The requested changes are too big and content was truncated. Show full diff
@@ -1,1093 +1,1094 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Definition of diferent Data objects for different types of data |
|
5 | """Definition of diferent Data objects for different types of data | |
6 |
|
6 | |||
7 | Here you will find the diferent data objects for the different types |
|
7 | Here you will find the diferent data objects for the different types | |
8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
8 | of data, this data objects must be used as dataIn or dataOut objects in | |
9 | processing units and operations. Currently the supported data objects are: |
|
9 | processing units and operations. Currently the supported data objects are: | |
10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters | |
11 | """ |
|
11 | """ | |
12 |
|
12 | |||
13 | import copy |
|
13 | import copy | |
14 | import numpy |
|
14 | import numpy | |
15 | import datetime |
|
15 | import datetime | |
16 | import json |
|
16 | import json | |
17 |
|
17 | |||
18 | import schainpy.admin |
|
18 | import schainpy.admin | |
19 | from schainpy.utils import log |
|
19 | from schainpy.utils import log | |
20 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
20 | from .jroheaderIO import SystemHeader, RadarControllerHeader | |
21 | from schainpy.model.data import _noise |
|
21 | from schainpy.model.data import _noise | |
22 |
|
22 | |||
23 |
|
23 | |||
24 | def getNumpyDtype(dataTypeCode): |
|
24 | def getNumpyDtype(dataTypeCode): | |
25 |
|
25 | |||
26 | if dataTypeCode == 0: |
|
26 | if dataTypeCode == 0: | |
27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) | |
28 | elif dataTypeCode == 1: |
|
28 | elif dataTypeCode == 1: | |
29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) | |
30 | elif dataTypeCode == 2: |
|
30 | elif dataTypeCode == 2: | |
31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) | |
32 | elif dataTypeCode == 3: |
|
32 | elif dataTypeCode == 3: | |
33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) | |
34 | elif dataTypeCode == 4: |
|
34 | elif dataTypeCode == 4: | |
35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
36 | elif dataTypeCode == 5: |
|
36 | elif dataTypeCode == 5: | |
37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) | |
38 | else: |
|
38 | else: | |
39 | raise ValueError('dataTypeCode was not defined') |
|
39 | raise ValueError('dataTypeCode was not defined') | |
40 |
|
40 | |||
41 | return numpyDtype |
|
41 | return numpyDtype | |
42 |
|
42 | |||
43 |
|
43 | |||
44 | def getDataTypeCode(numpyDtype): |
|
44 | def getDataTypeCode(numpyDtype): | |
45 |
|
45 | |||
46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): | |
47 | datatype = 0 |
|
47 | datatype = 0 | |
48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): | |
49 | datatype = 1 |
|
49 | datatype = 1 | |
50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): | |
51 | datatype = 2 |
|
51 | datatype = 2 | |
52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): | |
53 | datatype = 3 |
|
53 | datatype = 3 | |
54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): | |
55 | datatype = 4 |
|
55 | datatype = 4 | |
56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): | |
57 | datatype = 5 |
|
57 | datatype = 5 | |
58 | else: |
|
58 | else: | |
59 | datatype = None |
|
59 | datatype = None | |
60 |
|
60 | |||
61 | return datatype |
|
61 | return datatype | |
62 |
|
62 | |||
63 |
|
63 | |||
64 | def hildebrand_sekhon(data, navg): |
|
64 | def hildebrand_sekhon(data, navg): | |
65 | """ |
|
65 | """ | |
66 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
66 | This method is for the objective determination of the noise level in Doppler spectra. This | |
67 | implementation technique is based on the fact that the standard deviation of the spectral |
|
67 | implementation technique is based on the fact that the standard deviation of the spectral | |
68 | densities is equal to the mean spectral density for white Gaussian noise |
|
68 | densities is equal to the mean spectral density for white Gaussian noise | |
69 |
|
69 | |||
70 | Inputs: |
|
70 | Inputs: | |
71 | Data : heights |
|
71 | Data : heights | |
72 | navg : numbers of averages |
|
72 | navg : numbers of averages | |
73 |
|
73 | |||
74 | Return: |
|
74 | Return: | |
75 | mean : noise's level |
|
75 | mean : noise's level | |
76 | """ |
|
76 | """ | |
77 |
|
77 | |||
78 | sortdata = numpy.sort(data, axis=None) |
|
78 | sortdata = numpy.sort(data, axis=None) | |
79 | #print(numpy.shape(data)) |
|
79 | #print(numpy.shape(data)) | |
80 | #exit() |
|
80 | #exit() | |
81 |
|
|
81 | ||
82 | lenOfData = len(sortdata) |
|
82 | lenOfData = len(sortdata) | |
83 | nums_min = lenOfData*0.2 |
|
83 | nums_min = lenOfData*0.2 | |
84 |
|
84 | |||
85 | if nums_min <= 5: |
|
85 | if nums_min <= 5: | |
86 |
|
86 | |||
87 | nums_min = 5 |
|
87 | nums_min = 5 | |
88 |
|
88 | |||
89 | sump = 0. |
|
89 | sump = 0. | |
90 | sumq = 0. |
|
90 | sumq = 0. | |
91 |
|
91 | |||
92 | j = 0 |
|
92 | j = 0 | |
93 | cont = 1 |
|
93 | cont = 1 | |
94 |
|
94 | |||
95 | while((cont == 1)and(j < lenOfData)): |
|
95 | while((cont == 1)and(j < lenOfData)): | |
96 |
|
96 | |||
97 | sump += sortdata[j] |
|
97 | sump += sortdata[j] | |
98 | sumq += sortdata[j]**2 |
|
98 | sumq += sortdata[j]**2 | |
99 |
|
99 | |||
100 | if j > nums_min: |
|
100 | if j > nums_min: | |
101 | rtest = float(j)/(j-1) + 1.0/navg |
|
101 | rtest = float(j)/(j-1) + 1.0/navg | |
102 | if ((sumq*j) > (rtest*sump**2)): |
|
102 | if ((sumq*j) > (rtest*sump**2)): | |
103 | j = j - 1 |
|
103 | j = j - 1 | |
104 | sump = sump - sortdata[j] |
|
104 | sump = sump - sortdata[j] | |
105 | sumq = sumq - sortdata[j]**2 |
|
105 | sumq = sumq - sortdata[j]**2 | |
106 | cont = 0 |
|
106 | cont = 0 | |
107 |
|
107 | |||
108 | j += 1 |
|
108 | j += 1 | |
109 |
|
109 | |||
110 | lnoise = sump / j |
|
110 | lnoise = sump / j | |
111 |
|
111 | |||
112 | return lnoise |
|
112 | return lnoise | |
113 |
|
|
113 | ||
114 | return _noise.hildebrand_sekhon(sortdata, navg) |
|
114 | #return _noise.hildebrand_sekhon(sortdata, navg) | |
115 |
|
115 | |||
116 |
|
116 | |||
117 | class Beam: |
|
117 | class Beam: | |
118 |
|
118 | |||
119 | def __init__(self): |
|
119 | def __init__(self): | |
120 | self.codeList = [] |
|
120 | self.codeList = [] | |
121 | self.azimuthList = [] |
|
121 | self.azimuthList = [] | |
122 | self.zenithList = [] |
|
122 | self.zenithList = [] | |
123 |
|
123 | |||
124 |
|
124 | |||
125 | class GenericData(object): |
|
125 | class GenericData(object): | |
126 |
|
126 | |||
127 | flagNoData = True |
|
127 | flagNoData = True | |
128 | blockReader = False |
|
128 | blockReader = False | |
129 |
|
129 | |||
130 | def copy(self, inputObj=None): |
|
130 | def copy(self, inputObj=None): | |
131 |
|
131 | |||
132 | if inputObj == None: |
|
132 | if inputObj == None: | |
133 | return copy.deepcopy(self) |
|
133 | return copy.deepcopy(self) | |
134 |
|
134 | |||
135 | for key in list(inputObj.__dict__.keys()): |
|
135 | for key in list(inputObj.__dict__.keys()): | |
136 |
|
136 | |||
137 | attribute = inputObj.__dict__[key] |
|
137 | attribute = inputObj.__dict__[key] | |
138 |
|
138 | |||
139 | # If this attribute is a tuple or list |
|
139 | # If this attribute is a tuple or list | |
140 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
140 | if type(inputObj.__dict__[key]) in (tuple, list): | |
141 | self.__dict__[key] = attribute[:] |
|
141 | self.__dict__[key] = attribute[:] | |
142 | continue |
|
142 | continue | |
143 |
|
143 | |||
144 | # If this attribute is another object or instance |
|
144 | # If this attribute is another object or instance | |
145 | if hasattr(attribute, '__dict__'): |
|
145 | if hasattr(attribute, '__dict__'): | |
146 | self.__dict__[key] = attribute.copy() |
|
146 | self.__dict__[key] = attribute.copy() | |
147 | continue |
|
147 | continue | |
148 |
|
148 | |||
149 | self.__dict__[key] = inputObj.__dict__[key] |
|
149 | self.__dict__[key] = inputObj.__dict__[key] | |
150 |
|
150 | |||
151 | def deepcopy(self): |
|
151 | def deepcopy(self): | |
152 |
|
152 | |||
153 | return copy.deepcopy(self) |
|
153 | return copy.deepcopy(self) | |
154 |
|
154 | |||
155 | def isEmpty(self): |
|
155 | def isEmpty(self): | |
156 |
|
156 | |||
157 | return self.flagNoData |
|
157 | return self.flagNoData | |
158 |
|
158 | |||
159 | def isReady(self): |
|
159 | def isReady(self): | |
160 |
|
160 | |||
161 | return not self.flagNoData |
|
161 | return not self.flagNoData | |
162 |
|
162 | |||
163 |
|
163 | |||
164 | class JROData(GenericData): |
|
164 | class JROData(GenericData): | |
165 |
|
165 | |||
166 | systemHeaderObj = SystemHeader() |
|
166 | systemHeaderObj = SystemHeader() | |
167 | radarControllerHeaderObj = RadarControllerHeader() |
|
167 | radarControllerHeaderObj = RadarControllerHeader() | |
168 | type = None |
|
168 | type = None | |
169 | datatype = None # dtype but in string |
|
169 | datatype = None # dtype but in string | |
170 | nProfiles = None |
|
170 | nProfiles = None | |
171 | heightList = None |
|
171 | heightList = None | |
172 | channelList = None |
|
172 | channelList = None | |
173 | flagDiscontinuousBlock = False |
|
173 | flagDiscontinuousBlock = False | |
174 | useLocalTime = False |
|
174 | useLocalTime = False | |
175 | utctime = None |
|
175 | utctime = None | |
176 | timeZone = None |
|
176 | timeZone = None | |
177 | dstFlag = None |
|
177 | dstFlag = None | |
178 | errorCount = None |
|
178 | errorCount = None | |
179 | blocksize = None |
|
179 | blocksize = None | |
180 | flagDecodeData = False # asumo q la data no esta decodificada |
|
180 | flagDecodeData = False # asumo q la data no esta decodificada | |
181 | flagDeflipData = False # asumo q la data no esta sin flip |
|
181 | flagDeflipData = False # asumo q la data no esta sin flip | |
182 | flagShiftFFT = False |
|
182 | flagShiftFFT = False | |
183 | nCohInt = None |
|
183 | nCohInt = None | |
184 | windowOfFilter = 1 |
|
184 | windowOfFilter = 1 | |
185 | C = 3e8 |
|
185 | C = 3e8 | |
186 | frequency = 49.92e6 |
|
186 | frequency = 49.92e6 | |
187 | realtime = False |
|
187 | realtime = False | |
188 | beacon_heiIndexList = None |
|
188 | beacon_heiIndexList = None | |
189 | last_block = None |
|
189 | last_block = None | |
190 | blocknow = None |
|
190 | blocknow = None | |
191 | azimuth = None |
|
191 | azimuth = None | |
192 | zenith = None |
|
192 | zenith = None | |
193 | beam = Beam() |
|
193 | beam = Beam() | |
194 | profileIndex = None |
|
194 | profileIndex = None | |
195 | error = None |
|
195 | error = None | |
196 | data = None |
|
196 | data = None | |
197 | nmodes = None |
|
197 | nmodes = None | |
198 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
198 | metadata_list = ['heightList', 'timeZone', 'type'] | |
199 |
|
199 | |||
200 | def __str__(self): |
|
200 | def __str__(self): | |
201 |
|
201 | |||
202 | try: |
|
202 | try: | |
203 | dt = self.datatime |
|
203 | dt = self.datatime | |
204 | except: |
|
204 | except: | |
205 | dt = 'None' |
|
205 | dt = 'None' | |
206 | return '{} - {}'.format(self.type, dt) |
|
206 | return '{} - {}'.format(self.type, dt) | |
207 |
|
207 | |||
208 | def getNoise(self): |
|
208 | def getNoise(self): | |
209 |
|
209 | |||
210 | raise NotImplementedError |
|
210 | raise NotImplementedError | |
211 |
|
211 | |||
212 | @property |
|
212 | @property | |
213 | def nChannels(self): |
|
213 | def nChannels(self): | |
214 |
|
214 | |||
215 | return len(self.channelList) |
|
215 | return len(self.channelList) | |
216 |
|
216 | |||
217 | @property |
|
217 | @property | |
218 | def channelIndexList(self): |
|
218 | def channelIndexList(self): | |
219 |
|
219 | |||
220 | return list(range(self.nChannels)) |
|
220 | return list(range(self.nChannels)) | |
221 |
|
221 | |||
222 | @property |
|
222 | @property | |
223 | def nHeights(self): |
|
223 | def nHeights(self): | |
224 |
|
224 | |||
225 | return len(self.heightList) |
|
225 | return len(self.heightList) | |
226 |
|
226 | |||
227 | def getDeltaH(self): |
|
227 | def getDeltaH(self): | |
228 |
|
228 | |||
229 | return self.heightList[1] - self.heightList[0] |
|
229 | return self.heightList[1] - self.heightList[0] | |
230 |
|
230 | |||
231 | @property |
|
231 | @property | |
232 | def ltctime(self): |
|
232 | def ltctime(self): | |
233 |
|
233 | |||
234 | if self.useLocalTime: |
|
234 | if self.useLocalTime: | |
235 | return self.utctime - self.timeZone * 60 |
|
235 | return self.utctime - self.timeZone * 60 | |
236 |
|
236 | |||
237 | return self.utctime |
|
237 | return self.utctime | |
238 |
|
238 | |||
239 | @property |
|
239 | @property | |
240 | def datatime(self): |
|
240 | def datatime(self): | |
241 |
|
241 | |||
242 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
242 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) | |
243 | return datatimeValue |
|
243 | return datatimeValue | |
244 |
|
244 | |||
245 | def getTimeRange(self): |
|
245 | def getTimeRange(self): | |
246 |
|
246 | |||
247 | datatime = [] |
|
247 | datatime = [] | |
248 |
|
248 | |||
249 | datatime.append(self.ltctime) |
|
249 | datatime.append(self.ltctime) | |
250 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
250 | datatime.append(self.ltctime + self.timeInterval + 1) | |
251 |
|
251 | |||
252 | datatime = numpy.array(datatime) |
|
252 | datatime = numpy.array(datatime) | |
253 |
|
253 | |||
254 | return datatime |
|
254 | return datatime | |
255 |
|
255 | |||
256 | def getFmaxTimeResponse(self): |
|
256 | def getFmaxTimeResponse(self): | |
257 |
|
257 | |||
258 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
258 | period = (10**-6) * self.getDeltaH() / (0.15) | |
259 |
|
259 | |||
260 | PRF = 1. / (period * self.nCohInt) |
|
260 | PRF = 1. / (period * self.nCohInt) | |
261 |
|
261 | |||
262 | fmax = PRF |
|
262 | fmax = PRF | |
263 |
|
263 | |||
264 | return fmax |
|
264 | return fmax | |
265 |
|
265 | |||
266 | def getFmax(self): |
|
266 | def getFmax(self): | |
267 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
267 | PRF = 1. / (self.ippSeconds * self.nCohInt) | |
268 | #print("ippsec",self.ippSeconds) |
|
268 | #print("ippsec",self.ippSeconds) | |
269 | fmax = PRF |
|
269 | fmax = PRF | |
270 | return fmax |
|
270 | return fmax | |
271 |
|
271 | |||
272 | def getVmax(self): |
|
272 | def getVmax(self): | |
273 |
|
273 | |||
274 | _lambda = self.C / self.frequency |
|
274 | _lambda = self.C / self.frequency | |
275 |
|
275 | |||
276 | vmax = self.getFmax() * _lambda / 2 |
|
276 | vmax = self.getFmax() * _lambda / 2 | |
277 |
|
277 | |||
278 | return vmax |
|
278 | return vmax | |
279 |
|
279 | |||
280 | @property |
|
280 | @property | |
281 | def ippSeconds(self): |
|
281 | def ippSeconds(self): | |
282 | ''' |
|
282 | ''' | |
283 | ''' |
|
283 | ''' | |
284 | return self.radarControllerHeaderObj.ippSeconds |
|
284 | return self.radarControllerHeaderObj.ippSeconds | |
285 |
|
285 | |||
286 | @ippSeconds.setter |
|
286 | @ippSeconds.setter | |
287 | def ippSeconds(self, ippSeconds): |
|
287 | def ippSeconds(self, ippSeconds): | |
288 | ''' |
|
288 | ''' | |
289 | ''' |
|
289 | ''' | |
290 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
290 | self.radarControllerHeaderObj.ippSeconds = ippSeconds | |
291 |
|
291 | |||
292 | @property |
|
292 | @property | |
293 | def code(self): |
|
293 | def code(self): | |
294 | ''' |
|
294 | ''' | |
295 | ''' |
|
295 | ''' | |
296 | return self.radarControllerHeaderObj.code |
|
296 | return self.radarControllerHeaderObj.code | |
297 |
|
297 | |||
298 | @code.setter |
|
298 | @code.setter | |
299 | def code(self, code): |
|
299 | def code(self, code): | |
300 | ''' |
|
300 | ''' | |
301 | ''' |
|
301 | ''' | |
302 | self.radarControllerHeaderObj.code = code |
|
302 | self.radarControllerHeaderObj.code = code | |
303 |
|
303 | |||
304 | @property |
|
304 | @property | |
305 | def nCode(self): |
|
305 | def nCode(self): | |
306 | ''' |
|
306 | ''' | |
307 | ''' |
|
307 | ''' | |
308 | return self.radarControllerHeaderObj.nCode |
|
308 | return self.radarControllerHeaderObj.nCode | |
309 |
|
309 | |||
310 | @nCode.setter |
|
310 | @nCode.setter | |
311 | def nCode(self, ncode): |
|
311 | def nCode(self, ncode): | |
312 | ''' |
|
312 | ''' | |
313 | ''' |
|
313 | ''' | |
314 | self.radarControllerHeaderObj.nCode = ncode |
|
314 | self.radarControllerHeaderObj.nCode = ncode | |
315 |
|
315 | |||
316 | @property |
|
316 | @property | |
317 | def nBaud(self): |
|
317 | def nBaud(self): | |
318 | ''' |
|
318 | ''' | |
319 | ''' |
|
319 | ''' | |
320 | return self.radarControllerHeaderObj.nBaud |
|
320 | return self.radarControllerHeaderObj.nBaud | |
321 |
|
321 | |||
322 | @nBaud.setter |
|
322 | @nBaud.setter | |
323 | def nBaud(self, nbaud): |
|
323 | def nBaud(self, nbaud): | |
324 | ''' |
|
324 | ''' | |
325 | ''' |
|
325 | ''' | |
326 | self.radarControllerHeaderObj.nBaud = nbaud |
|
326 | self.radarControllerHeaderObj.nBaud = nbaud | |
327 |
|
327 | |||
328 | @property |
|
328 | @property | |
329 | def ipp(self): |
|
329 | def ipp(self): | |
330 | ''' |
|
330 | ''' | |
331 | ''' |
|
331 | ''' | |
332 | return self.radarControllerHeaderObj.ipp |
|
332 | return self.radarControllerHeaderObj.ipp | |
333 |
|
333 | |||
334 | @ipp.setter |
|
334 | @ipp.setter | |
335 | def ipp(self, ipp): |
|
335 | def ipp(self, ipp): | |
336 | ''' |
|
336 | ''' | |
337 | ''' |
|
337 | ''' | |
338 | self.radarControllerHeaderObj.ipp = ipp |
|
338 | self.radarControllerHeaderObj.ipp = ipp | |
339 |
|
339 | |||
340 | @property |
|
340 | @property | |
341 | def metadata(self): |
|
341 | def metadata(self): | |
342 | ''' |
|
342 | ''' | |
343 | ''' |
|
343 | ''' | |
344 |
|
344 | |||
345 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
345 | return {attr: getattr(self, attr) for attr in self.metadata_list} | |
346 |
|
346 | |||
347 |
|
347 | |||
348 | class Voltage(JROData): |
|
348 | class Voltage(JROData): | |
349 |
|
349 | |||
350 | dataPP_POW = None |
|
350 | dataPP_POW = None | |
351 | dataPP_DOP = None |
|
351 | dataPP_DOP = None | |
352 | dataPP_WIDTH = None |
|
352 | dataPP_WIDTH = None | |
353 | dataPP_SNR = None |
|
353 | dataPP_SNR = None | |
354 |
|
354 | |||
355 | def __init__(self): |
|
355 | def __init__(self): | |
356 | ''' |
|
356 | ''' | |
357 | Constructor |
|
357 | Constructor | |
358 | ''' |
|
358 | ''' | |
359 |
|
359 | |||
360 | self.useLocalTime = True |
|
360 | self.useLocalTime = True | |
361 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
361 | self.radarControllerHeaderObj = RadarControllerHeader() | |
362 | self.systemHeaderObj = SystemHeader() |
|
362 | self.systemHeaderObj = SystemHeader() | |
363 | self.type = "Voltage" |
|
363 | self.type = "Voltage" | |
364 | self.data = None |
|
364 | self.data = None | |
365 | self.nProfiles = None |
|
365 | self.nProfiles = None | |
366 | self.heightList = None |
|
366 | self.heightList = None | |
367 | self.channelList = None |
|
367 | self.channelList = None | |
368 | self.flagNoData = True |
|
368 | self.flagNoData = True | |
369 | self.flagDiscontinuousBlock = False |
|
369 | self.flagDiscontinuousBlock = False | |
370 | self.utctime = None |
|
370 | self.utctime = None | |
371 | self.timeZone = 0 |
|
371 | self.timeZone = 0 | |
372 | self.dstFlag = None |
|
372 | self.dstFlag = None | |
373 | self.errorCount = None |
|
373 | self.errorCount = None | |
374 | self.nCohInt = None |
|
374 | self.nCohInt = None | |
375 | self.blocksize = None |
|
375 | self.blocksize = None | |
376 | self.flagCohInt = False |
|
376 | self.flagCohInt = False | |
377 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
377 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
378 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
378 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
379 | self.flagShiftFFT = False |
|
379 | self.flagShiftFFT = False | |
380 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
380 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil | |
381 | self.profileIndex = 0 |
|
381 | self.profileIndex = 0 | |
382 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
382 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', | |
383 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
383 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] | |
384 |
|
384 | |||
385 | def getNoisebyHildebrand(self, channel=None, Profmin_index=None, Profmax_index=None): |
|
385 | def getNoisebyHildebrand(self, channel=None, Profmin_index=None, Profmax_index=None): | |
386 | """ |
|
386 | """ | |
387 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
387 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
388 |
|
388 | |||
389 | Return: |
|
389 | Return: | |
390 | noiselevel |
|
390 | noiselevel | |
391 | """ |
|
391 | """ | |
392 |
|
392 | |||
393 | if channel != None: |
|
393 | if channel != None: | |
394 | data = self.data[channel] |
|
394 | data = self.data[channel] | |
395 | nChannels = 1 |
|
395 | nChannels = 1 | |
396 | else: |
|
396 | else: | |
397 | data = self.data |
|
397 | data = self.data | |
398 | nChannels = self.nChannels |
|
398 | nChannels = self.nChannels | |
399 |
|
399 | |||
400 | noise = numpy.zeros(nChannels) |
|
400 | noise = numpy.zeros(nChannels) | |
401 | power = data * numpy.conjugate(data) |
|
401 | power = data * numpy.conjugate(data) | |
402 |
|
402 | |||
403 | for thisChannel in range(nChannels): |
|
403 | for thisChannel in range(nChannels): | |
404 | if nChannels == 1: |
|
404 | if nChannels == 1: | |
405 | daux = power[:].real |
|
405 | daux = power[:].real | |
406 | else: |
|
406 | else: | |
407 | #print(power.shape) |
|
407 | #print(power.shape) | |
408 | daux = power[thisChannel, Profmin_index:Profmax_index, :].real |
|
408 | daux = power[thisChannel, Profmin_index:Profmax_index, :].real | |
409 | #print(daux.shape) |
|
409 | #print(daux.shape) | |
410 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
410 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) | |
411 |
|
411 | |||
412 | return noise |
|
412 | return noise | |
413 |
|
413 | |||
414 | def getNoise(self, type=1, channel=None, Profmin_index=None, Profmax_index=None): |
|
414 | def getNoise(self, type=1, channel=None, Profmin_index=None, Profmax_index=None): | |
415 |
|
415 | |||
416 | if type == 1: |
|
416 | if type == 1: | |
417 | noise = self.getNoisebyHildebrand(channel, Profmin_index, Profmax_index) |
|
417 | noise = self.getNoisebyHildebrand(channel, Profmin_index, Profmax_index) | |
418 |
|
418 | |||
419 | return noise |
|
419 | return noise | |
420 |
|
420 | |||
421 | def getPower(self, channel=None): |
|
421 | def getPower(self, channel=None): | |
422 |
|
422 | |||
423 | if channel != None: |
|
423 | if channel != None: | |
424 | data = self.data[channel] |
|
424 | data = self.data[channel] | |
425 | else: |
|
425 | else: | |
426 | data = self.data |
|
426 | data = self.data | |
427 |
|
427 | |||
428 | power = data * numpy.conjugate(data) |
|
428 | power = data * numpy.conjugate(data) | |
429 | powerdB = 10 * numpy.log10(power.real) |
|
429 | powerdB = 10 * numpy.log10(power.real) | |
430 | powerdB = numpy.squeeze(powerdB) |
|
430 | powerdB = numpy.squeeze(powerdB) | |
431 |
|
431 | |||
432 | return powerdB |
|
432 | return powerdB | |
433 |
|
433 | |||
434 | @property |
|
434 | @property | |
435 | def timeInterval(self): |
|
435 | def timeInterval(self): | |
436 |
|
436 | |||
437 | return self.ippSeconds * self.nCohInt |
|
437 | return self.ippSeconds * self.nCohInt | |
438 |
|
438 | |||
439 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
439 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
440 |
|
440 | |||
441 |
|
441 | |||
442 | class Spectra(JROData): |
|
442 | class Spectra(JROData): | |
443 |
|
443 | |||
444 | def __init__(self): |
|
444 | def __init__(self): | |
445 | ''' |
|
445 | ''' | |
446 | Constructor |
|
446 | Constructor | |
447 | ''' |
|
447 | ''' | |
448 |
|
448 | |||
449 | self.data_dc = None |
|
449 | self.data_dc = None | |
450 | self.data_spc = None |
|
450 | self.data_spc = None | |
451 | self.data_cspc = None |
|
451 | self.data_cspc = None | |
452 | self.useLocalTime = True |
|
452 | self.useLocalTime = True | |
453 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
453 | self.radarControllerHeaderObj = RadarControllerHeader() | |
454 | self.systemHeaderObj = SystemHeader() |
|
454 | self.systemHeaderObj = SystemHeader() | |
455 | self.type = "Spectra" |
|
455 | self.type = "Spectra" | |
456 | self.timeZone = 0 |
|
456 | self.timeZone = 0 | |
457 | self.nProfiles = None |
|
457 | self.nProfiles = None | |
458 | self.heightList = None |
|
458 | self.heightList = None | |
459 | self.channelList = None |
|
459 | self.channelList = None | |
460 | self.pairsList = None |
|
460 | self.pairsList = None | |
461 | self.flagNoData = True |
|
461 | self.flagNoData = True | |
462 | self.flagDiscontinuousBlock = False |
|
462 | self.flagDiscontinuousBlock = False | |
463 | self.utctime = None |
|
463 | self.utctime = None | |
464 | self.nCohInt = None |
|
464 | self.nCohInt = None | |
465 | self.nIncohInt = None |
|
465 | self.nIncohInt = None | |
466 | self.blocksize = None |
|
466 | self.blocksize = None | |
467 | self.nFFTPoints = None |
|
467 | self.nFFTPoints = None | |
468 | self.wavelength = None |
|
468 | self.wavelength = None | |
469 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
469 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
470 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
470 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
471 | self.flagShiftFFT = False |
|
471 | self.flagShiftFFT = False | |
472 | self.ippFactor = 1 |
|
472 | self.ippFactor = 1 | |
473 | self.beacon_heiIndexList = [] |
|
473 | self.beacon_heiIndexList = [] | |
474 | self.noise_estimation = None |
|
474 | self.noise_estimation = None | |
475 | self.spc_noise = None |
|
475 | self.spc_noise = None | |
476 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
476 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', | |
477 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp', 'nIncohInt', 'nFFTPoints', 'nProfiles', 'flagDecodeData'] |
|
477 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp', 'nIncohInt', 'nFFTPoints', 'nProfiles', 'flagDecodeData'] | |
478 |
|
478 | |||
479 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
479 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
480 | """ |
|
480 | """ | |
481 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
481 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
482 |
|
482 | |||
483 | Return: |
|
483 | Return: | |
484 | noiselevel |
|
484 | noiselevel | |
485 | """ |
|
485 | """ | |
486 |
|
486 | |||
487 | noise = numpy.zeros(self.nChannels) |
|
487 | noise = numpy.zeros(self.nChannels) | |
488 |
|
488 | |||
489 | for channel in range(self.nChannels): |
|
489 | for channel in range(self.nChannels): | |
490 | #print(self.data_spc[0]) |
|
490 | #print(self.data_spc[0]) | |
491 | #exit(1) |
|
491 | #exit(1) | |
492 | daux = self.data_spc[channel, |
|
492 | daux = self.data_spc[channel, | |
493 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
493 | xmin_index:xmax_index, ymin_index:ymax_index] | |
|
494 | #print("daux",daux) | |||
494 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
495 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) | |
495 |
|
496 | |||
496 | return noise |
|
497 | return noise | |
497 |
|
498 | |||
498 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
499 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
499 |
|
500 | |||
500 | if self.spc_noise is not None: |
|
501 | if self.spc_noise is not None: | |
501 | # this was estimated by getNoise Operation defined in jroproc_parameters.py |
|
502 | # this was estimated by getNoise Operation defined in jroproc_parameters.py | |
502 | return self.spc_noise |
|
503 | return self.spc_noise | |
503 | elif self.noise_estimation is not None: |
|
504 | elif self.noise_estimation is not None: | |
504 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
505 | # this was estimated by getNoise Operation defined in jroproc_spectra.py | |
505 | return self.noise_estimation |
|
506 | return self.noise_estimation | |
506 | else: |
|
507 | else: | |
507 |
|
508 | |||
508 | noise = self.getNoisebyHildebrand( |
|
509 | noise = self.getNoisebyHildebrand( | |
509 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
510 | xmin_index, xmax_index, ymin_index, ymax_index) | |
510 | return noise |
|
511 | return noise | |
511 |
|
512 | |||
512 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
513 | def getFreqRangeTimeResponse(self, extrapoints=0): | |
513 |
|
514 | |||
514 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
515 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) | |
515 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
516 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 | |
516 |
|
517 | |||
517 | return freqrange |
|
518 | return freqrange | |
518 |
|
519 | |||
519 | def getAcfRange(self, extrapoints=0): |
|
520 | def getAcfRange(self, extrapoints=0): | |
520 |
|
521 | |||
521 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
522 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) | |
522 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
523 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 | |
523 |
|
524 | |||
524 | return freqrange |
|
525 | return freqrange | |
525 |
|
526 | |||
526 | def getFreqRange(self, extrapoints=0): |
|
527 | def getFreqRange(self, extrapoints=0): | |
527 |
|
528 | |||
528 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
529 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) | |
529 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
530 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 | |
530 |
|
531 | |||
531 | return freqrange |
|
532 | return freqrange | |
532 |
|
533 | |||
533 | def getVelRange(self, extrapoints=0): |
|
534 | def getVelRange(self, extrapoints=0): | |
534 |
|
535 | |||
535 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
536 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) | |
536 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
537 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) | |
537 |
|
538 | |||
538 | if self.nmodes: |
|
539 | if self.nmodes: | |
539 | return velrange/self.nmodes |
|
540 | return velrange/self.nmodes | |
540 | else: |
|
541 | else: | |
541 | return velrange |
|
542 | return velrange | |
542 |
|
543 | |||
543 | @property |
|
544 | @property | |
544 | def nPairs(self): |
|
545 | def nPairs(self): | |
545 |
|
546 | |||
546 | return len(self.pairsList) |
|
547 | return len(self.pairsList) | |
547 |
|
548 | |||
548 | @property |
|
549 | @property | |
549 | def pairsIndexList(self): |
|
550 | def pairsIndexList(self): | |
550 |
|
551 | |||
551 | return list(range(self.nPairs)) |
|
552 | return list(range(self.nPairs)) | |
552 |
|
553 | |||
553 | @property |
|
554 | @property | |
554 | def normFactor(self): |
|
555 | def normFactor(self): | |
555 |
|
556 | |||
556 | pwcode = 1 |
|
557 | pwcode = 1 | |
557 |
|
558 | |||
558 | if self.flagDecodeData: |
|
559 | if self.flagDecodeData: | |
559 | pwcode = numpy.sum(self.code[0]**2) |
|
560 | pwcode = numpy.sum(self.code[0]**2) | |
560 | #pwcode = 64 |
|
561 | #pwcode = 64 | |
561 | #print("pwcode: ", pwcode) |
|
562 | #print("pwcode: ", pwcode) | |
562 | #exit(1) |
|
563 | #exit(1) | |
563 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
564 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter | |
564 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
565 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter | |
565 |
|
566 | |||
566 | return normFactor |
|
567 | return normFactor | |
567 |
|
568 | |||
568 | @property |
|
569 | @property | |
569 | def flag_cspc(self): |
|
570 | def flag_cspc(self): | |
570 |
|
571 | |||
571 | if self.data_cspc is None: |
|
572 | if self.data_cspc is None: | |
572 | return True |
|
573 | return True | |
573 |
|
574 | |||
574 | return False |
|
575 | return False | |
575 |
|
576 | |||
576 | @property |
|
577 | @property | |
577 | def flag_dc(self): |
|
578 | def flag_dc(self): | |
578 |
|
579 | |||
579 | if self.data_dc is None: |
|
580 | if self.data_dc is None: | |
580 | return True |
|
581 | return True | |
581 |
|
582 | |||
582 | return False |
|
583 | return False | |
583 |
|
584 | |||
584 | @property |
|
585 | @property | |
585 | def timeInterval(self): |
|
586 | def timeInterval(self): | |
586 |
|
587 | |||
587 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
588 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor | |
588 | if self.nmodes: |
|
589 | if self.nmodes: | |
589 | return self.nmodes*timeInterval |
|
590 | return self.nmodes*timeInterval | |
590 | else: |
|
591 | else: | |
591 | return timeInterval |
|
592 | return timeInterval | |
592 |
|
593 | |||
593 | def getPower(self): |
|
594 | def getPower(self): | |
594 |
|
595 | |||
595 | factor = self.normFactor |
|
596 | factor = self.normFactor | |
596 | z = self.data_spc / factor |
|
597 | z = self.data_spc / factor | |
597 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
598 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
598 | avg = numpy.average(z, axis=1) |
|
599 | avg = numpy.average(z, axis=1) | |
599 |
|
600 | |||
600 | return 10 * numpy.log10(avg) |
|
601 | return 10 * numpy.log10(avg) | |
601 |
|
602 | |||
602 | def getCoherence(self, pairsList=None, phase=False): |
|
603 | def getCoherence(self, pairsList=None, phase=False): | |
603 |
|
604 | |||
604 | z = [] |
|
605 | z = [] | |
605 | if pairsList is None: |
|
606 | if pairsList is None: | |
606 | pairsIndexList = self.pairsIndexList |
|
607 | pairsIndexList = self.pairsIndexList | |
607 | else: |
|
608 | else: | |
608 | pairsIndexList = [] |
|
609 | pairsIndexList = [] | |
609 | for pair in pairsList: |
|
610 | for pair in pairsList: | |
610 | if pair not in self.pairsList: |
|
611 | if pair not in self.pairsList: | |
611 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
612 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( | |
612 | pair)) |
|
613 | pair)) | |
613 | pairsIndexList.append(self.pairsList.index(pair)) |
|
614 | pairsIndexList.append(self.pairsList.index(pair)) | |
614 | for i in range(len(pairsIndexList)): |
|
615 | for i in range(len(pairsIndexList)): | |
615 | pair = self.pairsList[pairsIndexList[i]] |
|
616 | pair = self.pairsList[pairsIndexList[i]] | |
616 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
617 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) | |
617 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
618 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) | |
618 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
619 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) | |
619 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
620 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) | |
620 | if phase: |
|
621 | if phase: | |
621 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
622 | data = numpy.arctan2(avgcoherenceComplex.imag, | |
622 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
623 | avgcoherenceComplex.real) * 180 / numpy.pi | |
623 | else: |
|
624 | else: | |
624 | data = numpy.abs(avgcoherenceComplex) |
|
625 | data = numpy.abs(avgcoherenceComplex) | |
625 |
|
626 | |||
626 | z.append(data) |
|
627 | z.append(data) | |
627 |
|
628 | |||
628 | return numpy.array(z) |
