@@ -1,1251 +1,1254 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import copy |
|
8 | 8 | import numpy |
|
9 | 9 | import datetime |
|
10 | 10 | |
|
11 | 11 | from jroheaderIO import SystemHeader, RadarControllerHeader |
|
12 | 12 | from schainpy import cSchain |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | def getNumpyDtype(dataTypeCode): |
|
16 | 16 | |
|
17 | 17 | if dataTypeCode == 0: |
|
18 | 18 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
19 | 19 | elif dataTypeCode == 1: |
|
20 | 20 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
21 | 21 | elif dataTypeCode == 2: |
|
22 | 22 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
23 | 23 | elif dataTypeCode == 3: |
|
24 | 24 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
25 | 25 | elif dataTypeCode == 4: |
|
26 | 26 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
27 | 27 | elif dataTypeCode == 5: |
|
28 | 28 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
29 | 29 | else: |
|
30 | 30 | raise ValueError, 'dataTypeCode was not defined' |
|
31 | 31 | |
|
32 | 32 | return numpyDtype |
|
33 | 33 | |
|
34 | 34 | |
|
35 | 35 | def getDataTypeCode(numpyDtype): |
|
36 | 36 | |
|
37 | 37 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
38 | 38 | datatype = 0 |
|
39 | 39 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
40 | 40 | datatype = 1 |
|
41 | 41 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
42 | 42 | datatype = 2 |
|
43 | 43 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
44 | 44 | datatype = 3 |
|
45 | 45 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
46 | 46 | datatype = 4 |
|
47 | 47 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
48 | 48 | datatype = 5 |
|
49 | 49 | else: |
|
50 | 50 | datatype = None |
|
51 | 51 | |
|
52 | 52 | return datatype |
|
53 | 53 | |
|
54 | 54 | |
|
55 | 55 | def hildebrand_sekhon(data, navg): |
|
56 | 56 | """ |
|
57 | 57 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
58 | 58 | implementation technique is based on the fact that the standard deviation of the spectral |
|
59 | 59 | densities is equal to the mean spectral density for white Gaussian noise |
|
60 | 60 | |
|
61 | 61 | Inputs: |
|
62 | 62 | Data : heights |
|
63 | 63 | navg : numbers of averages |
|
64 | 64 | |
|
65 | 65 | Return: |
|
66 | 66 | -1 : any error |
|
67 | 67 | anoise : noise's level |
|
68 | 68 | """ |
|
69 | 69 | |
|
70 | 70 | sortdata = numpy.sort(data, axis=None) |
|
71 | 71 | # lenOfData = len(sortdata) |
|
72 | 72 | # nums_min = lenOfData*0.2 |
|
73 | 73 | # |
|
74 | 74 | # if nums_min <= 5: |
|
75 | 75 | # nums_min = 5 |
|
76 | 76 | # |
|
77 | 77 | # sump = 0. |
|
78 | 78 | # |
|
79 | 79 | # sumq = 0. |
|
80 | 80 | # |
|
81 | 81 | # j = 0 |
|
82 | 82 | # |
|
83 | 83 | # cont = 1 |
|
84 | 84 | # |
|
85 | 85 | # while((cont==1)and(j<lenOfData)): |
|
86 | 86 | # |
|
87 | 87 | # sump += sortdata[j] |
|
88 | 88 | # |
|
89 | 89 | # sumq += sortdata[j]**2 |
|
90 | 90 | # |
|
91 | 91 | # if j > nums_min: |
|
92 | 92 | # rtest = float(j)/(j-1) + 1.0/navg |
|
93 | 93 | # if ((sumq*j) > (rtest*sump**2)): |
|
94 | 94 | # j = j - 1 |
|
95 | 95 | # sump = sump - sortdata[j] |
|
96 | 96 | # sumq = sumq - sortdata[j]**2 |
|
97 | 97 | # cont = 0 |
|
98 | 98 | # |
|
99 | 99 | # j += 1 |
|
100 | 100 | # |
|
101 | 101 | # lnoise = sump /j |
|
102 | 102 | # |
|
103 | 103 | # return lnoise |
|
104 | 104 | |
|
105 | 105 | return cSchain.hildebrand_sekhon(sortdata, navg) |
|
106 | 106 | |
|
107 | 107 | |
|
108 | 108 | class Beam: |
|
109 | 109 | |
|
110 | 110 | def __init__(self): |
|
111 | 111 | self.codeList = [] |
|
112 | 112 | self.azimuthList = [] |
|
113 | 113 | self.zenithList = [] |
|
114 | 114 | |
|
115 | 115 | |
|
116 | 116 | class GenericData(object): |
|
117 | 117 | |
|
118 | 118 | flagNoData = True |
|
119 | 119 | |
|
120 | 120 | def copy(self, inputObj=None): |
|
121 | 121 | |
|
122 | 122 | if inputObj == None: |
|
123 | 123 | return copy.deepcopy(self) |
|
124 | 124 | |
|
125 | 125 | for key in inputObj.__dict__.keys(): |
|
126 | 126 | |
|
127 | 127 | attribute = inputObj.__dict__[key] |
|
128 | 128 | |
|
129 | 129 | # If this attribute is a tuple or list |
|
130 | 130 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
131 | 131 | self.__dict__[key] = attribute[:] |
|
132 | 132 | continue |
|
133 | 133 | |
|
134 | 134 | # If this attribute is another object or instance |
|
135 | 135 | if hasattr(attribute, '__dict__'): |
|
136 | 136 | self.__dict__[key] = attribute.copy() |
|
137 | 137 | continue |
|
138 | 138 | |
|
139 | 139 | self.__dict__[key] = inputObj.__dict__[key] |
|
140 | 140 | |
|
141 | 141 | def deepcopy(self): |
|
142 | 142 | |
|
143 | 143 | return copy.deepcopy(self) |
|
144 | 144 | |
|
145 | 145 | def isEmpty(self): |
|
146 | 146 | |
|
147 | 147 | return self.flagNoData |
|
148 | 148 | |
|
149 | 149 | |
|
150 | 150 | class JROData(GenericData): |
|
151 | 151 | |
|
152 | 152 | # m_BasicHeader = BasicHeader() |
|
153 | 153 | # m_ProcessingHeader = ProcessingHeader() |
|
154 | 154 | |
|
155 | 155 | systemHeaderObj = SystemHeader() |
|
156 | 156 | |
|
157 | 157 | radarControllerHeaderObj = RadarControllerHeader() |
|
158 | 158 | |
|
159 | 159 | # data = None |
|
160 | 160 | |
|
161 | 161 | type = None |
|
162 | 162 | |
|
163 | 163 | datatype = None # dtype but in string |
|
164 | 164 | |
|
165 | 165 | # dtype = None |
|
166 | 166 | |
|
167 | 167 | # nChannels = None |
|
168 | 168 | |
|
169 | 169 | # nHeights = None |
|
170 | 170 | |
|
171 | 171 | nProfiles = None |
|
172 | 172 | |
|
173 | 173 | heightList = None |
|
174 | 174 | |
|
175 | 175 | channelList = None |
|
176 | 176 | |
|
177 | 177 | flagDiscontinuousBlock = False |
|
178 | 178 | |
|
179 | 179 | useLocalTime = False |
|
180 | 180 | |
|
181 | 181 | utctime = None |
|
182 | 182 | |
|
183 | 183 | timeZone = None |
|
184 | 184 | |
|
185 | 185 | dstFlag = None |
|
186 | 186 | |
|
187 | 187 | errorCount = None |
|
188 | 188 | |
|
189 | 189 | blocksize = None |
|
190 | 190 | |
|
191 | 191 | # nCode = None |
|
192 | 192 | # |
|
193 | 193 | # nBaud = None |
|
194 | 194 | # |
|
195 | 195 | # code = None |
|
196 | 196 | |
|
197 | 197 | flagDecodeData = False # asumo q la data no esta decodificada |
|
198 | 198 | |
|
199 | 199 | flagDeflipData = False # asumo q la data no esta sin flip |
|
200 | 200 | |
|
201 | 201 | flagShiftFFT = False |
|
202 | 202 | |
|
203 | 203 | # ippSeconds = None |
|
204 | 204 | |
|
205 | 205 | # timeInterval = None |
|
206 | 206 | |
|
207 | 207 | nCohInt = None |
|
208 | 208 | |
|
209 | 209 | # noise = None |
|
210 | 210 | |
|
211 | 211 | windowOfFilter = 1 |
|
212 | 212 | |
|
213 | 213 | # Speed of ligth |
|
214 | 214 | C = 3e8 |
|
215 | 215 | |
|
216 | 216 | frequency = 49.92e6 |
|
217 | 217 | |
|
218 | 218 | realtime = False |
|
219 | 219 | |
|
220 | 220 | beacon_heiIndexList = None |
|
221 | 221 | |
|
222 | 222 | last_block = None |
|
223 | 223 | |
|
224 | 224 | blocknow = None |
|
225 | 225 | |
|
226 | 226 | azimuth = None |
|
227 | 227 | |
|
228 | 228 | zenith = None |
|
229 | 229 | |
|
230 | 230 | beam = Beam() |
|
231 | 231 | |
|
232 | 232 | profileIndex = None |
|
233 | 233 | |
|
234 | 234 | def getNoise(self): |
|
235 | 235 | |
|
236 | 236 | raise NotImplementedError |
|
237 | 237 | |
|
238 | 238 | def getNChannels(self): |
|
239 | 239 | |
|
240 | 240 | return len(self.channelList) |
|
241 | 241 | |
|
242 | 242 | def getChannelIndexList(self): |
|
243 | 243 | |
|
244 | 244 | return range(self.nChannels) |
|
245 | 245 | |
|
246 | 246 | def getNHeights(self): |
|
247 | 247 | |
|
248 | 248 | return len(self.heightList) |
|
249 | 249 | |
|
250 | 250 | def getHeiRange(self, extrapoints=0): |
|
251 | 251 | |
|
252 | 252 | heis = self.heightList |
|
253 | 253 | # deltah = self.heightList[1] - self.heightList[0] |
|
254 | 254 | # |
|
255 | 255 | # heis.append(self.heightList[-1]) |
|
256 | 256 | |
|
257 | 257 | return heis |
|
258 | 258 | |
|
259 | 259 | def getDeltaH(self): |
|
260 | 260 | |
|
261 | 261 | delta = self.heightList[1] - self.heightList[0] |
|
262 | 262 | |
|
263 | 263 | return delta |
|
264 | 264 | |
|
265 | 265 | def getltctime(self): |
|
266 | 266 | |
|
267 | 267 | if self.useLocalTime: |
|
268 | 268 | return self.utctime - self.timeZone * 60 |
|
269 | 269 | |
|
270 | 270 | return self.utctime |
|
271 | 271 | |
|
272 | 272 | def getDatatime(self): |
|
273 | 273 | |
|
274 | 274 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
275 | 275 | return datatimeValue |
|
276 | 276 | |
|
277 | 277 | def getTimeRange(self): |
|
278 | 278 | |
|
279 | 279 | datatime = [] |
|
280 | 280 | |
|
281 | 281 | datatime.append(self.ltctime) |
|
282 | 282 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
283 | 283 | |
|
284 | 284 | datatime = numpy.array(datatime) |
|
285 | 285 | |
|
286 | 286 | return datatime |
|
287 | 287 | |
|
288 | 288 | def getFmaxTimeResponse(self): |
|
289 | 289 | |
|
290 | 290 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
291 | 291 | |
|
292 | 292 | PRF = 1. / (period * self.nCohInt) |
|
293 | 293 | |
|
294 | 294 | fmax = PRF |
|
295 | 295 | |
|
296 | 296 | return fmax |
|
297 | 297 | |
|
298 | 298 | def getFmax(self): |
|
299 | 299 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
300 | 300 | |
|
301 | 301 | fmax = PRF |
|
302 | 302 | return fmax |
|
303 | 303 | |
|
304 | 304 | def getVmax(self): |
|
305 | 305 | |
|
306 | 306 | _lambda = self.C / self.frequency |
|
307 | 307 | |
|
308 | 308 | vmax = self.getFmax() * _lambda / 2 |
|
309 | 309 | |
|
310 | 310 | return vmax |
|
311 | 311 | |
|
312 | 312 | def get_ippSeconds(self): |
|
313 | 313 | ''' |
|
314 | 314 | ''' |
|
315 | 315 | return self.radarControllerHeaderObj.ippSeconds |
|
316 | 316 | |
|
317 | 317 | def set_ippSeconds(self, ippSeconds): |
|
318 | 318 | ''' |
|
319 | 319 | ''' |
|
320 | 320 | |
|
321 | 321 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
322 | 322 | |
|
323 | 323 | return |
|
324 | 324 | |
|
325 | 325 | def get_dtype(self): |
|
326 | 326 | ''' |
|
327 | 327 | ''' |
|
328 | 328 | return getNumpyDtype(self.datatype) |
|
329 | 329 | |
|
330 | 330 | def set_dtype(self, numpyDtype): |
|
331 | 331 | ''' |
|
332 | 332 | ''' |
|
333 | 333 | |
|
334 | 334 | self.datatype = getDataTypeCode(numpyDtype) |
|
335 | 335 | |
|
336 | 336 | def get_code(self): |
|
337 | 337 | ''' |
|
338 | 338 | ''' |
|
339 | 339 | return self.radarControllerHeaderObj.code |
|
340 | 340 | |
|
341 | 341 | def set_code(self, code): |
|
342 | 342 | ''' |
|
343 | 343 | ''' |
|
344 | 344 | self.radarControllerHeaderObj.code = code |
|
345 | 345 | |
|
346 | 346 | return |
|
347 | 347 | |
|
348 | 348 | def get_ncode(self): |
|
349 | 349 | ''' |
|
350 | 350 | ''' |
|
351 | 351 | return self.radarControllerHeaderObj.nCode |
|
352 | 352 | |
|
353 | 353 | def set_ncode(self, nCode): |
|
354 | 354 | ''' |
|
355 | 355 | ''' |
|
356 | 356 | self.radarControllerHeaderObj.nCode = nCode |
|
357 | 357 | |
|
358 | 358 | return |
|
359 | 359 | |
|
360 | 360 | def get_nbaud(self): |
|
361 | 361 | ''' |
|
362 | 362 | ''' |
|
363 | 363 | return self.radarControllerHeaderObj.nBaud |
|
364 | 364 | |
|
365 | 365 | def set_nbaud(self, nBaud): |
|
366 | 366 | ''' |
|
367 | 367 | ''' |
|
368 | 368 | self.radarControllerHeaderObj.nBaud = nBaud |
|
369 | 369 | |
|
370 | 370 | return |
|
371 | 371 | |
|
372 | 372 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
373 | 373 | channelIndexList = property( |
|
374 | 374 | getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
375 | 375 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
376 | 376 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
377 | 377 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
378 | 378 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
379 | 379 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
380 | 380 | dtype = property(get_dtype, set_dtype) |
|
381 | 381 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
382 | 382 | code = property(get_code, set_code) |
|
383 | 383 | nCode = property(get_ncode, set_ncode) |
|
384 | 384 | nBaud = property(get_nbaud, set_nbaud) |
|
385 | 385 | |
|
386 | 386 | |
|
387 | 387 | class Voltage(JROData): |
|
388 | 388 | |
|
389 | 389 | # data es un numpy array de 2 dmensiones (canales, alturas) |
|
390 | 390 | data = None |
|
391 | 391 | |
|
392 | 392 | def __init__(self): |
|
393 | 393 | ''' |
|
394 | 394 | Constructor |
|
395 | 395 | ''' |
|
396 | 396 | |
|
397 | 397 | self.useLocalTime = True |
|
398 | 398 | |
|
399 | 399 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
400 | 400 | |
|
401 | 401 | self.systemHeaderObj = SystemHeader() |
|
402 | 402 | |
|
403 | 403 | self.type = "Voltage" |
|
404 | 404 | |
|
405 | 405 | self.data = None |
|
406 | 406 | |
|
407 | 407 | # self.dtype = None |
|
408 | 408 | |
|
409 | 409 | # self.nChannels = 0 |
|
410 | 410 | |
|
411 | 411 | # self.nHeights = 0 |
|
412 | 412 | |
|
413 | 413 | self.nProfiles = None |
|
414 | 414 | |
|
415 | 415 | self.heightList = None |
|
416 | 416 | |
|
417 | 417 | self.channelList = None |
|
418 | 418 | |
|
419 | 419 | # self.channelIndexList = None |
|
420 | 420 | |
|
421 | 421 | self.flagNoData = True |
|
422 | 422 | |
|
423 | 423 | self.flagDiscontinuousBlock = False |
|
424 | 424 | |
|
425 | 425 | self.utctime = None |
|
426 | 426 | |
|
427 | 427 | self.timeZone = None |
|
428 | 428 | |
|
429 | 429 | self.dstFlag = None |
|
430 | 430 | |
|
431 | 431 | self.errorCount = None |
|
432 | 432 | |
|
433 | 433 | self.nCohInt = None |
|
434 | 434 | |
|
435 | 435 | self.blocksize = None |
|
436 | 436 | |
|
437 | 437 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
438 | 438 | |
|
439 | 439 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
440 | 440 | |
|
441 | 441 | self.flagShiftFFT = False |
|
442 | 442 | |
|
443 | 443 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
444 | 444 | |
|
445 | 445 | self.profileIndex = 0 |
|
446 | 446 | |
|
447 | 447 | def getNoisebyHildebrand(self, channel=None): |
|
448 | 448 | """ |
|
449 | 449 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
450 | 450 | |
|
451 | 451 | Return: |
|
452 | 452 | noiselevel |
|
453 | 453 | """ |
|
454 | 454 | |
|
455 | 455 | if channel != None: |
|
456 | 456 | data = self.data[channel] |
|
457 | 457 | nChannels = 1 |
|
458 | 458 | else: |
|
459 | 459 | data = self.data |
|
460 | 460 | nChannels = self.nChannels |
|
461 | 461 | |
|
462 | 462 | noise = numpy.zeros(nChannels) |
|
463 | 463 | power = data * numpy.conjugate(data) |
|
464 | 464 | |
|
465 | 465 | for thisChannel in range(nChannels): |
|
466 | 466 | if nChannels == 1: |
|
467 | 467 | daux = power[:].real |
|
468 | 468 | else: |
|
469 | 469 | daux = power[thisChannel, :].real |
|
470 | 470 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
471 | 471 | |
|
472 | 472 | return noise |
|
473 | 473 | |
|
474 | 474 | def getNoise(self, type=1, channel=None): |
|
475 | 475 | |
|
476 | 476 | if type == 1: |
|
477 | 477 | noise = self.getNoisebyHildebrand(channel) |
|
478 | 478 | |
|
479 | 479 | return noise |
|
480 | 480 | |
|
481 | 481 | def getPower(self, channel=None): |
|
482 | 482 | |
|
483 | 483 | if channel != None: |
|
484 | 484 | data = self.data[channel] |
|
485 | 485 | else: |
|
486 | 486 | data = self.data |
|
487 | 487 | |
|
488 | 488 | power = data * numpy.conjugate(data) |
|
489 | 489 | powerdB = 10 * numpy.log10(power.real) |
|
490 | 490 | powerdB = numpy.squeeze(powerdB) |
|
491 | 491 | |
|
492 | 492 | return powerdB |
|
493 | 493 | |
|
494 | 494 | def getTimeInterval(self): |
|
495 | 495 | |
|
496 | 496 | timeInterval = self.ippSeconds * self.nCohInt |
|
497 | 497 | |
|
498 | 498 | return timeInterval |
|
499 | 499 | |
|
500 | 500 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
501 | 501 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
502 | 502 | |
|
503 | 503 | |
|
504 | 504 | class Spectra(JROData): |
|
505 | 505 | |
|
506 | 506 | # data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
507 | 507 | data_spc = None |
|
508 | 508 | |
|
509 | 509 | # data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
510 | 510 | data_cspc = None |
|
511 | 511 | |
|
512 | 512 | # data dc es un numpy array de 2 dmensiones (canales, alturas) |
|
513 | 513 | data_dc = None |
|
514 | 514 | |
|
515 | 515 | # data power |
|
516 | 516 | data_pwr = None |
|
517 | 517 | |
|
518 | 518 | nFFTPoints = None |
|
519 | 519 | |
|
520 | 520 | # nPairs = None |
|
521 | 521 | |
|
522 | 522 | pairsList = None |
|
523 | 523 | |
|
524 | 524 | nIncohInt = None |
|
525 | 525 | |
|
526 | 526 | wavelength = None # Necesario para cacular el rango de velocidad desde la frecuencia |
|
527 | 527 | |
|
528 | 528 | nCohInt = None # se requiere para determinar el valor de timeInterval |
|
529 | 529 | |
|
530 | 530 | ippFactor = None |
|
531 | 531 | |
|
532 | 532 | profileIndex = 0 |
|
533 | 533 | |
|
534 | 534 | plotting = "spectra" |
|
535 | 535 | |
|
536 | 536 | def __init__(self): |
|
537 | 537 | ''' |
|
538 | 538 | Constructor |
|
539 | 539 | ''' |
|
540 | 540 | |
|
541 | 541 | self.useLocalTime = True |
|
542 | 542 | |
|
543 | 543 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
544 | 544 | |
|
545 | 545 | self.systemHeaderObj = SystemHeader() |
|
546 | 546 | |
|
547 | 547 | self.type = "Spectra" |
|
548 | 548 | |
|
549 | 549 | # self.data = None |
|
550 | 550 | |
|
551 | 551 | # self.dtype = None |
|
552 | 552 | |
|
553 | 553 | # self.nChannels = 0 |
|
554 | 554 | |
|
555 | 555 | # self.nHeights = 0 |
|
556 | 556 | |
|
557 | 557 | self.nProfiles = None |
|
558 | 558 | |
|
559 | 559 | self.heightList = None |
|
560 | 560 | |
|
561 | 561 | self.channelList = None |
|
562 | 562 | |
|
563 | 563 | # self.channelIndexList = None |
|
564 | 564 | |
|
565 | 565 | self.pairsList = None |
|
566 | 566 | |
|
567 | 567 | self.flagNoData = True |
|
568 | 568 | |
|
569 | 569 | self.flagDiscontinuousBlock = False |
|
570 | 570 | |
|
571 | 571 | self.utctime = None |
|
572 | 572 | |
|
573 | 573 | self.nCohInt = None |
|
574 | 574 | |
|
575 | 575 | self.nIncohInt = None |
|
576 | 576 | |
|
577 | 577 | self.blocksize = None |
|
578 | 578 | |
|
579 | 579 | self.nFFTPoints = None |
|
580 | 580 | |
|
581 | 581 | self.wavelength = None |
|
582 | 582 | |
|
583 | 583 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
584 | 584 | |
|
585 | 585 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
586 | 586 | |
|
587 | 587 | self.flagShiftFFT = False |
|
588 | 588 | |
|
589 | 589 | self.ippFactor = 1 |
|
590 | 590 | |
|
591 | 591 | #self.noise = None |
|
592 | 592 | |
|
593 | 593 | self.beacon_heiIndexList = [] |
|
594 | 594 | |
|
595 | 595 | self.noise_estimation = None |
|
596 | 596 | |
|
597 | 597 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
598 | 598 | """ |
|
599 | 599 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
600 | 600 | |
|
601 | 601 | Return: |
|
602 | 602 | noiselevel |
|
603 | 603 | """ |
|
604 | 604 | |
|
605 | 605 | noise = numpy.zeros(self.nChannels) |
|
606 | 606 | |
|
607 | 607 | for channel in range(self.nChannels): |
|
608 | #print "confuse",self.data_spc.dtype | |
|
608 | 609 | daux = self.data_spc[channel, |
|
609 | 610 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
611 | ||
|
612 | #print "HI3.0",(daux.dtype),daux.shape | |
|
610 | 613 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
611 | 614 | |
|
612 | 615 | return noise |
|
613 | 616 | |
|
614 | 617 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
615 | 618 | |
|
616 | 619 | if self.noise_estimation is not None: |
|
617 | 620 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
618 | 621 | return self.noise_estimation |
|
619 | 622 | else: |
|
620 | 623 | noise = self.getNoisebyHildebrand( |
|
621 | 624 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
622 | 625 | return noise |
|
623 | 626 | |
|
624 | 627 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
625 | 628 | |
|
626 | 629 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
627 | 630 | freqrange = deltafreq * \ |
|
628 | 631 | (numpy.arange(self.nFFTPoints + extrapoints) - |
|
629 | 632 | self.nFFTPoints / 2.) - deltafreq / 2 |
|
630 | 633 | |
|
631 | 634 | return freqrange |
|
632 | 635 | |
|
633 | 636 | def getAcfRange(self, extrapoints=0): |
|
634 | 637 | |
|
635 | 638 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
636 | 639 | freqrange = deltafreq * \ |
|
637 | 640 | (numpy.arange(self.nFFTPoints + extrapoints) - |
|
638 | 641 | self.nFFTPoints / 2.) - deltafreq / 2 |
|
639 | 642 | |
|
640 | 643 | return freqrange |
|
641 | 644 | |
|
642 | 645 | def getFreqRange(self, extrapoints=0): |
|
643 | 646 | |
|
644 | 647 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
645 | 648 | freqrange = deltafreq * \ |
|
646 | 649 | (numpy.arange(self.nFFTPoints + extrapoints) - |
|
647 | 650 | self.nFFTPoints / 2.) - deltafreq / 2 |
|
648 | 651 | |
|
649 | 652 | return freqrange |
|
650 | 653 | |
|
651 | 654 | def getVelRange(self, extrapoints=0): |
|
652 | 655 | |
|
653 | 656 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
654 | 657 | velrange = deltav * (numpy.arange(self.nFFTPoints + |
|
655 | 658 | extrapoints) - self.nFFTPoints / 2.) # - deltav/2 |
|
656 | 659 | |
|
657 | 660 | return velrange |
|
658 | 661 | |
|
659 | 662 | def getNPairs(self): |
|
660 | 663 | |
|
661 | 664 | return len(self.pairsList) |
|
662 | 665 | |
|
663 | 666 | def getPairsIndexList(self): |
|
664 | 667 | |
|
665 | 668 | return range(self.nPairs) |
|
666 | 669 | |
|
667 | 670 | def getNormFactor(self): |
|
668 | 671 | |
|
669 | 672 | pwcode = 1 |
|
670 | 673 | |
|
671 | 674 | if self.flagDecodeData: |
|
672 | 675 | pwcode = numpy.sum(self.code[0]**2) |
|
673 | 676 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
674 | 677 | normFactor = self.nProfiles * self.nIncohInt * \ |
|
675 | 678 | self.nCohInt * pwcode * self.windowOfFilter |
|
676 | 679 | |
|
677 | 680 | return normFactor |
|
678 | 681 | |
|
679 | 682 | def getFlagCspc(self): |
|
680 | 683 | |
|
681 | 684 | if self.data_cspc is None: |
|
682 | 685 | return True |
|
683 | 686 | |
|
684 | 687 | return False |
|
685 | 688 | |
|
686 | 689 | def getFlagDc(self): |
|
687 | 690 | |
|
688 | 691 | if self.data_dc is None: |
|
689 | 692 | return True |
|
690 | 693 | |
|
691 | 694 | return False |
|
692 | 695 | |
|
693 | 696 | def getTimeInterval(self): |
|
694 | 697 | |
|
695 | 698 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
696 | 699 | |
|
697 | 700 | return timeInterval |
|
698 | 701 | |
|
699 | 702 | def getPower(self): |
|
700 | 703 | |
|
701 | 704 | factor = self.normFactor |
|
702 | 705 | z = self.data_spc / factor |
|
703 | 706 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
704 | 707 | avg = numpy.average(z, axis=1) |
|
705 | 708 | |
|
706 | 709 | return 10 * numpy.log10(avg) |
|
707 | 710 | |
|
708 | 711 | def getCoherence(self, pairsList=None, phase=False): |
|
709 | 712 | |
|
710 | 713 | z = [] |
|
711 | 714 | if pairsList is None: |
|
712 | 715 | pairsIndexList = self.pairsIndexList |
|
713 | 716 | else: |
|
714 | 717 | pairsIndexList = [] |
|
715 | 718 | for pair in pairsList: |
|
716 | 719 | if pair not in self.pairsList: |
|
717 | 720 | raise ValueError, "Pair %s is not in dataOut.pairsList" % ( |
|
718 | 721 | pair) |
|
719 | 722 | pairsIndexList.append(self.pairsList.index(pair)) |
|
720 | 723 | for i in range(len(pairsIndexList)): |
|
721 | 724 | pair = self.pairsList[pairsIndexList[i]] |
|
722 | 725 | ccf = numpy.average( |
|
723 | 726 | self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
724 | 727 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
725 | 728 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
726 | 729 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
727 | 730 | if phase: |
|
728 | 731 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
729 | 732 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
730 | 733 | else: |
|
731 | 734 | data = numpy.abs(avgcoherenceComplex) |
|
732 | 735 | |
|
733 | 736 | z.append(data) |
|
734 | 737 | |
|
735 | 738 | return numpy.array(z) |
|
736 | 739 | |
|
737 | 740 | def setValue(self, value): |
|
738 | 741 | |
|
739 | 742 | print "This property should not be initialized" |
|
740 | 743 | |
|
741 | 744 | return |
|
742 | 745 | |
|
743 | 746 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
744 | 747 | pairsIndexList = property( |
|
745 | 748 | getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") |
|
746 | 749 | normFactor = property(getNormFactor, setValue, |
|
747 | 750 | "I'm the 'getNormFactor' property.") |
|
748 | 751 | flag_cspc = property(getFlagCspc, setValue) |
|
749 | 752 | flag_dc = property(getFlagDc, setValue) |
|
750 | 753 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
751 | 754 | timeInterval = property(getTimeInterval, setValue, |
|
752 | 755 | "I'm the 'timeInterval' property") |
|
753 | 756 | |
|
754 | 757 | |
|
755 | 758 | class SpectraHeis(Spectra): |
|
756 | 759 | |
|
757 | 760 | data_spc = None |
|
758 | 761 | |
|
759 | 762 | data_cspc = None |
|
760 | 763 | |
|
761 | 764 | data_dc = None |
|
762 | 765 | |
|
763 | 766 | nFFTPoints = None |
|
764 | 767 | |
|
765 | 768 | # nPairs = None |
|
766 | 769 | |
|
767 | 770 | pairsList = None |
|
768 | 771 | |
|
769 | 772 | nCohInt = None |
|
770 | 773 | |
|
771 | 774 | nIncohInt = None |
|
772 | 775 | |
|
773 | 776 | def __init__(self): |
|
774 | 777 | |
|
775 | 778 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
776 | 779 | |
|
777 | 780 | self.systemHeaderObj = SystemHeader() |
|
778 | 781 | |
|
779 | 782 | self.type = "SpectraHeis" |
|
780 | 783 | |
|
781 | 784 | # self.dtype = None |
|
782 | 785 | |
|
783 | 786 | # self.nChannels = 0 |
|
784 | 787 | |
|
785 | 788 | # self.nHeights = 0 |
|
786 | 789 | |
|
787 | 790 | self.nProfiles = None |
|
788 | 791 | |
|
789 | 792 | self.heightList = None |
|
790 | 793 | |
|
791 | 794 | self.channelList = None |
|
792 | 795 | |
|
793 | 796 | # self.channelIndexList = None |
|
794 | 797 | |
|
795 | 798 | self.flagNoData = True |
|
796 | 799 | |
|
797 | 800 | self.flagDiscontinuousBlock = False |
|
798 | 801 | |
|
799 | 802 | # self.nPairs = 0 |
|
800 | 803 | |
|
801 | 804 | self.utctime = None |
|
802 | 805 | |
|
803 | 806 | self.blocksize = None |
|
804 | 807 | |
|
805 | 808 | self.profileIndex = 0 |
|
806 | 809 | |
|
807 | 810 | self.nCohInt = 1 |
|
808 | 811 | |
|
809 | 812 | self.nIncohInt = 1 |
|
810 | 813 | |
|
811 | 814 | def getNormFactor(self): |
|
812 | 815 | pwcode = 1 |
|
813 | 816 | if self.flagDecodeData: |
|
814 | 817 | pwcode = numpy.sum(self.code[0]**2) |
|
815 | 818 | |
|
816 | 819 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
817 | 820 | |
|
818 | 821 | return normFactor |
|
819 | 822 | |
|
820 | 823 | def getTimeInterval(self): |
|
821 | 824 | |
|
822 | 825 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
823 | 826 | |
|
824 | 827 | return timeInterval |
|
825 | 828 | |
|
826 | 829 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
827 | 830 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
828 | 831 | |
|
829 | 832 | |
|
830 | 833 | class Fits(JROData): |
|
831 | 834 | |
|
832 | 835 | heightList = None |
|
833 | 836 | |
|
834 | 837 | channelList = None |
|
835 | 838 | |
|
836 | 839 | flagNoData = True |
|
837 | 840 | |
|
838 | 841 | flagDiscontinuousBlock = False |
|
839 | 842 | |
|
840 | 843 | useLocalTime = False |
|
841 | 844 | |
|
842 | 845 | utctime = None |
|
843 | 846 | |
|
844 | 847 | timeZone = None |
|
845 | 848 | |
|
846 | 849 | # ippSeconds = None |
|
847 | 850 | |
|
848 | 851 | # timeInterval = None |
|
849 | 852 | |
|
850 | 853 | nCohInt = None |
|
851 | 854 | |
|
852 | 855 | nIncohInt = None |
|
853 | 856 | |
|
854 | 857 | noise = None |
|
855 | 858 | |
|
856 | 859 | windowOfFilter = 1 |
|
857 | 860 | |
|
858 | 861 | # Speed of ligth |
|
