@@ -1,82 +1,130 | |||||
1 | #include <Python.h> |
|
1 | #include <Python.h> | |
2 | #include <numpy/arrayobject.h> |
|
2 | #include <numpy/arrayobject.h> | |
3 | #include <math.h> |
|
3 | #include <math.h> | |
4 |
|
4 | |||
5 |
|
5 | |||
6 | static PyObject *hildebrand_sekhon(PyObject *self, PyObject *args) { |
|
6 | static PyObject *hildebrand_sekhon(PyObject *self, PyObject *args) { | |
7 | double navg; |
|
7 | double navg; | |
8 | PyObject *data_obj, *data_array; |
|
8 | PyObject *data_obj, *data_array; | |
9 |
|
9 | |||
10 | if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg)) { |
|
10 | if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg)) { | |
11 | return NULL; |
|
11 | return NULL; | |
12 | } |
|
12 | } | |
13 |
|
13 | |||
14 | data_array = PyArray_FROM_OTF(data_obj, NPY_FLOAT64, NPY_IN_ARRAY); |
|
14 | data_array = PyArray_FROM_OTF(data_obj, NPY_FLOAT64, NPY_IN_ARRAY); | |
15 |
|
15 | |||
16 | if (data_array == NULL) { |
|
16 | if (data_array == NULL) { | |
17 | Py_XDECREF(data_array); |
|
17 | Py_XDECREF(data_array); | |
18 | Py_XDECREF(data_obj); |
|
18 | Py_XDECREF(data_obj); | |
19 | return NULL; |
|
19 | return NULL; | |
20 | } |
|
20 | } | |
21 | double *sortdata = (double*)PyArray_DATA(data_array); |
|
21 | double *sortdata = (double*)PyArray_DATA(data_array); | |
22 | int lenOfData = (int)PyArray_SIZE(data_array) ; |
|
22 | int lenOfData = (int)PyArray_SIZE(data_array) ; | |
23 | double nums_min = lenOfData*0.2; |
|
23 | double nums_min = lenOfData*0.2; | |
24 | if (nums_min <= 5) nums_min = 5; |
|
24 | if (nums_min <= 5) nums_min = 5; | |
25 | double sump = 0; |
|
25 | double sump = 0; | |
26 | double sumq = 0; |
|
26 | double sumq = 0; | |
27 | long j = 0; |
|
27 | long j = 0; | |
28 | int cont = 1; |
|
28 | int cont = 1; | |
29 | double rtest = 0; |
|
29 | double rtest = 0; | |
30 | while ((cont == 1) && (j < lenOfData)) { |
|
30 | while ((cont == 1) && (j < lenOfData)) { | |
31 | sump = sump + sortdata[j]; |
|
31 | sump = sump + sortdata[j]; | |
32 | sumq = sumq + pow(sortdata[j], 2); |
|
32 | sumq = sumq + pow(sortdata[j], 2); | |
33 | if (j > nums_min) { |
|
33 | if (j > nums_min) { | |
34 | rtest = (double)j/(j-1) + 1/navg; |
|
34 | rtest = (double)j/(j-1) + 1/navg; | |
35 | if ((sumq*j) > (rtest*pow(sump, 2))) { |
|
35 | if ((sumq*j) > (rtest*pow(sump, 2))) { | |
36 | j = j - 1; |
|
36 | j = j - 1; | |
37 | sump = sump - sortdata[j]; |
|
37 | sump = sump - sortdata[j]; | |
38 | sumq = sumq - pow(sortdata[j],2); |
|
38 | sumq = sumq - pow(sortdata[j],2); | |
39 | cont = 0; |
|
39 | cont = 0; | |
40 | } |
|
40 | } | |
41 | } |
|
41 | } | |
42 | j = j + 1; |
|
42 | j = j + 1; | |
43 | } |
|
43 | } | |
44 |
|
44 | |||
45 | double lnoise = sump / j; |
|
45 | double lnoise = sump / j; | |
46 |
|
46 | |||
47 | Py_DECREF(data_array); |
|
47 | Py_DECREF(data_array); | |
48 |
|
48 | |||
49 | // return PyLong_FromLong(lnoise); |
|
49 | // return PyLong_FromLong(lnoise); | |
50 | return PyFloat_FromDouble(lnoise); |
|
50 | return PyFloat_FromDouble(lnoise); | |
51 | } |
|
51 | } | |
|
52 | /* | |||
|
53 | static PyObject *hildebrand_sekhon2(PyObject *self, PyObject *args) { | |||
|
54 | double navg; | |||
|
55 | double th; | |||
|
56 | PyObject *data_obj, *data_array; | |||
|
57 | ||||
|
58 | if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg, &th)) { | |||
|
59 | return NULL; | |||
|
60 | } | |||
|
61 | ||||
|
62 | data_array = PyArray_FROM_OTF(data_obj, NPY_FLOAT64, NPY_IN_ARRAY); | |||
|
63 | ||||
|
64 | if (data_array == NULL) { | |||
|
65 | Py_XDECREF(data_array); | |||
|
66 | Py_XDECREF(data_obj); | |||
|
67 | return NULL; | |||
|
68 | } | |||
|
69 | double *sortdata = (double*)PyArray_DATA(data_array); | |||
|
70 | int lenOfData = (int)PyArray_SIZE(data_array) ; | |||
|
71 | double nums_min = lenOfData*th; | |||
|
72 | if (nums_min <= 5) nums_min = 5; | |||
|
73 | double sump = 0; | |||
|
74 | double sumq = 0; | |||
|
75 | long j = 0; | |||
|
76 | int cont = 1; | |||
|
77 | double rtest = 0; | |||
|
78 | while ((cont == 1) && (j < lenOfData)) { | |||
|
79 | sump = sump + sortdata[j]; | |||
|
80 | sumq = sumq + pow(sortdata[j], 2); | |||
|
81 | if (j > nums_min) { | |||
|
82 | rtest = (double)j/(j-1) + 1/navg; | |||
|
83 | if ((sumq*j) > (rtest*pow(sump, 2))) { | |||
|
84 | j = j - 1; | |||
|
85 | sump = sump - sortdata[j]; | |||
|
86 | sumq = sumq - pow(sortdata[j],2); | |||
|
87 | cont = 0; | |||
|
88 | } | |||
|
89 | } | |||
|
90 | j = j + 1; | |||
|
91 | } | |||
52 |
|
|
92 | ||
|
93 | //double lnoise = sump / j; | |||
|
94 | ||||
|
95 | Py_DECREF(data_array); | |||
|
96 | ||||
|
97 | // return PyLong_FromLong(lnoise); | |||
|
98 | return PyFloat_FromDouble(j,sortID); | |||
|
99 | } | |||
|
100 | */ | |||
53 |
|
101 | |||
54 | static PyMethodDef noiseMethods[] = { |
|
102 | static PyMethodDef noiseMethods[] = { | |
55 | { "hildebrand_sekhon", hildebrand_sekhon, METH_VARARGS, "Get noise with hildebrand_sekhon algorithm" }, |
|
103 | { "hildebrand_sekhon", hildebrand_sekhon, METH_VARARGS, "Get noise with hildebrand_sekhon algorithm" }, | |
56 | { NULL, NULL, 0, NULL } |
|
104 | { NULL, NULL, 0, NULL } | |
57 | }; |
|
105 | }; | |
58 |
|
106 | |||
59 | #if PY_MAJOR_VERSION >= 3 |
|
107 | #if PY_MAJOR_VERSION >= 3 | |
60 |
|
108 | |||
61 | static struct PyModuleDef noisemodule = { |
|
109 | static struct PyModuleDef noisemodule = { | |
62 | PyModuleDef_HEAD_INIT, |
|
110 | PyModuleDef_HEAD_INIT, | |
63 | "_noise", |
|
111 | "_noise", | |
64 | "Get noise with hildebrand_sekhon algorithm", |
|
112 | "Get noise with hildebrand_sekhon algorithm", | |
65 | -1, |
|
113 | -1, | |
66 | noiseMethods |
|
114 | noiseMethods | |
67 | }; |
|
115 | }; | |
68 |
|
116 | |||
69 | #endif |
|
117 | #endif | |
70 |
|
118 | |||
71 | #if PY_MAJOR_VERSION >= 3 |
|
119 | #if PY_MAJOR_VERSION >= 3 | |
72 | PyMODINIT_FUNC PyInit__noise(void) { |
|
120 | PyMODINIT_FUNC PyInit__noise(void) { | |
73 | Py_Initialize(); |
|
121 | Py_Initialize(); | |
74 | import_array(); |
|
122 | import_array(); | |
75 | return PyModule_Create(&noisemodule); |
|
123 | return PyModule_Create(&noisemodule); | |
76 | } |
|
124 | } | |
77 | #else |
|
125 | #else | |
78 | PyMODINIT_FUNC init_noise() { |
|
126 | PyMODINIT_FUNC init_noise() { | |
79 | Py_InitModule("_noise", noiseMethods); |
|
127 | Py_InitModule("_noise", noiseMethods); | |
80 | import_array(); |
|
128 | import_array(); | |
81 | } |
|
129 | } | |
82 | #endif |
|
130 | #endif |
@@ -1,357 +1,359 | |||||
1 | import os |
|
1 | import os | |
2 | import datetime |
|
2 | import datetime | |
3 | import numpy |
|
3 | import numpy | |
4 |
|
4 | |||
5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
5 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot |
|
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot | |
7 | from schainpy.utils import log |
|
7 | from schainpy.utils import log | |
8 |
|
8 | |||
9 | EARTH_RADIUS = 6.3710e3 |
|
9 | EARTH_RADIUS = 6.3710e3 | |
10 |
|
10 | |||
11 |
|
11 | |||
12 | def ll2xy(lat1, lon1, lat2, lon2): |
|
12 | def ll2xy(lat1, lon1, lat2, lon2): | |
13 |
|
13 | |||
14 | p = 0.017453292519943295 |
|
14 | p = 0.017453292519943295 | |
15 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
15 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
18 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
18 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
19 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
19 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
20 | theta = -theta + numpy.pi/2 |
|
20 | theta = -theta + numpy.pi/2 | |
21 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
21 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
22 |
|
22 | |||
23 |
|
23 | |||
24 | def km2deg(km): |
|
24 | def km2deg(km): | |
25 | ''' |
|
25 | ''' | |
26 | Convert distance in km to degrees |
|
26 | Convert distance in km to degrees | |
27 | ''' |
|
27 | ''' | |
28 |
|
28 | |||
29 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
29 | return numpy.rad2deg(km/EARTH_RADIUS) | |
30 |
|
30 | |||
31 |
|
31 | |||
32 |
|
32 | |||
33 | class SpectralMomentsPlot(SpectraPlot): |
|
33 | class SpectralMomentsPlot(SpectraPlot): | |
34 | ''' |
|
34 | ''' | |
35 | Plot for Spectral Moments |
|
35 | Plot for Spectral Moments | |
36 | ''' |
|
36 | ''' | |
37 | CODE = 'spc_moments' |
|
37 | CODE = 'spc_moments' | |
38 | colormap = 'jet' |
|
38 | colormap = 'jet' | |
39 | plot_type = 'pcolor' |
|
39 | plot_type = 'pcolor' | |
40 |
|
40 | |||
41 |
|
41 | |||
42 | class SnrPlot(RTIPlot): |
|
42 | class SnrPlot(RTIPlot): | |
43 | ''' |
|
43 | ''' | |
44 | Plot for SNR Data |
|
44 | Plot for SNR Data | |
45 | ''' |
|
45 | ''' | |
46 |
|
46 | |||
47 | CODE = 'snr' |
|
47 | CODE = 'snr' | |
48 | colormap = 'jet' |
|
48 | colormap = 'jet' | |
49 |
|
49 | |||
50 | def update(self, dataOut): |
|
50 | def update(self, dataOut): | |
51 | if len(self.channelList) == 0: |
|
51 | if len(self.channelList) == 0: | |
52 | self.update_list(dataOut) |
|
52 | self.update_list(dataOut) | |
53 | data = {} |
|
53 | ||
54 | meta = {} |
|
54 | meta = {} | |
55 | data['snr'] = 10*numpy.log10(dataOut.data_snr) |
|
55 | data = { | |
56 |
|
56 | 'snr': 10 * numpy.log10(dataOut.data_snr) | ||
|
57 | } | |||
|
58 | #print(data['snr']) | |||
57 | return data, meta |
|
59 | return data, meta | |
58 |
|
60 | |||
59 | class DopplerPlot(RTIPlot): |
|
61 | class DopplerPlot(RTIPlot): | |
60 | ''' |
|
62 | ''' | |
61 | Plot for DOPPLER Data (1st moment) |
|
63 | Plot for DOPPLER Data (1st moment) | |
62 | ''' |
|
64 | ''' | |
63 |
|
65 | |||
64 | CODE = 'dop' |
|
66 | CODE = 'dop' | |
65 | colormap = 'jet' |
|
67 | colormap = 'jet' | |
66 |
|
68 | |||
67 | def update(self, dataOut): |
|
69 | def update(self, dataOut): | |
68 | self.update_list(dataOut) |
|
70 | self.update_list(dataOut) | |
69 | data = { |
|
71 | data = { | |
70 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
72 | 'dop': 10*numpy.log10(dataOut.data_dop) | |
71 | } |
|
73 | } | |
72 |
|
74 | |||
73 | return data, {} |
|
75 | return data, {} | |
74 |
|
76 | |||
75 | class PowerPlot(RTIPlot): |
|
77 | class PowerPlot(RTIPlot): | |
76 | ''' |
|
78 | ''' | |
77 | Plot for Power Data (0 moment) |
|
79 | Plot for Power Data (0 moment) | |
78 | ''' |
|
80 | ''' | |
79 |
|
81 | |||
80 | CODE = 'pow' |
|
82 | CODE = 'pow' | |
81 | colormap = 'jet' |
|
83 | colormap = 'jet' | |
82 |
|
84 | |||
83 | def update(self, dataOut): |
|
85 | def update(self, dataOut): | |
84 | self.update_list(dataOut) |
|
86 | self.update_list(dataOut) | |
85 | data = { |
|
87 | data = { | |
86 | 'pow': 10*numpy.log10(dataOut.data_pow) |
|
88 | 'pow': 10*numpy.log10(dataOut.data_pow) | |
87 | } |
|
89 | } | |
88 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
90 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
89 | return data, {} |
|
91 | return data, {} | |
90 |
|
92 | |||
91 | class SpectralWidthPlot(RTIPlot): |
|
93 | class SpectralWidthPlot(RTIPlot): | |
92 | ''' |
|
94 | ''' | |
93 | Plot for Spectral Width Data (2nd moment) |
|
95 | Plot for Spectral Width Data (2nd moment) | |
94 | ''' |
|
96 | ''' | |
95 |
|
97 | |||
96 | CODE = 'width' |
|
98 | CODE = 'width' | |
97 | colormap = 'jet' |
|
99 | colormap = 'jet' | |
98 |
|
100 | |||
99 | def update(self, dataOut): |
|
101 | def update(self, dataOut): | |
100 | self.update_list(dataOut) |
|
102 | self.update_list(dataOut) | |
101 | data = { |
|
103 | data = { | |
102 | 'width': dataOut.data_width |
|
104 | 'width': dataOut.data_width | |
103 | } |
|
105 | } | |
104 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
106 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
105 | return data, {} |
|
107 | return data, {} | |
106 |
|
108 | |||
107 | class SkyMapPlot(Plot): |
|
109 | class SkyMapPlot(Plot): | |
108 | ''' |
|
110 | ''' | |
109 | Plot for meteors detection data |
|
111 | Plot for meteors detection data | |
110 | ''' |
|
112 | ''' | |
111 |
|
113 | |||
112 | CODE = 'param' |
|
114 | CODE = 'param' | |
113 |
|
115 | |||
114 | def setup(self): |
|
116 | def setup(self): | |
115 |
|
117 | |||
116 | self.ncols = 1 |
|
118 | self.ncols = 1 | |
117 | self.nrows = 1 |
|
119 | self.nrows = 1 | |
118 | self.width = 7.2 |
|
120 | self.width = 7.2 | |
119 | self.height = 7.2 |
|
121 | self.height = 7.2 | |
120 | self.nplots = 1 |
|
122 | self.nplots = 1 | |
121 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
123 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
122 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
124 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
123 | self.polar = True |
|
125 | self.polar = True | |
124 | self.ymin = -180 |
|
126 | self.ymin = -180 | |
125 | self.ymax = 180 |
|
127 | self.ymax = 180 | |
126 | self.colorbar = False |
|
128 | self.colorbar = False | |
127 |
|
129 | |||
128 | def plot(self): |
|
130 | def plot(self): | |
129 |
|
131 | |||
130 | arrayParameters = numpy.concatenate(self.data['param']) |
|
132 | arrayParameters = numpy.concatenate(self.data['param']) | |
131 | error = arrayParameters[:, -1] |
|
133 | error = arrayParameters[:, -1] | |
132 | indValid = numpy.where(error == 0)[0] |
|
134 | indValid = numpy.where(error == 0)[0] | |
133 | finalMeteor = arrayParameters[indValid, :] |
|
135 | finalMeteor = arrayParameters[indValid, :] | |
134 | finalAzimuth = finalMeteor[:, 3] |
|
136 | finalAzimuth = finalMeteor[:, 3] | |
135 | finalZenith = finalMeteor[:, 4] |
|
137 | finalZenith = finalMeteor[:, 4] | |
136 |
|
138 | |||
137 | x = finalAzimuth * numpy.pi / 180 |
|
139 | x = finalAzimuth * numpy.pi / 180 | |
138 | y = finalZenith |
|
140 | y = finalZenith | |
139 |
|
141 | |||
140 | ax = self.axes[0] |
|
142 | ax = self.axes[0] | |
141 |
|
143 | |||
142 | if ax.firsttime: |
|
144 | if ax.firsttime: | |
143 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
145 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] | |
144 | else: |
|
146 | else: | |
145 | ax.plot.set_data(x, y) |
|
147 | ax.plot.set_data(x, y) | |
146 |
|
148 | |||
147 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
149 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | |
148 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
150 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | |
149 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
151 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
150 | dt2, |
|
152 | dt2, | |
151 | len(x)) |
|
153 | len(x)) | |
152 | self.titles[0] = title |
|
154 | self.titles[0] = title | |
153 |
|
155 | |||
154 |
|
156 | |||
155 | class GenericRTIPlot(Plot): |
|
157 | class GenericRTIPlot(Plot): | |
156 | ''' |
|
158 | ''' | |
157 | Plot for data_xxxx object |
|
159 | Plot for data_xxxx object | |
158 | ''' |
|
160 | ''' | |
159 |
|
161 | |||
160 | CODE = 'param' |
|
162 | CODE = 'param' | |
161 | colormap = 'viridis' |
|
163 | colormap = 'viridis' | |
162 | plot_type = 'pcolorbuffer' |
|
164 | plot_type = 'pcolorbuffer' | |
163 |
|
165 | |||
164 | def setup(self): |
|
166 | def setup(self): | |
165 | self.xaxis = 'time' |
|
167 | self.xaxis = 'time' | |
166 | self.ncols = 1 |
|
168 | self.ncols = 1 | |
167 | self.nrows = self.data.shape('param')[0] |
|
169 | self.nrows = self.data.shape('param')[0] | |
168 | self.nplots = self.nrows |
|
170 | self.nplots = self.nrows | |
169 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
171 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) | |
170 |
|
172 | |||
171 | if not self.xlabel: |
|
173 | if not self.xlabel: | |
172 | self.xlabel = 'Time' |
|
174 | self.xlabel = 'Time' | |
173 |
|
175 | |||
174 | self.ylabel = 'Height [km]' |
|
176 | self.ylabel = 'Height [km]' | |
175 | if not self.titles: |
|
177 | if not self.titles: | |
176 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
178 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] | |
177 |
|
179 | |||
178 | def update(self, dataOut): |
|
180 | def update(self, dataOut): | |
179 |
|
181 | |||
180 | data = { |
|
182 | data = { | |
181 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
183 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) | |
182 | } |
|
184 | } | |
183 |
|
185 | |||
184 | meta = {} |
|
186 | meta = {} | |
185 |
|
187 | |||
186 | return data, meta |
|
188 | return data, meta | |
187 |
|
189 | |||
188 | def plot(self): |
|
190 | def plot(self): | |
189 | # self.data.normalize_heights() |
|
191 | # self.data.normalize_heights() | |
190 | self.x = self.data.times |
|
192 | self.x = self.data.times | |
191 | self.y = self.data.yrange |
|
193 | self.y = self.data.yrange | |
192 | self.z = self.data['param'] |
|
194 | self.z = self.data['param'] | |
193 |
|
195 | |||
194 | self.z = numpy.ma.masked_invalid(self.z) |
|
196 | self.z = numpy.ma.masked_invalid(self.z) | |
195 |
|
197 | |||
196 | if self.decimation is None: |
|
198 | if self.decimation is None: | |
197 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
199 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
198 | else: |
|
200 | else: | |
199 | x, y, z = self.fill_gaps(*self.decimate()) |
|
201 | x, y, z = self.fill_gaps(*self.decimate()) | |
200 |
|
202 | |||
201 | for n, ax in enumerate(self.axes): |
|
203 | for n, ax in enumerate(self.axes): | |
202 |
|
204 | |||
203 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
205 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
204 | self.z[n]) |
|
206 | self.z[n]) | |
205 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
207 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
206 | self.z[n]) |
|
208 | self.z[n]) | |
207 |
|
209 | |||
208 | if ax.firsttime: |
|
210 | if ax.firsttime: | |
209 | if self.zlimits is not None: |
|
211 | if self.zlimits is not None: | |
210 | self.zmin, self.zmax = self.zlimits[n] |
|
212 | self.zmin, self.zmax = self.zlimits[n] | |
211 |
|
213 | |||
212 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
214 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
213 | vmin=self.zmin, |
|
215 | vmin=self.zmin, | |
214 | vmax=self.zmax, |
|
216 | vmax=self.zmax, | |
215 | cmap=self.cmaps[n] |
|
217 | cmap=self.cmaps[n] | |
216 | ) |
|
218 | ) | |
217 | else: |
|
219 | else: | |
218 | if self.zlimits is not None: |
|
220 | if self.zlimits is not None: | |
219 | self.zmin, self.zmax = self.zlimits[n] |
|
221 | self.zmin, self.zmax = self.zlimits[n] | |
220 | ax.collections.remove(ax.collections[0]) |
|
222 | ax.collections.remove(ax.collections[0]) | |
221 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
223 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
222 | vmin=self.zmin, |
|
224 | vmin=self.zmin, | |
223 | vmax=self.zmax, |
|
225 | vmax=self.zmax, | |
224 | cmap=self.cmaps[n] |
|
226 | cmap=self.cmaps[n] | |
225 | ) |
|
227 | ) | |
226 |
|
228 | |||
227 |
|
229 | |||
228 | class PolarMapPlot(Plot): |
|
230 | class PolarMapPlot(Plot): | |
229 | ''' |
|
231 | ''' | |
230 | Plot for weather radar |
|
232 | Plot for weather radar | |
231 | ''' |
|
233 | ''' | |
232 |
|
234 | |||
233 | CODE = 'param' |
|
235 | CODE = 'param' | |
234 | colormap = 'seismic' |
|
236 | colormap = 'seismic' | |
235 |
|
237 | |||
236 | def setup(self): |
|
238 | def setup(self): | |
237 | self.ncols = 1 |
|
239 | self.ncols = 1 | |
238 | self.nrows = 1 |
|
240 | self.nrows = 1 | |
239 | self.width = 9 |
|
241 | self.width = 9 | |
240 | self.height = 8 |
|
242 | self.height = 8 | |
241 | self.mode = self.data.meta['mode'] |
|
243 | self.mode = self.data.meta['mode'] | |
242 | if self.channels is not None: |
|
244 | if self.channels is not None: | |
243 | self.nplots = len(self.channels) |
|
245 | self.nplots = len(self.channels) | |
244 | self.nrows = len(self.channels) |
|
246 | self.nrows = len(self.channels) | |
245 | else: |
|
247 | else: | |
246 | self.nplots = self.data.shape(self.CODE)[0] |
|
248 | self.nplots = self.data.shape(self.CODE)[0] | |
247 | self.nrows = self.nplots |
|
249 | self.nrows = self.nplots | |
248 | self.channels = list(range(self.nplots)) |
|
250 | self.channels = list(range(self.nplots)) | |
249 | if self.mode == 'E': |
|
251 | if self.mode == 'E': | |
250 | self.xlabel = 'Longitude' |
|
252 | self.xlabel = 'Longitude' | |
251 | self.ylabel = 'Latitude' |
|
253 | self.ylabel = 'Latitude' | |
252 | else: |
|
254 | else: | |
253 | self.xlabel = 'Range (km)' |
|
255 | self.xlabel = 'Range (km)' | |
254 | self.ylabel = 'Height (km)' |
|
256 | self.ylabel = 'Height (km)' | |
255 | self.bgcolor = 'white' |
|
257 | self.bgcolor = 'white' | |
256 | self.cb_labels = self.data.meta['units'] |
|
258 | self.cb_labels = self.data.meta['units'] | |
257 | self.lat = self.data.meta['latitude'] |
|
259 | self.lat = self.data.meta['latitude'] | |
258 | self.lon = self.data.meta['longitude'] |
|
260 | self.lon = self.data.meta['longitude'] | |
259 | self.xmin, self.xmax = float( |
|
261 | self.xmin, self.xmax = float( | |
260 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
262 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | |
261 | self.ymin, self.ymax = float( |
|
263 | self.ymin, self.ymax = float( | |
262 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
264 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | |
263 | # self.polar = True |
|
265 | # self.polar = True | |
264 |
|
266 | |||
265 | def plot(self): |
|
267 | def plot(self): | |
266 |
|
268 | |||
267 | for n, ax in enumerate(self.axes): |
|
269 | for n, ax in enumerate(self.axes): | |
268 | data = self.data['param'][self.channels[n]] |
|
270 | data = self.data['param'][self.channels[n]] | |
269 |
|
271 | |||
270 | zeniths = numpy.linspace( |
|
272 | zeniths = numpy.linspace( | |
271 | 0, self.data.meta['max_range'], data.shape[1]) |
|
273 | 0, self.data.meta['max_range'], data.shape[1]) | |
272 | if self.mode == 'E': |
|
274 | if self.mode == 'E': | |
273 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
275 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 | |
274 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
276 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
275 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
277 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | |
276 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
278 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | |
277 | x = km2deg(x) + self.lon |
|
279 | x = km2deg(x) + self.lon | |
278 | y = km2deg(y) + self.lat |
|
280 | y = km2deg(y) + self.lat | |
279 | else: |
|
281 | else: | |
280 | azimuths = numpy.radians(self.data.yrange) |
|
282 | azimuths = numpy.radians(self.data.yrange) | |
281 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
283 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
282 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
284 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
283 | self.y = zeniths |
|
285 | self.y = zeniths | |
284 |
|
286 | |||
285 | if ax.firsttime: |
|
287 | if ax.firsttime: | |
286 | if self.zlimits is not None: |
|
288 | if self.zlimits is not None: | |
287 | self.zmin, self.zmax = self.zlimits[n] |
|
289 | self.zmin, self.zmax = self.zlimits[n] | |
288 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
290 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
289 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
291 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
290 | vmin=self.zmin, |
|
292 | vmin=self.zmin, | |
291 | vmax=self.zmax, |
|
293 | vmax=self.zmax, | |
292 | cmap=self.cmaps[n]) |
|
294 | cmap=self.cmaps[n]) | |
293 | else: |
|
295 | else: | |
294 | if self.zlimits is not None: |
|
296 | if self.zlimits is not None: | |
295 | self.zmin, self.zmax = self.zlimits[n] |
|
297 | self.zmin, self.zmax = self.zlimits[n] | |
296 | ax.collections.remove(ax.collections[0]) |
|
298 | ax.collections.remove(ax.collections[0]) | |
297 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
299 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
298 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
300 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
299 | vmin=self.zmin, |
|
301 | vmin=self.zmin, | |
300 | vmax=self.zmax, |
|
302 | vmax=self.zmax, | |
301 | cmap=self.cmaps[n]) |
|
303 | cmap=self.cmaps[n]) | |
302 |
|
304 | |||
303 | if self.mode == 'A': |
|
305 | if self.mode == 'A': | |
304 | continue |
|
306 | continue | |
305 |
|
307 | |||
306 | # plot district names |
|
308 | # plot district names | |
307 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
309 | f = open('/data/workspace/schain_scripts/distrito.csv') | |
308 | for line in f: |
|
310 | for line in f: | |
309 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
311 | label, lon, lat = [s.strip() for s in line.split(',') if s] | |
310 | lat = float(lat) |
|
312 | lat = float(lat) | |
311 | lon = float(lon) |
|
313 | lon = float(lon) | |
312 | # ax.plot(lon, lat, '.b', ms=2) |
|
314 | # ax.plot(lon, lat, '.b', ms=2) | |
313 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
315 | ax.text(lon, lat, label.decode('utf8'), ha='center', | |
314 | va='bottom', size='8', color='black') |
|
316 | va='bottom', size='8', color='black') | |
315 |
|
317 | |||
316 | # plot limites |
|
318 | # plot limites | |
317 | limites = [] |
|
319 | limites = [] | |
318 | tmp = [] |
|
320 | tmp = [] | |
319 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
321 | for line in open('/data/workspace/schain_scripts/lima.csv'): | |
320 | if '#' in line: |
|
322 | if '#' in line: | |
321 | if tmp: |
|
323 | if tmp: | |
322 | limites.append(tmp) |
|
324 | limites.append(tmp) | |
323 | tmp = [] |
|
325 | tmp = [] | |
324 | continue |
|
326 | continue | |
325 | values = line.strip().split(',') |
|
327 | values = line.strip().split(',') | |
326 | tmp.append((float(values[0]), float(values[1]))) |
|
328 | tmp.append((float(values[0]), float(values[1]))) | |
327 | for points in limites: |
|
329 | for points in limites: | |
328 | ax.add_patch( |
|
330 | ax.add_patch( | |
329 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
331 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | |
330 |
|
332 | |||
331 | # plot Cuencas |
|
333 | # plot Cuencas | |
332 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
334 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | |
333 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
335 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) | |
334 | values = [line.strip().split(',') for line in f] |
|
336 | values = [line.strip().split(',') for line in f] | |
335 | points = [(float(s[0]), float(s[1])) for s in values] |
|
337 | points = [(float(s[0]), float(s[1])) for s in values] | |
336 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
338 | ax.add_patch(Polygon(points, ec='b', fc='none')) | |
337 |
|
339 | |||
338 | # plot grid |
|
340 | # plot grid | |
339 | for r in (15, 30, 45, 60): |
|
341 | for r in (15, 30, 45, 60): | |
340 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
342 | ax.add_artist(plt.Circle((self.lon, self.lat), | |
341 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
343 | km2deg(r), color='0.6', fill=False, lw=0.2)) | |
342 | ax.text( |
|
344 | ax.text( | |
343 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
345 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), | |
344 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
346 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), | |
345 | '{}km'.format(r), |
|
347 | '{}km'.format(r), | |
346 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
348 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') | |
347 |
|
349 | |||
348 | if self.mode == 'E': |
|
350 | if self.mode == 'E': | |
349 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
351 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | |
350 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
352 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | |
351 | else: |
|
353 | else: | |
352 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
354 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | |
353 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
355 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | |
354 |
|
356 | |||
355 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
357 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
356 | self.titles = ['{} {}'.format( |
|
358 | self.titles = ['{} {}'.format( | |
357 | self.data.parameters[x], title) for x in self.channels] |
|
359 | self.data.parameters[x], title) for x in self.channels] |
@@ -1,962 +1,966 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Classes to plot Spectra data |
|
5 | """Classes to plot Spectra data | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import numpy |
|
10 | import numpy | |
11 |
|
11 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
13 | from itertools import combinations |
|
13 | from itertools import combinations | |
14 |
|
14 | |||
15 |
|
15 | |||
16 | class SpectraPlot(Plot): |
|
16 | class SpectraPlot(Plot): | |
17 | ''' |
|
17 | ''' | |
18 | Plot for Spectra data |
|
18 | Plot for Spectra data | |
19 | ''' |
|
19 | ''' | |
20 |
|
20 | |||
21 | CODE = 'spc' |
|
21 | CODE = 'spc' | |
22 | colormap = 'jet' |
|
22 | colormap = 'jet' | |
23 | plot_type = 'pcolor' |
|
23 | plot_type = 'pcolor' | |
24 | buffering = False |
|
24 | buffering = False | |
25 | channelList = [] |
|
25 | channelList = [] | |
26 |
|
26 | |||
27 | def setup(self): |
|
27 | def setup(self): | |
28 |
|
28 | |||
29 | self.nplots = len(self.data.channels) |
|
29 | self.nplots = len(self.data.channels) | |
30 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
30 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
31 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
31 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
32 | self.height = 2.6 * self.nrows |
|
32 | self.height = 2.6 * self.nrows | |
33 |
|
33 | |||
34 | self.cb_label = 'dB' |
|
34 | self.cb_label = 'dB' | |
35 | if self.showprofile: |
|
35 | if self.showprofile: | |
36 | self.width = 4 * self.ncols |
|
36 | self.width = 4 * self.ncols | |
37 | else: |
|
37 | else: | |
38 | self.width = 3.5 * self.ncols |
|
38 | self.width = 3.5 * self.ncols | |
39 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
39 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
40 | self.ylabel = 'Range [km]' |
|
40 | self.ylabel = 'Range [km]' | |
41 |
|
41 | |||
42 |
|
42 | |||
43 | def update_list(self,dataOut): |
|
43 | def update_list(self,dataOut): | |
44 | if len(self.channelList) == 0: |
|
44 | if len(self.channelList) == 0: | |
45 | self.channelList = dataOut.channelList |
|
45 | self.channelList = dataOut.channelList | |
46 |
|
46 | |||
47 | def update(self, dataOut): |
|
47 | def update(self, dataOut): | |
48 |
|
48 | |||
49 | self.update_list(dataOut) |
|
49 | self.update_list(dataOut) | |
50 | data = {} |
|
50 | data = {} | |
51 | meta = {} |
|
51 | meta = {} | |
52 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
52 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
53 | data['spc'] = spc |
|
53 | data['spc'] = spc | |
54 | data['rti'] = dataOut.getPower() |
|
54 | data['rti'] = dataOut.getPower() | |
55 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
55 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
56 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
56 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
57 | if self.CODE == 'spc_moments': |
|
57 | if self.CODE == 'spc_moments': | |
58 | data['moments'] = dataOut.moments |
|
58 | data['moments'] = dataOut.moments | |
59 |
|
59 | |||
60 | return data, meta |
|
60 | return data, meta | |
61 |
|
61 | |||
62 | def plot(self): |
|
62 | def plot(self): | |
63 | if self.xaxis == "frequency": |
|
63 | if self.xaxis == "frequency": | |
64 | x = self.data.xrange[0] |
|
64 | x = self.data.xrange[0] | |
65 | self.xlabel = "Frequency (kHz)" |
|
65 | self.xlabel = "Frequency (kHz)" | |
66 | elif self.xaxis == "time": |
|
66 | elif self.xaxis == "time": | |
67 | x = self.data.xrange[1] |
|
67 | x = self.data.xrange[1] | |
68 | self.xlabel = "Time (ms)" |
|
68 | self.xlabel = "Time (ms)" | |
69 | else: |
|
69 | else: | |
70 | x = self.data.xrange[2] |
|
70 | x = self.data.xrange[2] | |
71 | self.xlabel = "Velocity (m/s)" |
|
71 | self.xlabel = "Velocity (m/s)" | |
72 |
|
72 | |||
73 | if self.CODE == 'spc_moments': |
|
73 | if self.CODE == 'spc_moments': | |
74 | x = self.data.xrange[2] |
|
74 | x = self.data.xrange[2] | |
75 | self.xlabel = "Velocity (m/s)" |
|
75 | self.xlabel = "Velocity (m/s)" | |
76 |
|
76 | |||
77 | self.titles = [] |
|
77 | self.titles = [] | |
78 | y = self.data.yrange |
|
78 | y = self.data.yrange | |
79 | self.y = y |
|
79 | self.y = y | |
80 |
|
80 | |||
81 | data = self.data[-1] |
|
81 | data = self.data[-1] | |
82 | z = data['spc'] |
|
82 | z = data['spc'] | |
83 |
|
83 | |||
84 | for n, ax in enumerate(self.axes): |
|
84 | for n, ax in enumerate(self.axes): | |
85 | noise = data['noise'][n] |
|
85 | noise = data['noise'][n] | |
86 | if self.CODE == 'spc_moments': |
|
86 | if self.CODE == 'spc_moments': | |
87 | mean = data['moments'][n, 1] |
|
87 | mean = data['moments'][n, 1] | |
88 | if ax.firsttime: |
|
88 | if ax.firsttime: | |
89 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
89 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
90 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
90 | self.xmin = self.xmin if self.xmin else -self.xmax | |
91 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
91 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
92 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
92 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
93 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