|
629 | return numpy.array(z) | |
629 |
|
630 | |||
630 | def setValue(self, value): |
|
631 | def setValue(self, value): | |
631 |
|
632 | |||
632 | print("This property should not be initialized") |
|
633 | print("This property should not be initialized") | |
633 |
|
634 | |||
634 | return |
|
635 | return | |
635 |
|
636 | |||
636 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
637 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") | |
637 |
|
638 | |||
638 |
|
639 | |||
639 | class SpectraHeis(Spectra): |
|
640 | class SpectraHeis(Spectra): | |
640 |
|
641 | |||
641 | def __init__(self): |
|
642 | def __init__(self): | |
642 |
|
643 | |||
643 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
644 | self.radarControllerHeaderObj = RadarControllerHeader() | |
644 | self.systemHeaderObj = SystemHeader() |
|
645 | self.systemHeaderObj = SystemHeader() | |
645 | self.type = "SpectraHeis" |
|
646 | self.type = "SpectraHeis" | |
646 | self.nProfiles = None |
|
647 | self.nProfiles = None | |
647 | self.heightList = None |
|
648 | self.heightList = None | |
648 | self.channelList = None |
|
649 | self.channelList = None | |
649 | self.flagNoData = True |
|
650 | self.flagNoData = True | |
650 | self.flagDiscontinuousBlock = False |
|
651 | self.flagDiscontinuousBlock = False | |
651 | self.utctime = None |
|
652 | self.utctime = None | |
652 | self.blocksize = None |
|
653 | self.blocksize = None | |
653 | self.profileIndex = 0 |
|
654 | self.profileIndex = 0 | |
654 | self.nCohInt = 1 |
|
655 | self.nCohInt = 1 | |
655 | self.nIncohInt = 1 |
|
656 | self.nIncohInt = 1 | |
656 |
|
657 | |||
657 | @property |
|
658 | @property | |
658 | def normFactor(self): |
|
659 | def normFactor(self): | |
659 | pwcode = 1 |
|
660 | pwcode = 1 | |
660 | if self.flagDecodeData: |
|
661 | if self.flagDecodeData: | |
661 | pwcode = numpy.sum(self.code[0]**2) |
|
662 | pwcode = numpy.sum(self.code[0]**2) | |
662 |
|
663 | |||
663 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
664 | normFactor = self.nIncohInt * self.nCohInt * pwcode | |
664 |
|
665 | |||
665 | return normFactor |
|
666 | return normFactor | |
666 |
|
667 | |||
667 | @property |
|
668 | @property | |
668 | def timeInterval(self): |
|
669 | def timeInterval(self): | |
669 |
|
670 | |||
670 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
671 | return self.ippSeconds * self.nCohInt * self.nIncohInt | |
671 |
|
672 | |||
672 |
|
673 | |||
673 | class Fits(JROData): |
|
674 | class Fits(JROData): | |
674 |
|
675 | |||
675 | def __init__(self): |
|
676 | def __init__(self): | |
676 |
|
677 | |||
677 | self.type = "Fits" |
|
678 | self.type = "Fits" | |
678 | self.nProfiles = None |
|
679 | self.nProfiles = None | |
679 | self.heightList = None |
|
680 | self.heightList = None | |
680 | self.channelList = None |
|
681 | self.channelList = None | |
681 | self.flagNoData = True |
|
682 | self.flagNoData = True | |
682 | self.utctime = None |
|
683 | self.utctime = None | |
683 | self.nCohInt = 1 |
|
684 | self.nCohInt = 1 | |
684 | self.nIncohInt = 1 |
|
685 | self.nIncohInt = 1 | |
685 | self.useLocalTime = True |
|
686 | self.useLocalTime = True | |
686 | self.profileIndex = 0 |
|
687 | self.profileIndex = 0 | |
687 | self.timeZone = 0 |
|
688 | self.timeZone = 0 | |
688 |
|
689 | |||
689 | def getTimeRange(self): |
|
690 | def getTimeRange(self): | |
690 |
|
691 | |||
691 | datatime = [] |
|
692 | datatime = [] | |
692 |
|
693 | |||
693 | datatime.append(self.ltctime) |
|
694 | datatime.append(self.ltctime) | |
694 | datatime.append(self.ltctime + self.timeInterval) |
|
695 | datatime.append(self.ltctime + self.timeInterval) | |
695 |
|
696 | |||
696 | datatime = numpy.array(datatime) |
|
697 | datatime = numpy.array(datatime) | |
697 |
|
698 | |||
698 | return datatime |
|
699 | return datatime | |
699 |
|
700 | |||
700 | def getChannelIndexList(self): |
|
701 | def getChannelIndexList(self): | |
701 |
|
702 | |||
702 | return list(range(self.nChannels)) |
|
703 | return list(range(self.nChannels)) | |
703 |
|
704 | |||
704 | def getNoise(self, type=1): |
|
705 | def getNoise(self, type=1): | |
705 |
|
706 | |||
706 |
|
707 | |||
707 | if type == 1: |
|
708 | if type == 1: | |
708 | noise = self.getNoisebyHildebrand() |
|
709 | noise = self.getNoisebyHildebrand() | |
709 |
|
710 | |||
710 | if type == 2: |
|
711 | if type == 2: | |
711 | noise = self.getNoisebySort() |
|
712 | noise = self.getNoisebySort() | |
712 |
|
713 | |||
713 | if type == 3: |
|
714 | if type == 3: | |
714 | noise = self.getNoisebyWindow() |
|
715 | noise = self.getNoisebyWindow() | |
715 |
|
716 | |||
716 | return noise |
|
717 | return noise | |
717 |
|
718 | |||
718 | @property |
|
719 | @property | |
719 | def timeInterval(self): |
|
720 | def timeInterval(self): | |
720 |
|
721 | |||
721 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
722 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt | |
722 |
|
723 | |||
723 | return timeInterval |
|
724 | return timeInterval | |
724 |
|
725 | |||
725 | @property |
|
726 | @property | |
726 | def ippSeconds(self): |
|
727 | def ippSeconds(self): | |
727 | ''' |
|
728 | ''' | |
728 | ''' |
|
729 | ''' | |
729 | return self.ipp_sec |
|
730 | return self.ipp_sec | |
730 |
|
731 | |||
731 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
732 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
732 |
|
733 | |||
733 |
|
734 | |||
734 | class Correlation(JROData): |
|
735 | class Correlation(JROData): | |
735 |
|
736 | |||
736 | def __init__(self): |
|
737 | def __init__(self): | |
737 | ''' |
|
738 | ''' | |
738 | Constructor |
|
739 | Constructor | |
739 | ''' |
|
740 | ''' | |
740 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
741 | self.radarControllerHeaderObj = RadarControllerHeader() | |
741 | self.systemHeaderObj = SystemHeader() |
|
742 | self.systemHeaderObj = SystemHeader() | |
742 | self.type = "Correlation" |
|
743 | self.type = "Correlation" | |
743 | self.data = None |
|
744 | self.data = None | |
744 | self.dtype = None |
|
745 | self.dtype = None | |
745 | self.nProfiles = None |
|
746 | self.nProfiles = None | |
746 | self.heightList = None |
|
747 | self.heightList = None | |
747 | self.channelList = None |
|
748 | self.channelList = None | |
748 | self.flagNoData = True |
|
749 | self.flagNoData = True | |
749 | self.flagDiscontinuousBlock = False |
|
750 | self.flagDiscontinuousBlock = False | |
750 | self.utctime = None |
|
751 | self.utctime = None | |
751 | self.timeZone = 0 |
|
752 | self.timeZone = 0 | |
752 | self.dstFlag = None |
|
753 | self.dstFlag = None | |
753 | self.errorCount = None |
|
754 | self.errorCount = None | |
754 | self.blocksize = None |
|
755 | self.blocksize = None | |
755 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
756 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
756 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
757 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
757 | self.pairsList = None |
|
758 | self.pairsList = None | |
758 | self.nPoints = None |
|
759 | self.nPoints = None | |
759 |
|
760 | |||
760 | def getPairsList(self): |
|
761 | def getPairsList(self): | |
761 |
|
762 | |||
762 | return self.pairsList |
|
763 | return self.pairsList | |
763 |
|
764 | |||
764 | def getNoise(self, mode=2): |
|
765 | def getNoise(self, mode=2): | |
765 |
|
766 | |||
766 | indR = numpy.where(self.lagR == 0)[0][0] |
|
767 | indR = numpy.where(self.lagR == 0)[0][0] | |
767 | indT = numpy.where(self.lagT == 0)[0][0] |
|
768 | indT = numpy.where(self.lagT == 0)[0][0] | |
768 |
|
769 | |||
769 | jspectra0 = self.data_corr[:, :, indR, :] |
|
770 | jspectra0 = self.data_corr[:, :, indR, :] | |
770 | jspectra = copy.copy(jspectra0) |
|
771 | jspectra = copy.copy(jspectra0) | |
771 |
|
772 | |||
772 | num_chan = jspectra.shape[0] |
|
773 | num_chan = jspectra.shape[0] | |
773 | num_hei = jspectra.shape[2] |
|
774 | num_hei = jspectra.shape[2] | |
774 |
|
775 | |||
775 | freq_dc = jspectra.shape[1] / 2 |
|
776 | freq_dc = jspectra.shape[1] / 2 | |
776 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
777 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
777 |
|
778 | |||
778 | if ind_vel[0] < 0: |
|
779 | if ind_vel[0] < 0: | |
779 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
780 | ind_vel[list(range(0, 1))] = ind_vel[list( | |
780 | range(0, 1))] + self.num_prof |
|
781 | range(0, 1))] + self.num_prof | |
781 |
|
782 | |||
782 | if mode == 1: |
|
783 | if mode == 1: | |
783 | jspectra[:, freq_dc, :] = ( |
|
784 | jspectra[:, freq_dc, :] = ( | |
784 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
785 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
785 |
|
786 | |||
786 | if mode == 2: |
|
787 | if mode == 2: | |
787 |
|
788 | |||
788 | vel = numpy.array([-2, -1, 1, 2]) |
|
789 | vel = numpy.array([-2, -1, 1, 2]) | |
789 | xx = numpy.zeros([4, 4]) |
|
790 | xx = numpy.zeros([4, 4]) | |
790 |
|
791 | |||
791 | for fil in range(4): |
|
792 | for fil in range(4): | |
792 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
793 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
793 |
|
794 | |||
794 | xx_inv = numpy.linalg.inv(xx) |
|
795 | xx_inv = numpy.linalg.inv(xx) | |
795 | xx_aux = xx_inv[0, :] |
|
796 | xx_aux = xx_inv[0, :] | |
796 |
|
797 | |||
797 | for ich in range(num_chan): |
|
798 | for ich in range(num_chan): | |
798 | yy = jspectra[ich, ind_vel, :] |
|
799 | yy = jspectra[ich, ind_vel, :] | |
799 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
800 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
800 |
|
801 | |||
801 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
802 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
802 | cjunkid = sum(junkid) |
|
803 | cjunkid = sum(junkid) | |
803 |
|
804 | |||
804 | if cjunkid.any(): |
|
805 | if cjunkid.any(): | |
805 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
806 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
806 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
807 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
807 |
|
808 | |||
808 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
809 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] | |
809 |
|
810 | |||
810 | return noise |
|
811 | return noise | |
811 |
|
812 | |||
812 | @property |
|
813 | @property | |
813 | def timeInterval(self): |
|
814 | def timeInterval(self): | |
814 |
|
815 | |||
815 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
816 | return self.ippSeconds * self.nCohInt * self.nProfiles | |
816 |
|
817 | |||
817 | def splitFunctions(self): |
|
818 | def splitFunctions(self): | |
818 |
|
819 | |||
819 | pairsList = self.pairsList |
|
820 | pairsList = self.pairsList | |
820 | ccf_pairs = [] |
|
821 | ccf_pairs = [] | |
821 | acf_pairs = [] |
|
822 | acf_pairs = [] | |
822 | ccf_ind = [] |
|
823 | ccf_ind = [] | |
823 | acf_ind = [] |
|
824 | acf_ind = [] | |
824 | for l in range(len(pairsList)): |
|
825 | for l in range(len(pairsList)): | |
825 | chan0 = pairsList[l][0] |
|
826 | chan0 = pairsList[l][0] | |
826 | chan1 = pairsList[l][1] |
|
827 | chan1 = pairsList[l][1] | |
827 |
|
828 | |||
828 | # Obteniendo pares de Autocorrelacion |
|
829 | # Obteniendo pares de Autocorrelacion | |
829 | if chan0 == chan1: |
|
830 | if chan0 == chan1: | |
830 | acf_pairs.append(chan0) |
|
831 | acf_pairs.append(chan0) | |
831 | acf_ind.append(l) |
|
832 | acf_ind.append(l) | |
832 | else: |
|
833 | else: | |
833 | ccf_pairs.append(pairsList[l]) |
|
834 | ccf_pairs.append(pairsList[l]) | |
834 | ccf_ind.append(l) |
|
835 | ccf_ind.append(l) | |
835 |
|
836 | |||
836 | data_acf = self.data_cf[acf_ind] |
|
837 | data_acf = self.data_cf[acf_ind] | |
837 | data_ccf = self.data_cf[ccf_ind] |
|
838 | data_ccf = self.data_cf[ccf_ind] | |
838 |
|
839 | |||
839 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
840 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf | |
840 |
|
841 | |||
841 | @property |
|
842 | @property | |
842 | def normFactor(self): |
|
843 | def normFactor(self): | |
843 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
844 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() | |
844 | acf_pairs = numpy.array(acf_pairs) |
|
845 | acf_pairs = numpy.array(acf_pairs) | |
845 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
846 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) | |
846 |
|
847 | |||
847 | for p in range(self.nPairs): |
|
848 | for p in range(self.nPairs): | |
848 | pair = self.pairsList[p] |
|
849 | pair = self.pairsList[p] | |
849 |
|
850 | |||
850 | ch0 = pair[0] |
|
851 | ch0 = pair[0] | |
851 | ch1 = pair[1] |
|
852 | ch1 = pair[1] | |
852 |
|
853 | |||
853 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
854 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) | |
854 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
855 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) | |
855 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
856 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) | |
856 |
|
857 | |||
857 | return normFactor |
|
858 | return normFactor | |
858 |
|
859 | |||
859 |
|
860 | |||
860 | class Parameters(Spectra): |
|
861 | class Parameters(Spectra): | |
861 |
|
862 | |||
862 | groupList = None # List of Pairs, Groups, etc |
|
863 | groupList = None # List of Pairs, Groups, etc | |
863 | data_param = None # Parameters obtained |
|
864 | data_param = None # Parameters obtained | |
864 | data_pre = None # Data Pre Parametrization |
|
865 | data_pre = None # Data Pre Parametrization | |
865 | data_SNR = None # Signal to Noise Ratio |
|
866 | data_SNR = None # Signal to Noise Ratio | |
866 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
867 | abscissaList = None # Abscissa, can be velocities, lags or time | |
867 | utctimeInit = None # Initial UTC time |
|
868 | utctimeInit = None # Initial UTC time | |
868 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
869 | paramInterval = None # Time interval to calculate Parameters in seconds | |
869 | useLocalTime = True |
|
870 | useLocalTime = True | |
870 | # Fitting |
|
871 | # Fitting | |
871 | data_error = None # Error of the estimation |
|
872 | data_error = None # Error of the estimation | |
872 | constants = None |
|
873 | constants = None | |
873 | library = None |
|
874 | library = None | |
874 | # Output signal |
|
875 | # Output signal | |
875 | outputInterval = None # Time interval to calculate output signal in seconds |
|
876 | outputInterval = None # Time interval to calculate output signal in seconds | |
876 | data_output = None # Out signal |
|
877 | data_output = None # Out signal | |
877 | nAvg = None |
|
878 | nAvg = None | |
878 | noise_estimation = None |
|
879 | noise_estimation = None | |
879 | GauSPC = None # Fit gaussian SPC |
|
880 | GauSPC = None # Fit gaussian SPC | |
880 | spc_noise = None |
|
881 | spc_noise = None | |
881 |
|
882 | |||
882 | def __init__(self): |
|
883 | def __init__(self): | |
883 | ''' |
|
884 | ''' | |
884 | Constructor |
|
885 | Constructor | |
885 | ''' |
|
886 | ''' | |
886 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
887 | self.radarControllerHeaderObj = RadarControllerHeader() | |
887 | self.systemHeaderObj = SystemHeader() |
|
888 | self.systemHeaderObj = SystemHeader() | |
888 | self.type = "Parameters" |
|
889 | self.type = "Parameters" | |
889 | self.timeZone = 0 |
|
890 | self.timeZone = 0 | |
890 | self.ippFactor = 1 |
|
891 | self.ippFactor = 1 | |
891 |
|
892 | |||
892 | def getTimeRange1(self, interval): |
|
893 | def getTimeRange1(self, interval): | |
893 |
|
894 | |||
894 | datatime = [] |
|
895 | datatime = [] | |
895 |
|
896 | |||
896 | if self.useLocalTime: |
|
897 | if self.useLocalTime: | |
897 | time1 = self.utctimeInit - self.timeZone * 60 |
|
898 | time1 = self.utctimeInit - self.timeZone * 60 | |
898 | else: |
|
899 | else: | |
899 | time1 = self.utctimeInit |
|
900 | time1 = self.utctimeInit | |
900 |
|
901 | |||
901 | datatime.append(time1) |
|
902 | datatime.append(time1) | |
902 | datatime.append(time1 + interval) |
|
903 | datatime.append(time1 + interval) | |
903 | datatime = numpy.array(datatime) |
|
904 | datatime = numpy.array(datatime) | |
904 |
|
905 | |||
905 | return datatime |
|
906 | return datatime | |
906 |
|
907 | |||
907 | @property |
|
908 | @property | |
908 | def timeInterval(self): |
|
909 | def timeInterval(self): | |
909 |
|
910 | |||
910 | if hasattr(self, 'timeInterval1'): |
|
911 | if hasattr(self, 'timeInterval1'): | |
911 | return self.timeInterval1 |
|
912 | return self.timeInterval1 | |
912 | else: |
|
913 | else: | |
913 | return self.paramInterval |
|
914 | return self.paramInterval | |
914 |
|
915 | |||
915 |
|
916 | |||
916 | def setValue(self, value): |
|
917 | def setValue(self, value): | |
917 |
|
918 | |||
918 | print("This property should not be initialized") |
|
919 | print("This property should not be initialized") | |
919 |
|
920 | |||
920 | return |
|
921 | return | |
921 |
|
922 | |||
922 | def getNoise(self): |
|
923 | def getNoise(self): | |
923 |
|
924 | |||
924 | return self.spc_noise |
|
925 | return self.spc_noise | |
925 |
|
926 | |||
926 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
927 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") | |
927 |
|
928 | |||
928 |
|
929 | |||
929 | class PlotterData(object): |
|
930 | class PlotterData(object): | |
930 | ''' |
|
931 | ''' | |
931 | Object to hold data to be plotted |
|
932 | Object to hold data to be plotted | |
932 | ''' |
|
933 | ''' | |
933 |
|
934 | |||
934 | MAXNUMX = 200 |
|
935 | MAXNUMX = 200 | |
935 | MAXNUMY = 200 |
|
936 | MAXNUMY = 200 | |
936 |
|
937 | |||
937 | def __init__(self, code, exp_code, localtime=True): |
|
938 | def __init__(self, code, exp_code, localtime=True): | |
938 |
|
939 | |||
939 | self.key = code |
|
940 | self.key = code | |
940 | self.exp_code = exp_code |
|
941 | self.exp_code = exp_code | |
941 | self.ready = False |
|
942 | self.ready = False | |
942 | self.flagNoData = False |
|
943 | self.flagNoData = False | |
943 | self.localtime = localtime |
|
944 | self.localtime = localtime | |
944 | self.data = {} |
|
945 | self.data = {} | |
945 | self.meta = {} |
|
946 | self.meta = {} | |
946 | self.__heights = [] |
|
947 | self.__heights = [] | |
947 |
|
948 | |||
948 | def __str__(self): |
|
949 | def __str__(self): | |
949 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
950 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] | |
950 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
951 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) | |
951 |
|
952 | |||
952 | def __len__(self): |
|
953 | def __len__(self): | |
953 | return len(self.data) |
|
954 | return len(self.data) | |
954 |
|
955 | |||
955 | def __getitem__(self, key): |
|
956 | def __getitem__(self, key): | |
956 | if isinstance(key, int): |
|
957 | if isinstance(key, int): | |
957 | return self.data[self.times[key]] |
|
958 | return self.data[self.times[key]] | |
958 | elif isinstance(key, str): |
|
959 | elif isinstance(key, str): | |
959 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
960 | ret = numpy.array([self.data[x][key] for x in self.times]) | |
960 | if ret.ndim > 1: |
|
961 | if ret.ndim > 1: | |
961 | ret = numpy.swapaxes(ret, 0, 1) |
|
962 | ret = numpy.swapaxes(ret, 0, 1) | |
962 | return ret |
|
963 | return ret | |
963 |
|
964 | |||
964 | def __contains__(self, key): |
|
965 | def __contains__(self, key): | |
965 | return key in self.data[self.min_time] |
|
966 | return key in self.data[self.min_time] | |
966 |
|
967 | |||
967 | def setup(self): |
|
968 | def setup(self): | |
968 | ''' |
|
969 | ''' | |
969 | Configure object |
|
970 | Configure object | |
970 | ''' |
|
971 | ''' | |
971 | self.type = '' |
|
972 | self.type = '' | |
972 | self.ready = False |
|
973 | self.ready = False | |
973 | del self.data |
|
974 | del self.data | |
974 | self.data = {} |
|
975 | self.data = {} | |
975 | self.__heights = [] |
|
976 | self.__heights = [] | |
976 | self.__all_heights = set() |
|
977 | self.__all_heights = set() | |
977 |
|
978 | |||
978 | def shape(self, key): |
|
979 | def shape(self, key): | |
979 | ''' |
|
980 | ''' | |
980 | Get the shape of the one-element data for the given key |
|
981 | Get the shape of the one-element data for the given key | |
981 | ''' |
|
982 | ''' | |
982 |
|
983 | |||
983 | if len(self.data[self.min_time][key]): |
|
984 | if len(self.data[self.min_time][key]): | |
984 | return self.data[self.min_time][key].shape |
|
985 | return self.data[self.min_time][key].shape | |
985 | return (0,) |
|
986 | return (0,) | |
986 |
|
987 | |||
987 | def update(self, data, tm, meta={}): |
|
988 | def update(self, data, tm, meta={}): | |
988 | ''' |
|
989 | ''' | |
989 | Update data object with new dataOut |
|
990 | Update data object with new dataOut | |
990 | ''' |
|
991 | ''' | |
991 |
|
992 | |||
992 | self.data[tm] = data |
|
993 | self.data[tm] = data | |
993 |
|
994 | |||
994 | for key, value in meta.items(): |
|
995 | for key, value in meta.items(): | |
995 | setattr(self, key, value) |
|
996 | setattr(self, key, value) | |
996 |
|
997 | |||
997 | def normalize_heights(self): |
|
998 | def normalize_heights(self): | |
998 | ''' |
|
999 | ''' | |
999 | Ensure same-dimension of the data for different heighList |
|
1000 | Ensure same-dimension of the data for different heighList | |
1000 | ''' |
|
1001 | ''' | |
1001 |
|
1002 | |||
1002 | H = numpy.array(list(self.__all_heights)) |
|
1003 | H = numpy.array(list(self.__all_heights)) | |
1003 | H.sort() |
|
1004 | H.sort() | |
1004 | for key in self.data: |
|
1005 | for key in self.data: | |
1005 | shape = self.shape(key)[:-1] + H.shape |
|
1006 | shape = self.shape(key)[:-1] + H.shape | |
1006 | for tm, obj in list(self.data[key].items()): |
|
1007 | for tm, obj in list(self.data[key].items()): | |
1007 | h = self.__heights[self.times.tolist().index(tm)] |
|
1008 | h = self.__heights[self.times.tolist().index(tm)] | |
1008 | if H.size == h.size: |
|
1009 | if H.size == h.size: | |
1009 | continue |
|
1010 | continue | |
1010 | index = numpy.where(numpy.in1d(H, h))[0] |
|
1011 | index = numpy.where(numpy.in1d(H, h))[0] | |
1011 | dummy = numpy.zeros(shape) + numpy.nan |
|
1012 | dummy = numpy.zeros(shape) + numpy.nan | |
1012 | if len(shape) == 2: |
|
1013 | if len(shape) == 2: | |
1013 | dummy[:, index] = obj |
|
1014 | dummy[:, index] = obj | |
1014 | else: |
|
1015 | else: | |
1015 | dummy[index] = obj |
|
1016 | dummy[index] = obj | |
1016 | self.data[key][tm] = dummy |
|
1017 | self.data[key][tm] = dummy | |
1017 |
|
1018 | |||
1018 | self.__heights = [H for tm in self.times] |
|
1019 | self.__heights = [H for tm in self.times] | |
1019 |
|
1020 | |||
1020 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
1021 | def jsonify(self, tm, plot_name, plot_type, decimate=False): | |
1021 | ''' |
|
1022 | ''' | |
1022 | Convert data to json |
|
1023 | Convert data to json | |
1023 | ''' |
|
1024 | ''' | |
1024 |
|
1025 | |||
1025 | meta = {} |
|
1026 | meta = {} | |
1026 | meta['xrange'] = [] |
|
1027 | meta['xrange'] = [] | |
1027 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 |
|
1028 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 | |
1028 | tmp = self.data[tm][self.key] |
|
1029 | tmp = self.data[tm][self.key] | |
1029 | shape = tmp.shape |
|
1030 | shape = tmp.shape | |
1030 | if len(shape) == 2: |
|
1031 | if len(shape) == 2: | |
1031 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1032 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) | |
1032 | elif len(shape) == 3: |
|
1033 | elif len(shape) == 3: | |
1033 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 |
|
1034 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 | |
1034 | data = self.roundFloats( |
|
1035 | data = self.roundFloats( | |
1035 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1036 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) | |
1036 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1037 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) | |
1037 | else: |
|
1038 | else: | |
1038 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1039 | data = self.roundFloats(self.data[tm][self.key].tolist()) | |
1039 |
|
1040 | |||
1040 | ret = { |
|
1041 | ret = { | |
1041 | 'plot': plot_name, |
|
1042 | 'plot': plot_name, | |
1042 | 'code': self.exp_code, |
|
1043 | 'code': self.exp_code, | |
1043 | 'time': float(tm), |
|
1044 | 'time': float(tm), | |
1044 | 'data': data, |
|
1045 | 'data': data, | |
1045 | } |
|
1046 | } | |
1046 | meta['type'] = plot_type |
|
1047 | meta['type'] = plot_type | |
1047 | meta['interval'] = float(self.interval) |
|
1048 | meta['interval'] = float(self.interval) | |
1048 | meta['localtime'] = self.localtime |
|
1049 | meta['localtime'] = self.localtime | |
1049 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1050 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) | |
1050 | meta.update(self.meta) |
|
1051 | meta.update(self.meta) | |
1051 | ret['metadata'] = meta |
|
1052 | ret['metadata'] = meta | |
1052 | return json.dumps(ret) |
|
1053 | return json.dumps(ret) | |
1053 |
|
1054 | |||
1054 | @property |
|
1055 | @property | |
1055 | def times(self): |
|
1056 | def times(self): | |
1056 | ''' |
|
1057 | ''' | |
1057 | Return the list of times of the current data |
|
1058 | Return the list of times of the current data | |
1058 | ''' |
|
1059 | ''' | |
1059 |
|
1060 | |||
1060 | ret = [t for t in self.data] |
|
1061 | ret = [t for t in self.data] | |
1061 | ret.sort() |
|
1062 | ret.sort() | |
1062 | return numpy.array(ret) |
|
1063 | return numpy.array(ret) | |
1063 |
|
1064 | |||
1064 | @property |
|
1065 | @property | |
1065 | def min_time(self): |
|
1066 | def min_time(self): | |
1066 | ''' |
|
1067 | ''' | |
1067 | Return the minimun time value |
|
1068 | Return the minimun time value | |
1068 | ''' |
|
1069 | ''' | |
1069 |
|
1070 | |||
1070 | return self.times[0] |
|
1071 | return self.times[0] | |
1071 |
|
1072 | |||
1072 | @property |
|
1073 | @property | |
1073 | def max_time(self): |
|
1074 | def max_time(self): | |
1074 | ''' |
|
1075 | ''' | |
1075 | Return the maximun time value |
|
1076 | Return the maximun time value | |
1076 | ''' |
|
1077 | ''' | |
1077 |
|
1078 | |||
1078 | return self.times[-1] |
|
1079 | return self.times[-1] | |
1079 |
|
1080 | |||
1080 | # @property |
|
1081 | # @property | |
1081 | # def heights(self): |
|
1082 | # def heights(self): | |
1082 | # ''' |
|
1083 | # ''' | |
1083 | # Return the list of heights of the current data |
|
1084 | # Return the list of heights of the current data | |
1084 | # ''' |
|
1085 | # ''' | |
1085 |
|
1086 | |||
1086 | # return numpy.array(self.__heights[-1]) |
|
1087 | # return numpy.array(self.__heights[-1]) | |
1087 |
|
1088 | |||
1088 | @staticmethod |
|
1089 | @staticmethod | |
1089 | def roundFloats(obj): |
|
1090 | def roundFloats(obj): | |
1090 | if isinstance(obj, list): |
|
1091 | if isinstance(obj, list): | |
1091 | return list(map(PlotterData.roundFloats, obj)) |
|
1092 | return list(map(PlotterData.roundFloats, obj)) | |
1092 | elif isinstance(obj, float): |
|
1093 | elif isinstance(obj, float): | |
1093 | return round(obj, 2) |
|
1094 | return round(obj, 2) |
@@ -1,1350 +1,1349 | |||||
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Classes to plot Spectra data |
|
5 | """Classes to plot Spectra data | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import numpy |
|
10 | import numpy | |
11 | #import collections.abc |
|
11 | #import collections.abc | |
12 |
|
12 | |||
13 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
13 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
14 |
|
14 | |||
15 | class SpectraPlot(Plot): |
|
15 | class SpectraPlot(Plot): | |
16 | ''' |
|
16 | ''' | |
17 | Plot for Spectra data |
|
17 | Plot for Spectra data | |
18 | ''' |
|
18 | ''' | |
19 |
|
19 | |||
20 | CODE = 'spc' |
|
20 | CODE = 'spc' | |
21 | colormap = 'jet' |
|
21 | colormap = 'jet' | |
22 | plot_type = 'pcolor' |
|
22 | plot_type = 'pcolor' | |
23 | buffering = False |
|
23 | buffering = False | |
24 |
|
24 | |||
25 | def setup(self): |
|
25 | def setup(self): | |
26 |
|
26 | |||
27 | self.nplots = len(self.data.channels) |
|
27 | self.nplots = len(self.data.channels) | |
28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
30 | self.height = 2.6 * self.nrows |
|
30 | self.height = 2.6 * self.nrows | |
31 | self.cb_label = 'dB' |
|
31 | self.cb_label = 'dB' | |
32 | if self.showprofile: |
|
32 | if self.showprofile: | |
33 | self.width = 4 * self.ncols |
|
33 | self.width = 4 * self.ncols | |
34 | else: |
|
34 | else: | |
35 | self.width = 3.5 * self.ncols |
|
35 | self.width = 3.5 * self.ncols | |
36 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
36 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
37 | self.ylabel = 'Range [km]' |
|
37 | self.ylabel = 'Range [km]' | |
38 |
|
38 | |||
39 | def update(self, dataOut): |
|
39 | def update(self, dataOut): | |
40 |
|
40 | |||
41 | data = {} |
|
41 | data = {} | |
42 | meta = {} |
|
42 | meta = {} | |
43 |
|
43 | |||
44 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
44 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
45 | #print("dataOut.normFactor: ", dataOut.normFactor) |
|
45 | #print("dataOut.normFactor: ", dataOut.normFactor) | |
46 | #print("spc: ", dataOut.data_spc[0,0,0]) |
|
46 | #print("spc: ", dataOut.data_spc[0,0,0]) | |
47 | #spc = 10*numpy.log10(dataOut.data_spc) |
|
47 | #spc = 10*numpy.log10(dataOut.data_spc) | |
48 | #print("Spc: ",spc[0]) |
|
48 | #print("Spc: ",spc[0]) | |
49 | #exit(1) |
|
49 | #exit(1) | |
50 | data['spc'] = spc |
|
50 | data['spc'] = spc | |
51 | data['rti'] = dataOut.getPower() |
|
51 | data['rti'] = dataOut.getPower() | |
52 | #print(data['rti'][0]) |
|
52 | #print(data['rti'][0]) | |
53 | #exit(1) |
|
53 | #exit(1) | |
54 | #print("NormFactor: ",dataOut.normFactor) |
|
54 | #print("NormFactor: ",dataOut.normFactor) | |
55 | #data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
55 | #data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
56 | if hasattr(dataOut, 'LagPlot'): #Double Pulse |
|
56 | if hasattr(dataOut, 'LagPlot'): #Double Pulse | |
57 | max_hei_id = dataOut.nHeights - 2*dataOut.LagPlot |
|
57 | ymin_index = numpy.abs(dataOut.heightList - 800).argmin() | |
58 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=46,ymax_index=max_hei_id)/dataOut.normFactor) |
|
58 | max_hei_id = dataOut.nHeights - dataOut.TxLagRate*dataOut.LagPlot | |
59 |
|
|
59 | data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=ymin_index,ymax_index=max_hei_id)/dataOut.normFactor) | |
60 |
data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index= |
|
60 | data['noise'][0] = 10*numpy.log10(dataOut.getNoise(ymin_index=ymin_index)[0]/dataOut.normFactor) | |
61 | data['noise'][0] = 10*numpy.log10(dataOut.getNoise(ymin_index=53)[0]/dataOut.normFactor) |
|
|||
62 | #data['noise'][1] = 22.035507 |
|
61 | #data['noise'][1] = 22.035507 | |
63 | else: |
|
62 | else: | |
64 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
63 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
65 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=26,ymax_index=44)/dataOut.normFactor) |
|
64 | ||
66 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
65 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
67 |
|
66 | |||
68 | if self.CODE == 'spc_moments': |
|
67 | if self.CODE == 'spc_moments': | |
69 | data['moments'] = dataOut.moments |
|
68 | data['moments'] = dataOut.moments | |
70 | if self.CODE == 'gaussian_fit': |
|
69 | if self.CODE == 'gaussian_fit': | |
71 | data['gaussfit'] = dataOut.DGauFitParams |
|
70 | data['gaussfit'] = dataOut.DGauFitParams | |
72 |
|
71 | |||
73 | return data, meta |
|
72 | return data, meta | |
74 |
|
73 | |||
75 | def plot(self): |
|
74 | def plot(self): | |
76 |
|
75 | |||
77 | if self.xaxis == "frequency": |
|
76 | if self.xaxis == "frequency": | |
78 | x = self.data.xrange[0] |
|
77 | x = self.data.xrange[0] | |
79 | self.xlabel = "Frequency (kHz)" |
|
78 | self.xlabel = "Frequency (kHz)" | |
80 | elif self.xaxis == "time": |
|
79 | elif self.xaxis == "time": | |
81 | x = self.data.xrange[1] |
|
80 | x = self.data.xrange[1] | |
82 | self.xlabel = "Time (ms)" |
|
81 | self.xlabel = "Time (ms)" | |
83 | else: |
|
82 | else: | |
84 | x = self.data.xrange[2] |
|
83 | x = self.data.xrange[2] | |
85 | self.xlabel = "Velocity (m/s)" |
|
84 | self.xlabel = "Velocity (m/s)" | |
86 |
|
85 | |||
87 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): |
|
86 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): | |
88 | x = self.data.xrange[2] |
|
87 | x = self.data.xrange[2] | |
89 | self.xlabel = "Velocity (m/s)" |
|
88 | self.xlabel = "Velocity (m/s)" | |
90 |
|
89 | |||
91 | self.titles = [] |
|
90 | self.titles = [] | |
92 |
|
91 | |||
93 | y = self.data.yrange |
|
92 | y = self.data.yrange | |
94 | self.y = y |
|
93 | self.y = y | |
95 |
|
94 | |||
96 | data = self.data[-1] |
|
95 | data = self.data[-1] | |
97 | z = data['spc'] |
|
96 | z = data['spc'] | |
98 |
|
97 | |||
99 | self.CODE2 = 'spc_oblique' |
|
98 | self.CODE2 = 'spc_oblique' | |
100 |
|
99 | |||
101 | for n, ax in enumerate(self.axes): |
|
100 | for n, ax in enumerate(self.axes): | |
102 | noise = data['noise'][n] |
|
101 | noise = data['noise'][n] | |
103 | if self.CODE == 'spc_moments': |
|
102 | if self.CODE == 'spc_moments': | |
104 | mean = data['moments'][n, 1] |
|
103 | mean = data['moments'][n, 1] | |
105 | if self.CODE == 'gaussian_fit': |
|
104 | if self.CODE == 'gaussian_fit': | |
106 | gau0 = data['gaussfit'][n][2,:,0] |
|
105 | gau0 = data['gaussfit'][n][2,:,0] | |
107 | gau1 = data['gaussfit'][n][2,:,1] |
|
106 | gau1 = data['gaussfit'][n][2,:,1] | |
108 | if ax.firsttime: |
|
107 | if ax.firsttime: | |
109 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
108 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
110 | self.xmin = self.xmin if self.xmin else numpy.nanmin(x)#-self.xmax |
|
109 | self.xmin = self.xmin if self.xmin else numpy.nanmin(x)#-self.xmax | |
111 | #self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
110 | #self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
112 | #self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
111 | #self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
113 | if self.zlimits is not None: |
|
112 | if self.zlimits is not None: | |
114 | self.zmin, self.zmax = self.zlimits[n] |
|
113 | self.zmin, self.zmax = self.zlimits[n] | |
115 |
|
114 | |||
116 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
115 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
117 | vmin=self.zmin, |
|
116 | vmin=self.zmin, | |
118 | vmax=self.zmax, |
|
117 | vmax=self.zmax, | |
119 | cmap=plt.get_cmap(self.colormap), |
|
118 | cmap=plt.get_cmap(self.colormap), | |
120 | ) |
|
119 | ) | |
121 |
|
120 | |||
122 | if self.showprofile: |
|
121 | if self.showprofile: | |
123 | ax.plt_profile = self.pf_axes[n].plot( |
|
122 | ax.plt_profile = self.pf_axes[n].plot( | |
124 | data['rti'][n], y)[0] |
|
123 | data['rti'][n], y)[0] | |
125 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
124 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
126 | color="k", linestyle="dashed", lw=1)[0] |
|
125 | color="k", linestyle="dashed", lw=1)[0] | |
127 | if self.CODE == 'spc_moments': |
|
126 | if self.CODE == 'spc_moments': | |
