The requested changes are too big and content was truncated. Show full diff
@@ -0,0 +1,217 | |||||
|
1 | # Ing. AVP | |||
|
2 | # 06/10/2021 | |||
|
3 | # ARCHIVO DE LECTURA | |||
|
4 | import os, sys | |||
|
5 | import datetime | |||
|
6 | import time | |||
|
7 | from schainpy.controller import Project | |||
|
8 | #### NOTA########################################### | |||
|
9 | # INPUT : | |||
|
10 | # VELOCIDAD PARAMETRO : V = 2Β°/seg | |||
|
11 | # MODO PULSE PAIR O MOMENTOS: 0 : Pulse Pair ,1 : Momentos | |||
|
12 | ###################################################### | |||
|
13 | ##### PROCESAMIENTO ################################## | |||
|
14 | ##### OJO TENER EN CUENTA EL n= para el Pulse Pair ## | |||
|
15 | ##### O EL n= nFFTPoints ### | |||
|
16 | ###################################################### | |||
|
17 | ######## BUSCAMOS EL numero de IPP equivalente 1Β°##### | |||
|
18 | ######## Sea V la velocidad del Pedestal en Β°/seg##### | |||
|
19 | ######## 1Β° sera Recorrido en un tiempo de 1/V ###### | |||
|
20 | ######## IPP del Radar 400 useg --> 60 Km ############ | |||
|
21 | ######## n = 1/(V(Β°/seg)*IPP(Km)) , NUMERO DE IPP ## | |||
|
22 | ######## n = 1/(V*IPP) ############################# | |||
|
23 | ######## VELOCIDAD DEL PEDESTAL ###################### | |||
|
24 | print("SETUP- RADAR METEOROLOGICO") | |||
|
25 | V = 10 | |||
|
26 | mode = 1 | |||
|
27 | #path = '/DATA_RM/23/6v' | |||
|
28 | #path = '/DATA_RM/TEST_INTEGRACION_2M' | |||
|
29 | path = '/DATA_RM/WR_20_OCT' | |||
|
30 | ||||
|
31 | #path_ped='/DATA_RM/TEST_PEDESTAL/P20211012-082745' | |||
|
32 | path_ped='/DATA_RM/TEST_PEDESTAL/P20211020-131248' | |||
|
33 | ||||
|
34 | figpath_pp = "/home/soporte/Pictures/TEST_PP" | |||
|
35 | figpath_mom = "/home/soporte/Pictures/TEST_MOM" | |||
|
36 | plot = 0 | |||
|
37 | integration = 1 | |||
|
38 | save = 0 | |||
|
39 | if save == 1: | |||
|
40 | if mode==0: | |||
|
41 | path_save = '/DATA_RM/TEST_HDF5_PP_23/6v' | |||
|
42 | path_save = '/DATA_RM/TEST_HDF5_PP' | |||
|
43 | path_save = '/DATA_RM/TEST_HDF5_PP_100' | |||
|
44 | else: | |||
|
45 | path_save = '/DATA_RM/TEST_HDF5_SPEC_23_V2/6v' | |||
|
46 | ||||
|
47 | print("* PATH data ADQ :", path) | |||
|
48 | print("* Velocidad Pedestal :",V,"Β°/seg") | |||
|
49 | ############################ NRO Perfiles PROCESAMIENTO ################### | |||
|
50 | V=V | |||
|
51 | IPP=400*1e-6 | |||
|
52 | n= int(1/(V*IPP)) | |||
|
53 | print("* n - NRO Perfiles Proc:", n ) | |||
|
54 | ################################## MODE ################################### | |||
|
55 | print("* Modo de Operacion :",mode) | |||
|
56 | if mode ==0: | |||
|
57 | print("* Met. Seleccionado : Pulse Pair") | |||
|
58 | else: | |||
|
59 | print("* Met. Momentos : Momentos") | |||
|
60 | ||||
|
61 | ################################## MODE ################################### | |||
|
62 | print("* Grabado de datos :",save) | |||
|
63 | if save ==1: | |||
|
64 | if mode==0: | |||
|
65 | ope= "Pulse Pair" | |||
|
66 | else: | |||
|
67 | ope= "Momentos" | |||
|
68 | print("* Path-Save Data -", ope , path_save) | |||
|
69 | ||||
|
70 | print("* Integracion de datos :",integration) | |||
|
71 | ||||
|
72 | time.sleep(15) | |||
|
73 | #remotefolder = "/home/wmaster/graficos" | |||
|
74 | ####################################################################### | |||
|
75 | ################# RANGO DE PLOTEO###################################### | |||
|
76 | dBmin = '1' | |||
|
77 | dBmax = '85' | |||
|
78 | xmin = '15' | |||
|
79 | xmax = '15.25' | |||
|
80 | ymin = '0' | |||
|
81 | ymax = '600' | |||
|
82 | ####################################################################### | |||
|
83 | ########################FECHA########################################## | |||
|
84 | str = datetime.date.today() | |||
|
85 | today = str.strftime("%Y/%m/%d") | |||
|
86 | str2 = str - datetime.timedelta(days=1) | |||
|
87 | yesterday = str2.strftime("%Y/%m/%d") | |||
|
88 | ####################################################################### | |||
|
89 | ########################SIGNAL CHAIN ################################## | |||
|
90 | ####################################################################### | |||
|
91 | desc = "USRP_test" | |||
|
92 | filename = "USRP_processing.xml" | |||
|
93 | controllerObj = Project() | |||
|
94 | controllerObj.setup(id = '191', name='Test_USRP', description=desc) | |||
|
95 | ####################################################################### | |||
|
96 | ######################## UNIDAD DE LECTURA############################# | |||
|
97 | ####################################################################### | |||
|
98 | readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader', | |||
|
99 | path=path, | |||
|
100 | startDate="2021/01/01",#today, | |||
|
101 | endDate="2021/12/30",#today, | |||
|
102 | startTime='00:00:00', | |||
|
103 | endTime='23:59:59', | |||
|
104 | delay=0, | |||
|
105 | #set=0, | |||
|
106 | online=0, | |||
|
107 | walk=1, | |||
|
108 | ippKm = 60) | |||
|
109 | ||||
|
110 | opObj11 = readUnitConfObj.addOperation(name='printInfo') | |||
|
111 | ||||
|
112 | procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) | |||
|
113 | ||||
|
114 | if mode ==0: | |||
|
115 | ####################### METODO PULSE PAIR ###################################################################### | |||
|
116 | opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other') | |||
|
117 | opObj11.addParameter(name='n', value=int(n), format='int')#10 VOY A USAR 250 DADO QUE LA VELOCIDAD ES 10 GRADOS | |||
|
118 | #opObj11.addParameter(name='removeDC', value=1, format='int') | |||
|
119 | ####################### METODO Parametros ###################################################################### | |||
|
120 | procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId()) | |||
|
121 | if plot==1: | |||
|
122 | opObj11 = procUnitConfObjB.addOperation(name='GenericRTIPlot',optype='external') | |||
|
123 | opObj11.addParameter(name='attr_data', value='dataPP_POW') | |||
|
124 | opObj11.addParameter(name='colormap', value='jet') | |||
|
125 | opObj11.addParameter(name='xmin', value=xmin) | |||
|
126 | opObj11.addParameter(name='xmax', value=xmax) | |||
|
127 | opObj11.addParameter(name='zmin', value=dBmin) | |||
|
128 | opObj11.addParameter(name='zmax', value=dBmax) | |||
|
129 | opObj11.addParameter(name='save', value=figpath_pp) | |||
|
130 | opObj11.addParameter(name='showprofile', value=0) | |||
|
131 | opObj11.addParameter(name='save_period', value=50) | |||
|
132 | ||||
|
133 | ####################### METODO ESCRITURA ####################################################################### | |||
|
134 | if save==1: | |||
|
135 | opObj10 = procUnitConfObjB.addOperation(name='HDFWriter') | |||
|
136 | opObj10.addParameter(name='path',value=path_save) | |||
|
137 | #opObj10.addParameter(name='mode',value=0) | |||
|
138 | opObj10.addParameter(name='blocksPerFile',value='100',format='int') | |||
|
139 | opObj10.addParameter(name='metadataList',value='utctimeInit,timeZone,paramInterval,profileIndex,channelList,heightList,flagDataAsBlock',format='list') | |||
|
140 | opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,utctime',format='list')#,format='list' | |||
|
141 | if integration==1: | |||
|
142 | V=10 | |||
|
143 | blocksPerfile=360 | |||
|
144 | print("* Velocidad del Pedestal:",V) | |||
|
145 | tmp_blocksPerfile = 100 | |||
|
146 | f_a_p= int(tmp_blocksPerfile/V) | |||
|
147 | ||||
|
148 | opObj11 = procUnitConfObjB.addOperation(name='PedestalInformation') | |||
|
149 | opObj11.addParameter(name='path_ped', value=path_ped) | |||
|
150 | #opObj11.addParameter(name='path_adq', value=path_adq) | |||
|
151 | opObj11.addParameter(name='t_Interval_p', value='0.01', format='float') | |||
|
152 | opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int') | |||
|
153 | opObj11.addParameter(name='n_Muestras_p', value='100', format='float') | |||
|
154 | opObj11.addParameter(name='f_a_p', value=f_a_p, format='int') | |||
|
155 | opObj11.addParameter(name='online', value='0', format='int') | |||
|
156 | ||||
|
157 | opObj11 = procUnitConfObjB.addOperation(name='Block360') | |||
|
158 | opObj11.addParameter(name='n', value='10', format='int') | |||
|
159 | opObj11.addParameter(name='mode', value=mode, format='int') | |||
|
160 | ||||
|
161 | # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180 | |||
|
162 | ||||
|
163 | opObj11= procUnitConfObjB.addOperation(name='WeatherPlot',optype='other') | |||
|
164 | ||||
|
165 | ||||
|
166 | else: | |||
|
167 | ####################### METODO SPECTROS ###################################################################### | |||
|
168 | procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) | |||
|
169 | procUnitConfObjB.addParameter(name='nFFTPoints', value=n, format='int') | |||
|
170 | procUnitConfObjB.addParameter(name='nProfiles' , value=n, format='int') | |||
|
171 | ||||
|
172 | procUnitConfObjC = controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjB.getId()) | |||
|
173 | procUnitConfObjC.addOperation(name='SpectralMoments') | |||
|
174 | if plot==1: | |||
|
175 | dBmin = '1' | |||
|
176 | dBmax = '65' | |||
|
177 | opObj11 = procUnitConfObjC.addOperation(name='PowerPlot',optype='external') | |||
|
178 | opObj11.addParameter(name='xmin', value=xmin) | |||
|
179 | opObj11.addParameter(name='xmax', value=xmax) | |||
|
180 | opObj11.addParameter(name='zmin', value=dBmin) | |||
|
181 | opObj11.addParameter(name='zmax', value=dBmax) | |||
|
182 | opObj11.addParameter(name='save', value=figpath_mom) | |||
|
183 | opObj11.addParameter(name='showprofile', value=0) | |||
|
184 | opObj11.addParameter(name='save_period', value=100) | |||
|
185 | ||||
|
186 | if save==1: | |||
|
187 | opObj10 = procUnitConfObjC.addOperation(name='HDFWriter') | |||
|
188 | opObj10.addParameter(name='path',value=path_save) | |||
|
189 | #opObj10.addParameter(name='mode',value=0) | |||
|
190 | opObj10.addParameter(name='blocksPerFile',value='360',format='int') | |||
|
191 | #opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex | |||
|
192 | opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex | |||
|
193 | opObj10.addParameter(name='dataList',value='data_pow,data_dop,utctime',format='list')#,format='list' | |||
|
194 | ||||
|
195 | if integration==1: | |||
|
196 | V=10 | |||
|
197 | blocksPerfile=360 | |||
|
198 | print("* Velocidad del Pedestal:",V) | |||
|
199 | tmp_blocksPerfile = 100 | |||
|
200 | f_a_p= int(tmp_blocksPerfile/V) | |||
|
201 | ||||
|
202 | opObj11 = procUnitConfObjC.addOperation(name='PedestalInformation') | |||
|
203 | opObj11.addParameter(name='path_ped', value=path_ped) | |||
|
204 | #opObj11.addParameter(name='path_adq', value=path_adq) | |||
|
205 | opObj11.addParameter(name='t_Interval_p', value='0.01', format='float') | |||
|
206 | opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int') | |||
|
207 | opObj11.addParameter(name='n_Muestras_p', value='100', format='float') | |||
|
208 | opObj11.addParameter(name='f_a_p', value=f_a_p, format='int') | |||
|
209 | opObj11.addParameter(name='online', value='0', format='int') | |||
|
210 | ||||
|
211 | opObj11 = procUnitConfObjC.addOperation(name='Block360') | |||
|
212 | opObj11.addParameter(name='n', value='30', format='int') | |||
|
213 | opObj11.addParameter(name='mode', value=mode, format='int') | |||
|
214 | ||||
|
215 | # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180 | |||
|
216 | opObj11= procUnitConfObjC.addOperation(name='WeatherPlot',optype='other') | |||
|
217 | controllerObj.start() |
@@ -0,0 +1,13 | |||||
|
1 | ||||
|
2 | PULSE PAIR | |||
|
3 | help [[1.364 1.376 1.28 ... 1.352 1.372 1.332] | |||
|
4 | [2.912 3.012 3.06 ... 3.056 2.6 2.936]] | |||
|
5 | help [[1.256 1.304 1.212 ... 1.228 1.328 1.528] | |||
|
6 | [2.744 2.604 2.492 ... 2.544 2.916 2.644]] | |||
|
7 | help [[1.176 1.248 1.48 ... 1.388 1.396 1.216] | |||
|
8 | [2.564 2.524 2.756 ... 2.772 2.7 2.684]] | |||
|
9 | ||||
|
10 | help [[1.312 1.328 1.28 ... 1.28 1.444 1.532] | |||
|
11 | [3. 2.964 3.092 ... 3.104 3.016 2.984]] | |||
|
12 | ||||
|
13 | MOMENTOS |
@@ -0,0 +1,69 | |||||
|
1 | # Ing. AVP | |||
|
2 | # 06/10/2021 | |||
|
3 | # ARCHIVO DE LECTURA | |||
|
4 | import os, sys | |||
|
5 | import datetime | |||
|
6 | import time | |||
|
7 | from schainpy.controller import Project | |||
|
8 | ||||
|
9 | print("SETUP- RADAR METEOROLOGICO") | |||
|
10 | V = 10 | |||
|
11 | ####################################################################### | |||
|
12 | ################# RANGO DE PLOTEO###################################### | |||
|
13 | dBmin = '1' | |||
|
14 | dBmax = '65' | |||
|
15 | xmin = '13.2' | |||
|
16 | xmax = '13.5' | |||
|
17 | ymin = '0' | |||
|
18 | ymax = '60' | |||
|
19 | ||||
|
20 | path = '/DATA_RM/WR_20_OCT' | |||
|
21 | figpath_pp = "/home/soporte/Pictures/TEST_PP" | |||
|
22 | ||||
|
23 | ||||
|
24 | IPP=400*1e-6 | |||
|
25 | n= int(1/(V*IPP)) | |||
|
26 | #n=250 | |||
|
27 | print("* n - NRO Perfiles Proc:", n ) | |||
|
28 | ||||
|
29 | desc = "USRP_test" | |||
|
30 | filename = "USRP_processing.xml" | |||
|
31 | controllerObj = Project() | |||
|
32 | controllerObj.setup(id = '191', name='Test_USRP', description=desc) | |||
|
33 | ####################################################################### | |||
|
34 | ######################## UNIDAD DE LECTURA############################# | |||
|
35 | ####################################################################### | |||
|
36 | readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader', | |||
|
37 | path=path, | |||
|
38 | startDate="2021/01/01",#today, | |||
|
39 | endDate="2021/12/30",#today, | |||
|
40 | startTime='00:00:00', | |||
|
41 | endTime='23:59:59', | |||
|
42 | delay=0, | |||
|
43 | #set=0, | |||
|
44 | online=0, | |||
|
45 | walk=1, | |||
|
46 | ippKm = 60) | |||
|
47 | ||||
|
48 | opObj11 = readUnitConfObj.addOperation(name='printInfo') | |||
|
49 | ||||
|
50 | procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) | |||
|
51 | ||||
|
52 | opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other') | |||
|
53 | opObj11.addParameter(name='n', value=int(n), format='int')#10 VOY A USAR 250 DADO QUE LA VELOCIDAD ES 10 GRADOS | |||
|
54 | #opObj11.addParameter(name='removeDC', value=1, format='int') | |||
|
55 | ||||
|
56 | procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId()) | |||
|
57 | ||||
|
58 | opObj11 = procUnitConfObjB.addOperation(name='GenericRTIPlot',optype='external') | |||
|
59 | opObj11.addParameter(name='attr_data', value='dataPP_POWER') | |||
|
60 | opObj11.addParameter(name='colormap', value='jet') | |||
|
61 | opObj11.addParameter(name='xmin', value=xmin) | |||
|
62 | opObj11.addParameter(name='xmax', value=xmax) | |||
|
63 | opObj11.addParameter(name='zmin', value=dBmin) | |||
|
64 | opObj11.addParameter(name='zmax', value=dBmax) | |||
|
65 | opObj11.addParameter(name='save', value=figpath_pp) | |||
|
66 | opObj11.addParameter(name='showprofile', value=0) | |||
|
67 | #opObj11.addParameter(name='save_period', value=10) | |||
|
68 | ||||
|
69 | controllerObj.start() |
@@ -0,0 +1,80 | |||||
|
1 | # Ing. AVP | |||
|
2 | # 06/10/2021 | |||
|
3 | # ARCHIVO DE LECTURA | |||
|
4 | import os, sys | |||
|
5 | import datetime | |||
|
6 | import time | |||
|
7 | from schainpy.controller import Project | |||
|
8 | ||||
|
9 | print("SETUP- RADAR METEOROLOGICO") | |||
|
10 | V = 10 | |||
|
11 | ####################################################################### | |||
|
12 | ################# RANGO DE PLOTEO###################################### | |||
|
13 | dBmin = '1' | |||
|
14 | dBmax = '65' | |||
|
15 | xmin = '13.2' | |||
|
16 | xmax = '13.5' | |||
|
17 | ymin = '0' | |||
|
18 | ymax = '60' | |||
|
19 | ||||
|
20 | path = '/DATA_RM/WR_20_OCT' | |||
|
21 | figpath_spec = "/home/soporte/Pictures/TEST_MOM" | |||
|
22 | ||||
|
23 | ||||
|
24 | IPP=400*1e-6 | |||
|
25 | n= int(1/(V*IPP)) | |||
|
26 | print("* n - NRO Perfiles Proc:", n ) | |||
|
27 | time.sleep(5) | |||
|
28 | desc = "USRP_test" | |||
|
29 | filename = "USRP_processing.xml" | |||
|
30 | controllerObj = Project() | |||
|
31 | controllerObj.setup(id = '191', name='Test_USRP', description=desc) | |||
|
32 | ####################################################################### | |||
|
33 | ######################## UNIDAD DE LECTURA############################# | |||
|
34 | ####################################################################### | |||
|
35 | readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader', | |||
|
36 | path=path, | |||
|
37 | startDate="2021/01/01",#today, | |||
|
38 | endDate="2021/12/30",#today, | |||
|
39 | startTime='00:00:00', | |||
|
40 | endTime='23:59:59', | |||
|
41 | delay=0, | |||
|
42 | #set=0, | |||
|
43 | online=0, | |||
|
44 | walk=1, | |||
|
45 | ippKm = 60) | |||
|
46 | ||||
|
47 | opObj11 = readUnitConfObj.addOperation(name='printInfo') | |||
|
48 | ||||
|
49 | procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) | |||
|
50 | ||||
|
51 | procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) | |||
|
52 | procUnitConfObjB.addParameter(name='nFFTPoints', value=n, format='int') | |||
|
53 | procUnitConfObjB.addParameter(name='nProfiles' , value=n, format='int') | |||
|
54 | ''' | |||
|
55 | opObj11 = procUnitConfObjB.addOperation(name='RTIPlot', optype='external') | |||
|
56 | #.addParameter(name='id', value='2', format='int') | |||
|
57 | opObj11.addParameter(name='wintitle', value='RTIPlot', format='str') | |||
|
58 | opObj11.addParameter(name='xmin', value=xmin) | |||
|
59 | opObj11.addParameter(name='xmax', value=xmax) | |||
|
60 | opObj11.addParameter(name='zmin', value=dBmin, format='int') | |||
|
61 | opObj11.addParameter(name='zmax', value=dBmax, format='int') | |||
|
62 | ''' | |||
|
63 | #opObj13 = procUnitConfObjB.addOperation(name='removeDC') | |||
|
64 | #opObj13.addParameter(name='mode', value='2', format='int') | |||
|
65 | ||||
|
66 | procUnitConfObjC = controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjB.getId()) | |||
|
67 | procUnitConfObjC.addOperation(name='SpectralMoments') | |||
|
68 | ||||
|
69 | dBmin = '1' | |||
|
70 | dBmax = '65' | |||
|
71 | opObj11 = procUnitConfObjC.addOperation(name='PowerPlot',optype='external') | |||
|
72 | opObj11.addParameter(name='xmin', value=xmin) | |||
|
73 | opObj11.addParameter(name='xmax', value=xmax) | |||
|
74 | opObj11.addParameter(name='zmin', value=dBmin) | |||
|
75 | opObj11.addParameter(name='zmax', value=dBmax) | |||
|
76 | opObj11.addParameter(name='save', value=figpath_spec) | |||
|
77 | opObj11.addParameter(name='showprofile', value=0) | |||
|
78 | #opObj11.addParameter(name='save_period', value=10) | |||
|
79 | ||||
|
80 | controllerObj.start() |
@@ -1,1069 +1,1068 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Definition of diferent Data objects for different types of data |
|
5 | """Definition of diferent Data objects for different types of data | |
6 |
|
6 | |||
7 | Here you will find the diferent data objects for the different types |
|
7 | Here you will find the diferent data objects for the different types | |
8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
8 | of data, this data objects must be used as dataIn or dataOut objects in | |
9 | processing units and operations. Currently the supported data objects are: |
|
9 | processing units and operations. Currently the supported data objects are: | |
10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters | |
11 | """ |
|
11 | """ | |
12 |
|
12 | |||
13 | import copy |
|
13 | import copy | |
14 | import numpy |
|
14 | import numpy | |
15 | import datetime |
|
15 | import datetime | |
16 | import json |
|
16 | import json | |
17 |
|
17 | |||
18 | import schainpy.admin |
|
18 | import schainpy.admin | |
19 | from schainpy.utils import log |
|
19 | from schainpy.utils import log | |
20 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
20 | from .jroheaderIO import SystemHeader, RadarControllerHeader | |
21 | from schainpy.model.data import _noise |
|
21 | from schainpy.model.data import _noise | |
22 |
|
22 | |||
23 |
|
23 | |||
24 | def getNumpyDtype(dataTypeCode): |
|
24 | def getNumpyDtype(dataTypeCode): | |
25 |
|
25 | |||
26 | if dataTypeCode == 0: |
|
26 | if dataTypeCode == 0: | |
27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) | |
28 | elif dataTypeCode == 1: |
|
28 | elif dataTypeCode == 1: | |
29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) | |
30 | elif dataTypeCode == 2: |
|
30 | elif dataTypeCode == 2: | |
31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) | |
32 | elif dataTypeCode == 3: |
|
32 | elif dataTypeCode == 3: | |
33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) | |
34 | elif dataTypeCode == 4: |
|
34 | elif dataTypeCode == 4: | |
35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
36 | elif dataTypeCode == 5: |
|
36 | elif dataTypeCode == 5: | |
37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) | |
38 | else: |
|
38 | else: | |
39 | raise ValueError('dataTypeCode was not defined') |
|
39 | raise ValueError('dataTypeCode was not defined') | |
40 |
|
40 | |||
41 | return numpyDtype |
|
41 | return numpyDtype | |
42 |
|
42 | |||
43 |
|
43 | |||
44 | def getDataTypeCode(numpyDtype): |
|
44 | def getDataTypeCode(numpyDtype): | |
45 |
|
45 | |||
46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): | |
47 | datatype = 0 |
|
47 | datatype = 0 | |
48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): | |
49 | datatype = 1 |
|
49 | datatype = 1 | |
50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): | |
51 | datatype = 2 |
|
51 | datatype = 2 | |
52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): | |
53 | datatype = 3 |
|
53 | datatype = 3 | |
54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): | |
55 | datatype = 4 |
|
55 | datatype = 4 | |
56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): | |
57 | datatype = 5 |
|
57 | datatype = 5 | |
58 | else: |
|
58 | else: | |
59 | datatype = None |
|
59 | datatype = None | |
60 |
|
60 | |||
61 | return datatype |
|
61 | return datatype | |
62 |
|
62 | |||
63 |
|
63 | |||
64 | def hildebrand_sekhon(data, navg): |
|
64 | def hildebrand_sekhon(data, navg): | |
65 | """ |
|
65 | """ | |
66 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
66 | This method is for the objective determination of the noise level in Doppler spectra. This | |
67 | implementation technique is based on the fact that the standard deviation of the spectral |
|
67 | implementation technique is based on the fact that the standard deviation of the spectral | |
68 | densities is equal to the mean spectral density for white Gaussian noise |
|
68 | densities is equal to the mean spectral density for white Gaussian noise | |
69 |
|
69 | |||
70 | Inputs: |
|
70 | Inputs: | |
71 | Data : heights |
|
71 | Data : heights | |
72 | navg : numbers of averages |
|
72 | navg : numbers of averages | |
73 |
|
73 | |||
74 | Return: |
|
74 | Return: | |
75 | mean : noise's level |
|
75 | mean : noise's level | |
76 | """ |
|
76 | """ | |
77 |
|
77 | |||
78 | sortdata = numpy.sort(data, axis=None) |
|
78 | sortdata = numpy.sort(data, axis=None) | |
79 | ''' |
|
79 | ''' | |
80 | lenOfData = len(sortdata) |
|
80 | lenOfData = len(sortdata) | |
81 | nums_min = lenOfData*0.2 |
|
81 | nums_min = lenOfData*0.2 | |
82 |
|
82 | |||
83 | if nums_min <= 5: |
|
83 | if nums_min <= 5: | |
84 |
|
84 | |||
85 | nums_min = 5 |
|
85 | nums_min = 5 | |
86 |
|
86 | |||
87 | sump = 0. |
|
87 | sump = 0. | |
88 | sumq = 0. |
|
88 | sumq = 0. | |
89 |
|
89 | |||
90 | j = 0 |
|
90 | j = 0 | |
91 | cont = 1 |
|
91 | cont = 1 | |
92 |
|
92 | |||
93 | while((cont == 1)and(j < lenOfData)): |
|
93 | while((cont == 1)and(j < lenOfData)): | |
94 |
|
94 | |||
95 | sump += sortdata[j] |
|
95 | sump += sortdata[j] | |
96 | sumq += sortdata[j]**2 |
|
96 | sumq += sortdata[j]**2 | |
97 |
|
97 | |||
98 | if j > nums_min: |
|
98 | if j > nums_min: | |
99 | rtest = float(j)/(j-1) + 1.0/navg |
|
99 | rtest = float(j)/(j-1) + 1.0/navg | |
100 | if ((sumq*j) > (rtest*sump**2)): |
|
100 | if ((sumq*j) > (rtest*sump**2)): | |
101 | j = j - 1 |
|
101 | j = j - 1 | |
102 | sump = sump - sortdata[j] |
|
102 | sump = sump - sortdata[j] | |
103 | sumq = sumq - sortdata[j]**2 |
|
103 | sumq = sumq - sortdata[j]**2 | |
104 | cont = 0 |
|
104 | cont = 0 | |
105 |
|
105 | |||
106 | j += 1 |
|
106 | j += 1 | |
107 |
|
107 | |||
108 | lnoise = sump / j |
|
108 | lnoise = sump / j | |
109 | ''' |
|
109 | ''' | |
110 | return _noise.hildebrand_sekhon(sortdata, navg) |
|
110 | return _noise.hildebrand_sekhon(sortdata, navg) | |
111 |
|
111 | |||
112 |
|
112 | |||
113 | class Beam: |
|
113 | class Beam: | |
114 |
|
114 | |||
115 | def __init__(self): |
|
115 | def __init__(self): | |
116 | self.codeList = [] |
|
116 | self.codeList = [] | |
117 | self.azimuthList = [] |
|
117 | self.azimuthList = [] | |
118 | self.zenithList = [] |
|
118 | self.zenithList = [] | |
119 |
|
119 | |||
120 |
|
120 | |||
121 | class GenericData(object): |
|
121 | class GenericData(object): | |
122 |
|
122 | |||
123 | flagNoData = True |
|
123 | flagNoData = True | |
124 |
|
124 | |||
125 | def copy(self, inputObj=None): |
|
125 | def copy(self, inputObj=None): | |
126 |
|
126 | |||
127 | if inputObj == None: |
|
127 | if inputObj == None: | |
128 | return copy.deepcopy(self) |
|
128 | return copy.deepcopy(self) | |
129 |
|
129 | |||
130 | for key in list(inputObj.__dict__.keys()): |
|
130 | for key in list(inputObj.__dict__.keys()): | |
131 |
|
131 | |||
132 | attribute = inputObj.__dict__[key] |
|
132 | attribute = inputObj.__dict__[key] | |
133 |
|
133 | |||
134 | # If this attribute is a tuple or list |
|
134 | # If this attribute is a tuple or list | |
135 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
135 | if type(inputObj.__dict__[key]) in (tuple, list): | |
136 | self.__dict__[key] = attribute[:] |
|
136 | self.__dict__[key] = attribute[:] | |
137 | continue |
|
137 | continue | |
138 |
|
138 | |||
139 | # If this attribute is another object or instance |
|
139 | # If this attribute is another object or instance | |
140 | if hasattr(attribute, '__dict__'): |
|
140 | if hasattr(attribute, '__dict__'): | |
141 | self.__dict__[key] = attribute.copy() |
|
141 | self.__dict__[key] = attribute.copy() | |
142 | continue |
|
142 | continue | |
143 |
|
143 | |||
144 | self.__dict__[key] = inputObj.__dict__[key] |
|
144 | self.__dict__[key] = inputObj.__dict__[key] | |
145 |
|
145 | |||
146 | def deepcopy(self): |
|
146 | def deepcopy(self): | |
147 |
|
147 | |||
148 | return copy.deepcopy(self) |
|
148 | return copy.deepcopy(self) | |
149 |
|
149 | |||
150 | def isEmpty(self): |
|
150 | def isEmpty(self): | |
151 |
|
151 | |||
152 | return self.flagNoData |
|
152 | return self.flagNoData | |
153 |
|
153 | |||
154 | def isReady(self): |
|
154 | def isReady(self): | |
155 |
|
155 | |||
156 | return not self.flagNoData |
|
156 | return not self.flagNoData | |
157 |
|
157 | |||
158 |
|
158 | |||
159 | class JROData(GenericData): |
|
159 | class JROData(GenericData): | |
160 |
|
160 | |||
161 | systemHeaderObj = SystemHeader() |
|
161 | systemHeaderObj = SystemHeader() | |
162 | radarControllerHeaderObj = RadarControllerHeader() |
|
162 | radarControllerHeaderObj = RadarControllerHeader() | |
163 | type = None |
|
163 | type = None | |
164 | datatype = None # dtype but in string |
|
164 | datatype = None # dtype but in string | |
165 | nProfiles = None |
|
165 | nProfiles = None | |
166 | heightList = None |
|
166 | heightList = None | |
167 | channelList = None |
|
167 | channelList = None | |
168 | flagDiscontinuousBlock = False |
|
168 | flagDiscontinuousBlock = False | |
169 | useLocalTime = False |
|
169 | useLocalTime = False | |
170 | utctime = None |
|
170 | utctime = None | |
171 | timeZone = None |
|
171 | timeZone = None | |
172 | dstFlag = None |
|
172 | dstFlag = None | |
173 | errorCount = None |
|
173 | errorCount = None | |
174 | blocksize = None |
|
174 | blocksize = None | |
175 | flagDecodeData = False # asumo q la data no esta decodificada |
|
175 | flagDecodeData = False # asumo q la data no esta decodificada | |
176 | flagDeflipData = False # asumo q la data no esta sin flip |
|
176 | flagDeflipData = False # asumo q la data no esta sin flip | |
177 | flagShiftFFT = False |
|
177 | flagShiftFFT = False | |
178 | nCohInt = None |
|
178 | nCohInt = None | |
179 | windowOfFilter = 1 |
|
179 | windowOfFilter = 1 | |
180 | C = 3e8 |
|
180 | C = 3e8 | |
181 | frequency = 49.92e6 |
|
181 | frequency = 49.92e6 | |
182 | realtime = False |
|
182 | realtime = False | |
183 | beacon_heiIndexList = None |
|
183 | beacon_heiIndexList = None | |
184 | last_block = None |
|
184 | last_block = None | |
185 | blocknow = None |
|
185 | blocknow = None | |
186 | azimuth = None |
|
186 | azimuth = None | |
187 | zenith = None |
|
187 | zenith = None | |
188 | beam = Beam() |
|
188 | beam = Beam() | |
189 | profileIndex = None |
|
189 | profileIndex = None | |
190 | error = None |
|
190 | error = None | |
191 | data = None |
|
191 | data = None | |
192 | nmodes = None |
|
192 | nmodes = None | |
193 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
193 | metadata_list = ['heightList', 'timeZone', 'type'] | |
194 |
|
194 | |||
195 | def __str__(self): |
|
195 | def __str__(self): | |
196 |
|
196 | |||
197 | return '{} - {}'.format(self.type, self.datatime()) |
|
197 | return '{} - {}'.format(self.type, self.datatime()) | |
198 |
|
198 | |||
199 | def getNoise(self): |
|
199 | def getNoise(self): | |
200 |
|
200 | |||
201 | raise NotImplementedError |
|
201 | raise NotImplementedError | |
202 |
|
202 | |||
203 | @property |
|
203 | @property | |
204 | def nChannels(self): |
|
204 | def nChannels(self): | |
205 |
|
205 | |||
206 | return len(self.channelList) |
|
206 | return len(self.channelList) | |
207 |
|
207 | |||
208 | @property |
|
208 | @property | |
209 | def channelIndexList(self): |
|
209 | def channelIndexList(self): | |
210 |
|
210 | |||
211 | return list(range(self.nChannels)) |
|
211 | return list(range(self.nChannels)) | |
212 |
|
212 | |||
213 | @property |
|
213 | @property | |
214 | def nHeights(self): |
|
214 | def nHeights(self): | |
215 |
|
215 | |||
216 | return len(self.heightList) |
|
216 | return len(self.heightList) | |
217 |
|
217 | |||
218 | def getDeltaH(self): |
|
218 | def getDeltaH(self): | |
219 |
|
219 | |||
220 | return self.heightList[1] - self.heightList[0] |
|
220 | return self.heightList[1] - self.heightList[0] | |
221 |
|
221 | |||
222 | @property |
|
222 | @property | |
223 | def ltctime(self): |
|
223 | def ltctime(self): | |
224 |
|
224 | |||
225 | if self.useLocalTime: |
|
225 | if self.useLocalTime: | |
226 | return self.utctime - self.timeZone * 60 |
|
226 | return self.utctime - self.timeZone * 60 | |
227 |
|
227 | |||
228 | return self.utctime |
|
228 | return self.utctime | |
229 |
|
229 | |||
230 | @property |
|
230 | @property | |
231 | def datatime(self): |
|
231 | def datatime(self): | |
232 |
|
232 | |||
233 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
233 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) | |
234 | return datatimeValue |
|
234 | return datatimeValue | |
235 |
|
235 | |||
236 | def getTimeRange(self): |
|
236 | def getTimeRange(self): | |
237 |
|
237 | |||
238 | datatime = [] |
|
238 | datatime = [] | |
239 |
|
239 | |||
240 | datatime.append(self.ltctime) |
|
240 | datatime.append(self.ltctime) | |
241 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
241 | datatime.append(self.ltctime + self.timeInterval + 1) | |
242 |
|
242 | |||
243 | datatime = numpy.array(datatime) |
|
243 | datatime = numpy.array(datatime) | |
244 |
|
244 | |||
245 | return datatime |
|
245 | return datatime | |
246 |
|
246 | |||
247 | def getFmaxTimeResponse(self): |
|
247 | def getFmaxTimeResponse(self): | |
248 |
|
248 | |||
249 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
249 | period = (10**-6) * self.getDeltaH() / (0.15) | |
250 |
|
250 | |||
251 | PRF = 1. / (period * self.nCohInt) |
|
251 | PRF = 1. / (period * self.nCohInt) | |
252 |
|
252 | |||
253 | fmax = PRF |
|
253 | fmax = PRF | |
254 |
|
254 | |||
255 | return fmax |
|
255 | return fmax | |
256 |
|
256 | |||
257 | def getFmax(self): |
|
257 | def getFmax(self): | |
258 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
258 | PRF = 1. / (self.ippSeconds * self.nCohInt) | |
259 |
|
259 | |||
260 | fmax = PRF |
|
260 | fmax = PRF | |
261 | return fmax |
|
261 | return fmax | |
262 |
|
262 | |||
263 | def getVmax(self): |
|
263 | def getVmax(self): | |
264 |
|
264 | |||
265 | _lambda = self.C / self.frequency |
|
265 | _lambda = self.C / self.frequency | |
266 |
|
266 | |||
267 | vmax = self.getFmax() * _lambda / 2 |
|
267 | vmax = self.getFmax() * _lambda / 2 | |
268 |
|
268 | |||
269 | return vmax |
|
269 | return vmax | |
270 |
|
270 | |||
271 | @property |
|
271 | @property | |
272 | def ippSeconds(self): |
|
272 | def ippSeconds(self): | |
273 | ''' |
|
273 | ''' | |
274 | ''' |
|
274 | ''' | |
275 | return self.radarControllerHeaderObj.ippSeconds |
|
275 | return self.radarControllerHeaderObj.ippSeconds | |
276 |
|
276 | |||
277 | @ippSeconds.setter |
|
277 | @ippSeconds.setter | |
278 | def ippSeconds(self, ippSeconds): |
|
278 | def ippSeconds(self, ippSeconds): | |
279 | ''' |
|
279 | ''' | |
280 | ''' |
|
280 | ''' | |
281 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
281 | self.radarControllerHeaderObj.ippSeconds = ippSeconds | |
282 |
|
282 | |||
283 | @property |
|
283 | @property | |
284 | def code(self): |
|
284 | def code(self): | |
285 | ''' |
|
285 | ''' | |
286 | ''' |
|
286 | ''' | |
287 | return self.radarControllerHeaderObj.code |
|
287 | return self.radarControllerHeaderObj.code | |
288 |
|
288 | |||
289 | @code.setter |
|
289 | @code.setter | |
290 | def code(self, code): |
|
290 | def code(self, code): | |
291 | ''' |
|
291 | ''' | |
292 | ''' |
|
292 | ''' | |
293 | self.radarControllerHeaderObj.code = code |
|
293 | self.radarControllerHeaderObj.code = code | |
294 |
|
294 | |||
295 | @property |
|
295 | @property | |
296 | def nCode(self): |
|
296 | def nCode(self): | |
297 | ''' |
|
297 | ''' | |
298 | ''' |
|
298 | ''' | |
299 | return self.radarControllerHeaderObj.nCode |
|
299 | return self.radarControllerHeaderObj.nCode | |
300 |
|
300 | |||
301 | @nCode.setter |
|
301 | @nCode.setter | |
302 | def nCode(self, ncode): |
|
302 | def nCode(self, ncode): | |
303 | ''' |
|
303 | ''' | |
304 | ''' |
|
304 | ''' | |
305 | self.radarControllerHeaderObj.nCode = ncode |
|
305 | self.radarControllerHeaderObj.nCode = ncode | |
306 |
|
306 | |||
307 | @property |
|
307 | @property | |
308 | def nBaud(self): |
|
308 | def nBaud(self): | |
309 | ''' |
|
309 | ''' | |
310 | ''' |
|
310 | ''' | |
311 | return self.radarControllerHeaderObj.nBaud |
|
311 | return self.radarControllerHeaderObj.nBaud | |
312 |
|
312 | |||
313 | @nBaud.setter |
|
313 | @nBaud.setter | |
314 | def nBaud(self, nbaud): |
|
314 | def nBaud(self, nbaud): | |
315 | ''' |
|
315 | ''' | |
316 | ''' |
|
316 | ''' | |
317 | self.radarControllerHeaderObj.nBaud = nbaud |
|
317 | self.radarControllerHeaderObj.nBaud = nbaud | |
318 |
|
318 | |||
319 | @property |
|
319 | @property | |
320 | def ipp(self): |
|
320 | def ipp(self): | |
321 | ''' |
|
321 | ''' | |
322 | ''' |
|
322 | ''' | |
323 | return self.radarControllerHeaderObj.ipp |
|
323 | return self.radarControllerHeaderObj.ipp | |
324 |
|
324 | |||
325 | @ipp.setter |
|
325 | @ipp.setter | |
326 | def ipp(self, ipp): |
|
326 | def ipp(self, ipp): | |
327 | ''' |
|
327 | ''' | |
328 | ''' |
|
328 | ''' | |
329 | self.radarControllerHeaderObj.ipp = ipp |
|
329 | self.radarControllerHeaderObj.ipp = ipp | |
330 |
|
330 | |||
331 | @property |
|
331 | @property | |
332 | def metadata(self): |
|
332 | def metadata(self): | |
333 | ''' |
|
333 | ''' | |
334 | ''' |
|
334 | ''' | |
335 |
|
335 | |||
336 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
336 | return {attr: getattr(self, attr) for attr in self.metadata_list} | |
337 |
|
337 | |||
338 |
|
338 | |||
339 | class Voltage(JROData): |
|
339 | class Voltage(JROData): | |
340 |
|
340 | |||
341 | dataPP_POW = None |
|
341 | dataPP_POW = None | |
342 | dataPP_DOP = None |
|
342 | dataPP_DOP = None | |
343 | dataPP_WIDTH = None |
|
343 | dataPP_WIDTH = None | |
344 | dataPP_SNR = None |
|
344 | dataPP_SNR = None | |
345 |
|
345 | |||
346 | def __init__(self): |
|
346 | def __init__(self): | |
347 | ''' |
|
347 | ''' | |
348 | Constructor |
|
348 | Constructor | |
349 | ''' |
|
349 | ''' | |
350 |
|
350 | |||
351 | self.useLocalTime = True |
|
351 | self.useLocalTime = True | |
352 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
352 | self.radarControllerHeaderObj = RadarControllerHeader() | |
353 | self.systemHeaderObj = SystemHeader() |
|
353 | self.systemHeaderObj = SystemHeader() | |
354 | self.type = "Voltage" |
|
354 | self.type = "Voltage" | |
355 | self.data = None |
|
355 | self.data = None | |
356 | self.nProfiles = None |
|
356 | self.nProfiles = None | |
357 | self.heightList = None |
|
357 | self.heightList = None | |
358 | self.channelList = None |
|
358 | self.channelList = None | |
359 | self.flagNoData = True |
|
359 | self.flagNoData = True | |
360 | self.flagDiscontinuousBlock = False |
|
360 | self.flagDiscontinuousBlock = False | |
361 | self.utctime = None |
|
361 | self.utctime = None | |
362 | self.timeZone = 0 |
|
362 | self.timeZone = 0 | |
363 | self.dstFlag = None |
|
363 | self.dstFlag = None | |
364 | self.errorCount = None |
|
364 | self.errorCount = None | |
365 | self.nCohInt = None |
|
365 | self.nCohInt = None | |
366 | self.blocksize = None |
|
366 | self.blocksize = None | |
367 | self.flagCohInt = False |
|
367 | self.flagCohInt = False | |
368 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
368 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
369 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
369 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
370 | self.flagShiftFFT = False |
|
370 | self.flagShiftFFT = False | |
371 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
371 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil | |
372 | self.profileIndex = 0 |
|
372 | self.profileIndex = 0 | |
373 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
373 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', | |
374 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
374 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] | |
375 |
|
375 | |||
376 | def getNoisebyHildebrand(self, channel=None): |
|
376 | def getNoisebyHildebrand(self, channel=None): | |
377 | """ |
|
377 | """ | |
378 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
378 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
379 |
|
379 | |||
380 | Return: |
|
380 | Return: | |
381 | noiselevel |
|
381 | noiselevel | |
382 | """ |
|
382 | """ | |
383 |
|
383 | |||
384 | if channel != None: |
|
384 | if channel != None: | |
385 | data = self.data[channel] |
|
