The requested changes are too big and content was truncated. Show full diff
@@ -1,1093 +1,1094 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Definition of diferent Data objects for different types of data |
|
6 | 6 | |
|
7 | 7 | Here you will find the diferent data objects for the different types |
|
8 | 8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
9 | 9 | processing units and operations. Currently the supported data objects are: |
|
10 | 10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
11 | 11 | """ |
|
12 | 12 | |
|
13 | 13 | import copy |
|
14 | 14 | import numpy |
|
15 | 15 | import datetime |
|
16 | 16 | import json |
|
17 | 17 | |
|
18 | 18 | import schainpy.admin |
|
19 | 19 | from schainpy.utils import log |
|
20 | 20 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
21 | 21 | from schainpy.model.data import _noise |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def getNumpyDtype(dataTypeCode): |
|
25 | 25 | |
|
26 | 26 | if dataTypeCode == 0: |
|
27 | 27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
28 | 28 | elif dataTypeCode == 1: |
|
29 | 29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
30 | 30 | elif dataTypeCode == 2: |
|
31 | 31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
32 | 32 | elif dataTypeCode == 3: |
|
33 | 33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
34 | 34 | elif dataTypeCode == 4: |
|
35 | 35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
36 | 36 | elif dataTypeCode == 5: |
|
37 | 37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
38 | 38 | else: |
|
39 | 39 | raise ValueError('dataTypeCode was not defined') |
|
40 | 40 | |
|
41 | 41 | return numpyDtype |
|
42 | 42 | |
|
43 | 43 | |
|
44 | 44 | def getDataTypeCode(numpyDtype): |
|
45 | 45 | |
|
46 | 46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
47 | 47 | datatype = 0 |
|
48 | 48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
49 | 49 | datatype = 1 |
|
50 | 50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
51 | 51 | datatype = 2 |
|
52 | 52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
53 | 53 | datatype = 3 |
|
54 | 54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
55 | 55 | datatype = 4 |
|
56 | 56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
57 | 57 | datatype = 5 |
|
58 | 58 | else: |
|
59 | 59 | datatype = None |
|
60 | 60 | |
|
61 | 61 | return datatype |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | def hildebrand_sekhon(data, navg): |
|
65 | 65 | """ |
|
66 | 66 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
67 | 67 | implementation technique is based on the fact that the standard deviation of the spectral |
|
68 | 68 | densities is equal to the mean spectral density for white Gaussian noise |
|
69 | 69 | |
|
70 | 70 | Inputs: |
|
71 | 71 | Data : heights |
|
72 | 72 | navg : numbers of averages |
|
73 | 73 | |
|
74 | 74 | Return: |
|
75 | 75 | mean : noise's level |
|
76 | 76 | """ |
|
77 | 77 | |
|
78 | 78 | sortdata = numpy.sort(data, axis=None) |
|
79 | 79 | #print(numpy.shape(data)) |
|
80 | 80 | #exit() |
|
81 |
|
|
|
81 | ||
|
82 | 82 | lenOfData = len(sortdata) |
|
83 | 83 | nums_min = lenOfData*0.2 |
|
84 | 84 | |
|
85 | 85 | if nums_min <= 5: |
|
86 | 86 | |
|
87 | 87 | nums_min = 5 |
|
88 | 88 | |
|
89 | 89 | sump = 0. |
|
90 | 90 | sumq = 0. |
|
91 | 91 | |
|
92 | 92 | j = 0 |
|
93 | 93 | cont = 1 |
|
94 | 94 | |
|
95 | 95 | while((cont == 1)and(j < lenOfData)): |
|
96 | 96 | |
|
97 | 97 | sump += sortdata[j] |
|
98 | 98 | sumq += sortdata[j]**2 |
|
99 | 99 | |
|
100 | 100 | if j > nums_min: |
|
101 | 101 | rtest = float(j)/(j-1) + 1.0/navg |
|
102 | 102 | if ((sumq*j) > (rtest*sump**2)): |
|
103 | 103 | j = j - 1 |
|
104 | 104 | sump = sump - sortdata[j] |
|
105 | 105 | sumq = sumq - sortdata[j]**2 |
|
106 | 106 | cont = 0 |
|
107 | 107 | |
|
108 | 108 | j += 1 |
|
109 | 109 | |
|
110 | 110 | lnoise = sump / j |
|
111 | ||
|
111 | ||
|
112 | 112 | return lnoise |
|
113 |
|
|
|
114 | return _noise.hildebrand_sekhon(sortdata, navg) | |
|
113 | ||
|
114 | #return _noise.hildebrand_sekhon(sortdata, navg) | |
|
115 | 115 | |
|
116 | 116 | |
|
117 | 117 | class Beam: |
|
118 | 118 | |
|
119 | 119 | def __init__(self): |
|
120 | 120 | self.codeList = [] |
|
121 | 121 | self.azimuthList = [] |
|
122 | 122 | self.zenithList = [] |
|
123 | 123 | |
|
124 | 124 | |
|
125 | 125 | class GenericData(object): |
|
126 | 126 | |
|
127 | 127 | flagNoData = True |
|
128 | 128 | blockReader = False |
|
129 | 129 | |
|
130 | 130 | def copy(self, inputObj=None): |
|
131 | 131 | |
|
132 | 132 | if inputObj == None: |
|
133 | 133 | return copy.deepcopy(self) |
|
134 | 134 | |
|
135 | 135 | for key in list(inputObj.__dict__.keys()): |
|
136 | 136 | |
|
137 | 137 | attribute = inputObj.__dict__[key] |
|
138 | 138 | |
|
139 | 139 | # If this attribute is a tuple or list |
|
140 | 140 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
141 | 141 | self.__dict__[key] = attribute[:] |
|
142 | 142 | continue |
|
143 | 143 | |
|
144 | 144 | # If this attribute is another object or instance |
|
145 | 145 | if hasattr(attribute, '__dict__'): |
|
146 | 146 | self.__dict__[key] = attribute.copy() |
|
147 | 147 | continue |
|
148 | 148 | |
|
149 | 149 | self.__dict__[key] = inputObj.__dict__[key] |
|
150 | 150 | |
|
151 | 151 | def deepcopy(self): |
|
152 | 152 | |
|
153 | 153 | return copy.deepcopy(self) |
|
154 | 154 | |
|
155 | 155 | def isEmpty(self): |
|
156 | 156 | |
|
157 | 157 | return self.flagNoData |
|
158 | 158 | |
|
159 | 159 | def isReady(self): |
|
160 | 160 | |
|
161 | 161 | return not self.flagNoData |
|
162 | 162 | |
|
163 | 163 | |
|
164 | 164 | class JROData(GenericData): |
|
165 | 165 | |
|
166 | 166 | systemHeaderObj = SystemHeader() |
|
167 | 167 | radarControllerHeaderObj = RadarControllerHeader() |
|
168 | 168 | type = None |
|
169 | 169 | datatype = None # dtype but in string |
|
170 | 170 | nProfiles = None |
|
171 | 171 | heightList = None |
|
172 | 172 | channelList = None |
|
173 | 173 | flagDiscontinuousBlock = False |
|
174 | 174 | useLocalTime = False |
|
175 | 175 | utctime = None |
|
176 | 176 | timeZone = None |
|
177 | 177 | dstFlag = None |
|
178 | 178 | errorCount = None |
|
179 | 179 | blocksize = None |
|
180 | 180 | flagDecodeData = False # asumo q la data no esta decodificada |
|
181 | 181 | flagDeflipData = False # asumo q la data no esta sin flip |
|
182 | 182 | flagShiftFFT = False |
|
183 | 183 | nCohInt = None |
|
184 | 184 | windowOfFilter = 1 |
|
185 | 185 | C = 3e8 |
|
186 | 186 | frequency = 49.92e6 |
|
187 | 187 | realtime = False |
|
188 | 188 | beacon_heiIndexList = None |
|
189 | 189 | last_block = None |
|
190 | 190 | blocknow = None |
|
191 | 191 | azimuth = None |
|
192 | 192 | zenith = None |
|
193 | 193 | beam = Beam() |
|
194 | 194 | profileIndex = None |
|
195 | 195 | error = None |
|
196 | 196 | data = None |
|
197 | 197 | nmodes = None |
|
198 | 198 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
199 | 199 | |
|
200 | 200 | def __str__(self): |
|
201 | 201 | |
|
202 | 202 | try: |
|
203 | 203 | dt = self.datatime |
|
204 | 204 | except: |
|
205 | 205 | dt = 'None' |
|
206 | 206 | return '{} - {}'.format(self.type, dt) |
|
207 | 207 | |
|
208 | 208 | def getNoise(self): |
|
209 | 209 | |
|
210 | 210 | raise NotImplementedError |
|
211 | 211 | |
|
212 | 212 | @property |
|
213 | 213 | def nChannels(self): |
|
214 | 214 | |
|
215 | 215 | return len(self.channelList) |
|
216 | 216 | |
|
217 | 217 | @property |
|
218 | 218 | def channelIndexList(self): |
|
219 | 219 | |
|
220 | 220 | return list(range(self.nChannels)) |
|
221 | 221 | |
|
222 | 222 | @property |
|
223 | 223 | def nHeights(self): |
|
224 | 224 | |
|
225 | 225 | return len(self.heightList) |
|
226 | 226 | |
|
227 | 227 | def getDeltaH(self): |
|
228 | 228 | |
|
229 | 229 | return self.heightList[1] - self.heightList[0] |
|
230 | 230 | |
|
231 | 231 | @property |
|
232 | 232 | def ltctime(self): |
|
233 | 233 | |
|
234 | 234 | if self.useLocalTime: |
|
235 | 235 | return self.utctime - self.timeZone * 60 |
|
236 | 236 | |
|
237 | 237 | return self.utctime |
|
238 | 238 | |
|
239 | 239 | @property |
|
240 | 240 | def datatime(self): |
|
241 | 241 | |
|
242 | 242 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
243 | 243 | return datatimeValue |
|
244 | 244 | |
|
245 | 245 | def getTimeRange(self): |
|
246 | 246 | |
|
247 | 247 | datatime = [] |
|
248 | 248 | |
|
249 | 249 | datatime.append(self.ltctime) |
|
250 | 250 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
251 | 251 | |
|
252 | 252 | datatime = numpy.array(datatime) |
|
253 | 253 | |
|
254 | 254 | return datatime |
|
255 | 255 | |
|
256 | 256 | def getFmaxTimeResponse(self): |
|
257 | 257 | |
|
258 | 258 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
259 | 259 | |
|
260 | 260 | PRF = 1. / (period * self.nCohInt) |
|
261 | 261 | |
|
262 | 262 | fmax = PRF |
|
263 | 263 | |
|
264 | 264 | return fmax |
|
265 | 265 | |
|
266 | 266 | def getFmax(self): |
|
267 | 267 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
268 | 268 | #print("ippsec",self.ippSeconds) |
|
269 | 269 | fmax = PRF |
|
270 | 270 | return fmax |
|
271 | 271 | |
|
272 | 272 | def getVmax(self): |
|
273 | 273 | |
|
274 | 274 | _lambda = self.C / self.frequency |
|
275 | 275 | |
|
276 | 276 | vmax = self.getFmax() * _lambda / 2 |
|
277 | 277 | |
|
278 | 278 | return vmax |
|
279 | 279 | |
|
280 | 280 | @property |
|
281 | 281 | def ippSeconds(self): |
|
282 | 282 | ''' |
|
283 | 283 | ''' |
|
284 | 284 | return self.radarControllerHeaderObj.ippSeconds |
|
285 | 285 | |
|
286 | 286 | @ippSeconds.setter |
|
287 | 287 | def ippSeconds(self, ippSeconds): |
|
288 | 288 | ''' |
|
289 | 289 | ''' |
|
290 | 290 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
291 | 291 | |
|
292 | 292 | @property |
|
293 | 293 | def code(self): |
|
294 | 294 | ''' |
|
295 | 295 | ''' |
|
296 | 296 | return self.radarControllerHeaderObj.code |
|
297 | 297 | |
|
298 | 298 | @code.setter |
|
299 | 299 | def code(self, code): |
|
300 | 300 | ''' |
|
301 | 301 | ''' |
|
302 | 302 | self.radarControllerHeaderObj.code = code |
|
303 | 303 | |
|
304 | 304 | @property |
|
305 | 305 | def nCode(self): |
|
306 | 306 | ''' |
|
307 | 307 | ''' |
|
308 | 308 | return self.radarControllerHeaderObj.nCode |
|
309 | 309 | |
|
310 | 310 | @nCode.setter |
|
311 | 311 | def nCode(self, ncode): |
|
312 | 312 | ''' |
|
313 | 313 | ''' |
|
314 | 314 | self.radarControllerHeaderObj.nCode = ncode |
|
315 | 315 | |
|
316 | 316 | @property |
|
317 | 317 | def nBaud(self): |
|
318 | 318 | ''' |
|
319 | 319 | ''' |
|
320 | 320 | return self.radarControllerHeaderObj.nBaud |
|
321 | 321 | |
|
322 | 322 | @nBaud.setter |
|
323 | 323 | def nBaud(self, nbaud): |
|
324 | 324 | ''' |
|
325 | 325 | ''' |
|
326 | 326 | self.radarControllerHeaderObj.nBaud = nbaud |
|
327 | 327 | |
|
328 | 328 | @property |
|
329 | 329 | def ipp(self): |
|
330 | 330 | ''' |
|
331 | 331 | ''' |
|
332 | 332 | return self.radarControllerHeaderObj.ipp |
|
333 | 333 | |
|
334 | 334 | @ipp.setter |
|
335 | 335 | def ipp(self, ipp): |
|
336 | 336 | ''' |
|
337 | 337 | ''' |
|
338 | 338 | self.radarControllerHeaderObj.ipp = ipp |
|
339 | 339 | |
|
340 | 340 | @property |
|
341 | 341 | def metadata(self): |
|
342 | 342 | ''' |
|
343 | 343 | ''' |
|
344 | 344 | |
|
345 | 345 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
346 | 346 | |
|
347 | 347 | |
|
348 | 348 | class Voltage(JROData): |
|
349 | 349 | |
|
350 | 350 | dataPP_POW = None |
|
351 | 351 | dataPP_DOP = None |
|
352 | 352 | dataPP_WIDTH = None |
|
353 | 353 | dataPP_SNR = None |
|
354 | 354 | |
|
355 | 355 | def __init__(self): |
|
356 | 356 | ''' |
|
357 | 357 | Constructor |
|
358 | 358 | ''' |
|
359 | 359 | |
|
360 | 360 | self.useLocalTime = True |
|
361 | 361 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
362 | 362 | self.systemHeaderObj = SystemHeader() |
|
363 | 363 | self.type = "Voltage" |
|
364 | 364 | self.data = None |
|
365 | 365 | self.nProfiles = None |
|
366 | 366 | self.heightList = None |
|
367 | 367 | self.channelList = None |
|
368 | 368 | self.flagNoData = True |
|
369 | 369 | self.flagDiscontinuousBlock = False |
|
370 | 370 | self.utctime = None |
|
371 | 371 | self.timeZone = 0 |
|
372 | 372 | self.dstFlag = None |
|
373 | 373 | self.errorCount = None |
|
374 | 374 | self.nCohInt = None |
|
375 | 375 | self.blocksize = None |
|
376 | 376 | self.flagCohInt = False |
|
377 | 377 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
378 | 378 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
379 | 379 | self.flagShiftFFT = False |
|
380 | 380 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
381 | 381 | self.profileIndex = 0 |
|
382 | 382 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
383 | 383 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
384 | 384 | |
|
385 | 385 | def getNoisebyHildebrand(self, channel=None, Profmin_index=None, Profmax_index=None): |
|
386 | 386 | """ |
|
387 | 387 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
388 | 388 | |
|
389 | 389 | Return: |
|
390 | 390 | noiselevel |
|
391 | 391 | """ |
|
392 | 392 | |
|
393 | 393 | if channel != None: |
|
394 | 394 | data = self.data[channel] |
|
395 | 395 | nChannels = 1 |
|
396 | 396 | else: |
|
397 | 397 | data = self.data |
|
398 | 398 | nChannels = self.nChannels |
|
399 | 399 | |
|
400 | 400 | noise = numpy.zeros(nChannels) |
|
401 | 401 | power = data * numpy.conjugate(data) |
|
402 | 402 | |
|
403 | 403 | for thisChannel in range(nChannels): |
|
404 | 404 | if nChannels == 1: |
|
405 | 405 | daux = power[:].real |
|
406 | 406 | else: |
|
407 | 407 | #print(power.shape) |
|
408 | 408 | daux = power[thisChannel, Profmin_index:Profmax_index, :].real |
|
409 | 409 | #print(daux.shape) |
|
410 | 410 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
411 | 411 | |
|
412 | 412 | return noise |
|
413 | 413 | |
|
414 | 414 | def getNoise(self, type=1, channel=None, Profmin_index=None, Profmax_index=None): |
|
415 | 415 | |
|
416 | 416 | if type == 1: |
|
417 | 417 | noise = self.getNoisebyHildebrand(channel, Profmin_index, Profmax_index) |
|
418 | 418 | |
|
419 | 419 | return noise |
|
420 | 420 | |
|
421 | 421 | def getPower(self, channel=None): |
|
422 | 422 | |
|
423 | 423 | if channel != None: |
|
424 | 424 | data = self.data[channel] |
|
425 | 425 | else: |
|
426 | 426 | data = self.data |
|
427 | 427 | |
|
428 | 428 | power = data * numpy.conjugate(data) |
|
429 | 429 | powerdB = 10 * numpy.log10(power.real) |
|
430 | 430 | powerdB = numpy.squeeze(powerdB) |
|
431 | 431 | |
|
432 | 432 | return powerdB |
|
433 | 433 | |
|
434 | 434 | @property |
|
435 | 435 | def timeInterval(self): |
|
436 | 436 | |
|
437 | 437 | return self.ippSeconds * self.nCohInt |
|
438 | 438 | |
|
439 | 439 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
440 | 440 | |
|
441 | 441 | |
|
442 | 442 | class Spectra(JROData): |
|
443 | 443 | |
|
444 | 444 | def __init__(self): |
|
445 | 445 | ''' |
|
446 | 446 | Constructor |
|
447 | 447 | ''' |
|
448 | 448 | |
|
449 | 449 | self.data_dc = None |
|
450 | 450 | self.data_spc = None |
|
451 | 451 | self.data_cspc = None |
|
452 | 452 | self.useLocalTime = True |
|
453 | 453 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
454 | 454 | self.systemHeaderObj = SystemHeader() |
|
455 | 455 | self.type = "Spectra" |
|
456 | 456 | self.timeZone = 0 |
|
457 | 457 | self.nProfiles = None |
|
458 | 458 | self.heightList = None |
|
459 | 459 | self.channelList = None |
|
460 | 460 | self.pairsList = None |
|
461 | 461 | self.flagNoData = True |
|
462 | 462 | self.flagDiscontinuousBlock = False |
|
463 | 463 | self.utctime = None |
|
464 | 464 | self.nCohInt = None |
|
465 | 465 | self.nIncohInt = None |
|
466 | 466 | self.blocksize = None |
|
467 | 467 | self.nFFTPoints = None |
|
468 | 468 | self.wavelength = None |
|
469 | 469 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
470 | 470 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
471 | 471 | self.flagShiftFFT = False |
|
472 | 472 | self.ippFactor = 1 |
|
473 | 473 | self.beacon_heiIndexList = [] |
|
474 | 474 | self.noise_estimation = None |
|
475 | 475 | self.spc_noise = None |
|
476 | 476 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
477 | 477 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp', 'nIncohInt', 'nFFTPoints', 'nProfiles', 'flagDecodeData'] |
|
478 | 478 | |
|
479 | 479 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
480 | 480 | """ |
|
481 | 481 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
482 | 482 | |
|
483 | 483 | Return: |
|
484 | 484 | noiselevel |
|
485 | 485 | """ |
|
486 | 486 | |
|
487 | 487 | noise = numpy.zeros(self.nChannels) |
|
488 | 488 | |
|
489 | 489 | for channel in range(self.nChannels): |
|
490 | 490 | #print(self.data_spc[0]) |
|
491 | 491 | #exit(1) |
|
492 | 492 | daux = self.data_spc[channel, |
|
493 | 493 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
494 | #print("daux",daux) | |
|
494 | 495 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
495 | 496 | |
|
496 | 497 | return noise |
|
497 | 498 | |
|
498 | 499 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
499 | 500 | |
|
500 | 501 | if self.spc_noise is not None: |
|
501 | 502 | # this was estimated by getNoise Operation defined in jroproc_parameters.py |
|
502 | 503 | return self.spc_noise |
|
503 | 504 | elif self.noise_estimation is not None: |
|
504 | 505 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
505 | 506 | return self.noise_estimation |
|
506 | 507 | else: |
|
507 | 508 | |
|
508 | 509 | noise = self.getNoisebyHildebrand( |
|
509 | 510 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
510 | 511 | return noise |
|
511 | 512 | |
|
512 | 513 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
513 | 514 | |
|
514 | 515 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
515 | 516 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
516 | 517 | |
|
517 | 518 | return freqrange |
|
518 | 519 | |
|
519 | 520 | def getAcfRange(self, extrapoints=0): |
|
520 | 521 | |
|
521 | 522 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
522 | 523 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
523 | 524 | |
|
524 | 525 | return freqrange |
|
525 | 526 | |
|
526 | 527 | def getFreqRange(self, extrapoints=0): |
|
527 | 528 | |
|
528 | 529 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
529 | 530 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
530 | 531 | |
|
531 | 532 | return freqrange |
|
532 | 533 | |
|
533 | 534 | def getVelRange(self, extrapoints=0): |
|
534 | 535 | |
|
535 | 536 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
536 | 537 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
537 | 538 | |
|
538 | 539 | if self.nmodes: |
|
539 | 540 | return velrange/self.nmodes |
|
540 | 541 | else: |
|
541 | 542 | return velrange |
|
542 | 543 | |
|
543 | 544 | @property |
|
544 | 545 | def nPairs(self): |
|
545 | 546 | |
|
546 | 547 | return len(self.pairsList) |
|
547 | 548 | |
|
548 | 549 | @property |
|
549 | 550 | def pairsIndexList(self): |
|
550 | 551 | |
|
551 | 552 | return list(range(self.nPairs)) |
|
552 | 553 | |
|
553 | 554 | @property |
|
554 | 555 | def normFactor(self): |
|
555 | 556 | |
|
556 | 557 | pwcode = 1 |
|
557 | 558 | |
|
558 | 559 | if self.flagDecodeData: |
|
559 | 560 | pwcode = numpy.sum(self.code[0]**2) |
|
560 | 561 | #pwcode = 64 |
|
561 | 562 | #print("pwcode: ", pwcode) |
|
562 | 563 | #exit(1) |
|
563 | 564 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
564 | 565 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
565 | 566 | |
|
566 | 567 | return normFactor |
|
567 | 568 | |
|
568 | 569 | @property |
|
569 | 570 | def flag_cspc(self): |
|
570 | 571 | |
|
571 | 572 | if self.data_cspc is None: |
|
572 | 573 | return True |
|
573 | 574 | |
|
574 | 575 | return False |
|
575 | 576 | |
|
576 | 577 | @property |
|
577 | 578 | def flag_dc(self): |
|
578 | 579 | |
|
579 | 580 | if self.data_dc is None: |
|
580 | 581 | return True |
|
581 | 582 | |
|
582 | 583 | return False |
|
583 | 584 | |
|
584 | 585 | @property |
|
585 | 586 | def timeInterval(self): |
|
586 | 587 | |
|
587 | 588 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
588 | 589 | if self.nmodes: |
|
589 | 590 | return self.nmodes*timeInterval |
|
590 | 591 | else: |
|
591 | 592 | return timeInterval |
|
592 | 593 | |
|
593 | 594 | def getPower(self): |
|
594 | 595 | |
|
595 | 596 | factor = self.normFactor |
|
596 | 597 | z = self.data_spc / factor |
|
597 | 598 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
598 | 599 | avg = numpy.average(z, axis=1) |
|
599 | 600 | |
|
600 | 601 | return 10 * numpy.log10(avg) |
|
601 | 602 | |
|
602 | 603 | def getCoherence(self, pairsList=None, phase=False): |
|
603 | 604 | |
|
604 | 605 | z = [] |
|
605 | 606 | if pairsList is None: |
|
606 | 607 | pairsIndexList = self.pairsIndexList |
|
607 | 608 | else: |
|
608 | 609 | pairsIndexList = [] |
|
609 | 610 | for pair in pairsList: |
|
610 | 611 | if pair not in self.pairsList: |
|
611 | 612 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
612 | 613 | pair)) |
|
613 | 614 | pairsIndexList.append(self.pairsList.index(pair)) |
|
614 | 615 | for i in range(len(pairsIndexList)): |
|
615 | 616 | pair = self.pairsList[pairsIndexList[i]] |
|