93 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
94 | vmin=self.zmin, |
|
94 | vmin=self.zmin, | |
95 | vmax=self.zmax, |
|
95 | vmax=self.zmax, | |
96 | cmap=plt.get_cmap(self.colormap) |
|
96 | cmap=plt.get_cmap(self.colormap) | |
97 | ) |
|
97 | ) | |
98 |
|
98 | |||
99 | if self.showprofile: |
|
99 | if self.showprofile: | |
100 | ax.plt_profile = self.pf_axes[n].plot( |
|
100 | ax.plt_profile = self.pf_axes[n].plot( | |
101 | data['rti'][n], y)[0] |
|
101 | data['rti'][n], y)[0] | |
102 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
102 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
103 | color="k", linestyle="dashed", lw=1)[0] |
|
103 | color="k", linestyle="dashed", lw=1)[0] | |
104 | if self.CODE == 'spc_moments': |
|
104 | if self.CODE == 'spc_moments': | |
105 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
105 | ax.plt_mean = ax.plot(mean, y, color='k')[0] | |
106 | else: |
|
106 | else: | |
107 | ax.plt.set_array(z[n].T.ravel()) |
|
107 | ax.plt.set_array(z[n].T.ravel()) | |
108 | if self.showprofile: |
|
108 | if self.showprofile: | |
109 | ax.plt_profile.set_data(data['rti'][n], y) |
|
109 | ax.plt_profile.set_data(data['rti'][n], y) | |
110 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
110 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
111 | if self.CODE == 'spc_moments': |
|
111 | if self.CODE == 'spc_moments': | |
112 | ax.plt_mean.set_data(mean, y) |
|
112 | ax.plt_mean.set_data(mean, y) | |
113 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
113 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) | |
114 |
|
114 | |||
115 |
|
115 | |||
116 | class CrossSpectraPlot(Plot): |
|
116 | class CrossSpectraPlot(Plot): | |
117 |
|
117 | |||
118 | CODE = 'cspc' |
|
118 | CODE = 'cspc' | |
119 | colormap = 'jet' |
|
119 | colormap = 'jet' | |
120 | plot_type = 'pcolor' |
|
120 | plot_type = 'pcolor' | |
121 | zmin_coh = None |
|
121 | zmin_coh = None | |
122 | zmax_coh = None |
|
122 | zmax_coh = None | |
123 | zmin_phase = None |
|
123 | zmin_phase = None | |
124 | zmax_phase = None |
|
124 | zmax_phase = None | |
125 | realChannels = None |
|
125 | realChannels = None | |
126 | crossPairs = None |
|
126 | crossPairs = None | |
127 |
|
127 | |||
128 | def setup(self): |
|
128 | def setup(self): | |
129 |
|
129 | |||
130 | self.ncols = 4 |
|
130 | self.ncols = 4 | |
131 | self.nplots = len(self.data.pairs) * 2 |
|
131 | self.nplots = len(self.data.pairs) * 2 | |
132 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
132 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
133 | self.width = 3.1 * self.ncols |
|
133 | self.width = 3.1 * self.ncols | |
134 | self.height = 2.6 * self.nrows |
|
134 | self.height = 2.6 * self.nrows | |
135 | self.ylabel = 'Range [km]' |
|
135 | self.ylabel = 'Range [km]' | |
136 | self.showprofile = False |
|
136 | self.showprofile = False | |
137 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
137 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
138 |
|
138 | |||
139 | def update(self, dataOut): |
|
139 | def update(self, dataOut): | |
140 |
|
140 | |||
141 | data = {} |
|
141 | data = {} | |
142 | meta = {} |
|
142 | meta = {} | |
143 |
|
143 | |||
144 | spc = dataOut.data_spc |
|
144 | spc = dataOut.data_spc | |
145 | cspc = dataOut.data_cspc |
|
145 | cspc = dataOut.data_cspc | |
146 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
146 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
147 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) |
|
147 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) | |
148 | meta['pairs'] = rawPairs |
|
148 | meta['pairs'] = rawPairs | |
149 |
|
149 | |||
150 | if self.crossPairs == None: |
|
150 | if self.crossPairs == None: | |
151 | self.crossPairs = dataOut.pairsList |
|
151 | self.crossPairs = dataOut.pairsList | |
152 |
|
152 | |||
153 | tmp = [] |
|
153 | tmp = [] | |
154 |
|
154 | |||
155 | for n, pair in enumerate(meta['pairs']): |
|
155 | for n, pair in enumerate(meta['pairs']): | |
156 |
|
156 | |||
157 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
157 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
158 | coh = numpy.abs(out) |
|
158 | coh = numpy.abs(out) | |
159 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
159 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
160 | tmp.append(coh) |
|
160 | tmp.append(coh) | |
161 | tmp.append(phase) |
|
161 | tmp.append(phase) | |
162 |
|
162 | |||
163 | data['cspc'] = numpy.array(tmp) |
|
163 | data['cspc'] = numpy.array(tmp) | |
164 |
|
164 | |||
165 | return data, meta |
|
165 | return data, meta | |
166 |
|
166 | |||
167 | def plot(self): |
|
167 | def plot(self): | |
168 |
|
168 | |||
169 | if self.xaxis == "frequency": |
|
169 | if self.xaxis == "frequency": | |
170 | x = self.data.xrange[0] |
|
170 | x = self.data.xrange[0] | |
171 | self.xlabel = "Frequency (kHz)" |
|
171 | self.xlabel = "Frequency (kHz)" | |
172 | elif self.xaxis == "time": |
|
172 | elif self.xaxis == "time": | |
173 | x = self.data.xrange[1] |
|
173 | x = self.data.xrange[1] | |
174 | self.xlabel = "Time (ms)" |
|
174 | self.xlabel = "Time (ms)" | |
175 | else: |
|
175 | else: | |
176 | x = self.data.xrange[2] |
|
176 | x = self.data.xrange[2] | |
177 | self.xlabel = "Velocity (m/s)" |
|
177 | self.xlabel = "Velocity (m/s)" | |
178 |
|
178 | |||
179 | self.titles = [] |
|
179 | self.titles = [] | |
180 |
|
180 | |||
181 | y = self.data.yrange |
|
181 | y = self.data.yrange | |
182 | self.y = y |
|
182 | self.y = y | |
183 |
|
183 | |||
184 | data = self.data[-1] |
|
184 | data = self.data[-1] | |
185 | cspc = data['cspc'] |
|
185 | cspc = data['cspc'] | |
186 |
|
186 | |||
187 | for n in range(len(self.data.pairs)): |
|
187 | for n in range(len(self.data.pairs)): | |
188 |
|
188 | |||
189 | pair = self.crossPairs[n] |
|
189 | pair = self.crossPairs[n] | |
190 |
|
190 | |||
191 | coh = cspc[n*2] |
|
191 | coh = cspc[n*2] | |
192 | phase = cspc[n*2+1] |
|
192 | phase = cspc[n*2+1] | |
193 | ax = self.axes[2 * n] |
|
193 | ax = self.axes[2 * n] | |
194 |
|
194 | |||
195 | if ax.firsttime: |
|
195 | if ax.firsttime: | |
196 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
196 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
197 | vmin=self.zmin_coh, |
|
197 | vmin=self.zmin_coh, | |
198 | vmax=self.zmax_coh, |
|
198 | vmax=self.zmax_coh, | |
199 | cmap=plt.get_cmap(self.colormap_coh) |
|
199 | cmap=plt.get_cmap(self.colormap_coh) | |
200 | ) |
|
200 | ) | |
201 | else: |
|
201 | else: | |
202 | ax.plt.set_array(coh.T.ravel()) |
|
202 | ax.plt.set_array(coh.T.ravel()) | |
203 | self.titles.append( |
|
203 | self.titles.append( | |
204 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
204 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
205 |
|
205 | |||
206 | ax = self.axes[2 * n + 1] |
|
206 | ax = self.axes[2 * n + 1] | |
207 | if ax.firsttime: |
|
207 | if ax.firsttime: | |
208 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
208 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
209 | vmin=-180, |
|
209 | vmin=-180, | |
210 | vmax=180, |
|
210 | vmax=180, | |
211 | cmap=plt.get_cmap(self.colormap_phase) |
|
211 | cmap=plt.get_cmap(self.colormap_phase) | |
212 | ) |
|
212 | ) | |
213 | else: |
|
213 | else: | |
214 | ax.plt.set_array(phase.T.ravel()) |
|
214 | ax.plt.set_array(phase.T.ravel()) | |
215 |
|
215 | |||
216 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
216 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
217 |
|
217 | |||
218 |
|
218 | |||
219 | class RTIPlot(Plot): |
|
219 | class RTIPlot(Plot): | |
220 | ''' |
|
220 | ''' | |
221 | Plot for RTI data |
|
221 | Plot for RTI data | |
222 | ''' |
|
222 | ''' | |
223 |
|
223 | |||
224 | CODE = 'rti' |
|
224 | CODE = 'rti' | |
225 | colormap = 'jet' |
|
225 | colormap = 'jet' | |
226 | plot_type = 'pcolorbuffer' |
|
226 | plot_type = 'pcolorbuffer' | |
227 | titles = None |
|
227 | titles = None | |
228 | channelList = [] |
|
228 | channelList = [] | |
229 |
|
229 | |||
230 | def setup(self): |
|
230 | def setup(self): | |
231 | self.xaxis = 'time' |
|
231 | self.xaxis = 'time' | |
232 | self.ncols = 1 |
|
232 | self.ncols = 1 | |
233 | #print("dataChannels ",self.data.channels) |
|
233 | #print("dataChannels ",self.data.channels) | |
234 | self.nrows = len(self.data.channels) |
|
234 | self.nrows = len(self.data.channels) | |
235 | self.nplots = len(self.data.channels) |
|
235 | self.nplots = len(self.data.channels) | |
236 | self.ylabel = 'Range [km]' |
|
236 | self.ylabel = 'Range [km]' | |
237 | self.xlabel = 'Time' |
|
237 | self.xlabel = 'Time' | |
238 | self.cb_label = 'dB' |
|
238 | self.cb_label = 'dB' | |
239 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
239 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) | |
240 | self.titles = ['{} Channel {}'.format( |
|
240 | self.titles = ['{} Channel {}'.format( | |
241 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
241 | self.CODE.upper(), x) for x in range(self.nplots)] | |
242 |
|
242 | |||
243 | def update_list(self,dataOut): |
|
243 | def update_list(self,dataOut): | |
244 |
|
244 | |||
245 | self.channelList = dataOut.channelList |
|
245 | self.channelList = dataOut.channelList | |
246 |
|
246 | |||
247 |
|
247 | |||
248 | def update(self, dataOut): |
|
248 | def update(self, dataOut): | |
249 | if len(self.channelList) == 0: |
|
249 | if len(self.channelList) == 0: | |
250 | self.update_list(dataOut) |
|
250 | self.update_list(dataOut) | |
251 | data = {} |
|
251 | data = {} | |
252 | meta = {} |
|
252 | meta = {} | |
253 | data['rti'] = dataOut.getPower() |
|
253 | data['rti'] = dataOut.getPower() | |
254 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
254 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
255 | return data, meta |
|
255 | return data, meta | |
256 |
|
256 | |||
257 | def plot(self): |
|
257 | def plot(self): | |
258 |
|
258 | |||
259 | self.x = self.data.times |
|
259 | self.x = self.data.times | |
260 | self.y = self.data.yrange |
|
260 | self.y = self.data.yrange | |
|
261 | ||||
261 | self.z = self.data[self.CODE] |
|
262 | self.z = self.data[self.CODE] | |
262 | self.z = numpy.array(self.z, dtype=float) |
|
263 | self.z = numpy.array(self.z, dtype=float) | |
263 | self.z = numpy.ma.masked_invalid(self.z) |
|
264 | self.z = numpy.ma.masked_invalid(self.z) | |
264 |
|
265 | |||
265 | try: |
|
266 | try: | |
266 | if self.channelList != None: |
|
267 | if self.channelList != None: | |
267 | self.titles = ['{} Channel {}'.format( |
|
268 | self.titles = ['{} Channel {}'.format( | |
268 | self.CODE.upper(), x) for x in self.channelList] |
|
269 | self.CODE.upper(), x) for x in self.channelList] | |
269 | except: |
|
270 | except: | |
270 | if self.channelList.any() != None: |
|
271 | if self.channelList.any() != None: | |
271 | self.titles = ['{} Channel {}'.format( |
|
272 | self.titles = ['{} Channel {}'.format( | |
272 | self.CODE.upper(), x) for x in self.channelList] |
|
273 | self.CODE.upper(), x) for x in self.channelList] | |
273 | if self.decimation is None: |
|
274 | if self.decimation is None: | |
274 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
275 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
275 | else: |
|
276 | else: | |
276 | x, y, z = self.fill_gaps(*self.decimate()) |
|
277 | x, y, z = self.fill_gaps(*self.decimate()) | |
277 | dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes |
|
278 | ||
|
279 | #dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes | |||
278 | for n, ax in enumerate(self.axes): |
|
280 | for n, ax in enumerate(self.axes): | |
279 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
281 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
280 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
282 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
281 | data = self.data[-1] |
|
283 | data = self.data[-1] | |
|
284 | ||||
282 | if ax.firsttime: |
|
285 | if ax.firsttime: | |
283 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
286 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
284 | vmin=self.zmin, |
|
287 | vmin=self.zmin, | |
285 | vmax=self.zmax, |
|
288 | vmax=self.zmax, | |
286 | cmap=plt.get_cmap(self.colormap) |
|
289 | cmap=plt.get_cmap(self.colormap) | |
287 | ) |
|
290 | ) | |
288 | if self.showprofile: |
|
291 | if self.showprofile: | |
289 | ax.plot_profile = self.pf_axes[n].plot(data[self.CODE][n], self.y)[0] |
|
292 | ax.plot_profile = self.pf_axes[n].plot(data[self.CODE][n], self.y)[0] | |
290 |
|
||||
291 | if "noise" in self.data: |
|
293 | if "noise" in self.data: | |
|
294 | ||||
292 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
295 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, | |
293 | color="k", linestyle="dashed", lw=1)[0] |
|
296 | color="k", linestyle="dashed", lw=1)[0] | |
294 | else: |
|
297 | else: | |
295 | ax.collections.remove(ax.collections[0]) |
|
298 | ax.collections.remove(ax.collections[0]) | |
296 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
299 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
297 | vmin=self.zmin, |
|
300 | vmin=self.zmin, | |
298 | vmax=self.zmax, |
|
301 | vmax=self.zmax, | |
299 | cmap=plt.get_cmap(self.colormap) |
|
302 | cmap=plt.get_cmap(self.colormap) | |
300 | ) |
|
303 | ) | |
301 | if self.showprofile: |
|
304 | if self.showprofile: | |
302 | ax.plot_profile.set_data(data[self.CODE][n], self.y) |
|
305 | ax.plot_profile.set_data(data[self.CODE][n], self.y) | |
303 | if "noise" in self.data: |
|
306 | if "noise" in self.data: | |
|
307 | ||||
304 | ax.plot_noise.set_data(numpy.repeat( |
|
308 | ax.plot_noise.set_data(numpy.repeat( | |
305 | data['noise'][n], len(self.y)), self.y) |
|
309 | data['noise'][n], len(self.y)), self.y) | |
306 |
|
310 | |||
307 |
|
311 | |||
308 | class CoherencePlot(RTIPlot): |
|
312 | class CoherencePlot(RTIPlot): | |
309 | ''' |
|
313 | ''' | |
310 | Plot for Coherence data |
|
314 | Plot for Coherence data | |
311 | ''' |
|
315 | ''' | |
312 |
|
316 | |||
313 | CODE = 'coh' |
|
317 | CODE = 'coh' | |
314 |
|
318 | |||
315 | def setup(self): |
|
319 | def setup(self): | |
316 | self.xaxis = 'time' |
|
320 | self.xaxis = 'time' | |
317 | self.ncols = 1 |
|
321 | self.ncols = 1 | |
318 | self.nrows = len(self.data.pairs) |
|
322 | self.nrows = len(self.data.pairs) | |
319 | self.nplots = len(self.data.pairs) |
|
323 | self.nplots = len(self.data.pairs) | |
320 | self.ylabel = 'Range [km]' |
|
324 | self.ylabel = 'Range [km]' | |
321 | self.xlabel = 'Time' |
|
325 | self.xlabel = 'Time' | |
322 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
326 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) | |
323 | if self.CODE == 'coh': |
|
327 | if self.CODE == 'coh': | |
324 | self.cb_label = '' |
|
328 | self.cb_label = '' | |
325 | self.titles = [ |
|
329 | self.titles = [ | |
326 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
330 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
327 | else: |
|
331 | else: | |
328 | self.cb_label = 'Degrees' |
|
332 | self.cb_label = 'Degrees' | |
329 | self.titles = [ |
|
333 | self.titles = [ | |
330 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
334 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
331 |
|
335 | |||
332 | def update(self, dataOut): |
|
336 | def update(self, dataOut): | |
333 | self.update_list(dataOut) |
|
337 | self.update_list(dataOut) | |
334 | data = {} |
|
338 | data = {} | |
335 | meta = {} |
|
339 | meta = {} | |
336 | data['coh'] = dataOut.getCoherence() |
|
340 | data['coh'] = dataOut.getCoherence() | |
337 | meta['pairs'] = dataOut.pairsList |
|
341 | meta['pairs'] = dataOut.pairsList | |
338 |
|
342 | |||
339 |
|
343 | |||
340 | return data, meta |
|
344 | return data, meta | |
341 |
|
345 | |||
342 | class PhasePlot(CoherencePlot): |
|
346 | class PhasePlot(CoherencePlot): | |
343 | ''' |
|
347 | ''' | |
344 | Plot for Phase map data |
|
348 | Plot for Phase map data | |
345 | ''' |
|
349 | ''' | |
346 |
|
350 | |||
347 | CODE = 'phase' |
|
351 | CODE = 'phase' | |
348 | colormap = 'seismic' |
|
352 | colormap = 'seismic' | |
349 |
|
353 | |||
350 | def update(self, dataOut): |
|
354 | def update(self, dataOut): | |
351 |
|
355 | |||
352 | data = {} |
|
356 | data = {} | |
353 | meta = {} |
|
357 | meta = {} | |
354 | data['phase'] = dataOut.getCoherence(phase=True) |
|
358 | data['phase'] = dataOut.getCoherence(phase=True) | |
355 | meta['pairs'] = dataOut.pairsList |
|
359 | meta['pairs'] = dataOut.pairsList | |
356 |
|
360 | |||
357 | return data, meta |
|
361 | return data, meta | |
358 |
|
362 | |||
359 | class NoisePlot(Plot): |
|
363 | class NoisePlot(Plot): | |
360 | ''' |
|
364 | ''' | |
361 | Plot for noise |
|
365 | Plot for noise | |
362 | ''' |
|
366 | ''' | |
363 |
|
367 | |||
364 | CODE = 'noise' |
|
368 | CODE = 'noise' | |
365 | plot_type = 'scatterbuffer' |
|
369 | plot_type = 'scatterbuffer' | |
366 |
|
370 | |||
367 | def setup(self): |
|
371 | def setup(self): | |
368 | self.xaxis = 'time' |
|
372 | self.xaxis = 'time' | |
369 | self.ncols = 1 |
|
373 | self.ncols = 1 | |
370 | self.nrows = 1 |
|
374 | self.nrows = 1 | |
371 | self.nplots = 1 |
|
375 | self.nplots = 1 | |
372 | self.ylabel = 'Intensity [dB]' |
|
376 | self.ylabel = 'Intensity [dB]' | |
373 | self.xlabel = 'Time' |
|
377 | self.xlabel = 'Time' | |
374 | self.titles = ['Noise'] |
|
378 | self.titles = ['Noise'] | |
375 | self.colorbar = False |
|
379 | self.colorbar = False | |
376 | self.plots_adjust.update({'right': 0.85 }) |
|
380 | self.plots_adjust.update({'right': 0.85 }) | |
377 |
|
381 | |||
378 | def update(self, dataOut): |
|
382 | def update(self, dataOut): | |
379 |
|
383 | |||
380 | data = {} |
|
384 | data = {} | |
381 | meta = {} |
|
385 | meta = {} | |
382 | noise = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
386 | noise = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) | |
383 | data['noise'] = noise |
|
387 | data['noise'] = noise | |
384 | meta['yrange'] = numpy.array([]) |
|
388 | meta['yrange'] = numpy.array([]) | |
385 |
|
389 | |||
386 | return data, meta |
|
390 | return data, meta | |
387 |
|
391 | |||
388 | def plot(self): |
|
392 | def plot(self): | |
389 |
|
393 | |||
390 | x = self.data.times |
|
394 | x = self.data.times | |
391 | xmin = self.data.min_time |
|
395 | xmin = self.data.min_time | |
392 | xmax = xmin + self.xrange * 60 * 60 |
|
396 | xmax = xmin + self.xrange * 60 * 60 | |
393 | Y = self.data['noise'] |
|
397 | Y = self.data['noise'] | |
394 |
|
398 | |||
395 | if self.axes[0].firsttime: |
|
399 | if self.axes[0].firsttime: | |
396 | if self.ymin is None: self.ymin = numpy.nanmin(Y) - 5 |
|
400 | if self.ymin is None: self.ymin = numpy.nanmin(Y) - 5 | |
397 | if self.ymax is None: self.ymax = numpy.nanmax(Y) + 5 |
|
401 | if self.ymax is None: self.ymax = numpy.nanmax(Y) + 5 | |
398 | for ch in self.data.channels: |
|
402 | for ch in self.data.channels: | |
399 | y = Y[ch] |
|
403 | y = Y[ch] | |
400 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
404 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
401 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
405 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
402 | else: |
|
406 | else: | |
403 | for ch in self.data.channels: |
|
407 | for ch in self.data.channels: | |
404 | y = Y[ch] |
|
408 | y = Y[ch] | |
405 | self.axes[0].lines[ch].set_data(x, y) |
|
409 | self.axes[0].lines[ch].set_data(x, y) | |
406 |
|
410 | |||
407 |
|
411 | |||
408 | class PowerProfilePlot(Plot): |
|
412 | class PowerProfilePlot(Plot): | |
409 |
|
413 | |||
410 | CODE = 'pow_profile' |
|
414 | CODE = 'pow_profile' | |
411 | plot_type = 'scatter' |
|
415 | plot_type = 'scatter' | |
412 |
|
416 | |||
413 | def setup(self): |
|
417 | def setup(self): | |
414 |
|
418 | |||
415 | self.ncols = 1 |
|
419 | self.ncols = 1 | |
416 | self.nrows = 1 |
|
420 | self.nrows = 1 | |
417 | self.nplots = 1 |
|
421 | self.nplots = 1 | |
418 | self.height = 4 |
|
422 | self.height = 4 | |
419 | self.width = 3 |
|
423 | self.width = 3 | |
420 | self.ylabel = 'Range [km]' |
|
424 | self.ylabel = 'Range [km]' | |
421 | self.xlabel = 'Intensity [dB]' |
|
425 | self.xlabel = 'Intensity [dB]' | |
422 | self.titles = ['Power Profile'] |
|
426 | self.titles = ['Power Profile'] | |
423 | self.colorbar = False |
|
427 | self.colorbar = False | |
424 |
|
428 | |||
425 | def update(self, dataOut): |
|
429 | def update(self, dataOut): | |
426 |
|
430 | |||
427 | data = {} |
|
431 | data = {} | |
428 | meta = {} |
|
432 | meta = {} | |
429 | data[self.CODE] = dataOut.getPower() |
|
433 | data[self.CODE] = dataOut.getPower() | |
430 |
|
434 | |||
431 | return data, meta |
|
435 | return data, meta | |
432 |
|
436 | |||
433 | def plot(self): |
|
437 | def plot(self): | |
434 |
|
438 | |||
435 | y = self.data.yrange |
|
439 | y = self.data.yrange | |
436 | self.y = y |
|
440 | self.y = y | |
437 |
|
441 | |||
438 | x = self.data[-1][self.CODE] |
|
442 | x = self.data[-1][self.CODE] | |
439 |
|
443 | |||
440 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
444 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 | |
441 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
445 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 | |
442 |
|
446 | |||
443 | if self.axes[0].firsttime: |
|
447 | if self.axes[0].firsttime: | |
444 | for ch in self.data.channels: |
|
448 | for ch in self.data.channels: | |
445 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
449 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) | |
446 | plt.legend() |
|
450 | plt.legend() | |
447 | else: |
|
451 | else: | |
448 | for ch in self.data.channels: |
|
452 | for ch in self.data.channels: | |
449 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
453 | self.axes[0].lines[ch].set_data(x[ch], y) | |
450 |
|
454 | |||
451 |
|
455 | |||
452 | class SpectraCutPlot(Plot): |
|
456 | class SpectraCutPlot(Plot): | |
453 |
|
457 | |||
454 | CODE = 'spc_cut' |
|
458 | CODE = 'spc_cut' | |
455 | plot_type = 'scatter' |
|
459 | plot_type = 'scatter' | |
456 | buffering = False |
|
460 | buffering = False | |
457 | heights = [] |
|
461 | heights = [] | |
458 | channelList = [] |
|
462 | channelList = [] | |
459 | maintitle = "Spectra Cuts" |
|
463 | maintitle = "Spectra Cuts" | |
460 |
|
464 | |||
461 | def setup(self): |
|
465 | def setup(self): | |
462 |
|
466 | |||
463 | self.nplots = len(self.data.channels) |
|
467 | self.nplots = len(self.data.channels) | |
464 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
468 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
465 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
469 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
466 | self.width = 3.6 * self.ncols + 1.5 |
|
470 | self.width = 3.6 * self.ncols + 1.5 | |
467 | self.height = 3 * self.nrows |
|
471 | self.height = 3 * self.nrows | |
468 | self.ylabel = 'Power [dB]' |
|
472 | self.ylabel = 'Power [dB]' | |
469 | self.colorbar = False |
|
473 | self.colorbar = False | |
470 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
474 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) | |
471 | if self.selectedHeight: |
|
475 | if self.selectedHeight: | |
472 | self.maintitle = "Spectra Cut for %d km " %(int(self.selectedHeight)) |
|
476 | self.maintitle = "Spectra Cut for %d km " %(int(self.selectedHeight)) | |
473 |
|
477 | |||
474 | def update(self, dataOut): |
|
478 | def update(self, dataOut): | |
475 | if len(self.channelList) == 0: |
|
479 | if len(self.channelList) == 0: | |
476 | self.channelList = dataOut.channelList |
|
480 | self.channelList = dataOut.channelList | |
477 |
|
481 | |||
478 | self.heights = dataOut.heightList |
|
482 | self.heights = dataOut.heightList | |
479 | if self.selectedHeight: |
|
483 | if self.selectedHeight: | |
480 | index_list = numpy.where(self.heights >= self.selectedHeight) |
|
484 | index_list = numpy.where(self.heights >= self.selectedHeight) | |
481 | self.height_index = index_list[0] |
|
485 | self.height_index = index_list[0] | |
482 | self.height_index = self.height_index[0] |
|
486 | self.height_index = self.height_index[0] | |
483 | #print(self.height_index) |
|
487 | #print(self.height_index) | |
484 | data = {} |
|
488 | data = {} | |
485 | meta = {} |
|
489 | meta = {} | |
486 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
490 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
487 | if self.selectedHeight: |
|
491 | if self.selectedHeight: | |
488 | data['spc'] = spc[:,:,self.height_index] |
|
492 | data['spc'] = spc[:,:,self.height_index] | |
489 | else: |
|
493 | else: | |
490 | data['spc'] = spc |
|
494 | data['spc'] = spc | |
491 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
495 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
492 |
|
496 | |||
493 | return data, meta |
|
497 | return data, meta | |
494 |
|
498 | |||
495 | def plot(self): |
|
499 | def plot(self): | |
496 | if self.xaxis == "frequency": |
|
500 | if self.xaxis == "frequency": | |
497 | x = self.data.xrange[0][1:] |
|
501 | x = self.data.xrange[0][1:] | |
498 | self.xlabel = "Frequency (kHz)" |
|
502 | self.xlabel = "Frequency (kHz)" | |
499 | elif self.xaxis == "time": |
|
503 | elif self.xaxis == "time": | |
500 | x = self.data.xrange[1] |
|
504 | x = self.data.xrange[1] | |
501 | self.xlabel = "Time (ms)" |
|
505 | self.xlabel = "Time (ms)" | |
502 | else: |
|
506 | else: | |
503 | x = self.data.xrange[2] |
|
507 | x = self.data.xrange[2] | |
504 | self.xlabel = "Velocity (m/s)" |
|
508 | self.xlabel = "Velocity (m/s)" | |
505 |
|
509 | |||
506 | self.titles = [] |
|
510 | self.titles = [] | |
507 |
|
511 | |||
508 | y = self.data.yrange |
|
512 | y = self.data.yrange | |
509 | z = self.data[-1]['spc'] |
|
513 | z = self.data[-1]['spc'] | |
510 | #print(z.shape) |
|
514 | #print(z.shape) | |
511 | if self.height_index: |
|
515 | if self.height_index: | |
512 | index = numpy.array(self.height_index) |
|
516 | index = numpy.array(self.height_index) | |
513 | else: |
|
517 | else: | |
514 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
518 | index = numpy.arange(0, len(y), int((len(y))/9)) | |
515 |
|
519 | |||
516 | for n, ax in enumerate(self.axes): |
|
520 | for n, ax in enumerate(self.axes): | |
517 | if ax.firsttime: |
|
521 | if ax.firsttime: | |
518 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
522 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
519 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
523 | self.xmin = self.xmin if self.xmin else -self.xmax | |
520 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
524 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) | |
521 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
525 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) | |
522 | if self.selectedHeight: |
|
526 | if self.selectedHeight: | |
523 | ax.plt = ax.plot(x, z[n,:]) |
|
527 | ax.plt = ax.plot(x, z[n,:]) | |
524 |
|
528 | |||
525 | else: |
|
529 | else: | |
526 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
530 | ax.plt = ax.plot(x, z[n, :, index].T) | |
527 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
531 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] | |
528 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
532 | self.figures[0].legend(ax.plt, labels, loc='center right') | |
529 | else: |
|
533 | else: | |
530 | for i, line in enumerate(ax.plt): |
|
534 | for i, line in enumerate(ax.plt): | |
531 | if self.selectedHeight: |
|
535 | if self.selectedHeight: | |
532 | line.set_data(x, z[n, :]) |
|
536 | line.set_data(x, z[n, :]) | |
533 | else: |
|
537 | else: | |
534 | line.set_data(x, z[n, :, index[i]]) |
|
538 | line.set_data(x, z[n, :, index[i]]) | |
535 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
539 | self.titles.append('CH {}'.format(self.channelList[n])) | |
536 | plt.suptitle(self.maintitle) |
|
540 | plt.suptitle(self.maintitle) | |
537 |
|
541 | |||
538 | class BeaconPhase(Plot): |
|
542 | class BeaconPhase(Plot): | |
539 |
|
543 | |||
540 | __isConfig = None |
|
544 | __isConfig = None | |
541 | __nsubplots = None |
|
545 | __nsubplots = None | |
542 |
|
546 | |||
543 | PREFIX = 'beacon_phase' |
|
547 | PREFIX = 'beacon_phase' | |
544 |
|
548 | |||
545 | def __init__(self): |
|
549 | def __init__(self): | |
546 | Plot.__init__(self) |
|
550 | Plot.__init__(self) | |
547 | self.timerange = 24*60*60 |
|
551 | self.timerange = 24*60*60 | |
548 | self.isConfig = False |
|
552 | self.isConfig = False | |
549 | self.__nsubplots = 1 |
|
553 | self.__nsubplots = 1 | |
550 | self.counter_imagwr = 0 |
|
554 | self.counter_imagwr = 0 | |
551 | self.WIDTH = 800 |
|
555 | self.WIDTH = 800 | |
552 | self.HEIGHT = 400 |
|
556 | self.HEIGHT = 400 | |
553 | self.WIDTHPROF = 120 |
|
557 | self.WIDTHPROF = 120 | |
554 | self.HEIGHTPROF = 0 |
|
558 | self.HEIGHTPROF = 0 | |
555 | self.xdata = None |
|
559 | self.xdata = None | |
556 | self.ydata = None |
|
560 | self.ydata = None | |
557 |
|
561 | |||
558 | self.PLOT_CODE = BEACON_CODE |
|
562 | self.PLOT_CODE = BEACON_CODE | |
559 |
|
563 | |||
560 | self.FTP_WEI = None |
|
564 | self.FTP_WEI = None | |
561 | self.EXP_CODE = None |
|
565 | self.EXP_CODE = None | |
562 | self.SUB_EXP_CODE = None |
|
566 | self.SUB_EXP_CODE = None | |
563 | self.PLOT_POS = None |
|
567 | self.PLOT_POS = None | |
564 |
|
568 | |||
565 | self.filename_phase = None |
|
569 | self.filename_phase = None | |
566 |
|
570 | |||
567 | self.figfile = None |
|
571 | self.figfile = None | |
568 |
|
572 | |||
569 | self.xmin = None |
|
573 | self.xmin = None | |
570 | self.xmax = None |
|
574 | self.xmax = None | |
571 |
|
575 | |||
572 | def getSubplots(self): |
|
576 | def getSubplots(self): | |
573 |
|
577 | |||
574 | ncol = 1 |
|
578 | ncol = 1 | |
575 | nrow = 1 |
|
579 | nrow = 1 | |
576 |
|
580 | |||
577 | return nrow, ncol |
|
581 | return nrow, ncol | |
578 |
|
582 | |||
579 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
583 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
580 |
|
584 | |||
581 | self.__showprofile = showprofile |
|
585 | self.__showprofile = showprofile | |
582 | self.nplots = nplots |
|
586 | self.nplots = nplots | |
583 |
|
587 | |||
584 | ncolspan = 7 |
|
588 | ncolspan = 7 | |
585 | colspan = 6 |
|
589 | colspan = 6 | |
586 | self.__nsubplots = 2 |
|
590 | self.__nsubplots = 2 | |
587 |
|
591 | |||
588 | self.createFigure(id = id, |
|
592 | self.createFigure(id = id, | |
589 | wintitle = wintitle, |
|
593 | wintitle = wintitle, | |
590 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
594 | widthplot = self.WIDTH+self.WIDTHPROF, | |
591 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
595 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
592 | show=show) |
|
596 | show=show) | |
593 |
|
597 | |||
594 | nrow, ncol = self.getSubplots() |
|
598 | nrow, ncol = self.getSubplots() | |
595 |
|
599 | |||
596 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
600 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
597 |
|
601 | |||
598 | def save_phase(self, filename_phase): |
|
602 | def save_phase(self, filename_phase): | |
599 | f = open(filename_phase,'w+') |
|
603 | f = open(filename_phase,'w+') | |
600 | f.write('\n\n') |
|
604 | f.write('\n\n') | |
601 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
605 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
602 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
606 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
603 | f.close() |
|
607 | f.close() | |
604 |
|
608 | |||
605 | def save_data(self, filename_phase, data, data_datetime): |
|
609 | def save_data(self, filename_phase, data, data_datetime): | |
606 | f=open(filename_phase,'a') |
|
610 | f=open(filename_phase,'a') | |
607 | timetuple_data = data_datetime.timetuple() |
|
611 | timetuple_data = data_datetime.timetuple() | |
608 | day = str(timetuple_data.tm_mday) |
|
612 | day = str(timetuple_data.tm_mday) | |
609 | month = str(timetuple_data.tm_mon) |
|
613 | month = str(timetuple_data.tm_mon) | |
610 | year = str(timetuple_data.tm_year) |
|
614 | year = str(timetuple_data.tm_year) | |
611 | hour = str(timetuple_data.tm_hour) |
|
615 | hour = str(timetuple_data.tm_hour) | |
612 | minute = str(timetuple_data.tm_min) |
|
616 | minute = str(timetuple_data.tm_min) | |
613 | second = str(timetuple_data.tm_sec) |
|
617 | second = str(timetuple_data.tm_sec) | |
614 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
618 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
615 | f.close() |
|
619 | f.close() | |
616 |
|
620 | |||
617 | def plot(self): |
|
621 | def plot(self): | |
618 | log.warning('TODO: Not yet implemented...') |
|
622 | log.warning('TODO: Not yet implemented...') | |
619 |
|
623 | |||
620 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
624 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
621 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
625 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
622 | timerange=None, |
|
626 | timerange=None, | |
623 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
627 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
624 | server=None, folder=None, username=None, password=None, |
|
628 | server=None, folder=None, username=None, password=None, | |
625 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
629 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
626 |
|
630 | |||
627 | if dataOut.flagNoData: |
|
631 | if dataOut.flagNoData: | |
628 | return dataOut |
|
632 | return dataOut | |
629 |
|
633 | |||