385 | data = self.data[channel] | |
386 | nChannels = 1 |
|
386 | nChannels = 1 | |
387 | else: |
|
387 | else: | |
388 | data = self.data |
|
388 | data = self.data | |
389 | nChannels = self.nChannels |
|
389 | nChannels = self.nChannels | |
390 |
|
390 | |||
391 | noise = numpy.zeros(nChannels) |
|
391 | noise = numpy.zeros(nChannels) | |
392 | power = data * numpy.conjugate(data) |
|
392 | power = data * numpy.conjugate(data) | |
393 |
|
393 | |||
394 | for thisChannel in range(nChannels): |
|
394 | for thisChannel in range(nChannels): | |
395 | if nChannels == 1: |
|
395 | if nChannels == 1: | |
396 | daux = power[:].real |
|
396 | daux = power[:].real | |
397 | else: |
|
397 | else: | |
398 | daux = power[thisChannel, :].real |
|
398 | daux = power[thisChannel, :].real | |
399 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
399 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) | |
400 |
|
400 | |||
401 | return noise |
|
401 | return noise | |
402 |
|
402 | |||
403 | def getNoise(self, type=1, channel=None): |
|
403 | def getNoise(self, type=1, channel=None): | |
404 |
|
404 | |||
405 | if type == 1: |
|
405 | if type == 1: | |
406 | noise = self.getNoisebyHildebrand(channel) |
|
406 | noise = self.getNoisebyHildebrand(channel) | |
407 |
|
407 | |||
408 | return noise |
|
408 | return noise | |
409 |
|
409 | |||
410 | def getPower(self, channel=None): |
|
410 | def getPower(self, channel=None): | |
411 |
|
411 | |||
412 | if channel != None: |
|
412 | if channel != None: | |
413 | data = self.data[channel] |
|
413 | data = self.data[channel] | |
414 | else: |
|
414 | else: | |
415 | data = self.data |
|
415 | data = self.data | |
416 |
|
416 | |||
417 | power = data * numpy.conjugate(data) |
|
417 | power = data * numpy.conjugate(data) | |
418 | powerdB = 10 * numpy.log10(power.real) |
|
418 | powerdB = 10 * numpy.log10(power.real) | |
419 | powerdB = numpy.squeeze(powerdB) |
|
419 | powerdB = numpy.squeeze(powerdB) | |
420 |
|
420 | |||
421 | return powerdB |
|
421 | return powerdB | |
422 |
|
422 | |||
423 | @property |
|
423 | @property | |
424 | def timeInterval(self): |
|
424 | def timeInterval(self): | |
425 |
|
425 | |||
426 | return self.ippSeconds * self.nCohInt |
|
426 | return self.ippSeconds * self.nCohInt | |
427 |
|
427 | |||
428 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
428 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
429 |
|
429 | |||
430 |
|
430 | |||
431 | class Spectra(JROData): |
|
431 | class Spectra(JROData): | |
432 |
|
432 | |||
433 | def __init__(self): |
|
433 | def __init__(self): | |
434 | ''' |
|
434 | ''' | |
435 | Constructor |
|
435 | Constructor | |
436 | ''' |
|
436 | ''' | |
437 |
|
437 | |||
438 | self.data_dc = None |
|
438 | self.data_dc = None | |
439 | self.data_spc = None |
|
439 | self.data_spc = None | |
440 | self.data_cspc = None |
|
440 | self.data_cspc = None | |
441 | self.useLocalTime = True |
|
441 | self.useLocalTime = True | |
442 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
442 | self.radarControllerHeaderObj = RadarControllerHeader() | |
443 | self.systemHeaderObj = SystemHeader() |
|
443 | self.systemHeaderObj = SystemHeader() | |
444 | self.type = "Spectra" |
|
444 | self.type = "Spectra" | |
445 | self.timeZone = 0 |
|
445 | self.timeZone = 0 | |
446 | self.nProfiles = None |
|
446 | self.nProfiles = None | |
447 | self.heightList = None |
|
447 | self.heightList = None | |
448 | self.channelList = None |
|
448 | self.channelList = None | |
449 | self.pairsList = None |
|
449 | self.pairsList = None | |
450 | self.flagNoData = True |
|
450 | self.flagNoData = True | |
451 | self.flagDiscontinuousBlock = False |
|
451 | self.flagDiscontinuousBlock = False | |
452 | self.utctime = None |
|
452 | self.utctime = None | |
453 | self.nCohInt = None |
|
453 | self.nCohInt = None | |
454 | self.nIncohInt = None |
|
454 | self.nIncohInt = None | |
455 | self.blocksize = None |
|
455 | self.blocksize = None | |
456 | self.nFFTPoints = None |
|
456 | self.nFFTPoints = None | |
457 | self.wavelength = None |
|
457 | self.wavelength = None | |
458 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
458 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
459 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
459 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
460 | self.flagShiftFFT = False |
|
460 | self.flagShiftFFT = False | |
461 | self.ippFactor = 1 |
|
461 | self.ippFactor = 1 | |
462 | self.beacon_heiIndexList = [] |
|
462 | self.beacon_heiIndexList = [] | |
463 | self.noise_estimation = None |
|
463 | self.noise_estimation = None | |
464 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
464 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', | |
465 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] |
|
465 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] | |
466 |
|
466 | |||
467 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
467 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
468 | """ |
|
468 | """ | |
469 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
469 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
470 |
|
470 | |||
471 | Return: |
|
471 | Return: | |
472 | noiselevel |
|
472 | noiselevel | |
473 | """ |
|
473 | """ | |
474 |
|
474 | |||
475 | noise = numpy.zeros(self.nChannels) |
|
475 | noise = numpy.zeros(self.nChannels) | |
476 |
|
476 | |||
477 | for channel in range(self.nChannels): |
|
477 | for channel in range(self.nChannels): | |
478 | daux = self.data_spc[channel, |
|
478 | daux = self.data_spc[channel, | |
479 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
479 | xmin_index:xmax_index, ymin_index:ymax_index] | |
480 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
480 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) | |
481 |
|
481 | |||
482 | return noise |
|
482 | return noise | |
483 |
|
483 | |||
484 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
484 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
485 |
|
485 | |||
486 | if self.noise_estimation is not None: |
|
486 | if self.noise_estimation is not None: | |
487 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
487 | # this was estimated by getNoise Operation defined in jroproc_spectra.py | |
488 | return self.noise_estimation |
|
488 | return self.noise_estimation | |
489 | else: |
|
489 | else: | |
490 | noise = self.getNoisebyHildebrand( |
|
490 | noise = self.getNoisebyHildebrand( | |
491 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
491 | xmin_index, xmax_index, ymin_index, ymax_index) | |
492 | return noise |
|
492 | return noise | |
493 |
|
493 | |||
494 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
494 | def getFreqRangeTimeResponse(self, extrapoints=0): | |
495 |
|
495 | |||
496 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
496 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) | |
497 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
497 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 | |
498 |
|
498 | |||
499 | return freqrange |
|
499 | return freqrange | |
500 |
|
500 | |||
501 | def getAcfRange(self, extrapoints=0): |
|
501 | def getAcfRange(self, extrapoints=0): | |
502 |
|
502 | |||
503 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
503 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) | |
504 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
504 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 | |
505 |
|
505 | |||
506 | return freqrange |
|
506 | return freqrange | |
507 |
|
507 | |||
508 | def getFreqRange(self, extrapoints=0): |
|
508 | def getFreqRange(self, extrapoints=0): | |
509 |
|
509 | |||
510 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
510 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) | |
511 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
511 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 | |
512 |
|
512 | |||
513 | return freqrange |
|
513 | return freqrange | |
514 |
|
514 | |||
515 | def getVelRange(self, extrapoints=0): |
|
515 | def getVelRange(self, extrapoints=0): | |
516 |
|
516 | |||
517 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
517 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) | |
518 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
518 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) | |
519 |
|
519 | |||
520 | if self.nmodes: |
|
520 | if self.nmodes: | |
521 | return velrange/self.nmodes |
|
521 | return velrange/self.nmodes | |
522 | else: |
|
522 | else: | |
523 | return velrange |
|
523 | return velrange | |
524 |
|
524 | |||
525 | @property |
|
525 | @property | |
526 | def nPairs(self): |
|
526 | def nPairs(self): | |
527 |
|
527 | |||
528 | return len(self.pairsList) |
|
528 | return len(self.pairsList) | |
529 |
|
529 | |||
530 | @property |
|
530 | @property | |
531 | def pairsIndexList(self): |
|
531 | def pairsIndexList(self): | |
532 |
|
532 | |||
533 | return list(range(self.nPairs)) |
|
533 | return list(range(self.nPairs)) | |
534 |
|
534 | |||
535 | @property |
|
535 | @property | |
536 | def normFactor(self): |
|
536 | def normFactor(self): | |
537 |
|
537 | |||
538 | pwcode = 1 |
|
538 | pwcode = 1 | |
539 |
|
539 | |||
540 | if self.flagDecodeData: |
|
540 | if self.flagDecodeData: | |
541 | pwcode = numpy.sum(self.code[0]**2) |
|
541 | pwcode = numpy.sum(self.code[0]**2) | |
542 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
542 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter | |
543 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
543 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter | |
544 |
|
544 | |||
545 | return normFactor |
|
545 | return normFactor | |
546 |
|
546 | |||
547 | @property |
|
547 | @property | |
548 | def flag_cspc(self): |
|
548 | def flag_cspc(self): | |
549 |
|
549 | |||
550 | if self.data_cspc is None: |
|
550 | if self.data_cspc is None: | |
551 | return True |
|
551 | return True | |
552 |
|
552 | |||
553 | return False |
|
553 | return False | |
554 |
|
554 | |||
555 | @property |
|
555 | @property | |
556 | def flag_dc(self): |
|
556 | def flag_dc(self): | |
557 |
|
557 | |||
558 | if self.data_dc is None: |
|
558 | if self.data_dc is None: | |
559 | return True |
|
559 | return True | |
560 |
|
560 | |||
561 | return False |
|
561 | return False | |
562 |
|
562 | |||
563 | @property |
|
563 | @property | |
564 | def timeInterval(self): |
|
564 | def timeInterval(self): | |
565 |
|
565 | |||
566 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
566 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor | |
567 | if self.nmodes: |
|
567 | if self.nmodes: | |
568 | return self.nmodes*timeInterval |
|
568 | return self.nmodes*timeInterval | |
569 | else: |
|
569 | else: | |
570 | return timeInterval |
|
570 | return timeInterval | |
571 |
|
571 | |||
572 | def getPower(self): |
|
572 | def getPower(self): | |
573 |
|
573 | |||
574 | factor = self.normFactor |
|
574 | factor = self.normFactor | |
575 | z = self.data_spc / factor |
|
575 | z = self.data_spc / factor | |
576 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
576 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
577 | avg = numpy.average(z, axis=1) |
|
577 | avg = numpy.average(z, axis=1) | |
578 |
|
||||
579 | return 10 * numpy.log10(avg) |
|
578 | return 10 * numpy.log10(avg) | |
580 |
|
579 | |||
581 | def getCoherence(self, pairsList=None, phase=False): |
|
580 | def getCoherence(self, pairsList=None, phase=False): | |
582 |
|
581 | |||
583 | z = [] |
|
582 | z = [] | |
584 | if pairsList is None: |
|
583 | if pairsList is None: | |
585 | pairsIndexList = self.pairsIndexList |
|
584 | pairsIndexList = self.pairsIndexList | |
586 | else: |
|
585 | else: | |
587 | pairsIndexList = [] |
|
586 | pairsIndexList = [] | |
588 | for pair in pairsList: |
|
587 | for pair in pairsList: | |
589 | if pair not in self.pairsList: |
|
588 | if pair not in self.pairsList: | |
590 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
589 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( | |
591 | pair)) |
|
590 | pair)) | |
592 | pairsIndexList.append(self.pairsList.index(pair)) |
|
591 | pairsIndexList.append(self.pairsList.index(pair)) | |
593 | for i in range(len(pairsIndexList)): |
|
592 | for i in range(len(pairsIndexList)): | |
594 | pair = self.pairsList[pairsIndexList[i]] |
|
593 | pair = self.pairsList[pairsIndexList[i]] | |
595 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
594 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) | |
596 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
595 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) | |
597 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
596 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) | |
598 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
597 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) | |
599 | if phase: |
|
598 | if phase: | |
600 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
599 | data = numpy.arctan2(avgcoherenceComplex.imag, | |
601 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
600 | avgcoherenceComplex.real) * 180 / numpy.pi | |
602 | else: |
|
601 | else: | |
603 | data = numpy.abs(avgcoherenceComplex) |
|
602 | data = numpy.abs(avgcoherenceComplex) | |
604 |
|
603 | |||
605 | z.append(data) |
|
604 | z.append(data) | |
606 |
|
605 | |||
607 | return numpy.array(z) |
|
606 | return numpy.array(z) | |
608 |
|
607 | |||
609 | def setValue(self, value): |
|
608 | def setValue(self, value): | |
610 |
|
609 | |||
611 | print("This property should not be initialized") |
|
610 | print("This property should not be initialized") | |
612 |
|
611 | |||
613 | return |
|
612 | return | |
614 |
|
613 | |||
615 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
614 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") | |
616 |
|
615 | |||
617 |
|
616 | |||
618 | class SpectraHeis(Spectra): |
|
617 | class SpectraHeis(Spectra): | |
619 |
|
618 | |||
620 | def __init__(self): |
|
619 | def __init__(self): | |
621 |
|
620 | |||
622 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
621 | self.radarControllerHeaderObj = RadarControllerHeader() | |
623 | self.systemHeaderObj = SystemHeader() |
|
622 | self.systemHeaderObj = SystemHeader() | |
624 | self.type = "SpectraHeis" |
|
623 | self.type = "SpectraHeis" | |
625 | self.nProfiles = None |
|
624 | self.nProfiles = None | |
626 | self.heightList = None |
|
625 | self.heightList = None | |
627 | self.channelList = None |
|
626 | self.channelList = None | |
628 | self.flagNoData = True |
|
627 | self.flagNoData = True | |
629 | self.flagDiscontinuousBlock = False |
|
628 | self.flagDiscontinuousBlock = False | |
630 | self.utctime = None |
|
629 | self.utctime = None | |
631 | self.blocksize = None |
|
630 | self.blocksize = None | |
632 | self.profileIndex = 0 |
|
631 | self.profileIndex = 0 | |
633 | self.nCohInt = 1 |
|
632 | self.nCohInt = 1 | |
634 | self.nIncohInt = 1 |
|
633 | self.nIncohInt = 1 | |
635 |
|
634 | |||
636 | @property |
|
635 | @property | |
637 | def normFactor(self): |
|
636 | def normFactor(self): | |
638 | pwcode = 1 |
|
637 | pwcode = 1 | |
639 | if self.flagDecodeData: |
|
638 | if self.flagDecodeData: | |
640 | pwcode = numpy.sum(self.code[0]**2) |
|
639 | pwcode = numpy.sum(self.code[0]**2) | |
641 |
|
640 | |||
642 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
641 | normFactor = self.nIncohInt * self.nCohInt * pwcode | |
643 |
|
642 | |||
644 | return normFactor |
|
643 | return normFactor | |
645 |
|
644 | |||
646 | @property |
|
645 | @property | |
647 | def timeInterval(self): |
|
646 | def timeInterval(self): | |
648 |
|
647 | |||
649 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
648 | return self.ippSeconds * self.nCohInt * self.nIncohInt | |
650 |
|
649 | |||
651 |
|
650 | |||
652 | class Fits(JROData): |
|
651 | class Fits(JROData): | |
653 |
|
652 | |||
654 | def __init__(self): |
|
653 | def __init__(self): | |
655 |
|
654 | |||
656 | self.type = "Fits" |
|
655 | self.type = "Fits" | |
657 | self.nProfiles = None |
|
656 | self.nProfiles = None | |
658 | self.heightList = None |
|
657 | self.heightList = None | |
659 | self.channelList = None |
|
658 | self.channelList = None | |
660 | self.flagNoData = True |
|
659 | self.flagNoData = True | |
661 | self.utctime = None |
|
660 | self.utctime = None | |
662 | self.nCohInt = 1 |
|
661 | self.nCohInt = 1 | |
663 | self.nIncohInt = 1 |
|
662 | self.nIncohInt = 1 | |
664 | self.useLocalTime = True |
|
663 | self.useLocalTime = True | |
665 | self.profileIndex = 0 |
|
664 | self.profileIndex = 0 | |
666 | self.timeZone = 0 |
|
665 | self.timeZone = 0 | |
667 |
|
666 | |||
668 | def getTimeRange(self): |
|
667 | def getTimeRange(self): | |
669 |
|
668 | |||
670 | datatime = [] |
|
669 | datatime = [] | |
671 |
|
670 | |||
672 | datatime.append(self.ltctime) |
|
671 | datatime.append(self.ltctime) | |
673 | datatime.append(self.ltctime + self.timeInterval) |
|
672 | datatime.append(self.ltctime + self.timeInterval) | |
674 |
|
673 | |||
675 | datatime = numpy.array(datatime) |
|
674 | datatime = numpy.array(datatime) | |
676 |
|
675 | |||
677 | return datatime |
|
676 | return datatime | |
678 |
|
677 | |||
679 | def getChannelIndexList(self): |
|
678 | def getChannelIndexList(self): | |
680 |
|
679 | |||
681 | return list(range(self.nChannels)) |
|
680 | return list(range(self.nChannels)) | |
682 |
|
681 | |||
683 | def getNoise(self, type=1): |
|
682 | def getNoise(self, type=1): | |
684 |
|
683 | |||
685 |
|
684 | |||
686 | if type == 1: |
|
685 | if type == 1: | |
687 | noise = self.getNoisebyHildebrand() |
|
686 | noise = self.getNoisebyHildebrand() | |
688 |
|
687 | |||
689 | if type == 2: |
|
688 | if type == 2: | |
690 | noise = self.getNoisebySort() |
|
689 | noise = self.getNoisebySort() | |
691 |
|
690 | |||
692 | if type == 3: |
|
691 | if type == 3: | |
693 | noise = self.getNoisebyWindow() |
|
692 | noise = self.getNoisebyWindow() | |
694 |
|
693 | |||
695 | return noise |
|
694 | return noise | |
696 |
|
695 | |||
697 | @property |
|
696 | @property | |
698 | def timeInterval(self): |
|
697 | def timeInterval(self): | |
699 |
|
698 | |||
700 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
699 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt | |
701 |
|
700 | |||
702 | return timeInterval |
|
701 | return timeInterval | |
703 |
|
702 | |||
704 | @property |
|
703 | @property | |
705 | def ippSeconds(self): |
|
704 | def ippSeconds(self): | |
706 | ''' |
|
705 | ''' | |
707 | ''' |
|
706 | ''' | |
708 | return self.ipp_sec |
|
707 | return self.ipp_sec | |
709 |
|
708 | |||
710 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
709 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
711 |
|
710 | |||
712 |
|
711 | |||
713 | class Correlation(JROData): |
|
712 | class Correlation(JROData): | |
714 |
|
713 | |||
715 | def __init__(self): |
|
714 | def __init__(self): | |
716 | ''' |
|
715 | ''' | |
717 | Constructor |
|
716 | Constructor | |
718 | ''' |
|
717 | ''' | |
719 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
718 | self.radarControllerHeaderObj = RadarControllerHeader() | |
720 | self.systemHeaderObj = SystemHeader() |
|
719 | self.systemHeaderObj = SystemHeader() | |
721 | self.type = "Correlation" |
|
720 | self.type = "Correlation" | |
722 | self.data = None |
|
721 | self.data = None | |
723 | self.dtype = None |
|
722 | self.dtype = None | |
724 | self.nProfiles = None |
|
723 | self.nProfiles = None | |
725 | self.heightList = None |
|
724 | self.heightList = None | |
726 | self.channelList = None |
|
725 | self.channelList = None | |
727 | self.flagNoData = True |
|
726 | self.flagNoData = True | |
728 | self.flagDiscontinuousBlock = False |
|
727 | self.flagDiscontinuousBlock = False | |
729 | self.utctime = None |
|
728 | self.utctime = None | |
730 | self.timeZone = 0 |
|
729 | self.timeZone = 0 | |
731 | self.dstFlag = None |
|
730 | self.dstFlag = None | |
732 | self.errorCount = None |
|
731 | self.errorCount = None | |
733 | self.blocksize = None |
|
732 | self.blocksize = None | |
734 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
733 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
735 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
734 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
736 | self.pairsList = None |
|
735 | self.pairsList = None | |
737 | self.nPoints = None |
|
736 | self.nPoints = None | |
738 |
|
737 | |||
739 | def getPairsList(self): |
|
738 | def getPairsList(self): | |
740 |
|
739 | |||
741 | return self.pairsList |
|
740 | return self.pairsList | |
742 |
|
741 | |||
743 | def getNoise(self, mode=2): |
|
742 | def getNoise(self, mode=2): | |
744 |
|
743 | |||
745 | indR = numpy.where(self.lagR == 0)[0][0] |
|
744 | indR = numpy.where(self.lagR == 0)[0][0] | |
746 | indT = numpy.where(self.lagT == 0)[0][0] |
|
745 | indT = numpy.where(self.lagT == 0)[0][0] | |
747 |
|
746 | |||
748 | jspectra0 = self.data_corr[:, :, indR, :] |
|
747 | jspectra0 = self.data_corr[:, :, indR, :] | |
749 | jspectra = copy.copy(jspectra0) |
|
748 | jspectra = copy.copy(jspectra0) | |
750 |
|
749 | |||
751 | num_chan = jspectra.shape[0] |
|
750 | num_chan = jspectra.shape[0] | |
752 | num_hei = jspectra.shape[2] |
|
751 | num_hei = jspectra.shape[2] | |
753 |
|
752 | |||
754 | freq_dc = jspectra.shape[1] / 2 |
|
753 | freq_dc = jspectra.shape[1] / 2 | |
755 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
754 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
756 |
|
755 | |||
757 | if ind_vel[0] < 0: |
|
756 | if ind_vel[0] < 0: | |
758 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
757 | ind_vel[list(range(0, 1))] = ind_vel[list( | |
759 | range(0, 1))] + self.num_prof |
|
758 | range(0, 1))] + self.num_prof | |
760 |
|
759 | |||
761 | if mode == 1: |
|
760 | if mode == 1: | |
762 | jspectra[:, freq_dc, :] = ( |
|
761 | jspectra[:, freq_dc, :] = ( | |
763 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
762 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
764 |
|
763 | |||
765 | if mode == 2: |
|
764 | if mode == 2: | |
766 |
|
765 | |||
767 | vel = numpy.array([-2, -1, 1, 2]) |
|
766 | vel = numpy.array([-2, -1, 1, 2]) | |
768 | xx = numpy.zeros([4, 4]) |
|
767 | xx = numpy.zeros([4, 4]) | |
769 |
|
768 | |||
770 | for fil in range(4): |
|
769 | for fil in range(4): | |
771 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
770 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
772 |
|
771 | |||
773 | xx_inv = numpy.linalg.inv(xx) |
|
772 | xx_inv = numpy.linalg.inv(xx) | |
774 | xx_aux = xx_inv[0, :] |
|
773 | xx_aux = xx_inv[0, :] | |
775 |
|
774 | |||
776 | for ich in range(num_chan): |
|
775 | for ich in range(num_chan): | |
777 | yy = jspectra[ich, ind_vel, :] |
|
776 | yy = jspectra[ich, ind_vel, :] | |
778 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
777 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
779 |
|
778 | |||
780 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
779 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
781 | cjunkid = sum(junkid) |
|
780 | cjunkid = sum(junkid) | |
782 |
|
781 | |||
783 | if cjunkid.any(): |
|
782 | if cjunkid.any(): | |
784 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
783 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
785 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
784 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
786 |
|
785 | |||
787 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
786 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] | |
788 |
|
787 | |||
789 | return noise |
|
788 | return noise | |
790 |
|
789 | |||
791 | @property |
|
790 | @property | |
792 | def timeInterval(self): |
|
791 | def timeInterval(self): | |
793 |
|
792 | |||
794 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
793 | return self.ippSeconds * self.nCohInt * self.nProfiles | |
795 |
|
794 | |||
796 | def splitFunctions(self): |
|
795 | def splitFunctions(self): | |
797 |
|
796 | |||
798 | pairsList = self.pairsList |
|
797 | pairsList = self.pairsList | |
799 | ccf_pairs = [] |
|
798 | ccf_pairs = [] | |
800 | acf_pairs = [] |
|
799 | acf_pairs = [] | |
801 | ccf_ind = [] |
|
800 | ccf_ind = [] | |
802 | acf_ind = [] |
|
801 | acf_ind = [] | |
803 | for l in range(len(pairsList)): |
|
802 | for l in range(len(pairsList)): | |
804 | chan0 = pairsList[l][0] |
|
803 | chan0 = pairsList[l][0] | |
805 | chan1 = pairsList[l][1] |
|
804 | chan1 = pairsList[l][1] | |
806 |
|
805 | |||
807 | # Obteniendo pares de Autocorrelacion |
|
806 | # Obteniendo pares de Autocorrelacion | |
808 | if chan0 == chan1: |
|
807 | if chan0 == chan1: | |
809 | acf_pairs.append(chan0) |
|
808 | acf_pairs.append(chan0) | |
810 | acf_ind.append(l) |
|
809 | acf_ind.append(l) | |
811 | else: |
|
810 | else: | |
812 | ccf_pairs.append(pairsList[l]) |
|
811 | ccf_pairs.append(pairsList[l]) | |
813 | ccf_ind.append(l) |
|
812 | ccf_ind.append(l) | |
814 |
|
813 | |||
815 | data_acf = self.data_cf[acf_ind] |
|
814 | data_acf = self.data_cf[acf_ind] | |
816 | data_ccf = self.data_cf[ccf_ind] |
|
815 | data_ccf = self.data_cf[ccf_ind] | |
817 |
|
816 | |||
818 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
817 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf | |
819 |
|
818 | |||
820 | @property |
|
819 | @property | |
821 | def normFactor(self): |
|
820 | def normFactor(self): | |
822 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
821 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() | |
823 | acf_pairs = numpy.array(acf_pairs) |
|
822 | acf_pairs = numpy.array(acf_pairs) | |
824 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
823 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) | |
825 |
|
824 | |||
826 | for p in range(self.nPairs): |
|
825 | for p in range(self.nPairs): | |
827 | pair = self.pairsList[p] |
|
826 | pair = self.pairsList[p] | |
828 |
|
827 | |||
829 | ch0 = pair[0] |
|
828 | ch0 = pair[0] | |
830 | ch1 = pair[1] |
|
829 | ch1 = pair[1] | |
831 |
|
830 | |||
832 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
831 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) | |
833 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
832 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) | |
834 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
833 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) | |
835 |
|
834 | |||
836 | return normFactor |
|
835 | return normFactor | |
837 |
|
836 | |||
838 |
|
837 | |||
839 | class Parameters(Spectra): |
|
838 | class Parameters(Spectra): | |
840 |
|
839 | |||
841 | groupList = None # List of Pairs, Groups, etc |
|
840 | groupList = None # List of Pairs, Groups, etc | |
842 | data_param = None # Parameters obtained |
|
841 | data_param = None # Parameters obtained | |
843 | data_pre = None # Data Pre Parametrization |
|
842 | data_pre = None # Data Pre Parametrization | |
844 | data_SNR = None # Signal to Noise Ratio |
|
843 | data_SNR = None # Signal to Noise Ratio | |
845 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
844 | abscissaList = None # Abscissa, can be velocities, lags or time | |
846 | utctimeInit = None # Initial UTC time |
|
845 | utctimeInit = None # Initial UTC time | |
847 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
846 | paramInterval = None # Time interval to calculate Parameters in seconds | |
848 | useLocalTime = True |
|
847 | useLocalTime = True | |
849 | # Fitting |
|
848 | # Fitting | |
850 | data_error = None # Error of the estimation |
|
849 | data_error = None # Error of the estimation | |
851 | constants = None |
|
850 | constants = None | |
852 | library = None |
|
851 | library = None | |
853 | # Output signal |
|
852 | # Output signal | |
854 | outputInterval = None # Time interval to calculate output signal in seconds |
|
853 | outputInterval = None # Time interval to calculate output signal in seconds | |
855 | data_output = None # Out signal |
|
854 | data_output = None # Out signal | |
856 | nAvg = None |
|
855 | nAvg = None | |
857 | noise_estimation = None |
|
856 | noise_estimation = None | |
858 | GauSPC = None # Fit gaussian SPC |
|
857 | GauSPC = None # Fit gaussian SPC | |
859 |
|
858 | |||
860 | def __init__(self): |
|
859 | def __init__(self): | |
861 | ''' |
|
860 | ''' | |
862 | Constructor |
|
861 | Constructor | |
863 | ''' |
|
862 | ''' | |
864 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
863 | self.radarControllerHeaderObj = RadarControllerHeader() | |
865 | self.systemHeaderObj = SystemHeader() |
|
864 | self.systemHeaderObj = SystemHeader() | |
866 | self.type = "Parameters" |
|
865 | self.type = "Parameters" | |
867 | self.timeZone = 0 |
|
866 | self.timeZone = 0 | |
868 |
|
867 | |||
869 | def getTimeRange1(self, interval): |
|
868 | def getTimeRange1(self, interval): | |
870 |
|
869 | |||
871 | datatime = [] |
|
870 | datatime = [] | |
872 |
|
871 | |||
873 | if self.useLocalTime: |
|
872 | if self.useLocalTime: | |
874 | time1 = self.utctimeInit - self.timeZone * 60 |
|
873 | time1 = self.utctimeInit - self.timeZone * 60 | |
875 | else: |
|
874 | else: | |
876 | time1 = self.utctimeInit |
|
875 | time1 = self.utctimeInit | |
877 |
|
876 | |||
878 | datatime.append(time1) |
|
877 | datatime.append(time1) | |
879 | datatime.append(time1 + interval) |
|
878 | datatime.append(time1 + interval) | |
880 | datatime = numpy.array(datatime) |
|
879 | datatime = numpy.array(datatime) | |
881 |
|
880 | |||
882 | return datatime |
|
881 | return datatime | |
883 |
|
882 | |||
884 | @property |
|
883 | @property | |
885 | def timeInterval(self): |
|
884 | def timeInterval(self): | |
886 |
|
885 | |||
887 | if hasattr(self, 'timeInterval1'): |
|
886 | if hasattr(self, 'timeInterval1'): | |
888 | return self.timeInterval1 |
|
887 | return self.timeInterval1 | |
889 | else: |
|
888 | else: | |
890 | return self.paramInterval |
|
889 | return self.paramInterval | |
891 |
|
890 | |||
892 | def setValue(self, value): |
|
891 | def setValue(self, value): | |
893 |
|
892 | |||
894 | print("This property should not be initialized") |
|
893 | print("This property should not be initialized") | |
895 |
|
894 | |||
896 | return |
|
895 | return | |
897 |
|
896 | |||
898 | def getNoise(self): |
|
897 | def getNoise(self): | |
899 |
|
898 | |||
900 | return self.spc_noise |
|
899 | return self.spc_noise | |
901 |
|
900 | |||
902 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
901 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") | |
903 |
|
902 | |||
904 |
|
903 | |||
905 | class PlotterData(object): |
|
904 | class PlotterData(object): | |
906 | ''' |
|
905 | ''' | |
907 | Object to hold data to be plotted |
|
906 | Object to hold data to be plotted | |
908 | ''' |
|
907 | ''' | |
909 |
|
908 | |||
910 | MAXNUMX = 200 |
|
909 | MAXNUMX = 200 | |
911 | MAXNUMY = 200 |
|
910 | MAXNUMY = 200 | |
912 |
|
911 | |||
913 | def __init__(self, code, exp_code, localtime=True): |
|
912 | def __init__(self, code, exp_code, localtime=True): | |
914 |
|
913 | |||
915 | self.key = code |
|
914 | self.key = code | |
916 | self.exp_code = exp_code |
|
915 | self.exp_code = exp_code | |
917 | self.ready = False |
|
916 | self.ready = False | |
918 | self.flagNoData = False |
|
917 | self.flagNoData = False | |
919 | self.localtime = localtime |
|
918 | self.localtime = localtime | |
920 | self.data = {} |
|
919 | self.data = {} | |
921 | self.meta = {} |
|
920 | self.meta = {} | |
922 | self.__heights = [] |
|
921 | self.__heights = [] | |
923 |
|
922 | |||
924 | def __str__(self): |
|
923 | def __str__(self): | |
925 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
924 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] | |
926 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
925 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) | |
927 |
|
926 | |||
928 | def __len__(self): |
|
927 | def __len__(self): | |
929 | return len(self.data) |
|
928 | return len(self.data) | |
930 |
|
929 | |||
931 | def __getitem__(self, key): |
|
930 | def __getitem__(self, key): | |
932 | if isinstance(key, int): |
|
931 | if isinstance(key, int): | |
933 | return self.data[self.times[key]] |
|
932 | return self.data[self.times[key]] | |
934 | elif isinstance(key, str): |
|
933 | elif isinstance(key, str): | |
935 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
934 | ret = numpy.array([self.data[x][key] for x in self.times]) | |
936 | if ret.ndim > 1: |
|
935 | if ret.ndim > 1: | |
937 | ret = numpy.swapaxes(ret, 0, 1) |
|
936 | ret = numpy.swapaxes(ret, 0, 1) | |
938 | return ret |
|
937 | return ret | |
939 |
|
938 | |||
940 | def __contains__(self, key): |
|
939 | def __contains__(self, key): | |
941 | return key in self.data[self.min_time] |
|
940 | return key in self.data[self.min_time] | |
942 |
|
941 | |||
943 | def setup(self): |
|
942 | def setup(self): | |
944 | ''' |
|
943 | ''' | |
945 | Configure object |
|
944 | Configure object | |
946 | ''' |
|
945 | ''' | |
947 | self.type = '' |
|
946 | self.type = '' | |
948 | self.ready = False |
|
947 | self.ready = False | |
949 | del self.data |
|
948 | del self.data | |
950 | self.data = {} |
|
949 | self.data = {} | |
951 | self.__heights = [] |
|
950 | self.__heights = [] | |
952 | self.__all_heights = set() |
|
951 | self.__all_heights = set() | |
953 |
|
952 | |||
954 | def shape(self, key): |
|
953 | def shape(self, key): | |
955 | ''' |
|
954 | ''' | |
956 | Get the shape of the one-element data for the given key |
|
955 | Get the shape of the one-element data for the given key | |
957 | ''' |
|
956 | ''' | |
958 |
|
957 | |||
959 | if len(self.data[self.min_time][key]): |
|
958 | if len(self.data[self.min_time][key]): | |
960 | return self.data[self.min_time][key].shape |
|
959 | return self.data[self.min_time][key].shape | |
961 | return (0,) |
|
960 | return (0,) | |
962 |
|
961 | |||
963 | def update(self, data, tm, meta={}): |
|
962 | def update(self, data, tm, meta={}): | |
964 | ''' |
|
963 | ''' | |
965 | Update data object with new dataOut |
|
964 | Update data object with new dataOut | |
966 | ''' |
|
965 | ''' | |
967 |
|
966 | |||
968 | self.data[tm] = data |
|
967 | self.data[tm] = data | |
969 |
|
968 | |||
970 | for key, value in meta.items(): |
|
969 | for key, value in meta.items(): | |
971 | setattr(self, key, value) |
|
970 | setattr(self, key, value) | |
972 |
|
971 | |||
973 | def normalize_heights(self): |
|
972 | def normalize_heights(self): | |
974 | ''' |
|
973 | ''' | |
975 | Ensure same-dimension of the data for different heighList |
|
974 | Ensure same-dimension of the data for different heighList | |
976 | ''' |
|
975 | ''' | |
977 |
|
976 | |||
978 | H = numpy.array(list(self.__all_heights)) |
|
977 | H = numpy.array(list(self.__all_heights)) | |
979 | H.sort() |
|
978 | H.sort() | |
980 | for key in self.data: |
|
979 | for key in self.data: | |
981 | shape = self.shape(key)[:-1] + H.shape |
|
980 | shape = self.shape(key)[:-1] + H.shape | |
982 | for tm, obj in list(self.data[key].items()): |
|
981 | for tm, obj in list(self.data[key].items()): | |
983 | h = self.__heights[self.times.tolist().index(tm)] |
|
982 | h = self.__heights[self.times.tolist().index(tm)] | |
984 | if H.size == h.size: |
|
983 | if H.size == h.size: | |
985 | continue |
|
984 | continue | |
986 | index = numpy.where(numpy.in1d(H, h))[0] |
|
985 | index = numpy.where(numpy.in1d(H, h))[0] | |
987 | dummy = numpy.zeros(shape) + numpy.nan |
|
986 | dummy = numpy.zeros(shape) + numpy.nan | |
988 | if len(shape) == 2: |
|
987 | if len(shape) == 2: | |
989 | dummy[:, index] = obj |
|
988 | dummy[:, index] = obj | |
990 | else: |
|
989 | else: | |
991 | dummy[index] = obj |
|
990 | dummy[index] = obj | |
992 | self.data[key][tm] = dummy |
|
991 | self.data[key][tm] = dummy | |
993 |
|
992 | |||
994 | self.__heights = [H for tm in self.times] |
|
993 | self.__heights = [H for tm in self.times] | |
995 |
|
994 | |||
996 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
995 | def jsonify(self, tm, plot_name, plot_type, decimate=False): | |
997 | ''' |
|
996 | ''' | |
998 | Convert data to json |
|
997 | Convert data to json | |
999 | ''' |
|
998 | ''' | |
1000 |
|
999 | |||
1001 | meta = {} |
|
1000 | meta = {} | |
1002 | meta['xrange'] = [] |
|
1001 | meta['xrange'] = [] | |
1003 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 |
|
1002 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 | |
1004 | tmp = self.data[tm][self.key] |
|
1003 | tmp = self.data[tm][self.key] | |
1005 | shape = tmp.shape |
|
1004 | shape = tmp.shape | |
1006 | if len(shape) == 2: |
|
1005 | if len(shape) == 2: | |
1007 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1006 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) | |
1008 | elif len(shape) == 3: |
|
1007 | elif len(shape) == 3: | |
1009 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 |
|
1008 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 | |
1010 | data = self.roundFloats( |
|
1009 | data = self.roundFloats( | |
1011 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1010 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) | |
1012 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1011 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) | |
1013 | else: |
|
1012 | else: | |
1014 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1013 | data = self.roundFloats(self.data[tm][self.key].tolist()) | |
1015 |
|
1014 | |||
1016 | ret = { |
|
1015 | ret = { | |
1017 | 'plot': plot_name, |
|
1016 | 'plot': plot_name, | |
1018 | 'code': self.exp_code, |
|
1017 | 'code': self.exp_code, | |
1019 | 'time': float(tm), |
|
1018 | 'time': float(tm), | |
1020 | 'data': data, |
|
1019 | 'data': data, | |
1021 | } |
|
1020 | } | |
1022 | meta['type'] = plot_type |
|
1021 | meta['type'] = plot_type | |
1023 | meta['interval'] = float(self.interval) |
|
1022 | meta['interval'] = float(self.interval) | |
1024 | meta['localtime'] = self.localtime |
|
1023 | meta['localtime'] = self.localtime | |
1025 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1024 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) | |
1026 | meta.update(self.meta) |
|
1025 | meta.update(self.meta) | |
1027 | ret['metadata'] = meta |
|
1026 | ret['metadata'] = meta | |
1028 | return json.dumps(ret) |
|
1027 | return json.dumps(ret) | |
1029 |
|
1028 | |||
1030 | @property |
|
1029 | @property | |
1031 | def times(self): |
|
1030 | def times(self): | |
1032 | ''' |
|
1031 | ''' | |
1033 | Return the list of times of the current data |
|
1032 | Return the list of times of the current data | |
1034 | ''' |
|
1033 | ''' | |
1035 |
|
1034 | |||
1036 | ret = [t for t in self.data] |
|
1035 | ret = [t for t in self.data] | |
1037 | ret.sort() |
|
1036 | ret.sort() | |
1038 | return numpy.array(ret) |
|
1037 | return numpy.array(ret) | |
1039 |
|
1038 | |||
1040 | @property |
|
1039 | @property | |
1041 | def min_time(self): |
|
1040 | def min_time(self): | |
1042 | ''' |
|
1041 | ''' | |
1043 | Return the minimun time value |
|
1042 | Return the minimun time value | |
