@@ -1,569 +1,569 | |||||
1 | subroutine lagp(plag,wl,r0,dr,nl,nrange) |
|
1 | subroutine lagp(plag,wl,r0,dr,nl,nrange) | |
2 | c |
|
2 | c | |
3 | c predict lagged product matrix using state parameters stored |
|
3 | c predict lagged product matrix using state parameters stored | |
4 | c as cubic b-splines |
|
4 | c as cubic b-splines | |
5 | c read weights for numeric integration from a file |
|
5 | c read weights for numeric integration from a file | |
6 | c |
|
6 | c | |
7 | c faster version - assumes samples taken at half-integer lags, ranges |
|
7 | c faster version - assumes samples taken at half-integer lags, ranges | |
8 | c |
|
8 | c | |
9 | include 'fitter.h' |
|
9 | include 'fitter.h' | |
10 | include 'spline.h' |
|
10 | include 'spline.h' | |
11 | include 'bfield.h' |
|
11 | include 'bfield.h' | |
12 | integer nl,nrange |
|
12 | integer nl,nrange | |
13 | real plag(nl,nrange),taus(nl) |
|
13 | real plag(nl,nrange),taus(nl) | |
14 | parameter(nw=1000) |
|
14 | parameter(nw=1000) | |
15 | integer ilag(nw) |
|
15 | integer ilag(nw) | |
16 | real weight(nw),dtau(nw),drange(nw) |
|
16 | real weight(nw),dtau(nw),drange(nw) | |
17 | logical first |
|
17 | logical first | |
18 | real store(2*nl,2*nrange,2) |
|
18 | real store(2*nl,2*nrange,2) | |
19 |
|
19 | |||
20 | character(1024) :: fqual_temp |
|
20 | character(1024) :: fqual_temp | |
21 | character(:), allocatable :: fqual |
|
21 | character(:), allocatable :: fqual | |
22 | character bfmodel_str*8 |
|
22 | character bfmodel_str*8 | |
23 |
|
23 | |||
24 | data first/.true./ |
|
24 | data first/.true./ | |
25 | c |
|
25 | c | |
26 |
|
26 | |||
27 | c write(*,*) "dens_before: ",dens |
|
27 | c write(*,*) "dens_before: ",dens | |
28 | c call exit |
|
28 | c call exit | |
29 | c zero out array |
|
29 | c zero out array | |
30 | c write(*,*) "Starting lagp" |
|
30 | c write(*,*) "Starting lagp" | |
31 | do i=1,nrange |
|
31 | do i=1,nrange | |
32 | do j=1,nl |
|
32 | do j=1,nl | |
33 | plag(j,i)=0.0 |
|
33 | plag(j,i)=0.0 | |
34 | end do |
|
34 | end do | |
35 | end do |
|
35 | end do | |
36 |
|
36 | |||
37 | c |
|
37 | c | |
38 | c compute all required acfs |
|
38 | c compute all required acfs | |
39 | c |
|
39 | c | |
40 | do i=1,2*nrange |
|
40 | do i=1,2*nrange | |
41 | ii=(i-1)/2+1 |
|
41 | ii=(i-1)/2+1 | |
42 | alt=r0+float(i-1)*dr*0.5 ! half integer ranges |
|
42 | alt=r0+float(i-1)*dr*0.5 ! half integer ranges | |
43 | c write(*,*) "dens_before: ",dens |
|
43 | c write(*,*) "dens_before: ",dens | |
44 | c call exit |
|
44 | c call exit | |
45 | c write(*,*) "alt: ",alt |
|
45 | c write(*,*) "alt: ",alt | |
46 | c write(*,*) "dens: ",dens |
|
46 | c write(*,*) "dens: ",dens | |
47 | c write(*,*) "te: ",te |
|
47 | c write(*,*) "te: ",te | |
48 | c write(*,*) "ti1: ",ti1 |
|
48 | c write(*,*) "ti1: ",ti1 | |
49 | c write(*,*) "hf: ",hf |
|
49 | c write(*,*) "hf: ",hf | |
50 | c write(*,*) "hef: ",hef |
|
50 | c write(*,*) "hef: ",hef | |
51 | c call exit |
|
51 | c call exit | |
52 | call get_spline(alt,dens,te,ti1,hf,hef) |
|
52 | call get_spline(alt,dens,te,ti1,hf,hef) | |
53 | c write(*,*) "dens_after: ",dens |
|
53 | c write(*,*) "dens_after: ",dens | |
54 | c call exit |
|
54 | c call exit | |
55 | do k=1,nion |
|
55 | do k=1,nion | |
56 | ti(k)=ti1 |
|
56 | ti(k)=ti1 | |
57 | end do |
|
57 | end do | |
58 | fi(2)=hf |
|
58 | fi(2)=hf | |
59 | fi(3)=hef |
|
59 | fi(3)=hef | |
60 | fi(1)=1.0-hf-hef |
|
60 | fi(1)=1.0-hf-hef | |
61 |
|
61 | |||
62 | do j=1,2*nl |
|
62 | do j=1,2*nl | |
63 | tau=float(j-1)*(dr/1.5e5)*0.5 ! half integer lags |
|
63 | tau=float(j-1)*(dr/1.5e5)*0.5 ! half integer lags | |
64 |
|
64 | |||
65 | c just consider a single azimuth angle for now |
|
65 | c just consider a single azimuth angle for now | |
66 |
|
66 | |||
67 | c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, |
|
67 | c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, | |
68 | c & alpha_prof(ii)+1.74e-2,dens,bfld_prof(ii),rho) |
|
68 | c & alpha_prof(ii)+1.74e-2,dens,bfld_prof(ii),rho) | |
69 | c store(j,i,1)=rho*dens*(100.0/alt)**2 |
|
69 | c store(j,i,1)=rho*dens*(100.0/alt)**2 | |
70 |
|
70 | |||
71 | c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, |
|
71 | c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, | |
72 | c & alpha_prof(ii)-1.74e-2,dens,bfld_prof(ii),rho) |
|
72 | c & alpha_prof(ii)-1.74e-2,dens,bfld_prof(ii),rho) | |
73 | c store(j,i,2)=rho*dens*(100.0/alt)**2 |
|
73 | c store(j,i,2)=rho*dens*(100.0/alt)**2 | |
74 |
|
74 | |||
75 | call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, |
|
75 | call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, | |
76 | & alpha_prof(ii),dens,bfld_prof(ii),rho) |
|
76 | & alpha_prof(ii),dens,bfld_prof(ii),rho) | |
77 | store(j,i,1)=rho*dens*(100.0/alt)**2 |
|
77 | store(j,i,1)=rho*dens*(100.0/alt)**2 | |
78 | c write(*,*) "store", store(j,i,1) |
|
78 | c write(*,*) "store", store(j,i,1) | |
79 | c call exit |
|
79 | c call exit | |
80 | end do |
|