859 | 862 | C = 3e8 |
|
860 | 863 | |
|
861 | 864 | frequency = 49.92e6 |
|
862 | 865 | |
|
863 | 866 | realtime = False |
|
864 | 867 | |
|
865 | 868 | def __init__(self): |
|
866 | 869 | |
|
867 | 870 | self.type = "Fits" |
|
868 | 871 | |
|
869 | 872 | self.nProfiles = None |
|
870 | 873 | |
|
871 | 874 | self.heightList = None |
|
872 | 875 | |
|
873 | 876 | self.channelList = None |
|
874 | 877 | |
|
875 | 878 | # self.channelIndexList = None |
|
876 | 879 | |
|
877 | 880 | self.flagNoData = True |
|
878 | 881 | |
|
879 | 882 | self.utctime = None |
|
880 | 883 | |
|
881 | 884 | self.nCohInt = 1 |
|
882 | 885 | |
|
883 | 886 | self.nIncohInt = 1 |
|
884 | 887 | |
|
885 | 888 | self.useLocalTime = True |
|
886 | 889 | |
|
887 | 890 | self.profileIndex = 0 |
|
888 | 891 | |
|
889 | 892 | # self.utctime = None |
|
890 | 893 | # self.timeZone = None |
|
891 | 894 | # self.ltctime = None |
|
892 | 895 | # self.timeInterval = None |
|
893 | 896 | # self.header = None |
|
894 | 897 | # self.data_header = None |
|
895 | 898 | # self.data = None |
|
896 | 899 | # self.datatime = None |
|
897 | 900 | # self.flagNoData = False |
|
898 | 901 | # self.expName = '' |
|
899 | 902 | # self.nChannels = None |
|
900 | 903 | # self.nSamples = None |
|
901 | 904 | # self.dataBlocksPerFile = None |
|
902 | 905 | # self.comments = '' |
|
903 | 906 | # |
|
904 | 907 | |
|
905 | 908 | def getltctime(self): |
|
906 | 909 | |
|
907 | 910 | if self.useLocalTime: |
|
908 | 911 | return self.utctime - self.timeZone * 60 |
|
909 | 912 | |
|
910 | 913 | return self.utctime |
|
911 | 914 | |
|
912 | 915 | def getDatatime(self): |
|
913 | 916 | |
|
914 | 917 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
915 | 918 | return datatime |
|
916 | 919 | |
|
917 | 920 | def getTimeRange(self): |
|
918 | 921 | |
|
919 | 922 | datatime = [] |
|
920 | 923 | |
|
921 | 924 | datatime.append(self.ltctime) |
|
922 | 925 | datatime.append(self.ltctime + self.timeInterval) |
|
923 | 926 | |
|
924 | 927 | datatime = numpy.array(datatime) |
|
925 | 928 | |
|
926 | 929 | return datatime |
|
927 | 930 | |
|
928 | 931 | def getHeiRange(self): |
|
929 | 932 | |
|
930 | 933 | heis = self.heightList |
|
931 | 934 | |
|
932 | 935 | return heis |
|
933 | 936 | |
|
934 | 937 | def getNHeights(self): |
|
935 | 938 | |
|
936 | 939 | return len(self.heightList) |
|
937 | 940 | |
|
938 | 941 | def getNChannels(self): |
|
939 | 942 | |
|
940 | 943 | return len(self.channelList) |
|
941 | 944 | |
|
942 | 945 | def getChannelIndexList(self): |
|
943 | 946 | |
|
944 | 947 | return range(self.nChannels) |
|
945 | 948 | |
|
946 | 949 | def getNoise(self, type=1): |
|
947 | 950 | |
|
948 | 951 | #noise = numpy.zeros(self.nChannels) |
|
949 | 952 | |
|
950 | 953 | if type == 1: |
|
951 | 954 | noise = self.getNoisebyHildebrand() |
|
952 | 955 | |
|
953 | 956 | if type == 2: |
|
954 | 957 | noise = self.getNoisebySort() |
|
955 | 958 | |
|
956 | 959 | if type == 3: |
|
957 | 960 | noise = self.getNoisebyWindow() |
|
958 | 961 | |
|
959 | 962 | return noise |
|
960 | 963 | |
|
961 | 964 | def getTimeInterval(self): |
|
962 | 965 | |
|
963 | 966 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
964 | 967 | |
|
965 | 968 | return timeInterval |
|
966 | 969 | |
|
967 | 970 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
968 | 971 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
969 | 972 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
970 | 973 | channelIndexList = property( |
|
971 | 974 | getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
972 | 975 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
973 | 976 | |
|
974 | 977 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
975 | 978 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
976 | 979 | |
|
977 | 980 | |
|
978 | 981 | class Correlation(JROData): |
|
979 | 982 | |
|
980 | 983 | noise = None |
|
981 | 984 | |
|
982 | 985 | SNR = None |
|
983 | 986 | |
|
984 | 987 | #-------------------------------------------------- |
|
985 | 988 | |
|
986 | 989 | mode = None |
|
987 | 990 | |
|
988 | 991 | split = False |
|
989 | 992 | |
|
990 | 993 | data_cf = None |
|
991 | 994 | |
|
992 | 995 | lags = None |
|
993 | 996 | |
|
994 | 997 | lagRange = None |
|
995 | 998 | |
|
996 | 999 | pairsList = None |
|
997 | 1000 | |
|
998 | 1001 | normFactor = None |
|
999 | 1002 | |
|
1000 | 1003 | #-------------------------------------------------- |
|
1001 | 1004 | |
|
1002 | 1005 | # calculateVelocity = None |
|
1003 | 1006 | |
|
1004 | 1007 | nLags = None |
|
1005 | 1008 | |
|
1006 | 1009 | nPairs = None |
|
1007 | 1010 | |
|
1008 | 1011 | nAvg = None |
|
1009 | 1012 | |
|
1010 | 1013 | def __init__(self): |
|
1011 | 1014 | ''' |
|
1012 | 1015 | Constructor |
|
1013 | 1016 | ''' |
|
1014 | 1017 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1015 | 1018 | |
|
1016 | 1019 | self.systemHeaderObj = SystemHeader() |
|
1017 | 1020 | |
|
1018 | 1021 | self.type = "Correlation" |
|
1019 | 1022 | |
|
1020 | 1023 | self.data = None |
|
1021 | 1024 | |
|
1022 | 1025 | self.dtype = None |
|
1023 | 1026 | |
|
1024 | 1027 | self.nProfiles = None |
|
1025 | 1028 | |
|
1026 | 1029 | self.heightList = None |
|
1027 | 1030 | |
|
1028 | 1031 | self.channelList = None |
|
1029 | 1032 | |
|
1030 | 1033 | self.flagNoData = True |
|
1031 | 1034 | |
|
1032 | 1035 | self.flagDiscontinuousBlock = False |
|
1033 | 1036 | |
|
1034 | 1037 | self.utctime = None |
|
1035 | 1038 | |
|
1036 | 1039 | self.timeZone = None |
|
1037 | 1040 | |
|
1038 | 1041 | self.dstFlag = None |
|
1039 | 1042 | |
|
1040 | 1043 | self.errorCount = None |
|
1041 | 1044 | |
|
1042 | 1045 | self.blocksize = None |
|
1043 | 1046 | |
|
1044 | 1047 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
1045 | 1048 | |
|
1046 | 1049 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
1047 | 1050 | |
|
1048 | 1051 | self.pairsList = None |
|
1049 | 1052 | |
|
1050 | 1053 | self.nPoints = None |
|
1051 | 1054 | |
|
1052 | 1055 | def getPairsList(self): |
|
1053 | 1056 | |
|
1054 | 1057 | return self.pairsList |
|
1055 | 1058 | |
|
1056 | 1059 | def getNoise(self, mode=2): |
|
1057 | 1060 | |
|
1058 | 1061 | indR = numpy.where(self.lagR == 0)[0][0] |
|
1059 | 1062 | indT = numpy.where(self.lagT == 0)[0][0] |
|
1060 | 1063 | |
|
1061 | 1064 | jspectra0 = self.data_corr[:, :, indR, :] |
|
1062 | 1065 | jspectra = copy.copy(jspectra0) |
|
1063 | 1066 | |
|
1064 | 1067 | num_chan = jspectra.shape[0] |
|
1065 | 1068 | num_hei = jspectra.shape[2] |
|
1066 | 1069 | |
|
1067 | 1070 | freq_dc = jspectra.shape[1] / 2 |
|
1068 | 1071 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
1069 | 1072 | |
|
1070 | 1073 | if ind_vel[0] < 0: |
|
1071 | 1074 | ind_vel[range(0, 1)] = ind_vel[range(0, 1)] + self.num_prof |
|
1072 | 1075 | |
|
1073 | 1076 | if mode == 1: |
|
1074 | 1077 | jspectra[:, freq_dc, :] = ( |
|
1075 | 1078 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
1076 | 1079 | |
|
1077 | 1080 | if mode == 2: |
|
1078 | 1081 | |
|
1079 | 1082 | vel = numpy.array([-2, -1, 1, 2]) |
|
1080 | 1083 | xx = numpy.zeros([4, 4]) |
|
1081 | 1084 | |
|
1082 | 1085 | for fil in range(4): |
|
1083 | 1086 | xx[fil, :] = vel[fil]**numpy.asarray(range(4)) |
|
1084 | 1087 | |
|
1085 | 1088 | xx_inv = numpy.linalg.inv(xx) |
|
1086 | 1089 | xx_aux = xx_inv[0, :] |
|
1087 | 1090 | |
|
1088 | 1091 | for ich in range(num_chan): |
|
1089 | 1092 | yy = jspectra[ich, ind_vel, :] |
|
1090 | 1093 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
1091 | 1094 | |
|
1092 | 1095 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
1093 | 1096 | cjunkid = sum(junkid) |
|
1094 | 1097 | |
|
1095 | 1098 | if cjunkid.any(): |
|
1096 | 1099 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
1097 | 1100 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
1098 | 1101 | |
|
1099 | 1102 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
1100 | 1103 | |
|
1101 | 1104 | return noise |
|
1102 | 1105 | |
|
1103 | 1106 | def getTimeInterval(self): |
|
1104 | 1107 | |
|
1105 | 1108 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles |
|
1106 | 1109 | |
|
1107 | 1110 | return timeInterval |
|
1108 | 1111 | |
|
1109 | 1112 | def splitFunctions(self): |
|
1110 | 1113 | |
|
1111 | 1114 | pairsList = self.pairsList |
|
1112 | 1115 | ccf_pairs = [] |
|
1113 | 1116 | acf_pairs = [] |
|
1114 | 1117 | ccf_ind = [] |
|
1115 | 1118 | acf_ind = [] |
|
1116 | 1119 | for l in range(len(pairsList)): |
|
1117 | 1120 | chan0 = pairsList[l][0] |
|
1118 | 1121 | chan1 = pairsList[l][1] |
|
1119 | 1122 | |
|
1120 | 1123 | # Obteniendo pares de Autocorrelacion |
|
1121 | 1124 | if chan0 == chan1: |
|
1122 | 1125 | acf_pairs.append(chan0) |
|
1123 | 1126 | acf_ind.append(l) |
|
1124 | 1127 | else: |
|
1125 | 1128 | ccf_pairs.append(pairsList[l]) |
|
1126 | 1129 | ccf_ind.append(l) |
|
1127 | 1130 | |
|
1128 | 1131 | data_acf = self.data_cf[acf_ind] |
|
1129 | 1132 | data_ccf = self.data_cf[ccf_ind] |
|
1130 | 1133 | |
|
1131 | 1134 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
1132 | 1135 | |
|
1133 | 1136 | def getNormFactor(self): |
|
1134 | 1137 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
1135 | 1138 | acf_pairs = numpy.array(acf_pairs) |
|
1136 | 1139 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
1137 | 1140 | |
|
1138 | 1141 | for p in range(self.nPairs): |
|
1139 | 1142 | pair = self.pairsList[p] |
|
1140 | 1143 | |
|
1141 | 1144 | ch0 = pair[0] |
|
1142 | 1145 | ch1 = pair[1] |
|
1143 | 1146 | |
|
1144 | 1147 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
1145 | 1148 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
1146 | 1149 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
1147 | 1150 | |
|
1148 | 1151 | return normFactor |
|
1149 | 1152 | |
|
1150 | 1153 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1151 | 1154 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") |
|
1152 | 1155 | |
|
1153 | 1156 | |
|
1154 | 1157 | class Parameters(Spectra): |
|
1155 | 1158 | |
|
1156 | 1159 | experimentInfo = None # Information about the experiment |
|
1157 | 1160 | |
|
1158 | 1161 | # Information from previous data |
|
1159 | 1162 | |
|
1160 | 1163 | inputUnit = None # Type of data to be processed |
|
1161 | 1164 | |
|
1162 | 1165 | operation = None # Type of operation to parametrize |
|
1163 | 1166 | |
|
1164 | 1167 | # normFactor = None #Normalization Factor |
|
1165 | 1168 | |
|
1166 | 1169 | groupList = None # List of Pairs, Groups, etc |
|
1167 | 1170 | |
|
1168 | 1171 | # Parameters |
|
1169 | 1172 | |
|
1170 | 1173 | data_param = None # Parameters obtained |
|
1171 | 1174 | |
|
1172 | 1175 | data_pre = None # Data Pre Parametrization |
|
1173 | 1176 | |
|
1174 | 1177 | data_SNR = None # Signal to Noise Ratio |
|
1175 | 1178 | |
|
1176 | 1179 | # heightRange = None #Heights |
|
1177 | 1180 | |
|
1178 | 1181 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
1179 | 1182 | |
|
1180 | 1183 | # noise = None #Noise Potency |
|
1181 | 1184 | |
|
1182 | 1185 | utctimeInit = None # Initial UTC time |
|
1183 | 1186 | |
|
1184 | 1187 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
1185 | 1188 | |
|
1186 | 1189 | useLocalTime = True |
|
1187 | 1190 | |
|
1188 | 1191 | # Fitting |
|
1189 | 1192 | |
|
1190 | 1193 | data_error = None # Error of the estimation |
|
1191 | 1194 | |
|
1192 | 1195 | constants = None |
|
1193 | 1196 | |
|
1194 | 1197 | library = None |
|
1195 | 1198 | |
|
1196 | 1199 | # Output signal |
|
1197 | 1200 | |
|
1198 | 1201 | outputInterval = None # Time interval to calculate output signal in seconds |
|
1199 | 1202 | |
|
1200 | 1203 | data_output = None # Out signal |
|
1201 | 1204 | |
|
1202 | 1205 | nAvg = None |
|
1203 | 1206 | |
|
1204 | 1207 | noise_estimation = None |
|
1205 | 1208 | |
|
1206 | 1209 | GauSPC = None # Fit gaussian SPC |
|
1207 | 1210 | |
|
1208 | 1211 | def __init__(self): |
|
1209 | 1212 | ''' |
|
1210 | 1213 | Constructor |
|
1211 | 1214 | ''' |
|
1212 | 1215 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1213 | 1216 | |
|
1214 | 1217 | self.systemHeaderObj = SystemHeader() |
|
1215 | 1218 | |
|
1216 | 1219 | self.type = "Parameters" |
|
1217 | 1220 | |
|
1218 | 1221 | def getTimeRange1(self, interval): |
|
1219 | 1222 | |
|
1220 | 1223 | datatime = [] |
|
1221 | 1224 | |
|
1222 | 1225 | if self.useLocalTime: |
|
1223 | 1226 | time1 = self.utctimeInit - self.timeZone * 60 |
|
1224 | 1227 | else: |
|
1225 | 1228 | time1 = self.utctimeInit |
|
1226 | 1229 | |
|
1227 | 1230 | datatime.append(time1) |
|
1228 | 1231 | datatime.append(time1 + interval) |
|
1229 | 1232 | datatime = numpy.array(datatime) |
|
1230 | 1233 | |
|
1231 | 1234 | return datatime |
|
1232 | 1235 | |
|
1233 | 1236 | def getTimeInterval(self): |
|
1234 | 1237 | |
|
1235 | 1238 | if hasattr(self, 'timeInterval1'): |
|
1236 | 1239 | return self.timeInterval1 |
|
1237 | 1240 | else: |
|
1238 | 1241 | return self.paramInterval |
|
1239 | 1242 | |
|
1240 | 1243 | def setValue(self, value): |
|
1241 | 1244 | |
|
1242 | 1245 | print "This property should not be initialized" |
|
1243 | 1246 | |
|
1244 | 1247 | return |
|
1245 | 1248 | |
|
1246 | 1249 | def getNoise(self): |
|
1247 | 1250 | |
|
1248 | 1251 | return self.spc_noise |
|
1249 | 1252 | |
|
1250 | 1253 | timeInterval = property(getTimeInterval) |
|
1251 | 1254 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
@@ -1,1542 +1,1543 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 9, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | ''' |
|
6 | 6 | import os |
|
7 | 7 | import datetime |
|
8 | 8 | import numpy |
|
9 | 9 | |
|
10 | 10 | from figure import Figure, isRealtime, isTimeInHourRange |
|
11 | 11 | from plotting_codes import * |
|
12 | 12 | |
|
13 | 13 | |
|
14 | 14 | class SpectraPlot(Figure): |
|
15 | 15 | |
|
16 | 16 | isConfig = None |
|
17 | 17 | __nsubplots = None |
|
18 | 18 | |
|
19 | 19 | WIDTHPROF = None |
|
20 | 20 | HEIGHTPROF = None |
|
21 | 21 | PREFIX = 'spc' |
|
22 | 22 | |
|
23 | 23 | def __init__(self, **kwargs): |
|
24 | 24 | Figure.__init__(self, **kwargs) |
|
25 | 25 | self.isConfig = False |
|
26 | 26 | self.__nsubplots = 1 |
|
27 | 27 | |
|
28 | 28 | self.WIDTH = 250 |
|
29 | 29 | self.HEIGHT = 250 |
|
30 | 30 | self.WIDTHPROF = 120 |
|
31 | 31 | self.HEIGHTPROF = 0 |
|
32 | 32 | self.counter_imagwr = 0 |
|
33 | 33 | |
|
34 | 34 | self.PLOT_CODE = SPEC_CODE |
|
35 | 35 | |
|
36 | 36 | self.FTP_WEI = None |
|
37 | 37 | self.EXP_CODE = None |
|
38 | 38 | self.SUB_EXP_CODE = None |
|
39 | 39 | self.PLOT_POS = None |
|
40 | 40 | |
|
41 | 41 | self.__xfilter_ena = False |
|
42 | 42 | self.__yfilter_ena = False |
|
43 | 43 | |
|
44 | 44 | def getSubplots(self): |
|
45 | 45 | |
|
46 | 46 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
47 | 47 | nrow = int(self.nplots*1./ncol + 0.9) |
|
48 | 48 | |
|
49 | 49 | return nrow, ncol |
|
50 | 50 | |
|
51 | 51 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
52 | 52 | |
|
53 | 53 | self.__showprofile = showprofile |
|
54 | 54 | self.nplots = nplots |
|
55 | 55 | |
|
56 | 56 | ncolspan = 1 |
|
57 | 57 | colspan = 1 |
|
58 | 58 | if showprofile: |
|
59 | 59 | ncolspan = 3 |
|
60 | 60 | colspan = 2 |
|
61 | 61 | self.__nsubplots = 2 |
|
62 | 62 | |
|
63 | 63 | self.createFigure(id = id, |
|
64 | 64 | wintitle = wintitle, |
|
65 | 65 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
66 | 66 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
67 | 67 | show=show) |
|
68 | 68 | |
|
69 | 69 | nrow, ncol = self.getSubplots() |
|
70 | 70 | |
|
71 | 71 | counter = 0 |
|
72 | 72 | for y in range(nrow): |
|
73 | 73 | for x in range(ncol): |
|
74 | 74 | |
|
75 | 75 | if counter >= self.nplots: |
|
76 | 76 | break |
|
77 | 77 | |
|
78 | 78 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
79 | 79 | |
|
80 | 80 | if showprofile: |
|
81 | 81 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
82 | 82 | |
|
83 | 83 | counter += 1 |
|
84 | 84 | |
|
85 | 85 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
86 | 86 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
87 | 87 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
88 | 88 | server=None, folder=None, username=None, password=None, |
|
89 | 89 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
90 | 90 | xaxis="frequency", colormap='jet', normFactor=None): |
|
91 | 91 | |
|
92 | 92 | """ |
|
93 | 93 | |
|
94 | 94 | Input: |
|
95 | 95 | dataOut : |
|
96 | 96 | id : |
|
97 | 97 | wintitle : |
|
98 | 98 | channelList : |
|
99 | 99 | showProfile : |
|
100 | 100 | xmin : None, |
|
101 | 101 | xmax : None, |
|
102 | 102 | ymin : None, |
|
103 | 103 | ymax : None, |
|
104 | 104 | zmin : None, |
|
105 | 105 | zmax : None |
|
106 | 106 | """ |
|
107 | 107 | if realtime: |
|
108 | 108 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
109 | 109 | print 'Skipping this plot function' |
|
110 | 110 | return |
|
111 | 111 | |
|
112 | 112 | if channelList == None: |
|
113 | 113 | channelIndexList = dataOut.channelIndexList |
|
114 | 114 | else: |
|
115 | 115 | channelIndexList = [] |
|
116 | 116 | for channel in channelList: |
|
117 | 117 | if channel not in dataOut.channelList: |
|
118 | 118 | raise ValueError, "Channel %d is not in dataOut.channelList" %channel |
|
119 | 119 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
120 | 120 | |
|
121 | 121 | if normFactor is None: |
|
122 | 122 | factor = dataOut.normFactor |
|
123 | 123 | else: |
|
124 | 124 | factor = normFactor |
|
125 | 125 | if xaxis == "frequency": |
|
126 | 126 | x = dataOut.getFreqRange(1)/1000. |
|
127 | 127 | xlabel = "Frequency (kHz)" |
|
128 | 128 | |
|
129 | 129 | elif xaxis == "time": |
|
130 | 130 | x = dataOut.getAcfRange(1) |
|
131 | 131 | xlabel = "Time (ms)" |
|
132 | 132 | |
|
133 | 133 | else: |
|
134 | 134 | x = dataOut.getVelRange(1) |
|
135 | 135 | xlabel = "Velocity (m/s)" |
|
136 | 136 | |
|
137 | 137 | ylabel = "Range (Km)" |
|
138 | 138 | |
|
139 | 139 | y = dataOut.getHeiRange() |
|
140 | 140 | |
|
141 | 141 | z = dataOut.data_spc/factor |
|
142 | 142 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
143 | 143 | zdB = 10*numpy.log10(z) |
|
144 | 144 | |
|
145 | #print "a000",dataOut.data_spc.dtype | |
|
145 | 146 | avg = numpy.average(z, axis=1) |
|
146 | 147 | avgdB = 10*numpy.log10(avg) |
|
147 | ||
|
148 | #print "before plot" | |
|
148 | 149 | noise = dataOut.getNoise()/factor |
|
149 | 150 | noisedB = 10*numpy.log10(noise) |
|
150 | 151 | |
|
151 | 152 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
152 | 153 | title = wintitle + " Spectra" |
|
153 | 154 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
154 | 155 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
155 | 156 | |
|
156 | 157 | if not self.isConfig: |
|
157 | 158 | |
|
158 | 159 | nplots = len(channelIndexList) |
|
159 | 160 | |
|
160 | 161 | self.setup(id=id, |
|
161 | 162 | nplots=nplots, |
|
162 | 163 | wintitle=wintitle, |
|
163 | 164 | showprofile=showprofile, |
|
164 | 165 | show=show) |
|
165 | 166 | |
|
166 | 167 | if xmin == None: xmin = numpy.nanmin(x) |
|
167 | 168 | if xmax == None: xmax = numpy.nanmax(x) |
|
168 | 169 | if ymin == None: ymin = numpy.nanmin(y) |
|
169 | 170 | if ymax == None: ymax = numpy.nanmax(y) |
|
170 | 171 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
171 | 172 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
172 | 173 | |
|
173 | 174 | self.FTP_WEI = ftp_wei |
|
174 | 175 | self.EXP_CODE = exp_code |
|
175 | 176 | self.SUB_EXP_CODE = sub_exp_code |
|
176 | 177 | self.PLOT_POS = plot_pos |
|
177 | 178 | |
|
178 | 179 | self.isConfig = True |
|
179 | 180 | |
|
180 | 181 | self.setWinTitle(title) |
|
181 | 182 | |
|
182 | 183 | for i in range(self.nplots): |
|
183 | 184 | index = channelIndexList[i] |
|
184 | 185 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
185 | 186 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) |
|
186 | 187 | if len(dataOut.beam.codeList) != 0: |
|
187 | 188 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) |
|
188 | 189 | |
|
189 | 190 | axes = self.axesList[i*self.__nsubplots] |
|
190 | 191 | axes.pcolor(x, y, zdB[index,:,:], |
|
191 | 192 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
192 | 193 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, |
|
193 | 194 | ticksize=9, cblabel='') |
|
194 | 195 | |
|
195 | 196 | if self.__showprofile: |
|
196 | 197 | axes = self.axesList[i*self.__nsubplots +1] |
|
197 | 198 | axes.pline(avgdB[index,:], y, |
|
198 | 199 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
199 | 200 | xlabel='dB', ylabel='', title='', |
|
200 | 201 | ytick_visible=False, |
|
201 | 202 | grid='x') |
|
202 | 203 | |
|
203 | 204 | noiseline = numpy.repeat(noisedB[index], len(y)) |
|
204 | 205 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
205 | 206 | |
|
206 | 207 | self.draw() |
|
207 | 208 | |
|
208 | 209 | if figfile == None: |
|
209 | 210 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
210 | 211 | name = str_datetime |
|
211 | 212 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
212 | 213 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
213 | 214 | figfile = self.getFilename(name) |
|
214 | 215 | |
|
215 | 216 | self.save(figpath=figpath, |
|
216 | 217 | figfile=figfile, |
|
217 | 218 | save=save, |
|
218 | 219 | ftp=ftp, |
|
219 | 220 | wr_period=wr_period, |
|
220 | 221 | thisDatetime=thisDatetime) |
|
221 | 222 | |
|
222 | 223 | class CrossSpectraPlot(Figure): |
|
223 | 224 | |
|
224 | 225 | isConfig = None |
|
225 | 226 | __nsubplots = None |
|
226 | 227 | |
|
227 | 228 | WIDTH = None |
|
228 | 229 | HEIGHT = None |
|
229 | 230 | WIDTHPROF = None |
|
230 | 231 | HEIGHTPROF = None |
|
231 | 232 | PREFIX = 'cspc' |
|
232 | 233 | |
|
233 | 234 | def __init__(self, **kwargs): |
|
234 | 235 | Figure.__init__(self, **kwargs) |
|
235 | 236 | self.isConfig = False |
|
236 | 237 | self.__nsubplots = 4 |
|
237 | 238 | self.counter_imagwr = 0 |
|
238 | 239 | self.WIDTH = 250 |
|
239 | 240 | self.HEIGHT = 250 |
|
240 | 241 | self.WIDTHPROF = 0 |
|
241 | 242 | self.HEIGHTPROF = 0 |
|
242 | 243 | |
|
243 | 244 | self.PLOT_CODE = CROSS_CODE |
|
244 | 245 | self.FTP_WEI = None |
|
245 | 246 | self.EXP_CODE = None |
|
246 | 247 | self.SUB_EXP_CODE = None |
|
247 | 248 | self.PLOT_POS = None |
|
248 | 249 | |
|
249 | 250 | def getSubplots(self): |
|
250 | 251 | |
|
251 | 252 | ncol = 4 |
|
252 | 253 | nrow = self.nplots |
|
253 | 254 | |
|
254 | 255 | return nrow, ncol |
|
255 | 256 | |
|
256 | 257 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
257 | 258 | |
|
258 | 259 | self.__showprofile = showprofile |
|
259 | 260 | self.nplots = nplots |
|
260 | 261 | |
|
261 | 262 | ncolspan = 1 |
|
262 | 263 | colspan = 1 |
|
263 | 264 | |
|
264 | 265 | self.createFigure(id = id, |
|
265 | 266 | wintitle = wintitle, |
|
266 | 267 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
267 | 268 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
268 | 269 | show=True) |
|
269 | 270 | |
|
270 | 271 | nrow, ncol = self.getSubplots() |
|
271 | 272 | |
|
272 | 273 | counter = 0 |
|
273 | 274 | for y in range(nrow): |
|
274 | 275 | for x in range(ncol): |
|
275 | 276 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
276 | 277 | |
|
277 | 278 | counter += 1 |
|
278 | 279 | |
|
279 | 280 | def run(self, dataOut, id, wintitle="", pairsList=None, |
|
280 | 281 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
281 | 282 | coh_min=None, coh_max=None, phase_min=None, phase_max=None, |
|
282 | 283 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
283 | 284 | power_cmap='jet', coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
284 | 285 | server=None, folder=None, username=None, password=None, |
|
285 | 286 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, |
|
286 | 287 | xaxis='frequency'): |
|
287 | 288 | |
|
288 | 289 | """ |
|
289 | 290 | |
|
290 | 291 | Input: |
|
291 | 292 | dataOut : |
|
292 | 293 | id : |
|
293 | 294 | wintitle : |
|
294 | 295 | channelList : |
|
295 | 296 | showProfile : |
|
296 | 297 | xmin : None, |
|
297 | 298 | xmax : None, |
|
298 | 299 | ymin : None, |
|
299 | 300 | ymax : None, |
|
300 | 301 | zmin : None, |
|
301 | 302 | zmax : None |
|
302 | 303 | """ |
|
303 | 304 | |
|
304 | 305 | if pairsList == None: |
|
305 | 306 | pairsIndexList = dataOut.pairsIndexList |
|
306 | 307 | else: |
|
307 | 308 | pairsIndexList = [] |
|
308 | 309 | for pair in pairsList: |
|
309 | 310 | if pair not in dataOut.pairsList: |
|
310 | 311 | raise ValueError, "Pair %s is not in dataOut.pairsList" %str(pair) |
|
311 | 312 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
312 | 313 | |
|
313 | 314 | if not pairsIndexList: |
|
314 | 315 | return |
|
315 | 316 | |
|
316 | 317 | if len(pairsIndexList) > 4: |
|
317 | 318 | pairsIndexList = pairsIndexList[0:4] |
|
318 | ||
|
319 | ||
|
319 | 320 | if normFactor is None: |
|
320 | 321 | factor = dataOut.normFactor |
|
321 | 322 | else: |
|
322 | 323 | factor = normFactor |
|
323 | 324 | x = dataOut.getVelRange(1) |
|
324 | 325 | y = dataOut.getHeiRange() |
|
325 | 326 | z = dataOut.data_spc[:,:,:]/factor |
|
326 | 327 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
327 | 328 | |
|
328 | 329 | noise = dataOut.noise/factor |
|
329 | 330 | |
|
330 | 331 | zdB = 10*numpy.log10(z) |
|
331 | 332 | noisedB = 10*numpy.log10(noise) |
|
332 | 333 | |
|
333 | 334 | if coh_min == None: |
|
334 | 335 | coh_min = 0.0 |
|
335 | 336 | if coh_max == None: |
|
336 | 337 | coh_max = 1.0 |
|
337 | 338 | |
|
338 | 339 | if phase_min == None: |
|
339 | 340 | phase_min = -180 |
|
340 | 341 | if phase_max == None: |
|
341 | 342 | phase_max = 180 |
|
342 | 343 | |
|
343 | 344 | #thisDatetime = dataOut.datatime |
|
344 | 345 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
345 | 346 | title = wintitle + " Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
346 | 347 | # xlabel = "Velocity (m/s)" |
|
347 | 348 | ylabel = "Range (Km)" |
|
348 | 349 | |
|
349 | 350 | if xaxis == "frequency": |
|
350 | 351 | x = dataOut.getFreqRange(1)/1000. |
|
351 | 352 | xlabel = "Frequency (kHz)" |
|
352 | 353 | |
|
353 | 354 | elif xaxis == "time": |
|
354 | 355 | x = dataOut.getAcfRange(1) |
|
355 | 356 | xlabel = "Time (ms)" |
|
356 | 357 | |
|
357 | 358 | else: |
|
358 | 359 | x = dataOut.getVelRange(1) |
|
359 | 360 | xlabel = "Velocity (m/s)" |
|
360 | 361 | |
|
361 | 362 | if not self.isConfig: |
|
362 | 363 | |
|
363 | 364 | nplots = len(pairsIndexList) |
|
364 | 365 | |
|
365 | 366 | self.setup(id=id, |
|
366 | 367 | nplots=nplots, |
|
367 | 368 | wintitle=wintitle, |
|
368 | 369 | showprofile=False, |
|
369 | 370 | show=show) |
|
370 | 371 | |
|
371 | 372 | avg = numpy.abs(numpy.average(z, axis=1)) |
|
372 | 373 | avgdB = 10*numpy.log10(avg) |
|
373 | 374 | |
|
374 | 375 | if xmin == None: xmin = numpy.nanmin(x) |
|
375 | 376 | if xmax == None: xmax = numpy.nanmax(x) |
|
376 | 377 | if ymin == None: ymin = numpy.nanmin(y) |
|
377 | 378 | if ymax == None: ymax = numpy.nanmax(y) |
|
378 | 379 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
379 | 380 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
380 | 381 | |
|
381 | 382 | self.FTP_WEI = ftp_wei |
|
382 | 383 | self.EXP_CODE = exp_code |
|
383 | 384 | self.SUB_EXP_CODE = sub_exp_code |
|
384 | 385 | self.PLOT_POS = plot_pos |
|
385 | 386 | |
|
386 | 387 | self.isConfig = True |
|
387 | 388 | |
|
388 | 389 | self.setWinTitle(title) |
|
389 | 390 | |
|
390 | 391 | for i in range(self.nplots): |
|
391 | 392 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
392 | 393 | |
|
393 | 394 | chan_index0 = dataOut.channelList.index(pair[0]) |
|
394 | 395 | chan_index1 = dataOut.channelList.index(pair[1]) |
|
395 | 396 | |
|
396 | 397 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