1044 | ''' |
|
1043 | ''' | |
1045 |
|
1044 | |||
1046 | return self.times[0] |
|
1045 | return self.times[0] | |
1047 |
|
1046 | |||
1048 | @property |
|
1047 | @property | |
1049 | def max_time(self): |
|
1048 | def max_time(self): | |
1050 | ''' |
|
1049 | ''' | |
1051 | Return the maximun time value |
|
1050 | Return the maximun time value | |
1052 | ''' |
|
1051 | ''' | |
1053 |
|
1052 | |||
1054 | return self.times[-1] |
|
1053 | return self.times[-1] | |
1055 |
|
1054 | |||
1056 | # @property |
|
1055 | # @property | |
1057 | # def heights(self): |
|
1056 | # def heights(self): | |
1058 | # ''' |
|
1057 | # ''' | |
1059 | # Return the list of heights of the current data |
|
1058 | # Return the list of heights of the current data | |
1060 | # ''' |
|
1059 | # ''' | |
1061 |
|
1060 | |||
1062 | # return numpy.array(self.__heights[-1]) |
|
1061 | # return numpy.array(self.__heights[-1]) | |
1063 |
|
1062 | |||
1064 | @staticmethod |
|
1063 | @staticmethod | |
1065 | def roundFloats(obj): |
|
1064 | def roundFloats(obj): | |
1066 | if isinstance(obj, list): |
|
1065 | if isinstance(obj, list): | |
1067 | return list(map(PlotterData.roundFloats, obj)) |
|
1066 | return list(map(PlotterData.roundFloats, obj)) | |
1068 | elif isinstance(obj, float): |
|
1067 | elif isinstance(obj, float): | |
1069 | return round(obj, 2) |
|
1068 | return round(obj, 2) |
@@ -1,519 +1,509 | |||||
1 | import os |
|
1 | import os | |
2 | import datetime |
|
2 | import datetime | |
3 | import numpy |
|
3 | import numpy | |
4 |
|
4 | |||
5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
5 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot | |
7 | from schainpy.utils import log |
|
7 | from schainpy.utils import log | |
8 | # libreria wradlib |
|
8 | # libreria wradlib | |
9 | import wradlib as wrl |
|
9 | import wradlib as wrl | |
10 |
|
10 | |||
11 | EARTH_RADIUS = 6.3710e3 |
|
11 | EARTH_RADIUS = 6.3710e3 | |
12 |
|
12 | |||
13 |
|
13 | |||
14 | def ll2xy(lat1, lon1, lat2, lon2): |
|
14 | def ll2xy(lat1, lon1, lat2, lon2): | |
15 |
|
15 | |||
16 | p = 0.017453292519943295 |
|
16 | p = 0.017453292519943295 | |
17 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
17 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
18 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
18 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
19 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
19 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
20 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
20 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
21 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
21 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
22 | theta = -theta + numpy.pi/2 |
|
22 | theta = -theta + numpy.pi/2 | |
23 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
23 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
24 |
|
24 | |||
25 |
|
25 | |||
26 | def km2deg(km): |
|
26 | def km2deg(km): | |
27 | ''' |
|
27 | ''' | |
28 | Convert distance in km to degrees |
|
28 | Convert distance in km to degrees | |
29 | ''' |
|
29 | ''' | |
30 |
|
30 | |||
31 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
31 | return numpy.rad2deg(km/EARTH_RADIUS) | |
32 |
|
32 | |||
33 |
|
33 | |||
34 |
|
34 | |||
35 | class SpectralMomentsPlot(SpectraPlot): |
|
35 | class SpectralMomentsPlot(SpectraPlot): | |
36 | ''' |
|
36 | ''' | |
37 | Plot for Spectral Moments |
|
37 | Plot for Spectral Moments | |
38 | ''' |
|
38 | ''' | |
39 | CODE = 'spc_moments' |
|
39 | CODE = 'spc_moments' | |
40 | # colormap = 'jet' |
|
40 | # colormap = 'jet' | |
41 | # plot_type = 'pcolor' |
|
41 | # plot_type = 'pcolor' | |
42 |
|
42 | |||
43 | class DobleGaussianPlot(SpectraPlot): |
|
43 | class DobleGaussianPlot(SpectraPlot): | |
44 | ''' |
|
44 | ''' | |
45 | Plot for Double Gaussian Plot |
|
45 | Plot for Double Gaussian Plot | |
46 | ''' |
|
46 | ''' | |
47 | CODE = 'gaussian_fit' |
|
47 | CODE = 'gaussian_fit' | |
48 | # colormap = 'jet' |
|
48 | # colormap = 'jet' | |
49 | # plot_type = 'pcolor' |
|
49 | # plot_type = 'pcolor' | |
50 |
|
50 | |||
51 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
51 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): | |
52 | ''' |
|
52 | ''' | |
53 | Plot SpectraCut with Double Gaussian Fit |
|
53 | Plot SpectraCut with Double Gaussian Fit | |
54 | ''' |
|
54 | ''' | |
55 | CODE = 'cut_gaussian_fit' |
|
55 | CODE = 'cut_gaussian_fit' | |
56 |
|
56 | |||
57 | class SnrPlot(RTIPlot): |
|
57 | class SnrPlot(RTIPlot): | |
58 | ''' |
|
58 | ''' | |
59 | Plot for SNR Data |
|
59 | Plot for SNR Data | |
60 | ''' |
|
60 | ''' | |
61 |
|
61 | |||
62 | CODE = 'snr' |
|
62 | CODE = 'snr' | |
63 | colormap = 'jet' |
|
63 | colormap = 'jet' | |
64 |
|
64 | |||
65 | def update(self, dataOut): |
|
65 | def update(self, dataOut): | |
66 |
|
66 | |||
67 | data = { |
|
67 | data = { | |
68 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
68 | 'snr': 10*numpy.log10(dataOut.data_snr) | |
69 | } |
|
69 | } | |
70 |
|
70 | |||
71 | return data, {} |
|
71 | return data, {} | |
72 |
|
72 | |||
73 | class DopplerPlot(RTIPlot): |
|
73 | class DopplerPlot(RTIPlot): | |
74 | ''' |
|
74 | ''' | |
75 | Plot for DOPPLER Data (1st moment) |
|
75 | Plot for DOPPLER Data (1st moment) | |
76 | ''' |
|
76 | ''' | |
77 |
|
77 | |||
78 | CODE = 'dop' |
|
78 | CODE = 'dop' | |
79 | colormap = 'jet' |
|
79 | colormap = 'jet' | |
80 |
|
80 | |||
81 | def update(self, dataOut): |
|
81 | def update(self, dataOut): | |
82 |
|
82 | |||
83 | data = { |
|
83 | data = { | |
84 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
84 | 'dop': 10*numpy.log10(dataOut.data_dop) | |
85 | } |
|
85 | } | |
86 |
|
86 | |||
87 | return data, {} |
|
87 | return data, {} | |
88 |
|
88 | |||
89 | class PowerPlot(RTIPlot): |
|
89 | class PowerPlot(RTIPlot): | |
90 | ''' |
|
90 | ''' | |
91 | Plot for Power Data (0 moment) |
|
91 | Plot for Power Data (0 moment) | |
92 | ''' |
|
92 | ''' | |
93 |
|
93 | |||
94 | CODE = 'pow' |
|
94 | CODE = 'pow' | |
95 | colormap = 'jet' |
|
95 | colormap = 'jet' | |
96 |
|
96 | |||
97 | def update(self, dataOut): |
|
97 | def update(self, dataOut): | |
98 |
|
||||
99 | data = { |
|
98 | data = { | |
100 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
99 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) | |
101 | } |
|
100 | } | |
102 |
|
||||
103 | return data, {} |
|
101 | return data, {} | |
104 |
|
102 | |||
105 | class SpectralWidthPlot(RTIPlot): |
|
103 | class SpectralWidthPlot(RTIPlot): | |
106 | ''' |
|
104 | ''' | |
107 | Plot for Spectral Width Data (2nd moment) |
|
105 | Plot for Spectral Width Data (2nd moment) | |
108 | ''' |
|
106 | ''' | |
109 |
|
107 | |||
110 | CODE = 'width' |
|
108 | CODE = 'width' | |
111 | colormap = 'jet' |
|
109 | colormap = 'jet' | |
112 |
|
110 | |||
113 | def update(self, dataOut): |
|
111 | def update(self, dataOut): | |
114 |
|
112 | |||
115 | data = { |
|
113 | data = { | |
116 | 'width': dataOut.data_width |
|
114 | 'width': dataOut.data_width | |
117 | } |
|
115 | } | |
118 |
|
116 | |||
119 | return data, {} |
|
117 | return data, {} | |
120 |
|
118 | |||
121 | class SkyMapPlot(Plot): |
|
119 | class SkyMapPlot(Plot): | |
122 | ''' |
|
120 | ''' | |
123 | Plot for meteors detection data |
|
121 | Plot for meteors detection data | |
124 | ''' |
|
122 | ''' | |
125 |
|
123 | |||
126 | CODE = 'param' |
|
124 | CODE = 'param' | |
127 |
|
125 | |||
128 | def setup(self): |
|
126 | def setup(self): | |
129 |
|
127 | |||
130 | self.ncols = 1 |
|
128 | self.ncols = 1 | |
131 | self.nrows = 1 |
|
129 | self.nrows = 1 | |
132 | self.width = 7.2 |
|
130 | self.width = 7.2 | |
133 | self.height = 7.2 |
|
131 | self.height = 7.2 | |
134 | self.nplots = 1 |
|
132 | self.nplots = 1 | |
135 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
133 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
136 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
134 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
137 | self.polar = True |
|
135 | self.polar = True | |
138 | self.ymin = -180 |
|
136 | self.ymin = -180 | |
139 | self.ymax = 180 |
|
137 | self.ymax = 180 | |
140 | self.colorbar = False |
|
138 | self.colorbar = False | |
141 |
|
139 | |||
142 | def plot(self): |
|
140 | def plot(self): | |
143 |
|
141 | |||
144 | arrayParameters = numpy.concatenate(self.data['param']) |
|
142 | arrayParameters = numpy.concatenate(self.data['param']) | |
145 | error = arrayParameters[:, -1] |
|
143 | error = arrayParameters[:, -1] | |
146 | indValid = numpy.where(error == 0)[0] |
|
144 | indValid = numpy.where(error == 0)[0] | |
147 | finalMeteor = arrayParameters[indValid, :] |
|
145 | finalMeteor = arrayParameters[indValid, :] | |
148 | finalAzimuth = finalMeteor[:, 3] |
|
146 | finalAzimuth = finalMeteor[:, 3] | |
149 | finalZenith = finalMeteor[:, 4] |
|
147 | finalZenith = finalMeteor[:, 4] | |
150 |
|
148 | |||
151 | x = finalAzimuth * numpy.pi / 180 |
|
149 | x = finalAzimuth * numpy.pi / 180 | |
152 | y = finalZenith |
|
150 | y = finalZenith | |
153 |
|
151 | |||
154 | ax = self.axes[0] |
|
152 | ax = self.axes[0] | |
155 |
|
153 | |||
156 | if ax.firsttime: |
|
154 | if ax.firsttime: | |
157 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
155 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] | |
158 | else: |
|
156 | else: | |
159 | ax.plot.set_data(x, y) |
|
157 | ax.plot.set_data(x, y) | |
160 |
|
158 | |||
161 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
159 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | |
162 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
160 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | |
163 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
161 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
164 | dt2, |
|
162 | dt2, | |
165 | len(x)) |
|
163 | len(x)) | |
166 | self.titles[0] = title |
|
164 | self.titles[0] = title | |
167 |
|
165 | |||
168 |
|
166 | |||
169 | class GenericRTIPlot(Plot): |
|
167 | class GenericRTIPlot(Plot): | |
170 | ''' |
|
168 | ''' | |
171 | Plot for data_xxxx object |
|
169 | Plot for data_xxxx object | |
172 | ''' |
|
170 | ''' | |
173 |
|
171 | |||
174 | CODE = 'param' |
|
172 | CODE = 'param' | |
175 | colormap = 'viridis' |
|
173 | colormap = 'viridis' | |
176 | plot_type = 'pcolorbuffer' |
|
174 | plot_type = 'pcolorbuffer' | |
177 |
|
175 | |||
178 | def setup(self): |
|
176 | def setup(self): | |
179 | self.xaxis = 'time' |
|
177 | self.xaxis = 'time' | |
180 | self.ncols = 1 |
|
178 | self.ncols = 1 | |
181 | self.nrows = self.data.shape('param')[0] |
|
179 | self.nrows = self.data.shape('param')[0] | |
182 | self.nplots = self.nrows |
|
180 | self.nplots = self.nrows | |
183 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
181 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) | |
184 |
|
182 | |||
185 | if not self.xlabel: |
|
183 | if not self.xlabel: | |
186 | self.xlabel = 'Time' |
|
184 | self.xlabel = 'Time' | |
187 |
|
185 | |||
188 | self.ylabel = 'Range [km]' |
|
186 | self.ylabel = 'Range [km]' | |
189 | if not self.titles: |
|
187 | if not self.titles: | |
190 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
188 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] | |
191 |
|
189 | |||
192 | def update(self, dataOut): |
|
190 | def update(self, dataOut): | |
193 |
|
191 | |||
194 | data = { |
|
192 | data = { | |
195 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
193 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) | |
196 | } |
|
194 | } | |
197 |
|
195 | |||
198 | meta = {} |
|
196 | meta = {} | |
199 |
|
197 | |||
200 | return data, meta |
|
198 | return data, meta | |
201 |
|
199 | |||
202 | def plot(self): |
|
200 | def plot(self): | |
203 | # self.data.normalize_heights() |
|
201 | # self.data.normalize_heights() | |
204 | self.x = self.data.times |
|
202 | self.x = self.data.times | |
205 | self.y = self.data.yrange |
|
203 | self.y = self.data.yrange | |
206 | self.z = self.data['param'] |
|
204 | self.z = self.data['param'] | |
207 |
|
||||
208 | self.z = 10*numpy.log10(self.z) |
|
205 | self.z = 10*numpy.log10(self.z) | |
209 |
|
||||
210 | self.z = numpy.ma.masked_invalid(self.z) |
|
206 | self.z = numpy.ma.masked_invalid(self.z) | |
211 |
|
207 | |||
212 | if self.decimation is None: |
|
208 | if self.decimation is None: | |
213 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
209 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
214 | else: |
|
210 | else: | |
215 | x, y, z = self.fill_gaps(*self.decimate()) |
|
211 | x, y, z = self.fill_gaps(*self.decimate()) | |
216 |
|
212 | |||
217 | for n, ax in enumerate(self.axes): |
|
213 | for n, ax in enumerate(self.axes): | |
218 |
|
214 | |||
219 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
215 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
220 | self.z[n]) |
|
216 | self.z[n]) | |
221 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
217 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
222 | self.z[n]) |
|
218 | self.z[n]) | |
223 |
|
219 | |||
224 | if ax.firsttime: |
|
220 | if ax.firsttime: | |
225 | if self.zlimits is not None: |
|
221 | if self.zlimits is not None: | |
226 | self.zmin, self.zmax = self.zlimits[n] |
|
222 | self.zmin, self.zmax = self.zlimits[n] | |
227 |
|
223 | |||
228 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
224 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
229 | vmin=self.zmin, |
|
225 | vmin=self.zmin, | |
230 | vmax=self.zmax, |
|
226 | vmax=self.zmax, | |
231 | cmap=self.cmaps[n] |
|
227 | cmap=self.cmaps[n] | |
232 | ) |
|
228 | ) | |
233 | else: |
|
229 | else: | |
234 | if self.zlimits is not None: |
|
230 | if self.zlimits is not None: | |
235 | self.zmin, self.zmax = self.zlimits[n] |
|
231 | self.zmin, self.zmax = self.zlimits[n] | |
236 | ax.collections.remove(ax.collections[0]) |
|
232 | ax.collections.remove(ax.collections[0]) | |
237 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
233 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
238 | vmin=self.zmin, |
|
234 | vmin=self.zmin, | |
239 | vmax=self.zmax, |
|
235 | vmax=self.zmax, | |
240 | cmap=self.cmaps[n] |
|
236 | cmap=self.cmaps[n] | |
241 | ) |
|
237 | ) | |
242 |
|
238 | |||
243 |
|
239 | |||
244 | class PolarMapPlot(Plot): |
|
240 | class PolarMapPlot(Plot): | |
245 | ''' |
|
241 | ''' | |
246 | Plot for weather radar |
|
242 | Plot for weather radar | |
247 | ''' |
|
243 | ''' | |
248 |
|
244 | |||
249 | CODE = 'param' |
|
245 | CODE = 'param' | |
250 | colormap = 'seismic' |
|
246 | colormap = 'seismic' | |
251 |
|
247 | |||
252 | def setup(self): |
|
248 | def setup(self): | |
253 | self.ncols = 1 |
|
249 | self.ncols = 1 | |
254 | self.nrows = 1 |
|
250 | self.nrows = 1 | |
255 | self.width = 9 |
|
251 | self.width = 9 | |
256 | self.height = 8 |
|
252 | self.height = 8 | |
257 | self.mode = self.data.meta['mode'] |
|
253 | self.mode = self.data.meta['mode'] | |
258 | if self.channels is not None: |
|
254 | if self.channels is not None: | |
259 | self.nplots = len(self.channels) |
|
255 | self.nplots = len(self.channels) | |
260 | self.nrows = len(self.channels) |
|
256 | self.nrows = len(self.channels) | |
261 | else: |
|
257 | else: | |
262 | self.nplots = self.data.shape(self.CODE)[0] |
|
258 | self.nplots = self.data.shape(self.CODE)[0] | |
263 | self.nrows = self.nplots |
|
259 | self.nrows = self.nplots | |
264 | self.channels = list(range(self.nplots)) |
|
260 | self.channels = list(range(self.nplots)) | |
265 | if self.mode == 'E': |
|
261 | if self.mode == 'E': | |
266 | self.xlabel = 'Longitude' |
|
262 | self.xlabel = 'Longitude' | |
267 | self.ylabel = 'Latitude' |
|
263 | self.ylabel = 'Latitude' | |
268 | else: |
|
264 | else: | |
269 | self.xlabel = 'Range (km)' |
|
265 | self.xlabel = 'Range (km)' | |
270 | self.ylabel = 'Height (km)' |
|
266 | self.ylabel = 'Height (km)' | |
271 | self.bgcolor = 'white' |
|
267 | self.bgcolor = 'white' | |
272 | self.cb_labels = self.data.meta['units'] |
|
268 | self.cb_labels = self.data.meta['units'] | |
273 | self.lat = self.data.meta['latitude'] |
|
269 | self.lat = self.data.meta['latitude'] | |
274 | self.lon = self.data.meta['longitude'] |
|
270 | self.lon = self.data.meta['longitude'] | |
275 | self.xmin, self.xmax = float( |
|
271 | self.xmin, self.xmax = float( | |
276 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
272 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | |
277 | self.ymin, self.ymax = float( |
|
273 | self.ymin, self.ymax = float( | |
278 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
274 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | |
279 | # self.polar = True |
|
275 | # self.polar = True | |
280 |
|
276 | |||
281 | def plot(self): |
|
277 | def plot(self): | |
282 |
|
278 | |||
283 | for n, ax in enumerate(self.axes): |
|
279 | for n, ax in enumerate(self.axes): | |
284 | data = self.data['param'][self.channels[n]] |
|
280 | data = self.data['param'][self.channels[n]] | |
285 |
|
281 | |||
286 | zeniths = numpy.linspace( |
|
282 | zeniths = numpy.linspace( | |
287 | 0, self.data.meta['max_range'], data.shape[1]) |
|
283 | 0, self.data.meta['max_range'], data.shape[1]) | |
288 | if self.mode == 'E': |
|
284 | if self.mode == 'E': | |
289 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
285 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 | |
290 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
286 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
291 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
287 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | |
292 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
288 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | |
293 | x = km2deg(x) + self.lon |
|
289 | x = km2deg(x) + self.lon | |
294 | y = km2deg(y) + self.lat |
|
290 | y = km2deg(y) + self.lat | |
295 | else: |
|
291 | else: | |
296 | azimuths = numpy.radians(self.data.yrange) |
|
292 | azimuths = numpy.radians(self.data.yrange) | |
297 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
293 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
298 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
294 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
299 | self.y = zeniths |
|
295 | self.y = zeniths | |
300 |
|
296 | |||
301 | if ax.firsttime: |
|
297 | if ax.firsttime: | |
302 | if self.zlimits is not None: |
|
298 | if self.zlimits is not None: | |
303 | self.zmin, self.zmax = self.zlimits[n] |
|
299 | self.zmin, self.zmax = self.zlimits[n] | |
304 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
300 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
305 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
301 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
306 | vmin=self.zmin, |
|
302 | vmin=self.zmin, | |
307 | vmax=self.zmax, |
|
303 | vmax=self.zmax, | |
308 | cmap=self.cmaps[n]) |
|
304 | cmap=self.cmaps[n]) | |
309 | else: |
|
305 | else: | |
310 | if self.zlimits is not None: |
|
306 | if self.zlimits is not None: | |
311 | self.zmin, self.zmax = self.zlimits[n] |
|
307 | self.zmin, self.zmax = self.zlimits[n] | |
312 | ax.collections.remove(ax.collections[0]) |
|
308 | ax.collections.remove(ax.collections[0]) | |
313 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
309 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
314 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
310 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
315 | vmin=self.zmin, |
|
311 | vmin=self.zmin, | |
316 | vmax=self.zmax, |
|
312 | vmax=self.zmax, | |
317 | cmap=self.cmaps[n]) |
|
313 | cmap=self.cmaps[n]) | |
318 |
|
314 | |||
319 | if self.mode == 'A': |
|
315 | if self.mode == 'A': | |
320 | continue |
|
316 | continue | |
321 |
|
317 | |||
322 | # plot district names |
|
318 | # plot district names | |
323 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
319 | f = open('/data/workspace/schain_scripts/distrito.csv') | |
324 | for line in f: |
|
320 | for line in f: | |
325 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
321 | label, lon, lat = [s.strip() for s in line.split(',') if s] | |
326 | lat = float(lat) |
|
322 | lat = float(lat) | |
327 | lon = float(lon) |
|
323 | lon = float(lon) | |
328 | # ax.plot(lon, lat, '.b', ms=2) |
|
324 | # ax.plot(lon, lat, '.b', ms=2) | |
329 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
325 | ax.text(lon, lat, label.decode('utf8'), ha='center', | |
330 | va='bottom', size='8', color='black') |
|
326 | va='bottom', size='8', color='black') | |
331 |
|
327 | |||
332 | # plot limites |
|
328 | # plot limites | |
333 | limites = [] |
|
329 | limites = [] | |
334 | tmp = [] |
|
330 | tmp = [] | |
335 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
331 | for line in open('/data/workspace/schain_scripts/lima.csv'): | |
336 | if '#' in line: |
|
332 | if '#' in line: | |
337 | if tmp: |
|
333 | if tmp: | |
338 | limites.append(tmp) |
|
334 | limites.append(tmp) | |
339 | tmp = [] |
|
335 | tmp = [] | |
340 | continue |
|
336 | continue | |
341 | values = line.strip().split(',') |
|
337 | values = line.strip().split(',') | |
342 | tmp.append((float(values[0]), float(values[1]))) |
|
338 | tmp.append((float(values[0]), float(values[1]))) | |
343 | for points in limites: |
|
339 | for points in limites: | |
344 | ax.add_patch( |
|
340 | ax.add_patch( | |
345 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
341 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | |
346 |
|
342 | |||
347 | # plot Cuencas |
|
343 | # plot Cuencas | |
348 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
344 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | |
349 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
345 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) | |
350 | values = [line.strip().split(',') for line in f] |
|
346 | values = [line.strip().split(',') for line in f] | |
351 | points = [(float(s[0]), float(s[1])) for s in values] |
|
347 | points = [(float(s[0]), float(s[1])) for s in values] | |
352 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
348 | ax.add_patch(Polygon(points, ec='b', fc='none')) | |
353 |
|
349 | |||
354 | # plot grid |
|
350 | # plot grid | |
355 | for r in (15, 30, 45, 60): |
|
351 | for r in (15, 30, 45, 60): | |
356 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
352 | ax.add_artist(plt.Circle((self.lon, self.lat), | |
357 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
353 | km2deg(r), color='0.6', fill=False, lw=0.2)) | |
358 | ax.text( |
|
354 | ax.text( | |
359 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
355 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), | |
360 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
356 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), | |
361 | '{}km'.format(r), |
|
357 | '{}km'.format(r), | |
362 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
358 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') | |
363 |
|
359 | |||
364 | if self.mode == 'E': |
|
360 | if self.mode == 'E': | |
365 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
361 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | |
366 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
362 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | |
367 | else: |
|
363 | else: | |
368 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
364 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | |
369 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
365 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | |
370 |
|
366 | |||
371 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
367 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
372 | self.titles = ['{} {}'.format( |
|
368 | self.titles = ['{} {}'.format( | |
373 | self.data.parameters[x], title) for x in self.channels] |
|
369 | self.data.parameters[x], title) for x in self.channels] | |
374 |
|
370 | |||
375 | class WeatherPlot(Plot): |
|
371 | class WeatherPlot(Plot): | |
376 | CODE = 'weather' |
|
372 | CODE = 'weather' | |
377 | plot_name = 'weather' |
|
373 | plot_name = 'weather' | |
378 | plot_type = 'ppistyle' |
|
374 | plot_type = 'ppistyle' | |
379 | buffering = False |
|
375 | buffering = False | |
380 |
|
376 | |||
381 | def setup(self): |
|
377 | def setup(self): | |
382 | self.ncols = 1 |
|
378 | self.ncols = 1 | |
383 | self.nrows = 1 |
|
379 | self.nrows = 1 | |
384 | self.nplots= 1 |
|
380 | self.nplots= 1 | |
385 | self.ylabel= 'Range [Km]' |
|
381 | self.ylabel= 'Range [Km]' | |
386 | self.titles= ['Weather'] |
|
382 | self.titles= ['Weather'] | |
387 | self.colorbar=False |
|
383 | self.colorbar=False | |
388 | self.width =8 |
|
384 | self.width =8 | |
389 | self.height =8 |
|
385 | self.height =8 | |
390 | self.ini =0 |
|
386 | self.ini =0 | |
391 | self.len_azi =0 |
|
387 | self.len_azi =0 | |
392 | self.buffer_ini = None |
|
388 | self.buffer_ini = None | |
393 | self.buffer_azi = None |
|
389 | self.buffer_azi = None | |
394 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
390 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
395 | self.flag =0 |
|
391 | self.flag =0 | |
396 | self.indicador= 0 |
|
392 | self.indicador= 0 | |
397 |
|
393 | |||
398 | def update(self, dataOut): |
|
394 | def update(self, dataOut): | |
399 |
|
395 | |||
400 | data = {} |
|
396 | data = {} | |
401 | meta = {} |
|
397 | meta = {} | |
402 | print("aprox",dataOut.data_360[0]) |
|
|||
403 | data['weather'] = 10*numpy.log10(dataOut.data_360[0]/(250.0)) |
|
398 | data['weather'] = 10*numpy.log10(dataOut.data_360[0]/(250.0)) | |
404 | #print(data['weather']) |
|
|||
405 | data['azi'] = dataOut.data_azi |
|
399 | data['azi'] = dataOut.data_azi | |
406 | print("UPDATE",data['azi']) |
|
|||
407 | return data, meta |
|
400 | return data, meta | |
408 |
|
401 | |||
409 | def const_ploteo(self,data_weather,data_azi,step,res): |
|
402 | def const_ploteo(self,data_weather,data_azi,step,res): | |
410 | #print("data_weather",data_weather) |
|
|||
411 | print("data_azi",data_azi) |
|
|||
412 | print("step",step) |
|
|||
413 | if self.ini==0: |
|
403 | if self.ini==0: | |
414 | #------- AZIMUTH |
|
404 | #------- AZIMUTH | |
415 | n = (360/res)-len(data_azi) |
|
405 | n = (360/res)-len(data_azi) | |
416 | start = data_azi[-1] + res |
|
406 | start = data_azi[-1] + res | |
417 | end = data_azi[0] - res |
|
407 | end = data_azi[0] - res | |
418 | if start>end: |
|
408 | if start>end: | |
419 | end = end + 360 |
|
409 | end = end + 360 | |
420 | azi_vacia = numpy.linspace(start,end,int(n)) |
|
410 | azi_vacia = numpy.linspace(start,end,int(n)) | |
421 | azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) |
|
411 | azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) | |
422 | data_azi = numpy.hstack((data_azi,azi_vacia)) |
|
412 | data_azi = numpy.hstack((data_azi,azi_vacia)) | |
423 | # RADAR |
|
413 | # RADAR | |
424 | val_mean = numpy.mean(data_weather[:,0]) |
|
414 | val_mean = numpy.mean(data_weather[:,0]) | |
425 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean |
|
415 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean | |
426 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) |
|
416 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) | |
427 | else: |
|
417 | else: | |
428 | # azimuth |
|
418 | # azimuth | |
429 | flag=0 |
|
419 | flag=0 | |
430 | start_azi = self.res_azi[0] |
|
420 | start_azi = self.res_azi[0] | |
431 | start = data_azi[0] |
|
421 | start = data_azi[0] | |
432 | end = data_azi[-1] |
|
422 | end = data_azi[-1] | |
433 | print("start",start) |
|
423 | print("start",start) | |
434 | print("end",end) |
|
424 | print("end",end) | |
435 | if start< start_azi: |
|
425 | if start< start_azi: | |
436 | start = start +360 |
|
426 | start = start +360 | |
437 | if end <start_azi: |
|
427 | if end <start_azi: | |
438 | end = end +360 |
|
428 | end = end +360 | |
439 |
|
429 | |||
440 | print("start",start) |
|
430 | print("start",start) | |
441 | print("end",end) |
|
431 | print("end",end) | |
442 | #### AQUI SERA LA MAGIA |
|
432 | #### AQUI SERA LA MAGIA | |
443 | pos_ini = int((start-start_azi)/res) |
|
433 | pos_ini = int((start-start_azi)/res) | |
444 | len_azi = len(data_azi) |
|
434 | len_azi = len(data_azi) | |
445 | if (360-pos_ini)<len_azi: |
|
435 | if (360-pos_ini)<len_azi: | |
446 | if pos_ini+1==360: |
|
436 | if pos_ini+1==360: | |
447 | pos_ini=0 |
|
437 | pos_ini=0 | |
448 | else: |
|
438 | else: | |
449 | flag=1 |
|
439 | flag=1 | |
450 | dif= 360-pos_ini |
|
440 | dif= 360-pos_ini | |
451 | comp= len_azi-dif |
|
441 | comp= len_azi-dif | |
452 |
|
442 | |||
453 | print(pos_ini) |
|
443 | print(pos_ini) | |
454 | print(len_azi) |
|
444 | print(len_azi) | |
455 | print("shape",self.res_azi.shape) |
|
445 | print("shape",self.res_azi.shape) | |
456 | if flag==0: |
|
446 | if flag==0: | |
457 | # AZIMUTH |
|
447 | # AZIMUTH | |
458 | self.res_azi[pos_ini:pos_ini+len_azi] = data_azi |
|
448 | self.res_azi[pos_ini:pos_ini+len_azi] = data_azi | |
459 | # RADAR |
|
449 | # RADAR | |
460 | self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather |
|
450 | self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather | |
461 | else: |
|
451 | else: | |
462 | # AZIMUTH |
|
452 | # AZIMUTH | |
463 | self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] |
|
453 | self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] | |
464 | self.res_azi[0:comp] = data_azi[dif:] |
|
454 | self.res_azi[0:comp] = data_azi[dif:] | |
465 | # RADAR |
|
455 | # RADAR | |
466 | self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] |
|
456 | self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] | |
467 | self.res_weather[0:comp,:] = data_weather[dif:,:] |
|
457 | self.res_weather[0:comp,:] = data_weather[dif:,:] | |
468 | flag=0 |
|
458 | flag=0 | |
469 | data_azi = self.res_azi |
|
459 | data_azi = self.res_azi | |
470 | data_weather = self.res_weather |
|
460 | data_weather = self.res_weather | |
471 |
|
461 | |||
472 | return data_weather,data_azi |
|
462 | return data_weather,data_azi | |
473 |
|
463 | |||
474 | def plot(self): |
|
464 | def plot(self): | |
475 | print("--------------------------------------",self.ini,"-----------------------------------") |
|
465 | print("--------------------------------------",self.ini,"-----------------------------------") | |
476 | #numpy.set_printoptions(suppress=True) |
|
466 | #numpy.set_printoptions(suppress=True) | |
477 | #print(self.data.times) |
|
467 | #print(self.data.times) | |
478 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]) |
|
468 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]) | |
479 | data = self.data[-1] |
|
469 | data = self.data[-1] | |
480 | # ALTURA altura_tmp_h |
|
470 | # ALTURA altura_tmp_h | |
481 | altura_h = (data['weather'].shape[1])/10.0 |
|
471 | altura_h = (data['weather'].shape[1])/10.0 | |
482 | stoprange = float(altura_h*1.5)#stoprange = float(33*1.5) por ahora 400 |
|
472 | stoprange = float(altura_h*1.5)#stoprange = float(33*1.5) por ahora 400 | |
483 | rangestep = float(0.15) |
|
473 | rangestep = float(0.15) | |
484 | r = numpy.arange(0, stoprange, rangestep) |
|
474 | r = numpy.arange(0, stoprange, rangestep) | |
485 | self.y = 2*r |
|
475 | self.y = 2*r | |
486 | # RADAR |
|
476 | # RADAR | |
487 | #data_weather = data['weather'] |
|
477 | #data_weather = data['weather'] | |
488 | # PEDESTAL |
|
478 | # PEDESTAL | |
489 | #data_azi = data['azi'] |
|
479 | #data_azi = data['azi'] | |
490 | res = 1 |
|
480 | res = 1 | |
491 | # STEP |
|
481 | # STEP | |
492 | step = (360/(res*data['weather'].shape[0])) |
|
482 | step = (360/(res*data['weather'].shape[0])) | |
493 | #print("shape wr_data", wr_data.shape) |
|
483 | #print("shape wr_data", wr_data.shape) | |
494 | #print("shape wr_azi",wr_azi.shape) |
|
484 | #print("shape wr_azi",wr_azi.shape) | |
495 | #print("step",step) |
|
485 | #print("step",step) | |
496 | print("Time---->",self.data.times[-1],thisDatetime) |
|
486 | print("Time---->",self.data.times[-1],thisDatetime) | |
497 | #print("alturas", len(self.y)) |
|
487 | #print("alturas", len(self.y)) | |
498 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'],data_azi=data['azi'],step=step,res=res) |
|
488 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'],data_azi=data['azi'],step=step,res=res) | |
499 | #numpy.set_printoptions(suppress=True) |
|
489 | #numpy.set_printoptions(suppress=True) | |
500 | #print("resultado",self.res_azi) |
|
490 | #print("resultado",self.res_azi) | |
501 | ########################################################## |
|
491 | ########################################################## | |
502 | ################# PLOTEO ################### |
|
492 | ################# PLOTEO ################### | |
503 | ########################################################## |
|
493 | ########################################################## | |
504 |
|
494 | |||
505 | for i,ax in enumerate(self.axes): |
|
495 | for i,ax in enumerate(self.axes): | |
506 | if ax.firsttime: |
|
496 | if ax.firsttime: | |
507 | plt.clf() |
|
497 | plt.clf() | |
508 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60) |
|
498 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60) | |
509 | else: |
|
499 | else: | |
510 | plt.clf() |
|
500 | plt.clf() | |
511 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=0, vmax=60) |
|
501 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=0, vmax=60) | |
512 | caax = cgax.parasites[0] |
|
502 | caax = cgax.parasites[0] | |
513 | paax = cgax.parasites[1] |
|
503 | paax = cgax.parasites[1] | |
514 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
504 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
515 | caax.set_xlabel('x_range [km]') |
|
505 | caax.set_xlabel('x_range [km]') | |
516 | caax.set_ylabel('y_range [km]') |
|
506 | caax.set_ylabel('y_range [km]') | |
517 | plt.text(1.0, 1.05, 'azimuth '+str(thisDatetime)+"step"+str(self.ini), transform=caax.transAxes, va='bottom',ha='right') |
|
507 | plt.text(1.0, 1.05, 'azimuth '+str(thisDatetime)+"step"+str(self.ini), transform=caax.transAxes, va='bottom',ha='right') | |
518 |
|
508 | |||
519 | self.ini= self.ini+1 |
|
509 | self.ini= self.ini+1 |
@@ -1,745 +1,743 | |||||
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Classes to plot Spectra data |
|
5 | """Classes to plot Spectra data | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import numpy |
|
10 | import numpy | |
11 |
|
11 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | class SpectraPlot(Plot): |
|
15 | class SpectraPlot(Plot): | |
16 | ''' |
|
16 | ''' | |
17 | Plot for Spectra data |
|
17 | Plot for Spectra data | |
18 | ''' |
|
18 | ''' | |
19 |
|
19 | |||
20 | CODE = 'spc' |
|
20 | CODE = 'spc' | |
21 | colormap = 'jet' |
|
21 | colormap = 'jet' | |
22 | plot_type = 'pcolor' |
|
22 | plot_type = 'pcolor' | |
23 | buffering = False |
|
23 | buffering = False | |
24 |
|
24 | |||
25 | def setup(self): |
|
25 | def setup(self): | |
26 | self.nplots = len(self.data.channels) |
|
26 | self.nplots = len(self.data.channels) | |
27 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
27 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
28 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
28 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
29 | self.height = 2.6 * self.nrows |
|
29 | self.height = 2.6 * self.nrows | |
30 | self.cb_label = 'dB' |
|
30 | self.cb_label = 'dB' | |
31 | if self.showprofile: |
|
31 | if self.showprofile: | |
32 | self.width = 4 * self.ncols |
|
32 | self.width = 4 * self.ncols | |
33 | else: |
|
33 | else: | |
34 | self.width = 3.5 * self.ncols |
|
34 | self.width = 3.5 * self.ncols | |
35 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
35 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
36 | self.ylabel = 'Range [km]' |
|
36 | self.ylabel = 'Range [km]' | |
37 |
|
37 | |||
38 | def update(self, dataOut): |
|
38 | def update(self, dataOut): | |
39 |
|
39 | |||
40 | data = {} |
|
40 | data = {} | |
41 | meta = {} |
|
41 | meta = {} | |
42 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
42 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
43 | data['spc'] = spc |
|
43 | data['spc'] = spc | |
44 | data['rti'] = dataOut.getPower() |
|
44 | data['rti'] = dataOut.getPower() | |
45 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
45 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
46 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
46 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
47 |
|
47 | |||
48 | if self.CODE == 'spc_moments': |
|
48 | if self.CODE == 'spc_moments': | |
49 | data['moments'] = dataOut.moments |
|
49 | data['moments'] = dataOut.moments | |
50 | # data['spc'] = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) |
|
50 | # data['spc'] = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) | |
51 | if self.CODE == 'gaussian_fit': |
|
51 | if self.CODE == 'gaussian_fit': | |
52 | # data['moments'] = dataOut.moments |
|
52 | # data['moments'] = dataOut.moments | |
53 | data['gaussfit'] = dataOut.DGauFitParams |
|
53 | data['gaussfit'] = dataOut.DGauFitParams | |
54 | # data['spc'] = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) |
|
54 | # data['spc'] = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) | |
55 |
|
55 | |||
56 | return data, meta |
|
56 | return data, meta | |
57 |
|
57 | |||
58 | def plot(self): |
|
58 | def plot(self): | |
59 | if self.xaxis == "frequency": |
|
59 | if self.xaxis == "frequency": | |
60 | x = self.data.xrange[0] |
|
60 | x = self.data.xrange[0] | |
61 | self.xlabel = "Frequency (kHz)" |
|
61 | self.xlabel = "Frequency (kHz)" | |
62 | elif self.xaxis == "time": |
|
62 | elif self.xaxis == "time": | |
63 | x = self.data.xrange[1] |
|
63 | x = self.data.xrange[1] | |
64 | self.xlabel = "Time (ms)" |
|
64 | self.xlabel = "Time (ms)" | |
65 | else: |
|
65 | else: | |
66 | x = self.data.xrange[2] |
|
66 | x = self.data.xrange[2] | |
67 | self.xlabel = "Velocity (m/s)" |
|
67 | self.xlabel = "Velocity (m/s)" | |
68 |
|
68 | |||
69 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): |
|
69 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): | |
70 | x = self.data.xrange[2] |
|
70 | x = self.data.xrange[2] | |
71 | self.xlabel = "Velocity (m/s)" |
|
71 | self.xlabel = "Velocity (m/s)" | |
72 |
|
72 | |||
73 | self.titles = [] |
|
73 | self.titles = [] | |
74 |
|
74 | |||
75 | y = self.data.yrange |
|
75 | y = self.data.yrange | |
76 | self.y = y |
|
76 | self.y = y | |
77 |
|
77 | |||
78 | data = self.data[-1] |
|
78 | data = self.data[-1] | |
79 | z = data['spc'] |
|
79 | z = data['spc'] | |
80 |
|
80 | |||
81 | for n, ax in enumerate(self.axes): |
|
81 | for n, ax in enumerate(self.axes): | |
82 | noise = data['noise'][n] |
|
82 | noise = data['noise'][n] | |
83 | if self.CODE == 'spc_moments': |
|
83 | if self.CODE == 'spc_moments': | |
84 | mean = data['moments'][n, 1] |
|
84 | mean = data['moments'][n, 1] | |
85 | if self.CODE == 'gaussian_fit': |
|
85 | if self.CODE == 'gaussian_fit': | |
86 | # mean = data['moments'][n, 1] |