80 | end do | |
81 | end do |
|
81 | end do | |
82 |
|
82 | |||
83 | c construct lagged products |
|
83 | c construct lagged products | |
84 | c |
|
84 | c | |
85 | c write(*,*) "before weights" |
|
85 | c write(*,*) "before weights" | |
86 | c write(*,*) first |
|
86 | c write(*,*) first | |
87 | c write(*,*) "weight before: ",weight |
|
87 | c write(*,*) "weight before: ",weight | |
88 | c write(*,*) "BEFORE GET_PATH" |
|
88 | c write(*,*) "BEFORE GET_PATH" | |
89 | call get_path(fqual_temp) |
|
89 | call get_path(fqual_temp) | |
90 | c write(*,*) "L_BEF: ", fqual_temp, "L_BEF_end" |
|
90 | c write(*,*) "L_BEF: ", fqual_temp, "L_BEF_end" | |
91 | fqual = TRIM(fqual_temp) |
|
91 | fqual = TRIM(fqual_temp) | |
92 | bfmodel = 'bfmodel/' |
|
92 | bfmodel_str = 'bfmodel/' | |
93 | fqual(1:len_trim(fqual)-len_trim(bfmodel)) |
|
93 | fqual(1:len_trim(fqual)-len_trim(bfmodel_str)) | |
94 | fqual = fqual//'weights.dat' |
|
94 | fqual = fqual//'weights.dat' | |
95 | c write(*,*) "Final fqual",fqual,"FINAL" |
|
95 | c write(*,*) "Final fqual",fqual,"FINAL" | |
96 |
|
96 | |||
97 | if(first) then |
|
97 | if(first) then | |
98 | open(unit=25,file=fqual, |
|
98 | open(unit=25,file=fqual, | |
99 | & status='old') |
|
99 | & status='old') | |
100 | read (25,*) nwt |
|
100 | read (25,*) nwt | |
101 | do i=1,nwt |
|
101 | do i=1,nwt | |
102 | read(25,*) weight(i),dtau(i),drange(i),ilag(i) |
|
102 | read(25,*) weight(i),dtau(i),drange(i),ilag(i) | |
103 | c write(*,*) "ilag: ",ilag(i) |
|
103 | c write(*,*) "ilag: ",ilag(i) | |
104 | end do |
|
104 | end do | |
105 | c flush(25) |
|
105 | c flush(25) | |
106 | close(25) |
|
106 | close(25) | |
107 | c first=.false. |
|
107 | c first=.false. | |
108 | end if |
|
108 | end if | |
109 |
|
109 | |||
110 | c write(*,*) "after weights" |
|
110 | c write(*,*) "after weights" | |
111 |
|
111 | |||
112 | c write(*,*) "weight(3): ",weight(3) |
|
112 | c write(*,*) "weight(3): ",weight(3) | |
113 | c call exit |
|
113 | c call exit | |
114 | c write(*,*) "nl: ",nl,"nrange: ",nrange,"nwt: ",nwt |
|
114 | c write(*,*) "nl: ",nl,"nrange: ",nrange,"nwt: ",nwt | |
115 |
|
115 | |||
116 | do i=1+nl,nrange ! don't worry about redundancy here |
|
116 | do i=1+nl,nrange ! don't worry about redundancy here | |
117 |
|
117 | |||
118 | do j=1,nwt |
|
118 | do j=1,nwt | |
119 | c write(*,*) "j: ",j |
|
119 | c write(*,*) "j: ",j | |
120 | alt=r0+(float(i-1)+drange(j))*dr |
|
120 | alt=r0+(float(i-1)+drange(j))*dr | |
121 | tau=abs(dtau(j)*dr/1.5e5) |
|
121 | tau=abs(dtau(j)*dr/1.5e5) | |
122 | lag=ilag(j)+1 |
|
122 | lag=ilag(j)+1 | |
123 | c write(*,*) tau |
|
123 | c write(*,*) tau | |
124 |
|
124 | |||
125 | k=1+2.0*(tau/(dr/1.5e5)) |
|
125 | k=1+2.0*(tau/(dr/1.5e5)) | |
126 | l=1+2.0*(alt-r0)/dr |
|
126 | l=1+2.0*(alt-r0)/dr | |
127 |
|
127 | |||
128 | do m=1,1 ! 2 |
|
128 | do m=1,1 ! 2 | |
129 |
|
129 | |||
130 | c call exit |
|
130 | c call exit | |
131 | c write(*,*) i |
|
131 | c write(*,*) i | |
132 | c call exit |
|
132 | c call exit | |
133 | c if (i .eq. nrange) then |
|
133 | c if (i .eq. nrange) then | |
134 | c if (j .eq. 227) then |
|
134 | c if (j .eq. 227) then | |
135 |
|
135 | |||
136 | c write(*,*) "lag: ",lag |
|
136 | c write(*,*) "lag: ",lag | |
137 | c write(*,*) "ilag: ",ilag(j) |
|
137 | c write(*,*) "ilag: ",ilag(j) | |
138 | c call exit |
|
138 | c call exit | |
139 | c write(*,*) "plag: ",plag(lag,i) |
|
139 | c write(*,*) "plag: ",plag(lag,i) | |
140 | c write(*,*) "weight: ",weight |
|
140 | c write(*,*) "weight: ",weight | |
141 | c |
|
141 | c | |
142 | c write(*,*) "weight: ",weight(j) |
|
142 | c write(*,*) "weight: ",weight(j) | |
143 | c write(*,*) "store: ",store(k,l,m) |
|
143 | c write(*,*) "store: ",store(k,l,m) | |
144 | c call exit |
|
144 | c call exit | |
145 | c end if |
|
145 | c end if | |
146 | c end if |
|
146 | c end if | |
147 | plag(lag,i)=plag(lag,i)+weight(j)*store(k,l,m) |
|
147 | plag(lag,i)=plag(lag,i)+weight(j)*store(k,l,m) | |
148 | c if (i .eq. nrange) then |
|
148 | c if (i .eq. nrange) then | |
149 | c write(*,*) "lag: ",lag |
|
149 | c write(*,*) "lag: ",lag | |
150 | c write(*,*) "plag: ",plag(lag,i) |
|
150 | c write(*,*) "plag: ",plag(lag,i) | |
151 | c write(*,*) "plag: ",plag(lag,i) |
|
151 | c write(*,*) "plag: ",plag(lag,i) | |
152 | c call exit |
|
152 | c call exit | |
153 | c end if |
|
153 | c end if | |
154 | end do |
|
154 | end do | |
155 | c write(*,*) "plag: ",plag(lag,i) |
|
155 | c write(*,*) "plag: ",plag(lag,i) | |
156 | c write(*,*) "plag: ",plag(12,72) |
|
156 | c write(*,*) "plag: ",plag(12,72) | |
157 | c call exit |
|
157 | c call exit | |
158 | end do |
|
158 | end do | |
159 | c call exit |
|
159 | c call exit | |
160 | c write(*,*) "plag: ",plag(12,72) |
|
160 | c write(*,*) "plag: ",plag(12,72) | |
161 | end do |
|
161 | end do | |
162 | c write(*,*) "plag: ",plag(12,72) |
|
162 | c write(*,*) "plag: ",plag(12,72) | |
163 | c call exit |
|
163 | c call exit | |