397 | 398 | title = "Ch%d: %4.2fdB: %s" %(pair[0], noisedB[chan_index0], str_datetime) |
|
398 | 399 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index0,:,:]/factor) |
|
399 | 400 | axes0 = self.axesList[i*self.__nsubplots] |
|
400 | 401 | axes0.pcolor(x, y, zdB, |
|
401 | 402 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
402 | 403 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
403 | 404 | ticksize=9, colormap=power_cmap, cblabel='') |
|
404 | 405 | |
|
405 | 406 | title = "Ch%d: %4.2fdB: %s" %(pair[1], noisedB[chan_index1], str_datetime) |
|
406 | 407 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index1,:,:]/factor) |
|
407 | 408 | axes0 = self.axesList[i*self.__nsubplots+1] |
|
408 | 409 | axes0.pcolor(x, y, zdB, |
|
409 | 410 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
410 | 411 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
411 | 412 | ticksize=9, colormap=power_cmap, cblabel='') |
|
412 | 413 | |
|
413 | 414 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:]) |
|
414 | 415 | coherence = numpy.abs(coherenceComplex) |
|
415 | 416 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
416 | 417 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi |
|
417 | 418 | |
|
418 | 419 | title = "Coherence Ch%d * Ch%d" %(pair[0], pair[1]) |
|
419 | 420 | axes0 = self.axesList[i*self.__nsubplots+2] |
|
420 | 421 | axes0.pcolor(x, y, coherence, |
|
421 | 422 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=coh_min, zmax=coh_max, |
|
422 | 423 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
423 | 424 | ticksize=9, colormap=coherence_cmap, cblabel='') |
|
424 | 425 | |
|
425 | 426 | title = "Phase Ch%d * Ch%d" %(pair[0], pair[1]) |
|
426 | 427 | axes0 = self.axesList[i*self.__nsubplots+3] |
|
427 | 428 | axes0.pcolor(x, y, phase, |
|
428 | 429 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
429 | 430 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
430 | 431 | ticksize=9, colormap=phase_cmap, cblabel='') |
|
431 | 432 | |
|
432 | 433 | |
|
433 | 434 | |
|
434 | 435 | self.draw() |
|
435 | 436 | |
|
436 | 437 | self.save(figpath=figpath, |
|
437 | 438 | figfile=figfile, |
|
438 | 439 | save=save, |
|
439 | 440 | ftp=ftp, |
|
440 | 441 | wr_period=wr_period, |
|
441 | 442 | thisDatetime=thisDatetime) |
|
442 | 443 | |
|
443 | 444 | |
|
444 | 445 | class RTIPlot(Figure): |
|
445 | 446 | |
|
446 | 447 | __isConfig = None |
|
447 | 448 | __nsubplots = None |
|
448 | 449 | |
|
449 | 450 | WIDTHPROF = None |
|
450 | 451 | HEIGHTPROF = None |
|
451 | 452 | PREFIX = 'rti' |
|
452 | 453 | |
|
453 | 454 | def __init__(self, **kwargs): |
|
454 | 455 | |
|
455 | 456 | Figure.__init__(self, **kwargs) |
|
456 | 457 | self.timerange = None |
|
457 | 458 | self.isConfig = False |
|
458 | 459 | self.__nsubplots = 1 |
|
459 | 460 | |
|
460 | 461 | self.WIDTH = 800 |
|
461 | 462 | self.HEIGHT = 180 |
|
462 | 463 | self.WIDTHPROF = 120 |
|
463 | 464 | self.HEIGHTPROF = 0 |
|
464 | 465 | self.counter_imagwr = 0 |
|
465 | 466 | |
|
466 | 467 | self.PLOT_CODE = RTI_CODE |
|
467 | 468 | |
|
468 | 469 | self.FTP_WEI = None |
|
469 | 470 | self.EXP_CODE = None |
|
470 | 471 | self.SUB_EXP_CODE = None |
|
471 | 472 | self.PLOT_POS = None |
|
472 | 473 | self.tmin = None |
|
473 | 474 | self.tmax = None |
|
474 | 475 | |
|
475 | 476 | self.xmin = None |
|
476 | 477 | self.xmax = None |
|
477 | 478 | |
|
478 | 479 | self.figfile = None |
|
479 | 480 | |
|
480 | 481 | def getSubplots(self): |
|
481 | 482 | |
|
482 | 483 | ncol = 1 |
|
483 | 484 | nrow = self.nplots |
|
484 | 485 | |
|
485 | 486 | return nrow, ncol |
|
486 | 487 | |
|
487 | 488 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
488 | 489 | |
|
489 | 490 | self.__showprofile = showprofile |
|
490 | 491 | self.nplots = nplots |
|
491 | 492 | |
|
492 | 493 | ncolspan = 1 |
|
493 | 494 | colspan = 1 |
|
494 | 495 | if showprofile: |
|
495 | 496 | ncolspan = 7 |
|
496 | 497 | colspan = 6 |
|
497 | 498 | self.__nsubplots = 2 |
|
498 | 499 | |
|
499 | 500 | self.createFigure(id = id, |
|
500 | 501 | wintitle = wintitle, |
|
501 | 502 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
502 | 503 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
503 | 504 | show=show) |
|
504 | 505 | |
|
505 | 506 | nrow, ncol = self.getSubplots() |
|
506 | 507 | |
|
507 | 508 | counter = 0 |
|
508 | 509 | for y in range(nrow): |
|
509 | 510 | for x in range(ncol): |
|
510 | 511 | |
|
511 | 512 | if counter >= self.nplots: |
|
512 | 513 | break |
|
513 | 514 | |
|
514 | 515 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
515 | 516 | |
|
516 | 517 | if showprofile: |
|
517 | 518 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
518 | 519 | |
|
519 | 520 | counter += 1 |
|
520 | 521 | |
|
521 | 522 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
522 | 523 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
523 | 524 | timerange=None, colormap='jet', |
|
524 | 525 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
525 | 526 | server=None, folder=None, username=None, password=None, |
|
526 | 527 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, HEIGHT=None): |
|
527 | 528 | |
|
528 | 529 | """ |
|
529 | 530 | |
|
530 | 531 | Input: |
|
531 | 532 | dataOut : |
|
532 | 533 | id : |
|
533 | 534 | wintitle : |
|
534 | 535 | channelList : |
|
535 | 536 | showProfile : |
|
536 | 537 | xmin : None, |
|
537 | 538 | xmax : None, |
|
538 | 539 | ymin : None, |
|
539 | 540 | ymax : None, |
|
540 | 541 | zmin : None, |
|
541 | 542 | zmax : None |
|
542 | 543 | """ |
|
543 | 544 | |
|
544 | 545 | #colormap = kwargs.get('colormap', 'jet') |
|
545 | 546 | if HEIGHT is not None: |
|
546 | 547 | self.HEIGHT = HEIGHT |
|
547 | ||
|
548 | ||
|
548 | 549 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
549 | 550 | return |
|
550 | 551 | |
|
551 | 552 | if channelList == None: |
|
552 | 553 | channelIndexList = dataOut.channelIndexList |
|
553 | 554 | else: |
|
554 | 555 | channelIndexList = [] |
|
555 | 556 | for channel in channelList: |
|
556 | 557 | if channel not in dataOut.channelList: |
|
557 | 558 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
558 | 559 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
559 | 560 | |
|
560 | 561 | if normFactor is None: |
|
561 | 562 | factor = dataOut.normFactor |
|
562 | 563 | else: |
|
563 | 564 | factor = normFactor |
|
564 | 565 | |
|
565 | 566 | # factor = dataOut.normFactor |
|
566 | 567 | x = dataOut.getTimeRange() |
|
567 | 568 | y = dataOut.getHeiRange() |
|
568 | 569 | |
|
569 | 570 | z = dataOut.data_spc/factor |
|
570 | 571 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
571 | 572 | avg = numpy.average(z, axis=1) |
|
572 | 573 | avgdB = 10.*numpy.log10(avg) |
|
573 | 574 | # avgdB = dataOut.getPower() |
|
574 | 575 | |
|
575 | 576 | |
|
576 | 577 | thisDatetime = dataOut.datatime |
|
577 | 578 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
578 | 579 | title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
579 | 580 | xlabel = "" |
|
580 | 581 | ylabel = "Range (Km)" |
|
581 | 582 | |
|
582 | 583 | update_figfile = False |
|
583 | 584 | |
|
584 | 585 | if dataOut.ltctime >= self.xmax: |
|
585 | 586 | self.counter_imagwr = wr_period |
|
586 | 587 | self.isConfig = False |
|
587 | 588 | update_figfile = True |
|
588 | 589 | |
|
589 | 590 | if not self.isConfig: |
|
590 | 591 | |
|
591 | 592 | nplots = len(channelIndexList) |
|
592 | 593 | |
|
593 | 594 | self.setup(id=id, |
|
594 | 595 | nplots=nplots, |
|
595 | 596 | wintitle=wintitle, |
|
596 | 597 | showprofile=showprofile, |
|
597 | 598 | show=show) |
|
598 | 599 | |
|
599 | 600 | if timerange != None: |
|
600 | 601 | self.timerange = timerange |
|
601 | 602 | |
|
602 | 603 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
603 | 604 | |
|
604 | 605 | noise = dataOut.noise/factor |
|
605 | 606 | noisedB = 10*numpy.log10(noise) |
|
606 | 607 | |
|
607 | 608 | if ymin == None: ymin = numpy.nanmin(y) |
|
608 | 609 | if ymax == None: ymax = numpy.nanmax(y) |
|
609 | 610 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
610 | 611 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
611 | 612 | |
|
612 | 613 | self.FTP_WEI = ftp_wei |
|
613 | 614 | self.EXP_CODE = exp_code |
|
614 | 615 | self.SUB_EXP_CODE = sub_exp_code |
|
615 | 616 | self.PLOT_POS = plot_pos |
|
616 | 617 | |
|
617 | 618 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
618 | 619 | self.isConfig = True |
|
619 | 620 | self.figfile = figfile |
|
620 | 621 | update_figfile = True |
|
621 | 622 | |
|
622 | 623 | self.setWinTitle(title) |
|
623 | 624 | |
|
624 | 625 | for i in range(self.nplots): |
|
625 | 626 | index = channelIndexList[i] |
|
626 | 627 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
627 | 628 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
628 | 629 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
629 | 630 | axes = self.axesList[i*self.__nsubplots] |
|
630 | 631 | zdB = avgdB[index].reshape((1,-1)) |
|
631 | 632 | axes.pcolorbuffer(x, y, zdB, |
|
632 | 633 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
633 | 634 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
634 | 635 | ticksize=9, cblabel='', cbsize="1%", colormap=colormap) |
|
635 | 636 | |
|
636 | 637 | if self.__showprofile: |
|
637 | 638 | axes = self.axesList[i*self.__nsubplots +1] |
|
638 | 639 | axes.pline(avgdB[index], y, |
|
639 | 640 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
640 | 641 | xlabel='dB', ylabel='', title='', |
|
641 | 642 | ytick_visible=False, |
|
642 | 643 | grid='x') |
|
643 | 644 | |
|
644 | 645 | self.draw() |
|
645 | 646 | |
|
646 | 647 | self.save(figpath=figpath, |
|
647 | 648 | figfile=figfile, |
|
648 | 649 | save=save, |
|
649 | 650 | ftp=ftp, |
|
650 | 651 | wr_period=wr_period, |
|
651 | 652 | thisDatetime=thisDatetime, |
|
652 | 653 | update_figfile=update_figfile) |
|
653 | 654 | |
|
654 | 655 | class CoherenceMap(Figure): |
|
655 | 656 | isConfig = None |
|
656 | 657 | __nsubplots = None |
|
657 | 658 | |
|
658 | 659 | WIDTHPROF = None |
|
659 | 660 | HEIGHTPROF = None |
|
660 | 661 | PREFIX = 'cmap' |
|
661 | 662 | |
|
662 | 663 | def __init__(self, **kwargs): |
|
663 | 664 | Figure.__init__(self, **kwargs) |
|
664 | 665 | self.timerange = 2*60*60 |
|
665 | 666 | self.isConfig = False |
|
666 | 667 | self.__nsubplots = 1 |
|
667 | 668 | |
|
668 | 669 | self.WIDTH = 800 |
|
669 | 670 | self.HEIGHT = 180 |
|
670 | 671 | self.WIDTHPROF = 120 |
|
671 | 672 | self.HEIGHTPROF = 0 |
|
672 | 673 | self.counter_imagwr = 0 |
|
673 | 674 | |
|
674 | 675 | self.PLOT_CODE = COH_CODE |
|
675 | 676 | |
|
676 | 677 | self.FTP_WEI = None |
|
677 | 678 | self.EXP_CODE = None |
|
678 | 679 | self.SUB_EXP_CODE = None |
|
679 | 680 | self.PLOT_POS = None |
|
680 | 681 | self.counter_imagwr = 0 |
|
681 | 682 | |
|
682 | 683 | self.xmin = None |
|
683 | 684 | self.xmax = None |
|
684 | 685 | |
|
685 | 686 | def getSubplots(self): |
|
686 | 687 | ncol = 1 |
|
687 | 688 | nrow = self.nplots*2 |
|
688 | 689 | |
|
689 | 690 | return nrow, ncol |
|
690 | 691 | |
|
691 | 692 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
692 | 693 | self.__showprofile = showprofile |
|
693 | 694 | self.nplots = nplots |
|
694 | 695 | |
|
695 | 696 | ncolspan = 1 |
|
696 | 697 | colspan = 1 |
|
697 | 698 | if showprofile: |
|
698 | 699 | ncolspan = 7 |
|
699 | 700 | colspan = 6 |
|
700 | 701 | self.__nsubplots = 2 |
|
701 | 702 | |
|
702 | 703 | self.createFigure(id = id, |
|
703 | 704 | wintitle = wintitle, |
|
704 | 705 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
705 | 706 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
706 | 707 | show=True) |
|
707 | 708 | |
|
708 | 709 | nrow, ncol = self.getSubplots() |
|
709 | 710 | |
|
710 | 711 | for y in range(nrow): |
|
711 | 712 | for x in range(ncol): |
|
712 | 713 | |
|
713 | 714 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
714 | 715 | |
|
715 | 716 | if showprofile: |
|
716 | 717 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
717 | 718 | |
|
718 | 719 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
719 | 720 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
720 | 721 | timerange=None, phase_min=None, phase_max=None, |
|
721 | 722 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
722 | 723 | coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
723 | 724 | server=None, folder=None, username=None, password=None, |
|
724 | 725 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
725 | 726 | |
|
726 | 727 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
727 | 728 | return |
|
728 | 729 | |
|
729 | 730 | if pairsList == None: |
|
730 | 731 | pairsIndexList = dataOut.pairsIndexList |
|
731 | 732 | else: |
|
732 | 733 | pairsIndexList = [] |
|
733 | 734 | for pair in pairsList: |
|
734 | 735 | if pair not in dataOut.pairsList: |
|
735 | 736 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
736 | 737 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
737 | 738 | |
|
738 | 739 | if pairsIndexList == []: |
|
739 | 740 | return |
|
740 | 741 | |
|
741 | 742 | if len(pairsIndexList) > 4: |
|
742 | 743 | pairsIndexList = pairsIndexList[0:4] |
|
743 | 744 | |
|
744 | 745 | if phase_min == None: |
|
745 | 746 | phase_min = -180 |
|
746 | 747 | if phase_max == None: |
|
747 | 748 | phase_max = 180 |
|
748 | 749 | |
|
749 | 750 | x = dataOut.getTimeRange() |
|
750 | 751 | y = dataOut.getHeiRange() |
|
751 | 752 | |
|
752 | 753 | thisDatetime = dataOut.datatime |
|
753 | 754 | |
|
754 | 755 | title = wintitle + " CoherenceMap" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
755 | 756 | xlabel = "" |
|
756 | 757 | ylabel = "Range (Km)" |
|
757 | 758 | update_figfile = False |
|
758 | 759 | |
|
759 | 760 | if not self.isConfig: |
|
760 | 761 | nplots = len(pairsIndexList) |
|
761 | 762 | self.setup(id=id, |
|
762 | 763 | nplots=nplots, |
|
763 | 764 | wintitle=wintitle, |
|
764 | 765 | showprofile=showprofile, |
|
765 | 766 | show=show) |
|
766 | 767 | |
|
767 | 768 | if timerange != None: |
|
768 | 769 | self.timerange = timerange |
|
769 | 770 | |
|
770 | 771 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
771 | 772 | |
|
772 | 773 | if ymin == None: ymin = numpy.nanmin(y) |
|
773 | 774 | if ymax == None: ymax = numpy.nanmax(y) |
|
774 | 775 | if zmin == None: zmin = 0. |
|
775 | 776 | if zmax == None: zmax = 1. |
|
776 | 777 | |
|
777 | 778 | self.FTP_WEI = ftp_wei |
|
778 | 779 | self.EXP_CODE = exp_code |
|
779 | 780 | self.SUB_EXP_CODE = sub_exp_code |
|
780 | 781 | self.PLOT_POS = plot_pos |
|
781 | 782 | |
|
782 | 783 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
783 | 784 | |
|
784 | 785 | self.isConfig = True |
|
785 | 786 | update_figfile = True |
|
786 | 787 | |
|
787 | 788 | self.setWinTitle(title) |
|
788 | 789 | |
|
789 | 790 | for i in range(self.nplots): |
|
790 | 791 | |
|
791 | 792 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
792 | 793 | |
|
793 | 794 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0) |
|
794 | 795 | powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0) |
|
795 | 796 | powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0) |
|
796 | 797 | |
|
797 | 798 | |
|
798 | 799 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
799 | 800 | coherence = numpy.abs(avgcoherenceComplex) |
|
800 | 801 | |
|
801 | 802 | z = coherence.reshape((1,-1)) |
|
802 | 803 | |
|
803 | 804 | counter = 0 |
|
804 | 805 | |
|
805 | 806 | title = "Coherence Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
806 | 807 | axes = self.axesList[i*self.__nsubplots*2] |
|
807 | 808 | axes.pcolorbuffer(x, y, z, |
|
808 | 809 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
809 | 810 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
810 | 811 | ticksize=9, cblabel='', colormap=coherence_cmap, cbsize="1%") |
|
811 | 812 | |
|
812 | 813 | if self.__showprofile: |
|
813 | 814 | counter += 1 |
|
814 | 815 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
815 | 816 | axes.pline(coherence, y, |
|
816 | 817 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
817 | 818 | xlabel='', ylabel='', title='', ticksize=7, |
|
818 | 819 | ytick_visible=False, nxticks=5, |
|
819 | 820 | grid='x') |
|
820 | 821 | |
|
821 | 822 | counter += 1 |
|
822 | 823 | |
|
823 | 824 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
824 | 825 | |
|
825 | 826 | z = phase.reshape((1,-1)) |
|
826 | 827 | |
|
827 | 828 | title = "Phase Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
828 | 829 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
829 | 830 | axes.pcolorbuffer(x, y, z, |
|
830 | 831 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
831 | 832 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
832 | 833 | ticksize=9, cblabel='', colormap=phase_cmap, cbsize="1%") |
|
833 | 834 | |
|
834 | 835 | if self.__showprofile: |
|
835 | 836 | counter += 1 |
|
836 | 837 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
837 | 838 | axes.pline(phase, y, |
|
838 | 839 | xmin=phase_min, xmax=phase_max, ymin=ymin, ymax=ymax, |
|
839 | 840 | xlabel='', ylabel='', title='', ticksize=7, |
|
840 | 841 | ytick_visible=False, nxticks=4, |
|
841 | 842 | grid='x') |
|
842 | 843 | |
|
843 | 844 | self.draw() |
|
844 | 845 | |
|
845 | 846 | if dataOut.ltctime >= self.xmax: |
|
846 | 847 | self.counter_imagwr = wr_period |
|
847 | 848 | self.isConfig = False |
|
848 | 849 | update_figfile = True |
|
849 | 850 | |
|
850 | 851 | self.save(figpath=figpath, |
|
851 | 852 | figfile=figfile, |
|
852 | 853 | save=save, |
|
853 | 854 | ftp=ftp, |
|
854 | 855 | wr_period=wr_period, |
|
855 | 856 | thisDatetime=thisDatetime, |
|
856 | 857 | update_figfile=update_figfile) |
|
857 | 858 | |
|
858 | 859 | class PowerProfilePlot(Figure): |
|
859 | 860 | |
|
860 | 861 | isConfig = None |
|
861 | 862 | __nsubplots = None |
|
862 | 863 | |
|
863 | 864 | WIDTHPROF = None |
|
864 | 865 | HEIGHTPROF = None |
|
865 | 866 | PREFIX = 'spcprofile' |
|
866 | 867 | |
|
867 | 868 | def __init__(self, **kwargs): |
|
868 | 869 | Figure.__init__(self, **kwargs) |
|
869 | 870 | self.isConfig = False |
|
870 | 871 | self.__nsubplots = 1 |
|
871 | 872 | |
|
872 | 873 | self.PLOT_CODE = POWER_CODE |
|
873 | 874 | |
|
874 | 875 | self.WIDTH = 300 |
|
875 | 876 | self.HEIGHT = 500 |
|
876 | 877 | self.counter_imagwr = 0 |
|
877 | 878 | |
|
878 | 879 | def getSubplots(self): |
|
879 | 880 | ncol = 1 |
|
880 | 881 | nrow = 1 |
|
881 | 882 | |
|
882 | 883 | return nrow, ncol |
|
883 | 884 | |
|
884 | 885 | def setup(self, id, nplots, wintitle, show): |
|
885 | 886 | |
|
886 | 887 | self.nplots = nplots |
|
887 | 888 | |
|
888 | 889 | ncolspan = 1 |
|
889 | 890 | colspan = 1 |
|
890 | 891 | |
|
891 | 892 | self.createFigure(id = id, |
|
892 | 893 | wintitle = wintitle, |
|
893 | 894 | widthplot = self.WIDTH, |
|
894 | 895 | heightplot = self.HEIGHT, |
|
895 | 896 | show=show) |
|
896 | 897 | |
|
897 | 898 | nrow, ncol = self.getSubplots() |
|
898 | 899 | |
|
899 | 900 | counter = 0 |
|
900 | 901 | for y in range(nrow): |
|
901 | 902 | for x in range(ncol): |
|
902 | 903 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
903 | 904 | |
|
904 | 905 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
905 | 906 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
906 | 907 | save=False, figpath='./', figfile=None, show=True, |
|
907 | 908 | ftp=False, wr_period=1, server=None, |
|
908 | 909 | folder=None, username=None, password=None): |
|
909 | 910 | |
|
910 | 911 | |
|
911 | 912 | if channelList == None: |
|
912 | 913 | channelIndexList = dataOut.channelIndexList |
|
913 | 914 | channelList = dataOut.channelList |
|
914 | 915 | else: |
|
915 | 916 | channelIndexList = [] |
|
916 | 917 | for channel in channelList: |
|
917 | 918 | if channel not in dataOut.channelList: |
|
918 | 919 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
919 | 920 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
920 | 921 | |
|
921 | 922 | factor = dataOut.normFactor |
|
922 | 923 | |
|
923 | 924 | y = dataOut.getHeiRange() |
|
924 | 925 | |
|
925 | 926 | #for voltage |
|
926 | 927 | if dataOut.type == 'Voltage': |
|
927 | 928 | x = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) |
|
928 | 929 | x = x.real |
|
929 | 930 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
930 | 931 | |
|
931 | 932 | #for spectra |
|
932 | 933 | if dataOut.type == 'Spectra': |
|
933 | 934 | x = dataOut.data_spc[channelIndexList,:,:]/factor |
|
934 | 935 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
935 | 936 | x = numpy.average(x, axis=1) |
|
936 | 937 | |
|
937 | 938 | |
|
938 | 939 | xdB = 10*numpy.log10(x) |
|
939 | 940 | |
|
940 | 941 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
941 | 942 | title = wintitle + " Power Profile %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
942 | 943 | xlabel = "dB" |
|
943 | 944 | ylabel = "Range (Km)" |
|
944 | 945 | |
|
945 | 946 | if not self.isConfig: |
|
946 | 947 | |
|
947 | 948 | nplots = 1 |
|
948 | 949 | |
|
949 | 950 | self.setup(id=id, |
|
950 | 951 | nplots=nplots, |
|
951 | 952 | wintitle=wintitle, |
|
952 | 953 | show=show) |
|
953 | 954 | |
|
954 | 955 | if ymin == None: ymin = numpy.nanmin(y) |
|
955 | 956 | if ymax == None: ymax = numpy.nanmax(y) |
|
956 | 957 | if xmin == None: xmin = numpy.nanmin(xdB)*0.9 |
|
957 | 958 | if xmax == None: xmax = numpy.nanmax(xdB)*1.1 |
|
958 | 959 | |
|
959 | 960 | self.isConfig = True |
|
960 | 961 | |
|
961 | 962 | self.setWinTitle(title) |
|
962 | 963 | |
|
963 | 964 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
964 | 965 | axes = self.axesList[0] |
|
965 | 966 | |
|
966 | 967 | legendlabels = ["channel %d"%x for x in channelList] |
|
967 | 968 | axes.pmultiline(xdB, y, |
|
968 | 969 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
969 | 970 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
970 | 971 | ytick_visible=True, nxticks=5, |
|
971 | 972 | grid='x') |
|
972 | 973 | |
|
973 | 974 | self.draw() |
|
974 | 975 | |
|
975 | 976 | self.save(figpath=figpath, |
|
976 | 977 | figfile=figfile, |
|
977 | 978 | save=save, |
|
978 | 979 | ftp=ftp, |
|
979 | 980 | wr_period=wr_period, |
|
980 | 981 | thisDatetime=thisDatetime) |
|
981 | 982 | |
|
982 | 983 | class SpectraCutPlot(Figure): |
|
983 | 984 | |
|
984 | 985 | isConfig = None |
|
985 | 986 | __nsubplots = None |
|
986 | 987 | |
|
987 | 988 | WIDTHPROF = None |
|
988 | 989 | HEIGHTPROF = None |
|
989 | 990 | PREFIX = 'spc_cut' |
|
990 | 991 | |
|
991 | 992 | def __init__(self, **kwargs): |
|
992 | 993 | Figure.__init__(self, **kwargs) |
|
993 | 994 | self.isConfig = False |
|
994 | 995 | self.__nsubplots = 1 |
|
995 | 996 | |
|
996 | 997 | self.PLOT_CODE = POWER_CODE |
|
997 | 998 | |
|
998 | 999 | self.WIDTH = 700 |
|
999 | 1000 | self.HEIGHT = 500 |
|
1000 | 1001 | self.counter_imagwr = 0 |
|
1001 | 1002 | |
|
1002 | 1003 | def getSubplots(self): |
|
1003 | 1004 | ncol = 1 |
|
1004 | 1005 | nrow = 1 |
|
1005 | 1006 | |
|
1006 | 1007 | return nrow, ncol |
|
1007 | 1008 | |
|
1008 | 1009 | def setup(self, id, nplots, wintitle, show): |
|
1009 | 1010 | |
|
1010 | 1011 | self.nplots = nplots |
|
1011 | 1012 | |
|
1012 | 1013 | ncolspan = 1 |
|
1013 | 1014 | colspan = 1 |
|
1014 | 1015 | |
|
1015 | 1016 | self.createFigure(id = id, |
|
1016 | 1017 | wintitle = wintitle, |
|
1017 | 1018 | widthplot = self.WIDTH, |
|
1018 | 1019 | heightplot = self.HEIGHT, |
|
1019 | 1020 | show=show) |
|
1020 | 1021 | |
|
1021 | 1022 | nrow, ncol = self.getSubplots() |
|
1022 | 1023 | |
|
1023 | 1024 | counter = 0 |
|
1024 | 1025 | for y in range(nrow): |
|
1025 | 1026 | for x in range(ncol): |
|
1026 | 1027 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1027 | 1028 | |
|
1028 | 1029 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
1029 | 1030 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1030 | 1031 | save=False, figpath='./', figfile=None, show=True, |
|
1031 | 1032 | ftp=False, wr_period=1, server=None, |
|
1032 | 1033 | folder=None, username=None, password=None, |
|
1033 | 1034 | xaxis="frequency"): |
|
1034 | 1035 | |
|
1035 | 1036 | |
|
1036 | 1037 | if channelList == None: |
|
1037 | 1038 | channelIndexList = dataOut.channelIndexList |
|
1038 | 1039 | channelList = dataOut.channelList |
|
1039 | 1040 | else: |
|
1040 | 1041 | channelIndexList = [] |
|
1041 | 1042 | for channel in channelList: |
|
1042 | 1043 | if channel not in dataOut.channelList: |
|
1043 | 1044 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
1044 | 1045 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1045 | 1046 | |
|
1046 | 1047 | factor = dataOut.normFactor |
|
1047 | 1048 | |
|
1048 | 1049 | y = dataOut.getHeiRange() |
|
1049 | 1050 | |
|
1050 | 1051 | z = dataOut.data_spc/factor |
|
1051 | 1052 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1052 | 1053 | |
|
1053 | 1054 | hei_index = numpy.arange(25)*3 + 20 |
|
1054 | 1055 | |
|
1055 | 1056 | if xaxis == "frequency": |
|
1056 | 1057 | x = dataOut.getFreqRange()/1000. |
|
1057 | 1058 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1058 | 1059 | xlabel = "Frequency (kHz)" |
|
1059 | 1060 | ylabel = "Power (dB)" |
|
1060 | 1061 | |
|
1061 | 1062 | elif xaxis == "time": |
|
1062 | 1063 | x = dataOut.getAcfRange() |
|
1063 | 1064 | zdB = z[0,:,hei_index] |
|
1064 | 1065 | xlabel = "Time (ms)" |
|
1065 | 1066 | ylabel = "ACF" |
|
1066 | 1067 | |
|
1067 | 1068 | else: |
|
1068 | 1069 | x = dataOut.getVelRange() |
|
1069 | 1070 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1070 | 1071 | xlabel = "Velocity (m/s)" |
|
1071 | 1072 | ylabel = "Power (dB)" |
|
1072 | 1073 | |
|
1073 | 1074 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1074 | 1075 | title = wintitle + " Range Cuts %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1075 | 1076 | |
|
1076 | 1077 | if not self.isConfig: |
|
1077 | 1078 | |
|
1078 | 1079 | nplots = 1 |
|
1079 | 1080 | |
|
1080 | 1081 | self.setup(id=id, |
|
1081 | 1082 | nplots=nplots, |
|
1082 | 1083 | wintitle=wintitle, |
|
1083 | 1084 | show=show) |
|
1084 | 1085 | |
|
1085 | 1086 | if xmin == None: xmin = numpy.nanmin(x)*0.9 |
|
1086 | 1087 | if xmax == None: xmax = numpy.nanmax(x)*1.1 |
|
1087 | 1088 | if ymin == None: ymin = numpy.nanmin(zdB) |
|
1088 | 1089 | if ymax == None: ymax = numpy.nanmax(zdB) |
|
1089 | 1090 | |
|
1090 | 1091 | self.isConfig = True |
|
1091 | 1092 | |
|
1092 | 1093 | self.setWinTitle(title) |
|
1093 | 1094 | |
|
1094 | 1095 | title = "Spectra Cuts: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1095 | 1096 | axes = self.axesList[0] |
|
1096 | 1097 | |
|
1097 | 1098 | legendlabels = ["Range = %dKm" %y[i] for i in hei_index] |
|
1098 | 1099 | |
|
1099 | 1100 | axes.pmultilineyaxis( x, zdB, |
|
1100 | 1101 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1101 | 1102 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
1102 | 1103 | ytick_visible=True, nxticks=5, |
|
1103 | 1104 | grid='x') |
|
1104 | 1105 | |
|
1105 | 1106 | self.draw() |
|
1106 | 1107 | |
|
1107 | 1108 | self.save(figpath=figpath, |
|
1108 | 1109 | figfile=figfile, |
|
1109 | 1110 | save=save, |
|
1110 | 1111 | ftp=ftp, |
|
1111 | 1112 | wr_period=wr_period, |
|
1112 | 1113 | thisDatetime=thisDatetime) |
|
1113 | 1114 | |
|
1114 | 1115 | class Noise(Figure): |
|
1115 | 1116 | |
|
1116 | 1117 | isConfig = None |
|
1117 | 1118 | __nsubplots = None |
|
1118 | 1119 | |
|
1119 | 1120 | PREFIX = 'noise' |
|
1120 | 1121 | |
|
1121 | 1122 | |
|
1122 | 1123 | def __init__(self, **kwargs): |
|
1123 | 1124 | Figure.__init__(self, **kwargs) |
|
1124 | 1125 | self.timerange = 24*60*60 |
|
1125 | 1126 | self.isConfig = False |
|
1126 | 1127 | self.__nsubplots = 1 |
|
1127 | 1128 | self.counter_imagwr = 0 |
