@@ -1,82 +1,130 | |||
|
1 | 1 | #include <Python.h> |
|
2 | 2 | #include <numpy/arrayobject.h> |
|
3 | 3 | #include <math.h> |
|
4 | 4 | |
|
5 | 5 | |
|
6 | 6 | static PyObject *hildebrand_sekhon(PyObject *self, PyObject *args) { |
|
7 | 7 | double navg; |
|
8 | 8 | PyObject *data_obj, *data_array; |
|
9 | 9 | |
|
10 | 10 | if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg)) { |
|
11 | 11 | return NULL; |
|
12 | 12 | } |
|
13 | 13 | |
|
14 | 14 | data_array = PyArray_FROM_OTF(data_obj, NPY_FLOAT64, NPY_IN_ARRAY); |
|
15 | 15 | |
|
16 | 16 | if (data_array == NULL) { |
|
17 | 17 | Py_XDECREF(data_array); |
|
18 | 18 | Py_XDECREF(data_obj); |
|
19 | 19 | return NULL; |
|
20 | 20 | } |
|
21 | 21 | double *sortdata = (double*)PyArray_DATA(data_array); |
|
22 | 22 | int lenOfData = (int)PyArray_SIZE(data_array) ; |
|
23 | 23 | double nums_min = lenOfData*0.2; |
|
24 | 24 | if (nums_min <= 5) nums_min = 5; |
|
25 | 25 | double sump = 0; |
|
26 | 26 | double sumq = 0; |
|
27 | 27 | long j = 0; |
|
28 | 28 | int cont = 1; |
|
29 | 29 | double rtest = 0; |
|
30 | 30 | while ((cont == 1) && (j < lenOfData)) { |
|
31 | 31 | sump = sump + sortdata[j]; |
|
32 | 32 | sumq = sumq + pow(sortdata[j], 2); |
|
33 | 33 | if (j > nums_min) { |
|
34 | 34 | rtest = (double)j/(j-1) + 1/navg; |
|
35 | 35 | if ((sumq*j) > (rtest*pow(sump, 2))) { |
|
36 | 36 | j = j - 1; |
|
37 | 37 | sump = sump - sortdata[j]; |
|
38 | 38 | sumq = sumq - pow(sortdata[j],2); |
|
39 | 39 | cont = 0; |
|
40 | 40 | } |
|
41 | 41 | } |
|
42 | 42 | j = j + 1; |
|
43 | 43 | } |
|
44 | 44 | |
|
45 | 45 | double lnoise = sump / j; |
|
46 | 46 | |
|
47 | 47 | Py_DECREF(data_array); |
|
48 | 48 | |
|
49 | 49 | // return PyLong_FromLong(lnoise); |
|
50 | 50 | return PyFloat_FromDouble(lnoise); |
|
51 | 51 | } |
|
52 | /* | |
|
53 | static PyObject *hildebrand_sekhon2(PyObject *self, PyObject *args) { | |
|
54 | double navg; | |
|
55 | double th; | |
|
56 | PyObject *data_obj, *data_array; | |
|
57 | ||
|
58 | if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg, &th)) { | |
|
59 | return NULL; | |
|
60 | } | |
|
61 | ||
|
62 | data_array = PyArray_FROM_OTF(data_obj, NPY_FLOAT64, NPY_IN_ARRAY); | |
|
63 | ||
|
64 | if (data_array == NULL) { | |
|
65 | Py_XDECREF(data_array); | |
|
66 | Py_XDECREF(data_obj); | |
|
67 | return NULL; | |
|
68 | } | |
|
69 | double *sortdata = (double*)PyArray_DATA(data_array); | |
|
70 | int lenOfData = (int)PyArray_SIZE(data_array) ; | |
|
71 | double nums_min = lenOfData*th; | |
|
72 | if (nums_min <= 5) nums_min = 5; | |
|
73 | double sump = 0; | |
|
74 | double sumq = 0; | |
|
75 | long j = 0; | |
|
76 | int cont = 1; | |
|
77 | double rtest = 0; | |
|
78 | while ((cont == 1) && (j < lenOfData)) { | |
|
79 | sump = sump + sortdata[j]; | |
|
80 | sumq = sumq + pow(sortdata[j], 2); | |
|
81 | if (j > nums_min) { | |
|
82 | rtest = (double)j/(j-1) + 1/navg; | |
|
83 | if ((sumq*j) > (rtest*pow(sump, 2))) { | |
|
84 | j = j - 1; | |
|
85 | sump = sump - sortdata[j]; | |
|
86 | sumq = sumq - pow(sortdata[j],2); | |
|
87 | cont = 0; | |
|
88 | } | |
|
89 | } | |
|
90 | j = j + 1; | |
|
91 | } | |
|
52 | 92 |
|
|
93 | //double lnoise = sump / j; | |
|
94 | ||
|
95 | Py_DECREF(data_array); | |
|
96 | ||
|
97 | // return PyLong_FromLong(lnoise); | |
|
98 | return PyFloat_FromDouble(j,sortID); | |
|
99 | } | |
|
100 | */ | |
|
53 | 101 | |
|
54 | 102 | static PyMethodDef noiseMethods[] = { |
|
55 | 103 | { "hildebrand_sekhon", hildebrand_sekhon, METH_VARARGS, "Get noise with hildebrand_sekhon algorithm" }, |
|
56 | 104 | { NULL, NULL, 0, NULL } |
|
57 | 105 | }; |
|
58 | 106 | |
|
59 | 107 | #if PY_MAJOR_VERSION >= 3 |
|
60 | 108 | |
|
61 | 109 | static struct PyModuleDef noisemodule = { |
|
62 | 110 | PyModuleDef_HEAD_INIT, |
|
63 | 111 | "_noise", |
|
64 | 112 | "Get noise with hildebrand_sekhon algorithm", |
|
65 | 113 | -1, |
|
66 | 114 | noiseMethods |
|
67 | 115 | }; |
|
68 | 116 | |
|
69 | 117 | #endif |
|
70 | 118 | |
|
71 | 119 | #if PY_MAJOR_VERSION >= 3 |
|
72 | 120 | PyMODINIT_FUNC PyInit__noise(void) { |
|
73 | 121 | Py_Initialize(); |
|
74 | 122 | import_array(); |
|
75 | 123 | return PyModule_Create(&noisemodule); |
|
76 | 124 | } |
|
77 | 125 | #else |
|
78 | 126 | PyMODINIT_FUNC init_noise() { |
|
79 | 127 | Py_InitModule("_noise", noiseMethods); |
|
80 | 128 | import_array(); |
|
81 | 129 | } |
|
82 | 130 | #endif |
@@ -1,357 +1,359 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | 6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot |
|
7 | 7 | from schainpy.utils import log |
|
8 | 8 | |
|
9 | 9 | EARTH_RADIUS = 6.3710e3 |
|
10 | 10 | |
|
11 | 11 | |
|
12 | 12 | def ll2xy(lat1, lon1, lat2, lon2): |
|
13 | 13 | |
|
14 | 14 | p = 0.017453292519943295 |
|
15 | 15 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
16 | 16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
17 | 17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
18 | 18 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
19 | 19 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
20 | 20 | theta = -theta + numpy.pi/2 |
|
21 | 21 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def km2deg(km): |
|
25 | 25 | ''' |
|
26 | 26 | Convert distance in km to degrees |
|
27 | 27 | ''' |
|
28 | 28 | |
|
29 | 29 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
30 | 30 | |
|
31 | 31 | |
|
32 | 32 | |
|
33 | 33 | class SpectralMomentsPlot(SpectraPlot): |
|
34 | 34 | ''' |
|
35 | 35 | Plot for Spectral Moments |
|
36 | 36 | ''' |
|
37 | 37 | CODE = 'spc_moments' |
|
38 | 38 | colormap = 'jet' |
|
39 | 39 | plot_type = 'pcolor' |
|
40 | 40 | |
|
41 | 41 | |
|
42 | 42 | class SnrPlot(RTIPlot): |
|
43 | 43 | ''' |
|
44 | 44 | Plot for SNR Data |
|
45 | 45 | ''' |
|
46 | 46 | |
|
47 | 47 | CODE = 'snr' |
|
48 | 48 | colormap = 'jet' |
|
49 | 49 | |
|
50 | 50 | def update(self, dataOut): |
|
51 | 51 | if len(self.channelList) == 0: |
|
52 | 52 | self.update_list(dataOut) |
|
53 | data = {} | |
|
53 | ||
|
54 | 54 | meta = {} |
|
55 | data['snr'] = 10*numpy.log10(dataOut.data_snr) | |
|
56 | ||
|
55 | data = { | |
|
56 | 'snr': 10 * numpy.log10(dataOut.data_snr) | |
|
57 | } | |
|
58 | #print(data['snr']) | |
|
57 | 59 | return data, meta |
|
58 | 60 | |
|
59 | 61 | class DopplerPlot(RTIPlot): |
|
60 | 62 | ''' |
|
61 | 63 | Plot for DOPPLER Data (1st moment) |
|
62 | 64 | ''' |
|
63 | 65 | |
|
64 | 66 | CODE = 'dop' |
|
65 | 67 | colormap = 'jet' |
|
66 | 68 | |
|
67 | 69 | def update(self, dataOut): |
|
68 | 70 | self.update_list(dataOut) |
|
69 | 71 | data = { |
|
70 | 72 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
71 | 73 | } |
|
72 | 74 | |
|
73 | 75 | return data, {} |
|
74 | 76 | |
|
75 | 77 | class PowerPlot(RTIPlot): |
|
76 | 78 | ''' |
|
77 | 79 | Plot for Power Data (0 moment) |
|
78 | 80 | ''' |
|
79 | 81 | |
|
80 | 82 | CODE = 'pow' |
|
81 | 83 | colormap = 'jet' |
|
82 | 84 | |
|
83 | 85 | def update(self, dataOut): |
|
84 | 86 | self.update_list(dataOut) |
|
85 | 87 | data = { |
|
86 | 88 | 'pow': 10*numpy.log10(dataOut.data_pow) |
|
87 | 89 | } |
|
88 | 90 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
89 | 91 | return data, {} |
|
90 | 92 | |
|
91 | 93 | class SpectralWidthPlot(RTIPlot): |
|
92 | 94 | ''' |
|
93 | 95 | Plot for Spectral Width Data (2nd moment) |
|
94 | 96 | ''' |
|
95 | 97 | |
|
96 | 98 | CODE = 'width' |
|
97 | 99 | colormap = 'jet' |
|
98 | 100 | |
|
99 | 101 | def update(self, dataOut): |
|
100 | 102 | self.update_list(dataOut) |
|
101 | 103 | data = { |
|
102 | 104 | 'width': dataOut.data_width |
|
103 | 105 | } |
|
104 | 106 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
105 | 107 | return data, {} |
|
106 | 108 | |
|
107 | 109 | class SkyMapPlot(Plot): |
|
108 | 110 | ''' |
|
109 | 111 | Plot for meteors detection data |
|
110 | 112 | ''' |
|
111 | 113 | |
|
112 | 114 | CODE = 'param' |
|
113 | 115 | |
|
114 | 116 | def setup(self): |
|
115 | 117 | |
|
116 | 118 | self.ncols = 1 |
|
117 | 119 | self.nrows = 1 |
|
118 | 120 | self.width = 7.2 |
|
119 | 121 | self.height = 7.2 |
|
120 | 122 | self.nplots = 1 |
|
121 | 123 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
122 | 124 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
123 | 125 | self.polar = True |
|
124 | 126 | self.ymin = -180 |
|
125 | 127 | self.ymax = 180 |
|
126 | 128 | self.colorbar = False |
|
127 | 129 | |
|
128 | 130 | def plot(self): |
|
129 | 131 | |
|
130 | 132 | arrayParameters = numpy.concatenate(self.data['param']) |
|
131 | 133 | error = arrayParameters[:, -1] |
|
132 | 134 | indValid = numpy.where(error == 0)[0] |
|
133 | 135 | finalMeteor = arrayParameters[indValid, :] |
|
134 | 136 | finalAzimuth = finalMeteor[:, 3] |
|
135 | 137 | finalZenith = finalMeteor[:, 4] |
|
136 | 138 | |
|
137 | 139 | x = finalAzimuth * numpy.pi / 180 |
|
138 | 140 | y = finalZenith |
|
139 | 141 | |
|
140 | 142 | ax = self.axes[0] |
|
141 | 143 | |
|
142 | 144 | if ax.firsttime: |
|
143 | 145 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
144 | 146 | else: |
|
145 | 147 | ax.plot.set_data(x, y) |
|
146 | 148 | |
|
147 | 149 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
148 | 150 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
149 | 151 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
150 | 152 | dt2, |
|
151 | 153 | len(x)) |
|
152 | 154 | self.titles[0] = title |
|
153 | 155 | |
|
154 | 156 | |
|
155 | 157 | class GenericRTIPlot(Plot): |
|
156 | 158 | ''' |
|
157 | 159 | Plot for data_xxxx object |
|
158 | 160 | ''' |
|
159 | 161 | |
|
160 | 162 | CODE = 'param' |
|
161 | 163 | colormap = 'viridis' |
|
162 | 164 | plot_type = 'pcolorbuffer' |
|
163 | 165 | |
|
164 | 166 | def setup(self): |
|
165 | 167 | self.xaxis = 'time' |
|
166 | 168 | self.ncols = 1 |
|
167 | 169 | self.nrows = self.data.shape('param')[0] |
|
168 | 170 | self.nplots = self.nrows |
|
169 | 171 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
170 | 172 | |
|
171 | 173 | if not self.xlabel: |
|
172 | 174 | self.xlabel = 'Time' |
|
173 | 175 | |
|
174 | 176 | self.ylabel = 'Height [km]' |
|
175 | 177 | if not self.titles: |
|
176 | 178 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
177 | 179 | |
|
178 | 180 | def update(self, dataOut): |
|
179 | 181 | |
|
180 | 182 | data = { |
|
181 | 183 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
182 | 184 | } |
|
183 | 185 | |
|
184 | 186 | meta = {} |
|
185 | 187 | |
|
186 | 188 | return data, meta |
|
187 | 189 | |
|
188 | 190 | def plot(self): |
|
189 | 191 | # self.data.normalize_heights() |
|
190 | 192 | self.x = self.data.times |
|
191 | 193 | self.y = self.data.yrange |
|
192 | 194 | self.z = self.data['param'] |
|
193 | 195 | |
|
194 | 196 | self.z = numpy.ma.masked_invalid(self.z) |
|
195 | 197 | |
|
196 | 198 | if self.decimation is None: |
|
197 | 199 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
198 | 200 | else: |
|
199 | 201 | x, y, z = self.fill_gaps(*self.decimate()) |
|
200 | 202 | |
|
201 | 203 | for n, ax in enumerate(self.axes): |
|
202 | 204 | |
|
203 | 205 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
204 | 206 | self.z[n]) |
|
205 | 207 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
206 | 208 | self.z[n]) |
|
207 | 209 | |
|
208 | 210 | if ax.firsttime: |
|
209 | 211 | if self.zlimits is not None: |
|
210 | 212 | self.zmin, self.zmax = self.zlimits[n] |
|
211 | 213 | |
|
212 | 214 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
213 | 215 | vmin=self.zmin, |
|
214 | 216 | vmax=self.zmax, |
|
215 | 217 | cmap=self.cmaps[n] |
|
216 | 218 | ) |
|
217 | 219 | else: |
|
218 | 220 | if self.zlimits is not None: |
|
219 | 221 | self.zmin, self.zmax = self.zlimits[n] |
|
220 | 222 | ax.collections.remove(ax.collections[0]) |
|
221 | 223 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
222 | 224 | vmin=self.zmin, |
|
223 | 225 | vmax=self.zmax, |
|
224 | 226 | cmap=self.cmaps[n] |
|
225 | 227 | ) |
|
226 | 228 | |
|
227 | 229 | |
|
228 | 230 | class PolarMapPlot(Plot): |
|
229 | 231 | ''' |
|
230 | 232 | Plot for weather radar |
|
231 | 233 | ''' |
|
232 | 234 | |
|
233 | 235 | CODE = 'param' |
|
234 | 236 | colormap = 'seismic' |
|
235 | 237 | |
|
236 | 238 | def setup(self): |
|
237 | 239 | self.ncols = 1 |
|
238 | 240 | self.nrows = 1 |
|
239 | 241 | self.width = 9 |
|
240 | 242 | self.height = 8 |
|
241 | 243 | self.mode = self.data.meta['mode'] |
|
242 | 244 | if self.channels is not None: |
|
243 | 245 | self.nplots = len(self.channels) |
|
244 | 246 | self.nrows = len(self.channels) |
|
245 | 247 | else: |
|
246 | 248 | self.nplots = self.data.shape(self.CODE)[0] |
|
247 | 249 | self.nrows = self.nplots |
|
248 | 250 | self.channels = list(range(self.nplots)) |
|
249 | 251 | if self.mode == 'E': |
|
250 | 252 | self.xlabel = 'Longitude' |
|
251 | 253 | self.ylabel = 'Latitude' |
|
252 | 254 | else: |
|
253 | 255 | self.xlabel = 'Range (km)' |
|
254 | 256 | self.ylabel = 'Height (km)' |
|
255 | 257 | self.bgcolor = 'white' |
|
256 | 258 | self.cb_labels = self.data.meta['units'] |
|
257 | 259 | self.lat = self.data.meta['latitude'] |
|
258 | 260 | self.lon = self.data.meta['longitude'] |
|
259 | 261 | self.xmin, self.xmax = float( |
|
260 | 262 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
261 | 263 | self.ymin, self.ymax = float( |
|
262 | 264 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
263 | 265 | # self.polar = True |
|
264 | 266 | |
|
265 | 267 | def plot(self): |
|
266 | 268 | |
|
267 | 269 | for n, ax in enumerate(self.axes): |
|
268 | 270 | data = self.data['param'][self.channels[n]] |
|
269 | 271 | |
|
270 | 272 | zeniths = numpy.linspace( |
|
271 | 273 | 0, self.data.meta['max_range'], data.shape[1]) |
|
272 | 274 | if self.mode == 'E': |
|
273 | 275 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
274 | 276 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
275 | 277 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
276 | 278 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
277 | 279 | x = km2deg(x) + self.lon |
|
278 | 280 | y = km2deg(y) + self.lat |
|
279 | 281 | else: |
|
280 | 282 | azimuths = numpy.radians(self.data.yrange) |
|
281 | 283 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
282 | 284 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
283 | 285 | self.y = zeniths |
|
284 | 286 | |
|
285 | 287 | if ax.firsttime: |
|
286 | 288 | if self.zlimits is not None: |
|
287 | 289 | self.zmin, self.zmax = self.zlimits[n] |
|
288 | 290 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
289 | 291 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
290 | 292 | vmin=self.zmin, |
|
291 | 293 | vmax=self.zmax, |
|
292 | 294 | cmap=self.cmaps[n]) |
|
293 | 295 | else: |
|
294 | 296 | if self.zlimits is not None: |
|
295 | 297 | self.zmin, self.zmax = self.zlimits[n] |
|
296 | 298 | ax.collections.remove(ax.collections[0]) |
|
297 | 299 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
298 | 300 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
299 | 301 | vmin=self.zmin, |
|
300 | 302 | vmax=self.zmax, |
|
301 | 303 | cmap=self.cmaps[n]) |
|
302 | 304 | |
|
303 | 305 | if self.mode == 'A': |
|
304 | 306 | continue |
|
305 | 307 | |
|
306 | 308 | # plot district names |
|
307 | 309 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
308 | 310 | for line in f: |
|
309 | 311 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
310 | 312 | lat = float(lat) |
|
311 | 313 | lon = float(lon) |
|
312 | 314 | # ax.plot(lon, lat, '.b', ms=2) |
|
313 | 315 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
314 | 316 | va='bottom', size='8', color='black') |
|
315 | 317 | |
|
316 | 318 | # plot limites |
|
317 | 319 | limites = [] |
|
318 | 320 | tmp = [] |
|
319 | 321 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
320 | 322 | if '#' in line: |
|
321 | 323 | if tmp: |
|
322 | 324 | limites.append(tmp) |
|
323 | 325 | tmp = [] |
|
324 | 326 | continue |
|
325 | 327 | values = line.strip().split(',') |
|
326 | 328 | tmp.append((float(values[0]), float(values[1]))) |
|
327 | 329 | for points in limites: |
|
328 | 330 | ax.add_patch( |
|
329 | 331 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
330 | 332 | |
|
331 | 333 | # plot Cuencas |
|
332 | 334 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
333 | 335 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
334 | 336 | values = [line.strip().split(',') for line in f] |
|
335 | 337 | points = [(float(s[0]), float(s[1])) for s in values] |
|
336 | 338 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
337 | 339 | |
|
338 | 340 | # plot grid |
|
339 | 341 | for r in (15, 30, 45, 60): |
|
340 | 342 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
341 | 343 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
342 | 344 | ax.text( |
|
343 | 345 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
344 | 346 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
345 | 347 | '{}km'.format(r), |
|
346 | 348 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
347 | 349 | |
|
348 | 350 | if self.mode == 'E': |
|
349 | 351 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
350 | 352 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
351 | 353 | else: |
|
352 | 354 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
353 | 355 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
354 | 356 | |
|
355 | 357 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
356 | 358 | self.titles = ['{} {}'.format( |
|
357 | 359 | self.data.parameters[x], title) for x in self.channels] |
@@ -1,962 +1,966 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Classes to plot Spectra data |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import numpy |
|
11 | 11 | |
|
12 | 12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
13 | 13 | from itertools import combinations |
|
14 | 14 | |
|
15 | 15 | |
|
16 | 16 | class SpectraPlot(Plot): |
|
17 | 17 | ''' |
|
18 | 18 | Plot for Spectra data |
|
19 | 19 | ''' |
|
20 | 20 | |
|
21 | 21 | CODE = 'spc' |
|
22 | 22 | colormap = 'jet' |
|
23 | 23 | plot_type = 'pcolor' |
|
24 | 24 | buffering = False |
|
25 | 25 | channelList = [] |
|
26 | 26 | |
|
27 | 27 | def setup(self): |
|
28 | 28 | |
|
29 | 29 | self.nplots = len(self.data.channels) |
|
30 | 30 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
31 | 31 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
32 | 32 | self.height = 2.6 * self.nrows |
|
33 | 33 | |
|
34 | 34 | self.cb_label = 'dB' |
|
35 | 35 | if self.showprofile: |
|
36 | 36 | self.width = 4 * self.ncols |
|
37 | 37 | else: |
|
38 | 38 | self.width = 3.5 * self.ncols |
|
39 | 39 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
40 | 40 | self.ylabel = 'Range [km]' |
|
41 | 41 | |
|
42 | 42 | |
|
43 | 43 | def update_list(self,dataOut): |
|
44 | 44 | if len(self.channelList) == 0: |
|
45 | 45 | self.channelList = dataOut.channelList |
|
46 | 46 | |
|
47 | 47 | def update(self, dataOut): |
|
48 | 48 | |
|
49 | 49 | self.update_list(dataOut) |
|
50 | 50 | data = {} |
|
51 | 51 | meta = {} |
|
52 | 52 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
53 | 53 | data['spc'] = spc |
|
54 | 54 | data['rti'] = dataOut.getPower() |
|
55 | 55 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
56 | 56 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
57 | 57 | if self.CODE == 'spc_moments': |
|
58 | 58 | data['moments'] = dataOut.moments |
|
59 | 59 | |
|
60 | 60 | return data, meta |
|
61 | 61 | |
|
62 | 62 | def plot(self): |
|
63 | 63 | if self.xaxis == "frequency": |
|
64 | 64 | x = self.data.xrange[0] |
|
65 | 65 | self.xlabel = "Frequency (kHz)" |
|
66 | 66 | elif self.xaxis == "time": |
|
67 | 67 | x = self.data.xrange[1] |
|
68 | 68 | self.xlabel = "Time (ms)" |
|
69 | 69 | else: |
|
70 | 70 | x = self.data.xrange[2] |
|
71 | 71 | self.xlabel = "Velocity (m/s)" |
|
72 | 72 | |
|
73 | 73 | if self.CODE == 'spc_moments': |
|
74 | 74 | x = self.data.xrange[2] |
|
75 | 75 | self.xlabel = "Velocity (m/s)" |
|
76 | 76 | |
|
77 | 77 | self.titles = [] |
|
78 | 78 | y = self.data.yrange |
|
79 | 79 | self.y = y |
|
80 | 80 | |
|
81 | 81 | data = self.data[-1] |
|
82 | 82 | z = data['spc'] |
|
83 | 83 | |
|