630 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
634 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
631 | return |
|
635 | return | |
632 |
|
636 | |||
633 | if pairsList == None: |
|
637 | if pairsList == None: | |
634 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
638 | pairsIndexList = dataOut.pairsIndexList[:10] | |
635 | else: |
|
639 | else: | |
636 | pairsIndexList = [] |
|
640 | pairsIndexList = [] | |
637 | for pair in pairsList: |
|
641 | for pair in pairsList: | |
638 | if pair not in dataOut.pairsList: |
|
642 | if pair not in dataOut.pairsList: | |
639 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
643 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) | |
640 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
644 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
641 |
|
645 | |||
642 | if pairsIndexList == []: |
|
646 | if pairsIndexList == []: | |
643 | return |
|
647 | return | |
644 |
|
648 | |||
645 | # if len(pairsIndexList) > 4: |
|
649 | # if len(pairsIndexList) > 4: | |
646 | # pairsIndexList = pairsIndexList[0:4] |
|
650 | # pairsIndexList = pairsIndexList[0:4] | |
647 |
|
651 | |||
648 | hmin_index = None |
|
652 | hmin_index = None | |
649 | hmax_index = None |
|
653 | hmax_index = None | |
650 |
|
654 | |||
651 | if hmin != None and hmax != None: |
|
655 | if hmin != None and hmax != None: | |
652 | indexes = numpy.arange(dataOut.nHeights) |
|
656 | indexes = numpy.arange(dataOut.nHeights) | |
653 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
657 | hmin_list = indexes[dataOut.heightList >= hmin] | |
654 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
658 | hmax_list = indexes[dataOut.heightList <= hmax] | |
655 |
|
659 | |||
656 | if hmin_list.any(): |
|
660 | if hmin_list.any(): | |
657 | hmin_index = hmin_list[0] |
|
661 | hmin_index = hmin_list[0] | |
658 |
|
662 | |||
659 | if hmax_list.any(): |
|
663 | if hmax_list.any(): | |
660 | hmax_index = hmax_list[-1]+1 |
|
664 | hmax_index = hmax_list[-1]+1 | |
661 |
|
665 | |||
662 | x = dataOut.getTimeRange() |
|
666 | x = dataOut.getTimeRange() | |
663 |
|
667 | |||
664 | thisDatetime = dataOut.datatime |
|
668 | thisDatetime = dataOut.datatime | |
665 |
|
669 | |||
666 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
670 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
667 | xlabel = "Local Time" |
|
671 | xlabel = "Local Time" | |
668 | ylabel = "Phase (degrees)" |
|
672 | ylabel = "Phase (degrees)" | |
669 |
|
673 | |||
670 | update_figfile = False |
|
674 | update_figfile = False | |
671 |
|
675 | |||
672 | nplots = len(pairsIndexList) |
|
676 | nplots = len(pairsIndexList) | |
673 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
677 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
674 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
678 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
675 | for i in range(nplots): |
|
679 | for i in range(nplots): | |
676 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
680 | pair = dataOut.pairsList[pairsIndexList[i]] | |
677 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
681 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
678 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
682 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
679 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
683 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
680 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
684 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
681 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
685 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
682 |
|
686 | |||
683 | if dataOut.beacon_heiIndexList: |
|
687 | if dataOut.beacon_heiIndexList: | |
684 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
688 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
685 | else: |
|
689 | else: | |
686 | phase_beacon[i] = numpy.average(phase) |
|
690 | phase_beacon[i] = numpy.average(phase) | |
687 |
|
691 | |||
688 | if not self.isConfig: |
|
692 | if not self.isConfig: | |
689 |
|
693 | |||
690 | nplots = len(pairsIndexList) |
|
694 | nplots = len(pairsIndexList) | |
691 |
|
695 | |||
692 | self.setup(id=id, |
|
696 | self.setup(id=id, | |
693 | nplots=nplots, |
|
697 | nplots=nplots, | |
694 | wintitle=wintitle, |
|
698 | wintitle=wintitle, | |
695 | showprofile=showprofile, |
|
699 | showprofile=showprofile, | |
696 | show=show) |
|
700 | show=show) | |
697 |
|
701 | |||
698 | if timerange != None: |
|
702 | if timerange != None: | |
699 | self.timerange = timerange |
|
703 | self.timerange = timerange | |
700 |
|
704 | |||
701 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
705 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
702 |
|
706 | |||
703 | if ymin == None: ymin = 0 |
|
707 | if ymin == None: ymin = 0 | |
704 | if ymax == None: ymax = 360 |
|
708 | if ymax == None: ymax = 360 | |
705 |
|
709 | |||
706 | self.FTP_WEI = ftp_wei |
|
710 | self.FTP_WEI = ftp_wei | |
707 | self.EXP_CODE = exp_code |
|
711 | self.EXP_CODE = exp_code | |
708 | self.SUB_EXP_CODE = sub_exp_code |
|
712 | self.SUB_EXP_CODE = sub_exp_code | |
709 | self.PLOT_POS = plot_pos |
|
713 | self.PLOT_POS = plot_pos | |
710 |
|
714 | |||
711 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
715 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
712 | self.isConfig = True |
|
716 | self.isConfig = True | |
713 | self.figfile = figfile |
|
717 | self.figfile = figfile | |
714 | self.xdata = numpy.array([]) |
|
718 | self.xdata = numpy.array([]) | |
715 | self.ydata = numpy.array([]) |
|
719 | self.ydata = numpy.array([]) | |
716 |
|
720 | |||
717 | update_figfile = True |
|
721 | update_figfile = True | |
718 |
|
722 | |||
719 | #open file beacon phase |
|
723 | #open file beacon phase | |
720 | path = '%s%03d' %(self.PREFIX, self.id) |
|
724 | path = '%s%03d' %(self.PREFIX, self.id) | |
721 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
725 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
722 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
726 | self.filename_phase = os.path.join(figpath,beacon_file) | |
723 | #self.save_phase(self.filename_phase) |
|
727 | #self.save_phase(self.filename_phase) | |
724 |
|
728 | |||
725 |
|
729 | |||
726 | #store data beacon phase |
|
730 | #store data beacon phase | |
727 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
731 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
728 |
|
732 | |||
729 | self.setWinTitle(title) |
|
733 | self.setWinTitle(title) | |
730 |
|
734 | |||
731 |
|
735 | |||
732 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
736 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
733 |
|
737 | |||
734 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
738 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
735 |
|
739 | |||
736 | axes = self.axesList[0] |
|
740 | axes = self.axesList[0] | |
737 |
|
741 | |||
738 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
742 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
739 |
|
743 | |||
740 | if len(self.ydata)==0: |
|
744 | if len(self.ydata)==0: | |
741 | self.ydata = phase_beacon.reshape(-1,1) |
|
745 | self.ydata = phase_beacon.reshape(-1,1) | |
742 | else: |
|
746 | else: | |
743 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
747 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
744 |
|
748 | |||
745 |
|
749 | |||
746 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
750 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
747 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
751 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
748 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
752 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
749 | XAxisAsTime=True, grid='both' |
|
753 | XAxisAsTime=True, grid='both' | |
750 | ) |
|
754 | ) | |
751 |
|
755 | |||
752 | self.draw() |
|
756 | self.draw() | |
753 |
|
757 | |||
754 | if dataOut.ltctime >= self.xmax: |
|
758 | if dataOut.ltctime >= self.xmax: | |
755 | self.counter_imagwr = wr_period |
|
759 | self.counter_imagwr = wr_period | |
756 | self.isConfig = False |
|
760 | self.isConfig = False | |
757 | update_figfile = True |
|
761 | update_figfile = True | |
758 |
|
762 | |||
759 | self.save(figpath=figpath, |
|
763 | self.save(figpath=figpath, | |
760 | figfile=figfile, |
|
764 | figfile=figfile, | |
761 | save=save, |
|
765 | save=save, | |
762 | ftp=ftp, |
|
766 | ftp=ftp, | |
763 | wr_period=wr_period, |
|
767 | wr_period=wr_period, | |
764 | thisDatetime=thisDatetime, |
|
768 | thisDatetime=thisDatetime, | |
765 | update_figfile=update_figfile) |
|
769 | update_figfile=update_figfile) | |
766 |
|
770 | |||
767 | return dataOut |
|
771 | return dataOut | |
768 |
|
772 | |||
769 | class NoiselessSpectraPlot(Plot): |
|
773 | class NoiselessSpectraPlot(Plot): | |
770 | ''' |
|
774 | ''' | |
771 | Plot for Spectra data, subtracting |
|
775 | Plot for Spectra data, subtracting | |
772 | the noise in all channels, using for |
|
776 | the noise in all channels, using for | |
773 | amisr-14 data |
|
777 | amisr-14 data | |
774 | ''' |
|
778 | ''' | |
775 |
|
779 | |||
776 | CODE = 'noiseless_spc' |
|
780 | CODE = 'noiseless_spc' | |
777 | colormap = 'nipy_spectral' |
|
781 | colormap = 'nipy_spectral' | |
778 | plot_type = 'pcolor' |
|
782 | plot_type = 'pcolor' | |
779 | buffering = False |
|
783 | buffering = False | |
780 | channelList = [] |
|
784 | channelList = [] | |
781 |
|
785 | |||
782 | def setup(self): |
|
786 | def setup(self): | |
783 |
|
787 | |||
784 | self.nplots = len(self.data.channels) |
|
788 | self.nplots = len(self.data.channels) | |
785 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
789 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
786 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
790 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
787 | self.height = 2.6 * self.nrows |
|
791 | self.height = 2.6 * self.nrows | |
788 |
|
792 | |||
789 | self.cb_label = 'dB' |
|
793 | self.cb_label = 'dB' | |
790 | if self.showprofile: |
|
794 | if self.showprofile: | |
791 | self.width = 4 * self.ncols |
|
795 | self.width = 4 * self.ncols | |
792 | else: |
|
796 | else: | |
793 | self.width = 3.5 * self.ncols |
|
797 | self.width = 3.5 * self.ncols | |
794 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
798 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
795 | self.ylabel = 'Range [km]' |
|
799 | self.ylabel = 'Range [km]' | |
796 |
|
800 | |||
797 |
|
801 | |||
798 | def update_list(self,dataOut): |
|
802 | def update_list(self,dataOut): | |
799 | if len(self.channelList) == 0: |
|
803 | if len(self.channelList) == 0: | |
800 | self.channelList = dataOut.channelList |
|
804 | self.channelList = dataOut.channelList | |
801 |
|
805 | |||
802 | def update(self, dataOut): |
|
806 | def update(self, dataOut): | |
803 |
|
807 | |||
804 | self.update_list(dataOut) |
|
808 | self.update_list(dataOut) | |
805 | data = {} |
|
809 | data = {} | |
806 | meta = {} |
|
810 | meta = {} | |
807 | n0 = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
811 | n0 = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
808 | (nch, nff, nh) = dataOut.data_spc.shape |
|
812 | (nch, nff, nh) = dataOut.data_spc.shape | |
809 | n1 = numpy.repeat(n0,nh, axis=0).reshape((nch,nh)) |
|
813 | n1 = numpy.repeat(n0,nh, axis=0).reshape((nch,nh)) | |
810 | noise = numpy.repeat(n1,nff, axis=1).reshape((nch,nff,nh)) |
|
814 | noise = numpy.repeat(n1,nff, axis=1).reshape((nch,nff,nh)) | |
811 | #print(noise.shape, "noise", noise) |
|
815 | #print(noise.shape, "noise", noise) | |
812 |
|
816 | |||
813 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) - noise |
|
817 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) - noise | |
814 |
|
818 | |||
815 | data['spc'] = spc |
|
819 | data['spc'] = spc | |
816 | data['rti'] = dataOut.getPower() - n1 |
|
820 | data['rti'] = dataOut.getPower() - n1 | |
817 |
|
821 | |||
818 | data['noise'] = n0 |
|
822 | data['noise'] = n0 | |
819 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
823 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
820 |
|
824 | |||
821 | return data, meta |
|
825 | return data, meta | |
822 |
|
826 | |||
823 | def plot(self): |
|
827 | def plot(self): | |
824 | if self.xaxis == "frequency": |
|
828 | if self.xaxis == "frequency": | |
825 | x = self.data.xrange[0] |
|
829 | x = self.data.xrange[0] | |
826 | self.xlabel = "Frequency (kHz)" |
|
830 | self.xlabel = "Frequency (kHz)" | |
827 | elif self.xaxis == "time": |
|
831 | elif self.xaxis == "time": | |
828 | x = self.data.xrange[1] |
|
832 | x = self.data.xrange[1] | |
829 | self.xlabel = "Time (ms)" |
|
833 | self.xlabel = "Time (ms)" | |
830 | else: |
|
834 | else: | |
831 | x = self.data.xrange[2] |
|
835 | x = self.data.xrange[2] | |
832 | self.xlabel = "Velocity (m/s)" |
|
836 | self.xlabel = "Velocity (m/s)" | |
833 |
|
837 | |||
834 | self.titles = [] |
|
838 | self.titles = [] | |
835 | y = self.data.yrange |
|
839 | y = self.data.yrange | |
836 | self.y = y |
|
840 | self.y = y | |
837 |
|
841 | |||
838 | data = self.data[-1] |
|
842 | data = self.data[-1] | |
839 | z = data['spc'] |
|
843 | z = data['spc'] | |
840 |
|
844 | |||
841 | for n, ax in enumerate(self.axes): |
|
845 | for n, ax in enumerate(self.axes): | |
842 | noise = data['noise'][n] |
|
846 | noise = data['noise'][n] | |
843 |
|
847 | |||
844 | if ax.firsttime: |
|
848 | if ax.firsttime: | |
845 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
849 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
846 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
850 | self.xmin = self.xmin if self.xmin else -self.xmax | |
847 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
851 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
848 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
852 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
849 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
853 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
850 | vmin=self.zmin, |
|
854 | vmin=self.zmin, | |
851 | vmax=self.zmax, |
|
855 | vmax=self.zmax, | |
852 | cmap=plt.get_cmap(self.colormap) |
|
856 | cmap=plt.get_cmap(self.colormap) | |
853 | ) |
|
857 | ) | |
854 |
|
858 | |||
855 | if self.showprofile: |
|
859 | if self.showprofile: | |
856 | ax.plt_profile = self.pf_axes[n].plot( |
|
860 | ax.plt_profile = self.pf_axes[n].plot( | |
857 | data['rti'][n], y)[0] |
|
861 | data['rti'][n], y)[0] | |
858 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
862 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
859 | color="k", linestyle="dashed", lw=1)[0] |
|
863 | color="k", linestyle="dashed", lw=1)[0] | |
860 |
|
864 | |||
861 | else: |
|
865 | else: | |
862 | ax.plt.set_array(z[n].T.ravel()) |
|
866 | ax.plt.set_array(z[n].T.ravel()) | |
863 | if self.showprofile: |
|
867 | if self.showprofile: | |
864 | ax.plt_profile.set_data(data['rti'][n], y) |
|
868 | ax.plt_profile.set_data(data['rti'][n], y) | |
865 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
869 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
866 |
|
870 | |||
867 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
871 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) | |
868 |
|
872 | |||
869 |
|
873 | |||
870 | class NoiselessRTIPlot(Plot): |
|
874 | class NoiselessRTIPlot(Plot): | |
871 | ''' |
|
875 | ''' | |
872 | Plot for RTI data |
|
876 | Plot for RTI data | |
873 | ''' |
|
877 | ''' | |
874 |
|
878 | |||
875 | CODE = 'noiseless_rti' |
|
879 | CODE = 'noiseless_rti' | |
876 | colormap = 'jet' |
|
880 | colormap = 'jet' | |
877 | plot_type = 'pcolorbuffer' |
|
881 | plot_type = 'pcolorbuffer' | |
878 | titles = None |
|
882 | titles = None | |
879 | channelList = [] |
|
883 | channelList = [] | |
880 |
|
884 | |||
881 | def setup(self): |
|
885 | def setup(self): | |
882 | self.xaxis = 'time' |
|
886 | self.xaxis = 'time' | |
883 | self.ncols = 1 |
|
887 | self.ncols = 1 | |
884 | #print("dataChannels ",self.data.channels) |
|
888 | #print("dataChannels ",self.data.channels) | |
885 | self.nrows = len(self.data.channels) |
|
889 | self.nrows = len(self.data.channels) | |
886 | self.nplots = len(self.data.channels) |
|
890 | self.nplots = len(self.data.channels) | |
887 | self.ylabel = 'Range [km]' |
|
891 | self.ylabel = 'Range [km]' | |
888 | self.xlabel = 'Time' |
|
892 | self.xlabel = 'Time' | |
889 | self.cb_label = 'dB' |
|
893 | self.cb_label = 'dB' | |
890 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
894 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) | |
891 | self.titles = ['{} Channel {}'.format( |
|
895 | self.titles = ['{} Channel {}'.format( | |
892 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
896 | self.CODE.upper(), x) for x in range(self.nplots)] | |
893 |
|
897 | |||
894 | def update_list(self,dataOut): |
|
898 | def update_list(self,dataOut): | |
895 |
|
899 | |||
896 | self.channelList = dataOut.channelList |
|
900 | self.channelList = dataOut.channelList | |
897 |
|
901 | |||
898 |
|
902 | |||
899 | def update(self, dataOut): |
|
903 | def update(self, dataOut): | |
900 | if len(self.channelList) == 0: |
|
904 | if len(self.channelList) == 0: | |
901 | self.update_list(dataOut) |
|
905 | self.update_list(dataOut) | |
902 | data = {} |
|
906 | data = {} | |
903 | meta = {} |
|
907 | meta = {} | |
904 |
|
908 | |||
905 | n0 = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
909 | n0 = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
906 | (nch, nff, nh) = dataOut.data_spc.shape |
|
910 | (nch, nff, nh) = dataOut.data_spc.shape | |
907 | noise = numpy.repeat(n0,nh, axis=0).reshape((nch,nh)) |
|
911 | noise = numpy.repeat(n0,nh, axis=0).reshape((nch,nh)) | |
908 |
|
912 | |||
909 |
|
913 | |||
910 | data['noiseless_rti'] = dataOut.getPower() - noise |
|
914 | data['noiseless_rti'] = dataOut.getPower() - noise | |
911 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
915 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
912 | return data, meta |
|
916 | return data, meta | |
913 |
|
917 | |||
914 | def plot(self): |
|
918 | def plot(self): | |
915 |
|
919 | |||
916 | self.x = self.data.times |
|
920 | self.x = self.data.times | |
917 | self.y = self.data.yrange |
|
921 | self.y = self.data.yrange | |
918 | self.z = self.data['noiseless_rti'] |
|
922 | self.z = self.data['noiseless_rti'] | |
919 | self.z = numpy.array(self.z, dtype=float) |
|
923 | self.z = numpy.array(self.z, dtype=float) | |
920 | self.z = numpy.ma.masked_invalid(self.z) |
|
924 | self.z = numpy.ma.masked_invalid(self.z) | |
921 |
|
925 | |||
922 | try: |
|
926 | try: | |
923 | if self.channelList != None: |
|
927 | if self.channelList != None: | |
924 | self.titles = ['{} Channel {}'.format( |
|
928 | self.titles = ['{} Channel {}'.format( | |
925 | self.CODE.upper(), x) for x in self.channelList] |
|
929 | self.CODE.upper(), x) for x in self.channelList] | |
926 | except: |
|
930 | except: | |
927 | if self.channelList.any() != None: |
|
931 | if self.channelList.any() != None: | |
928 | self.titles = ['{} Channel {}'.format( |
|
932 | self.titles = ['{} Channel {}'.format( | |
929 | self.CODE.upper(), x) for x in self.channelList] |
|
933 | self.CODE.upper(), x) for x in self.channelList] | |
930 | if self.decimation is None: |
|
934 | if self.decimation is None: | |
931 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
935 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
932 | else: |
|
936 | else: | |
933 | x, y, z = self.fill_gaps(*self.decimate()) |
|
937 | x, y, z = self.fill_gaps(*self.decimate()) | |
934 | dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes |
|
938 | dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes | |
935 | for n, ax in enumerate(self.axes): |
|
939 | for n, ax in enumerate(self.axes): | |
936 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
940 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
937 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
941 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
938 | data = self.data[-1] |
|
942 | data = self.data[-1] | |
939 | if ax.firsttime: |
|
943 | if ax.firsttime: | |
940 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
944 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
941 | vmin=self.zmin, |
|
945 | vmin=self.zmin, | |
942 | vmax=self.zmax, |
|
946 | vmax=self.zmax, | |
943 | cmap=plt.get_cmap(self.colormap) |
|
947 | cmap=plt.get_cmap(self.colormap) | |
944 | ) |
|
948 | ) | |
945 | if self.showprofile: |
|
949 | if self.showprofile: | |
946 | ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0] |
|
950 | ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0] | |
947 |
|
951 | |||
948 | if "noise" in self.data: |
|
952 | if "noise" in self.data: | |
949 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
953 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, | |
950 | color="k", linestyle="dashed", lw=1)[0] |
|
954 | color="k", linestyle="dashed", lw=1)[0] | |
951 | else: |
|
955 | else: | |
952 | ax.collections.remove(ax.collections[0]) |
|
956 | ax.collections.remove(ax.collections[0]) | |
953 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
957 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
954 | vmin=self.zmin, |
|
958 | vmin=self.zmin, | |
955 | vmax=self.zmax, |
|
959 | vmax=self.zmax, | |
956 | cmap=plt.get_cmap(self.colormap) |
|
960 | cmap=plt.get_cmap(self.colormap) | |
957 | ) |
|
961 | ) | |
958 | if self.showprofile: |
|
962 | if self.showprofile: | |
959 | ax.plot_profile.set_data(data['noiseless_rti'][n], self.y) |
|
963 | ax.plot_profile.set_data(data['noiseless_rti'][n], self.y) | |
960 | if "noise" in self.data: |
|
964 | if "noise" in self.data: | |
961 | ax.plot_noise.set_data(numpy.repeat( |
|
965 | ax.plot_noise.set_data(numpy.repeat( | |
962 | data['noise'][n], len(self.y)), self.y) |
|
966 | data['noise'][n], len(self.y)), self.y) |
@@ -1,685 +1,685 | |||||
1 | import os |
|
1 | import os | |
2 | import time |
|
2 | import time | |
3 | import datetime |
|
3 | import datetime | |
4 |
|
4 | |||
5 | import numpy |
|
5 | import numpy | |
6 | import h5py |
|
6 | import h5py | |
7 |
|
7 | |||
8 | import schainpy.admin |
|
8 | import schainpy.admin | |
9 | from schainpy.model.data.jrodata import * |
|
9 | from schainpy.model.data.jrodata import * | |
10 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
10 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
11 | from schainpy.model.io.jroIO_base import * |
|
11 | from schainpy.model.io.jroIO_base import * | |
12 | from schainpy.utils import log |
|
12 | from schainpy.utils import log | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | class HDFReader(Reader, ProcessingUnit): |
|
15 | class HDFReader(Reader, ProcessingUnit): | |
16 | """Processing unit to read HDF5 format files |
|
16 | """Processing unit to read HDF5 format files | |
17 |
|
17 | |||
18 | This unit reads HDF5 files created with `HDFWriter` operation contains |
|
18 | This unit reads HDF5 files created with `HDFWriter` operation contains | |
19 | by default two groups Data and Metadata all variables would be saved as `dataOut` |
|
19 | by default two groups Data and Metadata all variables would be saved as `dataOut` | |
20 | attributes. |
|
20 | attributes. | |
21 | It is possible to read any HDF5 file by given the structure in the `description` |
|
21 | It is possible to read any HDF5 file by given the structure in the `description` | |
22 | parameter, also you can add extra values to metadata with the parameter `extras`. |
|
22 | parameter, also you can add extra values to metadata with the parameter `extras`. | |
23 |
|
23 | |||
24 | Parameters: |
|
24 | Parameters: | |
25 | ----------- |
|
25 | ----------- | |
26 | path : str |
|
26 | path : str | |
27 | Path where files are located. |
|
27 | Path where files are located. | |
28 | startDate : date |
|
28 | startDate : date | |
29 | Start date of the files |
|
29 | Start date of the files | |
30 | endDate : list |
|
30 | endDate : list | |
31 | End date of the files |
|
31 | End date of the files | |
32 | startTime : time |
|
32 | startTime : time | |
33 | Start time of the files |
|
33 | Start time of the files | |
34 | endTime : time |
|
34 | endTime : time | |
35 | End time of the files |
|
35 | End time of the files | |
36 | description : dict, optional |
|
36 | description : dict, optional | |
37 | Dictionary with the description of the HDF5 file |
|
37 | Dictionary with the description of the HDF5 file | |
38 | extras : dict, optional |
|
38 | extras : dict, optional | |
39 | Dictionary with extra metadata to be be added to `dataOut` |
|
39 | Dictionary with extra metadata to be be added to `dataOut` | |
40 |
|
40 | |||
41 | Examples |
|
41 | Examples | |
42 | -------- |
|
42 | -------- | |
43 |
|
43 | |||
44 | desc = { |
|
44 | desc = { | |
45 | 'Data': { |
|
45 | 'Data': { | |
46 | 'data_output': ['u', 'v', 'w'], |
|
46 | 'data_output': ['u', 'v', 'w'], | |
47 | 'utctime': 'timestamps', |
|
47 | 'utctime': 'timestamps', | |
48 | } , |
|
48 | } , | |
49 | 'Metadata': { |
|
49 | 'Metadata': { | |
50 | 'heightList': 'heights' |
|
50 | 'heightList': 'heights' | |
51 | } |
|
51 | } | |
52 | } |
|
52 | } | |
53 |
|
53 | |||
54 | desc = { |
|
54 | desc = { | |
55 | 'Data': { |
|
55 | 'Data': { | |
56 | 'data_output': 'winds', |
|
56 | 'data_output': 'winds', | |
57 | 'utctime': 'timestamps' |
|
57 | 'utctime': 'timestamps' | |
58 | }, |
|
58 | }, | |
59 | 'Metadata': { |
|
59 | 'Metadata': { | |
60 | 'heightList': 'heights' |
|
60 | 'heightList': 'heights' | |
61 | } |
|
61 | } | |
62 | } |
|
62 | } | |
63 |
|
63 | |||
64 | extras = { |
|
64 | extras = { | |
65 | 'timeZone': 300 |
|
65 | 'timeZone': 300 | |
66 | } |
|
66 | } | |
67 |
|
67 | |||
68 | reader = project.addReadUnit( |
|
68 | reader = project.addReadUnit( | |
69 | name='HDFReader', |
|
69 | name='HDFReader', | |
70 | path='/path/to/files', |
|
70 | path='/path/to/files', | |
71 | startDate='2019/01/01', |
|
71 | startDate='2019/01/01', | |
72 | endDate='2019/01/31', |
|
72 | endDate='2019/01/31', | |
73 | startTime='00:00:00', |
|
73 | startTime='00:00:00', | |
74 | endTime='23:59:59', |
|
74 | endTime='23:59:59', | |
75 | # description=json.dumps(desc), |
|
75 | # description=json.dumps(desc), | |
76 | # extras=json.dumps(extras), |
|
76 | # extras=json.dumps(extras), | |
77 | ) |
|
77 | ) | |
78 |
|
78 | |||
79 | """ |
|
79 | """ | |
80 |
|
80 | |||
81 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras'] |
|
81 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras'] | |
82 |
|
82 | |||
83 | def __init__(self): |
|
83 | def __init__(self): | |
84 | ProcessingUnit.__init__(self) |
|
84 | ProcessingUnit.__init__(self) | |
85 |
|
85 | |||
86 | self.ext = ".hdf5" |
|
86 | self.ext = ".hdf5" | |
87 | self.optchar = "D" |
|
87 | self.optchar = "D" | |
88 | self.meta = {} |
|
88 | self.meta = {} | |
89 | self.data = {} |
|
89 | self.data = {} | |
90 | self.open_file = h5py.File |
|
90 | self.open_file = h5py.File | |
91 | self.open_mode = 'r' |
|
91 | self.open_mode = 'r' | |
92 | self.description = {} |
|
92 | self.description = {} | |
93 | self.extras = {} |
|
93 | self.extras = {} | |
94 | self.filefmt = "*%Y%j***" |
|
94 | self.filefmt = "*%Y%j***" | |
95 | self.folderfmt = "*%Y%j" |
|
95 | self.folderfmt = "*%Y%j" | |
96 | self.utcoffset = 0 |
|
96 | self.utcoffset = 0 | |
97 |
|
97 | |||
98 | self.dataOut = Parameters() |
|
98 | self.dataOut = Parameters() | |
99 | self.dataOut.error=False ## NOTE: Importante definir esto antes inicio |
|
99 | self.dataOut.error=False ## NOTE: Importante definir esto antes inicio | |
100 | self.dataOut.flagNoData = True |
|
100 | self.dataOut.flagNoData = True | |
101 |
|
101 | |||
102 | def setup(self, **kwargs): |
|
102 | def setup(self, **kwargs): | |
103 |
|
103 | |||
104 | self.set_kwargs(**kwargs) |
|
104 | self.set_kwargs(**kwargs) | |
105 | if not self.ext.startswith('.'): |
|
105 | if not self.ext.startswith('.'): | |
106 | self.ext = '.{}'.format(self.ext) |
|
106 | self.ext = '.{}'.format(self.ext) | |
107 |
|
107 | |||
108 | if self.online: |
|
108 | if self.online: | |
109 | log.log("Searching files in online mode...", self.name) |
|
109 | log.log("Searching files in online mode...", self.name) | |
110 |
|
110 | |||
111 | for nTries in range(self.nTries): |
|
111 | for nTries in range(self.nTries): | |
112 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
112 | fullpath = self.searchFilesOnLine(self.path, self.startDate, | |
113 | self.endDate, self.expLabel, self.ext, self.walk, |
|
113 | self.endDate, self.expLabel, self.ext, self.walk, | |
114 | self.filefmt, self.folderfmt) |
|
114 | self.filefmt, self.folderfmt) | |
115 | pathname, filename = os.path.split(fullpath) |
|
115 | pathname, filename = os.path.split(fullpath) | |
116 |
|
116 | |||
117 | try: |
|
117 | try: | |
118 | fullpath = next(fullpath) |
|
118 | fullpath = next(fullpath) | |
119 |
|
119 | |||
120 | except: |
|
120 | except: | |
121 | fullpath = None |
|
121 | fullpath = None | |
122 |
|
122 | |||
123 | if fullpath: |
|
123 | if fullpath: | |
124 | break |
|
124 | break | |
125 |
|
125 | |||
126 | log.warning( |
|
126 | log.warning( | |
127 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
127 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( | |
128 | self.delay, self.path, nTries + 1), |
|
128 | self.delay, self.path, nTries + 1), | |
129 | self.name) |
|
129 | self.name) | |
130 | time.sleep(self.delay) |
|
130 | time.sleep(self.delay) | |
131 |
|
131 | |||
132 | if not(fullpath): |
|
132 | if not(fullpath): | |
133 | raise schainpy.admin.SchainError( |
|
133 | raise schainpy.admin.SchainError( | |
134 | 'There isn\'t any valid file in {}'.format(self.path)) |
|
134 | 'There isn\'t any valid file in {}'.format(self.path)) | |
135 |
|
135 | |||
136 | pathname, filename = os.path.split(fullpath) |
|
136 | pathname, filename = os.path.split(fullpath) | |
137 | self.year = int(filename[1:5]) |
|
137 | self.year = int(filename[1:5]) | |
138 | self.doy = int(filename[5:8]) |
|
138 | self.doy = int(filename[5:8]) | |
139 | self.set = int(filename[8:11]) - 1 |
|
139 | self.set = int(filename[8:11]) - 1 | |
140 | else: |
|
140 | else: | |
141 | log.log("Searching files in {}".format(self.path), self.name) |
|
141 | log.log("Searching files in {}".format(self.path), self.name) | |
142 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
142 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, | |
143 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
143 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) | |
144 |
|
144 | |||
145 | self.setNextFile() |
|
145 | self.setNextFile() | |
146 |
|
146 | |||
147 |
|
147 | |||
148 |
|
148 | |||
149 |
|
149 | |||
150 | def readFirstHeader(self): |
|
150 | def readFirstHeader(self): | |
151 | '''Read metadata and data''' |
|
151 | '''Read metadata and data''' | |
152 |
|
152 | |||
153 | self.__readMetadata() |
|
153 | self.__readMetadata() | |
154 | self.__readData() |
|
154 | self.__readData() | |
155 | self.__setBlockList() |
|
155 | self.__setBlockList() | |
156 |
|
156 | |||
157 | for attr in self.meta: |
|
157 | for attr in self.meta: | |
158 | setattr(self.dataOut, attr, self.meta[attr]) |
|
158 | setattr(self.dataOut, attr, self.meta[attr]) | |
159 | self.blockIndex = 0 |
|
159 | self.blockIndex = 0 | |
160 |
|
160 | |||
161 | return |
|
161 | return | |
162 |
|
162 | |||
163 | def __setBlockList(self): |
|
163 | def __setBlockList(self): | |
164 | ''' |
|
164 | ''' | |
165 | Selects the data within the times defined |
|
165 | Selects the data within the times defined | |
166 |
|
166 | |||
167 | self.fp |
|
167 | self.fp | |
168 | self.startTime |
|
168 | self.startTime | |
169 | self.endTime |
|
169 | self.endTime | |
170 | self.blockList |
|
170 | self.blockList | |
171 | self.blocksPerFile |
|
171 | self.blocksPerFile | |
172 |
|
172 | |||
173 | ''' |
|
173 | ''' | |
174 |
|
174 | |||
175 | startTime = self.startTime |
|
175 | startTime = self.startTime | |
176 | endTime = self.endTime |
|
176 | endTime = self.endTime | |
177 | thisUtcTime = self.data['utctime'] + self.utcoffset |
|
177 | thisUtcTime = self.data['utctime'] + self.utcoffset | |
178 | self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1]) |
|
178 | self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1]) | |
179 | thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0]) |
|
179 | thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0]) | |
180 | self.startFileDatetime = thisDatetime |
|
180 | self.startFileDatetime = thisDatetime | |
181 | thisDate = thisDatetime.date() |
|
181 | thisDate = thisDatetime.date() | |
182 | thisTime = thisDatetime.time() |
|
182 | thisTime = thisDatetime.time() | |
183 |
|
183 | |||
184 | startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
184 | startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds() | |
185 | endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
185 | endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds() | |
186 |
|
186 | |||
187 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] |
|
187 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] | |
188 |
|
188 | |||
189 | self.blockList = ind |
|
189 | self.blockList = ind | |
190 | self.blocksPerFile = len(ind) |
|
190 | self.blocksPerFile = len(ind) | |
191 | self.blocksPerFile = len(thisUtcTime) |
|
191 | self.blocksPerFile = len(thisUtcTime) | |
192 | return |
|
192 | return | |
193 |
|
193 | |||
194 | def __readMetadata(self): |