128 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
127 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] | |
129 | if self.CODE == 'gaussian_fit': |
|
128 | if self.CODE == 'gaussian_fit': | |
130 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] |
|
129 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] | |
131 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] |
|
130 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] | |
132 | else: |
|
131 | else: | |
133 | if self.zlimits is not None: |
|
132 | if self.zlimits is not None: | |
134 | self.zmin, self.zmax = self.zlimits[n] |
|
133 | self.zmin, self.zmax = self.zlimits[n] | |
135 | ax.plt.set_array(z[n].T.ravel()) |
|
134 | ax.plt.set_array(z[n].T.ravel()) | |
136 | if self.showprofile: |
|
135 | if self.showprofile: | |
137 | ax.plt_profile.set_data(data['rti'][n], y) |
|
136 | ax.plt_profile.set_data(data['rti'][n], y) | |
138 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
137 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
139 | if self.CODE == 'spc_moments': |
|
138 | if self.CODE == 'spc_moments': | |
140 | ax.plt_mean.set_data(mean, y) |
|
139 | ax.plt_mean.set_data(mean, y) | |
141 | if self.CODE == 'gaussian_fit': |
|
140 | if self.CODE == 'gaussian_fit': | |
142 | ax.plt_gau0.set_data(gau0, y) |
|
141 | ax.plt_gau0.set_data(gau0, y) | |
143 | ax.plt_gau1.set_data(gau1, y) |
|
142 | ax.plt_gau1.set_data(gau1, y) | |
144 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
143 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
145 |
|
144 | |||
146 | class SpectraObliquePlot(Plot): |
|
145 | class SpectraObliquePlot(Plot): | |
147 | ''' |
|
146 | ''' | |
148 | Plot for Spectra data |
|
147 | Plot for Spectra data | |
149 | ''' |
|
148 | ''' | |
150 |
|
149 | |||
151 | CODE = 'spc_oblique' |
|
150 | CODE = 'spc_oblique' | |
152 | colormap = 'jet' |
|
151 | colormap = 'jet' | |
153 | plot_type = 'pcolor' |
|
152 | plot_type = 'pcolor' | |
154 |
|
153 | |||
155 | def setup(self): |
|
154 | def setup(self): | |
156 | self.xaxis = "oblique" |
|
155 | self.xaxis = "oblique" | |
157 | self.nplots = len(self.data.channels) |
|
156 | self.nplots = len(self.data.channels) | |
158 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
157 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
159 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
158 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
160 | self.height = 2.6 * self.nrows |
|
159 | self.height = 2.6 * self.nrows | |
161 | self.cb_label = 'dB' |
|
160 | self.cb_label = 'dB' | |
162 | if self.showprofile: |
|
161 | if self.showprofile: | |
163 | self.width = 4 * self.ncols |
|
162 | self.width = 4 * self.ncols | |
164 | else: |
|
163 | else: | |
165 | self.width = 3.5 * self.ncols |
|
164 | self.width = 3.5 * self.ncols | |
166 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
165 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
167 | self.ylabel = 'Range [km]' |
|
166 | self.ylabel = 'Range [km]' | |
168 |
|
167 | |||
169 | def update(self, dataOut): |
|
168 | def update(self, dataOut): | |
170 |
|
169 | |||
171 | data = {} |
|
170 | data = {} | |
172 | meta = {} |
|
171 | meta = {} | |
173 |
|
172 | |||
174 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
173 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
175 | data['spc'] = spc |
|
174 | data['spc'] = spc | |
176 | data['rti'] = dataOut.getPower() |
|
175 | data['rti'] = dataOut.getPower() | |
177 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
176 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
178 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
177 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
179 | ''' |
|
178 | ''' | |
180 | data['shift1'] = dataOut.Oblique_params[0,-2,:] |
|
179 | data['shift1'] = dataOut.Oblique_params[0,-2,:] | |
181 | data['shift2'] = dataOut.Oblique_params[0,-1,:] |
|
180 | data['shift2'] = dataOut.Oblique_params[0,-1,:] | |
182 | data['shift1_error'] = dataOut.Oblique_param_errors[0,-2,:] |
|
181 | data['shift1_error'] = dataOut.Oblique_param_errors[0,-2,:] | |
183 | data['shift2_error'] = dataOut.Oblique_param_errors[0,-1,:] |
|
182 | data['shift2_error'] = dataOut.Oblique_param_errors[0,-1,:] | |
184 | ''' |
|
183 | ''' | |
185 | ''' |
|
184 | ''' | |
186 | data['shift1'] = dataOut.Oblique_params[0,1,:] |
|
185 | data['shift1'] = dataOut.Oblique_params[0,1,:] | |
187 | data['shift2'] = dataOut.Oblique_params[0,4,:] |
|
186 | data['shift2'] = dataOut.Oblique_params[0,4,:] | |
188 | data['shift1_error'] = dataOut.Oblique_param_errors[0,1,:] |
|
187 | data['shift1_error'] = dataOut.Oblique_param_errors[0,1,:] | |
189 | data['shift2_error'] = dataOut.Oblique_param_errors[0,4,:] |
|
188 | data['shift2_error'] = dataOut.Oblique_param_errors[0,4,:] | |
190 | ''' |
|
189 | ''' | |
191 | data['shift1'] = dataOut.Dop_EEJ_T1[0] |
|
190 | data['shift1'] = dataOut.Dop_EEJ_T1[0] | |
192 | data['shift2'] = dataOut.Dop_EEJ_T2[0] |
|
191 | data['shift2'] = dataOut.Dop_EEJ_T2[0] | |
193 | data['max_val_2'] = dataOut.Oblique_params[0,-1,:] |
|
192 | data['max_val_2'] = dataOut.Oblique_params[0,-1,:] | |
194 | data['shift1_error'] = dataOut.Err_Dop_EEJ_T1[0] |
|
193 | data['shift1_error'] = dataOut.Err_Dop_EEJ_T1[0] | |
195 | data['shift2_error'] = dataOut.Err_Dop_EEJ_T2[0] |
|
194 | data['shift2_error'] = dataOut.Err_Dop_EEJ_T2[0] | |
196 |
|
195 | |||
197 | return data, meta |
|
196 | return data, meta | |
198 |
|
197 | |||
199 | def plot(self): |
|
198 | def plot(self): | |
200 |
|
199 | |||
201 | if self.xaxis == "frequency": |
|
200 | if self.xaxis == "frequency": | |
202 | x = self.data.xrange[0] |
|
201 | x = self.data.xrange[0] | |
203 | self.xlabel = "Frequency (kHz)" |
|
202 | self.xlabel = "Frequency (kHz)" | |
204 | elif self.xaxis == "time": |
|
203 | elif self.xaxis == "time": | |
205 | x = self.data.xrange[1] |
|
204 | x = self.data.xrange[1] | |
206 | self.xlabel = "Time (ms)" |
|
205 | self.xlabel = "Time (ms)" | |
207 | else: |
|
206 | else: | |
208 | x = self.data.xrange[2] |
|
207 | x = self.data.xrange[2] | |
209 | self.xlabel = "Velocity (m/s)" |
|
208 | self.xlabel = "Velocity (m/s)" | |
210 |
|
209 | |||
211 | self.titles = [] |
|
210 | self.titles = [] | |
212 |
|
211 | |||
213 | y = self.data.yrange |
|
212 | y = self.data.yrange | |
214 | self.y = y |
|
213 | self.y = y | |
215 |
|
214 | |||
216 | data = self.data[-1] |
|
215 | data = self.data[-1] | |
217 | z = data['spc'] |
|
216 | z = data['spc'] | |
218 |
|
217 | |||
219 | for n, ax in enumerate(self.axes): |
|
218 | for n, ax in enumerate(self.axes): | |
220 | noise = self.data['noise'][n][-1] |
|
219 | noise = self.data['noise'][n][-1] | |
221 | shift1 = data['shift1'] |
|
220 | shift1 = data['shift1'] | |
222 | #print(shift1) |
|
221 | #print(shift1) | |
223 | shift2 = data['shift2'] |
|
222 | shift2 = data['shift2'] | |
224 | max_val_2 = data['max_val_2'] |
|
223 | max_val_2 = data['max_val_2'] | |
225 | err1 = data['shift1_error'] |
|
224 | err1 = data['shift1_error'] | |
226 | err2 = data['shift2_error'] |
|
225 | err2 = data['shift2_error'] | |
227 | if ax.firsttime: |
|
226 | if ax.firsttime: | |
228 |
|
227 | |||
229 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
228 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
230 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
229 | self.xmin = self.xmin if self.xmin else -self.xmax | |
231 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
230 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
232 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
231 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
233 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
232 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
234 | vmin=self.zmin, |
|
233 | vmin=self.zmin, | |
235 | vmax=self.zmax, |
|
234 | vmax=self.zmax, | |
236 | cmap=plt.get_cmap(self.colormap) |
|
235 | cmap=plt.get_cmap(self.colormap) | |
237 | ) |
|
236 | ) | |
238 |
|
237 | |||
239 | if self.showprofile: |
|
238 | if self.showprofile: | |
240 | ax.plt_profile = self.pf_axes[n].plot( |
|
239 | ax.plt_profile = self.pf_axes[n].plot( | |
241 | self.data['rti'][n][-1], y)[0] |
|
240 | self.data['rti'][n][-1], y)[0] | |
242 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
241 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
243 | color="k", linestyle="dashed", lw=1)[0] |
|
242 | color="k", linestyle="dashed", lw=1)[0] | |
244 |
|
243 | |||
245 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
244 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
246 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
245 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
247 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
246 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
248 |
|
247 | |||
249 | #print("plotter1: ", self.ploterr1,shift1) |
|
248 | #print("plotter1: ", self.ploterr1,shift1) | |
250 |
|
249 | |||
251 | else: |
|
250 | else: | |
252 | #print("else plotter1: ", self.ploterr1,shift1) |
|
251 | #print("else plotter1: ", self.ploterr1,shift1) | |
253 | self.ploterr1.remove() |
|
252 | self.ploterr1.remove() | |
254 | self.ploterr2.remove() |
|
253 | self.ploterr2.remove() | |
255 | self.ploterr3.remove() |
|
254 | self.ploterr3.remove() | |
256 | ax.plt.set_array(z[n].T.ravel()) |
|
255 | ax.plt.set_array(z[n].T.ravel()) | |
257 | if self.showprofile: |
|
256 | if self.showprofile: | |
258 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
257 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) | |
259 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
258 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
260 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
259 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
261 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
260 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
262 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
261 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
263 |
|
262 | |||
264 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
263 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
265 |
|
264 | |||
266 |
|
265 | |||
267 | class CrossSpectraPlot(Plot): |
|
266 | class CrossSpectraPlot(Plot): | |
268 |
|
267 | |||
269 | CODE = 'cspc' |
|
268 | CODE = 'cspc' | |
270 | colormap = 'jet' |
|
269 | colormap = 'jet' | |
271 | plot_type = 'pcolor' |
|
270 | plot_type = 'pcolor' | |
272 | zmin_coh = None |
|
271 | zmin_coh = None | |
273 | zmax_coh = None |
|
272 | zmax_coh = None | |
274 | zmin_phase = None |
|
273 | zmin_phase = None | |
275 | zmax_phase = None |
|
274 | zmax_phase = None | |
276 |
|
275 | |||
277 | def setup(self): |
|
276 | def setup(self): | |
278 |
|
277 | |||
279 | self.ncols = 4 |
|
278 | self.ncols = 4 | |
280 | self.nplots = len(self.data.pairs) * 2 |
|
279 | self.nplots = len(self.data.pairs) * 2 | |
281 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
280 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
282 | self.width = 3.1 * self.ncols |
|
281 | self.width = 3.1 * self.ncols | |
283 | self.height = 5 * self.nrows |
|
282 | self.height = 5 * self.nrows | |
284 | self.ylabel = 'Range [km]' |
|
283 | self.ylabel = 'Range [km]' | |
285 | self.showprofile = False |
|
284 | self.showprofile = False | |
286 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
285 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
287 |
|
286 | |||
288 | def update(self, dataOut): |
|
287 | def update(self, dataOut): | |
289 |
|
288 | |||
290 | data = {} |
|
289 | data = {} | |
291 | meta = {} |
|
290 | meta = {} | |
292 |
|
291 | |||
293 | spc = dataOut.data_spc |
|
292 | spc = dataOut.data_spc | |
294 | cspc = dataOut.data_cspc |
|
293 | cspc = dataOut.data_cspc | |
295 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
294 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
296 | meta['pairs'] = dataOut.pairsList |
|
295 | meta['pairs'] = dataOut.pairsList | |
297 |
|
296 | |||
298 | tmp = [] |
|
297 | tmp = [] | |
299 |
|
298 | |||
300 | for n, pair in enumerate(meta['pairs']): |
|
299 | for n, pair in enumerate(meta['pairs']): | |
301 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
300 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
302 | coh = numpy.abs(out) |
|
301 | coh = numpy.abs(out) | |
303 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
302 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
304 | tmp.append(coh) |
|
303 | tmp.append(coh) | |
305 | tmp.append(phase) |
|
304 | tmp.append(phase) | |
306 |
|
305 | |||
307 | data['cspc'] = numpy.array(tmp) |
|
306 | data['cspc'] = numpy.array(tmp) | |
308 |
|
307 | |||
309 | return data, meta |
|
308 | return data, meta | |
310 |
|
309 | |||
311 | def plot(self): |
|
310 | def plot(self): | |
312 |
|
311 | |||
313 | if self.xaxis == "frequency": |
|
312 | if self.xaxis == "frequency": | |
314 | x = self.data.xrange[0] |
|
313 | x = self.data.xrange[0] | |
315 | self.xlabel = "Frequency (kHz)" |
|
314 | self.xlabel = "Frequency (kHz)" | |
316 | elif self.xaxis == "time": |
|
315 | elif self.xaxis == "time": | |
317 | x = self.data.xrange[1] |
|
316 | x = self.data.xrange[1] | |
318 | self.xlabel = "Time (ms)" |
|
317 | self.xlabel = "Time (ms)" | |
319 | else: |
|
318 | else: | |
320 | x = self.data.xrange[2] |
|
319 | x = self.data.xrange[2] | |
321 | self.xlabel = "Velocity (m/s)" |
|
320 | self.xlabel = "Velocity (m/s)" | |
322 |
|
321 | |||
323 | self.titles = [] |
|
322 | self.titles = [] | |
324 |
|
323 | |||
325 | y = self.data.yrange |
|
324 | y = self.data.yrange | |
326 | self.y = y |
|
325 | self.y = y | |
327 |
|
326 | |||
328 | data = self.data[-1] |
|
327 | data = self.data[-1] | |
329 | cspc = data['cspc'] |
|
328 | cspc = data['cspc'] | |
330 |
|
329 | |||
331 | for n in range(len(self.data.pairs)): |
|
330 | for n in range(len(self.data.pairs)): | |
332 | pair = self.data.pairs[n] |
|
331 | pair = self.data.pairs[n] | |
333 | coh = cspc[n*2] |
|
332 | coh = cspc[n*2] | |
334 | phase = cspc[n*2+1] |
|
333 | phase = cspc[n*2+1] | |
335 | ax = self.axes[2 * n] |
|
334 | ax = self.axes[2 * n] | |
336 | if ax.firsttime: |
|
335 | if ax.firsttime: | |
337 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
336 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
338 | vmin=0, |
|
337 | vmin=0, | |
339 | vmax=1, |
|
338 | vmax=1, | |
340 | cmap=plt.get_cmap(self.colormap_coh) |
|
339 | cmap=plt.get_cmap(self.colormap_coh) | |
341 | ) |
|
340 | ) | |
342 | else: |
|
341 | else: | |
343 | ax.plt.set_array(coh.T.ravel()) |
|
342 | ax.plt.set_array(coh.T.ravel()) | |
344 | self.titles.append( |
|
343 | self.titles.append( | |
345 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
344 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
346 |
|
345 | |||
347 | ax = self.axes[2 * n + 1] |
|
346 | ax = self.axes[2 * n + 1] | |
348 | if ax.firsttime: |
|
347 | if ax.firsttime: | |
349 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
348 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
350 | vmin=-180, |
|
349 | vmin=-180, | |
351 | vmax=180, |
|
350 | vmax=180, | |
352 | cmap=plt.get_cmap(self.colormap_phase) |
|
351 | cmap=plt.get_cmap(self.colormap_phase) | |
353 | ) |
|
352 | ) | |
354 | else: |
|
353 | else: | |
355 | ax.plt.set_array(phase.T.ravel()) |
|
354 | ax.plt.set_array(phase.T.ravel()) | |
356 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
355 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
357 |
|
356 | |||
358 |
|
357 | |||
359 | class CrossSpectra4Plot(Plot): |
|
358 | class CrossSpectra4Plot(Plot): | |
360 |
|
359 | |||
361 | CODE = 'cspc' |
|
360 | CODE = 'cspc' | |
362 | colormap = 'jet' |
|
361 | colormap = 'jet' | |
363 | plot_type = 'pcolor' |
|
362 | plot_type = 'pcolor' | |
364 | zmin_coh = None |
|
363 | zmin_coh = None | |
365 | zmax_coh = None |
|
364 | zmax_coh = None | |
366 | zmin_phase = None |
|
365 | zmin_phase = None | |
367 | zmax_phase = None |
|
366 | zmax_phase = None | |
368 |
|
367 | |||
369 | def setup(self): |
|
368 | def setup(self): | |
370 |
|
369 | |||
371 | self.ncols = 4 |
|
370 | self.ncols = 4 | |
372 | self.nrows = len(self.data.pairs) |
|
371 | self.nrows = len(self.data.pairs) | |
373 | self.nplots = self.nrows * 4 |
|
372 | self.nplots = self.nrows * 4 | |
374 | self.width = 3.1 * self.ncols |
|
373 | self.width = 3.1 * self.ncols | |
375 | self.height = 5 * self.nrows |
|
374 | self.height = 5 * self.nrows | |
376 | self.ylabel = 'Range [km]' |
|
375 | self.ylabel = 'Range [km]' | |
377 | self.showprofile = False |
|
376 | self.showprofile = False | |
378 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
377 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
379 |
|
378 | |||
380 | def plot(self): |
|
379 | def plot(self): | |
381 |
|
380 | |||
382 | if self.xaxis == "frequency": |
|
381 | if self.xaxis == "frequency": | |
383 | x = self.data.xrange[0] |
|
382 | x = self.data.xrange[0] | |
384 | self.xlabel = "Frequency (kHz)" |
|
383 | self.xlabel = "Frequency (kHz)" | |
385 | elif self.xaxis == "time": |
|
384 | elif self.xaxis == "time": | |
386 | x = self.data.xrange[1] |
|
385 | x = self.data.xrange[1] | |
387 | self.xlabel = "Time (ms)" |
|
386 | self.xlabel = "Time (ms)" | |
388 | else: |
|
387 | else: | |
389 | x = self.data.xrange[2] |
|
388 | x = self.data.xrange[2] | |
390 | self.xlabel = "Velocity (m/s)" |
|
389 | self.xlabel = "Velocity (m/s)" | |
391 |
|
390 | |||
392 | self.titles = [] |
|
391 | self.titles = [] | |
393 |
|
392 | |||
394 |
|
393 | |||
395 | y = self.data.heights |
|
394 | y = self.data.heights | |
396 | self.y = y |
|
395 | self.y = y | |
397 | nspc = self.data['spc'] |
|
396 | nspc = self.data['spc'] | |
398 | #print(numpy.shape(self.data['spc'])) |
|
397 | #print(numpy.shape(self.data['spc'])) | |
399 | spc = self.data['cspc'][0] |
|
398 | spc = self.data['cspc'][0] | |
400 | #print(numpy.shape(nspc)) |
|
399 | #print(numpy.shape(nspc)) | |
401 | #exit() |
|
400 | #exit() | |
402 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) |
|
401 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) | |
403 | #print(numpy.shape(spc)) |
|
402 | #print(numpy.shape(spc)) | |
404 | #exit() |
|
403 | #exit() | |
405 | cspc = self.data['cspc'][1] |
|
404 | cspc = self.data['cspc'][1] | |
406 |
|
405 | |||
407 | #xflip=numpy.flip(x) |
|
406 | #xflip=numpy.flip(x) | |
408 | #print(numpy.shape(cspc)) |
|
407 | #print(numpy.shape(cspc)) | |
409 | #exit() |
|
408 | #exit() | |
410 |
|
409 | |||
411 | for n in range(self.nrows): |
|
410 | for n in range(self.nrows): | |
412 | noise = self.data['noise'][:,-1] |
|
411 | noise = self.data['noise'][:,-1] | |
413 | pair = self.data.pairs[n] |
|
412 | pair = self.data.pairs[n] | |
414 | #print(pair) |
|
413 | #print(pair) | |
415 | #exit() |
|
414 | #exit() | |
416 | ax = self.axes[4 * n] |
|
415 | ax = self.axes[4 * n] | |
417 | if ax.firsttime: |
|
416 | if ax.firsttime: | |
418 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
417 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
419 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
418 | self.xmin = self.xmin if self.xmin else -self.xmax | |
420 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) |
|
419 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) | |
421 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) |
|
420 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) | |
422 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, |
|
421 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, | |
423 | vmin=self.zmin, |
|
422 | vmin=self.zmin, | |
424 | vmax=self.zmax, |
|
423 | vmax=self.zmax, | |
425 | cmap=plt.get_cmap(self.colormap) |
|
424 | cmap=plt.get_cmap(self.colormap) | |
426 | ) |
|
425 | ) | |
427 | else: |
|
426 | else: | |
428 | #print(numpy.shape(nspc[pair[0]].T)) |
|
427 | #print(numpy.shape(nspc[pair[0]].T)) | |
429 | #exit() |
|
428 | #exit() | |
430 | ax.plt.set_array(nspc[pair[0]].T.ravel()) |
|
429 | ax.plt.set_array(nspc[pair[0]].T.ravel()) | |
431 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) |
|
430 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) | |
432 |
|
431 | |||
433 | ax = self.axes[4 * n + 1] |
|
432 | ax = self.axes[4 * n + 1] | |
434 |
|
433 | |||
435 | if ax.firsttime: |
|
434 | if ax.firsttime: | |
436 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, |
|
435 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, | |
437 | vmin=self.zmin, |
|
436 | vmin=self.zmin, | |
438 | vmax=self.zmax, |
|
437 | vmax=self.zmax, | |
439 | cmap=plt.get_cmap(self.colormap) |
|
438 | cmap=plt.get_cmap(self.colormap) | |
440 | ) |
|
439 | ) | |
441 | else: |
|
440 | else: | |
442 |
|
441 | |||
443 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) |
|
442 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) | |
444 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) |
|
443 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) | |
445 |
|
444 | |||
446 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
445 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
447 | coh = numpy.abs(out) |
|
446 | coh = numpy.abs(out) | |
448 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
447 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
449 |
|
448 | |||
450 | ax = self.axes[4 * n + 2] |
|
449 | ax = self.axes[4 * n + 2] | |
451 | if ax.firsttime: |
|
450 | if ax.firsttime: | |
452 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, |
|
451 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, | |
453 | vmin=0, |
|
452 | vmin=0, | |
454 | vmax=1, |
|
453 | vmax=1, | |
455 | cmap=plt.get_cmap(self.colormap_coh) |
|
454 | cmap=plt.get_cmap(self.colormap_coh) | |
456 | ) |
|
455 | ) | |
457 | else: |
|
456 | else: | |
458 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) |
|
457 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) | |
459 | self.titles.append( |
|
458 | self.titles.append( | |
460 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
459 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
461 |
|
460 | |||
462 | ax = self.axes[4 * n + 3] |
|
461 | ax = self.axes[4 * n + 3] | |
463 | if ax.firsttime: |
|
462 | if ax.firsttime: | |
464 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, |
|
463 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, | |
465 | vmin=-180, |
|
464 | vmin=-180, | |
466 | vmax=180, |
|
465 | vmax=180, | |
467 | cmap=plt.get_cmap(self.colormap_phase) |
|
466 | cmap=plt.get_cmap(self.colormap_phase) | |
468 | ) |
|
467 | ) | |
469 | else: |
|
468 | else: | |
470 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) |
|
469 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) | |
471 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
470 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
472 |
|
471 | |||
473 |
|
472 | |||
474 | class CrossSpectra2Plot(Plot): |
|
473 | class CrossSpectra2Plot(Plot): | |
475 |
|
474 | |||
476 | CODE = 'cspc' |
|
475 | CODE = 'cspc' | |
477 | colormap = 'jet' |
|
476 | colormap = 'jet' | |
478 | plot_type = 'pcolor' |
|
477 | plot_type = 'pcolor' | |
479 | zmin_coh = None |
|
478 | zmin_coh = None | |
480 | zmax_coh = None |
|
479 | zmax_coh = None | |
481 | zmin_phase = None |
|
480 | zmin_phase = None | |
482 | zmax_phase = None |
|
481 | zmax_phase = None | |
483 |
|
482 | |||
484 | def setup(self): |
|
483 | def setup(self): | |
485 |
|
484 | |||
486 | self.ncols = 1 |
|
485 | self.ncols = 1 | |
487 | self.nrows = len(self.data.pairs) |
|
486 | self.nrows = len(self.data.pairs) | |
488 | self.nplots = self.nrows * 1 |
|
487 | self.nplots = self.nrows * 1 | |
489 | self.width = 3.1 * self.ncols |
|
488 | self.width = 3.1 * self.ncols | |
490 | self.height = 5 * self.nrows |
|
489 | self.height = 5 * self.nrows | |
491 | self.ylabel = 'Range [km]' |
|
490 | self.ylabel = 'Range [km]' | |
492 | self.showprofile = False |
|
491 | self.showprofile = False | |
493 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
492 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
494 |
|
493 | |||
495 | def plot(self): |
|
494 | def plot(self): | |
496 |
|
495 | |||
497 | if self.xaxis == "frequency": |
|
496 | if self.xaxis == "frequency": | |
498 | x = self.data.xrange[0] |
|
497 | x = self.data.xrange[0] | |
499 | self.xlabel = "Frequency (kHz)" |
|
498 | self.xlabel = "Frequency (kHz)" | |
500 | elif self.xaxis == "time": |
|
499 | elif self.xaxis == "time": | |
501 | x = self.data.xrange[1] |
|
500 | x = self.data.xrange[1] | |
502 | self.xlabel = "Time (ms)" |
|
501 | self.xlabel = "Time (ms)" | |
503 | else: |
|
502 | else: | |
504 | x = self.data.xrange[2] |
|
503 | x = self.data.xrange[2] | |
505 | self.xlabel = "Velocity (m/s)" |
|
504 | self.xlabel = "Velocity (m/s)" | |
506 |
|
505 | |||
507 | self.titles = [] |
|
506 | self.titles = [] | |
508 |
|
507 | |||
509 |
|
508 | |||
510 | y = self.data.heights |
|
509 | y = self.data.heights | |
511 | self.y = y |
|
510 | self.y = y | |
512 | #nspc = self.data['spc'] |
|
511 | #nspc = self.data['spc'] | |
513 | #print(numpy.shape(self.data['spc'])) |
|
512 | #print(numpy.shape(self.data['spc'])) | |
514 | #spc = self.data['cspc'][0] |
|
513 | #spc = self.data['cspc'][0] | |
515 | #print(numpy.shape(spc)) |
|
514 | #print(numpy.shape(spc)) | |
516 | #exit() |
|
515 | #exit() | |
517 | cspc = self.data['cspc'][1] |
|
516 | cspc = self.data['cspc'][1] | |
518 | #print(numpy.shape(cspc)) |
|
517 | #print(numpy.shape(cspc)) | |
519 | #exit() |
|
518 | #exit() | |
520 |
|
519 | |||
521 | for n in range(self.nrows): |
|
520 | for n in range(self.nrows): | |
522 | noise = self.data['noise'][:,-1] |
|
521 | noise = self.data['noise'][:,-1] | |
523 | pair = self.data.pairs[n] |
|
522 | pair = self.data.pairs[n] | |
524 | #print(pair) #exit() |
|
523 | #print(pair) #exit() | |
525 |
|
524 | |||
526 |
|
525 | |||
527 |
|
526 | |||
528 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
527 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
529 |
|
528 | |||
530 | #print(out[:,53]) |
|
529 | #print(out[:,53]) | |
531 | #exit() |
|
530 | #exit() | |
532 | cross = numpy.abs(out) |
|
531 | cross = numpy.abs(out) | |
533 | z = cross/self.data.nFactor |
|
532 | z = cross/self.data.nFactor | |
534 | #print("here") |
|
533 | #print("here") | |
535 | #print(dataOut.data_spc[0,0,0]) |
|
534 | #print(dataOut.data_spc[0,0,0]) | |
536 | #exit() |
|
535 | #exit() | |
537 |
|
536 | |||
538 | cross = 10*numpy.log10(z) |
|
537 | cross = 10*numpy.log10(z) | |
539 | #print(numpy.shape(cross)) |
|
538 | #print(numpy.shape(cross)) | |
540 | #print(cross[0,:]) |
|
539 | #print(cross[0,:]) | |
541 | #print(self.data.nFactor) |
|
540 | #print(self.data.nFactor) | |
542 | #exit() |
|
541 | #exit() | |
543 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
542 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
544 |
|
543 | |||
545 | ax = self.axes[1 * n] |
|
544 | ax = self.axes[1 * n] | |
546 | if ax.firsttime: |
|
545 | if ax.firsttime: | |
547 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
546 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
548 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
547 | self.xmin = self.xmin if self.xmin else -self.xmax | |
549 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
548 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
550 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
549 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
551 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
550 | ax.plt = ax.pcolormesh(x, y, cross.T, | |
552 | vmin=self.zmin, |
|
551 | vmin=self.zmin, | |
553 | vmax=self.zmax, |
|
552 | vmax=self.zmax, | |
554 | cmap=plt.get_cmap(self.colormap) |
|
553 | cmap=plt.get_cmap(self.colormap) | |
555 | ) |
|
554 | ) | |
556 | else: |
|
555 | else: | |
557 | ax.plt.set_array(cross.T.ravel()) |
|
556 | ax.plt.set_array(cross.T.ravel()) | |
558 | self.titles.append( |
|
557 | self.titles.append( | |
559 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
558 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) | |
560 |
|
559 | |||
561 |
|
560 | |||
562 | class CrossSpectra3Plot(Plot): |
|
561 | class CrossSpectra3Plot(Plot): | |
563 |
|
562 | |||
564 | CODE = 'cspc' |
|
563 | CODE = 'cspc' | |
565 | colormap = 'jet' |
|
564 | colormap = 'jet' | |
566 | plot_type = 'pcolor' |
|
565 | plot_type = 'pcolor' | |
567 | zmin_coh = None |
|
566 | zmin_coh = None | |
568 | zmax_coh = None |
|
567 | zmax_coh = None | |
569 | zmin_phase = None |
|
568 | zmin_phase = None | |
570 | zmax_phase = None |
|
569 | zmax_phase = None | |
571 |
|
570 | |||
572 | def setup(self): |
|
571 | def setup(self): | |
573 |
|
572 | |||
574 | self.ncols = 3 |
|
573 | self.ncols = 3 | |
575 | self.nrows = len(self.data.pairs) |
|
574 | self.nrows = len(self.data.pairs) | |
576 | self.nplots = self.nrows * 3 |
|
575 | self.nplots = self.nrows * 3 | |
577 | self.width = 3.1 * self.ncols |
|
576 | self.width = 3.1 * self.ncols | |
578 | self.height = 5 * self.nrows |
|
577 | self.height = 5 * self.nrows | |
579 | self.ylabel = 'Range [km]' |
|
578 | self.ylabel = 'Range [km]' | |
580 | self.showprofile = False |
|
579 | self.showprofile = False | |
581 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
580 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
582 |
|
581 | |||
583 | def plot(self): |
|
582 | def plot(self): | |
584 |
|
583 | |||
585 | if self.xaxis == "frequency": |
|
584 | if self.xaxis == "frequency": | |
586 | x = self.data.xrange[0] |
|
585 | x = self.data.xrange[0] | |
587 | self.xlabel = "Frequency (kHz)" |
|
586 | self.xlabel = "Frequency (kHz)" | |
588 | elif self.xaxis == "time": |
|
587 | elif self.xaxis == "time": | |
589 | x = self.data.xrange[1] |
|
588 | x = self.data.xrange[1] | |
590 | self.xlabel = "Time (ms)" |
|
589 | self.xlabel = "Time (ms)" | |
591 | else: |
|
590 | else: | |
592 | x = self.data.xrange[2] |
|
591 | x = self.data.xrange[2] | |
593 | self.xlabel = "Velocity (m/s)" |
|
592 | self.xlabel = "Velocity (m/s)" | |
594 |
|
593 | |||
595 | self.titles = [] |
|
594 | self.titles = [] | |
596 |
|
595 | |||
597 |
|
596 | |||
598 | y = self.data.heights |
|
597 | y = self.data.heights | |
599 | self.y = y |
|
598 | self.y = y | |
600 | #nspc = self.data['spc'] |
|
599 | #nspc = self.data['spc'] | |
601 | #print(numpy.shape(self.data['spc'])) |
|
600 | #print(numpy.shape(self.data['spc'])) | |
602 | #spc = self.data['cspc'][0] |
|
601 | #spc = self.data['cspc'][0] | |
603 | #print(numpy.shape(spc)) |
|
602 | #print(numpy.shape(spc)) | |
604 | #exit() |
|
603 | #exit() | |
605 | cspc = self.data['cspc'][1] |
|
604 | cspc = self.data['cspc'][1] | |
606 | #print(numpy.shape(cspc)) |
|
605 | #print(numpy.shape(cspc)) | |
607 | #exit() |
|
606 | #exit() | |
608 |
|
607 | |||
609 | for n in range(self.nrows): |
|
608 | for n in range(self.nrows): | |
610 | noise = self.data['noise'][:,-1] |
|
609 | noise = self.data['noise'][:,-1] | |
611 | pair = self.data.pairs[n] |
|
610 | pair = self.data.pairs[n] | |
612 | #print(pair) #exit() |
|
611 | #print(pair) #exit() | |
613 |
|
612 | |||
614 |
|
613 | |||
615 |
|
614 | |||
616 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
615 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
617 |
|
616 | |||
618 | #print(out[:,53]) |
|
617 | #print(out[:,53]) | |
619 | #exit() |
|
618 | #exit() | |
620 | cross = numpy.abs(out) |
|
619 | cross = numpy.abs(out) | |
621 | z = cross/self.data.nFactor |
|
620 | z = cross/self.data.nFactor | |
622 | cross = 10*numpy.log10(z) |
|
621 | cross = 10*numpy.log10(z) | |
623 |
|
622 | |||
624 | out_r= out.real/self.data.nFactor |
|
623 | out_r= out.real/self.data.nFactor | |
625 | #out_r = 10*numpy.log10(out_r) |
|
624 | #out_r = 10*numpy.log10(out_r) | |
626 |
|
625 | |||
627 | out_i= out.imag/self.data.nFactor |
|
626 | out_i= out.imag/self.data.nFactor | |
628 | #out_i = 10*numpy.log10(out_i) |
|
627 | #out_i = 10*numpy.log10(out_i) | |
629 | #print(numpy.shape(cross)) |
|
628 | #print(numpy.shape(cross)) | |
630 | #print(cross[0,:]) |
|
629 | #print(cross[0,:]) | |
631 | #print(self.data.nFactor) |
|
630 | #print(self.data.nFactor) | |
632 | #exit() |
|
631 | #exit() | |
633 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
632 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
634 |
|
633 | |||
635 | ax = self.axes[3 * n] |
|
634 | ax = self.axes[3 * n] | |
636 | if ax.firsttime: |
|
635 | if ax.firsttime: | |
637 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
636 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
638 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
637 | self.xmin = self.xmin if self.xmin else -self.xmax | |
639 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
638 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
640 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
639 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
641 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
640 | ax.plt = ax.pcolormesh(x, y, cross.T, | |
642 | vmin=self.zmin, |
|
641 | vmin=self.zmin, | |
643 | vmax=self.zmax, |
|
642 | vmax=self.zmax, | |
644 | cmap=plt.get_cmap(self.colormap) |
|
643 | cmap=plt.get_cmap(self.colormap) | |
645 | ) |
|
644 | ) | |
646 | else: |
|
645 | else: | |
647 | ax.plt.set_array(cross.T.ravel()) |
|
646 | ax.plt.set_array(cross.T.ravel()) | |
648 | self.titles.append( |
|
647 | self.titles.append( | |
649 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
648 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) | |
650 |
|
649 | |||
651 | ax = self.axes[3 * n + 1] |
|
650 | ax = self.axes[3 * n + 1] | |
652 | if ax.firsttime: |
|
651 | if ax.firsttime: | |
653 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
652 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
654 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
653 | self.xmin = self.xmin if self.xmin else -self.xmax | |
655 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
654 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
656 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
655 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
657 | ax.plt = ax.pcolormesh(x, y, out_r.T, |
|
656 | ax.plt = ax.pcolormesh(x, y, out_r.T, | |
658 | vmin=-1.e6, |
|
657 | vmin=-1.e6, | |
659 | vmax=0, |
|
658 | vmax=0, | |
660 | cmap=plt.get_cmap(self.colormap) |
|
659 | cmap=plt.get_cmap(self.colormap) | |
661 | ) |
|
660 | ) | |
662 | else: |
|
661 | else: | |
663 | ax.plt.set_array(out_r.T.ravel()) |
|
662 | ax.plt.set_array(out_r.T.ravel()) | |
664 | self.titles.append( |
|
663 | self.titles.append( | |
665 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
664 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) | |
666 |
|
665 | |||
667 | ax = self.axes[3 * n + 2] |
|
666 | ax = self.axes[3 * n + 2] | |
668 |
|
667 | |||
669 |
|
668 | |||
670 | if ax.firsttime: |
|
669 | if ax.firsttime: | |
671 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
670 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
672 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
671 | self.xmin = self.xmin if self.xmin else -self.xmax | |
673 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
672 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
674 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
673 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
675 | ax.plt = ax.pcolormesh(x, y, out_i.T, |
