmin is not None and self.xmax is not None:
702 if self.xmin is not None and self.xmax is not None:
703 self.xrange = self.xmax - self.xmin
703 self.xrange = self.xmax - self.xmin
704
704
705 if self.throttle == 0:
705 if self.throttle == 0:
706 self.__plot()
706 self.__plot()
707 else:
707 else:
708 self.__throttle_plot(self.__plot)#, coerce=coerce)
708 self.__throttle_plot(self.__plot)#, coerce=coerce)
709
709
710 def close(self):
710 def close(self):
711
711
712 if self.data and not self.data.flagNoData:
712 if self.data and not self.data.flagNoData:
713 self.save_time = 0
713 self.save_time = 0
714 self.__plot()
714 self.__plot()
715 if self.data and not self.data.flagNoData and self.pause:
715 if self.data and not self.data.flagNoData and self.pause:
716 figpause(10)
716 figpause(10)
@@ -1,1936 +1,1936
1 import os
1 import os
2 import datetime
2 import datetime
3 import numpy
3 import numpy
4 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
4 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
5
5
6 from schainpy.model.graphics.jroplot_base import Plot, plt
6 from schainpy.model.graphics.jroplot_base import Plot, plt
7 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
7 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
8 from schainpy.utils import log
8 from schainpy.utils import log
9 # libreria wradlib
9 # libreria wradlib
10 #import wradlib as wrl
10 #import wradlib as wrl
11
11
12 EARTH_RADIUS = 6.3710e3
12 EARTH_RADIUS = 6.3710e3
13
13
14
14
15 def ll2xy(lat1, lon1, lat2, lon2):
15 def ll2xy(lat1, lon1, lat2, lon2):
16
16
17 p = 0.017453292519943295
17 p = 0.017453292519943295
18 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
18 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
19 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
19 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
20 r = 12742 * numpy.arcsin(numpy.sqrt(a))
20 r = 12742 * numpy.arcsin(numpy.sqrt(a))
21 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
21 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
22 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
22 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
23 theta = -theta + numpy.pi/2
23 theta = -theta + numpy.pi/2
24 return r*numpy.cos(theta), r*numpy.sin(theta)
24 return r*numpy.cos(theta), r*numpy.sin(theta)
25
25
26
26
27 def km2deg(km):
27 def km2deg(km):
28 '''
28 '''
29 Convert distance in km to degrees
29 Convert distance in km to degrees
30 '''
30 '''
31
31
32 return numpy.rad2deg(km/EARTH_RADIUS)
32 return numpy.rad2deg(km/EARTH_RADIUS)
33
33
34
34
35
35
36 class SpectralMomentsPlot(SpectraPlot):
36 class SpectralMomentsPlot(SpectraPlot):
37 '''
37 '''
38 Plot for Spectral Moments
38 Plot for Spectral Moments
39 '''
39 '''
40 CODE = 'spc_moments'
40 CODE = 'spc_moments'
41 # colormap = 'jet'
41 # colormap = 'jet'
42 # plot_type = 'pcolor'
42 # plot_type = 'pcolor'
43
43
44 class DobleGaussianPlot(SpectraPlot):
44 class DobleGaussianPlot(SpectraPlot):
45 '''
45 '''
46 Plot for Double Gaussian Plot
46 Plot for Double Gaussian Plot
47 '''
47 '''
48 CODE = 'gaussian_fit'
48 CODE = 'gaussian_fit'
49 # colormap = 'jet'
49 # colormap = 'jet'
50 # plot_type = 'pcolor'
50 # plot_type = 'pcolor'
51
51
52 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
52 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
53 '''
53 '''
54 Plot SpectraCut with Double Gaussian Fit
54 Plot SpectraCut with Double Gaussian Fit
55 '''
55 '''
56 CODE = 'cut_gaussian_fit'
56 CODE = 'cut_gaussian_fit'
57
57
58 class SnrPlot(RTIPlot):
58 class SnrPlot(RTIPlot):
59 '''
59 '''
60 Plot for SNR Data
60 Plot for SNR Data
61 '''
61 '''
62
62
63 CODE = 'snr'
63 CODE = 'snr'
64 colormap = 'jet'
64 colormap = 'jet'
65
65
66 def update(self, dataOut):
66 def update(self, dataOut):
67
67
68 data = {
68 data = {
69 'snr': 10*numpy.log10(dataOut.data_snr)
69 'snr': 10*numpy.log10(dataOut.data_snr)
70 }
70 }
71
71
72 return data, {}
72 return data, {}
73
73
74 class DopplerPlot(RTIPlot):
74 class DopplerPlot(RTIPlot):
75 '''
75 '''
76 Plot for DOPPLER Data (1st moment)
76 Plot for DOPPLER Data (1st moment)
77 '''
77 '''
78
78
79 CODE = 'dop'
79 CODE = 'dop'
80 colormap = 'jet'
80 colormap = 'jet'
81
81
82 def update(self, dataOut):
82 def update(self, dataOut):
83
83
84 data = {
84 data = {
85 'dop': 10*numpy.log10(dataOut.data_dop)
85 'dop': 10*numpy.log10(dataOut.data_dop)
86 }
86 }
87
87
88 return data, {}
88 return data, {}
89
89
90 class PowerPlot(RTIPlot):
90 class PowerPlot(RTIPlot):
91 '''
91 '''
92 Plot for Power Data (0 moment)
92 Plot for Power Data (0 moment)
93 '''
93 '''
94
94
95 CODE = 'pow'
95 CODE = 'pow'
96 colormap = 'jet'
96 colormap = 'jet'
97
97
98 def update(self, dataOut):
98 def update(self, dataOut):
99 data = {
99 data = {
100 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
100 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
101 }
101 }
102 return data, {}
102 return data, {}
103
103
104 class SpectralWidthPlot(RTIPlot):
104 class SpectralWidthPlot(RTIPlot):
105 '''
105 '''
106 Plot for Spectral Width Data (2nd moment)
106 Plot for Spectral Width Data (2nd moment)
107 '''
107 '''
108
108
109 CODE = 'width'
109 CODE = 'width'
110 colormap = 'jet'
110 colormap = 'jet'
111
111
112 def update(self, dataOut):
112 def update(self, dataOut):
113
113
114 data = {
114 data = {
115 'width': dataOut.data_width
115 'width': dataOut.data_width
116 }
116 }
117
117
118 return data, {}
118 return data, {}
119
119
120 class SkyMapPlot(Plot):
120 class SkyMapPlot(Plot):
121 '''
121 '''
122 Plot for meteors detection data
122 Plot for meteors detection data
123 '''
123 '''
124
124
125 CODE = 'param'
125 CODE = 'param'
126
126
127 def setup(self):
127 def setup(self):
128
128
129 self.ncols = 1
129 self.ncols = 1
130 self.nrows = 1
130 self.nrows = 1
131 self.width = 7.2
131 self.width = 7.2
132 self.height = 7.2
132 self.height = 7.2
133 self.nplots = 1
133 self.nplots = 1
134 self.xlabel = 'Zonal Zenith Angle (deg)'
134 self.xlabel = 'Zonal Zenith Angle (deg)'
135 self.ylabel = 'Meridional Zenith Angle (deg)'
135 self.ylabel = 'Meridional Zenith Angle (deg)'
136 self.polar = True
136 self.polar = True
137 self.ymin = -180
137 self.ymin = -180
138 self.ymax = 180
138 self.ymax = 180
139 self.colorbar = False
139 self.colorbar = False
140
140
141 def plot(self):
141 def plot(self):
142
142
143 arrayParameters = numpy.concatenate(self.data['param'])
143 arrayParameters = numpy.concatenate(self.data['param'])
144 error = arrayParameters[:, -1]
144 error = arrayParameters[:, -1]
145 indValid = numpy.where(error == 0)[0]
145 indValid = numpy.where(error == 0)[0]
146 finalMeteor = arrayParameters[indValid, :]
146 finalMeteor = arrayParameters[indValid, :]
147 finalAzimuth = finalMeteor[:, 3]
147 finalAzimuth = finalMeteor[:, 3]
148 finalZenith = finalMeteor[:, 4]
148 finalZenith = finalMeteor[:, 4]
149
149
150 x = finalAzimuth * numpy.pi / 180
150 x = finalAzimuth * numpy.pi / 180
151 y = finalZenith
151 y = finalZenith
152
152
153 ax = self.axes[0]
153 ax = self.axes[0]
154
154
155 if ax.firsttime:
155 if ax.firsttime:
156 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
156 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
157 else:
157 else:
158 ax.plot.set_data(x, y)
158 ax.plot.set_data(x, y)
159
159
160 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
160 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
161 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
161 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
162 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
162 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
163 dt2,
163 dt2,
164 len(x))
164 len(x))
165 self.titles[0] = title
165 self.titles[0] = title
166
166
167
167
168 class GenericRTIPlot(Plot):
168 class GenericRTIPlot(Plot):
169 '''
169 '''
170 Plot for data_xxxx object
170 Plot for data_xxxx object
171 '''
171 '''
172
172
173 CODE = 'param'
173 CODE = 'param'
174 colormap = 'viridis'
174 colormap = 'viridis'
175 plot_type = 'pcolorbuffer'
175 plot_type = 'pcolorbuffer'
176
176
177 def setup(self):
177 def setup(self):
178 self.xaxis = 'time'
178 self.xaxis = 'time'
179 self.ncols = 1
179 self.ncols = 1
180 self.nrows = self.data.shape('param')[0]
180 self.nrows = self.data.shape('param')[0]
181 self.nplots = self.nrows
181 self.nplots = self.nrows
182 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
182 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
183
183
184 if not self.xlabel:
184 if not self.xlabel:
185 self.xlabel = 'Time'
185 self.xlabel = 'Time'
186
186
187 self.ylabel = 'Range [km]'
187 self.ylabel = 'Range [km]'
188 if not self.titles:
188 if not self.titles:
189 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
189 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
190
190
191 def update(self, dataOut):
191 def update(self, dataOut):
192
192
193 data = {
193 data = {
194 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
194 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
195 }
195 }
196
196
197 meta = {}
197 meta = {}
198
198
199 return data, meta
199 return data, meta
200
200
201 def plot(self):
201 def plot(self):
202 # self.data.normalize_heights()
202 # self.data.normalize_heights()
203 self.x = self.data.times
203 self.x = self.data.times
204 self.y = self.data.yrange
204 self.y = self.data.yrange
205 self.z = self.data['param']
205 self.z = self.data['param']
206 self.z = 10*numpy.log10(self.z)
206 self.z = 10*numpy.log10(self.z)
207 self.z = numpy.ma.masked_invalid(self.z)
207 self.z = numpy.ma.masked_invalid(self.z)
208
208
209 if self.decimation is None:
209 if self.decimation is None:
210 x, y, z = self.fill_gaps(self.x, self.y, self.z)
210 x, y, z = self.fill_gaps(self.x, self.y, self.z)
211 else:
211 else:
212 x, y, z = self.fill_gaps(*self.decimate())
212 x, y, z = self.fill_gaps(*self.decimate())
213
213
214 for n, ax in enumerate(self.axes):
214 for n, ax in enumerate(self.axes):
215
215
216 self.zmax = self.zmax if self.zmax is not None else numpy.max(
216 self.zmax = self.zmax if self.zmax is not None else numpy.max(
217 self.z[n])
217 self.z[n])
218 self.zmin = self.zmin if self.zmin is not None else numpy.min(
218 self.zmin = self.zmin if self.zmin is not None else numpy.min(
219 self.z[n])
219 self.z[n])
220
220
221 if ax.firsttime:
221 if ax.firsttime:
222 if self.zlimits is not None:
222 if self.zlimits is not None:
223 self.zmin, self.zmax = self.zlimits[n]
223 self.zmin, self.zmax = self.zlimits[n]
224
224
225 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
225 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
226 vmin=self.zmin,
226 vmin=self.zmin,
227 vmax=self.zmax,
227 vmax=self.zmax,
228 cmap=self.cmaps[n]
228 cmap=self.cmaps[n]
229 )
229 )
230 else:
230 else:
231 if self.zlimits is not None:
231 if self.zlimits is not None:
232 self.zmin, self.zmax = self.zlimits[n]
232 self.zmin, self.zmax = self.zlimits[n]
233 ax.collections.remove(ax.collections[0])
233 ax.collections.remove(ax.collections[0])
234 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
234 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
235 vmin=self.zmin,
235 vmin=self.zmin,
236 vmax=self.zmax,
236 vmax=self.zmax,
237 cmap=self.cmaps[n]
237 cmap=self.cmaps[n]
238 )
238 )
239
239
240
240
241 class PolarMapPlot(Plot):
241 class PolarMapPlot(Plot):
242 '''
242 '''
243 Plot for weather radar
243 Plot for weather radar
244 '''
244 '''
245
245
246 CODE = 'param'
246 CODE = 'param'
247 colormap = 'seismic'
247 colormap = 'seismic'
248
248
249 def setup(self):
249 def setup(self):
250 self.ncols = 1
250 self.ncols = 1
251 self.nrows = 1
251 self.nrows = 1
252 self.width = 9
252 self.width = 9
253 self.height = 8
253 self.height = 8
254 self.mode = self.data.meta['mode']
254 self.mode = self.data.meta['mode']
255 if self.channels is not None:
255 if self.channels is not None:
256 self.nplots = len(self.channels)
256 self.nplots = len(self.channels)
257 self.nrows = len(self.channels)
257 self.nrows = len(self.channels)
258 else:
258 else:
259 self.nplots = self.data.shape(self.CODE)[0]
259 self.nplots = self.data.shape(self.CODE)[0]
260 self.nrows = self.nplots
260 self.nrows = self.nplots
261 self.channels = list(range(self.nplots))
261 self.channels = list(range(self.nplots))
262 if self.mode == 'E':
262 if self.mode == 'E':
263 self.xlabel = 'Longitude'
263 self.xlabel = 'Longitude'
264 self.ylabel = 'Latitude'
264 self.ylabel = 'Latitude'
265 else:
265 else:
266 self.xlabel = 'Range (km)'
266 self.xlabel = 'Range (km)'
267 self.ylabel = 'Height (km)'
267 self.ylabel = 'Height (km)'
268 self.bgcolor = 'white'
268 self.bgcolor = 'white'
269 self.cb_labels = self.data.meta['units']
269 self.cb_labels = self.data.meta['units']
270 self.lat = self.data.meta['latitude']
270 self.lat = self.data.meta['latitude']
271 self.lon = self.data.meta['longitude']
271 self.lon = self.data.meta['longitude']
272 self.xmin, self.xmax = float(
272 self.xmin, self.xmax = float(
273 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
273 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
274 self.ymin, self.ymax = float(
274 self.ymin, self.ymax = float(
275 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
275 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
276 # self.polar = True
276 # self.polar = True
277
277
278 def plot(self):
278 def plot(self):
279
279
280 for n, ax in enumerate(self.axes):
280 for n, ax in enumerate(self.axes):
281 data = self.data['param'][self.channels[n]]
281 data = self.data['param'][self.channels[n]]
282
282
283 zeniths = numpy.linspace(
283 zeniths = numpy.linspace(
284 0, self.data.meta['max_range'], data.shape[1])
284 0, self.data.meta['max_range'], data.shape[1])
285 if self.mode == 'E':
285 if self.mode == 'E':
286 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
286 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
287 r, theta = numpy.meshgrid(zeniths, azimuths)
287 r, theta = numpy.meshgrid(zeniths, azimuths)
288 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
288 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
289 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
289 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
290 x = km2deg(x) + self.lon
290 x = km2deg(x) + self.lon
291 y = km2deg(y) + self.lat
291 y = km2deg(y) + self.lat
292 else:
292 else:
293 azimuths = numpy.radians(self.data.yrange)
293 azimuths = numpy.radians(self.data.yrange)
294 r, theta = numpy.meshgrid(zeniths, azimuths)
294 r, theta = numpy.meshgrid(zeniths, azimuths)
295 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
295 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
296 self.y = zeniths
296 self.y = zeniths
297
297
298 if ax.firsttime:
298 if ax.firsttime:
299 if self.zlimits is not None:
299 if self.zlimits is not None:
300 self.zmin, self.zmax = self.zlimits[n]
300 self.zmin, self.zmax = self.zlimits[n]
301 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
301 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
302 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
302 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
303 vmin=self.zmin,
303 vmin=self.zmin,
304 vmax=self.zmax,
304 vmax=self.zmax,
305 cmap=self.cmaps[n])
305 cmap=self.cmaps[n])
306 else:
306 else:
307 if self.zlimits is not None:
307 if self.zlimits is not None:
308 self.zmin, self.zmax = self.zlimits[n]
308 self.zmin, self.zmax = self.zlimits[n]
309 ax.collections.remove(ax.collections[0])
309 ax.collections.remove(ax.collections[0])
310 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
310 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
311 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
311 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
312 vmin=self.zmin,
312 vmin=self.zmin,
313 vmax=self.zmax,
313 vmax=self.zmax,
314 cmap=self.cmaps[n])
314 cmap=self.cmaps[n])
315
315
316 if self.mode == 'A':
316 if self.mode == 'A':
317 continue
317 continue
318
318
319 # plot district names
319 # plot district names
320 f = open('/data/workspace/schain_scripts/distrito.csv')
320 f = open('/data/workspace/schain_scripts/distrito.csv')
321 for line in f:
321 for line in f:
322 label, lon, lat = [s.strip() for s in line.split(',') if s]
322 label, lon, lat = [s.strip() for s in line.split(',') if s]
323 lat = float(lat)
323 lat = float(lat)
324 lon = float(lon)
324 lon = float(lon)
325 # ax.plot(lon, lat, '.b', ms=2)
325 # ax.plot(lon, lat, '.b', ms=2)
326 ax.text(lon, lat, label.decode('utf8'), ha='center',
326 ax.text(lon, lat, label.decode('utf8'), ha='center',
327 va='bottom', size='8', color='black')
327 va='bottom', size='8', color='black')
328
328
329 # plot limites
329 # plot limites
330 limites = []
330 limites = []
331 tmp = []
331 tmp = []
332 for line in open('/data/workspace/schain_scripts/lima.csv'):
332 for line in open('/data/workspace/schain_scripts/lima.csv'):
333 if '#' in line:
333 if '#' in line:
334 if tmp:
334 if tmp:
335 limites.append(tmp)
335 limites.append(tmp)
336 tmp = []
336 tmp = []
337 continue
337 continue
338 values = line.strip().split(',')
338 values = line.strip().split(',')
339 tmp.append((float(values[0]), float(values[1])))
339 tmp.append((float(values[0]), float(values[1])))
340 for points in limites:
340 for points in limites:
341 ax.add_patch(
341 ax.add_patch(
342 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
342 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
343
343
344 # plot Cuencas
344 # plot Cuencas
345 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
345 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
346 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
346 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
347 values = [line.strip().split(',') for line in f]
347 values = [line.strip().split(',') for line in f]
348 points = [(float(s[0]), float(s[1])) for s in values]
348 points = [(float(s[0]), float(s[1])) for s in values]
349 ax.add_patch(Polygon(points, ec='b', fc='none'))
349 ax.add_patch(Polygon(points, ec='b', fc='none'))
350
350
351 # plot grid
351 # plot grid
352 for r in (15, 30, 45, 60):
352 for r in (15, 30, 45, 60):
353 ax.add_artist(plt.Circle((self.lon, self.lat),
353 ax.add_artist(plt.Circle((self.lon, self.lat),
354 km2deg(r), color='0.6', fill=False, lw=0.2))
354 km2deg(r), color='0.6', fill=False, lw=0.2))
355 ax.text(
355 ax.text(
356 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
356 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
357 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
357 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
358 '{}km'.format(r),
358 '{}km'.format(r),
359 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
359 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
360
360
361 if self.mode == 'E':
361 if self.mode == 'E':
362 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
362 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
363 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
363 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
364 else:
364 else:
365 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
365 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
366 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
366 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
367
367
368 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
368 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
369 self.titles = ['{} {}'.format(
369 self.titles = ['{} {}'.format(
370 self.data.parameters[x], title) for x in self.channels]
370 self.data.parameters[x], title) for x in self.channels]
371
371
372 class WeatherPlot(Plot):
372 class WeatherPlot(Plot):
373 CODE = 'weather'
373 CODE = 'weather'
374 plot_name = 'weather'
374 plot_name = 'weather'
375 plot_type = 'ppistyle'
375 plot_type = 'ppistyle'
376 buffering = False
376 buffering = False
377
377
378 def setup(self):
378 def setup(self):
379 self.ncols = 1
379 self.ncols = 1
380 self.nrows = 1
380 self.nrows = 1
381 self.width =8
381 self.width =8
382 self.height =8
382 self.height =8
383 self.nplots= 1
383 self.nplots= 1
384 self.ylabel= 'Range [Km]'
384 self.ylabel= 'Range [Km]'
385 self.titles= ['Weather']
385 self.titles= ['Weather']
386 self.colorbar=False
386 self.colorbar=False
387 self.ini =0
387 self.ini =0
388 self.len_azi =0
388 self.len_azi =0
389 self.buffer_ini = None
389 self.buffer_ini = None
390 self.buffer_azi = None
390 self.buffer_azi = None
391 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
391 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
392 self.flag =0
392 self.flag =0
393 self.indicador= 0
393 self.indicador= 0
394 self.last_data_azi = None
394 self.last_data_azi = None
395 self.val_mean = None
395 self.val_mean = None
396
396
397 def update(self, dataOut):
397 def update(self, dataOut):
398
398
399 data = {}
399 data = {}
400 meta = {}
400 meta = {}
401 if hasattr(dataOut, 'dataPP_POWER'):
401 if hasattr(dataOut, 'dataPP_POWER'):
402 factor = 1
402 factor = 1
403 if hasattr(dataOut, 'nFFTPoints'):
403 if hasattr(dataOut, 'nFFTPoints'):
404 factor = dataOut.normFactor
404 factor = dataOut.normFactor
405 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
405 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
406 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
406 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
407 data['azi'] = dataOut.data_azi
407 data['azi'] = dataOut.data_azi
408 data['ele'] = dataOut.data_ele
408 data['ele'] = dataOut.data_ele
409 return data, meta
409 return data, meta
410
410
411 def get2List(self,angulos):
411 def get2List(self,angulos):
412 list1=[]
412 list1=[]
413 list2=[]
413 list2=[]
414 for i in reversed(range(len(angulos))):
414 for i in reversed(range(len(angulos))):
415 diff_ = angulos[i]-angulos[i-1]
415 diff_ = angulos[i]-angulos[i-1]
416 if diff_ >1.5:
416 if diff_ >1.5:
417 list1.append(i-1)
417 list1.append(i-1)
418 list2.append(diff_)
418 list2.append(diff_)
419 return list(reversed(list1)),list(reversed(list2))
419 return list(reversed(list1)),list(reversed(list2))
420
420
421 def fixData360(self,list_,ang_):
421 def fixData360(self,list_,ang_):
422 if list_[0]==-1:
422 if list_[0]==-1:
423 vec = numpy.where(ang_<ang_[0])
423 vec = numpy.where(ang_<ang_[0])
424 ang_[vec] = ang_[vec]+360
424 ang_[vec] = ang_[vec]+360
425 return ang_
425 return ang_
426 return ang_
426 return ang_
427
427
428 def fixData360HL(self,angulos):
428 def fixData360HL(self,angulos):
429 vec = numpy.where(angulos>=360)
429 vec = numpy.where(angulos>=360)
430 angulos[vec]=angulos[vec]-360
430 angulos[vec]=angulos[vec]-360
431 return angulos
431 return angulos
432
432