|
194 | def __readMetadata(self): | |
195 | ''' |
|
195 | ''' | |
196 | Reads Metadata |
|
196 | Reads Metadata | |
197 | ''' |
|
197 | ''' | |
198 |
|
198 | |||
199 | meta = {} |
|
199 | meta = {} | |
200 |
|
200 | |||
201 | if self.description: |
|
201 | if self.description: | |
202 | for key, value in self.description['Metadata'].items(): |
|
202 | for key, value in self.description['Metadata'].items(): | |
203 | meta[key] = self.fp[value][()] |
|
203 | meta[key] = self.fp[value][()] | |
204 | else: |
|
204 | else: | |
205 | grp = self.fp['Metadata'] |
|
205 | grp = self.fp['Metadata'] | |
206 | for name in grp: |
|
206 | for name in grp: | |
207 | meta[name] = grp[name][()] |
|
207 | meta[name] = grp[name][()] | |
208 |
|
208 | |||
209 | if self.extras: |
|
209 | if self.extras: | |
210 | for key, value in self.extras.items(): |
|
210 | for key, value in self.extras.items(): | |
211 | meta[key] = value |
|
211 | meta[key] = value | |
212 | self.meta = meta |
|
212 | self.meta = meta | |
213 |
|
213 | |||
214 | return |
|
214 | return | |
215 |
|
215 | |||
216 |
|
216 | |||
217 |
|
217 | |||
218 | def checkForRealPath(self, nextFile, nextDay): |
|
218 | def checkForRealPath(self, nextFile, nextDay): | |
219 |
|
219 | |||
220 | # print("check FRP") |
|
220 | # print("check FRP") | |
221 | # dt = self.startFileDatetime + datetime.timedelta(1) |
|
221 | # dt = self.startFileDatetime + datetime.timedelta(1) | |
222 | # filename = '{}.{}{}'.format(self.path, dt.strftime('%Y%m%d'), self.ext) |
|
222 | # filename = '{}.{}{}'.format(self.path, dt.strftime('%Y%m%d'), self.ext) | |
223 | # fullfilename = os.path.join(self.path, filename) |
|
223 | # fullfilename = os.path.join(self.path, filename) | |
224 | # print("check Path ",fullfilename,filename) |
|
224 | # print("check Path ",fullfilename,filename) | |
225 | # if os.path.exists(fullfilename): |
|
225 | # if os.path.exists(fullfilename): | |
226 | # return fullfilename, filename |
|
226 | # return fullfilename, filename | |
227 | # return None, filename |
|
227 | # return None, filename | |
228 | return None,None |
|
228 | return None,None | |
229 |
|
229 | |||
230 | def __readData(self): |
|
230 | def __readData(self): | |
231 |
|
231 | |||
232 | data = {} |
|
232 | data = {} | |
233 |
|
233 | |||
234 | if self.description: |
|
234 | if self.description: | |
235 | for key, value in self.description['Data'].items(): |
|
235 | for key, value in self.description['Data'].items(): | |
236 | if isinstance(value, str): |
|
236 | if isinstance(value, str): | |
237 | if isinstance(self.fp[value], h5py.Dataset): |
|
237 | if isinstance(self.fp[value], h5py.Dataset): | |
238 | data[key] = self.fp[value][()] |
|
238 | data[key] = self.fp[value][()] | |
239 | elif isinstance(self.fp[value], h5py.Group): |
|
239 | elif isinstance(self.fp[value], h5py.Group): | |
240 | array = [] |
|
240 | array = [] | |
241 | for ch in self.fp[value]: |
|
241 | for ch in self.fp[value]: | |
242 | array.append(self.fp[value][ch][()]) |
|
242 | array.append(self.fp[value][ch][()]) | |
243 | data[key] = numpy.array(array) |
|
243 | data[key] = numpy.array(array) | |
244 | elif isinstance(value, list): |
|
244 | elif isinstance(value, list): | |
245 | array = [] |
|
245 | array = [] | |
246 | for ch in value: |
|
246 | for ch in value: | |
247 | array.append(self.fp[ch][()]) |
|
247 | array.append(self.fp[ch][()]) | |
248 | data[key] = numpy.array(array) |
|
248 | data[key] = numpy.array(array) | |
249 | else: |
|
249 | else: | |
250 | grp = self.fp['Data'] |
|
250 | grp = self.fp['Data'] | |
251 | for name in grp: |
|
251 | for name in grp: | |
252 | if isinstance(grp[name], h5py.Dataset): |
|
252 | if isinstance(grp[name], h5py.Dataset): | |
253 | array = grp[name][()] |
|
253 | array = grp[name][()] | |
254 | elif isinstance(grp[name], h5py.Group): |
|
254 | elif isinstance(grp[name], h5py.Group): | |
255 | array = [] |
|
255 | array = [] | |
256 | for ch in grp[name]: |
|
256 | for ch in grp[name]: | |
257 | array.append(grp[name][ch][()]) |
|
257 | array.append(grp[name][ch][()]) | |
258 | array = numpy.array(array) |
|
258 | array = numpy.array(array) | |
259 | else: |
|
259 | else: | |
260 | log.warning('Unknown type: {}'.format(name)) |
|
260 | log.warning('Unknown type: {}'.format(name)) | |
261 |
|
261 | |||
262 | if name in self.description: |
|
262 | if name in self.description: | |
263 | key = self.description[name] |
|
263 | key = self.description[name] | |
264 | else: |
|
264 | else: | |
265 | key = name |
|
265 | key = name | |
266 | data[key] = array |
|
266 | data[key] = array | |
267 |
|
267 | |||
268 | self.data = data |
|
268 | self.data = data | |
269 | return |
|
269 | return | |
270 |
|
270 | |||
271 | def getData(self): |
|
271 | def getData(self): | |
272 | if not self.isDateTimeInRange(self.startFileDatetime, self.startDate, self.endDate, self.startTime, self.endTime): |
|
272 | if not self.isDateTimeInRange(self.startFileDatetime, self.startDate, self.endDate, self.startTime, self.endTime): | |
273 | self.dataOut.flagNoData = True |
|
273 | self.dataOut.flagNoData = True | |
274 | self.blockIndex = self.blocksPerFile |
|
274 | self.blockIndex = self.blocksPerFile | |
275 | self.dataOut.error = True # TERMINA EL PROGRAMA |
|
275 | self.dataOut.error = True # TERMINA EL PROGRAMA | |
276 | return |
|
276 | return | |
277 | for attr in self.data: |
|
277 | for attr in self.data: | |
278 |
|
278 | |||
279 | if self.data[attr].ndim == 1: |
|
279 | if self.data[attr].ndim == 1: | |
280 | setattr(self.dataOut, attr, self.data[attr][self.blockIndex]) |
|
280 | setattr(self.dataOut, attr, self.data[attr][self.blockIndex]) | |
281 | else: |
|
281 | else: | |
282 | setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex]) |
|
282 | setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex]) | |
283 |
|
283 | |||
284 |
|
284 | |||
285 | self.blockIndex += 1 |
|
285 | self.blockIndex += 1 | |
286 |
|
286 | |||
287 | if self.blockIndex == 1: |
|
287 | if self.blockIndex == 1: | |
288 | log.log("Block No. {}/{} -> {}".format( |
|
288 | log.log("Block No. {}/{} -> {}".format( | |
289 | self.blockIndex, |
|
289 | self.blockIndex, | |
290 | self.blocksPerFile, |
|
290 | self.blocksPerFile, | |
291 | self.dataOut.datatime.ctime()), self.name) |
|
291 | self.dataOut.datatime.ctime()), self.name) | |
292 | else: |
|
292 | else: | |
293 | log.log("Block No. {}/{} ".format( |
|
293 | log.log("Block No. {}/{} ".format( | |
294 | self.blockIndex, |
|
294 | self.blockIndex, | |
295 | self.blocksPerFile),self.name) |
|
295 | self.blocksPerFile),self.name) | |
296 |
|
296 | |||
297 | if self.blockIndex == self.blocksPerFile: |
|
297 | if self.blockIndex == self.blocksPerFile: | |
298 | self.setNextFile() |
|
298 | self.setNextFile() | |
299 |
|
299 | |||
300 | self.dataOut.flagNoData = False |
|
300 | self.dataOut.flagNoData = False | |
301 |
|
301 | |||
302 |
|
302 | |||
303 | def run(self, **kwargs): |
|
303 | def run(self, **kwargs): | |
304 |
|
304 | |||
305 | if not(self.isConfig): |
|
305 | if not(self.isConfig): | |
306 | self.setup(**kwargs) |
|
306 | self.setup(**kwargs) | |
307 | self.isConfig = True |
|
307 | self.isConfig = True | |
308 |
|
308 | |||
309 | self.getData() |
|
309 | self.getData() | |
310 |
|
310 | |||
311 |
|
|
311 | @MPDecorator | |
312 | class HDFWrite(Operation): |
|
312 | class HDFWriter(Operation): | |
313 | """Operation to write HDF5 files. |
|
313 | """Operation to write HDF5 files. | |
314 |
|
314 | |||
315 | The HDF5 file contains by default two groups Data and Metadata where |
|
315 | The HDF5 file contains by default two groups Data and Metadata where | |
316 | you can save any `dataOut` attribute specified by `dataList` and `metadataList` |
|
316 | you can save any `dataOut` attribute specified by `dataList` and `metadataList` | |
317 | parameters, data attributes are normaly time dependent where the metadata |
|
317 | parameters, data attributes are normaly time dependent where the metadata | |
318 | are not. |
|
318 | are not. | |
319 | It is possible to customize the structure of the HDF5 file with the |
|
319 | It is possible to customize the structure of the HDF5 file with the | |
320 | optional description parameter see the examples. |
|
320 | optional description parameter see the examples. | |
321 |
|
321 | |||
322 | Parameters: |
|
322 | Parameters: | |
323 | ----------- |
|
323 | ----------- | |
324 | path : str |
|
324 | path : str | |
325 | Path where files will be saved. |
|
325 | Path where files will be saved. | |
326 | blocksPerFile : int |
|
326 | blocksPerFile : int | |
327 | Number of blocks per file |
|
327 | Number of blocks per file | |
328 | metadataList : list |
|
328 | metadataList : list | |
329 | List of the dataOut attributes that will be saved as metadata |
|
329 | List of the dataOut attributes that will be saved as metadata | |
330 | dataList : int |
|
330 | dataList : int | |
331 | List of the dataOut attributes that will be saved as data |
|
331 | List of the dataOut attributes that will be saved as data | |
332 | setType : bool |
|
332 | setType : bool | |
333 | If True the name of the files corresponds to the timestamp of the data |
|
333 | If True the name of the files corresponds to the timestamp of the data | |
334 | description : dict, optional |
|
334 | description : dict, optional | |
335 | Dictionary with the desired description of the HDF5 file |
|
335 | Dictionary with the desired description of the HDF5 file | |
336 |
|
336 | |||
337 | Examples |
|
337 | Examples | |
338 | -------- |
|
338 | -------- | |
339 |
|
339 | |||
340 | desc = { |
|
340 | desc = { | |
341 | 'data_output': {'winds': ['z', 'w', 'v']}, |
|
341 | 'data_output': {'winds': ['z', 'w', 'v']}, | |
342 | 'utctime': 'timestamps', |
|
342 | 'utctime': 'timestamps', | |
343 | 'heightList': 'heights' |
|
343 | 'heightList': 'heights' | |
344 | } |
|
344 | } | |
345 | desc = { |
|
345 | desc = { | |
346 | 'data_output': ['z', 'w', 'v'], |
|
346 | 'data_output': ['z', 'w', 'v'], | |
347 | 'utctime': 'timestamps', |
|
347 | 'utctime': 'timestamps', | |
348 | 'heightList': 'heights' |
|
348 | 'heightList': 'heights' | |
349 | } |
|
349 | } | |
350 | desc = { |
|
350 | desc = { | |
351 | 'Data': { |
|
351 | 'Data': { | |
352 | 'data_output': 'winds', |
|
352 | 'data_output': 'winds', | |
353 | 'utctime': 'timestamps' |
|
353 | 'utctime': 'timestamps' | |
354 | }, |
|
354 | }, | |
355 | 'Metadata': { |
|
355 | 'Metadata': { | |
356 | 'heightList': 'heights' |
|
356 | 'heightList': 'heights' | |
357 | } |
|
357 | } | |
358 | } |
|
358 | } | |
359 |
|
359 | |||
360 | writer = proc_unit.addOperation(name='HDFWriter') |
|
360 | writer = proc_unit.addOperation(name='HDFWriter') | |
361 | writer.addParameter(name='path', value='/path/to/file') |
|
361 | writer.addParameter(name='path', value='/path/to/file') | |
362 | writer.addParameter(name='blocksPerFile', value='32') |
|
362 | writer.addParameter(name='blocksPerFile', value='32') | |
363 | writer.addParameter(name='metadataList', value='heightList,timeZone') |
|
363 | writer.addParameter(name='metadataList', value='heightList,timeZone') | |
364 | writer.addParameter(name='dataList',value='data_output,utctime') |
|
364 | writer.addParameter(name='dataList',value='data_output,utctime') | |
365 | # writer.addParameter(name='description',value=json.dumps(desc)) |
|
365 | # writer.addParameter(name='description',value=json.dumps(desc)) | |
366 |
|
366 | |||
367 | """ |
|
367 | """ | |
368 |
|
368 | |||
369 | ext = ".hdf5" |
|
369 | ext = ".hdf5" | |
370 | optchar = "D" |
|
370 | optchar = "D" | |
371 | filename = None |
|
371 | filename = None | |
372 | path = None |
|
372 | path = None | |
373 | setFile = None |
|
373 | setFile = None | |
374 | fp = None |
|
374 | fp = None | |
375 | firsttime = True |
|
375 | firsttime = True | |
376 | #Configurations |
|
376 | #Configurations | |
377 | blocksPerFile = None |
|
377 | blocksPerFile = None | |
378 | blockIndex = None |
|
378 | blockIndex = None | |
379 | dataOut = None #eval ?????? |
|
379 | dataOut = None #eval ?????? | |
380 | #Data Arrays |
|
380 | #Data Arrays | |
381 | dataList = None |
|
381 | dataList = None | |
382 | metadataList = None |
|
382 | metadataList = None | |
383 | currentDay = None |
|
383 | currentDay = None | |
384 | lastTime = None |
|
384 | lastTime = None | |
385 | timeZone = "ut" |
|
385 | timeZone = "ut" | |
386 | hourLimit = 3 |
|
386 | hourLimit = 3 | |
387 | breakDays = True |
|
387 | breakDays = True | |
388 |
|
388 | |||
389 | def __init__(self): |
|
389 | def __init__(self): | |
390 |
|
390 | |||
391 | Operation.__init__(self) |
|
391 | Operation.__init__(self) | |
392 |
|
392 | |||
393 |
|
393 | |||
394 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, |
|
394 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, | |
395 | description={},timeZone = "ut",hourLimit = 3, breakDays=True): |
|
395 | description={},timeZone = "ut",hourLimit = 3, breakDays=True): | |
396 | self.path = path |
|
396 | self.path = path | |
397 | self.blocksPerFile = blocksPerFile |
|
397 | self.blocksPerFile = blocksPerFile | |
398 | self.metadataList = metadataList |
|
398 | self.metadataList = metadataList | |
399 | self.dataList = [s.strip() for s in dataList] |
|
399 | self.dataList = [s.strip() for s in dataList] | |
400 | self.setType = setType |
|
400 | self.setType = setType | |
401 | self.description = description |
|
401 | self.description = description | |
402 | self.timeZone = timeZone |
|
402 | self.timeZone = timeZone | |
403 | self.hourLimit = hourLimit |
|
403 | self.hourLimit = hourLimit | |
404 | self.breakDays = breakDays |
|
404 | self.breakDays = breakDays | |
405 |
|
405 | |||
406 | if self.metadataList is None: |
|
406 | if self.metadataList is None: | |
407 | self.metadataList = self.dataOut.metadata_list |
|
407 | self.metadataList = self.dataOut.metadata_list | |
408 |
|
408 | |||
409 | tableList = [] |
|
409 | tableList = [] | |
410 | dsList = [] |
|
410 | dsList = [] | |
411 |
|
411 | |||
412 | for i in range(len(self.dataList)): |
|
412 | for i in range(len(self.dataList)): | |
413 | dsDict = {} |
|
413 | dsDict = {} | |
414 | if hasattr(self.dataOut, self.dataList[i]): |
|
414 | if hasattr(self.dataOut, self.dataList[i]): | |
415 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
415 | dataAux = getattr(self.dataOut, self.dataList[i]) | |
416 | dsDict['variable'] = self.dataList[i] |
|
416 | dsDict['variable'] = self.dataList[i] | |
417 | else: |
|
417 | else: | |
418 | log.warning('Attribute {} not found in dataOut'.format(self.dataList[i]),self.name) |
|
418 | log.warning('Attribute {} not found in dataOut'.format(self.dataList[i]),self.name) | |
419 | continue |
|
419 | continue | |
420 |
|
420 | |||
421 | if dataAux is None: |
|
421 | if dataAux is None: | |
422 | continue |
|
422 | continue | |
423 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
|
423 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): | |
424 | dsDict['nDim'] = 0 |
|
424 | dsDict['nDim'] = 0 | |
425 | else: |
|
425 | else: | |
426 | dsDict['nDim'] = len(dataAux.shape) |
|
426 | dsDict['nDim'] = len(dataAux.shape) | |
427 | dsDict['shape'] = dataAux.shape |
|
427 | dsDict['shape'] = dataAux.shape | |
428 | dsDict['dsNumber'] = dataAux.shape[0] |
|
428 | dsDict['dsNumber'] = dataAux.shape[0] | |
429 | dsDict['dtype'] = dataAux.dtype |
|
429 | dsDict['dtype'] = dataAux.dtype | |
430 |
|
430 | |||
431 | dsList.append(dsDict) |
|
431 | dsList.append(dsDict) | |
432 |
|
432 | |||
433 | self.blockIndex = 0 |
|
433 | self.blockIndex = 0 | |
434 | self.dsList = dsList |
|
434 | self.dsList = dsList | |
435 | self.currentDay = self.dataOut.datatime.date() |
|
435 | self.currentDay = self.dataOut.datatime.date() | |
436 |
|
436 | |||
437 |
|
437 | |||
438 | def timeFlag(self): |
|
438 | def timeFlag(self): | |
439 | currentTime = self.dataOut.utctime |
|
439 | currentTime = self.dataOut.utctime | |
440 | timeTuple = None |
|
440 | timeTuple = None | |
441 | if self.timeZone == "lt": |
|
441 | if self.timeZone == "lt": | |
442 | timeTuple = time.localtime(currentTime) |
|
442 | timeTuple = time.localtime(currentTime) | |
443 | else : |
|
443 | else : | |
444 | timeTuple = time.gmtime(currentTime) |
|
444 | timeTuple = time.gmtime(currentTime) | |
445 |
|
445 | |||
446 | dataDay = timeTuple.tm_yday |
|
446 | dataDay = timeTuple.tm_yday | |
447 |
|
447 | |||
448 | if self.lastTime is None: |
|
448 | if self.lastTime is None: | |
449 | self.lastTime = currentTime |
|
449 | self.lastTime = currentTime | |
450 | self.currentDay = dataDay |
|
450 | self.currentDay = dataDay | |
451 | return False |
|
451 | return False | |
452 |
|
452 | |||
453 | timeDiff = currentTime - self.lastTime |
|
453 | timeDiff = currentTime - self.lastTime | |
454 |
|
454 | |||
455 | #Si el dia es diferente o si la diferencia entre un dato y otro supera self.hourLimit |
|
455 | #Si el dia es diferente o si la diferencia entre un dato y otro supera self.hourLimit | |
456 | if (dataDay != self.currentDay) and self.breakDays: |
|
456 | if (dataDay != self.currentDay) and self.breakDays: | |
457 | self.currentDay = dataDay |
|
457 | self.currentDay = dataDay | |
458 | return True |
|
458 | return True | |
459 | elif timeDiff > self.hourLimit*60*60: |
|
459 | elif timeDiff > self.hourLimit*60*60: | |
460 | self.lastTime = currentTime |
|
460 | self.lastTime = currentTime | |
461 | return True |
|
461 | return True | |
462 | else: |
|
462 | else: | |
463 | self.lastTime = currentTime |
|
463 | self.lastTime = currentTime | |
464 | return False |
|
464 | return False | |
465 |
|
465 | |||
466 | def run(self, dataOut,**kwargs): |
|
466 | def run(self, dataOut,**kwargs): | |
467 |
|
467 | |||
468 | self.dataOut = dataOut |
|
468 | self.dataOut = dataOut.copy() | |
469 | if not(self.isConfig): |
|
469 | if not(self.isConfig): | |
470 | self.setup(**kwargs) |
|
470 | self.setup(**kwargs) | |
471 |
|
471 | |||
472 | self.isConfig = True |
|
472 | self.isConfig = True | |
473 | self.setNextFile() |
|
473 | self.setNextFile() | |
474 |
|
474 | |||
475 | self.putData() |
|
475 | self.putData() | |
476 |
|
476 | |||
477 | return self.dataOut |
|
477 | #return self.dataOut | |
478 |
|
478 | |||
479 | def setNextFile(self): |
|
479 | def setNextFile(self): | |
480 |
|
480 | |||
481 | ext = self.ext |
|
481 | ext = self.ext | |
482 | path = self.path |
|
482 | path = self.path | |
483 | setFile = self.setFile |
|
483 | setFile = self.setFile | |
484 | timeTuple = None |
|
484 | timeTuple = None | |
485 | if self.timeZone == "lt": |
|
485 | if self.timeZone == "lt": | |
486 | timeTuple = time.localtime(self.dataOut.utctime) |
|
486 | timeTuple = time.localtime(self.dataOut.utctime) | |
487 | elif self.timeZone == "ut": |
|
487 | elif self.timeZone == "ut": | |
488 | timeTuple = time.gmtime(self.dataOut.utctime) |
|
488 | timeTuple = time.gmtime(self.dataOut.utctime) | |
489 | #print("path: ",timeTuple) |
|
489 | #print("path: ",timeTuple) | |
490 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
490 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) | |
491 | fullpath = os.path.join(path, subfolder) |
|
491 | fullpath = os.path.join(path, subfolder) | |
492 |
|
492 | |||
493 | if os.path.exists(fullpath): |
|
493 | if os.path.exists(fullpath): | |
494 | filesList = os.listdir(fullpath) |
|
494 | filesList = os.listdir(fullpath) | |
495 | filesList = [k for k in filesList if k.startswith(self.optchar)] |
|
495 | filesList = [k for k in filesList if k.startswith(self.optchar)] | |
496 | if len( filesList ) > 0: |
|
496 | if len( filesList ) > 0: | |
497 | filesList = sorted(filesList, key=str.lower) |
|
497 | filesList = sorted(filesList, key=str.lower) | |
498 | filen = filesList[-1] |
|
498 | filen = filesList[-1] | |
499 | # el filename debera tener el siguiente formato |
|
499 | # el filename debera tener el siguiente formato | |
500 | # 0 1234 567 89A BCDE (hex) |
|
500 | # 0 1234 567 89A BCDE (hex) | |
501 | # x YYYY DDD SSS .ext |
|
501 | # x YYYY DDD SSS .ext | |
502 | if isNumber(filen[8:11]): |
|
502 | if isNumber(filen[8:11]): | |
503 | setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file |
|
503 | setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file | |
504 | else: |
|
504 | else: | |
505 | setFile = -1 |
|
505 | setFile = -1 | |
506 | else: |
|
506 | else: | |
507 | setFile = -1 #inicializo mi contador de seteo |
|
507 | setFile = -1 #inicializo mi contador de seteo | |
508 | else: |
|
508 | else: | |
509 | os.makedirs(fullpath) |
|
509 | os.makedirs(fullpath) | |
510 | setFile = -1 #inicializo mi contador de seteo |
|
510 | setFile = -1 #inicializo mi contador de seteo | |
511 |
|
511 | |||
512 | if self.setType is None: |
|
512 | if self.setType is None: | |
513 | setFile += 1 |
|
513 | setFile += 1 | |
514 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, |
|
514 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, | |
515 | timeTuple.tm_year, |
|
515 | timeTuple.tm_year, | |
516 | timeTuple.tm_yday, |
|
516 | timeTuple.tm_yday, | |
517 | setFile, |
|
517 | setFile, | |
518 | ext ) |
|
518 | ext ) | |
519 | else: |
|
519 | else: | |
520 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min |
|
520 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min | |
521 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, |
|
521 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, | |
522 | timeTuple.tm_year, |
|
522 | timeTuple.tm_year, | |
523 | timeTuple.tm_yday, |
|
523 | timeTuple.tm_yday, | |
524 | setFile, |
|
524 | setFile, | |
525 | ext ) |
|
525 | ext ) | |
526 |
|
526 | |||
527 | self.filename = os.path.join( path, subfolder, file ) |
|
527 | self.filename = os.path.join( path, subfolder, file ) | |
528 |
|
528 | |||
529 |
|
529 | |||
530 |
|
530 | |||
531 | def getLabel(self, name, x=None): |
|
531 | def getLabel(self, name, x=None): | |
532 |
|
532 | |||
533 | if x is None: |
|
533 | if x is None: | |
534 | if 'Data' in self.description: |
|
534 | if 'Data' in self.description: | |
535 | data = self.description['Data'] |
|
535 | data = self.description['Data'] | |
536 | if 'Metadata' in self.description: |
|
536 | if 'Metadata' in self.description: | |
537 | data.update(self.description['Metadata']) |
|
537 | data.update(self.description['Metadata']) | |
538 | else: |
|
538 | else: | |
539 | data = self.description |
|
539 | data = self.description | |
540 | if name in data: |
|
540 | if name in data: | |
541 | if isinstance(data[name], str): |
|
541 | if isinstance(data[name], str): | |
542 | return data[name] |
|
542 | return data[name] | |
543 | elif isinstance(data[name], list): |
|
543 | elif isinstance(data[name], list): | |
544 | return None |
|
544 | return None | |
545 | elif isinstance(data[name], dict): |
|
545 | elif isinstance(data[name], dict): | |
546 | for key, value in data[name].items(): |
|
546 | for key, value in data[name].items(): | |
547 | return key |
|
547 | return key | |
548 | return name |
|
548 | return name | |
549 | else: |
|
549 | else: | |
550 | if 'Metadata' in self.description: |
|
550 | if 'Metadata' in self.description: | |
551 | meta = self.description['Metadata'] |
|
551 | meta = self.description['Metadata'] | |
552 | else: |
|
552 | else: | |
553 | meta = self.description |
|
553 | meta = self.description | |
554 | if name in meta: |
|
554 | if name in meta: | |
555 | if isinstance(meta[name], list): |
|
555 | if isinstance(meta[name], list): | |
556 | return meta[name][x] |
|
556 | return meta[name][x] | |
557 | elif isinstance(meta[name], dict): |
|
557 | elif isinstance(meta[name], dict): | |
558 | for key, value in meta[name].items(): |
|
558 | for key, value in meta[name].items(): | |
559 | return value[x] |
|
559 | return value[x] | |
560 | if 'cspc' in name: |
|
560 | if 'cspc' in name: | |
561 | return 'pair{:02d}'.format(x) |
|
561 | return 'pair{:02d}'.format(x) | |
562 | else: |
|
562 | else: | |
563 | return 'channel{:02d}'.format(x) |
|
563 | return 'channel{:02d}'.format(x) | |
564 |
|
564 | |||
565 | def writeMetadata(self, fp): |
|
565 | def writeMetadata(self, fp): | |
566 |
|
566 | |||
567 | if self.description: |
|
567 | if self.description: | |
568 | if 'Metadata' in self.description: |
|
568 | if 'Metadata' in self.description: | |
569 | grp = fp.create_group('Metadata') |
|
569 | grp = fp.create_group('Metadata') | |
570 | else: |
|
570 | else: | |
571 | grp = fp |
|
571 | grp = fp | |
572 | else: |
|
572 | else: | |
573 | grp = fp.create_group('Metadata') |
|
573 | grp = fp.create_group('Metadata') | |
574 |
|
574 | |||
575 | for i in range(len(self.metadataList)): |
|
575 | for i in range(len(self.metadataList)): | |
576 | if not hasattr(self.dataOut, self.metadataList[i]): |
|
576 | if not hasattr(self.dataOut, self.metadataList[i]): | |
577 | log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name) |
|
577 | log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name) | |
578 | continue |
|
578 | continue | |
579 | value = getattr(self.dataOut, self.metadataList[i]) |
|
579 | value = getattr(self.dataOut, self.metadataList[i]) | |
580 | if isinstance(value, bool): |
|
580 | if isinstance(value, bool): | |
581 | if value is True: |
|
581 | if value is True: | |
582 | value = 1 |
|
582 | value = 1 | |
583 | else: |
|
583 | else: | |
584 | value = 0 |
|
584 | value = 0 | |
585 | grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) |
|
585 | grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) | |
586 | return |
|
586 | return | |
587 |
|
587 | |||
588 | def writeData(self, fp): |
|
588 | def writeData(self, fp): | |
589 |
|
589 | |||
590 | if self.description: |
|
590 | if self.description: | |
591 | if 'Data' in self.description: |
|
591 | if 'Data' in self.description: | |
592 | grp = fp.create_group('Data') |
|
592 | grp = fp.create_group('Data') | |
593 | else: |
|
593 | else: | |
594 | grp = fp |
|
594 | grp = fp | |
595 | else: |
|
595 | else: | |
596 | grp = fp.create_group('Data') |
|
596 | grp = fp.create_group('Data') | |
597 |
|
597 | |||
598 | dtsets = [] |
|
598 | dtsets = [] | |
599 | data = [] |
|
599 | data = [] | |
600 |
|
600 | |||
601 | for dsInfo in self.dsList: |
|
601 | for dsInfo in self.dsList: | |
602 | if dsInfo['nDim'] == 0: |
|
602 | if dsInfo['nDim'] == 0: | |
603 | ds = grp.create_dataset( |
|
603 | ds = grp.create_dataset( | |
604 | self.getLabel(dsInfo['variable']), |
|
604 | self.getLabel(dsInfo['variable']), | |
605 | (self.blocksPerFile, ), |
|
605 | (self.blocksPerFile, ), | |
606 | chunks=True, |
|
606 | chunks=True, | |
607 | dtype=numpy.float64) |
|
607 | dtype=numpy.float64) | |
608 | dtsets.append(ds) |
|
608 | dtsets.append(ds) | |
609 | data.append((dsInfo['variable'], -1)) |
|
609 | data.append((dsInfo['variable'], -1)) | |
610 | else: |
|
610 | else: | |
611 | label = self.getLabel(dsInfo['variable']) |
|
611 | label = self.getLabel(dsInfo['variable']) | |
612 | if label is not None: |
|
612 | if label is not None: | |
613 | sgrp = grp.create_group(label) |
|
613 | sgrp = grp.create_group(label) | |
614 | else: |
|
614 | else: | |
615 | sgrp = grp |
|
615 | sgrp = grp | |
616 | for i in range(dsInfo['dsNumber']): |
|
616 | for i in range(dsInfo['dsNumber']): | |
617 | ds = sgrp.create_dataset( |
|
617 | ds = sgrp.create_dataset( | |
618 | self.getLabel(dsInfo['variable'], i), |
|
618 | self.getLabel(dsInfo['variable'], i), | |
619 | (self.blocksPerFile, ) + dsInfo['shape'][1:], |
|
619 | (self.blocksPerFile, ) + dsInfo['shape'][1:], | |
620 | chunks=True, |
|
620 | chunks=True, | |
621 | dtype=dsInfo['dtype']) |
|
621 | dtype=dsInfo['dtype']) | |
622 | dtsets.append(ds) |
|
622 | dtsets.append(ds) | |
623 | data.append((dsInfo['variable'], i)) |
|
623 | data.append((dsInfo['variable'], i)) | |
624 | fp.flush() |
|
624 | fp.flush() | |
625 |
|
625 | |||
626 | log.log('Creating file: {}'.format(fp.filename), self.name) |
|
626 | log.log('Creating file: {}'.format(fp.filename), self.name) | |
627 |
|
627 | |||
628 | self.ds = dtsets |
|
628 | self.ds = dtsets | |
629 | self.data = data |
|
629 | self.data = data | |
630 | self.firsttime = True |
|
630 | self.firsttime = True | |
631 |
|
631 | |||
632 | return |
|
632 | return | |
633 |
|
633 | |||
634 | def putData(self): |
|
634 | def putData(self): | |
635 |
|
635 | |||
636 | if (self.blockIndex == self.blocksPerFile) or self.timeFlag(): |
|
636 | if (self.blockIndex == self.blocksPerFile) or self.timeFlag(): | |
637 | self.closeFile() |
|
637 | self.closeFile() | |
638 | self.setNextFile() |
|
638 | self.setNextFile() | |
639 | self.dataOut.flagNoData = False |
|
639 | self.dataOut.flagNoData = False | |
640 | self.blockIndex = 0 |
|
640 | self.blockIndex = 0 | |
641 | return |
|
641 | return | |
642 |
|
642 | |||
643 |
|
643 | |||
644 |
|
644 | |||
645 | if self.blockIndex == 0: |
|
645 | if self.blockIndex == 0: | |
646 | #Escribir metadata Aqui??? |
|
646 | #Escribir metadata Aqui??? | |
647 | #Setting HDF5 File |
|
647 | #Setting HDF5 File | |
648 | self.fp = h5py.File(self.filename, 'w') |
|
648 | self.fp = h5py.File(self.filename, 'w') | |
649 | #write metadata |
|
649 | #write metadata | |
650 | self.writeMetadata(self.fp) |
|
650 | self.writeMetadata(self.fp) | |
651 | #Write data |
|
651 | #Write data | |
652 | self.writeData(self.fp) |
|
652 | self.writeData(self.fp) | |
653 | log.log('Block No. {}/{} --> {}'.format(self.blockIndex+1, self.blocksPerFile,self.dataOut.datatime.ctime()), self.name) |
|
653 | log.log('Block No. {}/{} --> {}'.format(self.blockIndex+1, self.blocksPerFile,self.dataOut.datatime.ctime()), self.name) | |
654 | elif (self.blockIndex % 10 ==0): |
|
654 | elif (self.blockIndex % 10 ==0): | |
655 | log.log('Block No. {}/{} --> {}'.format(self.blockIndex+1, self.blocksPerFile,self.dataOut.datatime.ctime()), self.name) |
|
655 | log.log('Block No. {}/{} --> {}'.format(self.blockIndex+1, self.blocksPerFile,self.dataOut.datatime.ctime()), self.name) | |
656 | else: |
|
656 | else: | |
657 |
|
657 | |||
658 | log.log('Block No. {}/{}'.format(self.blockIndex+1, self.blocksPerFile), self.name) |
|
658 | log.log('Block No. {}/{}'.format(self.blockIndex+1, self.blocksPerFile), self.name) | |
659 |
|
659 | |||
660 | for i, ds in enumerate(self.ds): |
|
660 | for i, ds in enumerate(self.ds): | |
661 | attr, ch = self.data[i] |
|
661 | attr, ch = self.data[i] | |
662 | if ch == -1: |
|
662 | if ch == -1: | |
663 | ds[self.blockIndex] = getattr(self.dataOut, attr) |
|
663 | ds[self.blockIndex] = getattr(self.dataOut, attr) | |
664 | else: |
|
664 | else: | |
665 | ds[self.blockIndex] = getattr(self.dataOut, attr)[ch] |
|
665 | ds[self.blockIndex] = getattr(self.dataOut, attr)[ch] | |
666 |
|
666 | |||
667 | self.blockIndex += 1 |
|
667 | self.blockIndex += 1 | |
668 |
|
668 | |||
669 | self.fp.flush() |
|
669 | self.fp.flush() | |
670 | self.dataOut.flagNoData = True |
|
670 | self.dataOut.flagNoData = True | |
671 |
|
671 | |||
672 |
|
672 | |||
673 | def closeFile(self): |
|
673 | def closeFile(self): | |
674 |
|
674 | |||
675 | if self.blockIndex != self.blocksPerFile: |
|
675 | if self.blockIndex != self.blocksPerFile: | |
676 | for ds in self.ds: |
|
676 | for ds in self.ds: | |
677 | ds.resize(self.blockIndex, axis=0) |
|
677 | ds.resize(self.blockIndex, axis=0) | |
678 |
|
678 | |||
679 | if self.fp: |
|
679 | if self.fp: | |
680 | self.fp.flush() |
|
680 | self.fp.flush() | |
681 | self.fp.close() |
|
681 | self.fp.close() | |
682 |
|
682 | |||
683 | def close(self): |
|
683 | def close(self): | |
684 |
|
684 | |||
685 | self.closeFile() |
|
685 | self.closeFile() |
@@ -1,211 +1,211 | |||||
1 | ''' |
|
1 | ''' | |
2 | Base clases to create Processing units and operations, the MPDecorator |
|
2 | Base clases to create Processing units and operations, the MPDecorator | |
3 | must be used in plotting and writing operations to allow to run as an |
|
3 | must be used in plotting and writing operations to allow to run as an | |
4 | external process. |
|
4 | external process. | |
5 | ''' |
|
5 | ''' | |
6 | import os |
|
6 | import os | |
7 | import inspect |
|
7 | import inspect | |
8 | import zmq |
|
8 | import zmq | |
9 | import time |
|
9 | import time | |
10 | import pickle |
|
10 | import pickle | |
11 | import traceback |
|
11 | import traceback | |
12 | from threading import Thread |
|
12 | from threading import Thread | |
13 | from multiprocessing import Process, Queue |
|
13 | from multiprocessing import Process, Queue | |
14 | from schainpy.utils import log |
|
14 | from schainpy.utils import log | |
15 | import copy |
|
15 | import copy | |
16 | QUEUE_SIZE = int(os.environ.get('QUEUE_MAX_SIZE', '10')) |
|
16 | QUEUE_SIZE = int(os.environ.get('QUEUE_MAX_SIZE', '10')) | |
17 | class ProcessingUnit(object): |
|
17 | class ProcessingUnit(object): | |
18 | ''' |
|
18 | ''' | |
19 | Base class to create Signal Chain Units |
|
19 | Base class to create Signal Chain Units | |
20 | ''' |
|
20 | ''' | |
21 |
|
21 | |||
22 | proc_type = 'processing' |
|
22 | proc_type = 'processing' | |
23 |
|
23 | |||
24 | def __init__(self): |
|
24 | def __init__(self): | |
25 |
|
25 | |||
26 | self.dataIn = None |
|
26 | self.dataIn = None | |
27 | self.dataOut = None |
|
27 | self.dataOut = None | |
28 | self.isConfig = False |
|
28 | self.isConfig = False | |
29 | self.operations = [] |
|
29 | self.operations = [] | |
30 |
|
30 | |||
31 | def setInput(self, unit): |
|
31 | def setInput(self, unit): | |
32 |
|
32 | |||
33 | self.dataIn = unit.dataOut |
|
33 | self.dataIn = unit.dataOut | |
34 |
|
34 | |||
35 |
|
35 | |||