|
86 | # mean = data['moments'][n, 1] | |
87 | gau0 = data['gaussfit'][n][2,:,0] |
|
87 | gau0 = data['gaussfit'][n][2,:,0] | |
88 | gau1 = data['gaussfit'][n][2,:,1] |
|
88 | gau1 = data['gaussfit'][n][2,:,1] | |
89 | if ax.firsttime: |
|
89 | if ax.firsttime: | |
90 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
90 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
91 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
91 | self.xmin = self.xmin if self.xmin else -self.xmax | |
92 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
92 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
93 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
93 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
94 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
94 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
95 | vmin=self.zmin, |
|
95 | vmin=self.zmin, | |
96 | vmax=self.zmax, |
|
96 | vmax=self.zmax, | |
97 | cmap=plt.get_cmap(self.colormap) |
|
97 | cmap=plt.get_cmap(self.colormap) | |
98 | ) |
|
98 | ) | |
99 |
|
99 | |||
100 | if self.showprofile: |
|
100 | if self.showprofile: | |
101 | ax.plt_profile = self.pf_axes[n].plot( |
|
101 | ax.plt_profile = self.pf_axes[n].plot( | |
102 | data['rti'][n], y)[0] |
|
102 | data['rti'][n], y)[0] | |
103 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
103 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
104 | color="k", linestyle="dashed", lw=1)[0] |
|
104 | color="k", linestyle="dashed", lw=1)[0] | |
105 | if self.CODE == 'spc_moments': |
|
105 | if self.CODE == 'spc_moments': | |
106 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
106 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] | |
107 | if self.CODE == 'gaussian_fit': |
|
107 | if self.CODE == 'gaussian_fit': | |
108 | # ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
108 | # ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] | |
109 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] |
|
109 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] | |
110 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] |
|
110 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] | |
111 | else: |
|
111 | else: | |
112 | ax.plt.set_array(z[n].T.ravel()) |
|
112 | ax.plt.set_array(z[n].T.ravel()) | |
113 | if self.showprofile: |
|
113 | if self.showprofile: | |
114 | ax.plt_profile.set_data(data['rti'][n], y) |
|
114 | ax.plt_profile.set_data(data['rti'][n], y) | |
115 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
115 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
116 | if self.CODE == 'spc_moments': |
|
116 | if self.CODE == 'spc_moments': | |
117 | ax.plt_mean.set_data(mean, y) |
|
117 | ax.plt_mean.set_data(mean, y) | |
118 | if self.CODE == 'gaussian_fit': |
|
118 | if self.CODE == 'gaussian_fit': | |
119 | # ax.plt_mean.set_data(mean, y) |
|
119 | # ax.plt_mean.set_data(mean, y) | |
120 | ax.plt_gau0.set_data(gau0, y) |
|
120 | ax.plt_gau0.set_data(gau0, y) | |
121 | ax.plt_gau1.set_data(gau1, y) |
|
121 | ax.plt_gau1.set_data(gau1, y) | |
122 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
122 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
123 |
|
123 | |||
124 |
|
124 | |||
125 | class CrossSpectraPlot(Plot): |
|
125 | class CrossSpectraPlot(Plot): | |
126 |
|
126 | |||
127 | CODE = 'cspc' |
|
127 | CODE = 'cspc' | |
128 | colormap = 'jet' |
|
128 | colormap = 'jet' | |
129 | plot_type = 'pcolor' |
|
129 | plot_type = 'pcolor' | |
130 | zmin_coh = None |
|
130 | zmin_coh = None | |
131 | zmax_coh = None |
|
131 | zmax_coh = None | |
132 | zmin_phase = None |
|
132 | zmin_phase = None | |
133 | zmax_phase = None |
|
133 | zmax_phase = None | |
134 |
|
134 | |||
135 | def setup(self): |
|
135 | def setup(self): | |
136 |
|
136 | |||
137 | self.ncols = 4 |
|
137 | self.ncols = 4 | |
138 | self.nplots = len(self.data.pairs) * 2 |
|
138 | self.nplots = len(self.data.pairs) * 2 | |
139 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
139 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
140 | self.width = 3.1 * self.ncols |
|
140 | self.width = 3.1 * self.ncols | |
141 | self.height = 2.6 * self.nrows |
|
141 | self.height = 2.6 * self.nrows | |
142 | self.ylabel = 'Range [km]' |
|
142 | self.ylabel = 'Range [km]' | |
143 | self.showprofile = False |
|
143 | self.showprofile = False | |
144 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
144 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
145 |
|
145 | |||
146 | def update(self, dataOut): |
|
146 | def update(self, dataOut): | |
147 |
|
147 | |||
148 | data = {} |
|
148 | data = {} | |
149 | meta = {} |
|
149 | meta = {} | |
150 |
|
150 | |||
151 | spc = dataOut.data_spc |
|
151 | spc = dataOut.data_spc | |
152 | cspc = dataOut.data_cspc |
|
152 | cspc = dataOut.data_cspc | |
153 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
153 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
154 | meta['pairs'] = dataOut.pairsList |
|
154 | meta['pairs'] = dataOut.pairsList | |
155 |
|
155 | |||
156 | tmp = [] |
|
156 | tmp = [] | |
157 |
|
157 | |||
158 | for n, pair in enumerate(meta['pairs']): |
|
158 | for n, pair in enumerate(meta['pairs']): | |
159 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
159 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
160 | coh = numpy.abs(out) |
|
160 | coh = numpy.abs(out) | |
161 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
161 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
162 | tmp.append(coh) |
|
162 | tmp.append(coh) | |
163 | tmp.append(phase) |
|
163 | tmp.append(phase) | |
164 |
|
164 | |||
165 | data['cspc'] = numpy.array(tmp) |
|
165 | data['cspc'] = numpy.array(tmp) | |
166 |
|
166 | |||
167 | return data, meta |
|
167 | return data, meta | |
168 |
|
168 | |||
169 | def plot(self): |
|
169 | def plot(self): | |
170 |
|
170 | |||
171 | if self.xaxis == "frequency": |
|
171 | if self.xaxis == "frequency": | |
172 | x = self.data.xrange[0] |
|
172 | x = self.data.xrange[0] | |
173 | self.xlabel = "Frequency (kHz)" |
|
173 | self.xlabel = "Frequency (kHz)" | |
174 | elif self.xaxis == "time": |
|
174 | elif self.xaxis == "time": | |
175 | x = self.data.xrange[1] |
|
175 | x = self.data.xrange[1] | |
176 | self.xlabel = "Time (ms)" |
|
176 | self.xlabel = "Time (ms)" | |
177 | else: |
|
177 | else: | |
178 | x = self.data.xrange[2] |
|
178 | x = self.data.xrange[2] | |
179 | self.xlabel = "Velocity (m/s)" |
|
179 | self.xlabel = "Velocity (m/s)" | |
180 |
|
180 | |||
181 | self.titles = [] |
|
181 | self.titles = [] | |
182 |
|
182 | |||
183 | y = self.data.yrange |
|
183 | y = self.data.yrange | |
184 | self.y = y |
|
184 | self.y = y | |
185 |
|
185 | |||
186 | data = self.data[-1] |
|
186 | data = self.data[-1] | |
187 | cspc = data['cspc'] |
|
187 | cspc = data['cspc'] | |
188 |
|
188 | |||
189 | for n in range(len(self.data.pairs)): |
|
189 | for n in range(len(self.data.pairs)): | |
190 | pair = self.data.pairs[n] |
|
190 | pair = self.data.pairs[n] | |
191 | coh = cspc[n*2] |
|
191 | coh = cspc[n*2] | |
192 | phase = cspc[n*2+1] |
|
192 | phase = cspc[n*2+1] | |
193 | ax = self.axes[2 * n] |
|
193 | ax = self.axes[2 * n] | |
194 | if ax.firsttime: |
|
194 | if ax.firsttime: | |
195 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
195 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
196 | vmin=0, |
|
196 | vmin=0, | |
197 | vmax=1, |
|
197 | vmax=1, | |
198 | cmap=plt.get_cmap(self.colormap_coh) |
|
198 | cmap=plt.get_cmap(self.colormap_coh) | |
199 | ) |
|
199 | ) | |
200 | else: |
|
200 | else: | |
201 | ax.plt.set_array(coh.T.ravel()) |
|
201 | ax.plt.set_array(coh.T.ravel()) | |
202 | self.titles.append( |
|
202 | self.titles.append( | |
203 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
203 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
204 |
|
204 | |||
205 | ax = self.axes[2 * n + 1] |
|
205 | ax = self.axes[2 * n + 1] | |
206 | if ax.firsttime: |
|
206 | if ax.firsttime: | |
207 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
207 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
208 | vmin=-180, |
|
208 | vmin=-180, | |
209 | vmax=180, |
|
209 | vmax=180, | |
210 | cmap=plt.get_cmap(self.colormap_phase) |
|
210 | cmap=plt.get_cmap(self.colormap_phase) | |
211 | ) |
|
211 | ) | |
212 | else: |
|
212 | else: | |
213 | ax.plt.set_array(phase.T.ravel()) |
|
213 | ax.plt.set_array(phase.T.ravel()) | |
214 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
214 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
215 |
|
215 | |||
216 |
|
216 | |||
217 | class RTIPlot(Plot): |
|
217 | class RTIPlot(Plot): | |
218 | ''' |
|
218 | ''' | |
219 | Plot for RTI data |
|
219 | Plot for RTI data | |
220 | ''' |
|
220 | ''' | |
221 |
|
221 | |||
222 | CODE = 'rti' |
|
222 | CODE = 'rti' | |
223 | colormap = 'jet' |
|
223 | colormap = 'jet' | |
224 | plot_type = 'pcolorbuffer' |
|
224 | plot_type = 'pcolorbuffer' | |
225 |
|
225 | |||
226 | def setup(self): |
|
226 | def setup(self): | |
227 | self.xaxis = 'time' |
|
227 | self.xaxis = 'time' | |
228 | self.ncols = 1 |
|
228 | self.ncols = 1 | |
229 | print("ch",self.data.channels) |
|
|||
230 | self.nrows = len(self.data.channels) |
|
229 | self.nrows = len(self.data.channels) | |
231 | self.nplots = len(self.data.channels) |
|
230 | self.nplots = len(self.data.channels) | |
232 | self.ylabel = 'Range [km]' |
|
231 | self.ylabel = 'Range [km]' | |
233 | self.xlabel = 'Time' |
|
232 | self.xlabel = 'Time' | |
234 | self.cb_label = 'dB' |
|
233 | self.cb_label = 'dB' | |
235 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
234 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) | |
236 | self.titles = ['{} Channel {}'.format( |
|
235 | self.titles = ['{} Channel {}'.format( | |
237 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
236 | self.CODE.upper(), x) for x in range(self.nrows)] | |
238 |
|
237 | |||
239 | def update(self, dataOut): |
|
238 | def update(self, dataOut): | |
240 |
|
239 | |||
241 | data = {} |
|
240 | data = {} | |
242 | meta = {} |
|
241 | meta = {} | |
243 | data['rti'] = dataOut.getPower() |
|
242 | data['rti'] = dataOut.getPower() | |
244 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
243 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
245 |
|
244 | |||
246 | return data, meta |
|
245 | return data, meta | |
247 |
|
246 | |||
248 | def plot(self): |
|
247 | def plot(self): | |
249 | self.x = self.data.times |
|
248 | self.x = self.data.times | |
250 | self.y = self.data.yrange |
|
249 | self.y = self.data.yrange | |
251 | self.z = self.data[self.CODE] |
|
250 | self.z = self.data[self.CODE] | |
252 | self.z = numpy.ma.masked_invalid(self.z) |
|
251 | self.z = numpy.ma.masked_invalid(self.z) | |
253 |
|
252 | |||
254 | if self.decimation is None: |
|
253 | if self.decimation is None: | |
255 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
254 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
256 | else: |
|
255 | else: | |
257 | x, y, z = self.fill_gaps(*self.decimate()) |
|
256 | x, y, z = self.fill_gaps(*self.decimate()) | |
258 |
|
257 | |||
259 | for n, ax in enumerate(self.axes): |
|
258 | for n, ax in enumerate(self.axes): | |
260 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
259 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
261 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
260 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
262 | data = self.data[-1] |
|
261 | data = self.data[-1] | |
263 | if ax.firsttime: |
|
262 | if ax.firsttime: | |
264 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
263 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
265 | vmin=self.zmin, |
|
264 | vmin=self.zmin, | |
266 | vmax=self.zmax, |
|
265 | vmax=self.zmax, | |
267 | cmap=plt.get_cmap(self.colormap) |
|
266 | cmap=plt.get_cmap(self.colormap) | |
268 | ) |
|
267 | ) | |
269 | if self.showprofile: |
|
268 | if self.showprofile: | |
270 | print("test-------------------------------------1") |
|
|||
271 | ax.plot_profile = self.pf_axes[n].plot( |
|
269 | ax.plot_profile = self.pf_axes[n].plot( | |
272 | data['rti'][n], self.y)[0] |
|
270 | data['rti'][n], self.y)[0] | |
273 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
271 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, | |
274 | color="k", linestyle="dashed", lw=1)[0] |
|
272 | color="k", linestyle="dashed", lw=1)[0] | |
275 | else: |
|
273 | else: | |
276 | ax.collections.remove(ax.collections[0]) |
|
274 | ax.collections.remove(ax.collections[0]) | |
277 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
275 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
278 | vmin=self.zmin, |
|
276 | vmin=self.zmin, | |
279 | vmax=self.zmax, |
|
277 | vmax=self.zmax, | |
280 | cmap=plt.get_cmap(self.colormap) |
|
278 | cmap=plt.get_cmap(self.colormap) | |
281 | ) |
|
279 | ) | |
282 | if self.showprofile: |
|
280 | if self.showprofile: | |
283 | ax.plot_profile.set_data(data['rti'][n], self.y) |
|
281 | ax.plot_profile.set_data(data['rti'][n], self.y) | |
284 | ax.plot_noise.set_data(numpy.repeat( |
|
282 | ax.plot_noise.set_data(numpy.repeat( | |
285 | data['noise'][n], len(self.y)), self.y) |
|
283 | data['noise'][n], len(self.y)), self.y) | |
286 |
|
284 | |||
287 |
|
285 | |||
288 | class CoherencePlot(RTIPlot): |
|
286 | class CoherencePlot(RTIPlot): | |
289 | ''' |
|
287 | ''' | |
290 | Plot for Coherence data |
|
288 | Plot for Coherence data | |
291 | ''' |
|
289 | ''' | |
292 |
|
290 | |||
293 | CODE = 'coh' |
|
291 | CODE = 'coh' | |
294 |
|
292 | |||
295 | def setup(self): |
|
293 | def setup(self): | |
296 | self.xaxis = 'time' |
|
294 | self.xaxis = 'time' | |
297 | self.ncols = 1 |
|
295 | self.ncols = 1 | |
298 | self.nrows = len(self.data.pairs) |
|
296 | self.nrows = len(self.data.pairs) | |
299 | self.nplots = len(self.data.pairs) |
|
297 | self.nplots = len(self.data.pairs) | |
300 | self.ylabel = 'Range [km]' |
|
298 | self.ylabel = 'Range [km]' | |
301 | self.xlabel = 'Time' |
|
299 | self.xlabel = 'Time' | |
302 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
300 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) | |
303 | if self.CODE == 'coh': |
|
301 | if self.CODE == 'coh': | |
304 | self.cb_label = '' |
|
302 | self.cb_label = '' | |
305 | self.titles = [ |
|
303 | self.titles = [ | |
306 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
304 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
307 | else: |
|
305 | else: | |
308 | self.cb_label = 'Degrees' |
|
306 | self.cb_label = 'Degrees' | |
309 | self.titles = [ |
|
307 | self.titles = [ | |
310 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
308 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
311 |
|
309 | |||
312 | def update(self, dataOut): |
|
310 | def update(self, dataOut): | |
313 |
|
311 | |||
314 | data = {} |
|
312 | data = {} | |
315 | meta = {} |
|
313 | meta = {} | |
316 | data['coh'] = dataOut.getCoherence() |
|
314 | data['coh'] = dataOut.getCoherence() | |
317 | meta['pairs'] = dataOut.pairsList |
|
315 | meta['pairs'] = dataOut.pairsList | |
318 |
|
316 | |||
319 | return data, meta |
|
317 | return data, meta | |
320 |
|
318 | |||
321 | class PhasePlot(CoherencePlot): |
|
319 | class PhasePlot(CoherencePlot): | |
322 | ''' |
|
320 | ''' | |
323 | Plot for Phase map data |
|
321 | Plot for Phase map data | |
324 | ''' |
|
322 | ''' | |
325 |
|
323 | |||
326 | CODE = 'phase' |
|
324 | CODE = 'phase' | |
327 | colormap = 'seismic' |
|
325 | colormap = 'seismic' | |
328 |
|
326 | |||
329 | def update(self, dataOut): |
|
327 | def update(self, dataOut): | |
330 |
|
328 | |||
331 | data = {} |
|
329 | data = {} | |
332 | meta = {} |
|
330 | meta = {} | |
333 | data['phase'] = dataOut.getCoherence(phase=True) |
|
331 | data['phase'] = dataOut.getCoherence(phase=True) | |
334 | meta['pairs'] = dataOut.pairsList |
|
332 | meta['pairs'] = dataOut.pairsList | |
335 |
|
333 | |||
336 | return data, meta |
|
334 | return data, meta | |
337 |
|
335 | |||
338 | class NoisePlot(Plot): |
|
336 | class NoisePlot(Plot): | |
339 | ''' |
|
337 | ''' | |
340 | Plot for noise |
|
338 | Plot for noise | |
341 | ''' |
|
339 | ''' | |
342 |
|
340 | |||
343 | CODE = 'noise' |
|
341 | CODE = 'noise' | |
344 | plot_type = 'scatterbuffer' |
|
342 | plot_type = 'scatterbuffer' | |
345 |
|
343 | |||
346 | def setup(self): |
|
344 | def setup(self): | |
347 | self.xaxis = 'time' |
|
345 | self.xaxis = 'time' | |
348 | self.ncols = 1 |
|
346 | self.ncols = 1 | |
349 | self.nrows = 1 |
|
347 | self.nrows = 1 | |
350 | self.nplots = 1 |
|
348 | self.nplots = 1 | |
351 | self.ylabel = 'Intensity [dB]' |
|
349 | self.ylabel = 'Intensity [dB]' | |
352 | self.xlabel = 'Time' |
|
350 | self.xlabel = 'Time' | |
353 | self.titles = ['Noise'] |
|
351 | self.titles = ['Noise'] | |
354 | self.colorbar = False |
|
352 | self.colorbar = False | |
355 | self.plots_adjust.update({'right': 0.85 }) |
|
353 | self.plots_adjust.update({'right': 0.85 }) | |
356 |
|
354 | |||
357 | def update(self, dataOut): |
|
355 | def update(self, dataOut): | |
358 |
|
356 | |||
359 | data = {} |
|
357 | data = {} | |
360 | meta = {} |
|
358 | meta = {} | |
361 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
359 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) | |
362 | meta['yrange'] = numpy.array([]) |
|
360 | meta['yrange'] = numpy.array([]) | |
363 |
|
361 | |||
364 | return data, meta |
|
362 | return data, meta | |
365 |
|
363 | |||
366 | def plot(self): |
|
364 | def plot(self): | |
367 |
|
365 | |||
368 | x = self.data.times |
|
366 | x = self.data.times | |
369 | xmin = self.data.min_time |
|
367 | xmin = self.data.min_time | |
370 | xmax = xmin + self.xrange * 60 * 60 |
|
368 | xmax = xmin + self.xrange * 60 * 60 | |
371 | Y = self.data['noise'] |
|
369 | Y = self.data['noise'] | |
372 |
|
370 | |||
373 | if self.axes[0].firsttime: |
|
371 | if self.axes[0].firsttime: | |
374 | self.ymin = numpy.nanmin(Y) - 5 |
|
372 | self.ymin = numpy.nanmin(Y) - 5 | |
375 | self.ymax = numpy.nanmax(Y) + 5 |
|
373 | self.ymax = numpy.nanmax(Y) + 5 | |
376 | for ch in self.data.channels: |
|
374 | for ch in self.data.channels: | |
377 | y = Y[ch] |
|
375 | y = Y[ch] | |
378 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
376 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
379 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
377 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
380 | else: |
|
378 | else: | |
381 | for ch in self.data.channels: |
|
379 | for ch in self.data.channels: | |
382 | y = Y[ch] |
|
380 | y = Y[ch] | |
383 | self.axes[0].lines[ch].set_data(x, y) |
|
381 | self.axes[0].lines[ch].set_data(x, y) | |
384 |
|
382 | |||
385 |
|
383 | |||
386 | class PowerProfilePlot(Plot): |
|
384 | class PowerProfilePlot(Plot): | |
387 |
|
385 | |||
388 | CODE = 'pow_profile' |
|
386 | CODE = 'pow_profile' | |
389 | plot_type = 'scatter' |
|
387 | plot_type = 'scatter' | |
390 |
|
388 | |||
391 | def setup(self): |
|
389 | def setup(self): | |
392 |
|
390 | |||
393 | self.ncols = 1 |
|
391 | self.ncols = 1 | |
394 | self.nrows = 1 |
|
392 | self.nrows = 1 | |
395 | self.nplots = 1 |
|
393 | self.nplots = 1 | |
396 | self.height = 4 |
|
394 | self.height = 4 | |
397 | self.width = 3 |
|
395 | self.width = 3 | |
398 | self.ylabel = 'Range [km]' |
|
396 | self.ylabel = 'Range [km]' | |
399 | self.xlabel = 'Intensity [dB]' |
|
397 | self.xlabel = 'Intensity [dB]' | |
400 | self.titles = ['Power Profile'] |
|
398 | self.titles = ['Power Profile'] | |
401 | self.colorbar = False |
|
399 | self.colorbar = False | |
402 |
|
400 | |||
403 | def update(self, dataOut): |
|
401 | def update(self, dataOut): | |
404 |
|
402 | |||
405 | data = {} |
|
403 | data = {} | |
406 | meta = {} |
|
404 | meta = {} | |
407 | data[self.CODE] = dataOut.getPower() |
|
405 | data[self.CODE] = dataOut.getPower() | |
408 |
|
406 | |||
409 | return data, meta |
|
407 | return data, meta | |
410 |
|
408 | |||
411 | def plot(self): |
|
409 | def plot(self): | |
412 |
|
410 | |||
413 | y = self.data.yrange |
|
411 | y = self.data.yrange | |
414 | self.y = y |
|
412 | self.y = y | |
415 |
|
413 | |||
416 | x = self.data[-1][self.CODE] |
|
414 | x = self.data[-1][self.CODE] | |
417 |
|
415 | |||
418 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
416 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 | |
419 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
417 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 | |
420 |
|
418 | |||
421 | if self.axes[0].firsttime: |
|
419 | if self.axes[0].firsttime: | |
422 | for ch in self.data.channels: |
|
420 | for ch in self.data.channels: | |
423 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
421 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) | |
424 | plt.legend() |
|
422 | plt.legend() | |
425 | else: |
|
423 | else: | |
426 | for ch in self.data.channels: |
|
424 | for ch in self.data.channels: | |
427 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
425 | self.axes[0].lines[ch].set_data(x[ch], y) | |
428 |
|
426 | |||
429 |
|
427 | |||
430 | class SpectraCutPlot(Plot): |
|
428 | class SpectraCutPlot(Plot): | |
431 |
|
429 | |||
432 | CODE = 'spc_cut' |
|
430 | CODE = 'spc_cut' | |
433 | plot_type = 'scatter' |
|
431 | plot_type = 'scatter' | |
434 | buffering = False |
|
432 | buffering = False | |
435 |
|
433 | |||
436 | def setup(self): |
|
434 | def setup(self): | |
437 |
|
435 | |||
438 | self.nplots = len(self.data.channels) |
|
436 | self.nplots = len(self.data.channels) | |
439 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
437 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
440 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
438 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
441 | self.width = 3.4 * self.ncols + 1.5 |
|
439 | self.width = 3.4 * self.ncols + 1.5 | |
442 | self.height = 3 * self.nrows |
|
440 | self.height = 3 * self.nrows | |
443 | self.ylabel = 'Power [dB]' |
|
441 | self.ylabel = 'Power [dB]' | |
444 | self.colorbar = False |
|
442 | self.colorbar = False | |
445 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
443 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) | |
446 |
|
444 | |||
447 | def update(self, dataOut): |
|
445 | def update(self, dataOut): | |
448 |
|
446 | |||
449 | data = {} |
|
447 | data = {} | |
450 | meta = {} |
|
448 | meta = {} | |
451 | spc = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) |
|
449 | spc = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) | |
452 | data['spc'] = spc |
|
450 | data['spc'] = spc | |
453 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
451 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
454 | if self.CODE == 'cut_gaussian_fit': |
|
452 | if self.CODE == 'cut_gaussian_fit': | |
455 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) |
|
453 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) | |
456 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) |
|
454 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) | |
457 | return data, meta |
|
455 | return data, meta | |
458 |
|
456 | |||
459 | def plot(self): |
|
457 | def plot(self): | |
460 | if self.xaxis == "frequency": |
|
458 | if self.xaxis == "frequency": | |
461 | x = self.data.xrange[0][1:] |
|
459 | x = self.data.xrange[0][1:] | |
462 | self.xlabel = "Frequency (kHz)" |
|
460 | self.xlabel = "Frequency (kHz)" | |
463 | elif self.xaxis == "time": |
|
461 | elif self.xaxis == "time": | |
464 | x = self.data.xrange[1] |
|
462 | x = self.data.xrange[1] | |
465 | self.xlabel = "Time (ms)" |
|
463 | self.xlabel = "Time (ms)" | |
466 | else: |
|
464 | else: | |
467 | x = self.data.xrange[2][:-1] |
|
465 | x = self.data.xrange[2][:-1] | |
468 | self.xlabel = "Velocity (m/s)" |
|
466 | self.xlabel = "Velocity (m/s)" | |
469 |
|
467 | |||
470 | if self.CODE == 'cut_gaussian_fit': |
|
468 | if self.CODE == 'cut_gaussian_fit': | |
471 | x = self.data.xrange[2][:-1] |
|
469 | x = self.data.xrange[2][:-1] | |
472 | self.xlabel = "Velocity (m/s)" |
|
470 | self.xlabel = "Velocity (m/s)" | |
473 |
|
471 | |||
474 | self.titles = [] |
|
472 | self.titles = [] | |
475 |
|
473 | |||
476 | y = self.data.yrange |
|
474 | y = self.data.yrange | |
477 | data = self.data[-1] |
|
475 | data = self.data[-1] | |
478 | z = data['spc'] |
|
476 | z = data['spc'] | |
479 |
|
477 | |||
480 | if self.height_index: |
|
478 | if self.height_index: | |
481 | index = numpy.array(self.height_index) |
|
479 | index = numpy.array(self.height_index) | |
482 | else: |
|
480 | else: | |
483 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
481 | index = numpy.arange(0, len(y), int((len(y))/9)) | |
484 |
|
482 | |||
485 | for n, ax in enumerate(self.axes): |
|
483 | for n, ax in enumerate(self.axes): | |
486 | if self.CODE == 'cut_gaussian_fit': |
|
484 | if self.CODE == 'cut_gaussian_fit': | |
487 | gau0 = data['gauss_fit0'] |
|
485 | gau0 = data['gauss_fit0'] | |
488 | gau1 = data['gauss_fit1'] |
|
486 | gau1 = data['gauss_fit1'] | |
489 | if ax.firsttime: |
|
487 | if ax.firsttime: | |
490 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
488 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
491 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
489 | self.xmin = self.xmin if self.xmin else -self.xmax | |
492 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
490 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) | |
493 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
491 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) | |
494 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) |
|
492 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) | |
495 | if self.CODE == 'cut_gaussian_fit': |
|
493 | if self.CODE == 'cut_gaussian_fit': | |
496 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') |
|
494 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') | |
497 | for i, line in enumerate(ax.plt_gau0): |
|
495 | for i, line in enumerate(ax.plt_gau0): | |
498 | line.set_color(ax.plt[i].get_color()) |
|
496 | line.set_color(ax.plt[i].get_color()) | |
499 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') |
|
497 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') | |
500 | for i, line in enumerate(ax.plt_gau1): |
|
498 | for i, line in enumerate(ax.plt_gau1): | |
501 | line.set_color(ax.plt[i].get_color()) |
|
499 | line.set_color(ax.plt[i].get_color()) | |
502 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
500 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] | |
503 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
501 | self.figures[0].legend(ax.plt, labels, loc='center right') | |
504 | else: |
|
502 | else: | |
505 | for i, line in enumerate(ax.plt): |
|
503 | for i, line in enumerate(ax.plt): | |
506 | line.set_data(x, z[n, :, index[i]].T) |
|
504 | line.set_data(x, z[n, :, index[i]].T) | |
507 | for i, line in enumerate(ax.plt_gau0): |
|
505 | for i, line in enumerate(ax.plt_gau0): | |
508 | line.set_data(x, gau0[n, :, index[i]].T) |
|
506 | line.set_data(x, gau0[n, :, index[i]].T) | |
509 | line.set_color(ax.plt[i].get_color()) |
|
507 | line.set_color(ax.plt[i].get_color()) | |
510 | for i, line in enumerate(ax.plt_gau1): |
|
508 | for i, line in enumerate(ax.plt_gau1): | |
511 | line.set_data(x, gau1[n, :, index[i]].T) |
|
509 | line.set_data(x, gau1[n, :, index[i]].T) | |
512 | line.set_color(ax.plt[i].get_color()) |
|
510 | line.set_color(ax.plt[i].get_color()) | |
513 | self.titles.append('CH {}'.format(n)) |
|
511 | self.titles.append('CH {}'.format(n)) | |
514 |
|
512 | |||
515 |
|
513 | |||
516 | class BeaconPhase(Plot): |
|
514 | class BeaconPhase(Plot): | |
517 |
|
515 | |||
518 | __isConfig = None |
|
516 | __isConfig = None | |
519 | __nsubplots = None |
|
517 | __nsubplots = None | |
520 |
|
518 | |||
521 | PREFIX = 'beacon_phase' |
|
519 | PREFIX = 'beacon_phase' | |
522 |
|
520 | |||
523 | def __init__(self): |
|
521 | def __init__(self): | |
524 | Plot.__init__(self) |
|
522 | Plot.__init__(self) | |
525 | self.timerange = 24*60*60 |
|
523 | self.timerange = 24*60*60 | |
526 | self.isConfig = False |
|
524 | self.isConfig = False | |
527 | self.__nsubplots = 1 |
|
525 | self.__nsubplots = 1 | |
528 | self.counter_imagwr = 0 |
|
526 | self.counter_imagwr = 0 | |
529 | self.WIDTH = 800 |
|
527 | self.WIDTH = 800 | |
530 | self.HEIGHT = 400 |
|
528 | self.HEIGHT = 400 | |
531 | self.WIDTHPROF = 120 |
|
529 | self.WIDTHPROF = 120 | |
532 | self.HEIGHTPROF = 0 |
|
530 | self.HEIGHTPROF = 0 | |
533 | self.xdata = None |
|
531 | self.xdata = None | |
534 | self.ydata = None |
|
532 | self.ydata = None | |
535 |
|
533 | |||
536 | self.PLOT_CODE = BEACON_CODE |
|
534 | self.PLOT_CODE = BEACON_CODE | |
537 |
|
535 | |||
538 | self.FTP_WEI = None |
|
536 | self.FTP_WEI = None | |
539 | self.EXP_CODE = None |
|
537 | self.EXP_CODE = None | |
540 | self.SUB_EXP_CODE = None |
|
538 | self.SUB_EXP_CODE = None | |
541 | self.PLOT_POS = None |
|
539 | self.PLOT_POS = None | |
542 |
|
540 | |||
543 | self.filename_phase = None |
|
541 | self.filename_phase = None | |
544 |
|
542 | |||
545 | self.figfile = None |
|
543 | self.figfile = None | |
546 |
|
544 | |||
547 | self.xmin = None |
|
545 | self.xmin = None | |
548 | self.xmax = None |
|
546 | self.xmax = None | |
549 |
|
547 | |||
550 | def getSubplots(self): |
|
548 | def getSubplots(self): | |
551 |
|
549 | |||
552 | ncol = 1 |
|
550 | ncol = 1 | |
553 | nrow = 1 |
|
551 | nrow = 1 | |
554 |
|
552 | |||
555 | return nrow, ncol |
|
553 | return nrow, ncol | |
556 |
|
554 | |||
557 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
555 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
558 |
|
556 | |||
559 | self.__showprofile = showprofile |
|
557 | self.__showprofile = showprofile | |
560 | self.nplots = nplots |
|
558 | self.nplots = nplots | |
561 |
|
559 | |||
562 | ncolspan = 7 |
|
560 | ncolspan = 7 | |
563 | colspan = 6 |
|
561 | colspan = 6 | |
564 | self.__nsubplots = 2 |
|
562 | self.__nsubplots = 2 | |
565 |
|
563 | |||
566 | self.createFigure(id = id, |
|
564 | self.createFigure(id = id, | |
567 | wintitle = wintitle, |
|
565 | wintitle = wintitle, | |
568 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
566 | widthplot = self.WIDTH+self.WIDTHPROF, | |
569 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
567 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
570 | show=show) |
|
568 | show=show) | |
571 |
|
569 | |||
572 | nrow, ncol = self.getSubplots() |
|
570 | nrow, ncol = self.getSubplots() | |
573 |
|
571 | |||
574 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
572 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
575 |
|
573 | |||
576 | def save_phase(self, filename_phase): |
|
574 | def save_phase(self, filename_phase): | |
577 | f = open(filename_phase,'w+') |
|
575 | f = open(filename_phase,'w+') | |
578 | f.write('\n\n') |
|
576 | f.write('\n\n') | |
579 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
577 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
580 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
578 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
581 | f.close() |
|
579 | f.close() | |
582 |
|
580 | |||
583 | def save_data(self, filename_phase, data, data_datetime): |
|
581 | def save_data(self, filename_phase, data, data_datetime): | |
584 | f=open(filename_phase,'a') |
|
582 | f=open(filename_phase,'a') | |
585 | timetuple_data = data_datetime.timetuple() |
|
583 | timetuple_data = data_datetime.timetuple() | |
586 | day = str(timetuple_data.tm_mday) |
|
584 | day = str(timetuple_data.tm_mday) | |
587 | month = str(timetuple_data.tm_mon) |
|
585 | month = str(timetuple_data.tm_mon) | |
588 | year = str(timetuple_data.tm_year) |
|
586 | year = str(timetuple_data.tm_year) | |
589 | hour = str(timetuple_data.tm_hour) |
|
587 | hour = str(timetuple_data.tm_hour) | |
590 | minute = str(timetuple_data.tm_min) |
|
588 | minute = str(timetuple_data.tm_min) | |
591 | second = str(timetuple_data.tm_sec) |
|
589 | second = str(timetuple_data.tm_sec) | |
592 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
590 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
593 | f.close() |
|
591 | f.close() | |
594 |
|
592 | |||
595 | def plot(self): |
|
593 | def plot(self): | |
596 | log.warning('TODO: Not yet implemented...') |
|
594 | log.warning('TODO: Not yet implemented...') | |
597 |
|
595 | |||
598 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
596 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
599 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
597 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
600 | timerange=None, |
|
598 | timerange=None, | |
601 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
599 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
602 | server=None, folder=None, username=None, password=None, |
|
600 | server=None, folder=None, username=None, password=None, | |
603 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
601 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
604 |
|
602 | |||
605 | if dataOut.flagNoData: |
|
603 | if dataOut.flagNoData: | |
606 | return dataOut |
|
604 | return dataOut | |
607 |
|
605 | |||
608 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
606 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
609 | return |
|
607 | return | |
610 |
|
608 | |||
611 | if pairsList == None: |
|
609 | if pairsList == None: | |
612 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
610 | pairsIndexList = dataOut.pairsIndexList[:10] | |
613 | else: |
|
611 | else: | |
614 | pairsIndexList = [] |
|
612 | pairsIndexList = [] | |
615 | for pair in pairsList: |
|
613 | for pair in pairsList: | |
616 | if pair not in dataOut.pairsList: |
|
614 | if pair not in dataOut.pairsList: | |
617 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
615 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) | |
618 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
616 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
619 |
|
617 | |||
620 | if pairsIndexList == []: |
|
618 | if pairsIndexList == []: | |
621 | return |
|
619 | return | |
622 |
|
620 | |||
623 | # if len(pairsIndexList) > 4: |
|
621 | # if len(pairsIndexList) > 4: | |
624 | # pairsIndexList = pairsIndexList[0:4] |
|
622 | # pairsIndexList = pairsIndexList[0:4] | |
625 |
|
623 | |||
626 | hmin_index = None |
|
624 | hmin_index = None | |
627 | hmax_index = None |
|
625 | hmax_index = None | |
628 |
|
626 | |||
629 | if hmin != None and hmax != None: |
|
627 | if hmin != None and hmax != None: | |
630 | indexes = numpy.arange(dataOut.nHeights) |
|
628 | indexes = numpy.arange(dataOut.nHeights) | |
631 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
629 | hmin_list = indexes[dataOut.heightList >= hmin] | |
632 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
630 | hmax_list = indexes[dataOut.heightList <= hmax] | |
633 |
|
631 | |||
634 | if hmin_list.any(): |
|
632 | if hmin_list.any(): | |
635 | hmin_index = hmin_list[0] |
|
633 | hmin_index = hmin_list[0] | |
636 |
|
634 | |||
637 | if hmax_list.any(): |
|
635 | if hmax_list.any(): | |
638 | hmax_index = hmax_list[-1]+1 |
|
636 | hmax_index = hmax_list[-1]+1 | |
639 |
|
637 | |||
640 | x = dataOut.getTimeRange() |
|
638 | x = dataOut.getTimeRange() | |
641 |
|
639 | |||
642 | thisDatetime = dataOut.datatime |
|
640 | thisDatetime = dataOut.datatime | |
643 |
|
641 | |||
644 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
642 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
645 | xlabel = "Local Time" |
|
643 | xlabel = "Local Time" | |
646 | ylabel = "Phase (degrees)" |
|
644 | ylabel = "Phase (degrees)" | |
647 |
|
645 | |||
648 | update_figfile = False |
|
646 | update_figfile = False | |
649 |
|
647 | |||
650 | nplots = len(pairsIndexList) |
|
648 | nplots = len(pairsIndexList) | |
651 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
649 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
652 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
650 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
653 | for i in range(nplots): |
|
651 | for i in range(nplots): | |
654 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
652 | pair = dataOut.pairsList[pairsIndexList[i]] | |
655 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
653 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
656 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
654 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
657 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
655 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
658 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
656 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
659 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
657 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
660 |
|
658 | |||
661 | if dataOut.beacon_heiIndexList: |
|
659 | if dataOut.beacon_heiIndexList: | |
662 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
660 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
663 | else: |
|
661 | else: | |
664 | phase_beacon[i] = numpy.average(phase) |
|
662 | phase_beacon[i] = numpy.average(phase) | |
665 |
|
663 | |||
666 | if not self.isConfig: |
|
664 | if not self.isConfig: | |
667 |
|
665 | |||
668 | nplots = len(pairsIndexList) |
|
666 | nplots = len(pairsIndexList) | |
669 |
|
667 | |||
670 | self.setup(id=id, |
|
668 | self.setup(id=id, | |
671 | nplots=nplots, |
|
669 | nplots=nplots, | |
672 | wintitle=wintitle, |
|
670 | wintitle=wintitle, | |
673 | showprofile=showprofile, |
|
671 | showprofile=showprofile, | |
674 | show=show) |
|
672 | show=show) | |
675 |
|
673 | |||
676 | if timerange != None: |
|
674 | if timerange != None: | |
677 | self.timerange = timerange |
|
675 | self.timerange = timerange | |
678 |
|
676 | |||
679 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
677 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
680 |
|
678 | |||
681 | if ymin == None: ymin = 0 |
|
679 | if ymin == None: ymin = 0 | |
682 | if ymax == None: ymax = 360 |
|
680 | if ymax == None: ymax = 360 | |
683 |
|
681 | |||
684 | self.FTP_WEI = ftp_wei |
|
682 | self.FTP_WEI = ftp_wei | |
685 | self.EXP_CODE = exp_code |
|
683 | self.EXP_CODE = exp_code | |
686 | self.SUB_EXP_CODE = sub_exp_code |
|
684 | self.SUB_EXP_CODE = sub_exp_code | |
687 | self.PLOT_POS = plot_pos |
|
685 | self.PLOT_POS = plot_pos | |
688 |
|
686 | |||
689 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
687 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
690 | self.isConfig = True |
|
688 | self.isConfig = True | |
691 | self.figfile = figfile |
|
689 | self.figfile = figfile | |
692 | self.xdata = numpy.array([]) |
|
690 | self.xdata = numpy.array([]) | |
693 | self.ydata = numpy.array([]) |
|
691 | self.ydata = numpy.array([]) | |
694 |
|
692 | |||
695 | update_figfile = True |
|
693 | update_figfile = True | |
696 |
|
694 | |||
697 | #open file beacon phase |
|
695 | #open file beacon phase | |
698 | path = '%s%03d' %(self.PREFIX, self.id) |
|
696 | path = '%s%03d' %(self.PREFIX, self.id) | |
