@@ -1,2160 +1,2161 | |||||
1 | import os |
|
1 | import os | |
2 | import datetime |
|
2 | import datetime | |
3 | import numpy |
|
3 | import numpy | |
4 | import inspect |
|
4 | import inspect | |
5 | from figure import Figure, isRealtime, isTimeInHourRange |
|
5 | from figure import Figure, isRealtime, isTimeInHourRange | |
6 | from plotting_codes import * |
|
6 | from plotting_codes import * | |
7 |
|
7 | |||
8 |
|
8 | |||
9 | class SpcParamPlot(Figure): |
|
9 | class SpcParamPlot(Figure): | |
10 |
|
10 | |||
11 | isConfig = None |
|
11 | isConfig = None | |
12 | __nsubplots = None |
|
12 | __nsubplots = None | |
13 |
|
13 | |||
14 | WIDTHPROF = None |
|
14 | WIDTHPROF = None | |
15 | HEIGHTPROF = None |
|
15 | HEIGHTPROF = None | |
16 | PREFIX = 'SpcParam' |
|
16 | PREFIX = 'SpcParam' | |
17 |
|
17 | |||
18 | def __init__(self, **kwargs): |
|
18 | def __init__(self, **kwargs): | |
19 | Figure.__init__(self, **kwargs) |
|
19 | Figure.__init__(self, **kwargs) | |
20 | self.isConfig = False |
|
20 | self.isConfig = False | |
21 | self.__nsubplots = 1 |
|
21 | self.__nsubplots = 1 | |
22 |
|
22 | |||
23 | self.WIDTH = 250 |
|
23 | self.WIDTH = 250 | |
24 | self.HEIGHT = 250 |
|
24 | self.HEIGHT = 250 | |
25 | self.WIDTHPROF = 120 |
|
25 | self.WIDTHPROF = 120 | |
26 | self.HEIGHTPROF = 0 |
|
26 | self.HEIGHTPROF = 0 | |
27 | self.counter_imagwr = 0 |
|
27 | self.counter_imagwr = 0 | |
28 |
|
28 | |||
29 | self.PLOT_CODE = SPEC_CODE |
|
29 | self.PLOT_CODE = SPEC_CODE | |
30 |
|
30 | |||
31 | self.FTP_WEI = None |
|
31 | self.FTP_WEI = None | |
32 | self.EXP_CODE = None |
|
32 | self.EXP_CODE = None | |
33 | self.SUB_EXP_CODE = None |
|
33 | self.SUB_EXP_CODE = None | |
34 | self.PLOT_POS = None |
|
34 | self.PLOT_POS = None | |
35 |
|
35 | |||
36 | self.__xfilter_ena = False |
|
36 | self.__xfilter_ena = False | |
37 | self.__yfilter_ena = False |
|
37 | self.__yfilter_ena = False | |
38 |
|
38 | |||
39 | def getSubplots(self): |
|
39 | def getSubplots(self): | |
40 |
|
40 | |||
41 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
41 | ncol = int(numpy.sqrt(self.nplots)+0.9) | |
42 | nrow = int(self.nplots*1./ncol + 0.9) |
|
42 | nrow = int(self.nplots*1./ncol + 0.9) | |
43 |
|
43 | |||
44 | return nrow, ncol |
|
44 | return nrow, ncol | |
45 |
|
45 | |||
46 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
46 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
47 |
|
47 | |||
48 | self.__showprofile = showprofile |
|
48 | self.__showprofile = showprofile | |
49 | self.nplots = nplots |
|
49 | self.nplots = nplots | |
50 |
|
50 | |||
51 | ncolspan = 1 |
|
51 | ncolspan = 1 | |
52 | colspan = 1 |
|
52 | colspan = 1 | |
53 | if showprofile: |
|
53 | if showprofile: | |
54 | ncolspan = 3 |
|
54 | ncolspan = 3 | |
55 | colspan = 2 |
|
55 | colspan = 2 | |
56 | self.__nsubplots = 2 |
|
56 | self.__nsubplots = 2 | |
57 |
|
57 | |||
58 | self.createFigure(id = id, |
|
58 | self.createFigure(id = id, | |
59 | wintitle = wintitle, |
|
59 | wintitle = wintitle, | |
60 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
60 | widthplot = self.WIDTH + self.WIDTHPROF, | |
61 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
61 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
62 | show=show) |
|
62 | show=show) | |
63 |
|
63 | |||
64 | nrow, ncol = self.getSubplots() |
|
64 | nrow, ncol = self.getSubplots() | |
65 |
|
65 | |||
66 | counter = 0 |
|
66 | counter = 0 | |
67 | for y in range(nrow): |
|
67 | for y in range(nrow): | |
68 | for x in range(ncol): |
|
68 | for x in range(ncol): | |
69 |
|
69 | |||
70 | if counter >= self.nplots: |
|
70 | if counter >= self.nplots: | |
71 | break |
|
71 | break | |
72 |
|
72 | |||
73 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
73 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
74 |
|
74 | |||
75 | if showprofile: |
|
75 | if showprofile: | |
76 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
76 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
77 |
|
77 | |||
78 | counter += 1 |
|
78 | counter += 1 | |
79 |
|
79 | |||
80 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
80 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, | |
81 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
81 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
82 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
82 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
83 | server=None, folder=None, username=None, password=None, |
|
83 | server=None, folder=None, username=None, password=None, | |
84 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
84 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, | |
85 | xaxis="frequency", colormap='jet', normFactor=None , Selector = 0): |
|
85 | xaxis="frequency", colormap='jet', normFactor=None , Selector = 0): | |
86 |
|
86 | |||
87 | """ |
|
87 | """ | |
88 |
|
88 | |||
89 | Input: |
|
89 | Input: | |
90 | dataOut : |
|
90 | dataOut : | |
91 | id : |
|
91 | id : | |
92 | wintitle : |
|
92 | wintitle : | |
93 | channelList : |
|
93 | channelList : | |
94 | showProfile : |
|
94 | showProfile : | |
95 | xmin : None, |
|
95 | xmin : None, | |
96 | xmax : None, |
|
96 | xmax : None, | |
97 | ymin : None, |
|
97 | ymin : None, | |
98 | ymax : None, |
|
98 | ymax : None, | |
99 | zmin : None, |
|
99 | zmin : None, | |
100 | zmax : None |
|
100 | zmax : None | |
101 | """ |
|
101 | """ | |
102 | if realtime: |
|
102 | if realtime: | |
103 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
103 | if not(isRealtime(utcdatatime = dataOut.utctime)): | |
104 | print 'Skipping this plot function' |
|
104 | print 'Skipping this plot function' | |
105 | return |
|
105 | return | |
106 |
|
106 | |||
107 | if channelList == None: |
|
107 | if channelList == None: | |
108 | channelIndexList = dataOut.channelIndexList |
|
108 | channelIndexList = dataOut.channelIndexList | |
109 | else: |
|
109 | else: | |
110 | channelIndexList = [] |
|
110 | channelIndexList = [] | |
111 | for channel in channelList: |
|
111 | for channel in channelList: | |
112 | if channel not in dataOut.channelList: |
|
112 | if channel not in dataOut.channelList: | |
113 | raise ValueError, "Channel %d is not in dataOut.channelList" %channel |
|
113 | raise ValueError, "Channel %d is not in dataOut.channelList" %channel | |
114 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
114 | channelIndexList.append(dataOut.channelList.index(channel)) | |
115 |
|
115 | |||
116 | # if normFactor is None: |
|
116 | # if normFactor is None: | |
117 | # factor = dataOut.normFactor |
|
117 | # factor = dataOut.normFactor | |
118 | # else: |
|
118 | # else: | |
119 | # factor = normFactor |
|
119 | # factor = normFactor | |
120 | if xaxis == "frequency": |
|
120 | if xaxis == "frequency": | |
121 | x = dataOut.spcparam_range[0] |
|
121 | x = dataOut.spcparam_range[0] | |
122 | xlabel = "Frequency (kHz)" |
|
122 | xlabel = "Frequency (kHz)" | |
123 |
|
123 | |||
124 | elif xaxis == "time": |
|
124 | elif xaxis == "time": | |
125 | x = dataOut.spcparam_range[1] |
|
125 | x = dataOut.spcparam_range[1] | |
126 | xlabel = "Time (ms)" |
|
126 | xlabel = "Time (ms)" | |
127 |
|
127 | |||
128 | else: |
|
128 | else: | |
129 | x = dataOut.spcparam_range[2] |
|
129 | x = dataOut.spcparam_range[2] | |
130 | xlabel = "Velocity (m/s)" |
|
130 | xlabel = "Velocity (m/s)" | |
|
131 | print "Vmax=",x[-1] | |||
131 |
|
132 | |||
132 | ylabel = "Range (Km)" |
|
133 | ylabel = "Range (Km)" | |
133 |
|
134 | |||
134 | y = dataOut.getHeiRange() |
|
135 | y = dataOut.getHeiRange() | |
135 |
|
136 | |||
136 | z = dataOut.SPCparam[Selector] #GauSelector] #dataOut.data_spc/factor |
|
137 | z = dataOut.SPCparam[Selector] /1966080.0#/ dataOut.normFactor#GauSelector] #dataOut.data_spc/factor | |
137 | #print 'GausSPC', z[0,32,10:40] |
|
138 | #print 'GausSPC', z[0,32,10:40] | |
138 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
139 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
139 | zdB = 10*numpy.log10(z) |
|
140 | zdB = 10*numpy.log10(z) | |
140 |
|
141 | |||
141 | avg = numpy.average(z, axis=1) |
|
142 | avg = numpy.average(z, axis=1) | |
142 | avgdB = 10*numpy.log10(avg) |
|
143 | avgdB = 10*numpy.log10(avg) | |
143 |
|
144 | |||
144 | noise = dataOut.spc_noise |
|
145 | noise = dataOut.spc_noise | |
145 | noisedB = 10*numpy.log10(noise) |
|
146 | noisedB = 10*numpy.log10(noise) | |
146 |
|
147 | |||
147 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
148 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
148 | title = wintitle + " Spectra" |
|
149 | title = wintitle + " Spectra" | |
149 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
150 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
150 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
151 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
151 |
|
152 | |||
152 | if not self.isConfig: |
|
153 | if not self.isConfig: | |
153 |
|
154 | |||
154 | nplots = len(channelIndexList) |
|
155 | nplots = len(channelIndexList) | |
155 |
|
156 | |||
156 | self.setup(id=id, |
|
157 | self.setup(id=id, | |
157 | nplots=nplots, |
|
158 | nplots=nplots, | |
158 | wintitle=wintitle, |
|
159 | wintitle=wintitle, | |
159 | showprofile=showprofile, |
|
160 | showprofile=showprofile, | |
160 | show=show) |
|
161 | show=show) | |
161 |
|
162 | |||
162 | if xmin == None: xmin = numpy.nanmin(x) |
|
163 | if xmin == None: xmin = numpy.nanmin(x) | |
163 | if xmax == None: xmax = numpy.nanmax(x) |
|
164 | if xmax == None: xmax = numpy.nanmax(x) | |
164 | if ymin == None: ymin = numpy.nanmin(y) |
|
165 | if ymin == None: ymin = numpy.nanmin(y) | |
165 | if ymax == None: ymax = numpy.nanmax(y) |
|
166 | if ymax == None: ymax = numpy.nanmax(y) | |
166 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
167 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 | |
167 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
168 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 | |
168 |
|
169 | |||
169 | self.FTP_WEI = ftp_wei |
|
170 | self.FTP_WEI = ftp_wei | |
170 | self.EXP_CODE = exp_code |
|
171 | self.EXP_CODE = exp_code | |
171 | self.SUB_EXP_CODE = sub_exp_code |
|
172 | self.SUB_EXP_CODE = sub_exp_code | |
172 | self.PLOT_POS = plot_pos |
|
173 | self.PLOT_POS = plot_pos | |
173 |
|
174 | |||
174 | self.isConfig = True |
|
175 | self.isConfig = True | |
175 |
|
176 | |||
176 | self.setWinTitle(title) |
|
177 | self.setWinTitle(title) | |
177 |
|
178 | |||
178 | for i in range(self.nplots): |
|
179 | for i in range(self.nplots): | |
179 | index = channelIndexList[i] |
|
180 | index = channelIndexList[i] | |
180 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
181 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
181 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) |
|
182 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) | |
182 | if len(dataOut.beam.codeList) != 0: |
|
183 | if len(dataOut.beam.codeList) != 0: | |
183 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) |
|
184 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) | |
184 |
|
185 | |||
185 | axes = self.axesList[i*self.__nsubplots] |
|
186 | axes = self.axesList[i*self.__nsubplots] | |
186 | axes.pcolor(x, y, zdB[index,:,:], |
|
187 | axes.pcolor(x, y, zdB[index,:,:], | |
187 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
188 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
188 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, |
|
189 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, | |
189 | ticksize=9, cblabel='') |
|
190 | ticksize=9, cblabel='') | |
190 |
|
191 | |||
191 | if self.__showprofile: |
|
192 | if self.__showprofile: | |
192 | axes = self.axesList[i*self.__nsubplots +1] |
|
193 | axes = self.axesList[i*self.__nsubplots +1] | |
193 | axes.pline(avgdB[index,:], y, |
|
194 | axes.pline(avgdB[index,:], y, | |
194 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
195 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
195 | xlabel='dB', ylabel='', title='', |
|
196 | xlabel='dB', ylabel='', title='', | |
196 | ytick_visible=False, |
|
197 | ytick_visible=False, | |
197 | grid='x') |
|
198 | grid='x') | |
198 |
|
199 | |||
199 | noiseline = numpy.repeat(noisedB[index], len(y)) |
|
200 | noiseline = numpy.repeat(noisedB[index], len(y)) | |
200 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
201 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) | |
201 |
|
202 | |||
202 | self.draw() |
|
203 | self.draw() | |
203 |
|
204 | |||
204 | if figfile == None: |
|
205 | if figfile == None: | |
205 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
206 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
206 | name = str_datetime |
|
207 | name = str_datetime | |