433 def search_pos(self,pos,list_):
433 def search_pos(self,pos,list_):
434 for i in range(len(list_)):
434 for i in range(len(list_)):
435 if pos == list_[i]:
435 if pos == list_[i]:
436 return True,i
436 return True,i
437 i=None
437 i=None
438 return False,i
438 return False,i
439
439
440 def fixDataComp(self,ang_,list1_,list2_):
440 def fixDataComp(self,ang_,list1_,list2_):
441 size = len(ang_)
441 size = len(ang_)
442 size2 = 0
442 size2 = 0
443 for i in range(len(list2_)):
443 for i in range(len(list2_)):
444 size2=size2+round(list2_[i])-1
444 size2=size2+round(list2_[i])-1
445 new_size= size+size2
445 new_size= size+size2
446 ang_new = numpy.zeros(new_size)
446 ang_new = numpy.zeros(new_size)
447 ang_new2 = numpy.zeros(new_size)
447 ang_new2 = numpy.zeros(new_size)
448
448
449 tmp = 0
449 tmp = 0
450 c = 0
450 c = 0
451 for i in range(len(ang_)):
451 for i in range(len(ang_)):
452 ang_new[tmp +c] = ang_[i]
452 ang_new[tmp +c] = ang_[i]
453 ang_new2[tmp+c] = ang_[i]
453 ang_new2[tmp+c] = ang_[i]
454 condition , value = self.search_pos(i,list1_)
454 condition , value = self.search_pos(i,list1_)
455 if condition:
455 if condition:
456 pos = tmp + c + 1
456 pos = tmp + c + 1
457 for k in range(round(list2_[value])-1):
457 for k in range(round(list2_[value])-1):
458 ang_new[pos+k] = ang_new[pos+k-1]+1
458 ang_new[pos+k] = ang_new[pos+k-1]+1
459 ang_new2[pos+k] = numpy.nan
459 ang_new2[pos+k] = numpy.nan
460 tmp = pos +k
460 tmp = pos +k
461 c = 0
461 c = 0
462 c=c+1
462 c=c+1
463 return ang_new,ang_new2
463 return ang_new,ang_new2
464
464
465 def globalCheckPED(self,angulos):
465 def globalCheckPED(self,angulos):
466 l1,l2 = self.get2List(angulos)
466 l1,l2 = self.get2List(angulos)
467 if len(l1)>0:
467 if len(l1)>0:
468 angulos2 = self.fixData360(list_=l1,ang_=angulos)
468 angulos2 = self.fixData360(list_=l1,ang_=angulos)
469 l1,l2 = self.get2List(angulos2)
469 l1,l2 = self.get2List(angulos2)
470
470
471 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
471 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
472 ang1_ = self.fixData360HL(ang1_)
472 ang1_ = self.fixData360HL(ang1_)
473 ang2_ = self.fixData360HL(ang2_)
473 ang2_ = self.fixData360HL(ang2_)
474 else:
474 else:
475 ang1_= angulos
475 ang1_= angulos
476 ang2_= angulos
476 ang2_= angulos
477 return ang1_,ang2_
477 return ang1_,ang2_
478
478
479 def analizeDATA(self,data_azi):
479 def analizeDATA(self,data_azi):
480 list1 = []
480 list1 = []
481 list2 = []
481 list2 = []
482 dat = data_azi
482 dat = data_azi
483 for i in reversed(range(1,len(dat))):
483 for i in reversed(range(1,len(dat))):
484 if dat[i]>dat[i-1]:
484 if dat[i]>dat[i-1]:
485 diff = int(dat[i])-int(dat[i-1])
485 diff = int(dat[i])-int(dat[i-1])
486 else:
486 else:
487 diff = 360+int(dat[i])-int(dat[i-1])
487 diff = 360+int(dat[i])-int(dat[i-1])
488 if diff > 1:
488 if diff > 1:
489 list1.append(i-1)
489 list1.append(i-1)
490 list2.append(diff-1)
490 list2.append(diff-1)
491 return list1,list2
491 return list1,list2
492
492
493 def fixDATANEW(self,data_azi,data_weather):
493 def fixDATANEW(self,data_azi,data_weather):
494 list1,list2 = self.analizeDATA(data_azi)
494 list1,list2 = self.analizeDATA(data_azi)
495 if len(list1)== 0:
495 if len(list1)== 0:
496 return data_azi,data_weather
496 return data_azi,data_weather
497 else:
497 else:
498 resize = 0
498 resize = 0
499 for i in range(len(list2)):
499 for i in range(len(list2)):
500 resize= resize + list2[i]
500 resize= resize + list2[i]
501 new_data_azi = numpy.resize(data_azi,resize)
501 new_data_azi = numpy.resize(data_azi,resize)
502 new_data_weather= numpy.resize(date_weather,resize)
502 new_data_weather= numpy.resize(date_weather,resize)
503
503
504 for i in range(len(list2)):
504 for i in range(len(list2)):
505 j=0
505 j=0
506 position=list1[i]+1
506 position=list1[i]+1
507 for j in range(list2[i]):
507 for j in range(list2[i]):
508 new_data_azi[position+j]=new_data_azi[position+j-1]+1
508 new_data_azi[position+j]=new_data_azi[position+j-1]+1
509 return new_data_azi
509 return new_data_azi
510
510
511 def fixDATA(self,data_azi):
511 def fixDATA(self,data_azi):
512 data=data_azi
512 data=data_azi
513 for i in range(len(data)):
513 for i in range(len(data)):
514 if numpy.isnan(data[i]):
514 if numpy.isnan(data[i]):
515 data[i]=data[i-1]+1
515 data[i]=data[i-1]+1
516 return data
516 return data
517
517
518 def replaceNAN(self,data_weather,data_azi,val):
518 def replaceNAN(self,data_weather,data_azi,val):
519 data= data_azi
519 data= data_azi
520 data_T= data_weather
520 data_T= data_weather
521 if data.shape[0]> data_T.shape[0]:
521 if data.shape[0]> data_T.shape[0]:
522 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
522 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
523 c = 0
523 c = 0
524 for i in range(len(data)):
524 for i in range(len(data)):
525 if numpy.isnan(data[i]):
525 if numpy.isnan(data[i]):
526 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
526 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
527 else:
527 else:
528 data_N[i,:]=data_T[c,:]
528 data_N[i,:]=data_T[c,:]
529 c=c+1
529 c=c+1
530 return data_N
530 return data_N
531 else:
531 else:
532 for i in range(len(data)):
532 for i in range(len(data)):
533 if numpy.isnan(data[i]):
533 if numpy.isnan(data[i]):
534 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
534 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
535 return data_T
535 return data_T
536
536
537 def const_ploteo(self,data_weather,data_azi,step,res):
537 def const_ploteo(self,data_weather,data_azi,step,res):
538 if self.ini==0:
538 if self.ini==0:
539 #-------
539 #-------
540 n = (360/res)-len(data_azi)
540 n = (360/res)-len(data_azi)
541 #--------------------- new -------------------------
541 #--------------------- new -------------------------
542 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
542 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
543 #------------------------
543 #------------------------
544 start = data_azi_new[-1] + res
544 start = data_azi_new[-1] + res
545 end = data_azi_new[0] - res
545 end = data_azi_new[0] - res
546 #------ new
546 #------ new
547 self.last_data_azi = end
547 self.last_data_azi = end
548 if start>end:
548 if start>end:
549 end = end + 360
549 end = end + 360
550 azi_vacia = numpy.linspace(start,end,int(n))
550 azi_vacia = numpy.linspace(start,end,int(n))
551 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
551 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
552 data_azi = numpy.hstack((data_azi_new,azi_vacia))
552 data_azi = numpy.hstack((data_azi_new,azi_vacia))
553 # RADAR
553 # RADAR
554 val_mean = numpy.mean(data_weather[:,-1])
554 val_mean = numpy.mean(data_weather[:,-1])
555 self.val_mean = val_mean
555 self.val_mean = val_mean
556 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
556 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
557 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
557 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
558 data_weather = numpy.vstack((data_weather,data_weather_cmp))
558 data_weather = numpy.vstack((data_weather,data_weather_cmp))
559 else:
559 else:
560 # azimuth
560 # azimuth
561 flag=0
561 flag=0
562 start_azi = self.res_azi[0]
562 start_azi = self.res_azi[0]
563 #-----------new------------
563 #-----------new------------
564 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
564 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
565 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
565 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
566 #--------------------------
566 #--------------------------
567 start = data_azi[0]
567 start = data_azi[0]
568 end = data_azi[-1]
568 end = data_azi[-1]
569 self.last_data_azi= end
569 self.last_data_azi= end
570 if start< start_azi:
570 if start< start_azi:
571 start = start +360
571 start = start +360
572 if end <start_azi:
572 if end <start_azi:
573 end = end +360
573 end = end +360
574
574
575 pos_ini = int((start-start_azi)/res)
575 pos_ini = int((start-start_azi)/res)
576 len_azi = len(data_azi)
576 len_azi = len(data_azi)
577 if (360-pos_ini)<len_azi:
577 if (360-pos_ini)<len_azi:
578 if pos_ini+1==360:
578 if pos_ini+1==360:
579 pos_ini=0
579 pos_ini=0
580 else:
580 else:
581 flag=1
581 flag=1
582 dif= 360-pos_ini
582 dif= 360-pos_ini
583 comp= len_azi-dif
583 comp= len_azi-dif
584 #-----------------
584 #-----------------
585 if flag==0:
585 if flag==0:
586 # AZIMUTH
586 # AZIMUTH
587 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
587 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
588 # RADAR
588 # RADAR
589 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
589 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
590 else:
590 else:
591 # AZIMUTH
591 # AZIMUTH
592 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
592 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
593 self.res_azi[0:comp] = data_azi[dif:]
593 self.res_azi[0:comp] = data_azi[dif:]
594 # RADAR
594 # RADAR
595 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
595 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
596 self.res_weather[0:comp,:] = data_weather[dif:,:]
596 self.res_weather[0:comp,:] = data_weather[dif:,:]
597 flag=0
597 flag=0
598 data_azi = self.res_azi
598 data_azi = self.res_azi
599 data_weather = self.res_weather
599 data_weather = self.res_weather
600
600
601 return data_weather,data_azi
601 return data_weather,data_azi
602
602
603 def plot(self):
603 def plot(self):
604 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
604 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
605 data = self.data[-1]
605 data = self.data[-1]
606 r = self.data.yrange
606 r = self.data.yrange
607 delta_height = r[1]-r[0]
607 delta_height = r[1]-r[0]
608 r_mask = numpy.where(r>=0)[0]
608 r_mask = numpy.where(r>=0)[0]
609 r = numpy.arange(len(r_mask))*delta_height
609 r = numpy.arange(len(r_mask))*delta_height
610 self.y = 2*r
610 self.y = 2*r
611 # RADAR
611 # RADAR
612 #data_weather = data['weather']
612 #data_weather = data['weather']
613 # PEDESTAL
613 # PEDESTAL
614 #data_azi = data['azi']
614 #data_azi = data['azi']
615 res = 1
615 res = 1
616 # STEP
616 # STEP
617 step = (360/(res*data['weather'].shape[0]))
617 step = (360/(res*data['weather'].shape[0]))
618
618
619 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
619 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
620 self.res_ele = numpy.mean(data['ele'])
620 self.res_ele = numpy.mean(data['ele'])
621 ################# PLOTEO ###################
621 ################# PLOTEO ###################
622 for i,ax in enumerate(self.axes):
622 for i,ax in enumerate(self.axes):
623 self.zmin = self.zmin if self.zmin else 20
623 self.zmin = self.zmin if self.zmin else 20
624 self.zmax = self.zmax if self.zmax else 80
624 self.zmax = self.zmax if self.zmax else 80
625 if ax.firsttime:
625 if ax.firsttime:
626 plt.clf()
626 plt.clf()
627 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=self.zmin, vmax=self.zmax)
627 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=self.zmin, vmax=self.zmax)
628 else:
628 else:
629 plt.clf()
629 plt.clf()
630 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=self.zmin, vmax=self.zmax)
630 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=self.zmin, vmax=self.zmax)
631 caax = cgax.parasites[0]
631 caax = cgax.parasites[0]
632 paax = cgax.parasites[1]
632 paax = cgax.parasites[1]
633 cbar = plt.gcf().colorbar(pm, pad=0.075)
633 cbar = plt.gcf().colorbar(pm, pad=0.075)
634 caax.set_xlabel('x_range [km]')
634 caax.set_xlabel('x_range [km]')
635 caax.set_ylabel('y_range [km]')
635 caax.set_ylabel('y_range [km]')
636 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " EL: "+str(round(self.res_ele, 1)), transform=caax.transAxes, va='bottom',ha='right')
636 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " EL: "+str(round(self.res_ele, 1)), transform=caax.transAxes, va='bottom',ha='right')
637
637
638 self.ini= self.ini+1
638 self.ini= self.ini+1
639
639
640
640
641 class WeatherRHIPlot(Plot):
641 class WeatherRHIPlot(Plot):
642 CODE = 'weather'
642 CODE = 'weather'
643 plot_name = 'weather'
643 plot_name = 'weather'
644 plot_type = 'rhistyle'
644 plot_type = 'rhistyle'
645 buffering = False
645 buffering = False
646 data_ele_tmp = None
646 data_ele_tmp = None
647
647
648 def setup(self):
648 def setup(self):
649 print("********************")
649 print("********************")
650 print("********************")
650 print("********************")
651 print("********************")
651 print("********************")
652 print("SETUP WEATHER PLOT")
652 print("SETUP WEATHER PLOT")
653 self.ncols = 1
653 self.ncols = 1
654 self.nrows = 1
654 self.nrows = 1
655 self.nplots= 1
655 self.nplots= 1
656 self.ylabel= 'Range [Km]'
656 self.ylabel= 'Range [Km]'
657 self.titles= ['Weather']
657 self.titles= ['Weather']
658 if self.channels is not None:
658 if self.channels is not None:
659 self.nplots = len(self.channels)
659 self.nplots = len(self.channels)
660 self.nrows = len(self.channels)
660 self.nrows = len(self.channels)
661 else:
661 else:
662 self.nplots = self.data.shape(self.CODE)[0]
662 self.nplots = self.data.shape(self.CODE)[0]
663 self.nrows = self.nplots
663 self.nrows = self.nplots
664 self.channels = list(range(self.nplots))
664 self.channels = list(range(self.nplots))
665 print("channels",self.channels)
665 print("channels",self.channels)
666 print("que saldra", self.data.shape(self.CODE)[0])
666 print("que saldra", self.data.shape(self.CODE)[0])
667 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
667 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
668 print("self.titles",self.titles)
668 print("self.titles",self.titles)
669 self.colorbar=False
669 self.colorbar=False
670 self.width =12
670 self.width =12
671 self.height =8
671 self.height =8
672 self.ini =0
672 self.ini =0
673 self.len_azi =0
673 self.len_azi =0
674 self.buffer_ini = None
674 self.buffer_ini = None
675 self.buffer_ele = None
675 self.buffer_ele = None
676 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
676 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
677 self.flag =0
677 self.flag =0
678 self.indicador= 0
678 self.indicador= 0
679 self.last_data_ele = None
679 self.last_data_ele = None
680 self.val_mean = None
680 self.val_mean = None
681
681
682 def update(self, dataOut):
682 def update(self, dataOut):
683
683
684 data = {}
684 data = {}
685 meta = {}
685 meta = {}
686 if hasattr(dataOut, 'dataPP_POWER'):
686 if hasattr(dataOut, 'dataPP_POWER'):
687 factor = 1
687 factor = 1
688 if hasattr(dataOut, 'nFFTPoints'):
688 if hasattr(dataOut, 'nFFTPoints'):
689 factor = dataOut.normFactor
689 factor = dataOut.normFactor
690 print("dataOut",dataOut.data_360.shape)
690 print("dataOut",dataOut.data_360.shape)
691 #
691 #
692 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
692 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
693 #
693 #
694 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
694 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
695 data['azi'] = dataOut.data_azi
695 data['azi'] = dataOut.data_azi
696 data['ele'] = dataOut.data_ele
696 data['ele'] = dataOut.data_ele
697 #print("UPDATE")
697 #print("UPDATE")
698 #print("data[weather]",data['weather'].shape)
698 #print("data[weather]",data['weather'].shape)
699 #print("data[azi]",data['azi'])
699 #print("data[azi]",data['azi'])
700 return data, meta
700 return data, meta
701
701
702 def get2List(self,angulos):
702 def get2List(self,angulos):
703 list1=[]
703 list1=[]
704 list2=[]
704 list2=[]
705 for i in reversed(range(len(angulos))):
705 for i in reversed(range(len(angulos))):
706 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
706 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
707 diff_ = angulos[i]-angulos[i-1]
707 diff_ = angulos[i]-angulos[i-1]
708 if abs(diff_) >1.5:
708 if abs(diff_) >1.5:
709 list1.append(i-1)
709 list1.append(i-1)
710 list2.append(diff_)
710 list2.append(diff_)
711 return list(reversed(list1)),list(reversed(list2))
711 return list(reversed(list1)),list(reversed(list2))
712
712
713 def fixData90(self,list_,ang_):
713 def fixData90(self,list_,ang_):
714 if list_[0]==-1:
714 if list_[0]==-1:
715 vec = numpy.where(ang_<ang_[0])
715 vec = numpy.where(ang_<ang_[0])
716 ang_[vec] = ang_[vec]+90
716 ang_[vec] = ang_[vec]+90
717 return ang_
717 return ang_
718 return ang_
718 return ang_
719
719
720 def fixData90HL(self,angulos):
720 def fixData90HL(self,angulos):
721 vec = numpy.where(angulos>=90)
721 vec = numpy.where(angulos>=90)
722 angulos[vec]=angulos[vec]-90
722 angulos[vec]=angulos[vec]-90
723 return angulos
723 return angulos
724
724
725
725
726 def search_pos(self,pos,list_):
726 def search_pos(self,pos,list_):
727 for i in range(len(list_)):
727 for i in range(len(list_)):
728 if pos == list_[i]:
728 if pos == list_[i]:
729 return True,i
729 return True,i
730 i=None
730 i=None
731 return False,i
731 return False,i
732
732
733 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
733 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
734 size = len(ang_)
734 size = len(ang_)
735 size2 = 0
735 size2 = 0
736 for i in range(len(list2_)):
736 for i in range(len(list2_)):
737 size2=size2+round(abs(list2_[i]))-1
737 size2=size2+round(abs(list2_[i]))-1
738 new_size= size+size2
738 new_size= size+size2
739 ang_new = numpy.zeros(new_size)
739 ang_new = numpy.zeros(new_size)
740 ang_new2 = numpy.zeros(new_size)
740 ang_new2 = numpy.zeros(new_size)
741
741
742 tmp = 0
742 tmp = 0
743 c = 0
743 c = 0
744 for i in range(len(ang_)):
744 for i in range(len(ang_)):
745 ang_new[tmp +c] = ang_[i]
745 ang_new[tmp +c] = ang_[i]
746 ang_new2[tmp+c] = ang_[i]
746 ang_new2[tmp+c] = ang_[i]
747 condition , value = self.search_pos(i,list1_)
747 condition , value = self.search_pos(i,list1_)
748 if condition:
748 if condition:
749 pos = tmp + c + 1
749 pos = tmp + c + 1
750 for k in range(round(abs(list2_[value]))-1):
750 for k in range(round(abs(list2_[value]))-1):
751 if tipo_case==0 or tipo_case==3:#subida
751 if tipo_case==0 or tipo_case==3:#subida
752 ang_new[pos+k] = ang_new[pos+k-1]+1
752 ang_new[pos+k] = ang_new[pos+k-1]+1
753 ang_new2[pos+k] = numpy.nan
753 ang_new2[pos+k] = numpy.nan
754 elif tipo_case==1 or tipo_case==2:#bajada
754 elif tipo_case==1 or tipo_case==2:#bajada
755 ang_new[pos+k] = ang_new[pos+k-1]-1
755 ang_new[pos+k] = ang_new[pos+k-1]-1
756 ang_new2[pos+k] = numpy.nan
756 ang_new2[pos+k] = numpy.nan
757
757
758 tmp = pos +k
758 tmp = pos +k
759 c = 0
759 c = 0
760 c=c+1
760 c=c+1
761 return ang_new,ang_new2
761 return ang_new,ang_new2
762
762
763 def globalCheckPED(self,angulos,tipo_case):
763 def globalCheckPED(self,angulos,tipo_case):
764 l1,l2 = self.get2List(angulos)
764 l1,l2 = self.get2List(angulos)
765 ##print("l1",l1)
765 ##print("l1",l1)
766 ##print("l2",l2)
766 ##print("l2",l2)
767 if len(l1)>0:
767 if len(l1)>0:
768 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
768 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
769 #l1,l2 = self.get2List(angulos2)
769 #l1,l2 = self.get2List(angulos2)
770 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
770 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
771 #ang1_ = self.fixData90HL(ang1_)
771 #ang1_ = self.fixData90HL(ang1_)
772 #ang2_ = self.fixData90HL(ang2_)
772 #ang2_ = self.fixData90HL(ang2_)
773 else:
773 else:
774 ang1_= angulos
774 ang1_= angulos
775 ang2_= angulos
775 ang2_= angulos
776 return ang1_,ang2_
776 return ang1_,ang2_
777
777
778
778
779 def replaceNAN(self,data_weather,data_ele,val):
779 def replaceNAN(self,data_weather,data_ele,val):
780 data= data_ele
780 data= data_ele
781 data_T= data_weather
781 data_T= data_weather
782 if data.shape[0]> data_T.shape[0]:
782 if data.shape[0]> data_T.shape[0]:
783 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
783 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
784 c = 0
784 c = 0
785 for i in range(len(data)):
785 for i in range(len(data)):
786 if numpy.isnan(data[i]):
786 if numpy.isnan(data[i]):
787 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
787 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
788 else:
788 else:
789 data_N[i,:]=data_T[c,:]
789 data_N[i,:]=data_T[c,:]
790 c=c+1
790 c=c+1
791 return data_N
791 return data_N
792 else:
792 else:
793 for i in range(len(data)):
793 for i in range(len(data)):
794 if numpy.isnan(data[i]):
794 if numpy.isnan(data[i]):
795 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
795 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
796 return data_T
796 return data_T
797
797
798 def check_case(self,data_ele,ang_max,ang_min):
798 def check_case(self,data_ele,ang_max,ang_min):
799 start = data_ele[0]
799 start = data_ele[0]
800 end = data_ele[-1]
800 end = data_ele[-1]
801 number = (end-start)
801 number = (end-start)
802 len_ang=len(data_ele)
802 len_ang=len(data_ele)
803 print("start",start)
803 print("start",start)
804 print("end",end)
804 print("end",end)
805 print("number",number)
805 print("number",number)
806
806
807 print("len_ang",len_ang)
807 print("len_ang",len_ang)
808
808
809 #exit(1)
809 #exit(1)
810
810
811 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
811 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
812 return 0
812 return 0
813 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
813 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
814 # return 1
814 # return 1
815 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
815 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
816 return 1
816 return 1
817 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
817 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
818 return 2
818 return 2
819 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
819 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
820 return 3
820 return 3
821
821
822
822
823 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
823 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
824 ang_max= ang_max
824 ang_max= ang_max
825 ang_min= ang_min
825 ang_min= ang_min
826 data_weather=data_weather
826 data_weather=data_weather
827 val_ch=val_ch
827 val_ch=val_ch
828 ##print("*********************DATA WEATHER**************************************")
828 ##print("*********************DATA WEATHER**************************************")
829 ##print(data_weather)
829 ##print(data_weather)
830 if self.ini==0:
830 if self.ini==0:
831 '''
831 '''
832 print("**********************************************")
832 print("**********************************************")
833 print("**********************************************")
833 print("**********************************************")
834 print("***************ini**************")