84 | 84 | for n, ax in enumerate(self.axes): |
|
85 | 85 | noise = data['noise'][n] |
|
86 | 86 | if self.CODE == 'spc_moments': |
|
87 | 87 | mean = data['moments'][n, 1] |
|
88 | 88 | if ax.firsttime: |
|
89 | 89 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
90 | 90 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
91 | 91 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
92 | 92 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
93 | 93 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
94 | 94 | vmin=self.zmin, |
|
95 | 95 | vmax=self.zmax, |
|
96 | 96 | cmap=plt.get_cmap(self.colormap) |
|
97 | 97 | ) |
|
98 | 98 | |
|
99 | 99 | if self.showprofile: |
|
100 | 100 | ax.plt_profile = self.pf_axes[n].plot( |
|
101 | 101 | data['rti'][n], y)[0] |
|
102 | 102 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
103 | 103 | color="k", linestyle="dashed", lw=1)[0] |
|
104 | 104 | if self.CODE == 'spc_moments': |
|
105 | 105 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
106 | 106 | else: |
|
107 | 107 | ax.plt.set_array(z[n].T.ravel()) |
|
108 | 108 | if self.showprofile: |
|
109 | 109 | ax.plt_profile.set_data(data['rti'][n], y) |
|
110 | 110 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
111 | 111 | if self.CODE == 'spc_moments': |
|
112 | 112 | ax.plt_mean.set_data(mean, y) |
|
113 | 113 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
114 | 114 | |
|
115 | 115 | |
|
116 | 116 | class CrossSpectraPlot(Plot): |
|
117 | 117 | |
|
118 | 118 | CODE = 'cspc' |
|
119 | 119 | colormap = 'jet' |
|
120 | 120 | plot_type = 'pcolor' |
|
121 | 121 | zmin_coh = None |
|
122 | 122 | zmax_coh = None |
|
123 | 123 | zmin_phase = None |
|
124 | 124 | zmax_phase = None |
|
125 | 125 | realChannels = None |
|
126 | 126 | crossPairs = None |
|
127 | 127 | |
|
128 | 128 | def setup(self): |
|
129 | 129 | |
|
130 | 130 | self.ncols = 4 |
|
131 | 131 | self.nplots = len(self.data.pairs) * 2 |
|
132 | 132 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
133 | 133 | self.width = 3.1 * self.ncols |
|
134 | 134 | self.height = 2.6 * self.nrows |
|
135 | 135 | self.ylabel = 'Range [km]' |
|
136 | 136 | self.showprofile = False |
|
137 | 137 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
138 | 138 | |
|
139 | 139 | def update(self, dataOut): |
|
140 | 140 | |
|
141 | 141 | data = {} |
|
142 | 142 | meta = {} |
|
143 | 143 | |
|
144 | 144 | spc = dataOut.data_spc |
|
145 | 145 | cspc = dataOut.data_cspc |
|
146 | 146 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
147 | 147 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) |
|
148 | 148 | meta['pairs'] = rawPairs |
|
149 | 149 | |
|
150 | 150 | if self.crossPairs == None: |
|
151 | 151 | self.crossPairs = dataOut.pairsList |
|
152 | 152 | |
|
153 | 153 | tmp = [] |
|
154 | 154 | |
|
155 | 155 | for n, pair in enumerate(meta['pairs']): |
|
156 | 156 | |
|
157 | 157 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
158 | 158 | coh = numpy.abs(out) |
|
159 | 159 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
160 | 160 | tmp.append(coh) |
|
161 | 161 | tmp.append(phase) |
|
162 | 162 | |
|
163 | 163 | data['cspc'] = numpy.array(tmp) |
|
164 | 164 | |
|
165 | 165 | return data, meta |
|
166 | 166 | |
|
167 | 167 | def plot(self): |
|
168 | 168 | |
|
169 | 169 | if self.xaxis == "frequency": |
|
170 | 170 | x = self.data.xrange[0] |
|
171 | 171 | self.xlabel = "Frequency (kHz)" |
|
172 | 172 | elif self.xaxis == "time": |
|
173 | 173 | x = self.data.xrange[1] |
|
174 | 174 | self.xlabel = "Time (ms)" |
|
175 | 175 | else: |
|
176 | 176 | x = self.data.xrange[2] |
|
177 | 177 | self.xlabel = "Velocity (m/s)" |
|
178 | 178 | |
|
179 | 179 | self.titles = [] |
|
180 | 180 | |
|
181 | 181 | y = self.data.yrange |
|
182 | 182 | self.y = y |
|
183 | 183 | |
|
184 | 184 | data = self.data[-1] |
|
185 | 185 | cspc = data['cspc'] |
|
186 | 186 | |
|
187 | 187 | for n in range(len(self.data.pairs)): |
|
188 | 188 | |
|
189 | 189 | pair = self.crossPairs[n] |
|
190 | 190 | |
|
191 | 191 | coh = cspc[n*2] |
|
192 | 192 | phase = cspc[n*2+1] |
|
193 | 193 | ax = self.axes[2 * n] |
|
194 | 194 | |
|
195 | 195 | if ax.firsttime: |
|
196 | 196 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
197 | 197 | vmin=self.zmin_coh, |
|
198 | 198 | vmax=self.zmax_coh, |
|
199 | 199 | cmap=plt.get_cmap(self.colormap_coh) |
|
200 | 200 | ) |
|
201 | 201 | else: |
|
202 | 202 | ax.plt.set_array(coh.T.ravel()) |
|
203 | 203 | self.titles.append( |
|
204 | 204 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
205 | 205 | |
|
206 | 206 | ax = self.axes[2 * n + 1] |
|
207 | 207 | if ax.firsttime: |
|
208 | 208 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
209 | 209 | vmin=-180, |
|
210 | 210 | vmax=180, |
|
211 | 211 | cmap=plt.get_cmap(self.colormap_phase) |
|
212 | 212 | ) |
|
213 | 213 | else: |
|
214 | 214 | ax.plt.set_array(phase.T.ravel()) |
|
215 | 215 | |
|
216 | 216 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
217 | 217 | |
|
218 | 218 | |
|
219 | 219 | class RTIPlot(Plot): |
|
220 | 220 | ''' |
|
221 | 221 | Plot for RTI data |
|
222 | 222 | ''' |
|
223 | 223 | |
|
224 | 224 | CODE = 'rti' |
|
225 | 225 | colormap = 'jet' |
|
226 | 226 | plot_type = 'pcolorbuffer' |
|
227 | 227 | titles = None |
|
228 | 228 | channelList = [] |
|
229 | 229 | |
|
230 | 230 | def setup(self): |
|
231 | 231 | self.xaxis = 'time' |
|
232 | 232 | self.ncols = 1 |
|
233 | 233 | #print("dataChannels ",self.data.channels) |
|
234 | 234 | self.nrows = len(self.data.channels) |
|
235 | 235 | self.nplots = len(self.data.channels) |
|
236 | 236 | self.ylabel = 'Range [km]' |
|
237 | 237 | self.xlabel = 'Time' |
|
238 | 238 | self.cb_label = 'dB' |
|
239 | 239 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
240 | 240 | self.titles = ['{} Channel {}'.format( |
|
241 | 241 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
242 | 242 | |
|
243 | 243 | def update_list(self,dataOut): |
|
244 | 244 | |
|
245 | 245 | self.channelList = dataOut.channelList |
|
246 | 246 | |
|
247 | 247 | |
|
248 | 248 | def update(self, dataOut): |
|
249 | 249 | if len(self.channelList) == 0: |
|
250 | 250 | self.update_list(dataOut) |
|
251 | 251 | data = {} |
|
252 | 252 | meta = {} |
|
253 | 253 | data['rti'] = dataOut.getPower() |
|
254 | 254 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
255 | 255 | return data, meta |
|
256 | 256 | |
|
257 | 257 | def plot(self): |
|
258 | 258 | |
|
259 | 259 | self.x = self.data.times |
|
260 | 260 | self.y = self.data.yrange |
|
261 | ||
|
261 | 262 | self.z = self.data[self.CODE] |
|
262 | 263 | self.z = numpy.array(self.z, dtype=float) |
|
263 | 264 | self.z = numpy.ma.masked_invalid(self.z) |
|
264 | 265 | |
|
265 | 266 | try: |
|
266 | 267 | if self.channelList != None: |
|
267 | 268 | self.titles = ['{} Channel {}'.format( |
|
268 | 269 | self.CODE.upper(), x) for x in self.channelList] |
|
269 | 270 | except: |
|
270 | 271 | if self.channelList.any() != None: |
|
271 | 272 | self.titles = ['{} Channel {}'.format( |
|
272 | 273 | self.CODE.upper(), x) for x in self.channelList] |
|
273 | 274 | if self.decimation is None: |
|
274 | 275 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
275 | 276 | else: |
|
276 | 277 | x, y, z = self.fill_gaps(*self.decimate()) |
|
277 | dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes | |
|
278 | ||
|
279 | #dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes | |
|
278 | 280 | for n, ax in enumerate(self.axes): |
|
279 | 281 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
280 | 282 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
281 | 283 | data = self.data[-1] |
|
284 | ||
|
282 | 285 | if ax.firsttime: |
|
283 | 286 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
284 | 287 | vmin=self.zmin, |
|
285 | 288 | vmax=self.zmax, |
|
286 | 289 | cmap=plt.get_cmap(self.colormap) |
|
287 | 290 | ) |
|
288 | 291 | if self.showprofile: |
|
289 | 292 | ax.plot_profile = self.pf_axes[n].plot(data[self.CODE][n], self.y)[0] |
|
290 | ||
|
291 | 293 | if "noise" in self.data: |
|
294 | ||
|
292 | 295 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
293 | 296 | color="k", linestyle="dashed", lw=1)[0] |
|
294 | 297 | else: |
|
295 | 298 | ax.collections.remove(ax.collections[0]) |
|
296 | 299 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
297 | 300 | vmin=self.zmin, |
|
298 | 301 | vmax=self.zmax, |
|
299 | 302 | cmap=plt.get_cmap(self.colormap) |
|
300 | 303 | ) |
|
301 | 304 | if self.showprofile: |
|
302 | 305 | ax.plot_profile.set_data(data[self.CODE][n], self.y) |
|
303 | 306 | if "noise" in self.data: |
|
307 | ||
|
304 | 308 | ax.plot_noise.set_data(numpy.repeat( |
|
305 | 309 | data['noise'][n], len(self.y)), self.y) |
|
306 | 310 | |
|
307 | 311 | |
|
308 | 312 | class CoherencePlot(RTIPlot): |
|
309 | 313 | ''' |
|
310 | 314 | Plot for Coherence data |
|
311 | 315 | ''' |
|
312 | 316 | |
|
313 | 317 | CODE = 'coh' |
|
314 | 318 | |
|
315 | 319 | def setup(self): |
|
316 | 320 | self.xaxis = 'time' |
|
317 | 321 | self.ncols = 1 |
|
318 | 322 | self.nrows = len(self.data.pairs) |
|
319 | 323 | self.nplots = len(self.data.pairs) |
|
320 | 324 | self.ylabel = 'Range [km]' |
|
321 | 325 | self.xlabel = 'Time' |
|
322 | 326 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
323 | 327 | if self.CODE == 'coh': |
|
324 | 328 | self.cb_label = '' |
|
325 | 329 | self.titles = [ |
|
326 | 330 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
327 | 331 | else: |
|
328 | 332 | self.cb_label = 'Degrees' |
|
329 | 333 | self.titles = [ |
|
330 | 334 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
331 | 335 | |
|
332 | 336 | def update(self, dataOut): |
|
333 | 337 | self.update_list(dataOut) |
|
334 | 338 | data = {} |
|
335 | 339 | meta = {} |
|
336 | 340 | data['coh'] = dataOut.getCoherence() |
|
337 | 341 | meta['pairs'] = dataOut.pairsList |
|
338 | 342 | |
|
339 | 343 | |
|
340 | 344 | return data, meta |
|
341 | 345 | |
|
342 | 346 | class PhasePlot(CoherencePlot): |
|
343 | 347 | ''' |
|
344 | 348 | Plot for Phase map data |
|
345 | 349 | ''' |
|
346 | 350 | |
|
347 | 351 | CODE = 'phase' |
|
348 | 352 | colormap = 'seismic' |
|
349 | 353 | |
|
350 | 354 | def update(self, dataOut): |
|
351 | 355 | |
|
352 | 356 | data = {} |
|
353 | 357 | meta = {} |
|
354 | 358 | data['phase'] = dataOut.getCoherence(phase=True) |
|
355 | 359 | meta['pairs'] = dataOut.pairsList |
|
356 | 360 | |
|
357 | 361 | return data, meta |
|
358 | 362 | |
|
359 | 363 | class NoisePlot(Plot): |
|
360 | 364 | ''' |
|
361 | 365 | Plot for noise |
|
362 | 366 | ''' |
|
363 | 367 | |
|
364 | 368 | CODE = 'noise' |
|
365 | 369 | plot_type = 'scatterbuffer' |
|
366 | 370 | |
|
367 | 371 | def setup(self): |
|
368 | 372 | self.xaxis = 'time' |
|
369 | 373 | self.ncols = 1 |
|
370 | 374 | self.nrows = 1 |
|
371 | 375 | self.nplots = 1 |
|
372 | 376 | self.ylabel = 'Intensity [dB]' |
|
373 | 377 | self.xlabel = 'Time' |
|
374 | 378 | self.titles = ['Noise'] |
|
375 | 379 | self.colorbar = False |
|
376 | 380 | self.plots_adjust.update({'right': 0.85 }) |
|
377 | 381 | |
|
378 | 382 | def update(self, dataOut): |
|
379 | 383 | |
|
380 | 384 | data = {} |
|
381 | 385 | meta = {} |
|
382 | 386 | noise = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
383 | 387 | data['noise'] = noise |
|
384 | 388 | meta['yrange'] = numpy.array([]) |
|
385 | 389 | |
|
386 | 390 | return data, meta |
|
387 | 391 | |
|
388 | 392 | def plot(self): |
|
389 | 393 | |
|
390 | 394 | x = self.data.times |
|
391 | 395 | xmin = self.data.min_time |
|
392 | 396 | xmax = xmin + self.xrange * 60 * 60 |
|
393 | 397 | Y = self.data['noise'] |
|
394 | 398 | |
|
395 | 399 | if self.axes[0].firsttime: |
|
396 | 400 | if self.ymin is None: self.ymin = numpy.nanmin(Y) - 5 |
|
397 | 401 | if self.ymax is None: self.ymax = numpy.nanmax(Y) + 5 |
|
398 | 402 | for ch in self.data.channels: |
|
399 | 403 | y = Y[ch] |
|
400 | 404 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
401 | 405 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
402 | 406 | else: |
|
403 | 407 | for ch in self.data.channels: |
|
404 | 408 | y = Y[ch] |
|
405 | 409 | self.axes[0].lines[ch].set_data(x, y) |
|
406 | 410 | |
|
407 | 411 | |
|
408 | 412 | class PowerProfilePlot(Plot): |
|
409 | 413 | |
|
410 | 414 | CODE = 'pow_profile' |
|
411 | 415 | plot_type = 'scatter' |
|
412 | 416 | |
|
413 | 417 | def setup(self): |
|
414 | 418 | |
|
415 | 419 | self.ncols = 1 |
|
416 | 420 | self.nrows = 1 |
|
417 | 421 | self.nplots = 1 |
|
418 | 422 | self.height = 4 |
|
419 | 423 | self.width = 3 |
|
420 | 424 | self.ylabel = 'Range [km]' |
|
421 | 425 | self.xlabel = 'Intensity [dB]' |
|
422 | 426 | self.titles = ['Power Profile'] |
|
423 | 427 | self.colorbar = False |
|
424 | 428 | |
|
425 | 429 | def update(self, dataOut): |
|
426 | 430 | |
|
427 | 431 | data = {} |
|
428 | 432 | meta = {} |
|
429 | 433 | data[self.CODE] = dataOut.getPower() |
|
430 | 434 | |
|
431 | 435 | return data, meta |
|
432 | 436 | |
|
433 | 437 | def plot(self): |
|
434 | 438 | |
|
435 | 439 | y = self.data.yrange |
|
436 | 440 | self.y = y |
|
437 | 441 | |
|
438 | 442 | x = self.data[-1][self.CODE] |
|
439 | 443 | |
|
440 | 444 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
441 | 445 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
442 | 446 | |
|
443 | 447 | if self.axes[0].firsttime: |
|
444 | 448 | for ch in self.data.channels: |
|
445 | 449 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
446 | 450 | plt.legend() |
|
447 | 451 | else: |
|
448 | 452 | for ch in self.data.channels: |
|
449 | 453 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
450 | 454 | |
|
451 | 455 | |
|
452 | 456 | class SpectraCutPlot(Plot): |
|
453 | 457 | |
|
454 | 458 | CODE = 'spc_cut' |
|
455 | 459 | plot_type = 'scatter' |
|
456 | 460 | buffering = False |
|
457 | 461 | heights = [] |
|
458 | 462 | channelList = [] |
|
459 | 463 | maintitle = "Spectra Cuts" |
|
460 | 464 | |
|
461 | 465 | def setup(self): |
|
462 | 466 | |
|
463 | 467 | self.nplots = len(self.data.channels) |
|
464 | 468 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
465 | 469 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
466 | 470 | self.width = 3.6 * self.ncols + 1.5 |
|
467 | 471 | self.height = 3 * self.nrows |
|
468 | 472 | self.ylabel = 'Power [dB]' |
|
469 | 473 | self.colorbar = False |
|
470 | 474 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
471 | 475 | if self.selectedHeight: |
|
472 | 476 | self.maintitle = "Spectra Cut for %d km " %(int(self.selectedHeight)) |
|
473 | 477 | |
|
474 | 478 | def update(self, dataOut): |
|
475 | 479 | if len(self.channelList) == 0: |
|
476 | 480 | self.channelList = dataOut.channelList |
|
477 | 481 | |
|
478 | 482 | self.heights = dataOut.heightList |
|
479 | 483 | if self.selectedHeight: |
|
480 | 484 | index_list = numpy.where(self.heights >= self.selectedHeight) |
|
481 | 485 | self.height_index = index_list[0] |
|
482 | 486 | self.height_index = self.height_index[0] |
|
483 | 487 | #print(self.height_index) |
|
484 | 488 | data = {} |
|
485 | 489 | meta = {} |
|
486 | 490 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
487 | 491 | if self.selectedHeight: |
|
488 | 492 | data['spc'] = spc[:,:,self.height_index] |
|
489 | 493 | else: |
|
490 | 494 | data['spc'] = spc |
|
491 | 495 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
492 | 496 | |
|
493 | 497 | return data, meta |
|
494 | 498 | |
|
495 | 499 | def plot(self): |
|
496 | 500 | if self.xaxis == "frequency": |
|
497 | 501 | x = self.data.xrange[0][1:] |
|
498 | 502 | self.xlabel = "Frequency (kHz)" |
|
499 | 503 | elif self.xaxis == "time": |
|
500 | 504 | x = self.data.xrange[1] |
|
501 | 505 | self.xlabel = "Time (ms)" |
|
502 | 506 | else: |
|
503 | 507 | x = self.data.xrange[2] |
|
504 | 508 | self.xlabel = "Velocity (m/s)" |
|
505 | 509 | |
|
506 | 510 | self.titles = [] |
|
507 | 511 | |
|
508 | 512 | y = self.data.yrange |
|
509 | 513 | z = self.data[-1]['spc'] |
|
510 | 514 | #print(z.shape) |
|
511 | 515 | if self.height_index: |
|
512 | 516 | index = numpy.array(self.height_index) |
|
513 | 517 | else: |
|
514 | 518 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
515 | 519 | |
|
516 | 520 | for n, ax in enumerate(self.axes): |
|
517 | 521 | if ax.firsttime: |
|
518 | 522 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
519 | 523 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
520 | 524 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
521 | 525 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
522 | 526 | if self.selectedHeight: |
|
523 | 527 | ax.plt = ax.plot(x, z[n,:]) |
|
524 | 528 | |
|
525 | 529 | else: |
|
526 | 530 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
527 | 531 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
528 | 532 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
529 | 533 | else: |
|
530 | 534 | for i, line in enumerate(ax.plt): |
|
531 | 535 | if self.selectedHeight: |
|
532 | 536 | line.set_data(x, z[n, :]) |
|
533 | 537 | else: |
|
534 | 538 | line.set_data(x, z[n, :, index[i]]) |
|
535 | 539 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
536 | 540 | plt.suptitle(self.maintitle) |
|
537 | 541 | |
|
538 | 542 | class BeaconPhase(Plot): |
|
539 | 543 | |
|
540 | 544 | __isConfig = None |
|
541 | 545 | __nsubplots = None |
|
542 | 546 | |
|
543 | 547 | PREFIX = 'beacon_phase' |
|
544 | 548 | |
|
545 | 549 | def __init__(self): |
|
546 | 550 | Plot.__init__(self) |
|
547 | 551 | self.timerange = 24*60*60 |
|
548 | 552 | self.isConfig = False |
|
549 | 553 | self.__nsubplots = 1 |
|
550 | 554 | self.counter_imagwr = 0 |
|
551 | 555 | self.WIDTH = 800 |
|
552 | 556 | self.HEIGHT = 400 |
|
553 | 557 | self.WIDTHPROF = 120 |
|
554 | 558 | self.HEIGHTPROF = 0 |
|
555 | 559 | self.xdata = None |
|
556 | 560 | self.ydata = None |
|
557 | 561 | |
|
558 | 562 | self.PLOT_CODE = BEACON_CODE |
|
559 | 563 | |
|
560 | 564 | self.FTP_WEI = None |
|
561 | 565 | self.EXP_CODE = None |
|
562 | 566 | self.SUB_EXP_CODE = None |
|
563 | 567 | self.PLOT_POS = None |
|
564 | 568 | |
|
565 | 569 | self.filename_phase = None |
|
566 | 570 | |
|
567 | 571 | self.figfile = None |
|
568 | 572 | |
|
569 | 573 | self.xmin = None |
|
570 | 574 | self.xmax = None |
|
571 | 575 | |
|
572 | 576 | def getSubplots(self): |
|
573 | 577 | |
|
574 | 578 | ncol = 1 |
|
575 | 579 | nrow = 1 |
|
576 | 580 | |
|
577 | 581 | return nrow, ncol |
|
578 | 582 | |
|
579 | 583 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
580 | 584 | |
|
581 | 585 | self.__showprofile = showprofile |
|
582 | 586 | self.nplots = nplots |
|
583 | 587 | |
|
584 | 588 | ncolspan = 7 |
|
585 | 589 | colspan = 6 |
|
586 | 590 | self.__nsubplots = 2 |
|
587 | 591 | |
|
588 | 592 | self.createFigure(id = id, |
|
589 | 593 | wintitle = wintitle, |
|
590 | 594 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
591 | 595 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
592 | 596 | show=show) |
|
593 | 597 | |
|
594 | 598 | nrow, ncol = self.getSubplots() |
|
595 | 599 | |
|
596 | 600 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
597 | 601 | |
|
598 | 602 | def save_phase(self, filename_phase): |
|
599 | 603 | f = open(filename_phase,'w+') |
|
600 | 604 | f.write('\n\n') |
|
601 | 605 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
602 | 606 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
603 | 607 | f.close() |
|
604 | 608 | |
|
605 | 609 | def save_data(self, filename_phase, data, data_datetime): |
|
606 | 610 | f=open(filename_phase,'a') |
|
607 | 611 | timetuple_data = data_datetime.timetuple() |
|
608 | 612 | day = str(timetuple_data.tm_mday) |
|
609 | 613 | month = str(timetuple_data.tm_mon) |
|
610 | 614 | year = str(timetuple_data.tm_year) |
|
611 | 615 | hour = str(timetuple_data.tm_hour) |
|
612 | 616 | minute = str(timetuple_data.tm_min) |
|
613 | 617 | second = str(timetuple_data.tm_sec) |
|
614 | 618 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
615 | 619 | f.close() |
|
616 | 620 | |
|
617 | 621 | def plot(self): |
|
618 | 622 | log.warning('TODO: Not yet implemented...') |
|
619 | 623 | |
|