|
674 | ax.plt = ax.pcolormesh(x, y, out_i.T, | |
676 | vmin=-1.e6, |
|
675 | vmin=-1.e6, | |
677 | vmax=1.e6, |
|
676 | vmax=1.e6, | |
678 | cmap=plt.get_cmap(self.colormap) |
|
677 | cmap=plt.get_cmap(self.colormap) | |
679 | ) |
|
678 | ) | |
680 | else: |
|
679 | else: | |
681 | ax.plt.set_array(out_i.T.ravel()) |
|
680 | ax.plt.set_array(out_i.T.ravel()) | |
682 | self.titles.append( |
|
681 | self.titles.append( | |
683 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
682 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) | |
684 |
|
683 | |||
685 | class RTIPlot(Plot): |
|
684 | class RTIPlot(Plot): | |
686 | ''' |
|
685 | ''' | |
687 | Plot for RTI data |
|
686 | Plot for RTI data | |
688 | ''' |
|
687 | ''' | |
689 |
|
688 | |||
690 | CODE = 'rti' |
|
689 | CODE = 'rti' | |
691 | colormap = 'jet' |
|
690 | colormap = 'jet' | |
692 | plot_type = 'pcolorbuffer' |
|
691 | plot_type = 'pcolorbuffer' | |
693 |
|
692 | |||
694 | def setup(self): |
|
693 | def setup(self): | |
695 | self.xaxis = 'time' |
|
694 | self.xaxis = 'time' | |
696 | self.ncols = 1 |
|
695 | self.ncols = 1 | |
697 | self.nrows = len(self.data.channels) |
|
696 | self.nrows = len(self.data.channels) | |
698 | self.nplots = len(self.data.channels) |
|
697 | self.nplots = len(self.data.channels) | |
699 | self.ylabel = 'Range [km]' |
|
698 | self.ylabel = 'Range [km]' | |
700 | self.xlabel = 'Time' |
|
699 | self.xlabel = 'Time' | |
701 | self.cb_label = 'dB' |
|
700 | self.cb_label = 'dB' | |
702 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
701 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) | |
703 | self.titles = ['{} Channel {}'.format( |
|
702 | self.titles = ['{} Channel {}'.format( | |
704 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
703 | self.CODE.upper(), x) for x in range(self.nrows)] | |
705 |
|
704 | |||
706 | def update(self, dataOut): |
|
705 | def update(self, dataOut): | |
707 |
|
706 | |||
708 | data = {} |
|
707 | data = {} | |
709 | meta = {} |
|
708 | meta = {} | |
710 | data['rti'] = dataOut.getPower() |
|
709 | data['rti'] = dataOut.getPower() | |
711 | #print(numpy.shape(data['rti'])) |
|
710 | #print(numpy.shape(data['rti'])) | |
712 |
|
711 | |||
713 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
712 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
714 |
|
713 | |||
715 | return data, meta |
|
714 | return data, meta | |
716 |
|
715 | |||
717 | def plot(self): |
|
716 | def plot(self): | |
718 |
|
717 | |||
719 | self.x = self.data.times |
|
718 | self.x = self.data.times | |
720 | self.y = self.data.yrange |
|
719 | self.y = self.data.yrange | |
721 | self.z = self.data[self.CODE] |
|
720 | self.z = self.data[self.CODE] | |
722 | #print("Inside RTI: ", self.z) |
|
721 | #print("Inside RTI: ", self.z) | |
723 | self.z = numpy.ma.masked_invalid(self.z) |
|
722 | self.z = numpy.ma.masked_invalid(self.z) | |
724 |
|
723 | |||
725 | if self.decimation is None: |
|
724 | if self.decimation is None: | |
726 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
725 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
727 | else: |
|
726 | else: | |
728 | x, y, z = self.fill_gaps(*self.decimate()) |
|
727 | x, y, z = self.fill_gaps(*self.decimate()) | |
729 | #print("self.z: ", self.z) |
|
728 | #print("self.z: ", self.z) | |
730 | #exit(1) |
|
729 | #exit(1) | |
731 | ''' |
|
730 | ''' | |
732 | if not isinstance(self.zmin, collections.abc.Sequence): |
|
731 | if not isinstance(self.zmin, collections.abc.Sequence): | |
733 | if not self.zmin: |
|
732 | if not self.zmin: | |
734 | self.zmin = [numpy.min(self.z)]*len(self.axes) |
|
733 | self.zmin = [numpy.min(self.z)]*len(self.axes) | |
735 | else: |
|
734 | else: | |
736 | self.zmin = [self.zmin]*len(self.axes) |
|
735 | self.zmin = [self.zmin]*len(self.axes) | |
737 |
|
736 | |||
738 | if not isinstance(self.zmax, collections.abc.Sequence): |
|
737 | if not isinstance(self.zmax, collections.abc.Sequence): | |
739 | if not self.zmax: |
|
738 | if not self.zmax: | |
740 | self.zmax = [numpy.max(self.z)]*len(self.axes) |
|
739 | self.zmax = [numpy.max(self.z)]*len(self.axes) | |
741 | else: |
|
740 | else: | |
742 | self.zmax = [self.zmax]*len(self.axes) |
|
741 | self.zmax = [self.zmax]*len(self.axes) | |
743 | ''' |
|
742 | ''' | |
744 | for n, ax in enumerate(self.axes): |
|
743 | for n, ax in enumerate(self.axes): | |
745 |
|
744 | |||
746 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
745 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
747 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
746 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
748 |
|
747 | |||
749 | if ax.firsttime: |
|
748 | if ax.firsttime: | |
750 | if self.zlimits is not None: |
|
749 | if self.zlimits is not None: | |
751 | self.zmin, self.zmax = self.zlimits[n] |
|
750 | self.zmin, self.zmax = self.zlimits[n] | |
752 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
751 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
753 | vmin=self.zmin, |
|
752 | vmin=self.zmin, | |
754 | vmax=self.zmax, |
|
753 | vmax=self.zmax, | |
755 | cmap=plt.get_cmap(self.colormap) |
|
754 | cmap=plt.get_cmap(self.colormap) | |
756 | ) |
|
755 | ) | |
757 | if self.showprofile: |
|
756 | if self.showprofile: | |
758 | ax.plot_profile = self.pf_axes[n].plot( |
|
757 | ax.plot_profile = self.pf_axes[n].plot( | |
759 | self.data['rti'][n][-1], self.y)[0] |
|
758 | self.data['rti'][n][-1], self.y)[0] | |
760 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
759 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, | |
761 | color="k", linestyle="dashed", lw=1)[0] |
|
760 | color="k", linestyle="dashed", lw=1)[0] | |
762 | else: |
|
761 | else: | |
763 | if self.zlimits is not None: |
|
762 | if self.zlimits is not None: | |
764 | self.zmin, self.zmax = self.zlimits[n] |
|
763 | self.zmin, self.zmax = self.zlimits[n] | |
765 | ax.plt.remove() |
|
764 | ax.plt.remove() | |
766 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
765 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
767 | vmin=self.zmin, |
|
766 | vmin=self.zmin, | |
768 | vmax=self.zmax, |
|
767 | vmax=self.zmax, | |
769 | cmap=plt.get_cmap(self.colormap) |
|
768 | cmap=plt.get_cmap(self.colormap) | |
770 | ) |
|
769 | ) | |
771 | if self.showprofile: |
|
770 | if self.showprofile: | |
772 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
771 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) | |
773 | ax.plot_noise.set_data(numpy.repeat( |
|
772 | ax.plot_noise.set_data(numpy.repeat( | |
774 | self.data['noise'][n][-1], len(self.y)), self.y) |
|
773 | self.data['noise'][n][-1], len(self.y)), self.y) | |
775 |
|
774 | |||
776 |
|
775 | |||
777 | class SpectrogramPlot(Plot): |
|
776 | class SpectrogramPlot(Plot): | |
778 | ''' |
|
777 | ''' | |
779 | Plot for Spectrogram data |
|
778 | Plot for Spectrogram data | |
780 | ''' |
|
779 | ''' | |
781 |
|
780 | |||
782 | CODE = 'Spectrogram_Profile' |
|
781 | CODE = 'Spectrogram_Profile' | |
783 | colormap = 'binary' |
|
782 | colormap = 'binary' | |
784 | plot_type = 'pcolorbuffer' |
|
783 | plot_type = 'pcolorbuffer' | |
785 |
|
784 | |||
786 | def setup(self): |
|
785 | def setup(self): | |
787 | self.xaxis = 'time' |
|
786 | self.xaxis = 'time' | |
788 | self.ncols = 1 |
|
787 | self.ncols = 1 | |
789 | self.nrows = len(self.data.channels) |
|
788 | self.nrows = len(self.data.channels) | |
790 | self.nplots = len(self.data.channels) |
|
789 | self.nplots = len(self.data.channels) | |
791 | self.xlabel = 'Time' |
|
790 | self.xlabel = 'Time' | |
792 | #self.cb_label = 'dB' |
|
791 | #self.cb_label = 'dB' | |
793 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) |
|
792 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) | |
794 | self.titles = [] |
|
793 | self.titles = [] | |
795 |
|
794 | |||
796 | #self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( |
|
795 | #self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( | |
797 | #self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] |
|
796 | #self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] | |
798 |
|
797 | |||
799 | self.titles = ['{} Channel {}'.format( |
|
798 | self.titles = ['{} Channel {}'.format( | |
800 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
799 | self.CODE.upper(), x) for x in range(self.nrows)] | |
801 |
|
800 | |||
802 |
|
801 | |||
803 | def update(self, dataOut): |
|
802 | def update(self, dataOut): | |
804 | data = {} |
|
803 | data = {} | |
805 | meta = {} |
|
804 | meta = {} | |
806 |
|
805 | |||
807 | maxHei = 1620#+12000 |
|
806 | maxHei = 1620#+12000 | |
808 | maxHei = 1180 |
|
807 | maxHei = 1180 | |
809 | maxHei = 500 |
|
808 | maxHei = 500 | |
810 | indb = numpy.where(dataOut.heightList <= maxHei) |
|
809 | indb = numpy.where(dataOut.heightList <= maxHei) | |
811 | hei = indb[0][-1] |
|
810 | hei = indb[0][-1] | |
812 | #print(dataOut.heightList) |
|
811 | #print(dataOut.heightList) | |
813 |
|
812 | |||
814 | factor = dataOut.nIncohInt |
|
813 | factor = dataOut.nIncohInt | |
815 | z = dataOut.data_spc[:,:,hei] / factor |
|
814 | z = dataOut.data_spc[:,:,hei] / factor | |
816 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
815 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
817 | #buffer = 10 * numpy.log10(z) |
|
816 | #buffer = 10 * numpy.log10(z) | |
818 |
|
817 | |||
819 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
818 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
820 |
|
819 | |||
821 |
|
820 | |||
822 | #self.hei = hei |
|
821 | #self.hei = hei | |
823 | #self.heightList = dataOut.heightList |
|
822 | #self.heightList = dataOut.heightList | |
824 | #self.DH = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
823 | #self.DH = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step | |
825 | #self.nProfiles = dataOut.nProfiles |
|
824 | #self.nProfiles = dataOut.nProfiles | |
826 |
|
825 | |||
827 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) |
|
826 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) | |
828 |
|
827 | |||
829 | data['hei'] = hei |
|
828 | data['hei'] = hei | |
830 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
829 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step | |
831 | data['nProfiles'] = dataOut.nProfiles |
|
830 | data['nProfiles'] = dataOut.nProfiles | |
832 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
831 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] | |
833 | ''' |
|
832 | ''' | |
834 | import matplotlib.pyplot as plt |
|
833 | import matplotlib.pyplot as plt | |
835 | plt.plot(10 * numpy.log10(z[0,:])) |
|
834 | plt.plot(10 * numpy.log10(z[0,:])) | |
836 | plt.show() |
|
835 | plt.show() | |
837 |
|
836 | |||
838 | from time import sleep |
|
837 | from time import sleep | |
839 | sleep(10) |
|
838 | sleep(10) | |
840 | ''' |
|
839 | ''' | |
841 | return data, meta |
|
840 | return data, meta | |
842 |
|
841 | |||
843 | def plot(self): |
|
842 | def plot(self): | |
844 |
|
843 | |||
845 | self.x = self.data.times |
|
844 | self.x = self.data.times | |
846 | self.z = self.data[self.CODE] |
|
845 | self.z = self.data[self.CODE] | |
847 | self.y = self.data.xrange[0] |
|
846 | self.y = self.data.xrange[0] | |
848 |
|
847 | |||
849 | hei = self.data['hei'][-1] |
|
848 | hei = self.data['hei'][-1] | |
850 | DH = self.data['DH'][-1] |
|
849 | DH = self.data['DH'][-1] | |
851 | nProfiles = self.data['nProfiles'][-1] |
|
850 | nProfiles = self.data['nProfiles'][-1] | |
852 |
|
851 | |||
853 | self.ylabel = "Frequency (kHz)" |
|
852 | self.ylabel = "Frequency (kHz)" | |
854 |
|
853 | |||
855 | self.z = numpy.ma.masked_invalid(self.z) |
|
854 | self.z = numpy.ma.masked_invalid(self.z) | |
856 |
|
855 | |||
857 | if self.decimation is None: |
|
856 | if self.decimation is None: | |
858 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
857 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
859 | else: |
|
858 | else: | |
860 | x, y, z = self.fill_gaps(*self.decimate()) |
|
859 | x, y, z = self.fill_gaps(*self.decimate()) | |
861 |
|
860 | |||
862 | for n, ax in enumerate(self.axes): |
|
861 | for n, ax in enumerate(self.axes): | |
863 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
862 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
864 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
863 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
865 | data = self.data[-1] |
|
864 | data = self.data[-1] | |
866 | if ax.firsttime: |
|
865 | if ax.firsttime: | |
867 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
866 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
868 | vmin=self.zmin, |
|
867 | vmin=self.zmin, | |
869 | vmax=self.zmax, |
|
868 | vmax=self.zmax, | |
870 | cmap=plt.get_cmap(self.colormap) |
|
869 | cmap=plt.get_cmap(self.colormap) | |
871 | ) |
|
870 | ) | |
872 | else: |
|
871 | else: | |
873 | ax.plt.remove() |
|
872 | ax.plt.remove() | |
874 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
873 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
875 | vmin=self.zmin, |
|
874 | vmin=self.zmin, | |
876 | vmax=self.zmax, |
|
875 | vmax=self.zmax, | |
877 | cmap=plt.get_cmap(self.colormap) |
|
876 | cmap=plt.get_cmap(self.colormap) | |
878 | ) |
|
877 | ) | |
879 |
|
878 | |||
880 | #self.titles.append('Spectrogram') |
|
879 | #self.titles.append('Spectrogram') | |
881 |
|
880 | |||
882 | #self.titles.append('{} Channel {} \n H = {} km ({} - {})'.format( |
|
881 | #self.titles.append('{} Channel {} \n H = {} km ({} - {})'.format( | |
883 | #self.CODE.upper(), x, y[hei], y[hei],y[hei]+(DH*nProfiles))) |
|
882 | #self.CODE.upper(), x, y[hei], y[hei],y[hei]+(DH*nProfiles))) | |
884 |
|
883 | |||
885 |
|
884 | |||
886 |
|
885 | |||
887 |
|
886 | |||
888 | class CoherencePlot(RTIPlot): |
|
887 | class CoherencePlot(RTIPlot): | |
889 | ''' |
|
888 | ''' | |
890 | Plot for Coherence data |
|
889 | Plot for Coherence data | |
891 | ''' |
|
890 | ''' | |
892 |
|
891 | |||
893 | CODE = 'coh' |
|
892 | CODE = 'coh' | |
894 |
|
893 | |||
895 | def setup(self): |
|
894 | def setup(self): | |
896 | self.xaxis = 'time' |
|
895 | self.xaxis = 'time' | |
897 | self.ncols = 1 |
|
896 | self.ncols = 1 | |
898 | self.nrows = len(self.data.pairs) |
|
897 | self.nrows = len(self.data.pairs) | |
899 | self.nplots = len(self.data.pairs) |
|
898 | self.nplots = len(self.data.pairs) | |
900 | self.ylabel = 'Range [km]' |
|
899 | self.ylabel = 'Range [km]' | |
901 | self.xlabel = 'Time' |
|
900 | self.xlabel = 'Time' | |
902 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
901 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) | |
903 | if self.CODE == 'coh': |
|
902 | if self.CODE == 'coh': | |
904 | self.cb_label = '' |
|
903 | self.cb_label = '' | |
905 | self.titles = [ |
|
904 | self.titles = [ | |
906 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
905 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
907 | else: |
|
906 | else: | |
908 | self.cb_label = 'Degrees' |
|
907 | self.cb_label = 'Degrees' | |
909 | self.titles = [ |
|
908 | self.titles = [ | |
910 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
909 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
911 |
|
910 | |||
912 | def update(self, dataOut): |
|
911 | def update(self, dataOut): | |
913 |
|
912 | |||
914 | data = {} |
|
913 | data = {} | |
915 | meta = {} |
|
914 | meta = {} | |
916 | data['coh'] = dataOut.getCoherence() |
|
915 | data['coh'] = dataOut.getCoherence() | |
917 | meta['pairs'] = dataOut.pairsList |
|
916 | meta['pairs'] = dataOut.pairsList | |
918 |
|
917 | |||
919 | return data, meta |
|
918 | return data, meta | |
920 |
|
919 | |||
921 | class PhasePlot(CoherencePlot): |
|
920 | class PhasePlot(CoherencePlot): | |
922 | ''' |
|
921 | ''' | |
923 | Plot for Phase map data |
|
922 | Plot for Phase map data | |
924 | ''' |
|
923 | ''' | |
925 |
|
924 | |||
926 | CODE = 'phase' |
|
925 | CODE = 'phase' | |
927 | colormap = 'seismic' |
|
926 | colormap = 'seismic' | |
928 |
|
927 | |||
929 | def update(self, dataOut): |
|
928 | def update(self, dataOut): | |
930 |
|
929 | |||
931 | data = {} |
|
930 | data = {} | |
932 | meta = {} |
|
931 | meta = {} | |
933 | data['phase'] = dataOut.getCoherence(phase=True) |
|
932 | data['phase'] = dataOut.getCoherence(phase=True) | |
934 | meta['pairs'] = dataOut.pairsList |
|
933 | meta['pairs'] = dataOut.pairsList | |
935 |
|
934 | |||
936 | return data, meta |
|
935 | return data, meta | |
937 |
|
936 | |||
938 | class NoisePlot(Plot): |
|
937 | class NoisePlot(Plot): | |
939 | ''' |
|
938 | ''' | |
940 | Plot for noise |
|
939 | Plot for noise | |
941 | ''' |
|
940 | ''' | |
942 |
|
941 | |||
943 | CODE = 'noise' |
|
942 | CODE = 'noise' | |
944 | plot_type = 'scatterbuffer' |
|
943 | plot_type = 'scatterbuffer' | |
945 |
|
944 | |||
946 | def setup(self): |
|
945 | def setup(self): | |
947 | self.xaxis = 'time' |
|
946 | self.xaxis = 'time' | |
948 | self.ncols = 1 |
|
947 | self.ncols = 1 | |
949 | self.nrows = 1 |
|
948 | self.nrows = 1 | |
950 | self.nplots = 1 |
|
949 | self.nplots = 1 | |
951 | self.ylabel = 'Intensity [dB]' |
|
950 | self.ylabel = 'Intensity [dB]' | |
952 | self.xlabel = 'Time' |
|
951 | self.xlabel = 'Time' | |
953 | self.titles = ['Noise'] |
|
952 | self.titles = ['Noise'] | |
954 | self.colorbar = False |
|
953 | self.colorbar = False | |
955 | self.plots_adjust.update({'right': 0.85 }) |
|
954 | self.plots_adjust.update({'right': 0.85 }) | |
956 |
|
955 | |||
957 | def update(self, dataOut): |
|
956 | def update(self, dataOut): | |
958 |
|
957 | |||
959 | data = {} |
|
958 | data = {} | |
960 | meta = {} |
|
959 | meta = {} | |
961 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
960 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) | |
962 | meta['yrange'] = numpy.array([]) |
|
961 | meta['yrange'] = numpy.array([]) | |
963 |
|
962 | |||
964 | return data, meta |
|
963 | return data, meta | |
965 |
|
964 | |||
966 | def plot(self): |
|
965 | def plot(self): | |
967 |
|
966 | |||
968 | x = self.data.times |
|
967 | x = self.data.times | |
969 | xmin = self.data.min_time |
|
968 | xmin = self.data.min_time | |
970 | xmax = xmin + self.xrange * 60 * 60 |
|
969 | xmax = xmin + self.xrange * 60 * 60 | |
971 | Y = self.data['noise'] |
|
970 | Y = self.data['noise'] | |
972 |
|
971 | |||
973 | if self.axes[0].firsttime: |
|
972 | if self.axes[0].firsttime: | |
974 | self.ymin = numpy.nanmin(Y) - 5 |
|
973 | self.ymin = numpy.nanmin(Y) - 5 | |
975 | self.ymax = numpy.nanmax(Y) + 5 |
|
974 | self.ymax = numpy.nanmax(Y) + 5 | |
976 | for ch in self.data.channels: |
|
975 | for ch in self.data.channels: | |
977 | y = Y[ch] |
|
976 | y = Y[ch] | |
978 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
977 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
979 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
978 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
980 | else: |
|
979 | else: | |
981 | for ch in self.data.channels: |
|
980 | for ch in self.data.channels: | |
982 | y = Y[ch] |
|
981 | y = Y[ch] | |
983 | self.axes[0].lines[ch].set_data(x, y) |
|
982 | self.axes[0].lines[ch].set_data(x, y) | |
984 |
|
983 | |||
985 | self.ymin = numpy.nanmin(Y) - 5 |
|
984 | self.ymin = numpy.nanmin(Y) - 5 | |
986 | self.ymax = numpy.nanmax(Y) + 10 |
|
985 | self.ymax = numpy.nanmax(Y) + 10 | |
987 |
|
986 | |||
988 |
|
987 | |||
989 | class PowerProfilePlot(Plot): |
|
988 | class PowerProfilePlot(Plot): | |
990 |
|
989 | |||
991 | CODE = 'pow_profile' |
|
990 | CODE = 'pow_profile' | |
992 | plot_type = 'scatter' |
|
991 | plot_type = 'scatter' | |
993 |
|
992 | |||
994 | def setup(self): |
|
993 | def setup(self): | |
995 |
|
994 | |||
996 | self.ncols = 1 |
|
995 | self.ncols = 1 | |
997 | self.nrows = 1 |
|
996 | self.nrows = 1 | |
998 | self.nplots = 1 |
|
997 | self.nplots = 1 | |
999 | self.height = 4 |
|
998 | self.height = 4 | |
1000 | self.width = 3 |
|
999 | self.width = 3 | |
1001 | self.ylabel = 'Range [km]' |
|
1000 | self.ylabel = 'Range [km]' | |
1002 | self.xlabel = 'Intensity [dB]' |
|
1001 | self.xlabel = 'Intensity [dB]' | |
1003 | self.titles = ['Power Profile'] |
|
1002 | self.titles = ['Power Profile'] | |
1004 | self.colorbar = False |
|
1003 | self.colorbar = False | |
1005 |
|
1004 | |||
1006 | def update(self, dataOut): |
|
1005 | def update(self, dataOut): | |
1007 |
|
1006 | |||
1008 | data = {} |
|
1007 | data = {} | |
1009 | meta = {} |
|
1008 | meta = {} | |
1010 | data[self.CODE] = dataOut.getPower() |
|
1009 | data[self.CODE] = dataOut.getPower() | |
1011 |
|
1010 | |||
1012 | return data, meta |
|
1011 | return data, meta | |
1013 |
|
1012 | |||
1014 | def plot(self): |
|
1013 | def plot(self): | |
1015 |
|
1014 | |||
1016 | y = self.data.yrange |
|
1015 | y = self.data.yrange | |
1017 | self.y = y |
|
1016 | self.y = y | |
1018 |
|
1017 | |||
1019 | x = self.data[-1][self.CODE] |
|
1018 | x = self.data[-1][self.CODE] | |
1020 |
|
1019 | |||
1021 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
1020 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 | |
1022 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
1021 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 | |
1023 |
|
1022 | |||
1024 | if self.axes[0].firsttime: |
|
1023 | if self.axes[0].firsttime: | |
1025 | for ch in self.data.channels: |
|
1024 | for ch in self.data.channels: | |
1026 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
1025 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) | |
1027 | plt.legend() |
|
1026 | plt.legend() | |
1028 | else: |
|
1027 | else: | |
1029 | for ch in self.data.channels: |
|
1028 | for ch in self.data.channels: | |
1030 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
1029 | self.axes[0].lines[ch].set_data(x[ch], y) | |
1031 |
|
1030 | |||
1032 |
|
1031 | |||
1033 | class SpectraCutPlot(Plot): |
|
1032 | class SpectraCutPlot(Plot): | |
1034 |
|
1033 | |||
1035 | CODE = 'spc_cut' |
|
1034 | CODE = 'spc_cut' | |
1036 | plot_type = 'scatter' |
|
1035 | plot_type = 'scatter' | |
1037 | buffering = False |
|
1036 | buffering = False | |
1038 |
|
1037 | |||
1039 | def setup(self): |
|
1038 | def setup(self): | |
1040 |
|
1039 | |||
1041 | self.nplots = len(self.data.channels) |
|
1040 | self.nplots = len(self.data.channels) | |
1042 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
1041 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
1043 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
1042 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
1044 | self.width = 3.4 * self.ncols + 1.5 |
|
1043 | self.width = 3.4 * self.ncols + 1.5 | |
1045 | self.height = 3 * self.nrows |
|
1044 | self.height = 3 * self.nrows | |
1046 | self.ylabel = 'Power [dB]' |
|
1045 | self.ylabel = 'Power [dB]' | |
1047 | self.colorbar = False |
|
1046 | self.colorbar = False | |
1048 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
1047 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) | |
1049 |
|
1048 | |||
1050 | def update(self, dataOut): |
|
1049 | def update(self, dataOut): | |
1051 |
|
1050 | |||
1052 | data = {} |
|
1051 | data = {} | |
1053 | meta = {} |
|
1052 | meta = {} | |
1054 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
1053 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
1055 | data['spc'] = spc |
|
1054 | data['spc'] = spc | |
1056 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
1055 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
1057 | if self.CODE == 'cut_gaussian_fit': |
|
1056 | if self.CODE == 'cut_gaussian_fit': | |
1058 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) |
|
1057 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) | |
1059 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) |
|
1058 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) | |
1060 | return data, meta |
|
1059 | return data, meta | |
1061 |
|
1060 | |||
1062 | def plot(self): |
|
1061 | def plot(self): | |
1063 | if self.xaxis == "frequency": |
|
1062 | if self.xaxis == "frequency": | |
1064 | x = self.data.xrange[0][1:] |
|
1063 | x = self.data.xrange[0][1:] | |
1065 | self.xlabel = "Frequency (kHz)" |
|
1064 | self.xlabel = "Frequency (kHz)" | |
1066 | elif self.xaxis == "time": |
|
1065 | elif self.xaxis == "time": | |
1067 | x = self.data.xrange[1] |
|
1066 | x = self.data.xrange[1] | |
1068 | self.xlabel = "Time (ms)" |
|
1067 | self.xlabel = "Time (ms)" | |
1069 | else: |
|
1068 | else: | |
1070 | x = self.data.xrange[2][:-1] |
|
1069 | x = self.data.xrange[2][:-1] | |
1071 | self.xlabel = "Velocity (m/s)" |
|
1070 | self.xlabel = "Velocity (m/s)" | |
1072 |
|
1071 | |||
1073 | if self.CODE == 'cut_gaussian_fit': |
|
1072 | if self.CODE == 'cut_gaussian_fit': | |
1074 | x = self.data.xrange[2][:-1] |
|
1073 | x = self.data.xrange[2][:-1] | |
1075 | self.xlabel = "Velocity (m/s)" |
|
1074 | self.xlabel = "Velocity (m/s)" | |
1076 |
|
1075 | |||
1077 | self.titles = [] |
|
1076 | self.titles = [] | |
1078 |
|
1077 | |||
1079 | y = self.data.yrange |
|
1078 | y = self.data.yrange | |
1080 | data = self.data[-1] |
|
1079 | data = self.data[-1] | |
1081 | z = data['spc'] |
|
1080 | z = data['spc'] | |
1082 |
|
1081 | |||
1083 | if self.height_index: |
|
1082 | if self.height_index: | |
1084 | index = numpy.array(self.height_index) |
|
1083 | index = numpy.array(self.height_index) | |
1085 | else: |
|
1084 | else: | |
1086 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
1085 | index = numpy.arange(0, len(y), int((len(y))/9)) | |
1087 |
|
1086 | |||
1088 | for n, ax in enumerate(self.axes): |
|
1087 | for n, ax in enumerate(self.axes): | |
1089 | if self.CODE == 'cut_gaussian_fit': |
|
1088 | if self.CODE == 'cut_gaussian_fit': | |
1090 | gau0 = data['gauss_fit0'] |
|
1089 | gau0 = data['gauss_fit0'] | |
1091 | gau1 = data['gauss_fit1'] |
|
1090 | gau1 = data['gauss_fit1'] | |
1092 | if ax.firsttime: |
|
1091 | if ax.firsttime: | |
1093 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
1092 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
1094 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
1093 | self.xmin = self.xmin if self.xmin else -self.xmax | |
1095 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z[:,:,index]) |
|
1094 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z[:,:,index]) | |
1096 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z[:,:,index]) |
|
1095 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z[:,:,index]) | |
1097 | #print(self.ymax) |
|
1096 | #print(self.ymax) | |
1098 | #print(z[n, :, index]) |
|
1097 | #print(z[n, :, index]) | |
1099 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) |
|
1098 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) | |
1100 | if self.CODE == 'cut_gaussian_fit': |
|
1099 | if self.CODE == 'cut_gaussian_fit': | |
1101 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') |
|
1100 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') | |
1102 | for i, line in enumerate(ax.plt_gau0): |
|
1101 | for i, line in enumerate(ax.plt_gau0): | |
1103 | line.set_color(ax.plt[i].get_color()) |
|
1102 | line.set_color(ax.plt[i].get_color()) | |
1104 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') |
|
1103 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') | |
1105 | for i, line in enumerate(ax.plt_gau1): |
|
1104 | for i, line in enumerate(ax.plt_gau1): | |
1106 | line.set_color(ax.plt[i].get_color()) |
|
1105 | line.set_color(ax.plt[i].get_color()) | |
1107 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
1106 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] | |
1108 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
1107 | self.figures[0].legend(ax.plt, labels, loc='center right') | |
1109 | else: |
|
1108 | else: | |
1110 | for i, line in enumerate(ax.plt): |
|
1109 | for i, line in enumerate(ax.plt): | |
1111 | line.set_data(x, z[n, :, index[i]].T) |
|
1110 | line.set_data(x, z[n, :, index[i]].T) | |
1112 | for i, line in enumerate(ax.plt_gau0): |
|
1111 | for i, line in enumerate(ax.plt_gau0): | |
1113 | line.set_data(x, gau0[n, :, index[i]].T) |
|
1112 | line.set_data(x, gau0[n, :, index[i]].T) | |
1114 | line.set_color(ax.plt[i].get_color()) |
|
1113 | line.set_color(ax.plt[i].get_color()) | |
1115 | for i, line in enumerate(ax.plt_gau1): |
|
1114 | for i, line in enumerate(ax.plt_gau1): | |
1116 | line.set_data(x, gau1[n, :, index[i]].T) |
|
1115 | line.set_data(x, gau1[n, :, index[i]].T) | |
1117 | line.set_color(ax.plt[i].get_color()) |
|
1116 | line.set_color(ax.plt[i].get_color()) | |
1118 | self.titles.append('CH {}'.format(n)) |
|
1117 | self.titles.append('CH {}'.format(n)) | |
1119 |
|
1118 | |||
1120 |
|
1119 | |||
1121 | class BeaconPhase(Plot): |
|
1120 | class BeaconPhase(Plot): | |
1122 |
|
1121 | |||
1123 | __isConfig = None |
|
1122 | __isConfig = None | |
1124 | __nsubplots = None |
|
1123 | __nsubplots = None | |
1125 |
|
1124 | |||
1126 | PREFIX = 'beacon_phase' |
|
1125 | PREFIX = 'beacon_phase' | |
1127 |
|
1126 | |||
1128 | def __init__(self): |
|
1127 | def __init__(self): | |
1129 | Plot.__init__(self) |
|
1128 | Plot.__init__(self) | |
1130 | self.timerange = 24*60*60 |
|
1129 | self.timerange = 24*60*60 | |
1131 | self.isConfig = False |
|
1130 | self.isConfig = False | |
1132 | self.__nsubplots = 1 |
|
1131 | self.__nsubplots = 1 | |
1133 | self.counter_imagwr = 0 |
|
1132 | self.counter_imagwr = 0 | |
1134 | self.WIDTH = 800 |
|
1133 | self.WIDTH = 800 | |
1135 | self.HEIGHT = 400 |
|
1134 | self.HEIGHT = 400 | |
1136 | self.WIDTHPROF = 120 |
|
1135 | self.WIDTHPROF = 120 | |
1137 | self.HEIGHTPROF = 0 |
|
1136 | self.HEIGHTPROF = 0 | |
1138 | self.xdata = None |
|
1137 | self.xdata = None | |
1139 | self.ydata = None |
|
1138 | self.ydata = None | |
1140 |
|
1139 | |||
1141 | self.PLOT_CODE = BEACON_CODE |
|
1140 | self.PLOT_CODE = BEACON_CODE | |
1142 |
|
1141 | |||
1143 | self.FTP_WEI = None |
|
1142 | self.FTP_WEI = None | |
1144 | self.EXP_CODE = None |
|
1143 | self.EXP_CODE = None | |
1145 | self.SUB_EXP_CODE = None |
|
1144 | self.SUB_EXP_CODE = None | |
1146 | self.PLOT_POS = None |
|
1145 | self.PLOT_POS = None | |
1147 |
|
1146 | |||
1148 | self.filename_phase = None |
|
1147 | self.filename_phase = None | |
1149 |
|
1148 | |||
1150 | self.figfile = None |
|
1149 | self.figfile = None | |
1151 |
|
1150 | |||
1152 | self.xmin = None |
|
1151 | self.xmin = None | |
1153 | self.xmax = None |
|
1152 | self.xmax = None | |
1154 |
|
1153 | |||
1155 | def getSubplots(self): |
|
1154 | def getSubplots(self): | |
1156 |
|
1155 | |||
1157 | ncol = 1 |
|
1156 | ncol = 1 | |
1158 | nrow = 1 |
|
1157 | nrow = 1 | |
1159 |
|
1158 | |||
1160 | return nrow, ncol |
|
1159 | return nrow, ncol | |
1161 |
|
1160 | |||
1162 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1161 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
1163 |
|
1162 | |||
1164 | self.__showprofile = showprofile |
|
1163 | self.__showprofile = showprofile | |
1165 | self.nplots = nplots |
|
1164 | self.nplots = nplots | |
1166 |
|
1165 | |||
1167 | ncolspan = 7 |
|
1166 | ncolspan = 7 | |
1168 | colspan = 6 |
|
1167 | colspan = 6 | |
1169 | self.__nsubplots = 2 |
|
1168 | self.__nsubplots = 2 | |
1170 |
|
1169 | |||
1171 | self.createFigure(id = id, |
|
1170 | self.createFigure(id = id, | |
1172 | wintitle = wintitle, |
|
1171 | wintitle = wintitle, | |
1173 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1172 | widthplot = self.WIDTH+self.WIDTHPROF, | |
1174 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1173 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
1175 | show=show) |
|
1174 | show=show) | |
1176 |
|
1175 | |||
1177 | nrow, ncol = self.getSubplots() |
|
1176 | nrow, ncol = self.getSubplots() | |
1178 |
|
1177 | |||
1179 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1178 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
1180 |
|
1179 | |||
1181 | def save_phase(self, filename_phase): |
|
1180 | def save_phase(self, filename_phase): | |
1182 | f = open(filename_phase,'w+') |
|
1181 | f = open(filename_phase,'w+') | |
1183 | f.write('\n\n') |
|
1182 | f.write('\n\n') | |
1184 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1183 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
1185 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1184 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
1186 | f.close() |
|
1185 | f.close() | |
1187 |
|
1186 | |||
1188 | def save_data(self, filename_phase, data, data_datetime): |
|
1187 | def save_data(self, filename_phase, data, data_datetime): | |
1189 | f=open(filename_phase,'a') |
|
1188 | f=open(filename_phase,'a') | |
1190 | timetuple_data = data_datetime.timetuple() |
|
1189 | timetuple_data = data_datetime.timetuple() | |
1191 | day = str(timetuple_data.tm_mday) |
|
1190 | day = str(timetuple_data.tm_mday) | |
1192 | month = str(timetuple_data.tm_mon) |
|
1191 | month = str(timetuple_data.tm_mon) | |
1193 | year = str(timetuple_data.tm_year) |
|
1192 | year = str(timetuple_data.tm_year) | |
1194 | hour = str(timetuple_data.tm_hour) |
|
1193 | hour = str(timetuple_data.tm_hour) | |
1195 | minute = str(timetuple_data.tm_min) |
|
1194 | minute = str(timetuple_data.tm_min) | |
1196 | second = str(timetuple_data.tm_sec) |
|
1195 | second = str(timetuple_data.tm_sec) | |
1197 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1196 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
1198 | f.close() |
|
1197 | f.close() | |
1199 |
|
1198 | |||
1200 | def plot(self): |
|
1199 | def plot(self): | |
1201 | log.warning('TODO: Not yet implemented...') |
|
1200 | log.warning('TODO: Not yet implemented...') | |
1202 |
|
1201 | |||
1203 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1202 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
1204 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1203 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
1205 | timerange=None, |
|
1204 | timerange=None, | |
1206 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1205 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
1207 | server=None, folder=None, username=None, password=None, |
|
1206 | server=None, folder=None, username=None, password=None, | |
1208 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1207 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1209 |
|
1208 | |||
1210 | if dataOut.flagNoData: |
|
1209 | if dataOut.flagNoData: | |
1211 | return dataOut |
|
1210 | return dataOut | |
1212 |
|
1211 | |||
1213 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1212 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
1214 | return |
|
1213 | return | |
1215 |
|
1214 | |||
1216 | if pairsList == None: |
|
1215 | if pairsList == None: | |
1217 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1216 | pairsIndexList = dataOut.pairsIndexList[:10] | |
1218 | else: |
|
1217 | else: | |
1219 | pairsIndexList = [] |
|
1218 | pairsIndexList = [] | |
1220 | for pair in pairsList: |
|
1219 | for pair in pairsList: | |
1221 | if pair not in dataOut.pairsList: |
|
1220 | if pair not in dataOut.pairsList: | |
1222 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
1221 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) | |
1223 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1222 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
1224 |
|
1223 | |||
1225 | if pairsIndexList == []: |
|
1224 | if pairsIndexList == []: | |
1226 | return |
|
1225 | return | |
1227 |
|
1226 | |||