834 print("***************ini**************")
835 print("**********************************************")
835 print("**********************************************")
836 print("**********************************************")
836 print("**********************************************")
837 '''
837 '''
838 #print("data_ele",data_ele)
838 #print("data_ele",data_ele)
839 #----------------------------------------------------------
839 #----------------------------------------------------------
840 tipo_case = self.check_case(data_ele,ang_max,ang_min)
840 tipo_case = self.check_case(data_ele,ang_max,ang_min)
841 print("check_case",tipo_case)
841 print("check_case",tipo_case)
842 #exit(1)
842 #exit(1)
843 #--------------------- new -------------------------
843 #--------------------- new -------------------------
844 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
844 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
845
845
846 #-------------------------CAMBIOS RHI---------------------------------
846 #-------------------------CAMBIOS RHI---------------------------------
847 start= ang_min
847 start= ang_min
848 end = ang_max
848 end = ang_max
849 n= (ang_max-ang_min)/res
849 n= (ang_max-ang_min)/res
850 #------ new
850 #------ new
851 self.start_data_ele = data_ele_new[0]
851 self.start_data_ele = data_ele_new[0]
852 self.end_data_ele = data_ele_new[-1]
852 self.end_data_ele = data_ele_new[-1]
853 if tipo_case==0 or tipo_case==3: # SUBIDA
853 if tipo_case==0 or tipo_case==3: # SUBIDA
854 n1= round(self.start_data_ele)- start
854 n1= round(self.start_data_ele)- start
855 n2= end - round(self.end_data_ele)
855 n2= end - round(self.end_data_ele)
856 print(self.start_data_ele)
856 print(self.start_data_ele)
857 print(self.end_data_ele)
857 print(self.end_data_ele)
858 if n1>0:
858 if n1>0:
859 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
859 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
860 ele1_nan= numpy.ones(n1)*numpy.nan
860 ele1_nan= numpy.ones(n1)*numpy.nan
861 data_ele = numpy.hstack((ele1,data_ele_new))
861 data_ele = numpy.hstack((ele1,data_ele_new))
862 print("ele1_nan",ele1_nan.shape)
862 print("ele1_nan",ele1_nan.shape)
863 print("data_ele_old",data_ele_old.shape)
863 print("data_ele_old",data_ele_old.shape)
864 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
864 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
865 if n2>0:
865 if n2>0:
866 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
866 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
867 ele2_nan= numpy.ones(n2)*numpy.nan
867 ele2_nan= numpy.ones(n2)*numpy.nan
868 data_ele = numpy.hstack((data_ele,ele2))
868 data_ele = numpy.hstack((data_ele,ele2))
869 print("ele2_nan",ele2_nan.shape)
869 print("ele2_nan",ele2_nan.shape)
870 print("data_ele_old",data_ele_old.shape)
870 print("data_ele_old",data_ele_old.shape)
871 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
871 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
872
872
873 if tipo_case==1 or tipo_case==2: # BAJADA
873 if tipo_case==1 or tipo_case==2: # BAJADA
874 data_ele_new = data_ele_new[::-1] # reversa
874 data_ele_new = data_ele_new[::-1] # reversa
875 data_ele_old = data_ele_old[::-1]# reversa
875 data_ele_old = data_ele_old[::-1]# reversa
876 data_weather = data_weather[::-1,:]# reversa
876 data_weather = data_weather[::-1,:]# reversa
877 vec= numpy.where(data_ele_new<ang_max)
877 vec= numpy.where(data_ele_new<ang_max)
878 data_ele_new = data_ele_new[vec]
878 data_ele_new = data_ele_new[vec]
879 data_ele_old = data_ele_old[vec]
879 data_ele_old = data_ele_old[vec]
880 data_weather = data_weather[vec[0]]
880 data_weather = data_weather[vec[0]]
881 vec2= numpy.where(0<data_ele_new)
881 vec2= numpy.where(0<data_ele_new)
882 data_ele_new = data_ele_new[vec2]
882 data_ele_new = data_ele_new[vec2]
883 data_ele_old = data_ele_old[vec2]
883 data_ele_old = data_ele_old[vec2]
884 data_weather = data_weather[vec2[0]]
884 data_weather = data_weather[vec2[0]]
885 self.start_data_ele = data_ele_new[0]
885 self.start_data_ele = data_ele_new[0]
886 self.end_data_ele = data_ele_new[-1]
886 self.end_data_ele = data_ele_new[-1]
887
887
888 n1= round(self.start_data_ele)- start
888 n1= round(self.start_data_ele)- start
889 n2= end - round(self.end_data_ele)-1
889 n2= end - round(self.end_data_ele)-1
890 print(self.start_data_ele)
890 print(self.start_data_ele)
891 print(self.end_data_ele)
891 print(self.end_data_ele)
892 if n1>0:
892 if n1>0:
893 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
893 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
894 ele1_nan= numpy.ones(n1)*numpy.nan
894 ele1_nan= numpy.ones(n1)*numpy.nan
895 data_ele = numpy.hstack((ele1,data_ele_new))
895 data_ele = numpy.hstack((ele1,data_ele_new))
896 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
896 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
897 if n2>0:
897 if n2>0:
898 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
898 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
899 ele2_nan= numpy.ones(n2)*numpy.nan
899 ele2_nan= numpy.ones(n2)*numpy.nan
900 data_ele = numpy.hstack((data_ele,ele2))
900 data_ele = numpy.hstack((data_ele,ele2))
901 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
901 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
902 # RADAR
902 # RADAR
903 # NOTA data_ele y data_weather es la variable que retorna
903 # NOTA data_ele y data_weather es la variable que retorna
904 val_mean = numpy.mean(data_weather[:,-1])
904 val_mean = numpy.mean(data_weather[:,-1])
905 self.val_mean = val_mean
905 self.val_mean = val_mean
906 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
906 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
907 self.data_ele_tmp[val_ch]= data_ele_old
907 self.data_ele_tmp[val_ch]= data_ele_old
908 else:
908 else:
909 #print("**********************************************")
909 #print("**********************************************")
910 #print("****************VARIABLE**********************")
910 #print("****************VARIABLE**********************")
911 #-------------------------CAMBIOS RHI---------------------------------
911 #-------------------------CAMBIOS RHI---------------------------------
912 #---------------------------------------------------------------------
912 #---------------------------------------------------------------------
913 ##print("INPUT data_ele",data_ele)
913 ##print("INPUT data_ele",data_ele)
914 flag=0
914 flag=0
915 start_ele = self.res_ele[0]
915 start_ele = self.res_ele[0]
916 tipo_case = self.check_case(data_ele,ang_max,ang_min)
916 tipo_case = self.check_case(data_ele,ang_max,ang_min)
917 #print("TIPO DE DATA",tipo_case)
917 #print("TIPO DE DATA",tipo_case)
918 #-----------new------------
918 #-----------new------------
919 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
919 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
920 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
920 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
921
921
922 #-------------------------------NEW RHI ITERATIVO-------------------------
922 #-------------------------------NEW RHI ITERATIVO-------------------------
923
923
924 if tipo_case==0 : # SUBIDA
924 if tipo_case==0 : # SUBIDA
925 vec = numpy.where(data_ele<ang_max)
925 vec = numpy.where(data_ele<ang_max)
926 data_ele = data_ele[vec]
926 data_ele = data_ele[vec]
927 data_ele_old = data_ele_old[vec]
927 data_ele_old = data_ele_old[vec]
928 data_weather = data_weather[vec[0]]
928 data_weather = data_weather[vec[0]]
929
929
930 vec2 = numpy.where(0<data_ele)
930 vec2 = numpy.where(0<data_ele)
931 data_ele= data_ele[vec2]
931 data_ele= data_ele[vec2]
932 data_ele_old= data_ele_old[vec2]
932 data_ele_old= data_ele_old[vec2]
933 ##print(data_ele_new)
933 ##print(data_ele_new)
934 data_weather= data_weather[vec2[0]]
934 data_weather= data_weather[vec2[0]]
935
935
936 new_i_ele = int(round(data_ele[0]))
936 new_i_ele = int(round(data_ele[0]))
937 new_f_ele = int(round(data_ele[-1]))
937 new_f_ele = int(round(data_ele[-1]))
938 #print(new_i_ele)
938 #print(new_i_ele)
939 #print(new_f_ele)
939 #print(new_f_ele)
940 #print(data_ele,len(data_ele))
940 #print(data_ele,len(data_ele))
941 #print(data_ele_old,len(data_ele_old))
941 #print(data_ele_old,len(data_ele_old))
942 if new_i_ele< 2:
942 if new_i_ele< 2:
943 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
943 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
944 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
944 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
945 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
945 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
946 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
946 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
947 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
947 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
948 data_ele = self.res_ele
948 data_ele = self.res_ele
949 data_weather = self.res_weather[val_ch]
949 data_weather = self.res_weather[val_ch]
950
950
951 elif tipo_case==1 : #BAJADA
951 elif tipo_case==1 : #BAJADA
952 data_ele = data_ele[::-1] # reversa
952 data_ele = data_ele[::-1] # reversa
953 data_ele_old = data_ele_old[::-1]# reversa
953 data_ele_old = data_ele_old[::-1]# reversa
954 data_weather = data_weather[::-1,:]# reversa
954 data_weather = data_weather[::-1,:]# reversa
955 vec= numpy.where(data_ele<ang_max)
955 vec= numpy.where(data_ele<ang_max)
956 data_ele = data_ele[vec]
956 data_ele = data_ele[vec]
957 data_ele_old = data_ele_old[vec]
957 data_ele_old = data_ele_old[vec]
958 data_weather = data_weather[vec[0]]
958 data_weather = data_weather[vec[0]]
959 vec2= numpy.where(0<data_ele)
959 vec2= numpy.where(0<data_ele)
960 data_ele = data_ele[vec2]
960 data_ele = data_ele[vec2]
961 data_ele_old = data_ele_old[vec2]
961 data_ele_old = data_ele_old[vec2]
962 data_weather = data_weather[vec2[0]]
962 data_weather = data_weather[vec2[0]]
963
963
964
964
965 new_i_ele = int(round(data_ele[0]))
965 new_i_ele = int(round(data_ele[0]))
966 new_f_ele = int(round(data_ele[-1]))
966 new_f_ele = int(round(data_ele[-1]))
967 #print(data_ele)
967 #print(data_ele)
968 #print(ang_max)
968 #print(ang_max)
969 #print(data_ele_old)
969 #print(data_ele_old)
970 if new_i_ele <= 1:
970 if new_i_ele <= 1:
971 new_i_ele = 1
971 new_i_ele = 1
972 if round(data_ele[-1])>=ang_max-1:
972 if round(data_ele[-1])>=ang_max-1:
973 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
973 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
974 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
974 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
975 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
975 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
976 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
976 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
977 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
977 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
978 data_ele = self.res_ele
978 data_ele = self.res_ele
979 data_weather = self.res_weather[val_ch]
979 data_weather = self.res_weather[val_ch]
980
980
981 elif tipo_case==2: #bajada
981 elif tipo_case==2: #bajada
982 vec = numpy.where(data_ele<ang_max)
982 vec = numpy.where(data_ele<ang_max)
983 data_ele = data_ele[vec]
983 data_ele = data_ele[vec]
984 data_weather= data_weather[vec[0]]
984 data_weather= data_weather[vec[0]]
985
985
986 len_vec = len(vec)
986 len_vec = len(vec)
987 data_ele_new = data_ele[::-1] # reversa
987 data_ele_new = data_ele[::-1] # reversa
988 data_weather = data_weather[::-1,:]
988 data_weather = data_weather[::-1,:]
989 new_i_ele = int(data_ele_new[0])
989 new_i_ele = int(data_ele_new[0])
990 new_f_ele = int(data_ele_new[-1])
990 new_f_ele = int(data_ele_new[-1])
991
991
992 n1= new_i_ele- ang_min
992 n1= new_i_ele- ang_min
993 n2= ang_max - new_f_ele-1
993 n2= ang_max - new_f_ele-1
994 if n1>0:
994 if n1>0:
995 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
995 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
996 ele1_nan= numpy.ones(n1)*numpy.nan
996 ele1_nan= numpy.ones(n1)*numpy.nan
997 data_ele = numpy.hstack((ele1,data_ele_new))
997 data_ele = numpy.hstack((ele1,data_ele_new))
998 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
998 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
999 if n2>0:
999 if n2>0:
1000 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1000 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1001 ele2_nan= numpy.ones(n2)*numpy.nan
1001 ele2_nan= numpy.ones(n2)*numpy.nan
1002 data_ele = numpy.hstack((data_ele,ele2))
1002 data_ele = numpy.hstack((data_ele,ele2))
1003 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1003 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1004
1004
1005 self.data_ele_tmp[val_ch] = data_ele_old
1005 self.data_ele_tmp[val_ch] = data_ele_old
1006 self.res_ele = data_ele
1006 self.res_ele = data_ele
1007 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1007 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1008 data_ele = self.res_ele
1008 data_ele = self.res_ele
1009 data_weather = self.res_weather[val_ch]
1009 data_weather = self.res_weather[val_ch]
1010
1010
1011 elif tipo_case==3:#subida
1011 elif tipo_case==3:#subida
1012 vec = numpy.where(0<data_ele)
1012 vec = numpy.where(0<data_ele)
1013 data_ele= data_ele[vec]
1013 data_ele= data_ele[vec]
1014 data_ele_new = data_ele
1014 data_ele_new = data_ele
1015 data_ele_old= data_ele_old[vec]
1015 data_ele_old= data_ele_old[vec]
1016 data_weather= data_weather[vec[0]]
1016 data_weather= data_weather[vec[0]]
1017 pos_ini = numpy.argmin(data_ele)
1017 pos_ini = numpy.argmin(data_ele)
1018 if pos_ini>0:
1018 if pos_ini>0:
1019 len_vec= len(data_ele)
1019 len_vec= len(data_ele)
1020 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1020 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1021 #print(vec3)
1021 #print(vec3)
1022 data_ele= data_ele[vec3]
1022 data_ele= data_ele[vec3]
1023 data_ele_new = data_ele
1023 data_ele_new = data_ele
1024 data_ele_old= data_ele_old[vec3]
1024 data_ele_old= data_ele_old[vec3]
1025 data_weather= data_weather[vec3]
1025 data_weather= data_weather[vec3]
1026
1026
1027 new_i_ele = int(data_ele_new[0])
1027 new_i_ele = int(data_ele_new[0])
1028 new_f_ele = int(data_ele_new[-1])
1028 new_f_ele = int(data_ele_new[-1])
1029 n1= new_i_ele- ang_min
1029 n1= new_i_ele- ang_min
1030 n2= ang_max - new_f_ele-1
1030 n2= ang_max - new_f_ele-1
1031 if n1>0:
1031 if n1>0:
1032 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1032 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1033 ele1_nan= numpy.ones(n1)*numpy.nan
1033 ele1_nan= numpy.ones(n1)*numpy.nan
1034 data_ele = numpy.hstack((ele1,data_ele_new))
1034 data_ele = numpy.hstack((ele1,data_ele_new))
1035 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1035 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1036 if n2>0:
1036 if n2>0:
1037 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1037 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1038 ele2_nan= numpy.ones(n2)*numpy.nan
1038 ele2_nan= numpy.ones(n2)*numpy.nan
1039 data_ele = numpy.hstack((data_ele,ele2))
1039 data_ele = numpy.hstack((data_ele,ele2))
1040 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1040 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1041
1041
1042 self.data_ele_tmp[val_ch] = data_ele_old
1042 self.data_ele_tmp[val_ch] = data_ele_old
1043 self.res_ele = data_ele
1043 self.res_ele = data_ele
1044 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1044 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1045 data_ele = self.res_ele
1045 data_ele = self.res_ele
1046 data_weather = self.res_weather[val_ch]
1046 data_weather = self.res_weather[val_ch]
1047 #print("self.data_ele_tmp",self.data_ele_tmp)
1047 #print("self.data_ele_tmp",self.data_ele_tmp)
1048 return data_weather,data_ele
1048 return data_weather,data_ele
1049
1049
1050
1050
1051 def plot(self):
1051 def plot(self):
1052 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1052 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1053 data = self.data[-1]
1053 data = self.data[-1]
1054 r = self.data.yrange
1054 r = self.data.yrange
1055 delta_height = r[1]-r[0]
1055 delta_height = r[1]-r[0]
1056 r_mask = numpy.where(r>=0)[0]
1056 r_mask = numpy.where(r>=0)[0]
1057 ##print("delta_height",delta_height)
1057 ##print("delta_height",delta_height)
1058 #print("r_mask",r_mask,len(r_mask))
1058 #print("r_mask",r_mask,len(r_mask))
1059 r = numpy.arange(len(r_mask))*delta_height
1059 r = numpy.arange(len(r_mask))*delta_height
1060 self.y = 2*r
1060 self.y = 2*r
1061 res = 1
1061 res = 1
1062 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1062 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1063 ang_max = self.ang_max
1063 ang_max = self.ang_max
1064 ang_min = self.ang_min
1064 ang_min = self.ang_min
1065 var_ang =ang_max - ang_min
1065 var_ang =ang_max - ang_min
1066 step = (int(var_ang)/(res*data['weather'].shape[0]))
1066 step = (int(var_ang)/(res*data['weather'].shape[0]))
1067 ###print("step",step)
1067 ###print("step",step)
1068 #--------------------------------------------------------
1068 #--------------------------------------------------------
1069 ##print('weather',data['weather'].shape)
1069 ##print('weather',data['weather'].shape)
1070 ##print('ele',data['ele'].shape)
1070 ##print('ele',data['ele'].shape)
1071
1071
1072 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1072 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1073 ###self.res_azi = numpy.mean(data['azi'])
1073 ###self.res_azi = numpy.mean(data['azi'])
1074 ###print("self.res_ele",self.res_ele)
1074 ###print("self.res_ele",self.res_ele)
1075 plt.clf()
1075 plt.clf()
1076 subplots = [121, 122]
1076 subplots = [121, 122]
1077 cg={'angular_spacing': 20.}
1077 cg={'angular_spacing': 20.}
1078 if self.ini==0:
1078 if self.ini==0:
1079 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1079 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1080 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1080 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1081 print("SHAPE",self.data_ele_tmp.shape)
1081 print("SHAPE",self.data_ele_tmp.shape)
1082
1082
1083 for i,ax in enumerate(self.axes):
1083 for i,ax in enumerate(self.axes):
1084 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1084 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1085 self.res_azi = numpy.mean(data['azi'])
1085 self.res_azi = numpy.mean(data['azi'])
1086 if i==0:
1086 if i==0:
1087 print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
1087 print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
1088 self.zmin = self.zmin if self.zmin else 20
1088 self.zmin = self.zmin if self.zmin else 20
1089 self.zmax = self.zmax if self.zmax else 80
1089 self.zmax = self.zmax if self.zmax else 80
1090 if ax.firsttime:
1090 if ax.firsttime:
1091 #plt.clf()
1091 #plt.clf()
1092 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj=cg,vmin=self.zmin, vmax=self.zmax)
1092 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj=cg,vmin=self.zmin, vmax=self.zmax)
1093 #fig=self.figures[0]
1093 #fig=self.figures[0]
1094 else:
1094 else:
1095 #plt.clf()
1095 #plt.clf()
1096 if i==0:
1096 if i==0:
1097 print(self.res_weather[i])
1097 print(self.res_weather[i])
1098 print(self.res_ele)
1098 print(self.res_ele)
1099 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj=cg,vmin=self.zmin, vmax=self.zmax)
1099 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj=cg,vmin=self.zmin, vmax=self.zmax)
1100 caax = cgax.parasites[0]
1100 caax = cgax.parasites[0]
1101 paax = cgax.parasites[1]
1101 paax = cgax.parasites[1]
1102 cbar = plt.gcf().colorbar(pm, pad=0.075)
1102 cbar = plt.gcf().colorbar(pm, pad=0.075)
1103 caax.set_xlabel('x_range [km]')
1103 caax.set_xlabel('x_range [km]')
1104 caax.set_ylabel('y_range [km]')
1104 caax.set_ylabel('y_range [km]')
1105 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1105 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1106 print("***************************self.ini****************************",self.ini)
1106 print("***************************self.ini****************************",self.ini)
1107 self.ini= self.ini+1
1107 self.ini= self.ini+1
1108
1108
1109 class Weather_vRF_Plot(Plot):
1109 class Weather_vRF_Plot(Plot):
1110 CODE = 'PPI'
1110 CODE = 'PPI'
1111 plot_name = 'PPI'
1111 plot_name = 'PPI'
1112 #plot_type = 'ppistyle'
1112 #plot_type = 'ppistyle'
1113 buffering = False
1113 buffering = False
1114
1114
1115 def setup(self):
1115 def setup(self):
1116
1116
1117 self.ncols = 1
1117 self.ncols = 1
1118 self.nrows = 1
1118 self.nrows = 1
1119 self.width =8
1119 self.width =8
1120 self.height =8
1120 self.height =8
1121 self.nplots= 1
1121 self.nplots= 1
1122 self.ylabel= 'Range [Km]'
1122 self.ylabel= 'Range [Km]'
1123 self.xlabel= 'Range [Km]'
1123 self.xlabel= 'Range [Km]'
1124 self.titles= ['PPI']
1124 self.titles= ['PPI']
1125 self.polar = True
1125 self.polar = True
1126 if self.channels is not None:
1126 if self.channels is not None:
1127 self.nplots = len(self.channels)
1127 self.nplots = len(self.channels)
1128 self.nrows = len(self.channels)
1128 self.nrows = len(self.channels)
1129 else:
1129 else:
1130 self.nplots = self.data.shape(self.CODE)[0]
1130 self.nplots = self.data.shape(self.CODE)[0]
1131 self.nrows = self.nplots
1131 self.nrows = self.nplots
1132 self.channels = list(range(self.nplots))
1132 self.channels = list(range(self.nplots))
1133
1133
1134 if self.CODE == 'POWER':
1134 if self.CODE == 'POWER':
1135 self.cb_label = r'Power (dB)'
1135 self.cb_label = r'Power (dB)'
1136 elif self.CODE == 'DOPPLER':
1136 elif self.CODE == 'DOPPLER':
1137 self.cb_label = r'Velocity (m/s)'
1137 self.cb_label = r'Velocity (m/s)'
1138 self.colorbar=True
1138 self.colorbar=True
1139 self.width = 9
1139 self.width = 9
1140 self.height =8
1140 self.height =8
1141 self.ini =0
1141 self.ini =0
1142 self.len_azi =0
1142 self.len_azi =0
1143 self.buffer_ini = None
1143 self.buffer_ini = None
1144 self.buffer_ele = None
1144 self.buffer_ele = None
1145 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.15, 'right': 0.9, 'bottom': 0.08})
1145 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.15, 'right': 0.9, 'bottom': 0.08})
1146 self.flag =0
1146 self.flag =0
1147 self.indicador= 0
1147 self.indicador= 0
1148 self.last_data_ele = None
1148 self.last_data_ele = None
1149 self.val_mean = None
1149 self.val_mean = None
1150
1150
1151 def update(self, dataOut):
1151 def update(self, dataOut):
1152
1152
1153 data = {}
1153 data = {}
1154 meta = {}