620 | 624 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
621 | 625 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
622 | 626 | timerange=None, |
|
623 | 627 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
624 | 628 | server=None, folder=None, username=None, password=None, |
|
625 | 629 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
626 | 630 | |
|
627 | 631 | if dataOut.flagNoData: |
|
628 | 632 | return dataOut |
|
629 | 633 | |
|
630 | 634 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
631 | 635 | return |
|
632 | 636 | |
|
633 | 637 | if pairsList == None: |
|
634 | 638 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
635 | 639 | else: |
|
636 | 640 | pairsIndexList = [] |
|
637 | 641 | for pair in pairsList: |
|
638 | 642 | if pair not in dataOut.pairsList: |
|
639 | 643 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
640 | 644 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
641 | 645 | |
|
642 | 646 | if pairsIndexList == []: |
|
643 | 647 | return |
|
644 | 648 | |
|
645 | 649 | # if len(pairsIndexList) > 4: |
|
646 | 650 | # pairsIndexList = pairsIndexList[0:4] |
|
647 | 651 | |
|
648 | 652 | hmin_index = None |
|
649 | 653 | hmax_index = None |
|
650 | 654 | |
|
651 | 655 | if hmin != None and hmax != None: |
|
652 | 656 | indexes = numpy.arange(dataOut.nHeights) |
|
653 | 657 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
654 | 658 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
655 | 659 | |
|
656 | 660 | if hmin_list.any(): |
|
657 | 661 | hmin_index = hmin_list[0] |
|
658 | 662 | |
|
659 | 663 | if hmax_list.any(): |
|
660 | 664 | hmax_index = hmax_list[-1]+1 |
|
661 | 665 | |
|
662 | 666 | x = dataOut.getTimeRange() |
|
663 | 667 | |
|
664 | 668 | thisDatetime = dataOut.datatime |
|
665 | 669 | |
|
666 | 670 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
667 | 671 | xlabel = "Local Time" |
|
668 | 672 | ylabel = "Phase (degrees)" |
|
669 | 673 | |
|
670 | 674 | update_figfile = False |
|
671 | 675 | |
|
672 | 676 | nplots = len(pairsIndexList) |
|
673 | 677 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
674 | 678 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
675 | 679 | for i in range(nplots): |
|
676 | 680 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
677 | 681 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
678 | 682 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
679 | 683 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
680 | 684 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
681 | 685 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
682 | 686 | |
|
683 | 687 | if dataOut.beacon_heiIndexList: |
|
684 | 688 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
685 | 689 | else: |
|
686 | 690 | phase_beacon[i] = numpy.average(phase) |
|
687 | 691 | |
|
688 | 692 | if not self.isConfig: |
|
689 | 693 | |
|
690 | 694 | nplots = len(pairsIndexList) |
|
691 | 695 | |
|
692 | 696 | self.setup(id=id, |
|
693 | 697 | nplots=nplots, |
|
694 | 698 | wintitle=wintitle, |
|
695 | 699 | showprofile=showprofile, |
|
696 | 700 | show=show) |
|
697 | 701 | |
|
698 | 702 | if timerange != None: |
|
699 | 703 | self.timerange = timerange |
|
700 | 704 | |
|
701 | 705 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
702 | 706 | |
|
703 | 707 | if ymin == None: ymin = 0 |
|
704 | 708 | if ymax == None: ymax = 360 |
|
705 | 709 | |
|
706 | 710 | self.FTP_WEI = ftp_wei |
|
707 | 711 | self.EXP_CODE = exp_code |
|
708 | 712 | self.SUB_EXP_CODE = sub_exp_code |
|
709 | 713 | self.PLOT_POS = plot_pos |
|
710 | 714 | |
|
711 | 715 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
712 | 716 | self.isConfig = True |
|
713 | 717 | self.figfile = figfile |
|
714 | 718 | self.xdata = numpy.array([]) |
|
715 | 719 | self.ydata = numpy.array([]) |
|
716 | 720 | |
|
717 | 721 | update_figfile = True |
|
718 | 722 | |
|
719 | 723 | #open file beacon phase |
|
720 | 724 | path = '%s%03d' %(self.PREFIX, self.id) |
|
721 | 725 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
722 | 726 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
723 | 727 | #self.save_phase(self.filename_phase) |
|
724 | 728 | |
|
725 | 729 | |
|
726 | 730 | #store data beacon phase |
|
727 | 731 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
728 | 732 | |
|
729 | 733 | self.setWinTitle(title) |
|
730 | 734 | |
|
731 | 735 | |
|
732 | 736 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
733 | 737 | |
|
734 | 738 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
735 | 739 | |
|
736 | 740 | axes = self.axesList[0] |
|
737 | 741 | |
|
738 | 742 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
739 | 743 | |
|
740 | 744 | if len(self.ydata)==0: |
|
741 | 745 | self.ydata = phase_beacon.reshape(-1,1) |
|
742 | 746 | else: |
|
743 | 747 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
744 | 748 | |
|
745 | 749 | |
|
746 | 750 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
747 | 751 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
748 | 752 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
749 | 753 | XAxisAsTime=True, grid='both' |
|
750 | 754 | ) |
|
751 | 755 | |
|
752 | 756 | self.draw() |
|
753 | 757 | |
|
754 | 758 | if dataOut.ltctime >= self.xmax: |
|
755 | 759 | self.counter_imagwr = wr_period |
|
756 | 760 | self.isConfig = False |
|
757 | 761 | update_figfile = True |
|
758 | 762 | |
|
759 | 763 | self.save(figpath=figpath, |
|
760 | 764 | figfile=figfile, |
|
761 | 765 | save=save, |
|
762 | 766 | ftp=ftp, |
|
763 | 767 | wr_period=wr_period, |
|
764 | 768 | thisDatetime=thisDatetime, |
|
765 | 769 | update_figfile=update_figfile) |
|
766 | 770 | |
|
767 | 771 | return dataOut |
|
768 | 772 | |
|
769 | 773 | class NoiselessSpectraPlot(Plot): |
|
770 | 774 | ''' |
|
771 | 775 | Plot for Spectra data, subtracting |
|
772 | 776 | the noise in all channels, using for |
|
773 | 777 | amisr-14 data |
|
774 | 778 | ''' |
|
775 | 779 | |
|
776 | 780 | CODE = 'noiseless_spc' |
|
777 | 781 | colormap = 'nipy_spectral' |
|
778 | 782 | plot_type = 'pcolor' |
|
779 | 783 | buffering = False |
|
780 | 784 | channelList = [] |
|
781 | 785 | |
|
782 | 786 | def setup(self): |
|
783 | 787 | |
|
784 | 788 | self.nplots = len(self.data.channels) |
|
785 | 789 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
786 | 790 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
787 | 791 | self.height = 2.6 * self.nrows |
|
788 | 792 | |
|
789 | 793 | self.cb_label = 'dB' |
|
790 | 794 | if self.showprofile: |
|
791 | 795 | self.width = 4 * self.ncols |
|
792 | 796 | else: |
|
793 | 797 | self.width = 3.5 * self.ncols |
|
794 | 798 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
795 | 799 | self.ylabel = 'Range [km]' |
|
796 | 800 | |
|
797 | 801 | |
|
798 | 802 | def update_list(self,dataOut): |
|
799 | 803 | if len(self.channelList) == 0: |
|
800 | 804 | self.channelList = dataOut.channelList |
|
801 | 805 | |
|
802 | 806 | def update(self, dataOut): |
|
803 | 807 | |
|
804 | 808 | self.update_list(dataOut) |
|
805 | 809 | data = {} |
|
806 | 810 | meta = {} |
|
807 | 811 | n0 = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
808 | 812 | (nch, nff, nh) = dataOut.data_spc.shape |
|
809 | 813 | n1 = numpy.repeat(n0,nh, axis=0).reshape((nch,nh)) |
|
810 | 814 | noise = numpy.repeat(n1,nff, axis=1).reshape((nch,nff,nh)) |
|
811 | 815 | #print(noise.shape, "noise", noise) |
|
812 | 816 | |
|
813 | 817 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) - noise |
|
814 | 818 | |
|
815 | 819 | data['spc'] = spc |
|
816 | 820 | data['rti'] = dataOut.getPower() - n1 |
|
817 | 821 | |
|
818 | 822 | data['noise'] = n0 |
|
819 | 823 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
820 | 824 | |
|
821 | 825 | return data, meta |
|
822 | 826 | |
|
823 | 827 | def plot(self): |
|
824 | 828 | if self.xaxis == "frequency": |
|
825 | 829 | x = self.data.xrange[0] |
|
826 | 830 | self.xlabel = "Frequency (kHz)" |
|
827 | 831 | elif self.xaxis == "time": |
|
828 | 832 | x = self.data.xrange[1] |
|
829 | 833 | self.xlabel = "Time (ms)" |
|
830 | 834 | else: |
|
831 | 835 | x = self.data.xrange[2] |
|
832 | 836 | self.xlabel = "Velocity (m/s)" |
|
833 | 837 | |
|
834 | 838 | self.titles = [] |
|
835 | 839 | y = self.data.yrange |
|
836 | 840 | self.y = y |
|
837 | 841 | |
|
838 | 842 | data = self.data[-1] |
|
839 | 843 | z = data['spc'] |
|
840 | 844 | |
|
841 | 845 | for n, ax in enumerate(self.axes): |
|
842 | 846 | noise = data['noise'][n] |
|
843 | 847 | |
|
844 | 848 | if ax.firsttime: |
|
845 | 849 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
846 | 850 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
847 | 851 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
848 | 852 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
849 | 853 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
850 | 854 | vmin=self.zmin, |
|
851 | 855 | vmax=self.zmax, |
|
852 | 856 | cmap=plt.get_cmap(self.colormap) |
|
853 | 857 | ) |
|
854 | 858 | |
|
855 | 859 | if self.showprofile: |
|
856 | 860 | ax.plt_profile = self.pf_axes[n].plot( |
|
857 | 861 | data['rti'][n], y)[0] |
|
858 | 862 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
859 | 863 | color="k", linestyle="dashed", lw=1)[0] |
|
860 | 864 | |
|
861 | 865 | else: |
|
862 | 866 | ax.plt.set_array(z[n].T.ravel()) |
|
863 | 867 | if self.showprofile: |
|
864 | 868 | ax.plt_profile.set_data(data['rti'][n], y) |
|
865 | 869 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
866 | 870 | |
|
867 | 871 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
868 | 872 | |
|
869 | 873 | |
|
870 | 874 | class NoiselessRTIPlot(Plot): |
|
871 | 875 | ''' |
|
872 | 876 | Plot for RTI data |
|
873 | 877 | ''' |
|
874 | 878 | |
|
875 | 879 | CODE = 'noiseless_rti' |
|
876 | 880 | colormap = 'jet' |
|
877 | 881 | plot_type = 'pcolorbuffer' |
|
878 | 882 | titles = None |
|
879 | 883 | channelList = [] |
|
880 | 884 | |
|
881 | 885 | def setup(self): |
|
882 | 886 | self.xaxis = 'time' |
|
883 | 887 | self.ncols = 1 |
|
884 | 888 | #print("dataChannels ",self.data.channels) |
|
885 | 889 | self.nrows = len(self.data.channels) |
|
886 | 890 | self.nplots = len(self.data.channels) |
|
887 | 891 | self.ylabel = 'Range [km]' |
|
888 | 892 | self.xlabel = 'Time' |
|
889 | 893 | self.cb_label = 'dB' |
|
890 | 894 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
891 | 895 | self.titles = ['{} Channel {}'.format( |
|
892 | 896 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
893 | 897 | |
|
894 | 898 | def update_list(self,dataOut): |
|
895 | 899 | |
|
896 | 900 | self.channelList = dataOut.channelList |
|
897 | 901 | |
|
898 | 902 | |
|
899 | 903 | def update(self, dataOut): |
|
900 | 904 | if len(self.channelList) == 0: |
|
901 | 905 | self.update_list(dataOut) |
|
902 | 906 | data = {} |
|
903 | 907 | meta = {} |
|
904 | 908 | |
|
905 | 909 | n0 = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
906 | 910 | (nch, nff, nh) = dataOut.data_spc.shape |
|
907 | 911 | noise = numpy.repeat(n0,nh, axis=0).reshape((nch,nh)) |
|
908 | 912 | |
|
909 | 913 | |
|
910 | 914 | data['noiseless_rti'] = dataOut.getPower() - noise |
|
911 | 915 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
912 | 916 | return data, meta |
|
913 | 917 | |
|
914 | 918 | def plot(self): |
|
915 | 919 | |
|
916 | 920 | self.x = self.data.times |
|
917 | 921 | self.y = self.data.yrange |
|
918 | 922 | self.z = self.data['noiseless_rti'] |
|
919 | 923 | self.z = numpy.array(self.z, dtype=float) |
|
920 | 924 | self.z = numpy.ma.masked_invalid(self.z) |
|
921 | 925 | |
|
922 | 926 | try: |
|
923 | 927 | if self.channelList != None: |
|
924 | 928 | self.titles = ['{} Channel {}'.format( |
|
925 | 929 | self.CODE.upper(), x) for x in self.channelList] |
|
926 | 930 | except: |
|
927 | 931 | if self.channelList.any() != None: |
|
928 | 932 | self.titles = ['{} Channel {}'.format( |
|
929 | 933 | self.CODE.upper(), x) for x in self.channelList] |
|
930 | 934 | if self.decimation is None: |
|
931 | 935 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
932 | 936 | else: |
|
933 | 937 | x, y, z = self.fill_gaps(*self.decimate()) |
|
934 | 938 | dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes |
|
935 | 939 | for n, ax in enumerate(self.axes): |
|
936 | 940 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
937 | 941 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
938 | 942 | data = self.data[-1] |
|
939 | 943 | if ax.firsttime: |
|
940 | 944 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
941 | 945 | vmin=self.zmin, |
|
942 | 946 | vmax=self.zmax, |
|
943 | 947 | cmap=plt.get_cmap(self.colormap) |
|
944 | 948 | ) |
|
945 | 949 | if self.showprofile: |
|
946 | 950 | ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0] |
|
947 | 951 | |
|
948 | 952 | if "noise" in self.data: |
|
949 | 953 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
950 | 954 | color="k", linestyle="dashed", lw=1)[0] |
|
951 | 955 | else: |
|
952 | 956 | ax.collections.remove(ax.collections[0]) |
|
953 | 957 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
954 | 958 | vmin=self.zmin, |
|
955 | 959 | vmax=self.zmax, |
|
956 | 960 | cmap=plt.get_cmap(self.colormap) |
|
957 | 961 | ) |
|
958 | 962 | if self.showprofile: |
|
959 | 963 | ax.plot_profile.set_data(data['noiseless_rti'][n], self.y) |
|
960 | 964 | if "noise" in self.data: |
|
961 | 965 | ax.plot_noise.set_data(numpy.repeat( |
|
962 | 966 | data['noise'][n], len(self.y)), self.y) |
@@ -1,685 +1,685 | |||
|
1 | 1 | import os |
|
2 | 2 | import time |
|
3 | 3 | import datetime |
|
4 | 4 | |
|
5 | 5 | import numpy |
|
6 | 6 | import h5py |
|
7 | 7 | |
|
8 | 8 | import schainpy.admin |
|
9 | 9 | from schainpy.model.data.jrodata import * |
|
10 | 10 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
11 | 11 | from schainpy.model.io.jroIO_base import * |
|
12 | 12 | from schainpy.utils import log |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class HDFReader(Reader, ProcessingUnit): |
|
16 | 16 | """Processing unit to read HDF5 format files |
|
17 | 17 | |
|
18 | 18 | This unit reads HDF5 files created with `HDFWriter` operation contains |
|
19 | 19 | by default two groups Data and Metadata all variables would be saved as `dataOut` |
|
20 | 20 | attributes. |
|
21 | 21 | It is possible to read any HDF5 file by given the structure in the `description` |
|
22 | 22 | parameter, also you can add extra values to metadata with the parameter `extras`. |
|
23 | 23 | |
|
24 | 24 | Parameters: |
|
25 | 25 | ----------- |
|
26 | 26 | path : str |
|
27 | 27 | Path where files are located. |
|
28 | 28 | startDate : date |
|
29 | 29 | Start date of the files |
|
30 | 30 | endDate : list |
|
31 | 31 | End date of the files |
|
32 | 32 | startTime : time |
|
33 | 33 | Start time of the files |
|
34 | 34 | endTime : time |
|
35 | 35 | End time of the files |
|
36 | 36 | description : dict, optional |
|
37 | 37 | Dictionary with the description of the HDF5 file |
|
38 | 38 | extras : dict, optional |
|
39 | 39 | Dictionary with extra metadata to be be added to `dataOut` |
|
40 | 40 | |
|
41 | 41 | Examples |
|
42 | 42 | -------- |
|
43 | 43 | |
|
44 | 44 | desc = { |
|
45 | 45 | 'Data': { |
|
46 | 46 | 'data_output': ['u', 'v', 'w'], |
|
47 | 47 | 'utctime': 'timestamps', |
|
48 | 48 | } , |
|
49 | 49 | 'Metadata': { |
|
50 | 50 | 'heightList': 'heights' |
|
51 | 51 | } |
|
52 | 52 | } |
|
53 | 53 | |
|
54 | 54 | desc = { |
|
55 | 55 | 'Data': { |
|
56 | 56 | 'data_output': 'winds', |
|
57 | 57 | 'utctime': 'timestamps' |
|
58 | 58 | }, |
|
59 | 59 | 'Metadata': { |
|
60 | 60 | 'heightList': 'heights' |
|
61 | 61 | } |
|
62 | 62 | } |
|
63 | 63 | |
|
64 | 64 | extras = { |
|
65 | 65 | 'timeZone': 300 |
|
66 | 66 | } |
|
67 | 67 | |
|
68 | 68 | reader = project.addReadUnit( |
|
69 | 69 | name='HDFReader', |
|
70 | 70 | path='/path/to/files', |
|
71 | 71 | startDate='2019/01/01', |
|
72 | 72 | endDate='2019/01/31', |
|
73 | 73 | startTime='00:00:00', |
|
74 | 74 | endTime='23:59:59', |
|
75 | 75 | # description=json.dumps(desc), |
|
76 | 76 | # extras=json.dumps(extras), |
|
77 | 77 | ) |
|
78 | 78 | |
|
79 | 79 | """ |
|
80 | 80 | |
|
81 | 81 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras'] |
|
82 | 82 | |
|
83 | 83 | def __init__(self): |
|
84 | 84 | ProcessingUnit.__init__(self) |
|
85 | 85 | |
|
86 | 86 | self.ext = ".hdf5" |
|
87 | 87 | self.optchar = "D" |
|
88 | 88 | self.meta = {} |
|
89 | 89 | self.data = {} |
|
90 | 90 | self.open_file = h5py.File |
|
91 | 91 | self.open_mode = 'r' |
|
92 | 92 | self.description = {} |
|
93 | 93 | self.extras = {} |
|
94 | 94 | self.filefmt = "*%Y%j***" |
|
95 | 95 | self.folderfmt = "*%Y%j" |
|
96 | 96 | self.utcoffset = 0 |
|
97 | 97 | |
|
98 | 98 | self.dataOut = Parameters() |
|
99 | 99 | self.dataOut.error=False ## NOTE: Importante definir esto antes inicio |
|
100 | 100 | self.dataOut.flagNoData = True |
|
101 | 101 | |
|
102 | 102 | def setup(self, **kwargs): |
|
103 | 103 | |
|
104 | 104 | self.set_kwargs(**kwargs) |
|
105 | 105 | if not self.ext.startswith('.'): |
|
106 | 106 | self.ext = '.{}'.format(self.ext) |
|
107 | 107 | |
|
108 | 108 | if self.online: |
|
109 | 109 | log.log("Searching files in online mode...", self.name) |
|
110 | 110 | |
|
111 | 111 | for nTries in range(self.nTries): |
|
112 | 112 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
113 | 113 | self.endDate, self.expLabel, self.ext, self.walk, |
|
114 | 114 | self.filefmt, self.folderfmt) |
|
115 | 115 | pathname, filename = os.path.split(fullpath) |
|
116 | 116 | |
|
117 | 117 | try: |
|
118 | 118 | fullpath = next(fullpath) |
|
119 | 119 | |
|
120 | 120 | except: |
|
121 | 121 | fullpath = None |
|
122 | 122 | |
|
123 | 123 | if fullpath: |
|
124 | 124 | break |
|
125 | 125 | |
|
126 | 126 | log.warning( |
|
127 | 127 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
128 | 128 | self.delay, self.path, nTries + 1), |
|
129 | 129 | self.name) |
|
130 | 130 | time.sleep(self.delay) |
|
131 | 131 | |
|
132 | 132 | if not(fullpath): |
|
133 | 133 | raise schainpy.admin.SchainError( |
|
134 | 134 | 'There isn\'t any valid file in {}'.format(self.path)) |
|
135 | 135 | |
|
136 | 136 | pathname, filename = os.path.split(fullpath) |
|
137 | 137 | self.year = int(filename[1:5]) |
|
138 | 138 | self.doy = int(filename[5:8]) |
|
139 | 139 | self.set = int(filename[8:11]) - 1 |
|
140 | 140 | else: |
|
141 | 141 | log.log("Searching files in {}".format(self.path), self.name) |
|
142 | 142 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
143 | 143 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
144 | 144 | |
|
145 | 145 | self.setNextFile() |
|
146 | 146 | |
|
147 | 147 | |
|
148 | 148 | |
|
149 | 149 | |
|
150 | 150 | def readFirstHeader(self): |
|
151 | 151 | '''Read metadata and data''' |
|
152 | 152 | |
|
153 | 153 | self.__readMetadata() |
|
154 | 154 | self.__readData() |
|
155 | 155 | self.__setBlockList() |
|
156 | 156 | |
|
157 | 157 | for attr in self.meta: |
|
158 | 158 | setattr(self.dataOut, attr, self.meta[attr]) |
|
159 | 159 | self.blockIndex = 0 |
|
160 | 160 | |
|
161 | 161 | return |
|
162 | 162 | |
|
163 | 163 | def __setBlockList(self): |
|
164 | 164 | ''' |
|
165 | 165 | Selects the data within the times defined |
|
166 | 166 | |
|
167 | 167 | self.fp |
|
168 | 168 | self.startTime |
|
169 | 169 | self.endTime |
|
170 | 170 | self.blockList |
|
171 | 171 | self.blocksPerFile |
|
172 | 172 | |
|
173 | 173 | ''' |
|
174 | 174 | |
|
175 | 175 | startTime = self.startTime |
|
176 | 176 | endTime = self.endTime |
|
177 | 177 | thisUtcTime = self.data['utctime'] + self.utcoffset |
|
178 | 178 | self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1]) |
|
179 | 179 | thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0]) |
|
180 | 180 | self.startFileDatetime = thisDatetime |
|
181 | 181 | thisDate = thisDatetime.date() |
|
182 | 182 | thisTime = thisDatetime.time() |
|
183 | 183 | |
|
184 | 184 | startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
185 | 185 | endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
186 | 186 | |
|
187 | 187 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] |