|
1128 | 1129 | self.WIDTH = 800 |
|
1129 | 1130 | self.HEIGHT = 400 |
|
1130 | 1131 | self.WIDTHPROF = 120 |
|
1131 | 1132 | self.HEIGHTPROF = 0 |
|
1132 | 1133 | self.xdata = None |
|
1133 | 1134 | self.ydata = None |
|
1134 | 1135 | |
|
1135 | 1136 | self.PLOT_CODE = NOISE_CODE |
|
1136 | 1137 | |
|
1137 | 1138 | self.FTP_WEI = None |
|
1138 | 1139 | self.EXP_CODE = None |
|
1139 | 1140 | self.SUB_EXP_CODE = None |
|
1140 | 1141 | self.PLOT_POS = None |
|
1141 | 1142 | self.figfile = None |
|
1142 | 1143 | |
|
1143 | 1144 | self.xmin = None |
|
1144 | 1145 | self.xmax = None |
|
1145 | 1146 | |
|
1146 | 1147 | def getSubplots(self): |
|
1147 | 1148 | |
|
1148 | 1149 | ncol = 1 |
|
1149 | 1150 | nrow = 1 |
|
1150 | 1151 | |
|
1151 | 1152 | return nrow, ncol |
|
1152 | 1153 | |
|
1153 | 1154 | def openfile(self, filename): |
|
1154 | 1155 | dirname = os.path.dirname(filename) |
|
1155 | 1156 | |
|
1156 | 1157 | if not os.path.exists(dirname): |
|
1157 | 1158 | os.mkdir(dirname) |
|
1158 | 1159 | |
|
1159 | 1160 | f = open(filename,'w+') |
|
1160 | 1161 | f.write('\n\n') |
|
1161 | 1162 | f.write('JICAMARCA RADIO OBSERVATORY - Noise \n') |
|
1162 | 1163 | f.write('DD MM YYYY HH MM SS Channel0 Channel1 Channel2 Channel3\n\n' ) |
|
1163 | 1164 | f.close() |
|
1164 | 1165 | |
|
1165 | 1166 | def save_data(self, filename_phase, data, data_datetime): |
|
1166 | 1167 | |
|
1167 | 1168 | f=open(filename_phase,'a') |
|
1168 | 1169 | |
|
1169 | 1170 | timetuple_data = data_datetime.timetuple() |
|
1170 | 1171 | day = str(timetuple_data.tm_mday) |
|
1171 | 1172 | month = str(timetuple_data.tm_mon) |
|
1172 | 1173 | year = str(timetuple_data.tm_year) |
|
1173 | 1174 | hour = str(timetuple_data.tm_hour) |
|
1174 | 1175 | minute = str(timetuple_data.tm_min) |
|
1175 | 1176 | second = str(timetuple_data.tm_sec) |
|
1176 | 1177 | |
|
1177 | 1178 | data_msg = '' |
|
1178 | 1179 | for i in range(len(data)): |
|
1179 | 1180 | data_msg += str(data[i]) + ' ' |
|
1180 | 1181 | |
|
1181 | 1182 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' ' + data_msg + '\n') |
|
1182 | 1183 | f.close() |
|
1183 | 1184 | |
|
1184 | 1185 | |
|
1185 | 1186 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1186 | 1187 | |
|
1187 | 1188 | self.__showprofile = showprofile |
|
1188 | 1189 | self.nplots = nplots |
|
1189 | 1190 | |
|
1190 | 1191 | ncolspan = 7 |
|
1191 | 1192 | colspan = 6 |
|
1192 | 1193 | self.__nsubplots = 2 |
|
1193 | 1194 | |
|
1194 | 1195 | self.createFigure(id = id, |
|
1195 | 1196 | wintitle = wintitle, |
|
1196 | 1197 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1197 | 1198 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1198 | 1199 | show=show) |
|
1199 | 1200 | |
|
1200 | 1201 | nrow, ncol = self.getSubplots() |
|
1201 | 1202 | |
|
1202 | 1203 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1203 | 1204 | |
|
1204 | 1205 | |
|
1205 | 1206 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
1206 | 1207 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1207 | 1208 | timerange=None, |
|
1208 | 1209 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1209 | 1210 | server=None, folder=None, username=None, password=None, |
|
1210 | 1211 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1211 | 1212 | |
|
1212 | 1213 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1213 | 1214 | return |
|
1214 | 1215 | |
|
1215 | 1216 | if channelList == None: |
|
1216 | 1217 | channelIndexList = dataOut.channelIndexList |
|
1217 | 1218 | channelList = dataOut.channelList |
|
1218 | 1219 | else: |
|
1219 | 1220 | channelIndexList = [] |
|
1220 | 1221 | for channel in channelList: |
|
1221 | 1222 | if channel not in dataOut.channelList: |
|
1222 | 1223 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
1223 | 1224 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1224 | 1225 | |
|
1225 | 1226 | x = dataOut.getTimeRange() |
|
1226 | 1227 | #y = dataOut.getHeiRange() |
|
1227 | 1228 | factor = dataOut.normFactor |
|
1228 | 1229 | noise = dataOut.noise[channelIndexList]/factor |
|
1229 | 1230 | noisedB = 10*numpy.log10(noise) |
|
1230 | 1231 | |
|
1231 | 1232 | thisDatetime = dataOut.datatime |
|
1232 | 1233 | |
|
1233 | 1234 | title = wintitle + " Noise" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1234 | 1235 | xlabel = "" |
|
1235 | 1236 | ylabel = "Intensity (dB)" |
|
1236 | 1237 | update_figfile = False |
|
1237 | 1238 | |
|
1238 | 1239 | if not self.isConfig: |
|
1239 | 1240 | |
|
1240 | 1241 | nplots = 1 |
|
1241 | 1242 | |
|
1242 | 1243 | self.setup(id=id, |
|
1243 | 1244 | nplots=nplots, |
|
1244 | 1245 | wintitle=wintitle, |
|
1245 | 1246 | showprofile=showprofile, |
|
1246 | 1247 | show=show) |
|
1247 | 1248 | |
|
1248 | 1249 | if timerange != None: |
|
1249 | 1250 | self.timerange = timerange |
|
1250 | 1251 | |
|
1251 | 1252 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1252 | 1253 | |
|
1253 | 1254 | if ymin == None: ymin = numpy.floor(numpy.nanmin(noisedB)) - 10.0 |
|
1254 | 1255 | if ymax == None: ymax = numpy.nanmax(noisedB) + 10.0 |
|
1255 | 1256 | |
|
1256 | 1257 | self.FTP_WEI = ftp_wei |
|
1257 | 1258 | self.EXP_CODE = exp_code |
|
1258 | 1259 | self.SUB_EXP_CODE = sub_exp_code |
|
1259 | 1260 | self.PLOT_POS = plot_pos |
|
1260 | 1261 | |
|
1261 | 1262 | |
|
1262 | 1263 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1263 | 1264 | self.isConfig = True |
|
1264 | 1265 | self.figfile = figfile |
|
1265 | 1266 | self.xdata = numpy.array([]) |
|
1266 | 1267 | self.ydata = numpy.array([]) |
|
1267 | 1268 | |
|
1268 | 1269 | update_figfile = True |
|
1269 | 1270 | |
|
1270 | 1271 | #open file beacon phase |
|
1271 | 1272 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1272 | 1273 | noise_file = os.path.join(path,'%s.txt'%self.name) |
|
1273 | 1274 | self.filename_noise = os.path.join(figpath,noise_file) |
|
1274 | 1275 | |
|
1275 | 1276 | self.setWinTitle(title) |
|
1276 | 1277 | |
|
1277 | 1278 | title = "Noise %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1278 | 1279 | |
|
1279 | 1280 | legendlabels = ["channel %d"%(idchannel) for idchannel in channelList] |
|
1280 | 1281 | axes = self.axesList[0] |
|
1281 | 1282 | |
|
1282 | 1283 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1283 | 1284 | |
|
1284 | 1285 | if len(self.ydata)==0: |
|
1285 | 1286 | self.ydata = noisedB.reshape(-1,1) |
|
1286 | 1287 | else: |
|
1287 | 1288 | self.ydata = numpy.hstack((self.ydata, noisedB.reshape(-1,1))) |
|
1288 | 1289 | |
|
1289 | 1290 | |
|
1290 | 1291 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1291 | 1292 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1292 | 1293 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1293 | 1294 | XAxisAsTime=True, grid='both' |
|
1294 | 1295 | ) |
|
1295 | 1296 | |
|
1296 | 1297 | self.draw() |
|
1297 | 1298 | |
|
1298 | 1299 | if dataOut.ltctime >= self.xmax: |
|
1299 | 1300 | self.counter_imagwr = wr_period |
|
1300 | 1301 | self.isConfig = False |
|
1301 | 1302 | update_figfile = True |
|
1302 | 1303 | |
|
1303 | 1304 | self.save(figpath=figpath, |
|
1304 | 1305 | figfile=figfile, |
|
1305 | 1306 | save=save, |
|
1306 | 1307 | ftp=ftp, |
|
1307 | 1308 | wr_period=wr_period, |
|
1308 | 1309 | thisDatetime=thisDatetime, |
|
1309 | 1310 | update_figfile=update_figfile) |
|
1310 | 1311 | |
|
1311 | 1312 | #store data beacon phase |
|
1312 | 1313 | if save: |
|
1313 | 1314 | self.save_data(self.filename_noise, noisedB, thisDatetime) |
|
1314 | 1315 | |
|
1315 | 1316 | class BeaconPhase(Figure): |
|
1316 | 1317 | |
|
1317 | 1318 | __isConfig = None |
|
1318 | 1319 | __nsubplots = None |
|
1319 | 1320 | |
|
1320 | 1321 | PREFIX = 'beacon_phase' |
|
1321 | 1322 | |
|
1322 | 1323 | def __init__(self, **kwargs): |
|
1323 | 1324 | Figure.__init__(self, **kwargs) |
|
1324 | 1325 | self.timerange = 24*60*60 |
|
1325 | 1326 | self.isConfig = False |
|
1326 | 1327 | self.__nsubplots = 1 |
|
1327 | 1328 | self.counter_imagwr = 0 |
|
1328 | 1329 | self.WIDTH = 800 |
|
1329 | 1330 | self.HEIGHT = 400 |
|
1330 | 1331 | self.WIDTHPROF = 120 |
|
1331 | 1332 | self.HEIGHTPROF = 0 |
|
1332 | 1333 | self.xdata = None |
|
1333 | 1334 | self.ydata = None |
|
1334 | 1335 | |
|
1335 | 1336 | self.PLOT_CODE = BEACON_CODE |
|
1336 | 1337 | |
|
1337 | 1338 | self.FTP_WEI = None |
|
1338 | 1339 | self.EXP_CODE = None |
|
1339 | 1340 | self.SUB_EXP_CODE = None |
|
1340 | 1341 | self.PLOT_POS = None |
|
1341 | 1342 | |
|
1342 | 1343 | self.filename_phase = None |
|
1343 | 1344 | |
|
1344 | 1345 | self.figfile = None |
|
1345 | 1346 | |
|
1346 | 1347 | self.xmin = None |
|
1347 | 1348 | self.xmax = None |
|
1348 | 1349 | |
|
1349 | 1350 | def getSubplots(self): |
|
1350 | 1351 | |
|
1351 | 1352 | ncol = 1 |
|
1352 | 1353 | nrow = 1 |
|
1353 | 1354 | |
|
1354 | 1355 | return nrow, ncol |
|
1355 | 1356 | |
|
1356 | 1357 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1357 | 1358 | |
|
1358 | 1359 | self.__showprofile = showprofile |
|
1359 | 1360 | self.nplots = nplots |
|
1360 | 1361 | |
|
1361 | 1362 | ncolspan = 7 |
|
1362 | 1363 | colspan = 6 |
|
1363 | 1364 | self.__nsubplots = 2 |
|
1364 | 1365 | |
|
1365 | 1366 | self.createFigure(id = id, |
|
1366 | 1367 | wintitle = wintitle, |
|
1367 | 1368 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1368 | 1369 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1369 | 1370 | show=show) |
|
1370 | 1371 | |
|
1371 | 1372 | nrow, ncol = self.getSubplots() |
|
1372 | 1373 | |
|
1373 | 1374 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1374 | 1375 | |
|
1375 | 1376 | def save_phase(self, filename_phase): |
|
1376 | 1377 | f = open(filename_phase,'w+') |
|
1377 | 1378 | f.write('\n\n') |
|
1378 | 1379 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1379 | 1380 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1380 | 1381 | f.close() |
|
1381 | 1382 | |
|
1382 | 1383 | def save_data(self, filename_phase, data, data_datetime): |
|
1383 | 1384 | f=open(filename_phase,'a') |
|
1384 | 1385 | timetuple_data = data_datetime.timetuple() |
|
1385 | 1386 | day = str(timetuple_data.tm_mday) |
|
1386 | 1387 | month = str(timetuple_data.tm_mon) |
|
1387 | 1388 | year = str(timetuple_data.tm_year) |
|
1388 | 1389 | hour = str(timetuple_data.tm_hour) |
|
1389 | 1390 | minute = str(timetuple_data.tm_min) |
|
1390 | 1391 | second = str(timetuple_data.tm_sec) |
|
1391 | 1392 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1392 | 1393 | f.close() |
|
1393 | 1394 | |
|
1394 | 1395 | |
|
1395 | 1396 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1396 | 1397 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1397 | 1398 | timerange=None, |
|
1398 | 1399 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1399 | 1400 | server=None, folder=None, username=None, password=None, |
|
1400 | 1401 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1401 | 1402 | |
|
1402 | 1403 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1403 | 1404 | return |
|
1404 | 1405 | |
|
1405 | 1406 | if pairsList == None: |
|
1406 | 1407 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1407 | 1408 | else: |
|
1408 | 1409 | pairsIndexList = [] |
|
1409 | 1410 | for pair in pairsList: |
|
1410 | 1411 | if pair not in dataOut.pairsList: |
|
1411 | 1412 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
1412 | 1413 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1413 | 1414 | |
|
1414 | 1415 | if pairsIndexList == []: |
|
1415 | 1416 | return |
|
1416 | 1417 | |
|
1417 | 1418 | # if len(pairsIndexList) > 4: |
|
1418 | 1419 | # pairsIndexList = pairsIndexList[0:4] |
|
1419 | 1420 | |
|
1420 | 1421 | hmin_index = None |
|
1421 | 1422 | hmax_index = None |
|
1422 | 1423 | |
|
1423 | 1424 | if hmin != None and hmax != None: |
|
1424 | 1425 | indexes = numpy.arange(dataOut.nHeights) |
|
1425 | 1426 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1426 | 1427 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1427 | 1428 | |
|
1428 | 1429 | if hmin_list.any(): |
|
1429 | 1430 | hmin_index = hmin_list[0] |
|
1430 | 1431 | |
|
1431 | 1432 | if hmax_list.any(): |
|
1432 | 1433 | hmax_index = hmax_list[-1]+1 |
|
1433 | 1434 | |
|
1434 | 1435 | x = dataOut.getTimeRange() |
|
1435 | 1436 | #y = dataOut.getHeiRange() |
|
1436 | 1437 | |
|
1437 | 1438 | |
|
1438 | 1439 | thisDatetime = dataOut.datatime |
|
1439 | 1440 | |
|
1440 | 1441 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1441 | 1442 | xlabel = "Local Time" |
|
1442 | 1443 | ylabel = "Phase (degrees)" |
|
1443 | 1444 | |
|
1444 | 1445 | update_figfile = False |
|
1445 | 1446 | |
|
1446 | 1447 | nplots = len(pairsIndexList) |
|
1447 | 1448 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1448 | 1449 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1449 | 1450 | for i in range(nplots): |
|
1450 | 1451 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1451 | 1452 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1452 | 1453 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1453 | 1454 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1454 | 1455 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1455 | 1456 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1456 | 1457 | |
|
1457 | 1458 | #print "Phase %d%d" %(pair[0], pair[1]) |
|
1458 | 1459 | #print phase[dataOut.beacon_heiIndexList] |
|
1459 | 1460 | |
|
1460 | 1461 | if dataOut.beacon_heiIndexList: |
|
1461 | 1462 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1462 | 1463 | else: |
|
1463 | 1464 | phase_beacon[i] = numpy.average(phase) |
|
1464 | 1465 | |
|
1465 | 1466 | if not self.isConfig: |
|
1466 | 1467 | |
|
1467 | 1468 | nplots = len(pairsIndexList) |
|
1468 | 1469 | |
|
1469 | 1470 | self.setup(id=id, |
|
1470 | 1471 | nplots=nplots, |
|
1471 | 1472 | wintitle=wintitle, |
|
1472 | 1473 | showprofile=showprofile, |
|
1473 | 1474 | show=show) |
|
1474 | 1475 | |
|
1475 | 1476 | if timerange != None: |
|
1476 | 1477 | self.timerange = timerange |
|
1477 | 1478 | |
|
1478 | 1479 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1479 | 1480 | |
|
1480 | 1481 | if ymin == None: ymin = 0 |
|
1481 | 1482 | if ymax == None: ymax = 360 |
|
1482 | 1483 | |
|
1483 | 1484 | self.FTP_WEI = ftp_wei |
|
1484 | 1485 | self.EXP_CODE = exp_code |
|
1485 | 1486 | self.SUB_EXP_CODE = sub_exp_code |
|
1486 | 1487 | self.PLOT_POS = plot_pos |
|
1487 | 1488 | |
|
1488 | 1489 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1489 | 1490 | self.isConfig = True |
|
1490 | 1491 | self.figfile = figfile |
|
1491 | 1492 | self.xdata = numpy.array([]) |
|
1492 | 1493 | self.ydata = numpy.array([]) |
|
1493 | 1494 | |
|
1494 | 1495 | update_figfile = True |
|
1495 | 1496 | |
|
1496 | 1497 | #open file beacon phase |
|
1497 | 1498 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1498 | 1499 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1499 | 1500 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1500 | 1501 | #self.save_phase(self.filename_phase) |
|
1501 | 1502 | |
|
1502 | 1503 | |
|
1503 | 1504 | #store data beacon phase |
|
1504 | 1505 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1505 | 1506 | |
|
1506 | 1507 | self.setWinTitle(title) |
|
1507 | 1508 | |
|
1508 | 1509 | |
|
1509 | 1510 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1510 | 1511 | |
|
1511 | 1512 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1512 | 1513 | |
|
1513 | 1514 | axes = self.axesList[0] |
|
1514 | 1515 | |
|
1515 | 1516 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1516 | 1517 | |
|
1517 | 1518 | if len(self.ydata)==0: |
|
1518 | 1519 | self.ydata = phase_beacon.reshape(-1,1) |
|
1519 | 1520 | else: |
|
1520 | 1521 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1521 | 1522 | |
|
1522 | 1523 | |
|
1523 | 1524 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1524 | 1525 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1525 | 1526 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1526 | 1527 | XAxisAsTime=True, grid='both' |
|
1527 | 1528 | ) |
|
1528 | 1529 | |
|
1529 | 1530 | self.draw() |
|
1530 | 1531 | |
|
1531 | 1532 | if dataOut.ltctime >= self.xmax: |
|
1532 | 1533 | self.counter_imagwr = wr_period |
|
1533 | 1534 | self.isConfig = False |
|
1534 | 1535 | update_figfile = True |
|
1535 | 1536 | |
|
1536 | 1537 | self.save(figpath=figpath, |
|
1537 | 1538 | figfile=figfile, |
|
1538 | 1539 | save=save, |
|
1539 | 1540 | ftp=ftp, |
|
1540 | 1541 | wr_period=wr_period, |
|
1541 | 1542 | thisDatetime=thisDatetime, |
|
1542 | 1543 | update_figfile=update_figfile) |
@@ -1,958 +1,960 | |||
|
1 | 1 | import itertools |
|
2 | 2 | |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from jroproc_base import ProcessingUnit, Operation |
|
6 | 6 | from schainpy.model.data.jrodata import Spectra |
|
7 | 7 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
8 | 8 | |
|
9 | 9 | |
|
10 | 10 | class SpectraProc(ProcessingUnit): |
|
11 | 11 | |
|
12 | 12 | def __init__(self, **kwargs): |
|
13 | 13 | |
|
14 | 14 | ProcessingUnit.__init__(self, **kwargs) |
|
15 | 15 | |
|
16 | 16 | self.buffer = None |
|
17 | 17 | self.firstdatatime = None |
|
18 | 18 | self.profIndex = 0 |
|
19 | 19 | self.dataOut = Spectra() |
|
20 | 20 | self.id_min = None |
|
21 | 21 | self.id_max = None |
|
22 | 22 | |
|
23 | 23 | def __updateSpecFromVoltage(self): |
|
24 | 24 | |
|
25 | 25 | self.dataOut.timeZone = self.dataIn.timeZone |
|
26 | 26 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
27 | 27 | self.dataOut.errorCount = self.dataIn.errorCount |
|
28 | 28 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
29 | 29 | try: |
|
30 | 30 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
31 | 31 | except: |
|
32 | 32 | pass |
|
33 | 33 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
34 | 34 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
35 | 35 | self.dataOut.channelList = self.dataIn.channelList |
|
36 | 36 | self.dataOut.heightList = self.dataIn.heightList |
|
37 | 37 | #print self.dataOut.heightList.shape,"spec4" |
|
38 | 38 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
39 | 39 | |
|
40 | 40 | self.dataOut.nBaud = self.dataIn.nBaud |
|
41 | 41 | self.dataOut.nCode = self.dataIn.nCode |
|
42 | 42 | self.dataOut.code = self.dataIn.code |
|
43 | 43 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
44 | 44 | |
|
45 | 45 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
46 | 46 | self.dataOut.utctime = self.firstdatatime |
|
47 | 47 | # asumo q la data esta decodificada |
|
48 | 48 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
49 | 49 | # asumo q la data esta sin flip |
|
50 | 50 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
51 | 51 | self.dataOut.flagShiftFFT = False |
|
52 | 52 | |
|
53 | 53 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
54 | 54 | self.dataOut.nIncohInt = 1 |
|
55 | 55 | |
|
56 | 56 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
57 | 57 | |
|
58 | 58 | self.dataOut.frequency = self.dataIn.frequency |
|
59 | 59 | self.dataOut.realtime = self.dataIn.realtime |
|
60 | 60 | |
|
61 | 61 | self.dataOut.azimuth = self.dataIn.azimuth |
|
62 | 62 | self.dataOut.zenith = self.dataIn.zenith |
|
63 | 63 | |
|
64 | 64 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
65 | 65 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
66 | 66 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
67 | 67 | |
|
68 | 68 | def __getFft(self): |
|
69 | 69 | """ |
|
70 | 70 | Convierte valores de Voltaje a Spectra |
|
71 | 71 | |
|
72 | 72 | Affected: |
|
73 | 73 | self.dataOut.data_spc |
|
74 | 74 | self.dataOut.data_cspc |
|
75 | 75 | self.dataOut.data_dc |
|
76 | 76 | self.dataOut.heightList |
|
77 | 77 | self.profIndex |
|
78 | 78 | self.buffer |
|
79 | 79 | self.dataOut.flagNoData |
|
80 | 80 | """ |
|
81 | 81 | fft_volt = numpy.fft.fft( |
|
82 | 82 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
83 | 83 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
84 | 84 | dc = fft_volt[:, 0, :] |
|
85 | 85 | |
|
86 | 86 | # calculo de self-spectra |
|
87 | 87 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
88 | #print "spec dtype 0",fft_volt.dtype | |
|
88 | 89 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
89 | 90 | spc = spc.real |
|
91 | #print "spec dtype 1",spc.dtype | |
|
90 | 92 | |
|
91 | 93 | blocksize = 0 |
|
92 | 94 | blocksize += dc.size |
|
93 | 95 | blocksize += spc.size |
|
94 | 96 | |
|
95 | 97 | cspc = None |
|
96 | 98 | pairIndex = 0 |
|
97 | 99 | if self.dataOut.pairsList != None: |
|
98 | 100 | # calculo de cross-spectra |
|
99 | 101 | cspc = numpy.zeros( |
|
100 | 102 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
101 | 103 | for pair in self.dataOut.pairsList: |
|
102 | 104 | if pair[0] not in self.dataOut.channelList: |
|
103 | 105 | raise ValueError, "Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
104 | 106 | str(pair), str(self.dataOut.channelList)) |
|
105 | 107 | if pair[1] not in self.dataOut.channelList: |
|
106 | 108 | raise ValueError, "Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
107 | 109 | str(pair), str(self.dataOut.channelList)) |
|
108 | 110 | |
|
109 | 111 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
110 | 112 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
111 | 113 | pairIndex += 1 |
|
112 | 114 | blocksize += cspc.size |
|
113 | 115 | |
|
114 | 116 | self.dataOut.data_spc = spc |
|
115 | 117 | self.dataOut.data_cspc = cspc |
|
116 | 118 | self.dataOut.data_dc = dc |
|
117 | 119 | self.dataOut.blockSize = blocksize |
|
118 | 120 | self.dataOut.flagShiftFFT = True |
|
119 | 121 | |
|
120 | 122 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None, shift_fft=False): |
|
121 | 123 | |
|
122 | 124 | self.dataOut.flagNoData = True |
|
123 | 125 | |
|
124 | 126 | if self.dataIn.type == "Spectra": |
|
125 | 127 | self.dataOut.copy(self.dataIn) |
|
126 | 128 | # if not pairsList: |
|
127 | 129 | # pairsList = itertools.combinations(self.dataOut.channelList, 2) |
|
128 | 130 | # if self.dataOut.data_cspc is not None: |
|
129 | 131 | # self.__selectPairs(pairsList) |
|
130 | 132 | if shift_fft: |
|
131 | 133 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
132 | 134 | shift = int(self.dataOut.nFFTPoints/2) |
|
133 | 135 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
134 | 136 | |
|
135 | 137 | if self.dataOut.data_cspc is not None: |
|
136 | 138 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
137 | 139 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
138 | 140 | |
|
139 | 141 | return True |
|
140 | 142 | |
|
141 | 143 | if self.dataIn.type == "Voltage": |
|
142 | 144 | |
|
143 | 145 | if nFFTPoints == None: |
|
144 | 146 | raise ValueError, "This SpectraProc.run() need nFFTPoints input variable" |
|
145 | 147 | |
|
146 | 148 | if nProfiles == None: |
|
147 | 149 | nProfiles = nFFTPoints |
|
148 | 150 | |
|
149 | 151 | if ippFactor == None: |
|
150 | 152 | ippFactor = 1 |
|
151 | 153 | |
|
152 | 154 | self.dataOut.ippFactor = ippFactor |
|
153 | 155 | |
|
154 | 156 | self.dataOut.nFFTPoints = nFFTPoints |
|
155 | 157 | self.dataOut.pairsList = pairsList |
|
156 | 158 | |
|
157 | 159 | if self.buffer is None: |
|
158 | 160 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
159 | 161 | nProfiles, |
|
160 | 162 | self.dataIn.heightList.shape[0]), |
|
161 | 163 | dtype='complex') |
|
162 | 164 | |
|
163 | 165 | #print self.buffer.shape,"spec2" |
|
164 | 166 | #print self.dataIn.heightList.shape[0],"spec3" |
|
165 | 167 | |
|
166 | 168 | if self.dataIn.flagDataAsBlock: |
|
167 | 169 | # data dimension: [nChannels, nProfiles, nSamples] |
|
168 | 170 | nVoltProfiles = self.dataIn.data.shape[1] |
|
169 | 171 | # nVoltProfiles = self.dataIn.nProfiles |
|
170 | 172 | |
|
171 | 173 | #print nVoltProfiles,"spec1" |
|
172 | 174 | #print nProfiles |
|
173 | 175 | if nVoltProfiles == nProfiles: |
|
174 | 176 | self.buffer = self.dataIn.data.copy() |
|
175 | 177 | self.profIndex = nVoltProfiles |
|
176 | 178 | |
|
177 | 179 | elif nVoltProfiles < nProfiles: |
|
178 | 180 | |
|
179 | 181 | if self.profIndex == 0: |
|
180 | 182 | self.id_min = 0 |
|
181 | 183 | self.id_max = nVoltProfiles |
|
182 | 184 | |
|
183 | 185 | self.buffer[:, self.id_min:self.id_max,:] = self.dataIn.data |
|
184 | 186 | self.profIndex += nVoltProfiles |
|
185 | 187 | self.id_min += nVoltProfiles |
|
186 | 188 | self.id_max += nVoltProfiles |
|
187 | 189 | else: |
|
188 | 190 | raise ValueError, "The type object %s has %d profiles, it should just has %d profiles" % ( |
|
189 | 191 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles) |
|
190 | 192 | self.dataOut.flagNoData = True |
|
191 | 193 | return 0 |
|
192 | 194 | else: |
|
193 | 195 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
194 | 196 | self.profIndex += 1 |
|
195 | 197 | #print self.profIndex,"spectra D" |
|
196 | 198 | |
|
197 | 199 | if self.firstdatatime == None: |
|
198 | 200 | self.firstdatatime = self.dataIn.utctime |
|
199 | 201 | |
|
200 | 202 | if self.profIndex == nProfiles: |
|
201 | 203 | self.__updateSpecFromVoltage() |
|
202 | 204 | self.__getFft() |
|
203 | 205 | |
|
204 | 206 | self.dataOut.flagNoData = False |
|
205 | 207 | self.firstdatatime = None |
|
206 | 208 | self.profIndex = 0 |
|
207 | 209 | |
|
208 | 210 | return True |
|
209 | 211 | |
|
210 | 212 | raise ValueError, "The type of input object '%s' is not valid" % ( |
|
211 | 213 | self.dataIn.type) |
|
212 | 214 | |
|
213 | 215 | def __selectPairs(self, pairsList): |
|
214 | 216 | |
|
215 | 217 | if not pairsList: |
|
216 | 218 | return |
|
217 | 219 | |
|
218 | 220 | pairs = [] |
|
219 | 221 | pairsIndex = [] |
|
220 | 222 | |
|
221 | 223 | for pair in pairsList: |
|
222 | 224 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
223 | 225 | continue |
|
224 | 226 | pairs.append(pair) |
|
225 | 227 | pairsIndex.append(pairs.index(pair)) |
|
226 | 228 | |
|
227 | 229 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
228 | 230 | self.dataOut.pairsList = pairs |
|
229 | 231 | |
|
230 | 232 | return |
|
231 | 233 | |
|
232 | 234 | def __selectPairsByChannel(self, channelList=None): |
|
233 | 235 | |
|
234 | 236 | if channelList == None: |
|
235 | 237 | return |
|
236 | 238 | |
|
237 | 239 | pairsIndexListSelected = [] |
|
238 | 240 | for pairIndex in self.dataOut.pairsIndexList: |
|
239 | 241 | # First pair |
|
240 | 242 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
241 | 243 | continue |
|
242 | 244 | # Second pair |
|
243 | 245 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
244 | 246 | continue |
|
245 | 247 | |
|
246 | 248 | pairsIndexListSelected.append(pairIndex) |
|
247 | 249 | |
|
248 | 250 | if not pairsIndexListSelected: |
|
249 | 251 | self.dataOut.data_cspc = None |
|
250 | 252 | self.dataOut.pairsList = [] |
|
251 | 253 | return |
|
252 | 254 | |
|
253 | 255 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
254 | 256 | self.dataOut.pairsList = [self.dataOut.pairsList[i] |
|
255 | 257 | for i in pairsIndexListSelected] |
|
256 | 258 | |
|
257 | 259 | return |
|
258 | 260 | |
|
259 | 261 | def selectChannels(self, channelList): |
|
260 | 262 | |
|
261 | 263 | channelIndexList = [] |
|
262 | 264 | |
|
263 | 265 | for channel in channelList: |
|
264 | 266 | if channel not in self.dataOut.channelList: |
|
265 | 267 | raise ValueError, "Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" % ( |
|
266 | 268 | channel, str(self.dataOut.channelList)) |
|
267 | 269 | |
|
268 | 270 | index = self.dataOut.channelList.index(channel) |
|
269 | 271 | channelIndexList.append(index) |
|
270 | 272 | |
|
271 | 273 | self.selectChannelsByIndex(channelIndexList) |
|
272 | 274 | |
|
273 | 275 | def selectChannelsByIndex(self, channelIndexList): |
|
274 | 276 | """ |
|
275 | 277 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