699 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
697 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
700 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
698 | self.filename_phase = os.path.join(figpath,beacon_file) | |
701 | #self.save_phase(self.filename_phase) |
|
699 | #self.save_phase(self.filename_phase) | |
702 |
|
700 | |||
703 |
|
701 | |||
704 | #store data beacon phase |
|
702 | #store data beacon phase | |
705 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
703 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
706 |
|
704 | |||
707 | self.setWinTitle(title) |
|
705 | self.setWinTitle(title) | |
708 |
|
706 | |||
709 |
|
707 | |||
710 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
708 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
711 |
|
709 | |||
712 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
710 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
713 |
|
711 | |||
714 | axes = self.axesList[0] |
|
712 | axes = self.axesList[0] | |
715 |
|
713 | |||
716 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
714 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
717 |
|
715 | |||
718 | if len(self.ydata)==0: |
|
716 | if len(self.ydata)==0: | |
719 | self.ydata = phase_beacon.reshape(-1,1) |
|
717 | self.ydata = phase_beacon.reshape(-1,1) | |
720 | else: |
|
718 | else: | |
721 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
719 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
722 |
|
720 | |||
723 |
|
721 | |||
724 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
722 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
725 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
723 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
726 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
724 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
727 | XAxisAsTime=True, grid='both' |
|
725 | XAxisAsTime=True, grid='both' | |
728 | ) |
|
726 | ) | |
729 |
|
727 | |||
730 | self.draw() |
|
728 | self.draw() | |
731 |
|
729 | |||
732 | if dataOut.ltctime >= self.xmax: |
|
730 | if dataOut.ltctime >= self.xmax: | |
733 | self.counter_imagwr = wr_period |
|
731 | self.counter_imagwr = wr_period | |
734 | self.isConfig = False |
|
732 | self.isConfig = False | |
735 | update_figfile = True |
|
733 | update_figfile = True | |
736 |
|
734 | |||
737 | self.save(figpath=figpath, |
|
735 | self.save(figpath=figpath, | |
738 | figfile=figfile, |
|
736 | figfile=figfile, | |
739 | save=save, |
|
737 | save=save, | |
740 | ftp=ftp, |
|
738 | ftp=ftp, | |
741 | wr_period=wr_period, |
|
739 | wr_period=wr_period, | |
742 | thisDatetime=thisDatetime, |
|
740 | thisDatetime=thisDatetime, | |
743 | update_figfile=update_figfile) |
|
741 | update_figfile=update_figfile) | |
744 |
|
742 | |||
745 | return dataOut |
|
743 | return dataOut |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
@@ -1,1627 +1,1628 | |||||
1 | import sys |
|
1 | import sys | |
2 | import numpy,math |
|
2 | import numpy,math | |
3 | from scipy import interpolate |
|
3 | from scipy import interpolate | |
4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
5 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon |
|
5 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon | |
6 | from schainpy.utils import log |
|
6 | from schainpy.utils import log | |
7 | from time import time |
|
7 | from time import time | |
8 |
|
8 | |||
9 |
|
9 | |||
10 |
|
10 | |||
11 | class VoltageProc(ProcessingUnit): |
|
11 | class VoltageProc(ProcessingUnit): | |
12 |
|
12 | |||
13 | def __init__(self): |
|
13 | def __init__(self): | |
14 |
|
14 | |||
15 | ProcessingUnit.__init__(self) |
|
15 | ProcessingUnit.__init__(self) | |
16 |
|
16 | |||
17 | self.dataOut = Voltage() |
|
17 | self.dataOut = Voltage() | |
18 | self.flip = 1 |
|
18 | self.flip = 1 | |
19 | self.setupReq = False |
|
19 | self.setupReq = False | |
20 |
|
20 | |||
21 | def run(self): |
|
21 | def run(self): | |
22 |
|
22 | |||
23 | if self.dataIn.type == 'AMISR': |
|
23 | if self.dataIn.type == 'AMISR': | |
24 | self.__updateObjFromAmisrInput() |
|
24 | self.__updateObjFromAmisrInput() | |
25 |
|
25 | |||
26 | if self.dataIn.type == 'Voltage': |
|
26 | if self.dataIn.type == 'Voltage': | |
27 | self.dataOut.copy(self.dataIn) |
|
27 | self.dataOut.copy(self.dataIn) | |
28 |
|
28 | |||
29 | def __updateObjFromAmisrInput(self): |
|
29 | def __updateObjFromAmisrInput(self): | |
30 |
|
30 | |||
31 | self.dataOut.timeZone = self.dataIn.timeZone |
|
31 | self.dataOut.timeZone = self.dataIn.timeZone | |
32 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
32 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
33 | self.dataOut.errorCount = self.dataIn.errorCount |
|
33 | self.dataOut.errorCount = self.dataIn.errorCount | |
34 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
34 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
35 |
|
35 | |||
36 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
36 | self.dataOut.flagNoData = self.dataIn.flagNoData | |
37 | self.dataOut.data = self.dataIn.data |
|
37 | self.dataOut.data = self.dataIn.data | |
38 | self.dataOut.utctime = self.dataIn.utctime |
|
38 | self.dataOut.utctime = self.dataIn.utctime | |
39 | self.dataOut.channelList = self.dataIn.channelList |
|
39 | self.dataOut.channelList = self.dataIn.channelList | |
40 | #self.dataOut.timeInterval = self.dataIn.timeInterval |
|
40 | #self.dataOut.timeInterval = self.dataIn.timeInterval | |
41 | self.dataOut.heightList = self.dataIn.heightList |
|
41 | self.dataOut.heightList = self.dataIn.heightList | |
42 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
42 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
43 |
|
43 | |||
44 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
44 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
45 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
45 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
46 | self.dataOut.frequency = self.dataIn.frequency |
|
46 | self.dataOut.frequency = self.dataIn.frequency | |
47 |
|
47 | |||
48 | self.dataOut.azimuth = self.dataIn.azimuth |
|
48 | self.dataOut.azimuth = self.dataIn.azimuth | |
49 | self.dataOut.zenith = self.dataIn.zenith |
|
49 | self.dataOut.zenith = self.dataIn.zenith | |
50 |
|
50 | |||
51 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
51 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |
52 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
52 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |
53 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
53 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |
54 |
|
54 | |||
55 |
|
55 | |||
56 | class selectChannels(Operation): |
|
56 | class selectChannels(Operation): | |
57 |
|
57 | |||
58 | def run(self, dataOut, channelList): |
|
58 | def run(self, dataOut, channelList): | |
59 |
|
59 | |||
60 | channelIndexList = [] |
|
60 | channelIndexList = [] | |
61 | self.dataOut = dataOut |
|
61 | self.dataOut = dataOut | |
62 | for channel in channelList: |
|
62 | for channel in channelList: | |
63 | if channel not in self.dataOut.channelList: |
|
63 | if channel not in self.dataOut.channelList: | |
64 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) |
|
64 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) | |
65 |
|
65 | |||
66 | index = self.dataOut.channelList.index(channel) |
|
66 | index = self.dataOut.channelList.index(channel) | |
67 | channelIndexList.append(index) |
|
67 | channelIndexList.append(index) | |
68 | self.selectChannelsByIndex(channelIndexList) |
|
68 | self.selectChannelsByIndex(channelIndexList) | |
69 | return self.dataOut |
|
69 | return self.dataOut | |
70 |
|
70 | |||
71 | def selectChannelsByIndex(self, channelIndexList): |
|
71 | def selectChannelsByIndex(self, channelIndexList): | |
72 | """ |
|
72 | """ | |
73 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
73 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
74 |
|
74 | |||
75 | Input: |
|
75 | Input: | |
76 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
76 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
77 |
|
77 | |||
78 | Affected: |
|
78 | Affected: | |
79 | self.dataOut.data |
|
79 | self.dataOut.data | |
80 | self.dataOut.channelIndexList |
|
80 | self.dataOut.channelIndexList | |
81 | self.dataOut.nChannels |
|
81 | self.dataOut.nChannels | |
82 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
82 | self.dataOut.m_ProcessingHeader.totalSpectra | |
83 | self.dataOut.systemHeaderObj.numChannels |
|
83 | self.dataOut.systemHeaderObj.numChannels | |
84 | self.dataOut.m_ProcessingHeader.blockSize |
|
84 | self.dataOut.m_ProcessingHeader.blockSize | |
85 |
|
85 | |||
86 | Return: |
|
86 | Return: | |
87 | None |
|
87 | None | |
88 | """ |
|
88 | """ | |
89 |
|
89 | |||
90 | for channelIndex in channelIndexList: |
|
90 | for channelIndex in channelIndexList: | |
91 | if channelIndex not in self.dataOut.channelIndexList: |
|
91 | if channelIndex not in self.dataOut.channelIndexList: | |
92 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) |
|
92 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) | |
93 |
|
93 | |||
94 | if self.dataOut.type == 'Voltage': |
|
94 | if self.dataOut.type == 'Voltage': | |
95 | if self.dataOut.flagDataAsBlock: |
|
95 | if self.dataOut.flagDataAsBlock: | |
96 | """ |
|
96 | """ | |
97 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
97 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
98 | """ |
|
98 | """ | |
99 | data = self.dataOut.data[channelIndexList,:,:] |
|
99 | data = self.dataOut.data[channelIndexList,:,:] | |
100 | else: |
|
100 | else: | |
101 | data = self.dataOut.data[channelIndexList,:] |
|
101 | data = self.dataOut.data[channelIndexList,:] | |
102 |
|
102 | |||
103 | self.dataOut.data = data |
|
103 | self.dataOut.data = data | |
104 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
104 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
105 | self.dataOut.channelList = range(len(channelIndexList)) |
|
105 | self.dataOut.channelList = range(len(channelIndexList)) | |
106 |
|
106 | |||
107 | elif self.dataOut.type == 'Spectra': |
|
107 | elif self.dataOut.type == 'Spectra': | |
108 | data_spc = self.dataOut.data_spc[channelIndexList, :] |
|
108 | data_spc = self.dataOut.data_spc[channelIndexList, :] | |
109 | data_dc = self.dataOut.data_dc[channelIndexList, :] |
|
109 | data_dc = self.dataOut.data_dc[channelIndexList, :] | |
110 |
|
110 | |||
111 | self.dataOut.data_spc = data_spc |
|
111 | self.dataOut.data_spc = data_spc | |
112 | self.dataOut.data_dc = data_dc |
|
112 | self.dataOut.data_dc = data_dc | |
113 |
|
113 | |||
114 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
114 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
115 | self.dataOut.channelList = range(len(channelIndexList)) |
|
115 | self.dataOut.channelList = range(len(channelIndexList)) | |
116 | self.__selectPairsByChannel(channelIndexList) |
|
116 | self.__selectPairsByChannel(channelIndexList) | |
117 |
|
117 | |||
118 | return 1 |
|
118 | return 1 | |
119 |
|
119 | |||
120 | def __selectPairsByChannel(self, channelList=None): |
|
120 | def __selectPairsByChannel(self, channelList=None): | |
121 |
|
121 | |||
122 | if channelList == None: |
|
122 | if channelList == None: | |
123 | return |
|
123 | return | |
124 |
|
124 | |||
125 | pairsIndexListSelected = [] |
|
125 | pairsIndexListSelected = [] | |
126 | for pairIndex in self.dataOut.pairsIndexList: |
|
126 | for pairIndex in self.dataOut.pairsIndexList: | |
127 | # First pair |
|
127 | # First pair | |
128 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
128 | if self.dataOut.pairsList[pairIndex][0] not in channelList: | |
129 | continue |
|
129 | continue | |
130 | # Second pair |
|
130 | # Second pair | |
131 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
131 | if self.dataOut.pairsList[pairIndex][1] not in channelList: | |
132 | continue |
|
132 | continue | |
133 |
|
133 | |||
134 | pairsIndexListSelected.append(pairIndex) |
|
134 | pairsIndexListSelected.append(pairIndex) | |
135 |
|
135 | |||
136 | if not pairsIndexListSelected: |
|
136 | if not pairsIndexListSelected: | |
137 | self.dataOut.data_cspc = None |
|
137 | self.dataOut.data_cspc = None | |
138 | self.dataOut.pairsList = [] |
|
138 | self.dataOut.pairsList = [] | |
139 | return |
|
139 | return | |
140 |
|
140 | |||
141 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
141 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |
142 | self.dataOut.pairsList = [self.dataOut.pairsList[i] |
|
142 | self.dataOut.pairsList = [self.dataOut.pairsList[i] | |
143 | for i in pairsIndexListSelected] |
|
143 | for i in pairsIndexListSelected] | |
144 |
|
144 | |||
145 | return |
|
145 | return | |
146 |
|
146 | |||
147 | class selectHeights(Operation): |
|
147 | class selectHeights(Operation): | |
148 |
|
148 | |||
149 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): |
|
149 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): | |
150 | """ |
|
150 | """ | |
151 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
151 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
152 | minHei <= height <= maxHei |
|
152 | minHei <= height <= maxHei | |
153 |
|
153 | |||
154 | Input: |
|
154 | Input: | |
155 | minHei : valor minimo de altura a considerar |
|
155 | minHei : valor minimo de altura a considerar | |
156 | maxHei : valor maximo de altura a considerar |
|
156 | maxHei : valor maximo de altura a considerar | |
157 |
|
157 | |||
158 | Affected: |
|
158 | Affected: | |
159 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
159 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |
160 |
|
160 | |||
161 | Return: |
|
161 | Return: | |
162 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
162 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
163 | """ |
|
163 | """ | |
164 |
|
164 | |||
165 | self.dataOut = dataOut |
|
165 | self.dataOut = dataOut | |
166 |
|
166 | |||
167 | if minHei and maxHei: |
|
167 | if minHei and maxHei: | |
168 |
|
168 | |||
169 | if (minHei < self.dataOut.heightList[0]): |
|
169 | if (minHei < self.dataOut.heightList[0]): | |
170 | minHei = self.dataOut.heightList[0] |
|
170 | minHei = self.dataOut.heightList[0] | |
171 |
|
171 | |||
172 | if (maxHei > self.dataOut.heightList[-1]): |
|
172 | if (maxHei > self.dataOut.heightList[-1]): | |
173 | maxHei = self.dataOut.heightList[-1] |
|
173 | maxHei = self.dataOut.heightList[-1] | |
174 |
|
174 | |||
175 | minIndex = 0 |
|
175 | minIndex = 0 | |
176 | maxIndex = 0 |
|
176 | maxIndex = 0 | |
177 | heights = self.dataOut.heightList |
|
177 | heights = self.dataOut.heightList | |
178 |
|
178 | |||
179 | inda = numpy.where(heights >= minHei) |
|
179 | inda = numpy.where(heights >= minHei) | |
180 | indb = numpy.where(heights <= maxHei) |
|
180 | indb = numpy.where(heights <= maxHei) | |
181 |
|
181 | |||
182 | try: |
|
182 | try: | |
183 | minIndex = inda[0][0] |
|
183 | minIndex = inda[0][0] | |
184 | except: |
|
184 | except: | |
185 | minIndex = 0 |
|
185 | minIndex = 0 | |
186 |
|
186 | |||
187 | try: |
|
187 | try: | |
188 | maxIndex = indb[0][-1] |
|
188 | maxIndex = indb[0][-1] | |
189 | except: |
|
189 | except: | |
190 | maxIndex = len(heights) |
|
190 | maxIndex = len(heights) | |
191 |
|
191 | |||
192 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
192 | self.selectHeightsByIndex(minIndex, maxIndex) | |
193 |
|
193 | |||
194 | return self.dataOut |
|
194 | return self.dataOut | |
195 |
|
195 | |||
196 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
196 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
197 | """ |
|
197 | """ | |
198 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
198 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
199 | minIndex <= index <= maxIndex |
|
199 | minIndex <= index <= maxIndex | |
200 |
|
200 | |||
201 | Input: |
|
201 | Input: | |
202 | minIndex : valor de indice minimo de altura a considerar |
|
202 | minIndex : valor de indice minimo de altura a considerar | |
203 | maxIndex : valor de indice maximo de altura a considerar |
|
203 | maxIndex : valor de indice maximo de altura a considerar | |
204 |
|
204 | |||
205 | Affected: |
|
205 | Affected: | |
206 | self.dataOut.data |
|
206 | self.dataOut.data | |
207 | self.dataOut.heightList |
|
207 | self.dataOut.heightList | |
208 |
|
208 | |||
209 | Return: |
|
209 | Return: | |
210 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
210 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
211 | """ |
|
211 | """ | |
212 |
|
212 | |||
213 | if self.dataOut.type == 'Voltage': |
|
213 | if self.dataOut.type == 'Voltage': | |
214 | if (minIndex < 0) or (minIndex > maxIndex): |
|
214 | if (minIndex < 0) or (minIndex > maxIndex): | |
215 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
215 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
216 |
|
216 | |||
217 | if (maxIndex >= self.dataOut.nHeights): |
|
217 | if (maxIndex >= self.dataOut.nHeights): | |
218 | maxIndex = self.dataOut.nHeights |
|
218 | maxIndex = self.dataOut.nHeights | |
219 |
|
219 | |||
220 | #voltage |
|
220 | #voltage | |
221 | if self.dataOut.flagDataAsBlock: |
|
221 | if self.dataOut.flagDataAsBlock: | |
222 | """ |
|
222 | """ | |
223 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
223 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
224 | """ |
|
224 | """ | |
225 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
225 | data = self.dataOut.data[:,:, minIndex:maxIndex] | |
226 | else: |
|
226 | else: | |
227 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
227 | data = self.dataOut.data[:, minIndex:maxIndex] | |
228 |
|
228 | |||
229 | # firstHeight = self.dataOut.heightList[minIndex] |
|
229 | # firstHeight = self.dataOut.heightList[minIndex] | |
230 |
|
230 | |||
231 | self.dataOut.data = data |
|
231 | self.dataOut.data = data | |
232 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
232 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] | |
233 |
|
233 | |||
234 | if self.dataOut.nHeights <= 1: |
|
234 | if self.dataOut.nHeights <= 1: | |
235 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) |
|
235 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) | |
236 | elif self.dataOut.type == 'Spectra': |
|
236 | elif self.dataOut.type == 'Spectra': | |
237 | if (minIndex < 0) or (minIndex > maxIndex): |
|
237 | if (minIndex < 0) or (minIndex > maxIndex): | |
238 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( |
|
238 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( | |
239 | minIndex, maxIndex)) |
|
239 | minIndex, maxIndex)) | |
240 |
|
240 | |||
241 | if (maxIndex >= self.dataOut.nHeights): |
|
241 | if (maxIndex >= self.dataOut.nHeights): | |
242 | maxIndex = self.dataOut.nHeights - 1 |
|
242 | maxIndex = self.dataOut.nHeights - 1 | |
243 |
|
243 | |||
244 | # Spectra |
|
244 | # Spectra | |
245 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
245 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
246 |
|
246 | |||
247 | data_cspc = None |
|
247 | data_cspc = None | |
248 | if self.dataOut.data_cspc is not None: |
|
248 | if self.dataOut.data_cspc is not None: | |
249 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
249 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
250 |
|
250 | |||
251 | data_dc = None |
|
251 | data_dc = None | |
252 | if self.dataOut.data_dc is not None: |
|
252 | if self.dataOut.data_dc is not None: | |
253 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
253 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
254 |
|
254 | |||
255 | self.dataOut.data_spc = data_spc |
|
255 | self.dataOut.data_spc = data_spc | |
256 | self.dataOut.data_cspc = data_cspc |
|
256 | self.dataOut.data_cspc = data_cspc | |
257 | self.dataOut.data_dc = data_dc |
|
257 | self.dataOut.data_dc = data_dc | |
258 |
|
258 | |||
259 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
259 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
260 |
|
260 | |||
261 | return 1 |
|
261 | return 1 | |
262 |
|
262 | |||
263 |
|
263 | |||
264 | class filterByHeights(Operation): |
|
264 | class filterByHeights(Operation): | |
265 |
|
265 | |||
266 | def run(self, dataOut, window): |
|
266 | def run(self, dataOut, window): | |
267 |
|
267 | |||
268 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
268 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
269 |
|
269 | |||
270 | if window == None: |
|
270 | if window == None: | |
271 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
271 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight | |
272 |
|
272 | |||
273 | newdelta = deltaHeight * window |
|
273 | newdelta = deltaHeight * window | |
274 | r = dataOut.nHeights % window |
|
274 | r = dataOut.nHeights % window | |
275 | newheights = (dataOut.nHeights-r)/window |
|
275 | newheights = (dataOut.nHeights-r)/window | |
276 |
|
276 | |||
277 | if newheights <= 1: |
|
277 | if newheights <= 1: | |
278 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) |
|
278 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) | |
279 |
|
279 | |||
280 | if dataOut.flagDataAsBlock: |
|
280 | if dataOut.flagDataAsBlock: | |
281 | """ |
|
281 | """ | |
282 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
282 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
283 | """ |
|
283 | """ | |
284 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] |
|
284 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] | |
285 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) |
|
285 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) | |
286 | buffer = numpy.sum(buffer,3) |
|
286 | buffer = numpy.sum(buffer,3) | |
287 |
|
287 | |||
288 | else: |
|
288 | else: | |
289 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] |
|
289 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] | |
290 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) |
|
290 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) | |
291 | buffer = numpy.sum(buffer,2) |
|
291 | buffer = numpy.sum(buffer,2) | |
292 |
|
292 | |||
293 | dataOut.data = buffer |
|
293 | dataOut.data = buffer | |
294 | dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
294 | dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta | |
295 | dataOut.windowOfFilter = window |
|
295 | dataOut.windowOfFilter = window | |
296 |
|
296 | |||
297 | return dataOut |
|
297 | return dataOut | |
298 |
|
298 | |||
299 |
|
299 | |||
300 | class setH0(Operation): |
|
300 | class setH0(Operation): | |
301 |
|
301 | |||
302 | def run(self, dataOut, h0, deltaHeight = None): |
|
302 | def run(self, dataOut, h0, deltaHeight = None): | |
303 |
|
303 | |||
304 | if not deltaHeight: |
|
304 | if not deltaHeight: | |
305 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
305 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
306 |
|
306 | |||
307 | nHeights = dataOut.nHeights |
|
307 | nHeights = dataOut.nHeights | |
308 |
|
308 | |||
309 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
309 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight | |
310 |
|
310 | |||
311 | dataOut.heightList = newHeiRange |
|
311 | dataOut.heightList = newHeiRange | |
312 |
|
312 | |||
313 | return dataOut |
|
313 | return dataOut | |
314 |
|
314 | |||
315 |
|
315 | |||
316 | class deFlip(Operation): |
|
316 | class deFlip(Operation): | |
317 |
|
317 | |||
318 | def run(self, dataOut, channelList = []): |
|
318 | def run(self, dataOut, channelList = []): | |
319 |
|
319 | |||
320 | data = dataOut.data.copy() |
|
320 | data = dataOut.data.copy() | |
321 |
|
321 | |||
322 | if dataOut.flagDataAsBlock: |
|
322 | if dataOut.flagDataAsBlock: | |
323 | flip = self.flip |
|
323 | flip = self.flip | |
324 | profileList = list(range(dataOut.nProfiles)) |
|
324 | profileList = list(range(dataOut.nProfiles)) | |
325 |
|
325 | |||
326 | if not channelList: |
|
326 | if not channelList: | |
327 | for thisProfile in profileList: |
|
327 | for thisProfile in profileList: | |
328 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
328 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip | |
329 | flip *= -1.0 |
|
329 | flip *= -1.0 | |
330 | else: |
|
330 | else: | |
331 | for thisChannel in channelList: |
|
331 | for thisChannel in channelList: | |
332 | if thisChannel not in dataOut.channelList: |
|
332 | if thisChannel not in dataOut.channelList: | |
333 | continue |
|
333 | continue | |
334 |
|
334 | |||
335 | for thisProfile in profileList: |
|
335 | for thisProfile in profileList: | |
336 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
336 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip | |
337 | flip *= -1.0 |
|
337 | flip *= -1.0 | |
338 |
|
338 | |||
339 | self.flip = flip |
|
339 | self.flip = flip | |
340 |
|
340 | |||
341 | else: |
|
341 | else: | |
342 | if not channelList: |
|
342 | if not channelList: | |
343 | data[:,:] = data[:,:]*self.flip |
|
343 | data[:,:] = data[:,:]*self.flip | |
344 | else: |
|
344 | else: | |
345 | for thisChannel in channelList: |
|
345 | for thisChannel in channelList: | |
346 | if thisChannel not in dataOut.channelList: |
|
346 | if thisChannel not in dataOut.channelList: | |
347 | continue |
|
347 | continue | |
348 |
|
348 | |||
349 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
349 | data[thisChannel,:] = data[thisChannel,:]*self.flip | |
350 |
|
350 | |||
351 | self.flip *= -1. |
|
351 | self.flip *= -1. | |
352 |
|
352 | |||
353 | dataOut.data = data |
|
353 | dataOut.data = data | |
354 |
|
354 | |||
355 | return dataOut |
|
355 | return dataOut | |
356 |
|
356 | |||
357 |
|
357 | |||
358 | class setAttribute(Operation): |
|
358 | class setAttribute(Operation): | |
359 | ''' |
|
359 | ''' | |
360 | Set an arbitrary attribute(s) to dataOut |
|
360 | Set an arbitrary attribute(s) to dataOut | |
361 | ''' |
|
361 | ''' | |
362 |
|
362 | |||
363 | def __init__(self): |
|
363 | def __init__(self): | |
364 |
|
364 | |||
365 | Operation.__init__(self) |
|
365 | Operation.__init__(self) | |
366 | self._ready = False |
|
366 | self._ready = False | |
367 |
|
367 | |||
368 | def run(self, dataOut, **kwargs): |
|
368 | def run(self, dataOut, **kwargs): | |
369 |
|
369 | |||
370 | for key, value in kwargs.items(): |
|
370 | for key, value in kwargs.items(): | |
371 | setattr(dataOut, key, value) |
|
371 | setattr(dataOut, key, value) | |
372 |
|
372 | |||
373 | return dataOut |
|
373 | return dataOut | |
374 |
|
374 | |||
375 |
|
375 | |||
376 | @MPDecorator |
|
376 | @MPDecorator | |
377 | class printAttribute(Operation): |
|
377 | class printAttribute(Operation): | |
378 | ''' |
|
378 | ''' | |
379 | Print an arbitrary attribute of dataOut |
|
379 | Print an arbitrary attribute of dataOut | |
380 | ''' |
|
380 | ''' | |
381 |
|
381 | |||
382 | def __init__(self): |
|
382 | def __init__(self): | |
383 |
|
383 | |||
384 | Operation.__init__(self) |
|
384 | Operation.__init__(self) | |
385 |
|
385 | |||
386 | def run(self, dataOut, attributes): |
|
386 | def run(self, dataOut, attributes): | |
387 |
|
387 | |||
388 | if isinstance(attributes, str): |
|
388 | if isinstance(attributes, str): | |
389 | attributes = [attributes] |
|
389 | attributes = [attributes] | |
390 | for attr in attributes: |
|
390 | for attr in attributes: | |
391 | if hasattr(dataOut, attr): |
|
391 | if hasattr(dataOut, attr): | |
392 | log.log(getattr(dataOut, attr), attr) |
|
392 | log.log(getattr(dataOut, attr), attr) | |
393 |
|
393 | |||
394 |
|
394 | |||
395 | class interpolateHeights(Operation): |
|
395 | class interpolateHeights(Operation): | |
396 |
|
396 | |||
397 | def run(self, dataOut, topLim, botLim): |
|
397 | def run(self, dataOut, topLim, botLim): | |
398 | #69 al 72 para julia |
|
398 | #69 al 72 para julia | |
399 | #82-84 para meteoros |
|
399 | #82-84 para meteoros | |
400 | if len(numpy.shape(dataOut.data))==2: |
|
400 | if len(numpy.shape(dataOut.data))==2: | |
401 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 |
|
401 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 | |
402 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
402 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) | |
403 | #dataOut.data[:,botLim:limSup+1] = sampInterp |
|
403 | #dataOut.data[:,botLim:limSup+1] = sampInterp | |
404 | dataOut.data[:,botLim:topLim+1] = sampInterp |
|
404 | dataOut.data[:,botLim:topLim+1] = sampInterp | |
405 | else: |
|
405 | else: | |
406 | nHeights = dataOut.data.shape[2] |
|
406 | nHeights = dataOut.data.shape[2] | |
407 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
407 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) | |
408 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] |
|
408 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] | |
409 | f = interpolate.interp1d(x, y, axis = 2) |
|
409 | f = interpolate.interp1d(x, y, axis = 2) | |
410 | xnew = numpy.arange(botLim,topLim+1) |
|
410 | xnew = numpy.arange(botLim,topLim+1) | |
411 | ynew = f(xnew) |
|
411 | ynew = f(xnew) | |
412 | dataOut.data[:,:,botLim:topLim+1] = ynew |
|
412 | dataOut.data[:,:,botLim:topLim+1] = ynew | |
413 |
|
413 | |||
414 | return dataOut |
|
414 | return dataOut | |
415 |
|
415 | |||
416 |
|
416 | |||
417 | class CohInt(Operation): |
|
417 | class CohInt(Operation): | |
418 |
|
418 | |||
419 | isConfig = False |
|
419 | isConfig = False | |
420 | __profIndex = 0 |
|
420 | __profIndex = 0 | |
421 | __byTime = False |
|
421 | __byTime = False | |
422 | __initime = None |
|
422 | __initime = None | |
423 | __lastdatatime = None |
|
423 | __lastdatatime = None | |
424 | __integrationtime = None |
|
424 | __integrationtime = None | |
425 | __buffer = None |
|
425 | __buffer = None | |
426 | __bufferStride = [] |
|
426 | __bufferStride = [] | |
427 | __dataReady = False |
|
427 | __dataReady = False | |
428 | __profIndexStride = 0 |
|
428 | __profIndexStride = 0 | |
429 | __dataToPutStride = False |
|
429 | __dataToPutStride = False | |
430 | n = None |
|
430 | n = None | |
431 |
|
431 | |||
432 | def __init__(self, **kwargs): |
|
432 | def __init__(self, **kwargs): | |
433 |
|
433 | |||
434 | Operation.__init__(self, **kwargs) |
|
434 | Operation.__init__(self, **kwargs) | |
435 |
|
435 | |||
436 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
436 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): | |
437 | """ |
|
437 | """ | |
438 | Set the parameters of the integration class. |
|
438 | Set the parameters of the integration class. | |
439 |
|
439 | |||
440 | Inputs: |
|
440 | Inputs: | |
441 |
|
441 | |||
442 | n : Number of coherent integrations |
|
442 | n : Number of coherent integrations | |
443 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
443 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
444 | overlapping : |
|
444 | overlapping : | |
445 | """ |
|
445 | """ | |
446 |
|
446 | |||
447 | self.__initime = None |
|
447 | self.__initime = None | |
448 | self.__lastdatatime = 0 |
|
448 | self.__lastdatatime = 0 | |
449 | self.__buffer = None |
|
449 | self.__buffer = None | |
450 | self.__dataReady = False |
|
450 | self.__dataReady = False | |
451 | self.byblock = byblock |
|
451 | self.byblock = byblock | |
452 | self.stride = stride |
|
452 | self.stride = stride | |
453 |
|
453 | |||
454 | if n == None and timeInterval == None: |
|
454 | if n == None and timeInterval == None: | |
455 | raise ValueError("n or timeInterval should be specified ...") |
|
455 | raise ValueError("n or timeInterval should be specified ...") | |
456 |
|
456 | |||
457 | if n != None: |
|
457 | if n != None: | |
458 | self.n = n |
|
458 | self.n = n | |
459 | self.__byTime = False |
|
459 | self.__byTime = False | |
460 | else: |
|
460 | else: | |
461 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
461 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line | |
462 | self.n = 9999 |
|
462 | self.n = 9999 | |
463 | self.__byTime = True |
|
463 | self.__byTime = True | |
464 |
|
464 | |||
465 | if overlapping: |
|
465 | if overlapping: | |
466 | self.__withOverlapping = True |
|
466 | self.__withOverlapping = True | |
467 | self.__buffer = None |
|
467 | self.__buffer = None | |
468 | else: |
|
468 | else: | |
469 | self.__withOverlapping = False |
|
469 | self.__withOverlapping = False | |
470 | self.__buffer = 0 |
|
470 | self.__buffer = 0 | |
471 |
|
471 | |||
472 | self.__profIndex = 0 |
|
472 | self.__profIndex = 0 | |
473 |
|
473 | |||
474 | def putData(self, data): |
|
474 | def putData(self, data): | |
475 |
|
475 | |||
476 | """ |
|
476 | """ | |
477 | Add a profile to the __buffer and increase in one the __profileIndex |
|
477 | Add a profile to the __buffer and increase in one the __profileIndex | |
478 |
|
478 | |||
479 | """ |
|
479 | """ | |
480 |
|
480 | |||
481 | if not self.__withOverlapping: |
|
481 | if not self.__withOverlapping: | |
482 | self.__buffer += data.copy() |
|
482 | self.__buffer += data.copy() | |
483 | self.__profIndex += 1 |
|
483 | self.__profIndex += 1 | |
484 | return |
|
484 | return | |
485 |
|
485 | |||
486 | #Overlapping data |
|
486 | #Overlapping data | |
487 | nChannels, nHeis = data.shape |
|
487 | nChannels, nHeis = data.shape | |
488 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
488 | data = numpy.reshape(data, (1, nChannels, nHeis)) | |
489 |
|
489 | |||
490 | #If the buffer is empty then it takes the data value |
|
490 | #If the buffer is empty then it takes the data value | |
491 | if self.__buffer is None: |
|
491 | if self.__buffer is None: | |
492 | self.__buffer = data |
|
492 | self.__buffer = data | |
493 | self.__profIndex += 1 |
|
493 | self.__profIndex += 1 | |
494 | return |
|
494 | return | |
495 |
|
495 | |||
496 | #If the buffer length is lower than n then stakcing the data value |
|
496 | #If the buffer length is lower than n then stakcing the data value | |
497 | if self.__profIndex < self.n: |
|
497 | if self.__profIndex < self.n: | |
498 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
498 | self.__buffer = numpy.vstack((self.__buffer, data)) | |
499 | self.__profIndex += 1 |
|
499 | self.__profIndex += 1 | |
500 | return |
|
500 | return | |
501 |
|
501 | |||
502 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
502 | #If the buffer length is equal to n then replacing the last buffer value with the data value | |
503 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
503 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) | |
504 | self.__buffer[self.n-1] = data |
|
504 | self.__buffer[self.n-1] = data | |
505 | self.__profIndex = self.n |
|
505 | self.__profIndex = self.n | |
506 | return |
|
506 | return | |
507 |
|
507 | |||
508 |
|
508 | |||
509 | def pushData(self): |
|
509 | def pushData(self): | |
510 | """ |
|
510 | """ | |
511 | Return the sum of the last profiles and the profiles used in the sum. |
|
511 | Return the sum of the last profiles and the profiles used in the sum. | |
512 |
|
512 | |||
513 | Affected: |
|
513 | Affected: | |
514 |
|
514 | |||
515 | self.__profileIndex |
|
515 | self.__profileIndex | |
516 |
|
516 | |||
517 | """ |
|
517 | """ | |
518 |
|
518 | |||
519 | if not self.__withOverlapping: |
|
519 | if not self.__withOverlapping: | |
520 | data = self.__buffer |
|
520 | data = self.__buffer | |
521 | n = self.__profIndex |
|
521 | n = self.__profIndex | |
522 |
|
522 | |||
523 | self.__buffer = 0 |
|
523 | self.__buffer = 0 | |
524 | self.__profIndex = 0 |
|
524 | self.__profIndex = 0 | |
525 |
|
525 | |||
526 | return data, n |
|
526 | return data, n | |
527 |
|
527 | |||
528 | #Integration with Overlapping |
|
528 | #Integration with Overlapping | |
529 | data = numpy.sum(self.__buffer, axis=0) |
|
529 | data = numpy.sum(self.__buffer, axis=0) | |
530 | # print data |
|
530 | # print data | |
531 | # raise |
|
531 | # raise | |
532 | n = self.__profIndex |
|
532 | n = self.__profIndex | |
533 |
|
533 | |||
534 | return data, n |
|
534 | return data, n | |
535 |
|
535 | |||
536 | def byProfiles(self, data): |
|
536 | def byProfiles(self, data): | |
537 |
|
537 | |||
538 | self.__dataReady = False |
|
538 | self.__dataReady = False | |
539 | avgdata = None |
|
539 | avgdata = None | |
540 | # n = None |
|
540 | # n = None | |
541 | # print data |
|
541 | # print data | |
542 | # raise |
|
542 | # raise | |
543 | self.putData(data) |
|
543 | self.putData(data) | |
544 |
|
544 | |||
545 | if self.__profIndex == self.n: |
|
545 | if self.__profIndex == self.n: | |
546 | avgdata, n = self.pushData() |
|
546 | avgdata, n = self.pushData() | |
547 | self.__dataReady = True |
|
547 | self.__dataReady = True | |
548 |
|
548 | |||
549 | return avgdata |
|
549 | return avgdata | |
550 |
|
550 | |||
551 | def byTime(self, data, datatime): |
|
551 | def byTime(self, data, datatime): | |
552 |
|
552 | |||
553 | self.__dataReady = False |
|
553 | self.__dataReady = False | |
554 | avgdata = None |
|
554 | avgdata = None | |
555 | n = None |
|
555 | n = None | |
556 |
|
556 | |||
557 | self.putData(data) |
|
557 | self.putData(data) | |
558 |
|
558 | |||
559 | if (datatime - self.__initime) >= self.__integrationtime: |
|
559 | if (datatime - self.__initime) >= self.__integrationtime: | |
560 | avgdata, n = self.pushData() |
|
560 | avgdata, n = self.pushData() | |
561 | self.n = n |
|
561 | self.n = n | |
562 | self.__dataReady = True |
|
562 | self.__dataReady = True | |
563 |
|
563 | |||
564 | return avgdata |
|
564 | return avgdata | |
565 |
|
565 | |||
566 | def integrateByStride(self, data, datatime): |
|
566 | def integrateByStride(self, data, datatime): | |
567 | # print data |
|
567 | # print data | |
568 | if self.__profIndex == 0: |
|
568 | if self.__profIndex == 0: | |
569 | self.__buffer = [[data.copy(), datatime]] |
|
569 | self.__buffer = [[data.copy(), datatime]] | |
570 | else: |
|
570 | else: | |
571 | self.__buffer.append([data.copy(),datatime]) |
|
571 | self.__buffer.append([data.copy(),datatime]) | |
572 | self.__profIndex += 1 |
|
572 | self.__profIndex += 1 | |
573 | self.__dataReady = False |
|
573 | self.__dataReady = False | |
574 |
|
574 | |||
575 | if self.__profIndex == self.n * self.stride : |
|
575 | if self.__profIndex == self.n * self.stride : | |
576 | self.__dataToPutStride = True |
|
576 | self.__dataToPutStride = True | |
577 | self.__profIndexStride = 0 |
|
577 | self.__profIndexStride = 0 | |
578 | self.__profIndex = 0 |
|
578 | self.__profIndex = 0 | |
579 | self.__bufferStride = [] |
|
579 | self.__bufferStride = [] | |
580 | for i in range(self.stride): |
|
580 | for i in range(self.stride): | |
581 | current = self.__buffer[i::self.stride] |
|
581 | current = self.__buffer[i::self.stride] | |
582 | data = numpy.sum([t[0] for t in current], axis=0) |
|
582 | data = numpy.sum([t[0] for t in current], axis=0) | |
583 | avgdatatime = numpy.average([t[1] for t in current]) |
|
583 | avgdatatime = numpy.average([t[1] for t in current]) | |
584 | # print data |
|
584 | # print data | |
585 | self.__bufferStride.append((data, avgdatatime)) |
|
585 | self.__bufferStride.append((data, avgdatatime)) | |
586 |
|
586 | |||
587 | if self.__dataToPutStride: |
|