|
188 | 188 | |
|
189 | 189 | self.blockList = ind |
|
190 | 190 | self.blocksPerFile = len(ind) |
|
191 | 191 | self.blocksPerFile = len(thisUtcTime) |
|
192 | 192 | return |
|
193 | 193 | |
|
194 | 194 | def __readMetadata(self): |
|
195 | 195 | ''' |
|
196 | 196 | Reads Metadata |
|
197 | 197 | ''' |
|
198 | 198 | |
|
199 | 199 | meta = {} |
|
200 | 200 | |
|
201 | 201 | if self.description: |
|
202 | 202 | for key, value in self.description['Metadata'].items(): |
|
203 | 203 | meta[key] = self.fp[value][()] |
|
204 | 204 | else: |
|
205 | 205 | grp = self.fp['Metadata'] |
|
206 | 206 | for name in grp: |
|
207 | 207 | meta[name] = grp[name][()] |
|
208 | 208 | |
|
209 | 209 | if self.extras: |
|
210 | 210 | for key, value in self.extras.items(): |
|
211 | 211 | meta[key] = value |
|
212 | 212 | self.meta = meta |
|
213 | 213 | |
|
214 | 214 | return |
|
215 | 215 | |
|
216 | 216 | |
|
217 | 217 | |
|
218 | 218 | def checkForRealPath(self, nextFile, nextDay): |
|
219 | 219 | |
|
220 | 220 | # print("check FRP") |
|
221 | 221 | # dt = self.startFileDatetime + datetime.timedelta(1) |
|
222 | 222 | # filename = '{}.{}{}'.format(self.path, dt.strftime('%Y%m%d'), self.ext) |
|
223 | 223 | # fullfilename = os.path.join(self.path, filename) |
|
224 | 224 | # print("check Path ",fullfilename,filename) |
|
225 | 225 | # if os.path.exists(fullfilename): |
|
226 | 226 | # return fullfilename, filename |
|
227 | 227 | # return None, filename |
|
228 | 228 | return None,None |
|
229 | 229 | |
|
230 | 230 | def __readData(self): |
|
231 | 231 | |
|
232 | 232 | data = {} |
|
233 | 233 | |
|
234 | 234 | if self.description: |
|
235 | 235 | for key, value in self.description['Data'].items(): |
|
236 | 236 | if isinstance(value, str): |
|
237 | 237 | if isinstance(self.fp[value], h5py.Dataset): |
|
238 | 238 | data[key] = self.fp[value][()] |
|
239 | 239 | elif isinstance(self.fp[value], h5py.Group): |
|
240 | 240 | array = [] |
|
241 | 241 | for ch in self.fp[value]: |
|
242 | 242 | array.append(self.fp[value][ch][()]) |
|
243 | 243 | data[key] = numpy.array(array) |
|
244 | 244 | elif isinstance(value, list): |
|
245 | 245 | array = [] |
|
246 | 246 | for ch in value: |
|
247 | 247 | array.append(self.fp[ch][()]) |
|
248 | 248 | data[key] = numpy.array(array) |
|
249 | 249 | else: |
|
250 | 250 | grp = self.fp['Data'] |
|
251 | 251 | for name in grp: |
|
252 | 252 | if isinstance(grp[name], h5py.Dataset): |
|
253 | 253 | array = grp[name][()] |
|
254 | 254 | elif isinstance(grp[name], h5py.Group): |
|
255 | 255 | array = [] |
|
256 | 256 | for ch in grp[name]: |
|
257 | 257 | array.append(grp[name][ch][()]) |
|
258 | 258 | array = numpy.array(array) |
|
259 | 259 | else: |
|
260 | 260 | log.warning('Unknown type: {}'.format(name)) |
|
261 | 261 | |
|
262 | 262 | if name in self.description: |
|
263 | 263 | key = self.description[name] |
|
264 | 264 | else: |
|
265 | 265 | key = name |
|
266 | 266 | data[key] = array |
|
267 | 267 | |
|
268 | 268 | self.data = data |
|
269 | 269 | return |
|
270 | 270 | |
|
271 | 271 | def getData(self): |
|
272 | 272 | if not self.isDateTimeInRange(self.startFileDatetime, self.startDate, self.endDate, self.startTime, self.endTime): |
|
273 | 273 | self.dataOut.flagNoData = True |
|
274 | 274 | self.blockIndex = self.blocksPerFile |
|
275 | 275 | self.dataOut.error = True # TERMINA EL PROGRAMA |
|
276 | 276 | return |
|
277 | 277 | for attr in self.data: |
|
278 | 278 | |
|
279 | 279 | if self.data[attr].ndim == 1: |
|
280 | 280 | setattr(self.dataOut, attr, self.data[attr][self.blockIndex]) |
|
281 | 281 | else: |
|
282 | 282 | setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex]) |
|
283 | 283 | |
|
284 | 284 | |
|
285 | 285 | self.blockIndex += 1 |
|
286 | 286 | |
|
287 | 287 | if self.blockIndex == 1: |
|
288 | 288 | log.log("Block No. {}/{} -> {}".format( |
|
289 | 289 | self.blockIndex, |
|
290 | 290 | self.blocksPerFile, |
|
291 | 291 | self.dataOut.datatime.ctime()), self.name) |
|
292 | 292 | else: |
|
293 | 293 | log.log("Block No. {}/{} ".format( |
|
294 | 294 | self.blockIndex, |
|
295 | 295 | self.blocksPerFile),self.name) |
|
296 | 296 | |
|
297 | 297 | if self.blockIndex == self.blocksPerFile: |
|
298 | 298 | self.setNextFile() |
|
299 | 299 | |
|
300 | 300 | self.dataOut.flagNoData = False |
|
301 | 301 | |
|
302 | 302 | |
|
303 | 303 | def run(self, **kwargs): |
|
304 | 304 | |
|
305 | 305 | if not(self.isConfig): |
|
306 | 306 | self.setup(**kwargs) |
|
307 | 307 | self.isConfig = True |
|
308 | 308 | |
|
309 | 309 | self.getData() |
|
310 | 310 | |
|
311 |
|
|
|
312 | class HDFWrite(Operation): | |
|
311 | @MPDecorator | |
|
312 | class HDFWriter(Operation): | |
|
313 | 313 | """Operation to write HDF5 files. |
|
314 | 314 | |
|
315 | 315 | The HDF5 file contains by default two groups Data and Metadata where |
|
316 | 316 | you can save any `dataOut` attribute specified by `dataList` and `metadataList` |
|
317 | 317 | parameters, data attributes are normaly time dependent where the metadata |
|
318 | 318 | are not. |
|
319 | 319 | It is possible to customize the structure of the HDF5 file with the |
|
320 | 320 | optional description parameter see the examples. |
|
321 | 321 | |
|
322 | 322 | Parameters: |
|
323 | 323 | ----------- |
|
324 | 324 | path : str |
|
325 | 325 | Path where files will be saved. |
|
326 | 326 | blocksPerFile : int |
|
327 | 327 | Number of blocks per file |
|
328 | 328 | metadataList : list |
|
329 | 329 | List of the dataOut attributes that will be saved as metadata |
|
330 | 330 | dataList : int |
|
331 | 331 | List of the dataOut attributes that will be saved as data |
|
332 | 332 | setType : bool |
|
333 | 333 | If True the name of the files corresponds to the timestamp of the data |
|
334 | 334 | description : dict, optional |
|
335 | 335 | Dictionary with the desired description of the HDF5 file |
|
336 | 336 | |
|
337 | 337 | Examples |
|
338 | 338 | -------- |
|
339 | 339 | |
|
340 | 340 | desc = { |
|
341 | 341 | 'data_output': {'winds': ['z', 'w', 'v']}, |
|
342 | 342 | 'utctime': 'timestamps', |
|
343 | 343 | 'heightList': 'heights' |
|
344 | 344 | } |
|
345 | 345 | desc = { |
|
346 | 346 | 'data_output': ['z', 'w', 'v'], |
|
347 | 347 | 'utctime': 'timestamps', |
|
348 | 348 | 'heightList': 'heights' |
|
349 | 349 | } |
|
350 | 350 | desc = { |
|
351 | 351 | 'Data': { |
|
352 | 352 | 'data_output': 'winds', |
|
353 | 353 | 'utctime': 'timestamps' |
|
354 | 354 | }, |
|
355 | 355 | 'Metadata': { |
|
356 | 356 | 'heightList': 'heights' |
|
357 | 357 | } |
|
358 | 358 | } |
|
359 | 359 | |
|
360 | 360 | writer = proc_unit.addOperation(name='HDFWriter') |
|
361 | 361 | writer.addParameter(name='path', value='/path/to/file') |
|
362 | 362 | writer.addParameter(name='blocksPerFile', value='32') |
|
363 | 363 | writer.addParameter(name='metadataList', value='heightList,timeZone') |
|
364 | 364 | writer.addParameter(name='dataList',value='data_output,utctime') |
|
365 | 365 | # writer.addParameter(name='description',value=json.dumps(desc)) |
|
366 | 366 | |
|
367 | 367 | """ |
|
368 | 368 | |
|
369 | 369 | ext = ".hdf5" |
|
370 | 370 | optchar = "D" |
|
371 | 371 | filename = None |
|
372 | 372 | path = None |
|
373 | 373 | setFile = None |
|
374 | 374 | fp = None |
|
375 | 375 | firsttime = True |
|
376 | 376 | #Configurations |
|
377 | 377 | blocksPerFile = None |
|
378 | 378 | blockIndex = None |
|
379 | 379 | dataOut = None #eval ?????? |
|
380 | 380 | #Data Arrays |
|
381 | 381 | dataList = None |
|
382 | 382 | metadataList = None |
|
383 | 383 | currentDay = None |
|
384 | 384 | lastTime = None |
|
385 | 385 | timeZone = "ut" |
|
386 | 386 | hourLimit = 3 |
|
387 | 387 | breakDays = True |
|
388 | 388 | |
|
389 | 389 | def __init__(self): |
|
390 | 390 | |
|
391 | 391 | Operation.__init__(self) |
|
392 | 392 | |
|
393 | 393 | |
|
394 | 394 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, |
|
395 | 395 | description={},timeZone = "ut",hourLimit = 3, breakDays=True): |
|
396 | 396 | self.path = path |
|
397 | 397 | self.blocksPerFile = blocksPerFile |
|
398 | 398 | self.metadataList = metadataList |
|
399 | 399 | self.dataList = [s.strip() for s in dataList] |
|
400 | 400 | self.setType = setType |
|
401 | 401 | self.description = description |
|
402 | 402 | self.timeZone = timeZone |
|
403 | 403 | self.hourLimit = hourLimit |
|
404 | 404 | self.breakDays = breakDays |
|
405 | 405 | |
|
406 | 406 | if self.metadataList is None: |
|
407 | 407 | self.metadataList = self.dataOut.metadata_list |
|
408 | 408 | |
|
409 | 409 | tableList = [] |
|
410 | 410 | dsList = [] |
|
411 | 411 | |
|
412 | 412 | for i in range(len(self.dataList)): |
|
413 | 413 | dsDict = {} |
|
414 | 414 | if hasattr(self.dataOut, self.dataList[i]): |
|
415 | 415 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
416 | 416 | dsDict['variable'] = self.dataList[i] |
|
417 | 417 | else: |
|
418 | 418 | log.warning('Attribute {} not found in dataOut'.format(self.dataList[i]),self.name) |
|
419 | 419 | continue |
|
420 | 420 | |
|
421 | 421 | if dataAux is None: |
|
422 | 422 | continue |
|
423 | 423 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
|
424 | 424 | dsDict['nDim'] = 0 |
|
425 | 425 | else: |
|
426 | 426 | dsDict['nDim'] = len(dataAux.shape) |
|
427 | 427 | dsDict['shape'] = dataAux.shape |
|
428 | 428 | dsDict['dsNumber'] = dataAux.shape[0] |
|
429 | 429 | dsDict['dtype'] = dataAux.dtype |
|
430 | 430 | |
|
431 | 431 | dsList.append(dsDict) |
|
432 | 432 | |
|
433 | 433 | self.blockIndex = 0 |
|
434 | 434 | self.dsList = dsList |
|
435 | 435 | self.currentDay = self.dataOut.datatime.date() |
|
436 | 436 | |
|
437 | 437 | |
|
438 | 438 | def timeFlag(self): |
|
439 | 439 | currentTime = self.dataOut.utctime |
|
440 | 440 | timeTuple = None |
|
441 | 441 | if self.timeZone == "lt": |
|
442 | 442 | timeTuple = time.localtime(currentTime) |
|
443 | 443 | else : |
|
444 | 444 | timeTuple = time.gmtime(currentTime) |
|
445 | 445 | |
|
446 | 446 | dataDay = timeTuple.tm_yday |
|
447 | 447 | |
|
448 | 448 | if self.lastTime is None: |
|
449 | 449 | self.lastTime = currentTime |
|
450 | 450 | self.currentDay = dataDay |
|
451 | 451 | return False |
|
452 | 452 | |
|
453 | 453 | timeDiff = currentTime - self.lastTime |
|
454 | 454 | |
|
455 | 455 | #Si el dia es diferente o si la diferencia entre un dato y otro supera self.hourLimit |
|
456 | 456 | if (dataDay != self.currentDay) and self.breakDays: |
|
457 | 457 | self.currentDay = dataDay |
|
458 | 458 | return True |
|
459 | 459 | elif timeDiff > self.hourLimit*60*60: |
|
460 | 460 | self.lastTime = currentTime |
|
461 | 461 | return True |
|
462 | 462 | else: |
|
463 | 463 | self.lastTime = currentTime |
|
464 | 464 | return False |
|
465 | 465 | |
|
466 | 466 | def run(self, dataOut,**kwargs): |
|
467 | 467 | |
|
468 | self.dataOut = dataOut | |
|
468 | self.dataOut = dataOut.copy() | |
|
469 | 469 | if not(self.isConfig): |
|
470 | 470 | self.setup(**kwargs) |
|
471 | 471 | |
|
472 | 472 | self.isConfig = True |
|
473 | 473 | self.setNextFile() |
|
474 | 474 | |
|
475 | 475 | self.putData() |
|
476 | 476 | |
|
477 | return self.dataOut | |
|
477 | #return self.dataOut | |
|
478 | 478 | |
|
479 | 479 | def setNextFile(self): |
|
480 | 480 | |
|
481 | 481 | ext = self.ext |
|
482 | 482 | path = self.path |
|
483 | 483 | setFile = self.setFile |
|
484 | 484 | timeTuple = None |
|
485 | 485 | if self.timeZone == "lt": |
|
486 | 486 | timeTuple = time.localtime(self.dataOut.utctime) |
|
487 | 487 | elif self.timeZone == "ut": |
|
488 | 488 | timeTuple = time.gmtime(self.dataOut.utctime) |
|
489 | 489 | #print("path: ",timeTuple) |
|
490 | 490 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
491 | 491 | fullpath = os.path.join(path, subfolder) |
|
492 | 492 | |
|
493 | 493 | if os.path.exists(fullpath): |
|
494 | 494 | filesList = os.listdir(fullpath) |
|
495 | 495 | filesList = [k for k in filesList if k.startswith(self.optchar)] |
|
496 | 496 | if len( filesList ) > 0: |
|
497 | 497 | filesList = sorted(filesList, key=str.lower) |
|
498 | 498 | filen = filesList[-1] |
|
499 | 499 | # el filename debera tener el siguiente formato |
|
500 | 500 | # 0 1234 567 89A BCDE (hex) |
|
501 | 501 | # x YYYY DDD SSS .ext |
|
502 | 502 | if isNumber(filen[8:11]): |
|
503 | 503 | setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file |
|
504 | 504 | else: |
|
505 | 505 | setFile = -1 |
|
506 | 506 | else: |
|
507 | 507 | setFile = -1 #inicializo mi contador de seteo |
|
508 | 508 | else: |
|
509 | 509 | os.makedirs(fullpath) |
|
510 | 510 | setFile = -1 #inicializo mi contador de seteo |
|
511 | 511 | |
|
512 | 512 | if self.setType is None: |
|
513 | 513 | setFile += 1 |
|
514 | 514 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, |
|
515 | 515 | timeTuple.tm_year, |
|
516 | 516 | timeTuple.tm_yday, |
|
517 | 517 | setFile, |
|
518 | 518 | ext ) |
|
519 | 519 | else: |
|
520 | 520 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min |
|
521 | 521 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, |
|
522 | 522 | timeTuple.tm_year, |
|
523 | 523 | timeTuple.tm_yday, |
|
524 | 524 | setFile, |
|
525 | 525 | ext ) |
|
526 | 526 | |
|
527 | 527 | self.filename = os.path.join( path, subfolder, file ) |
|
528 | 528 | |
|
529 | 529 | |
|
530 | 530 | |
|
531 | 531 | def getLabel(self, name, x=None): |
|
532 | 532 | |
|
533 | 533 | if x is None: |
|
534 | 534 | if 'Data' in self.description: |
|
535 | 535 | data = self.description['Data'] |
|
536 | 536 | if 'Metadata' in self.description: |
|
537 | 537 | data.update(self.description['Metadata']) |
|
538 | 538 | else: |
|
539 | 539 | data = self.description |
|
540 | 540 | if name in data: |
|
541 | 541 | if isinstance(data[name], str): |
|
542 | 542 | return data[name] |
|
543 | 543 | elif isinstance(data[name], list): |
|
544 | 544 | return None |
|
545 | 545 | elif isinstance(data[name], dict): |
|
546 | 546 | for key, value in data[name].items(): |
|
547 | 547 | return key |
|
548 | 548 | return name |
|
549 | 549 | else: |
|
550 | 550 | if 'Metadata' in self.description: |
|
551 | 551 | meta = self.description['Metadata'] |
|
552 | 552 | else: |
|
553 | 553 | meta = self.description |
|
554 | 554 | if name in meta: |
|
555 | 555 | if isinstance(meta[name], list): |
|
556 | 556 | return meta[name][x] |
|
557 | 557 | elif isinstance(meta[name], dict): |
|
558 | 558 | for key, value in meta[name].items(): |
|
559 | 559 | return value[x] |
|
560 | 560 | if 'cspc' in name: |
|
561 | 561 | return 'pair{:02d}'.format(x) |
|
562 | 562 | else: |
|
563 | 563 | return 'channel{:02d}'.format(x) |
|
564 | 564 | |
|
565 | 565 | def writeMetadata(self, fp): |
|
566 | 566 | |
|
567 | 567 | if self.description: |
|
568 | 568 | if 'Metadata' in self.description: |
|
569 | 569 | grp = fp.create_group('Metadata') |
|
570 | 570 | else: |
|
571 | 571 | grp = fp |
|
572 | 572 | else: |
|
573 | 573 | grp = fp.create_group('Metadata') |
|
574 | 574 | |
|
575 | 575 | for i in range(len(self.metadataList)): |
|
576 | 576 | if not hasattr(self.dataOut, self.metadataList[i]): |
|
577 | 577 | log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name) |
|
578 | 578 | continue |
|
579 | 579 | value = getattr(self.dataOut, self.metadataList[i]) |
|
580 | 580 | if isinstance(value, bool): |
|
581 | 581 | if value is True: |
|
582 | 582 | value = 1 |
|
583 | 583 | else: |
|
584 | 584 | value = 0 |
|
585 | 585 | grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) |
|
586 | 586 | return |
|
587 | 587 | |
|
588 | 588 | def writeData(self, fp): |
|
589 | 589 | |
|
590 | 590 | if self.description: |
|
591 | 591 | if 'Data' in self.description: |
|
592 | 592 | grp = fp.create_group('Data') |
|
593 | 593 | else: |
|
594 | 594 | grp = fp |
|
595 | 595 | else: |
|
596 | 596 | grp = fp.create_group('Data') |
|
597 | 597 | |
|
598 | 598 | dtsets = [] |
|
599 | 599 | data = [] |
|
600 | 600 | |
|
601 | 601 | for dsInfo in self.dsList: |
|
602 | 602 | if dsInfo['nDim'] == 0: |
|
603 | 603 | ds = grp.create_dataset( |
|
604 | 604 | self.getLabel(dsInfo['variable']), |
|
605 | 605 | (self.blocksPerFile, ), |
|
606 | 606 | chunks=True, |
|
607 | 607 | dtype=numpy.float64) |
|
608 | 608 | dtsets.append(ds) |
|
609 | 609 | data.append((dsInfo['variable'], -1)) |
|
610 | 610 | else: |
|
611 | 611 | label = self.getLabel(dsInfo['variable']) |
|
612 | 612 | if label is not None: |
|
613 | 613 | sgrp = grp.create_group(label) |
|
614 | 614 | else: |
|
615 | 615 | sgrp = grp |
|
616 | 616 | for i in range(dsInfo['dsNumber']): |
|
617 | 617 | ds = sgrp.create_dataset( |
|
618 | 618 | self.getLabel(dsInfo['variable'], i), |
|
619 | 619 | (self.blocksPerFile, ) + dsInfo['shape'][1:], |
|
620 | 620 | chunks=True, |
|
621 | 621 | dtype=dsInfo['dtype']) |
|
622 | 622 | dtsets.append(ds) |
|
623 | 623 | data.append((dsInfo['variable'], i)) |
|
624 | 624 | fp.flush() |
|
625 | 625 | |
|
626 | 626 | log.log('Creating file: {}'.format(fp.filename), self.name) |
|
627 | 627 | |
|
628 | 628 | self.ds = dtsets |
|
629 | 629 | self.data = data |
|
630 | 630 | self.firsttime = True |
|
631 | 631 | |
|
632 | 632 | return |
|
633 | 633 | |
|
634 | 634 | def putData(self): |
|
635 | 635 | |
|
636 | 636 | if (self.blockIndex == self.blocksPerFile) or self.timeFlag(): |
|
637 | 637 | self.closeFile() |
|
638 | 638 | self.setNextFile() |
|
639 | 639 | self.dataOut.flagNoData = False |
|
640 | 640 | self.blockIndex = 0 |
|
641 | 641 | return |
|
642 | 642 | |
|
643 | 643 | |
|
644 | 644 | |
|
645 | 645 | if self.blockIndex == 0: |
|
646 | 646 | #Escribir metadata Aqui??? |
|
647 | 647 | #Setting HDF5 File |
|
648 | 648 | self.fp = h5py.File(self.filename, 'w') |
|
649 | 649 | #write metadata |
|
650 | 650 | self.writeMetadata(self.fp) |
|
651 | 651 | #Write data |
|
652 | 652 | self.writeData(self.fp) |
|
653 | 653 | log.log('Block No. {}/{} --> {}'.format(self.blockIndex+1, self.blocksPerFile,self.dataOut.datatime.ctime()), self.name) |
|
654 | 654 | elif (self.blockIndex % 10 ==0): |
|
655 | 655 | log.log('Block No. {}/{} --> {}'.format(self.blockIndex+1, self.blocksPerFile,self.dataOut.datatime.ctime()), self.name) |
|
656 | 656 | else: |
|
657 | 657 | |
|
658 | 658 | log.log('Block No. {}/{}'.format(self.blockIndex+1, self.blocksPerFile), self.name) |
|
659 | 659 | |
|
660 | 660 | for i, ds in enumerate(self.ds): |
|
661 | 661 | attr, ch = self.data[i] |
|
662 | 662 | if ch == -1: |
|
663 | 663 | ds[self.blockIndex] = getattr(self.dataOut, attr) |
|
664 | 664 | else: |
|
665 | 665 | ds[self.blockIndex] = getattr(self.dataOut, attr)[ch] |
|
666 | 666 | |
|
667 | 667 | self.blockIndex += 1 |
|
668 | 668 | |
|
669 | 669 | self.fp.flush() |
|
670 | 670 | self.dataOut.flagNoData = True |
|
671 | 671 | |
|
672 | 672 | |
|
673 | 673 | def closeFile(self): |
|
674 | 674 | |
|
675 | 675 | if self.blockIndex != self.blocksPerFile: |
|
676 | 676 | for ds in self.ds: |
|
677 | 677 | ds.resize(self.blockIndex, axis=0) |
|
678 | 678 | |
|
679 | 679 | if self.fp: |
|
680 | 680 | self.fp.flush() |
|
681 | 681 | self.fp.close() |
|
682 | 682 | |
|
683 | 683 | def close(self): |
|
684 | 684 | |
|
685 | 685 | self.closeFile() |
@@ -1,211 +1,211 | |||
|
1 | 1 | ''' |
|
2 | 2 | Base clases to create Processing units and operations, the MPDecorator |
|
3 | 3 | must be used in plotting and writing operations to allow to run as an |
|
4 | 4 | external process. |
|
5 | 5 | ''' |
|
6 | 6 | import os |
|
7 | 7 | import inspect |
|
8 | 8 | import zmq |
|
9 | 9 | import time |
|
10 | 10 | import pickle |
|
11 | 11 | import traceback |
|
12 | 12 | from threading import Thread |
|
13 | 13 | from multiprocessing import Process, Queue |
|
14 | 14 | from schainpy.utils import log |
|
15 | 15 | import copy |
|
16 | 16 | QUEUE_SIZE = int(os.environ.get('QUEUE_MAX_SIZE', '10')) |
|
17 | 17 | class ProcessingUnit(object): |
|
18 | 18 | ''' |
|
19 | 19 | Base class to create Signal Chain Units |
|
20 | 20 | ''' |
|
21 | 21 | |
|
22 | 22 | proc_type = 'processing' |
|
23 | 23 | |
|
24 | 24 | def __init__(self): |
|
25 | 25 | |
|
26 | 26 | self.dataIn = None |
|
27 | 27 | self.dataOut = None |
|
28 | 28 | self.isConfig = False |
|
29 | 29 | self.operations = [] |