276 | 278 | |
|
277 | 279 | Input: |
|
278 | 280 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
279 | 281 | |
|
280 | 282 | Affected: |
|
281 | 283 | self.dataOut.data_spc |
|
282 | 284 | self.dataOut.channelIndexList |
|
283 | 285 | self.dataOut.nChannels |
|
284 | 286 | |
|
285 | 287 | Return: |
|
286 | 288 | None |
|
287 | 289 | """ |
|
288 | 290 | |
|
289 | 291 | for channelIndex in channelIndexList: |
|
290 | 292 | if channelIndex not in self.dataOut.channelIndexList: |
|
291 | 293 | raise ValueError, "Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " % ( |
|
292 | 294 | channelIndex, self.dataOut.channelIndexList) |
|
293 | 295 | |
|
294 | 296 | # nChannels = len(channelIndexList) |
|
295 | 297 | |
|
296 | 298 | data_spc = self.dataOut.data_spc[channelIndexList, :] |
|
297 | 299 | data_dc = self.dataOut.data_dc[channelIndexList, :] |
|
298 | 300 | |
|
299 | 301 | self.dataOut.data_spc = data_spc |
|
300 | 302 | self.dataOut.data_dc = data_dc |
|
301 | 303 | |
|
302 | 304 | self.dataOut.channelList = [ |
|
303 | 305 | self.dataOut.channelList[i] for i in channelIndexList] |
|
304 | 306 | # self.dataOut.nChannels = nChannels |
|
305 | 307 | |
|
306 | 308 | self.__selectPairsByChannel(self.dataOut.channelList) |
|
307 | 309 | |
|
308 | 310 | return 1 |
|
309 | 311 | |
|
310 | 312 | def selectHeights(self, minHei, maxHei): |
|
311 | 313 | """ |
|
312 | 314 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
313 | 315 | minHei <= height <= maxHei |
|
314 | 316 | |
|
315 | 317 | Input: |
|
316 | 318 | minHei : valor minimo de altura a considerar |
|
317 | 319 | maxHei : valor maximo de altura a considerar |
|
318 | 320 | |
|
319 | 321 | Affected: |
|
320 | 322 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
321 | 323 | |
|
322 | 324 | Return: |
|
323 | 325 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
324 | 326 | """ |
|
325 | 327 | |
|
326 | 328 | if (minHei > maxHei): |
|
327 | 329 | raise ValueError, "Error selecting heights: Height range (%d,%d) is not valid" % ( |
|
328 | 330 | minHei, maxHei) |
|
329 | 331 | |
|
330 | 332 | if (minHei < self.dataOut.heightList[0]): |
|
331 | 333 | minHei = self.dataOut.heightList[0] |
|
332 | 334 | |
|
333 | 335 | if (maxHei > self.dataOut.heightList[-1]): |
|
334 | 336 | maxHei = self.dataOut.heightList[-1] |
|
335 | 337 | |
|
336 | 338 | minIndex = 0 |
|
337 | 339 | maxIndex = 0 |
|
338 | 340 | heights = self.dataOut.heightList |
|
339 | 341 | |
|
340 | 342 | inda = numpy.where(heights >= minHei) |
|
341 | 343 | indb = numpy.where(heights <= maxHei) |
|
342 | 344 | |
|
343 | 345 | try: |
|
344 | 346 | minIndex = inda[0][0] |
|
345 | 347 | except: |
|
346 | 348 | minIndex = 0 |
|
347 | 349 | |
|
348 | 350 | try: |
|
349 | 351 | maxIndex = indb[0][-1] |
|
350 | 352 | except: |
|
351 | 353 | maxIndex = len(heights) |
|
352 | 354 | |
|
353 | 355 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
354 | 356 | |
|
355 | 357 | return 1 |
|
356 | 358 | |
|
357 | 359 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
358 | 360 | newheis = numpy.where( |
|
359 | 361 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
360 | 362 | |
|
361 | 363 | if hei_ref != None: |
|
362 | 364 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
363 | 365 | |
|
364 | 366 | minIndex = min(newheis[0]) |
|
365 | 367 | maxIndex = max(newheis[0]) |
|
366 | 368 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
367 | 369 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
368 | 370 | |
|
369 | 371 | # determina indices |
|
370 | 372 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
371 | 373 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
372 | 374 | avg_dB = 10 * \ |
|
373 | 375 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
374 | 376 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
375 | 377 | beacon_heiIndexList = [] |
|
376 | 378 | for val in avg_dB.tolist(): |
|
377 | 379 | if val >= beacon_dB[0]: |
|
378 | 380 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
379 | 381 | |
|
380 | 382 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
381 | 383 | data_cspc = None |
|
382 | 384 | if self.dataOut.data_cspc is not None: |
|
383 | 385 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
384 | 386 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
385 | 387 | |
|
386 | 388 | data_dc = None |
|
387 | 389 | if self.dataOut.data_dc is not None: |
|
388 | 390 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
389 | 391 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
390 | 392 | |
|
391 | 393 | self.dataOut.data_spc = data_spc |
|
392 | 394 | self.dataOut.data_cspc = data_cspc |
|
393 | 395 | self.dataOut.data_dc = data_dc |
|
394 | 396 | self.dataOut.heightList = heightList |
|
395 | 397 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
396 | 398 | |
|
397 | 399 | return 1 |
|
398 | 400 | |
|
399 | 401 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
400 | 402 | """ |
|
401 | 403 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
402 | 404 | minIndex <= index <= maxIndex |
|
403 | 405 | |
|
404 | 406 | Input: |
|
405 | 407 | minIndex : valor de indice minimo de altura a considerar |
|
406 | 408 | maxIndex : valor de indice maximo de altura a considerar |
|
407 | 409 | |
|
408 | 410 | Affected: |
|
409 | 411 | self.dataOut.data_spc |
|
410 | 412 | self.dataOut.data_cspc |
|
411 | 413 | self.dataOut.data_dc |
|
412 | 414 | self.dataOut.heightList |
|
413 | 415 | |
|
414 | 416 | Return: |
|
415 | 417 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
416 | 418 | """ |
|
417 | 419 | |
|
418 | 420 | if (minIndex < 0) or (minIndex > maxIndex): |
|
419 | 421 | raise ValueError, "Error selecting heights: Index range (%d,%d) is not valid" % ( |
|
420 | 422 | minIndex, maxIndex) |
|
421 | 423 | |
|
422 | 424 | if (maxIndex >= self.dataOut.nHeights): |
|
423 | 425 | maxIndex = self.dataOut.nHeights - 1 |
|
424 | 426 | |
|
425 | 427 | # Spectra |
|
426 | 428 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
427 | 429 | |
|
428 | 430 | data_cspc = None |
|
429 | 431 | if self.dataOut.data_cspc is not None: |
|
430 | 432 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
431 | 433 | |
|
432 | 434 | data_dc = None |
|
433 | 435 | if self.dataOut.data_dc is not None: |
|
434 | 436 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
435 | 437 | |
|
436 | 438 | self.dataOut.data_spc = data_spc |
|
437 | 439 | self.dataOut.data_cspc = data_cspc |
|
438 | 440 | self.dataOut.data_dc = data_dc |
|
439 | 441 | |
|
440 | 442 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
441 | 443 | |
|
442 | 444 | return 1 |
|
443 | 445 | |
|
444 | 446 | def removeDC(self, mode=2): |
|
445 | 447 | jspectra = self.dataOut.data_spc |
|
446 | 448 | jcspectra = self.dataOut.data_cspc |
|
447 | 449 | |
|
448 | 450 | num_chan = jspectra.shape[0] |
|
449 | 451 | num_hei = jspectra.shape[2] |
|
450 | 452 | |
|
451 | 453 | if jcspectra is not None: |
|
452 | 454 | jcspectraExist = True |
|
453 | 455 | num_pairs = jcspectra.shape[0] |
|
454 | 456 | else: |
|
455 | 457 | jcspectraExist = False |
|
456 | 458 | |
|
457 | 459 | freq_dc = jspectra.shape[1] / 2 |
|
458 | 460 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
459 | 461 | |
|
460 | 462 | if ind_vel[0] < 0: |
|
461 | 463 | ind_vel[range(0, 1)] = ind_vel[range(0, 1)] + self.num_prof |
|
462 | 464 | |
|
463 | 465 | if mode == 1: |
|
464 | 466 | jspectra[:, freq_dc, :] = ( |
|
465 | 467 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
466 | 468 | |
|
467 | 469 | if jcspectraExist: |
|
468 | 470 | jcspectra[:, freq_dc, :] = ( |
|
469 | 471 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
470 | 472 | |
|
471 | 473 | if mode == 2: |
|
472 | 474 | |
|
473 | 475 | vel = numpy.array([-2, -1, 1, 2]) |
|
474 | 476 | xx = numpy.zeros([4, 4]) |
|
475 | 477 | |
|
476 | 478 | for fil in range(4): |
|
477 | 479 | xx[fil, :] = vel[fil]**numpy.asarray(range(4)) |
|
478 | 480 | |
|
479 | 481 | xx_inv = numpy.linalg.inv(xx) |
|
480 | 482 | xx_aux = xx_inv[0, :] |
|
481 | 483 | |
|
482 | 484 | for ich in range(num_chan): |
|
483 | 485 | yy = jspectra[ich, ind_vel, :] |
|
484 | 486 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
485 | 487 | |
|
486 | 488 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
487 | 489 | cjunkid = sum(junkid) |
|
488 | 490 | |
|
489 | 491 | if cjunkid.any(): |
|
490 | 492 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
491 | 493 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
492 | 494 | |
|
493 | 495 | if jcspectraExist: |
|
494 | 496 | for ip in range(num_pairs): |
|
495 | 497 | yy = jcspectra[ip, ind_vel, :] |
|
496 | 498 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
497 | 499 | |
|
498 | 500 | self.dataOut.data_spc = jspectra |
|
499 | 501 | self.dataOut.data_cspc = jcspectra |
|
500 | 502 | |
|
501 | 503 | return 1 |
|
502 | 504 | |
|
503 | 505 | def removeInterference(self, interf=2, hei_interf=None, nhei_interf=None, offhei_interf=None): |
|
504 | 506 | |
|
505 | 507 | jspectra = self.dataOut.data_spc |
|
506 | 508 | jcspectra = self.dataOut.data_cspc |
|
507 | 509 | jnoise = self.dataOut.getNoise() |
|
508 | 510 | num_incoh = self.dataOut.nIncohInt |
|
509 | 511 | |
|
510 | 512 | num_channel = jspectra.shape[0] |
|
511 | 513 | num_prof = jspectra.shape[1] |
|
512 | 514 | num_hei = jspectra.shape[2] |
|
513 | 515 | |
|
514 | 516 | # hei_interf |
|
515 | 517 | if hei_interf is None: |
|
516 | 518 | count_hei = num_hei / 2 # Como es entero no importa |
|
517 | 519 | hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei |
|
518 | 520 | hei_interf = numpy.asarray(hei_interf)[0] |
|
519 | 521 | # nhei_interf |
|
520 | 522 | if (nhei_interf == None): |
|
521 | 523 | nhei_interf = 5 |
|
522 | 524 | if (nhei_interf < 1): |
|
523 | 525 | nhei_interf = 1 |
|
524 | 526 | if (nhei_interf > count_hei): |
|
525 | 527 | nhei_interf = count_hei |
|
526 | 528 | if (offhei_interf == None): |
|
527 | 529 | offhei_interf = 0 |
|
528 | 530 | |
|
529 | 531 | ind_hei = range(num_hei) |
|
530 | 532 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
531 | 533 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
532 | 534 | mask_prof = numpy.asarray(range(num_prof)) |
|
533 | 535 | num_mask_prof = mask_prof.size |
|
534 | 536 | comp_mask_prof = [0, num_prof / 2] |
|
535 | 537 | |
|
536 | 538 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
537 | 539 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
538 | 540 | jnoise = numpy.nan |
|
539 | 541 | noise_exist = jnoise[0] < numpy.Inf |
|
540 | 542 | |
|
541 | 543 | # Subrutina de Remocion de la Interferencia |
|
542 | 544 | for ich in range(num_channel): |
|
543 | 545 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
544 | 546 | power = jspectra[ich, mask_prof, :] |
|
545 | 547 | power = power[:, hei_interf] |
|
546 | 548 | power = power.sum(axis=0) |
|
547 | 549 | psort = power.ravel().argsort() |
|
548 | 550 | |
|
549 | 551 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
550 | 552 | junkspc_interf = jspectra[ich, :, hei_interf[psort[range( |
|
551 | 553 | offhei_interf, nhei_interf + offhei_interf)]]] |
|
552 | 554 | |
|
553 | 555 | if noise_exist: |
|
554 | 556 | # tmp_noise = jnoise[ich] / num_prof |
|
555 | 557 | tmp_noise = jnoise[ich] |
|
556 | 558 | junkspc_interf = junkspc_interf - tmp_noise |
|
557 | 559 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
558 | 560 | |
|
559 | 561 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
560 | 562 | jspc_interf = jspc_interf.transpose() |
|
561 | 563 | # Calculando el espectro de interferencia promedio |
|
562 | 564 | noiseid = numpy.where( |
|
563 | 565 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
564 | 566 | noiseid = noiseid[0] |
|
565 | 567 | cnoiseid = noiseid.size |
|
566 | 568 | interfid = numpy.where( |
|
567 | 569 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
568 | 570 | interfid = interfid[0] |
|
569 | 571 | cinterfid = interfid.size |
|
570 | 572 | |
|
571 | 573 | if (cnoiseid > 0): |
|
572 | 574 | jspc_interf[noiseid] = 0 |
|
573 | 575 | |
|
574 | 576 | # Expandiendo los perfiles a limpiar |
|
575 | 577 | if (cinterfid > 0): |
|
576 | 578 | new_interfid = ( |
|
577 | 579 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
578 | 580 | new_interfid = numpy.asarray(new_interfid) |
|
579 | 581 | new_interfid = {x for x in new_interfid} |
|
580 | 582 | new_interfid = numpy.array(list(new_interfid)) |
|
581 | 583 | new_cinterfid = new_interfid.size |
|
582 | 584 | else: |
|
583 | 585 | new_cinterfid = 0 |
|
584 | 586 | |
|
585 | 587 | for ip in range(new_cinterfid): |
|
586 | 588 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
587 | 589 | jspc_interf[new_interfid[ip] |
|
588 | 590 | ] = junkspc_interf[ind[nhei_interf / 2], new_interfid[ip]] |
|
589 | 591 | |
|
590 | 592 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
591 | 593 | ind_hei] - jspc_interf # Corregir indices |
|
592 | 594 | |
|
593 | 595 | # Removiendo la interferencia del punto de mayor interferencia |
|
594 | 596 | ListAux = jspc_interf[mask_prof].tolist() |
|
595 | 597 | maxid = ListAux.index(max(ListAux)) |
|
596 | 598 | |
|
597 | 599 | if cinterfid > 0: |
|
598 | 600 | for ip in range(cinterfid * (interf == 2) - 1): |
|
599 | 601 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
600 | 602 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
601 | 603 | cind = len(ind) |
|
602 | 604 | |
|
603 | 605 | if (cind > 0): |
|
604 | 606 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
605 | 607 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
606 | 608 | numpy.sqrt(num_incoh)) |
|
607 | 609 | |
|
608 | 610 | ind = numpy.array([-2, -1, 1, 2]) |
|
609 | 611 | xx = numpy.zeros([4, 4]) |
|
610 | 612 | |
|
611 | 613 | for id1 in range(4): |
|
612 | 614 | xx[:, id1] = ind[id1]**numpy.asarray(range(4)) |
|
613 | 615 | |
|
614 | 616 | xx_inv = numpy.linalg.inv(xx) |
|
615 | 617 | xx = xx_inv[:, 0] |
|
616 | 618 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
617 | 619 | yy = jspectra[ich, mask_prof[ind], :] |
|
618 | 620 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
619 | 621 | yy.transpose(), xx) |
|
620 | 622 | |
|
621 | 623 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
622 | 624 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
623 | 625 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
624 | 626 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
625 | 627 | |
|
626 | 628 | # Remocion de Interferencia en el Cross Spectra |
|
627 | 629 | if jcspectra is None: |
|
628 | 630 | return jspectra, jcspectra |
|
629 | 631 | num_pairs = jcspectra.size / (num_prof * num_hei) |
|
630 | 632 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
631 | 633 | |
|
632 | 634 | for ip in range(num_pairs): |
|
633 | 635 | |
|
634 | 636 | #------------------------------------------- |
|
635 | 637 | |
|
636 | 638 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
637 | 639 | cspower = cspower[:, hei_interf] |
|
638 | 640 | cspower = cspower.sum(axis=0) |
|
639 | 641 | |
|
640 | 642 | cspsort = cspower.ravel().argsort() |
|
641 | 643 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[range( |
|
642 | 644 | offhei_interf, nhei_interf + offhei_interf)]]] |
|
643 | 645 | junkcspc_interf = junkcspc_interf.transpose() |
|
644 | 646 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
645 | 647 | |
|
646 | 648 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
647 | 649 | |
|
648 | 650 | median_real = numpy.median(numpy.real( |
|
649 | 651 | junkcspc_interf[mask_prof[ind[range(3 * num_prof / 4)]], :])) |
|
650 | 652 | median_imag = numpy.median(numpy.imag( |
|
651 | 653 | junkcspc_interf[mask_prof[ind[range(3 * num_prof / 4)]], :])) |
|
652 | 654 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
653 | 655 | median_real, median_imag) |
|
654 | 656 | |
|
655 | 657 | for iprof in range(num_prof): |
|
656 | 658 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
657 | 659 | jcspc_interf[iprof] = junkcspc_interf[iprof, |
|
658 | 660 | ind[nhei_interf / 2]] |
|
659 | 661 | |
|
660 | 662 | # Removiendo la Interferencia |
|
661 | 663 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
662 | 664 | :, ind_hei] - jcspc_interf |
|
663 | 665 | |
|
664 | 666 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
665 | 667 | maxid = ListAux.index(max(ListAux)) |
|
666 | 668 | |
|
667 | 669 | ind = numpy.array([-2, -1, 1, 2]) |
|
668 | 670 | xx = numpy.zeros([4, 4]) |
|
669 | 671 | |
|
670 | 672 | for id1 in range(4): |
|
671 | 673 | xx[:, id1] = ind[id1]**numpy.asarray(range(4)) |
|
672 | 674 | |
|
673 | 675 | xx_inv = numpy.linalg.inv(xx) |
|
674 | 676 | xx = xx_inv[:, 0] |
|
675 | 677 | |
|
676 | 678 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
677 | 679 | yy = jcspectra[ip, mask_prof[ind], :] |
|
678 | 680 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
679 | 681 | |
|
680 | 682 | # Guardar Resultados |
|
681 | 683 | self.dataOut.data_spc = jspectra |
|
682 | 684 | self.dataOut.data_cspc = jcspectra |
|
683 | 685 | |
|
684 | 686 | return 1 |
|
685 | 687 | |
|
686 | 688 | def setRadarFrequency(self, frequency=None): |
|
687 | 689 | |
|
688 | 690 | if frequency != None: |
|
689 | 691 | self.dataOut.frequency = frequency |
|
690 | 692 | |
|
691 | 693 | return 1 |
|
692 | 694 | |
|
693 | 695 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
694 | 696 | # validacion de rango |
|
695 | 697 | if minHei == None: |
|
696 | 698 | minHei = self.dataOut.heightList[0] |
|
697 | 699 | |
|
698 | 700 | if maxHei == None: |
|
699 | 701 | maxHei = self.dataOut.heightList[-1] |
|
700 | 702 | |
|
701 | 703 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
702 | 704 | print 'minHei: %.2f is out of the heights range' % (minHei) |
|
703 | 705 | print 'minHei is setting to %.2f' % (self.dataOut.heightList[0]) |
|
704 | 706 | minHei = self.dataOut.heightList[0] |
|
705 | 707 | |
|
706 | 708 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
707 | 709 | print 'maxHei: %.2f is out of the heights range' % (maxHei) |
|
708 | 710 | print 'maxHei is setting to %.2f' % (self.dataOut.heightList[-1]) |
|
709 | 711 | maxHei = self.dataOut.heightList[-1] |
|
710 | 712 | |
|
711 | 713 | # validacion de velocidades |
|
712 | 714 | velrange = self.dataOut.getVelRange(1) |
|
713 | 715 | |
|
714 | 716 | if minVel == None: |
|
715 | 717 | minVel = velrange[0] |
|
716 | 718 | |
|
717 | 719 | if maxVel == None: |
|
718 | 720 | maxVel = velrange[-1] |
|
719 | 721 | |
|
720 | 722 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
721 | 723 | print 'minVel: %.2f is out of the velocity range' % (minVel) |
|
722 | 724 | print 'minVel is setting to %.2f' % (velrange[0]) |
|
723 | 725 | minVel = velrange[0] |
|
724 | 726 | |
|
725 | 727 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
726 | 728 | print 'maxVel: %.2f is out of the velocity range' % (maxVel) |
|
727 | 729 | print 'maxVel is setting to %.2f' % (velrange[-1]) |
|
728 | 730 | maxVel = velrange[-1] |
|
729 | 731 | |
|
730 | 732 | # seleccion de indices para rango |
|
731 | 733 | minIndex = 0 |
|
732 | 734 | maxIndex = 0 |
|
733 | 735 | heights = self.dataOut.heightList |
|
734 | 736 | |
|
735 | 737 | inda = numpy.where(heights >= minHei) |
|
736 | 738 | indb = numpy.where(heights <= maxHei) |
|
737 | 739 | |
|
738 | 740 | try: |
|
739 | 741 | minIndex = inda[0][0] |
|
740 | 742 | except: |
|
741 | 743 | minIndex = 0 |
|
742 | 744 | |
|
743 | 745 | try: |
|
744 | 746 | maxIndex = indb[0][-1] |
|
745 | 747 | except: |
|
746 | 748 | maxIndex = len(heights) |
|
747 | 749 | |
|
748 | 750 | if (minIndex < 0) or (minIndex > maxIndex): |
|
749 | 751 | raise ValueError, "some value in (%d,%d) is not valid" % ( |
|
750 | 752 | minIndex, maxIndex) |
|
751 | 753 | |
|
752 | 754 | if (maxIndex >= self.dataOut.nHeights): |
|
753 | 755 | maxIndex = self.dataOut.nHeights - 1 |
|
754 | 756 | |
|
755 | 757 | # seleccion de indices para velocidades |
|
756 | 758 | indminvel = numpy.where(velrange >= minVel) |
|
757 | 759 | indmaxvel = numpy.where(velrange <= maxVel) |
|
758 | 760 | try: |
|
759 | 761 | minIndexVel = indminvel[0][0] |
|
760 | 762 | except: |
|
761 | 763 | minIndexVel = 0 |
|
762 | 764 | |
|
763 | 765 | try: |
|
764 | 766 | maxIndexVel = indmaxvel[0][-1] |
|
765 | 767 | except: |
|
766 | 768 | maxIndexVel = len(velrange) |
|
767 | 769 | |
|
768 | 770 | # seleccion del espectro |
|
769 | 771 | data_spc = self.dataOut.data_spc[:, |
|
770 | 772 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
771 | 773 | # estimacion de ruido |
|
772 | 774 | noise = numpy.zeros(self.dataOut.nChannels) |
|
773 | 775 | |
|
774 | 776 | for channel in range(self.dataOut.nChannels): |
|
775 | 777 | daux = data_spc[channel, :, :] |
|
776 | 778 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) |
|
777 | 779 | |
|
778 | 780 | self.dataOut.noise_estimation = noise.copy() |
|
779 | 781 | |
|
780 | 782 | return 1 |
|
781 | 783 | |
|
782 | 784 | |
|
783 | 785 | class IncohInt(Operation): |
|
784 | 786 | |
|
785 | 787 | __profIndex = 0 |
|
786 | 788 | __withOverapping = False |
|
787 | 789 | |
|
788 | 790 | __byTime = False |
|
789 | 791 | __initime = None |
|
790 | 792 | __lastdatatime = None |
|
791 | 793 | __integrationtime = None |
|
792 | 794 | |
|
793 | 795 | __buffer_spc = None |
|
794 | 796 | __buffer_cspc = None |
|
795 | 797 | __buffer_dc = None |
|
796 | 798 | |
|
797 | 799 | __dataReady = False |
|
798 | 800 | |
|
799 | 801 | __timeInterval = None |
|
800 | 802 | |
|
801 | 803 | n = None |
|
802 | 804 | |
|
803 | 805 | def __init__(self, **kwargs): |
|
804 | 806 | |
|
805 | 807 | Operation.__init__(self, **kwargs) |
|
806 | 808 | # self.isConfig = False |
|
807 | 809 | |
|
808 | 810 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
809 | 811 | """ |
|
810 | 812 | Set the parameters of the integration class. |
|
811 | 813 | |
|
812 | 814 | Inputs: |
|
813 | 815 | |
|
814 | 816 | n : Number of coherent integrations |
|
815 | 817 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
816 | 818 | overlapping : |
|
817 | 819 | |
|
818 | 820 | """ |
|
819 | 821 | |
|
820 | 822 | self.__initime = None |
|
821 | 823 | self.__lastdatatime = 0 |
|
822 | 824 | |
|
823 | 825 | self.__buffer_spc = 0 |
|
824 | 826 | self.__buffer_cspc = 0 |
|
825 | 827 | self.__buffer_dc = 0 |
|
826 | 828 | |
|
827 | 829 | self.__profIndex = 0 |
|
828 | 830 | self.__dataReady = False |
|
829 | 831 | self.__byTime = False |
|
830 | 832 | |
|
831 | 833 | if n is None and timeInterval is None: |
|
832 | 834 | raise ValueError, "n or timeInterval should be specified ..." |
|
833 | 835 | |
|
834 | 836 | if n is not None: |
|
835 | 837 | self.n = int(n) |
|
836 | 838 | else: |
|
837 | 839 | # if (type(timeInterval)!=integer) -> change this line |
|
838 | 840 | self.__integrationtime = int(timeInterval) |
|
839 | 841 | self.n = None |
|
840 | 842 | self.__byTime = True |
|
841 | 843 | |
|
842 | 844 | def putData(self, data_spc, data_cspc, data_dc): |
|
843 | 845 | """ |
|
844 | 846 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
845 | 847 | |
|
846 | 848 | """ |
|
847 | 849 | |
|
848 | 850 | self.__buffer_spc += data_spc |
|
849 | 851 | |
|
850 | 852 | if data_cspc is None: |
|
851 | 853 | self.__buffer_cspc = None |
|
852 | 854 | else: |
|
853 | 855 | self.__buffer_cspc += data_cspc |
|
854 | 856 | |
|
855 | 857 | if data_dc is None: |
|
856 | 858 | self.__buffer_dc = None |
|
857 | 859 | else: |
|
858 | 860 | self.__buffer_dc += data_dc |
|
859 | 861 | |
|
860 | 862 | self.__profIndex += 1 |
|
861 | 863 | |
|
862 | 864 | return |
|
863 | 865 | |
|
864 | 866 | def pushData(self): |
|
865 | 867 | """ |
|
866 | 868 | Return the sum of the last profiles and the profiles used in the sum. |
|
867 | 869 | |
|
868 | 870 | Affected: |
|
869 | 871 | |
|
870 | 872 | self.__profileIndex |
|
871 | 873 | |
|
872 | 874 | """ |
|
873 | 875 | |
|
874 | 876 | data_spc = self.__buffer_spc |
|
875 | 877 | data_cspc = self.__buffer_cspc |
|
876 | 878 | data_dc = self.__buffer_dc |
|
877 | 879 | n = self.__profIndex |
|
878 | 880 | |
|
879 | 881 | self.__buffer_spc = 0 |
|
880 | 882 | self.__buffer_cspc = 0 |
|
881 | 883 | self.__buffer_dc = 0 |
|
882 | 884 | self.__profIndex = 0 |
|
883 | 885 | |
|
884 | 886 | return data_spc, data_cspc, data_dc, n |
|
885 | 887 | |
|
886 | 888 | def byProfiles(self, *args): |
|
887 | 889 | |
|
888 | 890 | self.__dataReady = False |
|
889 | 891 | avgdata_spc = None |
|
890 | 892 | avgdata_cspc = None |
|
891 | 893 | avgdata_dc = None |
|
892 | 894 | |
|
893 | 895 | self.putData(*args) |
|
894 | 896 | |
|
895 | 897 | if self.__profIndex == self.n: |
|
896 | 898 | |
|
897 | 899 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
898 | 900 | self.n = n |
|
899 | 901 | self.__dataReady = True |
|
900 | 902 | |
|
901 | 903 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
902 | 904 | |
|
903 | 905 | def byTime(self, datatime, *args): |
|
904 | 906 | |
|
905 | 907 | self.__dataReady = False |
|
906 | 908 | avgdata_spc = None |
|
907 | 909 | avgdata_cspc = None |
|
908 | 910 | avgdata_dc = None |
|
909 | 911 | |
|
910 | 912 | self.putData(*args) |
|
911 | 913 | |
|
912 | 914 | if (datatime - self.__initime) >= self.__integrationtime: |
|
913 | 915 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
914 | 916 | self.n = n |
|
915 | 917 | self.__dataReady = True |
|
916 | 918 | |
|
917 | 919 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
918 | 920 | |
|
919 | 921 | def integrate(self, datatime, *args): |
|
920 | 922 | |
|
921 | 923 | if self.__profIndex == 0: |
|
922 | 924 | self.__initime = datatime |
|
923 | 925 | |
|
924 | 926 | if self.__byTime: |
|
925 | 927 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
926 | 928 | datatime, *args) |
|
927 | 929 | else: |
|
928 | 930 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
929 | 931 | |
|
930 | 932 | if not self.__dataReady: |
|
931 | 933 | return None, None, None, None |
|
932 | 934 | |
|
933 | 935 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
934 | 936 | |
|
935 | 937 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
936 | 938 | if n == 1: |
|
937 | 939 | return |
|
938 | 940 | |
|
939 | 941 | dataOut.flagNoData = True |
|
940 | 942 | |
|
941 | 943 | if not self.isConfig: |
|
942 | 944 | self.setup(n, timeInterval, overlapping) |
|
943 | 945 | self.isConfig = True |
|
944 | 946 | |
|
945 | 947 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
946 | 948 | dataOut.data_spc, |
|
947 | 949 | dataOut.data_cspc, |
|
948 | 950 | dataOut.data_dc) |
|
949 | 951 | |
|
950 | 952 | if self.__dataReady: |
|
951 | 953 | |
|
952 | 954 | dataOut.data_spc = avgdata_spc |
|
953 | 955 | dataOut.data_cspc = avgdata_cspc |
|
954 | 956 | dataOut.data_dc = avgdata_dc |
|
955 | 957 | |
|
956 | 958 | dataOut.nIncohInt *= self.n |
|
957 | 959 | dataOut.utctime = avgdatatime |
|
958 | 960 | dataOut.flagNoData = False |
@@ -1,736 +1,757 | |||
|
1 | 1 | import numpy |
|
2 | 2 | |
|
3 | 3 | from jroproc_base import ProcessingUnit, Operation |
|
4 | 4 | from schainpy.model.data.jrodata import Spectra |
|
5 | 5 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
6 | 6 | |
|
7 | 7 | class SpectraAFCProc(ProcessingUnit): |
|
8 | 8 | |
|
9 | 9 | def __init__(self, **kwargs): |
|
10 | 10 | |
|
11 | 11 | ProcessingUnit.__init__(self, **kwargs) |
|
12 | 12 | |
|
13 | 13 | self.buffer = None |
|
14 | 14 | self.firstdatatime = None |
|
15 | 15 | self.profIndex = 0 |
|
16 | 16 | self.dataOut = Spectra() |
|
17 | 17 | self.id_min = None |
|
18 | 18 | self.id_max = None |
|
19 | 19 | |
|
20 | 20 | def __updateSpecFromVoltage(self): |
|
21 | 21 | |
|
22 | 22 | self.dataOut.plotting = "spectra_acf" |
|
23 | 23 | |
|
24 | 24 | self.dataOut.timeZone = self.dataIn.timeZone |