1154 meta = {}
1155 if hasattr(dataOut, 'dataPP_POWER'):
1155 if hasattr(dataOut, 'dataPP_POWER'):
1156 factor = 1
1156 factor = 1
1157 if hasattr(dataOut, 'nFFTPoints'):
1157 if hasattr(dataOut, 'nFFTPoints'):
1158 factor = dataOut.normFactor
1158 factor = dataOut.normFactor
1159
1159
1160 if 'pow' in self.attr_data[0].lower():
1160 if 'pow' in self.attr_data[0].lower():
1161 data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor))
1161 data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor))
1162 else:
1162 else:
1163 data['data'] = getattr(dataOut, self.attr_data[0])/(factor)
1163 data['data'] = getattr(dataOut, self.attr_data[0])/(factor)
1164
1164
1165 data['azi'] = dataOut.data_azi
1165 data['azi'] = dataOut.data_azi
1166 data['ele'] = dataOut.data_ele
1166 data['ele'] = dataOut.data_ele
1167
1167
1168 return data, meta
1168 return data, meta
1169
1169
1170 def plot(self):
1170 def plot(self):
1171 data = self.data[-1]
1171 data = self.data[-1]
1172 r = self.data.yrange
1172 r = self.data.yrange
1173 delta_height = r[1]-r[0]
1173 delta_height = r[1]-r[0]
1174 r_mask = numpy.where(r>=0)[0]
1174 r_mask = numpy.where(r>=0)[0]
1175 self.r_mask = r_mask
1175 self.r_mask = r_mask
1176 r = numpy.arange(len(r_mask))*delta_height
1176 r = numpy.arange(len(r_mask))*delta_height
1177 self.y = 2*r
1177 self.y = 2*r
1178
1178
1179 try:
1179 try:
1180 z = data['data'][self.channels[0]][:,r_mask]
1180 z = data['data'][self.channels[0]][:,r_mask]
1181
1181
1182 except:
1182 except:
1183 z = data['data'][0][:,r_mask]
1183 z = data['data'][0][:,r_mask]
1184
1184
1185 self.titles = []
1185 self.titles = []
1186
1186
1187 self.ymax = self.ymax if self.ymax else numpy.nanmax(r)
1187 self.ymax = self.ymax if self.ymax else numpy.nanmax(r)
1188 self.ymin = self.ymin if self.ymin else numpy.nanmin(r)
1188 self.ymin = self.ymin if self.ymin else numpy.nanmin(r)
1189 self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
1189 self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
1190 self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
1190 self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
1191 self.ang_min = self.ang_min if self.ang_min else 0
1191 self.ang_min = self.ang_min if self.ang_min else 0
1192 self.ang_max = self.ang_max if self.ang_max else 360
1192 self.ang_max = self.ang_max if self.ang_max else 360
1193
1193
1194 r, theta = numpy.meshgrid(r, numpy.radians(data['azi']) )
1194 r, theta = numpy.meshgrid(r, numpy.radians(data['azi']) )
1195
1195
1196 for i,ax in enumerate(self.axes):
1196 for i,ax in enumerate(self.axes):
1197
1197
1198 if ax.firsttime:
1198 if ax.firsttime:
1199 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
1199 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
1200 ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
1200 ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
1201 ax.set_theta_direction(-1)
1201 ax.set_theta_direction(-1)
1202
1202
1203 else:
1203 else:
1204 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
1204 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
1205 ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
1205 ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
1206 ax.set_theta_direction(-1)
1206 ax.set_theta_direction(-1)
1207
1207
1208 ax.grid(True)
1208 ax.grid(True)
1209
1209
1210 if len(self.channels) !=1:
1210 if len(self.channels) !=1:
1211 self.titles = ['PPI {} at EL: {} Channel {}'.format(self.self.labels[x], str(round(numpy.mean(data['ele']),1)), x) for x in range(self.nrows)]
1211 self.titles = ['PPI {} at EL: {} Channel {}'.format(self.self.labels[x], str(round(numpy.mean(data['ele']),1)), x) for x in range(self.nrows)]
1212 else:
1212 else:
1213 self.titles = ['PPI {} at EL: {} Channel {}'.format(self.labels[0], str(round(numpy.mean(data['ele']),1)), self.channels[0])]
1213 self.titles = ['PPI {} at EL: {} Channel {}'.format(self.labels[0], str(round(numpy.mean(data['ele']),1)), self.channels[0])]
1214
1214
1215 class WeatherRHI_vRF2_Plot(Plot):
1215 class WeatherRHI_vRF2_Plot(Plot):
1216 CODE = 'weather'
1216 CODE = 'weather'
1217 plot_name = 'weather'
1217 plot_name = 'weather'
1218 plot_type = 'rhistyle'
1218 plot_type = 'rhistyle'
1219 buffering = False
1219 buffering = False
1220 data_ele_tmp = None
1220 data_ele_tmp = None
1221
1221
1222 def setup(self):
1222 def setup(self):
1223 print("********************")
1223 print("********************")
1224 print("********************")
1224 print("********************")
1225 print("********************")
1225 print("********************")
1226 print("SETUP WEATHER PLOT")
1226 print("SETUP WEATHER PLOT")
1227 self.ncols = 1
1227 self.ncols = 1
1228 self.nrows = 1
1228 self.nrows = 1
1229 self.nplots= 1
1229 self.nplots= 1
1230 self.ylabel= 'Range [Km]'
1230 self.ylabel= 'Range [Km]'
1231 self.titles= ['Weather']
1231 self.titles= ['Weather']
1232 if self.channels is not None:
1232 if self.channels is not None:
1233 self.nplots = len(self.channels)
1233 self.nplots = len(self.channels)
1234 self.nrows = len(self.channels)
1234 self.nrows = len(self.channels)
1235 else:
1235 else:
1236 self.nplots = self.data.shape(self.CODE)[0]
1236 self.nplots = self.data.shape(self.CODE)[0]
1237 self.nrows = self.nplots
1237 self.nrows = self.nplots
1238 self.channels = list(range(self.nplots))
1238 self.channels = list(range(self.nplots))
1239 print("channels",self.channels)
1239 print("channels",self.channels)
1240 print("que saldra", self.data.shape(self.CODE)[0])
1240 print("que saldra", self.data.shape(self.CODE)[0])
1241 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1241 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1242 print("self.titles",self.titles)
1242 print("self.titles",self.titles)
1243 self.colorbar=False
1243 self.colorbar=False
1244 self.width =8
1244 self.width =8
1245 self.height =8
1245 self.height =8
1246 self.ini =0
1246 self.ini =0
1247 self.len_azi =0
1247 self.len_azi =0
1248 self.buffer_ini = None
1248 self.buffer_ini = None
1249 self.buffer_ele = None
1249 self.buffer_ele = None
1250 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1250 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1251 self.flag =0
1251 self.flag =0
1252 self.indicador= 0
1252 self.indicador= 0
1253 self.last_data_ele = None
1253 self.last_data_ele = None
1254 self.val_mean = None
1254 self.val_mean = None
1255
1255
1256 def update(self, dataOut):
1256 def update(self, dataOut):
1257
1257
1258 data = {}
1258 data = {}
1259 meta = {}
1259 meta = {}
1260 if hasattr(dataOut, 'dataPP_POWER'):
1260 if hasattr(dataOut, 'dataPP_POWER'):
1261 factor = 1
1261 factor = 1
1262 if hasattr(dataOut, 'nFFTPoints'):
1262 if hasattr(dataOut, 'nFFTPoints'):
1263 factor = dataOut.normFactor
1263 factor = dataOut.normFactor
1264 print("dataOut",dataOut.data_360.shape)
1264 print("dataOut",dataOut.data_360.shape)
1265 #
1265 #
1266 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1266 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1267 #
1267 #
1268 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1268 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1269 data['azi'] = dataOut.data_azi
1269 data['azi'] = dataOut.data_azi
1270 data['ele'] = dataOut.data_ele
1270 data['ele'] = dataOut.data_ele
1271 data['case_flag'] = dataOut.case_flag
1271 data['case_flag'] = dataOut.case_flag
1272 #print("UPDATE")
1272 #print("UPDATE")
1273 #print("data[weather]",data['weather'].shape)
1273 #print("data[weather]",data['weather'].shape)
1274 #print("data[azi]",data['azi'])
1274 #print("data[azi]",data['azi'])
1275 return data, meta
1275 return data, meta
1276
1276
1277 def get2List(self,angulos):
1277 def get2List(self,angulos):
1278 list1=[]
1278 list1=[]
1279 list2=[]
1279 list2=[]
1280 for i in reversed(range(len(angulos))):
1280 for i in reversed(range(len(angulos))):
1281 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1281 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1282 diff_ = angulos[i]-angulos[i-1]
1282 diff_ = angulos[i]-angulos[i-1]
1283 if abs(diff_) >1.5:
1283 if abs(diff_) >1.5:
1284 list1.append(i-1)
1284 list1.append(i-1)
1285 list2.append(diff_)
1285 list2.append(diff_)
1286 return list(reversed(list1)),list(reversed(list2))
1286 return list(reversed(list1)),list(reversed(list2))
1287
1287
1288 def fixData90(self,list_,ang_):
1288 def fixData90(self,list_,ang_):
1289 if list_[0]==-1:
1289 if list_[0]==-1:
1290 vec = numpy.where(ang_<ang_[0])
1290 vec = numpy.where(ang_<ang_[0])
1291 ang_[vec] = ang_[vec]+90
1291 ang_[vec] = ang_[vec]+90
1292 return ang_
1292 return ang_
1293 return ang_
1293 return ang_
1294
1294
1295 def fixData90HL(self,angulos):
1295 def fixData90HL(self,angulos):
1296 vec = numpy.where(angulos>=90)
1296 vec = numpy.where(angulos>=90)
1297 angulos[vec]=angulos[vec]-90
1297 angulos[vec]=angulos[vec]-90
1298 return angulos
1298 return angulos
1299
1299
1300
1300
1301 def search_pos(self,pos,list_):
1301 def search_pos(self,pos,list_):
1302 for i in range(len(list_)):
1302 for i in range(len(list_)):
1303 if pos == list_[i]:
1303 if pos == list_[i]:
1304 return True,i
1304 return True,i
1305 i=None
1305 i=None
1306 return False,i
1306 return False,i
1307
1307
1308 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1308 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1309 size = len(ang_)
1309 size = len(ang_)
1310 size2 = 0
1310 size2 = 0
1311 for i in range(len(list2_)):
1311 for i in range(len(list2_)):
1312 size2=size2+round(abs(list2_[i]))-1
1312 size2=size2+round(abs(list2_[i]))-1
1313 new_size= size+size2
1313 new_size= size+size2
1314 ang_new = numpy.zeros(new_size)
1314 ang_new = numpy.zeros(new_size)
1315 ang_new2 = numpy.zeros(new_size)
1315 ang_new2 = numpy.zeros(new_size)
1316
1316
1317 tmp = 0
1317 tmp = 0
1318 c = 0
1318 c = 0
1319 for i in range(len(ang_)):
1319 for i in range(len(ang_)):
1320 ang_new[tmp +c] = ang_[i]
1320 ang_new[tmp +c] = ang_[i]
1321 ang_new2[tmp+c] = ang_[i]
1321 ang_new2[tmp+c] = ang_[i]
1322 condition , value = self.search_pos(i,list1_)
1322 condition , value = self.search_pos(i,list1_)
1323 if condition:
1323 if condition:
1324 pos = tmp + c + 1
1324 pos = tmp + c + 1
1325 for k in range(round(abs(list2_[value]))-1):
1325 for k in range(round(abs(list2_[value]))-1):
1326 if tipo_case==0 or tipo_case==3:#subida
1326 if tipo_case==0 or tipo_case==3:#subida
1327 ang_new[pos+k] = ang_new[pos+k-1]+1
1327 ang_new[pos+k] = ang_new[pos+k-1]+1
1328 ang_new2[pos+k] = numpy.nan
1328 ang_new2[pos+k] = numpy.nan
1329 elif tipo_case==1 or tipo_case==2:#bajada
1329 elif tipo_case==1 or tipo_case==2:#bajada
1330 ang_new[pos+k] = ang_new[pos+k-1]-1
1330 ang_new[pos+k] = ang_new[pos+k-1]-1
1331 ang_new2[pos+k] = numpy.nan
1331 ang_new2[pos+k] = numpy.nan
1332
1332
1333 tmp = pos +k
1333 tmp = pos +k
1334 c = 0
1334 c = 0
1335 c=c+1
1335 c=c+1
1336 return ang_new,ang_new2
1336 return ang_new,ang_new2
1337
1337
1338 def globalCheckPED(self,angulos,tipo_case):
1338 def globalCheckPED(self,angulos,tipo_case):
1339 l1,l2 = self.get2List(angulos)
1339 l1,l2 = self.get2List(angulos)
1340 ##print("l1",l1)
1340 ##print("l1",l1)
1341 ##print("l2",l2)
1341 ##print("l2",l2)
1342 if len(l1)>0:
1342 if len(l1)>0:
1343 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1343 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1344 #l1,l2 = self.get2List(angulos2)
1344 #l1,l2 = self.get2List(angulos2)
1345 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1345 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1346 #ang1_ = self.fixData90HL(ang1_)
1346 #ang1_ = self.fixData90HL(ang1_)
1347 #ang2_ = self.fixData90HL(ang2_)
1347 #ang2_ = self.fixData90HL(ang2_)
1348 else:
1348 else:
1349 ang1_= angulos
1349 ang1_= angulos
1350 ang2_= angulos
1350 ang2_= angulos
1351 return ang1_,ang2_
1351 return ang1_,ang2_
1352
1352
1353
1353
1354 def replaceNAN(self,data_weather,data_ele,val):
1354 def replaceNAN(self,data_weather,data_ele,val):
1355 data= data_ele
1355 data= data_ele
1356 data_T= data_weather
1356 data_T= data_weather
1357 if data.shape[0]> data_T.shape[0]:
1357 if data.shape[0]> data_T.shape[0]:
1358 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1358 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1359 c = 0
1359 c = 0
1360 for i in range(len(data)):
1360 for i in range(len(data)):
1361 if numpy.isnan(data[i]):
1361 if numpy.isnan(data[i]):
1362 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1362 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1363 else:
1363 else:
1364 data_N[i,:]=data_T[c,:]
1364 data_N[i,:]=data_T[c,:]
1365 c=c+1
1365 c=c+1
1366 return data_N
1366 return data_N
1367 else:
1367 else:
1368 for i in range(len(data)):
1368 for i in range(len(data)):
1369 if numpy.isnan(data[i]):
1369 if numpy.isnan(data[i]):
1370 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1370 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1371 return data_T
1371 return data_T
1372
1372
1373 def check_case(self,data_ele,ang_max,ang_min):
1373 def check_case(self,data_ele,ang_max,ang_min):
1374 start = data_ele[0]
1374 start = data_ele[0]
1375 end = data_ele[-1]
1375 end = data_ele[-1]
1376 number = (end-start)
1376 number = (end-start)
1377 len_ang=len(data_ele)
1377 len_ang=len(data_ele)
1378 print("start",start)
1378 print("start",start)
1379 print("end",end)
1379 print("end",end)
1380 print("number",number)
1380 print("number",number)
1381
1381
1382 print("len_ang",len_ang)
1382 print("len_ang",len_ang)
1383
1383
1384 #exit(1)
1384 #exit(1)
1385
1385
1386 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
1386 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
1387 return 0
1387 return 0
1388 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
1388 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
1389 # return 1
1389 # return 1
1390 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
1390 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
1391 return 1
1391 return 1
1392 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
1392 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
1393 return 2
1393 return 2
1394 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
1394 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
1395 return 3
1395 return 3
1396
1396
1397
1397
1398 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1398 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1399 ang_max= ang_max
1399 ang_max= ang_max
1400 ang_min= ang_min
1400 ang_min= ang_min
1401 data_weather=data_weather
1401 data_weather=data_weather
1402 val_ch=val_ch
1402 val_ch=val_ch
1403 ##print("*********************DATA WEATHER**************************************")
1403 ##print("*********************DATA WEATHER**************************************")
1404 ##print(data_weather)
1404 ##print(data_weather)
1405 if self.ini==0:
1405 if self.ini==0:
1406 '''
1406 '''
1407 print("**********************************************")
1407 print("**********************************************")
1408 print("**********************************************")
1408 print("**********************************************")
1409 print("***************ini**************")
1409 print("***************ini**************")
1410 print("**********************************************")
1410 print("**********************************************")
1411 print("**********************************************")
1411 print("**********************************************")
1412 '''
1412 '''
1413 #print("data_ele",data_ele)
1413 #print("data_ele",data_ele)
1414 #----------------------------------------------------------
1414 #----------------------------------------------------------
1415 tipo_case = case_flag[-1]
1415 tipo_case = case_flag[-1]
1416 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1416 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1417 print("check_case",tipo_case)
1417 print("check_case",tipo_case)
1418 #exit(1)
1418 #exit(1)
1419 #--------------------- new -------------------------
1419 #--------------------- new -------------------------
1420 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1420 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1421
1421
1422 #-------------------------CAMBIOS RHI---------------------------------
1422 #-------------------------CAMBIOS RHI---------------------------------
1423 start= ang_min
1423 start= ang_min
1424 end = ang_max
1424 end = ang_max
1425 n= (ang_max-ang_min)/res
1425 n= (ang_max-ang_min)/res
1426 #------ new
1426 #------ new
1427 self.start_data_ele = data_ele_new[0]
1427 self.start_data_ele = data_ele_new[0]
1428 self.end_data_ele = data_ele_new[-1]
1428 self.end_data_ele = data_ele_new[-1]
1429 if tipo_case==0 or tipo_case==3: # SUBIDA
1429 if tipo_case==0 or tipo_case==3: # SUBIDA
1430 n1= round(self.start_data_ele)- start
1430 n1= round(self.start_data_ele)- start
1431 n2= end - round(self.end_data_ele)
1431 n2= end - round(self.end_data_ele)
1432 print(self.start_data_ele)
1432 print(self.start_data_ele)
1433 print(self.end_data_ele)
1433 print(self.end_data_ele)
1434 if n1>0:
1434 if n1>0:
1435 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1435 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1436 ele1_nan= numpy.ones(n1)*numpy.nan
1436 ele1_nan= numpy.ones(n1)*numpy.nan
1437 data_ele = numpy.hstack((ele1,data_ele_new))
1437 data_ele = numpy.hstack((ele1,data_ele_new))
1438 print("ele1_nan",ele1_nan.shape)
1438 print("ele1_nan",ele1_nan.shape)
1439 print("data_ele_old",data_ele_old.shape)
1439 print("data_ele_old",data_ele_old.shape)
1440 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1440 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1441 if n2>0:
1441 if n2>0:
1442 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1442 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1443 ele2_nan= numpy.ones(n2)*numpy.nan
1443 ele2_nan= numpy.ones(n2)*numpy.nan
1444 data_ele = numpy.hstack((data_ele,ele2))
1444 data_ele = numpy.hstack((data_ele,ele2))
1445 print("ele2_nan",ele2_nan.shape)
1445 print("ele2_nan",ele2_nan.shape)
1446 print("data_ele_old",data_ele_old.shape)
1446 print("data_ele_old",data_ele_old.shape)
1447 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1447 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1448
1448
1449 if tipo_case==1 or tipo_case==2: # BAJADA
1449 if tipo_case==1 or tipo_case==2: # BAJADA
1450 data_ele_new = data_ele_new[::-1] # reversa
1450 data_ele_new = data_ele_new[::-1] # reversa
1451 data_ele_old = data_ele_old[::-1]# reversa
1451 data_ele_old = data_ele_old[::-1]# reversa
1452 data_weather = data_weather[::-1,:]# reversa
1452 data_weather = data_weather[::-1,:]# reversa
1453 vec= numpy.where(data_ele_new<ang_max)
1453 vec= numpy.where(data_ele_new<ang_max)
1454 data_ele_new = data_ele_new[vec]
1454 data_ele_new = data_ele_new[vec]
1455 data_ele_old = data_ele_old[vec]
1455 data_ele_old = data_ele_old[vec]
1456 data_weather = data_weather[vec[0]]
1456 data_weather = data_weather[vec[0]]
1457 vec2= numpy.where(0<data_ele_new)
1457 vec2= numpy.where(0<data_ele_new)
1458 data_ele_new = data_ele_new[vec2]
1458 data_ele_new = data_ele_new[vec2]
1459 data_ele_old = data_ele_old[vec2]
1459 data_ele_old = data_ele_old[vec2]
1460 data_weather = data_weather[vec2[0]]
1460 data_weather = data_weather[vec2[0]]
1461 self.start_data_ele = data_ele_new[0]
1461 self.start_data_ele = data_ele_new[0]
1462 self.end_data_ele = data_ele_new[-1]
1462 self.end_data_ele = data_ele_new[-1]
1463
1463
1464 n1= round(self.start_data_ele)- start
1464 n1= round(self.start_data_ele)- start
1465 n2= end - round(self.end_data_ele)-1
1465 n2= end - round(self.end_data_ele)-1
1466 print(self.start_data_ele)
1466 print(self.start_data_ele)
1467 print(self.end_data_ele)
1467 print(self.end_data_ele)
1468 if n1>0:
1468 if n1>0:
1469 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1469 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1470 ele1_nan= numpy.ones(n1)*numpy.nan
1470 ele1_nan= numpy.ones(n1)*numpy.nan
1471 data_ele = numpy.hstack((ele1,data_ele_new))
1471 data_ele = numpy.hstack((ele1,data_ele_new))
1472 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1472 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1473 if n2>0:
1473 if n2>0:
1474 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1474 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1475 ele2_nan= numpy.ones(n2)*numpy.nan
1475 ele2_nan= numpy.ones(n2)*numpy.nan
1476 data_ele = numpy.hstack((data_ele,ele2))
1476 data_ele = numpy.hstack((data_ele,ele2))
1477 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1477 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1478 # RADAR
1478 # RADAR
1479 # NOTA data_ele y data_weather es la variable que retorna
1479 # NOTA data_ele y data_weather es la variable que retorna
1480 val_mean = numpy.mean(data_weather[:,-1])
1480 val_mean = numpy.mean(data_weather[:,-1])
1481 self.val_mean = val_mean
1481 self.val_mean = val_mean
1482 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1482 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1483 print("eleold",data_ele_old)
1483 print("eleold",data_ele_old)
1484 print(self.data_ele_tmp[val_ch])
1484 print(self.data_ele_tmp[val_ch])
1485 print(data_ele_old.shape[0])
1485 print(data_ele_old.shape[0])
1486 print(self.data_ele_tmp[val_ch].shape[0])
1486 print(self.data_ele_tmp[val_ch].shape[0])
1487 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
1487 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
1488 import sys
1488 import sys
1489 print("EXIT",self.ini)
1489 print("EXIT",self.ini)
1490
1490
1491 sys.exit(1)
1491 sys.exit(1)
1492 self.data_ele_tmp[val_ch]= data_ele_old
1492 self.data_ele_tmp[val_ch]= data_ele_old
1493 else:
1493 else:
1494 #print("**********************************************")
1494 #print("**********************************************")
1495 #print("****************VARIABLE**********************")
1495 #print("****************VARIABLE**********************")
1496 #-------------------------CAMBIOS RHI---------------------------------
1496 #-------------------------CAMBIOS RHI---------------------------------
1497 #---------------------------------------------------------------------
1497 #---------------------------------------------------------------------
1498 ##print("INPUT data_ele",data_ele)
1498 ##print("INPUT data_ele",data_ele)
1499 flag=0
1499 flag=0
1500 start_ele = self.res_ele[0]
1500 start_ele = self.res_ele[0]
1501 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1501 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1502 tipo_case = case_flag[-1]
1502 tipo_case = case_flag[-1]
1503 #print("TIPO DE DATA",tipo_case)
1503 #print("TIPO DE DATA",tipo_case)