1228 | # if len(pairsIndexList) > 4: |
|
1227 | # if len(pairsIndexList) > 4: | |
1229 | # pairsIndexList = pairsIndexList[0:4] |
|
1228 | # pairsIndexList = pairsIndexList[0:4] | |
1230 |
|
1229 | |||
1231 | hmin_index = None |
|
1230 | hmin_index = None | |
1232 | hmax_index = None |
|
1231 | hmax_index = None | |
1233 |
|
1232 | |||
1234 | if hmin != None and hmax != None: |
|
1233 | if hmin != None and hmax != None: | |
1235 | indexes = numpy.arange(dataOut.nHeights) |
|
1234 | indexes = numpy.arange(dataOut.nHeights) | |
1236 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1235 | hmin_list = indexes[dataOut.heightList >= hmin] | |
1237 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1236 | hmax_list = indexes[dataOut.heightList <= hmax] | |
1238 |
|
1237 | |||
1239 | if hmin_list.any(): |
|
1238 | if hmin_list.any(): | |
1240 | hmin_index = hmin_list[0] |
|
1239 | hmin_index = hmin_list[0] | |
1241 |
|
1240 | |||
1242 | if hmax_list.any(): |
|
1241 | if hmax_list.any(): | |
1243 | hmax_index = hmax_list[-1]+1 |
|
1242 | hmax_index = hmax_list[-1]+1 | |
1244 |
|
1243 | |||
1245 | x = dataOut.getTimeRange() |
|
1244 | x = dataOut.getTimeRange() | |
1246 |
|
1245 | |||
1247 | thisDatetime = dataOut.datatime |
|
1246 | thisDatetime = dataOut.datatime | |
1248 |
|
1247 | |||
1249 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1248 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1250 | xlabel = "Local Time" |
|
1249 | xlabel = "Local Time" | |
1251 | ylabel = "Phase (degrees)" |
|
1250 | ylabel = "Phase (degrees)" | |
1252 |
|
1251 | |||
1253 | update_figfile = False |
|
1252 | update_figfile = False | |
1254 |
|
1253 | |||
1255 | nplots = len(pairsIndexList) |
|
1254 | nplots = len(pairsIndexList) | |
1256 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1255 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
1257 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1256 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
1258 | for i in range(nplots): |
|
1257 | for i in range(nplots): | |
1259 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1258 | pair = dataOut.pairsList[pairsIndexList[i]] | |
1260 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1259 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
1261 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1260 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
1262 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1261 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
1263 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1262 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
1264 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1263 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
1265 |
|
1264 | |||
1266 | if dataOut.beacon_heiIndexList: |
|
1265 | if dataOut.beacon_heiIndexList: | |
1267 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1266 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
1268 | else: |
|
1267 | else: | |
1269 | phase_beacon[i] = numpy.average(phase) |
|
1268 | phase_beacon[i] = numpy.average(phase) | |
1270 |
|
1269 | |||
1271 | if not self.isConfig: |
|
1270 | if not self.isConfig: | |
1272 |
|
1271 | |||
1273 | nplots = len(pairsIndexList) |
|
1272 | nplots = len(pairsIndexList) | |
1274 |
|
1273 | |||
1275 | self.setup(id=id, |
|
1274 | self.setup(id=id, | |
1276 | nplots=nplots, |
|
1275 | nplots=nplots, | |
1277 | wintitle=wintitle, |
|
1276 | wintitle=wintitle, | |
1278 | showprofile=showprofile, |
|
1277 | showprofile=showprofile, | |
1279 | show=show) |
|
1278 | show=show) | |
1280 |
|
1279 | |||
1281 | if timerange != None: |
|
1280 | if timerange != None: | |
1282 | self.timerange = timerange |
|
1281 | self.timerange = timerange | |
1283 |
|
1282 | |||
1284 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1283 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1285 |
|
1284 | |||
1286 | if ymin == None: ymin = 0 |
|
1285 | if ymin == None: ymin = 0 | |
1287 | if ymax == None: ymax = 360 |
|
1286 | if ymax == None: ymax = 360 | |
1288 |
|
1287 | |||
1289 | self.FTP_WEI = ftp_wei |
|
1288 | self.FTP_WEI = ftp_wei | |
1290 | self.EXP_CODE = exp_code |
|
1289 | self.EXP_CODE = exp_code | |
1291 | self.SUB_EXP_CODE = sub_exp_code |
|
1290 | self.SUB_EXP_CODE = sub_exp_code | |
1292 | self.PLOT_POS = plot_pos |
|
1291 | self.PLOT_POS = plot_pos | |
1293 |
|
1292 | |||
1294 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1293 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1295 | self.isConfig = True |
|
1294 | self.isConfig = True | |
1296 | self.figfile = figfile |
|
1295 | self.figfile = figfile | |
1297 | self.xdata = numpy.array([]) |
|
1296 | self.xdata = numpy.array([]) | |
1298 | self.ydata = numpy.array([]) |
|
1297 | self.ydata = numpy.array([]) | |
1299 |
|
1298 | |||
1300 | update_figfile = True |
|
1299 | update_figfile = True | |
1301 |
|
1300 | |||
1302 | #open file beacon phase |
|
1301 | #open file beacon phase | |
1303 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1302 | path = '%s%03d' %(self.PREFIX, self.id) | |
1304 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1303 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
1305 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1304 | self.filename_phase = os.path.join(figpath,beacon_file) | |
1306 | #self.save_phase(self.filename_phase) |
|
1305 | #self.save_phase(self.filename_phase) | |
1307 |
|
1306 | |||
1308 |
|
1307 | |||
1309 | #store data beacon phase |
|
1308 | #store data beacon phase | |
1310 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1309 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
1311 |
|
1310 | |||
1312 | self.setWinTitle(title) |
|
1311 | self.setWinTitle(title) | |
1313 |
|
1312 | |||
1314 |
|
1313 | |||
1315 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1314 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1316 |
|
1315 | |||
1317 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1316 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
1318 |
|
1317 | |||
1319 | axes = self.axesList[0] |
|
1318 | axes = self.axesList[0] | |
1320 |
|
1319 | |||
1321 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1320 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
1322 |
|
1321 | |||
1323 | if len(self.ydata)==0: |
|
1322 | if len(self.ydata)==0: | |
1324 | self.ydata = phase_beacon.reshape(-1,1) |
|
1323 | self.ydata = phase_beacon.reshape(-1,1) | |
1325 | else: |
|
1324 | else: | |
1326 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1325 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
1327 |
|
1326 | |||
1328 |
|
1327 | |||
1329 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1328 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
1330 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1329 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
1331 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1330 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
1332 | XAxisAsTime=True, grid='both' |
|
1331 | XAxisAsTime=True, grid='both' | |
1333 | ) |
|
1332 | ) | |
1334 |
|
1333 | |||
1335 | self.draw() |
|
1334 | self.draw() | |
1336 |
|
1335 | |||
1337 | if dataOut.ltctime >= self.xmax: |
|
1336 | if dataOut.ltctime >= self.xmax: | |
1338 | self.counter_imagwr = wr_period |
|
1337 | self.counter_imagwr = wr_period | |
1339 | self.isConfig = False |
|
1338 | self.isConfig = False | |
1340 | update_figfile = True |
|
1339 | update_figfile = True | |
1341 |
|
1340 | |||
1342 | self.save(figpath=figpath, |
|
1341 | self.save(figpath=figpath, | |
1343 | figfile=figfile, |
|
1342 | figfile=figfile, | |
1344 | save=save, |
|
1343 | save=save, | |
1345 | ftp=ftp, |
|
1344 | ftp=ftp, | |
1346 | wr_period=wr_period, |
|
1345 | wr_period=wr_period, | |
1347 | thisDatetime=thisDatetime, |
|
1346 | thisDatetime=thisDatetime, | |
1348 | update_figfile=update_figfile) |
|
1347 | update_figfile=update_figfile) | |
1349 |
|
1348 | |||
1350 | return dataOut |
|
1349 | return dataOut |
@@ -1,1428 +1,1428 | |||||
1 |
|
1 | |||
2 | import os |
|
2 | import os | |
3 | import time |
|
3 | import time | |
4 | import math |
|
4 | import math | |
5 | import datetime |
|
5 | import datetime | |
6 | import numpy |
|
6 | import numpy | |
7 |
|
7 | |||
8 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator #YONG |
|
8 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator #YONG | |
9 |
|
9 | |||
10 | from .jroplot_spectra import RTIPlot, NoisePlot |
|
10 | from .jroplot_spectra import RTIPlot, NoisePlot | |
11 |
|
11 | |||
12 | from schainpy.utils import log |
|
12 | from schainpy.utils import log | |
13 | from .plotting_codes import * |
|
13 | from .plotting_codes import * | |
14 |
|
14 | |||
15 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
15 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
16 |
|
16 | |||
17 | import matplotlib.pyplot as plt |
|
17 | import matplotlib.pyplot as plt | |
18 | import matplotlib.colors as colors |
|
18 | import matplotlib.colors as colors | |
19 | from matplotlib.ticker import MultipleLocator, LogLocator, NullFormatter |
|
19 | from matplotlib.ticker import MultipleLocator, LogLocator, NullFormatter | |
20 |
|
20 | |||
21 | class RTIDPPlot(RTIPlot): |
|
21 | class RTIDPPlot(RTIPlot): | |
22 | ''' |
|
22 | ''' | |
23 | Written by R. Flores |
|
23 | Written by R. Flores | |
24 | ''' |
|
24 | ''' | |
25 | '''Plot for RTI Double Pulse Experiment Using Cross Products Analysis |
|
25 | '''Plot for RTI Double Pulse Experiment Using Cross Products Analysis | |
26 | ''' |
|
26 | ''' | |
27 |
|
27 | |||
28 | CODE = 'RTIDP' |
|
28 | CODE = 'RTIDP' | |
29 | colormap = 'jet' |
|
29 | colormap = 'jet' | |
30 | plot_name = 'RTI' |
|
30 | plot_name = 'RTI' | |
31 | plot_type = 'pcolorbuffer' |
|
31 | plot_type = 'pcolorbuffer' | |
32 |
|
32 | |||
33 | def setup(self): |
|
33 | def setup(self): | |
34 | self.xaxis = 'time' |
|
34 | self.xaxis = 'time' | |
35 | self.ncols = 1 |
|
35 | self.ncols = 1 | |
36 | self.nrows = 3 |
|
36 | self.nrows = 3 | |
37 | self.nplots = self.nrows |
|
37 | self.nplots = self.nrows | |
38 |
|
38 | |||
39 | self.ylabel = 'Range [km]' |
|
39 | self.ylabel = 'Range [km]' | |
40 | self.xlabel = 'Time (LT)' |
|
40 | self.xlabel = 'Time (LT)' | |
41 |
|
41 | |||
42 | self.cb_label = 'Intensity (dB)' |
|
42 | self.cb_label = 'Intensity (dB)' | |
43 |
|
43 | |||
44 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
44 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) | |
45 |
|
45 | |||
46 | self.titles = ['{} Channel {}'.format( |
|
46 | self.titles = ['{} Channel {}'.format( | |
47 | self.plot_name.upper(), '0x1'),'{} Channel {}'.format( |
|
47 | self.plot_name.upper(), '0x1'),'{} Channel {}'.format( | |
48 | self.plot_name.upper(), '0'),'{} Channel {}'.format( |
|
48 | self.plot_name.upper(), '0'),'{} Channel {}'.format( | |
49 | self.plot_name.upper(), '1')] |
|
49 | self.plot_name.upper(), '1')] | |
50 |
|
50 | |||
51 | def update(self, dataOut): |
|
51 | def update(self, dataOut): | |
52 |
|
52 | |||
53 | data = {} |
|
53 | data = {} | |
54 | meta = {} |
|
54 | meta = {} | |
55 | data['rti'] = dataOut.data_for_RTI_DP |
|
55 | data['rti'] = dataOut.data_for_RTI_DP | |
56 | data['NDP'] = dataOut.NDP |
|
56 | data['NDP'] = dataOut.NDP | |
57 |
|
57 | |||
58 | return data, meta |
|
58 | return data, meta | |
59 |
|
59 | |||
60 | def plot(self): |
|
60 | def plot(self): | |
61 |
|
61 | |||
62 | NDP = self.data['NDP'][-1] |
|
62 | NDP = self.data['NDP'][-1] | |
63 | self.x = self.data.times |
|
63 | self.x = self.data.times | |
64 | self.y = self.data.yrange[0:NDP] |
|
64 | self.y = self.data.yrange[0:NDP] | |
65 | self.z = self.data['rti'] |
|
65 | self.z = self.data['rti'] | |
66 | self.z = numpy.ma.masked_invalid(self.z) |
|
66 | self.z = numpy.ma.masked_invalid(self.z) | |
67 |
|
67 | |||
68 | if self.decimation is None: |
|
68 | if self.decimation is None: | |
69 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
69 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
70 | else: |
|
70 | else: | |
71 | x, y, z = self.fill_gaps(*self.decimate()) |
|
71 | x, y, z = self.fill_gaps(*self.decimate()) | |
72 |
|
72 | |||
73 | for n, ax in enumerate(self.axes): |
|
73 | for n, ax in enumerate(self.axes): | |
74 |
|
74 | |||
75 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
75 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
76 | self.z[1][0,12:40]) |
|
76 | self.z[1][0,12:40]) | |
77 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
77 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
78 | self.z[1][0,12:40]) |
|
78 | self.z[1][0,12:40]) | |
79 |
|
79 | |||
80 | if ax.firsttime: |
|
80 | if ax.firsttime: | |
81 |
|
81 | |||
82 | if self.zlimits is not None: |
|
82 | if self.zlimits is not None: | |
83 | self.zmin, self.zmax = self.zlimits[n] |
|
83 | self.zmin, self.zmax = self.zlimits[n] | |
84 |
|
84 | |||
85 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
85 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
86 | vmin=self.zmin, |
|
86 | vmin=self.zmin, | |
87 | vmax=self.zmax, |
|
87 | vmax=self.zmax, | |
88 | cmap=plt.get_cmap(self.colormap) |
|
88 | cmap=plt.get_cmap(self.colormap) | |
89 | ) |
|
89 | ) | |
90 | else: |
|
90 | else: | |
91 | #if self.zlimits is not None: |
|
91 | #if self.zlimits is not None: | |
92 | #self.zmin, self.zmax = self.zlimits[n] |
|
92 | #self.zmin, self.zmax = self.zlimits[n] | |
93 | ax.plt.remove() |
|
93 | ax.plt.remove() | |
94 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
94 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
95 | vmin=self.zmin, |
|
95 | vmin=self.zmin, | |
96 | vmax=self.zmax, |
|
96 | vmax=self.zmax, | |
97 | cmap=plt.get_cmap(self.colormap) |
|
97 | cmap=plt.get_cmap(self.colormap) | |
98 | ) |
|
98 | ) | |
99 |
|
99 | |||
100 |
|
100 | |||
101 | class RTILPPlot(RTIPlot): |
|
101 | class RTILPPlot(RTIPlot): | |
102 | ''' |
|
102 | ''' | |
103 | Written by R. Flores |
|
103 | Written by R. Flores | |
104 | ''' |
|
104 | ''' | |
105 | ''' |
|
105 | ''' | |
106 | Plot for RTI Long Pulse Using Cross Products Analysis |
|
106 | Plot for RTI Long Pulse Using Cross Products Analysis | |
107 | ''' |
|
107 | ''' | |
108 |
|
108 | |||
109 | CODE = 'RTILP' |
|
109 | CODE = 'RTILP' | |
110 | colormap = 'jet' |
|
110 | colormap = 'jet' | |
111 | plot_name = 'RTI LP' |
|
111 | plot_name = 'RTI LP' | |
112 | plot_type = 'pcolorbuffer' |
|
112 | plot_type = 'pcolorbuffer' | |
113 |
|
113 | |||
114 | def setup(self): |
|
114 | def setup(self): | |
115 | self.xaxis = 'time' |
|
115 | self.xaxis = 'time' | |
116 | self.ncols = 1 |
|
116 | self.ncols = 1 | |
117 | self.nrows = 2 |
|
117 | self.nrows = 2 | |
118 | self.nplots = self.nrows |
|
118 | self.nplots = self.nrows | |
119 |
|
119 | |||
120 | self.ylabel = 'Range [km]' |
|
120 | self.ylabel = 'Range [km]' | |
121 | self.xlabel = 'Time (LT)' |
|
121 | self.xlabel = 'Time (LT)' | |
122 |
|
122 | |||
123 | self.cb_label = 'Intensity (dB)' |
|
123 | self.cb_label = 'Intensity (dB)' | |
124 |
|
124 | |||
125 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
125 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) | |
126 |
|
126 | |||
127 |
|
127 | |||
128 | self.titles = ['{} Channel {}'.format( |
|
128 | self.titles = ['{} Channel {}'.format( | |
129 | self.plot_name.upper(), '0'),'{} Channel {}'.format( |
|
129 | self.plot_name.upper(), '0'),'{} Channel {}'.format( | |
130 | self.plot_name.upper(), '1'),'{} Channel {}'.format( |
|
130 | self.plot_name.upper(), '1'),'{} Channel {}'.format( | |
131 | self.plot_name.upper(), '2'),'{} Channel {}'.format( |
|
131 | self.plot_name.upper(), '2'),'{} Channel {}'.format( | |
132 | self.plot_name.upper(), '3')] |
|
132 | self.plot_name.upper(), '3')] | |
133 |
|
133 | |||
134 |
|
134 | |||
135 | def update(self, dataOut): |
|
135 | def update(self, dataOut): | |
136 |
|
136 | |||
137 | data = {} |
|
137 | data = {} | |
138 | meta = {} |
|
138 | meta = {} | |
139 | data['rti'] = dataOut.data_for_RTI_LP |
|
139 | data['rti'] = dataOut.data_for_RTI_LP | |
140 | data['NRANGE'] = dataOut.NRANGE |
|
140 | data['NRANGE'] = dataOut.NRANGE | |
141 |
|
141 | |||
142 | return data, meta |
|
142 | return data, meta | |
143 |
|
143 | |||
144 | def plot(self): |
|
144 | def plot(self): | |
145 |
|
145 | |||
146 | NRANGE = self.data['NRANGE'][-1] |
|
146 | NRANGE = self.data['NRANGE'][-1] | |
147 | self.x = self.data.times |
|
147 | self.x = self.data.times | |
148 | self.y = self.data.yrange[0:NRANGE] |
|
148 | self.y = self.data.yrange[0:NRANGE] | |
149 |
|
149 | |||
150 | self.z = self.data['rti'] |
|
150 | self.z = self.data['rti'] | |
151 |
|
151 | |||
152 | self.z = numpy.ma.masked_invalid(self.z) |
|
152 | self.z = numpy.ma.masked_invalid(self.z) | |
153 |
|
153 | |||
154 | if self.decimation is None: |
|
154 | if self.decimation is None: | |
155 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
155 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
156 | else: |
|
156 | else: | |
157 | x, y, z = self.fill_gaps(*self.decimate()) |
|
157 | x, y, z = self.fill_gaps(*self.decimate()) | |
158 |
|
158 | |||
159 | for n, ax in enumerate(self.axes): |
|
159 | for n, ax in enumerate(self.axes): | |
160 |
|
160 | |||
161 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
161 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
162 | self.z[1][0,12:40]) |
|
162 | self.z[1][0,12:40]) | |
163 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
163 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
164 | self.z[1][0,12:40]) |
|
164 | self.z[1][0,12:40]) | |
165 |
|
165 | |||
166 | if ax.firsttime: |
|
166 | if ax.firsttime: | |
167 |
|
167 | |||
168 | if self.zlimits is not None: |
|
168 | if self.zlimits is not None: | |
169 | self.zmin, self.zmax = self.zlimits[n] |
|
169 | self.zmin, self.zmax = self.zlimits[n] | |
170 |
|
170 | |||
171 |
|
171 | |||
172 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
172 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
173 | vmin=self.zmin, |
|
173 | vmin=self.zmin, | |
174 | vmax=self.zmax, |
|
174 | vmax=self.zmax, | |
175 | cmap=plt.get_cmap(self.colormap) |
|
175 | cmap=plt.get_cmap(self.colormap) | |
176 | ) |
|
176 | ) | |
177 |
|
177 | |||
178 | else: |
|
178 | else: | |
179 | if self.zlimits is not None: |
|
179 | if self.zlimits is not None: | |
180 | self.zmin, self.zmax = self.zlimits[n] |
|
180 | self.zmin, self.zmax = self.zlimits[n] | |
181 | ax.plt.remove() |
|
181 | ax.plt.remove() | |
182 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
182 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
183 | vmin=self.zmin, |
|
183 | vmin=self.zmin, | |
184 | vmax=self.zmax, |
|
184 | vmax=self.zmax, | |
185 | cmap=plt.get_cmap(self.colormap) |
|
185 | cmap=plt.get_cmap(self.colormap) | |
186 | ) |
|
186 | ) | |
187 |
|
187 | |||
188 |
|
188 | |||
189 | class DenRTIPlot(RTIPlot): |
|
189 | class DenRTIPlot(RTIPlot): | |
190 | ''' |
|
190 | ''' | |
191 | Written by R. Flores |
|
191 | Written by R. Flores | |
192 | ''' |
|
192 | ''' | |
193 | ''' |
|
193 | ''' | |
194 | RTI Plot for Electron Densities |
|
194 | RTI Plot for Electron Densities | |
195 | ''' |
|
195 | ''' | |
196 |
|
196 | |||
197 | CODE = 'denrti' |
|
197 | CODE = 'denrti' | |
198 | colormap = 'jet' |
|
198 | colormap = 'jet' | |
199 |
|
199 | |||
200 | def setup(self): |
|
200 | def setup(self): | |
201 | self.xaxis = 'time' |
|
201 | self.xaxis = 'time' | |
202 | self.ncols = 1 |
|
202 | self.ncols = 1 | |
203 | self.nrows = self.data.shape(self.CODE)[0] |
|
203 | self.nrows = self.data.shape(self.CODE)[0] | |
204 | self.nplots = self.nrows |
|
204 | self.nplots = self.nrows | |
205 |
|
205 | |||
206 | self.ylabel = 'Range [km]' |
|
206 | self.ylabel = 'Range [km]' | |
207 | self.xlabel = 'Time (LT)' |
|
207 | self.xlabel = 'Time (LT)' | |
208 |
|
208 | |||
209 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
209 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
210 |
|
210 | |||
211 | if self.CODE == 'denrti': |
|
211 | if self.CODE == 'denrti': | |
212 | self.cb_label = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' |
|
212 | self.cb_label = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' | |
213 |
|
213 | |||
214 | self.titles = ['Electron Density RTI'] |
|
214 | self.titles = ['Electron Density RTI'] | |
215 |
|
215 | |||
216 | def update(self, dataOut): |
|
216 | def update(self, dataOut): | |
217 |
|
217 | |||
218 | data = {} |
|
218 | data = {} | |
219 | meta = {} |
|
219 | meta = {} | |
220 |
|
220 | |||
221 | data['denrti'] = dataOut.DensityFinal*1.e-6 #To Plot in cm^-3 |
|
221 | data['denrti'] = dataOut.DensityFinal*1.e-6 #To Plot in cm^-3 | |
222 |
|
222 | |||
223 | return data, meta |
|
223 | return data, meta | |
224 |
|
224 | |||
225 | def plot(self): |
|
225 | def plot(self): | |
226 |
|
226 | |||
227 | self.x = self.data.times |
|
227 | self.x = self.data.times | |
228 | self.y = self.data.yrange |
|
228 | self.y = self.data.yrange | |
229 |
|
229 | |||
230 | self.z = self.data[self.CODE] |
|
230 | self.z = self.data[self.CODE] | |
231 |
|
231 | |||
232 | self.z = numpy.ma.masked_invalid(self.z) |
|
232 | self.z = numpy.ma.masked_invalid(self.z) | |
233 |
|
233 | |||
234 | if self.decimation is None: |
|
234 | if self.decimation is None: | |
235 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
235 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
236 | else: |
|
236 | else: | |
237 | x, y, z = self.fill_gaps(*self.decimate()) |
|
237 | x, y, z = self.fill_gaps(*self.decimate()) | |
238 |
|
238 | |||
239 | for n, ax in enumerate(self.axes): |
|
239 | for n, ax in enumerate(self.axes): | |
240 |
|
240 | |||
241 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
241 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
242 | self.z[n]) |
|
242 | self.z[n]) | |
243 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
243 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
244 | self.z[n]) |
|
244 | self.z[n]) | |
245 |
|
245 | |||
246 | if ax.firsttime: |
|
246 | if ax.firsttime: | |
247 |
|
247 | |||
248 | if self.zlimits is not None: |
|
248 | if self.zlimits is not None: | |
249 | self.zmin, self.zmax = self.zlimits[n] |
|
249 | self.zmin, self.zmax = self.zlimits[n] | |
250 | if numpy.log10(self.zmin)<0: |
|
250 | if numpy.log10(self.zmin)<0: | |
251 | self.zmin=1 |
|
251 | self.zmin=1 | |
252 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
252 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
253 | #vmin=self.zmin, |
|
253 | #vmin=self.zmin, | |
254 | #vmax=self.zmax, |
|
254 | #vmax=self.zmax, | |
255 | cmap=self.cmaps[n], |
|
255 | cmap=self.cmaps[n], | |
256 | norm=colors.LogNorm(vmin=self.zmin,vmax=self.zmax) |
|
256 | norm=colors.LogNorm(vmin=self.zmin,vmax=self.zmax) | |
257 | ) |
|
257 | ) | |
258 |
|
258 | |||
259 | else: |
|
259 | else: | |
260 | if self.zlimits is not None: |
|
260 | if self.zlimits is not None: | |
261 | self.zmin, self.zmax = self.zlimits[n] |
|
261 | self.zmin, self.zmax = self.zlimits[n] | |
262 | ax.plt.remove() |
|
262 | ax.plt.remove() | |
263 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
263 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
264 | #vmin=self.zmin, |
|
264 | #vmin=self.zmin, | |
265 | #vmax=self.zmax, |
|
265 | #vmax=self.zmax, | |
266 | cmap=self.cmaps[n], |
|
266 | cmap=self.cmaps[n], | |
267 | norm=colors.LogNorm(vmin=self.zmin,vmax=self.zmax) |
|
267 | norm=colors.LogNorm(vmin=self.zmin,vmax=self.zmax) | |
268 | ) |
|
268 | ) | |
269 |
|
269 | |||
270 |
|
270 | |||
271 | class ETempRTIPlot(RTIPlot): |
|
271 | class ETempRTIPlot(RTIPlot): | |
272 | ''' |
|
272 | ''' | |
273 | Written by R. Flores |
|
273 | Written by R. Flores | |
274 | ''' |
|
274 | ''' | |
275 | ''' |
|
275 | ''' | |
276 | Plot for Electron Temperature |
|
276 | Plot for Electron Temperature | |
277 | ''' |
|
277 | ''' | |
278 |
|
278 | |||
279 | CODE = 'ETemp' |
|
279 | CODE = 'ETemp' | |
280 | colormap = 'jet' |
|
280 | colormap = 'jet' | |
281 |
|
281 | |||
282 | def setup(self): |
|
282 | def setup(self): | |
283 | self.xaxis = 'time' |
|
283 | self.xaxis = 'time' | |
284 | self.ncols = 1 |
|
284 | self.ncols = 1 | |
285 | self.nrows = self.data.shape(self.CODE)[0] |
|
285 | self.nrows = self.data.shape(self.CODE)[0] | |
286 | self.nplots = self.nrows |
|
286 | self.nplots = self.nrows | |
287 |
|
287 | |||
288 | self.ylabel = 'Range [km]' |
|
288 | self.ylabel = 'Range [km]' | |
289 | self.xlabel = 'Time (LT)' |
|
289 | self.xlabel = 'Time (LT)' | |
290 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
290 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
291 | if self.CODE == 'ETemp': |
|
291 | if self.CODE == 'ETemp': | |
292 | self.cb_label = 'Electron Temperature (K)' |
|
292 | self.cb_label = 'Electron Temperature (K)' | |
293 | self.titles = ['Electron Temperature RTI'] |
|
293 | self.titles = ['Electron Temperature RTI'] | |
294 | if self.CODE == 'ITemp': |
|
294 | if self.CODE == 'ITemp': | |
295 | self.cb_label = 'Ion Temperature (K)' |
|
295 | self.cb_label = 'Ion Temperature (K)' | |
296 | self.titles = ['Ion Temperature RTI'] |
|
296 | self.titles = ['Ion Temperature RTI'] | |
297 | if self.CODE == 'HeFracLP': |
|
297 | if self.CODE == 'HeFracLP': | |
298 | self.cb_label ='He+ Fraction' |
|
298 | self.cb_label ='He+ Fraction' | |
299 | self.titles = ['He+ Fraction RTI'] |
|
299 | self.titles = ['He+ Fraction RTI'] | |
300 | self.zmax=0.16 |
|
300 | self.zmax=0.16 | |
301 | if self.CODE == 'HFracLP': |
|
301 | if self.CODE == 'HFracLP': | |
302 | self.cb_label ='H+ Fraction' |
|
302 | self.cb_label ='H+ Fraction' | |
303 | self.titles = ['H+ Fraction RTI'] |
|
303 | self.titles = ['H+ Fraction RTI'] | |
304 |
|
304 | |||
305 | def update(self, dataOut): |
|
305 | def update(self, dataOut): | |
306 |
|
306 | |||
307 | data = {} |
|
307 | data = {} | |
308 | meta = {} |
|
308 | meta = {} | |
309 |
|
309 | |||
310 | data['ETemp'] = dataOut.ElecTempFinal |
|
310 | data['ETemp'] = dataOut.ElecTempFinal | |
311 |
|
311 | |||
312 | return data, meta |
|
312 | return data, meta | |
313 |
|
313 | |||
314 | def plot(self): |
|
314 | def plot(self): | |
315 |
|
315 | |||
316 | self.x = self.data.times |
|
316 | self.x = self.data.times | |
317 | self.y = self.data.yrange |
|
317 | self.y = self.data.yrange | |
318 | self.z = self.data[self.CODE] |
|
318 | self.z = self.data[self.CODE] | |
319 |
|
319 | |||
320 | self.z = numpy.ma.masked_invalid(self.z) |
|
320 | self.z = numpy.ma.masked_invalid(self.z) | |
321 |
|
321 | |||
322 | if self.decimation is None: |
|
322 | if self.decimation is None: | |
323 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
323 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
324 | else: |
|
324 | else: | |
325 | x, y, z = self.fill_gaps(*self.decimate()) |
|
325 | x, y, z = self.fill_gaps(*self.decimate()) | |
326 |
|
326 | |||
327 | for n, ax in enumerate(self.axes): |
|
327 | for n, ax in enumerate(self.axes): | |
328 |
|
328 | |||
329 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
329 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
330 | self.z[n]) |
|
330 | self.z[n]) | |
331 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
331 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
332 | self.z[n]) |
|
332 | self.z[n]) | |
333 |
|
333 | |||
334 | if ax.firsttime: |
|
334 | if ax.firsttime: | |
335 |
|
335 | |||
336 | if self.zlimits is not None: |
|
336 | if self.zlimits is not None: | |
337 | self.zmin, self.zmax = self.zlimits[n] |
|
337 | self.zmin, self.zmax = self.zlimits[n] | |
338 |
|
338 | |||
339 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
339 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
340 | vmin=self.zmin, |
|
340 | vmin=self.zmin, | |
341 | vmax=self.zmax, |
|
341 | vmax=self.zmax, | |
342 | cmap=self.cmaps[n] |
|
342 | cmap=self.cmaps[n] | |
343 | ) |
|
343 | ) | |
344 | #plt.tight_layout() |
|
344 | #plt.tight_layout() | |
345 |
|
345 | |||
346 | else: |
|
346 | else: | |
347 | if self.zlimits is not None: |
|
347 | if self.zlimits is not None: | |
348 | self.zmin, self.zmax = self.zlimits[n] |
|
348 | self.zmin, self.zmax = self.zlimits[n] | |
349 | ax.plt.remove() |
|
349 | ax.plt.remove() | |
350 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
350 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
351 | vmin=self.zmin, |
|
351 | vmin=self.zmin, | |
352 | vmax=self.zmax, |
|
352 | vmax=self.zmax, | |
353 | cmap=self.cmaps[n] |
|
353 | cmap=self.cmaps[n] | |
354 | ) |
|
354 | ) | |
355 |
|
355 | |||
356 |
|
356 | |||
357 | class ITempRTIPlot(ETempRTIPlot): |
|
357 | class ITempRTIPlot(ETempRTIPlot): | |
358 | ''' |
|
358 | ''' | |
359 | Written by R. Flores |
|
359 | Written by R. Flores | |
360 | ''' |
|
360 | ''' | |
361 | ''' |
|
361 | ''' | |
362 | Plot for Ion Temperature |
|
362 | Plot for Ion Temperature | |
363 | ''' |
|
363 | ''' | |
364 |
|
364 | |||
365 | CODE = 'ITemp' |
|
365 | CODE = 'ITemp' | |
366 | colormap = 'jet' |
|
366 | colormap = 'jet' | |
367 | plot_name = 'Ion Temperature' |
|
367 | plot_name = 'Ion Temperature' | |
368 |
|
368 | |||
369 | def update(self, dataOut): |
|
369 | def update(self, dataOut): | |
370 |
|
370 | |||
371 | data = {} |
|
371 | data = {} | |
372 | meta = {} |
|
372 | meta = {} | |
373 |
|
373 | |||
374 | data['ITemp'] = dataOut.IonTempFinal |
|
374 | data['ITemp'] = dataOut.IonTempFinal | |
375 |
|
375 | |||
376 | return data, meta |
|
376 | return data, meta | |
377 |
|
377 | |||
378 |
|
378 | |||
379 | class HFracRTIPlot(ETempRTIPlot): |
|
379 | class HFracRTIPlot(ETempRTIPlot): | |
380 | ''' |
|
380 | ''' | |
381 | Written by R. Flores |
|
381 | Written by R. Flores | |
382 | ''' |
|
382 | ''' | |
383 | ''' |
|
383 | ''' | |
384 | Plot for H+ LP |
|
384 | Plot for H+ LP | |
385 | ''' |
|
385 | ''' | |
386 |
|
386 | |||
387 | CODE = 'HFracLP' |
|
387 | CODE = 'HFracLP' | |
388 | colormap = 'jet' |
|
388 | colormap = 'jet' | |
389 | plot_name = 'H+ Frac' |
|
389 | plot_name = 'H+ Frac' | |
390 |
|
390 | |||
391 | def update(self, dataOut): |
|
391 | def update(self, dataOut): | |
392 |
|
392 | |||
393 | data = {} |
|
393 | data = {} | |
394 | meta = {} |
|
394 | meta = {} | |
395 | data['HFracLP'] = dataOut.PhyFinal |
|
395 | data['HFracLP'] = dataOut.PhyFinal | |
396 |
|
396 | |||
397 | return data, meta |
|
397 | return data, meta | |
398 |
|
398 | |||
399 |
|
399 | |||
400 | class HeFracRTIPlot(ETempRTIPlot): |
|
400 | class HeFracRTIPlot(ETempRTIPlot): | |
401 | ''' |
|
401 | ''' | |
402 | Written by R. Flores |
|
402 | Written by R. Flores | |
403 | ''' |
|
403 | ''' | |
404 | ''' |
|
404 | ''' | |
405 | Plot for He+ LP |
|
405 | Plot for He+ LP | |
406 | ''' |
|
406 | ''' | |
407 |
|
407 | |||
408 | CODE = 'HeFracLP' |
|
408 | CODE = 'HeFracLP' | |
409 | colormap = 'jet' |
|
409 | colormap = 'jet' | |
410 | plot_name = 'He+ Frac' |
|
410 | plot_name = 'He+ Frac' | |
411 |
|
411 | |||
412 | def update(self, dataOut): |
|
412 | def update(self, dataOut): | |
413 |
|
413 | |||
414 | data = {} |
|
414 | data = {} | |
415 | meta = {} |
|
415 | meta = {} | |
416 | data['HeFracLP'] = dataOut.PheFinal |
|
416 | data['HeFracLP'] = dataOut.PheFinal | |
417 |
|
417 | |||
418 | return data, meta |
|
418 | return data, meta | |
419 |
|
419 | |||
420 |
|
420 | |||
421 | class TempsDPPlot(Plot): |
|
421 | class TempsDPPlot(Plot): | |
422 | ''' |
|
422 | ''' | |
423 | Written by R. Flores |
|
423 | Written by R. Flores | |
424 | ''' |
|
424 | ''' | |
425 | ''' |
|
425 | ''' | |
426 | Plot for Electron - Ion Temperatures |
|
426 | Plot for Electron - Ion Temperatures | |
427 | ''' |
|
427 | ''' | |
428 |
|
428 | |||
429 | CODE = 'tempsDP' |
|
429 | CODE = 'tempsDP' | |
430 | #plot_name = 'Temperatures' |
|
430 | #plot_name = 'Temperatures' | |
431 | plot_type = 'scatterbuffer' |
|
431 | plot_type = 'scatterbuffer' | |
432 |
|
432 | |||
433 | def setup(self): |
|
433 | def setup(self): | |
434 |
|
434 | |||
435 | self.ncols = 1 |
|
435 | self.ncols = 1 | |
436 | self.nrows = 1 |
|
436 | self.nrows = 1 | |
437 | self.nplots = 1 |
|
437 | self.nplots = 1 | |
438 | self.ylabel = 'Range [km]' |
|
438 | self.ylabel = 'Range [km]' | |
439 | self.xlabel = 'Temperature (K)' |
|
439 | self.xlabel = 'Temperature (K)' | |
440 | self.titles = ['Electron/Ion Temperatures'] |
|
440 | self.titles = ['Electron/Ion Temperatures'] | |
441 | self.width = 3.5 |
|
441 | self.width = 3.5 | |
442 | self.height = 5.5 |
|
442 | self.height = 5.5 | |
443 | self.colorbar = False |
|
443 | self.colorbar = False | |
444 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
444 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
445 |
|
445 | |||
446 | def update(self, dataOut): |
|
446 | def update(self, dataOut): | |
447 | data = {} |
|
447 | data = {} | |
448 | meta = {} |
|
448 | meta = {} | |
449 |
|
449 | |||
450 | data['Te'] = dataOut.te2 |
|
450 | data['Te'] = dataOut.te2 | |
451 | data['Ti'] = dataOut.ti2 |
|
451 | data['Ti'] = dataOut.ti2 | |
452 | data['Te_error'] = dataOut.ete2 |
|
452 | data['Te_error'] = dataOut.ete2 | |
453 | data['Ti_error'] = dataOut.eti2 |
|
453 | data['Ti_error'] = dataOut.eti2 | |
454 |
|
454 | |||
455 | meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
455 | meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] | |
456 |
|
456 | |||
457 | return data, meta |
|
457 | return data, meta | |
458 |
|
458 | |||
459 | def plot(self): |
|
459 | def plot(self): | |
460 |
|
460 | |||
461 | y = self.data.yrange |
|
461 | y = self.data.yrange | |
462 |
|
462 | |||
463 | self.xmin = -100 |
|
463 | self.xmin = -100 | |
464 | self.xmax = 5000 |
|
464 | self.xmax = 5000 | |
465 |
|
465 | |||
466 | ax = self.axes[0] |
|
466 | ax = self.axes[0] | |
467 |
|
467 | |||
468 | data = self.data[-1] |
|
468 | data = self.data[-1] | |
469 |
|
469 | |||
470 | Te = data['Te'] |
|
470 | Te = data['Te'] | |
471 | Ti = data['Ti'] |
|
471 | Ti = data['Ti'] | |
472 | errTe = data['Te_error'] |
|
472 | errTe = data['Te_error'] | |
473 | errTi = data['Ti_error'] |
|
473 | errTi = data['Ti_error'] | |
474 |
|
474 | |||
475 | if ax.firsttime: |
|
475 | if ax.firsttime: | |
476 | ax.errorbar(Te, y, xerr=errTe, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='Te') |
|
476 | ax.errorbar(Te, y, xerr=errTe, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='Te') | |
477 | ax.errorbar(Ti, y, fmt='k^', xerr=errTi,elinewidth=1.0,color='k',linewidth=2.0, label='Ti') |
|
477 | ax.errorbar(Ti, y, fmt='k^', xerr=errTi,elinewidth=1.0,color='k',linewidth=2.0, label='Ti') | |
478 | plt.legend(loc='lower right') |
|
478 | plt.legend(loc='lower right') | |
479 | self.ystep_given = 50 |
|
479 | self.ystep_given = 50 | |
480 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
480 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
481 | ax.grid(which='minor') |
|
481 | ax.grid(which='minor') | |
482 |
|
482 | |||
483 | else: |
|
483 | else: | |
484 | self.clear_figures() |
|
484 | self.clear_figures() | |
485 | ax.errorbar(Te, y, xerr=errTe, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='Te') |
|
485 | ax.errorbar(Te, y, xerr=errTe, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='Te') | |
486 | ax.errorbar(Ti, y, fmt='k^', xerr=errTi,elinewidth=1.0,color='k',linewidth=2.0, label='Ti') |
|
486 | ax.errorbar(Ti, y, fmt='k^', xerr=errTi,elinewidth=1.0,color='k',linewidth=2.0, label='Ti') | |
487 | plt.legend(loc='lower right') |
|
487 | plt.legend(loc='lower right') | |