|
25 | 25 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
26 | 26 | self.dataOut.errorCount = self.dataIn.errorCount |
|
27 | 27 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
28 | 28 | |
|
29 | 29 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
30 | 30 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
31 | 31 | self.dataOut.ippSeconds = self.dataIn.getDeltaH()*(10**-6)/0.15 |
|
32 | 32 | |
|
33 | 33 | self.dataOut.channelList = self.dataIn.channelList |
|
34 | 34 | self.dataOut.heightList = self.dataIn.heightList |
|
35 | 35 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
36 | 36 | |
|
37 | 37 | self.dataOut.nBaud = self.dataIn.nBaud |
|
38 | 38 | self.dataOut.nCode = self.dataIn.nCode |
|
39 | 39 | self.dataOut.code = self.dataIn.code |
|
40 | 40 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
41 | 41 | |
|
42 | 42 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
43 | 43 | self.dataOut.utctime = self.firstdatatime |
|
44 | 44 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
45 | 45 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
46 | 46 | self.dataOut.flagShiftFFT = False |
|
47 | 47 | |
|
48 | 48 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
49 | 49 | self.dataOut.nIncohInt = 1 |
|
50 | 50 | |
|
51 | 51 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
52 | 52 | |
|
53 | 53 | self.dataOut.frequency = self.dataIn.frequency |
|
54 | 54 | self.dataOut.realtime = self.dataIn.realtime |
|
55 | 55 | |
|
56 | 56 | self.dataOut.azimuth = self.dataIn.azimuth |
|
57 | 57 | self.dataOut.zenith = self.dataIn.zenith |
|
58 | 58 | |
|
59 | 59 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
60 | 60 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
61 | 61 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
62 | 62 | |
|
63 | 63 | def __decodeData(self, nProfiles, code): |
|
64 | 64 | |
|
65 | 65 | if code is None: |
|
66 | 66 | return |
|
67 | 67 | |
|
68 | 68 | for i in range(nProfiles): |
|
69 | 69 | self.buffer[:,i,:] = self.buffer[:,i,:]*code[0][i] |
|
70 | 70 | |
|
71 | 71 | def __getFft(self): |
|
72 | 72 | """ |
|
73 | 73 | Convierte valores de Voltaje a Spectra |
|
74 | 74 | |
|
75 | 75 | Affected: |
|
76 | 76 | self.dataOut.data_spc |
|
77 | 77 | self.dataOut.data_cspc |
|
78 | 78 | self.dataOut.data_dc |
|
79 | 79 | self.dataOut.heightList |
|
80 | 80 | self.profIndex |
|
81 | 81 | self.buffer |
|
82 | 82 | self.dataOut.flagNoData |
|
83 | 83 | """ |
|
84 | 84 | nsegments = self.dataOut.nHeights |
|
85 | 85 | |
|
86 | 86 | _fft_buffer = numpy.zeros((self.dataOut.nChannels, self.dataOut.nProfiles, nsegments), dtype='complex') |
|
87 | 87 | |
|
88 | 88 | for i in range(nsegments): |
|
89 | 89 | try: |
|
90 | 90 | _fft_buffer[:,:,i] = self.buffer[:,i:i+self.dataOut.nProfiles] |
|
91 | 91 | |
|
92 | 92 | if self.code is not None: |
|
93 | 93 | _fft_buffer[:,:,i] = _fft_buffer[:,:,i]*self.code[0] |
|
94 | 94 | except: |
|
95 | 95 | pass |
|
96 | 96 | |
|
97 | 97 | fft_volt = numpy.fft.fft(_fft_buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
98 | 98 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
99 | 99 | dc = fft_volt[:,0,:] |
|
100 | 100 | |
|
101 | 101 | #calculo de self-spectra |
|
102 | 102 | # fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
103 | 103 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
104 | 104 | |
|
105 | ||
|
105 | 106 | data = numpy.fft.ifft(spc, axis=1) |
|
106 | 107 | data = numpy.fft.fftshift(data, axes=(1,)) |
|
107 | 108 | |
|
108 | spc = data | |
|
109 | spc = data.real | |
|
110 | ||
|
111 | ||
|
109 | 112 | |
|
110 | 113 | blocksize = 0 |
|
111 | 114 | blocksize += dc.size |
|
112 | 115 | blocksize += spc.size |
|
113 | 116 | |
|
114 | 117 | cspc = None |
|
115 | 118 | pairIndex = 0 |
|
116 | 119 | |
|
117 | 120 | if self.dataOut.pairsList != None: |
|
118 | 121 | #calculo de cross-spectra |
|
119 | 122 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
120 | 123 | for pair in self.dataOut.pairsList: |
|
121 | 124 | if pair[0] not in self.dataOut.channelList: |
|
122 | 125 | raise ValueError, "Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList)) |
|
123 | 126 | if pair[1] not in self.dataOut.channelList: |
|
124 | 127 | raise ValueError, "Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList)) |
|
125 | 128 | |
|
126 | 129 | chan_index0 = self.dataOut.channelList.index(pair[0]) |
|
127 | 130 | chan_index1 = self.dataOut.channelList.index(pair[1]) |
|
128 | 131 | |
|
129 | 132 | cspc[pairIndex,:,:] = fft_volt[chan_index0,:,:] * numpy.conjugate(fft_volt[chan_index1,:,:]) |
|
130 | 133 | pairIndex += 1 |
|
131 | 134 | blocksize += cspc.size |
|
132 | 135 | |
|
133 | 136 | self.dataOut.data_spc = spc |
|
134 | 137 | self.dataOut.data_cspc = cspc |
|
135 | 138 | self.dataOut.data_dc = dc |
|
136 | 139 | self.dataOut.blockSize = blocksize |
|
137 | 140 | self.dataOut.flagShiftFFT = True |
|
138 | 141 | |
|
139 | 142 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], code=None, nCode=1, nBaud=1): |
|
140 | 143 | |
|
141 | 144 | self.dataOut.flagNoData = True |
|
142 | 145 | |
|
146 | if self.dataIn.type == "Spectra": | |
|
147 | self.dataOut.copy(self.dataIn) | |
|
148 | spc= self.dataOut.data_spc | |
|
149 | data = numpy.fft.ifft(spc, axis=1) | |
|
150 | data = numpy.fft.fftshift(data, axes=(1,)) | |
|
151 | spc = data.real | |
|
152 | spc = spc[0,:,0] / numpy.max(numpy.abs(spc[0,:,0])) | |
|
153 | print spc | |
|
154 | import matplotlib.pyplot as plt | |
|
155 | #plt.plot(spc[10:]) | |
|
156 | plt.show() | |
|
157 | ||
|
158 | ||
|
159 | self.dataOut.data_spc = spc | |
|
160 | ||
|
161 | return True | |
|
162 | ||
|
163 | ||
|
143 | 164 | if code is not None: |
|
144 | 165 | self.code = numpy.array(code).reshape(nCode,nBaud) |
|
145 | 166 | else: |
|
146 | 167 | self.code = None |
|
147 | 168 | |
|
148 | 169 | if self.dataIn.type == "Voltage": |
|
149 | 170 | |
|
150 | 171 | if nFFTPoints == None: |
|
151 | 172 | raise ValueError, "This SpectraProc.run() need nFFTPoints input variable" |
|
152 | 173 | |
|
153 | 174 | if nProfiles == None: |
|
154 | 175 | nProfiles = nFFTPoints |
|
155 | 176 | |
|
156 | 177 | self.dataOut.ippFactor = 1 |
|
157 | 178 | |
|
158 | 179 | self.dataOut.nFFTPoints = nFFTPoints |
|
159 | 180 | self.dataOut.nProfiles = nProfiles |
|
160 | 181 | self.dataOut.pairsList = pairsList |
|
161 | 182 | |
|
162 | 183 | # if self.buffer is None: |
|
163 | 184 | # self.buffer = numpy.zeros( (self.dataIn.nChannels, nProfiles, self.dataIn.nHeights), |
|
164 | 185 | # dtype='complex') |
|
165 | 186 | |
|
166 | 187 | if not self.dataIn.flagDataAsBlock: |
|
167 | 188 | self.buffer = self.dataIn.data.copy() |
|
168 | 189 | |
|
169 | 190 | # for i in range(self.dataIn.nHeights): |
|
170 | 191 | # self.buffer[:, self.profIndex, self.profIndex:] = voltage_data[:,:self.dataIn.nHeights - self.profIndex] |
|
171 | 192 | # |
|
172 | 193 | # self.profIndex += 1 |
|
173 | 194 | |
|
174 | 195 | else: |
|
175 | 196 | raise ValueError, "" |
|
176 | 197 | |
|
177 | 198 | self.firstdatatime = self.dataIn.utctime |
|
178 | 199 | |
|
179 | 200 | self.profIndex == nProfiles |
|
180 | 201 | |
|
181 | 202 | self.__updateSpecFromVoltage() |
|
182 | 203 | |
|
183 | 204 | self.__getFft() |
|
184 | 205 | |
|
185 | 206 | self.dataOut.flagNoData = False |
|
186 | 207 | |
|
187 | 208 | return True |
|
188 | 209 | |
|
189 | 210 | raise ValueError, "The type of input object '%s' is not valid"%(self.dataIn.type) |
|
190 | 211 | |
|
191 | 212 | def __selectPairs(self, pairsList): |
|
192 | 213 | |
|
193 | 214 | if channelList == None: |
|
194 | 215 | return |
|
195 | 216 | |
|
196 | 217 | pairsIndexListSelected = [] |
|
197 | 218 | |
|
198 | 219 | for thisPair in pairsList: |
|
199 | 220 | |
|
200 | 221 | if thisPair not in self.dataOut.pairsList: |
|
201 | 222 | continue |
|
202 | 223 | |
|
203 | 224 | pairIndex = self.dataOut.pairsList.index(thisPair) |
|
204 | 225 | |
|
205 | 226 | pairsIndexListSelected.append(pairIndex) |
|
206 | 227 | |
|
207 | 228 | if not pairsIndexListSelected: |
|
208 | 229 | self.dataOut.data_cspc = None |
|
209 | 230 | self.dataOut.pairsList = [] |
|
210 | 231 | return |
|
211 | 232 | |
|
212 | 233 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
213 | 234 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] |
|
214 | 235 | |
|
215 | 236 | return |
|
216 | 237 | |
|
217 | 238 | def __selectPairsByChannel(self, channelList=None): |
|
218 | 239 | |
|
219 | 240 | if channelList == None: |
|
220 | 241 | return |
|
221 | 242 | |
|
222 | 243 | pairsIndexListSelected = [] |
|
223 | 244 | for pairIndex in self.dataOut.pairsIndexList: |
|
224 | 245 | #First pair |
|
225 | 246 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
226 | 247 | continue |
|
227 | 248 | #Second pair |
|
228 | 249 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
229 | 250 | continue |
|
230 | 251 | |
|
231 | 252 | pairsIndexListSelected.append(pairIndex) |
|
232 | 253 | |
|
233 | 254 | if not pairsIndexListSelected: |
|
234 | 255 | self.dataOut.data_cspc = None |
|
235 | 256 | self.dataOut.pairsList = [] |
|
236 | 257 | return |
|
237 | 258 | |
|
238 | 259 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
239 | 260 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] |
|
240 | 261 | |
|
241 | 262 | return |
|
242 | 263 | |
|
243 | 264 | def selectChannels(self, channelList): |
|
244 | 265 | |
|
245 | 266 | channelIndexList = [] |
|
246 | 267 | |
|
247 | 268 | for channel in channelList: |
|
248 | 269 | if channel not in self.dataOut.channelList: |
|
249 | 270 | raise ValueError, "Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" %(channel, str(self.dataOut.channelList)) |
|
250 | 271 | |
|
251 | 272 | index = self.dataOut.channelList.index(channel) |
|
252 | 273 | channelIndexList.append(index) |
|
253 | 274 | |
|
254 | 275 | self.selectChannelsByIndex(channelIndexList) |
|
255 | 276 | |
|
256 | 277 | def selectChannelsByIndex(self, channelIndexList): |
|
257 | 278 | """ |
|
258 | 279 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
259 | 280 | |
|
260 | 281 | Input: |
|
261 | 282 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
262 | 283 | |
|
263 | 284 | Affected: |
|
264 | 285 | self.dataOut.data_spc |
|
265 | 286 | self.dataOut.channelIndexList |
|
266 | 287 | self.dataOut.nChannels |
|
267 | 288 | |
|
268 | 289 | Return: |
|
269 | 290 | None |
|
270 | 291 | """ |
|
271 | 292 | |
|
272 | 293 | for channelIndex in channelIndexList: |
|
273 | 294 | if channelIndex not in self.dataOut.channelIndexList: |
|
274 | 295 | raise ValueError, "Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " %(channelIndex, self.dataOut.channelIndexList) |
|
275 | 296 | |
|
276 | 297 | # nChannels = len(channelIndexList) |
|
277 | 298 | |
|
278 | 299 | data_spc = self.dataOut.data_spc[channelIndexList,:] |
|
279 | 300 | data_dc = self.dataOut.data_dc[channelIndexList,:] |
|
280 | 301 | |
|
281 | 302 | self.dataOut.data_spc = data_spc |
|
282 | 303 | self.dataOut.data_dc = data_dc |
|
283 | 304 | |
|
284 | 305 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
285 | 306 | # self.dataOut.nChannels = nChannels |
|
286 | 307 | |
|
287 | 308 | self.__selectPairsByChannel(self.dataOut.channelList) |
|
288 | 309 | |
|
289 | 310 | return 1 |
|
290 | 311 | |
|
291 | 312 | def selectHeights(self, minHei, maxHei): |
|
292 | 313 | """ |
|
293 | 314 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
294 | 315 | minHei <= height <= maxHei |
|
295 | 316 | |
|
296 | 317 | Input: |
|
297 | 318 | minHei : valor minimo de altura a considerar |
|
298 | 319 | maxHei : valor maximo de altura a considerar |
|
299 | 320 | |
|
300 | 321 | Affected: |
|
301 | 322 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
302 | 323 | |
|
303 | 324 | Return: |
|
304 | 325 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
305 | 326 | """ |
|
306 | 327 | |
|
307 | 328 | if (minHei > maxHei): |
|
308 | 329 | raise ValueError, "Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei) |
|
309 | 330 | |
|
310 | 331 | if (minHei < self.dataOut.heightList[0]): |
|
311 | 332 | minHei = self.dataOut.heightList[0] |
|
312 | 333 | |
|
313 | 334 | if (maxHei > self.dataOut.heightList[-1]): |
|
314 | 335 | maxHei = self.dataOut.heightList[-1] |
|
315 | 336 | |
|
316 | 337 | minIndex = 0 |
|
317 | 338 | maxIndex = 0 |
|
318 | 339 | heights = self.dataOut.heightList |
|
319 | 340 | |
|
320 | 341 | inda = numpy.where(heights >= minHei) |
|
321 | 342 | indb = numpy.where(heights <= maxHei) |
|
322 | 343 | |
|
323 | 344 | try: |
|
324 | 345 | minIndex = inda[0][0] |
|
325 | 346 | except: |
|
326 | 347 | minIndex = 0 |
|
327 | 348 | |
|
328 | 349 | try: |
|
329 | 350 | maxIndex = indb[0][-1] |
|
330 | 351 | except: |
|
331 | 352 | maxIndex = len(heights) |
|
332 | 353 | |
|
333 | 354 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
334 | 355 | |
|
335 | 356 | return 1 |
|
336 | 357 | |
|
337 | 358 | def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None): |
|
338 | 359 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
339 | 360 | |
|
340 | 361 | if hei_ref != None: |
|
341 | 362 | newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
342 | 363 | |
|
343 | 364 | minIndex = min(newheis[0]) |
|
344 | 365 | maxIndex = max(newheis[0]) |
|
345 | 366 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] |
|
346 | 367 | heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
347 | 368 | |
|
348 | 369 | # determina indices |
|
349 | 370 | nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0])) |
|
350 | 371 | avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0)) |
|
351 | 372 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
352 | 373 | beacon_heiIndexList = [] |
|
353 | 374 | for val in avg_dB.tolist(): |
|
354 | 375 | if val >= beacon_dB[0]: |
|
355 | 376 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
356 | 377 | |
|
357 | 378 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
358 | 379 | data_cspc = None |
|
359 | 380 | if self.dataOut.data_cspc is not None: |
|
360 | 381 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] |
|
361 | 382 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
362 | 383 | |
|
363 | 384 | data_dc = None |
|
364 | 385 | if self.dataOut.data_dc is not None: |
|
365 | 386 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] |
|
366 | 387 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
367 | 388 | |
|
368 | 389 | self.dataOut.data_spc = data_spc |
|
369 | 390 | self.dataOut.data_cspc = data_cspc |
|
370 | 391 | self.dataOut.data_dc = data_dc |
|
371 | 392 | self.dataOut.heightList = heightList |
|
372 | 393 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
373 | 394 | |
|
374 | 395 | return 1 |
|
375 | 396 | |
|
376 | 397 | |
|
377 | 398 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
378 | 399 | """ |
|
379 | 400 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
380 | 401 | minIndex <= index <= maxIndex |
|
381 | 402 | |
|
382 | 403 | Input: |
|
383 | 404 | minIndex : valor de indice minimo de altura a considerar |
|
384 | 405 | maxIndex : valor de indice maximo de altura a considerar |
|
385 | 406 | |
|
386 | 407 | Affected: |
|
387 | 408 | self.dataOut.data_spc |
|
388 | 409 | self.dataOut.data_cspc |
|
389 | 410 | self.dataOut.data_dc |
|
390 | 411 | self.dataOut.heightList |
|
391 | 412 | |
|
392 | 413 | Return: |
|
393 | 414 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
394 | 415 | """ |
|
395 | 416 | |
|
396 | 417 | if (minIndex < 0) or (minIndex > maxIndex): |
|
397 | 418 | raise ValueError, "Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex) |
|
398 | 419 | |
|
399 | 420 | if (maxIndex >= self.dataOut.nHeights): |
|
400 | 421 | maxIndex = self.dataOut.nHeights-1 |
|
401 | 422 | |
|
402 | 423 | #Spectra |
|
403 | 424 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] |
|
404 | 425 | |
|
405 | 426 | data_cspc = None |
|
406 | 427 | if self.dataOut.data_cspc is not None: |
|
407 | 428 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] |
|
408 | 429 | |
|
409 | 430 | data_dc = None |
|
410 | 431 | if self.dataOut.data_dc is not None: |
|
411 | 432 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] |
|
412 | 433 | |
|
413 | 434 | self.dataOut.data_spc = data_spc |
|
414 | 435 | self.dataOut.data_cspc = data_cspc |
|
415 | 436 | self.dataOut.data_dc = data_dc |
|
416 | 437 | |
|
417 | 438 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
418 | 439 | |
|
419 | 440 | return 1 |
|
420 | 441 | |
|
421 | 442 | def removeDC(self, mode = 2): |
|
422 | 443 | jspectra = self.dataOut.data_spc |
|
423 | 444 | jcspectra = self.dataOut.data_cspc |
|
424 | 445 | |
|
425 | 446 | |
|
426 | 447 | num_chan = jspectra.shape[0] |
|
427 | 448 | num_hei = jspectra.shape[2] |
|
428 | 449 | |
|
429 | 450 | if jcspectra is not None: |
|
430 | 451 | jcspectraExist = True |
|
431 | 452 | num_pairs = jcspectra.shape[0] |
|
432 | 453 | else: jcspectraExist = False |
|
433 | 454 | |
|
434 | 455 | freq_dc = jspectra.shape[1]/2 |
|
435 | 456 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
436 | 457 | |
|
437 | 458 | if ind_vel[0]<0: |
|
438 | 459 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
439 | 460 | |
|
440 | 461 | if mode == 1: |
|
441 | 462 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
442 | 463 | |
|
443 | 464 | if jcspectraExist: |
|
444 | 465 | jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2 |
|
445 | 466 | |
|
446 | 467 | if mode == 2: |
|
447 | 468 | |
|
448 | 469 | vel = numpy.array([-2,-1,1,2]) |
|
449 | 470 | xx = numpy.zeros([4,4]) |
|
450 | 471 | |
|
451 | 472 | for fil in range(4): |
|
452 | 473 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
453 | 474 | |
|
454 | 475 | xx_inv = numpy.linalg.inv(xx) |
|
455 | 476 | xx_aux = xx_inv[0,:] |
|
456 | 477 | |
|
457 | 478 | for ich in range(num_chan): |
|
458 | 479 | yy = jspectra[ich,ind_vel,:] |
|
459 | 480 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
460 | 481 | |
|
461 | 482 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
462 | 483 | cjunkid = sum(junkid) |
|
463 | 484 | |
|
464 | 485 | if cjunkid.any(): |
|
465 | 486 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
466 | 487 | |
|
467 | 488 | if jcspectraExist: |
|
468 | 489 | for ip in range(num_pairs): |
|
469 | 490 | yy = jcspectra[ip,ind_vel,:] |
|
470 | 491 | jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
471 | 492 | |
|
472 | 493 | |
|
473 | 494 | self.dataOut.data_spc = jspectra |
|
474 | 495 | self.dataOut.data_cspc = jcspectra |
|
475 | 496 | |
|
476 | 497 | return 1 |
|
477 | 498 | |
|
478 | 499 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
479 | 500 | |
|
480 | 501 | jspectra = self.dataOut.data_spc |
|
481 | 502 | jcspectra = self.dataOut.data_cspc |
|
482 | 503 | jnoise = self.dataOut.getNoise() |
|
483 | 504 | num_incoh = self.dataOut.nIncohInt |
|
484 | 505 | |
|
485 | 506 | num_channel = jspectra.shape[0] |
|
486 | 507 | num_prof = jspectra.shape[1] |
|
487 | 508 | num_hei = jspectra.shape[2] |
|
488 | 509 | |
|
489 | 510 | #hei_interf |
|
490 | 511 | if hei_interf is None: |
|
491 | 512 | count_hei = num_hei/2 #Como es entero no importa |
|
492 | 513 | hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei |
|
493 | 514 | hei_interf = numpy.asarray(hei_interf)[0] |
|
494 | 515 | #nhei_interf |
|
495 | 516 | if (nhei_interf == None): |
|
496 | 517 | nhei_interf = 5 |
|
497 | 518 | if (nhei_interf < 1): |
|
498 | 519 | nhei_interf = 1 |
|
499 | 520 | if (nhei_interf > count_hei): |
|
500 | 521 | nhei_interf = count_hei |
|
501 | 522 | if (offhei_interf == None): |
|
502 | 523 | offhei_interf = 0 |
|
503 | 524 | |
|
504 | 525 | ind_hei = range(num_hei) |
|
505 | 526 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
506 | 527 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
507 | 528 | mask_prof = numpy.asarray(range(num_prof)) |
|
508 | 529 | num_mask_prof = mask_prof.size |
|
509 | 530 | comp_mask_prof = [0, num_prof/2] |
|
510 | 531 | |
|
511 | 532 | |
|
512 | 533 | #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
513 | 534 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
514 | 535 | jnoise = numpy.nan |
|
515 | 536 | noise_exist = jnoise[0] < numpy.Inf |
|
516 | 537 | |
|
517 | 538 | #Subrutina de Remocion de la Interferencia |
|
518 | 539 | for ich in range(num_channel): |
|
519 | 540 | #Se ordena los espectros segun su potencia (menor a mayor) |
|
520 | 541 | power = jspectra[ich,mask_prof,:] |
|
521 | 542 | power = power[:,hei_interf] |
|
522 | 543 | power = power.sum(axis = 0) |
|
523 | 544 | psort = power.ravel().argsort() |
|
524 | 545 | |
|
525 | 546 | #Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
526 | 547 | junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]] |
|
527 | 548 | |
|
528 | 549 | if noise_exist: |
|
529 | 550 | # tmp_noise = jnoise[ich] / num_prof |
|
530 | 551 | tmp_noise = jnoise[ich] |
|
531 | 552 | junkspc_interf = junkspc_interf - tmp_noise |
|
532 | 553 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
533 | 554 | |
|
534 | 555 | jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf |
|
535 | 556 | jspc_interf = jspc_interf.transpose() |
|
536 | 557 | #Calculando el espectro de interferencia promedio |
|
537 | 558 | noiseid = numpy.where(jspc_interf <= tmp_noise/ numpy.sqrt(num_incoh)) |
|
538 | 559 | noiseid = noiseid[0] |
|
539 | 560 | cnoiseid = noiseid.size |
|
540 | 561 | interfid = numpy.where(jspc_interf > tmp_noise/ numpy.sqrt(num_incoh)) |
|
541 | 562 | interfid = interfid[0] |
|
542 | 563 | cinterfid = interfid.size |
|
543 | 564 | |
|
544 | 565 | if (cnoiseid > 0): jspc_interf[noiseid] = 0 |
|
545 | 566 | |
|
546 | 567 | #Expandiendo los perfiles a limpiar |
|
547 | 568 | if (cinterfid > 0): |
|
548 | 569 | new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof |
|
549 | 570 | new_interfid = numpy.asarray(new_interfid) |
|
550 | 571 | new_interfid = {x for x in new_interfid} |
|
551 | 572 | new_interfid = numpy.array(list(new_interfid)) |
|
552 | 573 | new_cinterfid = new_interfid.size |
|
553 | 574 | else: new_cinterfid = 0 |
|
554 | 575 | |
|
555 | 576 | for ip in range(new_cinterfid): |
|
556 | 577 | ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort() |
|
557 | 578 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]] |
|
558 | 579 | |
|
559 | 580 | |
|
560 | 581 | jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices |
|
561 | 582 | |
|
562 | 583 | #Removiendo la interferencia del punto de mayor interferencia |
|
563 | 584 | ListAux = jspc_interf[mask_prof].tolist() |
|
564 | 585 | maxid = ListAux.index(max(ListAux)) |
|
565 | 586 | |
|
566 | 587 | |
|
567 | 588 | if cinterfid > 0: |
|
568 | 589 | for ip in range(cinterfid*(interf == 2) - 1): |
|
569 | 590 | ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/numpy.sqrt(num_incoh))).nonzero() |
|
570 | 591 | cind = len(ind) |
|
571 | 592 | |
|
572 | 593 | if (cind > 0): |
|
573 | 594 | jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/numpy.sqrt(num_incoh)) |
|
574 | 595 | |
|
575 | 596 | ind = numpy.array([-2,-1,1,2]) |
|
576 | 597 | xx = numpy.zeros([4,4]) |
|
577 | 598 | |
|
578 | 599 | for id1 in range(4): |
|
579 | 600 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) |
|
580 | 601 | |
|
581 | 602 | xx_inv = numpy.linalg.inv(xx) |
|
582 | 603 | xx = xx_inv[:,0] |
|
583 | 604 | ind = (ind + maxid + num_mask_prof)%num_mask_prof |
|
584 | 605 | yy = jspectra[ich,mask_prof[ind],:] |
|
585 | 606 | jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) |
|
586 | 607 | |
|
587 | 608 | |
|
588 | 609 | indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/numpy.sqrt(num_incoh))).nonzero() |
|
589 | 610 | jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/numpy.sqrt(num_incoh)) |
|
590 | 611 | |
|
591 | 612 | #Remocion de Interferencia en el Cross Spectra |
|
592 | 613 | if jcspectra is None: return jspectra, jcspectra |
|
593 | 614 | num_pairs = jcspectra.size/(num_prof*num_hei) |
|
594 | 615 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
595 | 616 | |
|
596 | 617 | for ip in range(num_pairs): |
|
597 | 618 | |
|
598 | 619 | #------------------------------------------- |
|
599 | 620 | |
|
600 | 621 | cspower = numpy.abs(jcspectra[ip,mask_prof,:]) |
|
601 | 622 | cspower = cspower[:,hei_interf] |
|
602 | 623 | cspower = cspower.sum(axis = 0) |
|
603 | 624 | |
|
604 | 625 | cspsort = cspower.ravel().argsort() |
|
605 | 626 | junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]] |
|
606 | 627 | junkcspc_interf = junkcspc_interf.transpose() |
|
607 | 628 | jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf |
|
608 | 629 | |
|
609 | 630 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
610 | 631 | |
|
611 | 632 | median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) |
|
612 | 633 | median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) |
|
613 | 634 | junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag) |
|
614 | 635 | |
|
615 | 636 | for iprof in range(num_prof): |
|
616 | 637 | ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort() |
|
617 | 638 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]] |
|
618 | 639 | |
|
619 | 640 | #Removiendo la Interferencia |
|
620 | 641 | jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf |
|
621 | 642 | |
|
622 | 643 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
623 | 644 | maxid = ListAux.index(max(ListAux)) |
|
624 | 645 | |
|
625 | 646 | ind = numpy.array([-2,-1,1,2]) |
|
626 | 647 | xx = numpy.zeros([4,4]) |
|
627 | 648 | |
|
628 | 649 | for id1 in range(4): |
|
629 | 650 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) |
|
630 | 651 | |
|
631 | 652 | xx_inv = numpy.linalg.inv(xx) |
|
632 | 653 | xx = xx_inv[:,0] |
|
633 | 654 | |
|
634 | 655 | ind = (ind + maxid + num_mask_prof)%num_mask_prof |
|
635 | 656 | yy = jcspectra[ip,mask_prof[ind],:] |
|
636 | 657 | jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) |
|
637 | 658 | |
|
638 | 659 | #Guardar Resultados |
|
639 | 660 | self.dataOut.data_spc = jspectra |
|
640 | 661 | self.dataOut.data_cspc = jcspectra |
|
641 | 662 | |
|
642 | 663 | return 1 |
|
643 | 664 | |
|
644 | 665 | def setRadarFrequency(self, frequency=None): |
|
645 | 666 | |
|
646 | 667 | if frequency != None: |
|
647 | 668 | self.dataOut.frequency = frequency |
|
648 | 669 | |
|
649 | 670 | return 1 |
|
650 | 671 | |
|
651 | 672 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
652 | 673 | #validacion de rango |
|
653 | 674 | if minHei == None: |
|
654 | 675 | minHei = self.dataOut.heightList[0] |
|
655 | 676 | |
|
656 | 677 | if maxHei == None: |
|
657 | 678 | maxHei = self.dataOut.heightList[-1] |
|
658 | 679 | |
|
659 | 680 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
660 | 681 | print 'minHei: %.2f is out of the heights range'%(minHei) |
|
661 | 682 | print 'minHei is setting to %.2f'%(self.dataOut.heightList[0]) |
|
662 | 683 | minHei = self.dataOut.heightList[0] |
|
663 | 684 | |
|
664 | 685 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
665 | 686 | print 'maxHei: %.2f is out of the heights range'%(maxHei) |
|
666 | 687 | print 'maxHei is setting to %.2f'%(self.dataOut.heightList[-1]) |
|
667 | 688 | maxHei = self.dataOut.heightList[-1] |
|
668 | 689 | |
|
669 | 690 | # validacion de velocidades |
|
670 | 691 | velrange = self.dataOut.getVelRange(1) |
|
671 | 692 | |
|
672 | 693 | if minVel == None: |
|
673 | 694 | minVel = velrange[0] |
|
674 | 695 | |
|
675 | 696 | if maxVel == None: |
|
676 | 697 | maxVel = velrange[-1] |
|
677 | 698 | |
|
678 | 699 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
679 | 700 | print 'minVel: %.2f is out of the velocity range'%(minVel) |
|
680 | 701 | print 'minVel is setting to %.2f'%(velrange[0]) |