587 | if self.__dataToPutStride: | |
588 | self.__dataReady = True |
|
588 | self.__dataReady = True | |
589 | self.__profIndexStride += 1 |
|
589 | self.__profIndexStride += 1 | |
590 | if self.__profIndexStride == self.stride: |
|
590 | if self.__profIndexStride == self.stride: | |
591 | self.__dataToPutStride = False |
|
591 | self.__dataToPutStride = False | |
592 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
592 | # print self.__bufferStride[self.__profIndexStride - 1] | |
593 | # raise |
|
593 | # raise | |
594 | return self.__bufferStride[self.__profIndexStride - 1] |
|
594 | return self.__bufferStride[self.__profIndexStride - 1] | |
595 |
|
595 | |||
596 |
|
596 | |||
597 | return None, None |
|
597 | return None, None | |
598 |
|
598 | |||
599 | def integrate(self, data, datatime=None): |
|
599 | def integrate(self, data, datatime=None): | |
600 |
|
600 | |||
601 | if self.__initime == None: |
|
601 | if self.__initime == None: | |
602 | self.__initime = datatime |
|
602 | self.__initime = datatime | |
603 |
|
603 | |||
604 | if self.__byTime: |
|
604 | if self.__byTime: | |
605 | avgdata = self.byTime(data, datatime) |
|
605 | avgdata = self.byTime(data, datatime) | |
606 | else: |
|
606 | else: | |
607 | avgdata = self.byProfiles(data) |
|
607 | avgdata = self.byProfiles(data) | |
608 |
|
608 | |||
609 |
|
609 | |||
610 | self.__lastdatatime = datatime |
|
610 | self.__lastdatatime = datatime | |
611 |
|
611 | |||
612 | if avgdata is None: |
|
612 | if avgdata is None: | |
613 | return None, None |
|
613 | return None, None | |
614 |
|
614 | |||
615 | avgdatatime = self.__initime |
|
615 | avgdatatime = self.__initime | |
616 |
|
616 | |||
617 | deltatime = datatime - self.__lastdatatime |
|
617 | deltatime = datatime - self.__lastdatatime | |
618 |
|
618 | |||
619 | if not self.__withOverlapping: |
|
619 | if not self.__withOverlapping: | |
620 | self.__initime = datatime |
|
620 | self.__initime = datatime | |
621 | else: |
|
621 | else: | |
622 | self.__initime += deltatime |
|
622 | self.__initime += deltatime | |
623 |
|
623 | |||
624 | return avgdata, avgdatatime |
|
624 | return avgdata, avgdatatime | |
625 |
|
625 | |||
626 | def integrateByBlock(self, dataOut): |
|
626 | def integrateByBlock(self, dataOut): | |
627 |
|
627 | |||
628 | times = int(dataOut.data.shape[1]/self.n) |
|
628 | times = int(dataOut.data.shape[1]/self.n) | |
629 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
629 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) | |
630 |
|
630 | |||
631 | id_min = 0 |
|
631 | id_min = 0 | |
632 | id_max = self.n |
|
632 | id_max = self.n | |
633 |
|
633 | |||
634 | for i in range(times): |
|
634 | for i in range(times): | |
635 | junk = dataOut.data[:,id_min:id_max,:] |
|
635 | junk = dataOut.data[:,id_min:id_max,:] | |
636 | avgdata[:,i,:] = junk.sum(axis=1) |
|
636 | avgdata[:,i,:] = junk.sum(axis=1) | |
637 | id_min += self.n |
|
637 | id_min += self.n | |
638 | id_max += self.n |
|
638 | id_max += self.n | |
639 |
|
639 | |||
640 | timeInterval = dataOut.ippSeconds*self.n |
|
640 | timeInterval = dataOut.ippSeconds*self.n | |
641 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
641 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime | |
642 | self.__dataReady = True |
|
642 | self.__dataReady = True | |
643 | return avgdata, avgdatatime |
|
643 | return avgdata, avgdatatime | |
644 |
|
644 | |||
645 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
645 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): | |
646 |
|
646 | |||
647 | if not self.isConfig: |
|
647 | if not self.isConfig: | |
648 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
648 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) | |
649 | self.isConfig = True |
|
649 | self.isConfig = True | |
650 |
|
650 | |||
651 | if dataOut.flagDataAsBlock: |
|
651 | if dataOut.flagDataAsBlock: | |
652 | """ |
|
652 | """ | |
653 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
653 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
654 | """ |
|
654 | """ | |
655 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
655 | avgdata, avgdatatime = self.integrateByBlock(dataOut) | |
656 | dataOut.nProfiles /= self.n |
|
656 | dataOut.nProfiles /= self.n | |
657 | else: |
|
657 | else: | |
658 | if stride is None: |
|
658 | if stride is None: | |
659 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
659 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) | |
660 | else: |
|
660 | else: | |
661 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
661 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) | |
662 |
|
662 | |||
663 |
|
663 | |||
664 | # dataOut.timeInterval *= n |
|
664 | # dataOut.timeInterval *= n | |
665 | dataOut.flagNoData = True |
|
665 | dataOut.flagNoData = True | |
666 |
|
666 | |||
667 | if self.__dataReady: |
|
667 | if self.__dataReady: | |
668 | dataOut.data = avgdata |
|
668 | dataOut.data = avgdata | |
669 | if not dataOut.flagCohInt: |
|
669 | if not dataOut.flagCohInt: | |
670 | dataOut.nCohInt *= self.n |
|
670 | dataOut.nCohInt *= self.n | |
671 | dataOut.flagCohInt = True |
|
671 | dataOut.flagCohInt = True | |
672 | dataOut.utctime = avgdatatime |
|
672 | dataOut.utctime = avgdatatime | |
673 | # print avgdata, avgdatatime |
|
673 | # print avgdata, avgdatatime | |
674 | # raise |
|
674 | # raise | |
675 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
675 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt | |
676 | dataOut.flagNoData = False |
|
676 | dataOut.flagNoData = False | |
677 | return dataOut |
|
677 | return dataOut | |
678 |
|
678 | |||
679 | class Decoder(Operation): |
|
679 | class Decoder(Operation): | |
680 |
|
680 | |||
681 | isConfig = False |
|
681 | isConfig = False | |
682 | __profIndex = 0 |
|
682 | __profIndex = 0 | |
683 |
|
683 | |||
684 | code = None |
|
684 | code = None | |
685 |
|
685 | |||
686 | nCode = None |
|
686 | nCode = None | |
687 | nBaud = None |
|
687 | nBaud = None | |
688 |
|
688 | |||
689 | def __init__(self, **kwargs): |
|
689 | def __init__(self, **kwargs): | |
690 |
|
690 | |||
691 | Operation.__init__(self, **kwargs) |
|
691 | Operation.__init__(self, **kwargs) | |
692 |
|
692 | |||
693 | self.times = None |
|
693 | self.times = None | |
694 | self.osamp = None |
|
694 | self.osamp = None | |
695 | # self.__setValues = False |
|
695 | # self.__setValues = False | |
696 | self.isConfig = False |
|
696 | self.isConfig = False | |
697 | self.setupReq = False |
|
697 | self.setupReq = False | |
698 | def setup(self, code, osamp, dataOut): |
|
698 | def setup(self, code, osamp, dataOut): | |
699 |
|
699 | |||
700 | self.__profIndex = 0 |
|
700 | self.__profIndex = 0 | |
701 |
|
701 | |||
702 | self.code = code |
|
702 | self.code = code | |
703 |
|
703 | |||
704 | self.nCode = len(code) |
|
704 | self.nCode = len(code) | |
705 | self.nBaud = len(code[0]) |
|
705 | self.nBaud = len(code[0]) | |
706 |
|
706 | |||
707 | if (osamp != None) and (osamp >1): |
|
707 | if (osamp != None) and (osamp >1): | |
708 | self.osamp = osamp |
|
708 | self.osamp = osamp | |
709 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
709 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) | |
710 | self.nBaud = self.nBaud*self.osamp |
|
710 | self.nBaud = self.nBaud*self.osamp | |
711 |
|
711 | |||
712 | self.__nChannels = dataOut.nChannels |
|
712 | self.__nChannels = dataOut.nChannels | |
713 | self.__nProfiles = dataOut.nProfiles |
|
713 | self.__nProfiles = dataOut.nProfiles | |
714 | self.__nHeis = dataOut.nHeights |
|
714 | self.__nHeis = dataOut.nHeights | |
715 |
|
715 | |||
716 | if self.__nHeis < self.nBaud: |
|
716 | if self.__nHeis < self.nBaud: | |
717 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) |
|
717 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) | |
718 |
|
718 | |||
719 | #Frequency |
|
719 | #Frequency | |
720 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
720 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) | |
721 |
|
721 | |||
722 | __codeBuffer[:,0:self.nBaud] = self.code |
|
722 | __codeBuffer[:,0:self.nBaud] = self.code | |
723 |
|
723 | |||
724 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
724 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) | |
725 |
|
725 | |||
726 | if dataOut.flagDataAsBlock: |
|
726 | if dataOut.flagDataAsBlock: | |
727 |
|
727 | |||
728 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
728 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |
729 |
|
729 | |||
730 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
730 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) | |
731 |
|
731 | |||
732 | else: |
|
732 | else: | |
733 |
|
733 | |||
734 | #Time |
|
734 | #Time | |
735 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
735 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |
736 |
|
736 | |||
737 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
737 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) | |
738 |
|
738 | |||
739 | def __convolutionInFreq(self, data): |
|
739 | def __convolutionInFreq(self, data): | |
740 |
|
740 | |||
741 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
741 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |
742 |
|
742 | |||
743 | fft_data = numpy.fft.fft(data, axis=1) |
|
743 | fft_data = numpy.fft.fft(data, axis=1) | |
744 |
|
744 | |||
745 | conv = fft_data*fft_code |
|
745 | conv = fft_data*fft_code | |
746 |
|
746 | |||
747 | data = numpy.fft.ifft(conv,axis=1) |
|
747 | data = numpy.fft.ifft(conv,axis=1) | |
748 |
|
748 | |||
749 | return data |
|
749 | return data | |
750 |
|
750 | |||
751 | def __convolutionInFreqOpt(self, data): |
|
751 | def __convolutionInFreqOpt(self, data): | |
752 |
|
752 | |||
753 | raise NotImplementedError |
|
753 | raise NotImplementedError | |
754 |
|
754 | |||
755 | def __convolutionInTime(self, data): |
|
755 | def __convolutionInTime(self, data): | |
756 |
|
756 | |||
757 | code = self.code[self.__profIndex] |
|
757 | code = self.code[self.__profIndex] | |
758 | for i in range(self.__nChannels): |
|
758 | for i in range(self.__nChannels): | |
759 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
759 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] | |
760 |
|
760 | |||
761 | return self.datadecTime |
|
761 | return self.datadecTime | |
762 |
|
762 | |||
763 | def __convolutionByBlockInTime(self, data): |
|
763 | def __convolutionByBlockInTime(self, data): | |
764 |
|
764 | |||
765 | repetitions = int(self.__nProfiles / self.nCode) |
|
765 | repetitions = int(self.__nProfiles / self.nCode) | |
766 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
766 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) | |
767 | junk = junk.flatten() |
|
767 | junk = junk.flatten() | |
768 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
768 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) | |
769 | profilesList = range(self.__nProfiles) |
|
769 | profilesList = range(self.__nProfiles) | |
770 |
|
770 | |||
771 | for i in range(self.__nChannels): |
|
771 | for i in range(self.__nChannels): | |
772 | for j in profilesList: |
|
772 | for j in profilesList: | |
773 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
773 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] | |
774 | return self.datadecTime |
|
774 | return self.datadecTime | |
775 |
|
775 | |||
776 | def __convolutionByBlockInFreq(self, data): |
|
776 | def __convolutionByBlockInFreq(self, data): | |
777 |
|
777 | |||
778 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") |
|
778 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") | |
779 |
|
779 | |||
780 |
|
780 | |||
781 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
781 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |
782 |
|
782 | |||
783 | fft_data = numpy.fft.fft(data, axis=2) |
|
783 | fft_data = numpy.fft.fft(data, axis=2) | |
784 |
|
784 | |||
785 | conv = fft_data*fft_code |
|
785 | conv = fft_data*fft_code | |
786 |
|
786 | |||
787 | data = numpy.fft.ifft(conv,axis=2) |
|
787 | data = numpy.fft.ifft(conv,axis=2) | |
788 |
|
788 | |||
789 | return data |
|
789 | return data | |
790 |
|
790 | |||
791 |
|
791 | |||
792 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
792 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): | |
793 |
|
793 | |||
794 | if dataOut.flagDecodeData: |
|
794 | if dataOut.flagDecodeData: | |
795 | print("This data is already decoded, recoding again ...") |
|
795 | print("This data is already decoded, recoding again ...") | |
796 |
|
796 | |||
797 | if not self.isConfig: |
|
797 | if not self.isConfig: | |
798 |
|
798 | |||
799 | if code is None: |
|
799 | if code is None: | |
800 | if dataOut.code is None: |
|
800 | if dataOut.code is None: | |
801 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) |
|
801 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) | |
802 |
|
802 | |||
803 | code = dataOut.code |
|
803 | code = dataOut.code | |
804 | else: |
|
804 | else: | |
805 | code = numpy.array(code).reshape(nCode,nBaud) |
|
805 | code = numpy.array(code).reshape(nCode,nBaud) | |
806 | self.setup(code, osamp, dataOut) |
|
806 | self.setup(code, osamp, dataOut) | |
807 |
|
807 | |||
808 | self.isConfig = True |
|
808 | self.isConfig = True | |
809 |
|
809 | |||
810 | if mode == 3: |
|
810 | if mode == 3: | |
811 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
811 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) | |
812 |
|
812 | |||
813 | if times != None: |
|
813 | if times != None: | |
814 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
814 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") | |
815 |
|
815 | |||
816 | if self.code is None: |
|
816 | if self.code is None: | |
817 | print("Fail decoding: Code is not defined.") |
|
817 | print("Fail decoding: Code is not defined.") | |
818 | return |
|
818 | return | |
819 |
|
819 | |||
820 | self.__nProfiles = dataOut.nProfiles |
|
820 | self.__nProfiles = dataOut.nProfiles | |
821 | datadec = None |
|
821 | datadec = None | |
822 |
|
822 | |||
823 | if mode == 3: |
|
823 | if mode == 3: | |
824 | mode = 0 |
|
824 | mode = 0 | |
825 |
|
825 | |||
826 | if dataOut.flagDataAsBlock: |
|
826 | if dataOut.flagDataAsBlock: | |
827 | """ |
|
827 | """ | |
828 | Decoding when data have been read as block, |
|
828 | Decoding when data have been read as block, | |
829 | """ |
|
829 | """ | |
830 |
|
830 | |||
831 | if mode == 0: |
|
831 | if mode == 0: | |
832 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
832 | datadec = self.__convolutionByBlockInTime(dataOut.data) | |
833 | if mode == 1: |
|
833 | if mode == 1: | |
834 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
834 | datadec = self.__convolutionByBlockInFreq(dataOut.data) | |
835 | else: |
|
835 | else: | |
836 | """ |
|
836 | """ | |
837 | Decoding when data have been read profile by profile |
|
837 | Decoding when data have been read profile by profile | |
838 | """ |
|
838 | """ | |
839 | if mode == 0: |
|
839 | if mode == 0: | |
840 | datadec = self.__convolutionInTime(dataOut.data) |
|
840 | datadec = self.__convolutionInTime(dataOut.data) | |
841 |
|
841 | |||
842 | if mode == 1: |
|
842 | if mode == 1: | |
843 | datadec = self.__convolutionInFreq(dataOut.data) |
|
843 | datadec = self.__convolutionInFreq(dataOut.data) | |
844 |
|
844 | |||
845 | if mode == 2: |
|
845 | if mode == 2: | |
846 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
846 | datadec = self.__convolutionInFreqOpt(dataOut.data) | |
847 |
|
847 | |||
848 | if datadec is None: |
|
848 | if datadec is None: | |
849 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) |
|
849 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) | |
850 |
|
850 | |||
851 | dataOut.code = self.code |
|
851 | dataOut.code = self.code | |
852 | dataOut.nCode = self.nCode |
|
852 | dataOut.nCode = self.nCode | |
853 | dataOut.nBaud = self.nBaud |
|
853 | dataOut.nBaud = self.nBaud | |
854 |
|
854 | |||
855 | dataOut.data = datadec |
|
855 | dataOut.data = datadec | |
856 |
|
856 | |||
857 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
857 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] | |
858 |
|
858 | |||
859 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
859 | dataOut.flagDecodeData = True #asumo q la data esta decodificada | |
860 |
|
860 | |||
861 | if self.__profIndex == self.nCode-1: |
|
861 | if self.__profIndex == self.nCode-1: | |
862 | self.__profIndex = 0 |
|
862 | self.__profIndex = 0 | |
863 | return dataOut |
|
863 | return dataOut | |
864 |
|
864 | |||
865 | self.__profIndex += 1 |
|
865 | self.__profIndex += 1 | |
866 |
|
866 | |||
867 | return dataOut |
|
867 | return dataOut | |
868 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
868 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip | |
869 |
|
869 | |||
870 |
|
870 | |||
871 | class ProfileConcat(Operation): |
|
871 | class ProfileConcat(Operation): | |
872 |
|
872 | |||
873 | isConfig = False |
|
873 | isConfig = False | |
874 | buffer = None |
|
874 | buffer = None | |
875 |
|
875 | |||
876 | def __init__(self, **kwargs): |
|
876 | def __init__(self, **kwargs): | |
877 |
|
877 | |||
878 | Operation.__init__(self, **kwargs) |
|
878 | Operation.__init__(self, **kwargs) | |
879 | self.profileIndex = 0 |
|
879 | self.profileIndex = 0 | |
880 |
|
880 | |||
881 | def reset(self): |
|
881 | def reset(self): | |
882 | self.buffer = numpy.zeros_like(self.buffer) |
|
882 | self.buffer = numpy.zeros_like(self.buffer) | |
883 | self.start_index = 0 |
|
883 | self.start_index = 0 | |
884 | self.times = 1 |
|
884 | self.times = 1 | |
885 |
|
885 | |||
886 | def setup(self, data, m, n=1): |
|
886 | def setup(self, data, m, n=1): | |
887 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
887 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) | |
888 | self.nHeights = data.shape[1]#.nHeights |
|
888 | self.nHeights = data.shape[1]#.nHeights | |
889 | self.start_index = 0 |
|
889 | self.start_index = 0 | |
890 | self.times = 1 |
|
890 | self.times = 1 | |
891 |
|
891 | |||
892 | def concat(self, data): |
|
892 | def concat(self, data): | |
893 |
|
893 | |||
894 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
894 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() | |
895 | self.start_index = self.start_index + self.nHeights |
|
895 | self.start_index = self.start_index + self.nHeights | |
896 |
|
896 | |||
897 | def run(self, dataOut, m): |
|
897 | def run(self, dataOut, m): | |
898 | dataOut.flagNoData = True |
|
898 | dataOut.flagNoData = True | |
899 |
|
899 | |||
900 | if not self.isConfig: |
|
900 | if not self.isConfig: | |
901 | self.setup(dataOut.data, m, 1) |
|
901 | self.setup(dataOut.data, m, 1) | |
902 | self.isConfig = True |
|
902 | self.isConfig = True | |
903 |
|
903 | |||
904 | if dataOut.flagDataAsBlock: |
|
904 | if dataOut.flagDataAsBlock: | |
905 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") |
|
905 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") | |
906 |
|
906 | |||
907 | else: |
|
907 | else: | |
908 | self.concat(dataOut.data) |
|
908 | self.concat(dataOut.data) | |
909 | self.times += 1 |
|
909 | self.times += 1 | |
910 | if self.times > m: |
|
910 | if self.times > m: | |
911 | dataOut.data = self.buffer |
|
911 | dataOut.data = self.buffer | |
912 | self.reset() |
|
912 | self.reset() | |
913 | dataOut.flagNoData = False |
|
913 | dataOut.flagNoData = False | |
914 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
914 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas | |
915 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
915 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
916 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
916 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m | |
917 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
917 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) | |
918 | dataOut.ippSeconds *= m |
|
918 | dataOut.ippSeconds *= m | |
919 | return dataOut |
|
919 | return dataOut | |
920 |
|
920 | |||
921 | class ProfileSelector(Operation): |
|
921 | class ProfileSelector(Operation): | |
922 |
|
922 | |||
923 | profileIndex = None |
|
923 | profileIndex = None | |
924 | # Tamanho total de los perfiles |
|
924 | # Tamanho total de los perfiles | |
925 | nProfiles = None |
|
925 | nProfiles = None | |
926 |
|
926 | |||
927 | def __init__(self, **kwargs): |
|
927 | def __init__(self, **kwargs): | |
928 |
|
928 | |||
929 | Operation.__init__(self, **kwargs) |
|
929 | Operation.__init__(self, **kwargs) | |
930 | self.profileIndex = 0 |
|
930 | self.profileIndex = 0 | |
931 |
|
931 | |||
932 | def incProfileIndex(self): |
|
932 | def incProfileIndex(self): | |
933 |
|
933 | |||
934 | self.profileIndex += 1 |
|
934 | self.profileIndex += 1 | |
935 |
|
935 | |||
936 | if self.profileIndex >= self.nProfiles: |
|
936 | if self.profileIndex >= self.nProfiles: | |
937 | self.profileIndex = 0 |
|
937 | self.profileIndex = 0 | |
938 |
|
938 | |||
939 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
939 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): | |
940 |
|
940 | |||
941 | if profileIndex < minIndex: |
|
941 | if profileIndex < minIndex: | |
942 | return False |
|
942 | return False | |
943 |
|
943 | |||
944 | if profileIndex > maxIndex: |
|
944 | if profileIndex > maxIndex: | |
945 | return False |
|
945 | return False | |
946 |
|
946 | |||
947 | return True |
|
947 | return True | |
948 |
|
948 | |||
949 | def isThisProfileInList(self, profileIndex, profileList): |
|
949 | def isThisProfileInList(self, profileIndex, profileList): | |
950 |
|
950 | |||
951 | if profileIndex not in profileList: |
|
951 | if profileIndex not in profileList: | |
952 | return False |
|
952 | return False | |
953 |
|
953 | |||
954 | return True |
|
954 | return True | |
955 |
|
955 | |||
956 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
956 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): | |
957 |
|
957 | |||
958 | """ |
|
958 | """ | |
959 | ProfileSelector: |
|
959 | ProfileSelector: | |
960 |
|
960 | |||
961 | Inputs: |
|
961 | Inputs: | |
962 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
962 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) | |
963 |
|
963 | |||
964 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
964 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) | |
965 |
|
965 | |||
966 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
966 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) | |
967 |
|
967 | |||
968 | """ |
|
968 | """ | |
969 |
|
969 | |||
970 | if rangeList is not None: |
|
970 | if rangeList is not None: | |
971 | if type(rangeList[0]) not in (tuple, list): |
|
971 | if type(rangeList[0]) not in (tuple, list): | |
972 | rangeList = [rangeList] |
|
972 | rangeList = [rangeList] | |
973 |
|
973 | |||
974 | dataOut.flagNoData = True |
|
974 | dataOut.flagNoData = True | |
975 |
|
975 | |||
976 | if dataOut.flagDataAsBlock: |
|
976 | if dataOut.flagDataAsBlock: | |
977 | """ |
|
977 | """ | |
978 | data dimension = [nChannels, nProfiles, nHeis] |
|
978 | data dimension = [nChannels, nProfiles, nHeis] | |
979 | """ |
|
979 | """ | |
980 | if profileList != None: |
|
980 | if profileList != None: | |
981 | dataOut.data = dataOut.data[:,profileList,:] |
|
981 | dataOut.data = dataOut.data[:,profileList,:] | |
982 |
|
982 | |||
983 | if profileRangeList != None: |
|
983 | if profileRangeList != None: | |
984 | minIndex = profileRangeList[0] |
|
984 | minIndex = profileRangeList[0] | |
985 | maxIndex = profileRangeList[1] |
|
985 | maxIndex = profileRangeList[1] | |
986 | profileList = list(range(minIndex, maxIndex+1)) |
|
986 | profileList = list(range(minIndex, maxIndex+1)) | |
987 |
|
987 | |||
988 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
988 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] | |
989 |
|
989 | |||
990 | if rangeList != None: |
|
990 | if rangeList != None: | |
991 |
|
991 | |||
992 | profileList = [] |
|
992 | profileList = [] | |
993 |
|
993 | |||
994 | for thisRange in rangeList: |
|
994 | for thisRange in rangeList: | |
995 | minIndex = thisRange[0] |
|
995 | minIndex = thisRange[0] | |
996 | maxIndex = thisRange[1] |
|
996 | maxIndex = thisRange[1] | |
997 |
|
997 | |||
998 | profileList.extend(list(range(minIndex, maxIndex+1))) |
|
998 | profileList.extend(list(range(minIndex, maxIndex+1))) | |
999 |
|
999 | |||
1000 | dataOut.data = dataOut.data[:,profileList,:] |
|
1000 | dataOut.data = dataOut.data[:,profileList,:] | |
1001 |
|
1001 | |||
1002 | dataOut.nProfiles = len(profileList) |
|
1002 | dataOut.nProfiles = len(profileList) | |
1003 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
1003 | dataOut.profileIndex = dataOut.nProfiles - 1 | |
1004 | dataOut.flagNoData = False |
|
1004 | dataOut.flagNoData = False | |
1005 |
|
1005 | |||
1006 | return dataOut |
|
1006 | return dataOut | |
1007 |
|
1007 | |||
1008 | """ |
|
1008 | """ | |
1009 | data dimension = [nChannels, nHeis] |
|
1009 | data dimension = [nChannels, nHeis] | |
1010 | """ |
|
1010 | """ | |
1011 |
|
1011 | |||
1012 | if profileList != None: |
|
1012 | if profileList != None: | |
1013 |
|
1013 | |||
1014 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
1014 | if self.isThisProfileInList(dataOut.profileIndex, profileList): | |
1015 |
|
1015 | |||
1016 | self.nProfiles = len(profileList) |
|
1016 | self.nProfiles = len(profileList) | |
1017 | dataOut.nProfiles = self.nProfiles |
|
1017 | dataOut.nProfiles = self.nProfiles | |
1018 | dataOut.profileIndex = self.profileIndex |
|
1018 | dataOut.profileIndex = self.profileIndex | |
1019 | dataOut.flagNoData = False |
|
1019 | dataOut.flagNoData = False | |
1020 |
|
1020 | |||
1021 | self.incProfileIndex() |
|
1021 | self.incProfileIndex() | |
1022 | return dataOut |
|
1022 | return dataOut | |
1023 |
|
1023 | |||
1024 | if profileRangeList != None: |
|
1024 | if profileRangeList != None: | |
1025 |
|
1025 | |||
1026 | minIndex = profileRangeList[0] |
|
1026 | minIndex = profileRangeList[0] | |
1027 | maxIndex = profileRangeList[1] |
|
1027 | maxIndex = profileRangeList[1] | |
1028 |
|
1028 | |||
1029 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1029 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |
1030 |
|
1030 | |||
1031 | self.nProfiles = maxIndex - minIndex + 1 |
|
1031 | self.nProfiles = maxIndex - minIndex + 1 | |
1032 | dataOut.nProfiles = self.nProfiles |
|
1032 | dataOut.nProfiles = self.nProfiles | |
1033 | dataOut.profileIndex = self.profileIndex |
|
1033 | dataOut.profileIndex = self.profileIndex | |
1034 | dataOut.flagNoData = False |
|
1034 | dataOut.flagNoData = False | |
1035 |
|
1035 | |||
1036 | self.incProfileIndex() |
|
1036 | self.incProfileIndex() | |
1037 | return dataOut |
|
1037 | return dataOut | |
1038 |
|
1038 | |||
1039 | if rangeList != None: |
|
1039 | if rangeList != None: | |
1040 |
|
1040 | |||
1041 | nProfiles = 0 |
|
1041 | nProfiles = 0 | |
1042 |
|
1042 | |||
1043 | for thisRange in rangeList: |
|
1043 | for thisRange in rangeList: | |
1044 | minIndex = thisRange[0] |
|
1044 | minIndex = thisRange[0] | |
1045 | maxIndex = thisRange[1] |
|
1045 | maxIndex = thisRange[1] | |
1046 |
|
1046 | |||
1047 | nProfiles += maxIndex - minIndex + 1 |
|
1047 | nProfiles += maxIndex - minIndex + 1 | |
1048 |
|
1048 | |||
1049 | for thisRange in rangeList: |
|
1049 | for thisRange in rangeList: | |
1050 |
|
1050 | |||
1051 | minIndex = thisRange[0] |
|
1051 | minIndex = thisRange[0] | |
1052 | maxIndex = thisRange[1] |
|
1052 | maxIndex = thisRange[1] | |
1053 |
|
1053 | |||
1054 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1054 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |
1055 |
|
1055 | |||
1056 | self.nProfiles = nProfiles |
|
1056 | self.nProfiles = nProfiles | |
1057 | dataOut.nProfiles = self.nProfiles |
|
1057 | dataOut.nProfiles = self.nProfiles | |
1058 | dataOut.profileIndex = self.profileIndex |
|
1058 | dataOut.profileIndex = self.profileIndex | |
1059 | dataOut.flagNoData = False |
|
1059 | dataOut.flagNoData = False | |
1060 |
|
1060 | |||
1061 | self.incProfileIndex() |
|
1061 | self.incProfileIndex() | |
1062 |
|
1062 | |||
1063 | break |
|
1063 | break | |
1064 |
|
1064 | |||
1065 | return dataOut |
|
1065 | return dataOut | |
1066 |
|
1066 | |||
1067 |
|
1067 | |||
1068 | if beam != None: #beam is only for AMISR data |
|
1068 | if beam != None: #beam is only for AMISR data | |
1069 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
1069 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): | |
1070 | dataOut.flagNoData = False |
|
1070 | dataOut.flagNoData = False | |
1071 | dataOut.profileIndex = self.profileIndex |
|
1071 | dataOut.profileIndex = self.profileIndex | |
1072 |
|
1072 | |||
1073 | self.incProfileIndex() |
|
1073 | self.incProfileIndex() | |
1074 |
|
1074 | |||
1075 | return dataOut |
|
1075 | return dataOut | |
1076 |
|
1076 | |||
1077 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") |
|
1077 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") | |
1078 |
|
1078 | |||
1079 |
|
1079 | |||
1080 | class Reshaper(Operation): |
|
1080 | class Reshaper(Operation): | |
1081 |
|
1081 | |||
1082 | def __init__(self, **kwargs): |
|
1082 | def __init__(self, **kwargs): | |
1083 |
|
1083 | |||
1084 | Operation.__init__(self, **kwargs) |
|
1084 | Operation.__init__(self, **kwargs) | |
1085 |
|
1085 | |||
1086 | self.__buffer = None |
|
1086 | self.__buffer = None | |
1087 | self.__nitems = 0 |
|
1087 | self.__nitems = 0 | |
1088 |
|
1088 | |||
1089 | def __appendProfile(self, dataOut, nTxs): |
|
1089 | def __appendProfile(self, dataOut, nTxs): | |
1090 |
|
1090 | |||
1091 | if self.__buffer is None: |
|
1091 | if self.__buffer is None: | |
1092 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
1092 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) | |
1093 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
1093 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) | |
1094 |
|
1094 | |||
1095 | ini = dataOut.nHeights * self.__nitems |
|
1095 | ini = dataOut.nHeights * self.__nitems | |
1096 | end = ini + dataOut.nHeights |
|
1096 | end = ini + dataOut.nHeights | |
1097 |
|
1097 | |||
1098 | self.__buffer[:, ini:end] = dataOut.data |
|
1098 | self.__buffer[:, ini:end] = dataOut.data | |
1099 |
|
1099 | |||
1100 | self.__nitems += 1 |
|
1100 | self.__nitems += 1 | |
1101 |
|
1101 | |||
1102 | return int(self.__nitems*nTxs) |
|
1102 | return int(self.__nitems*nTxs) | |
1103 |
|
1103 | |||
1104 | def __getBuffer(self): |
|
1104 | def __getBuffer(self): | |
1105 |
|
1105 | |||
1106 | if self.__nitems == int(1./self.__nTxs): |
|
1106 | if self.__nitems == int(1./self.__nTxs): | |
1107 |
|
1107 | |||
1108 | self.__nitems = 0 |
|
1108 | self.__nitems = 0 | |
1109 |
|
1109 | |||
1110 | return self.__buffer.copy() |
|
1110 | return self.__buffer.copy() | |
1111 |
|
1111 | |||
1112 | return None |
|
1112 | return None | |
1113 |
|
1113 | |||
1114 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1114 | def __checkInputs(self, dataOut, shape, nTxs): | |
1115 |
|
1115 | |||
1116 | if shape is None and nTxs is None: |
|
1116 | if shape is None and nTxs is None: | |
1117 | raise ValueError("Reshaper: shape of factor should be defined") |
|
1117 | raise ValueError("Reshaper: shape of factor should be defined") | |
1118 |
|
1118 | |||
1119 | if nTxs: |
|
1119 | if nTxs: | |
1120 | if nTxs < 0: |
|
1120 | if nTxs < 0: | |
1121 | raise ValueError("nTxs should be greater than 0") |
|
1121 | raise ValueError("nTxs should be greater than 0") | |
1122 |
|
1122 | |||
1123 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1123 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: | |
1124 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) |
|
1124 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) | |
1125 |
|
1125 | |||
1126 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1126 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] | |
1127 |
|
1127 | |||
1128 | return shape, nTxs |
|
1128 | return shape, nTxs | |
1129 |
|
1129 | |||
1130 | if len(shape) != 2 and len(shape) != 3: |
|
1130 | if len(shape) != 2 and len(shape) != 3: | |
1131 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) |
|
1131 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) | |
1132 |
|
1132 | |||
1133 | if len(shape) == 2: |
|
1133 | if len(shape) == 2: | |
1134 | shape_tuple = [dataOut.nChannels] |
|
1134 | shape_tuple = [dataOut.nChannels] | |
1135 | shape_tuple.extend(shape) |
|
1135 | shape_tuple.extend(shape) | |
1136 | else: |
|
1136 | else: | |
1137 | shape_tuple = list(shape) |
|
1137 | shape_tuple = list(shape) | |
1138 |
|
1138 | |||
1139 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1139 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles | |
1140 |
|
1140 | |||
1141 | return shape_tuple, nTxs |
|
1141 | return shape_tuple, nTxs | |
1142 |
|
1142 | |||
1143 | def run(self, dataOut, shape=None, nTxs=None): |
|
1143 | def run(self, dataOut, shape=None, nTxs=None): | |
1144 |
|
1144 | |||
1145 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1145 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) | |
1146 |
|
1146 | |||
1147 | dataOut.flagNoData = True |
|
1147 | dataOut.flagNoData = True | |
1148 | profileIndex = None |
|
1148 | profileIndex = None | |
1149 |
|
1149 | |||
1150 | if dataOut.flagDataAsBlock: |
|
1150 | if dataOut.flagDataAsBlock: | |
1151 |
|
1151 | |||
1152 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1152 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) | |
1153 | dataOut.flagNoData = False |
|
1153 | dataOut.flagNoData = False | |
1154 |
|
1154 | |||
1155 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1155 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 | |
1156 |
|
1156 | |||
1157 | else: |
|
1157 | else: | |
1158 |
|
1158 | |||
1159 | if self.__nTxs < 1: |
|
1159 | if self.__nTxs < 1: | |
1160 |
|
1160 | |||
1161 | self.__appendProfile(dataOut, self.__nTxs) |
|
1161 | self.__appendProfile(dataOut, self.__nTxs) | |
1162 | new_data = self.__getBuffer() |
|
1162 | new_data = self.__getBuffer() | |
1163 |
|
1163 | |||
1164 | if new_data is not None: |
|
1164 | if new_data is not None: | |
1165 | dataOut.data = new_data |
|
1165 | dataOut.data = new_data | |
1166 | dataOut.flagNoData = False |
|
1166 | dataOut.flagNoData = False | |
1167 |
|
1167 | |||
1168 | profileIndex = dataOut.profileIndex*nTxs |
|
1168 | profileIndex = dataOut.profileIndex*nTxs | |
1169 |
|
1169 | |||
1170 | else: |
|
1170 | else: | |
1171 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") |
|
1171 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") | |
1172 |
|
1172 | |||
1173 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1173 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1174 |
|
1174 | |||
1175 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1175 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] | |
1176 |
|
1176 | |||
1177 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1177 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) | |
1178 |
|
1178 | |||
1179 | dataOut.profileIndex = profileIndex |
|
1179 | dataOut.profileIndex = profileIndex | |
1180 |
|
1180 | |||
1181 | dataOut.ippSeconds /= self.__nTxs |
|
1181 | dataOut.ippSeconds /= self.__nTxs | |
1182 |
|
1182 | |||
1183 | return dataOut |
|
1183 | return dataOut | |
1184 |
|
1184 | |||
1185 | class SplitProfiles(Operation): |
|
1185 | class SplitProfiles(Operation): | |
1186 |
|
1186 | |||
1187 | def __init__(self, **kwargs): |
|
1187 | def __init__(self, **kwargs): | |
1188 |
|
1188 | |||
1189 | Operation.__init__(self, **kwargs) |
|
1189 | Operation.__init__(self, **kwargs) | |
1190 |
|
1190 | |||
1191 | def run(self, dataOut, n): |
|
1191 | def run(self, dataOut, n): | |
1192 |
|
1192 | |||
1193 | dataOut.flagNoData = True |
|
1193 | dataOut.flagNoData = True | |
1194 | profileIndex = None |
|
1194 | profileIndex = None | |
1195 |
|
1195 | |||
1196 | if dataOut.flagDataAsBlock: |
|
1196 | if dataOut.flagDataAsBlock: | |
1197 |
|
1197 | |||
1198 | #nchannels, nprofiles, nsamples |
|
1198 | #nchannels, nprofiles, nsamples | |
1199 | shape = dataOut.data.shape |
|
1199 | shape = dataOut.data.shape | |
1200 |
|
1200 | |||
1201 | if shape[2] % n != 0: |
|
1201 | if shape[2] % n != 0: | |
1202 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) |
|
1202 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) | |
1203 |
|
1203 | |||
1204 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) |
|
1204 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) | |
1205 |
|
1205 | |||
1206 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1206 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |
1207 | dataOut.flagNoData = False |
|
1207 | dataOut.flagNoData = False | |
1208 |
|
1208 | |||
1209 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1209 | profileIndex = int(dataOut.nProfiles/n) - 1 | |
1210 |
|
1210 | |||
1211 | else: |
|
1211 | else: | |
1212 |
|
1212 | |||
1213 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") |
|
1213 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") | |
1214 |
|
1214 | |||
1215 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1215 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1216 |
|
1216 | |||
1217 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1217 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] | |
1218 |
|
1218 | |||
1219 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1219 | dataOut.nProfiles = int(dataOut.nProfiles*n) | |
1220 |
|
1220 | |||
1221 | dataOut.profileIndex = profileIndex |
|
1221 | dataOut.profileIndex = profileIndex | |
1222 |
|
1222 | |||
1223 | dataOut.ippSeconds /= n |
|
1223 | dataOut.ippSeconds /= n | |
1224 |
|
1224 | |||
1225 | return dataOut |
|
1225 | return dataOut | |
1226 |
|
1226 | |||
1227 | class CombineProfiles(Operation): |
|
1227 | class CombineProfiles(Operation): | |
1228 | def __init__(self, **kwargs): |
|
1228 | def __init__(self, **kwargs): | |
1229 |
|
1229 | |||
1230 | Operation.__init__(self, **kwargs) |
|
1230 | Operation.__init__(self, **kwargs) | |
1231 |
|
1231 | |||
1232 | self.__remData = None |
|
1232 | self.__remData = None | |
1233 | self.__profileIndex = 0 |
|
1233 | self.__profileIndex = 0 | |
1234 |
|
1234 | |||
1235 | def run(self, dataOut, n): |
|
1235 | def run(self, dataOut, n): | |
1236 |
|
1236 | |||
1237 | dataOut.flagNoData = True |
|
1237 | dataOut.flagNoData = True | |
1238 | profileIndex = None |
|
1238 | profileIndex = None | |
1239 |
|
1239 | |||
1240 | if dataOut.flagDataAsBlock: |
|
1240 | if dataOut.flagDataAsBlock: | |
1241 |
|
1241 | |||
1242 | #nchannels, nprofiles, nsamples |
|
1242 | #nchannels, nprofiles, nsamples | |
1243 | shape = dataOut.data.shape |
|
1243 | shape = dataOut.data.shape | |
1244 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1244 | new_shape = shape[0], shape[1]/n, shape[2]*n | |
1245 |
|
1245 | |||
1246 | if shape[1] % n != 0: |
|
1246 | if shape[1] % n != 0: | |
1247 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) |
|