616 | 617 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
617 | 618 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
618 | 619 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
619 | 620 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
620 | 621 | if phase: |
|
621 | 622 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
622 | 623 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
623 | 624 | else: |
|
624 | 625 | data = numpy.abs(avgcoherenceComplex) |
|
625 | 626 | |
|
626 | 627 | z.append(data) |
|
627 | 628 | |
|
628 | 629 | return numpy.array(z) |
|
629 | 630 | |
|
630 | 631 | def setValue(self, value): |
|
631 | 632 | |
|
632 | 633 | print("This property should not be initialized") |
|
633 | 634 | |
|
634 | 635 | return |
|
635 | 636 | |
|
636 | 637 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
637 | 638 | |
|
638 | 639 | |
|
639 | 640 | class SpectraHeis(Spectra): |
|
640 | 641 | |
|
641 | 642 | def __init__(self): |
|
642 | 643 | |
|
643 | 644 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
644 | 645 | self.systemHeaderObj = SystemHeader() |
|
645 | 646 | self.type = "SpectraHeis" |
|
646 | 647 | self.nProfiles = None |
|
647 | 648 | self.heightList = None |
|
648 | 649 | self.channelList = None |
|
649 | 650 | self.flagNoData = True |
|
650 | 651 | self.flagDiscontinuousBlock = False |
|
651 | 652 | self.utctime = None |
|
652 | 653 | self.blocksize = None |
|
653 | 654 | self.profileIndex = 0 |
|
654 | 655 | self.nCohInt = 1 |
|
655 | 656 | self.nIncohInt = 1 |
|
656 | 657 | |
|
657 | 658 | @property |
|
658 | 659 | def normFactor(self): |
|
659 | 660 | pwcode = 1 |
|
660 | 661 | if self.flagDecodeData: |
|
661 | 662 | pwcode = numpy.sum(self.code[0]**2) |
|
662 | 663 | |
|
663 | 664 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
664 | 665 | |
|
665 | 666 | return normFactor |
|
666 | 667 | |
|
667 | 668 | @property |
|
668 | 669 | def timeInterval(self): |
|
669 | 670 | |
|
670 | 671 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
671 | 672 | |
|
672 | 673 | |
|
673 | 674 | class Fits(JROData): |
|
674 | 675 | |
|
675 | 676 | def __init__(self): |
|
676 | 677 | |
|
677 | 678 | self.type = "Fits" |
|
678 | 679 | self.nProfiles = None |
|
679 | 680 | self.heightList = None |
|
680 | 681 | self.channelList = None |
|
681 | 682 | self.flagNoData = True |
|
682 | 683 | self.utctime = None |
|
683 | 684 | self.nCohInt = 1 |
|
684 | 685 | self.nIncohInt = 1 |
|
685 | 686 | self.useLocalTime = True |
|
686 | 687 | self.profileIndex = 0 |
|
687 | 688 | self.timeZone = 0 |
|
688 | 689 | |
|
689 | 690 | def getTimeRange(self): |
|
690 | 691 | |
|
691 | 692 | datatime = [] |
|
692 | 693 | |
|
693 | 694 | datatime.append(self.ltctime) |
|
694 | 695 | datatime.append(self.ltctime + self.timeInterval) |
|
695 | 696 | |
|
696 | 697 | datatime = numpy.array(datatime) |
|
697 | 698 | |
|
698 | 699 | return datatime |
|
699 | 700 | |
|
700 | 701 | def getChannelIndexList(self): |
|
701 | 702 | |
|
702 | 703 | return list(range(self.nChannels)) |
|
703 | 704 | |
|
704 | 705 | def getNoise(self, type=1): |
|
705 | 706 | |
|
706 | 707 | |
|
707 | 708 | if type == 1: |
|
708 | 709 | noise = self.getNoisebyHildebrand() |
|
709 | 710 | |
|
710 | 711 | if type == 2: |
|
711 | 712 | noise = self.getNoisebySort() |
|
712 | 713 | |
|
713 | 714 | if type == 3: |
|
714 | 715 | noise = self.getNoisebyWindow() |
|
715 | 716 | |
|
716 | 717 | return noise |
|
717 | 718 | |
|
718 | 719 | @property |
|
719 | 720 | def timeInterval(self): |
|
720 | 721 | |
|
721 | 722 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
722 | 723 | |
|
723 | 724 | return timeInterval |
|
724 | 725 | |
|
725 | 726 | @property |
|
726 | 727 | def ippSeconds(self): |
|
727 | 728 | ''' |
|
728 | 729 | ''' |
|
729 | 730 | return self.ipp_sec |
|
730 | 731 | |
|
731 | 732 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
732 | 733 | |
|
733 | 734 | |
|
734 | 735 | class Correlation(JROData): |
|
735 | 736 | |
|
736 | 737 | def __init__(self): |
|
737 | 738 | ''' |
|
738 | 739 | Constructor |
|
739 | 740 | ''' |
|
740 | 741 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
741 | 742 | self.systemHeaderObj = SystemHeader() |
|
742 | 743 | self.type = "Correlation" |
|
743 | 744 | self.data = None |
|
744 | 745 | self.dtype = None |
|
745 | 746 | self.nProfiles = None |
|
746 | 747 | self.heightList = None |
|
747 | 748 | self.channelList = None |
|
748 | 749 | self.flagNoData = True |
|
749 | 750 | self.flagDiscontinuousBlock = False |
|
750 | 751 | self.utctime = None |
|
751 | 752 | self.timeZone = 0 |
|
752 | 753 | self.dstFlag = None |
|
753 | 754 | self.errorCount = None |
|
754 | 755 | self.blocksize = None |
|
755 | 756 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
756 | 757 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
757 | 758 | self.pairsList = None |
|
758 | 759 | self.nPoints = None |
|
759 | 760 | |
|
760 | 761 | def getPairsList(self): |
|
761 | 762 | |
|
762 | 763 | return self.pairsList |
|
763 | 764 | |
|
764 | 765 | def getNoise(self, mode=2): |
|
765 | 766 | |
|
766 | 767 | indR = numpy.where(self.lagR == 0)[0][0] |
|
767 | 768 | indT = numpy.where(self.lagT == 0)[0][0] |
|
768 | 769 | |
|
769 | 770 | jspectra0 = self.data_corr[:, :, indR, :] |
|
770 | 771 | jspectra = copy.copy(jspectra0) |
|
771 | 772 | |
|
772 | 773 | num_chan = jspectra.shape[0] |
|
773 | 774 | num_hei = jspectra.shape[2] |
|
774 | 775 | |
|
775 | 776 | freq_dc = jspectra.shape[1] / 2 |
|
776 | 777 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
777 | 778 | |
|
778 | 779 | if ind_vel[0] < 0: |
|
779 | 780 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
780 | 781 | range(0, 1))] + self.num_prof |
|
781 | 782 | |
|
782 | 783 | if mode == 1: |
|
783 | 784 | jspectra[:, freq_dc, :] = ( |
|
784 | 785 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
785 | 786 | |
|
786 | 787 | if mode == 2: |
|
787 | 788 | |
|
788 | 789 | vel = numpy.array([-2, -1, 1, 2]) |
|
789 | 790 | xx = numpy.zeros([4, 4]) |
|
790 | 791 | |
|
791 | 792 | for fil in range(4): |
|
792 | 793 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
793 | 794 | |
|
794 | 795 | xx_inv = numpy.linalg.inv(xx) |
|
795 | 796 | xx_aux = xx_inv[0, :] |
|
796 | 797 | |
|
797 | 798 | for ich in range(num_chan): |
|
798 | 799 | yy = jspectra[ich, ind_vel, :] |
|
799 | 800 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
800 | 801 | |
|
801 | 802 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
802 | 803 | cjunkid = sum(junkid) |
|
803 | 804 | |
|
804 | 805 | if cjunkid.any(): |
|
805 | 806 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
806 | 807 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
807 | 808 | |
|
808 | 809 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
809 | 810 | |
|
810 | 811 | return noise |
|
811 | 812 | |
|
812 | 813 | @property |
|
813 | 814 | def timeInterval(self): |
|
814 | 815 | |
|
815 | 816 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
816 | 817 | |
|
817 | 818 | def splitFunctions(self): |
|
818 | 819 | |
|
819 | 820 | pairsList = self.pairsList |
|
820 | 821 | ccf_pairs = [] |
|
821 | 822 | acf_pairs = [] |
|
822 | 823 | ccf_ind = [] |
|
823 | 824 | acf_ind = [] |
|
824 | 825 | for l in range(len(pairsList)): |
|
825 | 826 | chan0 = pairsList[l][0] |
|
826 | 827 | chan1 = pairsList[l][1] |
|
827 | 828 | |
|
828 | 829 | # Obteniendo pares de Autocorrelacion |
|
829 | 830 | if chan0 == chan1: |
|
830 | 831 | acf_pairs.append(chan0) |
|
831 | 832 | acf_ind.append(l) |
|
832 | 833 | else: |
|
833 | 834 | ccf_pairs.append(pairsList[l]) |
|
834 | 835 | ccf_ind.append(l) |
|
835 | 836 | |
|
836 | 837 | data_acf = self.data_cf[acf_ind] |
|
837 | 838 | data_ccf = self.data_cf[ccf_ind] |
|
838 | 839 | |
|
839 | 840 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
840 | 841 | |
|
841 | 842 | @property |
|
842 | 843 | def normFactor(self): |
|
843 | 844 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
844 | 845 | acf_pairs = numpy.array(acf_pairs) |
|
845 | 846 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
846 | 847 | |
|
847 | 848 | for p in range(self.nPairs): |
|
848 | 849 | pair = self.pairsList[p] |
|
849 | 850 | |
|
850 | 851 | ch0 = pair[0] |
|
851 | 852 | ch1 = pair[1] |
|
852 | 853 | |
|
853 | 854 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
854 | 855 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
855 | 856 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
856 | 857 | |
|
857 | 858 | return normFactor |
|
858 | 859 | |
|
859 | 860 | |
|
860 | 861 | class Parameters(Spectra): |
|
861 | 862 | |
|
862 | 863 | groupList = None # List of Pairs, Groups, etc |
|
863 | 864 | data_param = None # Parameters obtained |
|
864 | 865 | data_pre = None # Data Pre Parametrization |
|
865 | 866 | data_SNR = None # Signal to Noise Ratio |
|
866 | 867 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
867 | 868 | utctimeInit = None # Initial UTC time |
|
868 | 869 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
869 | 870 | useLocalTime = True |
|
870 | 871 | # Fitting |
|
871 | 872 | data_error = None # Error of the estimation |
|
872 | 873 | constants = None |
|
873 | 874 | library = None |
|
874 | 875 | # Output signal |
|
875 | 876 | outputInterval = None # Time interval to calculate output signal in seconds |
|
876 | 877 | data_output = None # Out signal |
|
877 | 878 | nAvg = None |
|
878 | 879 | noise_estimation = None |
|
879 | 880 | GauSPC = None # Fit gaussian SPC |
|
880 | 881 | spc_noise = None |
|
881 | 882 | |
|
882 | 883 | def __init__(self): |
|
883 | 884 | ''' |
|
884 | 885 | Constructor |
|
885 | 886 | ''' |
|
886 | 887 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
887 | 888 | self.systemHeaderObj = SystemHeader() |
|
888 | 889 | self.type = "Parameters" |
|
889 | 890 | self.timeZone = 0 |
|
890 | 891 | self.ippFactor = 1 |
|
891 | 892 | |
|
892 | 893 | def getTimeRange1(self, interval): |
|
893 | 894 | |
|
894 | 895 | datatime = [] |
|
895 | 896 | |
|
896 | 897 | if self.useLocalTime: |
|
897 | 898 | time1 = self.utctimeInit - self.timeZone * 60 |
|
898 | 899 | else: |
|
899 | 900 | time1 = self.utctimeInit |
|
900 | 901 | |
|
901 | 902 | datatime.append(time1) |
|
902 | 903 | datatime.append(time1 + interval) |
|
903 | 904 | datatime = numpy.array(datatime) |
|
904 | 905 | |
|
905 | 906 | return datatime |
|
906 | 907 | |
|
907 | 908 | @property |
|
908 | 909 | def timeInterval(self): |
|
909 | 910 | |
|
910 | 911 | if hasattr(self, 'timeInterval1'): |
|
911 | 912 | return self.timeInterval1 |
|
912 | 913 | else: |
|
913 | 914 | return self.paramInterval |
|
914 | 915 | |
|
915 | 916 | |
|
916 | 917 | def setValue(self, value): |
|
917 | 918 | |
|
918 | 919 | print("This property should not be initialized") |
|
919 | 920 | |
|
920 | 921 | return |
|
921 | 922 | |
|
922 | 923 | def getNoise(self): |
|
923 | 924 | |
|
924 | 925 | return self.spc_noise |
|
925 | 926 | |
|
926 | 927 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
927 | 928 | |
|
928 | 929 | |
|
929 | 930 | class PlotterData(object): |
|
930 | 931 | ''' |
|
931 | 932 | Object to hold data to be plotted |
|
932 | 933 | ''' |
|
933 | 934 | |
|
934 | 935 | MAXNUMX = 200 |
|
935 | 936 | MAXNUMY = 200 |
|
936 | 937 | |
|
937 | 938 | def __init__(self, code, exp_code, localtime=True): |
|
938 | 939 | |
|
939 | 940 | self.key = code |
|
940 | 941 | self.exp_code = exp_code |
|
941 | 942 | self.ready = False |
|
942 | 943 | self.flagNoData = False |
|
943 | 944 | self.localtime = localtime |
|
944 | 945 | self.data = {} |
|
945 | 946 | self.meta = {} |
|
946 | 947 | self.__heights = [] |
|
947 | 948 | |
|
948 | 949 | def __str__(self): |
|
949 | 950 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
950 | 951 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
951 | 952 | |
|
952 | 953 | def __len__(self): |
|
953 | 954 | return len(self.data) |
|
954 | 955 | |
|
955 | 956 | def __getitem__(self, key): |
|
956 | 957 | if isinstance(key, int): |
|
957 | 958 | return self.data[self.times[key]] |
|
958 | 959 | elif isinstance(key, str): |
|
959 | 960 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
960 | 961 | if ret.ndim > 1: |
|
961 | 962 | ret = numpy.swapaxes(ret, 0, 1) |
|
962 | 963 | return ret |
|
963 | 964 | |
|
964 | 965 | def __contains__(self, key): |
|
965 | 966 | return key in self.data[self.min_time] |
|
966 | 967 | |
|
967 | 968 | def setup(self): |
|
968 | 969 | ''' |
|
969 | 970 | Configure object |
|
970 | 971 | ''' |
|
971 | 972 | self.type = '' |
|
972 | 973 | self.ready = False |
|
973 | 974 | del self.data |
|
974 | 975 | self.data = {} |
|
975 | 976 | self.__heights = [] |
|
976 | 977 | self.__all_heights = set() |
|
977 | 978 | |
|
978 | 979 | def shape(self, key): |
|
979 | 980 | ''' |
|
980 | 981 | Get the shape of the one-element data for the given key |
|
981 | 982 | ''' |
|
982 | 983 | |
|
983 | 984 | if len(self.data[self.min_time][key]): |
|
984 | 985 | return self.data[self.min_time][key].shape |
|
985 | 986 | return (0,) |
|
986 | 987 | |
|
987 | 988 | def update(self, data, tm, meta={}): |
|
988 | 989 | ''' |
|
989 | 990 | Update data object with new dataOut |
|
990 | 991 | ''' |
|
991 | 992 | |
|
992 | 993 | self.data[tm] = data |
|
993 | 994 | |
|
994 | 995 | for key, value in meta.items(): |
|
995 | 996 | setattr(self, key, value) |
|
996 | 997 | |
|
997 | 998 | def normalize_heights(self): |
|
998 | 999 | ''' |
|
999 | 1000 | Ensure same-dimension of the data for different heighList |
|
1000 | 1001 | ''' |
|
1001 | 1002 | |
|
1002 | 1003 | H = numpy.array(list(self.__all_heights)) |
|
1003 | 1004 | H.sort() |
|
1004 | 1005 | for key in self.data: |
|
1005 | 1006 | shape = self.shape(key)[:-1] + H.shape |
|
1006 | 1007 | for tm, obj in list(self.data[key].items()): |
|
1007 | 1008 | h = self.__heights[self.times.tolist().index(tm)] |
|
1008 | 1009 | if H.size == h.size: |
|
1009 | 1010 | continue |
|
1010 | 1011 | index = numpy.where(numpy.in1d(H, h))[0] |
|
1011 | 1012 | dummy = numpy.zeros(shape) + numpy.nan |
|
1012 | 1013 | if len(shape) == 2: |
|
1013 | 1014 | dummy[:, index] = obj |
|
1014 | 1015 | else: |
|
1015 | 1016 | dummy[index] = obj |
|
1016 | 1017 | self.data[key][tm] = dummy |
|
1017 | 1018 | |
|
1018 | 1019 | self.__heights = [H for tm in self.times] |
|
1019 | 1020 | |
|
1020 | 1021 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
1021 | 1022 | ''' |
|
1022 | 1023 | Convert data to json |
|
1023 | 1024 | ''' |
|
1024 | 1025 | |
|
1025 | 1026 | meta = {} |
|
1026 | 1027 | meta['xrange'] = [] |
|
1027 | 1028 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 |
|
1028 | 1029 | tmp = self.data[tm][self.key] |
|
1029 | 1030 | shape = tmp.shape |
|
1030 | 1031 | if len(shape) == 2: |
|
1031 | 1032 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1032 | 1033 | elif len(shape) == 3: |
|
1033 | 1034 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 |
|
1034 | 1035 | data = self.roundFloats( |
|
1035 | 1036 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1036 | 1037 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1037 | 1038 | else: |
|
1038 | 1039 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1039 | 1040 | |
|
1040 | 1041 | ret = { |
|
1041 | 1042 | 'plot': plot_name, |
|
1042 | 1043 | 'code': self.exp_code, |
|
1043 | 1044 | 'time': float(tm), |
|
1044 | 1045 | 'data': data, |
|
1045 | 1046 | } |
|
1046 | 1047 | meta['type'] = plot_type |
|
1047 | 1048 | meta['interval'] = float(self.interval) |
|
1048 | 1049 | meta['localtime'] = self.localtime |
|
1049 | 1050 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1050 | 1051 | meta.update(self.meta) |
|
1051 | 1052 | ret['metadata'] = meta |
|
1052 | 1053 | return json.dumps(ret) |
|
1053 | 1054 | |
|
1054 | 1055 | @property |
|
1055 | 1056 | def times(self): |
|
1056 | 1057 | ''' |
|
1057 | 1058 | Return the list of times of the current data |
|
1058 | 1059 | ''' |
|
1059 | 1060 | |
|
1060 | 1061 | ret = [t for t in self.data] |
|
1061 | 1062 | ret.sort() |
|
1062 | 1063 | return numpy.array(ret) |
|
1063 | 1064 | |
|
1064 | 1065 | @property |
|
1065 | 1066 | def min_time(self): |
|
1066 | 1067 | ''' |
|
1067 | 1068 | Return the minimun time value |
|
1068 | 1069 | ''' |
|
1069 | 1070 | |
|
1070 | 1071 | return self.times[0] |
|
1071 | 1072 | |
|
1072 | 1073 | @property |
|
1073 | 1074 | def max_time(self): |
|
1074 | 1075 | ''' |
|
1075 | 1076 | Return the maximun time value |
|
1076 | 1077 | ''' |
|
1077 | 1078 | |
|
1078 | 1079 | return self.times[-1] |
|
1079 | 1080 | |
|
1080 | 1081 | # @property |
|
1081 | 1082 | # def heights(self): |
|
1082 | 1083 | # ''' |
|
1083 | 1084 | # Return the list of heights of the current data |
|
1084 | 1085 | # ''' |
|
1085 | 1086 | |
|
1086 | 1087 | # return numpy.array(self.__heights[-1]) |
|
1087 | 1088 | |
|
1088 | 1089 | @staticmethod |
|
1089 | 1090 | def roundFloats(obj): |
|
1090 | 1091 | if isinstance(obj, list): |
|
1091 | 1092 | return list(map(PlotterData.roundFloats, obj)) |
|
1092 | 1093 | elif isinstance(obj, float): |
|
1093 | 1094 | return round(obj, 2) |
@@ -1,1350 +1,1349 | |||
|
1 | 1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Classes to plot Spectra data |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import numpy |
|
11 | 11 | #import collections.abc |
|
12 | 12 | |
|
13 | 13 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
14 | 14 | |
|
15 | 15 | class SpectraPlot(Plot): |
|
16 | 16 | ''' |
|
17 | 17 | Plot for Spectra data |
|
18 | 18 | ''' |
|
19 | 19 | |
|
20 | 20 | CODE = 'spc' |
|
21 | 21 | colormap = 'jet' |
|
22 | 22 | plot_type = 'pcolor' |
|
23 | 23 | buffering = False |
|
24 | 24 | |
|
25 | 25 | def setup(self): |
|
26 | 26 | |
|
27 | 27 | self.nplots = len(self.data.channels) |
|
28 | 28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
29 | 29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
30 | 30 | self.height = 2.6 * self.nrows |
|
31 | 31 | self.cb_label = 'dB' |
|
32 | 32 | if self.showprofile: |
|
33 | 33 | self.width = 4 * self.ncols |
|
34 | 34 | else: |
|
35 | 35 | self.width = 3.5 * self.ncols |
|
36 | 36 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
37 | 37 | self.ylabel = 'Range [km]' |
|
38 | 38 | |
|
39 | 39 | def update(self, dataOut): |
|
40 | 40 | |
|
41 | 41 | data = {} |
|
42 | 42 | meta = {} |
|
43 | 43 | |
|
44 | 44 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
45 | 45 | #print("dataOut.normFactor: ", dataOut.normFactor) |
|
46 | 46 | #print("spc: ", dataOut.data_spc[0,0,0]) |
|
47 | 47 | #spc = 10*numpy.log10(dataOut.data_spc) |
|
48 | 48 | #print("Spc: ",spc[0]) |
|
49 | 49 | #exit(1) |
|
50 | 50 | data['spc'] = spc |
|
51 | 51 | data['rti'] = dataOut.getPower() |
|
52 | 52 | #print(data['rti'][0]) |
|
53 | 53 | #exit(1) |
|
54 | 54 | #print("NormFactor: ",dataOut.normFactor) |
|
55 | 55 | #data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
56 | 56 | if hasattr(dataOut, 'LagPlot'): #Double Pulse |
|
57 | max_hei_id = dataOut.nHeights - 2*dataOut.LagPlot | |
|
58 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=46,ymax_index=max_hei_id)/dataOut.normFactor) | |
|
59 |
|
|
|
60 |
data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index= |
|
|
61 | data['noise'][0] = 10*numpy.log10(dataOut.getNoise(ymin_index=53)[0]/dataOut.normFactor) | |
|
57 | ymin_index = numpy.abs(dataOut.heightList - 800).argmin() | |
|
58 | max_hei_id = dataOut.nHeights - dataOut.TxLagRate*dataOut.LagPlot | |
|
59 | data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=ymin_index,ymax_index=max_hei_id)/dataOut.normFactor) | |
|
60 | data['noise'][0] = 10*numpy.log10(dataOut.getNoise(ymin_index=ymin_index)[0]/dataOut.normFactor) | |
|
62 | 61 | #data['noise'][1] = 22.035507 |
|
63 | 62 | else: |
|
64 | 63 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
65 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=26,ymax_index=44)/dataOut.normFactor) | |
|
64 | ||
|
66 | 65 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
67 | 66 | |
|
68 | 67 | if self.CODE == 'spc_moments': |
|
69 | 68 | data['moments'] = dataOut.moments |
|
70 | 69 | if self.CODE == 'gaussian_fit': |
|
71 | 70 | data['gaussfit'] = dataOut.DGauFitParams |
|
72 | 71 | |
|
73 | 72 | return data, meta |
|
74 | 73 | |
|
75 | 74 | def plot(self): |
|
76 | 75 | |
|
77 | 76 | if self.xaxis == "frequency": |
|
78 | 77 | x = self.data.xrange[0] |
|
79 | 78 | self.xlabel = "Frequency (kHz)" |
|
80 | 79 | elif self.xaxis == "time": |
|
81 | 80 | x = self.data.xrange[1] |
|
82 | 81 | self.xlabel = "Time (ms)" |
|
83 | 82 | else: |
|
84 | 83 | x = self.data.xrange[2] |
|
85 | 84 | self.xlabel = "Velocity (m/s)" |
|
86 | 85 | |
|
87 | 86 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): |
|
88 | 87 | x = self.data.xrange[2] |
|
89 | 88 | self.xlabel = "Velocity (m/s)" |
|
90 | 89 | |
|
91 | 90 | self.titles = [] |
|
92 | 91 | |
|
93 | 92 | y = self.data.yrange |
|
94 | 93 | self.y = y |
|
95 | 94 | |
|
96 | 95 | data = self.data[-1] |
|
97 | 96 | z = data['spc'] |
|
98 | 97 | |
|
99 | 98 | self.CODE2 = 'spc_oblique' |
|
100 | 99 | |
|
101 | 100 | for n, ax in enumerate(self.axes): |
|
102 | 101 | noise = data['noise'][n] |
|
103 | 102 | if self.CODE == 'spc_moments': |
|
104 | 103 | mean = data['moments'][n, 1] |
|
105 | 104 | if self.CODE == 'gaussian_fit': |
|
106 | 105 | gau0 = data['gaussfit'][n][2,:,0] |