36 | def getAllowedArgs(self): |
|
36 | def getAllowedArgs(self): | |
37 | if hasattr(self, '__attrs__'): |
|
37 | if hasattr(self, '__attrs__'): | |
38 | return self.__attrs__ |
|
38 | return self.__attrs__ | |
39 | else: |
|
39 | else: | |
40 | return inspect.getargspec(self.run).args |
|
40 | return inspect.getargspec(self.run).args | |
41 |
|
41 | |||
42 | def addOperation(self, conf, operation): |
|
42 | def addOperation(self, conf, operation): | |
43 | ''' |
|
43 | ''' | |
44 | ''' |
|
44 | ''' | |
45 |
|
45 | |||
46 | self.operations.append((operation, conf.type, conf.getKwargs())) |
|
46 | self.operations.append((operation, conf.type, conf.getKwargs())) | |
47 |
|
47 | |||
48 | def getOperationObj(self, objId): |
|
48 | def getOperationObj(self, objId): | |
49 |
|
49 | |||
50 | if objId not in list(self.operations.keys()): |
|
50 | if objId not in list(self.operations.keys()): | |
51 | return None |
|
51 | return None | |
52 |
|
52 | |||
53 | return self.operations[objId] |
|
53 | return self.operations[objId] | |
54 |
|
54 | |||
55 | def call(self, **kwargs): |
|
55 | def call(self, **kwargs): | |
56 | ''' |
|
56 | ''' | |
57 | ''' |
|
57 | ''' | |
58 |
|
58 | |||
59 | try: |
|
59 | try: | |
60 |
|
60 | |||
61 | if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error: |
|
61 | if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error: | |
62 | return self.dataIn.isReady() |
|
62 | return self.dataIn.isReady() | |
63 | elif self.dataIn is None or not self.dataIn.error: |
|
63 | elif self.dataIn is None or not self.dataIn.error: | |
64 | self.run(**kwargs) |
|
64 | self.run(**kwargs) | |
65 | elif self.dataIn.error: |
|
65 | elif self.dataIn.error: | |
66 | self.dataOut.error = self.dataIn.error |
|
66 | self.dataOut.error = self.dataIn.error | |
67 | self.dataOut.flagNoData = True |
|
67 | self.dataOut.flagNoData = True | |
68 | except: |
|
68 | except: | |
69 |
|
69 | |||
70 | err = traceback.format_exc() |
|
70 | err = traceback.format_exc() | |
71 | if 'SchainWarning' in err: |
|
71 | if 'SchainWarning' in err: | |
72 | log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name) |
|
72 | log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name) | |
73 | elif 'SchainError' in err: |
|
73 | elif 'SchainError' in err: | |
74 | log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name) |
|
74 | log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name) | |
75 | else: |
|
75 | else: | |
76 | log.error(err, self.name) |
|
76 | log.error(err, self.name) | |
77 | self.dataOut.error = True |
|
77 | self.dataOut.error = True | |
78 |
|
78 | |||
79 | for op, optype, opkwargs in self.operations: |
|
79 | for op, optype, opkwargs in self.operations: | |
80 | if optype == 'other' and self.dataOut.isReady(): |
|
80 | if optype == 'other' and self.dataOut.isReady(): | |
81 | try: |
|
81 | try: | |
82 | self.dataOut = op.run(self.dataOut, **opkwargs) |
|
82 | self.dataOut = op.run(self.dataOut, **opkwargs) | |
83 | except Exception as e: |
|
83 | except Exception as e: | |
84 | print(e) |
|
84 | print(e) | |
85 | self.dataOut.error = True |
|
85 | self.dataOut.error = True | |
86 | return 'Error' |
|
86 | return 'Error' | |
87 | elif optype == 'external' and self.dataOut.isReady() : |
|
87 | elif optype == 'external' and self.dataOut.isReady() : | |
88 | op.queue.put(copy.deepcopy(self.dataOut)) |
|
88 | op.queue.put(copy.deepcopy(self.dataOut)) | |
89 | elif optype == 'external' and self.dataOut.error: |
|
89 | elif optype == 'external' and self.dataOut.error: | |
90 | op.queue.put(copy.deepcopy(self.dataOut)) |
|
90 | op.queue.put(copy.deepcopy(self.dataOut)) | |
91 |
|
91 | |||
92 |
return 'Error' if self.dataOut.error else |
|
92 | return 'Error' if self.dataOut.error else self.dataOut.isReady() | |
93 |
|
93 | |||
94 | def setup(self): |
|
94 | def setup(self): | |
95 |
|
95 | |||
96 | raise NotImplementedError |
|
96 | raise NotImplementedError | |
97 |
|
97 | |||
98 | def run(self): |
|
98 | def run(self): | |
99 |
|
99 | |||
100 | raise NotImplementedError |
|
100 | raise NotImplementedError | |
101 |
|
101 | |||
102 | def close(self): |
|
102 | def close(self): | |
103 |
|
103 | |||
104 | return |
|
104 | return | |
105 |
|
105 | |||
106 |
|
106 | |||
107 | class Operation(object): |
|
107 | class Operation(object): | |
108 |
|
108 | |||
109 | ''' |
|
109 | ''' | |
110 | ''' |
|
110 | ''' | |
111 |
|
111 | |||
112 | proc_type = 'operation' |
|
112 | proc_type = 'operation' | |
113 |
|
113 | |||
114 | def __init__(self): |
|
114 | def __init__(self): | |
115 |
|
115 | |||
116 | self.id = None |
|
116 | self.id = None | |
117 | self.isConfig = False |
|
117 | self.isConfig = False | |
118 |
|
118 | |||
119 | if not hasattr(self, 'name'): |
|
119 | if not hasattr(self, 'name'): | |
120 | self.name = self.__class__.__name__ |
|
120 | self.name = self.__class__.__name__ | |
121 |
|
121 | |||
122 | def getAllowedArgs(self): |
|
122 | def getAllowedArgs(self): | |
123 | if hasattr(self, '__attrs__'): |
|
123 | if hasattr(self, '__attrs__'): | |
124 | return self.__attrs__ |
|
124 | return self.__attrs__ | |
125 | else: |
|
125 | else: | |
126 | return inspect.getargspec(self.run).args |
|
126 | return inspect.getargspec(self.run).args | |
127 |
|
127 | |||
128 | def setup(self): |
|
128 | def setup(self): | |
129 |
|
129 | |||
130 | self.isConfig = True |
|
130 | self.isConfig = True | |
131 |
|
131 | |||
132 | raise NotImplementedError |
|
132 | raise NotImplementedError | |
133 |
|
133 | |||
134 | def run(self, dataIn, **kwargs): |
|
134 | def run(self, dataIn, **kwargs): | |
135 | """ |
|
135 | """ | |
136 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los |
|
136 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los | |
137 | atributos del objeto dataIn. |
|
137 | atributos del objeto dataIn. | |
138 |
|
138 | |||
139 | Input: |
|
139 | Input: | |
140 |
|
140 | |||
141 | dataIn : objeto del tipo JROData |
|
141 | dataIn : objeto del tipo JROData | |
142 |
|
142 | |||
143 | Return: |
|
143 | Return: | |
144 |
|
144 | |||
145 | None |
|
145 | None | |
146 |
|
146 | |||
147 | Affected: |
|
147 | Affected: | |
148 | __buffer : buffer de recepcion de datos. |
|
148 | __buffer : buffer de recepcion de datos. | |
149 |
|
149 | |||
150 | """ |
|
150 | """ | |
151 | if not self.isConfig: |
|
151 | if not self.isConfig: | |
152 | self.setup(**kwargs) |
|
152 | self.setup(**kwargs) | |
153 |
|
153 | |||
154 | raise NotImplementedError |
|
154 | raise NotImplementedError | |
155 |
|
155 | |||
156 | def close(self): |
|
156 | def close(self): | |
157 |
|
157 | |||
158 | return |
|
158 | return | |
159 |
|
159 | |||
160 |
|
160 | |||
161 | def MPDecorator(BaseClass): |
|
161 | def MPDecorator(BaseClass): | |
162 | """ |
|
162 | """ | |
163 | Multiprocessing class decorator |
|
163 | Multiprocessing class decorator | |
164 |
|
164 | |||
165 | This function add multiprocessing features to a BaseClass. |
|
165 | This function add multiprocessing features to a BaseClass. | |
166 | """ |
|
166 | """ | |
167 |
|
167 | |||
168 | class MPClass(BaseClass, Process): |
|
168 | class MPClass(BaseClass, Process): | |
169 |
|
169 | |||
170 | def __init__(self, *args, **kwargs): |
|
170 | def __init__(self, *args, **kwargs): | |
171 | super(MPClass, self).__init__() |
|
171 | super(MPClass, self).__init__() | |
172 | Process.__init__(self) |
|
172 | Process.__init__(self) | |
173 |
|
173 | |||
174 | self.args = args |
|
174 | self.args = args | |
175 | self.kwargs = kwargs |
|
175 | self.kwargs = kwargs | |
176 | self.t = time.time() |
|
176 | self.t = time.time() | |
177 | self.op_type = 'external' |
|
177 | self.op_type = 'external' | |
178 | self.name = BaseClass.__name__ |
|
178 | self.name = BaseClass.__name__ | |
179 | self.__doc__ = BaseClass.__doc__ |
|
179 | self.__doc__ = BaseClass.__doc__ | |
180 |
|
180 | |||
181 | if 'plot' in self.name.lower() and not self.name.endswith('_'): |
|
181 | if 'plot' in self.name.lower() and not self.name.endswith('_'): | |
182 | self.name = '{}{}'.format(self.CODE.upper(), 'Plot') |
|
182 | self.name = '{}{}'.format(self.CODE.upper(), 'Plot') | |
183 |
|
183 | |||
184 | self.start_time = time.time() |
|
184 | self.start_time = time.time() | |
185 | self.err_queue = args[3] |
|
185 | self.err_queue = args[3] | |
186 | self.queue = Queue(maxsize=QUEUE_SIZE) |
|
186 | self.queue = Queue(maxsize=QUEUE_SIZE) | |
187 | self.myrun = BaseClass.run |
|
187 | self.myrun = BaseClass.run | |
188 |
|
188 | |||
189 | def run(self): |
|
189 | def run(self): | |
190 |
|
190 | |||
191 | while True: |
|
191 | while True: | |
192 |
|
192 | |||
193 | dataOut = self.queue.get() |
|
193 | dataOut = self.queue.get() | |
194 |
|
194 | |||
195 | if not dataOut.error: |
|
195 | if not dataOut.error: | |
196 | try: |
|
196 | try: | |
197 | BaseClass.run(self, dataOut, **self.kwargs) |
|
197 | BaseClass.run(self, dataOut, **self.kwargs) | |
198 | except: |
|
198 | except: | |
199 | err = traceback.format_exc() |
|
199 | err = traceback.format_exc() | |
200 | log.error(err, self.name) |
|
200 | log.error(err, self.name) | |
201 | else: |
|
201 | else: | |
202 | break |
|
202 | break | |
203 |
|
203 | |||
204 | self.close() |
|
204 | self.close() | |
205 |
|
205 | |||
206 | def close(self): |
|
206 | def close(self): | |
207 |
|
207 | |||
208 | BaseClass.close(self) |
|
208 | BaseClass.close(self) | |
209 | log.success('Done...(Time:{:4.2f} secs)'.format(time.time()-self.start_time), self.name) |
|
209 | log.success('Done...(Time:{:4.2f} secs)'.format(time.time()-self.start_time), self.name) | |
210 |
|
210 | |||
211 | return MPClass |
|
211 | return MPClass |
@@ -1,1814 +1,1823 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Spectra processing Unit and operations |
|
5 | """Spectra processing Unit and operations | |
6 |
|
6 | |||
7 | Here you will find the processing unit `SpectraProc` and several operations |
|
7 | Here you will find the processing unit `SpectraProc` and several operations | |
8 | to work with Spectra data type |
|
8 | to work with Spectra data type | |
9 | """ |
|
9 | """ | |
10 |
|
10 | |||
11 | import time |
|
11 | import time | |
12 | import itertools |
|
12 | import itertools | |
13 |
|
13 | |||
14 | import numpy |
|
14 | import numpy | |
15 | import math |
|
15 | import math | |
16 |
|
16 | |||
17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation | |
18 | from schainpy.model.data.jrodata import Spectra |
|
18 | from schainpy.model.data.jrodata import Spectra | |
19 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
19 | from schainpy.model.data.jrodata import hildebrand_sekhon | |
20 | from schainpy.utils import log |
|
20 | from schainpy.utils import log | |
21 |
|
21 | |||
22 | from scipy.optimize import curve_fit |
|
22 | from scipy.optimize import curve_fit | |
23 |
|
23 | |||
24 | class SpectraProc(ProcessingUnit): |
|
24 | class SpectraProc(ProcessingUnit): | |
25 |
|
25 | |||
26 | def __init__(self): |
|
26 | def __init__(self): | |
27 |
|
27 | |||
28 | ProcessingUnit.__init__(self) |
|
28 | ProcessingUnit.__init__(self) | |
29 |
|
29 | |||
30 | self.buffer = None |
|
30 | self.buffer = None | |
31 | self.firstdatatime = None |
|
31 | self.firstdatatime = None | |
32 | self.profIndex = 0 |
|
32 | self.profIndex = 0 | |
33 | self.dataOut = Spectra() |
|
33 | self.dataOut = Spectra() | |
34 | self.id_min = None |
|
34 | self.id_min = None | |
35 | self.id_max = None |
|
35 | self.id_max = None | |
36 | self.setupReq = False #Agregar a todas las unidades de proc |
|
36 | self.setupReq = False #Agregar a todas las unidades de proc | |
37 |
|
37 | |||
38 | def __updateSpecFromVoltage(self): |
|
38 | def __updateSpecFromVoltage(self): | |
39 |
|
39 | |||
40 | self.dataOut.timeZone = self.dataIn.timeZone |
|
40 | self.dataOut.timeZone = self.dataIn.timeZone | |
41 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
41 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
42 | self.dataOut.errorCount = self.dataIn.errorCount |
|
42 | self.dataOut.errorCount = self.dataIn.errorCount | |
43 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
43 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
44 | try: |
|
44 | try: | |
45 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
45 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
46 | except: |
|
46 | except: | |
47 | pass |
|
47 | pass | |
48 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
48 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
49 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
49 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
50 | self.dataOut.channelList = self.dataIn.channelList |
|
50 | self.dataOut.channelList = self.dataIn.channelList | |
51 | self.dataOut.heightList = self.dataIn.heightList |
|
51 | self.dataOut.heightList = self.dataIn.heightList | |
52 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
52 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
53 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
53 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
54 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
54 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
55 | self.dataOut.utctime = self.firstdatatime |
|
55 | self.dataOut.utctime = self.firstdatatime | |
56 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
56 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData | |
57 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
57 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData | |
58 | self.dataOut.flagShiftFFT = False |
|
58 | self.dataOut.flagShiftFFT = False | |
59 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
59 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
60 | self.dataOut.nIncohInt = 1 |
|
60 | self.dataOut.nIncohInt = 1 | |
61 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
61 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
62 | self.dataOut.frequency = self.dataIn.frequency |
|
62 | self.dataOut.frequency = self.dataIn.frequency | |
63 | self.dataOut.realtime = self.dataIn.realtime |
|
63 | self.dataOut.realtime = self.dataIn.realtime | |
64 | self.dataOut.azimuth = self.dataIn.azimuth |
|
64 | self.dataOut.azimuth = self.dataIn.azimuth | |
65 | self.dataOut.zenith = self.dataIn.zenith |
|
65 | self.dataOut.zenith = self.dataIn.zenith | |
66 | self.dataOut.codeList = self.dataIn.codeList |
|
66 | self.dataOut.codeList = self.dataIn.codeList | |
67 | self.dataOut.azimuthList = self.dataIn.azimuthList |
|
67 | self.dataOut.azimuthList = self.dataIn.azimuthList | |
68 | self.dataOut.elevationList = self.dataIn.elevationList |
|
68 | self.dataOut.elevationList = self.dataIn.elevationList | |
69 |
|
69 | |||
70 |
|
70 | |||
71 | def __getFft(self): |
|
71 | def __getFft(self): | |
72 | """ |
|
72 | """ | |
73 | Convierte valores de Voltaje a Spectra |
|
73 | Convierte valores de Voltaje a Spectra | |
74 |
|
74 | |||
75 | Affected: |
|
75 | Affected: | |
76 | self.dataOut.data_spc |
|
76 | self.dataOut.data_spc | |
77 | self.dataOut.data_cspc |
|
77 | self.dataOut.data_cspc | |
78 | self.dataOut.data_dc |
|
78 | self.dataOut.data_dc | |
79 | self.dataOut.heightList |
|
79 | self.dataOut.heightList | |
80 | self.profIndex |
|
80 | self.profIndex | |
81 | self.buffer |
|
81 | self.buffer | |
82 | self.dataOut.flagNoData |
|
82 | self.dataOut.flagNoData | |
83 | """ |
|
83 | """ | |
84 | fft_volt = numpy.fft.fft( |
|
84 | fft_volt = numpy.fft.fft( | |
85 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
85 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) | |
86 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
86 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |
87 | dc = fft_volt[:, 0, :] |
|
87 | dc = fft_volt[:, 0, :] | |
88 |
|
88 | |||
89 | # calculo de self-spectra |
|
89 | # calculo de self-spectra | |
90 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
90 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) | |
91 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
91 | spc = fft_volt * numpy.conjugate(fft_volt) | |
92 | spc = spc.real |
|
92 | spc = spc.real | |
93 |
|
93 | |||
94 | blocksize = 0 |
|
94 | blocksize = 0 | |
95 | blocksize += dc.size |
|
95 | blocksize += dc.size | |
96 | blocksize += spc.size |
|
96 | blocksize += spc.size | |
97 |
|
97 | |||
98 | cspc = None |
|
98 | cspc = None | |
99 | pairIndex = 0 |
|
99 | pairIndex = 0 | |
100 | if self.dataOut.pairsList != None: |
|
100 | if self.dataOut.pairsList != None: | |
101 | # calculo de cross-spectra |
|
101 | # calculo de cross-spectra | |
102 | cspc = numpy.zeros( |
|
102 | cspc = numpy.zeros( | |
103 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
103 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |
104 | for pair in self.dataOut.pairsList: |
|
104 | for pair in self.dataOut.pairsList: | |
105 | if pair[0] not in self.dataOut.channelList: |
|
105 | if pair[0] not in self.dataOut.channelList: | |
106 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
106 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( | |
107 | str(pair), str(self.dataOut.channelList))) |
|
107 | str(pair), str(self.dataOut.channelList))) | |
108 | if pair[1] not in self.dataOut.channelList: |
|
108 | if pair[1] not in self.dataOut.channelList: | |
109 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
109 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( | |
110 | str(pair), str(self.dataOut.channelList))) |
|
110 | str(pair), str(self.dataOut.channelList))) | |
111 |
|
111 | |||
112 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
112 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ | |
113 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
113 | numpy.conjugate(fft_volt[pair[1], :, :]) | |
114 | pairIndex += 1 |
|
114 | pairIndex += 1 | |
115 | blocksize += cspc.size |
|
115 | blocksize += cspc.size | |
116 |
|
116 | |||
117 | self.dataOut.data_spc = spc |
|
117 | self.dataOut.data_spc = spc | |
118 | self.dataOut.data_cspc = cspc |
|
118 | self.dataOut.data_cspc = cspc | |
119 | self.dataOut.data_dc = dc |
|
119 | self.dataOut.data_dc = dc | |
120 | self.dataOut.blockSize = blocksize |
|
120 | self.dataOut.blockSize = blocksize | |
121 | self.dataOut.flagShiftFFT = False |
|
121 | self.dataOut.flagShiftFFT = False | |
122 |
|
122 | |||
123 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): |
|
123 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): | |
124 |
|
124 | |||
125 | if self.dataIn.type == "Spectra": |
|
125 | if self.dataIn.type == "Spectra": | |
126 |
|
126 | |||
127 | try: |
|
127 | try: | |
128 | self.dataOut.copy(self.dataIn) |
|
128 | self.dataOut.copy(self.dataIn) | |
129 |
|
129 | |||
130 | except Exception as e: |
|
130 | except Exception as e: | |
131 | print(e) |
|
131 | print(e) | |
132 |
|
132 | |||
133 | if shift_fft: |
|
133 | if shift_fft: | |
134 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
134 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
135 | shift = int(self.dataOut.nFFTPoints/2) |
|
135 | shift = int(self.dataOut.nFFTPoints/2) | |
136 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
136 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) | |
137 |
|
137 | |||
138 | if self.dataOut.data_cspc is not None: |
|
138 | if self.dataOut.data_cspc is not None: | |
139 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
139 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
140 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
140 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) | |
141 | if pairsList: |
|
141 | if pairsList: | |
142 | self.__selectPairs(pairsList) |
|
142 | self.__selectPairs(pairsList) | |
143 |
|
143 | |||
144 |
|
144 | |||
145 | elif self.dataIn.type == "Voltage": |
|
145 | elif self.dataIn.type == "Voltage": | |
146 |
|
146 | |||
147 | self.dataOut.flagNoData = True |
|
147 | self.dataOut.flagNoData = True | |
148 |
|
148 | |||
149 | if nFFTPoints == None: |
|
149 | if nFFTPoints == None: | |
150 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
150 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") | |
151 |
|
151 | |||
152 | if nProfiles == None: |
|
152 | if nProfiles == None: | |
153 | nProfiles = nFFTPoints |
|
153 | nProfiles = nFFTPoints | |
154 |
|
154 | |||
155 | if ippFactor == None: |
|
155 | if ippFactor == None: | |
156 | self.dataOut.ippFactor = 1 |
|
156 | self.dataOut.ippFactor = 1 | |
157 |
|
157 | |||
158 | self.dataOut.nFFTPoints = nFFTPoints |
|
158 | self.dataOut.nFFTPoints = nFFTPoints | |
159 |
|
159 | |||
160 | if self.buffer is None: |
|
160 | if self.buffer is None: | |
161 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
161 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
162 | nProfiles, |
|
162 | nProfiles, | |
163 | self.dataIn.nHeights), |
|
163 | self.dataIn.nHeights), | |
164 | dtype='complex') |
|
164 | dtype='complex') | |
165 |
|
165 | |||
166 | if self.dataIn.flagDataAsBlock: |
|
166 | if self.dataIn.flagDataAsBlock: | |
167 | nVoltProfiles = self.dataIn.data.shape[1] |
|
167 | nVoltProfiles = self.dataIn.data.shape[1] | |
168 |
|
168 | |||
169 | if nVoltProfiles == nProfiles: |
|
169 | if nVoltProfiles == nProfiles: | |
170 | self.buffer = self.dataIn.data.copy() |
|
170 | self.buffer = self.dataIn.data.copy() | |
171 | self.profIndex = nVoltProfiles |
|
171 | self.profIndex = nVoltProfiles | |
172 |
|
172 | |||
173 | elif nVoltProfiles < nProfiles: |
|
173 | elif nVoltProfiles < nProfiles: | |
174 |
|
174 | |||
175 | if self.profIndex == 0: |
|
175 | if self.profIndex == 0: | |
176 | self.id_min = 0 |
|
176 | self.id_min = 0 | |
177 | self.id_max = nVoltProfiles |
|
177 | self.id_max = nVoltProfiles | |
178 |
|
178 | |||
179 | self.buffer[:, self.id_min:self.id_max, |
|
179 | self.buffer[:, self.id_min:self.id_max, | |
180 | :] = self.dataIn.data |
|
180 | :] = self.dataIn.data | |
181 | self.profIndex += nVoltProfiles |
|
181 | self.profIndex += nVoltProfiles | |
182 | self.id_min += nVoltProfiles |
|
182 | self.id_min += nVoltProfiles | |
183 | self.id_max += nVoltProfiles |
|
183 | self.id_max += nVoltProfiles | |
184 | else: |
|
184 | else: | |
185 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
185 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( | |
186 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
186 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) | |
187 | self.dataOut.flagNoData = True |
|
187 | self.dataOut.flagNoData = True | |
188 | else: |
|
188 | else: | |
189 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
189 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() | |
190 | self.profIndex += 1 |
|
190 | self.profIndex += 1 | |
191 |
|
191 | |||
192 | if self.firstdatatime == None: |
|
192 | if self.firstdatatime == None: | |
193 | self.firstdatatime = self.dataIn.utctime |
|
193 | self.firstdatatime = self.dataIn.utctime | |
194 |
|
194 | |||
195 | if self.profIndex == nProfiles: |
|
195 | if self.profIndex == nProfiles: | |
196 | self.__updateSpecFromVoltage() |
|
196 | self.__updateSpecFromVoltage() | |
197 | if pairsList == None: |
|
197 | if pairsList == None: | |
198 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
198 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] | |
199 | else: |
|
199 | else: | |
200 | self.dataOut.pairsList = pairsList |
|
200 | self.dataOut.pairsList = pairsList | |
201 | self.__getFft() |
|
201 | self.__getFft() | |
202 | self.dataOut.flagNoData = False |
|
202 | self.dataOut.flagNoData = False | |
203 | self.firstdatatime = None |
|
203 | self.firstdatatime = None | |
204 | self.profIndex = 0 |
|
204 | self.profIndex = 0 | |
205 | self.dataOut.noise_estimation = None |
|
205 | ||
206 | else: |
|
206 | else: | |
207 | raise ValueError("The type of input object '%s' is not valid".format( |
|
207 | raise ValueError("The type of input object '%s' is not valid".format( | |
208 | self.dataIn.type)) |
|
208 | self.dataIn.type)) | |
209 |
|
209 | |||
210 | def __selectPairs(self, pairsList): |
|
210 | def __selectPairs(self, pairsList): | |
211 |
|
211 | |||
212 | if not pairsList: |
|
212 | if not pairsList: | |
213 | return |
|
213 | return | |
214 |
|
214 | |||
215 | pairs = [] |
|
215 | pairs = [] | |
216 | pairsIndex = [] |
|
216 | pairsIndex = [] | |
217 |
|
217 | |||
218 | for pair in pairsList: |
|
218 | for pair in pairsList: | |
219 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
219 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: | |
220 | continue |
|
220 | continue | |
221 | pairs.append(pair) |
|
221 | pairs.append(pair) | |
222 | pairsIndex.append(pairs.index(pair)) |
|
222 | pairsIndex.append(pairs.index(pair)) | |
223 |
|
223 | |||
224 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
224 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] | |
225 | self.dataOut.pairsList = pairs |
|
225 | self.dataOut.pairsList = pairs | |
226 |
|
226 | |||
227 | return |
|
227 | return | |
228 |
|
228 | |||
229 | def selectFFTs(self, minFFT, maxFFT ): |
|
229 | def selectFFTs(self, minFFT, maxFFT ): | |
230 | """ |
|
230 | """ | |
231 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
231 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |
232 | minFFT<= FFT <= maxFFT |
|
232 | minFFT<= FFT <= maxFFT | |
233 | """ |
|
233 | """ | |
234 |
|
234 | |||
235 | if (minFFT > maxFFT): |
|
235 | if (minFFT > maxFFT): | |
236 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
236 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) | |
237 |
|
237 | |||
238 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
238 | if (minFFT < self.dataOut.getFreqRange()[0]): | |
239 | minFFT = self.dataOut.getFreqRange()[0] |
|
239 | minFFT = self.dataOut.getFreqRange()[0] | |
240 |
|
240 | |||
241 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
241 | if (maxFFT > self.dataOut.getFreqRange()[-1]): | |
242 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
242 | maxFFT = self.dataOut.getFreqRange()[-1] | |
243 |
|
243 | |||
244 | minIndex = 0 |
|
244 | minIndex = 0 | |
245 | maxIndex = 0 |
|
245 | maxIndex = 0 | |
246 | FFTs = self.dataOut.getFreqRange() |
|
246 | FFTs = self.dataOut.getFreqRange() | |
247 |
|
247 | |||
248 | inda = numpy.where(FFTs >= minFFT) |
|
248 | inda = numpy.where(FFTs >= minFFT) | |
249 | indb = numpy.where(FFTs <= maxFFT) |
|
249 | indb = numpy.where(FFTs <= maxFFT) | |
250 |
|
250 | |||
251 | try: |
|
251 | try: | |
252 | minIndex = inda[0][0] |
|
252 | minIndex = inda[0][0] | |
253 | except: |
|
253 | except: | |
254 | minIndex = 0 |
|
254 | minIndex = 0 | |
255 |
|
255 | |||
256 | try: |
|
256 | try: | |
257 | maxIndex = indb[0][-1] |
|
257 | maxIndex = indb[0][-1] | |
258 | except: |
|
258 | except: | |
259 | maxIndex = len(FFTs) |
|
259 | maxIndex = len(FFTs) | |
260 |
|
260 | |||
261 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
261 | self.selectFFTsByIndex(minIndex, maxIndex) | |
262 |
|
262 | |||
263 | return 1 |
|
263 | return 1 | |
264 |
|
264 | |||
265 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
265 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): | |
266 | newheis = numpy.where( |
|
266 | newheis = numpy.where( | |
267 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
267 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
268 |
|
268 | |||
269 | if hei_ref != None: |
|
269 | if hei_ref != None: | |
270 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
270 | newheis = numpy.where(self.dataOut.heightList > hei_ref) | |
271 |
|
271 | |||
272 | minIndex = min(newheis[0]) |
|
272 | minIndex = min(newheis[0]) | |
273 | maxIndex = max(newheis[0]) |
|
273 | maxIndex = max(newheis[0]) | |
274 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
274 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
275 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
275 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
276 |
|
276 | |||
277 | # determina indices |
|
277 | # determina indices | |
278 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
278 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / | |
279 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
279 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) | |
280 | avg_dB = 10 * \ |
|
280 | avg_dB = 10 * \ | |
281 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
281 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) | |
282 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
282 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |
283 | beacon_heiIndexList = [] |
|
283 | beacon_heiIndexList = [] | |
284 | for val in avg_dB.tolist(): |
|
284 | for val in avg_dB.tolist(): | |
285 | if val >= beacon_dB[0]: |
|
285 | if val >= beacon_dB[0]: | |
286 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
286 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |
287 |
|
287 | |||
288 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
288 | #data_spc = data_spc[:,:,beacon_heiIndexList] | |
289 | data_cspc = None |
|
289 | data_cspc = None | |
290 | if self.dataOut.data_cspc is not None: |
|
290 | if self.dataOut.data_cspc is not None: | |
291 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
291 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
292 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
292 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] | |
293 |
|
293 | |||
294 | data_dc = None |
|
294 | data_dc = None | |
295 | if self.dataOut.data_dc is not None: |
|
295 | if self.dataOut.data_dc is not None: | |
296 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
296 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
297 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
297 | #data_dc = data_dc[:,beacon_heiIndexList] | |
298 |
|
298 | |||
299 | self.dataOut.data_spc = data_spc |
|
299 | self.dataOut.data_spc = data_spc | |
300 | self.dataOut.data_cspc = data_cspc |
|
300 | self.dataOut.data_cspc = data_cspc | |
301 | self.dataOut.data_dc = data_dc |
|
301 | self.dataOut.data_dc = data_dc | |
302 | self.dataOut.heightList = heightList |
|
302 | self.dataOut.heightList = heightList | |
303 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
303 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |
304 |
|
304 | |||
305 | return 1 |
|
305 | return 1 | |
306 |
|
306 | |||
307 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
307 | def selectFFTsByIndex(self, minIndex, maxIndex): | |
308 | """ |
|
308 | """ | |
309 |
|
309 | |||
310 | """ |
|
310 | """ | |
311 |
|
311 | |||
312 | if (minIndex < 0) or (minIndex > maxIndex): |
|
312 | if (minIndex < 0) or (minIndex > maxIndex): | |
313 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
313 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
314 |
|
314 | |||
315 | if (maxIndex >= self.dataOut.nProfiles): |
|
315 | if (maxIndex >= self.dataOut.nProfiles): | |
316 | maxIndex = self.dataOut.nProfiles-1 |
|
316 | maxIndex = self.dataOut.nProfiles-1 | |
317 |
|
317 | |||
318 | #Spectra |
|
318 | #Spectra | |
319 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
319 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] | |
320 |
|
320 | |||
321 | data_cspc = None |
|
321 | data_cspc = None | |
322 | if self.dataOut.data_cspc is not None: |
|
322 | if self.dataOut.data_cspc is not None: | |
323 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
323 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] | |
324 |
|
324 | |||
325 | data_dc = None |
|
325 | data_dc = None | |
326 | if self.dataOut.data_dc is not None: |
|
326 | if self.dataOut.data_dc is not None: | |
327 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
327 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] | |
328 |
|
328 | |||
329 | self.dataOut.data_spc = data_spc |
|
329 | self.dataOut.data_spc = data_spc | |
330 | self.dataOut.data_cspc = data_cspc |
|
330 | self.dataOut.data_cspc = data_cspc | |
331 | self.dataOut.data_dc = data_dc |
|
331 | self.dataOut.data_dc = data_dc | |
332 |
|
332 | |||
333 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
333 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) | |
334 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
334 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] | |
335 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
335 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] | |
336 |
|
336 | |||
337 | return 1 |
|
337 | return 1 | |
338 |
|
338 | |||
339 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
339 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |
340 | # validacion de rango |
|
340 | # validacion de rango | |
341 | if minHei == None: |
|
341 | if minHei == None: | |
342 | minHei = self.dataOut.heightList[0] |
|
342 | minHei = self.dataOut.heightList[0] | |
343 |
|
343 | |||
344 | if maxHei == None: |
|
344 | if maxHei == None: | |
345 | maxHei = self.dataOut.heightList[-1] |
|
345 | maxHei = self.dataOut.heightList[-1] | |
346 |
|
346 | |||
347 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
347 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
348 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
348 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
349 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
349 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
350 | minHei = self.dataOut.heightList[0] |
|
350 | minHei = self.dataOut.heightList[0] | |
351 |
|
351 | |||
352 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
352 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
353 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
353 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