1247 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) | |
1248 |
|
1248 | |||
1249 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1249 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |
1250 | dataOut.flagNoData = False |
|
1250 | dataOut.flagNoData = False | |
1251 |
|
1251 | |||
1252 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1252 | profileIndex = int(dataOut.nProfiles*n) - 1 | |
1253 |
|
1253 | |||
1254 | else: |
|
1254 | else: | |
1255 |
|
1255 | |||
1256 | #nchannels, nsamples |
|
1256 | #nchannels, nsamples | |
1257 | if self.__remData is None: |
|
1257 | if self.__remData is None: | |
1258 | newData = dataOut.data |
|
1258 | newData = dataOut.data | |
1259 | else: |
|
1259 | else: | |
1260 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1260 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) | |
1261 |
|
1261 | |||
1262 | self.__profileIndex += 1 |
|
1262 | self.__profileIndex += 1 | |
1263 |
|
1263 | |||
1264 | if self.__profileIndex < n: |
|
1264 | if self.__profileIndex < n: | |
1265 | self.__remData = newData |
|
1265 | self.__remData = newData | |
1266 | #continue |
|
1266 | #continue | |
1267 | return |
|
1267 | return | |
1268 |
|
1268 | |||
1269 | self.__profileIndex = 0 |
|
1269 | self.__profileIndex = 0 | |
1270 | self.__remData = None |
|
1270 | self.__remData = None | |
1271 |
|
1271 | |||
1272 | dataOut.data = newData |
|
1272 | dataOut.data = newData | |
1273 | dataOut.flagNoData = False |
|
1273 | dataOut.flagNoData = False | |
1274 |
|
1274 | |||
1275 | profileIndex = dataOut.profileIndex/n |
|
1275 | profileIndex = dataOut.profileIndex/n | |
1276 |
|
1276 | |||
1277 |
|
1277 | |||
1278 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1278 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1279 |
|
1279 | |||
1280 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1280 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] | |
1281 |
|
1281 | |||
1282 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1282 | dataOut.nProfiles = int(dataOut.nProfiles/n) | |
1283 |
|
1283 | |||
1284 | dataOut.profileIndex = profileIndex |
|
1284 | dataOut.profileIndex = profileIndex | |
1285 |
|
1285 | |||
1286 | dataOut.ippSeconds *= n |
|
1286 | dataOut.ippSeconds *= n | |
1287 |
|
1287 | |||
1288 | return dataOut |
|
1288 | return dataOut | |
1289 |
|
1289 | |||
1290 | class PulsePair(Operation): |
|
1290 | class PulsePair(Operation): | |
1291 | ''' |
|
1291 | ''' | |
1292 | Function PulsePair(Signal Power, Velocity) |
|
1292 | Function PulsePair(Signal Power, Velocity) | |
1293 | The real component of Lag[0] provides Intensity Information |
|
1293 | The real component of Lag[0] provides Intensity Information | |
1294 | The imag component of Lag[1] Phase provides Velocity Information |
|
1294 | The imag component of Lag[1] Phase provides Velocity Information | |
1295 |
|
1295 | |||
1296 | Configuration Parameters: |
|
1296 | Configuration Parameters: | |
1297 | nPRF = Number of Several PRF |
|
1297 | nPRF = Number of Several PRF | |
1298 | theta = Degree Azimuth angel Boundaries |
|
1298 | theta = Degree Azimuth angel Boundaries | |
1299 |
|
1299 | |||
1300 | Input: |
|
1300 | Input: | |
1301 | self.dataOut |
|
1301 | self.dataOut | |
1302 | lag[N] |
|
1302 | lag[N] | |
1303 | Affected: |
|
1303 | Affected: | |
1304 | self.dataOut.spc |
|
1304 | self.dataOut.spc | |
1305 | ''' |
|
1305 | ''' | |
1306 | isConfig = False |
|
1306 | isConfig = False | |
1307 | __profIndex = 0 |
|
1307 | __profIndex = 0 | |
1308 | __initime = None |
|
1308 | __initime = None | |
1309 | __lastdatatime = None |
|
1309 | __lastdatatime = None | |
1310 | __buffer = None |
|
1310 | __buffer = None | |
1311 | noise = None |
|
1311 | noise = None | |
1312 | __dataReady = False |
|
1312 | __dataReady = False | |
1313 | n = None |
|
1313 | n = None | |
1314 | __nch = 0 |
|
1314 | __nch = 0 | |
1315 | __nHeis = 0 |
|
1315 | __nHeis = 0 | |
1316 | removeDC = False |
|
1316 | removeDC = False | |
1317 | ipp = None |
|
1317 | ipp = None | |
1318 | lambda_ = 0 |
|
1318 | lambda_ = 0 | |
1319 |
|
1319 | |||
1320 | def __init__(self,**kwargs): |
|
1320 | def __init__(self,**kwargs): | |
1321 | Operation.__init__(self,**kwargs) |
|
1321 | Operation.__init__(self,**kwargs) | |
1322 |
|
1322 | |||
1323 | def setup(self, dataOut, n = None, removeDC=False): |
|
1323 | def setup(self, dataOut, n = None, removeDC=False): | |
1324 | ''' |
|
1324 | ''' | |
1325 | n= Numero de PRF's de entrada |
|
1325 | n= Numero de PRF's de entrada | |
1326 | ''' |
|
1326 | ''' | |
1327 | print("[INICIO]-setup del METODO PULSE PAIR") |
|
1327 | print("[INICIO]-setup del METODO PULSE PAIR") | |
1328 | self.__initime = None |
|
1328 | self.__initime = None | |
1329 | self.__lastdatatime = 0 |
|
1329 | self.__lastdatatime = 0 | |
1330 | self.__dataReady = False |
|
1330 | self.__dataReady = False | |
1331 | self.__buffer = 0 |
|
1331 | self.__buffer = 0 | |
1332 | self.__profIndex = 0 |
|
1332 | self.__profIndex = 0 | |
1333 | self.noise = None |
|
1333 | self.noise = None | |
1334 | self.__nch = dataOut.nChannels |
|
1334 | self.__nch = dataOut.nChannels | |
1335 | self.__nHeis = dataOut.nHeights |
|
1335 | self.__nHeis = dataOut.nHeights | |
1336 | self.removeDC = removeDC |
|
1336 | self.removeDC = removeDC | |
1337 | self.lambda_ = 3.0e8/(9345.0e6) |
|
1337 | self.lambda_ = 3.0e8/(9345.0e6) | |
1338 | self.ippSec = dataOut.ippSeconds |
|
1338 | self.ippSec = dataOut.ippSeconds | |
1339 | self.nCohInt = dataOut.nCohInt |
|
1339 | self.nCohInt = dataOut.nCohInt | |
1340 | print("IPPseconds",dataOut.ippSeconds) |
|
1340 | print("IPPseconds",dataOut.ippSeconds) | |
1341 |
|
1341 | |||
1342 | print("ELVALOR DE n es:", n) |
|
1342 | print("ELVALOR DE n es:", n) | |
1343 | if n == None: |
|
1343 | if n == None: | |
1344 | raise ValueError("n should be specified.") |
|
1344 | raise ValueError("n should be specified.") | |
1345 |
|
1345 | |||
1346 | if n != None: |
|
1346 | if n != None: | |
1347 | if n<2: |
|
1347 | if n<2: | |
1348 | raise ValueError("n should be greater than 2") |
|
1348 | raise ValueError("n should be greater than 2") | |
1349 |
|
1349 | |||
1350 | self.n = n |
|
1350 | self.n = n | |
1351 | self.__nProf = n |
|
1351 | self.__nProf = n | |
1352 |
|
1352 | |||
1353 | self.__buffer = numpy.zeros((dataOut.nChannels, |
|
1353 | self.__buffer = numpy.zeros((dataOut.nChannels, | |
1354 | n, |
|
1354 | n, | |
1355 | dataOut.nHeights), |
|
1355 | dataOut.nHeights), | |
1356 | dtype='complex') |
|
1356 | dtype='complex') | |
1357 |
|
1357 | |||
1358 | def putData(self,data): |
|
1358 | def putData(self,data): | |
1359 | ''' |
|
1359 | ''' | |
1360 | Add a profile to he __buffer and increase in one the __profiel Index |
|
1360 | Add a profile to he __buffer and increase in one the __profiel Index | |
1361 | ''' |
|
1361 | ''' | |
1362 | self.__buffer[:,self.__profIndex,:]= data |
|
1362 | self.__buffer[:,self.__profIndex,:]= data | |
1363 | self.__profIndex += 1 |
|
1363 | self.__profIndex += 1 | |
1364 | return |
|
1364 | return | |
1365 |
|
1365 | |||
1366 | def pushData(self,dataOut): |
|
1366 | def pushData(self,dataOut): | |
1367 | ''' |
|
1367 | ''' | |
1368 | Return the PULSEPAIR and the profiles used in the operation |
|
1368 | Return the PULSEPAIR and the profiles used in the operation | |
1369 | Affected : self.__profileIndex |
|
1369 | Affected : self.__profileIndex | |
1370 | ''' |
|
1370 | ''' | |
1371 | #----------------- Remove DC----------------------------------- |
|
1371 | #----------------- Remove DC----------------------------------- | |
1372 | if self.removeDC==True: |
|
1372 | if self.removeDC==True: | |
1373 | mean = numpy.mean(self.__buffer,1) |
|
1373 | mean = numpy.mean(self.__buffer,1) | |
1374 | tmp = mean.reshape(self.__nch,1,self.__nHeis) |
|
1374 | tmp = mean.reshape(self.__nch,1,self.__nHeis) | |
1375 | dc= numpy.tile(tmp,[1,self.__nProf,1]) |
|
1375 | dc= numpy.tile(tmp,[1,self.__nProf,1]) | |
1376 | self.__buffer = self.__buffer - dc |
|
1376 | self.__buffer = self.__buffer - dc | |
1377 | #------------------Calculo de Potencia ------------------------ |
|
1377 | #------------------Calculo de Potencia ------------------------ | |
1378 | pair0 = self.__buffer*numpy.conj(self.__buffer) |
|
1378 | pair0 = self.__buffer*numpy.conj(self.__buffer) | |
1379 | pair0 = pair0.real |
|
1379 | pair0 = pair0.real | |
1380 | lag_0 = numpy.sum(pair0,1) |
|
1380 | lag_0 = numpy.sum(pair0,1) | |
1381 | #------------------Calculo de Ruido x canal-------------------- |
|
1381 | #------------------Calculo de Ruido x canal-------------------- | |
1382 | self.noise = numpy.zeros(self.__nch) |
|
1382 | self.noise = numpy.zeros(self.__nch) | |
1383 | for i in range(self.__nch): |
|
1383 | for i in range(self.__nch): | |
1384 | daux = numpy.sort(pair0[i,:,:],axis= None) |
|
1384 | daux = numpy.sort(pair0[i,:,:],axis= None) | |
1385 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) |
|
1385 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) | |
1386 |
|
1386 | |||
1387 | self.noise = self.noise.reshape(self.__nch,1) |
|
1387 | self.noise = self.noise.reshape(self.__nch,1) | |
1388 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) |
|
1388 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) | |
1389 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) |
|
1389 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) | |
1390 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) |
|
1390 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) | |
1391 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- |
|
1391 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- | |
1392 | #------------------ P= S+N ,P=lag_0/N --------------------------------- |
|
1392 | #------------------ P= S+N ,P=lag_0/N --------------------------------- | |
1393 | #-------------------- Power -------------------------------------------------- |
|
1393 | #-------------------- Power -------------------------------------------------- | |
1394 | data_power = lag_0/(self.n*self.nCohInt) |
|
1394 | data_power = lag_0/(self.n*self.nCohInt) | |
1395 | #------------------ Senal --------------------------------------------------- |
|
1395 | #------------------ Senal --------------------------------------------------- | |
1396 | data_intensity = pair0 - noise_buffer |
|
1396 | data_intensity = pair0 - noise_buffer | |
1397 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) |
|
1397 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) | |
1398 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) |
|
1398 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) | |
1399 | for i in range(self.__nch): |
|
1399 | for i in range(self.__nch): | |
1400 | for j in range(self.__nHeis): |
|
1400 | for j in range(self.__nHeis): | |
1401 | if data_intensity[i][j] < 0: |
|
1401 | if data_intensity[i][j] < 0: | |
1402 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) |
|
1402 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) | |
1403 |
|
1403 | |||
1404 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- |
|
1404 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- | |
1405 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) |
|
1405 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) | |
1406 | lag_1 = numpy.sum(pair1,1) |
|
1406 | lag_1 = numpy.sum(pair1,1) | |
1407 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) |
|
1407 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) | |
1408 | data_velocity = (self.lambda_/2.0)*data_freq |
|
1408 | data_velocity = (self.lambda_/2.0)*data_freq | |
1409 |
|
1409 | |||
1410 | #---------------- Potencia promedio estimada de la Senal----------- |
|
1410 | #---------------- Potencia promedio estimada de la Senal----------- | |
1411 | lag_0 = lag_0/self.n |
|
1411 | lag_0 = lag_0/self.n | |
1412 | S = lag_0-self.noise |
|
1412 | S = lag_0-self.noise | |
1413 |
|
1413 | |||
1414 | #---------------- Frecuencia Doppler promedio --------------------- |
|
1414 | #---------------- Frecuencia Doppler promedio --------------------- | |
1415 | lag_1 = lag_1/(self.n-1) |
|
1415 | lag_1 = lag_1/(self.n-1) | |
1416 | R1 = numpy.abs(lag_1) |
|
1416 | R1 = numpy.abs(lag_1) | |
1417 |
|
1417 | |||
1418 | #---------------- Calculo del SNR---------------------------------- |
|
1418 | #---------------- Calculo del SNR---------------------------------- | |
1419 | data_snrPP = S/self.noise |
|
1419 | data_snrPP = S/self.noise | |
1420 | for i in range(self.__nch): |
|
1420 | for i in range(self.__nch): | |
1421 | for j in range(self.__nHeis): |
|
1421 | for j in range(self.__nHeis): | |
1422 | if data_snrPP[i][j] < 1.e-20: |
|
1422 | if data_snrPP[i][j] < 1.e-20: | |
1423 | data_snrPP[i][j] = 1.e-20 |
|
1423 | data_snrPP[i][j] = 1.e-20 | |
1424 |
|
1424 | |||
1425 | #----------------- Calculo del ancho espectral ---------------------- |
|
1425 | #----------------- Calculo del ancho espectral ---------------------- | |
1426 | L = S/R1 |
|
1426 | L = S/R1 | |
1427 | L = numpy.where(L<0,1,L) |
|
1427 | L = numpy.where(L<0,1,L) | |
1428 | L = numpy.log(L) |
|
1428 | L = numpy.log(L) | |
1429 | tmp = numpy.sqrt(numpy.absolute(L)) |
|
1429 | tmp = numpy.sqrt(numpy.absolute(L)) | |
1430 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) |
|
1430 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) | |
1431 | n = self.__profIndex |
|
1431 | n = self.__profIndex | |
1432 |
|
1432 | |||
1433 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') |
|
1433 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') | |
1434 | self.__profIndex = 0 |
|
1434 | self.__profIndex = 0 | |
1435 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n |
|
1435 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n | |
1436 |
|
1436 | |||
1437 |
|
1437 | |||
1438 | def pulsePairbyProfiles(self,dataOut): |
|
1438 | def pulsePairbyProfiles(self,dataOut): | |
1439 |
|
1439 | |||
1440 | self.__dataReady = False |
|
1440 | self.__dataReady = False | |
1441 | data_power = None |
|
1441 | data_power = None | |
1442 | data_intensity = None |
|
1442 | data_intensity = None | |
1443 | data_velocity = None |
|
1443 | data_velocity = None | |
1444 | data_specwidth = None |
|
1444 | data_specwidth = None | |
1445 | data_snrPP = None |
|
1445 | data_snrPP = None | |
1446 | self.putData(data=dataOut.data) |
|
1446 | self.putData(data=dataOut.data) | |
1447 | if self.__profIndex == self.n: |
|
1447 | if self.__profIndex == self.n: | |
1448 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) |
|
1448 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut) | |
1449 | self.__dataReady = True |
|
1449 | self.__dataReady = True | |
1450 |
|
1450 | |||
1451 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth |
|
1451 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth | |
1452 |
|
1452 | |||
1453 |
|
1453 | |||
1454 | def pulsePairOp(self, dataOut, datatime= None): |
|
1454 | def pulsePairOp(self, dataOut, datatime= None): | |
1455 |
|
1455 | |||
1456 | if self.__initime == None: |
|
1456 | if self.__initime == None: | |
1457 | self.__initime = datatime |
|
1457 | self.__initime = datatime | |
1458 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) |
|
1458 | data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut) | |
1459 | self.__lastdatatime = datatime |
|
1459 | self.__lastdatatime = datatime | |
1460 |
|
1460 | |||
1461 | if data_power is None: |
|
1461 | if data_power is None: | |
1462 | return None, None, None,None,None,None |
|
1462 | return None, None, None,None,None,None | |
1463 |
|
1463 | |||
1464 | avgdatatime = self.__initime |
|
1464 | avgdatatime = self.__initime | |
1465 | deltatime = datatime - self.__lastdatatime |
|
1465 | deltatime = datatime - self.__lastdatatime | |
1466 | self.__initime = datatime |
|
1466 | self.__initime = datatime | |
1467 |
|
1467 | |||
1468 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime |
|
1468 | return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime | |
1469 |
|
1469 | |||
1470 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): |
|
1470 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): | |
1471 |
|
1471 | |||
1472 | if not self.isConfig: |
|
1472 | if not self.isConfig: | |
1473 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) |
|
1473 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) | |
1474 | self.isConfig = True |
|
1474 | self.isConfig = True | |
1475 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) |
|
1475 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) | |
1476 | dataOut.flagNoData = True |
|
1476 | dataOut.flagNoData = True | |
1477 |
|
1477 | |||
1478 | if self.__dataReady: |
|
1478 | if self.__dataReady: | |
1479 | dataOut.nCohInt *= self.n |
|
1479 | dataOut.nCohInt *= self.n | |
1480 | dataOut.dataPP_POW = data_intensity # S |
|
1480 | dataOut.dataPP_POW = data_intensity # S | |
|
1481 | print("help",data_power) | |||
1481 | dataOut.dataPP_POWER = data_power # P |
|
1482 | dataOut.dataPP_POWER = data_power # P | |
1482 | dataOut.dataPP_DOP = data_velocity |
|
1483 | dataOut.dataPP_DOP = data_velocity | |
1483 | dataOut.dataPP_SNR = data_snrPP |
|
1484 | dataOut.dataPP_SNR = data_snrPP | |
1484 | dataOut.dataPP_WIDTH = data_specwidth |
|
1485 | dataOut.dataPP_WIDTH = data_specwidth | |
1485 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. |
|
1486 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. | |
1486 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1487 | dataOut.nProfiles = int(dataOut.nProfiles/n) | |
1487 | dataOut.utctime = avgdatatime |
|
1488 | dataOut.utctime = avgdatatime | |
1488 | dataOut.flagNoData = False |
|
1489 | dataOut.flagNoData = False | |
1489 | return dataOut |
|
1490 | return dataOut | |
1490 |
|
1491 | |||
1491 |
|
1492 | |||
1492 |
|
1493 | |||
1493 | # import collections |
|
1494 | # import collections | |
1494 | # from scipy.stats import mode |
|
1495 | # from scipy.stats import mode | |
1495 | # |
|
1496 | # | |
1496 | # class Synchronize(Operation): |
|
1497 | # class Synchronize(Operation): | |
1497 | # |
|
1498 | # | |
1498 | # isConfig = False |
|
1499 | # isConfig = False | |
1499 | # __profIndex = 0 |
|
1500 | # __profIndex = 0 | |
1500 | # |
|
1501 | # | |
1501 | # def __init__(self, **kwargs): |
|
1502 | # def __init__(self, **kwargs): | |
1502 | # |
|
1503 | # | |
1503 | # Operation.__init__(self, **kwargs) |
|
1504 | # Operation.__init__(self, **kwargs) | |
1504 | # # self.isConfig = False |
|
1505 | # # self.isConfig = False | |
1505 | # self.__powBuffer = None |
|
1506 | # self.__powBuffer = None | |
1506 | # self.__startIndex = 0 |
|
1507 | # self.__startIndex = 0 | |
1507 | # self.__pulseFound = False |
|
1508 | # self.__pulseFound = False | |
1508 | # |
|
1509 | # | |
1509 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1510 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): | |
1510 | # |
|
1511 | # | |
1511 | # #Read data |
|
1512 | # #Read data | |
1512 | # |
|
1513 | # | |
1513 | # powerdB = dataOut.getPower(channel = channel) |
|
1514 | # powerdB = dataOut.getPower(channel = channel) | |
1514 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1515 | # noisedB = dataOut.getNoise(channel = channel)[0] | |
1515 | # |
|
1516 | # | |
1516 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1517 | # self.__powBuffer.extend(powerdB.flatten()) | |
1517 | # |
|
1518 | # | |
1518 | # dataArray = numpy.array(self.__powBuffer) |
|
1519 | # dataArray = numpy.array(self.__powBuffer) | |
1519 | # |
|
1520 | # | |
1520 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1521 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") | |
1521 | # |
|
1522 | # | |
1522 | # maxValue = numpy.nanmax(filteredPower) |
|
1523 | # maxValue = numpy.nanmax(filteredPower) | |
1523 | # |
|
1524 | # | |
1524 | # if maxValue < noisedB + 10: |
|
1525 | # if maxValue < noisedB + 10: | |
1525 | # #No se encuentra ningun pulso de transmision |
|
1526 | # #No se encuentra ningun pulso de transmision | |
1526 | # return None |
|
1527 | # return None | |
1527 | # |
|
1528 | # | |
1528 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1529 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] | |
1529 | # |
|
1530 | # | |
1530 | # if len(maxValuesIndex) < 2: |
|
1531 | # if len(maxValuesIndex) < 2: | |
1531 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1532 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX | |
1532 | # return None |
|
1533 | # return None | |
1533 | # |
|
1534 | # | |
1534 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1535 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples | |
1535 | # |
|
1536 | # | |
1536 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1537 | # #Seleccionar solo valores con un espaciamiento de nSamples | |
1537 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1538 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) | |
1538 | # |
|
1539 | # | |
1539 | # if len(pulseIndex) < 2: |
|
1540 | # if len(pulseIndex) < 2: | |
1540 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1541 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
1541 | # return None |
|
1542 | # return None | |
1542 | # |
|
1543 | # | |
1543 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1544 | # spacing = pulseIndex[1:] - pulseIndex[:-1] | |
1544 | # |
|
1545 | # | |
1545 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1546 | # #remover senales que se distancien menos de 10 unidades o muestras | |
1546 | # #(No deberian existir IPP menor a 10 unidades) |
|
1547 | # #(No deberian existir IPP menor a 10 unidades) | |
1547 | # |
|
1548 | # | |
1548 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1549 | # realIndex = numpy.where(spacing > 10 )[0] | |
1549 | # |
|
1550 | # | |
1550 | # if len(realIndex) < 2: |
|
1551 | # if len(realIndex) < 2: | |
1551 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1552 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
1552 | # return None |
|
1553 | # return None | |
1553 | # |
|
1554 | # | |
1554 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1555 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) | |
1555 | # realPulseIndex = pulseIndex[realIndex] |
|
1556 | # realPulseIndex = pulseIndex[realIndex] | |
1556 | # |
|
1557 | # | |
1557 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1558 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] | |
1558 | # |
|
1559 | # | |
1559 | # print "IPP = %d samples" %period |
|
1560 | # print "IPP = %d samples" %period | |
1560 | # |
|
1561 | # | |
1561 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1562 | # self.__newNSamples = dataOut.nHeights #int(period) | |
1562 | # self.__startIndex = int(realPulseIndex[0]) |
|
1563 | # self.__startIndex = int(realPulseIndex[0]) | |
1563 | # |
|
1564 | # | |
1564 | # return 1 |
|
1565 | # return 1 | |
1565 | # |
|
1566 | # | |
1566 | # |
|
1567 | # | |
1567 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1568 | # def setup(self, nSamples, nChannels, buffer_size = 4): | |
1568 | # |
|
1569 | # | |
1569 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1570 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), | |
1570 | # maxlen = buffer_size*nSamples) |
|
1571 | # maxlen = buffer_size*nSamples) | |
1571 | # |
|
1572 | # | |
1572 | # bufferList = [] |
|
1573 | # bufferList = [] | |
1573 | # |
|
1574 | # | |
1574 | # for i in range(nChannels): |
|
1575 | # for i in range(nChannels): | |
1575 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1576 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, | |
1576 | # maxlen = buffer_size*nSamples) |
|
1577 | # maxlen = buffer_size*nSamples) | |
1577 | # |
|
1578 | # | |
1578 | # bufferList.append(bufferByChannel) |
|
1579 | # bufferList.append(bufferByChannel) | |
1579 | # |
|
1580 | # | |
1580 | # self.__nSamples = nSamples |
|
1581 | # self.__nSamples = nSamples | |
1581 | # self.__nChannels = nChannels |
|
1582 | # self.__nChannels = nChannels | |
1582 | # self.__bufferList = bufferList |
|
1583 | # self.__bufferList = bufferList | |
1583 | # |
|
1584 | # | |
1584 | # def run(self, dataOut, channel = 0): |
|
1585 | # def run(self, dataOut, channel = 0): | |
1585 | # |
|
1586 | # | |
1586 | # if not self.isConfig: |
|
1587 | # if not self.isConfig: | |
1587 | # nSamples = dataOut.nHeights |
|
1588 | # nSamples = dataOut.nHeights | |
1588 | # nChannels = dataOut.nChannels |
|
1589 | # nChannels = dataOut.nChannels | |
1589 | # self.setup(nSamples, nChannels) |
|
1590 | # self.setup(nSamples, nChannels) | |
1590 | # self.isConfig = True |
|
1591 | # self.isConfig = True | |
1591 | # |
|
1592 | # | |
1592 | # #Append new data to internal buffer |
|
1593 | # #Append new data to internal buffer | |
1593 | # for thisChannel in range(self.__nChannels): |
|
1594 | # for thisChannel in range(self.__nChannels): | |
1594 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1595 | # bufferByChannel = self.__bufferList[thisChannel] | |
1595 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1596 | # bufferByChannel.extend(dataOut.data[thisChannel]) | |
1596 | # |
|
1597 | # | |
1597 | # if self.__pulseFound: |
|
1598 | # if self.__pulseFound: | |
1598 | # self.__startIndex -= self.__nSamples |
|
1599 | # self.__startIndex -= self.__nSamples | |
1599 | # |
|
1600 | # | |
1600 | # #Finding Tx Pulse |
|
1601 | # #Finding Tx Pulse | |
1601 | # if not self.__pulseFound: |
|
1602 | # if not self.__pulseFound: | |
1602 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1603 | # indexFound = self.__findTxPulse(dataOut, channel) | |
1603 | # |
|
1604 | # | |
1604 | # if indexFound == None: |
|
1605 | # if indexFound == None: | |
1605 | # dataOut.flagNoData = True |
|
1606 | # dataOut.flagNoData = True | |
1606 | # return |
|
1607 | # return | |
1607 | # |
|
1608 | # | |
1608 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1609 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) | |
1609 | # self.__pulseFound = True |
|
1610 | # self.__pulseFound = True | |
1610 | # self.__startIndex = indexFound |
|
1611 | # self.__startIndex = indexFound | |
1611 | # |
|
1612 | # | |
1612 | # #If pulse was found ... |
|
1613 | # #If pulse was found ... | |
1613 | # for thisChannel in range(self.__nChannels): |
|
1614 | # for thisChannel in range(self.__nChannels): | |
1614 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1615 | # bufferByChannel = self.__bufferList[thisChannel] | |
1615 | # #print self.__startIndex |
|
1616 | # #print self.__startIndex | |
1616 | # x = numpy.array(bufferByChannel) |
|
1617 | # x = numpy.array(bufferByChannel) | |
1617 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1618 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] | |
1618 | # |
|
1619 | # | |
1619 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1620 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1620 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1621 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight | |
1621 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1622 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 | |
1622 | # |
|
1623 | # | |
1623 | # dataOut.data = self.__arrayBuffer |
|
1624 | # dataOut.data = self.__arrayBuffer | |
1624 | # |
|
1625 | # | |
1625 | # self.__startIndex += self.__newNSamples |
|
1626 | # self.__startIndex += self.__newNSamples | |
1626 | # |
|
1627 | # | |
1627 | # return |
|
1628 | # return |
@@ -1,157 +1,159 | |||||
1 | #!python |
|
1 | #!python | |
2 | ''' |
|
2 | ''' | |
3 | ''' |
|
3 | ''' | |
4 |
|
4 | |||
5 | import os, sys |
|
5 | import os, sys | |
6 | import datetime |
|
6 | import datetime | |
7 | import time |
|
7 | import time | |
8 |
|
8 | |||
9 | #path = os.path.dirname(os.getcwd()) |
|
9 | #path = os.path.dirname(os.getcwd()) | |
10 | #path = os.path.dirname(path) |
|
10 | #path = os.path.dirname(path) | |
11 | #sys.path.insert(0, path) |
|
11 | #sys.path.insert(0, path) | |
12 |
|
12 | |||
13 | from schainpy.controller import Project |
|
13 | from schainpy.controller import Project | |
14 |
|
14 | |||
15 | desc = "USRP_test" |
|
15 | desc = "USRP_test" | |
16 | filename = "USRP_processing.xml" |
|
16 | filename = "USRP_processing.xml" | |
17 | controllerObj = Project() |
|
17 | controllerObj = Project() | |
18 | controllerObj.setup(id = '191', name='Test_USRP', description=desc) |
|
18 | controllerObj.setup(id = '191', name='Test_USRP', description=desc) | |
19 |
|
19 | |||
20 | ############## USED TO PLOT IQ VOLTAGE, POWER AND SPECTRA ############# |
|
20 | ############## USED TO PLOT IQ VOLTAGE, POWER AND SPECTRA ############# | |
21 |
|
21 | |||
22 | ####################################################################### |
|
22 | ####################################################################### | |
23 | ######PATH DE LECTURA, ESCRITURA, GRAFICOS Y ENVIO WEB################# |
|
23 | ######PATH DE LECTURA, ESCRITURA, GRAFICOS Y ENVIO WEB################# | |
24 | ####################################################################### |
|
24 | ####################################################################### | |
25 | #path = '/media/data/data/vientos/57.2063km/echoes/NCO_Woodman' |
|
25 | #path = '/media/data/data/vientos/57.2063km/echoes/NCO_Woodman' | |
26 | #path = '/DATA_RM/TEST_INTEGRACION' |
|
26 | #path = '/DATA_RM/TEST_INTEGRACION' | |
27 | #path = '/DATA_RM/TEST_ONLINE' |
|
27 | #path = '/DATA_RM/TEST_ONLINE' | |
28 | #path_pp = '/DATA_RM/TEST_HDF5' |
|
28 | #path_pp = '/DATA_RM/TEST_HDF5' | |
29 |
|
29 | |||
30 | #figpath = '/home/soporte/Pictures/TEST_INTEGRACION_IMG' |
|
30 | #figpath = '/home/soporte/Pictures/TEST_INTEGRACION_IMG' | |
31 | ###path = '/DATA_RM/TEST_INTEGRACION/ADQ_OFFLINE/' |
|
31 | ###path = '/DATA_RM/TEST_INTEGRACION/ADQ_OFFLINE/' | |
32 | ###path_pp = '/DATA_RM/TEST_HDF5_SPEC' |
|
32 | ###path_pp = '/DATA_RM/TEST_HDF5_SPEC' | |
33 |
|
33 | |||
34 | #path = '/DATA_RM/USRP_22' |
|
34 | #path = '/DATA_RM/USRP_22' | |
35 | path = '/DATA_RM/23/6v' |
|
35 | ###path = '/DATA_RM/23/6v' | |
|
36 | path = '/DATA_RM/TEST_19OCTUBRE/10MHZ' | |||
36 | #path_pp = '/DATA_RM/TEST_HDF5' |
|
37 | #path_pp = '/DATA_RM/TEST_HDF5' | |
|
38 | path_pp = '/DATA_RM/TEST_HDF5_19OCT' | |||
37 | # UTIMO TEST 22 DE SEPTIEMBRE |
|
39 | # UTIMO TEST 22 DE SEPTIEMBRE | |
38 | #path_pp = '/DATA_RM/TEST_HDF5_SPEC_22' |
|
40 | #path_pp = '/DATA_RM/TEST_HDF5_SPEC_22' | |
39 | #path_pp = '/DATA_RM/TEST_HDF5_SPEC_3v' |
|
41 | #path_pp = '/DATA_RM/TEST_HDF5_SPEC_3v' | |
40 | path_pp = '/DATA_RM/TEST_HDF5_SPEC_23/6v' |
|
42 | ###path_pp = '/DATA_RM/TEST_HDF5_SPEC_23/6v' | |
41 |
|
43 | |||
42 |
|
44 | |||
43 | #remotefolder = "/home/wmaster/graficos" |
|
45 | #remotefolder = "/home/wmaster/graficos" | |
44 | ####################################################################### |
|
46 | ####################################################################### | |
45 | ################# RANGO DE PLOTEO###################################### |
|
47 | ################# RANGO DE PLOTEO###################################### | |
46 | ####################################################################### |
|
48 | ####################################################################### | |
47 | dBmin = '-5' |
|
49 | dBmin = '-5' | |
48 | dBmax = '20' |
|
50 | dBmax = '20' | |
49 | xmin = '0' |
|
51 | xmin = '0' | |
50 | xmax ='24' |
|
52 | xmax ='24' | |
51 | ymin = '0' |
|
53 | ymin = '0' | |
52 | ymax = '600' |
|
54 | ymax = '600' | |
53 | ####################################################################### |
|
55 | ####################################################################### | |
54 | ########################FECHA########################################## |
|
56 | ########################FECHA########################################## | |
55 | ####################################################################### |
|
57 | ####################################################################### | |
56 | str = datetime.date.today() |
|
58 | str = datetime.date.today() | |
57 | today = str.strftime("%Y/%m/%d") |
|
59 | today = str.strftime("%Y/%m/%d") | |
58 | str2 = str - datetime.timedelta(days=1) |
|
60 | str2 = str - datetime.timedelta(days=1) | |
59 | yesterday = str2.strftime("%Y/%m/%d") |
|
61 | yesterday = str2.strftime("%Y/%m/%d") | |
60 | ####################################################################### |
|
62 | ####################################################################### | |
61 | ######################## UNIDAD DE LECTURA############################# |
|
63 | ######################## UNIDAD DE LECTURA############################# | |
62 | ####################################################################### |
|
64 | ####################################################################### | |
63 | readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader', |
|
65 | readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader', | |
64 | path=path, |
|
66 | path=path, | |
65 | startDate="2021/01/01",#today, |
|
67 | startDate="2021/01/01",#today, | |
66 | endDate="2021/12/30",#today, |
|
68 | endDate="2021/12/30",#today, | |
67 | startTime='00:00:00', |
|
69 | startTime='00:00:00', | |
68 | endTime='23:59:59', |
|
70 | endTime='23:59:59', | |
69 | delay=0, |
|
71 | delay=0, | |
70 | #set=0, |
|
72 | #set=0, | |
71 | online=0, |
|
73 | online=0, | |
72 | walk=1, |
|
74 | walk=1, | |
73 | ippKm = 60) |
|
75 | ippKm = 60) | |
74 |
|
76 | |||
75 | opObj11 = readUnitConfObj.addOperation(name='printInfo') |
|
77 | opObj11 = readUnitConfObj.addOperation(name='printInfo') | |
76 | #opObj11 = readUnitConfObj.addOperation(name='printNumberOfBlock') |
|
78 | #opObj11 = readUnitConfObj.addOperation(name='printNumberOfBlock') | |
77 | ####################################################################### |
|
79 | ####################################################################### | |
78 | ################ OPERACIONES DOMINIO DEL TIEMPO######################## |
|
80 | ################ OPERACIONES DOMINIO DEL TIEMPO######################## | |
79 | ####################################################################### |
|
81 | ####################################################################### | |
80 |
|
82 | |||
81 |
|
83 | |||
82 | V=6 |
|
84 | V=10 | |
83 | IPP=400*1e-6 |
|
85 | IPP=400*1e-6 | |
84 | n= int(1/(V*IPP)) |
|
86 | n= int(1/(V*IPP)) | |
85 | print("n numero de Perfiles a procesar con nFFTPoints ", n) |
|
87 | print("n numero de Perfiles a procesar con nFFTPoints ", n) | |
86 |
|
88 | |||
87 | procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) |
|
89 | procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) | |
88 |
|
90 | |||
89 | procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) |
|
91 | procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) | |
90 | procUnitConfObjB.addParameter(name='nFFTPoints', value=n, format='int') |
|
92 | procUnitConfObjB.addParameter(name='nFFTPoints', value=n, format='int') | |
91 | procUnitConfObjB.addParameter(name='nProfiles' , value=n, format='int') |
|
93 | procUnitConfObjB.addParameter(name='nProfiles' , value=n, format='int') | |
92 |
|
94 | |||
93 |
|
95 | |||
94 |
|
96 | |||
95 | # |
|
97 | # | |
96 | # codigo64='1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,0,'+\ |
|
98 | # codigo64='1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,0,'+\ | |
97 | # '1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1' |
|
99 | # '1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1' | |
98 |
|
100 | |||
99 | #opObj11 = procUnitConfObjA.addOperation(name='setRadarFrequency') |
|
101 | #opObj11 = procUnitConfObjA.addOperation(name='setRadarFrequency') | |
100 | #opObj11.addParameter(name='frequency', value='70312500') |
|
102 | #opObj11.addParameter(name='frequency', value='70312500') | |
101 | #opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other') |
|
103 | #opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other') | |
102 | #opObj11.addParameter(name='n', value='625', format='int')#10 |
|
104 | #opObj11.addParameter(name='n', value='625', format='int')#10 | |
103 | #opObj11.addParameter(name='removeDC', value=1, format='int') |
|
105 | #opObj11.addParameter(name='removeDC', value=1, format='int') | |
104 |
|
106 | |||
105 | # Ploteo TEST |
|
107 | # Ploteo TEST | |
106 | ''' |
|
108 | ''' | |
107 | opObj11 = procUnitConfObjA.addOperation(name='PulsepairPowerPlot', optype='other') |
|
109 | opObj11 = procUnitConfObjA.addOperation(name='PulsepairPowerPlot', optype='other') | |
108 | opObj11 = procUnitConfObjA.addOperation(name='PulsepairSignalPlot', optype='other') |
|
110 | opObj11 = procUnitConfObjA.addOperation(name='PulsepairSignalPlot', optype='other') | |
109 | opObj11 = procUnitConfObjA.addOperation(name='PulsepairVelocityPlot', optype='other') |
|
111 | opObj11 = procUnitConfObjA.addOperation(name='PulsepairVelocityPlot', optype='other') | |
110 | #opObj11.addParameter(name='xmax', value=8) |
|
112 | #opObj11.addParameter(name='xmax', value=8) | |
111 | opObj11 = procUnitConfObjA.addOperation(name='PulsepairSpecwidthPlot', optype='other') |
|
113 | opObj11 = procUnitConfObjA.addOperation(name='PulsepairSpecwidthPlot', optype='other') | |
112 | ''' |
|
114 | ''' | |
113 | # OJO SCOPE |
|
115 | # OJO SCOPE | |
114 | #opObj10 = procUnitConfObjA.addOperation(name='ScopePlot', optype='external') |
|
116 | #opObj10 = procUnitConfObjA.addOperation(name='ScopePlot', optype='external') | |
115 | #opObj10.addParameter(name='buffer_sizeid', value='10', format='int') |
|
117 | #opObj10.addParameter(name='buffer_sizeid', value='10', format='int') | |
116 | ##opObj10.addParameter(name='xmin', value='0', format='int') |
|
118 | ##opObj10.addParameter(name='xmin', value='0', format='int') | |
117 | ##opObj10.addParameter(name='xmax', value='50', format='int') |
|
119 | ##opObj10.addParameter(name='xmax', value='50', format='int') | |
118 | #opObj10.addParameter(name='type', value='iq') |
|
120 | #opObj10.addParameter(name='type', value='iq') | |
119 | ##opObj10.addParameter(name='ymin', value='-5000', format='int') |
|
121 | ##opObj10.addParameter(name='ymin', value='-5000', format='int') | |
120 | ##opObj10.addParameter(name='ymax', value='8500', format='int') |
|
122 | ##opObj10.addParameter(name='ymax', value='8500', format='int') | |
121 | #opObj11.addParameter(name='save', value=figpath, format='str') |
|
123 | #opObj11.addParameter(name='save', value=figpath, format='str') | |
122 | #opObj11.addParameter(name='save_period', value=10, format='int') |
|
124 | #opObj11.addParameter(name='save_period', value=10, format='int') | |
123 |
|
125 | |||
124 | #opObj10 = procUnitConfObjA.addOperation(name='setH0') |
|
126 | #opObj10 = procUnitConfObjA.addOperation(name='setH0') | |
125 | #opObj10.addParameter(name='h0', value='-5000', format='float') |
|
127 | #opObj10.addParameter(name='h0', value='-5000', format='float') | |
126 |
|
128 | |||
127 | #opObj11 = procUnitConfObjA.addOperation(name='filterByHeights') |
|
129 | #opObj11 = procUnitConfObjA.addOperation(name='filterByHeights') | |
128 | #opObj11.addParameter(name='window', value='1', format='int') |