207 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
208 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
208 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
209 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) | |
209 | figfile = self.getFilename(name) |
|
210 | figfile = self.getFilename(name) | |
210 |
|
211 | |||
211 | self.save(figpath=figpath, |
|
212 | self.save(figpath=figpath, | |
212 | figfile=figfile, |
|
213 | figfile=figfile, | |
213 | save=save, |
|
214 | save=save, | |
214 | ftp=ftp, |
|
215 | ftp=ftp, | |
215 | wr_period=wr_period, |
|
216 | wr_period=wr_period, | |
216 | thisDatetime=thisDatetime) |
|
217 | thisDatetime=thisDatetime) | |
217 |
|
218 | |||
218 |
|
219 | |||
219 |
|
220 | |||
220 | class MomentsPlot(Figure): |
|
221 | class MomentsPlot(Figure): | |
221 |
|
222 | |||
222 | isConfig = None |
|
223 | isConfig = None | |
223 | __nsubplots = None |
|
224 | __nsubplots = None | |
224 |
|
225 | |||
225 | WIDTHPROF = None |
|
226 | WIDTHPROF = None | |
226 | HEIGHTPROF = None |
|
227 | HEIGHTPROF = None | |
227 | PREFIX = 'prm' |
|
228 | PREFIX = 'prm' | |
228 |
|
229 | |||
229 | def __init__(self, **kwargs): |
|
230 | def __init__(self, **kwargs): | |
230 | Figure.__init__(self, **kwargs) |
|
231 | Figure.__init__(self, **kwargs) | |
231 | self.isConfig = False |
|
232 | self.isConfig = False | |
232 | self.__nsubplots = 1 |
|
233 | self.__nsubplots = 1 | |
233 |
|
234 | |||
234 | self.WIDTH = 280 |
|
235 | self.WIDTH = 280 | |
235 | self.HEIGHT = 250 |
|
236 | self.HEIGHT = 250 | |
236 | self.WIDTHPROF = 120 |
|
237 | self.WIDTHPROF = 120 | |
237 | self.HEIGHTPROF = 0 |
|
238 | self.HEIGHTPROF = 0 | |
238 | self.counter_imagwr = 0 |
|
239 | self.counter_imagwr = 0 | |
239 |
|
240 | |||
240 | self.PLOT_CODE = MOMENTS_CODE |
|
241 | self.PLOT_CODE = MOMENTS_CODE | |
241 |
|
242 | |||
242 | self.FTP_WEI = None |
|
243 | self.FTP_WEI = None | |
243 | self.EXP_CODE = None |
|
244 | self.EXP_CODE = None | |
244 | self.SUB_EXP_CODE = None |
|
245 | self.SUB_EXP_CODE = None | |
245 | self.PLOT_POS = None |
|
246 | self.PLOT_POS = None | |
246 |
|
247 | |||
247 | def getSubplots(self): |
|
248 | def getSubplots(self): | |
248 |
|
249 | |||
249 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
250 | ncol = int(numpy.sqrt(self.nplots)+0.9) | |
250 | nrow = int(self.nplots*1./ncol + 0.9) |
|
251 | nrow = int(self.nplots*1./ncol + 0.9) | |
251 |
|
252 | |||
252 | return nrow, ncol |
|
253 | return nrow, ncol | |
253 |
|
254 | |||
254 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
255 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
255 |
|
256 | |||
256 | self.__showprofile = showprofile |
|
257 | self.__showprofile = showprofile | |
257 | self.nplots = nplots |
|
258 | self.nplots = nplots | |
258 |
|
259 | |||
259 | ncolspan = 1 |
|
260 | ncolspan = 1 | |
260 | colspan = 1 |
|
261 | colspan = 1 | |
261 | if showprofile: |
|
262 | if showprofile: | |
262 | ncolspan = 3 |
|
263 | ncolspan = 3 | |
263 | colspan = 2 |
|
264 | colspan = 2 | |
264 | self.__nsubplots = 2 |
|
265 | self.__nsubplots = 2 | |
265 |
|
266 | |||
266 | self.createFigure(id = id, |
|
267 | self.createFigure(id = id, | |
267 | wintitle = wintitle, |
|
268 | wintitle = wintitle, | |
268 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
269 | widthplot = self.WIDTH + self.WIDTHPROF, | |
269 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
270 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
270 | show=show) |
|
271 | show=show) | |
271 |
|
272 | |||
272 | nrow, ncol = self.getSubplots() |
|
273 | nrow, ncol = self.getSubplots() | |
273 |
|
274 | |||
274 | counter = 0 |
|
275 | counter = 0 | |
275 | for y in range(nrow): |
|
276 | for y in range(nrow): | |
276 | for x in range(ncol): |
|
277 | for x in range(ncol): | |
277 |
|
278 | |||
278 | if counter >= self.nplots: |
|
279 | if counter >= self.nplots: | |
279 | break |
|
280 | break | |
280 |
|
281 | |||
281 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
282 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
282 |
|
283 | |||
283 | if showprofile: |
|
284 | if showprofile: | |
284 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
285 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
285 |
|
286 | |||
286 | counter += 1 |
|
287 | counter += 1 | |
287 |
|
288 | |||
288 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
289 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, | |
289 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
290 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
290 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
291 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
291 | server=None, folder=None, username=None, password=None, |
|
292 | server=None, folder=None, username=None, password=None, | |
292 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False): |
|
293 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False): | |
293 |
|
294 | |||
294 | """ |
|
295 | """ | |
295 |
|
296 | |||
296 | Input: |
|
297 | Input: | |
297 | dataOut : |
|
298 | dataOut : | |
298 | id : |
|
299 | id : | |
299 | wintitle : |
|
300 | wintitle : | |
300 | channelList : |
|
301 | channelList : | |
301 | showProfile : |
|
302 | showProfile : | |
302 | xmin : None, |
|
303 | xmin : None, | |
303 | xmax : None, |
|
304 | xmax : None, | |
304 | ymin : None, |
|
305 | ymin : None, | |
305 | ymax : None, |
|
306 | ymax : None, | |
306 | zmin : None, |
|
307 | zmin : None, | |
307 | zmax : None |
|
308 | zmax : None | |
308 | """ |
|
309 | """ | |
309 |
|
310 | |||
310 | if dataOut.flagNoData: |
|
311 | if dataOut.flagNoData: | |
311 | return None |
|
312 | return None | |
312 |
|
313 | |||
313 | if realtime: |
|
314 | if realtime: | |
314 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
315 | if not(isRealtime(utcdatatime = dataOut.utctime)): | |
315 | print 'Skipping this plot function' |
|
316 | print 'Skipping this plot function' | |
316 | return |
|
317 | return | |
317 |
|
318 | |||
318 | if channelList == None: |
|
319 | if channelList == None: | |
319 | channelIndexList = dataOut.channelIndexList |
|
320 | channelIndexList = dataOut.channelIndexList | |
320 | else: |
|
321 | else: | |
321 | channelIndexList = [] |
|
322 | channelIndexList = [] | |
322 | for channel in channelList: |
|
323 | for channel in channelList: | |
323 | if channel not in dataOut.channelList: |
|
324 | if channel not in dataOut.channelList: | |
324 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
325 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
325 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
326 | channelIndexList.append(dataOut.channelList.index(channel)) | |
326 |
|
327 | |||
327 | factor = dataOut.normFactor |
|
328 | factor = dataOut.normFactor | |
328 | x = dataOut.abscissaList |
|
329 | x = dataOut.abscissaList | |
329 | y = dataOut.heightList |
|
330 | y = dataOut.heightList | |
330 |
|
331 | |||
331 | z = dataOut.data_pre[channelIndexList,:,:]/factor |
|
332 | z = dataOut.data_pre[channelIndexList,:,:]/factor | |
332 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
333 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
333 | avg = numpy.average(z, axis=1) |
|
334 | avg = numpy.average(z, axis=1) | |
334 | noise = dataOut.noise/factor |
|
335 | noise = dataOut.noise/factor | |
335 |
|
336 | |||
336 | zdB = 10*numpy.log10(z) |
|
337 | zdB = 10*numpy.log10(z) | |
337 | avgdB = 10*numpy.log10(avg) |
|
338 | avgdB = 10*numpy.log10(avg) | |
338 | noisedB = 10*numpy.log10(noise) |
|
339 | noisedB = 10*numpy.log10(noise) | |
339 |
|
340 | |||
340 | #thisDatetime = dataOut.datatime |
|
341 | #thisDatetime = dataOut.datatime | |
341 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
342 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
342 | title = wintitle + " Parameters" |
|
343 | title = wintitle + " Parameters" | |
343 | xlabel = "Velocity (m/s)" |
|
344 | xlabel = "Velocity (m/s)" | |
344 | ylabel = "Range (Km)" |
|
345 | ylabel = "Range (Km)" | |
345 |
|
346 | |||
346 | update_figfile = False |
|
347 | update_figfile = False | |
347 |
|
348 | |||
348 | if not self.isConfig: |
|
349 | if not self.isConfig: | |
349 |
|
350 | |||
350 | nplots = len(channelIndexList) |
|
351 | nplots = len(channelIndexList) | |
351 |
|
352 | |||
352 | self.setup(id=id, |
|
353 | self.setup(id=id, | |
353 | nplots=nplots, |
|
354 | nplots=nplots, | |
354 | wintitle=wintitle, |
|
355 | wintitle=wintitle, | |
355 | showprofile=showprofile, |
|
356 | showprofile=showprofile, | |
356 | show=show) |
|
357 | show=show) | |
357 |
|
358 | |||
358 | if xmin == None: xmin = numpy.nanmin(x) |
|
359 | if xmin == None: xmin = numpy.nanmin(x) | |
359 | if xmax == None: xmax = numpy.nanmax(x) |
|
360 | if xmax == None: xmax = numpy.nanmax(x) | |
360 | if ymin == None: ymin = numpy.nanmin(y) |
|
361 | if ymin == None: ymin = numpy.nanmin(y) | |
361 | if ymax == None: ymax = numpy.nanmax(y) |
|
362 | if ymax == None: ymax = numpy.nanmax(y) | |
362 | if zmin == None: zmin = numpy.nanmin(avgdB)*0.9 |
|
363 | if zmin == None: zmin = numpy.nanmin(avgdB)*0.9 | |
363 | if zmax == None: zmax = numpy.nanmax(avgdB)*0.9 |
|
364 | if zmax == None: zmax = numpy.nanmax(avgdB)*0.9 | |
364 |
|
365 | |||
365 | self.FTP_WEI = ftp_wei |
|
366 | self.FTP_WEI = ftp_wei | |
366 | self.EXP_CODE = exp_code |
|
367 | self.EXP_CODE = exp_code | |
367 | self.SUB_EXP_CODE = sub_exp_code |
|
368 | self.SUB_EXP_CODE = sub_exp_code | |
368 | self.PLOT_POS = plot_pos |
|
369 | self.PLOT_POS = plot_pos | |
369 |
|
370 | |||
370 | self.isConfig = True |
|
371 | self.isConfig = True | |
371 | update_figfile = True |
|
372 | update_figfile = True | |
372 |
|
373 | |||
373 | self.setWinTitle(title) |
|
374 | self.setWinTitle(title) | |
374 |
|
375 | |||
375 | for i in range(self.nplots): |
|
376 | for i in range(self.nplots): | |
376 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
377 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
377 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[i], noisedB[i], str_datetime) |
|
378 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[i], noisedB[i], str_datetime) | |
378 | axes = self.axesList[i*self.__nsubplots] |
|
379 | axes = self.axesList[i*self.__nsubplots] | |
379 | axes.pcolor(x, y, zdB[i,:,:], |
|
380 | axes.pcolor(x, y, zdB[i,:,:], | |
380 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
381 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
381 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
382 | xlabel=xlabel, ylabel=ylabel, title=title, | |
382 | ticksize=9, cblabel='') |
|
383 | ticksize=9, cblabel='') | |
383 | #Mean Line |
|
384 | #Mean Line | |
384 | mean = dataOut.data_param[i, 1, :] |
|
385 | mean = dataOut.data_param[i, 1, :] | |
385 | axes.addpline(mean, y, idline=0, color="black", linestyle="solid", lw=1) |
|
386 | axes.addpline(mean, y, idline=0, color="black", linestyle="solid", lw=1) | |
386 |
|
387 | |||
387 | if self.__showprofile: |
|
388 | if self.__showprofile: | |
388 | axes = self.axesList[i*self.__nsubplots +1] |
|
389 | axes = self.axesList[i*self.__nsubplots +1] | |
389 | axes.pline(avgdB[i], y, |
|
390 | axes.pline(avgdB[i], y, | |
390 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
391 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
391 | xlabel='dB', ylabel='', title='', |
|
392 | xlabel='dB', ylabel='', title='', | |
392 | ytick_visible=False, |
|
393 | ytick_visible=False, | |
393 | grid='x') |
|
394 | grid='x') | |
394 |
|
395 | |||
395 | noiseline = numpy.repeat(noisedB[i], len(y)) |
|
396 | noiseline = numpy.repeat(noisedB[i], len(y)) | |
396 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
397 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) | |
397 |
|
398 | |||
398 | self.draw() |
|
399 | self.draw() | |
399 |
|
400 | |||
400 | self.save(figpath=figpath, |
|
401 | self.save(figpath=figpath, | |
401 | figfile=figfile, |
|
402 | figfile=figfile, | |
402 | save=save, |
|
403 | save=save, | |
403 | ftp=ftp, |
|
404 | ftp=ftp, | |
404 | wr_period=wr_period, |
|
405 | wr_period=wr_period, | |
405 | thisDatetime=thisDatetime) |
|
406 | thisDatetime=thisDatetime) | |
406 |
|
407 | |||
407 |
|
408 | |||
408 |
|
409 | |||
409 | class SkyMapPlot(Figure): |
|
410 | class SkyMapPlot(Figure): | |
410 |
|
411 | |||
411 | __isConfig = None |
|
412 | __isConfig = None | |
412 | __nsubplots = None |
|
413 | __nsubplots = None | |
413 |
|
414 | |||
414 | WIDTHPROF = None |
|
415 | WIDTHPROF = None | |
415 | HEIGHTPROF = None |
|
416 | HEIGHTPROF = None | |
416 | PREFIX = 'mmap' |
|
417 | PREFIX = 'mmap' | |
417 |
|
418 | |||
418 | def __init__(self, **kwargs): |
|