|
681 | 702 | minVel = velrange[0] |
|
682 | 703 | |
|
683 | 704 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
684 | 705 | print 'maxVel: %.2f is out of the velocity range'%(maxVel) |
|
685 | 706 | print 'maxVel is setting to %.2f'%(velrange[-1]) |
|
686 | 707 | maxVel = velrange[-1] |
|
687 | 708 | |
|
688 | 709 | # seleccion de indices para rango |
|
689 | 710 | minIndex = 0 |
|
690 | 711 | maxIndex = 0 |
|
691 | 712 | heights = self.dataOut.heightList |
|
692 | 713 | |
|
693 | 714 | inda = numpy.where(heights >= minHei) |
|
694 | 715 | indb = numpy.where(heights <= maxHei) |
|
695 | 716 | |
|
696 | 717 | try: |
|
697 | 718 | minIndex = inda[0][0] |
|
698 | 719 | except: |
|
699 | 720 | minIndex = 0 |
|
700 | 721 | |
|
701 | 722 | try: |
|
702 | 723 | maxIndex = indb[0][-1] |
|
703 | 724 | except: |
|
704 | 725 | maxIndex = len(heights) |
|
705 | 726 | |
|
706 | 727 | if (minIndex < 0) or (minIndex > maxIndex): |
|
707 | 728 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
708 | 729 | |
|
709 | 730 | if (maxIndex >= self.dataOut.nHeights): |
|
710 | 731 | maxIndex = self.dataOut.nHeights-1 |
|
711 | 732 | |
|
712 | 733 | # seleccion de indices para velocidades |
|
713 | 734 | indminvel = numpy.where(velrange >= minVel) |
|
714 | 735 | indmaxvel = numpy.where(velrange <= maxVel) |
|
715 | 736 | try: |
|
716 | 737 | minIndexVel = indminvel[0][0] |
|
717 | 738 | except: |
|
718 | 739 | minIndexVel = 0 |
|
719 | 740 | |
|
720 | 741 | try: |
|
721 | 742 | maxIndexVel = indmaxvel[0][-1] |
|
722 | 743 | except: |
|
723 | 744 | maxIndexVel = len(velrange) |
|
724 | 745 | |
|
725 | 746 | #seleccion del espectro |
|
726 | 747 | data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1] |
|
727 | 748 | #estimacion de ruido |
|
728 | 749 | noise = numpy.zeros(self.dataOut.nChannels) |
|
729 | 750 | |
|
730 | 751 | for channel in range(self.dataOut.nChannels): |
|
731 | 752 | daux = data_spc[channel,:,:] |
|
732 | 753 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) |
|
733 | 754 | |
|
734 | 755 | self.dataOut.noise_estimation = noise.copy() |
|
735 | 756 | |
|
736 | 757 | return 1 |
@@ -1,1395 +1,1395 | |||
|
1 | 1 | import sys |
|
2 | 2 | import numpy |
|
3 | 3 | from scipy import interpolate |
|
4 | 4 | from schainpy import cSchain |
|
5 | 5 | from jroproc_base import ProcessingUnit, Operation |
|
6 | 6 | from schainpy.model.data.jrodata import Voltage |
|
7 | 7 | from time import time |
|
8 | 8 | |
|
9 | 9 | class VoltageProc(ProcessingUnit): |
|
10 | 10 | |
|
11 | 11 | |
|
12 | 12 | def __init__(self, **kwargs): |
|
13 | 13 | |
|
14 | 14 | ProcessingUnit.__init__(self, **kwargs) |
|
15 | 15 | |
|
16 | 16 | # self.objectDict = {} |
|
17 | 17 | self.dataOut = Voltage() |
|
18 | 18 | self.flip = 1 |
|
19 | 19 | |
|
20 | 20 | def run(self): |
|
21 | 21 | if self.dataIn.type == 'AMISR': |
|
22 | 22 | self.__updateObjFromAmisrInput() |
|
23 | 23 | |
|
24 | 24 | if self.dataIn.type == 'Voltage': |
|
25 | 25 | self.dataOut.copy(self.dataIn) |
|
26 | 26 | |
|
27 | 27 | # self.dataOut.copy(self.dataIn) |
|
28 | 28 | |
|
29 | 29 | def __updateObjFromAmisrInput(self): |
|
30 | 30 | |
|
31 | 31 | self.dataOut.timeZone = self.dataIn.timeZone |
|
32 | 32 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
33 | 33 | self.dataOut.errorCount = self.dataIn.errorCount |
|
34 | 34 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
35 | 35 | |
|
36 | 36 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
37 | 37 | self.dataOut.data = self.dataIn.data |
|
38 | 38 | self.dataOut.utctime = self.dataIn.utctime |
|
39 | 39 | self.dataOut.channelList = self.dataIn.channelList |
|
40 | 40 | # self.dataOut.timeInterval = self.dataIn.timeInterval |
|
41 | 41 | self.dataOut.heightList = self.dataIn.heightList |
|
42 | 42 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
43 | 43 | |
|
44 | 44 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
45 | 45 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
46 | 46 | self.dataOut.frequency = self.dataIn.frequency |
|
47 | 47 | |
|
48 | 48 | self.dataOut.azimuth = self.dataIn.azimuth |
|
49 | 49 | self.dataOut.zenith = self.dataIn.zenith |
|
50 | 50 | |
|
51 | 51 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
52 | 52 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
53 | 53 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
54 | 54 | # |
|
55 | 55 | # pass# |
|
56 | 56 | # |
|
57 | 57 | # def init(self): |
|
58 | 58 | # |
|
59 | 59 | # |
|
60 | 60 | # if self.dataIn.type == 'AMISR': |
|
61 | 61 | # self.__updateObjFromAmisrInput() |
|
62 | 62 | # |
|
63 | 63 | # if self.dataIn.type == 'Voltage': |
|
64 | 64 | # self.dataOut.copy(self.dataIn) |
|
65 | 65 | # # No necesita copiar en cada init() los atributos de dataIn |
|
66 | 66 | # # la copia deberia hacerse por cada nuevo bloque de datos |
|
67 | 67 | |
|
68 | 68 | def selectChannels(self, channelList): |
|
69 | 69 | |
|
70 | 70 | channelIndexList = [] |
|
71 | 71 | |
|
72 | 72 | for channel in channelList: |
|
73 | 73 | if channel not in self.dataOut.channelList: |
|
74 | 74 | raise ValueError, "Channel %d is not in %s" %(channel, str(self.dataOut.channelList)) |
|
75 | 75 | |
|
76 | 76 | index = self.dataOut.channelList.index(channel) |
|
77 | 77 | channelIndexList.append(index) |
|
78 | 78 | |
|
79 | 79 | self.selectChannelsByIndex(channelIndexList) |
|
80 | 80 | |
|
81 | 81 | def selectChannelsByIndex(self, channelIndexList): |
|
82 | 82 | """ |
|
83 | 83 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
84 | 84 | |
|
85 | 85 | Input: |
|
86 | 86 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
87 | 87 | |
|
88 | 88 | Affected: |
|
89 | 89 | self.dataOut.data |
|
90 | 90 | self.dataOut.channelIndexList |
|
91 | 91 | self.dataOut.nChannels |
|
92 | 92 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
93 | 93 | self.dataOut.systemHeaderObj.numChannels |
|
94 | 94 | self.dataOut.m_ProcessingHeader.blockSize |
|
95 | 95 | |
|
96 | 96 | Return: |
|
97 | 97 | None |
|
98 | 98 | """ |
|
99 | 99 | |
|
100 | 100 | for channelIndex in channelIndexList: |
|
101 | 101 | if channelIndex not in self.dataOut.channelIndexList: |
|
102 | 102 | print channelIndexList |
|
103 | 103 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
104 | 104 | |
|
105 | 105 | if self.dataOut.flagDataAsBlock: |
|
106 | 106 | """ |
|
107 | 107 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
108 | 108 | """ |
|
109 | 109 | data = self.dataOut.data[channelIndexList,:,:] |
|
110 | 110 | else: |
|
111 | 111 | data = self.dataOut.data[channelIndexList,:] |
|
112 | 112 | |
|
113 | 113 | self.dataOut.data = data |
|
114 | 114 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
115 | 115 | # self.dataOut.nChannels = nChannels |
|
116 | 116 | |
|
117 | 117 | return 1 |
|
118 | 118 | |
|
119 | 119 | def selectHeights(self, minHei=None, maxHei=None): |
|
120 | 120 | """ |
|
121 | 121 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
122 | 122 | minHei <= height <= maxHei |
|
123 | 123 | |
|
124 | 124 | Input: |
|
125 | 125 | minHei : valor minimo de altura a considerar |
|
126 | 126 | maxHei : valor maximo de altura a considerar |
|
127 | 127 | |
|
128 | 128 | Affected: |
|
129 | 129 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
130 | 130 | |
|
131 | 131 | Return: |
|
132 | 132 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
133 | 133 | """ |
|
134 | 134 | |
|
135 | 135 | if minHei == None: |
|
136 | 136 | minHei = self.dataOut.heightList[0] |
|
137 | 137 | |
|
138 | 138 | if maxHei == None: |
|
139 | 139 | maxHei = self.dataOut.heightList[-1] |
|
140 | 140 | |
|
141 | 141 | if (minHei < self.dataOut.heightList[0]): |
|
142 | 142 | minHei = self.dataOut.heightList[0] |
|
143 | 143 | |
|
144 | 144 | if (maxHei > self.dataOut.heightList[-1]): |
|
145 | 145 | maxHei = self.dataOut.heightList[-1] |
|
146 | 146 | |
|
147 | 147 | minIndex = 0 |
|
148 | 148 | maxIndex = 0 |
|
149 | 149 | heights = self.dataOut.heightList |
|
150 | 150 | |
|
151 | 151 | inda = numpy.where(heights >= minHei) |
|
152 | 152 | indb = numpy.where(heights <= maxHei) |
|
153 | 153 | |
|
154 | 154 | try: |
|
155 | 155 | minIndex = inda[0][0] |
|
156 | 156 | except: |
|
157 | 157 | minIndex = 0 |
|
158 | 158 | |
|
159 | 159 | try: |
|
160 | 160 | maxIndex = indb[0][-1] |
|
161 | 161 | except: |
|
162 | 162 | maxIndex = len(heights) |
|
163 | 163 | |
|
164 | 164 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
165 | 165 | |
|
166 | 166 | return 1 |
|
167 | 167 | |
|
168 | 168 | |
|
169 | 169 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
170 | 170 | """ |
|
171 | 171 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
172 | 172 | minIndex <= index <= maxIndex |
|
173 | 173 | |
|
174 | 174 | Input: |
|
175 | 175 | minIndex : valor de indice minimo de altura a considerar |
|
176 | 176 | maxIndex : valor de indice maximo de altura a considerar |
|
177 | 177 | |
|
178 | 178 | Affected: |
|
179 | 179 | self.dataOut.data |
|
180 | 180 | self.dataOut.heightList |
|
181 | 181 | |
|
182 | 182 | Return: |
|
183 | 183 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
184 | 184 | """ |
|
185 | 185 | |
|
186 | 186 | if (minIndex < 0) or (minIndex > maxIndex): |
|
187 | 187 | raise ValueError, "Height index range (%d,%d) is not valid" % (minIndex, maxIndex) |
|
188 | 188 | |
|
189 | 189 | if (maxIndex >= self.dataOut.nHeights): |
|
190 | 190 | maxIndex = self.dataOut.nHeights |
|
191 | 191 | |
|
192 | 192 | #voltage |
|
193 | 193 | if self.dataOut.flagDataAsBlock: |
|
194 | 194 | """ |
|
195 | 195 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
196 | 196 | """ |
|
197 | 197 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
198 | 198 | else: |
|
199 | 199 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
200 | 200 | |
|
201 | 201 | # firstHeight = self.dataOut.heightList[minIndex] |
|
202 | 202 | |
|
203 | 203 | self.dataOut.data = data |
|
204 | 204 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
205 | 205 | |
|
206 | 206 | if self.dataOut.nHeights <= 1: |
|
207 | 207 | raise ValueError, "selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights) |
|
208 | 208 | |
|
209 | 209 | return 1 |
|
210 | 210 | |
|
211 | 211 | |
|
212 | 212 | def filterByHeights(self, window): |
|
213 | 213 | |
|
214 | 214 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
215 | 215 | |
|
216 | 216 | if window == None: |
|
217 | 217 | window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
218 | 218 | |
|
219 | 219 | newdelta = deltaHeight * window |
|
220 | 220 | r = self.dataOut.nHeights % window |
|
221 | 221 | newheights = (self.dataOut.nHeights-r)/window |
|
222 | 222 | |
|
223 | 223 | if newheights <= 1: |
|
224 | 224 | raise ValueError, "filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(self.dataOut.nHeights, window) |
|
225 | 225 | |
|
226 | 226 | if self.dataOut.flagDataAsBlock: |
|
227 | 227 | """ |
|
228 | 228 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
229 | 229 | """ |
|
230 | 230 | buffer = self.dataOut.data[:, :, 0:self.dataOut.nHeights-r] |
|
231 | 231 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nProfiles,self.dataOut.nHeights/window,window) |
|
232 | 232 | buffer = numpy.sum(buffer,3) |
|
233 | 233 | |
|
234 | 234 | else: |
|
235 | 235 | buffer = self.dataOut.data[:,0:self.dataOut.nHeights-r] |
|
236 | 236 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nHeights/window,window) |
|
237 | 237 | buffer = numpy.sum(buffer,2) |
|
238 | 238 | |
|
239 | 239 | self.dataOut.data = buffer |
|
240 | 240 | self.dataOut.heightList = self.dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
241 | 241 | self.dataOut.windowOfFilter = window |
|
242 | 242 | |
|
243 | 243 | def setH0(self, h0, deltaHeight = None): |
|
244 | 244 | |
|
245 | 245 | if not deltaHeight: |
|
246 | 246 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
247 | 247 | |
|
248 | 248 | nHeights = self.dataOut.nHeights |
|
249 | 249 | |
|
250 | 250 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
251 | 251 | |
|
252 | 252 | self.dataOut.heightList = newHeiRange |
|
253 | 253 | |
|
254 | 254 | def deFlip(self, channelList = []): |
|
255 | 255 | |
|
256 | 256 | data = self.dataOut.data.copy() |
|
257 | 257 | |
|
258 | 258 | if self.dataOut.flagDataAsBlock: |
|
259 | 259 | flip = self.flip |
|
260 | 260 | profileList = range(self.dataOut.nProfiles) |
|
261 | 261 | |
|
262 | 262 | if not channelList: |
|
263 | 263 | for thisProfile in profileList: |
|
264 | 264 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
265 | 265 | flip *= -1.0 |
|
266 | 266 | else: |
|
267 | 267 | for thisChannel in channelList: |
|
268 | 268 | if thisChannel not in self.dataOut.channelList: |
|
269 | 269 | continue |
|
270 | 270 | |
|
271 | 271 | for thisProfile in profileList: |
|
272 | 272 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
273 | 273 | flip *= -1.0 |
|
274 | 274 | |
|
275 | 275 | self.flip = flip |
|
276 | 276 | |
|
277 | 277 | else: |
|
278 | 278 | if not channelList: |
|
279 | 279 | data[:,:] = data[:,:]*self.flip |
|
280 | 280 | else: |
|
281 | 281 | for thisChannel in channelList: |
|
282 | 282 | if thisChannel not in self.dataOut.channelList: |
|
283 | 283 | continue |
|
284 | 284 | |
|
285 | 285 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
286 | 286 | |
|
287 | 287 | self.flip *= -1. |
|
288 | 288 | |
|
289 | 289 | self.dataOut.data = data |
|
290 | 290 | |
|
291 | 291 | def setRadarFrequency(self, frequency=None): |
|
292 | 292 | |
|
293 | 293 | if frequency != None: |
|
294 | 294 | self.dataOut.frequency = frequency |
|
295 | 295 | |
|
296 | 296 | return 1 |
|
297 | 297 | |
|
298 | 298 | def interpolateHeights(self, topLim, botLim): |
|
299 | 299 | #69 al 72 para julia |
|
300 | 300 | #82-84 para meteoros |
|
301 | 301 | if len(numpy.shape(self.dataOut.data))==2: |
|
302 | 302 | sampInterp = (self.dataOut.data[:,botLim-1] + self.dataOut.data[:,topLim+1])/2 |
|
303 | 303 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
304 | 304 | #self.dataOut.data[:,botLim:limSup+1] = sampInterp |
|
305 | 305 | self.dataOut.data[:,botLim:topLim+1] = sampInterp |
|
306 | 306 | else: |
|
307 | 307 | nHeights = self.dataOut.data.shape[2] |
|
308 | 308 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
309 | 309 | y = self.dataOut.data[:,:,range(botLim)+range(topLim+1,nHeights)] |
|
310 | 310 | f = interpolate.interp1d(x, y, axis = 2) |
|
311 | 311 | xnew = numpy.arange(botLim,topLim+1) |
|
312 | 312 | ynew = f(xnew) |
|
313 | 313 | |
|
314 | 314 | self.dataOut.data[:,:,botLim:topLim+1] = ynew |
|
315 | 315 | |
|
316 | 316 | # import collections |
|
317 | 317 | |
|
318 | 318 | class CohInt(Operation): |
|
319 | 319 | |
|
320 | 320 | isConfig = False |
|
321 | 321 | __profIndex = 0 |
|
322 | 322 | __byTime = False |
|
323 | 323 | __initime = None |
|
324 | 324 | __lastdatatime = None |
|
325 | 325 | __integrationtime = None |
|
326 | 326 | __buffer = None |
|
327 | 327 | __bufferStride = [] |
|
328 | 328 | __dataReady = False |
|
329 | 329 | __profIndexStride = 0 |
|
330 | 330 | __dataToPutStride = False |
|
331 | 331 | n = None |
|
332 | 332 | |
|
333 | 333 | def __init__(self, **kwargs): |
|
334 | 334 | |
|
335 | 335 | Operation.__init__(self, **kwargs) |
|
336 | 336 | |
|
337 | 337 | # self.isConfig = False |
|
338 | 338 | |
|
339 | 339 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
340 | 340 | """ |
|
341 | 341 | Set the parameters of the integration class. |
|
342 | 342 | |
|
343 | 343 | Inputs: |
|
344 | 344 | |
|
345 | 345 | n : Number of coherent integrations |
|
346 | 346 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
347 | 347 | overlapping : |
|
348 | 348 | """ |
|
349 | 349 | |
|
350 | 350 | self.__initime = None |
|
351 | 351 | self.__lastdatatime = 0 |
|
352 | 352 | self.__buffer = None |
|
353 | 353 | self.__dataReady = False |
|
354 | 354 | self.byblock = byblock |
|
355 | 355 | self.stride = stride |
|
356 | 356 | |
|
357 | 357 | if n == None and timeInterval == None: |
|
358 | 358 | raise ValueError, "n or timeInterval should be specified ..." |
|
359 | 359 | |
|
360 | 360 | if n != None: |
|
361 | 361 | self.n = n |
|
362 | 362 | self.__byTime = False |
|
363 | 363 | else: |
|
364 | 364 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
365 | 365 | self.n = 9999 |
|
366 | 366 | self.__byTime = True |
|
367 | 367 | |
|
368 | 368 | if overlapping: |
|
369 | 369 | self.__withOverlapping = True |
|
370 | 370 | self.__buffer = None |
|
371 | 371 | else: |
|
372 | 372 | self.__withOverlapping = False |
|
373 | 373 | self.__buffer = 0 |
|
374 | 374 | |
|
375 | 375 | self.__profIndex = 0 |
|
376 | 376 | |
|
377 | 377 | def putData(self, data): |
|
378 | 378 | |
|
379 | 379 | """ |
|
380 | 380 | Add a profile to the __buffer and increase in one the __profileIndex |
|
381 | 381 | |
|
382 | 382 | """ |
|
383 | 383 | |
|
384 | 384 | if not self.__withOverlapping: |
|
385 | 385 | self.__buffer += data.copy() |
|
386 | 386 | self.__profIndex += 1 |
|
387 | 387 | return |
|
388 | 388 | |
|
389 | 389 | #Overlapping data |
|
390 | 390 | nChannels, nHeis = data.shape |
|
391 | 391 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
392 | 392 | |
|
393 | 393 | #If the buffer is empty then it takes the data value |
|
394 | 394 | if self.__buffer is None: |
|
395 | 395 | self.__buffer = data |
|
396 | 396 | self.__profIndex += 1 |
|
397 | 397 | return |
|
398 | 398 | |
|
399 | 399 | #If the buffer length is lower than n then stakcing the data value |
|
400 | 400 | if self.__profIndex < self.n: |
|
401 | 401 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
402 | 402 | self.__profIndex += 1 |
|
403 | 403 | return |
|
404 | 404 | |
|
405 | 405 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
406 | 406 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
407 | 407 | self.__buffer[self.n-1] = data |
|
408 | 408 | self.__profIndex = self.n |
|
409 | 409 | return |
|
410 | 410 | |
|
411 | 411 | |
|
412 | 412 | def pushData(self): |
|
413 | 413 | """ |
|
414 | 414 | Return the sum of the last profiles and the profiles used in the sum. |
|
415 | 415 | |
|
416 | 416 | Affected: |
|
417 | 417 | |
|
418 | 418 | self.__profileIndex |
|
419 | 419 | |
|
420 | 420 | """ |
|
421 | 421 | |
|
422 | 422 | if not self.__withOverlapping: |
|
423 | 423 | data = self.__buffer |
|
424 | 424 | n = self.__profIndex |
|
425 | 425 | |
|
426 | 426 | self.__buffer = 0 |
|
427 | 427 | self.__profIndex = 0 |
|
428 | 428 | |
|
429 | 429 | return data, n |
|
430 | 430 | |
|
431 | 431 | #Integration with Overlapping |
|
432 | 432 | data = numpy.sum(self.__buffer, axis=0) |
|
433 | 433 | # print data |
|
434 | 434 | # raise |
|
435 | 435 | n = self.__profIndex |
|
436 | 436 | |
|
437 | 437 | return data, n |
|
438 | 438 | |
|
439 | 439 | def byProfiles(self, data): |
|
440 | 440 | |
|
441 | 441 | self.__dataReady = False |
|
442 | 442 | avgdata = None |
|
443 | 443 | # n = None |
|
444 | 444 | # print data |
|
445 | 445 | # raise |
|
446 | 446 | self.putData(data) |
|
447 | 447 | |
|
448 | 448 | if self.__profIndex == self.n: |
|
449 | 449 | avgdata, n = self.pushData() |
|
450 | 450 | self.__dataReady = True |
|
451 | 451 | |
|
452 | 452 | return avgdata |
|
453 | 453 | |
|
454 | 454 | def byTime(self, data, datatime): |
|
455 | 455 | |
|
456 | 456 | self.__dataReady = False |
|
457 | 457 | avgdata = None |
|
458 | 458 | n = None |
|
459 | 459 | |
|
460 | 460 | self.putData(data) |
|
461 | 461 | |
|
462 | 462 | if (datatime - self.__initime) >= self.__integrationtime: |
|
463 | 463 | avgdata, n = self.pushData() |
|
464 | 464 | self.n = n |
|
465 | 465 | self.__dataReady = True |
|
466 | 466 | |
|
467 | 467 | return avgdata |
|
468 | 468 | |
|
469 | 469 | def integrateByStride(self, data, datatime): |
|
470 | 470 | # print data |
|
471 | 471 | if self.__profIndex == 0: |
|
472 | 472 | self.__buffer = [[data.copy(), datatime]] |
|
473 | 473 | else: |
|
474 | 474 | self.__buffer.append([data.copy(),datatime]) |
|
475 | 475 | self.__profIndex += 1 |
|
476 | 476 | self.__dataReady = False |
|
477 | 477 | |
|
478 | 478 | if self.__profIndex == self.n * self.stride : |
|
479 | 479 | self.__dataToPutStride = True |
|
480 | 480 | self.__profIndexStride = 0 |
|
481 | 481 | self.__profIndex = 0 |
|
482 | 482 | self.__bufferStride = [] |
|
483 | 483 | for i in range(self.stride): |
|
484 | 484 | current = self.__buffer[i::self.stride] |
|
485 | 485 | data = numpy.sum([t[0] for t in current], axis=0) |
|
486 | 486 | avgdatatime = numpy.average([t[1] for t in current]) |
|
487 | 487 | # print data |
|
488 | 488 | self.__bufferStride.append((data, avgdatatime)) |
|
489 | 489 | |
|
490 | 490 | if self.__dataToPutStride: |
|
491 | 491 | self.__dataReady = True |
|
492 | 492 | self.__profIndexStride += 1 |
|
493 | 493 | if self.__profIndexStride == self.stride: |
|
494 | 494 | self.__dataToPutStride = False |
|
495 | 495 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
496 | 496 | # raise |
|
497 | 497 | return self.__bufferStride[self.__profIndexStride - 1] |
|
498 | 498 | |
|
499 | 499 | |
|
500 | 500 | return None, None |
|
501 | 501 | |
|
502 | 502 | def integrate(self, data, datatime=None): |
|
503 | 503 | |
|
504 | 504 | if self.__initime == None: |
|
505 | 505 | self.__initime = datatime |
|
506 | 506 | |
|
507 | 507 | if self.__byTime: |
|
508 | 508 | avgdata = self.byTime(data, datatime) |
|
509 | 509 | else: |
|
510 | 510 | avgdata = self.byProfiles(data) |
|
511 | 511 | |
|
512 | 512 | |
|
513 | 513 | self.__lastdatatime = datatime |
|
514 | 514 | |
|
515 | 515 | if avgdata is None: |
|
516 | 516 | return None, None |
|
517 | 517 | |
|
518 | 518 | avgdatatime = self.__initime |
|
519 | 519 | |
|
520 | 520 | deltatime = datatime - self.__lastdatatime |
|
521 | 521 | |
|
522 | 522 | if not self.__withOverlapping: |
|
523 | 523 | self.__initime = datatime |
|
524 | 524 | else: |
|
525 | 525 | self.__initime += deltatime |
|
526 | 526 | |
|
527 | 527 | return avgdata, avgdatatime |
|
528 | 528 | |
|
529 | 529 | def integrateByBlock(self, dataOut): |
|
530 | 530 | |
|
531 | 531 | times = int(dataOut.data.shape[1]/self.n) |
|
532 | 532 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
533 | 533 | |
|
534 | 534 | id_min = 0 |
|
535 | 535 | id_max = self.n |
|
536 | 536 | |
|
537 | 537 | for i in range(times): |
|
538 | 538 | junk = dataOut.data[:,id_min:id_max,:] |
|
539 | 539 | avgdata[:,i,:] = junk.sum(axis=1) |
|
540 | 540 | id_min += self.n |
|
541 | 541 | id_max += self.n |
|
542 | 542 | |
|
543 | 543 | timeInterval = dataOut.ippSeconds*self.n |
|
544 | 544 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
545 | 545 | self.__dataReady = True |
|
546 | 546 | return avgdata, avgdatatime |
|
547 | 547 | |
|
548 | 548 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
549 | 549 | if not self.isConfig: |
|
550 | 550 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
551 | 551 | self.isConfig = True |
|
552 | 552 | |
|
553 | 553 | if dataOut.flagDataAsBlock: |
|
554 | 554 | """ |
|
555 | 555 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
556 | 556 | """ |
|
557 | 557 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
558 | 558 | dataOut.nProfiles /= self.n |
|
559 | 559 | else: |
|
560 | 560 | if stride is None: |
|
561 | 561 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
562 | 562 | else: |
|
563 | 563 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
564 | 564 | |
|
565 | 565 | |
|
566 | 566 | # dataOut.timeInterval *= n |
|
567 | 567 | dataOut.flagNoData = True |
|
568 | 568 | |
|
569 | 569 | if self.__dataReady: |
|
570 | 570 | dataOut.data = avgdata |
|
571 | 571 | dataOut.nCohInt *= self.n |
|
572 | 572 | dataOut.utctime = avgdatatime |
|
573 | 573 | # print avgdata, avgdatatime |
|
574 | 574 | # raise |
|
575 | 575 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
576 | 576 | dataOut.flagNoData = False |
|
577 | 577 | |
|
578 | 578 | class Decoder(Operation): |
|
579 | 579 | |
|
580 | 580 | isConfig = False |
|
581 | 581 | __profIndex = 0 |
|
582 | 582 | |
|
583 | 583 | code = None |
|
584 | 584 | |
|
585 | 585 | nCode = None |
|
586 | 586 | nBaud = None |
|
587 | 587 | |
|
588 | 588 | def __init__(self, **kwargs): |
|
589 | 589 | |
|
590 | 590 | Operation.__init__(self, **kwargs) |
|
591 | 591 | |
|
592 | 592 | self.times = None |
|
593 | 593 | self.osamp = None |
|
594 | 594 | # self.__setValues = False |
|
595 | 595 | self.isConfig = False |
|
596 | 596 | |
|
597 | 597 | def setup(self, code, osamp, dataOut): |
|
598 | 598 | |
|
599 | 599 | self.__profIndex = 0 |
|
600 | 600 | |
|
601 | 601 | self.code = code |
|
602 | 602 | |
|
603 | 603 | self.nCode = len(code) |
|
604 | 604 | self.nBaud = len(code[0]) |
|
605 | 605 | |
|
606 | 606 | if (osamp != None) and (osamp >1): |
|
607 | 607 | self.osamp = osamp |
|
608 | 608 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
609 | 609 | self.nBaud = self.nBaud*self.osamp |
|
610 | 610 | |
|
611 | 611 | self.__nChannels = dataOut.nChannels |
|
612 | 612 | self.__nProfiles = dataOut.nProfiles |
|
613 | 613 | self.__nHeis = dataOut.nHeights |
|
614 | 614 | |
|
615 | 615 | if self.__nHeis < self.nBaud: |
|
616 | 616 | raise ValueError, 'Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud) |
|
617 | 617 | |
|
618 | 618 | #Frequency |
|
619 | 619 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
620 | 620 | |
|
621 | 621 | __codeBuffer[:,0:self.nBaud] = self.code |
|
622 | 622 | |
|
623 | 623 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
624 | 624 | |
|
625 | 625 | if dataOut.flagDataAsBlock: |
|
626 | 626 | |
|
627 | 627 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
628 | 628 | |
|
629 | 629 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
630 | 630 | |
|
631 | 631 | else: |
|
632 | 632 | |
|
633 | 633 | #Time |
|
634 | 634 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
635 | 635 | |
|
636 | 636 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
637 | 637 | |
|
638 | 638 | def __convolutionInFreq(self, data): |
|
639 | 639 | |
|
640 | 640 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
641 | 641 | |
|
642 | 642 | fft_data = numpy.fft.fft(data, axis=1) |
|
643 | 643 | |
|
644 | 644 | conv = fft_data*fft_code |
|
645 | 645 | |
|
646 | 646 | data = numpy.fft.ifft(conv,axis=1) |
|
647 | 647 | |
|
648 | 648 | return data |
|
649 | 649 | |
|
650 | 650 | def __convolutionInFreqOpt(self, data): |
|
651 | 651 | |
|
652 | 652 | raise NotImplementedError |
|
653 | 653 | |
|
654 | 654 | def __convolutionInTime(self, data): |
|
655 | 655 | |
|
656 | 656 | code = self.code[self.__profIndex] |
|
657 | 657 | for i in range(self.__nChannels): |
|
658 | 658 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
659 | 659 | |
|
660 | 660 | return self.datadecTime |
|
661 | 661 | |
|
662 | 662 | def __convolutionByBlockInTime(self, data): |
|
663 | 663 | |
|
664 | 664 | repetitions = self.__nProfiles / self.nCode |
|
665 | 665 | |
|
666 | 666 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
667 | 667 | junk = junk.flatten() |
|
668 | 668 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
669 | 669 | profilesList = xrange(self.__nProfiles) |
|
670 | 670 | |
|
671 | 671 | for i in range(self.__nChannels): |
|
672 | 672 | for j in profilesList: |
|
673 | 673 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
674 | 674 | return self.datadecTime |
|
675 | 675 | |
|
676 | 676 | def __convolutionByBlockInFreq(self, data): |
|
677 | 677 | |
|
678 | 678 | raise NotImplementedError, "Decoder by frequency fro Blocks not implemented" |
|
679 | 679 | |
|
680 | 680 | |
|
681 | 681 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
682 | 682 | |
|
683 | 683 | fft_data = numpy.fft.fft(data, axis=2) |
|
684 | 684 | |
|