1504 #-----------new------------
1504 #-----------new------------
1505 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
1505 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
1506 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1506 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1507
1507
1508 #-------------------------------NEW RHI ITERATIVO-------------------------
1508 #-------------------------------NEW RHI ITERATIVO-------------------------
1509
1509
1510 if tipo_case==0 : # SUBIDA
1510 if tipo_case==0 : # SUBIDA
1511 vec = numpy.where(data_ele<ang_max)
1511 vec = numpy.where(data_ele<ang_max)
1512 data_ele = data_ele[vec]
1512 data_ele = data_ele[vec]
1513 data_ele_old = data_ele_old[vec]
1513 data_ele_old = data_ele_old[vec]
1514 data_weather = data_weather[vec[0]]
1514 data_weather = data_weather[vec[0]]
1515
1515
1516 vec2 = numpy.where(0<data_ele)
1516 vec2 = numpy.where(0<data_ele)
1517 data_ele= data_ele[vec2]
1517 data_ele= data_ele[vec2]
1518 data_ele_old= data_ele_old[vec2]
1518 data_ele_old= data_ele_old[vec2]
1519 ##print(data_ele_new)
1519 ##print(data_ele_new)
1520 data_weather= data_weather[vec2[0]]
1520 data_weather= data_weather[vec2[0]]
1521
1521
1522 new_i_ele = int(round(data_ele[0]))
1522 new_i_ele = int(round(data_ele[0]))
1523 new_f_ele = int(round(data_ele[-1]))
1523 new_f_ele = int(round(data_ele[-1]))
1524 #print(new_i_ele)
1524 #print(new_i_ele)
1525 #print(new_f_ele)
1525 #print(new_f_ele)
1526 #print(data_ele,len(data_ele))
1526 #print(data_ele,len(data_ele))
1527 #print(data_ele_old,len(data_ele_old))
1527 #print(data_ele_old,len(data_ele_old))
1528 if new_i_ele< 2:
1528 if new_i_ele< 2:
1529 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1529 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1530 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1530 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1531 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
1531 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
1532 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
1532 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
1533 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
1533 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
1534 data_ele = self.res_ele
1534 data_ele = self.res_ele
1535 data_weather = self.res_weather[val_ch]
1535 data_weather = self.res_weather[val_ch]
1536
1536
1537 elif tipo_case==1 : #BAJADA
1537 elif tipo_case==1 : #BAJADA
1538 data_ele = data_ele[::-1] # reversa
1538 data_ele = data_ele[::-1] # reversa
1539 data_ele_old = data_ele_old[::-1]# reversa
1539 data_ele_old = data_ele_old[::-1]# reversa
1540 data_weather = data_weather[::-1,:]# reversa
1540 data_weather = data_weather[::-1,:]# reversa
1541 vec= numpy.where(data_ele<ang_max)
1541 vec= numpy.where(data_ele<ang_max)
1542 data_ele = data_ele[vec]
1542 data_ele = data_ele[vec]
1543 data_ele_old = data_ele_old[vec]
1543 data_ele_old = data_ele_old[vec]
1544 data_weather = data_weather[vec[0]]
1544 data_weather = data_weather[vec[0]]
1545 vec2= numpy.where(0<data_ele)
1545 vec2= numpy.where(0<data_ele)
1546 data_ele = data_ele[vec2]
1546 data_ele = data_ele[vec2]
1547 data_ele_old = data_ele_old[vec2]
1547 data_ele_old = data_ele_old[vec2]
1548 data_weather = data_weather[vec2[0]]
1548 data_weather = data_weather[vec2[0]]
1549
1549
1550
1550
1551 new_i_ele = int(round(data_ele[0]))
1551 new_i_ele = int(round(data_ele[0]))
1552 new_f_ele = int(round(data_ele[-1]))
1552 new_f_ele = int(round(data_ele[-1]))
1553 #print(data_ele)
1553 #print(data_ele)
1554 #print(ang_max)
1554 #print(ang_max)
1555 #print(data_ele_old)
1555 #print(data_ele_old)
1556 if new_i_ele <= 1:
1556 if new_i_ele <= 1:
1557 new_i_ele = 1
1557 new_i_ele = 1
1558 if round(data_ele[-1])>=ang_max-1:
1558 if round(data_ele[-1])>=ang_max-1:
1559 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1559 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1560 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1560 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1561 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
1561 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
1562 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
1562 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
1563 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
1563 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
1564 data_ele = self.res_ele
1564 data_ele = self.res_ele
1565 data_weather = self.res_weather[val_ch]
1565 data_weather = self.res_weather[val_ch]
1566
1566
1567 elif tipo_case==2: #bajada
1567 elif tipo_case==2: #bajada
1568 vec = numpy.where(data_ele<ang_max)
1568 vec = numpy.where(data_ele<ang_max)
1569 data_ele = data_ele[vec]
1569 data_ele = data_ele[vec]
1570 data_weather= data_weather[vec[0]]
1570 data_weather= data_weather[vec[0]]
1571
1571
1572 len_vec = len(vec)
1572 len_vec = len(vec)
1573 data_ele_new = data_ele[::-1] # reversa
1573 data_ele_new = data_ele[::-1] # reversa
1574 data_weather = data_weather[::-1,:]
1574 data_weather = data_weather[::-1,:]
1575 new_i_ele = int(data_ele_new[0])
1575 new_i_ele = int(data_ele_new[0])
1576 new_f_ele = int(data_ele_new[-1])
1576 new_f_ele = int(data_ele_new[-1])
1577
1577
1578 n1= new_i_ele- ang_min
1578 n1= new_i_ele- ang_min
1579 n2= ang_max - new_f_ele-1
1579 n2= ang_max - new_f_ele-1
1580 if n1>0:
1580 if n1>0:
1581 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1581 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1582 ele1_nan= numpy.ones(n1)*numpy.nan
1582 ele1_nan= numpy.ones(n1)*numpy.nan
1583 data_ele = numpy.hstack((ele1,data_ele_new))
1583 data_ele = numpy.hstack((ele1,data_ele_new))
1584 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1584 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1585 if n2>0:
1585 if n2>0:
1586 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1586 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1587 ele2_nan= numpy.ones(n2)*numpy.nan
1587 ele2_nan= numpy.ones(n2)*numpy.nan
1588 data_ele = numpy.hstack((data_ele,ele2))
1588 data_ele = numpy.hstack((data_ele,ele2))
1589 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1589 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1590
1590
1591 self.data_ele_tmp[val_ch] = data_ele_old
1591 self.data_ele_tmp[val_ch] = data_ele_old
1592 self.res_ele = data_ele
1592 self.res_ele = data_ele
1593 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1593 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1594 data_ele = self.res_ele
1594 data_ele = self.res_ele
1595 data_weather = self.res_weather[val_ch]
1595 data_weather = self.res_weather[val_ch]
1596
1596
1597 elif tipo_case==3:#subida
1597 elif tipo_case==3:#subida
1598 vec = numpy.where(0<data_ele)
1598 vec = numpy.where(0<data_ele)
1599 data_ele= data_ele[vec]
1599 data_ele= data_ele[vec]
1600 data_ele_new = data_ele
1600 data_ele_new = data_ele
1601 data_ele_old= data_ele_old[vec]
1601 data_ele_old= data_ele_old[vec]
1602 data_weather= data_weather[vec[0]]
1602 data_weather= data_weather[vec[0]]
1603 pos_ini = numpy.argmin(data_ele)
1603 pos_ini = numpy.argmin(data_ele)
1604 if pos_ini>0:
1604 if pos_ini>0:
1605 len_vec= len(data_ele)
1605 len_vec= len(data_ele)
1606 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1606 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1607 #print(vec3)
1607 #print(vec3)
1608 data_ele= data_ele[vec3]
1608 data_ele= data_ele[vec3]
1609 data_ele_new = data_ele
1609 data_ele_new = data_ele
1610 data_ele_old= data_ele_old[vec3]
1610 data_ele_old= data_ele_old[vec3]
1611 data_weather= data_weather[vec3]
1611 data_weather= data_weather[vec3]
1612
1612
1613 new_i_ele = int(data_ele_new[0])
1613 new_i_ele = int(data_ele_new[0])
1614 new_f_ele = int(data_ele_new[-1])
1614 new_f_ele = int(data_ele_new[-1])
1615 n1= new_i_ele- ang_min
1615 n1= new_i_ele- ang_min
1616 n2= ang_max - new_f_ele-1
1616 n2= ang_max - new_f_ele-1
1617 if n1>0:
1617 if n1>0:
1618 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1618 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1619 ele1_nan= numpy.ones(n1)*numpy.nan
1619 ele1_nan= numpy.ones(n1)*numpy.nan
1620 data_ele = numpy.hstack((ele1,data_ele_new))
1620 data_ele = numpy.hstack((ele1,data_ele_new))
1621 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1621 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1622 if n2>0:
1622 if n2>0:
1623 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1623 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1624 ele2_nan= numpy.ones(n2)*numpy.nan
1624 ele2_nan= numpy.ones(n2)*numpy.nan
1625 data_ele = numpy.hstack((data_ele,ele2))
1625 data_ele = numpy.hstack((data_ele,ele2))
1626 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1626 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1627
1627
1628 self.data_ele_tmp[val_ch] = data_ele_old
1628 self.data_ele_tmp[val_ch] = data_ele_old
1629 self.res_ele = data_ele
1629 self.res_ele = data_ele
1630 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1630 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1631 data_ele = self.res_ele
1631 data_ele = self.res_ele
1632 data_weather = self.res_weather[val_ch]
1632 data_weather = self.res_weather[val_ch]
1633 #print("self.data_ele_tmp",self.data_ele_tmp)
1633 #print("self.data_ele_tmp",self.data_ele_tmp)
1634 return data_weather,data_ele
1634 return data_weather,data_ele
1635
1635
1636
1636
1637 def plot(self):
1637 def plot(self):
1638 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1638 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1639 data = self.data[-1]
1639 data = self.data[-1]
1640 r = self.data.yrange
1640 r = self.data.yrange
1641 delta_height = r[1]-r[0]
1641 delta_height = r[1]-r[0]
1642 r_mask = numpy.where(r>=0)[0]
1642 r_mask = numpy.where(r>=0)[0]
1643 ##print("delta_height",delta_height)
1643 ##print("delta_height",delta_height)
1644 #print("r_mask",r_mask,len(r_mask))
1644 #print("r_mask",r_mask,len(r_mask))
1645 r = numpy.arange(len(r_mask))*delta_height
1645 r = numpy.arange(len(r_mask))*delta_height
1646 self.y = 2*r
1646 self.y = 2*r
1647 res = 1
1647 res = 1
1648 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1648 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1649 ang_max = self.ang_max
1649 ang_max = self.ang_max
1650 ang_min = self.ang_min
1650 ang_min = self.ang_min
1651 var_ang =ang_max - ang_min
1651 var_ang =ang_max - ang_min
1652 step = (int(var_ang)/(res*data['weather'].shape[0]))
1652 step = (int(var_ang)/(res*data['weather'].shape[0]))
1653 ###print("step",step)
1653 ###print("step",step)
1654 #--------------------------------------------------------
1654 #--------------------------------------------------------
1655 ##print('weather',data['weather'].shape)
1655 ##print('weather',data['weather'].shape)
1656 ##print('ele',data['ele'].shape)
1656 ##print('ele',data['ele'].shape)
1657
1657
1658 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1658 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1659 ###self.res_azi = numpy.mean(data['azi'])
1659 ###self.res_azi = numpy.mean(data['azi'])
1660 ###print("self.res_ele",self.res_ele)
1660 ###print("self.res_ele",self.res_ele)
1661 plt.clf()
1661 plt.clf()
1662 subplots = [121, 122]
1662 subplots = [121, 122]
1663 try:
1663 try:
1664 if self.data[-2]['ele'].max()<data['ele'].max():
1664 if self.data[-2]['ele'].max()<data['ele'].max():
1665 self.ini=0
1665 self.ini=0
1666 except:
1666 except:
1667 pass
1667 pass
1668 if self.ini==0:
1668 if self.ini==0:
1669 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1669 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1670 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1670 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1671 print("SHAPE",self.data_ele_tmp.shape)
1671 print("SHAPE",self.data_ele_tmp.shape)
1672
1672
1673 for i,ax in enumerate(self.axes):
1673 for i,ax in enumerate(self.axes):
1674 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1674 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1675 self.res_azi = numpy.mean(data['azi'])
1675 self.res_azi = numpy.mean(data['azi'])
1676
1676
1677 if ax.firsttime:
1677 if ax.firsttime:
1678 #plt.clf()
1678 #plt.clf()
1679 print("Frist Plot")
1679 print("Frist Plot")
1680 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1680 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1681 #fig=self.figures[0]
1681 #fig=self.figures[0]
1682 else:
1682 else:
1683 #plt.clf()
1683 #plt.clf()
1684 print("ELSE PLOT")
1684 print("ELSE PLOT")
1685 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1685 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1686 caax = cgax.parasites[0]
1686 caax = cgax.parasites[0]
1687 paax = cgax.parasites[1]
1687 paax = cgax.parasites[1]
1688 cbar = plt.gcf().colorbar(pm, pad=0.075)
1688 cbar = plt.gcf().colorbar(pm, pad=0.075)
1689 caax.set_xlabel('x_range [km]')
1689 caax.set_xlabel('x_range [km]')
1690 caax.set_ylabel('y_range [km]')
1690 caax.set_ylabel('y_range [km]')
1691 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1691 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1692 print("***************************self.ini****************************",self.ini)
1692 print("***************************self.ini****************************",self.ini)
1693 self.ini= self.ini+1
1693 self.ini= self.ini+1
1694
1694
1695
1695
1696
1696
1697
1697
1698
1698
1699 class WeatherRHI_vRF4_Plot(Plot):
1699 class WeatherRHI_vRF4_Plot(Plot):
1700 CODE = 'RHI'
1700 CODE = 'RHI'
1701 plot_name = 'RHI'
1701 plot_name = 'RHI'
1702 #plot_type = 'rhistyle'
1702 #plot_type = 'rhistyle'
1703 buffering = False
1703 buffering = False
1704
1704
1705 def setup(self):
1705 def setup(self):
1706
1706
1707 self.ncols = 1
1707 self.ncols = 1
1708 self.nrows = 1
1708 self.nrows = 1
1709 self.nplots= 1
1709 self.nplots= 1
1710 self.ylabel= 'Range [Km]'
1710 self.ylabel= 'Range [Km]'
1711 self.xlabel= 'Range [Km]'
1711 self.xlabel= 'Range [Km]'
1712 self.titles= ['RHI']
1712 self.titles= ['RHI']
1713 self.polar = True
1713 self.polar = True
1714 self.grid = True
1714 self.grid = True
1715 if self.channels is not None:
1715 if self.channels is not None:
1716 self.nplots = len(self.channels)
1716 self.nplots = len(self.channels)
1717 self.nrows = len(self.channels)
1717 self.nrows = len(self.channels)
1718 else:
1718 else:
1719 self.nplots = self.data.shape(self.CODE)[0]
1719 self.nplots = self.data.shape(self.CODE)[0]
1720 self.nrows = self.nplots
1720 self.nrows = self.nplots
1721 self.channels = list(range(self.nplots))
1721 self.channels = list(range(self.nplots))
1722
1722
1723 if self.CODE == 'Power':
1723 if self.CODE == 'Power':
1724 self.cb_label = r'Power (dB)'
1724 self.cb_label = r'Power (dB)'
1725 elif self.CODE == 'Doppler':
1725 elif self.CODE == 'Doppler':
1726 self.cb_label = r'Velocity (m/s)'
1726 self.cb_label = r'Velocity (m/s)'
1727 self.colorbar=True
1727 self.colorbar=True
1728 self.width =8
1728 self.width =8
1729 self.height =8
1729 self.height =8
1730 self.ini =0
1730 self.ini =0
1731 self.len_azi =0
1731 self.len_azi =0
1732 self.buffer_ini = None
1732 self.buffer_ini = None
1733 self.buffer_ele = None
1733 self.buffer_ele = None
1734 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1734 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1735 self.flag =0
1735 self.flag =0
1736 self.indicador= 0
1736 self.indicador= 0
1737 self.last_data_ele = None
1737 self.last_data_ele = None
1738 self.val_mean = None
1738 self.val_mean = None
1739
1739
1740 def update(self, dataOut):
1740 def update(self, dataOut):
1741
1741
1742 data = {}
1742 data = {}
1743 meta = {}
1743 meta = {}
1744 if hasattr(dataOut, 'dataPP_POWER'):
1744 if hasattr(dataOut, 'dataPP_POWER'):
1745 factor = 1
1745 factor = 1
1746 if hasattr(dataOut, 'nFFTPoints'):
1746 if hasattr(dataOut, 'nFFTPoints'):
1747 factor = dataOut.normFactor
1747 factor = dataOut.normFactor
1748
1748
1749 if 'pow' in self.attr_data[0].lower():
1749 if 'pow' in self.attr_data[0].lower():
1750 data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor))
1750 data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor))
1751 else:
1751 else:
1752 data['data'] = getattr(dataOut, self.attr_data[0])/(factor)
1752 data['data'] = getattr(dataOut, self.attr_data[0])/(factor)
1753
1753
1754 data['azi'] = dataOut.data_azi
1754 data['azi'] = dataOut.data_azi
1755 data['ele'] = dataOut.data_ele
1755 data['ele'] = dataOut.data_ele
1756
1756
1757 return data, meta
1757 return data, meta
1758
1758
1759 def plot(self):
1759 def plot(self):
1760 data = self.data[-1]
1760 data = self.data[-1]
1761 r = self.data.yrange
1761 r = self.data.yrange
1762 delta_height = r[1]-r[0]
1762 delta_height = r[1]-r[0]
1763 r_mask = numpy.where(r>=0)[0]
1763 r_mask = numpy.where(r>=0)[0]
1764 self.r_mask =r_mask
1764 self.r_mask =r_mask
1765 r = numpy.arange(len(r_mask))*delta_height
1765 r = numpy.arange(len(r_mask))*delta_height
1766 self.y = 2*r
1766 self.y = 2*r
1767
1767
1768 try:
1768 try:
1769 z = data['data'][self.channels[0]][:,r_mask]
1769 z = data['data'][self.channels[0]][:,r_mask]
1770 except:
1770 except:
1771 z = data['data'][0][:,r_mask]
1771 z = data['data'][0][:,r_mask]
1772
1772
1773 self.titles = []
1773 self.titles = []
1774
1774
1775 self.ymax = self.ymax if self.ymax else numpy.nanmax(r)
1775 self.ymax = self.ymax if self.ymax else numpy.nanmax(r)
1776 self.ymin = self.ymin if self.ymin else numpy.nanmin(r)
1776 self.ymin = self.ymin if self.ymin else numpy.nanmin(r)
1777 self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
1777 self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
1778 self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
1778 self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
1779 self.ang_min = self.ang_min if self.ang_min else 0
1779 self.ang_min = self.ang_min if self.ang_min else 0
1780 self.ang_max = self.ang_max if self.ang_max else 90
1780 self.ang_max = self.ang_max if self.ang_max else 90
1781
1781
1782 r, theta = numpy.meshgrid(r, numpy.radians(data['ele']) )
1782 r, theta = numpy.meshgrid(r, numpy.radians(data['ele']) )
1783
1783
1784 for i,ax in enumerate(self.axes):
1784 for i,ax in enumerate(self.axes):
1785
1785
1786 if ax.firsttime:
1786 if ax.firsttime:
1787 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
1787 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
1788 ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
1788 ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
1789
1789
1790 else:
1790 else:
1791 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
1791 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
1792 ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
1792 ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
1793 ax.grid(True)
1793 ax.grid(True)
1794 if len(self.channels) !=1:
1794 if len(self.channels) !=1:
1795 self.titles = ['RHI {} at AZ: {} Channel {}'.format(self.labels[x], str(round(numpy.mean(data['azi']),1)), x) for x in range(self.nrows)]
1795 self.titles = ['RHI {} at AZ: {} Channel {}'.format(self.labels[x], str(round(numpy.mean(data['azi']),1)), x) for x in range(self.nrows)]
1796 else:
1796 else:
1797 self.titles = ['RHI {} at AZ: {} Channel {}'.format(self.labels[0], str(round(numpy.mean(data['azi']),1)), self.channels[0])]
1797 self.titles = ['RHI {} at AZ: {} Channel {}'.format(self.labels[0], str(round(numpy.mean(data['azi']),1)), self.channels[0])]
1798
1798
1799 class WeatherParamsPlot(Plot):
1799 class WeatherParamsPlot(Plot):
1800 #CODE = 'RHI'
1800 #CODE = 'RHI'
1801 #plot_name = 'RHI'
1801 #plot_name = 'RHI'
1802 #plot_type = 'rhistyle'
1802 #plot_type = 'rhistyle'
1803 buffering = False
1803 buffering = False
1804
1804
1805 def setup(self):
1805 def setup(self):
1806
1806
1807 self.ncols = 1
1807 self.ncols = 1
1808 self.nrows = 1
1808 self.nrows = 1
1809 self.nplots= 1
1809 self.nplots= 1
1810 self.ylabel= 'Range [km]'
1810 self.ylabel= 'Range [km]'
1811 self.xlabel= 'Range [km]'
1811 self.xlabel= 'Range [km]'
1812 self.polar = True
1812 self.polar = True
1813 self.grid = True
1813 self.grid = True
1814 if self.channels is not None:
1814 if self.channels is not None:
1815 self.nplots = len(self.channels)
1815 self.nplots = len(self.channels)
1816 self.nrows = len(self.channels)
1816 self.nrows = len(self.channels)
1817 else:
1817 else:
1818 self.nplots = self.data.shape(self.CODE)[0]
1818 self.nplots = self.data.shape(self.CODE)[0]
1819 self.nrows = self.nplots
1819 self.nrows = self.nplots
1820 self.channels = list(range(self.nplots))
1820 self.channels = list(range(self.nplots))
1821
1821
1822 self.colorbar=True
1822 self.colorbar=True
1823 self.width =8
1823 self.width =8
1824 self.height =8
1824 self.height =8
1825 self.ini =0
1825 self.ini =0
1826 self.len_azi =0
1826 self.len_azi =0
1827 self.buffer_ini = None
1827 self.buffer_ini = None
1828 self.buffer_ele = None
1828 self.buffer_ele = None
1829 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.08, 'right': 0.92, 'bottom': 0.01,'top':0.99})
1829 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1830 self.flag =0
1830 self.flag =0
1831 self.indicador= 0
1831 self.indicador= 0
1832 self.last_data_ele = None
1832 self.last_data_ele = None
1833 self.val_mean = None
1833 self.val_mean = None
1834
1834
1835 def update(self, dataOut):
1835 def update(self, dataOut):
1836
1836
1837 data = {}
1837 data = {}
1838 meta = {}
1838 meta = {}
1839 if hasattr(dataOut, 'dataPP_POWER'):
1839 if hasattr(dataOut, 'dataPP_POWER'):
1840 factor = 1
1840 factor = 1
1841 if hasattr(dataOut, 'nFFTPoints'):
1841 if hasattr(dataOut, 'nFFTPoints'):
1842 factor = dataOut.normFactor
1842 factor = dataOut.normFactor
1843
1843
1844 if 'pow' in self.attr_data[0].lower():
1844 if 'pow' in self.attr_data[0].lower():
1845 data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor))
1845 data['data'] = 10*numpy.log10(getattr(dataOut, self.attr_data[0])/(factor))
1846 else:
1846 else:
1847 data['data'] = getattr(dataOut, self.attr_data[0])/(factor)
1847 data['data'] = getattr(dataOut, self.attr_data[0])/(factor)
1848
1848
1849 if dataOut.mode_op == 'PPI':
1849 if dataOut.mode_op == 'PPI':
1850 self.CODE = 'PPI'
1850 self.CODE = 'PPI'
1851 self.title = self.CODE
1851 self.title = self.CODE
1852 elif dataOut.mode_op == 'RHI':
1852 elif dataOut.mode_op == 'RHI':
1853 self.CODE = 'RHI'
1853 self.CODE = 'RHI'
1854 self.title = self.CODE
1854 self.title = self.CODE
1855
1855
1856 data['azi'] = dataOut.data_azi
1856 data['azi'] = dataOut.data_azi
1857 data['ele'] = dataOut.data_ele
1857 data['ele'] = dataOut.data_ele
1858 data['mode_op'] = dataOut.mode_op
1858 data['mode_op'] = dataOut.mode_op
1859
1859
1860 return data, meta