419 | def __init__(self, **kwargs): | |
419 | Figure.__init__(self, **kwargs) |
|
420 | Figure.__init__(self, **kwargs) | |
420 | self.isConfig = False |
|
421 | self.isConfig = False | |
421 | self.__nsubplots = 1 |
|
422 | self.__nsubplots = 1 | |
422 |
|
423 | |||
423 | # self.WIDTH = 280 |
|
424 | # self.WIDTH = 280 | |
424 | # self.HEIGHT = 250 |
|
425 | # self.HEIGHT = 250 | |
425 | self.WIDTH = 600 |
|
426 | self.WIDTH = 600 | |
426 | self.HEIGHT = 600 |
|
427 | self.HEIGHT = 600 | |
427 | self.WIDTHPROF = 120 |
|
428 | self.WIDTHPROF = 120 | |
428 | self.HEIGHTPROF = 0 |
|
429 | self.HEIGHTPROF = 0 | |
429 | self.counter_imagwr = 0 |
|
430 | self.counter_imagwr = 0 | |
430 |
|
431 | |||
431 | self.PLOT_CODE = MSKYMAP_CODE |
|
432 | self.PLOT_CODE = MSKYMAP_CODE | |
432 |
|
433 | |||
433 | self.FTP_WEI = None |
|
434 | self.FTP_WEI = None | |
434 | self.EXP_CODE = None |
|
435 | self.EXP_CODE = None | |
435 | self.SUB_EXP_CODE = None |
|
436 | self.SUB_EXP_CODE = None | |
436 | self.PLOT_POS = None |
|
437 | self.PLOT_POS = None | |
437 |
|
438 | |||
438 | def getSubplots(self): |
|
439 | def getSubplots(self): | |
439 |
|
440 | |||
440 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
441 | ncol = int(numpy.sqrt(self.nplots)+0.9) | |
441 | nrow = int(self.nplots*1./ncol + 0.9) |
|
442 | nrow = int(self.nplots*1./ncol + 0.9) | |
442 |
|
443 | |||
443 | return nrow, ncol |
|
444 | return nrow, ncol | |
444 |
|
445 | |||
445 | def setup(self, id, nplots, wintitle, showprofile=False, show=True): |
|
446 | def setup(self, id, nplots, wintitle, showprofile=False, show=True): | |
446 |
|
447 | |||
447 | self.__showprofile = showprofile |
|
448 | self.__showprofile = showprofile | |
448 | self.nplots = nplots |
|
449 | self.nplots = nplots | |
449 |
|
450 | |||
450 | ncolspan = 1 |
|
451 | ncolspan = 1 | |
451 | colspan = 1 |
|
452 | colspan = 1 | |
452 |
|
453 | |||
453 | self.createFigure(id = id, |
|
454 | self.createFigure(id = id, | |
454 | wintitle = wintitle, |
|
455 | wintitle = wintitle, | |
455 | widthplot = self.WIDTH, #+ self.WIDTHPROF, |
|
456 | widthplot = self.WIDTH, #+ self.WIDTHPROF, | |
456 | heightplot = self.HEIGHT,# + self.HEIGHTPROF, |
|
457 | heightplot = self.HEIGHT,# + self.HEIGHTPROF, | |
457 | show=show) |
|
458 | show=show) | |
458 |
|
459 | |||
459 | nrow, ncol = 1,1 |
|
460 | nrow, ncol = 1,1 | |
460 | counter = 0 |
|
461 | counter = 0 | |
461 | x = 0 |
|
462 | x = 0 | |
462 | y = 0 |
|
463 | y = 0 | |
463 | self.addAxes(1, 1, 0, 0, 1, 1, True) |
|
464 | self.addAxes(1, 1, 0, 0, 1, 1, True) | |
464 |
|
465 | |||
465 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False, |
|
466 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False, | |
466 | tmin=0, tmax=24, timerange=None, |
|
467 | tmin=0, tmax=24, timerange=None, | |
467 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
468 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
468 | server=None, folder=None, username=None, password=None, |
|
469 | server=None, folder=None, username=None, password=None, | |
469 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False): |
|
470 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False): | |
470 |
|
471 | |||
471 | """ |
|
472 | """ | |
472 |
|
473 | |||
473 | Input: |
|
474 | Input: | |
474 | dataOut : |
|
475 | dataOut : | |
475 | id : |
|
476 | id : | |
476 | wintitle : |
|
477 | wintitle : | |
477 | channelList : |
|
478 | channelList : | |
478 | showProfile : |
|
479 | showProfile : | |
479 | xmin : None, |
|
480 | xmin : None, | |
480 | xmax : None, |
|
481 | xmax : None, | |
481 | ymin : None, |
|
482 | ymin : None, | |
482 | ymax : None, |
|
483 | ymax : None, | |
483 | zmin : None, |
|
484 | zmin : None, | |
484 | zmax : None |
|
485 | zmax : None | |
485 | """ |
|
486 | """ | |
486 |
|
487 | |||
487 | arrayParameters = dataOut.data_param |
|
488 | arrayParameters = dataOut.data_param | |
488 | error = arrayParameters[:,-1] |
|
489 | error = arrayParameters[:,-1] | |
489 | indValid = numpy.where(error == 0)[0] |
|
490 | indValid = numpy.where(error == 0)[0] | |
490 | finalMeteor = arrayParameters[indValid,:] |
|
491 | finalMeteor = arrayParameters[indValid,:] | |
491 | finalAzimuth = finalMeteor[:,3] |
|
492 | finalAzimuth = finalMeteor[:,3] | |
492 | finalZenith = finalMeteor[:,4] |
|
493 | finalZenith = finalMeteor[:,4] | |
493 |
|
494 | |||
494 | x = finalAzimuth*numpy.pi/180 |
|
495 | x = finalAzimuth*numpy.pi/180 | |
495 | y = finalZenith |
|
496 | y = finalZenith | |
496 | x1 = [dataOut.ltctime, dataOut.ltctime] |
|
497 | x1 = [dataOut.ltctime, dataOut.ltctime] | |
497 |
|
498 | |||
498 | #thisDatetime = dataOut.datatime |
|
499 | #thisDatetime = dataOut.datatime | |
499 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
500 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) | |
500 | title = wintitle + " Parameters" |
|
501 | title = wintitle + " Parameters" | |
501 | xlabel = "Zonal Zenith Angle (deg) " |
|
502 | xlabel = "Zonal Zenith Angle (deg) " | |
502 | ylabel = "Meridional Zenith Angle (deg)" |
|
503 | ylabel = "Meridional Zenith Angle (deg)" | |
503 | update_figfile = False |
|
504 | update_figfile = False | |
504 |
|
505 | |||
505 | if not self.isConfig: |
|
506 | if not self.isConfig: | |
506 |
|
507 | |||
507 | nplots = 1 |
|
508 | nplots = 1 | |
508 |
|
509 | |||
509 | self.setup(id=id, |
|
510 | self.setup(id=id, | |
510 | nplots=nplots, |
|
511 | nplots=nplots, | |
511 | wintitle=wintitle, |
|
512 | wintitle=wintitle, | |
512 | showprofile=showprofile, |
|
513 | showprofile=showprofile, | |
513 | show=show) |
|
514 | show=show) | |
514 |
|
515 | |||
515 | if self.xmin is None and self.xmax is None: |
|
516 | if self.xmin is None and self.xmax is None: | |
516 | self.xmin, self.xmax = self.getTimeLim(x1, tmin, tmax, timerange) |
|
517 | self.xmin, self.xmax = self.getTimeLim(x1, tmin, tmax, timerange) | |
517 |
|
518 | |||
518 | if timerange != None: |
|
519 | if timerange != None: | |
519 | self.timerange = timerange |
|
520 | self.timerange = timerange | |
520 | else: |
|
521 | else: | |
521 | self.timerange = self.xmax - self.xmin |
|
522 | self.timerange = self.xmax - self.xmin | |
522 |
|
523 | |||
523 | self.FTP_WEI = ftp_wei |
|
524 | self.FTP_WEI = ftp_wei | |
524 | self.EXP_CODE = exp_code |
|
525 | self.EXP_CODE = exp_code | |
525 | self.SUB_EXP_CODE = sub_exp_code |
|
526 | self.SUB_EXP_CODE = sub_exp_code | |
526 | self.PLOT_POS = plot_pos |
|
527 | self.PLOT_POS = plot_pos | |
527 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
528 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
528 | self.firstdate = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
529 | self.firstdate = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
529 | self.isConfig = True |
|
530 | self.isConfig = True | |
530 | update_figfile = True |
|
531 | update_figfile = True | |
531 |
|
532 | |||
532 | self.setWinTitle(title) |
|
533 | self.setWinTitle(title) | |
533 |
|
534 | |||
534 | i = 0 |
|
535 | i = 0 | |
535 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
536 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
536 |
|
537 | |||
537 | axes = self.axesList[i*self.__nsubplots] |
|
538 | axes = self.axesList[i*self.__nsubplots] | |
538 | nevents = axes.x_buffer.shape[0] + x.shape[0] |
|
539 | nevents = axes.x_buffer.shape[0] + x.shape[0] | |
539 | title = "Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n" %(self.firstdate,str_datetime,nevents) |
|
540 | title = "Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n" %(self.firstdate,str_datetime,nevents) | |
540 | axes.polar(x, y, |
|
541 | axes.polar(x, y, | |
541 | title=title, xlabel=xlabel, ylabel=ylabel, |
|
542 | title=title, xlabel=xlabel, ylabel=ylabel, | |
542 | ticksize=9, cblabel='') |
|
543 | ticksize=9, cblabel='') | |
543 |
|
544 | |||
544 | self.draw() |
|
545 | self.draw() | |
545 |
|
546 | |||
546 | self.save(figpath=figpath, |
|
547 | self.save(figpath=figpath, | |
547 | figfile=figfile, |
|
548 | figfile=figfile, | |
548 | save=save, |
|
549 | save=save, | |
549 | ftp=ftp, |
|
550 | ftp=ftp, | |
550 | wr_period=wr_period, |
|
551 | wr_period=wr_period, | |
551 | thisDatetime=thisDatetime, |
|
552 | thisDatetime=thisDatetime, | |
552 | update_figfile=update_figfile) |
|
553 | update_figfile=update_figfile) | |
553 |
|
554 | |||
554 | if dataOut.ltctime >= self.xmax: |
|
555 | if dataOut.ltctime >= self.xmax: | |
555 | self.isConfigmagwr = wr_period |
|
556 | self.isConfigmagwr = wr_period | |
556 | self.isConfig = False |
|
557 | self.isConfig = False | |
557 | update_figfile = True |
|
558 | update_figfile = True | |
558 | axes.__firsttime = True |
|
559 | axes.__firsttime = True | |
559 | self.xmin += self.timerange |
|
560 | self.xmin += self.timerange | |
560 | self.xmax += self.timerange |
|
561 | self.xmax += self.timerange | |
561 |
|
562 | |||
562 |
|
563 | |||
563 |
|
564 | |||
564 |
|
565 | |||
565 | class WindProfilerPlot(Figure): |
|
566 | class WindProfilerPlot(Figure): | |
566 |
|
567 | |||
567 | __isConfig = None |
|
568 | __isConfig = None | |
568 | __nsubplots = None |
|
569 | __nsubplots = None | |
569 |
|
570 | |||
570 | WIDTHPROF = None |
|
571 | WIDTHPROF = None | |
571 | HEIGHTPROF = None |
|
572 | HEIGHTPROF = None | |
572 | PREFIX = 'wind' |
|
573 | PREFIX = 'wind' | |
573 |
|
574 | |||
574 | def __init__(self, **kwargs): |
|
575 | def __init__(self, **kwargs): | |
575 | Figure.__init__(self, **kwargs) |
|
576 | Figure.__init__(self, **kwargs) | |
576 | self.timerange = None |
|
577 | self.timerange = None | |
577 | self.isConfig = False |
|
578 | self.isConfig = False | |
578 | self.__nsubplots = 1 |
|
579 | self.__nsubplots = 1 | |
579 |
|
580 | |||
580 | self.WIDTH = 800 |
|
581 | self.WIDTH = 800 | |
581 | self.HEIGHT = 300 |
|
582 | self.HEIGHT = 300 | |
582 | self.WIDTHPROF = 120 |
|
583 | self.WIDTHPROF = 120 | |
583 | self.HEIGHTPROF = 0 |
|
584 | self.HEIGHTPROF = 0 | |
584 | self.counter_imagwr = 0 |
|
585 | self.counter_imagwr = 0 | |
585 |
|
586 | |||
586 | self.PLOT_CODE = WIND_CODE |
|
587 | self.PLOT_CODE = WIND_CODE | |
587 |
|
588 | |||
588 | self.FTP_WEI = None |
|
589 | self.FTP_WEI = None | |
589 | self.EXP_CODE = None |
|
590 | self.EXP_CODE = None | |
590 | self.SUB_EXP_CODE = None |
|
591 | self.SUB_EXP_CODE = None | |
591 | self.PLOT_POS = None |
|
592 | self.PLOT_POS = None | |
592 | self.tmin = None |
|
593 | self.tmin = None | |
593 | self.tmax = None |
|
594 | self.tmax = None | |
594 |
|
595 | |||
595 | self.xmin = None |
|
596 | self.xmin = None | |
596 | self.xmax = None |
|
597 | self.xmax = None | |
597 |
|
598 | |||
598 | self.figfile = None |
|
599 | self.figfile = None | |
599 |
|
600 | |||
600 | def getSubplots(self): |
|
601 | def getSubplots(self): | |
601 |
|
602 | |||
602 | ncol = 1 |
|
603 | ncol = 1 | |
603 | nrow = self.nplots |
|
604 | nrow = self.nplots | |
604 |
|
605 | |||
605 | return nrow, ncol |
|
606 | return nrow, ncol | |
606 |
|
607 | |||
607 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
608 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
608 |
|
609 | |||
609 | self.__showprofile = showprofile |
|
610 | self.__showprofile = showprofile | |
610 | self.nplots = nplots |
|
611 | self.nplots = nplots | |
611 |
|
612 | |||
612 | ncolspan = 1 |
|
613 | ncolspan = 1 | |
613 | colspan = 1 |
|
614 | colspan = 1 | |
614 |
|
615 | |||
615 | self.createFigure(id = id, |
|
616 | self.createFigure(id = id, | |
616 | wintitle = wintitle, |
|
617 | wintitle = wintitle, | |
617 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
618 | widthplot = self.WIDTH + self.WIDTHPROF, | |
618 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
619 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
619 | show=show) |
|
620 | show=show) | |
620 |
|
621 | |||
621 | nrow, ncol = self.getSubplots() |
|
622 | nrow, ncol = self.getSubplots() | |
622 |
|
623 | |||
623 | counter = 0 |
|
624 | counter = 0 | |
624 | for y in range(nrow): |
|
625 | for y in range(nrow): | |
625 | if counter >= self.nplots: |
|
626 | if counter >= self.nplots: | |
626 | break |
|
627 | break | |
627 |
|
628 | |||
628 | self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1) |
|
629 | self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1) | |
629 | counter += 1 |
|
630 | counter += 1 | |
630 |
|
631 | |||
631 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='False', |
|
632 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='False', | |
632 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
633 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
633 | zmax_ver = None, zmin_ver = None, SNRmin = None, SNRmax = None, |
|
634 | zmax_ver = None, zmin_ver = None, SNRmin = None, SNRmax = None, | |