488 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
488 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
489 |
|
489 | |||
490 |
|
490 | |||
491 | class TempsHPPlot(Plot): |
|
491 | class TempsHPPlot(Plot): | |
492 | ''' |
|
492 | ''' | |
493 | Written by R. Flores |
|
493 | Written by R. Flores | |
494 | ''' |
|
494 | ''' | |
495 | ''' |
|
495 | ''' | |
496 | Plot for Temperatures Hybrid Experiment |
|
496 | Plot for Temperatures Hybrid Experiment | |
497 | ''' |
|
497 | ''' | |
498 |
|
498 | |||
499 | CODE = 'temps_LP' |
|
499 | CODE = 'temps_LP' | |
500 | #plot_name = 'Temperatures' |
|
500 | #plot_name = 'Temperatures' | |
501 | plot_type = 'scatterbuffer' |
|
501 | plot_type = 'scatterbuffer' | |
502 |
|
502 | |||
503 |
|
503 | |||
504 | def setup(self): |
|
504 | def setup(self): | |
505 |
|
505 | |||
506 | self.ncols = 1 |
|
506 | self.ncols = 1 | |
507 | self.nrows = 1 |
|
507 | self.nrows = 1 | |
508 | self.nplots = 1 |
|
508 | self.nplots = 1 | |
509 | self.ylabel = 'Range [km]' |
|
509 | self.ylabel = 'Range [km]' | |
510 | self.xlabel = 'Temperature (K)' |
|
510 | self.xlabel = 'Temperature (K)' | |
511 | self.titles = ['Electron/Ion Temperatures'] |
|
511 | self.titles = ['Electron/Ion Temperatures'] | |
512 | self.width = 3.5 |
|
512 | self.width = 3.5 | |
513 | self.height = 6.5 |
|
513 | self.height = 6.5 | |
514 | self.colorbar = False |
|
514 | self.colorbar = False | |
515 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
515 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
516 |
|
516 | |||
517 | def update(self, dataOut): |
|
517 | def update(self, dataOut): | |
518 | data = {} |
|
518 | data = {} | |
519 | meta = {} |
|
519 | meta = {} | |
520 |
|
520 | |||
521 |
|
521 | |||
522 | data['Te'] = numpy.concatenate((dataOut.te2[:dataOut.cut],dataOut.te[dataOut.cut:])) |
|
522 | data['Te'] = numpy.concatenate((dataOut.te2[:dataOut.cut],dataOut.te[dataOut.cut:])) | |
523 | data['Ti'] = numpy.concatenate((dataOut.ti2[:dataOut.cut],dataOut.ti[dataOut.cut:])) |
|
523 | data['Ti'] = numpy.concatenate((dataOut.ti2[:dataOut.cut],dataOut.ti[dataOut.cut:])) | |
524 | data['Te_error'] = numpy.concatenate((dataOut.ete2[:dataOut.cut],dataOut.ete[dataOut.cut:])) |
|
524 | data['Te_error'] = numpy.concatenate((dataOut.ete2[:dataOut.cut],dataOut.ete[dataOut.cut:])) | |
525 | data['Ti_error'] = numpy.concatenate((dataOut.eti2[:dataOut.cut],dataOut.eti[dataOut.cut:])) |
|
525 | data['Ti_error'] = numpy.concatenate((dataOut.eti2[:dataOut.cut],dataOut.eti[dataOut.cut:])) | |
526 |
|
526 | |||
527 | meta['yrange'] = dataOut.heightList[0:dataOut.NACF] |
|
527 | meta['yrange'] = dataOut.heightList[0:dataOut.NACF] | |
528 |
|
528 | |||
529 | return data, meta |
|
529 | return data, meta | |
530 |
|
530 | |||
531 | def plot(self): |
|
531 | def plot(self): | |
532 |
|
532 | |||
533 |
|
533 | |||
534 | self.y = self.data.yrange |
|
534 | self.y = self.data.yrange | |
535 | self.xmin = -100 |
|
535 | self.xmin = -100 | |
536 | self.xmax = 4500 |
|
536 | self.xmax = 4500 | |
537 | ax = self.axes[0] |
|
537 | ax = self.axes[0] | |
538 |
|
538 | |||
539 | data = self.data[-1] |
|
539 | data = self.data[-1] | |
540 |
|
540 | |||
541 | Te = data['Te'] |
|
541 | Te = data['Te'] | |
542 | Ti = data['Ti'] |
|
542 | Ti = data['Ti'] | |
543 | errTe = data['Te_error'] |
|
543 | errTe = data['Te_error'] | |
544 | errTi = data['Ti_error'] |
|
544 | errTi = data['Ti_error'] | |
545 |
|
545 | |||
546 | if ax.firsttime: |
|
546 | if ax.firsttime: | |
547 |
|
547 | |||
548 | ax.errorbar(Te, self.y, xerr=errTe, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='Te') |
|
548 | ax.errorbar(Te, self.y, xerr=errTe, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='Te') | |
549 | ax.errorbar(Ti, self.y, fmt='k^', xerr=errTi,elinewidth=1.0,color='',linewidth=2.0, label='Ti') |
|
549 | ax.errorbar(Ti, self.y, fmt='k^', xerr=errTi,elinewidth=1.0,color='',linewidth=2.0, label='Ti') | |
550 | plt.legend(loc='lower right') |
|
550 | plt.legend(loc='lower right') | |
551 | self.ystep_given = 200 |
|
551 | self.ystep_given = 200 | |
552 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
552 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
553 | ax.grid(which='minor') |
|
553 | ax.grid(which='minor') | |
554 |
|
554 | |||
555 | else: |
|
555 | else: | |
556 | self.clear_figures() |
|
556 | self.clear_figures() | |
557 | ax.errorbar(Te, self.y, xerr=errTe, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='Te') |
|
557 | ax.errorbar(Te, self.y, xerr=errTe, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='Te') | |
558 | ax.errorbar(Ti, self.y, fmt='k^', xerr=errTi,elinewidth=1.0,color='k',linewidth=2.0, label='Ti') |
|
558 | ax.errorbar(Ti, self.y, fmt='k^', xerr=errTi,elinewidth=1.0,color='k',linewidth=2.0, label='Ti') | |
559 | plt.legend(loc='lower right') |
|
559 | plt.legend(loc='lower right') | |
560 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
560 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
561 | ax.grid(which='minor') |
|
561 | ax.grid(which='minor') | |
562 |
|
562 | |||
563 |
|
563 | |||
564 | class FracsHPPlot(Plot): |
|
564 | class FracsHPPlot(Plot): | |
565 | ''' |
|
565 | ''' | |
566 | Written by R. Flores |
|
566 | Written by R. Flores | |
567 | ''' |
|
567 | ''' | |
568 | ''' |
|
568 | ''' | |
569 | Plot for Composition LP |
|
569 | Plot for Composition LP | |
570 | ''' |
|
570 | ''' | |
571 |
|
571 | |||
572 | CODE = 'fracs_LP' |
|
572 | CODE = 'fracs_LP' | |
573 | plot_type = 'scatterbuffer' |
|
573 | plot_type = 'scatterbuffer' | |
574 |
|
574 | |||
575 |
|
575 | |||
576 | def setup(self): |
|
576 | def setup(self): | |
577 |
|
577 | |||
578 | self.ncols = 1 |
|
578 | self.ncols = 1 | |
579 | self.nrows = 1 |
|
579 | self.nrows = 1 | |
580 | self.nplots = 1 |
|
580 | self.nplots = 1 | |
581 | self.ylabel = 'Range [km]' |
|
581 | self.ylabel = 'Range [km]' | |
582 | self.xlabel = 'Frac' |
|
582 | self.xlabel = 'Frac' | |
583 | self.titles = ['Composition'] |
|
583 | self.titles = ['Composition'] | |
584 | self.width = 3.5 |
|
584 | self.width = 3.5 | |
585 | self.height = 6.5 |
|
585 | self.height = 6.5 | |
586 | self.colorbar = False |
|
586 | self.colorbar = False | |
587 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
587 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
588 |
|
588 | |||
589 | def update(self, dataOut): |
|
589 | def update(self, dataOut): | |
590 | data = {} |
|
590 | data = {} | |
591 | meta = {} |
|
591 | meta = {} | |
592 |
|
592 | |||
593 | #aux_nan=numpy.zeros(dataOut.cut,'float32') |
|
593 | #aux_nan=numpy.zeros(dataOut.cut,'float32') | |
594 | #aux_nan[:]=numpy.nan |
|
594 | #aux_nan[:]=numpy.nan | |
595 | #data['ph'] = numpy.concatenate((aux_nan,dataOut.ph[dataOut.cut:])) |
|
595 | #data['ph'] = numpy.concatenate((aux_nan,dataOut.ph[dataOut.cut:])) | |
596 | #data['eph'] = numpy.concatenate((aux_nan,dataOut.eph[dataOut.cut:])) |
|
596 | #data['eph'] = numpy.concatenate((aux_nan,dataOut.eph[dataOut.cut:])) | |
597 |
|
597 | |||
598 | data['ph'] = dataOut.ph[dataOut.cut:] |
|
598 | data['ph'] = dataOut.ph[dataOut.cut:] | |
599 | data['eph'] = dataOut.eph[dataOut.cut:] |
|
599 | data['eph'] = dataOut.eph[dataOut.cut:] | |
600 | data['phe'] = dataOut.phe[dataOut.cut:] |
|
600 | data['phe'] = dataOut.phe[dataOut.cut:] | |
601 | data['ephe'] = dataOut.ephe[dataOut.cut:] |
|
601 | data['ephe'] = dataOut.ephe[dataOut.cut:] | |
602 |
|
602 | |||
603 | data['cut'] = dataOut.cut |
|
603 | data['cut'] = dataOut.cut | |
604 |
|
604 | |||
605 | meta['yrange'] = dataOut.heightList[0:dataOut.NACF] |
|
605 | meta['yrange'] = dataOut.heightList[0:dataOut.NACF] | |
606 |
|
606 | |||
607 |
|
607 | |||
608 | return data, meta |
|
608 | return data, meta | |
609 |
|
609 | |||
610 | def plot(self): |
|
610 | def plot(self): | |
611 |
|
611 | |||
612 | data = self.data[-1] |
|
612 | data = self.data[-1] | |
613 |
|
613 | |||
614 | ph = data['ph'] |
|
614 | ph = data['ph'] | |
615 | eph = data['eph'] |
|
615 | eph = data['eph'] | |
616 | phe = data['phe'] |
|
616 | phe = data['phe'] | |
617 | ephe = data['ephe'] |
|
617 | ephe = data['ephe'] | |
618 | cut = data['cut'] |
|
618 | cut = data['cut'] | |
619 | self.y = self.data.yrange |
|
619 | self.y = self.data.yrange | |
620 |
|
620 | |||
621 | self.xmin = 0 |
|
621 | self.xmin = 0 | |
622 | self.xmax = 1 |
|
622 | self.xmax = 1 | |
623 | ax = self.axes[0] |
|
623 | ax = self.axes[0] | |
624 |
|
624 | |||
625 | if ax.firsttime: |
|
625 | if ax.firsttime: | |
626 |
|
626 | |||
627 | ax.errorbar(ph, self.y[cut:], xerr=eph, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='H+') |
|
627 | ax.errorbar(ph, self.y[cut:], xerr=eph, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='H+') | |
628 | ax.errorbar(phe, self.y[cut:], fmt='k^', xerr=ephe,elinewidth=1.0,color='k',linewidth=2.0, label='He+') |
|
628 | ax.errorbar(phe, self.y[cut:], fmt='k^', xerr=ephe,elinewidth=1.0,color='k',linewidth=2.0, label='He+') | |
629 | plt.legend(loc='lower right') |
|
629 | plt.legend(loc='lower right') | |
630 | self.xstep_given = 0.2 |
|
630 | self.xstep_given = 0.2 | |
631 | self.ystep_given = 200 |
|
631 | self.ystep_given = 200 | |
632 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
632 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
633 | ax.grid(which='minor') |
|
633 | ax.grid(which='minor') | |
634 |
|
634 | |||
635 | else: |
|
635 | else: | |
636 | self.clear_figures() |
|
636 | self.clear_figures() | |
637 | ax.errorbar(ph, self.y[cut:], xerr=eph, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='H+') |
|
637 | ax.errorbar(ph, self.y[cut:], xerr=eph, fmt='r^',elinewidth=1.0,color='r',linewidth=2.0, label='H+') | |
638 | ax.errorbar(phe, self.y[cut:], fmt='k^', xerr=ephe,elinewidth=1.0,color='k',linewidth=2.0, label='He+') |
|
638 | ax.errorbar(phe, self.y[cut:], fmt='k^', xerr=ephe,elinewidth=1.0,color='k',linewidth=2.0, label='He+') | |
639 | plt.legend(loc='lower right') |
|
639 | plt.legend(loc='lower right') | |
640 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
640 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
641 | ax.grid(which='minor') |
|
641 | ax.grid(which='minor') | |
642 |
|
642 | |||
643 | class EDensityPlot(Plot): |
|
643 | class EDensityPlot(Plot): | |
644 | ''' |
|
644 | ''' | |
645 | Written by R. Flores |
|
645 | Written by R. Flores | |
646 | ''' |
|
646 | ''' | |
647 | ''' |
|
647 | ''' | |
648 | Plot for electron density |
|
648 | Plot for electron density | |
649 | ''' |
|
649 | ''' | |
650 |
|
650 | |||
651 | CODE = 'den' |
|
651 | CODE = 'den' | |
652 | #plot_name = 'Electron Density' |
|
652 | #plot_name = 'Electron Density' | |
653 | plot_type = 'scatterbuffer' |
|
653 | plot_type = 'scatterbuffer' | |
654 |
|
654 | |||
655 | def setup(self): |
|
655 | def setup(self): | |
656 |
|
656 | |||
657 | self.ncols = 1 |
|
657 | self.ncols = 1 | |
658 | self.nrows = 1 |
|
658 | self.nrows = 1 | |
659 | self.nplots = 1 |
|
659 | self.nplots = 1 | |
660 | self.ylabel = 'Range [km]' |
|
660 | self.ylabel = 'Range [km]' | |
661 | self.xlabel = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' |
|
661 | self.xlabel = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' | |
662 | self.titles = ['Electron Density'] |
|
662 | self.titles = ['Electron Density'] | |
663 | self.width = 3.5 |
|
663 | self.width = 3.5 | |
664 | self.height = 5.5 |
|
664 | self.height = 5.5 | |
665 | self.colorbar = False |
|
665 | self.colorbar = False | |
666 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
666 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
667 |
|
667 | |||
668 | def update(self, dataOut): |
|
668 | def update(self, dataOut): | |
669 | data = {} |
|
669 | data = {} | |
670 | meta = {} |
|
670 | meta = {} | |
671 |
|
671 | |||
672 | data['den_power'] = dataOut.ph2[:dataOut.NSHTS] |
|
672 | data['den_power'] = dataOut.ph2[:dataOut.NSHTS] | |
673 | data['den_Faraday'] = dataOut.dphi[:dataOut.NSHTS] |
|
673 | data['den_Faraday'] = dataOut.dphi[:dataOut.NSHTS] | |
674 | data['den_error'] = dataOut.sdp2[:dataOut.NSHTS] |
|
674 | data['den_error'] = dataOut.sdp2[:dataOut.NSHTS] | |
675 | #data['err_Faraday'] = dataOut.sdn1[:dataOut.NSHTS] |
|
675 | #data['err_Faraday'] = dataOut.sdn1[:dataOut.NSHTS] | |
676 | #print(numpy.shape(data['den_power'])) |
|
676 | #print(numpy.shape(data['den_power'])) | |
677 | #print(numpy.shape(data['den_Faraday'])) |
|
677 | #print(numpy.shape(data['den_Faraday'])) | |
678 | #print(numpy.shape(data['den_error'])) |
|
678 | #print(numpy.shape(data['den_error'])) | |
679 |
|
679 | |||
680 | data['NSHTS'] = dataOut.NSHTS |
|
680 | data['NSHTS'] = dataOut.NSHTS | |
681 |
|
681 | |||
682 | meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
682 | meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] | |
683 |
|
683 | |||
684 | return data, meta |
|
684 | return data, meta | |
685 |
|
685 | |||
686 | def plot(self): |
|
686 | def plot(self): | |
687 |
|
687 | |||
688 | y = self.data.yrange |
|
688 | y = self.data.yrange | |
689 |
|
689 | |||
690 | #self.xmin = 1e3 |
|
690 | #self.xmin = 1e3 | |
691 | #self.xmax = 1e7 |
|
691 | #self.xmax = 1e7 | |
692 |
|
692 | |||
693 | ax = self.axes[0] |
|
693 | ax = self.axes[0] | |
694 |
|
694 | |||
695 | data = self.data[-1] |
|
695 | data = self.data[-1] | |
696 |
|
696 | |||
697 | DenPow = data['den_power'] |
|
697 | DenPow = data['den_power'] | |
698 | DenFar = data['den_Faraday'] |
|
698 | DenFar = data['den_Faraday'] | |
699 | errDenPow = data['den_error'] |
|
699 | errDenPow = data['den_error'] | |
700 | #errFaraday = data['err_Faraday'] |
|
700 | #errFaraday = data['err_Faraday'] | |
701 |
|
701 | |||
702 | NSHTS = data['NSHTS'] |
|
702 | NSHTS = data['NSHTS'] | |
703 |
|
703 | |||
704 | if self.CODE == 'denLP': |
|
704 | if self.CODE == 'denLP': | |
705 | DenPowLP = data['den_LP'] |
|
705 | DenPowLP = data['den_LP'] | |
706 | errDenPowLP = data['den_LP_error'] |
|
706 | errDenPowLP = data['den_LP_error'] | |
707 | cut = data['cut'] |
|
707 | cut = data['cut'] | |
708 |
|
708 | |||
709 | if ax.firsttime: |
|
709 | if ax.firsttime: | |
710 | self.autoxticks=False |
|
710 | self.autoxticks=False | |
711 | #ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) |
|
711 | #ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) | |
712 | ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday',markersize=2,linestyle='-') |
|
712 | ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday',markersize=2,linestyle='-') | |
713 | #ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) |
|
713 | #ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) | |
714 | ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='k',linewidth=1.0, label='Power',markersize=2,linestyle='-') |
|
714 | ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='k',linewidth=1.0, label='Power',markersize=2,linestyle='-') | |
715 |
|
715 | |||
716 | if self.CODE=='denLP': |
|
716 | if self.CODE=='denLP': | |
717 | ax.errorbar(DenPowLP[cut:], y[cut:], xerr=errDenPowLP[cut:], fmt='r^-',elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) |
|
717 | ax.errorbar(DenPowLP[cut:], y[cut:], xerr=errDenPowLP[cut:], fmt='r^-',elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) | |
718 |
|
718 | |||
719 | plt.legend(loc='upper left',fontsize=8.5) |
|
719 | plt.legend(loc='upper left',fontsize=8.5) | |
720 | #plt.legend(loc='lower left',fontsize=8.5) |
|
720 | #plt.legend(loc='lower left',fontsize=8.5) | |
721 | ax.set_xscale("log")#, nonposx='clip') |
|
721 | ax.set_xscale("log")#, nonposx='clip') | |
722 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) |
|
722 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) | |
723 | self.ystep_given=100 |
|
723 | self.ystep_given=100 | |
724 | if self.CODE=='denLP': |
|
724 | if self.CODE=='denLP': | |
725 | self.ystep_given=200 |
|
725 | self.ystep_given=200 | |
726 | ax.set_yticks(grid_y_ticks,minor=True) |
|
726 | ax.set_yticks(grid_y_ticks,minor=True) | |
727 | locmaj = LogLocator(base=10,numticks=12) |
|
727 | locmaj = LogLocator(base=10,numticks=12) | |
728 | ax.xaxis.set_major_locator(locmaj) |
|
728 | ax.xaxis.set_major_locator(locmaj) | |
729 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) |
|
729 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) | |
730 | ax.xaxis.set_minor_locator(locmin) |
|
730 | ax.xaxis.set_minor_locator(locmin) | |
731 | ax.xaxis.set_minor_formatter(NullFormatter()) |
|
731 | ax.xaxis.set_minor_formatter(NullFormatter()) | |
732 | ax.grid(which='minor') |
|
732 | ax.grid(which='minor') | |
733 |
|
733 | |||
734 | else: |
|
734 | else: | |
735 | dataBefore = self.data[-2] |
|
735 | dataBefore = self.data[-2] | |
736 | DenPowBefore = dataBefore['den_power'] |
|
736 | DenPowBefore = dataBefore['den_power'] | |
737 | self.clear_figures() |
|
737 | self.clear_figures() | |
738 | #ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) |
|
738 | #ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) | |
739 | ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday',markersize=2,linestyle='-') |
|
739 | ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday',markersize=2,linestyle='-') | |
740 | #ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) |
|
740 | #ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) | |
741 | ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='k',linewidth=1.0, label='Power',markersize=2,linestyle='-') |
|
741 | ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='k',linewidth=1.0, label='Power',markersize=2,linestyle='-') | |
742 | ax.errorbar(DenPowBefore, y[:NSHTS], elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") |
|
742 | ax.errorbar(DenPowBefore, y[:NSHTS], elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") | |
743 |
|
743 | |||
744 | if self.CODE=='denLP': |
|
744 | if self.CODE=='denLP': | |
745 | ax.errorbar(DenPowLP[cut:], y[cut:], fmt='r^-', xerr=errDenPowLP[cut:],elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) |
|
745 | ax.errorbar(DenPowLP[cut:], y[cut:], fmt='r^-', xerr=errDenPowLP[cut:],elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) | |
746 |
|
746 | |||
747 | ax.set_xscale("log")#, nonposx='clip') |
|
747 | ax.set_xscale("log")#, nonposx='clip') | |
748 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) |
|
748 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) | |
749 | ax.set_yticks(grid_y_ticks,minor=True) |
|
749 | ax.set_yticks(grid_y_ticks,minor=True) | |
750 | locmaj = LogLocator(base=10,numticks=12) |
|
750 | locmaj = LogLocator(base=10,numticks=12) | |
751 | ax.xaxis.set_major_locator(locmaj) |
|
751 | ax.xaxis.set_major_locator(locmaj) | |
752 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) |
|
752 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) | |
753 | ax.xaxis.set_minor_locator(locmin) |
|
753 | ax.xaxis.set_minor_locator(locmin) | |
754 | ax.xaxis.set_minor_formatter(NullFormatter()) |
|
754 | ax.xaxis.set_minor_formatter(NullFormatter()) | |
755 | ax.grid(which='minor') |
|
755 | ax.grid(which='minor') | |
756 | plt.legend(loc='upper left',fontsize=8.5) |
|
756 | plt.legend(loc='upper left',fontsize=8.5) | |
757 | #plt.legend(loc='lower left',fontsize=8.5) |
|
757 | #plt.legend(loc='lower left',fontsize=8.5) | |
758 |
|
758 | |||
759 | class RelativeDenPlot(Plot): |
|
759 | class RelativeDenPlot(Plot): | |
760 | ''' |
|
760 | ''' | |
761 | Written by R. Flores |
|
761 | Written by R. Flores | |
762 | ''' |
|
762 | ''' | |
763 | ''' |
|
763 | ''' | |
764 | Plot for electron density |
|
764 | Plot for electron density | |
765 | ''' |
|
765 | ''' | |
766 |
|
766 | |||
767 | CODE = 'den' |
|
767 | CODE = 'den' | |
768 | #plot_name = 'Electron Density' |
|
768 | #plot_name = 'Electron Density' | |
769 | plot_type = 'scatterbuffer' |
|
769 | plot_type = 'scatterbuffer' | |
770 |
|
770 | |||
771 | def setup(self): |
|
771 | def setup(self): | |
772 |
|
772 | |||
773 | self.ncols = 1 |
|
773 | self.ncols = 1 | |
774 | self.nrows = 1 |
|
774 | self.nrows = 1 | |
775 | self.nplots = 1 |
|
775 | self.nplots = 1 | |
776 | self.ylabel = 'Range [km]' |
|
776 | self.ylabel = 'Range [km]' | |
777 | self.xlabel = r'$\mathrm{N_e}$ Relative Electron Density ($\mathrm{1/cm^3}$)' |
|
777 | self.xlabel = r'$\mathrm{N_e}$ Relative Electron Density ($\mathrm{1/cm^3}$)' | |
778 | self.titles = ['Electron Density'] |
|
778 | self.titles = ['Electron Density'] | |
779 | self.width = 3.5 |
|
779 | self.width = 3.5 | |
780 | self.height = 5.5 |
|
780 | self.height = 5.5 | |
781 | self.colorbar = False |
|
781 | self.colorbar = False | |
782 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
782 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
783 |
|
783 | |||
784 | def update(self, dataOut): |
|
784 | def update(self, dataOut): | |
785 | data = {} |
|
785 | data = {} | |
786 | meta = {} |
|
786 | meta = {} | |
787 |
|
787 | |||
788 | data['den_power'] = dataOut.ph2 |
|
788 | data['den_power'] = dataOut.ph2 | |
789 | data['den_error'] = dataOut.sdp2 |
|
789 | data['den_error'] = dataOut.sdp2 | |
790 |
|
790 | |||
791 | meta['yrange'] = dataOut.heightList |
|
791 | meta['yrange'] = dataOut.heightList | |
792 |
|
792 | |||
793 | return data, meta |
|
793 | return data, meta | |
794 |
|
794 | |||
795 | def plot(self): |
|
795 | def plot(self): | |
796 |
|
796 | |||
797 | y = self.data.yrange |
|
797 | y = self.data.yrange | |
798 |
|
798 | |||
799 | ax = self.axes[0] |
|
799 | ax = self.axes[0] | |
800 |
|
800 | |||
801 | data = self.data[-1] |
|
801 | data = self.data[-1] | |
802 |
|
802 | |||
803 | DenPow = data['den_power'] |
|
803 | DenPow = data['den_power'] | |
804 | errDenPow = data['den_error'] |
|
804 | errDenPow = data['den_error'] | |
805 |
|
805 | |||
806 | if ax.firsttime: |
|
806 | if ax.firsttime: | |
807 | self.autoxticks=False |
|
807 | self.autoxticks=False | |
808 | ax.errorbar(DenPow, y, fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='k',linewidth=1.0, label='Power',markersize=2,linestyle='-') |
|
808 | ax.errorbar(DenPow, y, fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='k',linewidth=1.0, label='Power',markersize=2,linestyle='-') | |
809 |
|
809 | |||
810 | plt.legend(loc='upper left',fontsize=8.5) |
|
810 | plt.legend(loc='upper left',fontsize=8.5) | |
811 | #plt.legend(loc='lower left',fontsize=8.5) |
|
811 | #plt.legend(loc='lower left',fontsize=8.5) | |
812 | ax.set_xscale("log")#, nonposx='clip') |
|
812 | ax.set_xscale("log")#, nonposx='clip') | |
813 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) |
|
813 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) | |
814 | self.ystep_given=100 |
|
814 | self.ystep_given=100 | |
815 | ax.set_yticks(grid_y_ticks,minor=True) |
|
815 | ax.set_yticks(grid_y_ticks,minor=True) | |
816 | locmaj = LogLocator(base=10,numticks=12) |
|
816 | locmaj = LogLocator(base=10,numticks=12) | |
817 | ax.xaxis.set_major_locator(locmaj) |
|
817 | ax.xaxis.set_major_locator(locmaj) | |
818 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) |
|
818 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) | |
819 | ax.xaxis.set_minor_locator(locmin) |
|
819 | ax.xaxis.set_minor_locator(locmin) | |
820 | ax.xaxis.set_minor_formatter(NullFormatter()) |
|
820 | ax.xaxis.set_minor_formatter(NullFormatter()) | |
821 | ax.grid(which='minor') |
|
821 | ax.grid(which='minor') | |
822 |
|
822 | |||
823 | else: |
|
823 | else: | |
824 | dataBefore = self.data[-2] |
|
824 | dataBefore = self.data[-2] | |
825 | DenPowBefore = dataBefore['den_power'] |
|
825 | DenPowBefore = dataBefore['den_power'] | |
826 | self.clear_figures() |
|
826 | self.clear_figures() | |
827 | ax.errorbar(DenPow, y, fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='k',linewidth=1.0, label='Power',markersize=2,linestyle='-') |
|
827 | ax.errorbar(DenPow, y, fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='k',linewidth=1.0, label='Power',markersize=2,linestyle='-') | |
828 | ax.errorbar(DenPowBefore, y, elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") |
|
828 | ax.errorbar(DenPowBefore, y, elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") | |
829 |
|
829 | |||
830 | ax.set_xscale("log")#, nonposx='clip') |
|
830 | ax.set_xscale("log")#, nonposx='clip') | |
831 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) |
|
831 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) | |
832 | ax.set_yticks(grid_y_ticks,minor=True) |
|
832 | ax.set_yticks(grid_y_ticks,minor=True) | |
833 | locmaj = LogLocator(base=10,numticks=12) |
|
833 | locmaj = LogLocator(base=10,numticks=12) | |
834 | ax.xaxis.set_major_locator(locmaj) |
|
834 | ax.xaxis.set_major_locator(locmaj) | |
835 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) |
|
835 | locmin = LogLocator(base=10.0,subs=(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9),numticks=12) | |
836 | ax.xaxis.set_minor_locator(locmin) |
|
836 | ax.xaxis.set_minor_locator(locmin) | |
837 | ax.xaxis.set_minor_formatter(NullFormatter()) |
|
837 | ax.xaxis.set_minor_formatter(NullFormatter()) | |
838 | ax.grid(which='minor') |
|
838 | ax.grid(which='minor') | |
839 | plt.legend(loc='upper left',fontsize=8.5) |
|
839 | plt.legend(loc='upper left',fontsize=8.5) | |
840 | #plt.legend(loc='lower left',fontsize=8.5) |
|
840 | #plt.legend(loc='lower left',fontsize=8.5) | |
841 |
|
841 | |||
842 | class FaradayAnglePlot(Plot): |
|
842 | class FaradayAnglePlot(Plot): | |
843 | ''' |
|
843 | ''' | |
844 | Written by R. Flores |
|
844 | Written by R. Flores | |
845 | ''' |
|
845 | ''' | |
846 | ''' |
|
846 | ''' | |
847 | Plot for electron density |
|
847 | Plot for electron density | |
848 | ''' |
|
848 | ''' | |
849 |
|
849 | |||
850 | CODE = 'angle' |
|
850 | CODE = 'angle' | |
851 | plot_name = 'Faraday Angle' |
|
851 | plot_name = 'Faraday Angle' | |
852 | plot_type = 'scatterbuffer' |
|
852 | plot_type = 'scatterbuffer' | |
853 |
|
853 | |||
854 | def setup(self): |
|
854 | def setup(self): | |
855 |
|
855 | |||
856 | self.ncols = 1 |
|
856 | self.ncols = 1 | |
857 | self.nrows = 1 |
|
857 | self.nrows = 1 | |
858 | self.nplots = 1 |
|
858 | self.nplots = 1 | |
859 | self.ylabel = 'Range [km]' |
|
859 | self.ylabel = 'Range [km]' | |
860 | self.xlabel = 'Faraday Angle (º)' |
|
860 | self.xlabel = 'Faraday Angle (º)' | |
861 | self.titles = ['Electron Density'] |
|
861 | self.titles = ['Electron Density'] | |
862 | self.width = 3.5 |
|
862 | self.width = 3.5 | |
863 | self.height = 5.5 |
|
863 | self.height = 5.5 | |
864 | self.colorbar = False |
|
864 | self.colorbar = False | |
865 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
865 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
866 |
|
866 | |||
867 | def update(self, dataOut): |
|
867 | def update(self, dataOut): | |
868 | data = {} |
|
868 | data = {} | |
869 | meta = {} |
|
869 | meta = {} | |
870 |
|
870 | |||
871 | data['angle'] = numpy.degrees(dataOut.phi) |
|
871 | data['angle'] = numpy.degrees(dataOut.phi) | |
872 | #''' |
|
872 | #''' | |
873 | #print(dataOut.phi_uwrp) |
|
873 | #print(dataOut.phi_uwrp) | |
874 | #print(data['angle']) |
|
874 | #print(data['angle']) | |
875 | #exit(1) |
|
875 | #exit(1) | |
876 | #''' |
|
876 | #''' | |
877 | data['dphi'] = dataOut.dphi_uc*10 |
|
877 | data['dphi'] = dataOut.dphi_uc*10 | |
878 | #print(dataOut.dphi) |
|
878 | #print(dataOut.dphi) | |
879 |
|
879 | |||
880 | #data['NSHTS'] = dataOut.NSHTS |
|
880 | #data['NSHTS'] = dataOut.NSHTS | |
881 |
|
881 | |||
882 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
882 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] | |
883 |
|
883 | |||
884 | return data, meta |
|
884 | return data, meta | |
885 |
|
885 | |||
886 | def plot(self): |
|
886 | def plot(self): | |
887 |
|
887 | |||
888 | data = self.data[-1] |
|
888 | data = self.data[-1] | |
889 | self.x = data[self.CODE] |
|
889 | self.x = data[self.CODE] | |
890 | dphi = data['dphi'] |
|
890 | dphi = data['dphi'] | |
891 | self.y = self.data.yrange |
|
891 | self.y = self.data.yrange | |
892 | self.xmin = -360#-180 |
|
892 | self.xmin = -360#-180 | |
893 | self.xmax = 360#180 |
|
893 | self.xmax = 360#180 | |
894 | ax = self.axes[0] |
|
894 | ax = self.axes[0] | |
895 |
|
895 | |||
896 | if ax.firsttime: |
|
896 | if ax.firsttime: | |
897 | self.autoxticks=False |
|
897 | self.autoxticks=False | |
898 | #if self.CODE=='den': |
|
898 | #if self.CODE=='den': | |
899 | ax.plot(self.x, self.y,marker='o',color='g',linewidth=1.0,markersize=2) |
|
899 | ax.plot(self.x, self.y,marker='o',color='g',linewidth=1.0,markersize=2) | |
900 | ax.plot(dphi, self.y,marker='o',color='blue',linewidth=1.0,markersize=2) |
|
900 | ax.plot(dphi, self.y,marker='o',color='blue',linewidth=1.0,markersize=2) | |
901 |
|
901 | |||
902 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) |
|
902 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) | |
903 | self.ystep_given=100 |
|
903 | self.ystep_given=100 | |
904 | if self.CODE=='denLP': |
|
904 | if self.CODE=='denLP': | |
905 | self.ystep_given=200 |
|
905 | self.ystep_given=200 | |
906 | ax.set_yticks(grid_y_ticks,minor=True) |
|
906 | ax.set_yticks(grid_y_ticks,minor=True) | |
907 | ax.grid(which='minor') |
|
907 | ax.grid(which='minor') | |
908 | #plt.tight_layout() |
|
908 | #plt.tight_layout() | |
909 | else: |
|
909 | else: | |
910 |
|
910 | |||
911 | self.clear_figures() |
|
911 | self.clear_figures() | |
912 | #if self.CODE=='den': |
|
912 | #if self.CODE=='den': | |
913 | #print(numpy.shape(self.x)) |
|
913 | #print(numpy.shape(self.x)) | |
914 | ax.plot(self.x, self.y, marker='o',color='g',linewidth=1.0, markersize=2) |
|
914 | ax.plot(self.x, self.y, marker='o',color='g',linewidth=1.0, markersize=2) | |
915 | ax.plot(dphi, self.y,marker='o',color='blue',linewidth=1.0,markersize=2) |
|
915 | ax.plot(dphi, self.y,marker='o',color='blue',linewidth=1.0,markersize=2) | |
916 |
|
916 | |||
917 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) |
|
917 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) | |
918 | ax.set_yticks(grid_y_ticks,minor=True) |
|
918 | ax.set_yticks(grid_y_ticks,minor=True) | |
919 | ax.grid(which='minor') |
|
919 | ax.grid(which='minor') | |
920 |
|
920 | |||
921 | class EDensityHPPlot(EDensityPlot): |
|
921 | class EDensityHPPlot(EDensityPlot): | |
922 | ''' |
|
922 | ''' | |
923 | Written by R. Flores |
|
923 | Written by R. Flores | |
924 | ''' |
|
924 | ''' | |
925 | ''' |
|
925 | ''' | |
926 | Plot for Electron Density Hybrid Experiment |
|
926 | Plot for Electron Density Hybrid Experiment | |
927 | ''' |
|
927 | ''' | |
928 |
|
928 | |||
929 | CODE = 'denLP' |
|
929 | CODE = 'denLP' | |
930 | plot_name = 'Electron Density' |
|
930 | plot_name = 'Electron Density' | |
931 | plot_type = 'scatterbuffer' |
|
931 | plot_type = 'scatterbuffer' | |
932 |
|
932 | |||
933 | def update(self, dataOut): |
|
933 | def update(self, dataOut): | |
934 | data = {} |
|
934 | data = {} | |
935 | meta = {} |
|
935 | meta = {} | |
936 |
|
936 | |||
937 | data['den_power'] = dataOut.ph2[:dataOut.NSHTS] |
|
937 | data['den_power'] = dataOut.ph2[:dataOut.NSHTS] | |
938 | data['den_Faraday']=dataOut.dphi[:dataOut.NSHTS] |
|
938 | data['den_Faraday']=dataOut.dphi[:dataOut.NSHTS] | |
939 | data['den_error']=dataOut.sdp2[:dataOut.NSHTS] |
|
939 | data['den_error']=dataOut.sdp2[:dataOut.NSHTS] | |
940 | data['den_LP']=dataOut.ne[:dataOut.NACF] |
|
940 | data['den_LP']=dataOut.ne[:dataOut.NACF] | |
941 | data['den_LP_error']=dataOut.ene[:dataOut.NACF]*dataOut.ne[:dataOut.NACF]*0.434 |
|
941 | data['den_LP_error']=dataOut.ene[:dataOut.NACF]*dataOut.ne[:dataOut.NACF]*0.434 | |
942 | #self.ene=10**dataOut.ene[:dataOut.NACF] |
|
942 | #self.ene=10**dataOut.ene[:dataOut.NACF] | |
943 | data['NSHTS']=dataOut.NSHTS |
|
943 | data['NSHTS']=dataOut.NSHTS | |
944 | data['cut']=dataOut.cut |
|
944 | data['cut']=dataOut.cut | |
945 |
|
945 | |||
946 | return data, meta |
|
946 | return data, meta | |
947 |
|
947 | |||
948 |
|
948 | |||
949 | class ACFsPlot(Plot): |
|
949 | class ACFsPlot(Plot): | |
950 | ''' |
|
950 | ''' | |
951 | Written by R. Flores |
|
951 | Written by R. Flores | |
952 | ''' |
|
952 | ''' | |
953 | ''' |
|
953 | ''' | |
954 | Plot for ACFs Double Pulse Experiment |
|
954 | Plot for ACFs Double Pulse Experiment | |
955 | ''' |
|
955 | ''' | |
956 |
|
956 | |||
957 | CODE = 'acfs' |
|
957 | CODE = 'acfs' | |
958 | #plot_name = 'ACF' |
|
958 | #plot_name = 'ACF' | |
959 | plot_type = 'scatterbuffer' |
|
959 | plot_type = 'scatterbuffer' | |
960 |
|
960 | |||
961 |
|
961 | |||
962 | def setup(self): |
|
962 | def setup(self): | |
963 | self.ncols = 1 |
|
963 | self.ncols = 1 | |
964 | self.nrows = 1 |
|
964 | self.nrows = 1 | |
965 | self.nplots = 1 |
|
965 | self.nplots = 1 | |
966 | self.ylabel = 'Range [km]' |
|
966 | self.ylabel = 'Range [km]' | |
967 | self.xlabel = 'Lag (ms)' |
|
967 | self.xlabel = 'Lag (ms)' | |
968 | self.titles = ['ACFs'] |
|
968 | self.titles = ['ACFs'] | |
969 | self.width = 3.5 |
|
969 | self.width = 3.5 | |
970 | self.height = 5.5 |
|
970 | self.height = 5.5 | |
971 | self.colorbar = False |
|
971 | self.colorbar = False | |
972 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
972 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
973 |
|
973 | |||
974 | def update(self, dataOut): |
|
974 | def update(self, dataOut): | |
975 | data = {} |
|
975 | data = {} | |
976 | meta = {} |
|
976 | meta = {} | |
977 |
|
977 | |||
978 | data['ACFs'] = dataOut.acfs_to_plot |
|
978 | data['ACFs'] = dataOut.acfs_to_plot | |
979 | data['ACFs_error'] = dataOut.acfs_error_to_plot |
|
979 | data['ACFs_error'] = dataOut.acfs_error_to_plot | |
980 | data['lags'] = dataOut.lags_to_plot |
|
980 | data['lags'] = dataOut.lags_to_plot | |
981 | data['Lag_contaminated_1'] = dataOut.x_igcej_to_plot |
|
981 | data['Lag_contaminated_1'] = dataOut.x_igcej_to_plot | |
982 | data['Lag_contaminated_2'] = dataOut.x_ibad_to_plot |
|
982 | data['Lag_contaminated_2'] = dataOut.x_ibad_to_plot | |
983 | data['Height_contaminated_1'] = dataOut.y_igcej_to_plot |
|
983 | data['Height_contaminated_1'] = dataOut.y_igcej_to_plot | |
984 | data['Height_contaminated_2'] = dataOut.y_ibad_to_plot |
|
984 | data['Height_contaminated_2'] = dataOut.y_ibad_to_plot | |
985 |
|
985 | |||
986 | meta['yrange'] = numpy.array([]) |
|
986 | meta['yrange'] = numpy.array([]) | |
987 | #meta['NSHTS'] = dataOut.NSHTS |
|
987 | #meta['NSHTS'] = dataOut.NSHTS | |
988 | #meta['DPL'] = dataOut.DPL |
|
988 | #meta['DPL'] = dataOut.DPL | |
989 | data['NSHTS'] = dataOut.NSHTS #This is metadata |
|
989 | data['NSHTS'] = dataOut.NSHTS #This is metadata | |
990 | data['DPL'] = dataOut.DPL #This is metadata |
|
990 | data['DPL'] = dataOut.DPL #This is metadata | |
991 |
|
991 | |||
992 | return data, meta |
|
992 | return data, meta | |
993 |
|
993 | |||
994 | def plot(self): |
|
994 | def plot(self): | |
995 |
|
995 | |||
996 | data = self.data[-1] |
|
996 | data = self.data[-1] | |
997 | #NSHTS = self.meta['NSHTS'] |
|
997 | #NSHTS = self.meta['NSHTS'] | |
998 | #DPL = self.meta['DPL'] |
|
998 | #DPL = self.meta['DPL'] | |
999 | NSHTS = data['NSHTS'] #This is metadata |
|
999 | NSHTS = data['NSHTS'] #This is metadata | |
1000 | DPL = data['DPL'] #This is metadata |
|
1000 | DPL = data['DPL'] #This is metadata | |
1001 |
|
1001 | |||
1002 | lags = data['lags'] |
|
1002 | lags = data['lags'] | |
1003 | ACFs = data['ACFs'] |
|
1003 | ACFs = data['ACFs'] | |
1004 | errACFs = data['ACFs_error'] |
|