354 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
354 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
355 | maxHei = self.dataOut.heightList[-1] |
|
355 | maxHei = self.dataOut.heightList[-1] | |
356 |
|
356 | |||
357 | # validacion de velocidades |
|
357 | # validacion de velocidades | |
358 | velrange = self.dataOut.getVelRange(1) |
|
358 | velrange = self.dataOut.getVelRange(1) | |
359 |
|
359 | |||
360 | if minVel == None: |
|
360 | if minVel == None: | |
361 | minVel = velrange[0] |
|
361 | minVel = velrange[0] | |
362 |
|
362 | |||
363 | if maxVel == None: |
|
363 | if maxVel == None: | |
364 | maxVel = velrange[-1] |
|
364 | maxVel = velrange[-1] | |
365 |
|
365 | |||
366 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
366 | if (minVel < velrange[0]) or (minVel > maxVel): | |
367 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
367 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |
368 | print('minVel is setting to %.2f' % (velrange[0])) |
|
368 | print('minVel is setting to %.2f' % (velrange[0])) | |
369 | minVel = velrange[0] |
|
369 | minVel = velrange[0] | |
370 |
|
370 | |||
371 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
371 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
372 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
372 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |
373 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
373 | print('maxVel is setting to %.2f' % (velrange[-1])) | |
374 | maxVel = velrange[-1] |
|
374 | maxVel = velrange[-1] | |
375 |
|
375 | |||
376 | # seleccion de indices para rango |
|
376 | # seleccion de indices para rango | |
377 | minIndex = 0 |
|
377 | minIndex = 0 | |
378 | maxIndex = 0 |
|
378 | maxIndex = 0 | |
379 | heights = self.dataOut.heightList |
|
379 | heights = self.dataOut.heightList | |
380 |
|
380 | |||
381 | inda = numpy.where(heights >= minHei) |
|
381 | inda = numpy.where(heights >= minHei) | |
382 | indb = numpy.where(heights <= maxHei) |
|
382 | indb = numpy.where(heights <= maxHei) | |
383 |
|
383 | |||
384 | try: |
|
384 | try: | |
385 | minIndex = inda[0][0] |
|
385 | minIndex = inda[0][0] | |
386 | except: |
|
386 | except: | |
387 | minIndex = 0 |
|
387 | minIndex = 0 | |
388 |
|
388 | |||
389 | try: |
|
389 | try: | |
390 | maxIndex = indb[0][-1] |
|
390 | maxIndex = indb[0][-1] | |
391 | except: |
|
391 | except: | |
392 | maxIndex = len(heights) |
|
392 | maxIndex = len(heights) | |
393 |
|
393 | |||
394 | if (minIndex < 0) or (minIndex > maxIndex): |
|
394 | if (minIndex < 0) or (minIndex > maxIndex): | |
395 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
395 | raise ValueError("some value in (%d,%d) is not valid" % ( | |
396 | minIndex, maxIndex)) |
|
396 | minIndex, maxIndex)) | |
397 |
|
397 | |||
398 | if (maxIndex >= self.dataOut.nHeights): |
|
398 | if (maxIndex >= self.dataOut.nHeights): | |
399 | maxIndex = self.dataOut.nHeights - 1 |
|
399 | maxIndex = self.dataOut.nHeights - 1 | |
400 |
|
400 | |||
401 | # seleccion de indices para velocidades |
|
401 | # seleccion de indices para velocidades | |
402 | indminvel = numpy.where(velrange >= minVel) |
|
402 | indminvel = numpy.where(velrange >= minVel) | |
403 | indmaxvel = numpy.where(velrange <= maxVel) |
|
403 | indmaxvel = numpy.where(velrange <= maxVel) | |
404 | try: |
|
404 | try: | |
405 | minIndexVel = indminvel[0][0] |
|
405 | minIndexVel = indminvel[0][0] | |
406 | except: |
|
406 | except: | |
407 | minIndexVel = 0 |
|
407 | minIndexVel = 0 | |
408 |
|
408 | |||
409 | try: |
|
409 | try: | |
410 | maxIndexVel = indmaxvel[0][-1] |
|
410 | maxIndexVel = indmaxvel[0][-1] | |
411 | except: |
|
411 | except: | |
412 | maxIndexVel = len(velrange) |
|
412 | maxIndexVel = len(velrange) | |
413 |
|
413 | |||
414 | # seleccion del espectro |
|
414 | # seleccion del espectro | |
415 | data_spc = self.dataOut.data_spc[:, |
|
415 | data_spc = self.dataOut.data_spc[:, | |
416 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
416 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] | |
417 | # estimacion de ruido |
|
417 | # estimacion de ruido | |
418 | noise = numpy.zeros(self.dataOut.nChannels) |
|
418 | noise = numpy.zeros(self.dataOut.nChannels) | |
419 |
|
419 | |||
420 | for channel in range(self.dataOut.nChannels): |
|
420 | for channel in range(self.dataOut.nChannels): | |
421 | daux = data_spc[channel, :, :] |
|
421 | daux = data_spc[channel, :, :] | |
422 | sortdata = numpy.sort(daux, axis=None) |
|
422 | sortdata = numpy.sort(daux, axis=None) | |
423 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
423 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) | |
424 |
|
424 | |||
425 | self.dataOut.noise_estimation = noise.copy() |
|
425 | self.dataOut.noise_estimation = noise.copy() | |
426 |
|
426 | |||
427 | return 1 |
|
427 | return 1 | |
428 |
|
428 | |||
429 | class removeDC(Operation): |
|
429 | class removeDC(Operation): | |
430 |
|
430 | |||
431 | def run(self, dataOut, mode=2): |
|
431 | def run(self, dataOut, mode=2): | |
432 | self.dataOut = dataOut |
|
432 | self.dataOut = dataOut | |
433 | jspectra = self.dataOut.data_spc |
|
433 | jspectra = self.dataOut.data_spc | |
434 | jcspectra = self.dataOut.data_cspc |
|
434 | jcspectra = self.dataOut.data_cspc | |
435 |
|
435 | |||
436 | num_chan = jspectra.shape[0] |
|
436 | num_chan = jspectra.shape[0] | |
437 | num_hei = jspectra.shape[2] |
|
437 | num_hei = jspectra.shape[2] | |
438 |
|
438 | |||
439 | if jcspectra is not None: |
|
439 | if jcspectra is not None: | |
440 | jcspectraExist = True |
|
440 | jcspectraExist = True | |
441 | num_pairs = jcspectra.shape[0] |
|
441 | num_pairs = jcspectra.shape[0] | |
442 | else: |
|
442 | else: | |
443 | jcspectraExist = False |
|
443 | jcspectraExist = False | |
444 |
|
444 | |||
445 | freq_dc = int(jspectra.shape[1] / 2) |
|
445 | freq_dc = int(jspectra.shape[1] / 2) | |
446 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
446 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
447 | ind_vel = ind_vel.astype(int) |
|
447 | ind_vel = ind_vel.astype(int) | |
448 |
|
448 | |||
449 | if ind_vel[0] < 0: |
|
449 | if ind_vel[0] < 0: | |
450 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
450 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof | |
451 |
|
451 | |||
452 | if mode == 1: |
|
452 | if mode == 1: | |
453 | jspectra[:, freq_dc, :] = ( |
|
453 | jspectra[:, freq_dc, :] = ( | |
454 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
454 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
455 |
|
455 | |||
456 | if jcspectraExist: |
|
456 | if jcspectraExist: | |
457 | jcspectra[:, freq_dc, :] = ( |
|
457 | jcspectra[:, freq_dc, :] = ( | |
458 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
458 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 | |
459 |
|
459 | |||
460 | if mode == 2: |
|
460 | if mode == 2: | |
461 |
|
461 | |||
462 | vel = numpy.array([-2, -1, 1, 2]) |
|
462 | vel = numpy.array([-2, -1, 1, 2]) | |
463 | xx = numpy.zeros([4, 4]) |
|
463 | xx = numpy.zeros([4, 4]) | |
464 |
|
464 | |||
465 | for fil in range(4): |
|
465 | for fil in range(4): | |
466 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
466 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
467 |
|
467 | |||
468 | xx_inv = numpy.linalg.inv(xx) |
|
468 | xx_inv = numpy.linalg.inv(xx) | |
469 | xx_aux = xx_inv[0, :] |
|
469 | xx_aux = xx_inv[0, :] | |
470 |
|
470 | |||
471 | for ich in range(num_chan): |
|
471 | for ich in range(num_chan): | |
472 | yy = jspectra[ich, ind_vel, :] |
|
472 | yy = jspectra[ich, ind_vel, :] | |
473 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
473 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
474 |
|
474 | |||
475 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
475 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
476 | cjunkid = sum(junkid) |
|
476 | cjunkid = sum(junkid) | |
477 |
|
477 | |||
478 | if cjunkid.any(): |
|
478 | if cjunkid.any(): | |
479 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
479 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
480 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
480 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
481 |
|
481 | |||
482 | if jcspectraExist: |
|
482 | if jcspectraExist: | |
483 | for ip in range(num_pairs): |
|
483 | for ip in range(num_pairs): | |
484 | yy = jcspectra[ip, ind_vel, :] |
|
484 | yy = jcspectra[ip, ind_vel, :] | |
485 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
485 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) | |
486 |
|
486 | |||
487 | self.dataOut.data_spc = jspectra |
|
487 | self.dataOut.data_spc = jspectra | |
488 | self.dataOut.data_cspc = jcspectra |
|
488 | self.dataOut.data_cspc = jcspectra | |
489 |
|
489 | |||
490 | return self.dataOut |
|
490 | return self.dataOut | |
491 |
|
491 | |||
492 | class getNoise(Operation): |
|
492 | class getNoise(Operation): | |
|
493 | ||||
493 | def __init__(self): |
|
494 | def __init__(self): | |
494 |
|
495 | |||
495 | Operation.__init__(self) |
|
496 | Operation.__init__(self) | |
496 |
|
497 | |||
497 |
def run(self, dataOut, minHei=None, maxHei=None, |
|
498 | def run(self, dataOut, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None): | |
498 |
self.dataOut = dataOut |
|
499 | self.dataOut = dataOut | |
499 | print("1: ",dataOut.noise_estimation, dataOut.normFactor) |
|
|||
500 |
|
500 | |||
501 | if minHei == None: |
|
501 | if minHei == None: | |
502 | minHei = self.dataOut.heightList[0] |
|
502 | minHei = self.dataOut.heightList[0] | |
503 |
|
503 | |||
504 | if maxHei == None: |
|
504 | if maxHei == None: | |
505 | maxHei = self.dataOut.heightList[-1] |
|
505 | maxHei = self.dataOut.heightList[-1] | |
506 |
|
506 | |||
507 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
507 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
508 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
508 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
509 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
509 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
510 | minHei = self.dataOut.heightList[0] |
|
510 | minHei = self.dataOut.heightList[0] | |
511 |
|
511 | |||
512 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
512 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
513 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
513 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
514 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
514 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
515 | maxHei = self.dataOut.heightList[-1] |
|
515 | maxHei = self.dataOut.heightList[-1] | |
516 |
|
516 | |||
517 |
|
517 | |||
518 | #indices relativos a los puntos de fft, puede ser de acuerdo a velocidad o frecuencia |
|
518 | #indices relativos a los puntos de fft, puede ser de acuerdo a velocidad o frecuencia | |
519 | minIndexFFT = 0 |
|
519 | minIndexFFT = 0 | |
520 | maxIndexFFT = 0 |
|
520 | maxIndexFFT = 0 | |
521 | # validacion de velocidades |
|
521 | # validacion de velocidades | |
522 | indminPoint = None |
|
522 | indminPoint = None | |
523 | indmaxPoint = None |
|
523 | indmaxPoint = None | |
524 |
|
524 | |||
525 | if minVel == None and maxVel == None: |
|
525 | if minVel == None and maxVel == None: | |
526 |
|
526 | |||
527 | freqrange = self.dataOut.getFreqRange(1) |
|
527 | freqrange = self.dataOut.getFreqRange(1) | |
528 |
|
528 | |||
529 | if minFreq == None: |
|
529 | if minFreq == None: | |
530 | minFreq = freqrange[0] |
|
530 | minFreq = freqrange[0] | |
531 |
|
531 | |||
532 | if maxFreq == None: |
|
532 | if maxFreq == None: | |
533 | maxFreq = freqrange[-1] |
|
533 | maxFreq = freqrange[-1] | |
534 |
|
534 | |||
535 | if (minFreq < freqrange[0]) or (minFreq > maxFreq): |
|
535 | if (minFreq < freqrange[0]) or (minFreq > maxFreq): | |
536 | print('minFreq: %.2f is out of the frequency range' % (minFreq)) |
|
536 | print('minFreq: %.2f is out of the frequency range' % (minFreq)) | |
537 | print('minFreq is setting to %.2f' % (freqrange[0])) |
|
537 | print('minFreq is setting to %.2f' % (freqrange[0])) | |
538 | minFreq = freqrange[0] |
|
538 | minFreq = freqrange[0] | |
539 |
|
539 | |||
540 | if (maxFreq > freqrange[-1]) or (maxFreq < minFreq): |
|
540 | if (maxFreq > freqrange[-1]) or (maxFreq < minFreq): | |
541 | print('maxFreq: %.2f is out of the frequency range' % (maxFreq)) |
|
541 | print('maxFreq: %.2f is out of the frequency range' % (maxFreq)) | |
542 | print('maxFreq is setting to %.2f' % (freqrange[-1])) |
|
542 | print('maxFreq is setting to %.2f' % (freqrange[-1])) | |
543 | maxFreq = freqrange[-1] |
|
543 | maxFreq = freqrange[-1] | |
544 |
|
544 | |||
545 | indminPoint = numpy.where(freqrange >= minFreq) |
|
545 | indminPoint = numpy.where(freqrange >= minFreq) | |
546 | indmaxPoint = numpy.where(freqrange <= maxFreq) |
|
546 | indmaxPoint = numpy.where(freqrange <= maxFreq) | |
547 |
|
547 | |||
548 | else: |
|
548 | else: | |
549 | velrange = self.dataOut.getVelRange(1) |
|
549 | velrange = self.dataOut.getVelRange(1) | |
550 |
|
550 | |||
551 | if minVel == None: |
|
551 | if minVel == None: | |
552 | minVel = velrange[0] |
|
552 | minVel = velrange[0] | |
553 |
|
553 | |||
554 | if maxVel == None: |
|
554 | if maxVel == None: | |
555 | maxVel = velrange[-1] |
|
555 | maxVel = velrange[-1] | |
556 |
|
556 | |||
557 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
557 | if (minVel < velrange[0]) or (minVel > maxVel): | |
558 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
558 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |
559 | print('minVel is setting to %.2f' % (velrange[0])) |
|
559 | print('minVel is setting to %.2f' % (velrange[0])) | |
560 | minVel = velrange[0] |
|
560 | minVel = velrange[0] | |
561 |
|
561 | |||
562 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
562 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
563 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
563 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |
564 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
564 | print('maxVel is setting to %.2f' % (velrange[-1])) | |
565 | maxVel = velrange[-1] |
|
565 | maxVel = velrange[-1] | |
566 |
|
566 | |||
567 | indminPoint = numpy.where(velrange >= minVel) |
|
567 | indminPoint = numpy.where(velrange >= minVel) | |
568 | indmaxPoint = numpy.where(velrange <= maxVel) |
|
568 | indmaxPoint = numpy.where(velrange <= maxVel) | |
569 |
|
569 | |||
570 |
|
570 | |||
571 | # seleccion de indices para rango |
|
571 | # seleccion de indices para rango | |
572 | minIndex = 0 |
|
572 | minIndex = 0 | |
573 | maxIndex = 0 |
|
573 | maxIndex = 0 | |
574 | heights = self.dataOut.heightList |
|
574 | heights = self.dataOut.heightList | |
575 |
|
575 | |||
576 | inda = numpy.where(heights >= minHei) |
|
576 | inda = numpy.where(heights >= minHei) | |
577 | indb = numpy.where(heights <= maxHei) |
|
577 | indb = numpy.where(heights <= maxHei) | |
578 |
|
578 | |||
579 | try: |
|
579 | try: | |
580 | minIndex = inda[0][0] |
|
580 | minIndex = inda[0][0] | |
581 | except: |
|
581 | except: | |
582 | minIndex = 0 |
|
582 | minIndex = 0 | |
583 |
|
583 | |||
584 | try: |
|
584 | try: | |
585 | maxIndex = indb[0][-1] |
|
585 | maxIndex = indb[0][-1] | |
586 | except: |
|
586 | except: | |
587 | maxIndex = len(heights) |
|
587 | maxIndex = len(heights) | |
588 |
|
588 | |||
589 | if (minIndex < 0) or (minIndex > maxIndex): |
|
589 | if (minIndex < 0) or (minIndex > maxIndex): | |
590 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
590 | raise ValueError("some value in (%d,%d) is not valid" % ( | |
591 | minIndex, maxIndex)) |
|
591 | minIndex, maxIndex)) | |
592 |
|
592 | |||
593 | if (maxIndex >= self.dataOut.nHeights): |
|
593 | if (maxIndex >= self.dataOut.nHeights): | |
594 | maxIndex = self.dataOut.nHeights - 1 |
|
594 | maxIndex = self.dataOut.nHeights - 1 | |
595 | #############################################################3 |
|
595 | #############################################################3 | |
596 | # seleccion de indices para velocidades |
|
596 | # seleccion de indices para velocidades | |
597 |
|
597 | |||
598 | try: |
|
598 | try: | |
599 | minIndexFFT = indminPoint[0][0] |
|
599 | minIndexFFT = indminPoint[0][0] | |
600 | except: |
|
600 | except: | |
601 | minIndexFFT = 0 |
|
601 | minIndexFFT = 0 | |
602 |
|
602 | |||
603 | try: |
|
603 | try: | |
604 | maxIndexFFT = indmaxPoint[0][-1] |
|
604 | maxIndexFFT = indmaxPoint[0][-1] | |
605 | except: |
|
605 | except: | |
606 | maxIndexFFT = len( self.dataOut.getFreqRange(1)) |
|
606 | maxIndexFFT = len( self.dataOut.getFreqRange(1)) | |
607 |
|
607 | |||
608 | #print(minIndex, maxIndex,minIndexVel, maxIndexVel) |
|
608 | #print(minIndex, maxIndex,minIndexVel, maxIndexVel) | |
|
609 | self.dataOut.noise_estimation = None | |||
609 | noise = self.dataOut.getNoise(xmin_index=minIndexFFT, xmax_index=maxIndexFFT, ymin_index=minIndex, ymax_index=maxIndex) |
|
610 | noise = self.dataOut.getNoise(xmin_index=minIndexFFT, xmax_index=maxIndexFFT, ymin_index=minIndex, ymax_index=maxIndex) | |
610 |
|
611 | |||
611 | self.dataOut.noise_estimation = noise.copy() |
|
612 | self.dataOut.noise_estimation = noise.copy() # dataOut.noise | |
612 | #print("2: ",10*numpy.log10(self.dataOut.noise_estimation/64)) |
|
613 | #print("2: ",10*numpy.log10(self.dataOut.noise_estimation/64)) | |
613 | return self.dataOut |
|
614 | return self.dataOut | |
614 |
|
615 | |||
615 |
|
616 | |||
616 |
|
617 | |||
617 | # import matplotlib.pyplot as plt |
|
618 | # import matplotlib.pyplot as plt | |
618 |
|
619 | |||
619 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): |
|
620 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): | |
620 | z = (x - a1) / a2 |
|
621 | z = (x - a1) / a2 | |
621 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 |
|
622 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 | |
622 | return y |
|
623 | return y | |
623 |
|
624 | |||
624 |
|
625 | |||
625 | class CleanRayleigh(Operation): |
|
626 | class CleanRayleigh(Operation): | |
626 |
|
627 | |||
627 | def __init__(self): |
|
628 | def __init__(self): | |
628 |
|
629 | |||
629 | Operation.__init__(self) |
|
630 | Operation.__init__(self) | |
630 | self.i=0 |
|
631 | self.i=0 | |
631 | self.isConfig = False |
|
632 | self.isConfig = False | |
632 | self.__dataReady = False |
|
633 | self.__dataReady = False | |
633 | self.__profIndex = 0 |
|
634 | self.__profIndex = 0 | |
634 | self.byTime = False |
|
635 | self.byTime = False | |
635 | self.byProfiles = False |
|
636 | self.byProfiles = False | |
636 |
|
637 | |||
637 | self.bloques = None |
|
638 | self.bloques = None | |
638 | self.bloque0 = None |
|
639 | self.bloque0 = None | |
639 |
|
640 | |||
640 | self.index = 0 |
|
641 | self.index = 0 | |
641 |
|
642 | |||
642 | self.buffer = 0 |
|
643 | self.buffer = 0 | |
643 | self.buffer2 = 0 |
|
644 | self.buffer2 = 0 | |
644 | self.buffer3 = 0 |
|
645 | self.buffer3 = 0 | |
645 |
|
646 | |||
646 |
|
647 | |||
647 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): |
|
648 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): | |
648 |
|
649 | |||
649 | self.nChannels = dataOut.nChannels |
|
650 | self.nChannels = dataOut.nChannels | |
650 | self.nProf = dataOut.nProfiles |
|
651 | self.nProf = dataOut.nProfiles | |
651 | self.nPairs = dataOut.data_cspc.shape[0] |
|
652 | self.nPairs = dataOut.data_cspc.shape[0] | |
652 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
653 | self.pairsArray = numpy.array(dataOut.pairsList) | |
653 | self.spectra = dataOut.data_spc |
|
654 | self.spectra = dataOut.data_spc | |
654 | self.cspectra = dataOut.data_cspc |
|
655 | self.cspectra = dataOut.data_cspc | |
655 | self.heights = dataOut.heightList #alturas totales |
|
656 | self.heights = dataOut.heightList #alturas totales | |
656 | self.nHeights = len(self.heights) |
|
657 | self.nHeights = len(self.heights) | |
657 | self.min_hei = min_hei |
|
658 | self.min_hei = min_hei | |
658 | self.max_hei = max_hei |
|
659 | self.max_hei = max_hei | |
659 | if (self.min_hei == None): |
|
660 | if (self.min_hei == None): | |
660 | self.min_hei = 0 |
|
661 | self.min_hei = 0 | |
661 | if (self.max_hei == None): |
|
662 | if (self.max_hei == None): | |
662 | self.max_hei = dataOut.heightList[-1] |
|
663 | self.max_hei = dataOut.heightList[-1] | |
663 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() |
|
664 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() | |
664 | self.heightsClean = self.heights[self.hval] #alturas filtradas |
|
665 | self.heightsClean = self.heights[self.hval] #alturas filtradas | |
665 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas |
|
666 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas | |
666 | self.nHeightsClean = len(self.heightsClean) |
|
667 | self.nHeightsClean = len(self.heightsClean) | |
667 | self.channels = dataOut.channelList |
|
668 | self.channels = dataOut.channelList | |
668 | self.nChan = len(self.channels) |
|
669 | self.nChan = len(self.channels) | |
669 | self.nIncohInt = dataOut.nIncohInt |
|
670 | self.nIncohInt = dataOut.nIncohInt | |
670 | self.__initime = dataOut.utctime |
|
671 | self.__initime = dataOut.utctime | |
671 | self.maxAltInd = self.hval[-1]+1 |
|
672 | self.maxAltInd = self.hval[-1]+1 | |
672 | self.minAltInd = self.hval[0] |
|
673 | self.minAltInd = self.hval[0] | |
673 |
|
674 | |||
674 | self.crosspairs = dataOut.pairsList |
|
675 | self.crosspairs = dataOut.pairsList | |
675 | self.nPairs = len(self.crosspairs) |
|
676 | self.nPairs = len(self.crosspairs) | |
676 | self.normFactor = dataOut.normFactor |
|
677 | self.normFactor = dataOut.normFactor | |
677 | self.nFFTPoints = dataOut.nFFTPoints |
|
678 | self.nFFTPoints = dataOut.nFFTPoints | |
678 | self.ippSeconds = dataOut.ippSeconds |
|
679 | self.ippSeconds = dataOut.ippSeconds | |
679 | self.currentTime = self.__initime |
|
680 | self.currentTime = self.__initime | |
680 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
681 | self.pairsArray = numpy.array(dataOut.pairsList) | |
681 | self.factor_stdv = factor_stdv |
|
682 | self.factor_stdv = factor_stdv | |
682 |
|
683 | |||
683 | if n != None : |
|
684 | if n != None : | |
684 | self.byProfiles = True |
|
685 | self.byProfiles = True | |
685 | self.nIntProfiles = n |
|
686 | self.nIntProfiles = n | |
686 | else: |
|
687 | else: | |
687 | self.__integrationtime = timeInterval |
|
688 | self.__integrationtime = timeInterval | |
688 |
|
689 | |||
689 | self.__dataReady = False |
|
690 | self.__dataReady = False | |
690 | self.isConfig = True |
|
691 | self.isConfig = True | |
691 |
|
692 | |||
692 |
|
693 | |||
693 |
|
694 | |||
694 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): |
|
695 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): | |
695 |
|
696 | |||
696 | if not self.isConfig : |
|
697 | if not self.isConfig : | |
697 |
|
698 | |||
698 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) |
|
699 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) | |
699 |
|
700 | |||
700 | tini=dataOut.utctime |
|
701 | tini=dataOut.utctime | |
701 |
|
702 | |||
702 | if self.byProfiles: |
|
703 | if self.byProfiles: | |
703 | if self.__profIndex == self.nIntProfiles: |
|
704 | if self.__profIndex == self.nIntProfiles: | |
704 | self.__dataReady = True |
|
705 | self.__dataReady = True | |
705 | else: |
|
706 | else: | |
706 | if (tini - self.__initime) >= self.__integrationtime: |
|
707 | if (tini - self.__initime) >= self.__integrationtime: | |
707 |
|
708 | |||
708 | self.__dataReady = True |
|
709 | self.__dataReady = True | |
709 | self.__initime = tini |
|
710 | self.__initime = tini | |
710 |
|
711 | |||
711 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): |
|
712 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): | |
712 |
|
713 | |||
713 | if self.__dataReady: |
|
714 | if self.__dataReady: | |
714 |
|
715 | |||
715 | self.__profIndex = 0 |
|
716 | self.__profIndex = 0 | |
716 | jspc = self.buffer |
|
717 | jspc = self.buffer | |
717 | jcspc = self.buffer2 |
|
718 | jcspc = self.buffer2 | |
718 | #jnoise = self.buffer3 |
|
719 | #jnoise = self.buffer3 | |
719 | self.buffer = dataOut.data_spc |
|
720 | self.buffer = dataOut.data_spc | |
720 | self.buffer2 = dataOut.data_cspc |
|
721 | self.buffer2 = dataOut.data_cspc | |
721 | #self.buffer3 = dataOut.noise |
|
722 | #self.buffer3 = dataOut.noise | |
722 | self.currentTime = dataOut.utctime |
|
723 | self.currentTime = dataOut.utctime | |
723 | if numpy.any(jspc) : |
|
724 | if numpy.any(jspc) : | |
724 | #print( jspc.shape, jcspc.shape) |
|
725 | #print( jspc.shape, jcspc.shape) | |
725 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) |
|
726 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) | |
726 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) |
|
727 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) | |
727 | self.__dataReady = False |
|
728 | self.__dataReady = False | |
728 | #print( jspc.shape, jcspc.shape) |
|
729 | #print( jspc.shape, jcspc.shape) | |
729 | dataOut.flagNoData = False |
|
730 | dataOut.flagNoData = False | |
730 | else: |
|
731 | else: | |
731 | dataOut.flagNoData = True |
|
732 | dataOut.flagNoData = True | |
732 | self.__dataReady = False |
|
733 | self.__dataReady = False | |
733 | return dataOut |
|
734 | return dataOut | |
734 | else: |
|
735 | else: | |
735 | #print( len(self.buffer)) |
|
736 | #print( len(self.buffer)) | |
736 | if numpy.any(self.buffer): |
|
737 | if numpy.any(self.buffer): | |
737 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) |
|
738 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) | |
738 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) |
|
739 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) | |
739 | self.buffer3 += dataOut.data_dc |
|
740 | self.buffer3 += dataOut.data_dc | |
740 | else: |
|
741 | else: | |
741 | self.buffer = dataOut.data_spc |
|
742 | self.buffer = dataOut.data_spc | |
742 | self.buffer2 = dataOut.data_cspc |
|
743 | self.buffer2 = dataOut.data_cspc | |
743 | self.buffer3 = dataOut.data_dc |
|
744 | self.buffer3 = dataOut.data_dc | |
744 | #print self.index, self.fint |
|
745 | #print self.index, self.fint | |
745 | #print self.buffer2.shape |
|
746 | #print self.buffer2.shape | |
746 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO |
|
747 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO | |
747 | self.__profIndex += 1 |
|
748 | self.__profIndex += 1 | |
748 | return dataOut ## NOTE: REV |
|
749 | return dataOut ## NOTE: REV | |
749 |
|
750 | |||
750 |
|
751 | |||
751 | #index = tini.tm_hour*12+tini.tm_min/5 |
|
752 | #index = tini.tm_hour*12+tini.tm_min/5 | |
752 | '''REVISAR''' |
|
753 | '''REVISAR''' | |
753 | # jspc = jspc/self.nFFTPoints/self.normFactor |
|
754 | # jspc = jspc/self.nFFTPoints/self.normFactor | |
754 | # jcspc = jcspc/self.nFFTPoints/self.normFactor |
|
755 | # jcspc = jcspc/self.nFFTPoints/self.normFactor | |
755 |
|
756 | |||
756 |
|
757 | |||
757 |
|
758 | |||
758 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
759 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) | |
759 | dataOut.data_spc = tmp_spectra |
|
760 | dataOut.data_spc = tmp_spectra | |
760 | dataOut.data_cspc = tmp_cspectra |
|
761 | dataOut.data_cspc = tmp_cspectra | |
761 |
|
762 | |||
762 | #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
763 | #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) | |
763 |
|
764 | |||
764 | dataOut.data_dc = self.buffer3 |
|
765 | dataOut.data_dc = self.buffer3 | |
765 | dataOut.nIncohInt *= self.nIntProfiles |
|
766 | dataOut.nIncohInt *= self.nIntProfiles | |
766 | dataOut.utctime = self.currentTime #tiempo promediado |
|
767 | dataOut.utctime = self.currentTime #tiempo promediado | |
767 | #print("Time: ",time.localtime(dataOut.utctime)) |
|
768 | #print("Time: ",time.localtime(dataOut.utctime)) | |
768 | # dataOut.data_spc = sat_spectra |
|
769 | # dataOut.data_spc = sat_spectra | |
769 | # dataOut.data_cspc = sat_cspectra |
|
770 | # dataOut.data_cspc = sat_cspectra | |
770 | self.buffer = 0 |
|
771 | self.buffer = 0 | |
771 | self.buffer2 = 0 |
|
772 | self.buffer2 = 0 | |
772 | self.buffer3 = 0 |
|
773 | self.buffer3 = 0 | |
773 |
|
774 | |||
774 | return dataOut |
|
775 | return dataOut | |
775 |
|
776 | |||
776 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): |
|
777 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): | |
777 | #print("OP cleanRayleigh") |
|
778 | #print("OP cleanRayleigh") | |
778 | #import matplotlib.pyplot as plt |
|
779 | #import matplotlib.pyplot as plt | |
779 | #for k in range(149): |
|
780 | #for k in range(149): | |
780 | #channelsProcssd = [] |
|
781 | #channelsProcssd = [] | |
781 | #channelA_ok = False |
|
782 | #channelA_ok = False | |
782 | #rfunc = cspectra.copy() #self.bloques |
|
783 | #rfunc = cspectra.copy() #self.bloques | |
783 | rfunc = spectra.copy() |
|
784 | rfunc = spectra.copy() | |
784 | #rfunc = cspectra |
|
785 | #rfunc = cspectra | |
785 | #val_spc = spectra*0.0 #self.bloque0*0.0 |
|
786 | #val_spc = spectra*0.0 #self.bloque0*0.0 | |
786 | #val_cspc = cspectra*0.0 #self.bloques*0.0 |
|
787 | #val_cspc = cspectra*0.0 #self.bloques*0.0 | |
787 | #in_sat_spectra = spectra.copy() #self.bloque0 |
|
788 | #in_sat_spectra = spectra.copy() #self.bloque0 | |
788 | #in_sat_cspectra = cspectra.copy() #self.bloques |
|
789 | #in_sat_cspectra = cspectra.copy() #self.bloques | |
789 |
|
790 | |||
790 |
|
791 | |||
791 | ###ONLY FOR TEST: |
|
792 | ###ONLY FOR TEST: | |
792 | raxs = math.ceil(math.sqrt(self.nPairs)) |
|
793 | raxs = math.ceil(math.sqrt(self.nPairs)) | |
793 | caxs = math.ceil(self.nPairs/raxs) |
|
794 | caxs = math.ceil(self.nPairs/raxs) | |
794 | if self.nPairs <4: |
|
795 | if self.nPairs <4: | |
795 | raxs = 2 |
|
796 | raxs = 2 | |
796 | caxs = 2 |
|
797 | caxs = 2 | |
797 | #print(raxs, caxs) |
|
798 | #print(raxs, caxs) | |
798 | fft_rev = 14 #nFFT to plot |
|
799 | fft_rev = 14 #nFFT to plot | |
799 | hei_rev = ((self.heights >= 550) & (self.heights <= 551)).nonzero() #hei to plot |
|
800 | hei_rev = ((self.heights >= 550) & (self.heights <= 551)).nonzero() #hei to plot | |
800 | hei_rev = hei_rev[0] |
|
801 | hei_rev = hei_rev[0] | |
801 | #print(hei_rev) |
|
802 | #print(hei_rev) | |
802 |
|
803 | |||
803 | #print numpy.absolute(rfunc[:,0,0,14]) |
|
804 | #print numpy.absolute(rfunc[:,0,0,14]) | |
804 |
|
805 | |||
805 | gauss_fit, covariance = None, None |
|
806 | gauss_fit, covariance = None, None | |
806 | for ih in range(self.minAltInd,self.maxAltInd): |
|
807 | for ih in range(self.minAltInd,self.maxAltInd): | |
807 | for ifreq in range(self.nFFTPoints): |
|
808 | for ifreq in range(self.nFFTPoints): | |
808 | ''' |
|
809 | ''' | |
809 | ###ONLY FOR TEST: |
|
810 | ###ONLY FOR TEST: | |
810 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
811 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
811 | fig, axs = plt.subplots(raxs, caxs) |
|
812 | fig, axs = plt.subplots(raxs, caxs) | |
812 | fig2, axs2 = plt.subplots(raxs, caxs) |
|
813 | fig2, axs2 = plt.subplots(raxs, caxs) | |
813 | col_ax = 0 |
|
814 | col_ax = 0 | |
814 | row_ax = 0 |
|
815 | row_ax = 0 | |
815 | ''' |
|
816 | ''' | |
816 | #print(self.nPairs) |
|
817 | #print(self.nPairs) | |
817 | for ii in range(self.nChan): #PARES DE CANALES SELF y CROSS |
|
818 | for ii in range(self.nChan): #PARES DE CANALES SELF y CROSS | |
818 | # if self.crosspairs[ii][1]-self.crosspairs[ii][0] > 1: # APLICAR SOLO EN PARES CONTIGUOS |
|
819 | # if self.crosspairs[ii][1]-self.crosspairs[ii][0] > 1: # APLICAR SOLO EN PARES CONTIGUOS | |
819 | # continue |
|
820 | # continue | |
820 | # if not self.crosspairs[ii][0] in channelsProcssd: |
|
821 | # if not self.crosspairs[ii][0] in channelsProcssd: | |
821 | # channelA_ok = True |
|
822 | # channelA_ok = True | |
822 | #print("pair: ",self.crosspairs[ii]) |
|
823 | #print("pair: ",self.crosspairs[ii]) | |
823 | ''' |
|
824 | ''' | |
824 | ###ONLY FOR TEST: |
|
825 | ###ONLY FOR TEST: | |
825 | if (col_ax%caxs==0 and col_ax!=0 and self.nPairs !=1): |
|
826 | if (col_ax%caxs==0 and col_ax!=0 and self.nPairs !=1): | |
826 | col_ax = 0 |
|
827 | col_ax = 0 | |
827 | row_ax += 1 |
|
828 | row_ax += 1 | |
828 | ''' |
|
829 | ''' | |
829 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? |
|
830 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? | |
830 | #print(func2clean.shape) |
|
831 | #print(func2clean.shape) | |
831 | val = (numpy.isfinite(func2clean)==True).nonzero() |
|
832 | val = (numpy.isfinite(func2clean)==True).nonzero() | |
832 |
|
833 | |||
833 | if len(val)>0: #limitador |
|
834 | if len(val)>0: #limitador | |
834 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) |
|
835 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) | |
835 | if min_val <= -40 : |
|
836 | if min_val <= -40 : | |
836 | min_val = -40 |
|
837 | min_val = -40 | |
837 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 |
|
838 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 | |
838 | if max_val >= 200 : |
|
839 | if max_val >= 200 : | |
839 | max_val = 200 |
|
840 | max_val = 200 | |
840 | #print min_val, max_val |
|
841 | #print min_val, max_val | |
841 | step = 1 |
|
842 | step = 1 | |
842 | #print("Getting bins and the histogram") |
|
843 | #print("Getting bins and the histogram") | |
843 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step |
|
844 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step | |
844 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