634 | timerange=None, SNRthresh = None, |
|
635 | timerange=None, SNRthresh = None, | |
635 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
636 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, | |
636 | server=None, folder=None, username=None, password=None, |
|
637 | server=None, folder=None, username=None, password=None, | |
637 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
638 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
638 | """ |
|
639 | """ | |
639 |
|
640 | |||
640 | Input: |
|
641 | Input: | |
641 | dataOut : |
|
642 | dataOut : | |
642 | id : |
|
643 | id : | |
643 | wintitle : |
|
644 | wintitle : | |
644 | channelList : |
|
645 | channelList : | |
645 | showProfile : |
|
646 | showProfile : | |
646 | xmin : None, |
|
647 | xmin : None, | |
647 | xmax : None, |
|
648 | xmax : None, | |
648 | ymin : None, |
|
649 | ymin : None, | |
649 | ymax : None, |
|
650 | ymax : None, | |
650 | zmin : None, |
|
651 | zmin : None, | |
651 | zmax : None |
|
652 | zmax : None | |
652 | """ |
|
653 | """ | |
653 |
|
654 | |||
654 | # if timerange is not None: |
|
655 | # if timerange is not None: | |
655 | # self.timerange = timerange |
|
656 | # self.timerange = timerange | |
656 | # |
|
657 | # | |
657 | # tmin = None |
|
658 | # tmin = None | |
658 | # tmax = None |
|
659 | # tmax = None | |
659 |
|
660 | |||
660 | x = dataOut.getTimeRange1(dataOut.paramInterval) |
|
661 | x = dataOut.getTimeRange1(dataOut.paramInterval) | |
661 | y = dataOut.heightList |
|
662 | y = dataOut.heightList | |
662 | z = dataOut.data_output.copy() |
|
663 | z = dataOut.data_output.copy() | |
663 | nplots = z.shape[0] #Number of wind dimensions estimated |
|
664 | nplots = z.shape[0] #Number of wind dimensions estimated | |
664 | nplotsw = nplots |
|
665 | nplotsw = nplots | |
665 |
|
666 | |||
666 |
|
667 | |||
667 | #If there is a SNR function defined |
|
668 | #If there is a SNR function defined | |
668 | if dataOut.data_SNR is not None: |
|
669 | if dataOut.data_SNR is not None: | |
669 | nplots += 1 |
|
670 | nplots += 1 | |
670 | SNR = dataOut.data_SNR[0] |
|
671 | SNR = dataOut.data_SNR[0] | |
671 | SNRavg = SNR#numpy.average(SNR, axis=0) |
|
672 | SNRavg = SNR#numpy.average(SNR, axis=0) | |
672 |
|
673 | |||
673 | SNRdB = 10*numpy.log10(SNR) |
|
674 | SNRdB = 10*numpy.log10(SNR) | |
674 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
675 | SNRavgdB = 10*numpy.log10(SNRavg) | |
675 |
|
676 | |||
676 | if SNRthresh == None: |
|
677 | if SNRthresh == None: | |
677 | SNRthresh = -5.0 |
|
678 | SNRthresh = -5.0 | |
678 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] |
|
679 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] | |
679 |
|
680 | |||
680 | for i in range(nplotsw): |
|
681 | for i in range(nplotsw): | |
681 | z[i,ind] = numpy.nan |
|
682 | z[i,ind] = numpy.nan | |
682 |
|
683 | |||
683 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
684 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) | |
684 | #thisDatetime = datetime.datetime.now() |
|
685 | #thisDatetime = datetime.datetime.now() | |
685 | title = wintitle + "Wind" |
|
686 | title = wintitle + "Wind" | |
686 | xlabel = "" |
|
687 | xlabel = "" | |
687 | ylabel = "Height (km)" |
|
688 | ylabel = "Height (km)" | |
688 | update_figfile = False |
|
689 | update_figfile = False | |
689 |
|
690 | |||
690 | if not self.isConfig: |
|
691 | if not self.isConfig: | |
691 |
|
692 | |||
692 | self.setup(id=id, |
|
693 | self.setup(id=id, | |
693 | nplots=nplots, |
|
694 | nplots=nplots, | |
694 | wintitle=wintitle, |
|
695 | wintitle=wintitle, | |
695 | showprofile=showprofile, |
|
696 | showprofile=showprofile, | |
696 | show=show) |
|
697 | show=show) | |
697 |
|
698 | |||
698 | if timerange is not None: |
|
699 | if timerange is not None: | |
699 | self.timerange = timerange |
|
700 | self.timerange = timerange | |
700 |
|
701 | |||
701 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
702 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
702 |
|
703 | |||
703 | if ymin == None: ymin = numpy.nanmin(y) |
|
704 | if ymin == None: ymin = numpy.nanmin(y) | |
704 | if ymax == None: ymax = numpy.nanmax(y) |
|
705 | if ymax == None: ymax = numpy.nanmax(y) | |
705 |
|
706 | |||
706 | if zmax == None: zmax = numpy.nanmax(abs(z[range(2),:])) |
|
707 | if zmax == None: zmax = numpy.nanmax(abs(z[range(2),:])) | |
707 | #if numpy.isnan(zmax): zmax = 50 |
|
708 | #if numpy.isnan(zmax): zmax = 50 | |
708 | if zmin == None: zmin = -zmax |
|
709 | if zmin == None: zmin = -zmax | |
709 |
|
710 | |||
710 | if nplotsw == 3: |
|
711 | if nplotsw == 3: | |
711 | if zmax_ver == None: zmax_ver = numpy.nanmax(abs(z[2,:])) |
|
712 | if zmax_ver == None: zmax_ver = numpy.nanmax(abs(z[2,:])) | |
712 | if zmin_ver == None: zmin_ver = -zmax_ver |
|
713 | if zmin_ver == None: zmin_ver = -zmax_ver | |
713 |
|
714 | |||
714 | if dataOut.data_SNR is not None: |
|
715 | if dataOut.data_SNR is not None: | |
715 | if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB) |
|
716 | if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB) | |
716 | if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB) |
|
717 | if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB) | |
717 |
|
718 | |||
718 |
|
719 | |||
719 | self.FTP_WEI = ftp_wei |
|
720 | self.FTP_WEI = ftp_wei | |
720 | self.EXP_CODE = exp_code |
|
721 | self.EXP_CODE = exp_code | |
721 | self.SUB_EXP_CODE = sub_exp_code |
|
722 | self.SUB_EXP_CODE = sub_exp_code | |
722 | self.PLOT_POS = plot_pos |
|
723 | self.PLOT_POS = plot_pos | |
723 |
|
724 | |||
724 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
725 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
725 | self.isConfig = True |
|
726 | self.isConfig = True | |
726 | self.figfile = figfile |
|
727 | self.figfile = figfile | |
727 | update_figfile = True |
|
728 | update_figfile = True | |
728 |
|
729 | |||
729 | self.setWinTitle(title) |
|
730 | self.setWinTitle(title) | |
730 |
|
731 | |||
731 | if ((self.xmax - x[1]) < (x[1]-x[0])): |
|
732 | if ((self.xmax - x[1]) < (x[1]-x[0])): | |
732 | x[1] = self.xmax |
|
733 | x[1] = self.xmax | |
733 |
|
734 | |||
734 | strWind = ['Zonal', 'Meridional', 'Vertical'] |
|
735 | strWind = ['Zonal', 'Meridional', 'Vertical'] | |
735 | strCb = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)'] |
|
736 | strCb = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)'] | |
736 | zmaxVector = [zmax, zmax, zmax_ver] |
|
737 | zmaxVector = [zmax, zmax, zmax_ver] | |
737 | zminVector = [zmin, zmin, zmin_ver] |
|
738 | zminVector = [zmin, zmin, zmin_ver] | |
738 | windFactor = [1,1,100] |
|
739 | windFactor = [1,1,100] | |
739 |
|
740 | |||
740 | for i in range(nplotsw): |
|
741 | for i in range(nplotsw): | |
741 |
|
742 | |||
742 | title = "%s Wind: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
743 | title = "%s Wind: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
743 | axes = self.axesList[i*self.__nsubplots] |
|
744 | axes = self.axesList[i*self.__nsubplots] | |
744 |
|
745 | |||
745 | z1 = z[i,:].reshape((1,-1))*windFactor[i] |
|
746 | z1 = z[i,:].reshape((1,-1))*windFactor[i] | |
746 |
|
747 | |||
747 | print 'x', x |
|
748 | print 'x', x | |
748 | print datetime.datetime.utcfromtimestamp(x[0]) |
|
749 | print datetime.datetime.utcfromtimestamp(x[0]) | |
749 | print datetime.datetime.utcfromtimestamp(x[1]) |
|
750 | print datetime.datetime.utcfromtimestamp(x[1]) | |
750 |
|
751 | |||
751 | #z1=numpy.ma.masked_where(z1==0.,z1) |
|
752 | #z1=numpy.ma.masked_where(z1==0.,z1) | |
752 |
|
753 | |||
753 | axes.pcolorbuffer(x, y, z1, |
|
754 | axes.pcolorbuffer(x, y, z1, | |
754 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], |
|
755 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], | |
755 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
756 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
756 | ticksize=9, cblabel=strCb[i], cbsize="1%", colormap="seismic" ) |
|
757 | ticksize=9, cblabel=strCb[i], cbsize="1%", colormap="seismic" ) | |
757 |
|
758 | |||
758 | if dataOut.data_SNR is not None: |
|
759 | if dataOut.data_SNR is not None: | |
759 | i += 1 |
|
760 | i += 1 | |
760 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
761 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
761 | axes = self.axesList[i*self.__nsubplots] |
|
762 | axes = self.axesList[i*self.__nsubplots] | |
762 | SNRavgdB = SNRavgdB.reshape((1,-1)) |
|
763 | SNRavgdB = SNRavgdB.reshape((1,-1)) | |
763 | axes.pcolorbuffer(x, y, SNRavgdB, |
|
764 | axes.pcolorbuffer(x, y, SNRavgdB, | |
764 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
765 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |
765 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
766 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
766 | ticksize=9, cblabel='', cbsize="1%", colormap="jet") |
|
767 | ticksize=9, cblabel='', cbsize="1%", colormap="jet") | |
767 |
|
768 | |||
768 | self.draw() |
|
769 | self.draw() | |
769 |
|
770 | |||
770 | self.save(figpath=figpath, |
|
771 | self.save(figpath=figpath, | |
771 | figfile=figfile, |
|
772 | figfile=figfile, | |
772 | save=save, |
|
773 | save=save, | |
773 | ftp=ftp, |
|
774 | ftp=ftp, | |
774 | wr_period=wr_period, |
|
775 | wr_period=wr_period, | |
775 | thisDatetime=thisDatetime, |
|
776 | thisDatetime=thisDatetime, | |
776 | update_figfile=update_figfile) |
|
777 | update_figfile=update_figfile) | |
777 |
|
778 | |||
778 | if dataOut.ltctime + dataOut.paramInterval >= self.xmax: |
|
779 | if dataOut.ltctime + dataOut.paramInterval >= self.xmax: | |
779 | self.counter_imagwr = wr_period |
|
780 | self.counter_imagwr = wr_period | |
780 | self.isConfig = False |
|
781 | self.isConfig = False | |
781 | update_figfile = True |
|
782 | update_figfile = True | |
782 |
|
783 | |||
783 |
|
784 | |||
784 | class ParametersPlot(Figure): |
|
785 | class ParametersPlot(Figure): | |
785 |
|
786 | |||
786 | __isConfig = None |
|
787 | __isConfig = None | |
787 | __nsubplots = None |
|
788 | __nsubplots = None | |
788 |
|
789 | |||
789 | WIDTHPROF = None |
|
790 | WIDTHPROF = None | |
790 | HEIGHTPROF = None |
|
791 | HEIGHTPROF = None | |
791 | PREFIX = 'param' |
|
792 | PREFIX = 'param' | |
792 |
|
793 | |||
793 | nplots = None |
|
794 | nplots = None | |
794 | nchan = None |
|
795 | nchan = None | |
795 |
|
796 | |||
796 | def __init__(self, **kwargs): |
|
797 | def __init__(self, **kwargs): | |
797 | Figure.__init__(self, **kwargs) |
|
798 | Figure.__init__(self, **kwargs) | |
798 | self.timerange = None |
|
799 | self.timerange = None | |
799 | self.isConfig = False |
|
800 | self.isConfig = False | |
800 | self.__nsubplots = 1 |
|
801 | self.__nsubplots = 1 | |
801 |
|
802 | |||
802 | self.WIDTH = 800 |
|
803 | self.WIDTH = 800 | |
803 | self.HEIGHT = 180 |
|
804 | self.HEIGHT = 180 | |
804 | self.WIDTHPROF = 120 |
|
805 | self.WIDTHPROF = 120 | |
805 | self.HEIGHTPROF = 0 |
|
806 | self.HEIGHTPROF = 0 | |
806 | self.counter_imagwr = 0 |
|
807 | self.counter_imagwr = 0 | |
807 |
|
808 | |||
808 | self.PLOT_CODE = RTI_CODE |
|
809 | self.PLOT_CODE = RTI_CODE | |
809 |
|
810 | |||
810 | self.FTP_WEI = None |
|
811 | self.FTP_WEI = None | |
811 | self.EXP_CODE = None |
|
812 | self.EXP_CODE = None | |
812 | self.SUB_EXP_CODE = None |
|
813 | self.SUB_EXP_CODE = None | |
813 | self.PLOT_POS = None |
|
814 | self.PLOT_POS = None | |
814 | self.tmin = None |
|
815 | self.tmin = None | |
815 | self.tmax = None |
|
816 | self.tmax = None | |
816 |
|
817 | |||
817 | self.xmin = None |
|
818 | self.xmin = None | |
818 | self.xmax = None |
|
819 | self.xmax = None | |
819 |
|
820 | |||
820 | self.figfile = None |
|
821 | self.figfile = None | |
821 |
|
822 | |||
822 | def getSubplots(self): |
|
823 | def getSubplots(self): | |
823 |
|
824 | |||
824 | ncol = 1 |
|
825 | ncol = 1 | |
825 | nrow = self.nplots |
|
826 | nrow = self.nplots | |
826 |
|
827 | |||
827 | return nrow, ncol |
|
828 | return nrow, ncol | |
828 |
|
829 | |||
829 | def setup(self, id, nplots, wintitle, show=True): |
|
830 | def setup(self, id, nplots, wintitle, show=True): | |
830 |
|
831 | |||
831 | self.nplots = nplots |
|
832 | self.nplots = nplots | |
832 |
|
833 | |||
833 | ncolspan = 1 |
|
834 | ncolspan = 1 | |
834 | colspan = 1 |
|
835 | colspan = 1 | |
835 |
|
836 | |||
836 | self.createFigure(id = id, |
|
837 | self.createFigure(id = id, | |
837 | wintitle = wintitle, |
|
838 | wintitle = wintitle, | |
838 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
839 | widthplot = self.WIDTH + self.WIDTHPROF, | |
839 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
840 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
840 | show=show) |
|