164 | c write(*,*) "End LAGP" |
|
164 | c write(*,*) "End LAGP" | |
165 | return |
|
165 | return | |
166 | end |
|
166 | end | |
167 |
|
167 | |||
168 | subroutine lagp_old(plag,wl,r0,dr,nl,nrange) |
|
168 | subroutine lagp_old(plag,wl,r0,dr,nl,nrange) | |
169 | c |
|
169 | c | |
170 | c predict lagged product matrix using state parameters stored |
|
170 | c predict lagged product matrix using state parameters stored | |
171 | c as cubic b-splines |
|
171 | c as cubic b-splines | |
172 | c read weights for numeric integration from a file |
|
172 | c read weights for numeric integration from a file | |
173 | c |
|
173 | c | |
174 | c general version - samples can be anywhere |
|
174 | c general version - samples can be anywhere | |
175 | c |
|
175 | c | |
176 | include 'fitter.h' |
|
176 | include 'fitter.h' | |
177 | include 'spline.h' |
|
177 | include 'spline.h' | |
178 | include 'bfield.h' |
|
178 | include 'bfield.h' | |
179 | integer nl,nrange |
|
179 | integer nl,nrange | |
180 | real plag(nl,nrange),taus(nl) |
|
180 | real plag(nl,nrange),taus(nl) | |
181 | parameter(nw=1000) |
|
181 | parameter(nw=1000) | |
182 | integer ilag(nw) |
|
182 | integer ilag(nw) | |
183 | real weight(nw),dtau(nw),drange(nw) |
|
183 | real weight(nw),dtau(nw),drange(nw) | |
184 | logical first |
|
184 | logical first | |
185 | data first/.true./ |
|
185 | data first/.true./ | |
186 | c |
|
186 | c | |
187 |
|
187 | |||
188 | c zero out array |
|
188 | c zero out array | |
189 |
|
189 | |||
190 | do i=1,nrange |
|
190 | do i=1,nrange | |
191 | do j=1,nl |
|
191 | do j=1,nl | |
192 | plag(j,i)=0.0 |
|
192 | plag(j,i)=0.0 | |
193 | end do |
|
193 | end do | |
194 | end do |
|
194 | end do | |
195 |
|
195 | |||
196 | c |
|
196 | c | |
197 | c construct lagged products |
|
197 | c construct lagged products | |
198 | c |
|
198 | c | |
199 |
|
199 | |||
200 | if(first) then |
|
200 | if(first) then | |
201 | open(unit=25,file='weights.dat',status='old') |
|
201 | open(unit=25,file='weights.dat',status='old') | |
202 | read (25,*) nwt |
|
202 | read (25,*) nwt | |
203 | do i=1,nwt |
|
203 | do i=1,nwt | |
204 | read(25,*) weight(i),dtau(i),drange(i),ilag(i) |
|
204 | read(25,*) weight(i),dtau(i),drange(i),ilag(i) | |
205 | end do |
|
205 | end do | |
206 | close(25) |
|
206 | close(25) | |
207 | first=.false. |
|
207 | first=.false. | |
208 | end if |
|
208 | end if | |
209 |
|
209 | |||
210 | c can avoid recalculating splines and/or ACFs when parameters repeat |
|
210 | c can avoid recalculating splines and/or ACFs when parameters repeat | |
211 |
|
211 | |||
212 | altp=-1.0 |
|
212 | altp=-1.0 | |
213 | taup=-1.0 |
|
213 | taup=-1.0 | |
214 |
|
214 | |||
215 | do i=1+nl,nrange |
|
215 | do i=1+nl,nrange | |
216 | do j=1,nwt |
|
216 | do j=1,nwt | |
217 | alt=r0+(float(i-1)+drange(j))*dr |
|
217 | alt=r0+(float(i-1)+drange(j))*dr | |
218 | ii=(alt-r0)/dr+1 |
|
218 | ii=(alt-r0)/dr+1 | |
219 |
|
219 | |||
220 | if(alt.ne.altp) then |
|
220 | if(alt.ne.altp) then | |
221 | call get_spline(alt,dens,te,ti1,hf,hef) |
|
221 | call get_spline(alt,dens,te,ti1,hf,hef) | |
222 |
|
222 | |||
223 | c write(*,*) alt,dens,te,ti1,hf,hef |
|
223 | c write(*,*) alt,dens,te,ti1,hf,hef | |
224 |
|
224 | |||
225 | do k=1,nion |
|
225 | do k=1,nion | |
226 | ti(k)=ti1 |
|
226 | ti(k)=ti1 | |
227 | end do |
|
227 | end do | |
228 | fi(2)=hf |
|
228 | fi(2)=hf | |
229 | fi(3)=hef |
|
229 | fi(3)=hef | |
230 | fi(1)=1.0-hf-hef |
|
230 | fi(1)=1.0-hf-hef | |
231 | end if |
|
231 | end if | |
232 |
|
232 | |||
233 | tau=abs(dtau(j)*dr/1.5e5) |
|
233 | tau=abs(dtau(j)*dr/1.5e5) | |
234 | lag=ilag(j)+1 |
|
234 | lag=ilag(j)+1 | |
235 |
|
235 | |||
236 | c write(*,*) i,alpha_prof(i),bfld_prof(i) |
|
236 | c write(*,*) i,alpha_prof(i),bfld_prof(i) | |
237 |
|
237 | |||
238 | if(tau.ne.taup.or.alt.ne.altp) then |
|
238 | if(tau.ne.taup.or.alt.ne.altp) then | |
239 |
|
239 | |||
240 | c two- or three- point Gauss Hermite quadrature rule |
|
240 | c two- or three- point Gauss Hermite quadrature rule | |
241 |
|
241 | |||
242 | c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, |
|
242 | c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, | |
243 | c & alpha_prof(ii)+1.74e-2,dens,bfld_prof(ii),rho1) |
|
243 | c & alpha_prof(ii)+1.74e-2,dens,bfld_prof(ii),rho1) | |
244 |
|
244 | |||
245 | c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, |
|
245 | c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, | |
246 | c & alpha_prof(ii)-1.74e-2,dens,bfld_prof(ii),rho2) |
|
246 | c & alpha_prof(ii)-1.74e-2,dens,bfld_prof(ii),rho2) | |
247 |
|
247 | |||
248 | c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, |
|
248 | c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, | |
249 | c & alpha_prof(ii),dens,bfld_prof(ii),rho1) |
|
249 | c & alpha_prof(ii),dens,bfld_prof(ii),rho1) | |
250 |
|
250 | |||
251 | c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, |
|
251 | c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, | |