|
107 | 106 | gau1 = data['gaussfit'][n][2,:,1] |
|
108 | 107 | if ax.firsttime: |
|
109 | 108 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
110 | 109 | self.xmin = self.xmin if self.xmin else numpy.nanmin(x)#-self.xmax |
|
111 | 110 | #self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
112 | 111 | #self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
113 | 112 | if self.zlimits is not None: |
|
114 | 113 | self.zmin, self.zmax = self.zlimits[n] |
|
115 | 114 | |
|
116 | 115 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
117 | 116 | vmin=self.zmin, |
|
118 | 117 | vmax=self.zmax, |
|
119 | 118 | cmap=plt.get_cmap(self.colormap), |
|
120 | 119 | ) |
|
121 | 120 | |
|
122 | 121 | if self.showprofile: |
|
123 | 122 | ax.plt_profile = self.pf_axes[n].plot( |
|
124 | 123 | data['rti'][n], y)[0] |
|
125 | 124 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
126 | 125 | color="k", linestyle="dashed", lw=1)[0] |
|
127 | 126 | if self.CODE == 'spc_moments': |
|
128 | 127 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
129 | 128 | if self.CODE == 'gaussian_fit': |
|
130 | 129 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] |
|
131 | 130 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] |
|
132 | 131 | else: |
|
133 | 132 | if self.zlimits is not None: |
|
134 | 133 | self.zmin, self.zmax = self.zlimits[n] |
|
135 | 134 | ax.plt.set_array(z[n].T.ravel()) |
|
136 | 135 | if self.showprofile: |
|
137 | 136 | ax.plt_profile.set_data(data['rti'][n], y) |
|
138 | 137 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
139 | 138 | if self.CODE == 'spc_moments': |
|
140 | 139 | ax.plt_mean.set_data(mean, y) |
|
141 | 140 | if self.CODE == 'gaussian_fit': |
|
142 | 141 | ax.plt_gau0.set_data(gau0, y) |
|
143 | 142 | ax.plt_gau1.set_data(gau1, y) |
|
144 | 143 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
145 | 144 | |
|
146 | 145 | class SpectraObliquePlot(Plot): |
|
147 | 146 | ''' |
|
148 | 147 | Plot for Spectra data |
|
149 | 148 | ''' |
|
150 | 149 | |
|
151 | 150 | CODE = 'spc_oblique' |
|
152 | 151 | colormap = 'jet' |
|
153 | 152 | plot_type = 'pcolor' |
|
154 | 153 | |
|
155 | 154 | def setup(self): |
|
156 | 155 | self.xaxis = "oblique" |
|
157 | 156 | self.nplots = len(self.data.channels) |
|
158 | 157 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
159 | 158 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
160 | 159 | self.height = 2.6 * self.nrows |
|
161 | 160 | self.cb_label = 'dB' |
|
162 | 161 | if self.showprofile: |
|
163 | 162 | self.width = 4 * self.ncols |
|
164 | 163 | else: |
|
165 | 164 | self.width = 3.5 * self.ncols |
|
166 | 165 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
167 | 166 | self.ylabel = 'Range [km]' |
|
168 | 167 | |
|
169 | 168 | def update(self, dataOut): |
|
170 | 169 | |
|
171 | 170 | data = {} |
|
172 | 171 | meta = {} |
|
173 | 172 | |
|
174 | 173 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
175 | 174 | data['spc'] = spc |
|
176 | 175 | data['rti'] = dataOut.getPower() |
|
177 | 176 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
178 | 177 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
179 | 178 | ''' |
|
180 | 179 | data['shift1'] = dataOut.Oblique_params[0,-2,:] |
|
181 | 180 | data['shift2'] = dataOut.Oblique_params[0,-1,:] |
|
182 | 181 | data['shift1_error'] = dataOut.Oblique_param_errors[0,-2,:] |
|
183 | 182 | data['shift2_error'] = dataOut.Oblique_param_errors[0,-1,:] |
|
184 | 183 | ''' |
|
185 | 184 | ''' |
|
186 | 185 | data['shift1'] = dataOut.Oblique_params[0,1,:] |
|
187 | 186 | data['shift2'] = dataOut.Oblique_params[0,4,:] |
|
188 | 187 | data['shift1_error'] = dataOut.Oblique_param_errors[0,1,:] |
|
189 | 188 | data['shift2_error'] = dataOut.Oblique_param_errors[0,4,:] |
|
190 | 189 | ''' |
|
191 | 190 | data['shift1'] = dataOut.Dop_EEJ_T1[0] |
|
192 | 191 | data['shift2'] = dataOut.Dop_EEJ_T2[0] |
|
193 | 192 | data['max_val_2'] = dataOut.Oblique_params[0,-1,:] |
|
194 | 193 | data['shift1_error'] = dataOut.Err_Dop_EEJ_T1[0] |
|
195 | 194 | data['shift2_error'] = dataOut.Err_Dop_EEJ_T2[0] |
|
196 | 195 | |
|
197 | 196 | return data, meta |
|
198 | 197 | |
|
199 | 198 | def plot(self): |
|
200 | 199 | |
|
201 | 200 | if self.xaxis == "frequency": |
|
202 | 201 | x = self.data.xrange[0] |
|
203 | 202 | self.xlabel = "Frequency (kHz)" |
|
204 | 203 | elif self.xaxis == "time": |
|
205 | 204 | x = self.data.xrange[1] |
|
206 | 205 | self.xlabel = "Time (ms)" |
|
207 | 206 | else: |
|
208 | 207 | x = self.data.xrange[2] |
|
209 | 208 | self.xlabel = "Velocity (m/s)" |
|
210 | 209 | |
|
211 | 210 | self.titles = [] |
|
212 | 211 | |
|
213 | 212 | y = self.data.yrange |
|
214 | 213 | self.y = y |
|
215 | 214 | |
|
216 | 215 | data = self.data[-1] |
|
217 | 216 | z = data['spc'] |
|
218 | 217 | |
|
219 | 218 | for n, ax in enumerate(self.axes): |
|
220 | 219 | noise = self.data['noise'][n][-1] |
|
221 | 220 | shift1 = data['shift1'] |
|
222 | 221 | #print(shift1) |
|
223 | 222 | shift2 = data['shift2'] |
|
224 | 223 | max_val_2 = data['max_val_2'] |
|
225 | 224 | err1 = data['shift1_error'] |
|
226 | 225 | err2 = data['shift2_error'] |
|
227 | 226 | if ax.firsttime: |
|
228 | 227 | |
|
229 | 228 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
230 | 229 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
231 | 230 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
232 | 231 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
233 | 232 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
234 | 233 | vmin=self.zmin, |
|
235 | 234 | vmax=self.zmax, |
|
236 | 235 | cmap=plt.get_cmap(self.colormap) |
|
237 | 236 | ) |
|
238 | 237 | |
|
239 | 238 | if self.showprofile: |
|
240 | 239 | ax.plt_profile = self.pf_axes[n].plot( |
|
241 | 240 | self.data['rti'][n][-1], y)[0] |
|
242 | 241 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
243 | 242 | color="k", linestyle="dashed", lw=1)[0] |
|
244 | 243 | |
|
245 | 244 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
246 | 245 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
247 | 246 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
248 | 247 | |
|
249 | 248 | #print("plotter1: ", self.ploterr1,shift1) |
|
250 | 249 | |
|
251 | 250 | else: |
|
252 | 251 | #print("else plotter1: ", self.ploterr1,shift1) |
|
253 | 252 | self.ploterr1.remove() |
|
254 | 253 | self.ploterr2.remove() |
|
255 | 254 | self.ploterr3.remove() |
|
256 | 255 | ax.plt.set_array(z[n].T.ravel()) |
|
257 | 256 | if self.showprofile: |
|
258 | 257 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
259 | 258 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
260 | 259 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
261 | 260 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
262 | 261 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
263 | 262 | |
|
264 | 263 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
265 | 264 | |
|
266 | 265 | |
|
267 | 266 | class CrossSpectraPlot(Plot): |
|
268 | 267 | |
|
269 | 268 | CODE = 'cspc' |
|
270 | 269 | colormap = 'jet' |
|
271 | 270 | plot_type = 'pcolor' |
|
272 | 271 | zmin_coh = None |
|
273 | 272 | zmax_coh = None |
|
274 | 273 | zmin_phase = None |
|
275 | 274 | zmax_phase = None |
|
276 | 275 | |
|
277 | 276 | def setup(self): |
|
278 | 277 | |
|
279 | 278 | self.ncols = 4 |
|
280 | 279 | self.nplots = len(self.data.pairs) * 2 |
|
281 | 280 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
282 | 281 | self.width = 3.1 * self.ncols |
|
283 | 282 | self.height = 5 * self.nrows |
|
284 | 283 | self.ylabel = 'Range [km]' |
|
285 | 284 | self.showprofile = False |
|
286 | 285 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
287 | 286 | |
|
288 | 287 | def update(self, dataOut): |
|
289 | 288 | |
|
290 | 289 | data = {} |
|
291 | 290 | meta = {} |
|
292 | 291 | |
|
293 | 292 | spc = dataOut.data_spc |
|
294 | 293 | cspc = dataOut.data_cspc |
|
295 | 294 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
296 | 295 | meta['pairs'] = dataOut.pairsList |
|
297 | 296 | |
|
298 | 297 | tmp = [] |
|
299 | 298 | |
|
300 | 299 | for n, pair in enumerate(meta['pairs']): |
|
301 | 300 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
302 | 301 | coh = numpy.abs(out) |
|
303 | 302 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
304 | 303 | tmp.append(coh) |
|
305 | 304 | tmp.append(phase) |
|
306 | 305 | |
|
307 | 306 | data['cspc'] = numpy.array(tmp) |
|
308 | 307 | |
|
309 | 308 | return data, meta |
|
310 | 309 | |
|
311 | 310 | def plot(self): |
|
312 | 311 | |
|
313 | 312 | if self.xaxis == "frequency": |
|
314 | 313 | x = self.data.xrange[0] |
|
315 | 314 | self.xlabel = "Frequency (kHz)" |
|
316 | 315 | elif self.xaxis == "time": |
|
317 | 316 | x = self.data.xrange[1] |
|
318 | 317 | self.xlabel = "Time (ms)" |
|
319 | 318 | else: |
|
320 | 319 | x = self.data.xrange[2] |
|
321 | 320 | self.xlabel = "Velocity (m/s)" |
|
322 | 321 | |
|
323 | 322 | self.titles = [] |
|
324 | 323 | |
|
325 | 324 | y = self.data.yrange |
|
326 | 325 | self.y = y |
|
327 | 326 | |
|
328 | 327 | data = self.data[-1] |
|
329 | 328 | cspc = data['cspc'] |
|
330 | 329 | |
|
331 | 330 | for n in range(len(self.data.pairs)): |
|
332 | 331 | pair = self.data.pairs[n] |
|
333 | 332 | coh = cspc[n*2] |
|
334 | 333 | phase = cspc[n*2+1] |
|
335 | 334 | ax = self.axes[2 * n] |
|
336 | 335 | if ax.firsttime: |
|
337 | 336 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
338 | 337 | vmin=0, |
|
339 | 338 | vmax=1, |
|
340 | 339 | cmap=plt.get_cmap(self.colormap_coh) |
|
341 | 340 | ) |
|
342 | 341 | else: |
|
343 | 342 | ax.plt.set_array(coh.T.ravel()) |
|
344 | 343 | self.titles.append( |
|
345 | 344 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
346 | 345 | |
|
347 | 346 | ax = self.axes[2 * n + 1] |
|
348 | 347 | if ax.firsttime: |
|
349 | 348 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
350 | 349 | vmin=-180, |
|
351 | 350 | vmax=180, |
|
352 | 351 | cmap=plt.get_cmap(self.colormap_phase) |
|
353 | 352 | ) |
|
354 | 353 | else: |
|
355 | 354 | ax.plt.set_array(phase.T.ravel()) |
|
356 | 355 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
357 | 356 | |
|
358 | 357 | |
|
359 | 358 | class CrossSpectra4Plot(Plot): |
|
360 | 359 | |
|
361 | 360 | CODE = 'cspc' |
|
362 | 361 | colormap = 'jet' |
|
363 | 362 | plot_type = 'pcolor' |
|
364 | 363 | zmin_coh = None |
|
365 | 364 | zmax_coh = None |
|
366 | 365 | zmin_phase = None |
|
367 | 366 | zmax_phase = None |
|
368 | 367 | |
|
369 | 368 | def setup(self): |
|
370 | 369 | |
|
371 | 370 | self.ncols = 4 |
|
372 | 371 | self.nrows = len(self.data.pairs) |
|
373 | 372 | self.nplots = self.nrows * 4 |
|
374 | 373 | self.width = 3.1 * self.ncols |
|
375 | 374 | self.height = 5 * self.nrows |
|
376 | 375 | self.ylabel = 'Range [km]' |
|
377 | 376 | self.showprofile = False |
|
378 | 377 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
379 | 378 | |
|
380 | 379 | def plot(self): |
|
381 | 380 | |
|
382 | 381 | if self.xaxis == "frequency": |
|
383 | 382 | x = self.data.xrange[0] |
|
384 | 383 | self.xlabel = "Frequency (kHz)" |
|
385 | 384 | elif self.xaxis == "time": |
|
386 | 385 | x = self.data.xrange[1] |
|
387 | 386 | self.xlabel = "Time (ms)" |
|
388 | 387 | else: |
|
389 | 388 | x = self.data.xrange[2] |
|
390 | 389 | self.xlabel = "Velocity (m/s)" |
|
391 | 390 | |
|
392 | 391 | self.titles = [] |
|
393 | 392 | |
|
394 | 393 | |
|
395 | 394 | y = self.data.heights |
|
396 | 395 | self.y = y |
|
397 | 396 | nspc = self.data['spc'] |
|
398 | 397 | #print(numpy.shape(self.data['spc'])) |
|
399 | 398 | spc = self.data['cspc'][0] |
|
400 | 399 | #print(numpy.shape(nspc)) |
|
401 | 400 | #exit() |
|
402 | 401 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) |
|
403 | 402 | #print(numpy.shape(spc)) |
|
404 | 403 | #exit() |
|
405 | 404 | cspc = self.data['cspc'][1] |
|
406 | 405 | |
|
407 | 406 | #xflip=numpy.flip(x) |
|
408 | 407 | #print(numpy.shape(cspc)) |
|
409 | 408 | #exit() |
|
410 | 409 | |
|
411 | 410 | for n in range(self.nrows): |
|
412 | 411 | noise = self.data['noise'][:,-1] |
|
413 | 412 | pair = self.data.pairs[n] |
|
414 | 413 | #print(pair) |
|
415 | 414 | #exit() |
|
416 | 415 | ax = self.axes[4 * n] |
|
417 | 416 | if ax.firsttime: |
|
418 | 417 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
419 | 418 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
420 | 419 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) |
|
421 | 420 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) |
|
422 | 421 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, |
|
423 | 422 | vmin=self.zmin, |
|
424 | 423 | vmax=self.zmax, |
|
425 | 424 | cmap=plt.get_cmap(self.colormap) |
|
426 | 425 | ) |
|
427 | 426 | else: |
|
428 | 427 | #print(numpy.shape(nspc[pair[0]].T)) |
|
429 | 428 | #exit() |
|
430 | 429 | ax.plt.set_array(nspc[pair[0]].T.ravel()) |
|
431 | 430 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) |
|
432 | 431 | |
|
433 | 432 | ax = self.axes[4 * n + 1] |
|
434 | 433 | |
|
435 | 434 | if ax.firsttime: |
|
436 | 435 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, |
|
437 | 436 | vmin=self.zmin, |
|
438 | 437 | vmax=self.zmax, |
|
439 | 438 | cmap=plt.get_cmap(self.colormap) |
|
440 | 439 | ) |
|
441 | 440 | else: |
|
442 | 441 | |
|
443 | 442 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) |
|
444 | 443 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) |
|
445 | 444 | |
|
446 | 445 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
447 | 446 | coh = numpy.abs(out) |
|
448 | 447 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
449 | 448 | |
|
450 | 449 | ax = self.axes[4 * n + 2] |
|
451 | 450 | if ax.firsttime: |
|
452 | 451 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, |
|
453 | 452 | vmin=0, |
|
454 | 453 | vmax=1, |
|
455 | 454 | cmap=plt.get_cmap(self.colormap_coh) |
|
456 | 455 | ) |
|
457 | 456 | else: |
|
458 | 457 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) |
|
459 | 458 | self.titles.append( |
|
460 | 459 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
461 | 460 | |
|
462 | 461 | ax = self.axes[4 * n + 3] |
|
463 | 462 | if ax.firsttime: |
|
464 | 463 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, |
|
465 | 464 | vmin=-180, |
|
466 | 465 | vmax=180, |
|
467 | 466 | cmap=plt.get_cmap(self.colormap_phase) |
|
468 | 467 | ) |
|
469 | 468 | else: |
|
470 | 469 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) |
|
471 | 470 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
472 | 471 | |
|
473 | 472 | |
|
474 | 473 | class CrossSpectra2Plot(Plot): |
|
475 | 474 | |
|
476 | 475 | CODE = 'cspc' |
|
477 | 476 | colormap = 'jet' |
|
478 | 477 | plot_type = 'pcolor' |
|
479 | 478 | zmin_coh = None |
|
480 | 479 | zmax_coh = None |
|
481 | 480 | zmin_phase = None |
|
482 | 481 | zmax_phase = None |
|
483 | 482 | |
|
484 | 483 | def setup(self): |
|
485 | 484 | |
|
486 | 485 | self.ncols = 1 |
|
487 | 486 | self.nrows = len(self.data.pairs) |
|
488 | 487 | self.nplots = self.nrows * 1 |
|
489 | 488 | self.width = 3.1 * self.ncols |
|
490 | 489 | self.height = 5 * self.nrows |
|
491 | 490 | self.ylabel = 'Range [km]' |
|
492 | 491 | self.showprofile = False |
|
493 | 492 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
494 | 493 | |
|
495 | 494 | def plot(self): |
|
496 | 495 | |
|
497 | 496 | if self.xaxis == "frequency": |
|
498 | 497 | x = self.data.xrange[0] |
|
499 | 498 | self.xlabel = "Frequency (kHz)" |
|
500 | 499 | elif self.xaxis == "time": |
|
501 | 500 | x = self.data.xrange[1] |
|
502 | 501 | self.xlabel = "Time (ms)" |
|
503 | 502 | else: |
|
504 | 503 | x = self.data.xrange[2] |
|
505 | 504 | self.xlabel = "Velocity (m/s)" |
|
506 | 505 | |
|
507 | 506 | self.titles = [] |
|
508 | 507 | |
|
509 | 508 | |
|
510 | 509 | y = self.data.heights |
|
511 | 510 | self.y = y |
|
512 | 511 | #nspc = self.data['spc'] |
|
513 | 512 | #print(numpy.shape(self.data['spc'])) |
|
514 | 513 | #spc = self.data['cspc'][0] |
|
515 | 514 | #print(numpy.shape(spc)) |
|
516 | 515 | #exit() |
|
517 | 516 | cspc = self.data['cspc'][1] |
|
518 | 517 | #print(numpy.shape(cspc)) |
|
519 | 518 | #exit() |
|
520 | 519 | |
|
521 | 520 | for n in range(self.nrows): |
|
522 | 521 | noise = self.data['noise'][:,-1] |
|
523 | 522 | pair = self.data.pairs[n] |
|
524 | 523 | #print(pair) #exit() |
|
525 | 524 | |
|
526 | 525 | |
|
527 | 526 | |
|
528 | 527 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
529 | 528 | |
|
530 | 529 | #print(out[:,53]) |
|
531 | 530 | #exit() |
|
532 | 531 | cross = numpy.abs(out) |
|
533 | 532 | z = cross/self.data.nFactor |
|
534 | 533 | #print("here") |
|
535 | 534 | #print(dataOut.data_spc[0,0,0]) |
|
536 | 535 | #exit() |
|
537 | 536 | |
|
538 | 537 | cross = 10*numpy.log10(z) |
|
539 | 538 | #print(numpy.shape(cross)) |
|
540 | 539 | #print(cross[0,:]) |
|
541 | 540 | #print(self.data.nFactor) |
|
542 | 541 | #exit() |
|
543 | 542 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
544 | 543 | |
|
545 | 544 | ax = self.axes[1 * n] |
|
546 | 545 | if ax.firsttime: |
|
547 | 546 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
548 | 547 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
549 | 548 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
550 | 549 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
551 | 550 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
552 | 551 | vmin=self.zmin, |
|
553 | 552 | vmax=self.zmax, |
|
554 | 553 | cmap=plt.get_cmap(self.colormap) |
|
555 | 554 | ) |
|
556 | 555 | else: |
|
557 | 556 | ax.plt.set_array(cross.T.ravel()) |
|
558 | 557 | self.titles.append( |
|
559 | 558 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
560 | 559 | |
|
561 | 560 | |
|
562 | 561 | class CrossSpectra3Plot(Plot): |
|
563 | 562 | |
|
564 | 563 | CODE = 'cspc' |
|
565 | 564 | colormap = 'jet' |
|
566 | 565 | plot_type = 'pcolor' |
|
567 | 566 | zmin_coh = None |
|
568 | 567 | zmax_coh = None |
|
569 | 568 | zmin_phase = None |
|
570 | 569 | zmax_phase = None |
|
571 | 570 | |
|
572 | 571 | def setup(self): |
|
573 | 572 | |
|
574 | 573 | self.ncols = 3 |
|
575 | 574 | self.nrows = len(self.data.pairs) |
|
576 | 575 | self.nplots = self.nrows * 3 |
|
577 | 576 | self.width = 3.1 * self.ncols |
|
578 | 577 | self.height = 5 * self.nrows |
|
579 | 578 | self.ylabel = 'Range [km]' |
|
580 | 579 | self.showprofile = False |
|
581 | 580 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
582 | 581 | |
|
583 | 582 | def plot(self): |
|
584 | 583 | |
|
585 | 584 | if self.xaxis == "frequency": |
|
586 | 585 | x = self.data.xrange[0] |
|
587 | 586 | self.xlabel = "Frequency (kHz)" |
|
588 | 587 | elif self.xaxis == "time": |
|
589 | 588 | x = self.data.xrange[1] |
|
590 | 589 | self.xlabel = "Time (ms)" |
|
591 | 590 | else: |
|
592 | 591 | x = self.data.xrange[2] |
|
593 | 592 | self.xlabel = "Velocity (m/s)" |
|
594 | 593 | |
|
595 | 594 | self.titles = [] |
|
596 | 595 | |
|
597 | 596 | |
|
598 | 597 | y = self.data.heights |
|
599 | 598 | self.y = y |
|
600 | 599 | #nspc = self.data['spc'] |
|
601 | 600 | #print(numpy.shape(self.data['spc'])) |
|
602 | 601 | #spc = self.data['cspc'][0] |
|
603 | 602 | #print(numpy.shape(spc)) |
|
604 | 603 | #exit() |
|
605 | 604 | cspc = self.data['cspc'][1] |
|
606 | 605 | #print(numpy.shape(cspc)) |
|
607 | 606 | #exit() |
|
608 | 607 | |
|
609 | 608 | for n in range(self.nrows): |
|
610 | 609 | noise = self.data['noise'][:,-1] |
|
611 | 610 | pair = self.data.pairs[n] |
|
612 | 611 | #print(pair) #exit() |
|
613 | 612 | |
|
614 | 613 | |
|
615 | 614 | |
|
616 | 615 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
617 | 616 | |
|
618 | 617 | #print(out[:,53]) |
|
619 | 618 | #exit() |
|
620 | 619 | cross = numpy.abs(out) |
|
621 | 620 | z = cross/self.data.nFactor |
|
622 | 621 | cross = 10*numpy.log10(z) |
|
623 | 622 | |
|
624 | 623 | out_r= out.real/self.data.nFactor |
|
625 | 624 | #out_r = 10*numpy.log10(out_r) |
|
626 | 625 | |
|
627 | 626 | out_i= out.imag/self.data.nFactor |
|
628 | 627 | #out_i = 10*numpy.log10(out_i) |
|
629 | 628 | #print(numpy.shape(cross)) |
|
630 | 629 | #print(cross[0,:]) |
|
631 | 630 | #print(self.data.nFactor) |
|
632 | 631 | #exit() |
|
633 | 632 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
634 | 633 | |
|
635 | 634 | ax = self.axes[3 * n] |
|
636 | 635 | if ax.firsttime: |
|
637 | 636 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
638 | 637 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
639 | 638 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
640 | 639 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
641 | 640 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
642 | 641 | vmin=self.zmin, |
|
643 | 642 | vmax=self.zmax, |
|
644 | 643 | cmap=plt.get_cmap(self.colormap) |
|
645 | 644 | ) |
|
646 | 645 | else: |
|
647 | 646 | ax.plt.set_array(cross.T.ravel()) |
|
648 | 647 | self.titles.append( |
|
649 | 648 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
650 | 649 | |
|
651 | 650 | ax = self.axes[3 * n + 1] |
|
652 | 651 | if ax.firsttime: |
|
653 | 652 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
654 | 653 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
655 | 654 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
656 | 655 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