841 | show=show) | |
841 |
|
842 | |||
842 | nrow, ncol = self.getSubplots() |
|
843 | nrow, ncol = self.getSubplots() | |
843 |
|
844 | |||
844 | counter = 0 |
|
845 | counter = 0 | |
845 | for y in range(nrow): |
|
846 | for y in range(nrow): | |
846 | for x in range(ncol): |
|
847 | for x in range(ncol): | |
847 |
|
848 | |||
848 | if counter >= self.nplots: |
|
849 | if counter >= self.nplots: | |
849 | break |
|
850 | break | |
850 |
|
851 | |||
851 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
852 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
852 |
|
853 | |||
853 | counter += 1 |
|
854 | counter += 1 | |
854 |
|
855 | |||
855 | def run(self, dataOut, id, wintitle="", channelList=None, paramIndex = 0, colormap="jet", |
|
856 | def run(self, dataOut, id, wintitle="", channelList=None, paramIndex = 0, colormap="jet", | |
856 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, timerange=None, |
|
857 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, timerange=None, | |
857 | showSNR=False, SNRthresh = -numpy.inf, SNRmin=None, SNRmax=None, |
|
858 | showSNR=False, SNRthresh = -numpy.inf, SNRmin=None, SNRmax=None, | |
858 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
859 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, | |
859 | server=None, folder=None, username=None, password=None, |
|
860 | server=None, folder=None, username=None, password=None, | |
860 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, HEIGHT=None): |
|
861 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, HEIGHT=None): | |
861 | """ |
|
862 | """ | |
862 |
|
863 | |||
863 | Input: |
|
864 | Input: | |
864 | dataOut : |
|
865 | dataOut : | |
865 | id : |
|
866 | id : | |
866 | wintitle : |
|
867 | wintitle : | |
867 | channelList : |
|
868 | channelList : | |
868 | showProfile : |
|
869 | showProfile : | |
869 | xmin : None, |
|
870 | xmin : None, | |
870 | xmax : None, |
|
871 | xmax : None, | |
871 | ymin : None, |
|
872 | ymin : None, | |
872 | ymax : None, |
|
873 | ymax : None, | |
873 | zmin : None, |
|
874 | zmin : None, | |
874 | zmax : None |
|
875 | zmax : None | |
875 | """ |
|
876 | """ | |
876 |
|
877 | |||
877 | if HEIGHT is not None: |
|
878 | if HEIGHT is not None: | |
878 | self.HEIGHT = HEIGHT |
|
879 | self.HEIGHT = HEIGHT | |
879 |
|
880 | |||
880 |
|
881 | |||
881 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
882 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
882 | return |
|
883 | return | |
883 |
|
884 | |||
884 | if channelList == None: |
|
885 | if channelList == None: | |
885 | channelIndexList = range(dataOut.data_param.shape[0]) |
|
886 | channelIndexList = range(dataOut.data_param.shape[0]) | |
886 | else: |
|
887 | else: | |
887 | channelIndexList = [] |
|
888 | channelIndexList = [] | |
888 | for channel in channelList: |
|
889 | for channel in channelList: | |
889 | if channel not in dataOut.channelList: |
|
890 | if channel not in dataOut.channelList: | |
890 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
891 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
891 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
892 | channelIndexList.append(dataOut.channelList.index(channel)) | |
892 |
|
893 | |||
893 | x = dataOut.getTimeRange1(dataOut.paramInterval) |
|
894 | x = dataOut.getTimeRange1(dataOut.paramInterval) | |
894 | y = dataOut.getHeiRange() |
|
895 | y = dataOut.getHeiRange() | |
895 |
|
896 | |||
896 | if dataOut.data_param.ndim == 3: |
|
897 | if dataOut.data_param.ndim == 3: | |
897 | z = dataOut.data_param[channelIndexList,paramIndex,:] |
|
898 | z = dataOut.data_param[channelIndexList,paramIndex,:] | |
898 | else: |
|
899 | else: | |
899 | z = dataOut.data_param[channelIndexList,:] |
|
900 | z = dataOut.data_param[channelIndexList,:] | |
900 |
|
901 | |||
901 | if showSNR: |
|
902 | if showSNR: | |
902 | #SNR data |
|
903 | #SNR data | |
903 | SNRarray = dataOut.data_SNR[channelIndexList,:] |
|
904 | SNRarray = dataOut.data_SNR[channelIndexList,:] | |
904 | SNRdB = 10*numpy.log10(SNRarray) |
|
905 | SNRdB = 10*numpy.log10(SNRarray) | |
905 | ind = numpy.where(SNRdB < SNRthresh) |
|
906 | ind = numpy.where(SNRdB < SNRthresh) | |
906 | z[ind] = numpy.nan |
|
907 | z[ind] = numpy.nan | |
907 |
|
908 | |||
908 | thisDatetime = dataOut.datatime |
|
909 | thisDatetime = dataOut.datatime | |
909 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
910 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
910 | title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
911 | title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
911 | xlabel = "" |
|
912 | xlabel = "" | |
912 | ylabel = "Range (Km)" |
|
913 | ylabel = "Range (Km)" | |
913 |
|
914 | |||
914 | update_figfile = False |
|
915 | update_figfile = False | |
915 |
|
916 | |||
916 | if not self.isConfig: |
|
917 | if not self.isConfig: | |
917 |
|
918 | |||
918 | nchan = len(channelIndexList) |
|
919 | nchan = len(channelIndexList) | |
919 | self.nchan = nchan |
|
920 | self.nchan = nchan | |
920 | self.plotFact = 1 |
|
921 | self.plotFact = 1 | |
921 | nplots = nchan |
|
922 | nplots = nchan | |
922 |
|
923 | |||
923 | if showSNR: |
|
924 | if showSNR: | |
924 | nplots = nchan*2 |
|
925 | nplots = nchan*2 | |
925 | self.plotFact = 2 |
|
926 | self.plotFact = 2 | |
926 | if SNRmin == None: SNRmin = numpy.nanmin(SNRdB) |
|
927 | if SNRmin == None: SNRmin = numpy.nanmin(SNRdB) | |
927 | if SNRmax == None: SNRmax = numpy.nanmax(SNRdB) |
|
928 | if SNRmax == None: SNRmax = numpy.nanmax(SNRdB) | |
928 |
|
929 | |||
929 | self.setup(id=id, |
|
930 | self.setup(id=id, | |
930 | nplots=nplots, |
|
931 | nplots=nplots, | |
931 | wintitle=wintitle, |
|
932 | wintitle=wintitle, | |
932 | show=show) |
|
933 | show=show) | |
933 |
|
934 | |||
934 | if timerange != None: |
|
935 | if timerange != None: | |
935 | self.timerange = timerange |
|
936 | self.timerange = timerange | |
936 |
|
937 | |||
937 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
938 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
938 |
|
939 | |||
939 | if ymin == None: ymin = numpy.nanmin(y) |
|
940 | if ymin == None: ymin = numpy.nanmin(y) | |
940 | if ymax == None: ymax = numpy.nanmax(y) |
|
941 | if ymax == None: ymax = numpy.nanmax(y) | |
941 | if zmin == None: zmin = numpy.nanmin(z) |
|
942 | if zmin == None: zmin = numpy.nanmin(z) | |
942 | if zmax == None: zmax = numpy.nanmax(z) |
|
943 | if zmax == None: zmax = numpy.nanmax(z) | |
943 |
|
944 | |||
944 | self.FTP_WEI = ftp_wei |
|
945 | self.FTP_WEI = ftp_wei | |
945 | self.EXP_CODE = exp_code |
|
946 | self.EXP_CODE = exp_code | |
946 | self.SUB_EXP_CODE = sub_exp_code |
|
947 | self.SUB_EXP_CODE = sub_exp_code | |
947 | self.PLOT_POS = plot_pos |
|
948 | self.PLOT_POS = plot_pos | |
948 |
|
949 | |||
949 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
950 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
950 | self.isConfig = True |
|
951 | self.isConfig = True | |
951 | self.figfile = figfile |
|
952 | self.figfile = figfile | |
952 | update_figfile = True |
|
953 | update_figfile = True | |
953 |
|
954 | |||
954 | self.setWinTitle(title) |
|
955 | self.setWinTitle(title) | |
955 |
|
956 | |||
956 | for i in range(self.nchan): |
|
957 | for i in range(self.nchan): | |
957 | index = channelIndexList[i] |
|
958 | index = channelIndexList[i] | |
958 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
959 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
959 | axes = self.axesList[i*self.plotFact] |
|
960 | axes = self.axesList[i*self.plotFact] | |
960 | z1 = z[i,:].reshape((1,-1)) |
|
961 | z1 = z[i,:].reshape((1,-1)) | |
961 | axes.pcolorbuffer(x, y, z1, |
|
962 | axes.pcolorbuffer(x, y, z1, | |
962 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
963 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
963 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
964 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
964 | ticksize=9, cblabel='', cbsize="1%",colormap=colormap) |
|
965 | ticksize=9, cblabel='', cbsize="1%",colormap=colormap) | |
965 |
|
966 | |||
966 | if showSNR: |
|
967 | if showSNR: | |
967 | title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
968 | title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
968 | axes = self.axesList[i*self.plotFact + 1] |
|
969 | axes = self.axesList[i*self.plotFact + 1] | |
969 | SNRdB1 = SNRdB[i,:].reshape((1,-1)) |
|
970 | SNRdB1 = SNRdB[i,:].reshape((1,-1)) | |
970 | axes.pcolorbuffer(x, y, SNRdB1, |
|
971 | axes.pcolorbuffer(x, y, SNRdB1, | |
971 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
972 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |
972 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
973 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
973 | ticksize=9, cblabel='', cbsize="1%",colormap='jet') |
|
974 | ticksize=9, cblabel='', cbsize="1%",colormap='jet') | |
974 |
|
975 | |||
975 |
|
976 | |||
976 | self.draw() |
|
977 | self.draw() | |
977 |
|
978 | |||
978 | if dataOut.ltctime >= self.xmax: |
|
979 | if dataOut.ltctime >= self.xmax: | |
979 | self.counter_imagwr = wr_period |
|
980 | self.counter_imagwr = wr_period | |
980 | self.isConfig = False |
|
981 | self.isConfig = False | |
981 | update_figfile = True |
|
982 | update_figfile = True | |
982 |
|
983 | |||
983 | self.save(figpath=figpath, |
|
984 | self.save(figpath=figpath, | |
984 | figfile=figfile, |
|
985 | figfile=figfile, | |
985 | save=save, |
|
986 | save=save, | |
986 | ftp=ftp, |
|
987 | ftp=ftp, | |
987 | wr_period=wr_period, |
|
988 | wr_period=wr_period, | |
988 | thisDatetime=thisDatetime, |
|
989 | thisDatetime=thisDatetime, | |
989 | update_figfile=update_figfile) |
|
990 | update_figfile=update_figfile) | |
990 |
|
991 | |||
991 |
|
992 | |||
992 |
|
993 | |||
993 | class Parameters1Plot(Figure): |
|
994 | class Parameters1Plot(Figure): | |
994 |
|
995 | |||
995 | __isConfig = None |
|
996 | __isConfig = None | |
996 | __nsubplots = None |
|
997 | __nsubplots = None | |
997 |
|
998 | |||
998 | WIDTHPROF = None |
|
999 | WIDTHPROF = None | |
999 | HEIGHTPROF = None |
|
1000 | HEIGHTPROF = None | |
1000 | PREFIX = 'prm' |
|
1001 | PREFIX = 'prm' | |
1001 |
|
1002 | |||
1002 | def __init__(self, **kwargs): |
|
1003 | def __init__(self, **kwargs): | |
1003 | Figure.__init__(self, **kwargs) |
|
1004 | Figure.__init__(self, **kwargs) | |
1004 | self.timerange = 2*60*60 |
|
1005 | self.timerange = 2*60*60 | |
1005 | self.isConfig = False |
|
1006 | self.isConfig = False | |
1006 | self.__nsubplots = 1 |
|
1007 | self.__nsubplots = 1 | |
1007 |
|
1008 | |||
1008 | self.WIDTH = 800 |
|
1009 | self.WIDTH = 800 | |
1009 | self.HEIGHT = 180 |
|
1010 | self.HEIGHT = 180 | |
1010 | self.WIDTHPROF = 120 |
|
1011 | self.WIDTHPROF = 120 | |
1011 | self.HEIGHTPROF = 0 |
|
1012 | self.HEIGHTPROF = 0 | |
1012 | self.counter_imagwr = 0 |
|
1013 | self.counter_imagwr = 0 | |
1013 |
|
1014 | |||
1014 | self.PLOT_CODE = PARMS_CODE |
|
1015 | self.PLOT_CODE = PARMS_CODE | |
1015 |
|
1016 | |||
1016 | self.FTP_WEI = None |
|
1017 | self.FTP_WEI = None | |
1017 | self.EXP_CODE = None |
|
1018 | self.EXP_CODE = None | |
1018 | self.SUB_EXP_CODE = None |
|
1019 | self.SUB_EXP_CODE = None | |
1019 | self.PLOT_POS = None |
|
1020 | self.PLOT_POS = None | |
1020 | self.tmin = None |
|
1021 | self.tmin = None | |
1021 | self.tmax = None |
|
1022 | self.tmax = None | |
1022 |
|
1023 | |||
1023 | self.xmin = None |
|
1024 | self.xmin = None | |
1024 | self.xmax = None |
|
1025 | self.xmax = None | |
1025 |
|
1026 | |||
1026 | self.figfile = None |
|
1027 | self.figfile = None | |
1027 |
|
1028 | |||
1028 | def getSubplots(self): |
|
1029 | def getSubplots(self): | |
1029 |
|
1030 | |||
1030 | ncol = 1 |
|
1031 | ncol = 1 | |
1031 | nrow = self.nplots |
|
1032 | nrow = self.nplots | |
1032 |
|
1033 | |||
1033 | return nrow, ncol |
|
1034 | return nrow, ncol | |
1034 |
|
1035 | |||
1035 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1036 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
1036 |
|
1037 | |||
1037 | self.__showprofile = showprofile |
|
1038 | self.__showprofile = showprofile | |
1038 | self.nplots = nplots |
|
1039 | self.nplots = nplots | |
1039 |
|
1040 | |||
1040 | ncolspan = 1 |
|
1041 | ncolspan = 1 | |
1041 | colspan = 1 |
|
1042 | colspan = 1 | |
1042 |
|
1043 | |||
1043 | self.createFigure(id = id, |
|
1044 | self.createFigure(id = id, | |
1044 | wintitle = wintitle, |
|
1045 | wintitle = wintitle, | |
1045 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
1046 | widthplot = self.WIDTH + self.WIDTHPROF, | |
1046 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
1047 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
1047 | show=show) |