845 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
845 | #print(len(y_dist),len(binstep[:-1])) |
|
846 | #print(len(y_dist),len(binstep[:-1])) | |
846 | #print(row_ax,col_ax, " ..") |
|
847 | #print(row_ax,col_ax, " ..") | |
847 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) |
|
848 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) | |
848 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) |
|
849 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) | |
849 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) |
|
850 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) | |
850 | parg = [numpy.amax(y_dist),mean,sigma] |
|
851 | parg = [numpy.amax(y_dist),mean,sigma] | |
851 |
|
852 | |||
852 | newY = None |
|
853 | newY = None | |
853 |
|
854 | |||
854 | try : |
|
855 | try : | |
855 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) |
|
856 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) | |
856 | mode = gauss_fit[1] |
|
857 | mode = gauss_fit[1] | |
857 | stdv = gauss_fit[2] |
|
858 | stdv = gauss_fit[2] | |
858 | #print(" FIT OK",gauss_fit) |
|
859 | #print(" FIT OK",gauss_fit) | |
859 | ''' |
|
860 | ''' | |
860 | ###ONLY FOR TEST: |
|
861 | ###ONLY FOR TEST: | |
861 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
862 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
862 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) |
|
863 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) | |
863 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
864 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
864 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
865 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
865 | axs[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
866 | axs[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) | |
866 | ''' |
|
867 | ''' | |
867 | except: |
|
868 | except: | |
868 | mode = mean |
|
869 | mode = mean | |
869 | stdv = sigma |
|
870 | stdv = sigma | |
870 | #print("FIT FAIL") |
|
871 | #print("FIT FAIL") | |
871 | #continue |
|
872 | #continue | |
872 |
|
873 | |||
873 |
|
874 | |||
874 | #print(mode,stdv) |
|
875 | #print(mode,stdv) | |
875 | #Removing echoes greater than mode + std_factor*stdv |
|
876 | #Removing echoes greater than mode + std_factor*stdv | |
876 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() |
|
877 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() | |
877 | #noval tiene los indices que se van a remover |
|
878 | #noval tiene los indices que se van a remover | |
878 | #print("Chan ",ii," novals: ",len(noval[0])) |
|
879 | #print("Chan ",ii," novals: ",len(noval[0])) | |
879 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) |
|
880 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) | |
880 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() |
|
881 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() | |
881 | #print(novall) |
|
882 | #print(novall) | |
882 | #print(" ",self.pairsArray[ii]) |
|
883 | #print(" ",self.pairsArray[ii]) | |
883 | #cross_pairs = self.pairsArray[ii] |
|
884 | #cross_pairs = self.pairsArray[ii] | |
884 | #Getting coherent echoes which are removed. |
|
885 | #Getting coherent echoes which are removed. | |
885 | # if len(novall[0]) > 0: |
|
886 | # if len(novall[0]) > 0: | |
886 | # |
|
887 | # | |
887 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 |
|
888 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 | |
888 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 |
|
889 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 | |
889 | # val_cspc[novall[0],ii,ifreq,ih] = 1 |
|
890 | # val_cspc[novall[0],ii,ifreq,ih] = 1 | |
890 | #print("OUT NOVALL 1") |
|
891 | #print("OUT NOVALL 1") | |
891 | try: |
|
892 | try: | |
892 | pair = (self.channels[ii],self.channels[ii + 1]) |
|
893 | pair = (self.channels[ii],self.channels[ii + 1]) | |
893 | except: |
|
894 | except: | |
894 | pair = (99,99) |
|
895 | pair = (99,99) | |
895 | #print("par ", pair) |
|
896 | #print("par ", pair) | |
896 | if ( pair in self.crosspairs): |
|
897 | if ( pair in self.crosspairs): | |
897 | q = self.crosspairs.index(pair) |
|
898 | q = self.crosspairs.index(pair) | |
898 | #print("estΓ‘ aqui: ", q, (ii,ii + 1)) |
|
899 | #print("estΓ‘ aqui: ", q, (ii,ii + 1)) | |
899 | new_a = numpy.delete(cspectra[:,q,ifreq,ih], noval[0]) |
|
900 | new_a = numpy.delete(cspectra[:,q,ifreq,ih], noval[0]) | |
900 | cspectra[noval,q,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra |
|
901 | cspectra[noval,q,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra | |
901 |
|
902 | |||
902 | #if channelA_ok: |
|
903 | #if channelA_ok: | |
903 | #chA = self.channels.index(cross_pairs[0]) |
|
904 | #chA = self.channels.index(cross_pairs[0]) | |
904 | new_b = numpy.delete(spectra[:,ii,ifreq,ih], noval[0]) |
|
905 | new_b = numpy.delete(spectra[:,ii,ifreq,ih], noval[0]) | |
905 | spectra[noval,ii,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A |
|
906 | spectra[noval,ii,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A | |
906 | #channelA_ok = False |
|
907 | #channelA_ok = False | |
907 |
|
908 | |||
908 | # chB = self.channels.index(cross_pairs[1]) |
|
909 | # chB = self.channels.index(cross_pairs[1]) | |
909 | # new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) |
|
910 | # new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) | |
910 | # spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B |
|
911 | # spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B | |
911 | # |
|
912 | # | |
912 | # channelsProcssd.append(self.crosspairs[ii][0]) # save channel A |
|
913 | # channelsProcssd.append(self.crosspairs[ii][0]) # save channel A | |
913 | # channelsProcssd.append(self.crosspairs[ii][1]) # save channel B |
|
914 | # channelsProcssd.append(self.crosspairs[ii][1]) # save channel B | |
914 | ''' |
|
915 | ''' | |
915 | ###ONLY FOR TEST: |
|
916 | ###ONLY FOR TEST: | |
916 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
917 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
917 | func2clean = 10*numpy.log10(numpy.absolute(spectra[:,ii,ifreq,ih])) |
|
918 | func2clean = 10*numpy.log10(numpy.absolute(spectra[:,ii,ifreq,ih])) | |
918 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
919 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
919 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
920 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
920 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
921 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
921 | axs2[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
922 | axs2[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) | |
922 | ''' |
|
923 | ''' | |
923 | ''' |
|
924 | ''' | |
924 | ###ONLY FOR TEST: |
|
925 | ###ONLY FOR TEST: | |
925 | col_ax += 1 #contador de ploteo columnas |
|
926 | col_ax += 1 #contador de ploteo columnas | |
926 | ##print(col_ax) |
|
927 | ##print(col_ax) | |
927 | ###ONLY FOR TEST: |
|
928 | ###ONLY FOR TEST: | |
928 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
929 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
929 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" |
|
930 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" | |
930 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" |
|
931 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" | |
931 | fig.suptitle(title) |
|
932 | fig.suptitle(title) | |
932 | fig2.suptitle(title2) |
|
933 | fig2.suptitle(title2) | |
933 | plt.show() |
|
934 | plt.show() | |
934 | ''' |
|
935 | ''' | |
935 | ################################################################################################## |
|
936 | ################################################################################################## | |
936 |
|
937 | |||
937 | #print("Getting average of the spectra and cross-spectra from incoherent echoes.") |
|
938 | #print("Getting average of the spectra and cross-spectra from incoherent echoes.") | |
938 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan |
|
939 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan | |
939 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan |
|
940 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan | |
940 | for ih in range(self.nHeights): |
|
941 | for ih in range(self.nHeights): | |
941 | for ifreq in range(self.nFFTPoints): |
|
942 | for ifreq in range(self.nFFTPoints): | |
942 | for ich in range(self.nChan): |
|
943 | for ich in range(self.nChan): | |
943 | tmp = spectra[:,ich,ifreq,ih] |
|
944 | tmp = spectra[:,ich,ifreq,ih] | |
944 | valid = (numpy.isfinite(tmp[:])==True).nonzero() |
|
945 | valid = (numpy.isfinite(tmp[:])==True).nonzero() | |
945 |
|
946 | |||
946 | if len(valid[0]) >0 : |
|
947 | if len(valid[0]) >0 : | |
947 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
948 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) | |
948 |
|
949 | |||
949 | for icr in range(self.nPairs): |
|
950 | for icr in range(self.nPairs): | |
950 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) |
|
951 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) | |
951 | valid = (numpy.isfinite(tmp)==True).nonzero() |
|
952 | valid = (numpy.isfinite(tmp)==True).nonzero() | |
952 | if len(valid[0]) > 0: |
|
953 | if len(valid[0]) > 0: | |
953 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
954 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) | |
954 |
|
955 | |||
955 | return out_spectra, out_cspectra |
|
956 | return out_spectra, out_cspectra | |
956 |
|
957 | |||
957 | def REM_ISOLATED_POINTS(self,array,rth): |
|
958 | def REM_ISOLATED_POINTS(self,array,rth): | |
958 | # import matplotlib.pyplot as plt |
|
959 | # import matplotlib.pyplot as plt | |
959 | if rth == None : |
|
960 | if rth == None : | |
960 | rth = 4 |
|
961 | rth = 4 | |
961 | #print("REM ISO") |
|
962 | #print("REM ISO") | |
962 | num_prof = len(array[0,:,0]) |
|
963 | num_prof = len(array[0,:,0]) | |
963 | num_hei = len(array[0,0,:]) |
|
964 | num_hei = len(array[0,0,:]) | |
964 | n2d = len(array[:,0,0]) |
|
965 | n2d = len(array[:,0,0]) | |
965 |
|
966 | |||
966 | for ii in range(n2d) : |
|
967 | for ii in range(n2d) : | |
967 | #print ii,n2d |
|
968 | #print ii,n2d | |
968 | tmp = array[ii,:,:] |
|
969 | tmp = array[ii,:,:] | |
969 | #print tmp.shape, array[ii,101,:],array[ii,102,:] |
|
970 | #print tmp.shape, array[ii,101,:],array[ii,102,:] | |
970 |
|
971 | |||
971 | # fig = plt.figure(figsize=(6,5)) |
|
972 | # fig = plt.figure(figsize=(6,5)) | |
972 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
973 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
973 | # ax = fig.add_axes([left, bottom, width, height]) |
|
974 | # ax = fig.add_axes([left, bottom, width, height]) | |
974 | # x = range(num_prof) |
|
975 | # x = range(num_prof) | |
975 | # y = range(num_hei) |
|
976 | # y = range(num_hei) | |
976 | # cp = ax.contour(y,x,tmp) |
|
977 | # cp = ax.contour(y,x,tmp) | |
977 | # ax.clabel(cp, inline=True,fontsize=10) |
|
978 | # ax.clabel(cp, inline=True,fontsize=10) | |
978 | # plt.show() |
|
979 | # plt.show() | |
979 |
|
980 | |||
980 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) |
|
981 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) | |
981 | tmp = numpy.reshape(tmp,num_prof*num_hei) |
|
982 | tmp = numpy.reshape(tmp,num_prof*num_hei) | |
982 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() |
|
983 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() | |
983 | indxs2 = (tmp > 0).nonzero() |
|
984 | indxs2 = (tmp > 0).nonzero() | |
984 |
|
985 | |||
985 | indxs1 = (indxs1[0]) |
|
986 | indxs1 = (indxs1[0]) | |
986 | indxs2 = indxs2[0] |
|
987 | indxs2 = indxs2[0] | |
987 | #indxs1 = numpy.array(indxs1[0]) |
|
988 | #indxs1 = numpy.array(indxs1[0]) | |
988 | #indxs2 = numpy.array(indxs2[0]) |
|
989 | #indxs2 = numpy.array(indxs2[0]) | |
989 | indxs = None |
|
990 | indxs = None | |
990 | #print indxs1 , indxs2 |
|
991 | #print indxs1 , indxs2 | |
991 | for iv in range(len(indxs2)): |
|
992 | for iv in range(len(indxs2)): | |
992 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) |
|
993 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) | |
993 | #print len(indxs2), indv |
|
994 | #print len(indxs2), indv | |
994 | if len(indv[0]) > 0 : |
|
995 | if len(indv[0]) > 0 : | |
995 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) |
|
996 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) | |
996 | # print indxs |
|
997 | # print indxs | |
997 | indxs = indxs[1:] |
|
998 | indxs = indxs[1:] | |
998 | #print(indxs, len(indxs)) |
|
999 | #print(indxs, len(indxs)) | |
999 | if len(indxs) < 4 : |
|
1000 | if len(indxs) < 4 : | |
1000 | array[ii,:,:] = 0. |
|
1001 | array[ii,:,:] = 0. | |
1001 | return |
|
1002 | return | |
1002 |
|
1003 | |||
1003 | xpos = numpy.mod(indxs ,num_hei) |
|
1004 | xpos = numpy.mod(indxs ,num_hei) | |
1004 | ypos = (indxs / num_hei) |
|
1005 | ypos = (indxs / num_hei) | |
1005 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) |
|
1006 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) | |
1006 | #print sx |
|
1007 | #print sx | |
1007 | xpos = xpos[sx] |
|
1008 | xpos = xpos[sx] | |
1008 | ypos = ypos[sx] |
|
1009 | ypos = ypos[sx] | |
1009 |
|
1010 | |||
1010 | # *********************************** Cleaning isolated points ********************************** |
|
1011 | # *********************************** Cleaning isolated points ********************************** | |
1011 | ic = 0 |
|
1012 | ic = 0 | |
1012 | while True : |
|
1013 | while True : | |
1013 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) |
|
1014 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) | |
1014 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) |
|
1015 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) | |
1015 | #plt.plot(r) |
|
1016 | #plt.plot(r) | |
1016 | #plt.show() |
|
1017 | #plt.show() | |
1017 | no_coh1 = (numpy.isfinite(r)==True).nonzero() |
|
1018 | no_coh1 = (numpy.isfinite(r)==True).nonzero() | |
1018 | no_coh2 = (r <= rth).nonzero() |
|
1019 | no_coh2 = (r <= rth).nonzero() | |
1019 | #print r, no_coh1, no_coh2 |
|
1020 | #print r, no_coh1, no_coh2 | |
1020 | no_coh1 = numpy.array(no_coh1[0]) |
|
1021 | no_coh1 = numpy.array(no_coh1[0]) | |
1021 | no_coh2 = numpy.array(no_coh2[0]) |
|
1022 | no_coh2 = numpy.array(no_coh2[0]) | |
1022 | no_coh = None |
|
1023 | no_coh = None | |
1023 | #print valid1 , valid2 |
|
1024 | #print valid1 , valid2 | |
1024 | for iv in range(len(no_coh2)): |
|
1025 | for iv in range(len(no_coh2)): | |
1025 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) |
|
1026 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) | |
1026 | if len(indv[0]) > 0 : |
|
1027 | if len(indv[0]) > 0 : | |
1027 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) |
|
1028 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) | |
1028 | no_coh = no_coh[1:] |
|
1029 | no_coh = no_coh[1:] | |
1029 | #print len(no_coh), no_coh |
|
1030 | #print len(no_coh), no_coh | |
1030 | if len(no_coh) < 4 : |
|
1031 | if len(no_coh) < 4 : | |
1031 | #print xpos[ic], ypos[ic], ic |
|
1032 | #print xpos[ic], ypos[ic], ic | |
1032 | # plt.plot(r) |
|
1033 | # plt.plot(r) | |
1033 | # plt.show() |
|
1034 | # plt.show() | |
1034 | xpos[ic] = numpy.nan |
|
1035 | xpos[ic] = numpy.nan | |
1035 | ypos[ic] = numpy.nan |
|
1036 | ypos[ic] = numpy.nan | |
1036 |
|
1037 | |||
1037 | ic = ic + 1 |
|
1038 | ic = ic + 1 | |
1038 | if (ic == len(indxs)) : |
|
1039 | if (ic == len(indxs)) : | |
1039 | break |
|
1040 | break | |
1040 | #print( xpos, ypos) |
|
1041 | #print( xpos, ypos) | |
1041 |
|
1042 | |||
1042 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() |
|
1043 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() | |
1043 | #print indxs[0] |
|
1044 | #print indxs[0] | |
1044 | if len(indxs[0]) < 4 : |
|
1045 | if len(indxs[0]) < 4 : | |
1045 | array[ii,:,:] = 0. |
|
1046 | array[ii,:,:] = 0. | |
1046 | return |
|
1047 | return | |
1047 |
|
1048 | |||
1048 | xpos = xpos[indxs[0]] |
|
1049 | xpos = xpos[indxs[0]] | |
1049 | ypos = ypos[indxs[0]] |
|
1050 | ypos = ypos[indxs[0]] | |
1050 | for i in range(0,len(ypos)): |
|
1051 | for i in range(0,len(ypos)): | |
1051 | ypos[i]=int(ypos[i]) |
|
1052 | ypos[i]=int(ypos[i]) | |
1052 | junk = tmp |
|
1053 | junk = tmp | |
1053 | tmp = junk*0.0 |
|
1054 | tmp = junk*0.0 | |
1054 |
|
1055 | |||
1055 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] |
|
1056 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] | |
1056 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1057 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) | |
1057 |
|
1058 | |||
1058 | #print array.shape |
|
1059 | #print array.shape | |
1059 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1060 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) | |
1060 | #print tmp.shape |
|
1061 | #print tmp.shape | |
1061 |
|
1062 | |||
1062 | # fig = plt.figure(figsize=(6,5)) |
|
1063 | # fig = plt.figure(figsize=(6,5)) | |
1063 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
1064 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
1064 | # ax = fig.add_axes([left, bottom, width, height]) |
|
1065 | # ax = fig.add_axes([left, bottom, width, height]) | |
1065 | # x = range(num_prof) |
|
1066 | # x = range(num_prof) | |
1066 | # y = range(num_hei) |
|
1067 | # y = range(num_hei) | |
1067 | # cp = ax.contour(y,x,array[ii,:,:]) |
|
1068 | # cp = ax.contour(y,x,array[ii,:,:]) | |
1068 | # ax.clabel(cp, inline=True,fontsize=10) |
|
1069 | # ax.clabel(cp, inline=True,fontsize=10) | |
1069 | # plt.show() |
|
1070 | # plt.show() | |
1070 | return array |
|
1071 | return array | |
1071 |
|
1072 | |||
1072 |
|
1073 | |||
1073 | class IntegrationFaradaySpectra(Operation): |
|
1074 | class IntegrationFaradaySpectra(Operation): | |
1074 |
|
1075 | |||
1075 | __profIndex = 0 |
|
1076 | __profIndex = 0 | |
1076 | __withOverapping = False |
|
1077 | __withOverapping = False | |
1077 |
|
1078 | |||
1078 | __byTime = False |
|
1079 | __byTime = False | |
1079 | __initime = None |
|
1080 | __initime = None | |
1080 | __lastdatatime = None |
|
1081 | __lastdatatime = None | |
1081 | __integrationtime = None |
|
1082 | __integrationtime = None | |
1082 |
|
1083 | |||
1083 | __buffer_spc = None |
|
1084 | __buffer_spc = None | |
1084 | __buffer_cspc = None |
|
1085 | __buffer_cspc = None | |
1085 | __buffer_dc = None |
|
1086 | __buffer_dc = None | |
1086 |
|
1087 | |||
1087 | __dataReady = False |
|
1088 | __dataReady = False | |
1088 |
|
1089 | |||
1089 | __timeInterval = None |
|
1090 | __timeInterval = None | |
1090 |
|
1091 | |||
1091 | n = None |
|
1092 | n = None | |
1092 |
|
1093 | |||
1093 | def __init__(self): |
|
1094 | def __init__(self): | |
1094 |
|
1095 | |||
1095 | Operation.__init__(self) |
|
1096 | Operation.__init__(self) | |
1096 |
|
1097 | |||
1097 | def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None): |
|
1098 | def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None): | |
1098 | """ |
|
1099 | """ | |
1099 | Set the parameters of the integration class. |
|
1100 | Set the parameters of the integration class. | |
1100 |
|
1101 | |||
1101 | Inputs: |
|
1102 | Inputs: | |
1102 |
|
1103 | |||
1103 | n : Number of coherent integrations |
|
1104 | n : Number of coherent integrations | |
1104 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1105 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
1105 | overlapping : |
|
1106 | overlapping : | |
1106 |
|
1107 | |||
1107 | """ |
|
1108 | """ | |
1108 |
|
1109 | |||
1109 | self.__initime = None |
|
1110 | self.__initime = None | |
1110 | self.__lastdatatime = 0 |
|
1111 | self.__lastdatatime = 0 | |
1111 |
|
1112 | |||
1112 | self.__buffer_spc = [] |
|
1113 | self.__buffer_spc = [] | |
1113 | self.__buffer_cspc = [] |
|
1114 | self.__buffer_cspc = [] | |
1114 | self.__buffer_dc = 0 |
|
1115 | self.__buffer_dc = 0 | |
1115 |
|
1116 | |||
1116 | self.__profIndex = 0 |
|
1117 | self.__profIndex = 0 | |
1117 | self.__dataReady = False |
|
1118 | self.__dataReady = False | |
1118 | self.__byTime = False |
|
1119 | self.__byTime = False | |
1119 |
|
1120 | |||
1120 | #self.ByLags = dataOut.ByLags ###REDEFINIR |
|
1121 | #self.ByLags = dataOut.ByLags ###REDEFINIR | |
1121 | self.ByLags = False |
|
1122 | self.ByLags = False | |
1122 |
|
1123 | |||
1123 | if DPL != None: |
|
1124 | if DPL != None: | |
1124 | self.DPL=DPL |
|
1125 | self.DPL=DPL | |
1125 | else: |
|
1126 | else: | |
1126 | #self.DPL=dataOut.DPL ###REDEFINIR |
|
1127 | #self.DPL=dataOut.DPL ###REDEFINIR | |
1127 | self.DPL=0 |
|
1128 | self.DPL=0 | |
1128 |
|
1129 | |||
1129 | if n is None and timeInterval is None: |
|
1130 | if n is None and timeInterval is None: | |
1130 | raise ValueError("n or timeInterval should be specified ...") |
|
1131 | raise ValueError("n or timeInterval should be specified ...") | |
1131 |
|
1132 | |||
1132 | if n is not None: |
|
1133 | if n is not None: | |
1133 | self.n = int(n) |
|
1134 | self.n = int(n) | |
1134 | else: |
|
1135 | else: | |
1135 |
|
1136 | |||
1136 | self.__integrationtime = int(timeInterval) |
|
1137 | self.__integrationtime = int(timeInterval) | |
1137 | self.n = None |
|
1138 | self.n = None | |
1138 | self.__byTime = True |
|
1139 | self.__byTime = True | |
1139 |
|
1140 | |||
1140 | def putData(self, data_spc, data_cspc, data_dc): |
|
1141 | def putData(self, data_spc, data_cspc, data_dc): | |
1141 | """ |
|
1142 | """ | |
1142 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1143 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
1143 |
|
1144 | |||
1144 | """ |
|
1145 | """ | |
1145 |
|
1146 | |||
1146 | self.__buffer_spc.append(data_spc) |
|
1147 | self.__buffer_spc.append(data_spc) | |
1147 |
|
1148 | |||
1148 | if data_cspc is None: |
|
1149 | if data_cspc is None: | |
1149 | self.__buffer_cspc = None |
|
1150 | self.__buffer_cspc = None | |
1150 | else: |
|
1151 | else: | |
1151 | self.__buffer_cspc.append(data_cspc) |
|
1152 | self.__buffer_cspc.append(data_cspc) | |
1152 |
|
1153 | |||
1153 | if data_dc is None: |
|
1154 | if data_dc is None: | |
1154 | self.__buffer_dc = None |
|
1155 | self.__buffer_dc = None | |
1155 | else: |
|
1156 | else: | |
1156 | self.__buffer_dc += data_dc |
|
1157 | self.__buffer_dc += data_dc | |
1157 |
|
1158 | |||
1158 | self.__profIndex += 1 |
|
1159 | self.__profIndex += 1 | |
1159 |
|
1160 | |||
1160 | return |
|
1161 | return | |
1161 |
|
1162 | |||
1162 | def hildebrand_sekhon_Integration(self,data,navg): |
|
1163 | def hildebrand_sekhon_Integration(self,data,navg): | |
1163 |
|
1164 | |||
1164 | sortdata = numpy.sort(data, axis=None) |
|
1165 | sortdata = numpy.sort(data, axis=None) | |
1165 | sortID=data.argsort() |
|
1166 | sortID=data.argsort() | |
1166 | lenOfData = len(sortdata) |
|
1167 | lenOfData = len(sortdata) | |
1167 | nums_min = lenOfData*0.75 |
|
1168 | nums_min = lenOfData*0.75 | |
1168 | if nums_min <= 5: |
|
1169 | if nums_min <= 5: | |
1169 | nums_min = 5 |
|
1170 | nums_min = 5 | |
1170 | sump = 0. |
|
1171 | sump = 0. | |
1171 | sumq = 0. |
|
1172 | sumq = 0. | |
1172 | j = 0 |
|
1173 | j = 0 | |
1173 | cont = 1 |
|
1174 | cont = 1 | |
1174 | while((cont == 1)and(j < lenOfData)): |
|
1175 | while((cont == 1)and(j < lenOfData)): | |
1175 | sump += sortdata[j] |
|
1176 | sump += sortdata[j] | |
1176 | sumq += sortdata[j]**2 |
|
1177 | sumq += sortdata[j]**2 | |
1177 | if j > nums_min: |
|
1178 | if j > nums_min: | |
1178 | rtest = float(j)/(j-1) + 1.0/navg |
|
1179 | rtest = float(j)/(j-1) + 1.0/navg | |
1179 | if ((sumq*j) > (rtest*sump**2)): |
|
1180 | if ((sumq*j) > (rtest*sump**2)): | |
1180 | j = j - 1 |
|
1181 | j = j - 1 | |
1181 | sump = sump - sortdata[j] |
|
1182 | sump = sump - sortdata[j] | |
1182 | sumq = sumq - sortdata[j]**2 |
|
1183 | sumq = sumq - sortdata[j]**2 | |
1183 | cont = 0 |
|
1184 | cont = 0 | |
1184 | j += 1 |
|
1185 | j += 1 | |
1185 | #lnoise = sump / j |
|
1186 | #lnoise = sump / j | |
1186 |
|
1187 | |||
1187 | return j,sortID |
|
1188 | return j,sortID | |
1188 |
|
1189 | |||
1189 | def pushData(self): |
|
1190 | def pushData(self): | |
1190 | """ |
|
1191 | """ | |
1191 | Return the sum of the last profiles and the profiles used in the sum. |
|
1192 | Return the sum of the last profiles and the profiles used in the sum. | |
1192 |
|
1193 | |||
1193 | Affected: |
|
1194 | Affected: | |
1194 |
|
1195 | |||
1195 | self.__profileIndex |
|
1196 | self.__profileIndex | |
1196 |
|
1197 | |||
1197 | """ |
|
1198 | """ | |
1198 | bufferH=None |
|
1199 | bufferH=None | |
1199 | buffer=None |
|
1200 | buffer=None | |
1200 | buffer1=None |
|
1201 | buffer1=None | |
1201 | buffer_cspc=None |
|
1202 | buffer_cspc=None | |
1202 | self.__buffer_spc=numpy.array(self.__buffer_spc) |
|
1203 | self.__buffer_spc=numpy.array(self.__buffer_spc) | |
1203 | self.__buffer_cspc=numpy.array(self.__buffer_cspc) |
|
1204 | self.__buffer_cspc=numpy.array(self.__buffer_cspc) | |
|
1205 | ||||
1204 | freq_dc = int(self.__buffer_spc.shape[2] / 2) |
|
1206 | freq_dc = int(self.__buffer_spc.shape[2] / 2) | |
1205 | #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) |
|
1207 | #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) | |
1206 | for k in range(7,self.nHeights): |
|
1208 | for k in range(7,self.nHeights): | |
1207 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) |
|
1209 | try: | |
|
1210 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) | |||
|
1211 | except Exception as e: | |||
|
1212 | print(e) | |||
1208 | outliers_IDs_cspc=[] |
|
1213 | outliers_IDs_cspc=[] | |
1209 | cspc_outliers_exist=False |
|
1214 | cspc_outliers_exist=False | |
1210 | for i in range(self.nChannels):#dataOut.nChannels): |
|
1215 | for i in range(self.nChannels):#dataOut.nChannels): | |
1211 |
|
1216 | |||
1212 | buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) |
|
1217 | buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) | |
1213 | indexes=[] |
|
1218 | indexes=[] | |
1214 | #sortIDs=[] |
|
1219 | #sortIDs=[] | |
1215 | outliers_IDs=[] |
|
1220 | outliers_IDs=[] | |
1216 |
|
1221 | |||
1217 | for j in range(self.nProfiles): |
|
1222 | for j in range(self.nProfiles): | |
1218 | # if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 |
|
1223 | # if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 | |
1219 | # continue |
|
1224 | # continue | |
1220 | # if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 |
|
1225 | # if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 | |
1221 | # continue |
|
1226 | # continue | |
1222 | buffer=buffer1[:,j] |
|
1227 | buffer=buffer1[:,j] | |
1223 | index,sortID=self.hildebrand_sekhon_Integration(buffer,1) |
|
1228 | index,sortID=self.hildebrand_sekhon_Integration(buffer,1) | |
1224 |
|
1229 | |||
1225 | indexes.append(index) |
|
1230 | indexes.append(index) | |
1226 | #sortIDs.append(sortID) |
|
1231 | #sortIDs.append(sortID) | |
1227 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) |
|
1232 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) | |
1228 |
|
1233 | |||
1229 | outliers_IDs=numpy.array(outliers_IDs) |
|
1234 | outliers_IDs=numpy.array(outliers_IDs) | |
1230 | outliers_IDs=outliers_IDs.ravel() |
|
1235 | outliers_IDs=outliers_IDs.ravel() | |
1231 | outliers_IDs=numpy.unique(outliers_IDs) |
|
1236 | outliers_IDs=numpy.unique(outliers_IDs) | |
1232 | outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) |
|
1237 | outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) | |
1233 | indexes=numpy.array(indexes) |
|
1238 | indexes=numpy.array(indexes) | |
1234 | indexmin=numpy.min(indexes) |
|
1239 | indexmin=numpy.min(indexes) | |
1235 |
|
1240 | |||
1236 | if indexmin != buffer1.shape[0]: |
|
1241 | if indexmin != buffer1.shape[0]: | |
1237 | cspc_outliers_exist=True |
|
1242 | cspc_outliers_exist=True | |
1238 | ###sortdata=numpy.sort(buffer1,axis=0) |
|
1243 | ###sortdata=numpy.sort(buffer1,axis=0) | |
1239 | ###avg2=numpy.mean(sortdata[:indexmin,:],axis=0) |
|
1244 | ###avg2=numpy.mean(sortdata[:indexmin,:],axis=0) | |
1240 | lt=outliers_IDs |
|
1245 | lt=outliers_IDs | |
1241 | avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) |
|
1246 | avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) | |
1242 |
|
1247 | |||
1243 | for p in list(outliers_IDs): |
|
1248 | for p in list(outliers_IDs): | |
1244 | buffer1[p,:]=avg |
|
1249 | buffer1[p,:]=avg | |
1245 |
|
1250 | |||
1246 | self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) |
|
1251 | self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) | |
1247 | ###cspc IDs |
|
1252 | ###cspc IDs | |
1248 | #indexmin_cspc+=indexmin_cspc |
|
1253 | #indexmin_cspc+=indexmin_cspc | |
1249 | outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) |
|
1254 | outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) | |
1250 |
|
1255 | |||
1251 | #if not breakFlag: |
|
1256 | #if not breakFlag: | |
1252 | outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) |
|
1257 | outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) | |
1253 | if cspc_outliers_exist: |
|
1258 | if cspc_outliers_exist: | |
1254 | #sortdata=numpy.sort(buffer_cspc,axis=0) |
|
1259 | #sortdata=numpy.sort(buffer_cspc,axis=0) | |
1255 | #avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0) |
|
1260 | #avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0) | |
1256 | lt=outliers_IDs_cspc |
|
1261 | lt=outliers_IDs_cspc | |
1257 |
|
1262 | |||
1258 | avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) |
|
1263 | avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) | |
1259 | for p in list(outliers_IDs_cspc): |
|
1264 | for p in list(outliers_IDs_cspc): | |
1260 | buffer_cspc[p,:]=avg |
|
1265 | buffer_cspc[p,:]=avg | |
1261 |
|
1266 | |||
1262 | self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) |
|
1267 | self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) | |
1263 | #else: |
|
1268 | #else: | |
1264 | #break |
|
1269 | #break | |
1265 |
|
1270 | |||
1266 |
|
1271 | |||
1267 |
|
1272 | |||
1268 |
|
1273 | |||
1269 | buffer=None |
|
1274 | buffer=None | |
1270 | bufferH=None |
|
1275 | bufferH=None | |
1271 | buffer1=None |
|
1276 | buffer1=None | |
1272 | buffer_cspc=None |
|
1277 | buffer_cspc=None | |
1273 |
|
1278 | |||
1274 | #print("cpsc",self.__buffer_cspc[:,0,0,0,0]) |
|
1279 | #print("cpsc",self.__buffer_cspc[:,0,0,0,0]) | |
1275 | #print(self.__profIndex) |
|
1280 | #print(self.__profIndex) | |
1276 | #exit() |
|
1281 | #exit() | |
1277 |
|
1282 | |||
1278 | buffer=None |
|
1283 | buffer=None | |
1279 | #print(self.__buffer_spc[:,1,3,20,0]) |
|
1284 | #print(self.__buffer_spc[:,1,3,20,0]) | |
1280 | #print(self.__buffer_spc[:,1,5,37,0]) |
|
1285 | #print(self.__buffer_spc[:,1,5,37,0]) | |
1281 | data_spc = numpy.sum(self.__buffer_spc,axis=0) |
|
1286 | data_spc = numpy.sum(self.__buffer_spc,axis=0) | |
1282 | data_cspc = numpy.sum(self.__buffer_cspc,axis=0) |
|
1287 | data_cspc = numpy.sum(self.__buffer_cspc,axis=0) | |
1283 |
|
1288 | |||
1284 | #print(numpy.shape(data_spc)) |
|
1289 | #print(numpy.shape(data_spc)) | |
1285 | #data_spc[1,4,20,0]=numpy.nan |
|
1290 | #data_spc[1,4,20,0]=numpy.nan | |
1286 |
|
1291 | |||
1287 | #data_cspc = self.__buffer_cspc |
|
1292 | #data_cspc = self.__buffer_cspc | |
1288 | data_dc = self.__buffer_dc |
|
1293 | data_dc = self.__buffer_dc | |
1289 | n = self.__profIndex |
|
1294 | n = self.__profIndex | |
1290 |
|
1295 | |||
1291 | self.__buffer_spc = [] |
|
1296 | self.__buffer_spc = [] | |
1292 | self.__buffer_cspc = [] |
|
1297 | self.__buffer_cspc = [] | |
1293 | self.__buffer_dc = 0 |
|
1298 | self.__buffer_dc = 0 | |
1294 | self.__profIndex = 0 |
|
1299 | self.__profIndex = 0 | |
1295 |
|
1300 | #print("pushData Done") | ||
1296 | return data_spc, data_cspc, data_dc, n |
|
1301 | return data_spc, data_cspc, data_dc, n | |
1297 |
|
1302 | |||
1298 | def byProfiles(self, *args): |
|
1303 | def byProfiles(self, *args): | |
1299 |
|
1304 | |||
1300 | self.__dataReady = False |
|
1305 | self.__dataReady = False | |
1301 | avgdata_spc = None |
|
1306 | avgdata_spc = None | |
1302 | avgdata_cspc = None |
|
1307 | avgdata_cspc = None | |
1303 | avgdata_dc = None |
|
1308 | avgdata_dc = None | |
1304 |
|
1309 | |||
1305 | self.putData(*args) |
|
1310 | self.putData(*args) | |
1306 |
|
1311 | |||
1307 | if self.__profIndex == self.n: |
|
1312 | if self.__profIndex == self.n: | |
1308 |
|
1313 | |||
1309 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1314 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1310 | self.n = n |
|
1315 | self.n = n | |
1311 | self.__dataReady = True |
|
1316 | self.__dataReady = True | |
1312 |
|
1317 | |||
1313 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1318 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1314 |
|
1319 | |||
1315 | def byTime(self, datatime, *args): |
|
1320 | def byTime(self, datatime, *args): | |
1316 |
|
1321 | |||
1317 | self.__dataReady = False |
|
1322 | self.__dataReady = False | |
1318 | avgdata_spc = None |
|
1323 | avgdata_spc = None | |
1319 | avgdata_cspc = None |
|
1324 | avgdata_cspc = None | |
1320 | avgdata_dc = None |
|
1325 | avgdata_dc = None | |
1321 |
|
1326 | |||
1322 | self.putData(*args) |
|
1327 | self.putData(*args) | |
1323 |
|
1328 | |||
1324 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1329 | if (datatime - self.__initime) >= self.__integrationtime: | |
1325 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1330 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1326 | self.n = n |
|
1331 | self.n = n | |
1327 | self.__dataReady = True |
|
1332 | self.__dataReady = True | |