657 | 656 | ax.plt = ax.pcolormesh(x, y, out_r.T, |
|
658 | 657 | vmin=-1.e6, |
|
659 | 658 | vmax=0, |
|
660 | 659 | cmap=plt.get_cmap(self.colormap) |
|
661 | 660 | ) |
|
662 | 661 | else: |
|
663 | 662 | ax.plt.set_array(out_r.T.ravel()) |
|
664 | 663 | self.titles.append( |
|
665 | 664 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
666 | 665 | |
|
667 | 666 | ax = self.axes[3 * n + 2] |
|
668 | 667 | |
|
669 | 668 | |
|
670 | 669 | if ax.firsttime: |
|
671 | 670 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
672 | 671 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
673 | 672 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
674 | 673 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
675 | 674 | ax.plt = ax.pcolormesh(x, y, out_i.T, |
|
676 | 675 | vmin=-1.e6, |
|
677 | 676 | vmax=1.e6, |
|
678 | 677 | cmap=plt.get_cmap(self.colormap) |
|
679 | 678 | ) |
|
680 | 679 | else: |
|
681 | 680 | ax.plt.set_array(out_i.T.ravel()) |
|
682 | 681 | self.titles.append( |
|
683 | 682 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
684 | 683 | |
|
685 | 684 | class RTIPlot(Plot): |
|
686 | 685 | ''' |
|
687 | 686 | Plot for RTI data |
|
688 | 687 | ''' |
|
689 | 688 | |
|
690 | 689 | CODE = 'rti' |
|
691 | 690 | colormap = 'jet' |
|
692 | 691 | plot_type = 'pcolorbuffer' |
|
693 | 692 | |
|
694 | 693 | def setup(self): |
|
695 | 694 | self.xaxis = 'time' |
|
696 | 695 | self.ncols = 1 |
|
697 | 696 | self.nrows = len(self.data.channels) |
|
698 | 697 | self.nplots = len(self.data.channels) |
|
699 | 698 | self.ylabel = 'Range [km]' |
|
700 | 699 | self.xlabel = 'Time' |
|
701 | 700 | self.cb_label = 'dB' |
|
702 | 701 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
703 | 702 | self.titles = ['{} Channel {}'.format( |
|
704 | 703 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
705 | 704 | |
|
706 | 705 | def update(self, dataOut): |
|
707 | 706 | |
|
708 | 707 | data = {} |
|
709 | 708 | meta = {} |
|
710 | 709 | data['rti'] = dataOut.getPower() |
|
711 | 710 | #print(numpy.shape(data['rti'])) |
|
712 | 711 | |
|
713 | 712 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
714 | 713 | |
|
715 | 714 | return data, meta |
|
716 | 715 | |
|
717 | 716 | def plot(self): |
|
718 | 717 | |
|
719 | 718 | self.x = self.data.times |
|
720 | 719 | self.y = self.data.yrange |
|
721 | 720 | self.z = self.data[self.CODE] |
|
722 | 721 | #print("Inside RTI: ", self.z) |
|
723 | 722 | self.z = numpy.ma.masked_invalid(self.z) |
|
724 | 723 | |
|
725 | 724 | if self.decimation is None: |
|
726 | 725 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
727 | 726 | else: |
|
728 | 727 | x, y, z = self.fill_gaps(*self.decimate()) |
|
729 | 728 | #print("self.z: ", self.z) |
|
730 | 729 | #exit(1) |
|
731 | 730 | ''' |
|
732 | 731 | if not isinstance(self.zmin, collections.abc.Sequence): |
|
733 | 732 | if not self.zmin: |
|
734 | 733 | self.zmin = [numpy.min(self.z)]*len(self.axes) |
|
735 | 734 | else: |
|
736 | 735 | self.zmin = [self.zmin]*len(self.axes) |
|
737 | 736 | |
|
738 | 737 | if not isinstance(self.zmax, collections.abc.Sequence): |
|
739 | 738 | if not self.zmax: |
|
740 | 739 | self.zmax = [numpy.max(self.z)]*len(self.axes) |
|
741 | 740 | else: |
|
742 | 741 | self.zmax = [self.zmax]*len(self.axes) |
|
743 | 742 | ''' |
|
744 | 743 | for n, ax in enumerate(self.axes): |
|
745 | 744 | |
|
746 | 745 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
747 | 746 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
748 | 747 | |
|
749 | 748 | if ax.firsttime: |
|
750 | 749 | if self.zlimits is not None: |
|
751 | 750 | self.zmin, self.zmax = self.zlimits[n] |
|
752 | 751 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
753 | 752 | vmin=self.zmin, |
|
754 | 753 | vmax=self.zmax, |
|
755 | 754 | cmap=plt.get_cmap(self.colormap) |
|
756 | 755 | ) |
|
757 | 756 | if self.showprofile: |
|
758 | 757 | ax.plot_profile = self.pf_axes[n].plot( |
|
759 | 758 | self.data['rti'][n][-1], self.y)[0] |
|
760 | 759 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
761 | 760 | color="k", linestyle="dashed", lw=1)[0] |
|
762 | 761 | else: |
|
763 | 762 | if self.zlimits is not None: |
|
764 | 763 | self.zmin, self.zmax = self.zlimits[n] |
|
765 | 764 | ax.plt.remove() |
|
766 | 765 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
767 | 766 | vmin=self.zmin, |
|
768 | 767 | vmax=self.zmax, |
|
769 | 768 | cmap=plt.get_cmap(self.colormap) |
|
770 | 769 | ) |
|
771 | 770 | if self.showprofile: |
|
772 | 771 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
773 | 772 | ax.plot_noise.set_data(numpy.repeat( |
|
774 | 773 | self.data['noise'][n][-1], len(self.y)), self.y) |
|
775 | 774 | |
|
776 | 775 | |
|
777 | 776 | class SpectrogramPlot(Plot): |
|
778 | 777 | ''' |
|
779 | 778 | Plot for Spectrogram data |
|
780 | 779 | ''' |
|
781 | 780 | |
|
782 | 781 | CODE = 'Spectrogram_Profile' |
|
783 | 782 | colormap = 'binary' |
|
784 | 783 | plot_type = 'pcolorbuffer' |
|
785 | 784 | |
|
786 | 785 | def setup(self): |
|
787 | 786 | self.xaxis = 'time' |
|
788 | 787 | self.ncols = 1 |
|
789 | 788 | self.nrows = len(self.data.channels) |
|
790 | 789 | self.nplots = len(self.data.channels) |
|
791 | 790 | self.xlabel = 'Time' |
|
792 | 791 | #self.cb_label = 'dB' |
|
793 | 792 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) |
|
794 | 793 | self.titles = [] |
|
795 | 794 | |
|
796 | 795 | #self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( |
|
797 | 796 | #self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] |
|
798 | 797 | |
|
799 | 798 | self.titles = ['{} Channel {}'.format( |
|
800 | 799 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
801 | 800 | |
|
802 | 801 | |
|
803 | 802 | def update(self, dataOut): |
|
804 | 803 | data = {} |
|
805 | 804 | meta = {} |
|
806 | 805 | |
|
807 | 806 | maxHei = 1620#+12000 |
|
808 | 807 | maxHei = 1180 |
|
809 | 808 | maxHei = 500 |
|
810 | 809 | indb = numpy.where(dataOut.heightList <= maxHei) |
|
811 | 810 | hei = indb[0][-1] |
|
812 | 811 | #print(dataOut.heightList) |
|
813 | 812 | |
|
814 | 813 | factor = dataOut.nIncohInt |
|
815 | 814 | z = dataOut.data_spc[:,:,hei] / factor |
|
816 | 815 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
817 | 816 | #buffer = 10 * numpy.log10(z) |
|
818 | 817 | |
|
819 | 818 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
820 | 819 | |
|
821 | 820 | |
|
822 | 821 | #self.hei = hei |
|
823 | 822 | #self.heightList = dataOut.heightList |
|
824 | 823 | #self.DH = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
825 | 824 | #self.nProfiles = dataOut.nProfiles |
|
826 | 825 | |
|
827 | 826 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) |
|
828 | 827 | |
|
829 | 828 | data['hei'] = hei |
|
830 | 829 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
831 | 830 | data['nProfiles'] = dataOut.nProfiles |
|
832 | 831 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
833 | 832 | ''' |
|
834 | 833 | import matplotlib.pyplot as plt |
|
835 | 834 | plt.plot(10 * numpy.log10(z[0,:])) |
|
836 | 835 | plt.show() |
|
837 | 836 | |
|
838 | 837 | from time import sleep |
|
839 | 838 | sleep(10) |
|
840 | 839 | ''' |
|
841 | 840 | return data, meta |
|
842 | 841 | |
|
843 | 842 | def plot(self): |
|
844 | 843 | |
|
845 | 844 | self.x = self.data.times |
|
846 | 845 | self.z = self.data[self.CODE] |
|
847 | 846 | self.y = self.data.xrange[0] |
|
848 | 847 | |
|
849 | 848 | hei = self.data['hei'][-1] |
|
850 | 849 | DH = self.data['DH'][-1] |
|
851 | 850 | nProfiles = self.data['nProfiles'][-1] |
|
852 | 851 | |
|
853 | 852 | self.ylabel = "Frequency (kHz)" |
|
854 | 853 | |
|
855 | 854 | self.z = numpy.ma.masked_invalid(self.z) |
|
856 | 855 | |
|
857 | 856 | if self.decimation is None: |
|
858 | 857 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
859 | 858 | else: |
|
860 | 859 | x, y, z = self.fill_gaps(*self.decimate()) |
|
861 | 860 | |
|
862 | 861 | for n, ax in enumerate(self.axes): |
|
863 | 862 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
864 | 863 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
865 | 864 | data = self.data[-1] |
|
866 | 865 | if ax.firsttime: |
|
867 | 866 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
868 | 867 | vmin=self.zmin, |
|
869 | 868 | vmax=self.zmax, |
|
870 | 869 | cmap=plt.get_cmap(self.colormap) |
|
871 | 870 | ) |
|
872 | 871 | else: |
|
873 | 872 | ax.plt.remove() |
|
874 | 873 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
875 | 874 | vmin=self.zmin, |
|
876 | 875 | vmax=self.zmax, |
|
877 | 876 | cmap=plt.get_cmap(self.colormap) |
|
878 | 877 | ) |
|
879 | 878 | |
|
880 | 879 | #self.titles.append('Spectrogram') |
|
881 | 880 | |
|
882 | 881 | #self.titles.append('{} Channel {} \n H = {} km ({} - {})'.format( |
|
883 | 882 | #self.CODE.upper(), x, y[hei], y[hei],y[hei]+(DH*nProfiles))) |
|
884 | 883 | |
|
885 | 884 | |
|
886 | 885 | |
|
887 | 886 | |
|
888 | 887 | class CoherencePlot(RTIPlot): |
|
889 | 888 | ''' |
|
890 | 889 | Plot for Coherence data |
|
891 | 890 | ''' |
|
892 | 891 | |
|
893 | 892 | CODE = 'coh' |
|
894 | 893 | |
|
895 | 894 | def setup(self): |
|
896 | 895 | self.xaxis = 'time' |
|
897 | 896 | self.ncols = 1 |
|
898 | 897 | self.nrows = len(self.data.pairs) |
|
899 | 898 | self.nplots = len(self.data.pairs) |
|
900 | 899 | self.ylabel = 'Range [km]' |
|
901 | 900 | self.xlabel = 'Time' |
|
902 | 901 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
903 | 902 | if self.CODE == 'coh': |
|
904 | 903 | self.cb_label = '' |
|
905 | 904 | self.titles = [ |
|
906 | 905 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
907 | 906 | else: |
|
908 | 907 | self.cb_label = 'Degrees' |
|
909 | 908 | self.titles = [ |
|
910 | 909 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
911 | 910 | |
|
912 | 911 | def update(self, dataOut): |
|
913 | 912 | |
|
914 | 913 | data = {} |
|
915 | 914 | meta = {} |
|
916 | 915 | data['coh'] = dataOut.getCoherence() |
|
917 | 916 | meta['pairs'] = dataOut.pairsList |
|
918 | 917 | |
|
919 | 918 | return data, meta |
|
920 | 919 | |
|
921 | 920 | class PhasePlot(CoherencePlot): |
|
922 | 921 | ''' |
|
923 | 922 | Plot for Phase map data |
|
924 | 923 | ''' |
|
925 | 924 | |
|
926 | 925 | CODE = 'phase' |
|
927 | 926 | colormap = 'seismic' |
|
928 | 927 | |
|
929 | 928 | def update(self, dataOut): |
|
930 | 929 | |
|
931 | 930 | data = {} |
|
932 | 931 | meta = {} |
|
933 | 932 | data['phase'] = dataOut.getCoherence(phase=True) |
|
934 | 933 | meta['pairs'] = dataOut.pairsList |
|
935 | 934 | |
|
936 | 935 | return data, meta |
|
937 | 936 | |
|
938 | 937 | class NoisePlot(Plot): |
|
939 | 938 | ''' |
|
940 | 939 | Plot for noise |
|
941 | 940 | ''' |
|
942 | 941 | |
|
943 | 942 | CODE = 'noise' |
|
944 | 943 | plot_type = 'scatterbuffer' |
|
945 | 944 | |
|
946 | 945 | def setup(self): |
|
947 | 946 | self.xaxis = 'time' |
|
948 | 947 | self.ncols = 1 |
|
949 | 948 | self.nrows = 1 |
|
950 | 949 | self.nplots = 1 |
|
951 | 950 | self.ylabel = 'Intensity [dB]' |
|
952 | 951 | self.xlabel = 'Time' |
|
953 | 952 | self.titles = ['Noise'] |
|
954 | 953 | self.colorbar = False |
|
955 | 954 | self.plots_adjust.update({'right': 0.85 }) |
|
956 | 955 | |
|
957 | 956 | def update(self, dataOut): |
|
958 | 957 | |
|
959 | 958 | data = {} |
|
960 | 959 | meta = {} |
|
961 | 960 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
962 | 961 | meta['yrange'] = numpy.array([]) |
|
963 | 962 | |
|
964 | 963 | return data, meta |
|
965 | 964 | |
|
966 | 965 | def plot(self): |
|
967 | 966 | |
|
968 | 967 | x = self.data.times |
|
969 | 968 | xmin = self.data.min_time |
|
970 | 969 | xmax = xmin + self.xrange * 60 * 60 |
|
971 | 970 | Y = self.data['noise'] |
|
972 | 971 | |
|
973 | 972 | if self.axes[0].firsttime: |
|
974 | 973 | self.ymin = numpy.nanmin(Y) - 5 |
|
975 | 974 | self.ymax = numpy.nanmax(Y) + 5 |
|
976 | 975 | for ch in self.data.channels: |
|
977 | 976 | y = Y[ch] |
|
978 | 977 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
979 | 978 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
980 | 979 | else: |
|
981 | 980 | for ch in self.data.channels: |
|
982 | 981 | y = Y[ch] |
|
983 | 982 | self.axes[0].lines[ch].set_data(x, y) |
|
984 | 983 | |
|
985 | 984 | self.ymin = numpy.nanmin(Y) - 5 |
|
986 | 985 | self.ymax = numpy.nanmax(Y) + 10 |
|
987 | 986 | |
|
988 | 987 | |
|
989 | 988 | class PowerProfilePlot(Plot): |
|
990 | 989 | |
|
991 | 990 | CODE = 'pow_profile' |
|
992 | 991 | plot_type = 'scatter' |
|
993 | 992 | |
|
994 | 993 | def setup(self): |
|
995 | 994 | |
|
996 | 995 | self.ncols = 1 |
|
997 | 996 | self.nrows = 1 |
|
998 | 997 | self.nplots = 1 |
|
999 | 998 | self.height = 4 |
|
1000 | 999 | self.width = 3 |
|
1001 | 1000 | self.ylabel = 'Range [km]' |
|
1002 | 1001 | self.xlabel = 'Intensity [dB]' |
|
1003 | 1002 | self.titles = ['Power Profile'] |
|
1004 | 1003 | self.colorbar = False |
|
1005 | 1004 | |
|
1006 | 1005 | def update(self, dataOut): |
|
1007 | 1006 | |
|
1008 | 1007 | data = {} |
|
1009 | 1008 | meta = {} |
|
1010 | 1009 | data[self.CODE] = dataOut.getPower() |
|
1011 | 1010 | |
|
1012 | 1011 | return data, meta |
|
1013 | 1012 | |
|
1014 | 1013 | def plot(self): |
|
1015 | 1014 | |
|
1016 | 1015 | y = self.data.yrange |
|
1017 | 1016 | self.y = y |
|
1018 | 1017 | |
|
1019 | 1018 | x = self.data[-1][self.CODE] |
|
1020 | 1019 | |
|
1021 | 1020 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
1022 | 1021 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
1023 | 1022 | |
|
1024 | 1023 | if self.axes[0].firsttime: |
|
1025 | 1024 | for ch in self.data.channels: |
|
1026 | 1025 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
1027 | 1026 | plt.legend() |
|
1028 | 1027 | else: |
|
1029 | 1028 | for ch in self.data.channels: |
|
1030 | 1029 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
1031 | 1030 | |
|
1032 | 1031 | |
|
1033 | 1032 | class SpectraCutPlot(Plot): |
|
1034 | 1033 | |
|
1035 | 1034 | CODE = 'spc_cut' |
|
1036 | 1035 | plot_type = 'scatter' |
|
1037 | 1036 | buffering = False |
|
1038 | 1037 | |
|
1039 | 1038 | def setup(self): |
|
1040 | 1039 | |
|
1041 | 1040 | self.nplots = len(self.data.channels) |
|
1042 | 1041 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
1043 | 1042 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
1044 | 1043 | self.width = 3.4 * self.ncols + 1.5 |
|
1045 | 1044 | self.height = 3 * self.nrows |
|
1046 | 1045 | self.ylabel = 'Power [dB]' |
|
1047 | 1046 | self.colorbar = False |
|
1048 | 1047 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
1049 | 1048 | |
|
1050 | 1049 | def update(self, dataOut): |
|
1051 | 1050 | |
|
1052 | 1051 | data = {} |
|
1053 | 1052 | meta = {} |
|
1054 | 1053 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
1055 | 1054 | data['spc'] = spc |
|
1056 | 1055 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
1057 | 1056 | if self.CODE == 'cut_gaussian_fit': |
|
1058 | 1057 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) |
|
1059 | 1058 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) |
|
1060 | 1059 | return data, meta |
|
1061 | 1060 | |
|
1062 | 1061 | def plot(self): |
|
1063 | 1062 | if self.xaxis == "frequency": |
|
1064 | 1063 | x = self.data.xrange[0][1:] |
|
1065 | 1064 | self.xlabel = "Frequency (kHz)" |
|
1066 | 1065 | elif self.xaxis == "time": |
|
1067 | 1066 | x = self.data.xrange[1] |
|
1068 | 1067 | self.xlabel = "Time (ms)" |
|
1069 | 1068 | else: |
|
1070 | 1069 | x = self.data.xrange[2][:-1] |
|
1071 | 1070 | self.xlabel = "Velocity (m/s)" |
|
1072 | 1071 | |
|
1073 | 1072 | if self.CODE == 'cut_gaussian_fit': |
|
1074 | 1073 | x = self.data.xrange[2][:-1] |
|
1075 | 1074 | self.xlabel = "Velocity (m/s)" |
|
1076 | 1075 | |
|
1077 | 1076 | self.titles = [] |
|
1078 | 1077 | |
|
1079 | 1078 | y = self.data.yrange |
|
1080 | 1079 | data = self.data[-1] |
|
1081 | 1080 | z = data['spc'] |
|
1082 | 1081 | |
|
1083 | 1082 | if self.height_index: |
|
1084 | 1083 | index = numpy.array(self.height_index) |
|
1085 | 1084 | else: |
|
1086 | 1085 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
1087 | 1086 | |
|
1088 | 1087 | for n, ax in enumerate(self.axes): |
|
1089 | 1088 | if self.CODE == 'cut_gaussian_fit': |
|
1090 | 1089 | gau0 = data['gauss_fit0'] |
|
1091 | 1090 | gau1 = data['gauss_fit1'] |
|
1092 | 1091 | if ax.firsttime: |
|
1093 | 1092 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
1094 | 1093 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
1095 | 1094 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z[:,:,index]) |
|
1096 | 1095 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z[:,:,index]) |
|
1097 | 1096 | #print(self.ymax) |
|
1098 | 1097 | #print(z[n, :, index]) |
|
1099 | 1098 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) |
|
1100 | 1099 | if self.CODE == 'cut_gaussian_fit': |
|
1101 | 1100 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') |
|
1102 | 1101 | for i, line in enumerate(ax.plt_gau0): |
|
1103 | 1102 | line.set_color(ax.plt[i].get_color()) |
|
1104 | 1103 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') |
|
1105 | 1104 | for i, line in enumerate(ax.plt_gau1): |
|
1106 | 1105 | line.set_color(ax.plt[i].get_color()) |
|
1107 | 1106 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
1108 | 1107 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
1109 | 1108 | else: |
|
1110 | 1109 | for i, line in enumerate(ax.plt): |
|
1111 | 1110 | line.set_data(x, z[n, :, index[i]].T) |
|
1112 | 1111 | for i, line in enumerate(ax.plt_gau0): |
|
1113 | 1112 | line.set_data(x, gau0[n, :, index[i]].T) |
|
1114 | 1113 | line.set_color(ax.plt[i].get_color()) |
|
1115 | 1114 | for i, line in enumerate(ax.plt_gau1): |
|
1116 | 1115 | line.set_data(x, gau1[n, :, index[i]].T) |
|
1117 | 1116 | line.set_color(ax.plt[i].get_color()) |
|
1118 | 1117 | self.titles.append('CH {}'.format(n)) |
|
1119 | 1118 | |
|
1120 | 1119 | |
|
1121 | 1120 | class BeaconPhase(Plot): |
|
1122 | 1121 | |
|
1123 | 1122 | __isConfig = None |
|
1124 | 1123 | __nsubplots = None |
|
1125 | 1124 | |
|
1126 | 1125 | PREFIX = 'beacon_phase' |
|
1127 | 1126 | |
|
1128 | 1127 | def __init__(self): |
|
1129 | 1128 | Plot.__init__(self) |
|
1130 | 1129 | self.timerange = 24*60*60 |
|
1131 | 1130 | self.isConfig = False |
|
1132 | 1131 | self.__nsubplots = 1 |
|
1133 | 1132 | self.counter_imagwr = 0 |
|
1134 | 1133 | self.WIDTH = 800 |
|
1135 | 1134 | self.HEIGHT = 400 |
|
1136 | 1135 | self.WIDTHPROF = 120 |
|
1137 | 1136 | self.HEIGHTPROF = 0 |
|
1138 | 1137 | self.xdata = None |
|
1139 | 1138 | self.ydata = None |
|
1140 | 1139 | |
|
1141 | 1140 | self.PLOT_CODE = BEACON_CODE |
|
1142 | 1141 | |
|
1143 | 1142 | self.FTP_WEI = None |
|
1144 | 1143 | self.EXP_CODE = None |
|
1145 | 1144 | self.SUB_EXP_CODE = None |
|
1146 | 1145 | self.PLOT_POS = None |
|
1147 | 1146 | |
|
1148 | 1147 | self.filename_phase = None |
|
1149 | 1148 | |
|
1150 | 1149 | self.figfile = None |
|
1151 | 1150 | |
|
1152 | 1151 | self.xmin = None |
|
1153 | 1152 | self.xmax = None |
|
1154 | 1153 | |
|
1155 | 1154 | def getSubplots(self): |
|
1156 | 1155 | |
|
1157 | 1156 | ncol = 1 |
|
1158 | 1157 | nrow = 1 |
|
1159 | 1158 | |
|
1160 | 1159 | return nrow, ncol |
|
1161 | 1160 | |
|
1162 | 1161 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1163 | 1162 | |
|
1164 | 1163 | self.__showprofile = showprofile |
|
1165 | 1164 | self.nplots = nplots |
|
1166 | 1165 | |
|
1167 | 1166 | ncolspan = 7 |
|
1168 | 1167 | colspan = 6 |
|
1169 | 1168 | self.__nsubplots = 2 |
|
1170 | 1169 | |
|
1171 | 1170 | self.createFigure(id = id, |
|
1172 | 1171 | wintitle = wintitle, |
|
1173 | 1172 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1174 | 1173 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1175 | 1174 | show=show) |
|
1176 | 1175 | |
|
1177 | 1176 | nrow, ncol = self.getSubplots() |
|
1178 | 1177 | |
|
1179 | 1178 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1180 | 1179 | |
|
1181 | 1180 | def save_phase(self, filename_phase): |
|
1182 | 1181 | f = open(filename_phase,'w+') |
|
1183 | 1182 | f.write('\n\n') |
|
1184 | 1183 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1185 | 1184 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1186 | 1185 | f.close() |
|
1187 | 1186 | |
|
1188 | 1187 | def save_data(self, filename_phase, data, data_datetime): |
|
1189 | 1188 | f=open(filename_phase,'a') |
|
1190 | 1189 | timetuple_data = data_datetime.timetuple() |
|
1191 | 1190 | day = str(timetuple_data.tm_mday) |
|
1192 | 1191 | month = str(timetuple_data.tm_mon) |
|
1193 | 1192 | year = str(timetuple_data.tm_year) |
|
1194 | 1193 | hour = str(timetuple_data.tm_hour) |
|
1195 | 1194 | minute = str(timetuple_data.tm_min) |
|
1196 | 1195 | second = str(timetuple_data.tm_sec) |
|
1197 | 1196 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1198 | 1197 | f.close() |
|
1199 | 1198 | |
|
1200 | 1199 | def plot(self): |
|
1201 | 1200 | log.warning('TODO: Not yet implemented...') |
|
1202 | 1201 | |
|
1203 | 1202 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1204 | 1203 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1205 | 1204 | timerange=None, |
|
1206 | 1205 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1207 | 1206 | server=None, folder=None, username=None, password=None, |
|
1208 | 1207 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1209 | 1208 | |