1004 | errACFs = data['ACFs_error'] | |
1005 | BadLag1 = data['Lag_contaminated_1'] |
|
1005 | BadLag1 = data['Lag_contaminated_1'] | |
1006 | BadLag2 = data['Lag_contaminated_2'] |
|
1006 | BadLag2 = data['Lag_contaminated_2'] | |
1007 | BadHei1 = data['Height_contaminated_1'] |
|
1007 | BadHei1 = data['Height_contaminated_1'] | |
1008 | BadHei2 = data['Height_contaminated_2'] |
|
1008 | BadHei2 = data['Height_contaminated_2'] | |
1009 |
|
1009 | |||
1010 | self.xmin = 0.0 |
|
1010 | self.xmin = 0.0 | |
1011 | self.xmax = 2.0 |
|
1011 | #self.xmax = 2.0 | |
1012 | self.y = ACFs |
|
1012 | self.y = ACFs | |
1013 |
|
1013 | |||
1014 | ax = self.axes[0] |
|
1014 | ax = self.axes[0] | |
1015 |
|
1015 | |||
1016 | if ax.firsttime: |
|
1016 | if ax.firsttime: | |
1017 |
|
1017 | |||
1018 | for i in range(NSHTS): |
|
1018 | for i in range(NSHTS): | |
1019 | x_aux = numpy.isfinite(lags[i,:]) |
|
1019 | x_aux = numpy.isfinite(lags[i,:]) | |
1020 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
1020 | y_aux = numpy.isfinite(ACFs[i,:]) | |
1021 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
1021 | yerr_aux = numpy.isfinite(errACFs[i,:]) | |
1022 | x_igcej_aux = numpy.isfinite(BadLag1[i,:]) |
|
1022 | x_igcej_aux = numpy.isfinite(BadLag1[i,:]) | |
1023 | y_igcej_aux = numpy.isfinite(BadHei1[i,:]) |
|
1023 | y_igcej_aux = numpy.isfinite(BadHei1[i,:]) | |
1024 | x_ibad_aux = numpy.isfinite(BadLag2[i,:]) |
|
1024 | x_ibad_aux = numpy.isfinite(BadLag2[i,:]) | |
1025 | y_ibad_aux = numpy.isfinite(BadHei2[i,:]) |
|
1025 | y_ibad_aux = numpy.isfinite(BadHei2[i,:]) | |
1026 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
1026 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: | |
1027 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',marker='o',linewidth=1.0,markersize=2) |
|
1027 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',marker='o',linewidth=1.0,markersize=2) | |
1028 | ax.plot(BadLag1[i,x_igcej_aux],BadHei1[i,y_igcej_aux],'x',color='red',markersize=2) |
|
1028 | ax.plot(BadLag1[i,x_igcej_aux],BadHei1[i,y_igcej_aux],'x',color='red',markersize=2) | |
1029 | ax.plot(BadLag2[i,x_ibad_aux],BadHei2[i,y_ibad_aux],'X',color='red',markersize=2) |
|
1029 | ax.plot(BadLag2[i,x_ibad_aux],BadHei2[i,y_ibad_aux],'X',color='red',markersize=2) | |
1030 |
|
1030 | |||
1031 | self.xstep_given = (self.xmax-self.xmin)/(DPL-1) |
|
1031 | self.xstep_given = (self.xmax-self.xmin)/(DPL-1) | |
1032 | self.ystep_given = 50 |
|
1032 | self.ystep_given = 50 | |
1033 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
1033 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
1034 | ax.grid(which='minor') |
|
1034 | ax.grid(which='minor') | |
1035 |
|
1035 | |||
1036 | else: |
|
1036 | else: | |
1037 | self.clear_figures() |
|
1037 | self.clear_figures() | |
1038 | for i in range(NSHTS): |
|
1038 | for i in range(NSHTS): | |
1039 | x_aux = numpy.isfinite(lags[i,:]) |
|
1039 | x_aux = numpy.isfinite(lags[i,:]) | |
1040 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
1040 | y_aux = numpy.isfinite(ACFs[i,:]) | |
1041 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
1041 | yerr_aux = numpy.isfinite(errACFs[i,:]) | |
1042 | x_igcej_aux = numpy.isfinite(BadLag1[i,:]) |
|
1042 | x_igcej_aux = numpy.isfinite(BadLag1[i,:]) | |
1043 | y_igcej_aux = numpy.isfinite(BadHei1[i,:]) |
|
1043 | y_igcej_aux = numpy.isfinite(BadHei1[i,:]) | |
1044 | x_ibad_aux = numpy.isfinite(BadLag2[i,:]) |
|
1044 | x_ibad_aux = numpy.isfinite(BadLag2[i,:]) | |
1045 | y_ibad_aux = numpy.isfinite(BadHei2[i,:]) |
|
1045 | y_ibad_aux = numpy.isfinite(BadHei2[i,:]) | |
1046 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
1046 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: | |
1047 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],linewidth=1.0,markersize=2,color='b',marker='o') |
|
1047 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],linewidth=1.0,markersize=2,color='b',marker='o') | |
1048 | ax.plot(BadLag1[i,x_igcej_aux],BadHei1[i,y_igcej_aux],'x',color='red',markersize=2) |
|
1048 | ax.plot(BadLag1[i,x_igcej_aux],BadHei1[i,y_igcej_aux],'x',color='red',markersize=2) | |
1049 | ax.plot(BadLag2[i,x_ibad_aux],BadHei2[i,y_ibad_aux],'X',color='red',markersize=2) |
|
1049 | ax.plot(BadLag2[i,x_ibad_aux],BadHei2[i,y_ibad_aux],'X',color='red',markersize=2) | |
1050 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
1050 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
1051 |
|
1051 | |||
1052 | class ACFsLPPlot(Plot): |
|
1052 | class ACFsLPPlot(Plot): | |
1053 | ''' |
|
1053 | ''' | |
1054 | Written by R. Flores |
|
1054 | Written by R. Flores | |
1055 | ''' |
|
1055 | ''' | |
1056 | ''' |
|
1056 | ''' | |
1057 | Plot for ACFs Double Pulse Experiment |
|
1057 | Plot for ACFs Double Pulse Experiment | |
1058 | ''' |
|
1058 | ''' | |
1059 |
|
1059 | |||
1060 | CODE = 'acfs_LP' |
|
1060 | CODE = 'acfs_LP' | |
1061 | #plot_name = 'ACF' |
|
1061 | #plot_name = 'ACF' | |
1062 | plot_type = 'scatterbuffer' |
|
1062 | plot_type = 'scatterbuffer' | |
1063 |
|
1063 | |||
1064 |
|
1064 | |||
1065 | def setup(self): |
|
1065 | def setup(self): | |
1066 | self.ncols = 1 |
|
1066 | self.ncols = 1 | |
1067 | self.nrows = 1 |
|
1067 | self.nrows = 1 | |
1068 | self.nplots = 1 |
|
1068 | self.nplots = 1 | |
1069 | self.ylabel = 'Range [km]' |
|
1069 | self.ylabel = 'Range [km]' | |
1070 | self.xlabel = 'Lag (ms)' |
|
1070 | self.xlabel = 'Lag (ms)' | |
1071 | self.titles = ['ACFs'] |
|
1071 | self.titles = ['ACFs'] | |
1072 | self.width = 3.5 |
|
1072 | self.width = 3.5 | |
1073 | self.height = 5.5 |
|
1073 | self.height = 5.5 | |
1074 | self.colorbar = False |
|
1074 | self.colorbar = False | |
1075 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
1075 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
1076 |
|
1076 | |||
1077 | def update(self, dataOut): |
|
1077 | def update(self, dataOut): | |
1078 | data = {} |
|
1078 | data = {} | |
1079 | meta = {} |
|
1079 | meta = {} | |
1080 |
|
1080 | |||
1081 | aux=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') |
|
1081 | aux=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') | |
1082 | errors=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') |
|
1082 | errors=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') | |
1083 | lags_LP_to_plot=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') |
|
1083 | lags_LP_to_plot=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') | |
1084 |
|
1084 | |||
1085 | for i in range(dataOut.NACF): |
|
1085 | for i in range(dataOut.NACF): | |
1086 | for j in range(dataOut.IBITS): |
|
1086 | for j in range(dataOut.IBITS): | |
1087 | if numpy.abs(dataOut.errors[j,i]/dataOut.output_LP_integrated.real[0,i,0])<1.0: |
|
1087 | if numpy.abs(dataOut.errors[j,i]/dataOut.output_LP_integrated.real[0,i,0])<1.0: | |
1088 | aux[i,j]=dataOut.output_LP_integrated.real[j,i,0]/dataOut.output_LP_integrated.real[0,i,0] |
|
1088 | aux[i,j]=dataOut.output_LP_integrated.real[j,i,0]/dataOut.output_LP_integrated.real[0,i,0] | |
1089 | aux[i,j]=max(min(aux[i,j],1.0),-1.0)*dataOut.DH+dataOut.heightList[i] |
|
1089 | aux[i,j]=max(min(aux[i,j],1.0),-1.0)*dataOut.DH+dataOut.heightList[i] | |
1090 | lags_LP_to_plot[i,j]=dataOut.lags_LP[j] |
|
1090 | lags_LP_to_plot[i,j]=dataOut.lags_LP[j] | |
1091 | errors[i,j]=dataOut.errors[j,i]/dataOut.output_LP_integrated.real[0,i,0]*dataOut.DH |
|
1091 | errors[i,j]=dataOut.errors[j,i]/dataOut.output_LP_integrated.real[0,i,0]*dataOut.DH | |
1092 | else: |
|
1092 | else: | |
1093 | aux[i,j]=numpy.nan |
|
1093 | aux[i,j]=numpy.nan | |
1094 | lags_LP_to_plot[i,j]=numpy.nan |
|
1094 | lags_LP_to_plot[i,j]=numpy.nan | |
1095 | errors[i,j]=numpy.nan |
|
1095 | errors[i,j]=numpy.nan | |
1096 |
|
1096 | |||
1097 | data['ACFs'] = aux |
|
1097 | data['ACFs'] = aux | |
1098 | data['ACFs_error'] = errors |
|
1098 | data['ACFs_error'] = errors | |
1099 | data['lags'] = lags_LP_to_plot |
|
1099 | data['lags'] = lags_LP_to_plot | |
1100 |
|
1100 | |||
1101 | meta['yrange'] = numpy.array([]) |
|
1101 | meta['yrange'] = numpy.array([]) | |
1102 | #meta['NACF'] = dataOut.NACF |
|
1102 | #meta['NACF'] = dataOut.NACF | |
1103 | #meta['NLAG'] = dataOut.NLAG |
|
1103 | #meta['NLAG'] = dataOut.NLAG | |
1104 | data['NACF'] = dataOut.NACF #This is metadata |
|
1104 | data['NACF'] = dataOut.NACF #This is metadata | |
1105 | data['NLAG'] = dataOut.NLAG #This is metadata |
|
1105 | data['NLAG'] = dataOut.NLAG #This is metadata | |
1106 |
|
1106 | |||
1107 | return data, meta |
|
1107 | return data, meta | |
1108 |
|
1108 | |||
1109 | def plot(self): |
|
1109 | def plot(self): | |
1110 |
|
1110 | |||
1111 | data = self.data[-1] |
|
1111 | data = self.data[-1] | |
1112 | #NACF = self.meta['NACF'] |
|
1112 | #NACF = self.meta['NACF'] | |
1113 | #NLAG = self.meta['NLAG'] |
|
1113 | #NLAG = self.meta['NLAG'] | |
1114 | NACF = data['NACF'] #This is metadata |
|
1114 | NACF = data['NACF'] #This is metadata | |
1115 | NLAG = data['NLAG'] #This is metadata |
|
1115 | NLAG = data['NLAG'] #This is metadata | |
1116 |
|
1116 | |||
1117 | lags = data['lags'] |
|
1117 | lags = data['lags'] | |
1118 | ACFs = data['ACFs'] |
|
1118 | ACFs = data['ACFs'] | |
1119 | errACFs = data['ACFs_error'] |
|
1119 | errACFs = data['ACFs_error'] | |
1120 |
|
1120 | |||
1121 | self.xmin = 0.0 |
|
1121 | self.xmin = 0.0 | |
1122 | self.xmax = 1.5 |
|
1122 | self.xmax = 1.5 | |
1123 |
|
1123 | |||
1124 | self.y = ACFs |
|
1124 | self.y = ACFs | |
1125 |
|
1125 | |||
1126 | ax = self.axes[0] |
|
1126 | ax = self.axes[0] | |
1127 |
|
1127 | |||
1128 | if ax.firsttime: |
|
1128 | if ax.firsttime: | |
1129 |
|
1129 | |||
1130 | for i in range(NACF): |
|
1130 | for i in range(NACF): | |
1131 | x_aux = numpy.isfinite(lags[i,:]) |
|
1131 | x_aux = numpy.isfinite(lags[i,:]) | |
1132 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
1132 | y_aux = numpy.isfinite(ACFs[i,:]) | |
1133 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
1133 | yerr_aux = numpy.isfinite(errACFs[i,:]) | |
1134 |
|
1134 | |||
1135 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
1135 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: | |
1136 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') |
|
1136 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') | |
1137 |
|
1137 | |||
1138 | #self.xstep_given = (self.xmax-self.xmin)/(self.data.NLAG-1) |
|
1138 | #self.xstep_given = (self.xmax-self.xmin)/(self.data.NLAG-1) | |
1139 | self.xstep_given=0.3 |
|
1139 | self.xstep_given=0.3 | |
1140 | self.ystep_given = 200 |
|
1140 | self.ystep_given = 200 | |
1141 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
1141 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
1142 | ax.grid(which='minor') |
|
1142 | ax.grid(which='minor') | |
1143 |
|
1143 | |||
1144 | else: |
|
1144 | else: | |
1145 | self.clear_figures() |
|
1145 | self.clear_figures() | |
1146 |
|
1146 | |||
1147 | for i in range(NACF): |
|
1147 | for i in range(NACF): | |
1148 | x_aux = numpy.isfinite(lags[i,:]) |
|
1148 | x_aux = numpy.isfinite(lags[i,:]) | |
1149 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
1149 | y_aux = numpy.isfinite(ACFs[i,:]) | |
1150 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
1150 | yerr_aux = numpy.isfinite(errACFs[i,:]) | |
1151 |
|
1151 | |||
1152 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
1152 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: | |
1153 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') |
|
1153 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') | |
1154 |
|
1154 | |||
1155 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
1155 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
1156 |
|
1156 | |||
1157 |
|
1157 | |||
1158 | class CrossProductsPlot(Plot): |
|
1158 | class CrossProductsPlot(Plot): | |
1159 | ''' |
|
1159 | ''' | |
1160 | Written by R. Flores |
|
1160 | Written by R. Flores | |
1161 | ''' |
|
1161 | ''' | |
1162 | ''' |
|
1162 | ''' | |
1163 | Plot for cross products |
|
1163 | Plot for cross products | |
1164 | ''' |
|
1164 | ''' | |
1165 |
|
1165 | |||
1166 | CODE = 'crossprod' |
|
1166 | CODE = 'crossprod' | |
1167 | plot_name = 'Cross Products' |
|
1167 | plot_name = 'Cross Products' | |
1168 | plot_type = 'scatterbuffer' |
|
1168 | plot_type = 'scatterbuffer' | |
1169 |
|
1169 | |||
1170 | def setup(self): |
|
1170 | def setup(self): | |
1171 |
|
1171 | |||
1172 | self.ncols = 3 |
|
1172 | self.ncols = 3 | |
1173 | self.nrows = 1 |
|
1173 | self.nrows = 1 | |
1174 | self.nplots = 3 |
|
1174 | self.nplots = 3 | |
1175 | self.ylabel = 'Range [km]' |
|
1175 | self.ylabel = 'Range [km]' | |
1176 | self.titles = [] |
|
1176 | self.titles = [] | |
1177 | self.width = 3.5*self.nplots |
|
1177 | self.width = 3.5*self.nplots | |
1178 | self.height = 5.5 |
|
1178 | self.height = 5.5 | |
1179 | self.colorbar = False |
|
1179 | self.colorbar = False | |
1180 | self.plots_adjust.update({'wspace':.3, 'left': 0.12, 'right': 0.92, 'bottom': 0.1}) |
|
1180 | self.plots_adjust.update({'wspace':.3, 'left': 0.12, 'right': 0.92, 'bottom': 0.1}) | |
1181 |
|
1181 | |||
1182 |
|
1182 | |||
1183 | def update(self, dataOut): |
|
1183 | def update(self, dataOut): | |
1184 |
|
1184 | |||
1185 | data = {} |
|
1185 | data = {} | |
1186 | meta = {} |
|
1186 | meta = {} | |
1187 |
|
1187 | |||
1188 | data['crossprod'] = dataOut.crossprods |
|
1188 | data['crossprod'] = dataOut.crossprods | |
1189 | data['NDP'] = dataOut.NDP |
|
1189 | data['NDP'] = dataOut.NDP | |
1190 |
|
1190 | |||
1191 | return data, meta |
|
1191 | return data, meta | |
1192 |
|
1192 | |||
1193 | def plot(self): |
|
1193 | def plot(self): | |
1194 |
|
1194 | |||
1195 | NDP = self.data['NDP'][-1] |
|
1195 | NDP = self.data['NDP'][-1] | |
1196 | x = self.data['crossprod'][:,-1,:,:,:,:] |
|
1196 | x = self.data['crossprod'][:,-1,:,:,:,:] | |
1197 | y = self.data.yrange[0:NDP] |
|
1197 | y = self.data.yrange[0:NDP] | |
1198 |
|
1198 | |||
1199 | for n, ax in enumerate(self.axes): |
|
1199 | for n, ax in enumerate(self.axes): | |
1200 |
|
1200 | |||
1201 | self.xmin=numpy.min(numpy.concatenate((x[n][0,20:30,0,0],x[n][1,20:30,0,0],x[n][2,20:30,0,0],x[n][3,20:30,0,0]))) |
|
1201 | self.xmin=numpy.min(numpy.concatenate((x[n][0,20:30,0,0],x[n][1,20:30,0,0],x[n][2,20:30,0,0],x[n][3,20:30,0,0]))) | |
1202 | self.xmax=numpy.max(numpy.concatenate((x[n][0,20:30,0,0],x[n][1,20:30,0,0],x[n][2,20:30,0,0],x[n][3,20:30,0,0]))) |
|
1202 | self.xmax=numpy.max(numpy.concatenate((x[n][0,20:30,0,0],x[n][1,20:30,0,0],x[n][2,20:30,0,0],x[n][3,20:30,0,0]))) | |
1203 |
|
1203 | |||
1204 | if ax.firsttime: |
|
1204 | if ax.firsttime: | |
1205 |
|
1205 | |||
1206 | self.autoxticks=False |
|
1206 | self.autoxticks=False | |
1207 | if n==0: |
|
1207 | if n==0: | |
1208 | label1='kax' |
|
1208 | label1='kax' | |
1209 | label2='kay' |
|
1209 | label2='kay' | |
1210 | label3='kbx' |
|
1210 | label3='kbx' | |
1211 | label4='kby' |
|
1211 | label4='kby' | |
1212 | self.xlimits=[(self.xmin,self.xmax)] |
|
1212 | self.xlimits=[(self.xmin,self.xmax)] | |
1213 | elif n==1: |
|
1213 | elif n==1: | |
1214 | label1='kax2' |
|
1214 | label1='kax2' | |
1215 | label2='kay2' |
|
1215 | label2='kay2' | |
1216 | label3='kbx2' |
|
1216 | label3='kbx2' | |
1217 | label4='kby2' |
|
1217 | label4='kby2' | |
1218 | self.xlimits.append((self.xmin,self.xmax)) |
|
1218 | self.xlimits.append((self.xmin,self.xmax)) | |
1219 | elif n==2: |
|
1219 | elif n==2: | |
1220 | label1='kaxay' |
|
1220 | label1='kaxay' | |
1221 | label2='kbxby' |
|
1221 | label2='kbxby' | |
1222 | label3='kaxbx' |
|
1222 | label3='kaxbx' | |
1223 | label4='kaxby' |
|
1223 | label4='kaxby' | |
1224 | self.xlimits.append((self.xmin,self.xmax)) |
|
1224 | self.xlimits.append((self.xmin,self.xmax)) | |
1225 |
|
1225 | |||
1226 | ax.plotline1 = ax.plot(x[n][0,:,0,0], y, color='r',linewidth=2.0, label=label1) |
|
1226 | ax.plotline1 = ax.plot(x[n][0,:,0,0], y, color='r',linewidth=2.0, label=label1) | |
1227 | ax.plotline2 = ax.plot(x[n][1,:,0,0], y, color='k',linewidth=2.0, label=label2) |
|
1227 | ax.plotline2 = ax.plot(x[n][1,:,0,0], y, color='k',linewidth=2.0, label=label2) | |
1228 | ax.plotline3 = ax.plot(x[n][2,:,0,0], y, color='b',linewidth=2.0, label=label3) |
|
1228 | ax.plotline3 = ax.plot(x[n][2,:,0,0], y, color='b',linewidth=2.0, label=label3) | |
1229 | ax.plotline4 = ax.plot(x[n][3,:,0,0], y, color='m',linewidth=2.0, label=label4) |
|
1229 | ax.plotline4 = ax.plot(x[n][3,:,0,0], y, color='m',linewidth=2.0, label=label4) | |
1230 | ax.legend(loc='upper right') |
|
1230 | ax.legend(loc='upper right') | |
1231 | ax.set_xlim(self.xmin, self.xmax) |
|
1231 | ax.set_xlim(self.xmin, self.xmax) | |
1232 | self.titles.append('{}'.format(self.plot_name.upper())) |
|
1232 | self.titles.append('{}'.format(self.plot_name.upper())) | |
1233 |
|
1233 | |||
1234 | else: |
|
1234 | else: | |
1235 |
|
1235 | |||
1236 | if n==0: |
|
1236 | if n==0: | |
1237 | self.xlimits=[(self.xmin,self.xmax)] |
|
1237 | self.xlimits=[(self.xmin,self.xmax)] | |
1238 | else: |
|
1238 | else: | |
1239 | self.xlimits.append((self.xmin,self.xmax)) |
|
1239 | self.xlimits.append((self.xmin,self.xmax)) | |
1240 |
|
1240 | |||
1241 | ax.set_xlim(self.xmin, self.xmax) |
|
1241 | ax.set_xlim(self.xmin, self.xmax) | |
1242 |
|
1242 | |||
1243 | ax.plotline1[0].set_data(x[n][0,:,0,0],y) |
|
1243 | ax.plotline1[0].set_data(x[n][0,:,0,0],y) | |
1244 | ax.plotline2[0].set_data(x[n][1,:,0,0],y) |
|
1244 | ax.plotline2[0].set_data(x[n][1,:,0,0],y) | |
1245 | ax.plotline3[0].set_data(x[n][2,:,0,0],y) |
|
1245 | ax.plotline3[0].set_data(x[n][2,:,0,0],y) | |
1246 | ax.plotline4[0].set_data(x[n][3,:,0,0],y) |
|
1246 | ax.plotline4[0].set_data(x[n][3,:,0,0],y) | |
1247 | self.titles.append('{}'.format(self.plot_name.upper())) |
|
1247 | self.titles.append('{}'.format(self.plot_name.upper())) | |
1248 |
|
1248 | |||
1249 |
|
1249 | |||
1250 | class CrossProductsLPPlot(Plot): |
|
1250 | class CrossProductsLPPlot(Plot): | |
1251 | ''' |
|
1251 | ''' | |
1252 | Written by R. Flores |
|
1252 | Written by R. Flores | |
1253 | ''' |
|
1253 | ''' | |
1254 | ''' |
|
1254 | ''' | |
1255 | Plot for cross products LP |
|
1255 | Plot for cross products LP | |
1256 | ''' |
|
1256 | ''' | |
1257 |
|
1257 | |||
1258 | CODE = 'crossprodslp' |
|
1258 | CODE = 'crossprodslp' | |
1259 | plot_name = 'Cross Products LP' |
|
1259 | plot_name = 'Cross Products LP' | |
1260 | plot_type = 'scatterbuffer' |
|
1260 | plot_type = 'scatterbuffer' | |
1261 |
|
1261 | |||
1262 |
|
1262 | |||
1263 | def setup(self): |
|
1263 | def setup(self): | |
1264 |
|
1264 | |||
1265 | self.ncols = 2 |
|
1265 | self.ncols = 2 | |
1266 | self.nrows = 1 |
|
1266 | self.nrows = 1 | |
1267 | self.nplots = 2 |
|
1267 | self.nplots = 2 | |
1268 | self.ylabel = 'Range [km]' |
|
1268 | self.ylabel = 'Range [km]' | |
1269 | self.xlabel = 'dB' |
|
1269 | self.xlabel = 'dB' | |
1270 | self.width = 3.5*self.nplots |
|
1270 | self.width = 3.5*self.nplots | |
1271 | self.height = 5.5 |
|
1271 | self.height = 5.5 | |
1272 | self.colorbar = False |
|
1272 | self.colorbar = False | |
1273 | self.titles = [] |
|
1273 | self.titles = [] | |
1274 | self.plots_adjust.update({'wspace': .8 ,'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
1274 | self.plots_adjust.update({'wspace': .8 ,'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
1275 |
|
1275 | |||
1276 | def update(self, dataOut): |
|
1276 | def update(self, dataOut): | |
1277 | data = {} |
|
1277 | data = {} | |
1278 | meta = {} |
|
1278 | meta = {} | |
1279 |
|
1279 | |||
1280 | data['crossprodslp'] = 10*numpy.log10(numpy.abs(dataOut.output_LP)) |
|
1280 | data['crossprodslp'] = 10*numpy.log10(numpy.abs(dataOut.output_LP)) | |
1281 |
|
1281 | |||
1282 | data['NRANGE'] = dataOut.NRANGE #This is metadata |
|
1282 | data['NRANGE'] = dataOut.NRANGE #This is metadata | |
1283 | data['NLAG'] = dataOut.NLAG #This is metadata |
|
1283 | data['NLAG'] = dataOut.NLAG #This is metadata | |
1284 |
|
1284 | |||
1285 | return data, meta |
|
1285 | return data, meta | |
1286 |
|
1286 | |||
1287 | def plot(self): |
|
1287 | def plot(self): | |
1288 |
|
1288 | |||
1289 | NRANGE = self.data['NRANGE'][-1] |
|
1289 | NRANGE = self.data['NRANGE'][-1] | |
1290 | NLAG = self.data['NLAG'][-1] |
|
1290 | NLAG = self.data['NLAG'][-1] | |
1291 |
|
1291 | |||
1292 | x = self.data[self.CODE][:,-1,:,:] |
|
1292 | x = self.data[self.CODE][:,-1,:,:] | |
1293 | self.y = self.data.yrange[0:NRANGE] |
|
1293 | self.y = self.data.yrange[0:NRANGE] | |
1294 |
|
1294 | |||
1295 | label_array=numpy.array(['lag '+ str(x) for x in range(NLAG)]) |
|
1295 | label_array=numpy.array(['lag '+ str(x) for x in range(NLAG)]) | |
1296 | color_array=['r','k','g','b','c','m','y','orange','steelblue','purple','peru','darksalmon','grey','limegreen','olive','midnightblue'] |
|
1296 | color_array=['r','k','g','b','c','m','y','orange','steelblue','purple','peru','darksalmon','grey','limegreen','olive','midnightblue'] | |
1297 |
|
1297 | |||
1298 |
|
1298 | |||
1299 | for n, ax in enumerate(self.axes): |
|
1299 | for n, ax in enumerate(self.axes): | |
1300 |
|
1300 | |||
1301 | self.xmin=28#30 |
|
1301 | self.xmin=28#30 | |
1302 | self.xmax=70#70 |
|
1302 | self.xmax=70#70 | |
1303 | #self.xmin=numpy.min(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) |
|
1303 | #self.xmin=numpy.min(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) | |
1304 | #self.xmax=numpy.max(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) |
|
1304 | #self.xmax=numpy.max(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) | |
1305 |
|
1305 | |||
1306 | if ax.firsttime: |
|
1306 | if ax.firsttime: | |
1307 |
|
1307 | |||
1308 | self.autoxticks=False |
|
1308 | self.autoxticks=False | |
1309 | if n == 0: |
|
1309 | if n == 0: | |
1310 | self.plotline_array=numpy.zeros((2,NLAG),dtype=object) |
|
1310 | self.plotline_array=numpy.zeros((2,NLAG),dtype=object) | |
1311 |
|
1311 | |||
1312 | for i in range(NLAG): |
|
1312 | for i in range(NLAG): | |
1313 | self.plotline_array[n,i], = ax.plot(x[i,:,n], self.y, color=color_array[i],linewidth=1.0, label=label_array[i]) |
|
1313 | self.plotline_array[n,i], = ax.plot(x[i,:,n], self.y, color=color_array[i],linewidth=1.0, label=label_array[i]) | |
1314 |
|
1314 | |||
1315 | ax.legend(loc='upper right') |
|
1315 | ax.legend(loc='upper right') | |
1316 | ax.set_xlim(self.xmin, self.xmax) |
|
1316 | ax.set_xlim(self.xmin, self.xmax) | |
1317 | if n==0: |
|
1317 | if n==0: | |
1318 | self.titles.append('{} CH0'.format(self.plot_name.upper())) |
|
1318 | self.titles.append('{} CH0'.format(self.plot_name.upper())) | |
1319 | if n==1: |
|
1319 | if n==1: | |
1320 | self.titles.append('{} CH1'.format(self.plot_name.upper())) |
|
1320 | self.titles.append('{} CH1'.format(self.plot_name.upper())) | |
1321 | else: |
|
1321 | else: | |
1322 | for i in range(NLAG): |
|
1322 | for i in range(NLAG): | |
1323 | self.plotline_array[n,i].set_data(x[i,:,n],self.y) |
|
1323 | self.plotline_array[n,i].set_data(x[i,:,n],self.y) | |
1324 |
|
1324 | |||
1325 | if n==0: |
|
1325 | if n==0: | |
1326 | self.titles.append('{} CH0'.format(self.plot_name.upper())) |
|
1326 | self.titles.append('{} CH0'.format(self.plot_name.upper())) | |
1327 | if n==1: |
|
1327 | if n==1: | |
1328 | self.titles.append('{} CH1'.format(self.plot_name.upper())) |
|
1328 | self.titles.append('{} CH1'.format(self.plot_name.upper())) | |
1329 |
|
1329 | |||
1330 |
|
1330 | |||
1331 | class NoiseDPPlot(NoisePlot): |
|
1331 | class NoiseDPPlot(NoisePlot): | |
1332 | ''' |
|
1332 | ''' | |
1333 | Written by R. Flores |
|
1333 | Written by R. Flores | |
1334 | ''' |
|
1334 | ''' | |
1335 | ''' |
|
1335 | ''' | |
1336 | Plot for noise Double Pulse |
|
1336 | Plot for noise Double Pulse | |
1337 | ''' |
|
1337 | ''' | |
1338 |
|
1338 | |||
1339 | CODE = 'noise' |
|
1339 | CODE = 'noise' | |
1340 | #plot_name = 'Noise' |
|
1340 | #plot_name = 'Noise' | |
1341 | #plot_type = 'scatterbuffer' |
|
1341 | #plot_type = 'scatterbuffer' | |
1342 |
|
1342 | |||
1343 | def update(self, dataOut): |
|
1343 | def update(self, dataOut): | |
1344 |
|
1344 | |||
1345 | data = {} |
|
1345 | data = {} | |
1346 | meta = {} |
|
1346 | meta = {} | |
1347 | data['noise'] = 10*numpy.log10(dataOut.noise_final) |
|
1347 | data['noise'] = 10*numpy.log10(dataOut.noise_final) | |
1348 |
|
1348 | |||
1349 | return data, meta |
|
1349 | return data, meta | |
1350 |
|
1350 | |||
1351 |
|
1351 | |||
1352 | class XmitWaveformPlot(Plot): |
|
1352 | class XmitWaveformPlot(Plot): | |
1353 | ''' |
|
1353 | ''' | |
1354 | Written by R. Flores |
|
1354 | Written by R. Flores | |
1355 | ''' |
|
1355 | ''' | |
1356 | ''' |
|
1356 | ''' | |
1357 | Plot for xmit waveform |
|
1357 | Plot for xmit waveform | |
1358 | ''' |
|
1358 | ''' | |
1359 |
|
1359 | |||
1360 | CODE = 'xmit' |
|
1360 | CODE = 'xmit' | |
1361 | plot_name = 'Xmit Waveform' |
|
1361 | plot_name = 'Xmit Waveform' | |
1362 | plot_type = 'scatterbuffer' |
|
1362 | plot_type = 'scatterbuffer' | |
1363 |
|
1363 | |||
1364 |
|
1364 | |||
1365 | def setup(self): |
|
1365 | def setup(self): | |
1366 |
|
1366 | |||
1367 | self.ncols = 1 |
|
1367 | self.ncols = 1 | |
1368 | self.nrows = 1 |
|
1368 | self.nrows = 1 | |
1369 | self.nplots = 1 |
|
1369 | self.nplots = 1 | |
1370 | self.ylabel = '' |
|
1370 | self.ylabel = '' | |
1371 | self.xlabel = 'Number of Lag' |
|
1371 | self.xlabel = 'Number of Lag' | |
1372 | self.width = 5.5 |
|
1372 | self.width = 5.5 | |
1373 | self.height = 3.5 |
|
1373 | self.height = 3.5 | |
1374 | self.colorbar = False |
|
1374 | self.colorbar = False | |
1375 | self.plots_adjust.update({'right': 0.85 }) |
|
1375 | self.plots_adjust.update({'right': 0.85 }) | |
1376 | self.titles = [self.plot_name] |
|
1376 | self.titles = [self.plot_name] | |
1377 | #self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
1377 | #self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
1378 |
|
1378 | |||
1379 | #if not self.titles: |
|
1379 | #if not self.titles: | |
1380 | #self.titles = self.data.parameters \ |
|
1380 | #self.titles = self.data.parameters \ | |
1381 | #if self.data.parameters else ['{}'.format(self.plot_name.upper())] |
|
1381 | #if self.data.parameters else ['{}'.format(self.plot_name.upper())] | |
1382 |
|
1382 | |||
1383 | def update(self, dataOut): |
|
1383 | def update(self, dataOut): | |
1384 |
|
1384 | |||
1385 | data = {} |
|
1385 | data = {} | |
1386 | meta = {} |
|
1386 | meta = {} | |
1387 |
|
1387 | |||
1388 | y_1=numpy.arctan2(dataOut.output_LP[:,0,2].imag,dataOut.output_LP[:,0,2].real)* 180 / (numpy.pi*10) |
|
1388 | y_1=numpy.arctan2(dataOut.output_LP[:,0,2].imag,dataOut.output_LP[:,0,2].real)* 180 / (numpy.pi*10) | |
1389 | y_2=numpy.abs(dataOut.output_LP[:,0,2]) |
|
1389 | y_2=numpy.abs(dataOut.output_LP[:,0,2]) | |
1390 | norm=numpy.max(y_2) |
|
1390 | norm=numpy.max(y_2) | |
1391 | norm=max(norm,0.1) |
|
1391 | norm=max(norm,0.1) | |
1392 | y_2=y_2/norm |
|
1392 | y_2=y_2/norm | |
1393 |
|
1393 | |||
1394 | meta['yrange'] = numpy.array([]) |
|
1394 | meta['yrange'] = numpy.array([]) | |
1395 |
|
1395 | |||
1396 | data['xmit'] = numpy.vstack((y_1,y_2)) |
|
1396 | data['xmit'] = numpy.vstack((y_1,y_2)) | |
1397 | data['NLAG'] = dataOut.NLAG |
|
1397 | data['NLAG'] = dataOut.NLAG | |
1398 |
|
1398 | |||
1399 | return data, meta |
|
1399 | return data, meta | |
1400 |
|
1400 | |||
1401 | def plot(self): |
|
1401 | def plot(self): | |
1402 |
|
1402 | |||
1403 | data = self.data[-1] |
|
1403 | data = self.data[-1] | |
1404 | NLAG = data['NLAG'] |
|
1404 | NLAG = data['NLAG'] | |
1405 | x = numpy.arange(0,NLAG,1,'float32') |
|
1405 | x = numpy.arange(0,NLAG,1,'float32') | |
1406 | y = data['xmit'] |
|
1406 | y = data['xmit'] | |
1407 |
|
1407 | |||
1408 | self.xmin = 0 |
|
1408 | self.xmin = 0 | |
1409 | self.xmax = NLAG-1 |
|
1409 | self.xmax = NLAG-1 | |
1410 | self.ymin = -1.0 |
|
1410 | self.ymin = -1.0 | |
1411 | self.ymax = 1.0 |
|
1411 | self.ymax = 1.0 | |
1412 | ax = self.axes[0] |
|
1412 | ax = self.axes[0] | |
1413 |
|
1413 | |||
1414 | if ax.firsttime: |
|
1414 | if ax.firsttime: | |
1415 | ax.plotline0=ax.plot(x,y[0,:],color='blue') |
|
1415 | ax.plotline0=ax.plot(x,y[0,:],color='blue') | |
1416 | ax.plotline1=ax.plot(x,y[1,:],color='red') |
|
1416 | ax.plotline1=ax.plot(x,y[1,:],color='red') | |
1417 | secax=ax.secondary_xaxis(location=0.5) |
|
1417 | secax=ax.secondary_xaxis(location=0.5) | |
1418 | secax.xaxis.tick_bottom() |
|
1418 | secax.xaxis.tick_bottom() | |
1419 | secax.tick_params( labelleft=False, labeltop=False, |
|
1419 | secax.tick_params( labelleft=False, labeltop=False, | |
1420 | labelright=False, labelbottom=False) |
|
1420 | labelright=False, labelbottom=False) | |
1421 |
|
1421 | |||
1422 | self.xstep_given = 3 |
|
1422 | self.xstep_given = 3 | |
1423 | self.ystep_given = .25 |
|
1423 | self.ystep_given = .25 | |
1424 | secax.set_xticks(numpy.linspace(self.xmin, self.xmax, 6)) #only works on matplotlib.version>3.2 |
|
1424 | secax.set_xticks(numpy.linspace(self.xmin, self.xmax, 6)) #only works on matplotlib.version>3.2 | |
1425 |
|
1425 | |||
1426 | else: |
|
1426 | else: | |
1427 | ax.plotline0[0].set_data(x,y[0,:]) |
|
1427 | ax.plotline0[0].set_data(x,y[0,:]) | |
1428 | ax.plotline1[0].set_data(x,y[1,:]) |
|
1428 | ax.plotline1[0].set_data(x,y[1,:]) |
@@ -1,191 +1,241 | |||||
1 | {"conditions": [ |
|
1 | {"conditions": [ | |
2 |
|
2 | |||
3 | {"year": 2024, "doy": 47, "initial_time": [5,32], "final_time": [6,42], "aux_index": [ null, 11]}, |
|
3 | {"year": 2024, "doy": 47, "initial_time": [5,32], "final_time": [6,42], "aux_index": [ null, 11]}, | |
4 |
|
4 | |||
5 | {"year": 2024, "doy": 247, "initial_time": [2,0], "final_time": [5,0], "aux_index": [ null, 11]}, |
|
5 | {"year": 2024, "doy": 247, "initial_time": [2,0], "final_time": [5,0], "aux_index": [ null, 11]}, | |
6 | {"year": 2024, "doy": 247, "initial_time": [1,40], "final_time": [2,0], "aux_index": [ null, 26]}, |
|
6 | {"year": 2024, "doy": 247, "initial_time": [1,40], "final_time": [2,0], "aux_index": [ null, 26]}, | |
7 | {"year": 2024, "doy": 247, "initial_time": [0,45], "final_time": [0,45], "aux_index": [ null, 28]}, |
|
7 | {"year": 2024, "doy": 247, "initial_time": [0,45], "final_time": [0,45], "aux_index": [ null, 28]}, | |
8 | {"year": 2024, "doy": 246, "initial_time": [23,15], "final_time": [23,59], "aux_index": [ null, 21]}, |
|
8 | {"year": 2024, "doy": 246, "initial_time": [23,15], "final_time": [23,59], "aux_index": [ null, 21]}, | |
9 | {"year": 2024, "doy": 246, "initial_time": [13,55], "final_time": [23,59], "aux_index": [ null, 11]}, |
|
9 | {"year": 2024, "doy": 246, "initial_time": [13,55], "final_time": [23,59], "aux_index": [ null, 11]}, | |
10 | {"year": 2024, "doy": 247, "initial_time": [0,0], "final_time": [2,25], "aux_index": [ null, 22]}, |
|
10 | {"year": 2024, "doy": 247, "initial_time": [0,0], "final_time": [2,25], "aux_index": [ null, 22]}, | |
11 | {"year": 2024, "doy": 247, "initial_time": [3,0], "final_time": [3,0], "aux_index": [ 34, null]}, |
|
11 | {"year": 2024, "doy": 247, "initial_time": [3,0], "final_time": [3,0], "aux_index": [ 34, null]}, | |
12 |
|
12 | |||
13 | {"year": 2024, "doy": 247, "initial_time": [5,0], "final_time": [23,59], "aux_index": [ null, 11]}, |
|
13 | {"year": 2024, "doy": 247, "initial_time": [5,0], "final_time": [23,59], "aux_index": [ null, 11]}, | |
14 | {"year": 2024, "doy": 247, "initial_time": [5,0], "final_time": [11,25], "aux_index": [ 11, 13]}, |
|
14 | {"year": 2024, "doy": 247, "initial_time": [5,0], "final_time": [11,25], "aux_index": [ 11, 13]}, | |
15 | {"year": 2024, "doy": 247, "initial_time": [5,30], "final_time": [9,50], "aux_index": [ 13, 13]}, |
|
15 | {"year": 2024, "doy": 247, "initial_time": [5,30], "final_time": [9,50], "aux_index": [ 13, 13]}, | |
16 | {"year": 2024, "doy": 247, "initial_time": [23,15], "final_time": [23,59], "aux_index": [ null, 15]}, |
|
16 | {"year": 2024, "doy": 247, "initial_time": [23,15], "final_time": [23,59], "aux_index": [ null, 15]}, | |
17 | {"year": 2024, "doy": 248, "initial_time": [0,0], "final_time": [4,59], "aux_index": [ null, 13]}, |
|
17 | {"year": 2024, "doy": 248, "initial_time": [0,0], "final_time": [4,59], "aux_index": [ null, 13]}, | |
18 | {"year": 2024, "doy": 248, "initial_time": [0,0], "final_time": [1,50], "aux_index": [ null, 21]}, |
|
18 | {"year": 2024, "doy": 248, "initial_time": [0,0], "final_time": [1,50], "aux_index": [ null, 21]}, | |
19 | {"year": 2024, "doy": 248, "initial_time": [0,0], "final_time": [2,50], "aux_index": [ null, 17]}, |
|
19 | {"year": 2024, "doy": 248, "initial_time": [0,0], "final_time": [2,50], "aux_index": [ null, 17]}, | |
20 | {"year": 2024, "doy": 247, "initial_time": [8,5], "final_time": [8,10], "aux_index": [ null, null]}, |
|
20 | {"year": 2024, "doy": 247, "initial_time": [8,5], "final_time": [8,10], "aux_index": [ null, null]}, | |
21 | {"year": 2024, "doy": 248, "initial_time": [2,50], "final_time": [2,50], "aux_index": [ 30, null]}, |
|
21 | {"year": 2024, "doy": 248, "initial_time": [2,50], "final_time": [2,50], "aux_index": [ 30, null]}, | |
22 | {"year": 2024, "doy": 248, "initial_time": [3,55], "final_time": [4,0], "aux_index": [ 26, null]}, |
|
22 | {"year": 2024, "doy": 248, "initial_time": [3,55], "final_time": [4,0], "aux_index": [ 26, null]}, | |
23 | {"year": 2024, "doy": 247, "initial_time": [5,0], "final_time": [5,0], "aux_index": [ 18, 24]}, |
|
23 | {"year": 2024, "doy": 247, "initial_time": [5,0], "final_time": [5,0], "aux_index": [ 18, 24]}, | |
24 | {"year": 2024, "doy": 247, "initial_time": [5,5], "final_time": [5,5], "aux_index": [ 21, 26]}, |
|
24 | {"year": 2024, "doy": 247, "initial_time": [5,5], "final_time": [5,5], "aux_index": [ 21, 26]}, | |
25 | {"year": 2024, "doy": 247, "initial_time": [5,15], "final_time": [5,15], "aux_index": [ 19, 21]}, |
|
25 | {"year": 2024, "doy": 247, "initial_time": [5,15], "final_time": [5,15], "aux_index": [ 19, 21]}, | |
26 | {"year": 2024, "doy": 247, "initial_time": [5,20], "final_time": [5,20], "aux_index": [ 21, 23]}, |
|
26 | {"year": 2024, "doy": 247, "initial_time": [5,20], "final_time": [5,20], "aux_index": [ 21, 23]}, | |
27 | {"year": 2024, "doy": 247, "initial_time": [5,25], "final_time": [5,25], "aux_index": [ 21, 26]}, |
|
27 | {"year": 2024, "doy": 247, "initial_time": [5,25], "final_time": [5,25], "aux_index": [ 21, 26]}, | |
28 | {"year": 2024, "doy": 247, "initial_time": [5,30], "final_time": [5,30], "aux_index": [ 20, 27]}, |
|
28 | {"year": 2024, "doy": 247, "initial_time": [5,30], "final_time": [5,30], "aux_index": [ 20, 27]}, | |
29 | {"year": 2024, "doy": 247, "initial_time": [5,35], "final_time": [5,35], "aux_index": [ 22, 27]}, |
|
29 | {"year": 2024, "doy": 247, "initial_time": [5,35], "final_time": [5,35], "aux_index": [ 22, 27]}, | |
30 | {"year": 2024, "doy": 247, "initial_time": [8,5], "final_time": [8,10], "aux_index": [ null, null]}, |
|
30 | {"year": 2024, "doy": 247, "initial_time": [8,5], "final_time": [8,10], "aux_index": [ null, null]}, | |
31 | {"year": 2024, "doy": 247, "initial_time": [15,30], "final_time": [15,30], "aux_index": [ null, null]}, |
|
31 | {"year": 2024, "doy": 247, "initial_time": [15,30], "final_time": [15,30], "aux_index": [ null, null]}, | |
32 |
|
32 | |||
33 |
|
33 | |||
34 | {"year": 2024, "doy": 248, "initial_time": [5,20], "final_time": [5,35], "aux_index": [ 20, null]}, |
|
34 | {"year": 2024, "doy": 248, "initial_time": [5,20], "final_time": [5,35], "aux_index": [ 20, null]}, | |