|
1048 | show=show) | |
1048 |
|
1049 | |||
1049 | nrow, ncol = self.getSubplots() |
|
1050 | nrow, ncol = self.getSubplots() | |
1050 |
|
1051 | |||
1051 | counter = 0 |
|
1052 | counter = 0 | |
1052 | for y in range(nrow): |
|
1053 | for y in range(nrow): | |
1053 | for x in range(ncol): |
|
1054 | for x in range(ncol): | |
1054 |
|
1055 | |||
1055 | if counter >= self.nplots: |
|
1056 | if counter >= self.nplots: | |
1056 | break |
|
1057 | break | |
1057 |
|
1058 | |||
1058 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1059 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
1059 |
|
1060 | |||
1060 | if showprofile: |
|
1061 | if showprofile: | |
1061 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
1062 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
1062 |
|
1063 | |||
1063 | counter += 1 |
|
1064 | counter += 1 | |
1064 |
|
1065 | |||
1065 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False, |
|
1066 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False, | |
1066 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,timerange=None, |
|
1067 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,timerange=None, | |
1067 | parameterIndex = None, onlyPositive = False, |
|
1068 | parameterIndex = None, onlyPositive = False, | |
1068 | SNRthresh = -numpy.inf, SNR = True, SNRmin = None, SNRmax = None, onlySNR = False, |
|
1069 | SNRthresh = -numpy.inf, SNR = True, SNRmin = None, SNRmax = None, onlySNR = False, | |
1069 | DOP = True, |
|
1070 | DOP = True, | |
1070 | zlabel = "", parameterName = "", parameterObject = "data_param", |
|
1071 | zlabel = "", parameterName = "", parameterObject = "data_param", | |
1071 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
1072 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, | |
1072 | server=None, folder=None, username=None, password=None, |
|
1073 | server=None, folder=None, username=None, password=None, | |
1073 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1074 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1074 | #print inspect.getargspec(self.run).args |
|
1075 | #print inspect.getargspec(self.run).args | |
1075 | """ |
|
1076 | """ | |
1076 |
|
1077 | |||
1077 | Input: |
|
1078 | Input: | |
1078 | dataOut : |
|
1079 | dataOut : | |
1079 | id : |
|
1080 | id : | |
1080 | wintitle : |
|
1081 | wintitle : | |
1081 | channelList : |
|
1082 | channelList : | |
1082 | showProfile : |
|
1083 | showProfile : | |
1083 | xmin : None, |
|
1084 | xmin : None, | |
1084 | xmax : None, |
|
1085 | xmax : None, | |
1085 | ymin : None, |
|
1086 | ymin : None, | |
1086 | ymax : None, |
|
1087 | ymax : None, | |
1087 | zmin : None, |
|
1088 | zmin : None, | |
1088 | zmax : None |
|
1089 | zmax : None | |
1089 | """ |
|
1090 | """ | |
1090 |
|
1091 | |||
1091 | data_param = getattr(dataOut, parameterObject) |
|
1092 | data_param = getattr(dataOut, parameterObject) | |
1092 |
|
1093 | |||
1093 | if channelList == None: |
|
1094 | if channelList == None: | |
1094 | channelIndexList = numpy.arange(data_param.shape[0]) |
|
1095 | channelIndexList = numpy.arange(data_param.shape[0]) | |
1095 | else: |
|
1096 | else: | |
1096 | channelIndexList = numpy.array(channelList) |
|
1097 | channelIndexList = numpy.array(channelList) | |
1097 |
|
1098 | |||
1098 | nchan = len(channelIndexList) #Number of channels being plotted |
|
1099 | nchan = len(channelIndexList) #Number of channels being plotted | |
1099 |
|
1100 | |||
1100 | if nchan < 1: |
|
1101 | if nchan < 1: | |
1101 | return |
|
1102 | return | |
1102 |
|
1103 | |||
1103 | nGraphsByChannel = 0 |
|
1104 | nGraphsByChannel = 0 | |
1104 |
|
1105 | |||
1105 | if SNR: |
|
1106 | if SNR: | |
1106 | nGraphsByChannel += 1 |
|
1107 | nGraphsByChannel += 1 | |
1107 | if DOP: |
|
1108 | if DOP: | |
1108 | nGraphsByChannel += 1 |
|
1109 | nGraphsByChannel += 1 | |
1109 |
|
1110 | |||
1110 | if nGraphsByChannel < 1: |
|
1111 | if nGraphsByChannel < 1: | |
1111 | return |
|
1112 | return | |
1112 |
|
1113 | |||
1113 | nplots = nGraphsByChannel*nchan |
|
1114 | nplots = nGraphsByChannel*nchan | |
1114 |
|
1115 | |||
1115 | if timerange is not None: |
|
1116 | if timerange is not None: | |
1116 | self.timerange = timerange |
|
1117 | self.timerange = timerange | |
1117 |
|
1118 | |||
1118 | #tmin = None |
|
1119 | #tmin = None | |
1119 | #tmax = None |
|
1120 | #tmax = None | |
1120 | if parameterIndex == None: |
|
1121 | if parameterIndex == None: | |
1121 | parameterIndex = 1 |
|
1122 | parameterIndex = 1 | |
1122 |
|
1123 | |||
1123 | x = dataOut.getTimeRange1(dataOut.paramInterval) |
|
1124 | x = dataOut.getTimeRange1(dataOut.paramInterval) | |
1124 | y = dataOut.heightList |
|
1125 | y = dataOut.heightList | |
1125 | z = data_param[channelIndexList,parameterIndex,:].copy() |
|
1126 | z = data_param[channelIndexList,parameterIndex,:].copy() | |
1126 |
|
1127 | |||
1127 | zRange = dataOut.abscissaList |
|
1128 | zRange = dataOut.abscissaList | |
1128 | # nChannels = z.shape[0] #Number of wind dimensions estimated |
|
1129 | # nChannels = z.shape[0] #Number of wind dimensions estimated | |
1129 | # thisDatetime = dataOut.datatime |
|
1130 | # thisDatetime = dataOut.datatime | |
1130 |
|
1131 | |||
1131 | if dataOut.data_SNR is not None: |
|
1132 | if dataOut.data_SNR is not None: | |
1132 | SNRarray = dataOut.data_SNR[channelIndexList,:] |
|
1133 | SNRarray = dataOut.data_SNR[channelIndexList,:] | |
1133 | SNRdB = 10*numpy.log10(SNRarray) |
|
1134 | SNRdB = 10*numpy.log10(SNRarray) | |
1134 | # SNRavgdB = 10*numpy.log10(SNRavg) |
|
1135 | # SNRavgdB = 10*numpy.log10(SNRavg) | |
1135 | ind = numpy.where(SNRdB < 10**(SNRthresh/10)) |
|
1136 | ind = numpy.where(SNRdB < 10**(SNRthresh/10)) | |
1136 | z[ind] = numpy.nan |
|
1137 | z[ind] = numpy.nan | |
1137 |
|
1138 | |||
1138 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1139 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
1139 | title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1140 | title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1140 | xlabel = "" |
|
1141 | xlabel = "" | |
1141 | ylabel = "Range (Km)" |
|
1142 | ylabel = "Range (Km)" | |
1142 |
|
1143 | |||
1143 | if (SNR and not onlySNR): nplots = 2*nplots |
|
1144 | if (SNR and not onlySNR): nplots = 2*nplots | |
1144 |
|
1145 | |||
1145 | if onlyPositive: |
|
1146 | if onlyPositive: | |
1146 | colormap = "jet" |
|
1147 | colormap = "jet" | |
1147 | zmin = 0 |
|
1148 | zmin = 0 | |
1148 | else: colormap = "RdBu_r" |
|
1149 | else: colormap = "RdBu_r" | |
1149 |
|
1150 | |||
1150 | if not self.isConfig: |
|
1151 | if not self.isConfig: | |
1151 |
|
1152 | |||
1152 | self.setup(id=id, |
|
1153 | self.setup(id=id, | |
1153 | nplots=nplots, |
|
1154 | nplots=nplots, | |
1154 | wintitle=wintitle, |
|
1155 | wintitle=wintitle, | |
1155 | showprofile=showprofile, |
|
1156 | showprofile=showprofile, | |
1156 | show=show) |
|
1157 | show=show) | |
1157 |
|
1158 | |||
1158 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1159 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1159 |
|
1160 | |||
1160 | if ymin == None: ymin = numpy.nanmin(y) |
|
1161 | if ymin == None: ymin = numpy.nanmin(y) | |
1161 | if ymax == None: ymax = numpy.nanmax(y) |
|
1162 | if ymax == None: ymax = numpy.nanmax(y) | |
1162 | if zmin == None: zmin = numpy.nanmin(zRange) |
|
1163 | if zmin == None: zmin = numpy.nanmin(zRange) | |
1163 | if zmax == None: zmax = numpy.nanmax(zRange) |
|
1164 | if zmax == None: zmax = numpy.nanmax(zRange) | |
1164 |
|
1165 | |||
1165 | if SNR: |
|
1166 | if SNR: | |
1166 | if SNRmin == None: SNRmin = numpy.nanmin(SNRdB) |
|
1167 | if SNRmin == None: SNRmin = numpy.nanmin(SNRdB) | |
1167 | if SNRmax == None: SNRmax = numpy.nanmax(SNRdB) |
|
1168 | if SNRmax == None: SNRmax = numpy.nanmax(SNRdB) | |
1168 |
|
1169 | |||
1169 | self.FTP_WEI = ftp_wei |
|
1170 | self.FTP_WEI = ftp_wei | |
1170 | self.EXP_CODE = exp_code |
|
1171 | self.EXP_CODE = exp_code | |
1171 | self.SUB_EXP_CODE = sub_exp_code |
|
1172 | self.SUB_EXP_CODE = sub_exp_code | |
1172 | self.PLOT_POS = plot_pos |
|
1173 | self.PLOT_POS = plot_pos | |
1173 |
|
1174 | |||
1174 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1175 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1175 | self.isConfig = True |
|
1176 | self.isConfig = True | |
1176 | self.figfile = figfile |
|
1177 | self.figfile = figfile | |
1177 |
|
1178 | |||
1178 | self.setWinTitle(title) |
|
1179 | self.setWinTitle(title) | |
1179 |
|
1180 | |||
1180 | if ((self.xmax - x[1]) < (x[1]-x[0])): |
|
1181 | if ((self.xmax - x[1]) < (x[1]-x[0])): | |
1181 | x[1] = self.xmax |
|
1182 | x[1] = self.xmax | |
1182 |
|
1183 | |||
1183 | for i in range(nchan): |
|
1184 | for i in range(nchan): | |
1184 |
|
1185 | |||
1185 | if (SNR and not onlySNR): j = 2*i |
|
1186 | if (SNR and not onlySNR): j = 2*i | |
1186 | else: j = i |
|
1187 | else: j = i | |
1187 |
|
1188 | |||
1188 | j = nGraphsByChannel*i |
|
1189 | j = nGraphsByChannel*i | |
1189 |
|
1190 | |||
1190 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
1191 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
1191 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
1192 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
1192 |
|
1193 | |||
1193 | if not onlySNR: |
|
1194 | if not onlySNR: | |
1194 | axes = self.axesList[j*self.__nsubplots] |
|
1195 | axes = self.axesList[j*self.__nsubplots] | |
1195 | z1 = z[i,:].reshape((1,-1)) |
|
1196 | z1 = z[i,:].reshape((1,-1)) | |
1196 | axes.pcolorbuffer(x, y, z1, |
|
1197 | axes.pcolorbuffer(x, y, z1, | |
1197 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
1198 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
1198 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap, |
|
1199 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap, | |
1199 | ticksize=9, cblabel=zlabel, cbsize="1%") |
|
1200 | ticksize=9, cblabel=zlabel, cbsize="1%") | |
1200 |
|
1201 | |||
1201 | if DOP: |
|
1202 | if DOP: | |
1202 | title = "%s Channel %d: %s" %(parameterName, channelIndexList[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1203 | title = "%s Channel %d: %s" %(parameterName, channelIndexList[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1203 |
|
1204 | |||
1204 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
1205 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
1205 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
1206 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
1206 | axes = self.axesList[j] |
|
1207 | axes = self.axesList[j] | |
1207 | z1 = z[i,:].reshape((1,-1)) |
|
1208 | z1 = z[i,:].reshape((1,-1)) | |
1208 | axes.pcolorbuffer(x, y, z1, |
|
1209 | axes.pcolorbuffer(x, y, z1, | |
1209 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
1210 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
1210 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap, |
|
1211 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap, | |
1211 | ticksize=9, cblabel=zlabel, cbsize="1%") |
|
1212 | ticksize=9, cblabel=zlabel, cbsize="1%") | |
1212 |
|
1213 | |||
1213 | if SNR: |
|
1214 | if SNR: | |
1214 | title = "Channel %d Signal Noise Ratio (SNR): %s" %(channelIndexList[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1215 | title = "Channel %d Signal Noise Ratio (SNR): %s" %(channelIndexList[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1215 | axes = self.axesList[(j)*self.__nsubplots] |
|
1216 | axes = self.axesList[(j)*self.__nsubplots] | |
1216 | if not onlySNR: |
|
1217 | if not onlySNR: | |
1217 | axes = self.axesList[(j + 1)*self.__nsubplots] |
|
1218 | axes = self.axesList[(j + 1)*self.__nsubplots] | |
1218 |
|
1219 | |||
1219 | axes = self.axesList[(j + nGraphsByChannel-1)] |
|
1220 | axes = self.axesList[(j + nGraphsByChannel-1)] | |
1220 |
|
1221 | |||
1221 | z1 = SNRdB[i,:].reshape((1,-1)) |
|
1222 | z1 = SNRdB[i,:].reshape((1,-1)) | |
1222 | axes.pcolorbuffer(x, y, z1, |
|
1223 | axes.pcolorbuffer(x, y, z1, | |
1223 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
1224 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |
1224 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap="jet", |
|
1225 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap="jet", | |
1225 | ticksize=9, cblabel=zlabel, cbsize="1%") |
|
1226 | ticksize=9, cblabel=zlabel, cbsize="1%") | |
1226 |
|
1227 | |||
1227 |
|
1228 | |||
1228 |
|
1229 | |||
1229 | self.draw() |
|
1230 | self.draw() | |
1230 |
|
1231 | |||
1231 | if x[1] >= self.axesList[0].xmax: |
|
1232 | if x[1] >= self.axesList[0].xmax: | |
1232 | self.counter_imagwr = wr_period |
|
1233 | self.counter_imagwr = wr_period | |
1233 | self.isConfig = False |
|
1234 | self.isConfig = False | |
1234 | self.figfile = None |