|
1210 | 1209 | if dataOut.flagNoData: |
|
1211 | 1210 | return dataOut |
|
1212 | 1211 | |
|
1213 | 1212 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1214 | 1213 | return |
|
1215 | 1214 | |
|
1216 | 1215 | if pairsList == None: |
|
1217 | 1216 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1218 | 1217 | else: |
|
1219 | 1218 | pairsIndexList = [] |
|
1220 | 1219 | for pair in pairsList: |
|
1221 | 1220 | if pair not in dataOut.pairsList: |
|
1222 | 1221 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
1223 | 1222 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1224 | 1223 | |
|
1225 | 1224 | if pairsIndexList == []: |
|
1226 | 1225 | return |
|
1227 | 1226 | |
|
1228 | 1227 | # if len(pairsIndexList) > 4: |
|
1229 | 1228 | # pairsIndexList = pairsIndexList[0:4] |
|
1230 | 1229 | |
|
1231 | 1230 | hmin_index = None |
|
1232 | 1231 | hmax_index = None |
|
1233 | 1232 | |
|
1234 | 1233 | if hmin != None and hmax != None: |
|
1235 | 1234 | indexes = numpy.arange(dataOut.nHeights) |
|
1236 | 1235 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1237 | 1236 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1238 | 1237 | |
|
1239 | 1238 | if hmin_list.any(): |
|
1240 | 1239 | hmin_index = hmin_list[0] |
|
1241 | 1240 | |
|
1242 | 1241 | if hmax_list.any(): |
|
1243 | 1242 | hmax_index = hmax_list[-1]+1 |
|
1244 | 1243 | |
|
1245 | 1244 | x = dataOut.getTimeRange() |
|
1246 | 1245 | |
|
1247 | 1246 | thisDatetime = dataOut.datatime |
|
1248 | 1247 | |
|
1249 | 1248 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1250 | 1249 | xlabel = "Local Time" |
|
1251 | 1250 | ylabel = "Phase (degrees)" |
|
1252 | 1251 | |
|
1253 | 1252 | update_figfile = False |
|
1254 | 1253 | |
|
1255 | 1254 | nplots = len(pairsIndexList) |
|
1256 | 1255 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1257 | 1256 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1258 | 1257 | for i in range(nplots): |
|
1259 | 1258 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1260 | 1259 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1261 | 1260 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1262 | 1261 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1263 | 1262 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1264 | 1263 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1265 | 1264 | |
|
1266 | 1265 | if dataOut.beacon_heiIndexList: |
|
1267 | 1266 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1268 | 1267 | else: |
|
1269 | 1268 | phase_beacon[i] = numpy.average(phase) |
|
1270 | 1269 | |
|
1271 | 1270 | if not self.isConfig: |
|
1272 | 1271 | |
|
1273 | 1272 | nplots = len(pairsIndexList) |
|
1274 | 1273 | |
|
1275 | 1274 | self.setup(id=id, |
|
1276 | 1275 | nplots=nplots, |
|
1277 | 1276 | wintitle=wintitle, |
|
1278 | 1277 | showprofile=showprofile, |
|
1279 | 1278 | show=show) |
|
1280 | 1279 | |
|
1281 | 1280 | if timerange != None: |
|
1282 | 1281 | self.timerange = timerange |
|
1283 | 1282 | |
|
1284 | 1283 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1285 | 1284 | |
|
1286 | 1285 | if ymin == None: ymin = 0 |
|
1287 | 1286 | if ymax == None: ymax = 360 |
|
1288 | 1287 | |
|
1289 | 1288 | self.FTP_WEI = ftp_wei |
|
1290 | 1289 | self.EXP_CODE = exp_code |
|
1291 | 1290 | self.SUB_EXP_CODE = sub_exp_code |
|
1292 | 1291 | self.PLOT_POS = plot_pos |
|
1293 | 1292 | |
|
1294 | 1293 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1295 | 1294 | self.isConfig = True |
|
1296 | 1295 | self.figfile = figfile |
|
1297 | 1296 | self.xdata = numpy.array([]) |
|
1298 | 1297 | self.ydata = numpy.array([]) |
|
1299 | 1298 | |
|
1300 | 1299 | update_figfile = True |
|
1301 | 1300 | |
|
1302 | 1301 | #open file beacon phase |
|
1303 | 1302 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1304 | 1303 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1305 | 1304 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1306 | 1305 | #self.save_phase(self.filename_phase) |
|
1307 | 1306 | |
|
1308 | 1307 | |
|
1309 | 1308 | #store data beacon phase |
|
1310 | 1309 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1311 | 1310 | |
|
1312 | 1311 | self.setWinTitle(title) |
|
1313 | 1312 | |
|
1314 | 1313 | |
|
1315 | 1314 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1316 | 1315 | |
|
1317 | 1316 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1318 | 1317 | |
|
1319 | 1318 | axes = self.axesList[0] |
|
1320 | 1319 | |
|
1321 | 1320 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1322 | 1321 | |
|
1323 | 1322 | if len(self.ydata)==0: |
|
1324 | 1323 | self.ydata = phase_beacon.reshape(-1,1) |
|
1325 | 1324 | else: |
|
1326 | 1325 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1327 | 1326 | |
|
1328 | 1327 | |
|
1329 | 1328 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1330 | 1329 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1331 | 1330 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1332 | 1331 | XAxisAsTime=True, grid='both' |
|
1333 | 1332 | ) |
|
1334 | 1333 | |
|
1335 | 1334 | self.draw() |
|
1336 | 1335 | |
|
1337 | 1336 | if dataOut.ltctime >= self.xmax: |
|
1338 | 1337 | self.counter_imagwr = wr_period |
|
1339 | 1338 | self.isConfig = False |
|
1340 | 1339 | update_figfile = True |
|
1341 | 1340 | |
|
1342 | 1341 | self.save(figpath=figpath, |
|
1343 | 1342 | figfile=figfile, |
|
1344 | 1343 | save=save, |
|
1345 | 1344 | ftp=ftp, |
|
1346 | 1345 | wr_period=wr_period, |
|
1347 | 1346 | thisDatetime=thisDatetime, |
|
1348 | 1347 | update_figfile=update_figfile) |
|
1349 | 1348 | |
|
1350 | 1349 | return dataOut |
@@ -1,1428 +1,1428 | |||
|
1 | 1 | |
|
2 | 2 | import os |
|
3 | 3 | import time |
|
4 | 4 | import math |
|
5 | 5 | import datetime |
|
6 | 6 | import numpy |
|
7 | 7 | |
|
8 | 8 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator #YONG |
|
9 | 9 | |
|
10 | 10 | from .jroplot_spectra import RTIPlot, NoisePlot |
|
11 | 11 | |
|
12 | 12 | from schainpy.utils import log |
|
13 | 13 | from .plotting_codes import * |
|
14 | 14 | |
|
15 | 15 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
16 | 16 | |
|
17 | 17 | import matplotlib.pyplot as plt |
|
18 | 18 | import matplotlib.colors as colors |
|
19 | 19 | from matplotlib.ticker import MultipleLocator, LogLocator, NullFormatter |
|
20 | 20 | |
|
21 | 21 | class RTIDPPlot(RTIPlot): |
|
22 | 22 | ''' |
|
23 | 23 | Written by R. Flores |
|
24 | 24 | ''' |
|
25 | 25 | '''Plot for RTI Double Pulse Experiment Using Cross Products Analysis |
|
26 | 26 | ''' |
|
27 | 27 | |
|
28 | 28 | CODE = 'RTIDP' |
|
29 | 29 | colormap = 'jet' |
|
30 | 30 | plot_name = 'RTI' |
|
31 | 31 | plot_type = 'pcolorbuffer' |
|
32 | 32 | |
|
33 | 33 | def setup(self): |
|
34 | 34 | self.xaxis = 'time' |
|
35 | 35 | self.ncols = 1 |
|
36 | 36 | self.nrows = 3 |
|
37 | 37 | self.nplots = self.nrows |
|
38 | 38 | |
|
39 | 39 | self.ylabel = 'Range [km]' |
|
40 | 40 | self.xlabel = 'Time (LT)' |
|
41 | 41 | |
|
42 | 42 | self.cb_label = 'Intensity (dB)' |
|
43 | 43 | |
|
44 | 44 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
45 | 45 | |
|
46 | 46 | self.titles = ['{} Channel {}'.format( |
|
47 | 47 | self.plot_name.upper(), '0x1'),'{} Channel {}'.format( |
|
48 | 48 | self.plot_name.upper(), '0'),'{} Channel {}'.format( |
|
49 | 49 | self.plot_name.upper(), '1')] |
|
50 | 50 | |
|
51 | 51 | def update(self, dataOut): |
|
52 | 52 | |
|
53 | 53 | data = {} |
|
54 | 54 | meta = {} |
|
55 | 55 | data['rti'] = dataOut.data_for_RTI_DP |
|
56 | 56 | data['NDP'] = dataOut.NDP |
|
57 | 57 | |
|
58 | 58 | return data, meta |
|
59 | 59 | |
|
60 | 60 | def plot(self): |
|
61 | 61 | |
|
62 | 62 | NDP = self.data['NDP'][-1] |
|
63 | 63 | self.x = self.data.times |
|
64 | 64 | self.y = self.data.yrange[0:NDP] |
|
65 | 65 | self.z = self.data['rti'] |
|
66 | 66 | self.z = numpy.ma.masked_invalid(self.z) |
|
67 | 67 | |
|
68 | 68 | if self.decimation is None: |
|
69 | 69 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
70 | 70 | else: |
|
71 | 71 | x, y, z = self.fill_gaps(*self.decimate()) |
|
72 | 72 | |
|
73 | 73 | for n, ax in enumerate(self.axes): |
|
74 | 74 | |
|
75 | 75 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
76 | 76 | self.z[1][0,12:40]) |
|
77 | 77 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
78 | 78 | self.z[1][0,12:40]) |
|
79 | 79 | |
|
80 | 80 | if ax.firsttime: |
|
81 | 81 | |
|
82 | 82 | if self.zlimits is not None: |
|
83 | 83 | self.zmin, self.zmax = self.zlimits[n] |
|
84 | 84 | |
|
85 | 85 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
86 | 86 | vmin=self.zmin, |
|
87 | 87 | vmax=self.zmax, |
|
88 | 88 | cmap=plt.get_cmap(self.colormap) |
|
89 | 89 | ) |
|
90 | 90 | else: |
|
91 | 91 | #if self.zlimits is not None: |
|
92 | 92 | #self.zmin, self.zmax = self.zlimits[n] |
|
93 | 93 | ax.plt.remove() |
|
94 | 94 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
95 | 95 | vmin=self.zmin, |
|
96 | 96 | vmax=self.zmax, |
|
97 | 97 | cmap=plt.get_cmap(self.colormap) |
|
98 | 98 | ) |
|
99 | 99 | |
|
100 | 100 | |
|
101 | 101 | class RTILPPlot(RTIPlot): |
|
102 | 102 | ''' |
|
103 | 103 | Written by R. Flores |
|
104 | 104 | ''' |
|
105 | 105 | ''' |
|
106 | 106 | Plot for RTI Long Pulse Using Cross Products Analysis |
|
107 | 107 | ''' |
|
108 | 108 | |
|
109 | 109 | CODE = 'RTILP' |
|
110 | 110 | colormap = 'jet' |
|
111 | 111 | plot_name = 'RTI LP' |
|
112 | 112 | plot_type = 'pcolorbuffer' |
|
113 | 113 | |
|
114 | 114 | def setup(self): |
|
115 | 115 | self.xaxis = 'time' |
|
116 | 116 | self.ncols = 1 |
|
117 | 117 | self.nrows = 2 |
|
118 | 118 | self.nplots = self.nrows |
|
119 | 119 | |
|
120 | 120 | self.ylabel = 'Range [km]' |
|
121 | 121 | self.xlabel = 'Time (LT)' |
|
122 | 122 | |
|
123 | 123 | self.cb_label = 'Intensity (dB)' |
|
124 | 124 | |
|
125 | 125 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
126 | 126 | |
|
127 | 127 | |
|
128 | 128 | self.titles = ['{} Channel {}'.format( |
|
129 | 129 | self.plot_name.upper(), '0'),'{} Channel {}'.format( |
|
130 | 130 | self.plot_name.upper(), '1'),'{} Channel {}'.format( |
|
131 | 131 | self.plot_name.upper(), '2'),'{} Channel {}'.format( |
|
132 | 132 | self.plot_name.upper(), '3')] |
|
133 | 133 | |
|
134 | 134 | |
|
135 | 135 | def update(self, dataOut): |
|
136 | 136 | |
|
137 | 137 | data = {} |
|
138 | 138 | meta = {} |
|
139 | 139 | data['rti'] = dataOut.data_for_RTI_LP |
|
140 | 140 | data['NRANGE'] = dataOut.NRANGE |
|
141 | 141 | |
|
142 | 142 | return data, meta |
|
143 | 143 | |
|
144 | 144 | def plot(self): |
|
145 | 145 | |
|
146 | 146 | NRANGE = self.data['NRANGE'][-1] |
|
147 | 147 | self.x = self.data.times |
|
148 | 148 | self.y = self.data.yrange[0:NRANGE] |
|
149 | 149 | |
|
150 | 150 | self.z = self.data['rti'] |
|
151 | 151 | |
|
152 | 152 | self.z = numpy.ma.masked_invalid(self.z) |
|
153 | 153 | |
|
154 | 154 | if self.decimation is None: |
|
155 | 155 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
156 | 156 | else: |
|
157 | 157 | x, y, z = self.fill_gaps(*self.decimate()) |
|
158 | 158 | |
|
159 | 159 | for n, ax in enumerate(self.axes): |
|
160 | 160 | |
|
161 | 161 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
162 | 162 | self.z[1][0,12:40]) |
|
163 | 163 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
164 | 164 | self.z[1][0,12:40]) |
|
165 | 165 | |
|
166 | 166 | if ax.firsttime: |
|
167 | 167 | |
|
168 | 168 | if self.zlimits is not None: |
|
169 | 169 | self.zmin, self.zmax = self.zlimits[n] |
|
170 | 170 | |
|
171 | 171 | |
|
172 | 172 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
173 | 173 | vmin=self.zmin, |
|
174 | 174 | vmax=self.zmax, |
|
175 | 175 | cmap=plt.get_cmap(self.colormap) |
|
176 | 176 | ) |
|
177 | 177 | |
|
178 | 178 | else: |
|
179 | 179 | if self.zlimits is not None: |
|
180 | 180 | self.zmin, self.zmax = self.zlimits[n] |
|
181 | 181 | ax.plt.remove() |
|
182 | 182 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
183 | 183 | vmin=self.zmin, |
|
184 | 184 | vmax=self.zmax, |
|
185 | 185 | cmap=plt.get_cmap(self.colormap) |
|
186 | 186 | ) |
|
187 | 187 | |
|
188 | 188 | |
|
189 | 189 | class DenRTIPlot(RTIPlot): |
|
190 | 190 | ''' |
|
191 | 191 | Written by R. Flores |
|
192 | 192 | ''' |
|
193 | 193 | ''' |
|
194 | 194 | RTI Plot for Electron Densities |
|
195 | 195 | ''' |
|
196 | 196 | |
|
197 | 197 | CODE = 'denrti' |
|
198 | 198 | colormap = 'jet' |
|
199 | 199 | |
|
200 | 200 | def setup(self): |
|
201 | 201 | self.xaxis = 'time' |
|
202 | 202 | self.ncols = 1 |
|
203 | 203 | self.nrows = self.data.shape(self.CODE)[0] |
|
204 | 204 | self.nplots = self.nrows |
|
205 | 205 | |
|
206 | 206 | self.ylabel = 'Range [km]' |
|
207 | 207 | self.xlabel = 'Time (LT)' |
|
208 | 208 | |
|
209 | 209 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
210 | 210 | |
|
211 | 211 | if self.CODE == 'denrti': |
|
212 | 212 | self.cb_label = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' |
|
213 | 213 | |
|
214 | 214 | self.titles = ['Electron Density RTI'] |
|
215 | 215 | |
|
216 | 216 | def update(self, dataOut): |
|
217 | 217 | |
|
218 | 218 | data = {} |
|
219 | 219 | meta = {} |
|
220 | 220 | |
|
221 | 221 | data['denrti'] = dataOut.DensityFinal*1.e-6 #To Plot in cm^-3 |
|
222 | 222 | |
|
223 | 223 | return data, meta |
|
224 | 224 | |
|
225 | 225 | def plot(self): |
|
226 | 226 | |
|
227 | 227 | self.x = self.data.times |
|
228 | 228 | self.y = self.data.yrange |
|
229 | 229 | |
|
230 | 230 | self.z = self.data[self.CODE] |
|
231 | 231 | |
|
232 | 232 | self.z = numpy.ma.masked_invalid(self.z) |
|
233 | 233 | |
|
234 | 234 | if self.decimation is None: |
|
235 | 235 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
236 | 236 | else: |
|
237 | 237 | x, y, z = self.fill_gaps(*self.decimate()) |
|
238 | 238 | |
|
239 | 239 | for n, ax in enumerate(self.axes): |
|
240 | 240 | |
|
241 | 241 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
242 | 242 | self.z[n]) |
|
243 | 243 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
244 | 244 | self.z[n]) |
|
245 | 245 | |
|
246 | 246 | if ax.firsttime: |
|
247 | 247 | |
|
248 | 248 | if self.zlimits is not None: |
|
249 | 249 | self.zmin, self.zmax = self.zlimits[n] |
|
250 | 250 | if numpy.log10(self.zmin)<0: |
|
251 | 251 | self.zmin=1 |
|
252 | 252 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
253 | 253 | #vmin=self.zmin, |
|
254 | 254 | #vmax=self.zmax, |
|
255 | 255 | cmap=self.cmaps[n], |
|
256 | 256 | norm=colors.LogNorm(vmin=self.zmin,vmax=self.zmax) |
|
257 | 257 | ) |
|
258 | 258 | |
|
259 | 259 | else: |
|
260 | 260 | if self.zlimits is not None: |
|
261 | 261 | self.zmin, self.zmax = self.zlimits[n] |
|
262 | 262 | ax.plt.remove() |
|
263 | 263 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
264 | 264 | #vmin=self.zmin, |
|
265 | 265 | #vmax=self.zmax, |
|
266 | 266 | cmap=self.cmaps[n], |
|
267 | 267 | norm=colors.LogNorm(vmin=self.zmin,vmax=self.zmax) |
|
268 | 268 | ) |
|
269 | 269 | |
|
270 | 270 | |
|
271 | 271 | class ETempRTIPlot(RTIPlot): |
|
272 | 272 | ''' |
|
273 | 273 | Written by R. Flores |
|
274 | 274 | ''' |
|
275 | 275 | ''' |
|
276 | 276 | Plot for Electron Temperature |
|
277 | 277 | ''' |
|
278 | 278 | |
|
279 | 279 | CODE = 'ETemp' |
|
280 | 280 | colormap = 'jet' |
|
281 | 281 | |
|
282 | 282 | def setup(self): |
|
283 | 283 | self.xaxis = 'time' |
|
284 | 284 | self.ncols = 1 |
|
285 | 285 | self.nrows = self.data.shape(self.CODE)[0] |
|
286 | 286 | self.nplots = self.nrows |
|
287 | 287 | |
|
288 | 288 | self.ylabel = 'Range [km]' |
|
289 | 289 | self.xlabel = 'Time (LT)' |
|
290 | 290 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
291 | 291 | if self.CODE == 'ETemp': |
|
292 | 292 | self.cb_label = 'Electron Temperature (K)' |
|
293 | 293 | self.titles = ['Electron Temperature RTI'] |
|
294 | 294 | if self.CODE == 'ITemp': |
|
295 | 295 | self.cb_label = 'Ion Temperature (K)' |
|
296 | 296 | self.titles = ['Ion Temperature RTI'] |
|
297 | 297 | if self.CODE == 'HeFracLP': |
|
298 | 298 | self.cb_label ='He+ Fraction' |
|
299 | 299 | self.titles = ['He+ Fraction RTI'] |
|
300 | 300 | self.zmax=0.16 |
|
301 | 301 | if self.CODE == 'HFracLP': |
|
302 | 302 | self.cb_label ='H+ Fraction' |
|
303 | 303 | self.titles = ['H+ Fraction RTI'] |
|
304 | 304 | |
|
305 | 305 | def update(self, dataOut): |
|
306 | 306 | |
|
307 | 307 | data = {} |
|
308 | 308 | meta = {} |
|
309 | 309 | |
|
310 | 310 | data['ETemp'] = dataOut.ElecTempFinal |
|
311 | 311 | |
|
312 | 312 | return data, meta |
|
313 | 313 | |
|
314 | 314 | def plot(self): |
|
315 | 315 | |
|
316 | 316 | self.x = self.data.times |
|
317 | 317 | self.y = self.data.yrange |
|
318 | 318 | self.z = self.data[self.CODE] |
|
319 | 319 | |
|
320 | 320 | self.z = numpy.ma.masked_invalid(self.z) |
|
321 | 321 | |
|
322 | 322 | if self.decimation is None: |
|
323 | 323 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
324 | 324 | else: |
|
325 | 325 | x, y, z = self.fill_gaps(*self.decimate()) |
|
326 | 326 | |
|
327 | 327 | for n, ax in enumerate(self.axes): |
|
328 | 328 | |
|
329 | 329 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
330 | 330 | self.z[n]) |
|
331 | 331 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
332 | 332 | self.z[n]) |
|
333 | 333 | |
|
334 | 334 | if ax.firsttime: |
|
335 | 335 | |
|
336 | 336 | if self.zlimits is not None: |
|
337 | 337 | self.zmin, self.zmax = self.zlimits[n] |
|
338 | 338 | |
|
339 | 339 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
340 | 340 | vmin=self.zmin, |
|
341 | 341 | vmax=self.zmax, |
|
342 | 342 | cmap=self.cmaps[n] |
|
343 | 343 | ) |
|
344 | 344 | #plt.tight_layout() |
|
345 | 345 | |
|
346 | 346 | else: |
|
347 | 347 | if self.zlimits is not None: |
|
348 | 348 | self.zmin, self.zmax = self.zlimits[n] |
|
349 | 349 | ax.plt.remove() |
|
350 | 350 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
351 | 351 | vmin=self.zmin, |
|
352 | 352 | vmax=self.zmax, |
|
353 | 353 | cmap=self.cmaps[n] |
|
354 | 354 | ) |
|
355 | 355 | |
|
356 | 356 | |
|
357 | 357 | class ITempRTIPlot(ETempRTIPlot): |
|
358 | 358 | ''' |
|
359 | 359 | Written by R. Flores |
|
360 | 360 | ''' |
|
361 | 361 | ''' |
|
362 | 362 | Plot for Ion Temperature |
|
363 | 363 | ''' |
|
364 | 364 | |
|
365 | 365 | CODE = 'ITemp' |
|
366 | 366 | colormap = 'jet' |
|
367 | 367 | plot_name = 'Ion Temperature' |
|
368 | 368 | |
|
369 | 369 | def update(self, dataOut): |
|
370 | 370 | |
|
371 | 371 | data = {} |
|
372 | 372 | meta = {} |
|
373 | 373 | |
|
374 | 374 | data['ITemp'] = dataOut.IonTempFinal |
|
375 | 375 | |
|
376 | 376 | return data, meta |
|
377 | 377 | |
|
378 | 378 | |
|
379 | 379 | class HFracRTIPlot(ETempRTIPlot): |
|
380 | 380 | ''' |
|
381 | 381 | Written by R. Flores |
|
382 | 382 | ''' |
|
383 | 383 | ''' |
|
384 | 384 | Plot for H+ LP |
|
385 | 385 | ''' |
|
386 | 386 | |
|
387 | 387 | CODE = 'HFracLP' |
|
388 | 388 | colormap = 'jet' |
|
389 | 389 | plot_name = 'H+ Frac' |
|
390 | 390 | |
|
391 | 391 | def update(self, dataOut): |
|
392 | 392 | |
|
393 | 393 | data = {} |
|
394 | 394 | meta = {} |
|
395 | 395 | data['HFracLP'] = dataOut.PhyFinal |
|
396 | 396 | |
|
397 | 397 | return data, meta |
|
398 | 398 | |
|
399 | 399 | |
|
400 | 400 | class HeFracRTIPlot(ETempRTIPlot): |
|
401 | 401 | ''' |
|
402 | 402 | Written by R. Flores |
|
403 | 403 | ''' |
|
404 | 404 | ''' |
|
405 | 405 | Plot for He+ LP |
|
406 | 406 | ''' |
|
407 | 407 | |
|
408 | 408 | CODE = 'HeFracLP' |
|
409 | 409 | colormap = 'jet' |
|
410 | 410 | plot_name = 'He+ Frac' |
|
411 | 411 | |
|
412 | 412 | def update(self, dataOut): |
|
413 | 413 | |
|
414 | 414 | data = {} |
|
415 | 415 | meta = {} |
|
416 | 416 | data['HeFracLP'] = dataOut.PheFinal |
|
417 | 417 | |
|
418 | 418 | return data, meta |
|
419 | 419 | |
|
420 | 420 | |
|
421 | 421 | class TempsDPPlot(Plot): |
|
422 | 422 | ''' |
|
423 | 423 | Written by R. Flores |
|
424 | 424 | ''' |
|
425 | 425 | ''' |
|
426 | 426 | Plot for Electron - Ion Temperatures |
|
427 | 427 | ''' |
|
428 | 428 | |
|
429 | 429 | CODE = 'tempsDP' |
|
430 | 430 | #plot_name = 'Temperatures' |
|
431 | 431 | plot_type = 'scatterbuffer' |
|
432 | 432 | |
|
433 | 433 | def setup(self): |
|
434 | 434 | |
|
435 | 435 | self.ncols = 1 |
|
436 | 436 | self.nrows = 1 |
|
437 | 437 | self.nplots = 1 |
|
438 | 438 | self.ylabel = 'Range [km]' |
|
439 | 439 | self.xlabel = 'Temperature (K)' |
|
440 | 440 | self.titles = ['Electron/Ion Temperatures'] |
|
441 | 441 | self.width = 3.5 |
|
442 | 442 | self.height = 5.5 |
|
443 | 443 | self.colorbar = False |
|
444 | 444 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
445 | 445 | |
|
446 | 446 | def update(self, dataOut): |
|
447 | 447 | data = {} |
|
448 | 448 | meta = {} |
|
449 | 449 | |
|
450 | 450 | data['Te'] = dataOut.te2 |
|
451 | 451 | data['Ti'] = dataOut.ti2 |
|
452 | 452 | data['Te_error'] = dataOut.ete2 |
|
453 | 453 | data['Ti_error'] = dataOut.eti2 |
|
454 | 454 | |
|
455 | 455 | meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
456 | 456 | |
|
457 | 457 | return data, meta |
|
458 | 458 | |
|
459 | 459 | def plot(self): |
|
460 | 460 | |
|
461 | 461 | y = self.data.yrange |
|
462 | 462 | |
|
463 | 463 | self.xmin = -100 |
|
464 | 464 | self.xmax = 5000 |
|
465 | 465 | |
|
466 | 466 | ax = self.axes[0] |
|
467 | 467 | |
|
468 | 468 | data = self.data[-1] |