252 | c & alpha_prof(ii)+1.9e-2,dens,bfld_prof(ii),rho2) |
|
252 | c & alpha_prof(ii)+1.9e-2,dens,bfld_prof(ii),rho2) | |
253 |
|
253 | |||
254 | c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, |
|
254 | c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, | |
255 | c & alpha_prof(ii)-1.9e-2,dens,bfld_prof(ii),rho3) |
|
255 | c & alpha_prof(ii)-1.9e-2,dens,bfld_prof(ii),rho3) | |
256 |
|
256 | |||
257 | call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, |
|
257 | call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion, | |
258 | & alpha_prof(ii),dens,bfld_prof(ii),rho) |
|
258 | & alpha_prof(ii),dens,bfld_prof(ii),rho) | |
259 |
|
259 | |||
260 | c rho=(rho1+rho2)/2.0 |
|
260 | c rho=(rho1+rho2)/2.0 | |
261 | c rho=(rho2+rho3)*0.29541+rho1*1.18164)/1.77246 |
|
261 | c rho=(rho2+rho3)*0.29541+rho1*1.18164)/1.77246 | |
262 |
|
262 | |||
263 | end if |
|
263 | end if | |
264 |
|
264 | |||
265 | plag(lag,i)=plag(lag,i)+weight(j)*rho*dens*(100.0/alt)**2 |
|
265 | plag(lag,i)=plag(lag,i)+weight(j)*rho*dens*(100.0/alt)**2 | |
266 |
|
266 | |||
267 | altp=alt |
|
267 | altp=alt | |
268 | taup=tau |
|
268 | taup=tau | |
269 |
|
269 | |||
270 | end do |
|
270 | end do | |
271 | end do |
|
271 | end do | |
272 |
|
272 | |||
273 | return |
|
273 | return | |
274 | end |
|
274 | end | |
275 |
|
275 | |||
276 | function atanh(x) |
|
276 | function atanh(x) | |
277 | c |
|
277 | c | |
278 | real atanh,x |
|
278 | real atanh,x | |
279 | c |
|
279 | c | |
280 | atanh=log(sqrt((1.+x)/(1.-x))) |
|
280 | atanh=log(sqrt((1.+x)/(1.-x))) | |
281 | return |
|
281 | return | |
282 | end |
|
282 | end | |
283 |
|
283 | |||
284 | subroutine get_spline(alt,dens,te,ti,hf,hef) |
|
284 | subroutine get_spline(alt,dens,te,ti,hf,hef) | |
285 | c |
|
285 | c | |
286 | c routines for handling cubic b-spline interpolation |
|
286 | c routines for handling cubic b-spline interpolation | |
287 | c gets values consistent with stored coefficients |
|
287 | c gets values consistent with stored coefficients | |
288 | c |
|
288 | c | |
289 |
|
289 | |||
290 | include 'spline.h' |
|
290 | include 'spline.h' | |
291 |
|
291 | |||
292 | c |
|
292 | c | |
293 | c bspline values from 200-1500 km in 15-km intervals |
|
293 | c bspline values from 200-1500 km in 15-km intervals | |
294 | c must specify five knots above ceiling |
|
294 | c must specify five knots above ceiling | |
295 | c note offset ... start accessing splines above bottom two knots |
|
295 | c note offset ... start accessing splines above bottom two knots | |
296 | c |
|
296 | c | |
297 | c five banks of splines, for Ne, Te, Ti, H+, and He+ versus altitude |
|
297 | c five banks of splines, for Ne, Te, Ti, H+, and He+ versus altitude | |
298 | c need to initialize ta somewhere |
|
298 | c need to initialize ta somewhere | |
299 | c |
|
299 | c | |
300 | c write(*,*) "ta: ",ta |
|
300 | c write(*,*) "ta: ",ta | |
301 | c write(*,*) "bcoef(1,1): ",bcoef(1,1) |
|
301 | c write(*,*) "bcoef(1,1): ",bcoef(1,1) | |
302 | c write(*,*) "nspline: ",nspline |
|
302 | c write(*,*) "nspline: ",nspline | |
303 | c write(*,*) "norder: ",norder |
|
303 | c write(*,*) "norder: ",norder | |
304 | c write(*,*) "alt: ",alt |
|
304 | c write(*,*) "alt: ",alt | |
305 | dens=bvalue(ta,bcoef(1,1),nspline,norder,alt,0) |
|
305 | dens=bvalue(ta,bcoef(1,1),nspline,norder,alt,0) | |
306 | c write(*,*) "dens_inside_get_spline: ",dens |
|
306 | c write(*,*) "dens_inside_get_spline: ",dens | |
307 | c write(*,*) dens |
|
307 | c write(*,*) dens | |
308 | c call exit |
|
308 | c call exit | |
309 | dens=10.0**MAX(dens,2.0) |
|
309 | dens=10.0**MAX(dens,2.0) | |
310 | c write(*,*) dens |
|
310 | c write(*,*) dens | |
311 | c call exit |
|
311 | c call exit | |
312 | te=bvalue(ta,bcoef(1,2),nspline,norder,alt,0) |
|
312 | te=bvalue(ta,bcoef(1,2),nspline,norder,alt,0) | |
313 | te=t0+t1*(1.0+tanh(te))/2.0 ! DLH 10/14 was 3500 |
|
313 | te=t0+t1*(1.0+tanh(te))/2.0 ! DLH 10/14 was 3500 | |
314 | c tr=bvalue(ta,bcoef(1,3),nspline,norder,alt,0) |
|
314 | c tr=bvalue(ta,bcoef(1,3),nspline,norder,alt,0) | |
315 | c tr=exp(tr) |
|
315 | c tr=exp(tr) | |
316 | c ti=te/tr |
|
316 | c ti=te/tr | |
317 | ti=bvalue(ta,bcoef(1,3),nspline,norder,alt,0) |
|
317 | ti=bvalue(ta,bcoef(1,3),nspline,norder,alt,0) | |
318 | ti=t0+t1*(1.0+tanh(ti))/2.0 ! DLH 10/14 was 3500 |
|
318 | ti=t0+t1*(1.0+tanh(ti))/2.0 ! DLH 10/14 was 3500 | |
319 | hf=bvalue(ta,bcoef(1,4),nspline,norder,alt,0) |
|
319 | hf=bvalue(ta,bcoef(1,4),nspline,norder,alt,0) | |
320 | hf=(1.0+tanh(hf))/2.0 |
|
320 | hf=(1.0+tanh(hf))/2.0 | |
321 | hef=bvalue(ta,bcoef(1,5),nspline,norder,alt,0) |
|
321 | hef=bvalue(ta,bcoef(1,5),nspline,norder,alt,0) | |
322 | hef=(1.0+tanh(hef))/2.0 |
|
322 | hef=(1.0+tanh(hef))/2.0 | |
323 | return |
|
323 | return | |
324 | end |
|
324 | end | |
325 |
|
325 | |||
326 |
|
326 | |||
327 | real function bvalue ( t, bcoef, n, k, x, jderiv ) |
|
327 | real function bvalue ( t, bcoef, n, k, x, jderiv ) | |