685 | 685 | conv = fft_data*fft_code |
|
686 | 686 | |
|
687 | 687 | data = numpy.fft.ifft(conv,axis=2) |
|
688 | 688 | |
|
689 | 689 | return data |
|
690 | 690 | |
|
691 | 691 | |
|
692 | 692 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
693 | 693 | |
|
694 | 694 | if dataOut.flagDecodeData: |
|
695 | 695 | print "This data is already decoded, recoding again ..." |
|
696 | 696 | |
|
697 | 697 | if not self.isConfig: |
|
698 | 698 | |
|
699 | 699 | if code is None: |
|
700 | 700 | if dataOut.code is None: |
|
701 | 701 | raise ValueError, "Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type |
|
702 | 702 | |
|
703 | 703 | code = dataOut.code |
|
704 | 704 | else: |
|
705 | 705 | code = numpy.array(code).reshape(nCode,nBaud) |
|
706 | 706 | self.setup(code, osamp, dataOut) |
|
707 | 707 | |
|
708 | 708 | self.isConfig = True |
|
709 | 709 | |
|
710 | 710 | if mode == 3: |
|
711 | 711 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
712 | 712 | |
|
713 | 713 | if times != None: |
|
714 | 714 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
715 | 715 | |
|
716 | 716 | if self.code is None: |
|
717 | 717 | print "Fail decoding: Code is not defined." |
|
718 | 718 | return |
|
719 | 719 | |
|
720 | 720 | self.__nProfiles = dataOut.nProfiles |
|
721 | 721 | datadec = None |
|
722 | 722 | |
|
723 | 723 | if mode == 3: |
|
724 | 724 | mode = 0 |
|
725 | 725 | |
|
726 | 726 | if dataOut.flagDataAsBlock: |
|
727 | 727 | """ |
|
728 | 728 | Decoding when data have been read as block, |
|
729 | 729 | """ |
|
730 | 730 | |
|
731 | 731 | if mode == 0: |
|
732 | 732 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
733 | 733 | if mode == 1: |
|
734 | 734 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
735 | 735 | else: |
|
736 | 736 | """ |
|
737 | 737 | Decoding when data have been read profile by profile |
|
738 | 738 | """ |
|
739 | 739 | if mode == 0: |
|
740 | 740 | datadec = self.__convolutionInTime(dataOut.data) |
|
741 | 741 | |
|
742 | 742 | if mode == 1: |
|
743 | 743 | datadec = self.__convolutionInFreq(dataOut.data) |
|
744 | 744 | |
|
745 | 745 | if mode == 2: |
|
746 | 746 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
747 | 747 | |
|
748 | 748 | if datadec is None: |
|
749 | 749 | raise ValueError, "Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode |
|
750 | 750 | |
|
751 | 751 | dataOut.code = self.code |
|
752 | 752 | dataOut.nCode = self.nCode |
|
753 | 753 | dataOut.nBaud = self.nBaud |
|
754 | 754 | |
|
755 | 755 | dataOut.data = datadec |
|
756 | 756 | |
|
757 | 757 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
758 | 758 | |
|
759 | 759 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
760 | 760 | |
|
761 | 761 | if self.__profIndex == self.nCode-1: |
|
762 | 762 | self.__profIndex = 0 |
|
763 | 763 | return 1 |
|
764 | 764 | |
|
765 | 765 | self.__profIndex += 1 |
|
766 | 766 | |
|
767 | 767 | return 1 |
|
768 | 768 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
769 | 769 | |
|
770 | 770 | |
|
771 | 771 | class ProfileConcat(Operation): |
|
772 | 772 | |
|
773 | 773 | isConfig = False |
|
774 | 774 | buffer = None |
|
775 | 775 | |
|
776 | 776 | def __init__(self, **kwargs): |
|
777 | 777 | |
|
778 | 778 | Operation.__init__(self, **kwargs) |
|
779 | 779 | self.profileIndex = 0 |
|
780 | 780 | |
|
781 | 781 | def reset(self): |
|
782 | 782 | self.buffer = numpy.zeros_like(self.buffer) |
|
783 | 783 | self.start_index = 0 |
|
784 | 784 | self.times = 1 |
|
785 | 785 | |
|
786 | 786 | def setup(self, data, m, n=1): |
|
787 | 787 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
788 | 788 | self.nHeights = data.shape[1]#.nHeights |
|
789 | 789 | self.start_index = 0 |
|
790 | 790 | self.times = 1 |
|
791 | 791 | |
|
792 | 792 | def concat(self, data): |
|
793 | 793 | |
|
794 | 794 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
795 | 795 | self.start_index = self.start_index + self.nHeights |
|
796 | 796 | |
|
797 | 797 | def run(self, dataOut, m): |
|
798 | 798 | |
|
799 | 799 | dataOut.flagNoData = True |
|
800 | 800 | |
|
801 | 801 | if not self.isConfig: |
|
802 | 802 | self.setup(dataOut.data, m, 1) |
|
803 | 803 | self.isConfig = True |
|
804 | 804 | |
|
805 | 805 | if dataOut.flagDataAsBlock: |
|
806 | 806 | raise ValueError, "ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False" |
|
807 | 807 | |
|
808 | 808 | else: |
|
809 | 809 | self.concat(dataOut.data) |
|
810 | 810 | self.times += 1 |
|
811 | 811 | if self.times > m: |
|
812 | 812 | dataOut.data = self.buffer |
|
813 | 813 | self.reset() |
|
814 | 814 | dataOut.flagNoData = False |
|
815 | 815 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
816 | 816 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
817 | 817 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
818 | 818 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
819 | 819 | dataOut.ippSeconds *= m |
|
820 | 820 | |
|
821 | 821 | class ProfileSelector(Operation): |
|
822 | 822 | |
|
823 | 823 | profileIndex = None |
|
824 | 824 | # Tamanho total de los perfiles |
|
825 | 825 | nProfiles = None |
|
826 | 826 | |
|
827 | 827 | def __init__(self, **kwargs): |
|
828 | 828 | |
|
829 | 829 | Operation.__init__(self, **kwargs) |
|
830 | 830 | self.profileIndex = 0 |
|
831 | 831 | |
|
832 | 832 | def incProfileIndex(self): |
|
833 | 833 | |
|
834 | 834 | self.profileIndex += 1 |
|
835 | 835 | |
|
836 | 836 | if self.profileIndex >= self.nProfiles: |
|
837 | 837 | self.profileIndex = 0 |
|
838 | 838 | |
|
839 | 839 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
840 | 840 | |
|
841 | 841 | if profileIndex < minIndex: |
|
842 | 842 | return False |
|
843 | 843 | |
|
844 | 844 | if profileIndex > maxIndex: |
|
845 | 845 | return False |
|
846 | 846 | |
|
847 | 847 | return True |
|
848 | 848 | |
|
849 | 849 | def isThisProfileInList(self, profileIndex, profileList): |
|
850 | 850 | |
|
851 | 851 | if profileIndex not in profileList: |
|
852 | 852 | return False |
|
853 | 853 | |
|
854 | 854 | return True |
|
855 | 855 | |
|
856 | 856 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
857 | 857 | |
|
858 | 858 | """ |
|
859 | 859 | ProfileSelector: |
|
860 | 860 | |
|
861 | 861 | Inputs: |
|
862 | 862 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
863 | 863 | |
|
864 | 864 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
865 | 865 | |
|
866 | 866 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
867 | 867 | |
|
868 | 868 | """ |
|
869 | 869 | |
|
870 | 870 | if rangeList is not None: |
|
871 | 871 | if type(rangeList[0]) not in (tuple, list): |
|
872 | 872 | rangeList = [rangeList] |
|
873 | 873 | |
|
874 | 874 | dataOut.flagNoData = True |
|
875 | 875 | |
|
876 | 876 | if dataOut.flagDataAsBlock: |
|
877 | 877 | """ |
|
878 | 878 | data dimension = [nChannels, nProfiles, nHeis] |
|
879 | 879 | """ |
|
880 | 880 | if profileList != None: |
|
881 | 881 | dataOut.data = dataOut.data[:,profileList,:] |
|
882 | 882 | |
|
883 | 883 | if profileRangeList != None: |
|
884 | 884 | minIndex = profileRangeList[0] |
|
885 | 885 | maxIndex = profileRangeList[1] |
|
886 | 886 | profileList = range(minIndex, maxIndex+1) |
|
887 | 887 | |
|
888 | 888 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
889 | 889 | |
|
890 | 890 | if rangeList != None: |
|
891 | 891 | |
|
892 | 892 | profileList = [] |
|
893 | 893 | |
|
894 | 894 | for thisRange in rangeList: |
|
895 | 895 | minIndex = thisRange[0] |
|
896 | 896 | maxIndex = thisRange[1] |
|
897 | 897 | |
|
898 | 898 | profileList.extend(range(minIndex, maxIndex+1)) |
|
899 | 899 | |
|
900 | 900 | dataOut.data = dataOut.data[:,profileList,:] |
|
901 | 901 | |
|
902 | 902 | dataOut.nProfiles = len(profileList) |
|
903 | 903 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
904 | 904 | dataOut.flagNoData = False |
|
905 | 905 | |
|
906 | 906 | return True |
|
907 | 907 | |
|
908 | 908 | """ |
|
909 | 909 | data dimension = [nChannels, nHeis] |
|
910 | 910 | """ |
|
911 | 911 | |
|
912 | 912 | if profileList != None: |
|
913 | 913 | |
|
914 | 914 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
915 | 915 | |
|
916 | 916 | self.nProfiles = len(profileList) |
|
917 | 917 | dataOut.nProfiles = self.nProfiles |
|
918 | 918 | dataOut.profileIndex = self.profileIndex |
|
919 | 919 | dataOut.flagNoData = False |
|
920 | 920 | |
|
921 | 921 | self.incProfileIndex() |
|
922 | 922 | return True |
|
923 | 923 | |
|
924 | 924 | if profileRangeList != None: |
|
925 | 925 | |
|
926 | 926 | minIndex = profileRangeList[0] |
|
927 | 927 | maxIndex = profileRangeList[1] |
|
928 | 928 | |
|
929 | 929 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
930 | 930 | |
|
931 | 931 | self.nProfiles = maxIndex - minIndex + 1 |
|
932 | 932 | dataOut.nProfiles = self.nProfiles |
|
933 | 933 | dataOut.profileIndex = self.profileIndex |
|
934 | 934 | dataOut.flagNoData = False |
|
935 | 935 | |
|
936 | 936 | self.incProfileIndex() |
|
937 | 937 | return True |
|
938 | 938 | |
|
939 | 939 | if rangeList != None: |
|
940 | 940 | |
|
941 | 941 | nProfiles = 0 |
|
942 | 942 | |
|
943 | 943 | for thisRange in rangeList: |
|
944 | 944 | minIndex = thisRange[0] |
|
945 | 945 | maxIndex = thisRange[1] |
|
946 | 946 | |
|
947 | 947 | nProfiles += maxIndex - minIndex + 1 |
|
948 | 948 | |
|
949 | 949 | for thisRange in rangeList: |
|
950 | 950 | |
|
951 | 951 | minIndex = thisRange[0] |
|
952 | 952 | maxIndex = thisRange[1] |
|
953 | 953 | |
|
954 | 954 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
955 | 955 | |
|
956 | 956 | self.nProfiles = nProfiles |
|
957 | 957 | dataOut.nProfiles = self.nProfiles |
|
958 | 958 | dataOut.profileIndex = self.profileIndex |
|
959 | 959 | dataOut.flagNoData = False |
|
960 | 960 | |
|
961 | 961 | self.incProfileIndex() |
|
962 | 962 | |
|
963 | 963 | break |
|
964 | 964 | |
|
965 | 965 | return True |
|
966 | 966 | |
|
967 | 967 | |
|
968 | 968 | if beam != None: #beam is only for AMISR data |
|
969 | 969 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
970 | 970 | dataOut.flagNoData = False |
|
971 | 971 | dataOut.profileIndex = self.profileIndex |
|
972 | 972 | |
|
973 | 973 | self.incProfileIndex() |
|
974 | 974 | |
|
975 | 975 | return True |
|
976 | 976 | |
|
977 | 977 | raise ValueError, "ProfileSelector needs profileList, profileRangeList or rangeList parameter" |
|
978 | 978 | |
|
979 | 979 | return False |
|
980 | 980 | |
|
981 | 981 | class Reshaper(Operation): |
|
982 | 982 | |
|
983 | 983 | def __init__(self, **kwargs): |
|
984 | 984 | |
|
985 | 985 | Operation.__init__(self, **kwargs) |
|
986 | 986 | |
|
987 | 987 | self.__buffer = None |
|
988 | 988 | self.__nitems = 0 |
|
989 | 989 | |
|
990 | 990 | def __appendProfile(self, dataOut, nTxs): |
|
991 | 991 | |
|
992 | 992 | if self.__buffer is None: |
|
993 | 993 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
994 | 994 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
995 | 995 | |
|
996 | 996 | ini = dataOut.nHeights * self.__nitems |
|
997 | 997 | end = ini + dataOut.nHeights |
|
998 | 998 | |
|
999 | 999 | self.__buffer[:, ini:end] = dataOut.data |
|
1000 | 1000 | |
|
1001 | 1001 | self.__nitems += 1 |
|
1002 | 1002 | |
|
1003 | 1003 | return int(self.__nitems*nTxs) |
|
1004 | 1004 | |
|
1005 | 1005 | def __getBuffer(self): |
|
1006 | 1006 | |
|
1007 | 1007 | if self.__nitems == int(1./self.__nTxs): |
|
1008 | 1008 | |
|
1009 | 1009 | self.__nitems = 0 |
|
1010 | 1010 | |
|
1011 | 1011 | return self.__buffer.copy() |
|
1012 | 1012 | |
|
1013 | 1013 | return None |
|
1014 | 1014 | |
|
1015 | 1015 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1016 | 1016 | |
|
1017 | 1017 | if shape is None and nTxs is None: |
|
1018 | 1018 | raise ValueError, "Reshaper: shape of factor should be defined" |
|
1019 | 1019 | |
|
1020 | 1020 | if nTxs: |
|
1021 | 1021 | if nTxs < 0: |
|
1022 | 1022 | raise ValueError, "nTxs should be greater than 0" |
|
1023 | 1023 | |
|
1024 | 1024 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1025 | 1025 | raise ValueError, "nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs)) |
|
1026 | 1026 | |
|
1027 | 1027 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1028 | 1028 | |
|
1029 | 1029 | return shape, nTxs |
|
1030 | 1030 | |
|
1031 | 1031 | if len(shape) != 2 and len(shape) != 3: |
|
1032 | 1032 | raise ValueError, "shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights) |
|
1033 | 1033 | |
|
1034 | 1034 | if len(shape) == 2: |
|
1035 | 1035 | shape_tuple = [dataOut.nChannels] |
|
1036 | 1036 | shape_tuple.extend(shape) |
|
1037 | 1037 | else: |
|
1038 | 1038 | shape_tuple = list(shape) |
|
1039 | 1039 | |
|
1040 | 1040 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1041 | 1041 | |
|
1042 | 1042 | return shape_tuple, nTxs |
|
1043 | 1043 | |
|
1044 | 1044 | def run(self, dataOut, shape=None, nTxs=None): |
|
1045 | 1045 | |
|
1046 | 1046 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1047 | 1047 | |
|
1048 | 1048 | dataOut.flagNoData = True |
|
1049 | 1049 | profileIndex = None |
|
1050 | 1050 | |
|
1051 | 1051 | if dataOut.flagDataAsBlock: |
|
1052 | 1052 | |
|
1053 | 1053 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1054 | 1054 | dataOut.flagNoData = False |
|
1055 | 1055 | |
|
1056 | 1056 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1057 | 1057 | |
|
1058 | 1058 | else: |
|
1059 | 1059 | |
|
1060 | 1060 | if self.__nTxs < 1: |
|
1061 | 1061 | |
|
1062 | 1062 | self.__appendProfile(dataOut, self.__nTxs) |
|
1063 | 1063 | new_data = self.__getBuffer() |
|
1064 | 1064 | |
|
1065 | 1065 | if new_data is not None: |
|
1066 | 1066 | dataOut.data = new_data |
|
1067 | 1067 | dataOut.flagNoData = False |
|
1068 | 1068 | |
|
1069 | 1069 | profileIndex = dataOut.profileIndex*nTxs |
|
1070 | 1070 | |
|
1071 | 1071 | else: |
|
1072 | 1072 | raise ValueError, "nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)" |
|
1073 | 1073 | |
|
1074 | 1074 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1075 | 1075 | |
|
1076 | 1076 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1077 | 1077 | |
|
1078 | 1078 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1079 | 1079 | |
|
1080 | 1080 | dataOut.profileIndex = profileIndex |
|
1081 | 1081 | |
|
1082 | 1082 | dataOut.ippSeconds /= self.__nTxs |
|
1083 | 1083 | |
|
1084 | 1084 | class SplitProfiles(Operation): |
|
1085 | 1085 | |
|
1086 | 1086 | def __init__(self, **kwargs): |
|
1087 | 1087 | |
|
1088 | 1088 | Operation.__init__(self, **kwargs) |
|
1089 | 1089 | |
|
1090 | 1090 | def run(self, dataOut, n): |
|
1091 | 1091 | |
|
1092 | 1092 | dataOut.flagNoData = True |
|
1093 | 1093 | profileIndex = None |
|
1094 | 1094 | |
|
1095 | 1095 | if dataOut.flagDataAsBlock: |
|
1096 | 1096 | |
|
1097 | 1097 | #nchannels, nprofiles, nsamples |
|
1098 | 1098 | shape = dataOut.data.shape |
|
1099 | 1099 | |
|
1100 | 1100 | if shape[2] % n != 0: |
|
1101 | 1101 | raise ValueError, "Could not split the data, n=%d has to be multiple of %d" %(n, shape[2]) |
|
1102 | 1102 | |
|
1103 | 1103 | new_shape = shape[0], shape[1]*n, shape[2]/n |
|
1104 | 1104 | |
|
1105 | 1105 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1106 | 1106 | dataOut.flagNoData = False |
|
1107 | 1107 | |
|
1108 | 1108 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1109 | 1109 | |
|
1110 | 1110 | else: |
|
1111 | 1111 | |
|
1112 | 1112 | raise ValueError, "Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)" |
|
1113 | 1113 | |
|
1114 | 1114 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1115 | 1115 | |
|
1116 | 1116 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1117 | 1117 | |
|
1118 | 1118 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1119 | 1119 | |
|
1120 | 1120 | dataOut.profileIndex = profileIndex |
|
1121 | 1121 | |
|
1122 | 1122 | dataOut.ippSeconds /= n |
|
1123 | 1123 | |
|
1124 | 1124 | class CombineProfiles(Operation): |
|
1125 | 1125 | |
|
1126 | 1126 | def __init__(self, **kwargs): |
|
1127 | 1127 | |
|
1128 | 1128 | Operation.__init__(self, **kwargs) |
|
1129 | 1129 | |
|
1130 | 1130 | self.__remData = None |
|
1131 | 1131 | self.__profileIndex = 0 |
|
1132 | 1132 | |
|
1133 | 1133 | def run(self, dataOut, n): |
|
1134 | 1134 | |
|
1135 | 1135 | dataOut.flagNoData = True |
|
1136 | 1136 | profileIndex = None |
|
1137 | 1137 | |
|
1138 | 1138 | if dataOut.flagDataAsBlock: |
|
1139 | 1139 | |
|
1140 | 1140 | #nchannels, nprofiles, nsamples |
|
1141 | 1141 | shape = dataOut.data.shape |
|
1142 | 1142 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1143 | 1143 | |
|
1144 | 1144 | if shape[1] % n != 0: |
|
1145 | 1145 | raise ValueError, "Could not split the data, n=%d has to be multiple of %d" %(n, shape[1]) |
|
1146 | 1146 | |
|
1147 | 1147 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1148 | 1148 | dataOut.flagNoData = False |
|
1149 | 1149 | |
|
1150 | 1150 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1151 | 1151 | |
|
1152 | 1152 | else: |
|
1153 | 1153 | |
|
1154 | 1154 | #nchannels, nsamples |
|
1155 | 1155 | if self.__remData is None: |
|
1156 | 1156 | newData = dataOut.data |
|
1157 | 1157 | else: |
|
1158 | 1158 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1159 | 1159 | |
|
1160 | 1160 | self.__profileIndex += 1 |
|
1161 | 1161 | |
|
1162 | 1162 | if self.__profileIndex < n: |
|
1163 | 1163 | self.__remData = newData |
|
1164 | 1164 | #continue |
|
1165 | 1165 | return |
|
1166 | 1166 | |
|
1167 | 1167 | self.__profileIndex = 0 |
|
1168 | 1168 | self.__remData = None |
|
1169 | 1169 | |
|
1170 | 1170 | dataOut.data = newData |
|
1171 | 1171 | dataOut.flagNoData = False |
|
1172 | 1172 | |
|
1173 | 1173 | profileIndex = dataOut.profileIndex/n |
|
1174 | 1174 | |
|
1175 | 1175 | |
|
1176 | 1176 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1177 | 1177 | |
|
1178 | 1178 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1179 | 1179 | |
|
1180 | 1180 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1181 | 1181 | |
|
1182 | 1182 | dataOut.profileIndex = profileIndex |
|
1183 | 1183 | |
|
1184 | 1184 | dataOut.ippSeconds *= n |
|
1185 | 1185 | |
|
1186 | 1186 | |
|
1187 | 1187 | class SSheightProfiles(Operation): |
|
1188 | 1188 | |
|
1189 | 1189 | step = None |
|
1190 | 1190 | nsamples = None |
|
1191 | 1191 | bufferShape = None |
|
1192 | 1192 | profileShape= None |
|
1193 | 1193 | sshProfiles = None |
|
1194 | 1194 | profileIndex= None |
|
1195 | 1195 | |
|
1196 | 1196 | def __init__(self, **kwargs): |
|
1197 | 1197 | |
|
1198 | 1198 | Operation.__init__(self, **kwargs) |
|
1199 | 1199 | self.isConfig = False |
|
1200 | 1200 | |
|
1201 | 1201 | def setup(self,dataOut ,step = None , nsamples = None): |
|
1202 | 1202 | |
|
1203 | 1203 | if step == None and nsamples == None: |
|
1204 | 1204 | raise ValueError, "step or nheights should be specified ..." |
|
1205 | 1205 | |
|
1206 | 1206 | self.step = step |
|
1207 | 1207 | self.nsamples = nsamples |
|
1208 | 1208 | self.__nChannels = dataOut.nChannels |
|
1209 | 1209 | self.__nProfiles = dataOut.nProfiles |
|
1210 | 1210 | self.__nHeis = dataOut.nHeights |
|
1211 | 1211 | shape = dataOut.data.shape #nchannels, nprofiles, nsamples |
|
1212 | ||
|
1212 | print "shape",shape | |
|
1213 | 1213 | #last test |
|
1214 | 1214 | residue = (shape[1] - self.nsamples) % self.step |
|
1215 | 1215 | if residue != 0: |
|
1216 | 1216 | print "The residue is %d, step=%d should be multiple of %d to avoid loss of %d samples"%(residue,step,shape[1] - self.nsamples,residue) |
|
1217 | 1217 | |
|
1218 | 1218 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1219 | 1219 | numberProfile = self.nsamples |
|
1220 | 1220 | numberSamples = (shape[1] - self.nsamples)/self.step |
|
1221 | 1221 | |
|
1222 | print "New number of profile: %d, number of height: %d, Resolution %d"%(numberProfile,numberSamples,deltaHeight*self.step) | |
|
1222 | print "New number of profile: %d, number of height: %d, Resolution %d Km"%(numberProfile,numberSamples,deltaHeight*self.step) | |
|
1223 | 1223 | |
|
1224 | 1224 | self.bufferShape = shape[0], numberSamples, numberProfile # nchannels, nsamples , nprofiles |
|
1225 | 1225 | self.profileShape = shape[0], numberProfile, numberSamples # nchannels, nprofiles, nsamples |
|
1226 | 1226 | |
|
1227 | 1227 | self.buffer = numpy.zeros(self.bufferShape , dtype=numpy.complex) |
|
1228 | 1228 | self.sshProfiles = numpy.zeros(self.profileShape, dtype=numpy.complex) |
|
1229 | 1229 | |
|
1230 | 1230 | def run(self, dataOut, step, nsamples): |
|
1231 | 1231 | |
|
1232 | 1232 | dataOut.flagNoData = True |
|
1233 | 1233 | dataOut.flagDataAsBlock =False |
|
1234 | 1234 | profileIndex = None |
|
1235 | 1235 | |
|
1236 | 1236 | if not self.isConfig: |
|
1237 | 1237 | self.setup(dataOut, step=step , nsamples=nsamples) |
|
1238 | 1238 | self.isConfig = True |
|
1239 | 1239 | |
|
1240 | 1240 | for i in range(self.buffer.shape[1]): |
|
1241 | 1241 | self.buffer[:,i] = numpy.flip(dataOut.data[:,i*self.step:i*self.step + self.nsamples]) |
|
1242 | 1242 | #self.buffer[:,j,self.__nHeis-j*self.step - self.nheights:self.__nHeis-j*self.step] = numpy.flip(dataOut.data[:,j*self.step:j*self.step + self.nheights]) |
|
1243 | 1243 | |
|
1244 | 1244 | for j in range(self.buffer.shape[0]): |
|
1245 | 1245 | self.sshProfiles[j] = numpy.transpose(self.buffer[j]) |
|
1246 | 1246 | |
|
1247 | 1247 | profileIndex = self.nsamples |
|
1248 | 1248 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1249 | 1249 | ippSeconds = (deltaHeight*1.0e-6)/(0.15) |
|
1250 | 1250 | |
|
1251 | 1251 | dataOut.data = self.sshProfiles |
|
1252 | 1252 | dataOut.flagNoData = False |
|
1253 | 1253 | dataOut.heightList = numpy.arange(self.buffer.shape[1]) *self.step*deltaHeight + dataOut.heightList[0] |
|
1254 | 1254 | dataOut.nProfiles = int(dataOut.nProfiles*self.nsamples) |
|
1255 | 1255 | dataOut.profileIndex = profileIndex |
|
1256 | 1256 | dataOut.flagDataAsBlock = True |
|
1257 | 1257 | dataOut.ippSeconds = ippSeconds |
|
1258 | 1258 | |
|
1259 | 1259 | |
|
1260 | 1260 | |
|
1261 | 1261 | # import collections |
|
1262 | 1262 | # from scipy.stats import mode |
|
1263 | 1263 | # |
|
1264 | 1264 | # class Synchronize(Operation): |
|
1265 | 1265 | # |
|
1266 | 1266 | # isConfig = False |
|
1267 | 1267 | # __profIndex = 0 |
|
1268 | 1268 | # |
|
1269 | 1269 | # def __init__(self, **kwargs): |
|
1270 | 1270 | # |
|
1271 | 1271 | # Operation.__init__(self, **kwargs) |
|
1272 | 1272 | # # self.isConfig = False |
|
1273 | 1273 | # self.__powBuffer = None |
|
1274 | 1274 | # self.__startIndex = 0 |
|
1275 | 1275 | # self.__pulseFound = False |
|
1276 | 1276 | # |
|
1277 | 1277 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1278 | 1278 | # |
|
1279 | 1279 | # #Read data |
|
1280 | 1280 | # |
|
1281 | 1281 | # powerdB = dataOut.getPower(channel = channel) |
|
1282 | 1282 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1283 | 1283 | # |
|
1284 | 1284 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1285 | 1285 | # |
|
1286 | 1286 | # dataArray = numpy.array(self.__powBuffer) |
|
1287 | 1287 | # |
|
1288 | 1288 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1289 | 1289 | # |
|
1290 | 1290 | # maxValue = numpy.nanmax(filteredPower) |
|
1291 | 1291 | # |
|
1292 | 1292 | # if maxValue < noisedB + 10: |
|
1293 | 1293 | # #No se encuentra ningun pulso de transmision |
|
1294 | 1294 | # return None |
|
1295 | 1295 | # |
|
1296 | 1296 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1297 | 1297 | # |
|
1298 | 1298 | # if len(maxValuesIndex) < 2: |
|
1299 | 1299 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1300 | 1300 | # return None |
|
1301 | 1301 | # |
|
1302 | 1302 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1303 | 1303 | # |
|
1304 | 1304 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1305 | 1305 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1306 | 1306 | # |
|
1307 | 1307 | # if len(pulseIndex) < 2: |
|
1308 | 1308 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1309 | 1309 | # return None |
|
1310 | 1310 | # |
|
1311 | 1311 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1312 | 1312 | # |
|
1313 | 1313 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1314 | 1314 | # #(No deberian existir IPP menor a 10 unidades) |
|
1315 | 1315 | # |
|
1316 | 1316 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1317 | 1317 | # |
|
1318 | 1318 | # if len(realIndex) < 2: |
|
1319 | 1319 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1320 | 1320 | # return None |
|
1321 | 1321 | # |
|
1322 | 1322 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1323 | 1323 | # realPulseIndex = pulseIndex[realIndex] |
|
1324 | 1324 | # |
|
1325 | 1325 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1326 | 1326 | # |
|
1327 | 1327 | # print "IPP = %d samples" %period |
|
1328 | 1328 | # |
|
1329 | 1329 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1330 | 1330 | # self.__startIndex = int(realPulseIndex[0]) |
|
1331 | 1331 | # |
|
1332 | 1332 | # return 1 |
|
1333 | 1333 | # |
|
1334 | 1334 | # |
|
1335 | 1335 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1336 | 1336 | # |
|
1337 | 1337 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1338 | 1338 | # maxlen = buffer_size*nSamples) |
|
1339 | 1339 | # |
|
1340 | 1340 | # bufferList = [] |
|
1341 | 1341 | # |
|
1342 | 1342 | # for i in range(nChannels): |
|
1343 | 1343 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1344 | 1344 | # maxlen = buffer_size*nSamples) |
|
1345 | 1345 | # |
|
1346 | 1346 | # bufferList.append(bufferByChannel) |
|
1347 | 1347 | # |
|
1348 | 1348 | # self.__nSamples = nSamples |
|
1349 | 1349 | # self.__nChannels = nChannels |
|
1350 | 1350 | # self.__bufferList = bufferList |
|
1351 | 1351 | # |
|
1352 | 1352 | # def run(self, dataOut, channel = 0): |
|
1353 | 1353 | # |
|
1354 | 1354 | # if not self.isConfig: |
|
1355 | 1355 | # nSamples = dataOut.nHeights |
|
1356 | 1356 | # nChannels = dataOut.nChannels |
|
1357 | 1357 | # self.setup(nSamples, nChannels) |
|
1358 | 1358 | # self.isConfig = True |
|
1359 | 1359 | # |
|
1360 | 1360 | # #Append new data to internal buffer |
|
1361 | 1361 | # for thisChannel in range(self.__nChannels): |
|
1362 | 1362 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1363 | 1363 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1364 | 1364 | # |
|
1365 | 1365 | # if self.__pulseFound: |
|
1366 | 1366 | # self.__startIndex -= self.__nSamples |
|
1367 | 1367 | # |
|
1368 | 1368 | # #Finding Tx Pulse |
|
1369 | 1369 | # if not self.__pulseFound: |
|
1370 | 1370 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1371 | 1371 | # |
|
1372 | 1372 | # if indexFound == None: |
|
1373 | 1373 | # dataOut.flagNoData = True |
|
1374 | 1374 | # return |
|
1375 | 1375 | # |
|
1376 | 1376 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1377 | 1377 | # self.__pulseFound = True |
|
1378 | 1378 | # self.__startIndex = indexFound |
|
1379 | 1379 | # |
|
1380 | 1380 | # #If pulse was found ... |
|
1381 | 1381 | # for thisChannel in range(self.__nChannels): |
|
1382 | 1382 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1383 | 1383 | # #print self.__startIndex |
|
1384 | 1384 | # x = numpy.array(bufferByChannel) |
|
1385 | 1385 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1386 | 1386 | # |
|
1387 | 1387 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1388 | 1388 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1389 | 1389 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1390 | 1390 | # |
|
1391 | 1391 | # dataOut.data = self.__arrayBuffer |
|
1392 | 1392 | # |
|
1393 | 1393 | # self.__startIndex += self.__newNSamples |
|
1394 | 1394 | # |
|
1395 | 1395 | # return |
General Comments 0
You need to be logged in to leave comments.
Login now