|
469 | 469 | |
|
470 | 470 | Te = data['Te'] |
|
471 | 471 | Ti = data['Ti'] |
|
472 | 472 | errTe = data['Te_error'] |
|
473 | 473 | errTi = data['Ti_error'] |
|
474 | 474 | |
|
475 | 475 | if ax.firsttime: |
|
476 | 476 | ax.errorbar(Te, y, xerr=errTe, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='Te') |
|
477 | 477 | ax.errorbar(Ti, y, fmt='k^', xerr=errTi,elinewidth=1.0,color='k',linewidth=2.0, label='Ti') |
|
478 | 478 | plt.legend(loc='lower right') |
|
479 | 479 | self.ystep_given = 50 |
|
480 | 480 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
481 | 481 | ax.grid(which='minor') |
|
482 | 482 | |
|
483 | 483 | else: |
|
484 | 484 | self.clear_figures() |
|
485 | 485 | ax.errorbar(Te, y, xerr=errTe, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='Te') |
|
486 | 486 | ax.errorbar(Ti, y, fmt='k^', xerr=errTi,elinewidth=1.0,color='k',linewidth=2.0, label='Ti') |
|
487 | 487 | plt.legend(loc='lower right') |
|
488 | 488 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
489 | 489 | |
|
490 | 490 | |
|
491 | 491 | class TempsHPPlot(Plot): |
|
492 | 492 | ''' |
|
493 | 493 | Written by R. Flores |
|
494 | 494 | ''' |
|
495 | 495 | ''' |
|
496 | 496 | Plot for Temperatures Hybrid Experiment |
|
497 | 497 | ''' |
|
498 | 498 | |
|
499 | 499 | CODE = 'temps_LP' |
|
500 | 500 | #plot_name = 'Temperatures' |
|
501 | 501 | plot_type = 'scatterbuffer' |
|
502 | 502 | |
|
503 | 503 | |
|
504 | 504 | def setup(self): |
|
505 | 505 | |
|
506 | 506 | self.ncols = 1 |
|
507 | 507 | self.nrows = 1 |
|
508 | 508 | self.nplots = 1 |
|
509 | 509 | self.ylabel = 'Range [km]' |
|
510 | 510 | self.xlabel = 'Temperature (K)' |
|
511 | 511 | self.titles = ['Electron/Ion Temperatures'] |
|
512 | 512 | self.width = 3.5 |
|
513 | 513 | self.height = 6.5 |
|
514 | 514 | self.colorbar = False |
|
515 | 515 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
516 | 516 | |
|
517 | 517 | def update(self, dataOut): |
|
518 | 518 | data = {} |
|
519 | 519 | meta = {} |
|
520 | 520 | |
|
521 | 521 | |
|
522 | 522 | data['Te'] = numpy.concatenate((dataOut.te2[:dataOut.cut],dataOut.te[dataOut.cut:])) |
|
523 | 523 | data['Ti'] = numpy.concatenate((dataOut.ti2[:dataOut.cut],dataOut.ti[dataOut.cut:])) |
|
524 | 524 | data['Te_error'] = numpy.concatenate((dataOut.ete2[:dataOut.cut],dataOut.ete[dataOut.cut:])) |
|
525 | 525 | data['Ti_error'] = numpy.concatenate((dataOut.eti2[:dataOut.cut],dataOut.eti[dataOut.cut:])) |
|
526 | 526 | |
|
527 | 527 | meta['yrange'] = dataOut.heightList[0:dataOut.NACF] |
|
528 | 528 | |
|
529 | 529 | return data, meta |
|
530 | 530 | |
|
531 | 531 | def plot(self): |
|
532 | 532 | |
|
533 | 533 | |
|
534 | 534 | self.y = self.data.yrange |
|
535 | 535 | self.xmin = -100 |
|
536 | 536 | self.xmax = 4500 |
|
537 | 537 | ax = self.axes[0] |
|
538 | 538 | |
|
539 | 539 | data = self.data[-1] |
|
540 | 540 | |
|
541 | 541 | Te = data['Te'] |
|
542 | 542 | Ti = data['Ti'] |
|
543 | 543 | errTe = data['Te_error'] |
|
544 | 544 | errTi = data['Ti_error'] |
|
545 | 545 | |
|
546 | 546 | if ax.firsttime: |
|
547 | 547 | |
|
548 | 548 | ax.errorbar(Te, self.y, xerr=errTe, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='Te') |
|
549 | 549 | ax.errorbar(Ti, self.y, fmt='k^', xerr=errTi,elinewidth=1.0,color='',linewidth=2.0, label='Ti') |
|
550 | 550 | plt.legend(loc='lower right') |
|
551 | 551 | self.ystep_given = 200 |
|
552 | 552 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
553 | 553 | ax.grid(which='minor') |
|
554 | 554 | |
|
555 | 555 | else: |
|
556 | 556 | self.clear_figures() |
|
557 | 557 | ax.errorbar(Te, self.y, xerr=errTe, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='Te') |
|
558 | 558 | ax.errorbar(Ti, self.y, fmt='k^', xerr=errTi,elinewidth=1.0,color='k',linewidth=2.0, label='Ti') |
|
559 | 559 | plt.legend(loc='lower right') |
|
560 | 560 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
561 | 561 | ax.grid(which='minor') |
|
562 | 562 | |
|
563 | 563 | |
|
564 | 564 | class FracsHPPlot(Plot): |
|
565 | 565 | ''' |
|
566 | 566 | Written by R. Flores |
|
567 | 567 | ''' |
|
568 | 568 | ''' |
|
569 | 569 | Plot for Composition LP |
|
570 | 570 | ''' |
|
571 | 571 | |
|
572 | 572 | CODE = 'fracs_LP' |
|
573 | 573 | plot_type = 'scatterbuffer' |
|
574 | 574 | |
|
575 | 575 | |
|
576 | 576 | def setup(self): |
|
577 | 577 | |
|
578 | 578 | self.ncols = 1 |
|
579 | 579 | self.nrows = 1 |
|
580 | 580 | self.nplots = 1 |
|
581 | 581 | self.ylabel = 'Range [km]' |
|
582 | 582 | self.xlabel = 'Frac' |
|
583 | 583 | self.titles = ['Composition'] |
|
584 | 584 | self.width = 3.5 |
|
585 | 585 | self.height = 6.5 |
|
586 | 586 | self.colorbar = False |
|
587 | 587 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
588 | 588 | |
|
589 | 589 | def update(self, dataOut): |
|
590 | 590 | data = {} |
|
591 | 591 | meta = {} |
|
592 | 592 | |
|
593 | 593 | #aux_nan=numpy.zeros(dataOut.cut,'float32') |
|
594 | 594 | #aux_nan[:]=numpy.nan |
|
595 | 595 | #data['ph'] = numpy.concatenate((aux_nan,dataOut.ph[dataOut.cut:])) |
|
596 | 596 | #data['eph'] = numpy.concatenate((aux_nan,dataOut.eph[dataOut.cut:])) |
|
597 | 597 | |
|
598 | 598 | data['ph'] = dataOut.ph[dataOut.cut:] |
|
599 | 599 | data['eph'] = dataOut.eph[dataOut.cut:] |
|
600 | 600 | data['phe'] = dataOut.phe[dataOut.cut:] |
|
601 | 601 | data['ephe'] = dataOut.ephe[dataOut.cut:] |
|
602 | 602 | |
|
603 | 603 | data['cut'] = dataOut.cut |
|
604 | 604 | |
|
605 | 605 | meta['yrange'] = dataOut.heightList[0:dataOut.NACF] |
|
606 | 606 | |
|
607 | 607 | |
|
608 | 608 | return data, meta |
|
609 | 609 | |
|
610 | 610 | def plot(self): |
|
611 | 611 | |
|
612 | 612 | data = self.data[-1] |
|
613 | 613 | |
|
614 | 614 | ph = data['ph'] |
|
615 | 615 | eph = data['eph'] |
|
616 | 616 | phe = data['phe'] |
|
617 | 617 | ephe = data['ephe'] |
|
618 | 618 | cut = data['cut'] |
|
619 | 619 | self.y = self.data.yrange |
|
620 | 620 | |
|
621 | 621 | self.xmin = 0 |
|
622 | 622 | self.xmax = 1 |
|
623 | 623 | ax = self.axes[0] |
|
624 | 624 | |
|
625 | 625 | if ax.firsttime: |
|
626 | 626 | |
|
627 | 627 | ax.errorbar(ph, self.y[cut:], xerr=eph, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='H+') |
|
628 | 628 | ax.errorbar(phe, self.y[cut:], fmt='k^', xerr=ephe,elinewidth=1.0,color='k',linewidth=2.0, label='He+') |
|
629 | 629 | plt.legend(loc='lower right') |
|
630 | 630 | self.xstep_given = 0.2 |
|
631 | 631 | self.ystep_given = 200 |
|
632 | 632 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
633 | 633 | ax.grid(which='minor') |
|
634 | 634 | |
|
635 | 635 | else: |
|
636 | 636 | self.clear_figures() |
|
637 | 637 | ax.errorbar(ph, self.y[cut:], xerr=eph, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='H+') |
|
638 | 638 | ax.errorbar(phe, self.y[cut:], fmt='k^', xerr=ephe,elinewidth=1.0,color='k',linewidth=2.0, label='He+') |
|
639 | 639 | plt.legend(loc='lower right') |
|
640 | 640 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
641 | 641 | ax.grid(which='minor') |
|
642 | 642 | |
|
643 | 643 | class EDensityPlot(Plot): |
|
644 | 644 | ''' |
|
645 | 645 | Written by R. Flores |
|
646 | 646 | ''' |
|
647 | 647 | ''' |
|
648 | 648 | Plot for electron density |
|
649 | 649 | ''' |
|
650 | 650 | |
|
651 | 651 | CODE = 'den' |
|
652 | 652 | #plot_name = 'Electron Density' |
|
653 | 653 | plot_type = 'scatterbuffer' |
|
654 | 654 | |
|
655 | 655 | def setup(self): |
|
656 | 656 | |
|
657 | 657 | self.ncols = 1 |
|
658 | 658 | self.nrows = 1 |
|
659 | 659 | self.nplots = 1 |
|
660 | 660 | self.ylabel = 'Range [km]' |
|
661 | 661 | self.xlabel = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' |
|
662 | 662 | self.titles = ['Electron Density'] |
|
663 | 663 | self.width = 3.5 |
|
664 | 664 | self.height = 5.5 |
|
665 | 665 | self.colorbar = False |
|
666 | 666 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
667 | 667 | |
|
668 | 668 | def update(self, dataOut): |
|
669 | 669 | data = {} |
|
670 | 670 | meta = {} |
|
671 | 671 | |
|
672 | 672 | data['den_power'] = dataOut.ph2[:dataOut.NSHTS] |
|
673 | 673 | data['den_Faraday'] = dataOut.dphi[:dataOut.NSHTS] |
|
674 | 674 | data['den_error'] = dataOut.sdp2[:dataOut.NSHTS] |
|
675 | 675 | #data['err_Faraday'] = dataOut.sdn1[:dataOut.NSHTS] |
|
676 | 676 | #print(numpy.shape(data['den_power'])) |
|
677 | 677 | #print(numpy.shape(data['den_Faraday'])) |
|
678 | 678 | #print(numpy.shape(data['den_error'])) |
|
679 | 679 | |
|
680 | 680 | data['NSHTS'] = dataOut.NSHTS |
|
681 | 681 | |
|
682 | 682 | meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
683 | 683 | |
|
684 | 684 | return data, meta |
|
685 | 685 | |
|
686 | 686 | def plot(self): |
|
687 | 687 | |
|
688 | 688 | y = self.data.yrange |
|
689 | 689 | |
|
690 | 690 | #self.xmin = 1e3 |
|
691 | 691 | #self.xmax = 1e7 |
|
692 | 692 | |
|
693 | 693 | ax = self.axes[0] |
|
694 | 694 | |
|
695 | 695 | data = self.data[-1] |
|
696 | 696 | |
|
697 | 697 | DenPow = data['den_power'] |
|
698 | 698 | DenFar = data['den_Faraday'] |
|
699 | 699 | errDenPow = data['den_error'] |
|
700 | 700 | #errFaraday = data['err_Faraday'] |
|
701 | 701 | |
|
702 | 702 | NSHTS = data['NSHTS'] |
|
703 | 703 | |
|
704 | 704 | if self.CODE == 'denLP': |
|
705 | 705 | DenPowLP = data['den_LP'] |
|
706 | 706 | errDenPowLP = data['den_LP_error'] |
|
707 | 707 | cut = data['cut'] |
|
708 | 708 | |
|
709 | 709 | if ax.firsttime: |
|
710 | 710 | self.autoxticks=False |
|
711 | 711 | #ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) |
|
712 | 712 | ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday',markersize=2,linestyle='-') |
|
713 | 713 | #ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) |
|
714 | 714 | ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='k',linewidth=1.0, label='Power',markersize=2,linestyle='-') |
|
715 | 715 | |
|
716 | 716 | if self.CODE=='denLP': |
|
717 | 717 | ax.errorbar(DenPowLP[cut:], y[cut:], xerr=errDenPowLP[cut:], fmt='r^-',elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) |
|
718 | 718 | |
|
719 | 719 | plt.legend(loc='upper left',fontsize=8.5) |
|
720 | 720 | #plt.legend(loc='lower left',fontsize=8.5) |
|
721 | 721 | ax.set_xscale("log")#, nonposx='clip') |
|
722 | 722 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) |
|
723 | 723 | self.ystep_given=100 |
|
724 | 724 | if self.CODE=='denLP': |
|
725 | 725 | self.ystep_given=200 |
|
726 | 726 | ax.set_yticks(grid_y_ticks,minor=True) |
|
727 | 727 | locmaj = LogLocator(base=10,numticks=12) |
|
728 | 728 | ax.xaxis.set_major_locator(locmaj) |
|
729 | 729 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) |
|
730 | 730 | ax.xaxis.set_minor_locator(locmin) |
|
731 | 731 | ax.xaxis.set_minor_formatter(NullFormatter()) |
|
732 | 732 | ax.grid(which='minor') |
|
733 | 733 | |
|
734 | 734 | else: |
|
735 | 735 | dataBefore = self.data[-2] |
|
736 | 736 | DenPowBefore = dataBefore['den_power'] |
|
737 | 737 | self.clear_figures() |
|
738 | 738 | #ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) |
|
739 | 739 | ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday',markersize=2,linestyle='-') |
|
740 | 740 | #ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) |
|
741 | 741 | ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='k',linewidth=1.0, label='Power',markersize=2,linestyle='-') |
|
742 | 742 | ax.errorbar(DenPowBefore, y[:NSHTS], elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") |
|
743 | 743 | |
|
744 | 744 | if self.CODE=='denLP': |
|
745 | 745 | ax.errorbar(DenPowLP[cut:], y[cut:], fmt='r^-', xerr=errDenPowLP[cut:],elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) |
|
746 | 746 | |
|
747 | 747 | ax.set_xscale("log")#, nonposx='clip') |
|
748 | 748 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) |
|
749 | 749 | ax.set_yticks(grid_y_ticks,minor=True) |
|
750 | 750 | locmaj = LogLocator(base=10,numticks=12) |
|
751 | 751 | ax.xaxis.set_major_locator(locmaj) |
|
752 | 752 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) |
|
753 | 753 | ax.xaxis.set_minor_locator(locmin) |
|
754 | 754 | ax.xaxis.set_minor_formatter(NullFormatter()) |
|
755 | 755 | ax.grid(which='minor') |
|
756 | 756 | plt.legend(loc='upper left',fontsize=8.5) |
|
757 | 757 | #plt.legend(loc='lower left',fontsize=8.5) |
|
758 | 758 | |
|
759 | 759 | class RelativeDenPlot(Plot): |
|
760 | 760 | ''' |
|
761 | 761 | Written by R. Flores |
|
762 | 762 | ''' |
|
763 | 763 | ''' |
|
764 | 764 | Plot for electron density |
|
765 | 765 | ''' |
|
766 | 766 | |
|
767 | 767 | CODE = 'den' |
|
768 | 768 | #plot_name = 'Electron Density' |
|
769 | 769 | plot_type = 'scatterbuffer' |
|
770 | 770 | |
|
771 | 771 | def setup(self): |
|
772 | 772 | |
|
773 | 773 | self.ncols = 1 |
|
774 | 774 | self.nrows = 1 |
|
775 | 775 | self.nplots = 1 |
|
776 | 776 | self.ylabel = 'Range [km]' |
|
777 | 777 | self.xlabel = r'$\mathrm{N_e}$ Relative Electron Density ($\mathrm{1/cm^3}$)' |
|
778 | 778 | self.titles = ['Electron Density'] |
|
779 | 779 | self.width = 3.5 |
|
780 | 780 | self.height = 5.5 |
|
781 | 781 | self.colorbar = False |
|
782 | 782 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
783 | 783 | |
|
784 | 784 | def update(self, dataOut): |
|
785 | 785 | data = {} |
|
786 | 786 | meta = {} |
|
787 | 787 | |
|
788 | 788 | data['den_power'] = dataOut.ph2 |
|
789 | 789 | data['den_error'] = dataOut.sdp2 |
|
790 | 790 | |
|
791 | 791 | meta['yrange'] = dataOut.heightList |
|
792 | 792 | |
|
793 | 793 | return data, meta |
|
794 | 794 | |
|
795 | 795 | def plot(self): |
|
796 | 796 | |
|
797 | 797 | y = self.data.yrange |
|
798 | 798 | |
|
799 | 799 | ax = self.axes[0] |
|
800 | 800 | |
|
801 | 801 | data = self.data[-1] |
|
802 | 802 | |
|
803 | 803 | DenPow = data['den_power'] |
|
804 | 804 | errDenPow = data['den_error'] |
|
805 | 805 | |
|
806 | 806 | if ax.firsttime: |
|
807 | 807 | self.autoxticks=False |
|
808 | 808 | ax.errorbar(DenPow, y, fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='k',linewidth=1.0, label='Power',markersize=2,linestyle='-') |
|
809 | 809 | |
|
810 | 810 | plt.legend(loc='upper left',fontsize=8.5) |
|
811 | 811 | #plt.legend(loc='lower left',fontsize=8.5) |
|
812 | 812 | ax.set_xscale("log")#, nonposx='clip') |
|
813 | 813 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) |
|
814 | 814 | self.ystep_given=100 |
|
815 | 815 | ax.set_yticks(grid_y_ticks,minor=True) |
|
816 | 816 | locmaj = LogLocator(base=10,numticks=12) |
|
817 | 817 | ax.xaxis.set_major_locator(locmaj) |
|
818 | 818 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) |
|
819 | 819 | ax.xaxis.set_minor_locator(locmin) |
|
820 | 820 | ax.xaxis.set_minor_formatter(NullFormatter()) |
|
821 | 821 | ax.grid(which='minor') |
|
822 | 822 | |
|
823 | 823 | else: |
|
824 | 824 | dataBefore = self.data[-2] |
|
825 | 825 | DenPowBefore = dataBefore['den_power'] |
|
826 | 826 | self.clear_figures() |
|
827 | 827 | ax.errorbar(DenPow, y, fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='k',linewidth=1.0, label='Power',markersize=2,linestyle='-') |
|
828 | 828 | ax.errorbar(DenPowBefore, y, elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") |
|
829 | 829 | |
|
830 | 830 | ax.set_xscale("log")#, nonposx='clip') |
|
831 | 831 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) |
|
832 | 832 | ax.set_yticks(grid_y_ticks,minor=True) |
|
833 | 833 | locmaj = LogLocator(base=10,numticks=12) |
|
834 | 834 | ax.xaxis.set_major_locator(locmaj) |
|
835 | 835 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) |
|
836 | 836 | ax.xaxis.set_minor_locator(locmin) |
|
837 | 837 | ax.xaxis.set_minor_formatter(NullFormatter()) |
|
838 | 838 | ax.grid(which='minor') |
|
839 | 839 | plt.legend(loc='upper left',fontsize=8.5) |
|
840 | 840 | #plt.legend(loc='lower left',fontsize=8.5) |
|
841 | 841 | |
|
842 | 842 | class FaradayAnglePlot(Plot): |
|
843 | 843 | ''' |
|
844 | 844 | Written by R. Flores |
|
845 | 845 | ''' |
|
846 | 846 | ''' |
|
847 | 847 | Plot for electron density |
|
848 | 848 | ''' |
|
849 | 849 | |
|
850 | 850 | CODE = 'angle' |
|
851 | 851 | plot_name = 'Faraday Angle' |
|
852 | 852 | plot_type = 'scatterbuffer' |
|
853 | 853 | |
|
854 | 854 | def setup(self): |
|
855 | 855 | |
|
856 | 856 | self.ncols = 1 |
|
857 | 857 | self.nrows = 1 |
|
858 | 858 | self.nplots = 1 |
|
859 | 859 | self.ylabel = 'Range [km]' |
|
860 | 860 | self.xlabel = 'Faraday Angle (º)' |
|
861 | 861 | self.titles = ['Electron Density'] |
|
862 | 862 | self.width = 3.5 |
|
863 | 863 | self.height = 5.5 |
|
864 | 864 | self.colorbar = False |
|
865 | 865 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
866 | 866 | |
|
867 | 867 | def update(self, dataOut): |
|
868 | 868 | data = {} |
|
869 | 869 | meta = {} |
|
870 | 870 | |
|
871 | 871 | data['angle'] = numpy.degrees(dataOut.phi) |
|
872 | 872 | #''' |
|
873 | 873 | #print(dataOut.phi_uwrp) |
|
874 | 874 | #print(data['angle']) |
|
875 | 875 | #exit(1) |
|
876 | 876 | #''' |
|
877 | 877 | data['dphi'] = dataOut.dphi_uc*10 |
|
878 | 878 | #print(dataOut.dphi) |
|
879 | 879 | |
|
880 | 880 | #data['NSHTS'] = dataOut.NSHTS |
|
881 | 881 | |
|
882 | 882 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
883 | 883 | |
|
884 | 884 | return data, meta |
|
885 | 885 | |
|
886 | 886 | def plot(self): |
|
887 | 887 | |
|
888 | 888 | data = self.data[-1] |
|
889 | 889 | self.x = data[self.CODE] |
|
890 | 890 | dphi = data['dphi'] |
|
891 | 891 | self.y = self.data.yrange |
|
892 | 892 | self.xmin = -360#-180 |
|
893 | 893 | self.xmax = 360#180 |
|
894 | 894 | ax = self.axes[0] |
|
895 | 895 | |
|
896 | 896 | if ax.firsttime: |
|
897 | 897 | self.autoxticks=False |
|
898 | 898 | #if self.CODE=='den': |
|
899 | 899 | ax.plot(self.x, self.y,marker='o',color='g',linewidth=1.0,markersize=2) |
|
900 | 900 | ax.plot(dphi, self.y,marker='o',color='blue',linewidth=1.0,markersize=2) |
|
901 | 901 | |
|
902 | 902 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) |
|
903 | 903 | self.ystep_given=100 |
|
904 | 904 | if self.CODE=='denLP': |
|
905 | 905 | self.ystep_given=200 |
|
906 | 906 | ax.set_yticks(grid_y_ticks,minor=True) |
|
907 | 907 | ax.grid(which='minor') |
|
908 | 908 | #plt.tight_layout() |
|
909 | 909 | else: |
|
910 | 910 | |
|
911 | 911 | self.clear_figures() |
|
912 | 912 | #if self.CODE=='den': |
|
913 | 913 | #print(numpy.shape(self.x)) |
|
914 | 914 | ax.plot(self.x, self.y, marker='o',color='g',linewidth=1.0, markersize=2) |
|
915 | 915 | ax.plot(dphi, self.y,marker='o',color='blue',linewidth=1.0,markersize=2) |
|
916 | 916 | |
|
917 | 917 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) |
|
918 | 918 | ax.set_yticks(grid_y_ticks,minor=True) |
|
919 | 919 | ax.grid(which='minor') |
|
920 | 920 | |
|
921 | 921 | class EDensityHPPlot(EDensityPlot): |
|
922 | 922 | ''' |
|
923 | 923 | Written by R. Flores |
|
924 | 924 | ''' |
|
925 | 925 | ''' |
|
926 | 926 | Plot for Electron Density Hybrid Experiment |
|
927 | 927 | ''' |
|
928 | 928 | |
|
929 | 929 | CODE = 'denLP' |
|
930 | 930 | plot_name = 'Electron Density' |
|
931 | 931 | plot_type = 'scatterbuffer' |
|
932 | 932 | |
|
933 | 933 | def update(self, dataOut): |
|
934 | 934 | data = {} |
|
935 | 935 | meta = {} |
|
936 | 936 | |
|
937 | 937 | data['den_power'] = dataOut.ph2[:dataOut.NSHTS] |
|
938 | 938 | data['den_Faraday']=dataOut.dphi[:dataOut.NSHTS] |
|
939 | 939 | data['den_error']=dataOut.sdp2[:dataOut.NSHTS] |
|
940 | 940 | data['den_LP']=dataOut.ne[:dataOut.NACF] |
|
941 | 941 | data['den_LP_error']=dataOut.ene[:dataOut.NACF]*dataOut.ne[:dataOut.NACF]*0.434 |
|
942 | 942 | #self.ene=10**dataOut.ene[:dataOut.NACF] |
|
943 | 943 | data['NSHTS']=dataOut.NSHTS |
|
944 | 944 | data['cut']=dataOut.cut |
|
945 | 945 | |
|
946 | 946 | return data, meta |
|
947 | 947 | |
|
948 | 948 | |
|
949 | 949 | class ACFsPlot(Plot): |
|
950 | 950 | ''' |
|
951 | 951 | Written by R. Flores |
|
952 | 952 | ''' |
|
953 | 953 | ''' |
|
954 | 954 | Plot for ACFs Double Pulse Experiment |
|
955 | 955 | ''' |
|
956 | 956 | |
|
957 | 957 | CODE = 'acfs' |
|
958 | 958 | #plot_name = 'ACF' |
|
959 | 959 | plot_type = 'scatterbuffer' |
|
960 | 960 | |
|
961 | 961 | |
|
962 | 962 | def setup(self): |
|
963 | 963 | self.ncols = 1 |
|
964 | 964 | self.nrows = 1 |
|
965 | 965 | self.nplots = 1 |
|
966 | 966 | self.ylabel = 'Range [km]' |
|
967 | 967 | self.xlabel = 'Lag (ms)' |
|
968 | 968 | self.titles = ['ACFs'] |
|
969 | 969 | self.width = 3.5 |
|
970 | 970 | self.height = 5.5 |
|
971 | 971 | self.colorbar = False |
|
972 | 972 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
973 | 973 | |
|
974 | 974 | def update(self, dataOut): |
|
975 | 975 | data = {} |
|
976 | 976 | meta = {} |
|
977 | 977 | |
|
978 | 978 | data['ACFs'] = dataOut.acfs_to_plot |
|
979 | 979 | data['ACFs_error'] = dataOut.acfs_error_to_plot |
|
980 | 980 | data['lags'] = dataOut.lags_to_plot |
|
981 | 981 | data['Lag_contaminated_1'] = dataOut.x_igcej_to_plot |
|
982 | 982 | data['Lag_contaminated_2'] = dataOut.x_ibad_to_plot |
|
983 | 983 | data['Height_contaminated_1'] = dataOut.y_igcej_to_plot |
|
984 | 984 | data['Height_contaminated_2'] = dataOut.y_ibad_to_plot |
|
985 | 985 | |
|
986 | 986 | meta['yrange'] = numpy.array([]) |
|
987 | 987 | #meta['NSHTS'] = dataOut.NSHTS |
|
988 | 988 | #meta['DPL'] = dataOut.DPL |
|
989 | 989 | data['NSHTS'] = dataOut.NSHTS #This is metadata |
|
990 | 990 | data['DPL'] = dataOut.DPL #This is metadata |