328 | c from * a practical guide to splines * by c. de boor |
|
328 | c from * a practical guide to splines * by c. de boor | |
329 | calls interv |
|
329 | calls interv | |
330 | c |
|
330 | c | |
331 | calculates value at x of jderiv-th derivative of spline from b-repr. |
|
331 | calculates value at x of jderiv-th derivative of spline from b-repr. | |
332 | c the spline is taken to be continuous from the right, EXCEPT at the |
|
332 | c the spline is taken to be continuous from the right, EXCEPT at the | |
333 | c rightmost knot, where it is taken to be continuous from the left. |
|
333 | c rightmost knot, where it is taken to be continuous from the left. | |
334 | c |
|
334 | c | |
335 | c****** i n p u t ****** |
|
335 | c****** i n p u t ****** | |
336 | c t, bcoef, n, k......forms the b-representation of the spline f to |
|
336 | c t, bcoef, n, k......forms the b-representation of the spline f to | |
337 | c be evaluated. specifically, |
|
337 | c be evaluated. specifically, | |
338 | c t.....knot sequence, of length n+k, assumed nondecreasing. |
|
338 | c t.....knot sequence, of length n+k, assumed nondecreasing. | |
339 | c bcoef.....b-coefficient sequence, of length n . |
|
339 | c bcoef.....b-coefficient sequence, of length n . | |
340 | c n.....length of bcoef and dimension of spline(k,t), |
|
340 | c n.....length of bcoef and dimension of spline(k,t), | |
341 | c a s s u m e d positive . |
|
341 | c a s s u m e d positive . | |
342 | c k.....order of the spline . |
|
342 | c k.....order of the spline . | |
343 | c |
|
343 | c | |
344 | c w a r n i n g . . . the restriction k .le. kmax (=20) is imposed |
|
344 | c w a r n i n g . . . the restriction k .le. kmax (=20) is imposed | |
345 | c arbitrarily by the dimension statement for aj, dl, dr below, |
|
345 | c arbitrarily by the dimension statement for aj, dl, dr below, | |
346 | c but is n o w h e r e c h e c k e d for. |
|
346 | c but is n o w h e r e c h e c k e d for. | |
347 | c |
|
347 | c | |
348 | c x.....the point at which to evaluate . |
|
348 | c x.....the point at which to evaluate . | |
349 | c jderiv.....integer giving the order of the derivative to be evaluated |
|
349 | c jderiv.....integer giving the order of the derivative to be evaluated | |
350 | c a s s u m e d to be zero or positive. |
|
350 | c a s s u m e d to be zero or positive. | |
351 | c |
|
351 | c | |
352 | c****** o u t p u t ****** |
|
352 | c****** o u t p u t ****** | |
353 | c bvalue.....the value of the (jderiv)-th derivative of f at x . |
|
353 | c bvalue.....the value of the (jderiv)-th derivative of f at x . | |
354 | c |
|
354 | c | |
355 | c****** m e t h o d ****** |
|
355 | c****** m e t h o d ****** | |
356 | c The nontrivial knot interval (t(i),t(i+1)) containing x is lo- |
|
356 | c The nontrivial knot interval (t(i),t(i+1)) containing x is lo- | |
357 | c cated with the aid of interv . The k b-coeffs of f relevant for |
|
357 | c cated with the aid of interv . The k b-coeffs of f relevant for | |
358 | c this interval are then obtained from bcoef (or taken to be zero if |
|
358 | c this interval are then obtained from bcoef (or taken to be zero if | |
359 | c not explicitly available) and are then differenced jderiv times to |
|
359 | c not explicitly available) and are then differenced jderiv times to | |
360 | c obtain the b-coeffs of (d**jderiv)f relevant for that interval. |
|
360 | c obtain the b-coeffs of (d**jderiv)f relevant for that interval. | |
361 | c Precisely, with j = jderiv, we have from x.(12) of the text that |
|
361 | c Precisely, with j = jderiv, we have from x.(12) of the text that | |
362 | c |
|
362 | c | |
363 | c (d**j)f = sum ( bcoef(.,j)*b(.,k-j,t) ) |
|
363 | c (d**j)f = sum ( bcoef(.,j)*b(.,k-j,t) ) | |
364 | c |
|
364 | c | |
365 | c where |
|
365 | c where | |
366 | c / bcoef(.), , j .eq. 0 |
|
366 | c / bcoef(.), , j .eq. 0 | |
367 | c / |
|
367 | c / | |
368 | c bcoef(.,j) = / bcoef(.,j-1) - bcoef(.-1,j-1) |
|
368 | c bcoef(.,j) = / bcoef(.,j-1) - bcoef(.-1,j-1) | |
369 | c / ----------------------------- , j .gt. 0 |
|
369 | c / ----------------------------- , j .gt. 0 | |
370 | c / (t(.+k-j) - t(.))/(k-j) |
|
370 | c / (t(.+k-j) - t(.))/(k-j) | |
371 | c |
|
371 | c | |
372 | c Then, we use repeatedly the fact that |
|
372 | c Then, we use repeatedly the fact that | |
373 | c |
|
373 | c | |
374 | c sum ( a(.)*b(.,m,t)(x) ) = sum ( a(.,x)*b(.,m-1,t)(x) ) |
|
374 | c sum ( a(.)*b(.,m,t)(x) ) = sum ( a(.,x)*b(.,m-1,t)(x) ) | |
375 | c with |
|
375 | c with | |
376 | c (x - t(.))*a(.) + (t(.+m-1) - x)*a(.-1) |
|
376 | c (x - t(.))*a(.) + (t(.+m-1) - x)*a(.-1) | |
377 | c a(.,x) = --------------------------------------- |
|
377 | c a(.,x) = --------------------------------------- | |
378 | c (x - t(.)) + (t(.+m-1) - x) |
|
378 | c (x - t(.)) + (t(.+m-1) - x) | |
379 | c |
|
379 | c | |
380 | c to write (d**j)f(x) eventually as a linear combination of b-splines |
|