1860 return data, meta
1861
1861
1862 def plot(self):
1862 def plot(self):
1863 data = self.data[-1]
1863 data = self.data[-1]
1864 r = self.data.yrange
1864 r = self.data.yrange
1865 delta_height = r[1]-r[0]
1865 delta_height = r[1]-r[0]
1866 r_mask = numpy.where(r>=0)[0]
1866 r_mask = numpy.where(r>=0)[0]
1867 self.r_mask =r_mask
1867 self.r_mask =r_mask
1868 r = numpy.arange(len(r_mask))*delta_height
1868 r = numpy.arange(len(r_mask))*delta_height
1869 self.y = 2*r
1869 self.y = 2*r
1870
1870
1871 try:
1871 try:
1872 z = data['data'][self.channels[0]][:,r_mask]
1872 z = data['data'][self.channels[0]][:,r_mask]
1873 except:
1873 except:
1874 z = data['data'][0][:,r_mask]
1874 z = data['data'][0][:,r_mask]
1875
1875
1876 self.titles = []
1876 self.titles = []
1877
1877
1878 self.ymax = self.ymax if self.ymax else numpy.nanmax(r)
1878 self.ymax = self.ymax if self.ymax else numpy.nanmax(r)
1879 self.ymin = self.ymin if self.ymin else numpy.nanmin(r)
1879 self.ymin = self.ymin if self.ymin else numpy.nanmin(r)
1880 self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
1880 self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
1881 self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
1881 self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
1882 print("mode inside plot",self.data['mode_op'],data['mode_op'])
1882 print("mode inside plot",self.data['mode_op'],data['mode_op'])
1883 if data['mode_op'] == 'RHI':
1883 if data['mode_op'] == 'RHI':
1884 try:
1884 try:
1885 if self.data['mode_op'][-2] == 'PPI':
1885 if self.data['mode_op'][-2] == 'PPI':
1886 self.ang_min = None
1886 self.ang_min = None
1887 self.ang_max = None
1887 self.ang_max = None
1888 except:
1888 except:
1889 pass
1889 pass
1890 self.ang_min = self.ang_min if self.ang_min else 0
1890 self.ang_min = self.ang_min if self.ang_min else 0
1891 self.ang_max = self.ang_max if self.ang_max else 90
1891 self.ang_max = self.ang_max if self.ang_max else 90
1892 r, theta = numpy.meshgrid(r, numpy.radians(data['ele']) )
1892 r, theta = numpy.meshgrid(r, numpy.radians(data['ele']) )
1893 elif data['mode_op'] == 'PPI':
1893 elif data['mode_op'] == 'PPI':
1894 try:
1894 try:
1895 if self.data['mode_op'][-2] == 'RHI':
1895 if self.data['mode_op'][-2] == 'RHI':
1896 self.ang_min = None
1896 self.ang_min = None
1897 self.ang_max = None
1897 self.ang_max = None
1898 except:
1898 except:
1899 pass
1899 pass
1900 self.ang_min = self.ang_min if self.ang_min else 0
1900 self.ang_min = self.ang_min if self.ang_min else 0
1901 self.ang_max = self.ang_max if self.ang_max else 360
1901 self.ang_max = self.ang_max if self.ang_max else 360
1902 r, theta = numpy.meshgrid(r, numpy.radians(data['azi']) )
1902 r, theta = numpy.meshgrid(r, numpy.radians(data['azi']) )
1903
1903
1904 self.clear_figures()
1904 self.clear_figures()
1905
1905
1906 for i,ax in enumerate(self.axes):
1906 for i,ax in enumerate(self.axes):
1907
1907
1908 if ax.firsttime:
1908 if ax.firsttime:
1909 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
1909 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
1910 ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
1910 ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
1911 if data['mode_op'] == 'PPI':
1911 if data['mode_op'] == 'PPI':
1912 ax.set_theta_direction(-1)
1912 ax.set_theta_direction(-1)
1913 ax.set_theta_offset(numpy.pi/2)
1913 ax.set_theta_offset(numpy.pi/2)
1914
1914
1915 else:
1915 else:
1916 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
1916 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
1917 ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
1917 ax.plt = ax.pcolormesh(theta, r, z, cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
1918 if data['mode_op'] == 'PPI':
1918 if data['mode_op'] == 'PPI':
1919 ax.set_theta_direction(-1)
1919 ax.set_theta_direction(-1)
1920 ax.set_theta_offset(numpy.pi/2)
1920 ax.set_theta_offset(numpy.pi/2)
1921
1921
1922 ax.grid(True)
1922 ax.grid(True)
1923 if data['mode_op'] == 'RHI':
1923 if data['mode_op'] == 'RHI':
1924 len_aux = int(data['azi'].shape[0]/4)
1924 len_aux = int(data['azi'].shape[0]/4)
1925 mean = numpy.mean(data['azi'][len_aux:-len_aux])
1925 mean = numpy.mean(data['azi'][len_aux:-len_aux])
1926 if len(self.channels) !=1:
1926 if len(self.channels) !=1:
1927 self.titles = ['RHI {} at AZ: {} Channel {}'.format(self.labels[x], str(round(mean,1)), x) for x in range(self.nrows)]
1927 self.titles = ['RHI {} at AZ: {} Channel {}'.format(self.labels[x], str(round(mean,1)), x) for x in range(self.nrows)]
1928 else:
1928 else:
1929 self.titles = ['RHI {} at AZ: {} Channel {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])]
1929 self.titles = ['RHI {} at AZ: {} Channel {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])]
1930 elif data['mode_op'] == 'PPI':
1930 elif data['mode_op'] == 'PPI':
1931 len_aux = int(data['ele'].shape[0]/4)
1931 len_aux = int(data['ele'].shape[0]/4)
1932 mean = numpy.mean(data['ele'][len_aux:-len_aux])
1932 mean = numpy.mean(data['ele'][len_aux:-len_aux])
1933 if len(self.channels) !=1:
1933 if len(self.channels) !=1:
1934 self.titles = ['PPI {} at EL: {} Channel {}'.format(self.self.labels[x], str(round(mean,1)), x) for x in range(self.nrows)]
1934 self.titles = ['PPI {} at EL: {} Channel {}'.format(self.self.labels[x], str(round(mean,1)), x) for x in range(self.nrows)]
1935 else:
1935 else:
1936 self.titles = ['PPI {} at EL: {} Channel {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])]
1936 self.titles = ['PPI {} at EL: {} Channel {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])]
@@ -1,377 +1,378
1
1 # SOPHY PROC script
2 # SOPHY PROC script
2 import os, sys, json, argparse
3 import os, sys, json, argparse
3 import datetime
4 import datetime
4 import time
5 import time
5
6
6 PATH = '/DATA_RM/DATA'
7 PATH = '/DATA_RM/DATA'
7 # PATH = '/Users/jespinoza/workspace/data/'
8 # PATH = '/Users/jespinoza/workspace/data/'
8 PATH = '/home/soporte/Documents/HUANCAYO'
9 #PATH = '/home/soporte/Documents/HUANCAYO'
9 PARAM = {
10 PARAM = {
10 'P': {'name': 'dataPP_POWER', 'zmin': -40, 'zmax': -5, 'colormap': 'jet', 'label': 'Power', 'wrname': 'Pow','cb_label': 'dB', 'ch':0},
11 'P': {'name': 'dataPP_POWER', 'zmin': -45, 'zmax': -25, 'colormap': 'jet', 'label': 'Power', 'wrname': 'Pow','cb_label': 'dB', 'ch':0},
11 'V': {'name': 'dataPP_DOP', 'zmin': -20, 'zmax': 20, 'colormap': 'seismic', 'label': 'Velocity', 'wrname': 'Vel', 'cb_label': 'm/s', 'ch':0},
12 'V': {'name': 'dataPP_DOP', 'zmin': -20, 'zmax': 20, 'colormap': 'seismic', 'label': 'Velocity', 'wrname': 'Vel', 'cb_label': 'm/s', 'ch':0},
12 'RH': {'name': 'RhoHV_R', 'zmin': 0, 'zmax': 1, 'colormap': 'jet', 'label': 'Coef.Correlacion', 'wrname':'R', 'cb_label': '*', 'ch':0},
13 'RH': {'name': 'RhoHV_R', 'zmin': 0, 'zmax': 1, 'colormap': 'jet', 'label': 'Coef.Correlacion', 'wrname':'R', 'cb_label': '*', 'ch':0},
13 'FD': {'name': 'PhiD_P', 'zmin': -180,'zmax': 180,'colormap': 'RdBu_r', 'label': 'Fase Diferencial', 'wrname':'P' , 'cb_label': 'ΒΊ', 'ch':0},
14 'FD': {'name': 'PhiD_P', 'zmin': -180,'zmax': 180,'colormap': 'RdBu_r', 'label': 'Fase Diferencial', 'wrname':'P' , 'cb_label': 'ΒΊ', 'ch':0},
14 'ZD': {'name': 'Zdb_D', 'zmin': -20, 'zmax': 60, 'colormap': 'viridis','label': 'Reflect.Diferencial','wrname':'D' , 'cb_label': 'dBz','ch':0},
15 'ZD': {'name': 'Zdb_D', 'zmin': -20, 'zmax': 60, 'colormap': 'viridis','label': 'Reflect.Diferencial','wrname':'D' , 'cb_label': 'dBz','ch':0},
15 'Z': {'name': 'Zdb', 'zmin': -20, 'zmax': 70, 'colormap': 'gist_ncar','label': 'Reflectividad', 'wrname':'Z', 'cb_label': 'dBz','ch':1},
16 'Z': {'name': 'Zdb', 'zmin': -20, 'zmax': 70, 'colormap': 'gist_ncar','label': 'Reflectividad', 'wrname':'Z', 'cb_label': 'dBz','ch':1},
16 'W': {'name': 'Sigmav_W', 'zmin': 0, 'zmax':5, 'colormap': 'viridis','label': 'AnchoEspectral', 'wrname':'S', 'cb_label': 'hz', 'ch':1}
17 'W': {'name': 'Sigmav_W', 'zmin': 0, 'zmax':5, 'colormap': 'viridis','label': 'AnchoEspectral', 'wrname':'S', 'cb_label': 'hz', 'ch':1}
17 }
18 }
18
19
19 #
20 #
20 def max_index(r, sample_rate, ipp):
21 def max_index(r, sample_rate, ipp):
21
22
22 return int(sample_rate*ipp*1e6 * r / 60) + int(sample_rate*ipp*1e6 * 1.2 / 60)
23 return int(sample_rate*ipp*1e6 * r / 60) + int(sample_rate*ipp*1e6 * 1.2 / 60)
23
24
24 def main(args):
25 def main(args):
25
26
26 experiment = args.experiment
27 experiment = args.experiment
27 fp = open(os.path.join(PATH, experiment, 'experiment.conf'))
28 fp = open(os.path.join(PATH, experiment, 'experiment.conf'))
28 conf = json.loads(fp.read())
29 conf = json.loads(fp.read())
29
30
30 ipp_km = conf['usrp_tx']['ipp']
31 ipp_km = conf['usrp_tx']['ipp']
31 ipp = ipp_km * 2 /300000
32 ipp = ipp_km * 2 /300000
32 sample_rate = conf['usrp_rx']['sample_rate']
33 sample_rate = conf['usrp_rx']['sample_rate']
33 axis = ['0' if x=='elevation' else '1' for x in conf['pedestal']['axis']] # AZIMUTH 1 ELEVACION 0
34 axis = ['0' if x=='elevation' else '1' for x in conf['pedestal']['axis']] # AZIMUTH 1 ELEVACION 0
34 speed_axis = conf['pedestal']['speed']
35 speed_axis = conf['pedestal']['speed']
35 steeps = conf['pedestal']['table']
36 steeps = conf['pedestal']['table']
36 time_offset = args.time_offset
37 time_offset = args.time_offset
37 parameters = args.parameters
38 parameters = args.parameters
38 start_date = experiment.split('@')[1].split('T')[0].replace('-', '/')
39 start_date = experiment.split('@')[1].split('T')[0].replace('-', '/')
39 end_date = start_date
40 end_date = start_date
40 start_time = experiment.split('@')[1].split('T')[1].replace('-', ':')
41 start_time = experiment.split('@')[1].split('T')[1].replace('-', ':')
41 end_time = '23:59:59'
42 end_time = '23:59:59'
42 N = int(1/(speed_axis[0]*ipp)) # 1 GRADO DE RESOLUCION
43 N = int(1/(speed_axis[0]*ipp)) # 1 GRADO DE RESOLUCION
43 path = os.path.join(PATH, experiment, 'rawdata')
44 path = os.path.join(PATH, experiment, 'rawdata')
44 path_ped = os.path.join(PATH, experiment, 'position')
45 path_ped = os.path.join(PATH, experiment, 'position')
45 path_plots = os.path.join(PATH, experiment, 'plots_ch0')
46 path_plots = os.path.join(PATH, experiment, 'plots_ch0')
46 path_save = os.path.join(PATH, experiment, 'param')
47 path_save = os.path.join(PATH, experiment, 'param')
47 RMIX = 10
48 RMIX = 20
48
49
49 from schainpy.controller import Project
50 from schainpy.controller import Project
50
51
51 project = Project()
52 project = Project()
52 project.setup(id='1', name='Sophy', description='sophy proc')
53 project.setup(id='1', name='Sophy', description='sophy proc')
53
54
54 reader = project.addReadUnit(datatype='DigitalRFReader',
55 reader = project.addReadUnit(datatype='DigitalRFReader',
55 path=path,
56 path=path,
56 startDate=start_date,
57 startDate=start_date,
57 endDate=end_date,
58 endDate=end_date,
58 startTime=start_time,
59 startTime=start_time,
59 endTime=end_time,
60 endTime=end_time,
60 delay=30,
61 delay=30,
61 channelList='0',
62 channelList='0',
62 online=args.online,
63 online=args.online,
63 walk=1,
64 walk=1,
64 ippKm = ipp_km,
65 ippKm = ipp_km,
65 getByBlock = 1,
66 getByBlock = 1,
66 nProfileBlocks = N,
67 nProfileBlocks = N,
67 )
68 )
68
69
69 if not conf['usrp_tx']['enable_2']: # One Pulse
70 if not conf['usrp_tx']['enable_2']: # One Pulse
70 voltage = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId())
71 voltage = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId())
71
72
72 if conf['usrp_tx']['code_type_1']:
73 if conf['usrp_tx']['code_type_1']:
73 code = [c.split() for c in conf['usrp']['code_1']]
74 code = [c.split() for c in conf['usrp']['code_1']]
74 op = voltage.addOperation(name='Decoder', optype='other')
75 op = voltage.addOperation(name='Decoder', optype='other')
75 op.addParameter(name='code', value=code)
76 op.addParameter(name='code', value=code)
76 op.addParameter(name='nCode', value=len(code), format='int')
77 op.addParameter(name='nCode', value=len(code), format='int')
77 op.addParameter(name='nBaud', value=len(code[0]), format='int')
78 op.addParameter(name='nBaud', value=len(code[0]), format='int')
78
79
79 op = voltage.addOperation(name='setH0')
80 op = voltage.addOperation(name='setH0')
80 op.addParameter(name='h0', value='-1.2')
81 op.addParameter(name='h0', value='-1.2')
81
82
82 if args.range >= 0:
83 if args.range >= 0:
83 op = voltage.addOperation(name='selectHeights')
84 op = voltage.addOperation(name='selectHeights')
84 op.addParameter(name='minIndex', value='0', format='int')
85 op.addParameter(name='minIndex', value='0', format='int')
85 op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
86 op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
86
87
87 code=[[1]]
88 code=[[1]]
88 opObj11 = voltage.addOperation(name='Decoder', optype='other')
89 opObj11 = voltage.addOperation(name='Decoder', optype='other')
89 opObj11.addParameter(name='code', value=code)
90 opObj11.addParameter(name='code', value=code)
90 opObj11.addParameter(name='nCode', value='1', format='int')
91 opObj11.addParameter(name='nCode', value='1', format='int')
91 opObj11.addParameter(name='nBaud', value='1', format='int')
92 opObj11.addParameter(name='nBaud', value='1', format='int')
92
93
93 op = voltage2.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario
94 op = voltage2.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario
94 op.addParameter(name='n', value=2*len(code), format='int')
95 op.addParameter(name='n', value=2*len(code), format='int')
95
96
96 #op = voltage.addOperation(name='PulsePair_vRF', optype='other')
97 #op = voltage.addOperation(name='PulsePair_vRF', optype='other')
97 #op.addParameter(name='n', value=int(N), format='int')
98 #op.addParameter(name='n', value=int(N), format='int')
98
99
99 if args.range >= 0:
100 if args.range >= 0:
100 op = voltage.addOperation(name='selectHeights')
101 op = voltage.addOperation(name='selectHeights')
101 op.addParameter(name='minIndex', value='0', format='int')
102 op.addParameter(name='minIndex', value='0', format='int')
102 op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
103 op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
103
104
104
105
105 op = voltage.addOperation(name='PulsePair_vRF', optype='other')
106 op = voltage.addOperation(name='PulsePair_vRF', optype='other')
106 op.addParameter(name='n', value=125, format='int')
107 op.addParameter(name='n', value=125, format='int')
107
108
108
109
109 proc = project.addProcUnit(datatype='ParametersProc', inputId=voltage.getId())
110 proc = project.addProcUnit(datatype='ParametersProc', inputId=voltage.getId())
110 #procUnitConfObjB.addParameter(name='runNextUnit', value=True)
111 #procUnitConfObjB.addParameter(name='runNextUnit', value=True)
111
112
112 opObj10 = proc.addOperation(name="WeatherRadar")
113 opObj10 = proc.addOperation(name="WeatherRadar")
113 opObj10.addParameter(name='variableList',value='Reflectividad,VelocidadRadial,AnchoEspectral')
114 opObj10.addParameter(name='variableList',value='Reflectividad,VelocidadRadial,AnchoEspectral')
114
115
115 # {"latitude": -12.0404828587, "longitude": -75.2147483647, "altitude": 3379.2147483647}
116 # {"latitude": -12.0404828587, "longitude": -75.2147483647, "altitude": 3379.2147483647}
116
117
117 op = proc.addOperation(name='PedestalInformation')
118 op = proc.addOperation(name='PedestalInformation')
118 op.addParameter(name='path', value=path_ped, format='str')
119 op.addParameter(name='path', value=path_ped, format='str')
119 op.addParameter(name='interval', value='0.04')
120 op.addParameter(name='interval', value='0.04')
120 op.addParameter(name='time_offset', value=time_offset)
121 op.addParameter(name='time_offset', value=time_offset)
121 op.addParameter(name='az_offset', value=-26.2)
122 op.addParameter(name='az_offset', value=-26.2)
122
123
123 for param in parameters:
124 for param in parameters:
124 op = proc.addOperation(name='Block360_vRF4')
125 op = proc.addOperation(name='Block360_vRF4')
125 #op.addParameter(name='axis', value=','.join(axis))
126 #op.addParameter(name='axis', value=','.join(axis))
126 op.addParameter(name='attr_data', value=PARAM[param]['name'])
127 op.addParameter(name='attr_data', value=PARAM[param]['name'])
127 op.addParameter(name='runNextOp', value=True)
128 op.addParameter(name='runNextOp', value=True)
128
129
129 op= proc.addOperation(name='WeatherParamsPlot')
130 op= proc.addOperation(name='WeatherParamsPlot')
130 if args.save: op.addParameter(name='save', value=path_plots, format='str')
131 if args.save: op.addParameter(name='save', value=path_plots, format='str')
131 op.addParameter(name='save_period', value=-1)
132 op.addParameter(name='save_period', value=-1)
132 op.addParameter(name='show', value=args.show)
133 op.addParameter(name='show', value=args.show)
133 op.addParameter(name='channels', value='0,')
134 op.addParameter(name='channels', value='0,')
134 op.addParameter(name='zmin', value=PARAM[param]['zmin'])
135 op.addParameter(name='zmin', value=PARAM[param]['zmin'])
135 op.addParameter(name='zmax', value=PARAM[param]['zmax'])
136 op.addParameter(name='zmax', value=PARAM[param]['zmax'])
136 op.addParameter(name='attr_data', value=PARAM[param]['name'], format='str')
137 op.addParameter(name='attr_data', value=PARAM[param]['name'], format='str')
137 op.addParameter(name='labels', value=[PARAM[param]['label']])
138 op.addParameter(name='labels', value=[PARAM[param]['label']])
138 op.addParameter(name='save_code', value=param)
139 op.addParameter(name='save_code', value=param)
139 op.addParameter(name='cb_label', value=PARAM[param]['cb_label'])
140 op.addParameter(name='cb_label', value=PARAM[param]['cb_label'])
140 op.addParameter(name='colormap', value=PARAM[param]['colormap'])
141 op.addParameter(name='colormap', value=PARAM[param]['colormap'])
141
142
142 desc = {
143 desc = {
143 'Data': {
144 'Data': {
144 PARAM[param]['name']: PARAM[param]['label'],
145 PARAM[param]['name']: PARAM[param]['label'],
145 'utctime': 'time'
146 'utctime': 'time'
146 },
147 },
147 'Metadata': {
148 'Metadata': {
148 'heightList': 'range',
149 'heightList': 'range',
149 'data_azi': 'azimuth',
150 'data_azi': 'azimuth',
150 'data_ele': 'elevation',
151 'data_ele': 'elevation',
151 }
152 }
152 }
153 }
153
154
154 if args.save:
155 if args.save:
155 opObj10 = proc.addOperation(name='HDFWriter')
156 opObj10 = proc.addOperation(name='HDFWriter')
156 opObj10.addParameter(name='path',value=path_save+'-{}'.format(param), format='str')
157 opObj10.addParameter(name='path',value=path_save+'-{}'.format(param), format='str')
157 opObj10.addParameter(name='Reset',value=True)
158 opObj10.addParameter(name='Reset',value=True)
158 opObj10.addParameter(name='setType',value='weather')
159 opObj10.addParameter(name='setType',value='weather')
159 opObj10.addParameter(name='description',value='desc')
160 opObj10.addParameter(name='description',value='desc')
160 opObj10.addParameter(name='blocksPerFile',value='1',format='int')
161 opObj10.addParameter(name='blocksPerFile',value='1',format='int')
161 opObj10.addParameter(name='metadataList',value='heightList,data_azi,data_ele')
162 opObj10.addParameter(name='metadataList',value='heightList,data_azi,data_ele')
162 opObj10.addParameter(name='dataList',value='{},utctime'.format(PARAM[param]['name']))
163 opObj10.addParameter(name='dataList',value='{},utctime'.format(PARAM[param]['name']))
163
164
164 else: #Two pulses
165 else: #Two pulses
165
166
166 voltage1 = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId())
167 voltage1 = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId())
167
168
168 print("repetions",conf['usrp_tx']['repetitions_1'])
169 print("repetions",conf['usrp_tx']['repetitions_1'])
169
170
170 op = voltage1.addOperation(name='ProfileSelector')
171 op = voltage1.addOperation(name='ProfileSelector')
171 op.addParameter(name='profileRangeList', value='0,{}'.format(conf['usrp_tx']['repetitions_1']-1))
172 op.addParameter(name='profileRangeList', value='0,{}'.format(conf['usrp_tx']['repetitions_1']-1))
172
173
173
174
174 #op3 = voltage1.addOperation(name='ProfileSelector', optype='other')
175 #op3 = voltage1.addOperation(name='ProfileSelector', optype='other')
175 #op3.addParameter(name='profileRangeList', value='1,123')
176 #op3.addParameter(name='profileRangeList', value='1,123')
176
177
177 '''
178 '''
178 if conf['usrp_tx']['code_type_1'] != 'None':
179 if conf['usrp_tx']['code_type_1'] != 'None':
179 code = [c.split() for c in conf['usrp_tx']['code_1']]
180 code = [c.split() for c in conf['usrp_tx']['code_1']]
180 op = voltage1.addOperation(name='Decoder', optype='other')
181 op = voltage1.addOperation(name='Decoder', optype='other')
181 op.addParameter(name='code', value=code)
182 op.addParameter(name='code', value=code)
182 op.addParameter(name='nCode', value=len(code), format='int')
183 op.addParameter(name='nCode', value=len(code), format='int')
183 op.addParameter(name='nBaud', value=len(code[0]), format='int')
184 op.addParameter(name='nBaud', value=len(code[0]), format='int')
184 '''
185 '''
185
186
186 code=[[1]]
187 code=[[1]]
187
188
188 opObj11 = voltage1.addOperation(name='Decoder', optype='other')
189 opObj11 = voltage1.addOperation(name='Decoder', optype='other')
189 opObj11.addParameter(name='code', value=code)
190 opObj11.addParameter(name='code', value=code)
190 opObj11.addParameter(name='nCode', value='1', format='int')
191 opObj11.addParameter(name='nCode', value='1', format='int')
191 opObj11.addParameter(name='nBaud', value='1', format='int')
192 opObj11.addParameter(name='nBaud', value='1', format='int')
192
193
193 op = voltage1.addOperation(name='setH0')
194 op = voltage1.addOperation(name='setH0')
194 op.addParameter(name='h0', value='-1.2')
195 op.addParameter(name='h0', value='-1.2')
195
196
196 if args.range >= 0:
197 if args.range >= 0:
197 op = voltage1.addOperation(name='selectHeights')
198 op = voltage1.addOperation(name='selectHeights')
198 op.addParameter(name='minIndex', value='0', format='int')
199 op.addParameter(name='minIndex', value='0', format='int')
199 op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
200 op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
200
201
201 op = voltage1.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario
202 op = voltage1.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario
202 op.addParameter(name='n', value=2, format='int')
203 op.addParameter(name='n', value=2, format='int')
203
204
204 op = voltage1.addOperation(name='PulsePair_vRF', optype='other')
205 op = voltage1.addOperation(name='PulsePair_vRF', optype='other')
205 #op.addParameter(name='n', value=int(N), format='int')
206 #op.addParameter(name='n', value=int(N), format='int')
206 op.addParameter(name='n', value=61, format='int')