|
30 | 30 | |
|
31 | 31 | def setInput(self, unit): |
|
32 | 32 | |
|
33 | 33 | self.dataIn = unit.dataOut |
|
34 | 34 | |
|
35 | 35 | |
|
36 | 36 | def getAllowedArgs(self): |
|
37 | 37 | if hasattr(self, '__attrs__'): |
|
38 | 38 | return self.__attrs__ |
|
39 | 39 | else: |
|
40 | 40 | return inspect.getargspec(self.run).args |
|
41 | 41 | |
|
42 | 42 | def addOperation(self, conf, operation): |
|
43 | 43 | ''' |
|
44 | 44 | ''' |
|
45 | 45 | |
|
46 | 46 | self.operations.append((operation, conf.type, conf.getKwargs())) |
|
47 | 47 | |
|
48 | 48 | def getOperationObj(self, objId): |
|
49 | 49 | |
|
50 | 50 | if objId not in list(self.operations.keys()): |
|
51 | 51 | return None |
|
52 | 52 | |
|
53 | 53 | return self.operations[objId] |
|
54 | 54 | |
|
55 | 55 | def call(self, **kwargs): |
|
56 | 56 | ''' |
|
57 | 57 | ''' |
|
58 | 58 | |
|
59 | 59 | try: |
|
60 | 60 | |
|
61 | 61 | if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error: |
|
62 | 62 | return self.dataIn.isReady() |
|
63 | 63 | elif self.dataIn is None or not self.dataIn.error: |
|
64 | 64 | self.run(**kwargs) |
|
65 | 65 | elif self.dataIn.error: |
|
66 | 66 | self.dataOut.error = self.dataIn.error |
|
67 | 67 | self.dataOut.flagNoData = True |
|
68 | 68 | except: |
|
69 | 69 | |
|
70 | 70 | err = traceback.format_exc() |
|
71 | 71 | if 'SchainWarning' in err: |
|
72 | 72 | log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name) |
|
73 | 73 | elif 'SchainError' in err: |
|
74 | 74 | log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name) |
|
75 | 75 | else: |
|
76 | 76 | log.error(err, self.name) |
|
77 | 77 | self.dataOut.error = True |
|
78 | 78 | |
|
79 | 79 | for op, optype, opkwargs in self.operations: |
|
80 | 80 | if optype == 'other' and self.dataOut.isReady(): |
|
81 | 81 | try: |
|
82 | 82 | self.dataOut = op.run(self.dataOut, **opkwargs) |
|
83 | 83 | except Exception as e: |
|
84 | 84 | print(e) |
|
85 | 85 | self.dataOut.error = True |
|
86 | 86 | return 'Error' |
|
87 | 87 | elif optype == 'external' and self.dataOut.isReady() : |
|
88 | 88 | op.queue.put(copy.deepcopy(self.dataOut)) |
|
89 | 89 | elif optype == 'external' and self.dataOut.error: |
|
90 | 90 | op.queue.put(copy.deepcopy(self.dataOut)) |
|
91 | 91 | |
|
92 |
return 'Error' if self.dataOut.error else |
|
|
92 | return 'Error' if self.dataOut.error else self.dataOut.isReady() | |
|
93 | 93 | |
|
94 | 94 | def setup(self): |
|
95 | 95 | |
|
96 | 96 | raise NotImplementedError |
|
97 | 97 | |
|
98 | 98 | def run(self): |
|
99 | 99 | |
|
100 | 100 | raise NotImplementedError |
|
101 | 101 | |
|
102 | 102 | def close(self): |
|
103 | 103 | |
|
104 | 104 | return |
|
105 | 105 | |
|
106 | 106 | |
|
107 | 107 | class Operation(object): |
|
108 | 108 | |
|
109 | 109 | ''' |
|
110 | 110 | ''' |
|
111 | 111 | |
|
112 | 112 | proc_type = 'operation' |
|
113 | 113 | |
|
114 | 114 | def __init__(self): |
|
115 | 115 | |
|
116 | 116 | self.id = None |
|
117 | 117 | self.isConfig = False |
|
118 | 118 | |
|
119 | 119 | if not hasattr(self, 'name'): |
|
120 | 120 | self.name = self.__class__.__name__ |
|
121 | 121 | |
|
122 | 122 | def getAllowedArgs(self): |
|
123 | 123 | if hasattr(self, '__attrs__'): |
|
124 | 124 | return self.__attrs__ |
|
125 | 125 | else: |
|
126 | 126 | return inspect.getargspec(self.run).args |
|
127 | 127 | |
|
128 | 128 | def setup(self): |
|
129 | 129 | |
|
130 | 130 | self.isConfig = True |
|
131 | 131 | |
|
132 | 132 | raise NotImplementedError |
|
133 | 133 | |
|
134 | 134 | def run(self, dataIn, **kwargs): |
|
135 | 135 | """ |
|
136 | 136 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los |
|
137 | 137 | atributos del objeto dataIn. |
|
138 | 138 | |
|
139 | 139 | Input: |
|
140 | 140 | |
|
141 | 141 | dataIn : objeto del tipo JROData |
|
142 | 142 | |
|
143 | 143 | Return: |
|
144 | 144 | |
|
145 | 145 | None |
|
146 | 146 | |
|
147 | 147 | Affected: |
|
148 | 148 | __buffer : buffer de recepcion de datos. |
|
149 | 149 | |
|
150 | 150 | """ |
|
151 | 151 | if not self.isConfig: |
|
152 | 152 | self.setup(**kwargs) |
|
153 | 153 | |
|
154 | 154 | raise NotImplementedError |
|
155 | 155 | |
|
156 | 156 | def close(self): |
|
157 | 157 | |
|
158 | 158 | return |
|
159 | 159 | |
|
160 | 160 | |
|
161 | 161 | def MPDecorator(BaseClass): |
|
162 | 162 | """ |
|
163 | 163 | Multiprocessing class decorator |
|
164 | 164 | |
|
165 | 165 | This function add multiprocessing features to a BaseClass. |
|
166 | 166 | """ |
|
167 | 167 | |
|
168 | 168 | class MPClass(BaseClass, Process): |
|
169 | 169 | |
|
170 | 170 | def __init__(self, *args, **kwargs): |
|
171 | 171 | super(MPClass, self).__init__() |
|
172 | 172 | Process.__init__(self) |
|
173 | 173 | |
|
174 | 174 | self.args = args |
|
175 | 175 | self.kwargs = kwargs |
|
176 | 176 | self.t = time.time() |
|
177 | 177 | self.op_type = 'external' |
|
178 | 178 | self.name = BaseClass.__name__ |
|
179 | 179 | self.__doc__ = BaseClass.__doc__ |
|
180 | 180 | |
|
181 | 181 | if 'plot' in self.name.lower() and not self.name.endswith('_'): |
|
182 | 182 | self.name = '{}{}'.format(self.CODE.upper(), 'Plot') |
|
183 | 183 | |
|
184 | 184 | self.start_time = time.time() |
|
185 | 185 | self.err_queue = args[3] |
|
186 | 186 | self.queue = Queue(maxsize=QUEUE_SIZE) |
|
187 | 187 | self.myrun = BaseClass.run |
|
188 | 188 | |
|
189 | 189 | def run(self): |
|
190 | 190 | |
|
191 | 191 | while True: |
|
192 | 192 | |
|
193 | 193 | dataOut = self.queue.get() |
|
194 | 194 | |
|
195 | 195 | if not dataOut.error: |
|
196 | 196 | try: |
|
197 | 197 | BaseClass.run(self, dataOut, **self.kwargs) |
|
198 | 198 | except: |
|
199 | 199 | err = traceback.format_exc() |
|
200 | 200 | log.error(err, self.name) |
|
201 | 201 | else: |
|
202 | 202 | break |
|
203 | 203 | |
|
204 | 204 | self.close() |
|
205 | 205 | |
|
206 | 206 | def close(self): |
|
207 | 207 | |
|
208 | 208 | BaseClass.close(self) |
|
209 | 209 | log.success('Done...(Time:{:4.2f} secs)'.format(time.time()-self.start_time), self.name) |
|
210 | 210 | |
|
211 | 211 | return MPClass |
@@ -1,1814 +1,1823 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Spectra processing Unit and operations |
|
6 | 6 | |
|
7 | 7 | Here you will find the processing unit `SpectraProc` and several operations |
|
8 | 8 | to work with Spectra data type |
|
9 | 9 | """ |
|
10 | 10 | |
|
11 | 11 | import time |
|
12 | 12 | import itertools |
|
13 | 13 | |
|
14 | 14 | import numpy |
|
15 | 15 | import math |
|
16 | 16 | |
|
17 | 17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
18 | 18 | from schainpy.model.data.jrodata import Spectra |
|
19 | 19 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
20 | 20 | from schainpy.utils import log |
|
21 | 21 | |
|
22 | 22 | from scipy.optimize import curve_fit |
|
23 | 23 | |
|
24 | 24 | class SpectraProc(ProcessingUnit): |
|
25 | 25 | |
|
26 | 26 | def __init__(self): |
|
27 | 27 | |
|
28 | 28 | ProcessingUnit.__init__(self) |
|
29 | 29 | |
|
30 | 30 | self.buffer = None |
|
31 | 31 | self.firstdatatime = None |
|
32 | 32 | self.profIndex = 0 |
|
33 | 33 | self.dataOut = Spectra() |
|
34 | 34 | self.id_min = None |
|
35 | 35 | self.id_max = None |
|
36 | 36 | self.setupReq = False #Agregar a todas las unidades de proc |
|
37 | 37 | |
|
38 | 38 | def __updateSpecFromVoltage(self): |
|
39 | 39 | |
|
40 | 40 | self.dataOut.timeZone = self.dataIn.timeZone |
|
41 | 41 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
42 | 42 | self.dataOut.errorCount = self.dataIn.errorCount |
|
43 | 43 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
44 | 44 | try: |
|
45 | 45 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
46 | 46 | except: |
|
47 | 47 | pass |
|
48 | 48 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
49 | 49 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
50 | 50 | self.dataOut.channelList = self.dataIn.channelList |
|
51 | 51 | self.dataOut.heightList = self.dataIn.heightList |
|
52 | 52 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
53 | 53 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
54 | 54 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
55 | 55 | self.dataOut.utctime = self.firstdatatime |
|
56 | 56 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
57 | 57 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
58 | 58 | self.dataOut.flagShiftFFT = False |
|
59 | 59 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
60 | 60 | self.dataOut.nIncohInt = 1 |
|
61 | 61 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
62 | 62 | self.dataOut.frequency = self.dataIn.frequency |
|
63 | 63 | self.dataOut.realtime = self.dataIn.realtime |
|
64 | 64 | self.dataOut.azimuth = self.dataIn.azimuth |
|
65 | 65 | self.dataOut.zenith = self.dataIn.zenith |
|
66 | 66 | self.dataOut.codeList = self.dataIn.codeList |
|
67 | 67 | self.dataOut.azimuthList = self.dataIn.azimuthList |
|
68 | 68 | self.dataOut.elevationList = self.dataIn.elevationList |
|
69 | 69 | |
|
70 | 70 | |
|
71 | 71 | def __getFft(self): |
|
72 | 72 | """ |
|
73 | 73 | Convierte valores de Voltaje a Spectra |
|
74 | 74 | |
|
75 | 75 | Affected: |
|
76 | 76 | self.dataOut.data_spc |
|
77 | 77 | self.dataOut.data_cspc |
|
78 | 78 | self.dataOut.data_dc |
|
79 | 79 | self.dataOut.heightList |
|
80 | 80 | self.profIndex |
|
81 | 81 | self.buffer |
|
82 | 82 | self.dataOut.flagNoData |
|
83 | 83 | """ |
|
84 | 84 | fft_volt = numpy.fft.fft( |
|
85 | 85 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
86 | 86 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
87 | 87 | dc = fft_volt[:, 0, :] |
|
88 | 88 | |
|
89 | 89 | # calculo de self-spectra |
|
90 | 90 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
91 | 91 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
92 | 92 | spc = spc.real |
|
93 | 93 | |
|
94 | 94 | blocksize = 0 |
|
95 | 95 | blocksize += dc.size |
|
96 | 96 | blocksize += spc.size |
|
97 | 97 | |
|
98 | 98 | cspc = None |
|
99 | 99 | pairIndex = 0 |
|
100 | 100 | if self.dataOut.pairsList != None: |
|
101 | 101 | # calculo de cross-spectra |
|
102 | 102 | cspc = numpy.zeros( |
|
103 | 103 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
104 | 104 | for pair in self.dataOut.pairsList: |
|
105 | 105 | if pair[0] not in self.dataOut.channelList: |
|
106 | 106 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
107 | 107 | str(pair), str(self.dataOut.channelList))) |
|
108 | 108 | if pair[1] not in self.dataOut.channelList: |
|
109 | 109 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
110 | 110 | str(pair), str(self.dataOut.channelList))) |
|
111 | 111 | |
|
112 | 112 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
113 | 113 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
114 | 114 | pairIndex += 1 |
|
115 | 115 | blocksize += cspc.size |
|
116 | 116 | |
|
117 | 117 | self.dataOut.data_spc = spc |
|
118 | 118 | self.dataOut.data_cspc = cspc |
|
119 | 119 | self.dataOut.data_dc = dc |
|
120 | 120 | self.dataOut.blockSize = blocksize |
|
121 | 121 | self.dataOut.flagShiftFFT = False |
|
122 | 122 | |
|
123 | 123 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): |
|
124 | 124 | |
|
125 | 125 | if self.dataIn.type == "Spectra": |
|
126 | 126 | |
|
127 | 127 | try: |
|
128 | 128 | self.dataOut.copy(self.dataIn) |
|
129 | 129 | |
|
130 | 130 | except Exception as e: |
|
131 | 131 | print(e) |
|
132 | 132 | |
|
133 | 133 | if shift_fft: |
|
134 | 134 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
135 | 135 | shift = int(self.dataOut.nFFTPoints/2) |
|
136 | 136 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
137 | 137 | |
|
138 | 138 | if self.dataOut.data_cspc is not None: |
|
139 | 139 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
140 | 140 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
141 | 141 | if pairsList: |
|
142 | 142 | self.__selectPairs(pairsList) |
|
143 | 143 | |
|
144 | 144 | |
|
145 | 145 | elif self.dataIn.type == "Voltage": |
|
146 | 146 | |
|
147 | 147 | self.dataOut.flagNoData = True |
|
148 | 148 | |
|
149 | 149 | if nFFTPoints == None: |
|
150 | 150 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
151 | 151 | |
|
152 | 152 | if nProfiles == None: |
|
153 | 153 | nProfiles = nFFTPoints |
|
154 | 154 | |
|
155 | 155 | if ippFactor == None: |
|
156 | 156 | self.dataOut.ippFactor = 1 |
|
157 | 157 | |
|
158 | 158 | self.dataOut.nFFTPoints = nFFTPoints |
|
159 | 159 | |
|
160 | 160 | if self.buffer is None: |
|
161 | 161 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
162 | 162 | nProfiles, |
|
163 | 163 | self.dataIn.nHeights), |
|
164 | 164 | dtype='complex') |
|
165 | 165 | |
|
166 | 166 | if self.dataIn.flagDataAsBlock: |
|
167 | 167 | nVoltProfiles = self.dataIn.data.shape[1] |
|
168 | 168 | |
|
169 | 169 | if nVoltProfiles == nProfiles: |
|
170 | 170 | self.buffer = self.dataIn.data.copy() |
|
171 | 171 | self.profIndex = nVoltProfiles |
|
172 | 172 | |
|
173 | 173 | elif nVoltProfiles < nProfiles: |
|
174 | 174 | |
|
175 | 175 | if self.profIndex == 0: |
|
176 | 176 | self.id_min = 0 |
|
177 | 177 | self.id_max = nVoltProfiles |
|
178 | 178 | |
|
179 | 179 | self.buffer[:, self.id_min:self.id_max, |
|
180 | 180 | :] = self.dataIn.data |
|
181 | 181 | self.profIndex += nVoltProfiles |
|
182 | 182 | self.id_min += nVoltProfiles |
|
183 | 183 | self.id_max += nVoltProfiles |
|
184 | 184 | else: |
|
185 | 185 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
186 | 186 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
187 | 187 | self.dataOut.flagNoData = True |
|
188 | 188 | else: |
|
189 | 189 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
190 | 190 | self.profIndex += 1 |
|
191 | 191 | |
|
192 | 192 | if self.firstdatatime == None: |
|
193 | 193 | self.firstdatatime = self.dataIn.utctime |
|
194 | 194 | |
|
195 | 195 | if self.profIndex == nProfiles: |
|
196 | 196 | self.__updateSpecFromVoltage() |
|
197 | 197 | if pairsList == None: |
|
198 | 198 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
199 | 199 | else: |
|
200 | 200 | self.dataOut.pairsList = pairsList |
|
201 | 201 | self.__getFft() |
|
202 | 202 | self.dataOut.flagNoData = False |
|
203 | 203 | self.firstdatatime = None |
|
204 | 204 | self.profIndex = 0 |
|
205 | self.dataOut.noise_estimation = None | |
|
205 | ||
|
206 | 206 | else: |
|
207 | 207 | raise ValueError("The type of input object '%s' is not valid".format( |
|
208 | 208 | self.dataIn.type)) |
|
209 | 209 | |
|
210 | 210 | def __selectPairs(self, pairsList): |
|
211 | 211 | |
|
212 | 212 | if not pairsList: |
|
213 | 213 | return |
|
214 | 214 | |
|
215 | 215 | pairs = [] |
|
216 | 216 | pairsIndex = [] |
|
217 | 217 | |
|
218 | 218 | for pair in pairsList: |
|
219 | 219 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
220 | 220 | continue |
|
221 | 221 | pairs.append(pair) |
|
222 | 222 | pairsIndex.append(pairs.index(pair)) |
|
223 | 223 | |
|
224 | 224 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
225 | 225 | self.dataOut.pairsList = pairs |
|
226 | 226 | |
|
227 | 227 | return |
|
228 | 228 | |
|
229 | 229 | def selectFFTs(self, minFFT, maxFFT ): |
|
230 | 230 | """ |
|
231 | 231 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
232 | 232 | minFFT<= FFT <= maxFFT |
|
233 | 233 | """ |
|
234 | 234 | |
|
235 | 235 | if (minFFT > maxFFT): |
|
236 | 236 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
237 | 237 | |
|
238 | 238 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
239 | 239 | minFFT = self.dataOut.getFreqRange()[0] |
|
240 | 240 | |
|
241 | 241 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
242 | 242 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
243 | 243 | |
|
244 | 244 | minIndex = 0 |
|
245 | 245 | maxIndex = 0 |
|
246 | 246 | FFTs = self.dataOut.getFreqRange() |
|
247 | 247 | |
|
248 | 248 | inda = numpy.where(FFTs >= minFFT) |
|
249 | 249 | indb = numpy.where(FFTs <= maxFFT) |
|
250 | 250 | |
|
251 | 251 | try: |
|
252 | 252 | minIndex = inda[0][0] |
|
253 | 253 | except: |
|
254 | 254 | minIndex = 0 |
|
255 | 255 | |
|
256 | 256 | try: |
|
257 | 257 | maxIndex = indb[0][-1] |
|
258 | 258 | except: |
|
259 | 259 | maxIndex = len(FFTs) |
|
260 | 260 | |
|
261 | 261 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
262 | 262 | |
|
263 | 263 | return 1 |
|
264 | 264 | |
|
265 | 265 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
266 | 266 | newheis = numpy.where( |
|
267 | 267 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
268 | 268 | |
|
269 | 269 | if hei_ref != None: |
|
270 | 270 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
271 | 271 | |
|
272 | 272 | minIndex = min(newheis[0]) |
|
273 | 273 | maxIndex = max(newheis[0]) |
|
274 | 274 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
275 | 275 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
276 | 276 | |
|
277 | 277 | # determina indices |
|
278 | 278 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
279 | 279 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
280 | 280 | avg_dB = 10 * \ |
|
281 | 281 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
282 | 282 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
283 | 283 | beacon_heiIndexList = [] |
|
284 | 284 | for val in avg_dB.tolist(): |
|
285 | 285 | if val >= beacon_dB[0]: |
|
286 | 286 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
287 | 287 | |
|
288 | 288 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
289 | 289 | data_cspc = None |
|
290 | 290 | if self.dataOut.data_cspc is not None: |
|
291 | 291 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
292 | 292 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
293 | 293 | |
|
294 | 294 | data_dc = None |
|
295 | 295 | if self.dataOut.data_dc is not None: |
|
296 | 296 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
297 | 297 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
298 | 298 | |
|
299 | 299 | self.dataOut.data_spc = data_spc |
|
300 | 300 | self.dataOut.data_cspc = data_cspc |
|
301 | 301 | self.dataOut.data_dc = data_dc |
|
302 | 302 | self.dataOut.heightList = heightList |
|
303 | 303 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
304 | 304 | |
|
305 | 305 | return 1 |
|
306 | 306 | |
|
307 | 307 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
308 | 308 | """ |
|
309 | 309 | |
|
310 | 310 | """ |
|
311 | 311 | |
|
312 | 312 | if (minIndex < 0) or (minIndex > maxIndex): |
|
313 | 313 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
314 | 314 | |
|
315 | 315 | if (maxIndex >= self.dataOut.nProfiles): |
|
316 | 316 | maxIndex = self.dataOut.nProfiles-1 |
|
317 | 317 | |
|
318 | 318 | #Spectra |
|
319 | 319 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
320 | 320 | |
|
321 | 321 | data_cspc = None |
|
322 | 322 | if self.dataOut.data_cspc is not None: |
|
323 | 323 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
324 | 324 | |
|
325 | 325 | data_dc = None |
|
326 | 326 | if self.dataOut.data_dc is not None: |
|
327 | 327 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
328 | 328 | |
|
329 | 329 | self.dataOut.data_spc = data_spc |
|
330 | 330 | self.dataOut.data_cspc = data_cspc |
|
331 | 331 | self.dataOut.data_dc = data_dc |
|
332 | 332 | |
|
333 | 333 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
334 | 334 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
335 | 335 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
336 | 336 | |
|
337 | 337 | return 1 |
|
338 | 338 | |
|
339 | 339 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
340 | 340 | # validacion de rango |
|
341 | 341 | if minHei == None: |
|
342 | 342 | minHei = self.dataOut.heightList[0] |
|
343 | 343 | |
|
344 | 344 | if maxHei == None: |
|
345 | 345 | maxHei = self.dataOut.heightList[-1] |
|
346 | 346 | |
|
347 | 347 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
348 | 348 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
349 | 349 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
350 | 350 | minHei = self.dataOut.heightList[0] |
|
351 | 351 | |
|
352 | 352 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
353 | 353 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
354 | 354 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