380 | c to write (d**j)f(x) eventually as a linear combination of b-splines | |
381 | c of order 1 , and the coefficient for b(i,1,t)(x) must then be the |
|
381 | c of order 1 , and the coefficient for b(i,1,t)(x) must then be the | |
382 | c desired number (d**j)f(x). (see x.(17)-(19) of text). |
|
382 | c desired number (d**j)f(x). (see x.(17)-(19) of text). | |
383 | c |
|
383 | c | |
384 | parameter (kmax = 40) |
|
384 | parameter (kmax = 40) | |
385 | integer jderiv,k,n, i,ilo,imk,j,jc,jcmin,jcmax,jj,kmj,km1 |
|
385 | integer jderiv,k,n, i,ilo,imk,j,jc,jcmin,jcmax,jj,kmj,km1 | |
386 | * ,mflag,nmi,jdrvp1 |
|
386 | * ,mflag,nmi,jdrvp1 | |
387 | c integer kmax |
|
387 | c integer kmax | |
388 | C real bcoef(n),t(1),x, aj(20),dl(20),dr(20),fkmj |
|
388 | C real bcoef(n),t(1),x, aj(20),dl(20),dr(20),fkmj | |
389 | real bcoef(n),x, aj(kmax),dl(kmax),dr(kmax),fkmj |
|
389 | real bcoef(n),x, aj(kmax),dl(kmax),dr(kmax),fkmj | |
390 | dimension t(n+k) |
|
390 | dimension t(n+k) | |
391 | c former fortran standard made it impossible to specify the length of t |
|
391 | c former fortran standard made it impossible to specify the length of t | |
392 | c precisely without the introduction of otherwise superfluous addition- |
|
392 | c precisely without the introduction of otherwise superfluous addition- | |
393 | c al arguments. |
|
393 | c al arguments. | |
394 | bvalue = 0. |
|
394 | bvalue = 0. | |
395 | if (jderiv .ge. k) go to 99 |
|
395 | if (jderiv .ge. k) go to 99 | |
396 | c |
|
396 | c | |
397 | c *** Find i s.t. 1 .le. i .lt. n+k and t(i) .lt. t(i+1) and |
|
397 | c *** Find i s.t. 1 .le. i .lt. n+k and t(i) .lt. t(i+1) and | |
398 | c t(i) .le. x .lt. t(i+1) . If no such i can be found, x lies |
|
398 | c t(i) .le. x .lt. t(i+1) . If no such i can be found, x lies | |
399 | c outside the support of the spline f , hence bvalue = 0. |
|
399 | c outside the support of the spline f , hence bvalue = 0. | |
400 | c (The asymmetry in this choice of i makes f rightcontinuous, except |
|
400 | c (The asymmetry in this choice of i makes f rightcontinuous, except | |
401 | c at t(n+k) where it is leftcontinuous.) |
|
401 | c at t(n+k) where it is leftcontinuous.) | |
402 | call interv ( t, n+k, x, i, mflag ) |
|
402 | call interv ( t, n+k, x, i, mflag ) | |
403 | if (mflag .ne. 0) go to 99 |
|
403 | if (mflag .ne. 0) go to 99 | |
404 | c *** if k = 1 (and jderiv = 0), bvalue = bcoef(i). |
|
404 | c *** if k = 1 (and jderiv = 0), bvalue = bcoef(i). | |
405 | km1 = k - 1 |
|
405 | km1 = k - 1 | |
406 | if (km1 .gt. 0) go to 1 |
|
406 | if (km1 .gt. 0) go to 1 | |
407 | bvalue = bcoef(i) |
|
407 | bvalue = bcoef(i) | |
408 | go to 99 |
|
408 | go to 99 | |
409 | c |
|
409 | c | |
410 | c *** store the k b-spline coefficients relevant for the knot interval |
|
410 | c *** store the k b-spline coefficients relevant for the knot interval | |
411 | c (t(i),t(i+1)) in aj(1),...,aj(k) and compute dl(j) = x - t(i+1-j), |
|
411 | c (t(i),t(i+1)) in aj(1),...,aj(k) and compute dl(j) = x - t(i+1-j), | |
412 | c dr(j) = t(i+j) - x, j=1,...,k-1 . set any of the aj not obtainable |
|
412 | c dr(j) = t(i+j) - x, j=1,...,k-1 . set any of the aj not obtainable | |
413 | c from input to zero. set any t.s not obtainable equal to t(1) or |
|
413 | c from input to zero. set any t.s not obtainable equal to t(1) or | |
414 | c to t(n+k) appropriately. |
|
414 | c to t(n+k) appropriately. | |
415 | 1 jcmin = 1 |
|
415 | 1 jcmin = 1 | |
416 | imk = i - k |
|
416 | imk = i - k | |
417 | if (imk .ge. 0) go to 8 |
|
417 | if (imk .ge. 0) go to 8 | |
418 | jcmin = 1 - imk |
|
418 | jcmin = 1 - imk | |
419 | do 5 j=1,i |
|
419 | do 5 j=1,i | |
420 | 5 dl(j) = x - t(i+1-j) |
|
420 | 5 dl(j) = x - t(i+1-j) | |
421 | do 6 j=i,km1 |
|
421 | do 6 j=i,km1 | |
422 | aj(k-j) = 0. |
|
422 | aj(k-j) = 0. | |
423 | 6 dl(j) = dl(i) |
|
423 | 6 dl(j) = dl(i) | |
424 | go to 10 |
|
424 | go to 10 | |
425 | 8 do 9 j=1,km1 |
|
425 | 8 do 9 j=1,km1 | |
426 | 9 dl(j) = x - t(i+1-j) |
|
426 | 9 dl(j) = x - t(i+1-j) | |
427 | c |
|
427 | c | |
428 | 10 jcmax = k |
|
428 | 10 jcmax = k | |
429 | nmi = n - i |
|
429 | nmi = n - i | |
430 | if (nmi .ge. 0) go to 18 |
|
430 | if (nmi .ge. 0) go to 18 | |
431 | jcmax = k + nmi |
|
431 | jcmax = k + nmi | |
432 | do 15 j=1,jcmax |
|
432 | do 15 j=1,jcmax | |
433 | 15 dr(j) = t(i+j) - x |
|
433 | 15 dr(j) = t(i+j) - x | |
434 | do 16 j=jcmax,km1 |
|
434 | do 16 j=jcmax,km1 | |
435 | aj(j+1) = 0. |
|
435 | aj(j+1) = 0. | |
436 | 16 dr(j) = dr(jcmax) |
|
436 | 16 dr(j) = dr(jcmax) | |
437 | go to 20 |
|
437 | go to 20 | |
438 | 18 do 19 j=1,km1 |
|
438 | 18 do 19 j=1,km1 | |
439 | 19 dr(j) = t(i+j) - x |
|
439 | 19 dr(j) = t(i+j) - x | |
440 | c |
|
440 | c | |
441 | 20 do 21 jc=jcmin,jcmax |
|
441 | 20 do 21 jc=jcmin,jcmax | |
442 | 21 aj(jc) = bcoef(imk + jc) |
|
442 | 21 aj(jc) = bcoef(imk + jc) | |
443 | c |
|
443 | c | |
444 | c *** difference the coefficients jderiv times. |
|
444 | c *** difference the coefficients jderiv times. | |