|
991 | 991 | |
|
992 | 992 | return data, meta |
|
993 | 993 | |
|
994 | 994 | def plot(self): |
|
995 | 995 | |
|
996 | 996 | data = self.data[-1] |
|
997 | 997 | #NSHTS = self.meta['NSHTS'] |
|
998 | 998 | #DPL = self.meta['DPL'] |
|
999 | 999 | NSHTS = data['NSHTS'] #This is metadata |
|
1000 | 1000 | DPL = data['DPL'] #This is metadata |
|
1001 | 1001 | |
|
1002 | 1002 | lags = data['lags'] |
|
1003 | 1003 | ACFs = data['ACFs'] |
|
1004 | 1004 | errACFs = data['ACFs_error'] |
|
1005 | 1005 | BadLag1 = data['Lag_contaminated_1'] |
|
1006 | 1006 | BadLag2 = data['Lag_contaminated_2'] |
|
1007 | 1007 | BadHei1 = data['Height_contaminated_1'] |
|
1008 | 1008 | BadHei2 = data['Height_contaminated_2'] |
|
1009 | 1009 | |
|
1010 | 1010 | self.xmin = 0.0 |
|
1011 | self.xmax = 2.0 | |
|
1011 | #self.xmax = 2.0 | |
|
1012 | 1012 | self.y = ACFs |
|
1013 | 1013 | |
|
1014 | 1014 | ax = self.axes[0] |
|
1015 | 1015 | |
|
1016 | 1016 | if ax.firsttime: |
|
1017 | 1017 | |
|
1018 | 1018 | for i in range(NSHTS): |
|
1019 | 1019 | x_aux = numpy.isfinite(lags[i,:]) |
|
1020 | 1020 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
1021 | 1021 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
1022 | 1022 | x_igcej_aux = numpy.isfinite(BadLag1[i,:]) |
|
1023 | 1023 | y_igcej_aux = numpy.isfinite(BadHei1[i,:]) |
|
1024 | 1024 | x_ibad_aux = numpy.isfinite(BadLag2[i,:]) |
|
1025 | 1025 | y_ibad_aux = numpy.isfinite(BadHei2[i,:]) |
|
1026 | 1026 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
1027 | 1027 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',marker='o',linewidth=1.0,markersize=2) |
|
1028 | 1028 | ax.plot(BadLag1[i,x_igcej_aux],BadHei1[i,y_igcej_aux],'x',color='red',markersize=2) |
|
1029 | 1029 | ax.plot(BadLag2[i,x_ibad_aux],BadHei2[i,y_ibad_aux],'X',color='red',markersize=2) |
|
1030 | 1030 | |
|
1031 | 1031 | self.xstep_given = (self.xmax-self.xmin)/(DPL-1) |
|
1032 | 1032 | self.ystep_given = 50 |
|
1033 | 1033 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
1034 | 1034 | ax.grid(which='minor') |
|
1035 | 1035 | |
|
1036 | 1036 | else: |
|
1037 | 1037 | self.clear_figures() |
|
1038 | 1038 | for i in range(NSHTS): |
|
1039 | 1039 | x_aux = numpy.isfinite(lags[i,:]) |
|
1040 | 1040 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
1041 | 1041 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
1042 | 1042 | x_igcej_aux = numpy.isfinite(BadLag1[i,:]) |
|
1043 | 1043 | y_igcej_aux = numpy.isfinite(BadHei1[i,:]) |
|
1044 | 1044 | x_ibad_aux = numpy.isfinite(BadLag2[i,:]) |
|
1045 | 1045 | y_ibad_aux = numpy.isfinite(BadHei2[i,:]) |
|
1046 | 1046 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
1047 | 1047 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],linewidth=1.0,markersize=2,color='b',marker='o') |
|
1048 | 1048 | ax.plot(BadLag1[i,x_igcej_aux],BadHei1[i,y_igcej_aux],'x',color='red',markersize=2) |
|
1049 | 1049 | ax.plot(BadLag2[i,x_ibad_aux],BadHei2[i,y_ibad_aux],'X',color='red',markersize=2) |
|
1050 | 1050 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
1051 | 1051 | |
|
1052 | 1052 | class ACFsLPPlot(Plot): |
|
1053 | 1053 | ''' |
|
1054 | 1054 | Written by R. Flores |
|
1055 | 1055 | ''' |
|
1056 | 1056 | ''' |
|
1057 | 1057 | Plot for ACFs Double Pulse Experiment |
|
1058 | 1058 | ''' |
|
1059 | 1059 | |
|
1060 | 1060 | CODE = 'acfs_LP' |
|
1061 | 1061 | #plot_name = 'ACF' |
|
1062 | 1062 | plot_type = 'scatterbuffer' |
|
1063 | 1063 | |
|
1064 | 1064 | |
|
1065 | 1065 | def setup(self): |
|
1066 | 1066 | self.ncols = 1 |
|
1067 | 1067 | self.nrows = 1 |
|
1068 | 1068 | self.nplots = 1 |
|
1069 | 1069 | self.ylabel = 'Range [km]' |
|
1070 | 1070 | self.xlabel = 'Lag (ms)' |
|
1071 | 1071 | self.titles = ['ACFs'] |
|
1072 | 1072 | self.width = 3.5 |
|
1073 | 1073 | self.height = 5.5 |
|
1074 | 1074 | self.colorbar = False |
|
1075 | 1075 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
1076 | 1076 | |
|
1077 | 1077 | def update(self, dataOut): |
|
1078 | 1078 | data = {} |
|
1079 | 1079 | meta = {} |
|
1080 | 1080 | |
|
1081 | 1081 | aux=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') |
|
1082 | 1082 | errors=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') |
|
1083 | 1083 | lags_LP_to_plot=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') |
|
1084 | 1084 | |
|
1085 | 1085 | for i in range(dataOut.NACF): |
|
1086 | 1086 | for j in range(dataOut.IBITS): |
|
1087 | 1087 | if numpy.abs(dataOut.errors[j,i]/dataOut.output_LP_integrated.real[0,i,0])<1.0: |
|
1088 | 1088 | aux[i,j]=dataOut.output_LP_integrated.real[j,i,0]/dataOut.output_LP_integrated.real[0,i,0] |
|
1089 | 1089 | aux[i,j]=max(min(aux[i,j],1.0),-1.0)*dataOut.DH+dataOut.heightList[i] |
|
1090 | 1090 | lags_LP_to_plot[i,j]=dataOut.lags_LP[j] |
|
1091 | 1091 | errors[i,j]=dataOut.errors[j,i]/dataOut.output_LP_integrated.real[0,i,0]*dataOut.DH |
|
1092 | 1092 | else: |
|
1093 | 1093 | aux[i,j]=numpy.nan |
|
1094 | 1094 | lags_LP_to_plot[i,j]=numpy.nan |
|
1095 | 1095 | errors[i,j]=numpy.nan |
|
1096 | 1096 | |
|
1097 | 1097 | data['ACFs'] = aux |
|
1098 | 1098 | data['ACFs_error'] = errors |
|
1099 | 1099 | data['lags'] = lags_LP_to_plot |
|
1100 | 1100 | |
|
1101 | 1101 | meta['yrange'] = numpy.array([]) |
|
1102 | 1102 | #meta['NACF'] = dataOut.NACF |
|
1103 | 1103 | #meta['NLAG'] = dataOut.NLAG |
|
1104 | 1104 | data['NACF'] = dataOut.NACF #This is metadata |
|
1105 | 1105 | data['NLAG'] = dataOut.NLAG #This is metadata |
|
1106 | 1106 | |
|
1107 | 1107 | return data, meta |
|
1108 | 1108 | |
|
1109 | 1109 | def plot(self): |
|
1110 | 1110 | |
|
1111 | 1111 | data = self.data[-1] |
|
1112 | 1112 | #NACF = self.meta['NACF'] |
|
1113 | 1113 | #NLAG = self.meta['NLAG'] |
|
1114 | 1114 | NACF = data['NACF'] #This is metadata |
|
1115 | 1115 | NLAG = data['NLAG'] #This is metadata |
|
1116 | 1116 | |
|
1117 | 1117 | lags = data['lags'] |
|
1118 | 1118 | ACFs = data['ACFs'] |
|
1119 | 1119 | errACFs = data['ACFs_error'] |
|
1120 | 1120 | |
|
1121 | 1121 | self.xmin = 0.0 |
|
1122 | 1122 | self.xmax = 1.5 |
|
1123 | 1123 | |
|
1124 | 1124 | self.y = ACFs |
|
1125 | 1125 | |
|
1126 | 1126 | ax = self.axes[0] |
|
1127 | 1127 | |
|
1128 | 1128 | if ax.firsttime: |
|
1129 | 1129 | |
|
1130 | 1130 | for i in range(NACF): |
|
1131 | 1131 | x_aux = numpy.isfinite(lags[i,:]) |
|
1132 | 1132 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
1133 | 1133 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
1134 | 1134 | |
|
1135 | 1135 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
1136 | 1136 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') |
|
1137 | 1137 | |
|
1138 | 1138 | #self.xstep_given = (self.xmax-self.xmin)/(self.data.NLAG-1) |
|
1139 | 1139 | self.xstep_given=0.3 |
|
1140 | 1140 | self.ystep_given = 200 |
|
1141 | 1141 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
1142 | 1142 | ax.grid(which='minor') |
|
1143 | 1143 | |
|
1144 | 1144 | else: |
|
1145 | 1145 | self.clear_figures() |
|
1146 | 1146 | |
|
1147 | 1147 | for i in range(NACF): |
|
1148 | 1148 | x_aux = numpy.isfinite(lags[i,:]) |
|
1149 | 1149 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
1150 | 1150 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
1151 | 1151 | |
|
1152 | 1152 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
1153 | 1153 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') |
|
1154 | 1154 | |
|
1155 | 1155 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
1156 | 1156 | |
|
1157 | 1157 | |
|
1158 | 1158 | class CrossProductsPlot(Plot): |
|
1159 | 1159 | ''' |
|
1160 | 1160 | Written by R. Flores |
|
1161 | 1161 | ''' |
|
1162 | 1162 | ''' |
|
1163 | 1163 | Plot for cross products |
|
1164 | 1164 | ''' |
|
1165 | 1165 | |
|
1166 | 1166 | CODE = 'crossprod' |
|
1167 | 1167 | plot_name = 'Cross Products' |
|
1168 | 1168 | plot_type = 'scatterbuffer' |
|
1169 | 1169 | |
|
1170 | 1170 | def setup(self): |
|
1171 | 1171 | |
|
1172 | 1172 | self.ncols = 3 |
|
1173 | 1173 | self.nrows = 1 |
|
1174 | 1174 | self.nplots = 3 |
|
1175 | 1175 | self.ylabel = 'Range [km]' |
|
1176 | 1176 | self.titles = [] |
|
1177 | 1177 | self.width = 3.5*self.nplots |
|
1178 | 1178 | self.height = 5.5 |
|
1179 | 1179 | self.colorbar = False |
|
1180 | 1180 | self.plots_adjust.update({'wspace':.3, 'left': 0.12, 'right': 0.92, 'bottom': 0.1}) |
|
1181 | 1181 | |
|
1182 | 1182 | |
|
1183 | 1183 | def update(self, dataOut): |
|
1184 | 1184 | |
|
1185 | 1185 | data = {} |
|
1186 | 1186 | meta = {} |
|
1187 | 1187 | |
|
1188 | 1188 | data['crossprod'] = dataOut.crossprods |
|
1189 | 1189 | data['NDP'] = dataOut.NDP |
|
1190 | 1190 | |
|
1191 | 1191 | return data, meta |
|
1192 | 1192 | |
|
1193 | 1193 | def plot(self): |
|
1194 | 1194 | |
|
1195 | 1195 | NDP = self.data['NDP'][-1] |
|
1196 | 1196 | x = self.data['crossprod'][:,-1,:,:,:,:] |
|
1197 | 1197 | y = self.data.yrange[0:NDP] |
|
1198 | 1198 | |
|
1199 | 1199 | for n, ax in enumerate(self.axes): |
|
1200 | 1200 | |
|
1201 | 1201 | self.xmin=numpy.min(numpy.concatenate((x[n][0,20:30,0,0],x[n][1,20:30,0,0],x[n][2,20:30,0,0],x[n][3,20:30,0,0]))) |
|
1202 | 1202 | self.xmax=numpy.max(numpy.concatenate((x[n][0,20:30,0,0],x[n][1,20:30,0,0],x[n][2,20:30,0,0],x[n][3,20:30,0,0]))) |
|
1203 | 1203 | |
|
1204 | 1204 | if ax.firsttime: |
|
1205 | 1205 | |
|
1206 | 1206 | self.autoxticks=False |
|
1207 | 1207 | if n==0: |
|
1208 | 1208 | label1='kax' |
|
1209 | 1209 | label2='kay' |
|
1210 | 1210 | label3='kbx' |
|
1211 | 1211 | label4='kby' |
|
1212 | 1212 | self.xlimits=[(self.xmin,self.xmax)] |
|
1213 | 1213 | elif n==1: |
|
1214 | 1214 | label1='kax2' |
|
1215 | 1215 | label2='kay2' |
|
1216 | 1216 | label3='kbx2' |
|
1217 | 1217 | label4='kby2' |
|
1218 | 1218 | self.xlimits.append((self.xmin,self.xmax)) |
|
1219 | 1219 | elif n==2: |
|
1220 | 1220 | label1='kaxay' |
|
1221 | 1221 | label2='kbxby' |
|
1222 | 1222 | label3='kaxbx' |
|
1223 | 1223 | label4='kaxby' |
|
1224 | 1224 | self.xlimits.append((self.xmin,self.xmax)) |
|
1225 | 1225 | |
|
1226 | 1226 | ax.plotline1 = ax.plot(x[n][0,:,0,0], y, color='r',linewidth=2.0, label=label1) |
|
1227 | 1227 | ax.plotline2 = ax.plot(x[n][1,:,0,0], y, color='k',linewidth=2.0, label=label2) |
|
1228 | 1228 | ax.plotline3 = ax.plot(x[n][2,:,0,0], y, color='b',linewidth=2.0, label=label3) |
|
1229 | 1229 | ax.plotline4 = ax.plot(x[n][3,:,0,0], y, color='m',linewidth=2.0, label=label4) |
|
1230 | 1230 | ax.legend(loc='upper right') |
|
1231 | 1231 | ax.set_xlim(self.xmin, self.xmax) |
|
1232 | 1232 | self.titles.append('{}'.format(self.plot_name.upper())) |
|
1233 | 1233 | |
|
1234 | 1234 | else: |
|
1235 | 1235 | |
|
1236 | 1236 | if n==0: |
|
1237 | 1237 | self.xlimits=[(self.xmin,self.xmax)] |
|
1238 | 1238 | else: |
|
1239 | 1239 | self.xlimits.append((self.xmin,self.xmax)) |
|
1240 | 1240 | |
|
1241 | 1241 | ax.set_xlim(self.xmin, self.xmax) |
|
1242 | 1242 | |
|
1243 | 1243 | ax.plotline1[0].set_data(x[n][0,:,0,0],y) |
|
1244 | 1244 | ax.plotline2[0].set_data(x[n][1,:,0,0],y) |
|
1245 | 1245 | ax.plotline3[0].set_data(x[n][2,:,0,0],y) |
|
1246 | 1246 | ax.plotline4[0].set_data(x[n][3,:,0,0],y) |
|
1247 | 1247 | self.titles.append('{}'.format(self.plot_name.upper())) |
|
1248 | 1248 | |
|
1249 | 1249 | |
|
1250 | 1250 | class CrossProductsLPPlot(Plot): |
|
1251 | 1251 | ''' |
|
1252 | 1252 | Written by R. Flores |
|
1253 | 1253 | ''' |
|
1254 | 1254 | ''' |
|
1255 | 1255 | Plot for cross products LP |
|
1256 | 1256 | ''' |
|
1257 | 1257 | |
|
1258 | 1258 | CODE = 'crossprodslp' |
|
1259 | 1259 | plot_name = 'Cross Products LP' |
|
1260 | 1260 | plot_type = 'scatterbuffer' |
|
1261 | 1261 | |
|
1262 | 1262 | |
|
1263 | 1263 | def setup(self): |
|
1264 | 1264 | |
|
1265 | 1265 | self.ncols = 2 |
|
1266 | 1266 | self.nrows = 1 |
|
1267 | 1267 | self.nplots = 2 |
|
1268 | 1268 | self.ylabel = 'Range [km]' |
|
1269 | 1269 | self.xlabel = 'dB' |
|
1270 | 1270 | self.width = 3.5*self.nplots |
|
1271 | 1271 | self.height = 5.5 |
|
1272 | 1272 | self.colorbar = False |
|
1273 | 1273 | self.titles = [] |
|
1274 | 1274 | self.plots_adjust.update({'wspace': .8 ,'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
1275 | 1275 | |
|
1276 | 1276 | def update(self, dataOut): |
|
1277 | 1277 | data = {} |
|
1278 | 1278 | meta = {} |
|
1279 | 1279 | |
|
1280 | 1280 | data['crossprodslp'] = 10*numpy.log10(numpy.abs(dataOut.output_LP)) |
|
1281 | 1281 | |
|
1282 | 1282 | data['NRANGE'] = dataOut.NRANGE #This is metadata |
|
1283 | 1283 | data['NLAG'] = dataOut.NLAG #This is metadata |
|
1284 | 1284 | |
|
1285 | 1285 | return data, meta |
|
1286 | 1286 | |
|
1287 | 1287 | def plot(self): |
|
1288 | 1288 | |
|
1289 | 1289 | NRANGE = self.data['NRANGE'][-1] |
|
1290 | 1290 | NLAG = self.data['NLAG'][-1] |
|
1291 | 1291 | |
|
1292 | 1292 | x = self.data[self.CODE][:,-1,:,:] |
|
1293 | 1293 | self.y = self.data.yrange[0:NRANGE] |
|
1294 | 1294 | |
|
1295 | 1295 | label_array=numpy.array(['lag '+ str(x) for x in range(NLAG)]) |
|
1296 | 1296 | color_array=['r','k','g','b','c','m','y','orange','steelblue','purple','peru','darksalmon','grey','limegreen','olive','midnightblue'] |
|
1297 | 1297 | |
|
1298 | 1298 | |
|
1299 | 1299 | for n, ax in enumerate(self.axes): |
|
1300 | 1300 | |
|
1301 | 1301 | self.xmin=28#30 |
|
1302 | 1302 | self.xmax=70#70 |
|
1303 | 1303 | #self.xmin=numpy.min(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) |
|
1304 | 1304 | #self.xmax=numpy.max(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) |
|
1305 | 1305 | |
|
1306 | 1306 | if ax.firsttime: |
|
1307 | 1307 | |
|
1308 | 1308 | self.autoxticks=False |
|
1309 | 1309 | if n == 0: |
|
1310 | 1310 | self.plotline_array=numpy.zeros((2,NLAG),dtype=object) |
|
1311 | 1311 | |
|
1312 | 1312 | for i in range(NLAG): |
|
1313 | 1313 | self.plotline_array[n,i], = ax.plot(x[i,:,n], self.y, color=color_array[i],linewidth=1.0, label=label_array[i]) |
|
1314 | 1314 | |
|
1315 | 1315 | ax.legend(loc='upper right') |
|
1316 | 1316 | ax.set_xlim(self.xmin, self.xmax) |
|
1317 | 1317 | if n==0: |
|
1318 | 1318 | self.titles.append('{} CH0'.format(self.plot_name.upper())) |
|
1319 | 1319 | if n==1: |
|
1320 | 1320 | self.titles.append('{} CH1'.format(self.plot_name.upper())) |
|
1321 | 1321 | else: |
|
1322 | 1322 | for i in range(NLAG): |
|
1323 | 1323 | self.plotline_array[n,i].set_data(x[i,:,n],self.y) |
|
1324 | 1324 | |
|
1325 | 1325 | if n==0: |
|
1326 | 1326 | self.titles.append('{} CH0'.format(self.plot_name.upper())) |
|
1327 | 1327 | if n==1: |
|
1328 | 1328 | self.titles.append('{} CH1'.format(self.plot_name.upper())) |
|
1329 | 1329 | |
|
1330 | 1330 | |
|
1331 | 1331 | class NoiseDPPlot(NoisePlot): |
|
1332 | 1332 | ''' |
|
1333 | 1333 | Written by R. Flores |
|
1334 | 1334 | ''' |
|
1335 | 1335 | ''' |
|
1336 | 1336 | Plot for noise Double Pulse |
|
1337 | 1337 | ''' |
|
1338 | 1338 | |
|
1339 | 1339 | CODE = 'noise' |
|
1340 | 1340 | #plot_name = 'Noise' |
|
1341 | 1341 | #plot_type = 'scatterbuffer' |
|
1342 | 1342 | |
|
1343 | 1343 | def update(self, dataOut): |
|
1344 | 1344 | |
|
1345 | 1345 | data = {} |
|
1346 | 1346 | meta = {} |
|
1347 | 1347 | data['noise'] = 10*numpy.log10(dataOut.noise_final) |
|
1348 | 1348 | |
|
1349 | 1349 | return data, meta |
|
1350 | 1350 | |
|
1351 | 1351 | |
|
1352 | 1352 | class XmitWaveformPlot(Plot): |
|
1353 | 1353 | ''' |
|
1354 | 1354 | Written by R. Flores |
|
1355 | 1355 | ''' |
|
1356 | 1356 | ''' |
|
1357 | 1357 | Plot for xmit waveform |
|
1358 | 1358 | ''' |
|
1359 | 1359 | |
|
1360 | 1360 | CODE = 'xmit' |
|
1361 | 1361 | plot_name = 'Xmit Waveform' |
|
1362 | 1362 | plot_type = 'scatterbuffer' |
|
1363 | 1363 | |
|
1364 | 1364 | |
|
1365 | 1365 | def setup(self): |
|
1366 | 1366 | |
|
1367 | 1367 | self.ncols = 1 |
|
1368 | 1368 | self.nrows = 1 |
|
1369 | 1369 | self.nplots = 1 |
|
1370 | 1370 | self.ylabel = '' |
|
1371 | 1371 | self.xlabel = 'Number of Lag' |
|
1372 | 1372 | self.width = 5.5 |
|
1373 | 1373 | self.height = 3.5 |
|
1374 | 1374 | self.colorbar = False |
|
1375 | 1375 | self.plots_adjust.update({'right': 0.85 }) |
|
1376 | 1376 | self.titles = [self.plot_name] |
|
1377 | 1377 | #self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
1378 | 1378 | |
|
1379 | 1379 | #if not self.titles: |
|
1380 | 1380 | #self.titles = self.data.parameters \ |
|
1381 | 1381 | #if self.data.parameters else ['{}'.format(self.plot_name.upper())] |
|
1382 | 1382 | |
|
1383 | 1383 | def update(self, dataOut): |
|
1384 | 1384 | |
|
1385 | 1385 | data = {} |
|
1386 | 1386 | meta = {} |
|
1387 | 1387 | |
|
1388 | 1388 | y_1=numpy.arctan2(dataOut.output_LP[:,0,2].imag,dataOut.output_LP[:,0,2].real)* 180 / (numpy.pi*10) |
|
1389 | 1389 | y_2=numpy.abs(dataOut.output_LP[:,0,2]) |
|
1390 | 1390 | norm=numpy.max(y_2) |
|
1391 | 1391 | norm=max(norm,0.1) |
|
1392 | 1392 | y_2=y_2/norm |
|
1393 | 1393 | |
|
1394 | 1394 | meta['yrange'] = numpy.array([]) |
|
1395 | 1395 | |
|
1396 | 1396 | data['xmit'] = numpy.vstack((y_1,y_2)) |
|
1397 | 1397 | data['NLAG'] = dataOut.NLAG |
|
1398 | 1398 | |
|
1399 | 1399 | return data, meta |
|
1400 | 1400 | |
|
1401 | 1401 | def plot(self): |
|
1402 | 1402 | |
|
1403 | 1403 | data = self.data[-1] |
|
1404 | 1404 | NLAG = data['NLAG'] |
|
1405 | 1405 | x = numpy.arange(0,NLAG,1,'float32') |
|
1406 | 1406 | y = data['xmit'] |
|
1407 | 1407 | |
|
1408 | 1408 | self.xmin = 0 |
|
1409 | 1409 | self.xmax = NLAG-1 |
|
1410 | 1410 | self.ymin = -1.0 |
|
1411 | 1411 | self.ymax = 1.0 |
|
1412 | 1412 | ax = self.axes[0] |
|
1413 | 1413 | |
|
1414 | 1414 | if ax.firsttime: |
|
1415 | 1415 | ax.plotline0=ax.plot(x,y[0,:],color='blue') |
|
1416 | 1416 | ax.plotline1=ax.plot(x,y[1,:],color='red') |
|
1417 | 1417 | secax=ax.secondary_xaxis(location=0.5) |
|
1418 | 1418 | secax.xaxis.tick_bottom() |
|
1419 | 1419 | secax.tick_params( labelleft=False, labeltop=False, |
|
1420 | 1420 | labelright=False, labelbottom=False) |
|
1421 | 1421 | |
|
1422 | 1422 | self.xstep_given = 3 |
|
1423 | 1423 | self.ystep_given = .25 |
|
1424 | 1424 | secax.set_xticks(numpy.linspace(self.xmin, self.xmax, 6)) #only works on matplotlib.version>3.2 |
|
1425 | 1425 | |
|
1426 | 1426 | else: |
|
1427 | 1427 | ax.plotline0[0].set_data(x,y[0,:]) |
|
1428 | 1428 | ax.plotline1[0].set_data(x,y[1,:]) |
@@ -1,191 +1,241 | |||
|
1 | 1 | {"conditions": [ |
|
2 | 2 | |
|
3 | 3 | {"year": 2024, "doy": 47, "initial_time": [5,32], "final_time": [6,42], "aux_index": [ null, 11]}, |
|
4 | 4 | |
|
5 | 5 | {"year": 2024, "doy": 247, "initial_time": [2,0], "final_time": [5,0], "aux_index": [ null, 11]}, |
|
6 | 6 | {"year": 2024, "doy": 247, "initial_time": [1,40], "final_time": [2,0], "aux_index": [ null, 26]}, |
|
7 | 7 | {"year": 2024, "doy": 247, "initial_time": [0,45], "final_time": [0,45], "aux_index": [ null, 28]}, |
|
8 | 8 | {"year": 2024, "doy": 246, "initial_time": [23,15], "final_time": [23,59], "aux_index": [ null, 21]}, |
|
9 | 9 | {"year": 2024, "doy": 246, "initial_time": [13,55], "final_time": [23,59], "aux_index": [ null, 11]}, |
|
10 | 10 | {"year": 2024, "doy": 247, "initial_time": [0,0], "final_time": [2,25], "aux_index": [ null, 22]}, |
|
11 | 11 | {"year": 2024, "doy": 247, "initial_time": [3,0], "final_time": [3,0], "aux_index": [ 34, null]}, |
|
12 | 12 | |
|
13 | 13 | {"year": 2024, "doy": 247, "initial_time": [5,0], "final_time": [23,59], "aux_index": [ null, 11]}, |
|
14 | 14 | {"year": 2024, "doy": 247, "initial_time": [5,0], "final_time": [11,25], "aux_index": [ 11, 13]}, |
|
15 | 15 | {"year": 2024, "doy": 247, "initial_time": [5,30], "final_time": [9,50], "aux_index": [ 13, 13]}, |
|
16 | 16 | {"year": 2024, "doy": 247, "initial_time": [23,15], "final_time": [23,59], "aux_index": [ null, 15]}, |
|
17 | 17 | {"year": 2024, "doy": 248, "initial_time": [0,0], "final_time": [4,59], "aux_index": [ null, 13]}, |
|
18 | 18 | {"year": 2024, "doy": 248, "initial_time": [0,0], "final_time": [1,50], "aux_index": [ null, 21]}, |
|
19 | 19 | {"year": 2024, "doy": 248, "initial_time": [0,0], "final_time": [2,50], "aux_index": [ null, 17]}, |
|
20 | 20 | {"year": 2024, "doy": 247, "initial_time": [8,5], "final_time": [8,10], "aux_index": [ null, null]}, |
|
21 | 21 | {"year": 2024, "doy": 248, "initial_time": [2,50], "final_time": [2,50], "aux_index": [ 30, null]}, |
|
22 | 22 | {"year": 2024, "doy": 248, "initial_time": [3,55], "final_time": [4,0], "aux_index": [ 26, null]}, |
|
23 | 23 | {"year": 2024, "doy": 247, "initial_time": [5,0], "final_time": [5,0], "aux_index": [ 18, 24]}, |
|
24 | 24 | {"year": 2024, "doy": 247, "initial_time": [5,5], "final_time": [5,5], "aux_index": [ 21, 26]}, |
|
25 | 25 | {"year": 2024, "doy": 247, "initial_time": [5,15], "final_time": [5,15], "aux_index": [ 19, 21]}, |
|
26 | 26 | {"year": 2024, "doy": 247, "initial_time": [5,20], "final_time": [5,20], "aux_index": [ 21, 23]}, |
|
27 | 27 | {"year": 2024, "doy": 247, "initial_time": [5,25], "final_time": [5,25], "aux_index": [ 21, 26]}, |
|
28 | 28 | {"year": 2024, "doy": 247, "initial_time": [5,30], "final_time": [5,30], "aux_index": [ 20, 27]}, |
|
29 | 29 | {"year": 2024, "doy": 247, "initial_time": [5,35], "final_time": [5,35], "aux_index": [ 22, 27]}, |
|
30 | 30 | {"year": 2024, "doy": 247, "initial_time": [8,5], "final_time": [8,10], "aux_index": [ null, null]}, |
|
31 | 31 | {"year": 2024, "doy": 247, "initial_time": [15,30], "final_time": [15,30], "aux_index": [ null, null]}, |