355 | 355 | maxHei = self.dataOut.heightList[-1] |
|
356 | 356 | |
|
357 | 357 | # validacion de velocidades |
|
358 | 358 | velrange = self.dataOut.getVelRange(1) |
|
359 | 359 | |
|
360 | 360 | if minVel == None: |
|
361 | 361 | minVel = velrange[0] |
|
362 | 362 | |
|
363 | 363 | if maxVel == None: |
|
364 | 364 | maxVel = velrange[-1] |
|
365 | 365 | |
|
366 | 366 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
367 | 367 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
368 | 368 | print('minVel is setting to %.2f' % (velrange[0])) |
|
369 | 369 | minVel = velrange[0] |
|
370 | 370 | |
|
371 | 371 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
372 | 372 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
373 | 373 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
374 | 374 | maxVel = velrange[-1] |
|
375 | 375 | |
|
376 | 376 | # seleccion de indices para rango |
|
377 | 377 | minIndex = 0 |
|
378 | 378 | maxIndex = 0 |
|
379 | 379 | heights = self.dataOut.heightList |
|
380 | 380 | |
|
381 | 381 | inda = numpy.where(heights >= minHei) |
|
382 | 382 | indb = numpy.where(heights <= maxHei) |
|
383 | 383 | |
|
384 | 384 | try: |
|
385 | 385 | minIndex = inda[0][0] |
|
386 | 386 | except: |
|
387 | 387 | minIndex = 0 |
|
388 | 388 | |
|
389 | 389 | try: |
|
390 | 390 | maxIndex = indb[0][-1] |
|
391 | 391 | except: |
|
392 | 392 | maxIndex = len(heights) |
|
393 | 393 | |
|
394 | 394 | if (minIndex < 0) or (minIndex > maxIndex): |
|
395 | 395 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
396 | 396 | minIndex, maxIndex)) |
|
397 | 397 | |
|
398 | 398 | if (maxIndex >= self.dataOut.nHeights): |
|
399 | 399 | maxIndex = self.dataOut.nHeights - 1 |
|
400 | 400 | |
|
401 | 401 | # seleccion de indices para velocidades |
|
402 | 402 | indminvel = numpy.where(velrange >= minVel) |
|
403 | 403 | indmaxvel = numpy.where(velrange <= maxVel) |
|
404 | 404 | try: |
|
405 | 405 | minIndexVel = indminvel[0][0] |
|
406 | 406 | except: |
|
407 | 407 | minIndexVel = 0 |
|
408 | 408 | |
|
409 | 409 | try: |
|
410 | 410 | maxIndexVel = indmaxvel[0][-1] |
|
411 | 411 | except: |
|
412 | 412 | maxIndexVel = len(velrange) |
|
413 | 413 | |
|
414 | 414 | # seleccion del espectro |
|
415 | 415 | data_spc = self.dataOut.data_spc[:, |
|
416 | 416 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
417 | 417 | # estimacion de ruido |
|
418 | 418 | noise = numpy.zeros(self.dataOut.nChannels) |
|
419 | 419 | |
|
420 | 420 | for channel in range(self.dataOut.nChannels): |
|
421 | 421 | daux = data_spc[channel, :, :] |
|
422 | 422 | sortdata = numpy.sort(daux, axis=None) |
|
423 | 423 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
424 | 424 | |
|
425 | 425 | self.dataOut.noise_estimation = noise.copy() |
|
426 | 426 | |
|
427 | 427 | return 1 |
|
428 | 428 | |
|
429 | 429 | class removeDC(Operation): |
|
430 | 430 | |
|
431 | 431 | def run(self, dataOut, mode=2): |
|
432 | 432 | self.dataOut = dataOut |
|
433 | 433 | jspectra = self.dataOut.data_spc |
|
434 | 434 | jcspectra = self.dataOut.data_cspc |
|
435 | 435 | |
|
436 | 436 | num_chan = jspectra.shape[0] |
|
437 | 437 | num_hei = jspectra.shape[2] |
|
438 | 438 | |
|
439 | 439 | if jcspectra is not None: |
|
440 | 440 | jcspectraExist = True |
|
441 | 441 | num_pairs = jcspectra.shape[0] |
|
442 | 442 | else: |
|
443 | 443 | jcspectraExist = False |
|
444 | 444 | |
|
445 | 445 | freq_dc = int(jspectra.shape[1] / 2) |
|
446 | 446 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
447 | 447 | ind_vel = ind_vel.astype(int) |
|
448 | 448 | |
|
449 | 449 | if ind_vel[0] < 0: |
|
450 | 450 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
451 | 451 | |
|
452 | 452 | if mode == 1: |
|
453 | 453 | jspectra[:, freq_dc, :] = ( |
|
454 | 454 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
455 | 455 | |
|
456 | 456 | if jcspectraExist: |
|
457 | 457 | jcspectra[:, freq_dc, :] = ( |
|
458 | 458 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
459 | 459 | |
|
460 | 460 | if mode == 2: |
|
461 | 461 | |
|
462 | 462 | vel = numpy.array([-2, -1, 1, 2]) |
|
463 | 463 | xx = numpy.zeros([4, 4]) |
|
464 | 464 | |
|
465 | 465 | for fil in range(4): |
|
466 | 466 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
467 | 467 | |
|
468 | 468 | xx_inv = numpy.linalg.inv(xx) |
|
469 | 469 | xx_aux = xx_inv[0, :] |
|
470 | 470 | |
|
471 | 471 | for ich in range(num_chan): |
|
472 | 472 | yy = jspectra[ich, ind_vel, :] |
|
473 | 473 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
474 | 474 | |
|
475 | 475 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
476 | 476 | cjunkid = sum(junkid) |
|
477 | 477 | |
|
478 | 478 | if cjunkid.any(): |
|
479 | 479 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
480 | 480 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
481 | 481 | |
|
482 | 482 | if jcspectraExist: |
|
483 | 483 | for ip in range(num_pairs): |
|
484 | 484 | yy = jcspectra[ip, ind_vel, :] |
|
485 | 485 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
486 | 486 | |
|
487 | 487 | self.dataOut.data_spc = jspectra |
|
488 | 488 | self.dataOut.data_cspc = jcspectra |
|
489 | 489 | |
|
490 | 490 | return self.dataOut |
|
491 | 491 | |
|
492 | 492 | class getNoise(Operation): |
|
493 | ||
|
493 | 494 | def __init__(self): |
|
494 | 495 | |
|
495 | 496 | Operation.__init__(self) |
|
496 | 497 | |
|
497 |
def run(self, dataOut, minHei=None, maxHei=None, |
|
|
498 |
self.dataOut = dataOut |
|
|
499 | print("1: ",dataOut.noise_estimation, dataOut.normFactor) | |
|
498 | def run(self, dataOut, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None): | |
|
499 | self.dataOut = dataOut | |
|
500 | 500 | |
|
501 | 501 | if minHei == None: |
|
502 | 502 | minHei = self.dataOut.heightList[0] |
|
503 | 503 | |
|
504 | 504 | if maxHei == None: |
|
505 | 505 | maxHei = self.dataOut.heightList[-1] |
|
506 | 506 | |
|
507 | 507 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
508 | 508 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
509 | 509 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
510 | 510 | minHei = self.dataOut.heightList[0] |
|
511 | 511 | |
|
512 | 512 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
513 | 513 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
514 | 514 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
515 | 515 | maxHei = self.dataOut.heightList[-1] |
|
516 | 516 | |
|
517 | 517 | |
|
518 | 518 | #indices relativos a los puntos de fft, puede ser de acuerdo a velocidad o frecuencia |
|
519 | 519 | minIndexFFT = 0 |
|
520 | 520 | maxIndexFFT = 0 |
|
521 | 521 | # validacion de velocidades |
|
522 | 522 | indminPoint = None |
|
523 | 523 | indmaxPoint = None |
|
524 | 524 | |
|
525 | 525 | if minVel == None and maxVel == None: |
|
526 | 526 | |
|
527 | 527 | freqrange = self.dataOut.getFreqRange(1) |
|
528 | 528 | |
|
529 | 529 | if minFreq == None: |
|
530 | 530 | minFreq = freqrange[0] |
|
531 | 531 | |
|
532 | 532 | if maxFreq == None: |
|
533 | 533 | maxFreq = freqrange[-1] |
|
534 | 534 | |
|
535 | 535 | if (minFreq < freqrange[0]) or (minFreq > maxFreq): |
|
536 | 536 | print('minFreq: %.2f is out of the frequency range' % (minFreq)) |
|
537 | 537 | print('minFreq is setting to %.2f' % (freqrange[0])) |
|
538 | 538 | minFreq = freqrange[0] |
|
539 | 539 | |
|
540 | 540 | if (maxFreq > freqrange[-1]) or (maxFreq < minFreq): |
|
541 | 541 | print('maxFreq: %.2f is out of the frequency range' % (maxFreq)) |
|
542 | 542 | print('maxFreq is setting to %.2f' % (freqrange[-1])) |
|
543 | 543 | maxFreq = freqrange[-1] |
|
544 | 544 | |
|
545 | 545 | indminPoint = numpy.where(freqrange >= minFreq) |
|
546 | 546 | indmaxPoint = numpy.where(freqrange <= maxFreq) |
|
547 | 547 | |
|
548 | 548 | else: |
|
549 | 549 | velrange = self.dataOut.getVelRange(1) |
|
550 | 550 | |
|
551 | 551 | if minVel == None: |
|
552 | 552 | minVel = velrange[0] |
|
553 | 553 | |
|
554 | 554 | if maxVel == None: |
|
555 | 555 | maxVel = velrange[-1] |
|
556 | 556 | |
|
557 | 557 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
558 | 558 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
559 | 559 | print('minVel is setting to %.2f' % (velrange[0])) |
|
560 | 560 | minVel = velrange[0] |
|
561 | 561 | |
|
562 | 562 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
563 | 563 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
564 | 564 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
565 | 565 | maxVel = velrange[-1] |
|
566 | 566 | |
|
567 | 567 | indminPoint = numpy.where(velrange >= minVel) |
|
568 | 568 | indmaxPoint = numpy.where(velrange <= maxVel) |
|
569 | 569 | |
|
570 | 570 | |
|
571 | 571 | # seleccion de indices para rango |
|
572 | 572 | minIndex = 0 |
|
573 | 573 | maxIndex = 0 |
|
574 | 574 | heights = self.dataOut.heightList |
|
575 | 575 | |
|
576 | 576 | inda = numpy.where(heights >= minHei) |
|
577 | 577 | indb = numpy.where(heights <= maxHei) |
|
578 | 578 | |
|
579 | 579 | try: |
|
580 | 580 | minIndex = inda[0][0] |
|
581 | 581 | except: |
|
582 | 582 | minIndex = 0 |
|
583 | 583 | |
|
584 | 584 | try: |
|
585 | 585 | maxIndex = indb[0][-1] |
|
586 | 586 | except: |
|
587 | 587 | maxIndex = len(heights) |
|
588 | 588 | |
|
589 | 589 | if (minIndex < 0) or (minIndex > maxIndex): |
|
590 | 590 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
591 | 591 | minIndex, maxIndex)) |
|
592 | 592 | |
|
593 | 593 | if (maxIndex >= self.dataOut.nHeights): |
|
594 | 594 | maxIndex = self.dataOut.nHeights - 1 |
|
595 | 595 | #############################################################3 |
|
596 | 596 | # seleccion de indices para velocidades |
|
597 | 597 | |
|
598 | 598 | try: |
|
599 | 599 | minIndexFFT = indminPoint[0][0] |
|
600 | 600 | except: |
|
601 | 601 | minIndexFFT = 0 |
|
602 | 602 | |
|
603 | 603 | try: |
|
604 | 604 | maxIndexFFT = indmaxPoint[0][-1] |
|
605 | 605 | except: |
|
606 | 606 | maxIndexFFT = len( self.dataOut.getFreqRange(1)) |
|
607 | 607 | |
|
608 | 608 | #print(minIndex, maxIndex,minIndexVel, maxIndexVel) |
|
609 | self.dataOut.noise_estimation = None | |
|
609 | 610 | noise = self.dataOut.getNoise(xmin_index=minIndexFFT, xmax_index=maxIndexFFT, ymin_index=minIndex, ymax_index=maxIndex) |
|
610 | 611 | |
|
611 | self.dataOut.noise_estimation = noise.copy() | |
|
612 | self.dataOut.noise_estimation = noise.copy() # dataOut.noise | |
|
612 | 613 | #print("2: ",10*numpy.log10(self.dataOut.noise_estimation/64)) |
|
613 | 614 | return self.dataOut |
|
614 | 615 | |
|
615 | 616 | |
|
616 | 617 | |
|
617 | 618 | # import matplotlib.pyplot as plt |
|
618 | 619 | |
|
619 | 620 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): |
|
620 | 621 | z = (x - a1) / a2 |
|
621 | 622 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 |
|
622 | 623 | return y |
|
623 | 624 | |
|
624 | 625 | |
|
625 | 626 | class CleanRayleigh(Operation): |
|
626 | 627 | |
|
627 | 628 | def __init__(self): |
|
628 | 629 | |
|
629 | 630 | Operation.__init__(self) |
|
630 | 631 | self.i=0 |
|
631 | 632 | self.isConfig = False |
|
632 | 633 | self.__dataReady = False |
|
633 | 634 | self.__profIndex = 0 |
|
634 | 635 | self.byTime = False |
|
635 | 636 | self.byProfiles = False |
|
636 | 637 | |
|
637 | 638 | self.bloques = None |
|
638 | 639 | self.bloque0 = None |
|
639 | 640 | |
|
640 | 641 | self.index = 0 |
|
641 | 642 | |
|
642 | 643 | self.buffer = 0 |
|
643 | 644 | self.buffer2 = 0 |
|
644 | 645 | self.buffer3 = 0 |
|
645 | 646 | |
|
646 | 647 | |
|
647 | 648 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): |
|
648 | 649 | |
|
649 | 650 | self.nChannels = dataOut.nChannels |
|
650 | 651 | self.nProf = dataOut.nProfiles |
|
651 | 652 | self.nPairs = dataOut.data_cspc.shape[0] |
|
652 | 653 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
653 | 654 | self.spectra = dataOut.data_spc |
|
654 | 655 | self.cspectra = dataOut.data_cspc |
|
655 | 656 | self.heights = dataOut.heightList #alturas totales |
|
656 | 657 | self.nHeights = len(self.heights) |
|
657 | 658 | self.min_hei = min_hei |
|
658 | 659 | self.max_hei = max_hei |
|
659 | 660 | if (self.min_hei == None): |
|
660 | 661 | self.min_hei = 0 |
|
661 | 662 | if (self.max_hei == None): |
|
662 | 663 | self.max_hei = dataOut.heightList[-1] |
|
663 | 664 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() |
|
664 | 665 | self.heightsClean = self.heights[self.hval] #alturas filtradas |
|
665 | 666 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas |
|
666 | 667 | self.nHeightsClean = len(self.heightsClean) |
|
667 | 668 | self.channels = dataOut.channelList |
|
668 | 669 | self.nChan = len(self.channels) |
|
669 | 670 | self.nIncohInt = dataOut.nIncohInt |
|
670 | 671 | self.__initime = dataOut.utctime |
|
671 | 672 | self.maxAltInd = self.hval[-1]+1 |
|
672 | 673 | self.minAltInd = self.hval[0] |
|
673 | 674 | |
|
674 | 675 | self.crosspairs = dataOut.pairsList |
|
675 | 676 | self.nPairs = len(self.crosspairs) |
|
676 | 677 | self.normFactor = dataOut.normFactor |
|
677 | 678 | self.nFFTPoints = dataOut.nFFTPoints |
|
678 | 679 | self.ippSeconds = dataOut.ippSeconds |
|
679 | 680 | self.currentTime = self.__initime |
|
680 | 681 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
681 | 682 | self.factor_stdv = factor_stdv |
|
682 | 683 | |
|
683 | 684 | if n != None : |
|
684 | 685 | self.byProfiles = True |
|
685 | 686 | self.nIntProfiles = n |
|
686 | 687 | else: |
|
687 | 688 | self.__integrationtime = timeInterval |
|
688 | 689 | |
|
689 | 690 | self.__dataReady = False |
|
690 | 691 | self.isConfig = True |
|
691 | 692 | |
|
692 | 693 | |
|
693 | 694 | |
|
694 | 695 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): |
|
695 | 696 | |
|
696 | 697 | if not self.isConfig : |
|
697 | 698 | |
|
698 | 699 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) |
|
699 | 700 | |
|
700 | 701 | tini=dataOut.utctime |
|
701 | 702 | |
|
702 | 703 | if self.byProfiles: |
|
703 | 704 | if self.__profIndex == self.nIntProfiles: |
|
704 | 705 | self.__dataReady = True |
|
705 | 706 | else: |
|
706 | 707 | if (tini - self.__initime) >= self.__integrationtime: |
|
707 | 708 | |
|
708 | 709 | self.__dataReady = True |
|
709 | 710 | self.__initime = tini |
|
710 | 711 | |
|
711 | 712 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): |
|
712 | 713 | |
|
713 | 714 | if self.__dataReady: |
|
714 | 715 | |
|
715 | 716 | self.__profIndex = 0 |
|
716 | 717 | jspc = self.buffer |
|
717 | 718 | jcspc = self.buffer2 |
|
718 | 719 | #jnoise = self.buffer3 |
|
719 | 720 | self.buffer = dataOut.data_spc |
|
720 | 721 | self.buffer2 = dataOut.data_cspc |
|
721 | 722 | #self.buffer3 = dataOut.noise |
|
722 | 723 | self.currentTime = dataOut.utctime |
|
723 | 724 | if numpy.any(jspc) : |
|
724 | 725 | #print( jspc.shape, jcspc.shape) |
|
725 | 726 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) |
|
726 | 727 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) |
|
727 | 728 | self.__dataReady = False |
|
728 | 729 | #print( jspc.shape, jcspc.shape) |
|
729 | 730 | dataOut.flagNoData = False |
|
730 | 731 | else: |
|
731 | 732 | dataOut.flagNoData = True |
|
732 | 733 | self.__dataReady = False |
|
733 | 734 | return dataOut |
|
734 | 735 | else: |
|
735 | 736 | #print( len(self.buffer)) |
|
736 | 737 | if numpy.any(self.buffer): |
|
737 | 738 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) |
|
738 | 739 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) |
|
739 | 740 | self.buffer3 += dataOut.data_dc |
|
740 | 741 | else: |
|
741 | 742 | self.buffer = dataOut.data_spc |
|
742 | 743 | self.buffer2 = dataOut.data_cspc |
|
743 | 744 | self.buffer3 = dataOut.data_dc |
|
744 | 745 | #print self.index, self.fint |
|
745 | 746 | #print self.buffer2.shape |
|
746 | 747 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO |
|
747 | 748 | self.__profIndex += 1 |
|
748 | 749 | return dataOut ## NOTE: REV |
|
749 | 750 | |
|
750 | 751 | |
|
751 | 752 | #index = tini.tm_hour*12+tini.tm_min/5 |
|
752 | 753 | '''REVISAR''' |
|
753 | 754 | # jspc = jspc/self.nFFTPoints/self.normFactor |
|
754 | 755 | # jcspc = jcspc/self.nFFTPoints/self.normFactor |
|
755 | 756 | |
|
756 | 757 | |
|
757 | 758 | |
|
758 | 759 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
759 | 760 | dataOut.data_spc = tmp_spectra |
|
760 | 761 | dataOut.data_cspc = tmp_cspectra |
|
761 | 762 | |
|
762 | 763 | #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
763 | 764 | |
|
764 | 765 | dataOut.data_dc = self.buffer3 |
|
765 | 766 | dataOut.nIncohInt *= self.nIntProfiles |
|
766 | 767 | dataOut.utctime = self.currentTime #tiempo promediado |
|
767 | 768 | #print("Time: ",time.localtime(dataOut.utctime)) |
|
768 | 769 | # dataOut.data_spc = sat_spectra |
|
769 | 770 | # dataOut.data_cspc = sat_cspectra |
|
770 | 771 | self.buffer = 0 |
|
771 | 772 | self.buffer2 = 0 |
|
772 | 773 | self.buffer3 = 0 |
|
773 | 774 | |
|
774 | 775 | return dataOut |
|
775 | 776 | |
|
776 | 777 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): |
|
777 | 778 | #print("OP cleanRayleigh") |
|
778 | 779 | #import matplotlib.pyplot as plt |
|
779 | 780 | #for k in range(149): |
|
780 | 781 | #channelsProcssd = [] |
|
781 | 782 | #channelA_ok = False |
|
782 | 783 | #rfunc = cspectra.copy() #self.bloques |
|
783 | 784 | rfunc = spectra.copy() |
|
784 | 785 | #rfunc = cspectra |
|
785 | 786 | #val_spc = spectra*0.0 #self.bloque0*0.0 |
|
786 | 787 | #val_cspc = cspectra*0.0 #self.bloques*0.0 |
|
787 | 788 | #in_sat_spectra = spectra.copy() #self.bloque0 |
|
788 | 789 | #in_sat_cspectra = cspectra.copy() #self.bloques |
|
789 | 790 | |
|
790 | 791 | |
|
791 | 792 | ###ONLY FOR TEST: |
|
792 | 793 | raxs = math.ceil(math.sqrt(self.nPairs)) |
|
793 | 794 | caxs = math.ceil(self.nPairs/raxs) |
|
794 | 795 | if self.nPairs <4: |
|
795 | 796 | raxs = 2 |
|
796 | 797 | caxs = 2 |
|
797 | 798 | #print(raxs, caxs) |
|
798 | 799 | fft_rev = 14 #nFFT to plot |
|
799 | 800 | hei_rev = ((self.heights >= 550) & (self.heights <= 551)).nonzero() #hei to plot |
|
800 | 801 | hei_rev = hei_rev[0] |
|
801 | 802 | #print(hei_rev) |
|
802 | 803 | |
|
803 | 804 | #print numpy.absolute(rfunc[:,0,0,14]) |
|
804 | 805 | |
|
805 | 806 | gauss_fit, covariance = None, None |
|
806 | 807 | for ih in range(self.minAltInd,self.maxAltInd): |
|
807 | 808 | for ifreq in range(self.nFFTPoints): |
|
808 | 809 | ''' |
|
809 | 810 | ###ONLY FOR TEST: |
|
810 | 811 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
811 | 812 | fig, axs = plt.subplots(raxs, caxs) |
|
812 | 813 | fig2, axs2 = plt.subplots(raxs, caxs) |
|
813 | 814 | col_ax = 0 |
|
814 | 815 | row_ax = 0 |
|
815 | 816 | ''' |
|
816 | 817 | #print(self.nPairs) |
|
817 | 818 | for ii in range(self.nChan): #PARES DE CANALES SELF y CROSS |
|
818 | 819 | # if self.crosspairs[ii][1]-self.crosspairs[ii][0] > 1: # APLICAR SOLO EN PARES CONTIGUOS |
|
819 | 820 | # continue |
|
820 | 821 | # if not self.crosspairs[ii][0] in channelsProcssd: |
|
821 | 822 | # channelA_ok = True |
|
822 | 823 | #print("pair: ",self.crosspairs[ii]) |
|
823 | 824 | ''' |
|
824 | 825 | ###ONLY FOR TEST: |
|
825 | 826 | if (col_ax%caxs==0 and col_ax!=0 and self.nPairs !=1): |
|
826 | 827 | col_ax = 0 |
|
827 | 828 | row_ax += 1 |
|
828 | 829 | ''' |
|
829 | 830 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? |
|
830 | 831 | #print(func2clean.shape) |
|
831 | 832 | val = (numpy.isfinite(func2clean)==True).nonzero() |
|
832 | 833 | |
|
833 | 834 | if len(val)>0: #limitador |
|
834 | 835 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) |
|
835 | 836 | if min_val <= -40 : |
|
836 | 837 | min_val = -40 |
|
837 | 838 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 |
|
838 | 839 | if max_val >= 200 : |
|
839 | 840 | max_val = 200 |
|
840 | 841 | #print min_val, max_val |
|
841 | 842 | step = 1 |
|
842 | 843 | #print("Getting bins and the histogram") |
|
843 | 844 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step |
|
844 | 845 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
845 | 846 | #print(len(y_dist),len(binstep[:-1])) |
|
846 | 847 | #print(row_ax,col_ax, " ..") |
|
847 | 848 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) |
|