445 | if (jderiv .eq. 0) go to 30 |
|
445 | if (jderiv .eq. 0) go to 30 | |
446 | do 23 j=1,jderiv |
|
446 | do 23 j=1,jderiv | |
447 | kmj = k-j |
|
447 | kmj = k-j | |
448 | fkmj = float(kmj) |
|
448 | fkmj = float(kmj) | |
449 | ilo = kmj |
|
449 | ilo = kmj | |
450 | do 23 jj=1,kmj |
|
450 | do 23 jj=1,kmj | |
451 | aj(jj) = ((aj(jj+1) - aj(jj))/(dl(ilo) + dr(jj)))*fkmj |
|
451 | aj(jj) = ((aj(jj+1) - aj(jj))/(dl(ilo) + dr(jj)))*fkmj | |
452 | 23 ilo = ilo - 1 |
|
452 | 23 ilo = ilo - 1 | |
453 | c |
|
453 | c | |
454 | c *** compute value at x in (t(i),t(i+1)) of jderiv-th derivative, |
|
454 | c *** compute value at x in (t(i),t(i+1)) of jderiv-th derivative, | |
455 | c given its relevant b-spline coeffs in aj(1),...,aj(k-jderiv). |
|
455 | c given its relevant b-spline coeffs in aj(1),...,aj(k-jderiv). | |
456 | 30 if (jderiv .eq. km1) go to 39 |
|
456 | 30 if (jderiv .eq. km1) go to 39 | |
457 | jdrvp1 = jderiv + 1 |
|
457 | jdrvp1 = jderiv + 1 | |
458 | do 33 j=jdrvp1,km1 |
|
458 | do 33 j=jdrvp1,km1 | |
459 | kmj = k-j |
|
459 | kmj = k-j | |
460 | ilo = kmj |
|
460 | ilo = kmj | |
461 | do 33 jj=1,kmj |
|
461 | do 33 jj=1,kmj | |
462 | aj(jj) = (aj(jj+1)*dl(ilo) + aj(jj)*dr(jj))/(dl(ilo)+dr(jj)) |
|
462 | aj(jj) = (aj(jj+1)*dl(ilo) + aj(jj)*dr(jj))/(dl(ilo)+dr(jj)) | |
463 | 33 ilo = ilo - 1 |
|
463 | 33 ilo = ilo - 1 | |
464 | 39 bvalue = aj(1) |
|
464 | 39 bvalue = aj(1) | |
465 | c |
|
465 | c | |
466 | 99 return |
|
466 | 99 return | |
467 | end |
|
467 | end | |
468 | subroutine interv ( xt, lxt, x, left, mflag ) |
|
468 | subroutine interv ( xt, lxt, x, left, mflag ) | |
469 | c from * a practical guide to splines * by C. de Boor |
|
469 | c from * a practical guide to splines * by C. de Boor | |
470 | computes left = max( i : xt(i) .lt. xt(lxt) .and. xt(i) .le. x ) . |
|
470 | computes left = max( i : xt(i) .lt. xt(lxt) .and. xt(i) .le. x ) . | |
471 | c |
|
471 | c | |
472 | c****** i n p u t ****** |
|
472 | c****** i n p u t ****** | |
473 | c xt.....a real sequence, of length lxt , assumed to be nondecreasing |
|
473 | c xt.....a real sequence, of length lxt , assumed to be nondecreasing | |
474 | c lxt.....number of terms in the sequence xt . |
|
474 | c lxt.....number of terms in the sequence xt . | |
475 | c x.....the point whose location with respect to the sequence xt is |
|
475 | c x.....the point whose location with respect to the sequence xt is | |
476 | c to be determined. |
|
476 | c to be determined. | |
477 | c |
|
477 | c | |
478 | c****** o u t p u t ****** |
|
478 | c****** o u t p u t ****** | |
479 | c left, mflag.....both integers, whose value is |
|
479 | c left, mflag.....both integers, whose value is | |
480 | c |
|
480 | c | |
481 | c 1 -1 if x .lt. xt(1) |
|
481 | c 1 -1 if x .lt. xt(1) | |
482 | c i 0 if xt(i) .le. x .lt. xt(i+1) |
|
482 | c i 0 if xt(i) .le. x .lt. xt(i+1) | |
483 | c i 0 if xt(i) .lt. x .eq. xt(i+1) .eq. xt(lxt) |
|
483 | c i 0 if xt(i) .lt. x .eq. xt(i+1) .eq. xt(lxt) | |
484 | c i 1 if xt(i) .lt. xt(i+1) .eq. xt(lxt) .lt. x |
|
484 | c i 1 if xt(i) .lt. xt(i+1) .eq. xt(lxt) .lt. x | |
485 | c |
|
485 | c | |
486 | c In particular, mflag = 0 is the 'usual' case. mflag .ne. 0 |
|
486 | c In particular, mflag = 0 is the 'usual' case. mflag .ne. 0 | |
487 | c indicates that x lies outside the CLOSED interval |
|
487 | c indicates that x lies outside the CLOSED interval | |
488 | c xt(1) .le. y .le. xt(lxt) . The asymmetric treatment of the |
|
488 | c xt(1) .le. y .le. xt(lxt) . The asymmetric treatment of the | |
489 | c intervals is due to the decision to make all pp functions cont- |
|
489 | c intervals is due to the decision to make all pp functions cont- | |
490 | c inuous from the right, but, by returning mflag = 0 even if |
|
490 | c inuous from the right, but, by returning mflag = 0 even if | |
491 | C x = xt(lxt), there is the option of having the computed pp function |
|
491 | C x = xt(lxt), there is the option of having the computed pp function | |
492 | c continuous from the left at xt(lxt) . |
|
492 | c continuous from the left at xt(lxt) . | |
493 | c |
|
493 | c | |
494 | c****** m e t h o d ****** |
|
494 | c****** m e t h o d ****** | |
495 | c The program is designed to be efficient in the common situation that |
|
495 | c The program is designed to be efficient in the common situation that | |
496 | c it is called repeatedly, with x taken from an increasing or decrea- |
|
496 | c it is called repeatedly, with x taken from an increasing or decrea- | |
497 | c sing sequence. This will happen, e.g., when a pp function is to be |
|
497 | c sing sequence. This will happen, e.g., when a pp function is to be | |
498 | c graphed. The first guess for left is therefore taken to be the val- |
|
498 | c graphed. The first guess for left is therefore taken to be the val- | |
499 | c ue returned at the previous call and stored in the l o c a l varia- |
|