|
32 | 32 | |
|
33 | 33 | |
|
34 | 34 | {"year": 2024, "doy": 248, "initial_time": [5,20], "final_time": [5,35], "aux_index": [ 20, null]}, |
|
35 | 35 | {"year": 2024, "doy": 248, "initial_time": [5,40], "final_time": [5,55], "aux_index": [ 23, null]}, |
|
36 | 36 | {"year": 2024, "doy": 248, "initial_time": [5,0], "final_time": [23,59], "aux_index": [ null, 11]}, |
|
37 | 37 | {"year": 2024, "doy": 249, "initial_time": [0,0], "final_time": [4,59], "aux_index": [ null, 12]}, |
|
38 | 38 | {"year": 2024, "doy": 248, "initial_time": [5,0], "final_time": [9,0], "aux_index": [ null, 13]}, |
|
39 | 39 | {"year": 2024, "doy": 249, "initial_time": [2,0], "final_time": [2,20], "aux_index": [ null, 17]}, |
|
40 | 40 | {"year": 2024, "doy": 249, "initial_time": [2,55], "final_time": [2,55], "aux_index": [ 27, null]}, |
|
41 | 41 | {"year": 2024, "doy": 249, "initial_time": [3,0], "final_time": [3,5], "aux_index": [ 25, null]}, |
|
42 | 42 | {"year": 2024, "doy": 249, "initial_time": [4,5], "final_time": [4,5], "aux_index": [ 23, null]}, |
|
43 | 43 | {"year": 2024, "doy": 249, "initial_time": [4,10], "final_time": [4,10], "aux_index": [ 26, null]}, |
|
44 | 44 | {"year": 2024, "doy": 249, "initial_time": [4,15], "final_time": [4,15], "aux_index": [ 30, null]}, |
|
45 | 45 | {"year": 2024, "doy": 249, "initial_time": [0,30], "final_time": [0,40], "aux_index": [ null, null]}, |
|
46 | 46 | |
|
47 | 47 | {"year": 2024, "doy": 249, "initial_time": [5,20], "final_time": [5,20], "aux_index": [ 22, null]}, |
|
48 | 48 | {"year": 2024, "doy": 249, "initial_time": [5,25], "final_time": [5,25], "aux_index": [ 23, null]}, |
|
49 | 49 | {"year": 2024, "doy": 249, "initial_time": [5,30], "final_time": [5,30], "aux_index": [ 18, 37]}, |
|
50 | 50 | {"year": 2024, "doy": 249, "initial_time": [5,35], "final_time": [5,40], "aux_index": [ 18, 34]}, |
|
51 | 51 | {"year": 2024, "doy": 249, "initial_time": [5,45], "final_time": [5,45], "aux_index": [ 20, 30]}, |
|
52 | 52 | {"year": 2024, "doy": 249, "initial_time": [6,5], "final_time": [6,5], "aux_index": [ 24, null]}, |
|
53 | 53 | {"year": 2024, "doy": 249, "initial_time": [10,5], "final_time": [10,5], "aux_index": [ null, null]}, |
|
54 | 54 | {"year": 2024, "doy": 249, "initial_time": [6,10], "final_time": [6,10], "aux_index": [ 29, null]}, |
|
55 | 55 | {"year": 2024, "doy": 249, "initial_time": [6,45], "final_time": [6,45], "aux_index": [ 21, null]}, |
|
56 | 56 | {"year": 2024, "doy": 249, "initial_time": [5,0], "final_time": [20,0], "aux_index": [ null, 11]}, |
|
57 | 57 | {"year": 2024, "doy": 249, "initial_time": [23,10], "final_time": [23,59], "aux_index": [ null, 11]}, |
|
58 | 58 | {"year": 2024, "doy": 250, "initial_time": [0,0], "final_time": [4,59], "aux_index": [ null, 13]}, |
|
59 | 59 | {"year": 2024, "doy": 249, "initial_time": [5,0], "final_time": [8,50], "aux_index": [ null, 12]}, |
|
60 | 60 | {"year": 2024, "doy": 250, "initial_time": [0,0], "final_time": [3,35], "aux_index": [ null, 23]}, |
|
61 | 61 | {"year": 2024, "doy": 250, "initial_time": [0,0], "final_time": [0,55], "aux_index": [ null, null]}, |
|
62 | 62 | {"year": 2024, "doy": 249, "initial_time": [7,15], "final_time": [7,15], "aux_index": [ null, 14]}, |
|
63 | 63 | {"year": 2024, "doy": 250, "initial_time": [3,15], "final_time": [3,35], "aux_index": [ 46, null]}, |
|
64 | 64 | {"year": 2024, "doy": 250, "initial_time": [3,25], "final_time": [3,25], "aux_index": [ null, 30]}, |
|
65 | 65 | {"year": 2024, "doy": 250, "initial_time": [3,30], "final_time": [3,30], "aux_index": [ null, 32]}, |
|
66 | 66 | {"year": 2024, "doy": 250, "initial_time": [3,35], "final_time": [3,35], "aux_index": [ null, 34]}, |
|
67 | 67 | {"year": 2024, "doy": 250, "initial_time": [3,40], "final_time": [3,40], "aux_index": [ 21, 38]}, |
|
68 | 68 | {"year": 2024, "doy": 250, "initial_time": [3,45], "final_time": [3,45], "aux_index": [ 22, 37]}, |
|
69 | 69 | {"year": 2024, "doy": 250, "initial_time": [1,35], "final_time": [1,35], "aux_index": [ 36, null]}, |
|
70 | 70 | {"year": 2024, "doy": 250, "initial_time": [1,40], "final_time": [1,40], "aux_index": [ 32, null]}, |
|
71 | 71 | {"year": 2024, "doy": 250, "initial_time": [1,45], "final_time": [1,45], "aux_index": [ 31, null]}, |
|
72 | 72 | {"year": 2024, "doy": 250, "initial_time": [2,30], "final_time": [2,30], "aux_index": [ 30, null]}, |
|
73 | 73 | {"year": 2024, "doy": 250, "initial_time": [2,35], "final_time": [2,35], "aux_index": [ 33, null]}, |
|
74 | 74 | {"year": 2024, "doy": 250, "initial_time": [2,40], "final_time": [2,40], "aux_index": [ 27, null]}, |
|
75 | 75 | |
|
76 | 76 | {"year": 2024, "doy": 251, "initial_time": [3,0], "final_time": [3,45], "aux_index": [ null, null]}, |
|
77 | 77 | {"year": 2024, "doy": 251, "initial_time": [0,30], "final_time": [0,45], "aux_index": [ null, null]}, |
|
78 | 78 | |
|
79 | 79 | {"year": 2024, "doy": 250, "initial_time": [5,0], "final_time": [5,0], "aux_index": [ 20, 41]}, |
|
80 | 80 | {"year": 2024, "doy": 250, "initial_time": [5,5], "final_time": [5,10], "aux_index": [ 24, 37]}, |
|
81 | 81 | {"year": 2024, "doy": 250, "initial_time": [5,20], "final_time": [5,25], "aux_index": [ 23, 39]}, |
|
82 | 82 | {"year": 2024, "doy": 250, "initial_time": [5,30], "final_time": [5,30], "aux_index": [ 19, null]}, |
|
83 | 83 | {"year": 2024, "doy": 250, "initial_time": [6,5], "final_time": [6,5], "aux_index": [ 24, null]}, |
|
84 | 84 | {"year": 2024, "doy": 250, "initial_time": [6,10], "final_time": [6,10], "aux_index": [ 20, 41]}, |
|
85 | 85 | {"year": 2024, "doy": 250, "initial_time": [6,15], "final_time": [6,15], "aux_index": [ 20, 39]}, |
|
86 | 86 | {"year": 2024, "doy": 250, "initial_time": [6,20], "final_time": [6,20], "aux_index": [ 20, 37]}, |
|
87 | 87 | {"year": 2024, "doy": 250, "initial_time": [6,25], "final_time": [6,25], "aux_index": [ 21, 29]}, |
|
88 | 88 | {"year": 2024, "doy": 250, "initial_time": [6,30], "final_time": [6,30], "aux_index": [ 22, 29]}, |
|
89 | 89 | {"year": 2024, "doy": 250, "initial_time": [6,45], "final_time": [6,45], "aux_index": [ 20, null]}, |
|
90 | 90 | {"year": 2024, "doy": 250, "initial_time": [6,50], "final_time": [6,50], "aux_index": [ 19, 38]}, |
|
91 | 91 | {"year": 2024, "doy": 250, "initial_time": [6,55], "final_time": [6,55], "aux_index": [ 23, 42]}, |
|
92 | 92 | {"year": 2024, "doy": 250, "initial_time": [7,0], "final_time": [7,0], "aux_index": [ 20, null]}, |
|
93 | 93 | {"year": 2024, "doy": 250, "initial_time": [7,5], "final_time": [7,5], "aux_index": [ 23, 40]}, |
|
94 | 94 | {"year": 2024, "doy": 250, "initial_time": [7,10], "final_time": [7,10], "aux_index": [ 23, 42]}, |
|
95 | 95 | {"year": 2024, "doy": 250, "initial_time": [7,15], "final_time": [7,15], "aux_index": [ 25, 37]}, |
|
96 | 96 | {"year": 2024, "doy": 250, "initial_time": [7,30], "final_time": [7,30], "aux_index": [ 25, 40]}, |
|
97 | 97 | {"year": 2024, "doy": 250, "initial_time": [7,35], "final_time": [7,35], "aux_index": [ 25, 39]}, |
|
98 | 98 | {"year": 2024, "doy": 250, "initial_time": [7,40], "final_time": [7,40], "aux_index": [ 23, 41]}, |
|
99 | 99 | {"year": 2024, "doy": 250, "initial_time": [7,45], "final_time": [7,45], "aux_index": [ 27, 38]}, |
|
100 | 100 | {"year": 2024, "doy": 250, "initial_time": [23,10], "final_time": [23,59], "aux_index": [ null, 12]}, |
|
101 | 101 | {"year": 2024, "doy": 251, "initial_time": [0,0], "final_time": [4,59], "aux_index": [ null, 13]}, |
|
102 | 102 | {"year": 2024, "doy": 250, "initial_time": [5,0], "final_time": [8,10], "aux_index": [ null, 12]}, |
|
103 | 103 | {"year": 2024, "doy": 250, "initial_time": [9,10], "final_time": [10,50], "aux_index": [ null, 12]}, |
|
104 | 104 | {"year": 2024, "doy": 251, "initial_time": [0,0], "final_time": [3,30], "aux_index": [ null, 27]}, |
|
105 | 105 | {"year": 2024, "doy": 250, "initial_time": [19,30], "final_time": [19,30], "aux_index": [ 19, 26]}, |
|
106 | 106 | {"year": 2024, "doy": 250, "initial_time": [10,50], "final_time": [13,20], "aux_index": [ null, 12]}, |
|
107 | 107 | |
|
108 | 108 | |
|
109 | 109 | {"year": 2024, "doy": 251, "initial_time": [5,0], "final_time": [5,0], "aux_index": [ 23, 40]}, |
|
110 | 110 | {"year": 2024, "doy": 251, "initial_time": [5,5], "final_time": [5,10], "aux_index": [ 25, 40]}, |
|
111 | 111 | {"year": 2024, "doy": 251, "initial_time": [17,30], "final_time": [20,30], "aux_index": [ 56, null]}, |
|
112 | 112 | {"year": 2024, "doy": 251, "initial_time": [5,0], "final_time": [8,10], "aux_index": [ null, 12]}, |
|
113 | 113 | {"year": 2024, "doy": 251, "initial_time": [5,0], "final_time": [20,0], "aux_index": [ null, 11]}, |
|
114 | 114 | {"year": 2024, "doy": 251, "initial_time": [19,50], "final_time": [19,50], "aux_index": [ null, null]}, |
|
115 | 115 | {"year": 2024, "doy": 252, "initial_time": [0,30], "final_time": [0,55], "aux_index": [ null, null]}, |
|
116 | 116 | {"year": 2024, "doy": 252, "initial_time": [0,55], "final_time": [1,0], "aux_index": [ null, 40]}, |
|
117 | 117 | {"year": 2024, "doy": 252, "initial_time": [1,0], "final_time": [1,15], "aux_index": [ null, 34]}, |
|
118 | 118 | {"year": 2024, "doy": 252, "initial_time": [0,30], "final_time": [0,55], "aux_index": [ null, null]}, |
|
119 | 119 | {"year": 2024, "doy": 252, "initial_time": [1,35], "final_time": [1,55], "aux_index": [ null, null]}, |
|
120 | 120 | {"year": 2024, "doy": 251, "initial_time": [23,10], "final_time": [23,59], "aux_index": [ null, 20]}, |
|
121 | 121 | {"year": 2024, "doy": 252, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 12]}, |
|
122 | 122 | {"year": 2024, "doy": 252, "initial_time": [0,0], "final_time": [1,50], "aux_index": [ null, 31]}, |
|
123 | 123 | {"year": 2024, "doy": 252, "initial_time": [3,20], "final_time": [3,25], "aux_index": [ 22, null]}, |
|
124 | 124 | {"year": 2024, "doy": 252, "initial_time": [3,30], "final_time": [3,35], "aux_index": [ 23, null]}, |
|
125 | 125 | {"year": 2024, "doy": 252, "initial_time": [3,50], "final_time": [3,50], "aux_index": [ 22, null]}, |
|
126 | 126 | {"year": 2024, "doy": 252, "initial_time": [3,55], "final_time": [4,5], "aux_index": [ 21, null]}, |
|
127 | 127 | {"year": 2024, "doy": 252, "initial_time": [4,10], "final_time": [4,10], "aux_index": [ 21, 36]}, |
|
128 | 128 | |
|
129 | 129 | {"year": 2024, "doy": 252, "initial_time": [5,0], "final_time": [20,0], "aux_index": [ null, 12]}, |
|
130 | 130 | {"year": 2024, "doy": 252, "initial_time": [13,0], "final_time": [13,0], "aux_index": [ null, null]}, |
|
131 | 131 | {"year": 2024, "doy": 252, "initial_time": [5,15], "final_time": [5,20], "aux_index": [ 23, null]}, |
|
132 | 132 | {"year": 2024, "doy": 252, "initial_time": [5,25], "final_time": [5,25], "aux_index": [ 27, 36]}, |
|
133 | 133 | {"year": 2024, "doy": 252, "initial_time": [5,30], "final_time": [5,30], "aux_index": [ 27, null]}, |
|
134 | 134 | {"year": 2024, "doy": 252, "initial_time": [5,35], "final_time": [5,35], "aux_index": [ 31, null]}, |
|
135 | 135 | {"year": 2024, "doy": 252, "initial_time": [5,20], "final_time": [5,40], "aux_index": [ 33, null]}, |
|
136 | 136 | {"year": 2024, "doy": 252, "initial_time": [7,5], "final_time": [7,5], "aux_index": [ 21, null]}, |
|
137 | 137 | {"year": 2024, "doy": 252, "initial_time": [7,10], "final_time": [7,10], "aux_index": [ 23, null]}, |
|
138 | 138 | |
|
139 | 139 | |
|
140 | 140 | |
|
141 | 141 | {"year": 2025, "doy": 21, "initial_time": [19,45], "final_time": [19,50], "aux_index": [ null, null]}, |
|
142 | 142 | {"year": 2025, "doy": 22, "initial_time": [0,50], "final_time": [3,30], "aux_index": [ null, 30]}, |
|
143 | 143 | {"year": 2025, "doy": 22, "initial_time": [1,50], "final_time": [1,50], "aux_index": [ null, null]}, |
|
144 | 144 | {"year": 2025, "doy": 22, "initial_time": [2,15], "final_time": [2,25], "aux_index": [ null, 38]}, |
|
145 | 145 | {"year": 2025, "doy": 22, "initial_time": [2,25], "final_time": [2,35], "aux_index": [ null, null]}, |
|
146 | 146 | {"year": 2025, "doy": 22, "initial_time": [2,40], "final_time": [2,50], "aux_index": [ null, 40]}, |
|
147 | 147 | {"year": 2025, "doy": 22, "initial_time": [2,40], "final_time": [2,40], "aux_index": [ 44, null]}, |
|
148 | 148 | {"year": 2025, "doy": 22, "initial_time": [2,45], "final_time": [2,45], "aux_index": [ 50, null]}, |
|
149 | 149 | {"year": 2025, "doy": 22, "initial_time": [3,0], "final_time": [3,15], "aux_index": [ null, 33]}, |
|
150 | 150 | {"year": 2025, "doy": 22, "initial_time": [3,30], "final_time": [4,15], "aux_index": [ null, 28]}, |
|
151 | 151 | {"year": 2025, "doy": 22, "initial_time": [4,15], "final_time": [4,25], "aux_index": [ null, 24]}, |
|
152 | 152 | {"year": 2025, "doy": 22, "initial_time": [3,50], "final_time": [4,15], "aux_index": [ null, 15]}, |
|
153 | 153 | {"year": 2025, "doy": 22, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, |
|
154 | 154 | |
|
155 | 155 | {"year": 2025, "doy": 22, "initial_time": [5,0], "final_time": [23,55], "aux_index": [ null, 13]}, |
|
156 | 156 | {"year": 2025, "doy": 22, "initial_time": [14,20], "final_time": [14,20], "aux_index": [ null, null]}, |
|
157 | 157 | {"year": 2025, "doy": 23, "initial_time": [0,10], "final_time": [0,10], "aux_index": [ null, null]}, |
|
158 | 158 | {"year": 2025, "doy": 23, "initial_time": [0,55], "final_time": [3,30], "aux_index": [ null, 26]}, |
|
159 | 159 | {"year": 2025, "doy": 23, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, |
|
160 | 160 | {"year": 2025, "doy": 23, "initial_time": [2,25], "final_time": [2,25], "aux_index": [ null, 34]}, |
|
161 | 161 | {"year": 2025, "doy": 23, "initial_time": [2,10], "final_time": [2,10], "aux_index": [ 44, 48]}, |
|
162 | 162 | {"year": 2025, "doy": 23, "initial_time": [0,50], "final_time": [0,50], "aux_index": [ 53, 53]}, |
|
163 | 163 | |
|
164 | 164 | {"year": 2025, "doy": 23, "initial_time": [5,0], "final_time": [23,55], "aux_index": [ null, 13]}, |
|
165 | 165 | {"year": 2025, "doy": 23, "initial_time": [5,0], "final_time": [8,0], "aux_index": [ null, 14]}, |
|
166 | 166 | {"year": 2025, "doy": 23, "initial_time": [12,5], "final_time": [12,5], "aux_index": [ null, null]}, |
|
167 | 167 | {"year": 2025, "doy": 24, "initial_time": [1,40], "final_time": [3,15], "aux_index": [ null, null]}, |
|
168 | 168 | {"year": 2025, "doy": 24, "initial_time": [3,25], "final_time": [3,30], "aux_index": [ 44, null]}, |
|
169 | 169 | {"year": 2025, "doy": 24, "initial_time": [3,20], "final_time": [3,40], "aux_index": [ null, 31]}, |
|
170 | 170 | {"year": 2025, "doy": 24, "initial_time": [3,40], "final_time": [4,55], "aux_index": [ null, 29]}, |
|
171 | 171 | {"year": 2025, "doy": 24, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, |
|
172 | 172 | |
|
173 | 173 | {"year": 2025, "doy": 24, "initial_time": [5,0], "final_time": [23,55], "aux_index": [ null, 13]}, |
|
174 |
{"year": 2025, "doy": 2 |
|
|
174 | {"year": 2025, "doy": 24, "initial_time": [5,0], "final_time": [5,5], "aux_index": [ null, 34]}, | |
|
175 | {"year": 2025, "doy": 24, "initial_time": [5,10], "final_time": [5,10], "aux_index": [ 24, 35]}, | |
|
176 | {"year": 2025, "doy": 24, "initial_time": [5,15], "final_time": [5,15], "aux_index": [ 25, 33]}, | |
|
177 | {"year": 2025, "doy": 24, "initial_time": [5,20], "final_time": [5,20], "aux_index": [ 26, 33]}, | |
|
178 | {"year": 2025, "doy": 24, "initial_time": [5,25], "final_time": [5,25], "aux_index": [ 27, 32]}, | |
|
179 | {"year": 2025, "doy": 24, "initial_time": [5,30], "final_time": [5,30], "aux_index": [ 23, 24]}, | |
|
180 | {"year": 2025, "doy": 24, "initial_time": [5,35], "final_time": [5,35], "aux_index": [ 22, 27]}, | |
|
181 | {"year": 2025, "doy": 24, "initial_time": [5,40], "final_time": [5,55], "aux_index": [ 22, 31]}, | |
|
182 | {"year": 2025, "doy": 24, "initial_time": [6,0], "final_time": [6,0], "aux_index": [ 22, 33]}, | |
|
183 | {"year": 2025, "doy": 24, "initial_time": [6,30], "final_time": [6,30], "aux_index": [ 22, 25]}, | |
|
184 | {"year": 2025, "doy": 24, "initial_time": [6,35], "final_time": [6,35], "aux_index": [ 22, 32]}, | |
|
185 | {"year": 2025, "doy": 24, "initial_time": [6,35], "final_time": [6,40], "aux_index": [ 22, 32]}, | |
|
186 | {"year": 2025, "doy": 24, "initial_time": [6,45], "final_time": [6,45], "aux_index": [ 23, 32]}, | |
|
187 | {"year": 2025, "doy": 24, "initial_time": [6,50], "final_time": [6,50], "aux_index": [ 24, 34]}, | |
|
188 | {"year": 2025, "doy": 24, "initial_time": [6,55], "final_time": [6,55], "aux_index": [ 25, 32]}, | |
|
189 | {"year": 2025, "doy": 25, "initial_time": [0,50], "final_time": [4,55], "aux_index": [ null, 27]}, | |
|
175 | 190 | {"year": 2025, "doy": 25, "initial_time": [2,50], "final_time": [4,55], "aux_index": [ null, 30]}, |
|
191 | {"year": 2025, "doy": 25, "initial_time": [3,5], "final_time": [3,45], "aux_index": [ null, 33]}, | |
|
176 | 192 | {"year": 2025, "doy": 25, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, |
|
177 | 193 | |
|
178 | 194 | {"year": 2025, "doy": 25, "initial_time": [5,0], "final_time": [23,55], "aux_index": [ null, 13]}, |
|
179 | 195 | {"year": 2025, "doy": 26, "initial_time": [2,50], "final_time": [4,5], "aux_index": [ null, null]}, |
|
180 | 196 | {"year": 2025, "doy": 26, "initial_time": [2,50], "final_time": [4,5], "aux_index": [ null, null]}, |
|
181 | 197 | {"year": 2025, "doy": 26, "initial_time": [0,40], "final_time": [4,20], "aux_index": [ null, 24]}, |
|
182 | 198 | {"year": 2025, "doy": 26, "initial_time": [4,30], "final_time": [4,30], "aux_index": [ null, 20]}, |
|
183 | 199 | {"year": 2025, "doy": 26, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, |
|
184 | 200 | |
|
185 | 201 | {"year": 2025, "doy": 26, "initial_time": [5,0], "final_time": [23,55], "aux_index": [ null, 13]}, |
|
202 | {"year": 2025, "doy": 26, "initial_time": [5,20], "final_time": [5,20], "aux_index": [ null, 28]}, | |
|
203 | {"year": 2025, "doy": 26, "initial_time": [5,25], "final_time": [5,25], "aux_index": [ 25, 34]}, | |
|
186 | 204 | {"year": 2025, "doy": 26, "initial_time": [0,55], "final_time": [0,55], "aux_index": [ null, null]}, |
|
187 | 205 | {"year": 2025, "doy": 26, "initial_time": [0,55], "final_time": [4,55], "aux_index": [ null, 24]}, |
|
188 | {"year": 2025, "doy": 27, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]} | |
|
206 | {"year": 2025, "doy": 27, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, | |
|
207 | ||
|
208 | {"year": 2025, "doy": 41, "initial_time": [23,0], "final_time": [23,0], "aux_index": [ null, null]}, | |
|
209 | {"year": 2025, "doy": 42, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 14]}, | |
|
210 | {"year": 2025, "doy": 42, "initial_time": [4,24], "final_time": [4,24], "aux_index": [ 35, 38]}, | |
|
211 | {"year": 2025, "doy": 42, "initial_time": [1,30], "final_time": [5,0], "aux_index": [ null, 26]}, | |
|
212 | {"year": 2025, "doy": 42, "initial_time": [2,12], "final_time": [4,0], "aux_index": [ null, null]}, | |
|
213 | {"year": 2025, "doy": 42, "initial_time": [1,24], "final_time": [1,24], "aux_index": [ 39, 40]}, | |
|
214 | {"year": 2025, "doy": 42, "initial_time": [1,18], "final_time": [1,18], "aux_index": [ 48, 50]}, | |
|
215 | ||
|
216 | {"year": 2025, "doy": 42, "initial_time": [5,0], "final_time": [12,0], "aux_index": [ null, 7]}, | |
|
217 | {"year": 2025, "doy": 42, "initial_time": [5,0], "final_time": [7,30], "aux_index": [ null, 13]}, | |
|
218 | {"year": 2025, "doy": 42, "initial_time": [5,0], "final_time": [11,0], "aux_index": [ null, 10]}, | |
|
219 | {"year": 2025, "doy": 42, "initial_time": [5,0], "final_time": [5,0], "aux_index": [ 20, 22]}, | |
|
220 | ||
|
221 | {"year": 2025, "doy": 43, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 19]}, | |
|
222 | {"year": 2025, "doy": 43, "initial_time": [2,25], "final_time": [2,38], "aux_index": [ null, 24]}, | |
|
223 | {"year": 2025, "doy": 43, "initial_time": [2,2], "final_time": [2,2], "aux_index": [ null, null]}, | |
|
224 | ||
|
225 | {"year": 2025, "doy": 43, "initial_time": [5,0], "final_time": [10,50], "aux_index": [ null, 12]}, | |
|
226 | {"year": 2025, "doy": 43, "initial_time": [5,0], "final_time": [23,0], "aux_index": [ null, 8]}, | |
|
227 | {"year": 2025, "doy": 44, "initial_time": [0,50], "final_time": [0,50], "aux_index": [ 47, null]}, | |
|
228 | {"year": 2025, "doy": 44, "initial_time": [1,0], "final_time": [1,15], "aux_index": [ 39, null]}, | |
|
229 | {"year": 2025, "doy": 44, "initial_time": [3,14], "final_time": [3,40], "aux_index": [ null, 30]}, | |
|
230 | {"year": 2025, "doy": 44, "initial_time": [3,26], "final_time": [3,26], "aux_index": [ null, 32]}, | |
|
231 | {"year": 2025, "doy": 44, "initial_time": [0,14], "final_time": [3,40], "aux_index": [ null, 22]}, | |
|
232 | {"year": 2025, "doy": 44, "initial_time": [0,40], "final_time": [3,40], "aux_index": [ null, 25]}, | |
|
233 | {"year": 2025, "doy": 44, "initial_time": [4,0], "final_time": [5,0], "aux_index": [ null, null]}, | |
|
234 | ||
|
235 | {"year": 2025, "doy": 44, "initial_time": [5,50], "final_time": [5,50], "aux_index": [ null, null]}, | |
|
236 | {"year": 2025, "doy": 44, "initial_time": [7,50], "final_time": [8,38], "aux_index": [ null, null]}, | |
|
237 | {"year": 2025, "doy": 44, "initial_time": [5,0], "final_time": [9,14], "aux_index": [ null, 14]} | |
|
238 | ||
|
189 | 239 | |
|
190 | 240 | ]} |
|
191 | 241 |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now