|
1235 | self.figfile = None | |
1235 |
|
1236 | |||
1236 | self.save(figpath=figpath, |
|
1237 | self.save(figpath=figpath, | |
1237 | figfile=figfile, |
|
1238 | figfile=figfile, | |
1238 | save=save, |
|
1239 | save=save, | |
1239 | ftp=ftp, |
|
1240 | ftp=ftp, | |
1240 | wr_period=wr_period, |
|
1241 | wr_period=wr_period, | |
1241 | thisDatetime=thisDatetime, |
|
1242 | thisDatetime=thisDatetime, | |
1242 | update_figfile=False) |
|
1243 | update_figfile=False) | |
1243 |
|
1244 | |||
1244 | class SpectralFittingPlot(Figure): |
|
1245 | class SpectralFittingPlot(Figure): | |
1245 |
|
1246 | |||
1246 | __isConfig = None |
|
1247 | __isConfig = None | |
1247 | __nsubplots = None |
|
1248 | __nsubplots = None | |
1248 |
|
1249 | |||
1249 | WIDTHPROF = None |
|
1250 | WIDTHPROF = None | |
1250 | HEIGHTPROF = None |
|
1251 | HEIGHTPROF = None | |
1251 | PREFIX = 'prm' |
|
1252 | PREFIX = 'prm' | |
1252 |
|
1253 | |||
1253 |
|
1254 | |||
1254 | N = None |
|
1255 | N = None | |
1255 | ippSeconds = None |
|
1256 | ippSeconds = None | |
1256 |
|
1257 | |||
1257 | def __init__(self, **kwargs): |
|
1258 | def __init__(self, **kwargs): | |
1258 | Figure.__init__(self, **kwargs) |
|
1259 | Figure.__init__(self, **kwargs) | |
1259 | self.isConfig = False |
|
1260 | self.isConfig = False | |
1260 | self.__nsubplots = 1 |
|
1261 | self.__nsubplots = 1 | |
1261 |
|
1262 | |||
1262 | self.PLOT_CODE = SPECFIT_CODE |
|
1263 | self.PLOT_CODE = SPECFIT_CODE | |
1263 |
|
1264 | |||
1264 | self.WIDTH = 450 |
|
1265 | self.WIDTH = 450 | |
1265 | self.HEIGHT = 250 |
|
1266 | self.HEIGHT = 250 | |
1266 | self.WIDTHPROF = 0 |
|
1267 | self.WIDTHPROF = 0 | |
1267 | self.HEIGHTPROF = 0 |
|
1268 | self.HEIGHTPROF = 0 | |
1268 |
|
1269 | |||
1269 | def getSubplots(self): |
|
1270 | def getSubplots(self): | |
1270 |
|
1271 | |||
1271 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
1272 | ncol = int(numpy.sqrt(self.nplots)+0.9) | |
1272 | nrow = int(self.nplots*1./ncol + 0.9) |
|
1273 | nrow = int(self.nplots*1./ncol + 0.9) | |
1273 |
|
1274 | |||
1274 | return nrow, ncol |
|
1275 | return nrow, ncol | |
1275 |
|
1276 | |||
1276 | def setup(self, id, nplots, wintitle, showprofile=False, show=True): |
|
1277 | def setup(self, id, nplots, wintitle, showprofile=False, show=True): | |
1277 |
|
1278 | |||
1278 | showprofile = False |
|
1279 | showprofile = False | |
1279 | self.__showprofile = showprofile |
|
1280 | self.__showprofile = showprofile | |
1280 | self.nplots = nplots |
|
1281 | self.nplots = nplots | |
1281 |
|
1282 | |||
1282 | ncolspan = 5 |
|
1283 | ncolspan = 5 | |
1283 | colspan = 4 |
|
1284 | colspan = 4 | |
1284 | if showprofile: |
|
1285 | if showprofile: | |
1285 | ncolspan = 5 |
|
1286 | ncolspan = 5 | |
1286 | colspan = 4 |
|
1287 | colspan = 4 | |
1287 | self.__nsubplots = 2 |
|
1288 | self.__nsubplots = 2 | |
1288 |
|
1289 | |||
1289 | self.createFigure(id = id, |
|
1290 | self.createFigure(id = id, | |
1290 | wintitle = wintitle, |
|
1291 | wintitle = wintitle, | |
1291 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
1292 | widthplot = self.WIDTH + self.WIDTHPROF, | |
1292 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
1293 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
1293 | show=show) |
|
1294 | show=show) | |
1294 |
|
1295 | |||
1295 | nrow, ncol = self.getSubplots() |
|
1296 | nrow, ncol = self.getSubplots() | |
1296 |
|
1297 | |||
1297 | counter = 0 |
|
1298 | counter = 0 | |
1298 | for y in range(nrow): |
|
1299 | for y in range(nrow): | |
1299 | for x in range(ncol): |
|
1300 | for x in range(ncol): | |
1300 |
|
1301 | |||
1301 | if counter >= self.nplots: |
|
1302 | if counter >= self.nplots: | |
1302 | break |
|
1303 | break | |
1303 |
|
1304 | |||
1304 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1305 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
1305 |
|
1306 | |||
1306 | if showprofile: |
|
1307 | if showprofile: | |
1307 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
1308 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
1308 |
|
1309 | |||
1309 | counter += 1 |
|
1310 | counter += 1 | |
1310 |
|
1311 | |||
1311 | def run(self, dataOut, id, cutHeight=None, fit=False, wintitle="", channelList=None, showprofile=True, |
|
1312 | def run(self, dataOut, id, cutHeight=None, fit=False, wintitle="", channelList=None, showprofile=True, | |
1312 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1313 | xmin=None, xmax=None, ymin=None, ymax=None, | |
1313 | save=False, figpath='./', figfile=None, show=True): |
|
1314 | save=False, figpath='./', figfile=None, show=True): | |
1314 |
|
1315 | |||
1315 | """ |
|
1316 | """ | |
1316 |
|
1317 | |||
1317 | Input: |
|
1318 | Input: | |
1318 | dataOut : |
|
1319 | dataOut : | |
1319 | id : |
|
1320 | id : | |
1320 | wintitle : |
|
1321 | wintitle : | |
1321 | channelList : |
|
1322 | channelList : | |
1322 | showProfile : |
|
1323 | showProfile : | |
1323 | xmin : None, |
|
1324 | xmin : None, | |
1324 | xmax : None, |
|
1325 | xmax : None, | |
1325 | zmin : None, |
|
1326 | zmin : None, | |
1326 | zmax : None |
|
1327 | zmax : None | |
1327 | """ |
|
1328 | """ | |
1328 |
|
1329 | |||
1329 | if cutHeight==None: |
|
1330 | if cutHeight==None: | |
1330 | h=270 |
|
1331 | h=270 | |
1331 | heightindex = numpy.abs(cutHeight - dataOut.heightList).argmin() |
|
1332 | heightindex = numpy.abs(cutHeight - dataOut.heightList).argmin() | |
1332 | cutHeight = dataOut.heightList[heightindex] |
|
1333 | cutHeight = dataOut.heightList[heightindex] | |
1333 |
|
1334 | |||
1334 | factor = dataOut.normFactor |
|
1335 | factor = dataOut.normFactor | |
1335 | x = dataOut.abscissaList[:-1] |
|
1336 | x = dataOut.abscissaList[:-1] | |
1336 | #y = dataOut.getHeiRange() |
|
1337 | #y = dataOut.getHeiRange() | |
1337 |
|
1338 | |||
1338 | z = dataOut.data_pre[:,:,heightindex]/factor |
|
1339 | z = dataOut.data_pre[:,:,heightindex]/factor | |
1339 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1340 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
1340 | avg = numpy.average(z, axis=1) |
|
1341 | avg = numpy.average(z, axis=1) | |
1341 | listChannels = z.shape[0] |
|
1342 | listChannels = z.shape[0] | |
1342 |
|
1343 | |||
1343 | #Reconstruct Function |
|
1344 | #Reconstruct Function | |
1344 | if fit==True: |
|
1345 | if fit==True: | |
1345 | groupArray = dataOut.groupList |
|
1346 | groupArray = dataOut.groupList | |
1346 | listChannels = groupArray.reshape((groupArray.size)) |
|
1347 | listChannels = groupArray.reshape((groupArray.size)) | |
1347 | listChannels.sort() |
|
1348 | listChannels.sort() | |
1348 | spcFitLine = numpy.zeros(z.shape) |
|
1349 | spcFitLine = numpy.zeros(z.shape) | |
1349 | constants = dataOut.constants |
|
1350 | constants = dataOut.constants | |
1350 |
|
1351 | |||
1351 | nGroups = groupArray.shape[0] |
|
1352 | nGroups = groupArray.shape[0] | |
1352 | nChannels = groupArray.shape[1] |
|
1353 | nChannels = groupArray.shape[1] | |
1353 | nProfiles = z.shape[1] |
|
1354 | nProfiles = z.shape[1] | |
1354 |
|
1355 | |||
1355 | for f in range(nGroups): |
|
1356 | for f in range(nGroups): | |
1356 | groupChann = groupArray[f,:] |
|
1357 | groupChann = groupArray[f,:] | |
1357 | p = dataOut.data_param[f,:,heightindex] |
|
1358 | p = dataOut.data_param[f,:,heightindex] | |
1358 | # p = numpy.array([ 89.343967,0.14036615,0.17086219,18.89835291,1.58388365,1.55099167]) |
|
1359 | # p = numpy.array([ 89.343967,0.14036615,0.17086219,18.89835291,1.58388365,1.55099167]) | |
1359 | fitLineAux = dataOut.library.modelFunction(p, constants)*nProfiles |
|
1360 | fitLineAux = dataOut.library.modelFunction(p, constants)*nProfiles | |
1360 | fitLineAux = fitLineAux.reshape((nChannels,nProfiles)) |
|
1361 | fitLineAux = fitLineAux.reshape((nChannels,nProfiles)) | |
1361 | spcFitLine[groupChann,:] = fitLineAux |
|
1362 | spcFitLine[groupChann,:] = fitLineAux | |
1362 | # spcFitLine = spcFitLine/factor |
|
1363 | # spcFitLine = spcFitLine/factor | |
1363 |
|
1364 | |||
1364 | z = z[listChannels,:] |
|
1365 | z = z[listChannels,:] | |
1365 | spcFitLine = spcFitLine[listChannels,:] |
|
1366 | spcFitLine = spcFitLine[listChannels,:] | |
1366 | spcFitLinedB = 10*numpy.log10(spcFitLine) |
|
1367 | spcFitLinedB = 10*numpy.log10(spcFitLine) | |
1367 |
|
1368 | |||
1368 | zdB = 10*numpy.log10(z) |
|
1369 | zdB = 10*numpy.log10(z) | |
1369 | #thisDatetime = dataOut.datatime |
|
1370 | #thisDatetime = dataOut.datatime | |
1370 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1371 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
1371 | title = wintitle + " Doppler Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1372 | title = wintitle + " Doppler Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
1372 | xlabel = "Velocity (m/s)" |
|
1373 | xlabel = "Velocity (m/s)" | |
1373 | ylabel = "Spectrum" |
|
1374 | ylabel = "Spectrum" | |
1374 |
|
1375 | |||
1375 | if not self.isConfig: |
|
1376 | if not self.isConfig: | |
1376 |
|
1377 | |||
1377 | nplots = listChannels.size |
|
1378 | nplots = listChannels.size | |
1378 |
|
1379 | |||
1379 | self.setup(id=id, |
|
1380 | self.setup(id=id, | |
1380 | nplots=nplots, |
|
1381 | nplots=nplots, | |
1381 | wintitle=wintitle, |
|
1382 | wintitle=wintitle, | |
1382 | showprofile=showprofile, |
|
1383 | showprofile=showprofile, | |
1383 | show=show) |
|
1384 | show=show) | |
1384 |
|
1385 | |||
1385 | if xmin == None: xmin = numpy.nanmin(x) |
|
1386 | if xmin == None: xmin = numpy.nanmin(x) | |
1386 | if xmax == None: xmax = numpy.nanmax(x) |
|
1387 | if xmax == None: xmax = numpy.nanmax(x) | |
1387 | if ymin == None: ymin = numpy.nanmin(zdB) |
|
1388 | if ymin == None: ymin = numpy.nanmin(zdB) | |
1388 | if ymax == None: ymax = numpy.nanmax(zdB)+2 |
|
1389 | if ymax == None: ymax = numpy.nanmax(zdB)+2 | |
1389 |
|
1390 | |||
1390 | self.isConfig = True |
|
1391 | self.isConfig = True | |
1391 |
|
1392 | |||
1392 | self.setWinTitle(title) |
|
1393 | self.setWinTitle(title) | |
1393 | for i in range(self.nplots): |
|
1394 | for i in range(self.nplots): | |
1394 | # title = "Channel %d: %4.2fdB" %(dataOut.channelList[i]+1, noisedB[i]) |
|
1395 | # title = "Channel %d: %4.2fdB" %(dataOut.channelList[i]+1, noisedB[i]) | |
1395 | title = "Height %4.1f km\nChannel %d:" %(cutHeight, listChannels[i]) |
|
1396 | title = "Height %4.1f km\nChannel %d:" %(cutHeight, listChannels[i]) | |
1396 | axes = self.axesList[i*self.__nsubplots] |
|
1397 | axes = self.axesList[i*self.__nsubplots] | |
1397 | if fit == False: |
|
1398 | if fit == False: | |
1398 | axes.pline(x, zdB[i,:], |
|
1399 | axes.pline(x, zdB[i,:], | |
1399 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1400 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |
1400 | xlabel=xlabel, ylabel=ylabel, title=title |
|
1401 | xlabel=xlabel, ylabel=ylabel, title=title | |
1401 | ) |
|
1402 | ) | |
1402 | if fit == True: |
|
1403 | if fit == True: | |
1403 | fitline=spcFitLinedB[i,:] |
|
1404 | fitline=spcFitLinedB[i,:] | |
1404 | y=numpy.vstack([zdB[i,:],fitline] ) |
|
1405 | y=numpy.vstack([zdB[i,:],fitline] ) | |
1405 | legendlabels=['Data','Fitting'] |
|
1406 | legendlabels=['Data','Fitting'] | |
1406 | axes.pmultilineyaxis(x, y, |
|
1407 | axes.pmultilineyaxis(x, y, | |
1407 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1408 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |
1408 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
1409 | xlabel=xlabel, ylabel=ylabel, title=title, | |
1409 | legendlabels=legendlabels, marker=None, |
|
1410 | legendlabels=legendlabels, marker=None, | |
1410 | linestyle='solid', grid='both') |
|
1411 | linestyle='solid', grid='both') | |
1411 |
|
1412 | |||
1412 | self.draw() |
|
1413 | self.draw() | |
1413 |
|
1414 | |||
1414 | self.save(figpath=figpath, |
|
1415 | self.save(figpath=figpath, | |
1415 | figfile=figfile, |
|
1416 | figfile=figfile, | |
1416 | save=save, |
|
1417 | save=save, | |
1417 | ftp=ftp, |
|
1418 | ftp=ftp, | |
1418 | wr_period=wr_period, |
|
1419 | wr_period=wr_period, | |
1419 | thisDatetime=thisDatetime) |
|
1420 | thisDatetime=thisDatetime) | |
1420 |
|
1421 | |||
1421 |
|
1422 | |||
1422 | class EWDriftsPlot(Figure): |
|
1423 | class EWDriftsPlot(Figure): | |
1423 |
|
1424 | |||
1424 | __isConfig = None |
|
1425 | __isConfig = None | |
1425 | __nsubplots = None |
|
1426 | __nsubplots = None | |
1426 |
|
1427 | |||
1427 | WIDTHPROF = None |
|
1428 | WIDTHPROF = None | |
1428 | HEIGHTPROF = None |
|
1429 | HEIGHTPROF = None | |
1429 | PREFIX = 'drift' |
|
1430 | PREFIX = 'drift' | |
1430 |
|
1431 | |||
1431 | def __init__(self, **kwargs): |
|
1432 | def __init__(self, **kwargs): | |
1432 | Figure.__init__(self, **kwargs) |
|