499 | c ue returned at the previous call and stored in the l o c a l varia- | |
500 | c ble ilo . A first check ascertains that ilo .lt. lxt (this is nec- |
|
500 | c ble ilo . A first check ascertains that ilo .lt. lxt (this is nec- | |
501 | c essary since the present call may have nothing to do with the previ- |
|
501 | c essary since the present call may have nothing to do with the previ- | |
502 | c ous call). Then, if xt(ilo) .le. x .lt. xt(ilo+1), we set left = |
|
502 | c ous call). Then, if xt(ilo) .le. x .lt. xt(ilo+1), we set left = | |
503 | c ilo and are done after just three comparisons. |
|
503 | c ilo and are done after just three comparisons. | |
504 | c Otherwise, we repeatedly double the difference istep = ihi - ilo |
|
504 | c Otherwise, we repeatedly double the difference istep = ihi - ilo | |
505 | c while also moving ilo and ihi in the direction of x , until |
|
505 | c while also moving ilo and ihi in the direction of x , until | |
506 | c xt(ilo) .le. x .lt. xt(ihi) , |
|
506 | c xt(ilo) .le. x .lt. xt(ihi) , | |
507 | c after which we use bisection to get, in addition, ilo+1 = ihi . |
|
507 | c after which we use bisection to get, in addition, ilo+1 = ihi . | |
508 | c left = ilo is then returned. |
|
508 | c left = ilo is then returned. | |
509 | c |
|
509 | c | |
510 | integer left,lxt,mflag, ihi,ilo,istep,middle |
|
510 | integer left,lxt,mflag, ihi,ilo,istep,middle | |
511 | real x,xt(lxt) |
|
511 | real x,xt(lxt) | |
512 | data ilo /1/ |
|
512 | data ilo /1/ | |
513 | save ilo |
|
513 | save ilo | |
514 | ihi = ilo + 1 |
|
514 | ihi = ilo + 1 | |
515 | if (ihi .lt. lxt) go to 20 |
|
515 | if (ihi .lt. lxt) go to 20 | |
516 | if (x .ge. xt(lxt)) go to 110 |
|
516 | if (x .ge. xt(lxt)) go to 110 | |
517 | if (lxt .le. 1) go to 90 |
|
517 | if (lxt .le. 1) go to 90 | |
518 | ilo = lxt - 1 |
|
518 | ilo = lxt - 1 | |
519 | ihi = lxt |
|
519 | ihi = lxt | |
520 | c |
|
520 | c | |
521 | 20 if (x .ge. xt(ihi)) go to 40 |
|
521 | 20 if (x .ge. xt(ihi)) go to 40 | |
522 | if (x .ge. xt(ilo)) go to 100 |
|
522 | if (x .ge. xt(ilo)) go to 100 | |
523 | c |
|
523 | c | |
524 | c **** now x .lt. xt(ilo) . decrease ilo to capture x . |
|
524 | c **** now x .lt. xt(ilo) . decrease ilo to capture x . | |
525 | istep = 1 |
|
525 | istep = 1 | |
526 | 31 ihi = ilo |
|
526 | 31 ihi = ilo | |
527 | ilo = ihi - istep |
|
527 | ilo = ihi - istep | |
528 | if (ilo .le. 1) go to 35 |
|
528 | if (ilo .le. 1) go to 35 | |
529 | if (x .ge. xt(ilo)) go to 50 |
|
529 | if (x .ge. xt(ilo)) go to 50 | |
530 | istep = istep*2 |
|
530 | istep = istep*2 | |
531 | go to 31 |
|
531 | go to 31 | |
532 | 35 ilo = 1 |
|
532 | 35 ilo = 1 | |
533 | if (x .lt. xt(1)) go to 90 |
|
533 | if (x .lt. xt(1)) go to 90 | |
534 | go to 50 |
|
534 | go to 50 | |
535 | c **** now x .ge. xt(ihi) . increase ihi to capture x . |
|
535 | c **** now x .ge. xt(ihi) . increase ihi to capture x . | |
536 | 40 istep = 1 |
|
536 | 40 istep = 1 | |
537 | 41 ilo = ihi |
|
537 | 41 ilo = ihi | |
538 | ihi = ilo + istep |
|
538 | ihi = ilo + istep | |
539 | if (ihi .ge. lxt) go to 45 |
|
539 | if (ihi .ge. lxt) go to 45 | |
540 | if (x .lt. xt(ihi)) go to 50 |
|
540 | if (x .lt. xt(ihi)) go to 50 | |
541 | istep = istep*2 |
|
541 | istep = istep*2 | |
542 | go to 41 |
|
542 | go to 41 | |
543 | 45 if (x .ge. xt(lxt)) go to 110 |
|
543 | 45 if (x .ge. xt(lxt)) go to 110 | |
544 | ihi = lxt |
|
544 | ihi = lxt | |
545 | c |
|
545 | c | |
546 | c **** now xt(ilo) .le. x .lt. xt(ihi) . narrow the interval. |
|
546 | c **** now xt(ilo) .le. x .lt. xt(ihi) . narrow the interval. | |
547 | 50 middle = (ilo + ihi)/2 |
|
547 | 50 middle = (ilo + ihi)/2 | |
548 | if (middle .eq. ilo) go to 100 |
|
548 | if (middle .eq. ilo) go to 100 | |
549 | c note. it is assumed that middle = ilo in case ihi = ilo+1 . |
|
549 | c note. it is assumed that middle = ilo in case ihi = ilo+1 . | |
550 | if (x .lt. xt(middle)) go to 53 |
|
550 | if (x .lt. xt(middle)) go to 53 | |
551 | ilo = middle |
|
551 | ilo = middle | |
552 | go to 50 |
|
552 | go to 50 | |
553 | 53 ihi = middle |
|
553 | 53 ihi = middle | |
554 | go to 50 |
|
554 | go to 50 | |
555 | c**** set output and return. |
|
555 | c**** set output and return. | |
556 | 90 mflag = -1 |
|
556 | 90 mflag = -1 | |
557 | left = 1 |
|
557 | left = 1 | |
558 | return |
|
558 | return | |
559 | 100 mflag = 0 |
|
559 | 100 mflag = 0 | |
560 | left = ilo |
|
560 | left = ilo | |
561 | return |
|
561 | return | |
562 | 110 mflag = 1 |
|
562 | 110 mflag = 1 | |
563 | if (x .eq. xt(lxt)) mflag = 0 |
|
563 | if (x .eq. xt(lxt)) mflag = 0 | |
564 | left = lxt |
|
564 | left = lxt | |
565 | 111 if (left .eq. 1) return |
|
565 | 111 if (left .eq. 1) return | |
566 | left = left - 1 |
|
566 | left = left - 1 | |
567 | if (xt(left) .lt. xt(lxt)) return |
|
567 | if (xt(left) .lt. xt(lxt)) return | |
568 | go to 111 |
|
568 | go to 111 | |
569 | end |
|
569 | end |
General Comments 0
You need to be logged in to leave comments.
Login now