35 | {"year": 2024, "doy": 248, "initial_time": [5,40], "final_time": [5,55], "aux_index": [ 23, null]}, |
|
35 | {"year": 2024, "doy": 248, "initial_time": [5,40], "final_time": [5,55], "aux_index": [ 23, null]}, | |
36 | {"year": 2024, "doy": 248, "initial_time": [5,0], "final_time": [23,59], "aux_index": [ null, 11]}, |
|
36 | {"year": 2024, "doy": 248, "initial_time": [5,0], "final_time": [23,59], "aux_index": [ null, 11]}, | |
37 | {"year": 2024, "doy": 249, "initial_time": [0,0], "final_time": [4,59], "aux_index": [ null, 12]}, |
|
37 | {"year": 2024, "doy": 249, "initial_time": [0,0], "final_time": [4,59], "aux_index": [ null, 12]}, | |
38 | {"year": 2024, "doy": 248, "initial_time": [5,0], "final_time": [9,0], "aux_index": [ null, 13]}, |
|
38 | {"year": 2024, "doy": 248, "initial_time": [5,0], "final_time": [9,0], "aux_index": [ null, 13]}, | |
39 | {"year": 2024, "doy": 249, "initial_time": [2,0], "final_time": [2,20], "aux_index": [ null, 17]}, |
|
39 | {"year": 2024, "doy": 249, "initial_time": [2,0], "final_time": [2,20], "aux_index": [ null, 17]}, | |
40 | {"year": 2024, "doy": 249, "initial_time": [2,55], "final_time": [2,55], "aux_index": [ 27, null]}, |
|
40 | {"year": 2024, "doy": 249, "initial_time": [2,55], "final_time": [2,55], "aux_index": [ 27, null]}, | |
41 | {"year": 2024, "doy": 249, "initial_time": [3,0], "final_time": [3,5], "aux_index": [ 25, null]}, |
|
41 | {"year": 2024, "doy": 249, "initial_time": [3,0], "final_time": [3,5], "aux_index": [ 25, null]}, | |
42 | {"year": 2024, "doy": 249, "initial_time": [4,5], "final_time": [4,5], "aux_index": [ 23, null]}, |
|
42 | {"year": 2024, "doy": 249, "initial_time": [4,5], "final_time": [4,5], "aux_index": [ 23, null]}, | |
43 | {"year": 2024, "doy": 249, "initial_time": [4,10], "final_time": [4,10], "aux_index": [ 26, null]}, |
|
43 | {"year": 2024, "doy": 249, "initial_time": [4,10], "final_time": [4,10], "aux_index": [ 26, null]}, | |
44 | {"year": 2024, "doy": 249, "initial_time": [4,15], "final_time": [4,15], "aux_index": [ 30, null]}, |
|
44 | {"year": 2024, "doy": 249, "initial_time": [4,15], "final_time": [4,15], "aux_index": [ 30, null]}, | |
45 | {"year": 2024, "doy": 249, "initial_time": [0,30], "final_time": [0,40], "aux_index": [ null, null]}, |
|
45 | {"year": 2024, "doy": 249, "initial_time": [0,30], "final_time": [0,40], "aux_index": [ null, null]}, | |
46 |
|
46 | |||
47 | {"year": 2024, "doy": 249, "initial_time": [5,20], "final_time": [5,20], "aux_index": [ 22, null]}, |
|
47 | {"year": 2024, "doy": 249, "initial_time": [5,20], "final_time": [5,20], "aux_index": [ 22, null]}, | |
48 | {"year": 2024, "doy": 249, "initial_time": [5,25], "final_time": [5,25], "aux_index": [ 23, null]}, |
|
48 | {"year": 2024, "doy": 249, "initial_time": [5,25], "final_time": [5,25], "aux_index": [ 23, null]}, | |
49 | {"year": 2024, "doy": 249, "initial_time": [5,30], "final_time": [5,30], "aux_index": [ 18, 37]}, |
|
49 | {"year": 2024, "doy": 249, "initial_time": [5,30], "final_time": [5,30], "aux_index": [ 18, 37]}, | |
50 | {"year": 2024, "doy": 249, "initial_time": [5,35], "final_time": [5,40], "aux_index": [ 18, 34]}, |
|
50 | {"year": 2024, "doy": 249, "initial_time": [5,35], "final_time": [5,40], "aux_index": [ 18, 34]}, | |
51 | {"year": 2024, "doy": 249, "initial_time": [5,45], "final_time": [5,45], "aux_index": [ 20, 30]}, |
|
51 | {"year": 2024, "doy": 249, "initial_time": [5,45], "final_time": [5,45], "aux_index": [ 20, 30]}, | |
52 | {"year": 2024, "doy": 249, "initial_time": [6,5], "final_time": [6,5], "aux_index": [ 24, null]}, |
|
52 | {"year": 2024, "doy": 249, "initial_time": [6,5], "final_time": [6,5], "aux_index": [ 24, null]}, | |
53 | {"year": 2024, "doy": 249, "initial_time": [10,5], "final_time": [10,5], "aux_index": [ null, null]}, |
|
53 | {"year": 2024, "doy": 249, "initial_time": [10,5], "final_time": [10,5], "aux_index": [ null, null]}, | |
54 | {"year": 2024, "doy": 249, "initial_time": [6,10], "final_time": [6,10], "aux_index": [ 29, null]}, |
|
54 | {"year": 2024, "doy": 249, "initial_time": [6,10], "final_time": [6,10], "aux_index": [ 29, null]}, | |
55 | {"year": 2024, "doy": 249, "initial_time": [6,45], "final_time": [6,45], "aux_index": [ 21, null]}, |
|
55 | {"year": 2024, "doy": 249, "initial_time": [6,45], "final_time": [6,45], "aux_index": [ 21, null]}, | |
56 | {"year": 2024, "doy": 249, "initial_time": [5,0], "final_time": [20,0], "aux_index": [ null, 11]}, |
|
56 | {"year": 2024, "doy": 249, "initial_time": [5,0], "final_time": [20,0], "aux_index": [ null, 11]}, | |
57 | {"year": 2024, "doy": 249, "initial_time": [23,10], "final_time": [23,59], "aux_index": [ null, 11]}, |
|
57 | {"year": 2024, "doy": 249, "initial_time": [23,10], "final_time": [23,59], "aux_index": [ null, 11]}, | |
58 | {"year": 2024, "doy": 250, "initial_time": [0,0], "final_time": [4,59], "aux_index": [ null, 13]}, |
|
58 | {"year": 2024, "doy": 250, "initial_time": [0,0], "final_time": [4,59], "aux_index": [ null, 13]}, | |
59 | {"year": 2024, "doy": 249, "initial_time": [5,0], "final_time": [8,50], "aux_index": [ null, 12]}, |
|
59 | {"year": 2024, "doy": 249, "initial_time": [5,0], "final_time": [8,50], "aux_index": [ null, 12]}, | |
60 | {"year": 2024, "doy": 250, "initial_time": [0,0], "final_time": [3,35], "aux_index": [ null, 23]}, |
|
60 | {"year": 2024, "doy": 250, "initial_time": [0,0], "final_time": [3,35], "aux_index": [ null, 23]}, | |
61 | {"year": 2024, "doy": 250, "initial_time": [0,0], "final_time": [0,55], "aux_index": [ null, null]}, |
|
61 | {"year": 2024, "doy": 250, "initial_time": [0,0], "final_time": [0,55], "aux_index": [ null, null]}, | |
62 | {"year": 2024, "doy": 249, "initial_time": [7,15], "final_time": [7,15], "aux_index": [ null, 14]}, |
|
62 | {"year": 2024, "doy": 249, "initial_time": [7,15], "final_time": [7,15], "aux_index": [ null, 14]}, | |
63 | {"year": 2024, "doy": 250, "initial_time": [3,15], "final_time": [3,35], "aux_index": [ 46, null]}, |
|
63 | {"year": 2024, "doy": 250, "initial_time": [3,15], "final_time": [3,35], "aux_index": [ 46, null]}, | |
64 | {"year": 2024, "doy": 250, "initial_time": [3,25], "final_time": [3,25], "aux_index": [ null, 30]}, |
|
64 | {"year": 2024, "doy": 250, "initial_time": [3,25], "final_time": [3,25], "aux_index": [ null, 30]}, | |
65 | {"year": 2024, "doy": 250, "initial_time": [3,30], "final_time": [3,30], "aux_index": [ null, 32]}, |
|
65 | {"year": 2024, "doy": 250, "initial_time": [3,30], "final_time": [3,30], "aux_index": [ null, 32]}, | |
66 | {"year": 2024, "doy": 250, "initial_time": [3,35], "final_time": [3,35], "aux_index": [ null, 34]}, |
|
66 | {"year": 2024, "doy": 250, "initial_time": [3,35], "final_time": [3,35], "aux_index": [ null, 34]}, | |
67 | {"year": 2024, "doy": 250, "initial_time": [3,40], "final_time": [3,40], "aux_index": [ 21, 38]}, |
|
67 | {"year": 2024, "doy": 250, "initial_time": [3,40], "final_time": [3,40], "aux_index": [ 21, 38]}, | |
68 | {"year": 2024, "doy": 250, "initial_time": [3,45], "final_time": [3,45], "aux_index": [ 22, 37]}, |
|
68 | {"year": 2024, "doy": 250, "initial_time": [3,45], "final_time": [3,45], "aux_index": [ 22, 37]}, | |
69 | {"year": 2024, "doy": 250, "initial_time": [1,35], "final_time": [1,35], "aux_index": [ 36, null]}, |
|
69 | {"year": 2024, "doy": 250, "initial_time": [1,35], "final_time": [1,35], "aux_index": [ 36, null]}, | |
70 | {"year": 2024, "doy": 250, "initial_time": [1,40], "final_time": [1,40], "aux_index": [ 32, null]}, |
|
70 | {"year": 2024, "doy": 250, "initial_time": [1,40], "final_time": [1,40], "aux_index": [ 32, null]}, | |
71 | {"year": 2024, "doy": 250, "initial_time": [1,45], "final_time": [1,45], "aux_index": [ 31, null]}, |
|
71 | {"year": 2024, "doy": 250, "initial_time": [1,45], "final_time": [1,45], "aux_index": [ 31, null]}, | |
72 | {"year": 2024, "doy": 250, "initial_time": [2,30], "final_time": [2,30], "aux_index": [ 30, null]}, |
|
72 | {"year": 2024, "doy": 250, "initial_time": [2,30], "final_time": [2,30], "aux_index": [ 30, null]}, | |
73 | {"year": 2024, "doy": 250, "initial_time": [2,35], "final_time": [2,35], "aux_index": [ 33, null]}, |
|
73 | {"year": 2024, "doy": 250, "initial_time": [2,35], "final_time": [2,35], "aux_index": [ 33, null]}, | |
74 | {"year": 2024, "doy": 250, "initial_time": [2,40], "final_time": [2,40], "aux_index": [ 27, null]}, |
|
74 | {"year": 2024, "doy": 250, "initial_time": [2,40], "final_time": [2,40], "aux_index": [ 27, null]}, | |
75 |
|
75 | |||
76 | {"year": 2024, "doy": 251, "initial_time": [3,0], "final_time": [3,45], "aux_index": [ null, null]}, |
|
76 | {"year": 2024, "doy": 251, "initial_time": [3,0], "final_time": [3,45], "aux_index": [ null, null]}, | |
77 | {"year": 2024, "doy": 251, "initial_time": [0,30], "final_time": [0,45], "aux_index": [ null, null]}, |
|
77 | {"year": 2024, "doy": 251, "initial_time": [0,30], "final_time": [0,45], "aux_index": [ null, null]}, | |
78 |
|
78 | |||
79 | {"year": 2024, "doy": 250, "initial_time": [5,0], "final_time": [5,0], "aux_index": [ 20, 41]}, |
|
79 | {"year": 2024, "doy": 250, "initial_time": [5,0], "final_time": [5,0], "aux_index": [ 20, 41]}, | |
80 | {"year": 2024, "doy": 250, "initial_time": [5,5], "final_time": [5,10], "aux_index": [ 24, 37]}, |
|
80 | {"year": 2024, "doy": 250, "initial_time": [5,5], "final_time": [5,10], "aux_index": [ 24, 37]}, | |
81 | {"year": 2024, "doy": 250, "initial_time": [5,20], "final_time": [5,25], "aux_index": [ 23, 39]}, |
|
81 | {"year": 2024, "doy": 250, "initial_time": [5,20], "final_time": [5,25], "aux_index": [ 23, 39]}, | |
82 | {"year": 2024, "doy": 250, "initial_time": [5,30], "final_time": [5,30], "aux_index": [ 19, null]}, |
|
82 | {"year": 2024, "doy": 250, "initial_time": [5,30], "final_time": [5,30], "aux_index": [ 19, null]}, | |
83 | {"year": 2024, "doy": 250, "initial_time": [6,5], "final_time": [6,5], "aux_index": [ 24, null]}, |
|
83 | {"year": 2024, "doy": 250, "initial_time": [6,5], "final_time": [6,5], "aux_index": [ 24, null]}, | |
84 | {"year": 2024, "doy": 250, "initial_time": [6,10], "final_time": [6,10], "aux_index": [ 20, 41]}, |
|
84 | {"year": 2024, "doy": 250, "initial_time": [6,10], "final_time": [6,10], "aux_index": [ 20, 41]}, | |
85 | {"year": 2024, "doy": 250, "initial_time": [6,15], "final_time": [6,15], "aux_index": [ 20, 39]}, |
|
85 | {"year": 2024, "doy": 250, "initial_time": [6,15], "final_time": [6,15], "aux_index": [ 20, 39]}, | |
86 | {"year": 2024, "doy": 250, "initial_time": [6,20], "final_time": [6,20], "aux_index": [ 20, 37]}, |
|
86 | {"year": 2024, "doy": 250, "initial_time": [6,20], "final_time": [6,20], "aux_index": [ 20, 37]}, | |
87 | {"year": 2024, "doy": 250, "initial_time": [6,25], "final_time": [6,25], "aux_index": [ 21, 29]}, |
|
87 | {"year": 2024, "doy": 250, "initial_time": [6,25], "final_time": [6,25], "aux_index": [ 21, 29]}, | |
88 | {"year": 2024, "doy": 250, "initial_time": [6,30], "final_time": [6,30], "aux_index": [ 22, 29]}, |
|
88 | {"year": 2024, "doy": 250, "initial_time": [6,30], "final_time": [6,30], "aux_index": [ 22, 29]}, | |
89 | {"year": 2024, "doy": 250, "initial_time": [6,45], "final_time": [6,45], "aux_index": [ 20, null]}, |
|
89 | {"year": 2024, "doy": 250, "initial_time": [6,45], "final_time": [6,45], "aux_index": [ 20, null]}, | |
90 | {"year": 2024, "doy": 250, "initial_time": [6,50], "final_time": [6,50], "aux_index": [ 19, 38]}, |
|
90 | {"year": 2024, "doy": 250, "initial_time": [6,50], "final_time": [6,50], "aux_index": [ 19, 38]}, | |
91 | {"year": 2024, "doy": 250, "initial_time": [6,55], "final_time": [6,55], "aux_index": [ 23, 42]}, |
|
91 | {"year": 2024, "doy": 250, "initial_time": [6,55], "final_time": [6,55], "aux_index": [ 23, 42]}, | |
92 | {"year": 2024, "doy": 250, "initial_time": [7,0], "final_time": [7,0], "aux_index": [ 20, null]}, |
|
92 | {"year": 2024, "doy": 250, "initial_time": [7,0], "final_time": [7,0], "aux_index": [ 20, null]}, | |
93 | {"year": 2024, "doy": 250, "initial_time": [7,5], "final_time": [7,5], "aux_index": [ 23, 40]}, |
|
93 | {"year": 2024, "doy": 250, "initial_time": [7,5], "final_time": [7,5], "aux_index": [ 23, 40]}, | |
94 | {"year": 2024, "doy": 250, "initial_time": [7,10], "final_time": [7,10], "aux_index": [ 23, 42]}, |
|
94 | {"year": 2024, "doy": 250, "initial_time": [7,10], "final_time": [7,10], "aux_index": [ 23, 42]}, | |
95 | {"year": 2024, "doy": 250, "initial_time": [7,15], "final_time": [7,15], "aux_index": [ 25, 37]}, |
|
95 | {"year": 2024, "doy": 250, "initial_time": [7,15], "final_time": [7,15], "aux_index": [ 25, 37]}, | |
96 | {"year": 2024, "doy": 250, "initial_time": [7,30], "final_time": [7,30], "aux_index": [ 25, 40]}, |
|
96 | {"year": 2024, "doy": 250, "initial_time": [7,30], "final_time": [7,30], "aux_index": [ 25, 40]}, | |
97 | {"year": 2024, "doy": 250, "initial_time": [7,35], "final_time": [7,35], "aux_index": [ 25, 39]}, |
|
97 | {"year": 2024, "doy": 250, "initial_time": [7,35], "final_time": [7,35], "aux_index": [ 25, 39]}, | |
98 | {"year": 2024, "doy": 250, "initial_time": [7,40], "final_time": [7,40], "aux_index": [ 23, 41]}, |
|
98 | {"year": 2024, "doy": 250, "initial_time": [7,40], "final_time": [7,40], "aux_index": [ 23, 41]}, | |
99 | {"year": 2024, "doy": 250, "initial_time": [7,45], "final_time": [7,45], "aux_index": [ 27, 38]}, |
|
99 | {"year": 2024, "doy": 250, "initial_time": [7,45], "final_time": [7,45], "aux_index": [ 27, 38]}, | |
100 | {"year": 2024, "doy": 250, "initial_time": [23,10], "final_time": [23,59], "aux_index": [ null, 12]}, |
|
100 | {"year": 2024, "doy": 250, "initial_time": [23,10], "final_time": [23,59], "aux_index": [ null, 12]}, | |
101 | {"year": 2024, "doy": 251, "initial_time": [0,0], "final_time": [4,59], "aux_index": [ null, 13]}, |
|
101 | {"year": 2024, "doy": 251, "initial_time": [0,0], "final_time": [4,59], "aux_index": [ null, 13]}, | |
102 | {"year": 2024, "doy": 250, "initial_time": [5,0], "final_time": [8,10], "aux_index": [ null, 12]}, |
|
102 | {"year": 2024, "doy": 250, "initial_time": [5,0], "final_time": [8,10], "aux_index": [ null, 12]}, | |
103 | {"year": 2024, "doy": 250, "initial_time": [9,10], "final_time": [10,50], "aux_index": [ null, 12]}, |
|
103 | {"year": 2024, "doy": 250, "initial_time": [9,10], "final_time": [10,50], "aux_index": [ null, 12]}, | |
104 | {"year": 2024, "doy": 251, "initial_time": [0,0], "final_time": [3,30], "aux_index": [ null, 27]}, |
|
104 | {"year": 2024, "doy": 251, "initial_time": [0,0], "final_time": [3,30], "aux_index": [ null, 27]}, | |
105 | {"year": 2024, "doy": 250, "initial_time": [19,30], "final_time": [19,30], "aux_index": [ 19, 26]}, |
|
105 | {"year": 2024, "doy": 250, "initial_time": [19,30], "final_time": [19,30], "aux_index": [ 19, 26]}, | |
106 | {"year": 2024, "doy": 250, "initial_time": [10,50], "final_time": [13,20], "aux_index": [ null, 12]}, |
|
106 | {"year": 2024, "doy": 250, "initial_time": [10,50], "final_time": [13,20], "aux_index": [ null, 12]}, | |
107 |
|
107 | |||
108 |
|
108 | |||
109 | {"year": 2024, "doy": 251, "initial_time": [5,0], "final_time": [5,0], "aux_index": [ 23, 40]}, |
|
109 | {"year": 2024, "doy": 251, "initial_time": [5,0], "final_time": [5,0], "aux_index": [ 23, 40]}, | |
110 | {"year": 2024, "doy": 251, "initial_time": [5,5], "final_time": [5,10], "aux_index": [ 25, 40]}, |
|
110 | {"year": 2024, "doy": 251, "initial_time": [5,5], "final_time": [5,10], "aux_index": [ 25, 40]}, | |
111 | {"year": 2024, "doy": 251, "initial_time": [17,30], "final_time": [20,30], "aux_index": [ 56, null]}, |
|
111 | {"year": 2024, "doy": 251, "initial_time": [17,30], "final_time": [20,30], "aux_index": [ 56, null]}, | |
112 | {"year": 2024, "doy": 251, "initial_time": [5,0], "final_time": [8,10], "aux_index": [ null, 12]}, |
|
112 | {"year": 2024, "doy": 251, "initial_time": [5,0], "final_time": [8,10], "aux_index": [ null, 12]}, | |
113 | {"year": 2024, "doy": 251, "initial_time": [5,0], "final_time": [20,0], "aux_index": [ null, 11]}, |
|
113 | {"year": 2024, "doy": 251, "initial_time": [5,0], "final_time": [20,0], "aux_index": [ null, 11]}, | |
114 | {"year": 2024, "doy": 251, "initial_time": [19,50], "final_time": [19,50], "aux_index": [ null, null]}, |
|
114 | {"year": 2024, "doy": 251, "initial_time": [19,50], "final_time": [19,50], "aux_index": [ null, null]}, | |
115 | {"year": 2024, "doy": 252, "initial_time": [0,30], "final_time": [0,55], "aux_index": [ null, null]}, |
|
115 | {"year": 2024, "doy": 252, "initial_time": [0,30], "final_time": [0,55], "aux_index": [ null, null]}, | |
116 | {"year": 2024, "doy": 252, "initial_time": [0,55], "final_time": [1,0], "aux_index": [ null, 40]}, |
|
116 | {"year": 2024, "doy": 252, "initial_time": [0,55], "final_time": [1,0], "aux_index": [ null, 40]}, | |
117 | {"year": 2024, "doy": 252, "initial_time": [1,0], "final_time": [1,15], "aux_index": [ null, 34]}, |
|
117 | {"year": 2024, "doy": 252, "initial_time": [1,0], "final_time": [1,15], "aux_index": [ null, 34]}, | |
118 | {"year": 2024, "doy": 252, "initial_time": [0,30], "final_time": [0,55], "aux_index": [ null, null]}, |
|
118 | {"year": 2024, "doy": 252, "initial_time": [0,30], "final_time": [0,55], "aux_index": [ null, null]}, | |
119 | {"year": 2024, "doy": 252, "initial_time": [1,35], "final_time": [1,55], "aux_index": [ null, null]}, |
|
119 | {"year": 2024, "doy": 252, "initial_time": [1,35], "final_time": [1,55], "aux_index": [ null, null]}, | |
120 | {"year": 2024, "doy": 251, "initial_time": [23,10], "final_time": [23,59], "aux_index": [ null, 20]}, |
|
120 | {"year": 2024, "doy": 251, "initial_time": [23,10], "final_time": [23,59], "aux_index": [ null, 20]}, | |
121 | {"year": 2024, "doy": 252, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 12]}, |
|
121 | {"year": 2024, "doy": 252, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 12]}, | |
122 | {"year": 2024, "doy": 252, "initial_time": [0,0], "final_time": [1,50], "aux_index": [ null, 31]}, |
|
122 | {"year": 2024, "doy": 252, "initial_time": [0,0], "final_time": [1,50], "aux_index": [ null, 31]}, | |
123 | {"year": 2024, "doy": 252, "initial_time": [3,20], "final_time": [3,25], "aux_index": [ 22, null]}, |
|
123 | {"year": 2024, "doy": 252, "initial_time": [3,20], "final_time": [3,25], "aux_index": [ 22, null]}, | |
124 | {"year": 2024, "doy": 252, "initial_time": [3,30], "final_time": [3,35], "aux_index": [ 23, null]}, |
|
124 | {"year": 2024, "doy": 252, "initial_time": [3,30], "final_time": [3,35], "aux_index": [ 23, null]}, | |
125 | {"year": 2024, "doy": 252, "initial_time": [3,50], "final_time": [3,50], "aux_index": [ 22, null]}, |
|
125 | {"year": 2024, "doy": 252, "initial_time": [3,50], "final_time": [3,50], "aux_index": [ 22, null]}, | |
126 | {"year": 2024, "doy": 252, "initial_time": [3,55], "final_time": [4,5], "aux_index": [ 21, null]}, |
|
126 | {"year": 2024, "doy": 252, "initial_time": [3,55], "final_time": [4,5], "aux_index": [ 21, null]}, | |
127 | {"year": 2024, "doy": 252, "initial_time": [4,10], "final_time": [4,10], "aux_index": [ 21, 36]}, |
|
127 | {"year": 2024, "doy": 252, "initial_time": [4,10], "final_time": [4,10], "aux_index": [ 21, 36]}, | |
128 |
|
128 | |||
129 | {"year": 2024, "doy": 252, "initial_time": [5,0], "final_time": [20,0], "aux_index": [ null, 12]}, |
|
129 | {"year": 2024, "doy": 252, "initial_time": [5,0], "final_time": [20,0], "aux_index": [ null, 12]}, | |
130 | {"year": 2024, "doy": 252, "initial_time": [13,0], "final_time": [13,0], "aux_index": [ null, null]}, |
|
130 | {"year": 2024, "doy": 252, "initial_time": [13,0], "final_time": [13,0], "aux_index": [ null, null]}, | |
131 | {"year": 2024, "doy": 252, "initial_time": [5,15], "final_time": [5,20], "aux_index": [ 23, null]}, |
|
131 | {"year": 2024, "doy": 252, "initial_time": [5,15], "final_time": [5,20], "aux_index": [ 23, null]}, | |
132 | {"year": 2024, "doy": 252, "initial_time": [5,25], "final_time": [5,25], "aux_index": [ 27, 36]}, |
|
132 | {"year": 2024, "doy": 252, "initial_time": [5,25], "final_time": [5,25], "aux_index": [ 27, 36]}, | |
133 | {"year": 2024, "doy": 252, "initial_time": [5,30], "final_time": [5,30], "aux_index": [ 27, null]}, |
|
133 | {"year": 2024, "doy": 252, "initial_time": [5,30], "final_time": [5,30], "aux_index": [ 27, null]}, | |
134 | {"year": 2024, "doy": 252, "initial_time": [5,35], "final_time": [5,35], "aux_index": [ 31, null]}, |
|
134 | {"year": 2024, "doy": 252, "initial_time": [5,35], "final_time": [5,35], "aux_index": [ 31, null]}, | |
135 | {"year": 2024, "doy": 252, "initial_time": [5,20], "final_time": [5,40], "aux_index": [ 33, null]}, |
|
135 | {"year": 2024, "doy": 252, "initial_time": [5,20], "final_time": [5,40], "aux_index": [ 33, null]}, | |
136 | {"year": 2024, "doy": 252, "initial_time": [7,5], "final_time": [7,5], "aux_index": [ 21, null]}, |
|
136 | {"year": 2024, "doy": 252, "initial_time": [7,5], "final_time": [7,5], "aux_index": [ 21, null]}, | |
137 | {"year": 2024, "doy": 252, "initial_time": [7,10], "final_time": [7,10], "aux_index": [ 23, null]}, |
|
137 | {"year": 2024, "doy": 252, "initial_time": [7,10], "final_time": [7,10], "aux_index": [ 23, null]}, | |
138 |
|
138 | |||
139 |
|
139 | |||
140 |
|
140 | |||
141 | {"year": 2025, "doy": 21, "initial_time": [19,45], "final_time": [19,50], "aux_index": [ null, null]}, |
|
141 | {"year": 2025, "doy": 21, "initial_time": [19,45], "final_time": [19,50], "aux_index": [ null, null]}, | |
142 | {"year": 2025, "doy": 22, "initial_time": [0,50], "final_time": [3,30], "aux_index": [ null, 30]}, |
|
142 | {"year": 2025, "doy": 22, "initial_time": [0,50], "final_time": [3,30], "aux_index": [ null, 30]}, | |
143 | {"year": 2025, "doy": 22, "initial_time": [1,50], "final_time": [1,50], "aux_index": [ null, null]}, |
|
143 | {"year": 2025, "doy": 22, "initial_time": [1,50], "final_time": [1,50], "aux_index": [ null, null]}, | |
144 | {"year": 2025, "doy": 22, "initial_time": [2,15], "final_time": [2,25], "aux_index": [ null, 38]}, |
|
144 | {"year": 2025, "doy": 22, "initial_time": [2,15], "final_time": [2,25], "aux_index": [ null, 38]}, | |
145 | {"year": 2025, "doy": 22, "initial_time": [2,25], "final_time": [2,35], "aux_index": [ null, null]}, |
|
145 | {"year": 2025, "doy": 22, "initial_time": [2,25], "final_time": [2,35], "aux_index": [ null, null]}, | |
146 | {"year": 2025, "doy": 22, "initial_time": [2,40], "final_time": [2,50], "aux_index": [ null, 40]}, |
|
146 | {"year": 2025, "doy": 22, "initial_time": [2,40], "final_time": [2,50], "aux_index": [ null, 40]}, | |
147 | {"year": 2025, "doy": 22, "initial_time": [2,40], "final_time": [2,40], "aux_index": [ 44, null]}, |
|
147 | {"year": 2025, "doy": 22, "initial_time": [2,40], "final_time": [2,40], "aux_index": [ 44, null]}, | |
148 | {"year": 2025, "doy": 22, "initial_time": [2,45], "final_time": [2,45], "aux_index": [ 50, null]}, |
|
148 | {"year": 2025, "doy": 22, "initial_time": [2,45], "final_time": [2,45], "aux_index": [ 50, null]}, | |
149 | {"year": 2025, "doy": 22, "initial_time": [3,0], "final_time": [3,15], "aux_index": [ null, 33]}, |
|
149 | {"year": 2025, "doy": 22, "initial_time": [3,0], "final_time": [3,15], "aux_index": [ null, 33]}, | |
150 | {"year": 2025, "doy": 22, "initial_time": [3,30], "final_time": [4,15], "aux_index": [ null, 28]}, |
|
150 | {"year": 2025, "doy": 22, "initial_time": [3,30], "final_time": [4,15], "aux_index": [ null, 28]}, | |
151 | {"year": 2025, "doy": 22, "initial_time": [4,15], "final_time": [4,25], "aux_index": [ null, 24]}, |
|
151 | {"year": 2025, "doy": 22, "initial_time": [4,15], "final_time": [4,25], "aux_index": [ null, 24]}, | |
152 | {"year": 2025, "doy": 22, "initial_time": [3,50], "final_time": [4,15], "aux_index": [ null, 15]}, |
|
152 | {"year": 2025, "doy": 22, "initial_time": [3,50], "final_time": [4,15], "aux_index": [ null, 15]}, | |
153 | {"year": 2025, "doy": 22, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, |
|
153 | {"year": 2025, "doy": 22, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, | |
154 |
|
154 | |||
155 | {"year": 2025, "doy": 22, "initial_time": [5,0], "final_time": [23,55], "aux_index": [ null, 13]}, |
|
155 | {"year": 2025, "doy": 22, "initial_time": [5,0], "final_time": [23,55], "aux_index": [ null, 13]}, | |
156 | {"year": 2025, "doy": 22, "initial_time": [14,20], "final_time": [14,20], "aux_index": [ null, null]}, |
|
156 | {"year": 2025, "doy": 22, "initial_time": [14,20], "final_time": [14,20], "aux_index": [ null, null]}, | |
157 | {"year": 2025, "doy": 23, "initial_time": [0,10], "final_time": [0,10], "aux_index": [ null, null]}, |
|
157 | {"year": 2025, "doy": 23, "initial_time": [0,10], "final_time": [0,10], "aux_index": [ null, null]}, | |
158 | {"year": 2025, "doy": 23, "initial_time": [0,55], "final_time": [3,30], "aux_index": [ null, 26]}, |
|
158 | {"year": 2025, "doy": 23, "initial_time": [0,55], "final_time": [3,30], "aux_index": [ null, 26]}, | |
159 | {"year": 2025, "doy": 23, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, |
|
159 | {"year": 2025, "doy": 23, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, | |
160 | {"year": 2025, "doy": 23, "initial_time": [2,25], "final_time": [2,25], "aux_index": [ null, 34]}, |
|
160 | {"year": 2025, "doy": 23, "initial_time": [2,25], "final_time": [2,25], "aux_index": [ null, 34]}, | |
161 | {"year": 2025, "doy": 23, "initial_time": [2,10], "final_time": [2,10], "aux_index": [ 44, 48]}, |
|
161 | {"year": 2025, "doy": 23, "initial_time": [2,10], "final_time": [2,10], "aux_index": [ 44, 48]}, | |
162 | {"year": 2025, "doy": 23, "initial_time": [0,50], "final_time": [0,50], "aux_index": [ 53, 53]}, |
|
162 | {"year": 2025, "doy": 23, "initial_time": [0,50], "final_time": [0,50], "aux_index": [ 53, 53]}, | |
163 |
|
163 | |||
164 | {"year": 2025, "doy": 23, "initial_time": [5,0], "final_time": [23,55], "aux_index": [ null, 13]}, |
|
164 | {"year": 2025, "doy": 23, "initial_time": [5,0], "final_time": [23,55], "aux_index": [ null, 13]}, | |
165 | {"year": 2025, "doy": 23, "initial_time": [5,0], "final_time": [8,0], "aux_index": [ null, 14]}, |
|
165 | {"year": 2025, "doy": 23, "initial_time": [5,0], "final_time": [8,0], "aux_index": [ null, 14]}, | |
166 | {"year": 2025, "doy": 23, "initial_time": [12,5], "final_time": [12,5], "aux_index": [ null, null]}, |
|
166 | {"year": 2025, "doy": 23, "initial_time": [12,5], "final_time": [12,5], "aux_index": [ null, null]}, | |
167 | {"year": 2025, "doy": 24, "initial_time": [1,40], "final_time": [3,15], "aux_index": [ null, null]}, |
|
167 | {"year": 2025, "doy": 24, "initial_time": [1,40], "final_time": [3,15], "aux_index": [ null, null]}, | |
168 | {"year": 2025, "doy": 24, "initial_time": [3,25], "final_time": [3,30], "aux_index": [ 44, null]}, |
|
168 | {"year": 2025, "doy": 24, "initial_time": [3,25], "final_time": [3,30], "aux_index": [ 44, null]}, | |
169 | {"year": 2025, "doy": 24, "initial_time": [3,20], "final_time": [3,40], "aux_index": [ null, 31]}, |
|
169 | {"year": 2025, "doy": 24, "initial_time": [3,20], "final_time": [3,40], "aux_index": [ null, 31]}, | |
170 | {"year": 2025, "doy": 24, "initial_time": [3,40], "final_time": [4,55], "aux_index": [ null, 29]}, |
|
170 | {"year": 2025, "doy": 24, "initial_time": [3,40], "final_time": [4,55], "aux_index": [ null, 29]}, | |
171 | {"year": 2025, "doy": 24, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, |
|
171 | {"year": 2025, "doy": 24, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, | |
172 |
|
172 | |||
173 | {"year": 2025, "doy": 24, "initial_time": [5,0], "final_time": [23,55], "aux_index": [ null, 13]}, |
|
173 | {"year": 2025, "doy": 24, "initial_time": [5,0], "final_time": [23,55], "aux_index": [ null, 13]}, | |
174 |
{"year": 2025, "doy": 2 |
|
174 | {"year": 2025, "doy": 24, "initial_time": [5,0], "final_time": [5,5], "aux_index": [ null, 34]}, | |
|
175 | {"year": 2025, "doy": 24, "initial_time": [5,10], "final_time": [5,10], "aux_index": [ 24, 35]}, | |||
|
176 | {"year": 2025, "doy": 24, "initial_time": [5,15], "final_time": [5,15], "aux_index": [ 25, 33]}, | |||
|
177 | {"year": 2025, "doy": 24, "initial_time": [5,20], "final_time": [5,20], "aux_index": [ 26, 33]}, | |||
|
178 | {"year": 2025, "doy": 24, "initial_time": [5,25], "final_time": [5,25], "aux_index": [ 27, 32]}, | |||
|
179 | {"year": 2025, "doy": 24, "initial_time": [5,30], "final_time": [5,30], "aux_index": [ 23, 24]}, | |||
|
180 | {"year": 2025, "doy": 24, "initial_time": [5,35], "final_time": [5,35], "aux_index": [ 22, 27]}, | |||
|
181 | {"year": 2025, "doy": 24, "initial_time": [5,40], "final_time": [5,55], "aux_index": [ 22, 31]}, | |||
|
182 | {"year": 2025, "doy": 24, "initial_time": [6,0], "final_time": [6,0], "aux_index": [ 22, 33]}, | |||
|
183 | {"year": 2025, "doy": 24, "initial_time": [6,30], "final_time": [6,30], "aux_index": [ 22, 25]}, | |||
|
184 | {"year": 2025, "doy": 24, "initial_time": [6,35], "final_time": [6,35], "aux_index": [ 22, 32]}, | |||
|
185 | {"year": 2025, "doy": 24, "initial_time": [6,35], "final_time": [6,40], "aux_index": [ 22, 32]}, | |||
|
186 | {"year": 2025, "doy": 24, "initial_time": [6,45], "final_time": [6,45], "aux_index": [ 23, 32]}, | |||
|
187 | {"year": 2025, "doy": 24, "initial_time": [6,50], "final_time": [6,50], "aux_index": [ 24, 34]}, | |||
|
188 | {"year": 2025, "doy": 24, "initial_time": [6,55], "final_time": [6,55], "aux_index": [ 25, 32]}, | |||
|
189 | {"year": 2025, "doy": 25, "initial_time": [0,50], "final_time": [4,55], "aux_index": [ null, 27]}, | |||
175 | {"year": 2025, "doy": 25, "initial_time": [2,50], "final_time": [4,55], "aux_index": [ null, 30]}, |
|
190 | {"year": 2025, "doy": 25, "initial_time": [2,50], "final_time": [4,55], "aux_index": [ null, 30]}, | |
|
191 | {"year": 2025, "doy": 25, "initial_time": [3,5], "final_time": [3,45], "aux_index": [ null, 33]}, | |||
176 | {"year": 2025, "doy": 25, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, |
|
192 | {"year": 2025, "doy": 25, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, | |
177 |
|
193 | |||
178 | {"year": 2025, "doy": 25, "initial_time": [5,0], "final_time": [23,55], "aux_index": [ null, 13]}, |
|
194 | {"year": 2025, "doy": 25, "initial_time": [5,0], "final_time": [23,55], "aux_index": [ null, 13]}, | |
179 | {"year": 2025, "doy": 26, "initial_time": [2,50], "final_time": [4,5], "aux_index": [ null, null]}, |
|
195 | {"year": 2025, "doy": 26, "initial_time": [2,50], "final_time": [4,5], "aux_index": [ null, null]}, | |
180 | {"year": 2025, "doy": 26, "initial_time": [2,50], "final_time": [4,5], "aux_index": [ null, null]}, |
|
196 | {"year": 2025, "doy": 26, "initial_time": [2,50], "final_time": [4,5], "aux_index": [ null, null]}, | |
181 | {"year": 2025, "doy": 26, "initial_time": [0,40], "final_time": [4,20], "aux_index": [ null, 24]}, |
|
197 | {"year": 2025, "doy": 26, "initial_time": [0,40], "final_time": [4,20], "aux_index": [ null, 24]}, | |
182 | {"year": 2025, "doy": 26, "initial_time": [4,30], "final_time": [4,30], "aux_index": [ null, 20]}, |
|
198 | {"year": 2025, "doy": 26, "initial_time": [4,30], "final_time": [4,30], "aux_index": [ null, 20]}, | |
183 | {"year": 2025, "doy": 26, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, |
|
199 | {"year": 2025, "doy": 26, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, | |
184 |
|
200 | |||
185 | {"year": 2025, "doy": 26, "initial_time": [5,0], "final_time": [23,55], "aux_index": [ null, 13]}, |
|
201 | {"year": 2025, "doy": 26, "initial_time": [5,0], "final_time": [23,55], "aux_index": [ null, 13]}, | |
|
202 | {"year": 2025, "doy": 26, "initial_time": [5,20], "final_time": [5,20], "aux_index": [ null, 28]}, | |||
|
203 | {"year": 2025, "doy": 26, "initial_time": [5,25], "final_time": [5,25], "aux_index": [ 25, 34]}, | |||
186 | {"year": 2025, "doy": 26, "initial_time": [0,55], "final_time": [0,55], "aux_index": [ null, null]}, |
|
204 | {"year": 2025, "doy": 26, "initial_time": [0,55], "final_time": [0,55], "aux_index": [ null, null]}, | |
187 | {"year": 2025, "doy": 26, "initial_time": [0,55], "final_time": [4,55], "aux_index": [ null, 24]}, |
|
205 | {"year": 2025, "doy": 26, "initial_time": [0,55], "final_time": [4,55], "aux_index": [ null, 24]}, | |
188 | {"year": 2025, "doy": 27, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]} |
|
206 | {"year": 2025, "doy": 27, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 13]}, | |
|
207 | ||||
|
208 | {"year": 2025, "doy": 41, "initial_time": [23,0], "final_time": [23,0], "aux_index": [ null, null]}, | |||
|
209 | {"year": 2025, "doy": 42, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 14]}, | |||
|
210 | {"year": 2025, "doy": 42, "initial_time": [4,24], "final_time": [4,24], "aux_index": [ 35, 38]}, | |||
|
211 | {"year": 2025, "doy": 42, "initial_time": [1,30], "final_time": [5,0], "aux_index": [ null, 26]}, | |||
|
212 | {"year": 2025, "doy": 42, "initial_time": [2,12], "final_time": [4,0], "aux_index": [ null, null]}, | |||
|
213 | {"year": 2025, "doy": 42, "initial_time": [1,24], "final_time": [1,24], "aux_index": [ 39, 40]}, | |||
|
214 | {"year": 2025, "doy": 42, "initial_time": [1,18], "final_time": [1,18], "aux_index": [ 48, 50]}, | |||
|
215 | ||||
|
216 | {"year": 2025, "doy": 42, "initial_time": [5,0], "final_time": [12,0], "aux_index": [ null, 7]}, | |||
|
217 | {"year": 2025, "doy": 42, "initial_time": [5,0], "final_time": [7,30], "aux_index": [ null, 13]}, | |||
|
218 | {"year": 2025, "doy": 42, "initial_time": [5,0], "final_time": [11,0], "aux_index": [ null, 10]}, | |||
|
219 | {"year": 2025, "doy": 42, "initial_time": [5,0], "final_time": [5,0], "aux_index": [ 20, 22]}, | |||
|
220 | ||||
|
221 | {"year": 2025, "doy": 43, "initial_time": [0,0], "final_time": [5,0], "aux_index": [ null, 19]}, | |||
|
222 | {"year": 2025, "doy": 43, "initial_time": [2,25], "final_time": [2,38], "aux_index": [ null, 24]}, | |||
|
223 | {"year": 2025, "doy": 43, "initial_time": [2,2], "final_time": [2,2], "aux_index": [ null, null]}, | |||
|
224 | ||||
|
225 | {"year": 2025, "doy": 43, "initial_time": [5,0], "final_time": [10,50], "aux_index": [ null, 12]}, | |||
|
226 | {"year": 2025, "doy": 43, "initial_time": [5,0], "final_time": [23,0], "aux_index": [ null, 8]}, | |||
|
227 | {"year": 2025, "doy": 44, "initial_time": [0,50], "final_time": [0,50], "aux_index": [ 47, null]}, | |||
|
228 | {"year": 2025, "doy": 44, "initial_time": [1,0], "final_time": [1,15], "aux_index": [ 39, null]}, | |||
|
229 | {"year": 2025, "doy": 44, "initial_time": [3,14], "final_time": [3,40], "aux_index": [ null, 30]}, | |||
|
230 | {"year": 2025, "doy": 44, "initial_time": [3,26], "final_time": [3,26], "aux_index": [ null, 32]}, | |||
|
231 | {"year": 2025, "doy": 44, "initial_time": [0,14], "final_time": [3,40], "aux_index": [ null, 22]}, | |||
|
232 | {"year": 2025, "doy": 44, "initial_time": [0,40], "final_time": [3,40], "aux_index": [ null, 25]}, | |||
|
233 | {"year": 2025, "doy": 44, "initial_time": [4,0], "final_time": [5,0], "aux_index": [ null, null]}, | |||
|
234 | ||||
|
235 | {"year": 2025, "doy": 44, "initial_time": [5,50], "final_time": [5,50], "aux_index": [ null, null]}, | |||
|
236 | {"year": 2025, "doy": 44, "initial_time": [7,50], "final_time": [8,38], "aux_index": [ null, null]}, | |||
|
237 | {"year": 2025, "doy": 44, "initial_time": [5,0], "final_time": [9,14], "aux_index": [ null, 14]} | |||
|
238 | ||||
189 |
|
239 | |||
190 | ]} |
|
240 | ]} | |
191 |
|
241 |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now