848 | 849 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) |
|
849 | 850 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) |
|
850 | 851 | parg = [numpy.amax(y_dist),mean,sigma] |
|
851 | 852 | |
|
852 | 853 | newY = None |
|
853 | 854 | |
|
854 | 855 | try : |
|
855 | 856 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) |
|
856 | 857 | mode = gauss_fit[1] |
|
857 | 858 | stdv = gauss_fit[2] |
|
858 | 859 | #print(" FIT OK",gauss_fit) |
|
859 | 860 | ''' |
|
860 | 861 | ###ONLY FOR TEST: |
|
861 | 862 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
862 | 863 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) |
|
863 | 864 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
864 | 865 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
865 | 866 | axs[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
866 | 867 | ''' |
|
867 | 868 | except: |
|
868 | 869 | mode = mean |
|
869 | 870 | stdv = sigma |
|
870 | 871 | #print("FIT FAIL") |
|
871 | 872 | #continue |
|
872 | 873 | |
|
873 | 874 | |
|
874 | 875 | #print(mode,stdv) |
|
875 | 876 | #Removing echoes greater than mode + std_factor*stdv |
|
876 | 877 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() |
|
877 | 878 | #noval tiene los indices que se van a remover |
|
878 | 879 | #print("Chan ",ii," novals: ",len(noval[0])) |
|
879 | 880 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) |
|
880 | 881 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() |
|
881 | 882 | #print(novall) |
|
882 | 883 | #print(" ",self.pairsArray[ii]) |
|
883 | 884 | #cross_pairs = self.pairsArray[ii] |
|
884 | 885 | #Getting coherent echoes which are removed. |
|
885 | 886 | # if len(novall[0]) > 0: |
|
886 | 887 | # |
|
887 | 888 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 |
|
888 | 889 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 |
|
889 | 890 | # val_cspc[novall[0],ii,ifreq,ih] = 1 |
|
890 | 891 | #print("OUT NOVALL 1") |
|
891 | 892 | try: |
|
892 | 893 | pair = (self.channels[ii],self.channels[ii + 1]) |
|
893 | 894 | except: |
|
894 | 895 | pair = (99,99) |
|
895 | 896 | #print("par ", pair) |
|
896 | 897 | if ( pair in self.crosspairs): |
|
897 | 898 | q = self.crosspairs.index(pair) |
|
898 | 899 | #print("estΓ‘ aqui: ", q, (ii,ii + 1)) |
|
899 | 900 | new_a = numpy.delete(cspectra[:,q,ifreq,ih], noval[0]) |
|
900 | 901 | cspectra[noval,q,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra |
|
901 | 902 | |
|
902 | 903 | #if channelA_ok: |
|
903 | 904 | #chA = self.channels.index(cross_pairs[0]) |
|
904 | 905 | new_b = numpy.delete(spectra[:,ii,ifreq,ih], noval[0]) |
|
905 | 906 | spectra[noval,ii,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A |
|
906 | 907 | #channelA_ok = False |
|
907 | 908 | |
|
908 | 909 | # chB = self.channels.index(cross_pairs[1]) |
|
909 | 910 | # new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) |
|
910 | 911 | # spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B |
|
911 | 912 | # |
|
912 | 913 | # channelsProcssd.append(self.crosspairs[ii][0]) # save channel A |
|
913 | 914 | # channelsProcssd.append(self.crosspairs[ii][1]) # save channel B |
|
914 | 915 | ''' |
|
915 | 916 | ###ONLY FOR TEST: |
|
916 | 917 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
917 | 918 | func2clean = 10*numpy.log10(numpy.absolute(spectra[:,ii,ifreq,ih])) |
|
918 | 919 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
919 | 920 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
920 | 921 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
921 | 922 | axs2[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
922 | 923 | ''' |
|
923 | 924 | ''' |
|
924 | 925 | ###ONLY FOR TEST: |
|
925 | 926 | col_ax += 1 #contador de ploteo columnas |
|
926 | 927 | ##print(col_ax) |
|
927 | 928 | ###ONLY FOR TEST: |
|
928 | 929 | if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
929 | 930 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" |
|
930 | 931 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" |
|
931 | 932 | fig.suptitle(title) |
|
932 | 933 | fig2.suptitle(title2) |
|
933 | 934 | plt.show() |
|
934 | 935 | ''' |
|
935 | 936 | ################################################################################################## |
|
936 | 937 | |
|
937 | 938 | #print("Getting average of the spectra and cross-spectra from incoherent echoes.") |
|
938 | 939 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan |
|
939 | 940 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan |
|
940 | 941 | for ih in range(self.nHeights): |
|
941 | 942 | for ifreq in range(self.nFFTPoints): |
|
942 | 943 | for ich in range(self.nChan): |
|
943 | 944 | tmp = spectra[:,ich,ifreq,ih] |
|
944 | 945 | valid = (numpy.isfinite(tmp[:])==True).nonzero() |
|
945 | 946 | |
|
946 | 947 | if len(valid[0]) >0 : |
|
947 | 948 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
948 | 949 | |
|
949 | 950 | for icr in range(self.nPairs): |
|
950 | 951 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) |
|
951 | 952 | valid = (numpy.isfinite(tmp)==True).nonzero() |
|
952 | 953 | if len(valid[0]) > 0: |
|
953 | 954 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
954 | 955 | |
|
955 | 956 | return out_spectra, out_cspectra |
|
956 | 957 | |
|
957 | 958 | def REM_ISOLATED_POINTS(self,array,rth): |
|
958 | 959 | # import matplotlib.pyplot as plt |
|
959 | 960 | if rth == None : |
|
960 | 961 | rth = 4 |
|
961 | 962 | #print("REM ISO") |
|
962 | 963 | num_prof = len(array[0,:,0]) |
|
963 | 964 | num_hei = len(array[0,0,:]) |
|
964 | 965 | n2d = len(array[:,0,0]) |
|
965 | 966 | |
|
966 | 967 | for ii in range(n2d) : |
|
967 | 968 | #print ii,n2d |
|
968 | 969 | tmp = array[ii,:,:] |
|
969 | 970 | #print tmp.shape, array[ii,101,:],array[ii,102,:] |
|
970 | 971 | |
|
971 | 972 | # fig = plt.figure(figsize=(6,5)) |
|
972 | 973 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
973 | 974 | # ax = fig.add_axes([left, bottom, width, height]) |
|
974 | 975 | # x = range(num_prof) |
|
975 | 976 | # y = range(num_hei) |
|
976 | 977 | # cp = ax.contour(y,x,tmp) |
|
977 | 978 | # ax.clabel(cp, inline=True,fontsize=10) |
|
978 | 979 | # plt.show() |
|
979 | 980 | |
|
980 | 981 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) |
|
981 | 982 | tmp = numpy.reshape(tmp,num_prof*num_hei) |
|
982 | 983 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() |
|
983 | 984 | indxs2 = (tmp > 0).nonzero() |
|
984 | 985 | |
|
985 | 986 | indxs1 = (indxs1[0]) |
|
986 | 987 | indxs2 = indxs2[0] |
|
987 | 988 | #indxs1 = numpy.array(indxs1[0]) |
|
988 | 989 | #indxs2 = numpy.array(indxs2[0]) |
|
989 | 990 | indxs = None |
|
990 | 991 | #print indxs1 , indxs2 |
|
991 | 992 | for iv in range(len(indxs2)): |
|
992 | 993 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) |
|
993 | 994 | #print len(indxs2), indv |
|
994 | 995 | if len(indv[0]) > 0 : |
|
995 | 996 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) |
|
996 | 997 | # print indxs |
|
997 | 998 | indxs = indxs[1:] |
|
998 | 999 | #print(indxs, len(indxs)) |
|
999 | 1000 | if len(indxs) < 4 : |
|
1000 | 1001 | array[ii,:,:] = 0. |
|
1001 | 1002 | return |
|
1002 | 1003 | |
|
1003 | 1004 | xpos = numpy.mod(indxs ,num_hei) |
|
1004 | 1005 | ypos = (indxs / num_hei) |
|
1005 | 1006 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) |
|
1006 | 1007 | #print sx |
|
1007 | 1008 | xpos = xpos[sx] |
|
1008 | 1009 | ypos = ypos[sx] |
|
1009 | 1010 | |
|
1010 | 1011 | # *********************************** Cleaning isolated points ********************************** |
|
1011 | 1012 | ic = 0 |
|
1012 | 1013 | while True : |
|
1013 | 1014 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) |
|
1014 | 1015 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) |
|
1015 | 1016 | #plt.plot(r) |
|
1016 | 1017 | #plt.show() |
|
1017 | 1018 | no_coh1 = (numpy.isfinite(r)==True).nonzero() |
|
1018 | 1019 | no_coh2 = (r <= rth).nonzero() |
|
1019 | 1020 | #print r, no_coh1, no_coh2 |
|
1020 | 1021 | no_coh1 = numpy.array(no_coh1[0]) |
|
1021 | 1022 | no_coh2 = numpy.array(no_coh2[0]) |
|
1022 | 1023 | no_coh = None |
|
1023 | 1024 | #print valid1 , valid2 |
|
1024 | 1025 | for iv in range(len(no_coh2)): |
|
1025 | 1026 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) |
|
1026 | 1027 | if len(indv[0]) > 0 : |
|
1027 | 1028 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) |
|
1028 | 1029 | no_coh = no_coh[1:] |
|
1029 | 1030 | #print len(no_coh), no_coh |
|
1030 | 1031 | if len(no_coh) < 4 : |
|
1031 | 1032 | #print xpos[ic], ypos[ic], ic |
|
1032 | 1033 | # plt.plot(r) |
|
1033 | 1034 | # plt.show() |
|
1034 | 1035 | xpos[ic] = numpy.nan |
|
1035 | 1036 | ypos[ic] = numpy.nan |
|
1036 | 1037 | |
|
1037 | 1038 | ic = ic + 1 |
|
1038 | 1039 | if (ic == len(indxs)) : |
|
1039 | 1040 | break |
|
1040 | 1041 | #print( xpos, ypos) |
|
1041 | 1042 | |
|
1042 | 1043 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() |
|
1043 | 1044 | #print indxs[0] |
|
1044 | 1045 | if len(indxs[0]) < 4 : |
|
1045 | 1046 | array[ii,:,:] = 0. |
|
1046 | 1047 | return |
|
1047 | 1048 | |
|
1048 | 1049 | xpos = xpos[indxs[0]] |
|
1049 | 1050 | ypos = ypos[indxs[0]] |
|
1050 | 1051 | for i in range(0,len(ypos)): |
|
1051 | 1052 | ypos[i]=int(ypos[i]) |
|
1052 | 1053 | junk = tmp |
|
1053 | 1054 | tmp = junk*0.0 |
|
1054 | 1055 | |
|
1055 | 1056 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] |
|
1056 | 1057 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1057 | 1058 | |
|
1058 | 1059 | #print array.shape |
|
1059 | 1060 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1060 | 1061 | #print tmp.shape |
|
1061 | 1062 | |
|
1062 | 1063 | # fig = plt.figure(figsize=(6,5)) |
|
1063 | 1064 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
1064 | 1065 | # ax = fig.add_axes([left, bottom, width, height]) |
|
1065 | 1066 | # x = range(num_prof) |
|
1066 | 1067 | # y = range(num_hei) |
|
1067 | 1068 | # cp = ax.contour(y,x,array[ii,:,:]) |
|
1068 | 1069 | # ax.clabel(cp, inline=True,fontsize=10) |
|
1069 | 1070 | # plt.show() |
|
1070 | 1071 | return array |
|
1071 | 1072 | |
|
1072 | 1073 | |
|
1073 | 1074 | class IntegrationFaradaySpectra(Operation): |
|
1074 | 1075 | |
|
1075 | 1076 | __profIndex = 0 |
|
1076 | 1077 | __withOverapping = False |
|
1077 | 1078 | |
|
1078 | 1079 | __byTime = False |
|
1079 | 1080 | __initime = None |
|
1080 | 1081 | __lastdatatime = None |
|
1081 | 1082 | __integrationtime = None |
|
1082 | 1083 | |
|
1083 | 1084 | __buffer_spc = None |
|
1084 | 1085 | __buffer_cspc = None |
|
1085 | 1086 | __buffer_dc = None |
|
1086 | 1087 | |
|
1087 | 1088 | __dataReady = False |
|
1088 | 1089 | |
|
1089 | 1090 | __timeInterval = None |
|
1090 | 1091 | |
|
1091 | 1092 | n = None |
|
1092 | 1093 | |
|
1093 | 1094 | def __init__(self): |
|
1094 | 1095 | |
|
1095 | 1096 | Operation.__init__(self) |
|
1096 | 1097 | |
|
1097 | 1098 | def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None): |
|
1098 | 1099 | """ |
|
1099 | 1100 | Set the parameters of the integration class. |
|
1100 | 1101 | |
|
1101 | 1102 | Inputs: |
|
1102 | 1103 | |
|
1103 | 1104 | n : Number of coherent integrations |
|
1104 | 1105 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1105 | 1106 | overlapping : |
|
1106 | 1107 | |
|
1107 | 1108 | """ |
|
1108 | 1109 | |
|
1109 | 1110 | self.__initime = None |
|
1110 | 1111 | self.__lastdatatime = 0 |
|
1111 | 1112 | |
|
1112 | 1113 | self.__buffer_spc = [] |
|
1113 | 1114 | self.__buffer_cspc = [] |
|
1114 | 1115 | self.__buffer_dc = 0 |
|
1115 | 1116 | |
|
1116 | 1117 | self.__profIndex = 0 |
|
1117 | 1118 | self.__dataReady = False |
|
1118 | 1119 | self.__byTime = False |
|
1119 | 1120 | |
|
1120 | 1121 | #self.ByLags = dataOut.ByLags ###REDEFINIR |
|
1121 | 1122 | self.ByLags = False |
|
1122 | 1123 | |
|
1123 | 1124 | if DPL != None: |
|
1124 | 1125 | self.DPL=DPL |
|
1125 | 1126 | else: |
|
1126 | 1127 | #self.DPL=dataOut.DPL ###REDEFINIR |
|
1127 | 1128 | self.DPL=0 |
|
1128 | 1129 | |
|
1129 | 1130 | if n is None and timeInterval is None: |
|
1130 | 1131 | raise ValueError("n or timeInterval should be specified ...") |
|
1131 | 1132 | |
|
1132 | 1133 | if n is not None: |
|
1133 | 1134 | self.n = int(n) |
|
1134 | 1135 | else: |
|
1135 | 1136 | |
|
1136 | 1137 | self.__integrationtime = int(timeInterval) |
|
1137 | 1138 | self.n = None |
|
1138 | 1139 | self.__byTime = True |
|
1139 | 1140 | |
|
1140 | 1141 | def putData(self, data_spc, data_cspc, data_dc): |
|
1141 | 1142 | """ |
|
1142 | 1143 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1143 | 1144 | |
|
1144 | 1145 | """ |
|
1145 | 1146 | |
|
1146 | 1147 | self.__buffer_spc.append(data_spc) |
|
1147 | 1148 | |
|
1148 | 1149 | if data_cspc is None: |
|
1149 | 1150 | self.__buffer_cspc = None |
|
1150 | 1151 | else: |
|
1151 | 1152 | self.__buffer_cspc.append(data_cspc) |
|
1152 | 1153 | |
|
1153 | 1154 | if data_dc is None: |
|
1154 | 1155 | self.__buffer_dc = None |
|
1155 | 1156 | else: |
|
1156 | 1157 | self.__buffer_dc += data_dc |
|
1157 | 1158 | |
|
1158 | 1159 | self.__profIndex += 1 |
|
1159 | 1160 | |
|
1160 | 1161 | return |
|
1161 | 1162 | |
|
1162 | 1163 | def hildebrand_sekhon_Integration(self,data,navg): |
|
1163 | 1164 | |
|
1164 | 1165 | sortdata = numpy.sort(data, axis=None) |
|
1165 | 1166 | sortID=data.argsort() |
|
1166 | 1167 | lenOfData = len(sortdata) |
|
1167 | 1168 | nums_min = lenOfData*0.75 |
|
1168 | 1169 | if nums_min <= 5: |
|
1169 | 1170 | nums_min = 5 |
|
1170 | 1171 | sump = 0. |
|
1171 | 1172 | sumq = 0. |
|
1172 | 1173 | j = 0 |
|
1173 | 1174 | cont = 1 |
|
1174 | 1175 | while((cont == 1)and(j < lenOfData)): |
|
1175 | 1176 | sump += sortdata[j] |
|
1176 | 1177 | sumq += sortdata[j]**2 |
|
1177 | 1178 | if j > nums_min: |
|
1178 | 1179 | rtest = float(j)/(j-1) + 1.0/navg |
|
1179 | 1180 | if ((sumq*j) > (rtest*sump**2)): |
|
1180 | 1181 | j = j - 1 |
|
1181 | 1182 | sump = sump - sortdata[j] |
|
1182 | 1183 | sumq = sumq - sortdata[j]**2 |
|
1183 | 1184 | cont = 0 |
|
1184 | 1185 | j += 1 |
|
1185 | 1186 | #lnoise = sump / j |
|
1186 | 1187 | |
|
1187 | 1188 | return j,sortID |
|
1188 | 1189 | |
|
1189 | 1190 | def pushData(self): |
|
1190 | 1191 | """ |
|
1191 | 1192 | Return the sum of the last profiles and the profiles used in the sum. |
|
1192 | 1193 | |
|
1193 | 1194 | Affected: |
|
1194 | 1195 | |
|
1195 | 1196 | self.__profileIndex |
|
1196 | 1197 | |
|
1197 | 1198 | """ |
|
1198 | 1199 | bufferH=None |
|
1199 | 1200 | buffer=None |
|
1200 | 1201 | buffer1=None |
|
1201 | 1202 | buffer_cspc=None |
|
1202 | 1203 | self.__buffer_spc=numpy.array(self.__buffer_spc) |
|
1203 | 1204 | self.__buffer_cspc=numpy.array(self.__buffer_cspc) |
|
1205 | ||
|
1204 | 1206 | freq_dc = int(self.__buffer_spc.shape[2] / 2) |
|
1205 | 1207 | #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) |
|
1206 | 1208 | for k in range(7,self.nHeights): |
|
1207 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) | |
|
1209 | try: | |
|
1210 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) | |
|
1211 | except Exception as e: | |
|
1212 | print(e) | |
|
1208 | 1213 | outliers_IDs_cspc=[] |
|
1209 | 1214 | cspc_outliers_exist=False |
|
1210 | 1215 | for i in range(self.nChannels):#dataOut.nChannels): |
|
1211 | 1216 | |
|
1212 | 1217 | buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) |
|
1213 | 1218 | indexes=[] |
|
1214 | 1219 | #sortIDs=[] |
|
1215 | 1220 | outliers_IDs=[] |
|
1216 | 1221 | |
|
1217 | 1222 | for j in range(self.nProfiles): |
|
1218 | 1223 | # if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 |
|
1219 | 1224 | # continue |
|
1220 | 1225 | # if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 |
|
1221 | 1226 | # continue |
|
1222 | 1227 | buffer=buffer1[:,j] |
|
1223 | 1228 | index,sortID=self.hildebrand_sekhon_Integration(buffer,1) |
|
1224 | 1229 | |
|
1225 | 1230 | indexes.append(index) |
|
1226 | 1231 | #sortIDs.append(sortID) |
|
1227 | 1232 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) |
|
1228 | 1233 | |
|
1229 | 1234 | outliers_IDs=numpy.array(outliers_IDs) |
|
1230 | 1235 | outliers_IDs=outliers_IDs.ravel() |
|
1231 | 1236 | outliers_IDs=numpy.unique(outliers_IDs) |
|
1232 | 1237 | outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) |
|
1233 | 1238 | indexes=numpy.array(indexes) |
|
1234 | 1239 | indexmin=numpy.min(indexes) |
|
1235 | 1240 | |
|
1236 | 1241 | if indexmin != buffer1.shape[0]: |
|
1237 | 1242 | cspc_outliers_exist=True |
|
1238 | 1243 | ###sortdata=numpy.sort(buffer1,axis=0) |
|
1239 | 1244 | ###avg2=numpy.mean(sortdata[:indexmin,:],axis=0) |
|
1240 | 1245 | lt=outliers_IDs |
|
1241 | 1246 | avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) |
|
1242 | 1247 | |
|
1243 | 1248 | for p in list(outliers_IDs): |
|
1244 | 1249 | buffer1[p,:]=avg |
|
1245 | 1250 | |
|
1246 | 1251 | self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) |
|
1247 | 1252 | ###cspc IDs |
|
1248 | 1253 | #indexmin_cspc+=indexmin_cspc |
|
1249 | 1254 | outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) |
|
1250 | 1255 | |
|
1251 | 1256 | #if not breakFlag: |
|
1252 | 1257 | outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) |
|
1253 | 1258 | if cspc_outliers_exist: |
|
1254 | 1259 | #sortdata=numpy.sort(buffer_cspc,axis=0) |
|
1255 | 1260 | #avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0) |
|
1256 | 1261 | lt=outliers_IDs_cspc |
|
1257 | 1262 | |
|
1258 | 1263 | avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) |
|
1259 | 1264 | for p in list(outliers_IDs_cspc): |
|
1260 | 1265 | buffer_cspc[p,:]=avg |
|
1261 | 1266 | |
|
1262 | 1267 | self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) |
|
1263 | 1268 | #else: |
|
1264 | 1269 | #break |
|
1265 | 1270 | |
|
1266 | 1271 | |
|
1267 | 1272 | |
|
1268 | 1273 | |
|
1269 | 1274 | buffer=None |
|
1270 | 1275 | bufferH=None |
|
1271 | 1276 | buffer1=None |
|
1272 | 1277 | buffer_cspc=None |
|
1273 | 1278 | |
|
1274 | 1279 | #print("cpsc",self.__buffer_cspc[:,0,0,0,0]) |
|
1275 | 1280 | #print(self.__profIndex) |
|
1276 | 1281 | #exit() |
|
1277 | 1282 | |
|
1278 | 1283 | buffer=None |
|
1279 | 1284 | #print(self.__buffer_spc[:,1,3,20,0]) |
|
1280 | 1285 | #print(self.__buffer_spc[:,1,5,37,0]) |
|
1281 | 1286 | data_spc = numpy.sum(self.__buffer_spc,axis=0) |
|
1282 | 1287 | data_cspc = numpy.sum(self.__buffer_cspc,axis=0) |
|
1283 | 1288 | |
|
1284 | 1289 | #print(numpy.shape(data_spc)) |
|
1285 | 1290 | #data_spc[1,4,20,0]=numpy.nan |
|
1286 | 1291 | |
|
1287 | 1292 | #data_cspc = self.__buffer_cspc |
|
1288 | 1293 | data_dc = self.__buffer_dc |
|
1289 | 1294 | n = self.__profIndex |
|
1290 | 1295 | |
|
1291 | 1296 | self.__buffer_spc = [] |
|
1292 | 1297 | self.__buffer_cspc = [] |
|
1293 | 1298 | self.__buffer_dc = 0 |
|
1294 | 1299 | self.__profIndex = 0 |
|
1295 | ||
|
1300 | #print("pushData Done") | |
|
1296 | 1301 | return data_spc, data_cspc, data_dc, n |
|
1297 | 1302 | |
|
1298 | 1303 | def byProfiles(self, *args): |
|
1299 | 1304 | |
|
1300 | 1305 | self.__dataReady = False |
|
1301 | 1306 | avgdata_spc = None |
|
1302 | 1307 | avgdata_cspc = None |
|
1303 | 1308 | avgdata_dc = None |
|
1304 | 1309 | |
|
1305 | 1310 | self.putData(*args) |
|
1306 | 1311 | |
|
1307 | 1312 | if self.__profIndex == self.n: |
|
1308 | 1313 | |
|
1309 | 1314 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1310 | 1315 | self.n = n |
|
1311 | 1316 | self.__dataReady = True |
|
1312 | 1317 | |
|
1313 | 1318 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1314 | 1319 | |
|
1315 | 1320 | def byTime(self, datatime, *args): |
|
1316 | 1321 | |
|
1317 | 1322 | self.__dataReady = False |
|
1318 | 1323 | avgdata_spc = None |
|
1319 | 1324 | avgdata_cspc = None |
|
1320 | 1325 | avgdata_dc = None |
|
1321 | 1326 | |
|
1322 | 1327 | self.putData(*args) |
|
1323 | 1328 | |
|
1324 | 1329 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1325 | 1330 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1326 | 1331 | self.n = n |
|
1327 | 1332 | self.__dataReady = True |
|
1328 | 1333 | |
|
1329 | 1334 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1330 | 1335 | |
|
1331 | 1336 | def integrate(self, datatime, *args): |