|
130 | #opObj11.addParameter(name='window', value='1', format='int') | |
129 |
|
131 | |||
130 | #codigo='1,1,-1,1,1,-1,1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1' |
|
132 | #codigo='1,1,-1,1,1,-1,1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1' | |
131 | #opObj11 = procUnitConfObjSousy.addOperation(name='Decoder', optype='other') |
|
133 | #opObj11 = procUnitConfObjSousy.addOperation(name='Decoder', optype='other') | |
132 | #opObj11.addParameter(name='code', value=codigo, formatyesterday='floatlist') |
|
134 | #opObj11.addParameter(name='code', value=codigo, formatyesterday='floatlist') | |
133 | #opObj11.addParameter(name='nCode', value='1', format='int') |
|
135 | #opObj11.addParameter(name='nCode', value='1', format='int') | |
134 | #opObj11.addParameter(name='nBaud', value='28', format='int') |
|
136 | #opObj11.addParameter(name='nBaud', value='28', format='int') | |
135 |
|
137 | |||
136 | #opObj11 = procUnitConfObjA.addOperation(name='CohInt', optype='other') |
|
138 | #opObj11 = procUnitConfObjA.addOperation(name='CohInt', optype='other') | |
137 | #opObj11.addParameter(name='n', value='100', format='int') |
|
139 | #opObj11.addParameter(name='n', value='100', format='int') | |
138 |
|
140 | |||
139 | ####################################################################### |
|
141 | ####################################################################### | |
140 | ########## OPERACIONES ParametersProc######################## |
|
142 | ########## OPERACIONES ParametersProc######################## | |
141 | ####################################################################### |
|
143 | ####################################################################### | |
142 |
|
144 | |||
143 | procUnitConfObjC= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjB.getId()) |
|
145 | procUnitConfObjC= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjB.getId()) | |
144 |
|
146 | |||
145 | procUnitConfObjC.addOperation(name='SpectralMoments') |
|
147 | procUnitConfObjC.addOperation(name='SpectralMoments') | |
146 |
|
148 | |||
147 |
|
149 | |||
148 | opObj10 = procUnitConfObjC.addOperation(name='HDFWriter') |
|
150 | opObj10 = procUnitConfObjC.addOperation(name='HDFWriter') | |
149 | opObj10.addParameter(name='path',value=path_pp) |
|
151 | opObj10.addParameter(name='path',value=path_pp) | |
150 | #opObj10.addParameter(name='mode',value=0) |
|
152 | #opObj10.addParameter(name='mode',value=0) | |
151 | opObj10.addParameter(name='blocksPerFile',value='100',format='int') |
|
153 | opObj10.addParameter(name='blocksPerFile',value='100',format='int') | |
152 | #opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex |
|
154 | #opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex | |
153 | opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex |
|
155 | opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex | |
154 |
|
156 | |||
155 | opObj10.addParameter(name='dataList',value='data_pow,data_dop,utctime',format='list')#,format='list' |
|
157 | opObj10.addParameter(name='dataList',value='data_pow,data_dop,utctime',format='list')#,format='list' | |
156 |
|
158 | |||
157 | controllerObj.start() |
|
159 | controllerObj.start() |
@@ -1,213 +1,216 | |||||
1 | # Ing. AVP |
|
1 | # Ing. AVP | |
2 | # 06/10/2021 |
|
2 | # 06/10/2021 | |
3 | # ARCHIVO DE LECTURA |
|
3 | # ARCHIVO DE LECTURA | |
4 | import os, sys |
|
4 | import os, sys | |
5 | import datetime |
|
5 | import datetime | |
6 | import time |
|
6 | import time | |
7 | from schainpy.controller import Project |
|
7 | from schainpy.controller import Project | |
8 | #### NOTA########################################### |
|
8 | #### NOTA########################################### | |
9 | # INPUT : |
|
9 | # INPUT : | |
10 | # VELOCIDAD PARAMETRO : V = 2Β°/seg |
|
10 | # VELOCIDAD PARAMETRO : V = 2Β°/seg | |
11 | # MODO PULSE PAIR O MOMENTOS: 0 : Pulse Pair ,1 : Momentos |
|
11 | # MODO PULSE PAIR O MOMENTOS: 0 : Pulse Pair ,1 : Momentos | |
12 | ###################################################### |
|
12 | ###################################################### | |
13 | ##### PROCESAMIENTO ################################## |
|
13 | ##### PROCESAMIENTO ################################## | |
14 | ##### OJO TENER EN CUENTA EL n= para el Pulse Pair ## |
|
14 | ##### OJO TENER EN CUENTA EL n= para el Pulse Pair ## | |
15 | ##### O EL n= nFFTPoints ### |
|
15 | ##### O EL n= nFFTPoints ### | |
16 | ###################################################### |
|
16 | ###################################################### | |
17 | ######## BUSCAMOS EL numero de IPP equivalente 1Β°##### |
|
17 | ######## BUSCAMOS EL numero de IPP equivalente 1Β°##### | |
18 | ######## Sea V la velocidad del Pedestal en Β°/seg##### |
|
18 | ######## Sea V la velocidad del Pedestal en Β°/seg##### | |
19 | ######## 1Β° sera Recorrido en un tiempo de 1/V ###### |
|
19 | ######## 1Β° sera Recorrido en un tiempo de 1/V ###### | |
20 | ######## IPP del Radar 400 useg --> 60 Km ############ |
|
20 | ######## IPP del Radar 400 useg --> 60 Km ############ | |
21 | ######## n = 1/(V(Β°/seg)*IPP(Km)) , NUMERO DE IPP ## |
|
21 | ######## n = 1/(V(Β°/seg)*IPP(Km)) , NUMERO DE IPP ## | |
22 | ######## n = 1/(V*IPP) ############################# |
|
22 | ######## n = 1/(V*IPP) ############################# | |
23 | ######## VELOCIDAD DEL PEDESTAL ###################### |
|
23 | ######## VELOCIDAD DEL PEDESTAL ###################### | |
24 | print("SETUP- RADAR METEOROLOGICO") |
|
24 | print("SETUP- RADAR METEOROLOGICO") | |
25 | V = 10 |
|
25 | V = 10 | |
26 | mode = 1 |
|
26 | mode = 1 | |
27 | #path = '/DATA_RM/23/6v' |
|
27 | #path = '/DATA_RM/23/6v' | |
28 | path = '/DATA_RM/TEST_INTEGRACION_2M' |
|
28 | ####path = '/DATA_RM/TEST_INTEGRACION_2M' | |
29 | path_ped='/DATA_RM/TEST_PEDESTAL/P20211012-082745' |
|
29 | #path = '/DATA_RM/TEST_19OCTUBRE/10MHZ' | |
|
30 | path = '/DATA_RM/WR_20_OCT' | |||
|
31 | #### path_ped='/DATA_RM/TEST_PEDESTAL/P20211012-082745' | |||
|
32 | #### path_ped='/DATA_RM/TEST_PEDESTAL/P20211019-192244' | |||
30 | figpath_pp = "/home/soporte/Pictures/TEST_PP" |
|
33 | figpath_pp = "/home/soporte/Pictures/TEST_PP" | |
31 |
figpath_ |
|
34 | figpath_spec = "/home/soporte/Pictures/TEST_MOM" | |
32 |
plot = |
|
35 | plot = 1 | |
33 |
integration = |
|
36 | integration = 0 | |
34 | save = 0 |
|
37 | save = 0 | |
35 | if save == 1: |
|
38 | if save == 1: | |
36 | if mode==0: |
|
39 | if mode==0: | |
37 | path_save = '/DATA_RM/TEST_HDF5_PP_23/6v' |
|
40 | path_save = '/DATA_RM/TEST_HDF5_PP_23/6v' | |
38 | path_save = '/DATA_RM/TEST_HDF5_PP' |
|
41 | path_save = '/DATA_RM/TEST_HDF5_PP' | |
39 | path_save = '/DATA_RM/TEST_HDF5_PP_100' |
|
42 | path_save = '/DATA_RM/TEST_HDF5_PP_100' | |
40 | else: |
|
43 | else: | |
41 | path_save = '/DATA_RM/TEST_HDF5_SPEC_23_V2/6v' |
|
44 | path_save = '/DATA_RM/TEST_HDF5_SPEC_23_V2/6v' | |
42 |
|
45 | |||
43 | print("* PATH data ADQ :", path) |
|
46 | print("* PATH data ADQ :", path) | |
44 | print("* Velocidad Pedestal :",V,"Β°/seg") |
|
47 | print("* Velocidad Pedestal :",V,"Β°/seg") | |
45 | ############################ NRO Perfiles PROCESAMIENTO ################### |
|
48 | ############################ NRO Perfiles PROCESAMIENTO ################### | |
46 | V=V |
|
49 | V=V | |
47 | IPP=400*1e-6 |
|
50 | IPP=400*1e-6 | |
48 | n= int(1/(V*IPP)) |
|
51 | n= int(1/(V*IPP)) | |
49 | print("* n - NRO Perfiles Proc:", n ) |
|
52 | print("* n - NRO Perfiles Proc:", n ) | |
50 | ################################## MODE ################################### |
|
53 | ################################## MODE ################################### | |
51 | print("* Modo de Operacion :",mode) |
|
54 | print("* Modo de Operacion :",mode) | |
52 | if mode ==0: |
|
55 | if mode ==0: | |
53 | print("* Met. Seleccionado : Pulse Pair") |
|
56 | print("* Met. Seleccionado : Pulse Pair") | |
54 | else: |
|
57 | else: | |
55 | print("* Met. Momentos : Momentos") |
|
58 | print("* Met. Momentos : Momentos") | |
56 |
|
59 | |||
57 | ################################## MODE ################################### |
|
60 | ################################## MODE ################################### | |
58 | print("* Grabado de datos :",save) |
|
61 | print("* Grabado de datos :",save) | |
59 | if save ==1: |
|
62 | if save ==1: | |
60 | if mode==0: |
|
63 | if mode==0: | |
61 | ope= "Pulse Pair" |
|
64 | ope= "Pulse Pair" | |
62 | else: |
|
65 | else: | |
63 | ope= "Momentos" |
|
66 | ope= "Momentos" | |
64 | print("* Path-Save Data -", ope , path_save) |
|
67 | print("* Path-Save Data -", ope , path_save) | |
65 |
|
68 | |||
66 | print("* Integracion de datos :",integration) |
|
69 | print("* Integracion de datos :",integration) | |
67 |
|
70 | |||
68 | time.sleep(15) |
|
71 | time.sleep(15) | |
69 | #remotefolder = "/home/wmaster/graficos" |
|
72 | #remotefolder = "/home/wmaster/graficos" | |
70 | ####################################################################### |
|
73 | ####################################################################### | |
71 | ################# RANGO DE PLOTEO###################################### |
|
74 | ################# RANGO DE PLOTEO###################################### | |
72 | dBmin = '1' |
|
75 | dBmin = '1' | |
73 |
dBmax = ' |
|
76 | dBmax = '65' | |
74 |
xmin = '1 |
|
77 | xmin = '13.2' | |
75 |
xmax = '1 |
|
78 | xmax = '13.5' | |
76 | ymin = '0' |
|
79 | ymin = '0' | |
77 |
ymax = '60 |
|
80 | ymax = '60' | |
78 | ####################################################################### |
|
81 | ####################################################################### | |
79 | ########################FECHA########################################## |
|
82 | ########################FECHA########################################## | |
80 | str = datetime.date.today() |
|
83 | str = datetime.date.today() | |
81 | today = str.strftime("%Y/%m/%d") |
|
84 | today = str.strftime("%Y/%m/%d") | |
82 | str2 = str - datetime.timedelta(days=1) |
|
85 | str2 = str - datetime.timedelta(days=1) | |
83 | yesterday = str2.strftime("%Y/%m/%d") |
|
86 | yesterday = str2.strftime("%Y/%m/%d") | |
84 | ####################################################################### |
|
87 | ####################################################################### | |
85 | ########################SIGNAL CHAIN ################################## |
|
88 | ########################SIGNAL CHAIN ################################## | |
86 | ####################################################################### |
|
89 | ####################################################################### | |
87 | desc = "USRP_test" |
|
90 | desc = "USRP_test" | |
88 | filename = "USRP_processing.xml" |
|
91 | filename = "USRP_processing.xml" | |
89 | controllerObj = Project() |
|
92 | controllerObj = Project() | |
90 | controllerObj.setup(id = '191', name='Test_USRP', description=desc) |
|
93 | controllerObj.setup(id = '191', name='Test_USRP', description=desc) | |
91 | ####################################################################### |
|
94 | ####################################################################### | |
92 | ######################## UNIDAD DE LECTURA############################# |
|
95 | ######################## UNIDAD DE LECTURA############################# | |
93 | ####################################################################### |
|
96 | ####################################################################### | |
94 | readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader', |
|
97 | readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader', | |
95 | path=path, |
|
98 | path=path, | |
96 | startDate="2021/01/01",#today, |
|
99 | startDate="2021/01/01",#today, | |
97 | endDate="2021/12/30",#today, |
|
100 | endDate="2021/12/30",#today, | |
98 | startTime='00:00:00', |
|
101 | startTime='00:00:00', | |
99 | endTime='23:59:59', |
|
102 | endTime='23:59:59', | |
100 | delay=0, |
|
103 | delay=0, | |
101 | #set=0, |
|
104 | #set=0, | |
102 | online=0, |
|
105 | online=0, | |
103 | walk=1, |
|
106 | walk=1, | |
104 | ippKm = 60) |
|
107 | ippKm = 60) | |
105 |
|
108 | |||
106 | opObj11 = readUnitConfObj.addOperation(name='printInfo') |
|
109 | opObj11 = readUnitConfObj.addOperation(name='printInfo') | |
107 |
|
110 | |||
108 | procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) |
|
111 | procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) | |
109 |
|
112 | |||
110 | if mode ==0: |
|
113 | if mode ==0: | |
111 | ####################### METODO PULSE PAIR ###################################################################### |
|
114 | ####################### METODO PULSE PAIR ###################################################################### | |
112 | opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other') |
|
115 | opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other') | |
113 | opObj11.addParameter(name='n', value=int(n), format='int')#10 VOY A USAR 250 DADO QUE LA VELOCIDAD ES 10 GRADOS |
|
116 | opObj11.addParameter(name='n', value=int(n), format='int')#10 VOY A USAR 250 DADO QUE LA VELOCIDAD ES 10 GRADOS | |
114 | #opObj11.addParameter(name='removeDC', value=1, format='int') |
|
117 | #opObj11.addParameter(name='removeDC', value=1, format='int') | |
115 | ####################### METODO Parametros ###################################################################### |
|
118 | ####################### METODO Parametros ###################################################################### | |
116 | procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId()) |
|
119 | procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId()) | |
117 | if plot==1: |
|
120 | if plot==1: | |
118 | opObj11 = procUnitConfObjB.addOperation(name='GenericRTIPlot',optype='external') |
|
121 | opObj11 = procUnitConfObjB.addOperation(name='GenericRTIPlot',optype='external') | |
119 | opObj11.addParameter(name='attr_data', value='dataPP_POW') |
|
122 | opObj11.addParameter(name='attr_data', value='dataPP_POWER') | |
120 | opObj11.addParameter(name='colormap', value='jet') |
|
123 | opObj11.addParameter(name='colormap', value='jet') | |
121 | opObj11.addParameter(name='xmin', value=xmin) |
|
124 | opObj11.addParameter(name='xmin', value=xmin) | |
122 | opObj11.addParameter(name='xmax', value=xmax) |
|
125 | opObj11.addParameter(name='xmax', value=xmax) | |
123 | opObj11.addParameter(name='zmin', value=dBmin) |
|
126 | opObj11.addParameter(name='zmin', value=dBmin) | |
124 | opObj11.addParameter(name='zmax', value=dBmax) |
|
127 | opObj11.addParameter(name='zmax', value=dBmax) | |
125 | opObj11.addParameter(name='save', value=figpath_pp) |
|
128 | opObj11.addParameter(name='save', value=figpath_pp) | |
126 | opObj11.addParameter(name='showprofile', value=0) |
|
129 | opObj11.addParameter(name='showprofile', value=0) | |
127 |
opObj11.addParameter(name='save_period', value= |
|
130 | opObj11.addParameter(name='save_period', value=10) | |
128 |
|
131 | |||
129 | ####################### METODO ESCRITURA ####################################################################### |
|
132 | ####################### METODO ESCRITURA ####################################################################### | |
130 | if save==1: |
|
133 | if save==1: | |
131 | opObj10 = procUnitConfObjB.addOperation(name='HDFWriter') |
|
134 | opObj10 = procUnitConfObjB.addOperation(name='HDFWriter') | |
132 | opObj10.addParameter(name='path',value=path_save) |
|
135 | opObj10.addParameter(name='path',value=path_save) | |
133 | #opObj10.addParameter(name='mode',value=0) |
|
136 | #opObj10.addParameter(name='mode',value=0) | |
134 | opObj10.addParameter(name='blocksPerFile',value='100',format='int') |
|
137 | opObj10.addParameter(name='blocksPerFile',value='100',format='int') | |
135 | opObj10.addParameter(name='metadataList',value='utctimeInit,timeZone,paramInterval,profileIndex,channelList,heightList,flagDataAsBlock',format='list') |
|
138 | opObj10.addParameter(name='metadataList',value='utctimeInit,timeZone,paramInterval,profileIndex,channelList,heightList,flagDataAsBlock',format='list') | |
136 | opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,utctime',format='list')#,format='list' |
|
139 | opObj10.addParameter(name='dataList',value='dataPP_POWER,dataPP_DOP,utctime',format='list')#,format='list' | |
137 | if integration==1: |
|
140 | if integration==1: | |
138 | V=10 |
|
141 | V=10 | |
139 | blocksPerfile=360 |
|
142 | blocksPerfile=360 | |
140 | print("* Velocidad del Pedestal:",V) |
|
143 | print("* Velocidad del Pedestal:",V) | |
141 | tmp_blocksPerfile = 100 |
|
144 | tmp_blocksPerfile = 100 | |
142 | f_a_p= int(tmp_blocksPerfile/V) |
|
145 | f_a_p= int(tmp_blocksPerfile/V) | |
143 |
|
146 | |||
144 | opObj11 = procUnitConfObjB.addOperation(name='PedestalInformation') |
|
147 | opObj11 = procUnitConfObjB.addOperation(name='PedestalInformation') | |
145 | opObj11.addParameter(name='path_ped', value=path_ped) |
|
148 | opObj11.addParameter(name='path_ped', value=path_ped) | |
146 | #opObj11.addParameter(name='path_adq', value=path_adq) |
|
149 | #opObj11.addParameter(name='path_adq', value=path_adq) | |
147 | opObj11.addParameter(name='t_Interval_p', value='0.01', format='float') |
|
150 | opObj11.addParameter(name='t_Interval_p', value='0.01', format='float') | |
148 | opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int') |
|
151 | opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int') | |
149 | opObj11.addParameter(name='n_Muestras_p', value='100', format='float') |
|
152 | opObj11.addParameter(name='n_Muestras_p', value='100', format='float') | |
150 | opObj11.addParameter(name='f_a_p', value=f_a_p, format='int') |
|
153 | opObj11.addParameter(name='f_a_p', value=f_a_p, format='int') | |
151 | opObj11.addParameter(name='online', value='0', format='int') |
|
154 | opObj11.addParameter(name='online', value='0', format='int') | |
152 |
|
155 | |||
153 | opObj11 = procUnitConfObjB.addOperation(name='Block360') |
|
156 | opObj11 = procUnitConfObjB.addOperation(name='Block360') | |
154 | opObj11.addParameter(name='n', value='10', format='int') |
|
157 | opObj11.addParameter(name='n', value='10', format='int') | |
155 | opObj11.addParameter(name='mode', value=mode, format='int') |
|
158 | opObj11.addParameter(name='mode', value=mode, format='int') | |
156 |
|
159 | |||
157 | # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180 |
|
160 | # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180 | |
158 |
|
161 | |||
159 | opObj11= procUnitConfObjB.addOperation(name='WeatherPlot',optype='other') |
|
162 | opObj11= procUnitConfObjB.addOperation(name='WeatherPlot',optype='other') | |
160 |
|
163 | |||
161 |
|
164 | |||
162 | else: |
|
165 | else: | |
163 | ####################### METODO SPECTROS ###################################################################### |
|
166 | ####################### METODO SPECTROS ###################################################################### | |
164 | procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) |
|
167 | procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) | |
165 | procUnitConfObjB.addParameter(name='nFFTPoints', value=n, format='int') |
|
168 | procUnitConfObjB.addParameter(name='nFFTPoints', value=n, format='int') | |
166 | procUnitConfObjB.addParameter(name='nProfiles' , value=n, format='int') |
|
169 | procUnitConfObjB.addParameter(name='nProfiles' , value=n, format='int') | |
167 |
|
170 | |||
168 | procUnitConfObjC = controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjB.getId()) |
|
171 | procUnitConfObjC = controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjB.getId()) | |
169 | procUnitConfObjC.addOperation(name='SpectralMoments') |
|
172 | procUnitConfObjC.addOperation(name='SpectralMoments') | |
170 | if plot==1: |
|
173 | if plot==1: | |
171 | dBmin = '1' |
|
174 | dBmin = '1' | |
172 | dBmax = '65' |
|
175 | dBmax = '65' | |
173 | opObj11 = procUnitConfObjC.addOperation(name='PowerPlot',optype='external') |
|
176 | opObj11 = procUnitConfObjC.addOperation(name='PowerPlot',optype='external') | |
174 | opObj11.addParameter(name='xmin', value=xmin) |
|
177 | opObj11.addParameter(name='xmin', value=xmin) | |
175 | opObj11.addParameter(name='xmax', value=xmax) |
|
178 | opObj11.addParameter(name='xmax', value=xmax) | |
176 | opObj11.addParameter(name='zmin', value=dBmin) |
|
179 | opObj11.addParameter(name='zmin', value=dBmin) | |
177 | opObj11.addParameter(name='zmax', value=dBmax) |
|
180 | opObj11.addParameter(name='zmax', value=dBmax) | |
178 |
opObj11.addParameter(name='save', value=figpath_ |
|
181 | opObj11.addParameter(name='save', value=figpath_spec) | |
179 | opObj11.addParameter(name='showprofile', value=0) |
|
182 | opObj11.addParameter(name='showprofile', value=0) | |
180 |
opObj11.addParameter(name='save_period', value=10 |
|
183 | opObj11.addParameter(name='save_period', value=10) | |
181 |
|
184 | |||
182 | if save==1: |
|
185 | if save==1: | |
183 | opObj10 = procUnitConfObjC.addOperation(name='HDFWriter') |
|
186 | opObj10 = procUnitConfObjC.addOperation(name='HDFWriter') | |
184 | opObj10.addParameter(name='path',value=path_save) |
|
187 | opObj10.addParameter(name='path',value=path_save) | |
185 | #opObj10.addParameter(name='mode',value=0) |
|
188 | #opObj10.addParameter(name='mode',value=0) | |
186 | opObj10.addParameter(name='blocksPerFile',value='360',format='int') |
|
189 | opObj10.addParameter(name='blocksPerFile',value='360',format='int') | |
187 | #opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex |
|
190 | #opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex | |
188 | opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex |
|
191 | opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex | |
189 | opObj10.addParameter(name='dataList',value='data_pow,data_dop,utctime',format='list')#,format='list' |
|
192 | opObj10.addParameter(name='dataList',value='data_pow,data_dop,utctime',format='list')#,format='list' | |
190 |
|
193 | |||
191 | if integration==1: |
|
194 | if integration==1: | |
192 | V=10 |
|
195 | V=10 | |
193 | blocksPerfile=360 |
|
196 | blocksPerfile=360 | |
194 | print("* Velocidad del Pedestal:",V) |
|
197 | print("* Velocidad del Pedestal:",V) | |
195 | tmp_blocksPerfile = 100 |
|
198 | tmp_blocksPerfile = 100 | |
196 | f_a_p= int(tmp_blocksPerfile/V) |
|
199 | f_a_p= int(tmp_blocksPerfile/V) | |
197 |
|
200 | |||
198 | opObj11 = procUnitConfObjC.addOperation(name='PedestalInformation') |
|
201 | opObj11 = procUnitConfObjC.addOperation(name='PedestalInformation') | |
199 | opObj11.addParameter(name='path_ped', value=path_ped) |
|
202 | opObj11.addParameter(name='path_ped', value=path_ped) | |
200 | #opObj11.addParameter(name='path_adq', value=path_adq) |
|
203 | #opObj11.addParameter(name='path_adq', value=path_adq) | |
201 | opObj11.addParameter(name='t_Interval_p', value='0.01', format='float') |
|
204 | opObj11.addParameter(name='t_Interval_p', value='0.01', format='float') | |
202 | opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int') |
|
205 | opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int') | |
203 | opObj11.addParameter(name='n_Muestras_p', value='100', format='float') |
|
206 | opObj11.addParameter(name='n_Muestras_p', value='100', format='float') | |
204 | opObj11.addParameter(name='f_a_p', value=f_a_p, format='int') |
|
207 | opObj11.addParameter(name='f_a_p', value=f_a_p, format='int') | |
205 | opObj11.addParameter(name='online', value='0', format='int') |
|
208 | opObj11.addParameter(name='online', value='0', format='int') | |
206 |
|
209 | |||
207 | opObj11 = procUnitConfObjC.addOperation(name='Block360') |
|
210 | opObj11 = procUnitConfObjC.addOperation(name='Block360') | |
208 | opObj11.addParameter(name='n', value='10', format='int') |
|
211 | opObj11.addParameter(name='n', value='10', format='int') | |
209 | opObj11.addParameter(name='mode', value=mode, format='int') |
|
212 | opObj11.addParameter(name='mode', value=mode, format='int') | |
210 |
|
213 | |||
211 | # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180 |
|
214 | # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180 | |
212 | opObj11= procUnitConfObjC.addOperation(name='WeatherPlot',optype='other') |
|
215 | opObj11= procUnitConfObjC.addOperation(name='WeatherPlot',optype='other') | |
213 | controllerObj.start() |
|
216 | controllerObj.start() |
@@ -1,112 +1,119 | |||||
1 | # Ing-AlexanderValdez |
|
1 | # Ing-AlexanderValdez | |
2 | # Monitoreo de Pedestal |
|
2 | # Monitoreo de Pedestal | |
3 |
|
3 | |||
4 | ############## IMPORTA LIBRERIAS ################### |
|
4 | ############## IMPORTA LIBRERIAS ################### | |
5 | import os,numpy,h5py |
|
5 | import os,numpy,h5py | |
6 | import sys,time |
|
6 | import sys,time | |
7 | import matplotlib.pyplot as plt |
|
7 | import matplotlib.pyplot as plt | |
8 | #################################################### |
|
8 | #################################################### | |
9 | path_ped = '/DATA_RM/TEST_PEDESTAL/P20211012-082745' |
|
9 | ################################################################# | |
|
10 | # LA FECHA 21-10-20 CORRESPONDE A LAS PRUEBAS DEL DIA MIERCOLES | |||
|
11 | # 1:15:51 pm hasta 3:49:32 pm | |||
|
12 | ################################################################# | |||
|
13 | ||||
|
14 | #path_ped = '/DATA_RM/TEST_PEDESTAL/P20211012-082745' | |||
|
15 | path_ped = '/DATA_RM/TEST_PEDESTAL/P20211020-131248' | |||
10 | # Metodo para verificar numero |
|
16 | # Metodo para verificar numero | |
11 | def isNumber(str): |
|
17 | def isNumber(str): | |
12 | try: |
|
18 | try: | |
13 | float(str) |
|
19 | float(str) | |
14 | return True |
|
20 | return True | |
15 | except: |
|
21 | except: | |
16 | return False |
|
22 | return False | |
17 | # Metodo para extraer el arreglo |
|
23 | # Metodo para extraer el arreglo | |
18 | def getDatavaluefromDirFilename(path,file,value): |
|
24 | def getDatavaluefromDirFilename(path,file,value): | |
19 | dir_file= path+"/"+file |
|
25 | dir_file= path+"/"+file | |
20 | fp = h5py.File(dir_file,'r') |
|
26 | fp = h5py.File(dir_file,'r') | |
21 | array = fp['Data'].get(value)[()] |
|
27 | array = fp['Data'].get(value)[()] | |
22 | fp.close() |
|
28 | fp.close() | |
23 | return array |
|
29 | return array | |
24 |
|
30 | |||
25 | # LISTA COMPLETA DE ARCHIVOS HDF5 Pedestal |
|
31 | # LISTA COMPLETA DE ARCHIVOS HDF5 Pedestal | |
26 | LIST= sorted(os.listdir(path_ped)) |
|
32 | LIST= sorted(os.listdir(path_ped)) | |
27 | m=len(LIST) |
|
33 | m=len(LIST) | |
28 | print("TOTAL DE ARCHIVOS DE PEDESTAL:",m) |
|
34 | print("TOTAL DE ARCHIVOS DE PEDESTAL:",m) | |
29 | # Contadores temporales |
|
35 | # Contadores temporales | |
30 | k= 0 |
|
36 | k= 0 | |
31 | l= 0 |
|
37 | l= 0 | |
32 | t= 0 |
|
38 | t= 0 | |
33 | # Marca de tiempo temporal |
|
39 | # Marca de tiempo temporal | |
34 | time_ = numpy.zeros([m]) |
|
40 | time_ = numpy.zeros([m]) | |
35 | # creacion de |
|
41 | # creacion de | |
36 | for i in range(m): |
|
42 | for i in range(m): | |
|
43 | print("order:",i) | |||
37 | tmp_azi_pos = getDatavaluefromDirFilename(path=path_ped,file=LIST[i],value="azi_pos") |
|
44 | tmp_azi_pos = getDatavaluefromDirFilename(path=path_ped,file=LIST[i],value="azi_pos") | |
38 | tmp_ele_pos = getDatavaluefromDirFilename(path=path_ped,file=LIST[i],value="ele_pos") |
|
45 | tmp_ele_pos = getDatavaluefromDirFilename(path=path_ped,file=LIST[i],value="ele_pos") | |
39 | tmp_azi_vel = getDatavaluefromDirFilename(path=path_ped,file=LIST[i],value="azi_vel") |
|
46 | tmp_azi_vel = getDatavaluefromDirFilename(path=path_ped,file=LIST[i],value="azi_vel") | |
40 | tmp_ele_vel = getDatavaluefromDirFilename(path=path_ped,file=LIST[i],value="azi_vel")# nuevo :D |
|
47 | tmp_ele_vel = getDatavaluefromDirFilename(path=path_ped,file=LIST[i],value="azi_vel")# nuevo :D | |
41 |
|
48 | |||
42 | time_[i] = getDatavaluefromDirFilename(path=path_ped,file=LIST[i],value="utc") |
|
49 | time_[i] = getDatavaluefromDirFilename(path=path_ped,file=LIST[i],value="utc") | |
43 |
|
50 | |||
44 | k=k +tmp_azi_pos.shape[0] |
|
51 | k=k +tmp_azi_pos.shape[0] | |
45 | l=l +tmp_ele_pos.shape[0] |
|
52 | l=l +tmp_ele_pos.shape[0] | |
46 | t=t +tmp_azi_vel.shape[0] |
|
53 | t=t +tmp_azi_vel.shape[0] | |
47 |
|
54 | |||
48 | print("TOTAL DE MUESTRAS, ARCHIVOS X100:",k) |
|
55 | print("TOTAL DE MUESTRAS, ARCHIVOS X100:",k) | |
49 | time.sleep(5) |
|
56 | time.sleep(5) | |
50 | ######CREACION DE ARREGLOS CANTIDAD DE VALORES POR MUESTRA################# |
|
57 | ######CREACION DE ARREGLOS CANTIDAD DE VALORES POR MUESTRA################# | |
51 | azi_pos = numpy.zeros([k]) |
|
58 | azi_pos = numpy.zeros([k]) | |
52 | ele_pos = numpy.zeros([l]) |
|
59 | ele_pos = numpy.zeros([l]) | |
53 | time_azi_pos= numpy.zeros([k]) |
|
60 | time_azi_pos= numpy.zeros([k]) | |
54 | # Contadores temporales |
|
61 | # Contadores temporales | |
55 | p=0 |
|
62 | p=0 | |
56 | r=0 |
|
63 | r=0 | |
57 | z=0 |
|
64 | z=0 | |
58 | # VARIABLES TMP para almacenar azimuth, elevacion y tiempo |
|
65 | # VARIABLES TMP para almacenar azimuth, elevacion y tiempo | |
59 |
|
66 | |||
60 | #for filename in sorted(os.listdir(path_ped)): |
|
67 | #for filename in sorted(os.listdir(path_ped)): | |
61 | # CONDICION POR LEER EN TIEMPO REAL NO OFFLINE |
|
68 | # CONDICION POR LEER EN TIEMPO REAL NO OFFLINE | |
62 |
|
69 | |||
63 | for filename in LIST: |
|
70 | for filename in LIST: | |
64 | tmp_azi_pos = getDatavaluefromDirFilename(path=path_ped,file=filename,value="azi_pos") |
|
71 | tmp_azi_pos = getDatavaluefromDirFilename(path=path_ped,file=filename,value="azi_pos") | |
65 | tmp_ele_pos = getDatavaluefromDirFilename(path=path_ped,file=filename,value="ele_pos") |
|
72 | tmp_ele_pos = getDatavaluefromDirFilename(path=path_ped,file=filename,value="ele_pos") | |
66 | # CONDICION POR LEER EN TIEMPO REAL NO OFFLINE |
|
73 | # CONDICION POR LEER EN TIEMPO REAL NO OFFLINE | |
67 |
|
74 | |||
68 | if z==(m-1): |
|
75 | if z==(m-1): | |
69 | tmp_azi_time=numpy.arange(time_[z],time_[z]+1,1/(tmp_azi_pos.shape[0])) |
|
76 | tmp_azi_time=numpy.arange(time_[z],time_[z]+1,1/(tmp_azi_pos.shape[0])) | |
70 | else: |
|
77 | else: | |
71 | tmp_azi_time=numpy.arange(time_[z],time_[z+1],(time_[z+1]-time_[z])/(tmp_azi_pos.shape[0])) |
|
78 | tmp_azi_time=numpy.arange(time_[z],time_[z+1],(time_[z+1]-time_[z])/(tmp_azi_pos.shape[0])) | |
72 |
|
79 | |||
73 | print(filename,time_[z]) |
|
80 | print(filename,time_[z]) | |
74 | print(z,tmp_azi_pos.shape[0]) |
|
81 | print(z,tmp_azi_pos.shape[0]) | |
75 |
|
82 | |||
76 | i=0 |
|
83 | i=0 | |
77 | for i in range(tmp_azi_pos.shape[0]): |
|
84 | for i in range(tmp_azi_pos.shape[0]): | |
78 | index=p+i |
|
85 | index=p+i | |
79 | azi_pos[index]=tmp_azi_pos[i] |
|
86 | azi_pos[index]=tmp_azi_pos[i] | |
80 | time_azi_pos[index]=tmp_azi_time[i] |
|
87 | time_azi_pos[index]=tmp_azi_time[i] | |
81 | p=p+tmp_azi_pos.shape[0] |
|
88 | p=p+tmp_azi_pos.shape[0] | |
82 | i=0 |
|
89 | i=0 | |
83 | for i in range(tmp_ele_pos.shape[0]): |
|
90 | for i in range(tmp_ele_pos.shape[0]): | |
84 | index=r+i |
|
91 | index=r+i | |
85 | ele_pos[index]=tmp_ele_pos[i] |
|
92 | ele_pos[index]=tmp_ele_pos[i] | |
86 | r=r+tmp_ele_pos.shape[0] |
|
93 | r=r+tmp_ele_pos.shape[0] | |
87 |
|
94 | |||
88 |
|
95 | |||
89 | z+=1 |
|
96 | z+=1 | |
90 |
|
97 | |||
91 |
|
98 | |||
92 | ######## GRAFIQUEMOS Y VEAMOS LOS DATOS DEL Pedestal |
|
99 | ######## GRAFIQUEMOS Y VEAMOS LOS DATOS DEL Pedestal | |
93 | fig, ax = plt.subplots(figsize=(16,8)) |
|
100 | fig, ax = plt.subplots(figsize=(16,8)) | |
94 | print(time_azi_pos.shape) |
|
101 | print(time_azi_pos.shape) | |
95 | print(azi_pos.shape) |
|
102 | print(azi_pos.shape) | |
96 | t=numpy.arange(time_azi_pos.shape[0])*0.01/(60.0) |
|
103 | t=numpy.arange(time_azi_pos.shape[0])*0.01/(60.0) | |
97 | plt.plot(t,azi_pos,label='AZIMUTH_POS',color='blue') |
|
104 | plt.plot(t,azi_pos,label='AZIMUTH_POS',color='blue') | |
98 |
|
105 | |||
99 | # AQUI ESTOY ADICIONANDO LA POSICION EN elevaciont=numpy.arange(len(ele_pos))*0.01/60.0 |
|
106 | # AQUI ESTOY ADICIONANDO LA POSICION EN elevaciont=numpy.arange(len(ele_pos))*0.01/60.0 | |
100 | t=numpy.arange(len(ele_pos))*0.01/60.0 |
|
107 | t=numpy.arange(len(ele_pos))*0.01/60.0 | |
101 | plt.plot(t,ele_pos,label='ELEVATION_POS',color='red')#*10 |
|
108 | plt.plot(t,ele_pos,label='ELEVATION_POS',color='red')#*10 | |
102 |
|
109 | |||
103 | #ax.set_xlim(0, 9) |
|
110 | #ax.set_xlim(0, 9) | |
104 | ax.set_ylim(-5, 400) |
|
111 | ax.set_ylim(-5, 400) | |
105 | plt.ylabel("Azimuth Position") |
|
112 | plt.ylabel("Azimuth Position") | |
106 | plt.xlabel("Muestra") |
|
113 | plt.xlabel("Muestra") | |
107 | plt.title('Azimuth Position vs Muestra ', fontsize=20) |
|
114 | plt.title('Azimuth Position vs Muestra ', fontsize=20) | |
108 | axes = plt.gca() |
|
115 | axes = plt.gca() | |
109 | axes.yaxis.grid() |
|
116 | axes.yaxis.grid() | |
110 | plt.xticks(fontsize=16) |
|
117 | plt.xticks(fontsize=16) | |
111 | plt.yticks(fontsize=16) |
|
118 | plt.yticks(fontsize=16) | |
112 | plt.show() |
|
119 | plt.show() |
@@ -1,78 +1,79 | |||||
1 | import os,sys,json |
|
1 | import os,sys,json | |
2 | import datetime |
|
2 | import datetime | |
3 | import time |
|
3 | import time | |
4 | from schainpy.controller import Project |
|
4 | from schainpy.controller import Project | |
5 | ''' |
|
5 | ''' | |
6 | NOTA: |
|
6 | NOTA: | |
7 | Este script de prueba. |
|
7 | Este script de prueba. | |
8 | - Unidad del lectura 'HDFReader'. |
|
8 | - Unidad del lectura 'HDFReader'. | |
9 | - Unidad de procesamiento ParametersProc |
|
9 | - Unidad de procesamiento ParametersProc | |
10 | - Operacion SpectralMomentsPlot |
|
10 | - Operacion SpectralMomentsPlot | |
11 |
|
11 | |||
12 | ''' |
|
12 | ''' | |
13 |
|
13 | |||
14 | ####################################################################### |
|
14 | ####################################################################### | |
15 | ################# RANGO DE PLOTEO###################################### |
|
15 | ################# RANGO DE PLOTEO###################################### | |
16 | ####################################################################### |
|
16 | ####################################################################### | |
17 | dBmin = '1' |
|
17 | dBmin = '1' | |
18 | dBmax = '65' |
|
18 | dBmax = '65' | |
19 | xmin = '0' |
|
19 | xmin = '0' | |
20 | xmax ='24' |
|
20 | xmax ='24' | |
21 | #tmmin = 16.2 |
|
21 | #tmmin = 16.2 | |
22 | #tmmax = 16.25 |
|
22 | #tmmax = 16.25 | |
23 | tmmin =15 |
|
23 | tmmin =15 | |
24 | tmmax =15.5 |
|
24 | tmmax =15.5 | |
25 | ymin = '0' |
|
25 | ymin = '0' | |
26 | ymax = '600' |
|
26 | ymax = '600' | |
27 | ####################################################################### |
|
27 | ####################################################################### | |
28 | ####################################################################### |
|
28 | ####################################################################### | |
29 | ####################################################################### |
|
29 | ####################################################################### | |
30 | #path = '/DATA_RM/TEST_HDF5_SPEC' |
|
30 | #path = '/DATA_RM/TEST_HDF5_SPEC' | |
31 | path = '/DATA_RM/TEST_HDF5_SPEC_23/6v/' |
|
31 | #path = '/DATA_RM/TEST_HDF5_SPEC_23/6v/' | |
|
32 | path = '/DATA_RM/TEST_HDF5_19OCT' | |||
32 | figpath = '/home/soporte/Downloads/23/6v' |
|
33 | figpath = '/home/soporte/Downloads/23/6v' | |
33 | desc = "Simulator Test" |
|
34 | desc = "Simulator Test" | |
34 | desc_data = { |
|
35 | desc_data = { | |
35 | 'Data': { |
|
36 | 'Data': { | |
36 | 'data_pow': ['Data/data_pow/channel00','Data/data_pow/channel01'], |
|
37 | 'data_pow': ['Data/data_pow/channel00','Data/data_pow/channel01'], | |
37 | 'data_dop': ['Data/data_dop/channel00','Data/data_dop/channel01'], |
|
38 | 'data_dop': ['Data/data_dop/channel00','Data/data_dop/channel01'], | |
38 | 'utctime':'Data/utctime' |
|
39 | 'utctime':'Data/utctime' | |
39 | }, |
|
40 | }, | |
40 | 'Metadata': { |
|
41 | 'Metadata': { | |
41 | 'heightList':'Metadata/heightList', |
|
42 | 'heightList':'Metadata/heightList', | |
42 | 'nIncohInt' :'Metadata/nIncohInt', |
|
43 | 'nIncohInt' :'Metadata/nIncohInt', | |
43 | 'nCohInt' :'Metadata/nCohInt', |
|
44 | 'nCohInt' :'Metadata/nCohInt', | |
44 | 'nProfiles' :'Metadata/nProfiles', |
|
45 | 'nProfiles' :'Metadata/nProfiles', | |
45 | 'channelList' :'Metadata/channelList', |
|
46 | 'channelList' :'Metadata/channelList', | |
46 | 'utctimeInit' :'Metadata/utctimeInit' |
|
47 | 'utctimeInit' :'Metadata/utctimeInit' | |
47 |
|
48 | |||
48 | } |
|
49 | } | |
49 | } |
|
50 | } | |
50 |
|
51 | |||
51 | controllerObj = Project() |
|
52 | controllerObj = Project() | |
52 |
|
53 | |||
53 | controllerObj.setup(id='10',name='Test Simulator',description=desc) |
|
54 | controllerObj.setup(id='10',name='Test Simulator',description=desc) | |
54 |
|
55 | |||
55 | readUnitConfObj = controllerObj.addReadUnit(datatype='HDFReader', |
|
56 | readUnitConfObj = controllerObj.addReadUnit(datatype='HDFReader', | |
56 | path=path, |
|
57 | path=path, | |
57 | startDate="2021/01/01", #"2020/01/01",#today, |
|
58 | startDate="2021/01/01", #"2020/01/01",#today, | |
58 | endDate= "2021/12/01", #"2020/12/30",#today, |
|
59 | endDate= "2021/12/01", #"2020/12/30",#today, | |
59 | startTime='00:00:00', |
|
60 | startTime='00:00:00', | |
60 | endTime='23:59:59', |
|
61 | endTime='23:59:59', | |
61 | delay=0, |
|
62 | delay=0, | |
62 | #set=0, |
|
63 | #set=0, | |
63 | online=0, |
|
64 | online=0, | |
64 | walk=1, |
|
65 | walk=1, | |
65 | description= json.dumps(desc_data))#1 |
|
66 | description= json.dumps(desc_data))#1 | |
66 |
|
67 | |||
67 | procUnitConfObjA = controllerObj.addProcUnit(datatype='ParametersProc',inputId=readUnitConfObj.getId()) |
|
68 | procUnitConfObjA = controllerObj.addProcUnit(datatype='ParametersProc',inputId=readUnitConfObj.getId()) | |
68 |
|
69 | |||
69 | opObj11 = procUnitConfObjA.addOperation(name='PowerPlot',optype='external') |
|
70 | opObj11 = procUnitConfObjA.addOperation(name='PowerPlot',optype='external') | |
70 | opObj11.addParameter(name='xmin', value=tmmin) |
|
71 | opObj11.addParameter(name='xmin', value=tmmin) | |
71 | opObj11.addParameter(name='xmax', value=tmmax) |
|
72 | opObj11.addParameter(name='xmax', value=tmmax) | |
72 | opObj11.addParameter(name='zmin', value=dBmin) |
|
73 | opObj11.addParameter(name='zmin', value=dBmin) | |
73 | opObj11.addParameter(name='zmax', value=dBmax) |
|
74 | opObj11.addParameter(name='zmax', value=dBmax) | |
74 | opObj11.addParameter(name='save', value=figpath) |
|
75 | opObj11.addParameter(name='save', value=figpath) | |
75 | opObj11.addParameter(name='showprofile', value=0) |
|
76 | opObj11.addParameter(name='showprofile', value=0) | |
76 | opObj11.addParameter(name='save_period', value=10) |
|
77 | opObj11.addParameter(name='save_period', value=10) | |
77 |
|
78 | |||
78 | controllerObj.start() |
|
79 | controllerObj.start() |
General Comments 0
You need to be logged in to leave comments.
Login now