207 op.addParameter(name='n', value=61, format='int')
207 #op.addParameter(name='removeDC',value=True)
208 #op.addParameter(name='removeDC',value=True)
208
209
209 '''
210 '''
210 if args.range >= 0:
211 if args.range >= 0:
211 print("corto",max_index(RMIX, sample_rate, ipp))
212 print("corto",max_index(RMIX, sample_rate, ipp))
212 op = voltage1.addOperation(name='selectHeights')
213 op = voltage1.addOperation(name='selectHeights')
213 op.addParameter(name='minIndex', value='0', format='int')
214 op.addParameter(name='minIndex', value='0', format='int')
214 op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
215 op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
215 '''
216 '''
216 proc1 = project.addProcUnit(datatype='ParametersProc', inputId=voltage1.getId())
217 proc1 = project.addProcUnit(datatype='ParametersProc', inputId=voltage1.getId())
217 proc1.addParameter(name='runNextUnit', value=True)
218 proc1.addParameter(name='runNextUnit', value=True)
218
219
219 opObj10 = proc1.addOperation(name="WeatherRadar")
220 opObj10 = proc1.addOperation(name="WeatherRadar")
220 opObj10.addParameter(name='variableList',value='Reflectividad,VelocidadRadial,AnchoEspectral')
221 opObj10.addParameter(name='variableList',value='Reflectividad,VelocidadRadial,AnchoEspectral')
221 opObj10.addParameter(name='tauW',value=0.4*1e-6)
222 opObj10.addParameter(name='tauW',value=0.4*1e-6)
222 opObj10.addParameter(name='Pt',value=0.2)
223 opObj10.addParameter(name='Pt',value=0.2)
223
224
224 # {"latitude": -12.0404828587, "longitude": -75.2147483647, "altitude": 3379.2147483647}
225 # {"latitude": -12.0404828587, "longitude": -75.2147483647, "altitude": 3379.2147483647}
225
226
226 op = proc1.addOperation(name='PedestalInformation')
227 op = proc1.addOperation(name='PedestalInformation')
227 op.addParameter(name='path', value=path_ped, format='str')
228 op.addParameter(name='path', value=path_ped, format='str')
228 op.addParameter(name='interval', value='0.04')
229 op.addParameter(name='interval', value='0.04')
229 op.addParameter(name='time_offset', value=time_offset)
230 op.addParameter(name='time_offset', value=time_offset)
230 op.addParameter(name='az_offset', value=-26.2)
231 op.addParameter(name='az_offset', value=-26.2)
231
232
232 for param in parameters:
233 for param in parameters:
233 op = proc1.addOperation(name='Block360_vRF4')
234 op = proc1.addOperation(name='Block360_vRF4')
234 op.addParameter(name='attr_data', value=PARAM[param]['name'])
235 op.addParameter(name='attr_data', value=PARAM[param]['name'])
235 op.addParameter(name='runNextOp', value=True)
236 op.addParameter(name='runNextOp', value=True)
236
237
237 voltage2 = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId())
238 voltage2 = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId())
238
239
239 op = voltage2.addOperation(name='ProfileSelector')
240 op = voltage2.addOperation(name='ProfileSelector')
240 op.addParameter(name='profileRangeList', value='{},{}'.format(conf['usrp_tx']['repetitions_1'], conf['usrp_tx']['repetitions_1']+conf['usrp_tx']['repetitions_2']-1))
241 op.addParameter(name='profileRangeList', value='{},{}'.format(conf['usrp_tx']['repetitions_1'], conf['usrp_tx']['repetitions_1']+conf['usrp_tx']['repetitions_2']-1))
241
242
242
243
243 if conf['usrp_tx']['code_type_2']:
244 if conf['usrp_tx']['code_type_2']:
244 print(conf['usrp_tx']['code_2'])
245 print(conf['usrp_tx']['code_2'])
245 codes = [ c.strip() for c in conf['usrp_tx']['code_2'].split(',')]
246 codes = [ c.strip() for c in conf['usrp_tx']['code_2'].split(',')]
246 code = []
247 code = []
247 for c in codes:
248 for c in codes:
248 code.append([int(x) for x in c])
249 code.append([int(x) for x in c])
249 print(code)
250 print(code)
250 print(code[0])
251 print(code[0])
251 op = voltage2.addOperation(name='Decoder', optype='other')
252 op = voltage2.addOperation(name='Decoder', optype='other')
252 op.addParameter(name='code', value=code)
253 op.addParameter(name='code', value=code)
253 op.addParameter(name='nCode', value=len(code), format='int')
254 op.addParameter(name='nCode', value=len(code), format='int')
254 op.addParameter(name='nBaud', value=len(code[0]), format='int')
255 op.addParameter(name='nBaud', value=len(code[0]), format='int')
255 import numpy
256 import numpy
256 pwcode = numpy.sum(numpy.array(code[0])**2)
257 pwcode = numpy.sum(numpy.array(code[0])**2)
257 print("pwcode",pwcode)
258 print("pwcode",pwcode)
258
259
259 op = voltage2.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario
260 op = voltage2.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario
260 op.addParameter(name='n', value=len(code), format='int')
261 op.addParameter(name='n', value=len(code), format='int')
261 ncode = len(code)
262 ncode = len(code)
262 else:
263 else:
263 ncode = 1
264 ncode = 1
264
265
265 op = voltage2.addOperation(name='setH0')
266 op = voltage2.addOperation(name='setH0')
266 op.addParameter(name='h0', value='-1.2')
267 op.addParameter(name='h0', value='-1.2')
267
268
268 if args.range >= 0:
269 if args.range >= 0:
269 if args.range==0:
270 if args.range==0:
270 args.range= ipp_km
271 args.range= ipp_km
271 op = voltage2.addOperation(name='selectHeights')
272 op = voltage2.addOperation(name='selectHeights')
272 op.addParameter(name='minIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
273 op.addParameter(name='minIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
273 op.addParameter(name='maxIndex', value=max_index(args.range, sample_rate, ipp), format='int')
274 op.addParameter(name='maxIndex', value=max_index(args.range, sample_rate, ipp), format='int')
274
275
275 #op = voltage2.addOperation(name='PulsePair_vRF', optype='other')
276 #op = voltage2.addOperation(name='PulsePair_vRF', optype='other')
276 #op.addParameter(name='n', value=int(N)/ncode, format='int')
277 #op.addParameter(name='n', value=int(N)/ncode, format='int')
277 op = voltage2.addOperation(name='PulsePair_vRF', optype='other')
278 op = voltage2.addOperation(name='PulsePair_vRF', optype='other')
278 op.addParameter(name='n', value=64, format='int')
279 op.addParameter(name='n', value=64, format='int')
279 #op.addParameter(name='removeDC',value=True)
280 #op.addParameter(name='removeDC',value=True)
280
281
281 '''
282 '''
282
283
283 if args.range >= 0:
284 if args.range >= 0:
284 if args.range==0:
285 if args.range==0:
285 args.range= ipp_km
286 args.range= ipp_km
286 op = voltage2.addOperation(name='selectHeights')
287 op = voltage2.addOperation(name='selectHeights')
287 print("largo",max_index(RMIX, sample_rate, ipp))
288 print("largo",max_index(RMIX, sample_rate, ipp))
288 print("largo2",max_index(args.range, sample_rate, ipp))
289 print("largo2",max_index(args.range, sample_rate, ipp))
289
290
290 op.addParameter(name='minIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
291 op.addParameter(name='minIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
291 op.addParameter(name='maxIndex', value=max_index(args.range, sample_rate, ipp), format='int')
292 op.addParameter(name='maxIndex', value=max_index(args.range, sample_rate, ipp), format='int')
292 '''
293 '''
293
294
294 proc2 = project.addProcUnit(datatype='ParametersProc', inputId=voltage2.getId())
295 proc2 = project.addProcUnit(datatype='ParametersProc', inputId=voltage2.getId())
295
296
296 opObj10 = proc2.addOperation(name="WeatherRadar")
297 opObj10 = proc2.addOperation(name="WeatherRadar")
297 opObj10.addParameter(name='variableList',value='Reflectividad,AnchoEspectral')
298 opObj10.addParameter(name='variableList',value='Reflectividad,AnchoEspectral')
298 opObj10.addParameter(name='tauW',value=3.2*1e-6)
299 opObj10.addParameter(name='tauW',value=6.3*1e-6)
299 opObj10.addParameter(name='Pt',value=1.6)
300 opObj10.addParameter(name='Pt',value=3.2)
300
301
301
302
302 # {"latitude": -12.0404828587, "longitude": -75.2147483647, "altitude": 3379.2147483647}
303 # {"latitude": -12.0404828587, "longitude": -75.2147483647, "altitude": 3379.2147483647}
303
304
304 op = proc2.addOperation(name='PedestalInformation')
305 op = proc2.addOperation(name='PedestalInformation')
305 op.addParameter(name='path', value=path_ped, format='str')
306 op.addParameter(name='path', value=path_ped, format='str')
306 op.addParameter(name='interval', value='0.04')
307 op.addParameter(name='interval', value='0.04')
307 op.addParameter(name='time_offset', value=time_offset)
308 op.addParameter(name='time_offset', value=time_offset)
308 op.addParameter(name='az_offset', value=-26.2)
309 op.addParameter(name='az_offset', value=-26.2)
309
310
310 for param in parameters:
311 for param in parameters:
311 op = proc2.addOperation(name='Block360_vRF4')
312 op = proc2.addOperation(name='Block360_vRF4')
312 #op.addParameter(name='axis', value=','.join(axis))
313 #op.addParameter(name='axis', value=','.join(axis))
313 op.addParameter(name='attr_data', value=PARAM[param]['name'])
314 op.addParameter(name='attr_data', value=PARAM[param]['name'])
314 op.addParameter(name='runNextOp', value=True)
315 op.addParameter(name='runNextOp', value=True)
315
316
316 merge = project.addProcUnit(datatype='MergeProc', inputId=[proc1.getId(), proc2.getId()])
317 merge = project.addProcUnit(datatype='MergeProc', inputId=[proc1.getId(), proc2.getId()])
317 merge.addParameter(name='attr_data', value=PARAM[param]['name'])
318 merge.addParameter(name='attr_data', value=PARAM[param]['name'])
318 merge.addParameter(name='mode', value='7') #RM
319 merge.addParameter(name='mode', value='7') #RM
319
320
320 op= merge.addOperation(name='WeatherParamsPlot')
321 op= merge.addOperation(name='WeatherParamsPlot')
321 if args.save: op.addParameter(name='save', value=path_plots, format='str')
322 if args.save: op.addParameter(name='save', value=path_plots, format='str')
322 op.addParameter(name='save_period', value=-1)
323 op.addParameter(name='save_period', value=-1)
323 op.addParameter(name='show', value=args.show)
324 op.addParameter(name='show', value=args.show)
324 op.addParameter(name='channels', value='0,')
325 op.addParameter(name='channels', value='0,')
325 op.addParameter(name='zmin', value=PARAM[param]['zmin'])
326 op.addParameter(name='zmin', value=PARAM[param]['zmin'])
326 op.addParameter(name='zmax', value=PARAM[param]['zmax'])
327 op.addParameter(name='zmax', value=PARAM[param]['zmax'])
327 op.addParameter(name='attr_data', value=PARAM[param]['name'], format='str')
328 op.addParameter(name='attr_data', value=PARAM[param]['name'], format='str')
328 op.addParameter(name='labels', value=[PARAM[param]['label']])
329 op.addParameter(name='labels', value=[PARAM[param]['label']])
329 op.addParameter(name='save_code', value=param)
330 op.addParameter(name='save_code', value=param)
330 op.addParameter(name='cb_label', value=PARAM[param]['cb_label'])
331 op.addParameter(name='cb_label', value=PARAM[param]['cb_label'])
331 op.addParameter(name='colormap', value=PARAM[param]['colormap'])
332 op.addParameter(name='colormap', value=PARAM[param]['colormap'])
332
333
333 desc = {
334 desc = {
334 'Data': {
335 'Data': {
335 PARAM[param]['name']: PARAM[param]['label'],
336 PARAM[param]['name']: PARAM[param]['label'],
336 'utctime': 'time'
337 'utctime': 'time'
337 },
338 },
338 'Metadata': {
339 'Metadata': {
339 'heightList': 'range',
340 'heightList': 'range',
340 'data_azi': 'azimuth',
341 'data_azi': 'azimuth',
341 'data_ele': 'elevation',
342 'data_ele': 'elevation',
342 }
343 }
343 }
344 }
344
345
345 if args.save:
346 if args.save:
346 opObj10 = merge.addOperation(name='HDFWriter')
347 opObj10 = merge.addOperation(name='HDFWriter')
347 opObj10.addParameter(name='path',value=path_save, format='str')
348 opObj10.addParameter(name='path',value=path_save, format='str')
348 opObj10.addParameter(name='Reset',value=True)
349 opObj10.addParameter(name='Reset',value=True)
349 opObj10.addParameter(name='setType',value='weather')
350 opObj10.addParameter(name='setType',value='weather')
350 opObj10.addParameter(name='description',value='desc')
351 opObj10.addParameter(name='description',value='desc')
351 opObj10.addParameter(name='blocksPerFile',value='1',format='int')
352 opObj10.addParameter(name='blocksPerFile',value='1',format='int')
352 opObj10.addParameter(name='metadataList',value='heightList,data_azi,data_ele')
353 opObj10.addParameter(name='metadataList',value='heightList,data_azi,data_ele')
353 opObj10.addParameter(name='dataList',value='{},utctime'.format(PARAM[param]['name']))
354 opObj10.addParameter(name='dataList',value='{},utctime'.format(PARAM[param]['name']))
354
355
355 project.start()
356 project.start()
356
357
357 if __name__ == '__main__':
358 if __name__ == '__main__':
358
359
359 parser = argparse.ArgumentParser(description='Script to process SOPHy data.')
360 parser = argparse.ArgumentParser(description='Script to process SOPHy data.')
360 parser.add_argument('experiment',
361 parser.add_argument('experiment',
361 help='Experiment name')
362 help='Experiment name')
362 parser.add_argument('--parameters', nargs='*', default=['P'],
363 parser.add_argument('--parameters', nargs='*', default=['P'],
363 help='Variables to process: P, Z, V')
364 help='Variables to process: P, Z, V')
364 parser.add_argument('--time_offset', default=0,
365 parser.add_argument('--time_offset', default=0,
365 help='Fix time offset')
366 help='Fix time offset')
366 parser.add_argument('--range', default=0, type=float,
367 parser.add_argument('--range', default=0, type=float,
367 help='Max range to plot')
368 help='Max range to plot')
368 parser.add_argument('--save', action='store_true',
369 parser.add_argument('--save', action='store_true',
369 help='Create output files')
370 help='Create output files')
370 parser.add_argument('--show', action='store_true',
371 parser.add_argument('--show', action='store_true',
371 help='Show matplotlib plot.')
372 help='Show matplotlib plot.')
372 parser.add_argument('--online', action='store_true',
373 parser.add_argument('--online', action='store_true',
373 help='Set online mode.')
374 help='Set online mode.')
374
375
375 args = parser.parse_args()
376 args = parser.parse_args()
376
377
377 main(args)
378 main(args)
@@ -1,376 +1,376
1 # SOPHY PROC script
1 # SOPHY PROC script
2 import os, sys, json, argparse
2 import os, sys, json, argparse
3 import datetime
3 import datetime
4 import time
4 import time
5
5
6 PATH = '/DATA_RM/DATA'
6 PATH = '/DATA_RM/DATA'
7 # PATH = '/Users/jespinoza/workspace/data/'
7 # PATH = '/Users/jespinoza/workspace/data/'
8 PATH = '/home/soporte/Documents/HUANCAYO'
8 #PATH = '/home/soporte/Documents/HUANCAYO'
9 PARAM = {
9 PARAM = {
10 'P': {'name': 'dataPP_POWER', 'zmin': -50, 'zmax': -15, 'colormap': 'jet', 'label': 'Power', 'wrname': 'Pow','cb_label': 'dB', 'ch':0},
10 'P': {'name': 'dataPP_POWER', 'zmin': -50, 'zmax': -15, 'colormap': 'jet', 'label': 'Power', 'wrname': 'Pow','cb_label': 'dB', 'ch':0},
11 'V': {'name': 'dataPP_DOP', 'zmin': -20, 'zmax': 20, 'colormap': 'seismic', 'label': 'Velocity', 'wrname': 'Vel', 'cb_label': 'm/s', 'ch':0},
11 'V': {'name': 'dataPP_DOP', 'zmin': -20, 'zmax': 20, 'colormap': 'seismic', 'label': 'Velocity', 'wrname': 'Vel', 'cb_label': 'm/s', 'ch':0},
12 'RH': {'name': 'RhoHV_R', 'zmin': 0, 'zmax': 1, 'colormap': 'jet', 'label': 'Coef.Correlacion', 'wrname':'R', 'cb_label': '*', 'ch':0},
12 'RH': {'name': 'RhoHV_R', 'zmin': 0, 'zmax': 1, 'colormap': 'jet', 'label': 'Coef.Correlacion', 'wrname':'R', 'cb_label': '*', 'ch':0},
13 'FD': {'name': 'PhiD_P', 'zmin': -180,'zmax': 180,'colormap': 'RdBu_r', 'label': 'Fase Diferencial', 'wrname':'P' , 'cb_label': 'ΒΊ', 'ch':0},
13 'FD': {'name': 'PhiD_P', 'zmin': -180,'zmax': 180,'colormap': 'RdBu_r', 'label': 'Fase Diferencial', 'wrname':'P' , 'cb_label': 'ΒΊ', 'ch':0},
14 'ZD': {'name': 'Zdb_D', 'zmin': -20, 'zmax': 60, 'colormap': 'viridis','label': 'Reflect.Diferencial','wrname':'D' , 'cb_label': 'dBz','ch':0},
14 'ZD': {'name': 'Zdb_D', 'zmin': -20, 'zmax': 60, 'colormap': 'viridis','label': 'Reflect.Diferencial','wrname':'D' , 'cb_label': 'dBz','ch':0},
15 'Z': {'name': 'Zdb', 'zmin': -20, 'zmax': 70, 'colormap': 'gist_ncar','label': 'Reflectividad', 'wrname':'Z', 'cb_label': 'dBz','ch':1},
15 'Z': {'name': 'Zdb', 'zmin': -20, 'zmax': 70, 'colormap': 'gist_ncar','label': 'Reflectividad', 'wrname':'Z', 'cb_label': 'dBz','ch':1},
16 'W': {'name': 'Sigmav_W', 'zmin': 0, 'zmax':5, 'colormap': 'viridis','label': 'AnchoEspectral', 'wrname':'S', 'cb_label': 'hz', 'ch':1}
16 'W': {'name': 'Sigmav_W', 'zmin': 0, 'zmax':5, 'colormap': 'viridis','label': 'AnchoEspectral', 'wrname':'S', 'cb_label': 'hz', 'ch':1}
17 }
17 }
18
18
19 def max_index(r, sample_rate, ipp):
19 def max_index(r, sample_rate, ipp):
20
20
21 return int(sample_rate*ipp*1e6 * r / 60) + int(sample_rate*ipp*1e6 * 1.2 / 60)
21 return int(sample_rate*ipp*1e6 * r / 60) + int(sample_rate*ipp*1e6 * 1.2 / 60)
22
22
23 def main(args):
23 def main(args):
24
24
25 experiment = args.experiment
25 experiment = args.experiment
26 fp = open(os.path.join(PATH, experiment, 'experiment.conf'))
26 fp = open(os.path.join(PATH, experiment, 'experiment.conf'))
27 conf = json.loads(fp.read())
27 conf = json.loads(fp.read())
28
28
29 ipp_km = conf['usrp_tx']['ipp']
29 ipp_km = conf['usrp_tx']['ipp']
30 ipp = ipp_km * 2 /300000
30 ipp = ipp_km * 2 /300000
31 sample_rate = conf['usrp_rx']['sample_rate']
31 sample_rate = conf['usrp_rx']['sample_rate']
32 axis = ['0' if x=='elevation' else '1' for x in conf['pedestal']['axis']] # AZIMUTH 1 ELEVACION 0
32 axis = ['0' if x=='elevation' else '1' for x in conf['pedestal']['axis']] # AZIMUTH 1 ELEVACION 0
33 speed_axis = conf['pedestal']['speed']
33 speed_axis = conf['pedestal']['speed']
34 steeps = conf['pedestal']['table']
34 steeps = conf['pedestal']['table']
35 time_offset = args.time_offset
35 time_offset = args.time_offset
36 parameters = args.parameters
36 parameters = args.parameters
37 start_date = experiment.split('@')[1].split('T')[0].replace('-', '/')
37 start_date = experiment.split('@')[1].split('T')[0].replace('-', '/')
38 end_date = start_date
38 end_date = start_date
39 start_time = experiment.split('@')[1].split('T')[1].replace('-', ':')
39 start_time = experiment.split('@')[1].split('T')[1].replace('-', ':')
40 end_time = '23:59:59'
40 end_time = '23:59:59'
41 N = int(1/(speed_axis[0]*ipp)) # 1 GRADO DE RESOLUCION
41 N = int(1/(speed_axis[0]*ipp)) # 1 GRADO DE RESOLUCION
42 path = os.path.join(PATH, experiment, 'rawdata')
42 path = os.path.join(PATH, experiment, 'rawdata')
43 path_ped = os.path.join(PATH, experiment, 'position')
43 path_ped = os.path.join(PATH, experiment, 'position')
44 path_plots = os.path.join(PATH, experiment, 'plots_ch1')
44 path_plots = os.path.join(PATH, experiment, 'plots_ch1')
45 path_save = os.path.join(PATH, experiment, 'param')
45 path_save = os.path.join(PATH, experiment, 'param')
46 RMIX = 2
46 RMIX = 2
47
47
48 from schainpy.controller import Project
48 from schainpy.controller import Project
49
49
50 project = Project()
50 project = Project()
51 project.setup(id='1', name='Sophy', description='sophy proc')
51 project.setup(id='1', name='Sophy', description='sophy proc')
52
52
53 reader = project.addReadUnit(datatype='DigitalRFReader',
53 reader = project.addReadUnit(datatype='DigitalRFReader',
54 path=path,
54 path=path,
55 startDate=start_date,
55 startDate=start_date,
56 endDate=end_date,
56 endDate=end_date,
57 startTime=start_time,
57 startTime=start_time,
58 endTime=end_time,
58 endTime=end_time,
59 delay=30,
59 delay=30,
60 channelList='0',
60 channelList='0',
61 online=args.online,
61 online=args.online,
62 walk=1,
62 walk=1,
63 ippKm = ipp_km,
63 ippKm = ipp_km,
64 getByBlock = 1,
64 getByBlock = 1,
65 nProfileBlocks = N,
65 nProfileBlocks = N,
66 )
66 )
67
67
68 if not conf['usrp_tx']['enable_2']: # One Pulse
68 if not conf['usrp_tx']['enable_2']: # One Pulse
69 voltage = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId())
69 voltage = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId())
70
70
71 if conf['usrp_tx']['code_type_1']:
71 if conf['usrp_tx']['code_type_1']:
72 code = [c.split() for c in conf['usrp']['code_1']]
72 code = [c.split() for c in conf['usrp']['code_1']]
73 op = voltage.addOperation(name='Decoder', optype='other')
73 op = voltage.addOperation(name='Decoder', optype='other')
74 op.addParameter(name='code', value=code)
74 op.addParameter(name='code', value=code)
75 op.addParameter(name='nCode', value=len(code), format='int')
75 op.addParameter(name='nCode', value=len(code), format='int')
76 op.addParameter(name='nBaud', value=len(code[0]), format='int')
76 op.addParameter(name='nBaud', value=len(code[0]), format='int')
77
77
78 op = voltage.addOperation(name='setH0')
78 op = voltage.addOperation(name='setH0')
79 op.addParameter(name='h0', value='-1.2')
79 op.addParameter(name='h0', value='-1.2')
80
80
81 if args.range >= 0:
81 if args.range >= 0:
82 op = voltage.addOperation(name='selectHeights')
82 op = voltage.addOperation(name='selectHeights')
83 op.addParameter(name='minIndex', value='0', format='int')
83 op.addParameter(name='minIndex', value='0', format='int')
84 op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
84 op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
85
85
86 code=[[1]]
86 code=[[1]]
87 opObj11 = voltage.addOperation(name='Decoder', optype='other')
87 opObj11 = voltage.addOperation(name='Decoder', optype='other')
88 opObj11.addParameter(name='code', value=code)
88 opObj11.addParameter(name='code', value=code)
89 opObj11.addParameter(name='nCode', value='1', format='int')
89 opObj11.addParameter(name='nCode', value='1', format='int')
90 opObj11.addParameter(name='nBaud', value='1', format='int')
90 opObj11.addParameter(name='nBaud', value='1', format='int')
91
91
92 op = voltage2.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario
92 op = voltage2.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario
93 op.addParameter(name='n', value=2*len(code), format='int')
93 op.addParameter(name='n', value=2*len(code), format='int')
94
94
95 #op = voltage.addOperation(name='PulsePair_vRF', optype='other')
95 #op = voltage.addOperation(name='PulsePair_vRF', optype='other')
96 #op.addParameter(name='n', value=int(N), format='int')
96 #op.addParameter(name='n', value=int(N), format='int')
97
97
98 if args.range >= 0:
98 if args.range >= 0:
99 op = voltage.addOperation(name='selectHeights')
99 op = voltage.addOperation(name='selectHeights')
100 op.addParameter(name='minIndex', value='0', format='int')
100 op.addParameter(name='minIndex', value='0', format='int')
101 op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
101 op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
102
102
103
103
104 op = voltage.addOperation(name='PulsePair_vRF', optype='other')