|
1332 | 1337 | |
|
1333 | 1338 | if self.__profIndex == 0: |
|
1334 | 1339 | self.__initime = datatime |
|
1335 | 1340 | |
|
1336 | 1341 | if self.__byTime: |
|
1337 | 1342 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1338 | 1343 | datatime, *args) |
|
1339 | 1344 | else: |
|
1340 | 1345 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1341 | 1346 | |
|
1342 | 1347 | if not self.__dataReady: |
|
1343 | 1348 | return None, None, None, None |
|
1344 | 1349 | |
|
1345 | 1350 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1346 | 1351 | |
|
1347 | 1352 | def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False): |
|
1348 | 1353 | if n == 1: |
|
1349 | 1354 | return dataOut |
|
1350 | 1355 | |
|
1351 | 1356 | dataOut.flagNoData = True |
|
1352 | 1357 | |
|
1353 | 1358 | if not self.isConfig: |
|
1354 | 1359 | self.setup(dataOut, n, timeInterval, overlapping,DPL ) |
|
1355 | 1360 | self.isConfig = True |
|
1356 | 1361 | |
|
1357 | 1362 | if not self.ByLags: |
|
1358 | 1363 | self.nProfiles=dataOut.nProfiles |
|
1359 | 1364 | self.nChannels=dataOut.nChannels |
|
1360 | 1365 | self.nHeights=dataOut.nHeights |
|
1361 | 1366 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1362 | 1367 | dataOut.data_spc, |
|
1363 | 1368 | dataOut.data_cspc, |
|
1364 | 1369 | dataOut.data_dc) |
|
1365 | 1370 | else: |
|
1366 | 1371 | self.nProfiles=dataOut.nProfiles |
|
1367 | 1372 | self.nChannels=dataOut.nChannels |
|
1368 | 1373 | self.nHeights=dataOut.nHeights |
|
1369 | 1374 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1370 | 1375 | dataOut.dataLag_spc, |
|
1371 | 1376 | dataOut.dataLag_cspc, |
|
1372 | 1377 | dataOut.dataLag_dc) |
|
1373 | 1378 | |
|
1374 | 1379 | if self.__dataReady: |
|
1375 | 1380 | |
|
1376 | 1381 | if not self.ByLags: |
|
1377 | ||
|
1378 |
dataOut.data_spc = |
|
|
1382 | if self.nChannels == 1: | |
|
1383 | dataOut.data_spc = avgdata_spc | |
|
1384 | else: | |
|
1385 | dataOut.data_spc = numpy.squeeze(avgdata_spc) | |
|
1379 | 1386 | dataOut.data_cspc = numpy.squeeze(avgdata_cspc) |
|
1380 | 1387 | dataOut.data_dc = avgdata_dc |
|
1388 | ||
|
1389 | ||
|
1381 | 1390 | else: |
|
1382 | 1391 | dataOut.dataLag_spc = avgdata_spc |
|
1383 | 1392 | dataOut.dataLag_cspc = avgdata_cspc |
|
1384 | 1393 | dataOut.dataLag_dc = avgdata_dc |
|
1385 | 1394 | |
|
1386 | 1395 | dataOut.data_spc=dataOut.dataLag_spc[:,:,:,dataOut.LagPlot] |
|
1387 | 1396 | dataOut.data_cspc=dataOut.dataLag_cspc[:,:,:,dataOut.LagPlot] |
|
1388 | 1397 | dataOut.data_dc=dataOut.dataLag_dc[:,:,dataOut.LagPlot] |
|
1389 | 1398 | |
|
1390 | 1399 | |
|
1391 | 1400 | dataOut.nIncohInt *= self.n |
|
1392 | 1401 | dataOut.utctime = avgdatatime |
|
1393 | 1402 | dataOut.flagNoData = False |
|
1394 | 1403 | |
|
1395 | 1404 | return dataOut |
|
1396 | 1405 | |
|
1397 | 1406 | class removeInterference(Operation): |
|
1398 | 1407 | |
|
1399 | 1408 | def removeInterference2(self): |
|
1400 | 1409 | |
|
1401 | 1410 | cspc = self.dataOut.data_cspc |
|
1402 | 1411 | spc = self.dataOut.data_spc |
|
1403 | 1412 | Heights = numpy.arange(cspc.shape[2]) |
|
1404 | 1413 | realCspc = numpy.abs(cspc) |
|
1405 | 1414 | |
|
1406 | 1415 | for i in range(cspc.shape[0]): |
|
1407 | 1416 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
1408 | 1417 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
1409 | 1418 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
1410 | 1419 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
1411 | 1420 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
1412 | 1421 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
1413 | 1422 | |
|
1414 | 1423 | |
|
1415 | 1424 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
1416 | 1425 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
1417 | 1426 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
1418 | 1427 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
1419 | 1428 | |
|
1420 | 1429 | self.dataOut.data_cspc = cspc |
|
1421 | 1430 | |
|
1422 | 1431 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
1423 | 1432 | |
|
1424 | 1433 | jspectra = self.dataOut.data_spc |
|
1425 | 1434 | jcspectra = self.dataOut.data_cspc |
|
1426 | 1435 | jnoise = self.dataOut.getNoise() |
|
1427 | 1436 | num_incoh = self.dataOut.nIncohInt |
|
1428 | 1437 | |
|
1429 | 1438 | num_channel = jspectra.shape[0] |
|
1430 | 1439 | num_prof = jspectra.shape[1] |
|
1431 | 1440 | num_hei = jspectra.shape[2] |
|
1432 | 1441 | |
|
1433 | 1442 | # hei_interf |
|
1434 | 1443 | if hei_interf is None: |
|
1435 | 1444 | count_hei = int(num_hei / 2) |
|
1436 | 1445 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
1437 | 1446 | hei_interf = numpy.asarray(hei_interf)[0] |
|
1438 | 1447 | # nhei_interf |
|
1439 | 1448 | if (nhei_interf == None): |
|
1440 | 1449 | nhei_interf = 5 |
|
1441 | 1450 | if (nhei_interf < 1): |
|
1442 | 1451 | nhei_interf = 1 |
|
1443 | 1452 | if (nhei_interf > count_hei): |
|
1444 | 1453 | nhei_interf = count_hei |
|
1445 | 1454 | if (offhei_interf == None): |
|
1446 | 1455 | offhei_interf = 0 |
|
1447 | 1456 | |
|
1448 | 1457 | ind_hei = list(range(num_hei)) |
|
1449 | 1458 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
1450 | 1459 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
1451 | 1460 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
1452 | 1461 | num_mask_prof = mask_prof.size |
|
1453 | 1462 | comp_mask_prof = [0, num_prof / 2] |
|
1454 | 1463 | |
|
1455 | 1464 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
1456 | 1465 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
1457 | 1466 | jnoise = numpy.nan |
|
1458 | 1467 | noise_exist = jnoise[0] < numpy.Inf |
|
1459 | 1468 | |
|
1460 | 1469 | # Subrutina de Remocion de la Interferencia |
|
1461 | 1470 | for ich in range(num_channel): |
|
1462 | 1471 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1463 | 1472 | power = jspectra[ich, mask_prof, :] |
|
1464 | 1473 | power = power[:, hei_interf] |
|
1465 | 1474 | power = power.sum(axis=0) |
|
1466 | 1475 | psort = power.ravel().argsort() |
|
1467 | 1476 | |
|
1468 | 1477 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
1469 | 1478 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
1470 | 1479 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1471 | 1480 | |
|
1472 | 1481 | if noise_exist: |
|
1473 | 1482 | # tmp_noise = jnoise[ich] / num_prof |
|
1474 | 1483 | tmp_noise = jnoise[ich] |
|
1475 | 1484 | junkspc_interf = junkspc_interf - tmp_noise |
|
1476 | 1485 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
1477 | 1486 | |
|
1478 | 1487 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
1479 | 1488 | jspc_interf = jspc_interf.transpose() |
|
1480 | 1489 | # Calculando el espectro de interferencia promedio |
|
1481 | 1490 | noiseid = numpy.where( |
|
1482 | 1491 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
1483 | 1492 | noiseid = noiseid[0] |
|
1484 | 1493 | cnoiseid = noiseid.size |
|
1485 | 1494 | interfid = numpy.where( |
|
1486 | 1495 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
1487 | 1496 | interfid = interfid[0] |
|
1488 | 1497 | cinterfid = interfid.size |
|
1489 | 1498 | |
|
1490 | 1499 | if (cnoiseid > 0): |
|
1491 | 1500 | jspc_interf[noiseid] = 0 |
|
1492 | 1501 | |
|
1493 | 1502 | # Expandiendo los perfiles a limpiar |
|
1494 | 1503 | if (cinterfid > 0): |
|
1495 | 1504 | new_interfid = ( |
|
1496 | 1505 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
1497 | 1506 | new_interfid = numpy.asarray(new_interfid) |
|
1498 | 1507 | new_interfid = {x for x in new_interfid} |
|
1499 | 1508 | new_interfid = numpy.array(list(new_interfid)) |
|
1500 | 1509 | new_cinterfid = new_interfid.size |
|
1501 | 1510 | else: |
|
1502 | 1511 | new_cinterfid = 0 |
|
1503 | 1512 | |
|
1504 | 1513 | for ip in range(new_cinterfid): |
|
1505 | 1514 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
1506 | 1515 | jspc_interf[new_interfid[ip] |
|
1507 | 1516 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
1508 | 1517 | |
|
1509 | 1518 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
1510 | 1519 | ind_hei] - jspc_interf # Corregir indices |
|
1511 | 1520 | |
|
1512 | 1521 | # Removiendo la interferencia del punto de mayor interferencia |
|
1513 | 1522 | ListAux = jspc_interf[mask_prof].tolist() |
|
1514 | 1523 | maxid = ListAux.index(max(ListAux)) |
|
1515 | 1524 | |
|
1516 | 1525 | if cinterfid > 0: |
|
1517 | 1526 | for ip in range(cinterfid * (interf == 2) - 1): |
|
1518 | 1527 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
1519 | 1528 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1520 | 1529 | cind = len(ind) |
|
1521 | 1530 | |
|
1522 | 1531 | if (cind > 0): |
|
1523 | 1532 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
1524 | 1533 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
1525 | 1534 | numpy.sqrt(num_incoh)) |
|
1526 | 1535 | |
|
1527 | 1536 | ind = numpy.array([-2, -1, 1, 2]) |
|
1528 | 1537 | xx = numpy.zeros([4, 4]) |
|
1529 | 1538 | |
|
1530 | 1539 | for id1 in range(4): |
|
1531 | 1540 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1532 | 1541 | |
|
1533 | 1542 | xx_inv = numpy.linalg.inv(xx) |
|
1534 | 1543 | xx = xx_inv[:, 0] |
|
1535 | 1544 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1536 | 1545 | yy = jspectra[ich, mask_prof[ind], :] |
|
1537 | 1546 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
1538 | 1547 | yy.transpose(), xx) |
|
1539 | 1548 | |
|
1540 | 1549 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
1541 | 1550 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1542 | 1551 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
1543 | 1552 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
1544 | 1553 | |
|
1545 | 1554 | # Remocion de Interferencia en el Cross Spectra |
|
1546 | 1555 | if jcspectra is None: |
|
1547 | 1556 | return jspectra, jcspectra |
|
1548 | 1557 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
1549 | 1558 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
1550 | 1559 | |
|
1551 | 1560 | for ip in range(num_pairs): |
|
1552 | 1561 | |
|
1553 | 1562 | #------------------------------------------- |
|
1554 | 1563 | |
|
1555 | 1564 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
1556 | 1565 | cspower = cspower[:, hei_interf] |
|
1557 | 1566 | cspower = cspower.sum(axis=0) |
|
1558 | 1567 | |
|
1559 | 1568 | cspsort = cspower.ravel().argsort() |
|
1560 | 1569 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
1561 | 1570 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1562 | 1571 | junkcspc_interf = junkcspc_interf.transpose() |
|
1563 | 1572 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
1564 | 1573 | |
|
1565 | 1574 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1566 | 1575 | |
|
1567 | 1576 | median_real = int(numpy.median(numpy.real( |
|
1568 | 1577 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1569 | 1578 | median_imag = int(numpy.median(numpy.imag( |
|
1570 | 1579 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1571 | 1580 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
1572 | 1581 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
1573 | 1582 | median_real, median_imag) |
|
1574 | 1583 | |
|
1575 | 1584 | for iprof in range(num_prof): |
|
1576 | 1585 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
1577 | 1586 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
1578 | 1587 | |
|
1579 | 1588 | # Removiendo la Interferencia |
|
1580 | 1589 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
1581 | 1590 | :, ind_hei] - jcspc_interf |
|
1582 | 1591 | |
|
1583 | 1592 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1584 | 1593 | maxid = ListAux.index(max(ListAux)) |
|
1585 | 1594 | |
|
1586 | 1595 | ind = numpy.array([-2, -1, 1, 2]) |
|
1587 | 1596 | xx = numpy.zeros([4, 4]) |
|
1588 | 1597 | |
|
1589 | 1598 | for id1 in range(4): |
|
1590 | 1599 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1591 | 1600 | |
|
1592 | 1601 | xx_inv = numpy.linalg.inv(xx) |
|
1593 | 1602 | xx = xx_inv[:, 0] |
|
1594 | 1603 | |
|
1595 | 1604 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1596 | 1605 | yy = jcspectra[ip, mask_prof[ind], :] |
|
1597 | 1606 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1598 | 1607 | |
|
1599 | 1608 | # Guardar Resultados |
|
1600 | 1609 | self.dataOut.data_spc = jspectra |
|
1601 | 1610 | self.dataOut.data_cspc = jcspectra |
|
1602 | 1611 | |
|
1603 | 1612 | return 1 |
|
1604 | 1613 | |
|
1605 | 1614 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): |
|
1606 | 1615 | |
|
1607 | 1616 | self.dataOut = dataOut |
|
1608 | 1617 | |
|
1609 | 1618 | if mode == 1: |
|
1610 | 1619 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
1611 | 1620 | elif mode == 2: |
|
1612 | 1621 | self.removeInterference2() |
|
1613 | 1622 | |
|
1614 | 1623 | return self.dataOut |
|
1615 | 1624 | |
|
1616 | 1625 | |
|
1617 | 1626 | class IncohInt(Operation): |
|
1618 | 1627 | |
|
1619 | 1628 | __profIndex = 0 |
|
1620 | 1629 | __withOverapping = False |
|
1621 | 1630 | |
|
1622 | 1631 | __byTime = False |
|
1623 | 1632 | __initime = None |
|
1624 | 1633 | __lastdatatime = None |
|
1625 | 1634 | __integrationtime = None |
|
1626 | 1635 | |
|
1627 | 1636 | __buffer_spc = None |
|
1628 | 1637 | __buffer_cspc = None |
|
1629 | 1638 | __buffer_dc = None |
|
1630 | 1639 | |
|
1631 | 1640 | __dataReady = False |
|
1632 | 1641 | |
|
1633 | 1642 | __timeInterval = None |
|
1634 | 1643 | |
|
1635 | 1644 | n = None |
|
1636 | 1645 | |
|
1637 | 1646 | def __init__(self): |
|
1638 | 1647 | |
|
1639 | 1648 | Operation.__init__(self) |
|
1640 | 1649 | |
|
1641 | 1650 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1642 | 1651 | """ |
|
1643 | 1652 | Set the parameters of the integration class. |
|
1644 | 1653 | |
|
1645 | 1654 | Inputs: |
|
1646 | 1655 | |
|
1647 | 1656 | n : Number of coherent integrations |
|
1648 | 1657 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1649 | 1658 | overlapping : |
|
1650 | 1659 | |
|
1651 | 1660 | """ |
|
1652 | 1661 | |
|
1653 | 1662 | self.__initime = None |
|
1654 | 1663 | self.__lastdatatime = 0 |
|
1655 | 1664 | |
|
1656 | 1665 | self.__buffer_spc = 0 |
|
1657 | 1666 | self.__buffer_cspc = 0 |
|
1658 | 1667 | self.__buffer_dc = 0 |
|
1659 | 1668 | |
|
1660 | 1669 | self.__profIndex = 0 |
|
1661 | 1670 | self.__dataReady = False |
|
1662 | 1671 | self.__byTime = False |
|
1663 | 1672 | |
|
1664 | 1673 | if n is None and timeInterval is None: |
|
1665 | 1674 | raise ValueError("n or timeInterval should be specified ...") |
|
1666 | 1675 | |
|
1667 | 1676 | if n is not None: |
|
1668 | 1677 | self.n = int(n) |
|
1669 | 1678 | else: |
|
1670 | 1679 | |
|
1671 | 1680 | self.__integrationtime = int(timeInterval) |
|
1672 | 1681 | self.n = None |
|
1673 | 1682 | self.__byTime = True |
|
1674 | 1683 | |
|
1675 | 1684 | def putData(self, data_spc, data_cspc, data_dc): |
|
1676 | 1685 | """ |
|
1677 | 1686 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1678 | 1687 | |
|
1679 | 1688 | """ |
|
1680 | 1689 | |
|
1681 | 1690 | self.__buffer_spc += data_spc |
|
1682 | 1691 | |
|
1683 | 1692 | if data_cspc is None: |
|
1684 | 1693 | self.__buffer_cspc = None |
|
1685 | 1694 | else: |
|
1686 | 1695 | self.__buffer_cspc += data_cspc |
|
1687 | 1696 | |
|
1688 | 1697 | if data_dc is None: |
|
1689 | 1698 | self.__buffer_dc = None |
|
1690 | 1699 | else: |
|
1691 | 1700 | self.__buffer_dc += data_dc |
|
1692 | 1701 | |
|
1693 | 1702 | self.__profIndex += 1 |
|
1694 | 1703 | |
|
1695 | 1704 | return |
|
1696 | 1705 | |
|
1697 | 1706 | def pushData(self): |
|
1698 | 1707 | """ |
|
1699 | 1708 | Return the sum of the last profiles and the profiles used in the sum. |
|
1700 | 1709 | |
|
1701 | 1710 | Affected: |
|
1702 | 1711 | |
|
1703 | 1712 | self.__profileIndex |
|
1704 | 1713 | |
|
1705 | 1714 | """ |
|
1706 | 1715 | |
|
1707 | 1716 | data_spc = self.__buffer_spc |
|
1708 | 1717 | data_cspc = self.__buffer_cspc |
|
1709 | 1718 | data_dc = self.__buffer_dc |
|
1710 | 1719 | n = self.__profIndex |
|
1711 | 1720 | |
|
1712 | 1721 | self.__buffer_spc = 0 |
|
1713 | 1722 | self.__buffer_cspc = 0 |
|
1714 | 1723 | self.__buffer_dc = 0 |
|
1715 | 1724 | self.__profIndex = 0 |
|
1716 | 1725 | |
|
1717 | 1726 | return data_spc, data_cspc, data_dc, n |
|
1718 | 1727 | |
|
1719 | 1728 | def byProfiles(self, *args): |
|
1720 | 1729 | |
|
1721 | 1730 | self.__dataReady = False |
|
1722 | 1731 | avgdata_spc = None |
|
1723 | 1732 | avgdata_cspc = None |
|
1724 | 1733 | avgdata_dc = None |
|
1725 | 1734 | |
|
1726 | 1735 | self.putData(*args) |
|
1727 | 1736 | |
|
1728 | 1737 | if self.__profIndex == self.n: |
|
1729 | 1738 | |
|
1730 | 1739 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1731 | 1740 | self.n = n |
|
1732 | 1741 | self.__dataReady = True |
|
1733 | 1742 | |
|
1734 | 1743 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1735 | 1744 | |
|
1736 | 1745 | def byTime(self, datatime, *args): |
|
1737 | 1746 | |
|
1738 | 1747 | self.__dataReady = False |
|
1739 | 1748 | avgdata_spc = None |
|
1740 | 1749 | avgdata_cspc = None |
|
1741 | 1750 | avgdata_dc = None |
|
1742 | 1751 | |
|
1743 | 1752 | self.putData(*args) |
|
1744 | 1753 | |
|
1745 | 1754 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1746 | 1755 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1747 | 1756 | self.n = n |
|
1748 | 1757 | self.__dataReady = True |
|
1749 | 1758 | |
|
1750 | 1759 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1751 | 1760 | |
|
1752 | 1761 | def integrate(self, datatime, *args): |
|
1753 | 1762 | |
|
1754 | 1763 | if self.__profIndex == 0: |
|
1755 | 1764 | self.__initime = datatime |
|
1756 | 1765 | |
|
1757 | 1766 | if self.__byTime: |
|
1758 | 1767 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1759 | 1768 | datatime, *args) |
|
1760 | 1769 | else: |
|
1761 | 1770 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1762 | 1771 | |
|
1763 | 1772 | if not self.__dataReady: |
|
1764 | 1773 | return None, None, None, None |
|
1765 | 1774 | |
|
1766 | 1775 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1767 | 1776 | |
|
1768 | 1777 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1769 | 1778 | if n == 1: |
|
1770 | 1779 | return dataOut |
|
1771 | 1780 | |
|
1772 | 1781 | dataOut.flagNoData = True |
|
1773 | 1782 | |
|
1774 | 1783 | if not self.isConfig: |
|
1775 | 1784 | self.setup(n, timeInterval, overlapping) |
|
1776 | 1785 | self.isConfig = True |
|
1777 | 1786 | |
|
1778 | 1787 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1779 | 1788 | dataOut.data_spc, |
|
1780 | 1789 | dataOut.data_cspc, |
|
1781 | 1790 | dataOut.data_dc) |
|
1782 | 1791 | |
|
1783 | 1792 | if self.__dataReady: |
|
1784 | 1793 | |
|
1785 | 1794 | dataOut.data_spc = avgdata_spc |
|
1786 | 1795 | dataOut.data_cspc = avgdata_cspc |
|
1787 | 1796 | dataOut.data_dc = avgdata_dc |
|
1788 | 1797 | dataOut.nIncohInt *= self.n |
|
1789 | 1798 | dataOut.utctime = avgdatatime |
|
1790 | 1799 | dataOut.flagNoData = False |
|
1791 | 1800 | |
|
1792 | 1801 | return dataOut |
|
1793 | 1802 | |
|
1794 | 1803 | class dopplerFlip(Operation): |
|
1795 | 1804 | |
|
1796 | 1805 | def run(self, dataOut): |
|
1797 | 1806 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1798 | 1807 | self.dataOut = dataOut |
|
1799 | 1808 | # JULIA-oblicua, indice 2 |
|
1800 | 1809 | # arreglo 2: (num_profiles, num_heights) |
|
1801 | 1810 | jspectra = self.dataOut.data_spc[2] |
|
1802 | 1811 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
1803 | 1812 | num_profiles = jspectra.shape[0] |
|
1804 | 1813 | freq_dc = int(num_profiles / 2) |
|
1805 | 1814 | # Flip con for |
|
1806 | 1815 | for j in range(num_profiles): |
|
1807 | 1816 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1808 | 1817 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1809 | 1818 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1810 | 1819 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1811 | 1820 | # canal modificado es re-escrito en el arreglo de canales |
|
1812 | 1821 | self.dataOut.data_spc[2] = jspectra_tmp |
|
1813 | 1822 | |
|
1814 | 1823 | return self.dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now