1328 |
|
1333 | |||
1329 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1334 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1330 |
|
1335 | |||
1331 | def integrate(self, datatime, *args): |
|
1336 | def integrate(self, datatime, *args): | |
1332 |
|
1337 | |||
1333 | if self.__profIndex == 0: |
|
1338 | if self.__profIndex == 0: | |
1334 | self.__initime = datatime |
|
1339 | self.__initime = datatime | |
1335 |
|
1340 | |||
1336 | if self.__byTime: |
|
1341 | if self.__byTime: | |
1337 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1342 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |
1338 | datatime, *args) |
|
1343 | datatime, *args) | |
1339 | else: |
|
1344 | else: | |
1340 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1345 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
1341 |
|
1346 | |||
1342 | if not self.__dataReady: |
|
1347 | if not self.__dataReady: | |
1343 | return None, None, None, None |
|
1348 | return None, None, None, None | |
1344 |
|
1349 | |||
1345 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1350 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |
1346 |
|
1351 | |||
1347 | def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False): |
|
1352 | def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False): | |
1348 | if n == 1: |
|
1353 | if n == 1: | |
1349 | return dataOut |
|
1354 | return dataOut | |
1350 |
|
1355 | |||
1351 | dataOut.flagNoData = True |
|
1356 | dataOut.flagNoData = True | |
1352 |
|
1357 | |||
1353 | if not self.isConfig: |
|
1358 | if not self.isConfig: | |
1354 | self.setup(dataOut, n, timeInterval, overlapping,DPL ) |
|
1359 | self.setup(dataOut, n, timeInterval, overlapping,DPL ) | |
1355 | self.isConfig = True |
|
1360 | self.isConfig = True | |
1356 |
|
1361 | |||
1357 | if not self.ByLags: |
|
1362 | if not self.ByLags: | |
1358 | self.nProfiles=dataOut.nProfiles |
|
1363 | self.nProfiles=dataOut.nProfiles | |
1359 | self.nChannels=dataOut.nChannels |
|
1364 | self.nChannels=dataOut.nChannels | |
1360 | self.nHeights=dataOut.nHeights |
|
1365 | self.nHeights=dataOut.nHeights | |
1361 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1366 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |
1362 | dataOut.data_spc, |
|
1367 | dataOut.data_spc, | |
1363 | dataOut.data_cspc, |
|
1368 | dataOut.data_cspc, | |
1364 | dataOut.data_dc) |
|
1369 | dataOut.data_dc) | |
1365 | else: |
|
1370 | else: | |
1366 | self.nProfiles=dataOut.nProfiles |
|
1371 | self.nProfiles=dataOut.nProfiles | |
1367 | self.nChannels=dataOut.nChannels |
|
1372 | self.nChannels=dataOut.nChannels | |
1368 | self.nHeights=dataOut.nHeights |
|
1373 | self.nHeights=dataOut.nHeights | |
1369 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1374 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |
1370 | dataOut.dataLag_spc, |
|
1375 | dataOut.dataLag_spc, | |
1371 | dataOut.dataLag_cspc, |
|
1376 | dataOut.dataLag_cspc, | |
1372 | dataOut.dataLag_dc) |
|
1377 | dataOut.dataLag_dc) | |
1373 |
|
1378 | |||
1374 | if self.__dataReady: |
|
1379 | if self.__dataReady: | |
1375 |
|
1380 | |||
1376 | if not self.ByLags: |
|
1381 | if not self.ByLags: | |
1377 |
|
1382 | if self.nChannels == 1: | ||
1378 |
dataOut.data_spc = |
|
1383 | dataOut.data_spc = avgdata_spc | |
|
1384 | else: | |||
|
1385 | dataOut.data_spc = numpy.squeeze(avgdata_spc) | |||
1379 | dataOut.data_cspc = numpy.squeeze(avgdata_cspc) |
|
1386 | dataOut.data_cspc = numpy.squeeze(avgdata_cspc) | |
1380 | dataOut.data_dc = avgdata_dc |
|
1387 | dataOut.data_dc = avgdata_dc | |
|
1388 | ||||
|
1389 | ||||
1381 | else: |
|
1390 | else: | |
1382 | dataOut.dataLag_spc = avgdata_spc |
|
1391 | dataOut.dataLag_spc = avgdata_spc | |
1383 | dataOut.dataLag_cspc = avgdata_cspc |
|
1392 | dataOut.dataLag_cspc = avgdata_cspc | |
1384 | dataOut.dataLag_dc = avgdata_dc |
|
1393 | dataOut.dataLag_dc = avgdata_dc | |
1385 |
|
1394 | |||
1386 | dataOut.data_spc=dataOut.dataLag_spc[:,:,:,dataOut.LagPlot] |
|
1395 | dataOut.data_spc=dataOut.dataLag_spc[:,:,:,dataOut.LagPlot] | |
1387 | dataOut.data_cspc=dataOut.dataLag_cspc[:,:,:,dataOut.LagPlot] |
|
1396 | dataOut.data_cspc=dataOut.dataLag_cspc[:,:,:,dataOut.LagPlot] | |
1388 | dataOut.data_dc=dataOut.dataLag_dc[:,:,dataOut.LagPlot] |
|
1397 | dataOut.data_dc=dataOut.dataLag_dc[:,:,dataOut.LagPlot] | |
1389 |
|
1398 | |||
1390 |
|
1399 | |||
1391 | dataOut.nIncohInt *= self.n |
|
1400 | dataOut.nIncohInt *= self.n | |
1392 | dataOut.utctime = avgdatatime |
|
1401 | dataOut.utctime = avgdatatime | |
1393 | dataOut.flagNoData = False |
|
1402 | dataOut.flagNoData = False | |
1394 |
|
1403 | |||
1395 | return dataOut |
|
1404 | return dataOut | |
1396 |
|
1405 | |||
1397 | class removeInterference(Operation): |
|
1406 | class removeInterference(Operation): | |
1398 |
|
1407 | |||
1399 | def removeInterference2(self): |
|
1408 | def removeInterference2(self): | |
1400 |
|
1409 | |||
1401 | cspc = self.dataOut.data_cspc |
|
1410 | cspc = self.dataOut.data_cspc | |
1402 | spc = self.dataOut.data_spc |
|
1411 | spc = self.dataOut.data_spc | |
1403 | Heights = numpy.arange(cspc.shape[2]) |
|
1412 | Heights = numpy.arange(cspc.shape[2]) | |
1404 | realCspc = numpy.abs(cspc) |
|
1413 | realCspc = numpy.abs(cspc) | |
1405 |
|
1414 | |||
1406 | for i in range(cspc.shape[0]): |
|
1415 | for i in range(cspc.shape[0]): | |
1407 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
1416 | LinePower= numpy.sum(realCspc[i], axis=0) | |
1408 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
1417 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] | |
1409 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
1418 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] | |
1410 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
1419 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) | |
1411 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
1420 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] | |
1412 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
1421 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] | |
1413 |
|
1422 | |||
1414 |
|
1423 | |||
1415 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
1424 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) | |
1416 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
1425 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) | |
1417 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
1426 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): | |
1418 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
1427 | cspc[i,InterferenceRange,:] = numpy.NaN | |
1419 |
|
1428 | |||
1420 | self.dataOut.data_cspc = cspc |
|
1429 | self.dataOut.data_cspc = cspc | |
1421 |
|
1430 | |||
1422 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
1431 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): | |
1423 |
|
1432 | |||
1424 | jspectra = self.dataOut.data_spc |
|
1433 | jspectra = self.dataOut.data_spc | |
1425 | jcspectra = self.dataOut.data_cspc |
|
1434 | jcspectra = self.dataOut.data_cspc | |
1426 | jnoise = self.dataOut.getNoise() |
|
1435 | jnoise = self.dataOut.getNoise() | |
1427 | num_incoh = self.dataOut.nIncohInt |
|
1436 | num_incoh = self.dataOut.nIncohInt | |
1428 |
|
1437 | |||
1429 | num_channel = jspectra.shape[0] |
|
1438 | num_channel = jspectra.shape[0] | |
1430 | num_prof = jspectra.shape[1] |
|
1439 | num_prof = jspectra.shape[1] | |
1431 | num_hei = jspectra.shape[2] |
|
1440 | num_hei = jspectra.shape[2] | |
1432 |
|
1441 | |||
1433 | # hei_interf |
|
1442 | # hei_interf | |
1434 | if hei_interf is None: |
|
1443 | if hei_interf is None: | |
1435 | count_hei = int(num_hei / 2) |
|
1444 | count_hei = int(num_hei / 2) | |
1436 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
1445 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei | |
1437 | hei_interf = numpy.asarray(hei_interf)[0] |
|
1446 | hei_interf = numpy.asarray(hei_interf)[0] | |
1438 | # nhei_interf |
|
1447 | # nhei_interf | |
1439 | if (nhei_interf == None): |
|
1448 | if (nhei_interf == None): | |
1440 | nhei_interf = 5 |
|
1449 | nhei_interf = 5 | |
1441 | if (nhei_interf < 1): |
|
1450 | if (nhei_interf < 1): | |
1442 | nhei_interf = 1 |
|
1451 | nhei_interf = 1 | |
1443 | if (nhei_interf > count_hei): |
|
1452 | if (nhei_interf > count_hei): | |
1444 | nhei_interf = count_hei |
|
1453 | nhei_interf = count_hei | |
1445 | if (offhei_interf == None): |
|
1454 | if (offhei_interf == None): | |
1446 | offhei_interf = 0 |
|
1455 | offhei_interf = 0 | |
1447 |
|
1456 | |||
1448 | ind_hei = list(range(num_hei)) |
|
1457 | ind_hei = list(range(num_hei)) | |
1449 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
1458 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |
1450 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
1459 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |
1451 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
1460 | mask_prof = numpy.asarray(list(range(num_prof))) | |
1452 | num_mask_prof = mask_prof.size |
|
1461 | num_mask_prof = mask_prof.size | |
1453 | comp_mask_prof = [0, num_prof / 2] |
|
1462 | comp_mask_prof = [0, num_prof / 2] | |
1454 |
|
1463 | |||
1455 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
1464 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |
1456 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
1465 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |
1457 | jnoise = numpy.nan |
|
1466 | jnoise = numpy.nan | |
1458 | noise_exist = jnoise[0] < numpy.Inf |
|
1467 | noise_exist = jnoise[0] < numpy.Inf | |
1459 |
|
1468 | |||
1460 | # Subrutina de Remocion de la Interferencia |
|
1469 | # Subrutina de Remocion de la Interferencia | |
1461 | for ich in range(num_channel): |
|
1470 | for ich in range(num_channel): | |
1462 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1471 | # Se ordena los espectros segun su potencia (menor a mayor) | |
1463 | power = jspectra[ich, mask_prof, :] |
|
1472 | power = jspectra[ich, mask_prof, :] | |
1464 | power = power[:, hei_interf] |
|
1473 | power = power[:, hei_interf] | |
1465 | power = power.sum(axis=0) |
|
1474 | power = power.sum(axis=0) | |
1466 | psort = power.ravel().argsort() |
|
1475 | psort = power.ravel().argsort() | |
1467 |
|
1476 | |||
1468 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
1477 | # Se estima la interferencia promedio en los Espectros de Potencia empleando | |
1469 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
1478 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( | |
1470 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1479 | offhei_interf, nhei_interf + offhei_interf))]]] | |
1471 |
|
1480 | |||
1472 | if noise_exist: |
|
1481 | if noise_exist: | |
1473 | # tmp_noise = jnoise[ich] / num_prof |
|
1482 | # tmp_noise = jnoise[ich] / num_prof | |
1474 | tmp_noise = jnoise[ich] |
|
1483 | tmp_noise = jnoise[ich] | |
1475 | junkspc_interf = junkspc_interf - tmp_noise |
|
1484 | junkspc_interf = junkspc_interf - tmp_noise | |
1476 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
1485 | #junkspc_interf[:,comp_mask_prof] = 0 | |
1477 |
|
1486 | |||
1478 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
1487 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf | |
1479 | jspc_interf = jspc_interf.transpose() |
|
1488 | jspc_interf = jspc_interf.transpose() | |
1480 | # Calculando el espectro de interferencia promedio |
|
1489 | # Calculando el espectro de interferencia promedio | |
1481 | noiseid = numpy.where( |
|
1490 | noiseid = numpy.where( | |
1482 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
1491 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) | |
1483 | noiseid = noiseid[0] |
|
1492 | noiseid = noiseid[0] | |
1484 | cnoiseid = noiseid.size |
|
1493 | cnoiseid = noiseid.size | |
1485 | interfid = numpy.where( |
|
1494 | interfid = numpy.where( | |
1486 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
1495 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) | |
1487 | interfid = interfid[0] |
|
1496 | interfid = interfid[0] | |
1488 | cinterfid = interfid.size |
|
1497 | cinterfid = interfid.size | |
1489 |
|
1498 | |||
1490 | if (cnoiseid > 0): |
|
1499 | if (cnoiseid > 0): | |
1491 | jspc_interf[noiseid] = 0 |
|
1500 | jspc_interf[noiseid] = 0 | |
1492 |
|
1501 | |||
1493 | # Expandiendo los perfiles a limpiar |
|
1502 | # Expandiendo los perfiles a limpiar | |
1494 | if (cinterfid > 0): |
|
1503 | if (cinterfid > 0): | |
1495 | new_interfid = ( |
|
1504 | new_interfid = ( | |
1496 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
1505 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof | |
1497 | new_interfid = numpy.asarray(new_interfid) |
|
1506 | new_interfid = numpy.asarray(new_interfid) | |
1498 | new_interfid = {x for x in new_interfid} |
|
1507 | new_interfid = {x for x in new_interfid} | |
1499 | new_interfid = numpy.array(list(new_interfid)) |
|
1508 | new_interfid = numpy.array(list(new_interfid)) | |
1500 | new_cinterfid = new_interfid.size |
|
1509 | new_cinterfid = new_interfid.size | |
1501 | else: |
|
1510 | else: | |
1502 | new_cinterfid = 0 |
|
1511 | new_cinterfid = 0 | |
1503 |
|
1512 | |||
1504 | for ip in range(new_cinterfid): |
|
1513 | for ip in range(new_cinterfid): | |
1505 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
1514 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() | |
1506 | jspc_interf[new_interfid[ip] |
|
1515 | jspc_interf[new_interfid[ip] | |
1507 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
1516 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] | |
1508 |
|
1517 | |||
1509 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
1518 | jspectra[ich, :, ind_hei] = jspectra[ich, :, | |
1510 | ind_hei] - jspc_interf # Corregir indices |
|
1519 | ind_hei] - jspc_interf # Corregir indices | |
1511 |
|
1520 | |||
1512 | # Removiendo la interferencia del punto de mayor interferencia |
|
1521 | # Removiendo la interferencia del punto de mayor interferencia | |
1513 | ListAux = jspc_interf[mask_prof].tolist() |
|
1522 | ListAux = jspc_interf[mask_prof].tolist() | |
1514 | maxid = ListAux.index(max(ListAux)) |
|
1523 | maxid = ListAux.index(max(ListAux)) | |
1515 |
|
1524 | |||
1516 | if cinterfid > 0: |
|
1525 | if cinterfid > 0: | |
1517 | for ip in range(cinterfid * (interf == 2) - 1): |
|
1526 | for ip in range(cinterfid * (interf == 2) - 1): | |
1518 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
1527 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * | |
1519 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1528 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() | |
1520 | cind = len(ind) |
|
1529 | cind = len(ind) | |
1521 |
|
1530 | |||
1522 | if (cind > 0): |
|
1531 | if (cind > 0): | |
1523 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
1532 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ | |
1524 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
1533 | (1 + (numpy.random.uniform(cind) - 0.5) / | |
1525 | numpy.sqrt(num_incoh)) |
|
1534 | numpy.sqrt(num_incoh)) | |
1526 |
|
1535 | |||
1527 | ind = numpy.array([-2, -1, 1, 2]) |
|
1536 | ind = numpy.array([-2, -1, 1, 2]) | |
1528 | xx = numpy.zeros([4, 4]) |
|
1537 | xx = numpy.zeros([4, 4]) | |
1529 |
|
1538 | |||
1530 | for id1 in range(4): |
|
1539 | for id1 in range(4): | |
1531 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1540 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
1532 |
|
1541 | |||
1533 | xx_inv = numpy.linalg.inv(xx) |
|
1542 | xx_inv = numpy.linalg.inv(xx) | |
1534 | xx = xx_inv[:, 0] |
|
1543 | xx = xx_inv[:, 0] | |
1535 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1544 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
1536 | yy = jspectra[ich, mask_prof[ind], :] |
|
1545 | yy = jspectra[ich, mask_prof[ind], :] | |
1537 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
1546 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( | |
1538 | yy.transpose(), xx) |
|
1547 | yy.transpose(), xx) | |
1539 |
|
1548 | |||
1540 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
1549 | indAux = (jspectra[ich, :, :] < tmp_noise * | |
1541 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1550 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() | |
1542 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
1551 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ | |
1543 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
1552 | (1 - 1 / numpy.sqrt(num_incoh)) | |
1544 |
|
1553 | |||
1545 | # Remocion de Interferencia en el Cross Spectra |
|
1554 | # Remocion de Interferencia en el Cross Spectra | |
1546 | if jcspectra is None: |
|
1555 | if jcspectra is None: | |
1547 | return jspectra, jcspectra |
|
1556 | return jspectra, jcspectra | |
1548 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
1557 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) | |
1549 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
1558 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |
1550 |
|
1559 | |||
1551 | for ip in range(num_pairs): |
|
1560 | for ip in range(num_pairs): | |
1552 |
|
1561 | |||
1553 | #------------------------------------------- |
|
1562 | #------------------------------------------- | |
1554 |
|
1563 | |||
1555 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
1564 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) | |
1556 | cspower = cspower[:, hei_interf] |
|
1565 | cspower = cspower[:, hei_interf] | |
1557 | cspower = cspower.sum(axis=0) |
|
1566 | cspower = cspower.sum(axis=0) | |
1558 |
|
1567 | |||
1559 | cspsort = cspower.ravel().argsort() |
|
1568 | cspsort = cspower.ravel().argsort() | |
1560 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
1569 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( | |
1561 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1570 | offhei_interf, nhei_interf + offhei_interf))]]] | |
1562 | junkcspc_interf = junkcspc_interf.transpose() |
|
1571 | junkcspc_interf = junkcspc_interf.transpose() | |
1563 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
1572 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf | |
1564 |
|
1573 | |||
1565 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1574 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |
1566 |
|
1575 | |||
1567 | median_real = int(numpy.median(numpy.real( |
|
1576 | median_real = int(numpy.median(numpy.real( | |
1568 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1577 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
1569 | median_imag = int(numpy.median(numpy.imag( |
|
1578 | median_imag = int(numpy.median(numpy.imag( | |
1570 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1579 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
1571 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
1580 | comp_mask_prof = [int(e) for e in comp_mask_prof] | |
1572 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
1581 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( | |
1573 | median_real, median_imag) |
|
1582 | median_real, median_imag) | |
1574 |
|
1583 | |||
1575 | for iprof in range(num_prof): |
|
1584 | for iprof in range(num_prof): | |
1576 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
1585 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() | |
1577 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
1586 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] | |
1578 |
|
1587 | |||
1579 | # Removiendo la Interferencia |
|
1588 | # Removiendo la Interferencia | |
1580 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
1589 | jcspectra[ip, :, ind_hei] = jcspectra[ip, | |
1581 | :, ind_hei] - jcspc_interf |
|
1590 | :, ind_hei] - jcspc_interf | |
1582 |
|
1591 | |||
1583 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1592 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |
1584 | maxid = ListAux.index(max(ListAux)) |
|
1593 | maxid = ListAux.index(max(ListAux)) | |
1585 |
|
1594 | |||
1586 | ind = numpy.array([-2, -1, 1, 2]) |
|
1595 | ind = numpy.array([-2, -1, 1, 2]) | |
1587 | xx = numpy.zeros([4, 4]) |
|
1596 | xx = numpy.zeros([4, 4]) | |
1588 |
|
1597 | |||
1589 | for id1 in range(4): |
|
1598 | for id1 in range(4): | |
1590 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1599 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
1591 |
|
1600 | |||
1592 | xx_inv = numpy.linalg.inv(xx) |
|
1601 | xx_inv = numpy.linalg.inv(xx) | |
1593 | xx = xx_inv[:, 0] |
|
1602 | xx = xx_inv[:, 0] | |
1594 |
|
1603 | |||
1595 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1604 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
1596 | yy = jcspectra[ip, mask_prof[ind], :] |
|
1605 | yy = jcspectra[ip, mask_prof[ind], :] | |
1597 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1606 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) | |
1598 |
|
1607 | |||
1599 | # Guardar Resultados |
|
1608 | # Guardar Resultados | |
1600 | self.dataOut.data_spc = jspectra |
|
1609 | self.dataOut.data_spc = jspectra | |
1601 | self.dataOut.data_cspc = jcspectra |
|
1610 | self.dataOut.data_cspc = jcspectra | |
1602 |
|
1611 | |||
1603 | return 1 |
|
1612 | return 1 | |
1604 |
|
1613 | |||
1605 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): |
|
1614 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): | |
1606 |
|
1615 | |||
1607 | self.dataOut = dataOut |
|
1616 | self.dataOut = dataOut | |
1608 |
|
1617 | |||
1609 | if mode == 1: |
|
1618 | if mode == 1: | |
1610 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
1619 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) | |
1611 | elif mode == 2: |
|
1620 | elif mode == 2: | |
1612 | self.removeInterference2() |
|
1621 | self.removeInterference2() | |
1613 |
|
1622 | |||
1614 | return self.dataOut |
|
1623 | return self.dataOut | |
1615 |
|
1624 | |||
1616 |
|
1625 | |||
1617 | class IncohInt(Operation): |
|
1626 | class IncohInt(Operation): | |
1618 |
|
1627 | |||
1619 | __profIndex = 0 |
|
1628 | __profIndex = 0 | |
1620 | __withOverapping = False |
|
1629 | __withOverapping = False | |
1621 |
|
1630 | |||
1622 | __byTime = False |
|
1631 | __byTime = False | |
1623 | __initime = None |
|
1632 | __initime = None | |
1624 | __lastdatatime = None |
|
1633 | __lastdatatime = None | |
1625 | __integrationtime = None |
|
1634 | __integrationtime = None | |
1626 |
|
1635 | |||
1627 | __buffer_spc = None |
|
1636 | __buffer_spc = None | |
1628 | __buffer_cspc = None |
|
1637 | __buffer_cspc = None | |
1629 | __buffer_dc = None |
|
1638 | __buffer_dc = None | |
1630 |
|
1639 | |||
1631 | __dataReady = False |
|
1640 | __dataReady = False | |
1632 |
|
1641 | |||
1633 | __timeInterval = None |
|
1642 | __timeInterval = None | |
1634 |
|
1643 | |||
1635 | n = None |
|
1644 | n = None | |
1636 |
|
1645 | |||
1637 | def __init__(self): |
|
1646 | def __init__(self): | |
1638 |
|
1647 | |||
1639 | Operation.__init__(self) |
|
1648 | Operation.__init__(self) | |
1640 |
|
1649 | |||
1641 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1650 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
1642 | """ |
|
1651 | """ | |
1643 | Set the parameters of the integration class. |
|
1652 | Set the parameters of the integration class. | |
1644 |
|
1653 | |||
1645 | Inputs: |
|
1654 | Inputs: | |
1646 |
|
1655 | |||
1647 | n : Number of coherent integrations |
|
1656 | n : Number of coherent integrations | |
1648 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1657 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
1649 | overlapping : |
|
1658 | overlapping : | |
1650 |
|
1659 | |||
1651 | """ |
|
1660 | """ | |
1652 |
|
1661 | |||
1653 | self.__initime = None |
|
1662 | self.__initime = None | |
1654 | self.__lastdatatime = 0 |
|
1663 | self.__lastdatatime = 0 | |
1655 |
|
1664 | |||
1656 | self.__buffer_spc = 0 |
|
1665 | self.__buffer_spc = 0 | |
1657 | self.__buffer_cspc = 0 |
|
1666 | self.__buffer_cspc = 0 | |
1658 | self.__buffer_dc = 0 |
|
1667 | self.__buffer_dc = 0 | |
1659 |
|
1668 | |||
1660 | self.__profIndex = 0 |
|
1669 | self.__profIndex = 0 | |
1661 | self.__dataReady = False |
|
1670 | self.__dataReady = False | |
1662 | self.__byTime = False |
|
1671 | self.__byTime = False | |
1663 |
|
1672 | |||
1664 | if n is None and timeInterval is None: |
|
1673 | if n is None and timeInterval is None: | |
1665 | raise ValueError("n or timeInterval should be specified ...") |
|
1674 | raise ValueError("n or timeInterval should be specified ...") | |
1666 |
|
1675 | |||
1667 | if n is not None: |
|
1676 | if n is not None: | |
1668 | self.n = int(n) |
|
1677 | self.n = int(n) | |
1669 | else: |
|
1678 | else: | |
1670 |
|
1679 | |||
1671 | self.__integrationtime = int(timeInterval) |
|
1680 | self.__integrationtime = int(timeInterval) | |
1672 | self.n = None |
|
1681 | self.n = None | |
1673 | self.__byTime = True |
|
1682 | self.__byTime = True | |
1674 |
|
1683 | |||
1675 | def putData(self, data_spc, data_cspc, data_dc): |
|
1684 | def putData(self, data_spc, data_cspc, data_dc): | |
1676 | """ |
|
1685 | """ | |
1677 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1686 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
1678 |
|
1687 | |||
1679 | """ |
|
1688 | """ | |
1680 |
|
1689 | |||
1681 | self.__buffer_spc += data_spc |
|
1690 | self.__buffer_spc += data_spc | |
1682 |
|
1691 | |||
1683 | if data_cspc is None: |
|
1692 | if data_cspc is None: | |
1684 | self.__buffer_cspc = None |
|
1693 | self.__buffer_cspc = None | |
1685 | else: |
|
1694 | else: | |
1686 | self.__buffer_cspc += data_cspc |
|
1695 | self.__buffer_cspc += data_cspc | |
1687 |
|
1696 | |||
1688 | if data_dc is None: |
|
1697 | if data_dc is None: | |
1689 | self.__buffer_dc = None |
|
1698 | self.__buffer_dc = None | |
1690 | else: |
|
1699 | else: | |
1691 | self.__buffer_dc += data_dc |
|
1700 | self.__buffer_dc += data_dc | |
1692 |
|
1701 | |||
1693 | self.__profIndex += 1 |
|
1702 | self.__profIndex += 1 | |
1694 |
|
1703 | |||
1695 | return |
|
1704 | return | |
1696 |
|
1705 | |||
1697 | def pushData(self): |
|
1706 | def pushData(self): | |
1698 | """ |
|
1707 | """ | |
1699 | Return the sum of the last profiles and the profiles used in the sum. |
|
1708 | Return the sum of the last profiles and the profiles used in the sum. | |
1700 |
|
1709 | |||
1701 | Affected: |
|
1710 | Affected: | |
1702 |
|
1711 | |||
1703 | self.__profileIndex |
|
1712 | self.__profileIndex | |
1704 |
|
1713 | |||
1705 | """ |
|
1714 | """ | |
1706 |
|
1715 | |||
1707 | data_spc = self.__buffer_spc |
|
1716 | data_spc = self.__buffer_spc | |
1708 | data_cspc = self.__buffer_cspc |
|
1717 | data_cspc = self.__buffer_cspc | |
1709 | data_dc = self.__buffer_dc |
|
1718 | data_dc = self.__buffer_dc | |
1710 | n = self.__profIndex |
|
1719 | n = self.__profIndex | |
1711 |
|
1720 | |||
1712 | self.__buffer_spc = 0 |
|
1721 | self.__buffer_spc = 0 | |
1713 | self.__buffer_cspc = 0 |
|
1722 | self.__buffer_cspc = 0 | |
1714 | self.__buffer_dc = 0 |
|
1723 | self.__buffer_dc = 0 | |
1715 | self.__profIndex = 0 |
|
1724 | self.__profIndex = 0 | |
1716 |
|
1725 | |||
1717 | return data_spc, data_cspc, data_dc, n |
|
1726 | return data_spc, data_cspc, data_dc, n | |
1718 |
|
1727 | |||
1719 | def byProfiles(self, *args): |
|
1728 | def byProfiles(self, *args): | |
1720 |
|
1729 | |||
1721 | self.__dataReady = False |
|
1730 | self.__dataReady = False | |
1722 | avgdata_spc = None |
|
1731 | avgdata_spc = None | |
1723 | avgdata_cspc = None |
|
1732 | avgdata_cspc = None | |
1724 | avgdata_dc = None |
|
1733 | avgdata_dc = None | |
1725 |
|
1734 | |||
1726 | self.putData(*args) |
|
1735 | self.putData(*args) | |
1727 |
|
1736 | |||
1728 | if self.__profIndex == self.n: |
|
1737 | if self.__profIndex == self.n: | |
1729 |
|
1738 | |||
1730 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1739 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1731 | self.n = n |
|
1740 | self.n = n | |
1732 | self.__dataReady = True |
|
1741 | self.__dataReady = True | |
1733 |
|
1742 | |||
1734 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1743 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1735 |
|
1744 | |||
1736 | def byTime(self, datatime, *args): |
|
1745 | def byTime(self, datatime, *args): | |
1737 |
|
1746 | |||
1738 | self.__dataReady = False |
|
1747 | self.__dataReady = False | |
1739 | avgdata_spc = None |
|
1748 | avgdata_spc = None | |
1740 | avgdata_cspc = None |
|
1749 | avgdata_cspc = None | |
1741 | avgdata_dc = None |
|
1750 | avgdata_dc = None | |
1742 |
|
1751 | |||
1743 | self.putData(*args) |
|
1752 | self.putData(*args) | |
1744 |
|
1753 | |||
1745 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1754 | if (datatime - self.__initime) >= self.__integrationtime: | |
1746 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1755 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1747 | self.n = n |
|
1756 | self.n = n | |
1748 | self.__dataReady = True |
|
1757 | self.__dataReady = True | |
1749 |
|
1758 | |||
1750 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1759 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1751 |
|
1760 | |||
1752 | def integrate(self, datatime, *args): |
|
1761 | def integrate(self, datatime, *args): | |
1753 |
|
1762 | |||
1754 | if self.__profIndex == 0: |
|
1763 | if self.__profIndex == 0: | |
1755 | self.__initime = datatime |
|
1764 | self.__initime = datatime | |
1756 |
|
1765 | |||
1757 | if self.__byTime: |
|
1766 | if self.__byTime: | |
1758 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1767 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |
1759 | datatime, *args) |
|
1768 | datatime, *args) | |
1760 | else: |
|
1769 | else: | |
1761 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1770 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
1762 |
|
1771 | |||
1763 | if not self.__dataReady: |
|
1772 | if not self.__dataReady: | |
1764 | return None, None, None, None |
|
1773 | return None, None, None, None | |
1765 |
|
1774 | |||
1766 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1775 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |
1767 |
|
1776 | |||
1768 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1777 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | |
1769 | if n == 1: |
|
1778 | if n == 1: | |
1770 | return dataOut |
|
1779 | return dataOut | |
1771 |
|
1780 | |||
1772 | dataOut.flagNoData = True |
|
1781 | dataOut.flagNoData = True | |
1773 |
|
1782 | |||
1774 | if not self.isConfig: |
|
1783 | if not self.isConfig: | |
1775 | self.setup(n, timeInterval, overlapping) |
|
1784 | self.setup(n, timeInterval, overlapping) | |
1776 | self.isConfig = True |
|
1785 | self.isConfig = True | |
1777 |
|
1786 | |||
1778 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1787 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |
1779 | dataOut.data_spc, |
|
1788 | dataOut.data_spc, | |
1780 | dataOut.data_cspc, |
|
1789 | dataOut.data_cspc, | |
1781 | dataOut.data_dc) |
|
1790 | dataOut.data_dc) | |
1782 |
|
1791 | |||
1783 | if self.__dataReady: |
|
1792 | if self.__dataReady: | |
1784 |
|
1793 | |||
1785 | dataOut.data_spc = avgdata_spc |
|
1794 | dataOut.data_spc = avgdata_spc | |
1786 | dataOut.data_cspc = avgdata_cspc |
|
1795 | dataOut.data_cspc = avgdata_cspc | |
1787 | dataOut.data_dc = avgdata_dc |
|
1796 | dataOut.data_dc = avgdata_dc | |
1788 | dataOut.nIncohInt *= self.n |
|
1797 | dataOut.nIncohInt *= self.n | |
1789 | dataOut.utctime = avgdatatime |
|
1798 | dataOut.utctime = avgdatatime | |
1790 | dataOut.flagNoData = False |
|
1799 | dataOut.flagNoData = False | |
1791 |
|
1800 | |||
1792 | return dataOut |
|
1801 | return dataOut | |
1793 |
|
1802 | |||
1794 | class dopplerFlip(Operation): |
|
1803 | class dopplerFlip(Operation): | |
1795 |
|
1804 | |||
1796 | def run(self, dataOut): |
|
1805 | def run(self, dataOut): | |
1797 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1806 | # arreglo 1: (num_chan, num_profiles, num_heights) | |
1798 | self.dataOut = dataOut |
|
1807 | self.dataOut = dataOut | |
1799 | # JULIA-oblicua, indice 2 |
|
1808 | # JULIA-oblicua, indice 2 | |
1800 | # arreglo 2: (num_profiles, num_heights) |
|
1809 | # arreglo 2: (num_profiles, num_heights) | |
1801 | jspectra = self.dataOut.data_spc[2] |
|
1810 | jspectra = self.dataOut.data_spc[2] | |
1802 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
1811 | jspectra_tmp = numpy.zeros(jspectra.shape) | |
1803 | num_profiles = jspectra.shape[0] |
|
1812 | num_profiles = jspectra.shape[0] | |
1804 | freq_dc = int(num_profiles / 2) |
|
1813 | freq_dc = int(num_profiles / 2) | |
1805 | # Flip con for |
|
1814 | # Flip con for | |
1806 | for j in range(num_profiles): |
|
1815 | for j in range(num_profiles): | |
1807 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1816 | jspectra_tmp[num_profiles-j-1]= jspectra[j] | |
1808 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1817 | # Intercambio perfil de DC con perfil inmediato anterior | |
1809 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1818 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] | |
1810 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1819 | jspectra_tmp[freq_dc]= jspectra[freq_dc] | |
1811 | # canal modificado es re-escrito en el arreglo de canales |
|
1820 | # canal modificado es re-escrito en el arreglo de canales | |
1812 | self.dataOut.data_spc[2] = jspectra_tmp |
|
1821 | self.dataOut.data_spc[2] = jspectra_tmp | |
1813 |
|
1822 | |||
1814 | return self.dataOut |
|
1823 | return self.dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now