104 op = voltage.addOperation(name='PulsePair_vRF', optype='other')
105 op.addParameter(name='n', value=125, format='int')
105 op.addParameter(name='n', value=125, format='int')
106
106
107
107
108 proc = project.addProcUnit(datatype='ParametersProc', inputId=voltage.getId())
108 proc = project.addProcUnit(datatype='ParametersProc', inputId=voltage.getId())
109 #procUnitConfObjB.addParameter(name='runNextUnit', value=True)
109 #procUnitConfObjB.addParameter(name='runNextUnit', value=True)
110
110
111 opObj10 = proc.addOperation(name="WeatherRadar")
111 opObj10 = proc.addOperation(name="WeatherRadar")
112 opObj10.addParameter(name='variableList',value='Reflectividad,VelocidadRadial,AnchoEspectral')
112 opObj10.addParameter(name='variableList',value='Reflectividad,VelocidadRadial,AnchoEspectral')
113
113
114 # {"latitude": -12.0404828587, "longitude": -75.2147483647, "altitude": 3379.2147483647}
114 # {"latitude": -12.0404828587, "longitude": -75.2147483647, "altitude": 3379.2147483647}
115
115
116 op = proc.addOperation(name='PedestalInformation')
116 op = proc.addOperation(name='PedestalInformation')
117 op.addParameter(name='path', value=path_ped, format='str')
117 op.addParameter(name='path', value=path_ped, format='str')
118 op.addParameter(name='interval', value='0.04')
118 op.addParameter(name='interval', value='0.04')
119 op.addParameter(name='time_offset', value=time_offset)
119 op.addParameter(name='time_offset', value=time_offset)
120 op.addParameter(name='az_offset', value=-26.2)
120 op.addParameter(name='az_offset', value=-26.2)
121
121
122 for param in parameters:
122 for param in parameters:
123 op = proc.addOperation(name='Block360_vRF4')
123 op = proc.addOperation(name='Block360_vRF4')
124 #op.addParameter(name='axis', value=','.join(axis))
124 #op.addParameter(name='axis', value=','.join(axis))
125 op.addParameter(name='attr_data', value=PARAM[param]['name'])
125 op.addParameter(name='attr_data', value=PARAM[param]['name'])
126 op.addParameter(name='runNextOp', value=True)
126 op.addParameter(name='runNextOp', value=True)
127
127
128 op= proc.addOperation(name='WeatherParamsPlot')
128 op= proc.addOperation(name='WeatherParamsPlot')
129 if args.save: op.addParameter(name='save', value=path_plots, format='str')
129 if args.save: op.addParameter(name='save', value=path_plots, format='str')
130 op.addParameter(name='save_period', value=-1)
130 op.addParameter(name='save_period', value=-1)
131 op.addParameter(name='show', value=args.show)
131 op.addParameter(name='show', value=args.show)
132 op.addParameter(name='channels', value='1,')
132 op.addParameter(name='channels', value='1,')
133 op.addParameter(name='zmin', value=PARAM[param]['zmin'])
133 op.addParameter(name='zmin', value=PARAM[param]['zmin'])
134 op.addParameter(name='zmax', value=PARAM[param]['zmax'])
134 op.addParameter(name='zmax', value=PARAM[param]['zmax'])
135 op.addParameter(name='attr_data', value=PARAM[param]['name'], format='str')
135 op.addParameter(name='attr_data', value=PARAM[param]['name'], format='str')
136 op.addParameter(name='labels', value=[PARAM[param]['label']])
136 op.addParameter(name='labels', value=[PARAM[param]['label']])
137 op.addParameter(name='save_code', value=param)
137 op.addParameter(name='save_code', value=param)
138 op.addParameter(name='cb_label', value=PARAM[param]['cb_label'])
138 op.addParameter(name='cb_label', value=PARAM[param]['cb_label'])
139 op.addParameter(name='colormap', value=PARAM[param]['colormap'])
139 op.addParameter(name='colormap', value=PARAM[param]['colormap'])
140
140
141 desc = {
141 desc = {
142 'Data': {
142 'Data': {
143 PARAM[param]['name']: PARAM[param]['label'],
143 PARAM[param]['name']: PARAM[param]['label'],
144 'utctime': 'time'
144 'utctime': 'time'
145 },
145 },
146 'Metadata': {
146 'Metadata': {
147 'heightList': 'range',
147 'heightList': 'range',
148 'data_azi': 'azimuth',
148 'data_azi': 'azimuth',
149 'data_ele': 'elevation',
149 'data_ele': 'elevation',
150 }
150 }
151 }
151 }
152
152
153 if args.save:
153 if args.save:
154 opObj10 = proc.addOperation(name='HDFWriter')
154 opObj10 = proc.addOperation(name='HDFWriter')
155 opObj10.addParameter(name='path',value=path_save+'-{}'.format(param), format='str')
155 opObj10.addParameter(name='path',value=path_save+'-{}'.format(param), format='str')
156 opObj10.addParameter(name='Reset',value=True)
156 opObj10.addParameter(name='Reset',value=True)
157 opObj10.addParameter(name='setType',value='weather')
157 opObj10.addParameter(name='setType',value='weather')
158 opObj10.addParameter(name='description',value='desc')
158 opObj10.addParameter(name='description',value='desc')
159 opObj10.addParameter(name='blocksPerFile',value='1',format='int')
159 opObj10.addParameter(name='blocksPerFile',value='1',format='int')
160 opObj10.addParameter(name='metadataList',value='heightList,data_azi,data_ele')
160 opObj10.addParameter(name='metadataList',value='heightList,data_azi,data_ele')
161 opObj10.addParameter(name='dataList',value='{},utctime'.format(PARAM[param]['name']))
161 opObj10.addParameter(name='dataList',value='{},utctime'.format(PARAM[param]['name']))
162
162
163 else: #Two pulses
163 else: #Two pulses
164
164
165 voltage1 = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId())
165 voltage1 = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId())
166
166
167 print("repetions",conf['usrp_tx']['repetitions_1'])
167 print("repetions",conf['usrp_tx']['repetitions_1'])
168
168
169 op = voltage1.addOperation(name='ProfileSelector')
169 op = voltage1.addOperation(name='ProfileSelector')
170 op.addParameter(name='profileRangeList', value='0,{}'.format(conf['usrp_tx']['repetitions_1']-1))
170 op.addParameter(name='profileRangeList', value='0,{}'.format(conf['usrp_tx']['repetitions_1']-1))
171
171
172
172
173 #op3 = voltage1.addOperation(name='ProfileSelector', optype='other')
173 #op3 = voltage1.addOperation(name='ProfileSelector', optype='other')
174 #op3.addParameter(name='profileRangeList', value='1,123')
174 #op3.addParameter(name='profileRangeList', value='1,123')
175
175
176 '''
176 '''
177 if conf['usrp_tx']['code_type_1'] != 'None':
177 if conf['usrp_tx']['code_type_1'] != 'None':
178 code = [c.split() for c in conf['usrp_tx']['code_1']]
178 code = [c.split() for c in conf['usrp_tx']['code_1']]
179 op = voltage1.addOperation(name='Decoder', optype='other')
179 op = voltage1.addOperation(name='Decoder', optype='other')
180 op.addParameter(name='code', value=code)
180 op.addParameter(name='code', value=code)
181 op.addParameter(name='nCode', value=len(code), format='int')
181 op.addParameter(name='nCode', value=len(code), format='int')
182 op.addParameter(name='nBaud', value=len(code[0]), format='int')
182 op.addParameter(name='nBaud', value=len(code[0]), format='int')
183 '''
183 '''
184
184
185 code=[[1]]
185 code=[[1]]
186
186
187 opObj11 = voltage1.addOperation(name='Decoder', optype='other')
187 opObj11 = voltage1.addOperation(name='Decoder', optype='other')
188 opObj11.addParameter(name='code', value=code)
188 opObj11.addParameter(name='code', value=code)
189 opObj11.addParameter(name='nCode', value='1', format='int')
189 opObj11.addParameter(name='nCode', value='1', format='int')
190 opObj11.addParameter(name='nBaud', value='1', format='int')
190 opObj11.addParameter(name='nBaud', value='1', format='int')
191
191
192 op = voltage1.addOperation(name='setH0')
192 op = voltage1.addOperation(name='setH0')
193 op.addParameter(name='h0', value='-1.2')
193 op.addParameter(name='h0', value='-1.2')
194
194
195 if args.range >= 0:
195 if args.range >= 0:
196 op = voltage1.addOperation(name='selectHeights')
196 op = voltage1.addOperation(name='selectHeights')
197 op.addParameter(name='minIndex', value='0', format='int')
197 op.addParameter(name='minIndex', value='0', format='int')
198 op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
198 op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
199
199
200 op = voltage1.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario
200 op = voltage1.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario
201 op.addParameter(name='n', value=2, format='int')
201 op.addParameter(name='n', value=2, format='int')
202
202
203 op = voltage1.addOperation(name='PulsePair_vRF', optype='other')
203 op = voltage1.addOperation(name='PulsePair_vRF', optype='other')
204 #op.addParameter(name='n', value=int(N), format='int')
204 #op.addParameter(name='n', value=int(N), format='int')
205 op.addParameter(name='n', value=61, format='int')
205 op.addParameter(name='n', value=61, format='int')
206 #op.addParameter(name='removeDC',value=True)
206 #op.addParameter(name='removeDC',value=True)
207
207
208 '''
208 '''
209 if args.range >= 0:
209 if args.range >= 0:
210 print("corto",max_index(RMIX, sample_rate, ipp))
210 print("corto",max_index(RMIX, sample_rate, ipp))
211 op = voltage1.addOperation(name='selectHeights')
211 op = voltage1.addOperation(name='selectHeights')
212 op.addParameter(name='minIndex', value='0', format='int')
212 op.addParameter(name='minIndex', value='0', format='int')
213 op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
213 op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
214 '''
214 '''
215 proc1 = project.addProcUnit(datatype='ParametersProc', inputId=voltage1.getId())
215 proc1 = project.addProcUnit(datatype='ParametersProc', inputId=voltage1.getId())
216 proc1.addParameter(name='runNextUnit', value=True)
216 proc1.addParameter(name='runNextUnit', value=True)
217
217
218 opObj10 = proc1.addOperation(name="WeatherRadar")
218 opObj10 = proc1.addOperation(name="WeatherRadar")
219 opObj10.addParameter(name='variableList',value='Reflectividad,VelocidadRadial,AnchoEspectral')
219 opObj10.addParameter(name='variableList',value='Reflectividad,VelocidadRadial,AnchoEspectral')
220 opObj10.addParameter(name='tauW',value=0.4*1e-6)
220 opObj10.addParameter(name='tauW',value=0.4*1e-6)
221 opObj10.addParameter(name='Pt',value=0.2)
221 opObj10.addParameter(name='Pt',value=0.2)
222
222
223 # {"latitude": -12.0404828587, "longitude": -75.2147483647, "altitude": 3379.2147483647}
223 # {"latitude": -12.0404828587, "longitude": -75.2147483647, "altitude": 3379.2147483647}
224
224
225 op = proc1.addOperation(name='PedestalInformation')
225 op = proc1.addOperation(name='PedestalInformation')
226 op.addParameter(name='path', value=path_ped, format='str')
226 op.addParameter(name='path', value=path_ped, format='str')
227 op.addParameter(name='interval', value='0.04')
227 op.addParameter(name='interval', value='0.04')
228 op.addParameter(name='time_offset', value=time_offset)
228 op.addParameter(name='time_offset', value=time_offset)
229 op.addParameter(name='az_offset', value=-26.2)
229 op.addParameter(name='az_offset', value=-26.2)
230
230
231 for param in parameters:
231 for param in parameters:
232 op = proc1.addOperation(name='Block360_vRF4')
232 op = proc1.addOperation(name='Block360_vRF4')
233 op.addParameter(name='attr_data', value=PARAM[param]['name'])
233 op.addParameter(name='attr_data', value=PARAM[param]['name'])
234 op.addParameter(name='runNextOp', value=True)
234 op.addParameter(name='runNextOp', value=True)
235
235
236 voltage2 = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId())
236 voltage2 = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId())
237
237
238 op = voltage2.addOperation(name='ProfileSelector')
238 op = voltage2.addOperation(name='ProfileSelector')
239 op.addParameter(name='profileRangeList', value='{},{}'.format(conf['usrp_tx']['repetitions_1'], conf['usrp_tx']['repetitions_1']+conf['usrp_tx']['repetitions_2']-1))
239 op.addParameter(name='profileRangeList', value='{},{}'.format(conf['usrp_tx']['repetitions_1'], conf['usrp_tx']['repetitions_1']+conf['usrp_tx']['repetitions_2']-1))
240
240
241
241
242 if conf['usrp_tx']['code_type_2']:
242 if conf['usrp_tx']['code_type_2']:
243 print(conf['usrp_tx']['code_2'])
243 print(conf['usrp_tx']['code_2'])
244 codes = [ c.strip() for c in conf['usrp_tx']['code_2'].split(',')]
244 codes = [ c.strip() for c in conf['usrp_tx']['code_2'].split(',')]
245 code = []
245 code = []
246 for c in codes:
246 for c in codes:
247 code.append([int(x) for x in c])
247 code.append([int(x) for x in c])
248 print(code)
248 print(code)
249 print(code[0])
249 print(code[0])
250 op = voltage2.addOperation(name='Decoder', optype='other')
250 op = voltage2.addOperation(name='Decoder', optype='other')
251 op.addParameter(name='code', value=code)
251 op.addParameter(name='code', value=code)
252 op.addParameter(name='nCode', value=len(code), format='int')
252 op.addParameter(name='nCode', value=len(code), format='int')
253 op.addParameter(name='nBaud', value=len(code[0]), format='int')
253 op.addParameter(name='nBaud', value=len(code[0]), format='int')
254 import numpy
254 import numpy
255 pwcode = numpy.sum(numpy.array(code[0])**2)
255 pwcode = numpy.sum(numpy.array(code[0])**2)
256 print("pwcode",pwcode)
256 print("pwcode",pwcode)
257
257
258 op = voltage2.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario
258 op = voltage2.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario
259 op.addParameter(name='n', value=len(code), format='int')
259 op.addParameter(name='n', value=len(code), format='int')
260 ncode = len(code)
260 ncode = len(code)
261 else:
261 else:
262 ncode = 1
262 ncode = 1
263
263
264 op = voltage2.addOperation(name='setH0')
264 op = voltage2.addOperation(name='setH0')
265 op.addParameter(name='h0', value='-1.2')
265 op.addParameter(name='h0', value='-1.2')
266
266
267 if args.range >= 0:
267 if args.range >= 0:
268 if args.range==0:
268 if args.range==0:
269 args.range= ipp_km
269 args.range= ipp_km
270 op = voltage2.addOperation(name='selectHeights')
270 op = voltage2.addOperation(name='selectHeights')
271 op.addParameter(name='minIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
271 op.addParameter(name='minIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
272 op.addParameter(name='maxIndex', value=max_index(args.range, sample_rate, ipp), format='int')
272 op.addParameter(name='maxIndex', value=max_index(args.range, sample_rate, ipp), format='int')
273
273
274 #op = voltage2.addOperation(name='PulsePair_vRF', optype='other')
274 #op = voltage2.addOperation(name='PulsePair_vRF', optype='other')
275 #op.addParameter(name='n', value=int(N)/ncode, format='int')
275 #op.addParameter(name='n', value=int(N)/ncode, format='int')
276 op = voltage2.addOperation(name='PulsePair_vRF', optype='other')
276 op = voltage2.addOperation(name='PulsePair_vRF', optype='other')
277 op.addParameter(name='n', value=64, format='int')
277 op.addParameter(name='n', value=64, format='int')
278 #op.addParameter(name='removeDC',value=True)
278 #op.addParameter(name='removeDC',value=True)
279
279
280 '''
280 '''
281
281
282 if args.range >= 0:
282 if args.range >= 0:
283 if args.range==0:
283 if args.range==0:
284 args.range= ipp_km
284 args.range= ipp_km
285 op = voltage2.addOperation(name='selectHeights')
285 op = voltage2.addOperation(name='selectHeights')
286 print("largo",max_index(RMIX, sample_rate, ipp))
286 print("largo",max_index(RMIX, sample_rate, ipp))
287 print("largo2",max_index(args.range, sample_rate, ipp))
287 print("largo2",max_index(args.range, sample_rate, ipp))
288
288
289 op.addParameter(name='minIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
289 op.addParameter(name='minIndex', value=max_index(RMIX, sample_rate, ipp), format='int')
290 op.addParameter(name='maxIndex', value=max_index(args.range, sample_rate, ipp), format='int')
290 op.addParameter(name='maxIndex', value=max_index(args.range, sample_rate, ipp), format='int')
291 '''
291 '''
292
292
293 proc2 = project.addProcUnit(datatype='ParametersProc', inputId=voltage2.getId())
293 proc2 = project.addProcUnit(datatype='ParametersProc', inputId=voltage2.getId())
294
294
295 opObj10 = proc2.addOperation(name="WeatherRadar")
295 opObj10 = proc2.addOperation(name="WeatherRadar")
296 opObj10.addParameter(name='variableList',value='Reflectividad,AnchoEspectral')
296 opObj10.addParameter(name='variableList',value='Reflectividad,AnchoEspectral')
297 opObj10.addParameter(name='tauW',value=3.2*1e-6)
297 opObj10.addParameter(name='tauW',value=3.2*1e-6)
298 opObj10.addParameter(name='Pt',value=1.6)
298 opObj10.addParameter(name='Pt',value=1.6)
299
299
300
300
301 # {"latitude": -12.0404828587, "longitude": -75.2147483647, "altitude": 3379.2147483647}
301 # {"latitude": -12.0404828587, "longitude": -75.2147483647, "altitude": 3379.2147483647}
302
302
303 op = proc2.addOperation(name='PedestalInformation')
303 op = proc2.addOperation(name='PedestalInformation')
304 op.addParameter(name='path', value=path_ped, format='str')
304 op.addParameter(name='path', value=path_ped, format='str')
305 op.addParameter(name='interval', value='0.04')
305 op.addParameter(name='interval', value='0.04')
306 op.addParameter(name='time_offset', value=time_offset)
306 op.addParameter(name='time_offset', value=time_offset)
307 op.addParameter(name='az_offset', value=-26.2)
307 op.addParameter(name='az_offset', value=-26.2)
308
308
309 for param in parameters:
309 for param in parameters:
310 op = proc2.addOperation(name='Block360_vRF4')
310 op = proc2.addOperation(name='Block360_vRF4')
311 #op.addParameter(name='axis', value=','.join(axis))
311 #op.addParameter(name='axis', value=','.join(axis))
312 op.addParameter(name='attr_data', value=PARAM[param]['name'])
312 op.addParameter(name='attr_data', value=PARAM[param]['name'])
313 op.addParameter(name='runNextOp', value=True)
313 op.addParameter(name='runNextOp', value=True)
314
314
315 merge = project.addProcUnit(datatype='MergeProc', inputId=[proc1.getId(), proc2.getId()])
315 merge = project.addProcUnit(datatype='MergeProc', inputId=[proc1.getId(), proc2.getId()])
316 merge.addParameter(name='attr_data', value=PARAM[param]['name'])
316 merge.addParameter(name='attr_data', value=PARAM[param]['name'])
317 merge.addParameter(name='mode', value='7') #RM
317 merge.addParameter(name='mode', value='7') #RM
318
318
319 op= merge.addOperation(name='WeatherParamsPlot')
319 op= merge.addOperation(name='WeatherParamsPlot')
320 if args.save: op.addParameter(name='save', value=path_plots, format='str')
320 if args.save: op.addParameter(name='save', value=path_plots, format='str')
321 op.addParameter(name='save_period', value=-1)
321 op.addParameter(name='save_period', value=-1)
322 op.addParameter(name='show', value=args.show)
322 op.addParameter(name='show', value=args.show)
323 op.addParameter(name='channels', value='1,')
323 op.addParameter(name='channels', value='1,')
324 op.addParameter(name='zmin', value=PARAM[param]['zmin'])
324 op.addParameter(name='zmin', value=PARAM[param]['zmin'])
325 op.addParameter(name='zmax', value=PARAM[param]['zmax'])
325 op.addParameter(name='zmax', value=PARAM[param]['zmax'])
326 op.addParameter(name='attr_data', value=PARAM[param]['name'], format='str')
326 op.addParameter(name='attr_data', value=PARAM[param]['name'], format='str')
327 op.addParameter(name='labels', value=[PARAM[param]['label']])
327 op.addParameter(name='labels', value=[PARAM[param]['label']])
328 op.addParameter(name='save_code', value=param)
328 op.addParameter(name='save_code', value=param)
329 op.addParameter(name='cb_label', value=PARAM[param]['cb_label'])
329 op.addParameter(name='cb_label', value=PARAM[param]['cb_label'])
330 op.addParameter(name='colormap', value=PARAM[param]['colormap'])
330 op.addParameter(name='colormap', value=PARAM[param]['colormap'])
331
331
332 desc = {
332 desc = {
333 'Data': {
333 'Data': {
334 PARAM[param]['name']: PARAM[param]['label'],
334 PARAM[param]['name']: PARAM[param]['label'],
335 'utctime': 'time'
335 'utctime': 'time'
336 },
336 },
337 'Metadata': {
337 'Metadata': {
338 'heightList': 'range',
338 'heightList': 'range',
339 'data_azi': 'azimuth',
339 'data_azi': 'azimuth',
340 'data_ele': 'elevation',
340 'data_ele': 'elevation',
341 }
341 }
342 }
342 }
343
343
344 if args.save:
344 if args.save:
345 opObj10 = merge.addOperation(name='HDFWriter')
345 opObj10 = merge.addOperation(name='HDFWriter')
346 opObj10.addParameter(name='path',value=path_save, format='str')
346 opObj10.addParameter(name='path',value=path_save, format='str')
347 opObj10.addParameter(name='Reset',value=True)
347 opObj10.addParameter(name='Reset',value=True)
348 opObj10.addParameter(name='setType',value='weather')
348 opObj10.addParameter(name='setType',value='weather')
349 opObj10.addParameter(name='description',value='desc')
349 opObj10.addParameter(name='description',value='desc')
350 opObj10.addParameter(name='blocksPerFile',value='1',format='int')
350 opObj10.addParameter(name='blocksPerFile',value='1',format='int')
351 opObj10.addParameter(name='metadataList',value='heightList,data_azi,data_ele')
351 opObj10.addParameter(name='metadataList',value='heightList,data_azi,data_ele')
352 opObj10.addParameter(name='dataList',value='{},utctime'.format(PARAM[param]['name']))
352 opObj10.addParameter(name='dataList',value='{},utctime'.format(PARAM[param]['name']))
353
353
354 project.start()
354 project.start()
355
355
356 if __name__ == '__main__':
356 if __name__ == '__main__':
357
357
358 parser = argparse.ArgumentParser(description='Script to process SOPHy data.')
358 parser = argparse.ArgumentParser(description='Script to process SOPHy data.')
359 parser.add_argument('experiment',
359 parser.add_argument('experiment',
360 help='Experiment name')
360 help='Experiment name')
361 parser.add_argument('--parameters', nargs='*', default=['P'],
361 parser.add_argument('--parameters', nargs='*', default=['P'],
362 help='Variables to process: P, Z, V')
362 help='Variables to process: P, Z, V')
363 parser.add_argument('--time_offset', default=0,
363 parser.add_argument('--time_offset', default=0,
364 help='Fix time offset')
364 help='Fix time offset')
365 parser.add_argument('--range', default=0, type=float,
365 parser.add_argument('--range', default=0, type=float,
366 help='Max range to plot')
366 help='Max range to plot')
367 parser.add_argument('--save', action='store_true',
367 parser.add_argument('--save', action='store_true',
368 help='Create output files')
368 help='Create output files')
369 parser.add_argument('--show', action='store_true',
369 parser.add_argument('--show', action='store_true',
370 help='Show matplotlib plot.')
370 help='Show matplotlib plot.')
371 parser.add_argument('--online', action='store_true',
371 parser.add_argument('--online', action='store_true',
372 help='Set online mode.')
372 help='Set online mode.')
373
373
374 args = parser.parse_args()
374 args = parser.parse_args()
375
375
376 main(args)
376 main(args)
General Comments 0
You need to be logged in to leave comments. Login now