1433 | Figure.__init__(self, **kwargs) | |
1433 | self.timerange = 2*60*60 |
|
1434 | self.timerange = 2*60*60 | |
1434 | self.isConfig = False |
|
1435 | self.isConfig = False | |
1435 | self.__nsubplots = 1 |
|
1436 | self.__nsubplots = 1 | |
1436 |
|
1437 | |||
1437 | self.WIDTH = 800 |
|
1438 | self.WIDTH = 800 | |
1438 | self.HEIGHT = 150 |
|
1439 | self.HEIGHT = 150 | |
1439 | self.WIDTHPROF = 120 |
|
1440 | self.WIDTHPROF = 120 | |
1440 | self.HEIGHTPROF = 0 |
|
1441 | self.HEIGHTPROF = 0 | |
1441 | self.counter_imagwr = 0 |
|
1442 | self.counter_imagwr = 0 | |
1442 |
|
1443 | |||
1443 | self.PLOT_CODE = EWDRIFT_CODE |
|
1444 | self.PLOT_CODE = EWDRIFT_CODE | |
1444 |
|
1445 | |||
1445 | self.FTP_WEI = None |
|
1446 | self.FTP_WEI = None | |
1446 | self.EXP_CODE = None |
|
1447 | self.EXP_CODE = None | |
1447 | self.SUB_EXP_CODE = None |
|
1448 | self.SUB_EXP_CODE = None | |
1448 | self.PLOT_POS = None |
|
1449 | self.PLOT_POS = None | |
1449 | self.tmin = None |
|
1450 | self.tmin = None | |
1450 | self.tmax = None |
|
1451 | self.tmax = None | |
1451 |
|
1452 | |||
1452 | self.xmin = None |
|
1453 | self.xmin = None | |
1453 | self.xmax = None |
|
1454 | self.xmax = None | |
1454 |
|
1455 | |||
1455 | self.figfile = None |
|
1456 | self.figfile = None | |
1456 |
|
1457 | |||
1457 | def getSubplots(self): |
|
1458 | def getSubplots(self): | |
1458 |
|
1459 | |||
1459 | ncol = 1 |
|
1460 | ncol = 1 | |
1460 | nrow = self.nplots |
|
1461 | nrow = self.nplots | |
1461 |
|
1462 | |||
1462 | return nrow, ncol |
|
1463 | return nrow, ncol | |
1463 |
|
1464 | |||
1464 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1465 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
1465 |
|
1466 | |||
1466 | self.__showprofile = showprofile |
|
1467 | self.__showprofile = showprofile | |
1467 | self.nplots = nplots |
|
1468 | self.nplots = nplots | |
1468 |
|
1469 | |||
1469 | ncolspan = 1 |
|
1470 | ncolspan = 1 | |
1470 | colspan = 1 |
|
1471 | colspan = 1 | |
1471 |
|
1472 | |||
1472 | self.createFigure(id = id, |
|
1473 | self.createFigure(id = id, | |
1473 | wintitle = wintitle, |
|
1474 | wintitle = wintitle, | |
1474 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
1475 | widthplot = self.WIDTH + self.WIDTHPROF, | |
1475 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
1476 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
1476 | show=show) |
|
1477 | show=show) | |
1477 |
|
1478 | |||
1478 | nrow, ncol = self.getSubplots() |
|
1479 | nrow, ncol = self.getSubplots() | |
1479 |
|
1480 | |||
1480 | counter = 0 |
|
1481 | counter = 0 | |
1481 | for y in range(nrow): |
|
1482 | for y in range(nrow): | |
1482 | if counter >= self.nplots: |
|
1483 | if counter >= self.nplots: | |
1483 | break |
|
1484 | break | |
1484 |
|
1485 | |||
1485 | self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1) |
|
1486 | self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1) | |
1486 | counter += 1 |
|
1487 | counter += 1 | |
1487 |
|
1488 | |||
1488 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
1489 | def run(self, dataOut, id, wintitle="", channelList=None, | |
1489 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
1490 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
1490 | zmaxVertical = None, zminVertical = None, zmaxZonal = None, zminZonal = None, |
|
1491 | zmaxVertical = None, zminVertical = None, zmaxZonal = None, zminZonal = None, | |
1491 | timerange=None, SNRthresh = -numpy.inf, SNRmin = None, SNRmax = None, SNR_1 = False, |
|
1492 | timerange=None, SNRthresh = -numpy.inf, SNRmin = None, SNRmax = None, SNR_1 = False, | |
1492 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
1493 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, | |
1493 | server=None, folder=None, username=None, password=None, |
|
1494 | server=None, folder=None, username=None, password=None, | |
1494 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1495 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1495 | """ |
|
1496 | """ | |
1496 |
|
1497 | |||
1497 | Input: |
|
1498 | Input: | |
1498 | dataOut : |
|
1499 | dataOut : | |
1499 | id : |
|
1500 | id : | |
1500 | wintitle : |
|
1501 | wintitle : | |
1501 | channelList : |
|
1502 | channelList : | |
1502 | showProfile : |
|
1503 | showProfile : | |
1503 | xmin : None, |
|
1504 | xmin : None, | |
1504 | xmax : None, |
|
1505 | xmax : None, | |
1505 | ymin : None, |
|
1506 | ymin : None, | |
1506 | ymax : None, |
|
1507 | ymax : None, | |
1507 | zmin : None, |
|
1508 | zmin : None, | |
1508 | zmax : None |
|
1509 | zmax : None | |
1509 | """ |
|
1510 | """ | |
1510 |
|
1511 | |||
1511 | if timerange is not None: |
|
1512 | if timerange is not None: | |
1512 | self.timerange = timerange |
|
1513 | self.timerange = timerange | |
1513 |
|
1514 | |||
1514 | tmin = None |
|
1515 | tmin = None | |
1515 | tmax = None |
|
1516 | tmax = None | |
1516 |
|
1517 | |||
1517 | x = dataOut.getTimeRange1(dataOut.outputInterval) |
|
1518 | x = dataOut.getTimeRange1(dataOut.outputInterval) | |
1518 | # y = dataOut.heightList |
|
1519 | # y = dataOut.heightList | |
1519 | y = dataOut.heightList |
|
1520 | y = dataOut.heightList | |
1520 |
|
1521 | |||
1521 | z = dataOut.data_output |
|
1522 | z = dataOut.data_output | |
1522 | nplots = z.shape[0] #Number of wind dimensions estimated |
|
1523 | nplots = z.shape[0] #Number of wind dimensions estimated | |
1523 | nplotsw = nplots |
|
1524 | nplotsw = nplots | |
1524 |
|
1525 | |||
1525 | #If there is a SNR function defined |
|
1526 | #If there is a SNR function defined | |
1526 | if dataOut.data_SNR is not None: |
|
1527 | if dataOut.data_SNR is not None: | |
1527 | nplots += 1 |
|
1528 | nplots += 1 | |
1528 | SNR = dataOut.data_SNR |
|
1529 | SNR = dataOut.data_SNR | |
1529 |
|
1530 | |||
1530 | if SNR_1: |
|
1531 | if SNR_1: | |
1531 | SNR += 1 |
|
1532 | SNR += 1 | |
1532 |
|
1533 | |||
1533 | SNRavg = numpy.average(SNR, axis=0) |
|
1534 | SNRavg = numpy.average(SNR, axis=0) | |
1534 |
|
1535 | |||
1535 | SNRdB = 10*numpy.log10(SNR) |
|
1536 | SNRdB = 10*numpy.log10(SNR) | |
1536 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
1537 | SNRavgdB = 10*numpy.log10(SNRavg) | |
1537 |
|
1538 | |||
1538 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] |
|
1539 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] | |
1539 |
|
1540 | |||
1540 | for i in range(nplotsw): |
|
1541 | for i in range(nplotsw): | |
1541 | z[i,ind] = numpy.nan |
|
1542 | z[i,ind] = numpy.nan | |
1542 |
|
1543 | |||
1543 |
|
1544 | |||
1544 | showprofile = False |
|
1545 | showprofile = False | |
1545 | # thisDatetime = dataOut.datatime |
|
1546 | # thisDatetime = dataOut.datatime | |
1546 | thisDatetime = datetime.datetime.utcfromtimestamp(x[1]) |
|
1547 | thisDatetime = datetime.datetime.utcfromtimestamp(x[1]) | |
1547 | title = wintitle + " EW Drifts" |
|
1548 | title = wintitle + " EW Drifts" | |
1548 | xlabel = "" |
|
1549 | xlabel = "" | |
1549 | ylabel = "Height (Km)" |
|
1550 | ylabel = "Height (Km)" | |
1550 |
|
1551 | |||
1551 | if not self.isConfig: |
|
1552 | if not self.isConfig: | |
1552 |
|
1553 | |||
1553 | self.setup(id=id, |
|
1554 | self.setup(id=id, | |
1554 | nplots=nplots, |
|
1555 | nplots=nplots, | |
1555 | wintitle=wintitle, |
|
1556 | wintitle=wintitle, | |
1556 | showprofile=showprofile, |
|
1557 | showprofile=showprofile, | |
1557 | show=show) |
|
1558 | show=show) | |
1558 |
|
1559 | |||
1559 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1560 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1560 |
|
1561 | |||
1561 | if ymin == None: ymin = numpy.nanmin(y) |
|
1562 | if ymin == None: ymin = numpy.nanmin(y) | |
1562 | if ymax == None: ymax = numpy.nanmax(y) |
|
1563 | if ymax == None: ymax = numpy.nanmax(y) | |
1563 |
|
1564 | |||
1564 | if zmaxZonal == None: zmaxZonal = numpy.nanmax(abs(z[0,:])) |
|
1565 | if zmaxZonal == None: zmaxZonal = numpy.nanmax(abs(z[0,:])) | |
1565 | if zminZonal == None: zminZonal = -zmaxZonal |
|
1566 | if zminZonal == None: zminZonal = -zmaxZonal | |
1566 | if zmaxVertical == None: zmaxVertical = numpy.nanmax(abs(z[1,:])) |
|
1567 | if zmaxVertical == None: zmaxVertical = numpy.nanmax(abs(z[1,:])) | |
1567 | if zminVertical == None: zminVertical = -zmaxVertical |
|
1568 | if zminVertical == None: zminVertical = -zmaxVertical | |
1568 |
|
1569 | |||
1569 | if dataOut.data_SNR is not None: |
|
1570 | if dataOut.data_SNR is not None: | |
1570 | if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB) |
|
1571 | if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB) | |
1571 | if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB) |
|
1572 | if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB) | |
1572 |
|
1573 | |||
1573 | self.FTP_WEI = ftp_wei |
|
1574 | self.FTP_WEI = ftp_wei | |
1574 | self.EXP_CODE = exp_code |
|
1575 | self.EXP_CODE = exp_code | |
1575 | self.SUB_EXP_CODE = sub_exp_code |
|
1576 | self.SUB_EXP_CODE = sub_exp_code | |
1576 | self.PLOT_POS = plot_pos |
|
1577 | self.PLOT_POS = plot_pos | |
1577 |
|
1578 | |||
1578 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1579 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1579 | self.isConfig = True |
|
1580 | self.isConfig = True | |
1580 |
|
1581 | |||
1581 |
|
1582 | |||
1582 | self.setWinTitle(title) |
|
1583 | self.setWinTitle(title) | |
1583 |
|
1584 | |||
1584 | if ((self.xmax - x[1]) < (x[1]-x[0])): |
|
1585 | if ((self.xmax - x[1]) < (x[1]-x[0])): | |
1585 | x[1] = self.xmax |
|
1586 | x[1] = self.xmax | |
1586 |
|
1587 | |||
1587 | strWind = ['Zonal','Vertical'] |
|
1588 | strWind = ['Zonal','Vertical'] | |
1588 | strCb = 'Velocity (m/s)' |
|
1589 | strCb = 'Velocity (m/s)' | |
1589 | zmaxVector = [zmaxZonal, zmaxVertical] |
|
1590 | zmaxVector = [zmaxZonal, zmaxVertical] | |
1590 | zminVector = [zminZonal, zminVertical] |
|
1591 | zminVector = [zminZonal, zminVertical] | |
1591 |
|
1592 | |||
1592 | for i in range(nplotsw): |
|
1593 | for i in range(nplotsw): | |
1593 |
|
1594 | |||
1594 | title = "%s Drifts: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1595 | title = "%s Drifts: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1595 | axes = self.axesList[i*self.__nsubplots] |
|
1596 | axes = self.axesList[i*self.__nsubplots] | |
1596 |
|
1597 | |||
1597 | z1 = z[i,:].reshape((1,-1)) |
|
1598 | z1 = z[i,:].reshape((1,-1)) | |
1598 |
|
1599 | |||
1599 | axes.pcolorbuffer(x, y, z1, |
|
1600 | axes.pcolorbuffer(x, y, z1, | |
1600 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], |
|
1601 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], | |
1601 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
1602 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
1602 | ticksize=9, cblabel=strCb, cbsize="1%", colormap="RdBu_r") |
|
1603 | ticksize=9, cblabel=strCb, cbsize="1%", colormap="RdBu_r") | |
1603 |
|
1604 | |||
1604 | if dataOut.data_SNR is not None: |
|
1605 | if dataOut.data_SNR is not None: | |
1605 | i += 1 |
|
1606 | i += 1 | |
1606 | if SNR_1: |
|
1607 | if SNR_1: | |
1607 | title = "Signal Noise Ratio + 1 (SNR+1): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1608 | title = "Signal Noise Ratio + 1 (SNR+1): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1608 | else: |
|
1609 | else: | |
1609 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1610 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1610 | axes = self.axesList[i*self.__nsubplots] |
|
1611 | axes = self.axesList[i*self.__nsubplots] | |
1611 | SNRavgdB = SNRavgdB.reshape((1,-1)) |
|
1612 | SNRavgdB = SNRavgdB.reshape((1,-1)) | |
1612 |
|
1613 | |||
1613 | axes.pcolorbuffer(x, y, SNRavgdB, |
|
1614 | axes.pcolorbuffer(x, y, SNRavgdB, | |
1614 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
1615 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |
1615 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
1616 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
1616 | ticksize=9, cblabel='', cbsize="1%", colormap="jet") |
|
1617 | ticksize=9, cblabel='', cbsize="1%", colormap="jet") | |
1617 |
|
1618 | |||
1618 | self.draw() |
|
1619 | self.draw() | |
1619 |
|
1620 | |||
1620 | if x[1] >= self.axesList[0].xmax: |
|
1621 | if x[1] >= self.axesList[0].xmax: | |
1621 | self.counter_imagwr = wr_period |
|
1622 | self.counter_imagwr = wr_period | |
1622 | self.isConfig = False |
|
1623 | self.isConfig = False | |
1623 | self.figfile = None |
|
1624 | self.figfile = None | |
1624 |
|
1625 | |||
1625 |
|
1626 | |||
1626 |
|
1627 | |||
1627 |
|
1628 | |||
1628 | class PhasePlot(Figure): |
|
1629 | class PhasePlot(Figure): | |
1629 |
|
1630 | |||
1630 | __isConfig = None |
|
1631 | __isConfig = None | |
1631 | __nsubplots = None |
|
1632 | __nsubplots = None | |
1632 |
|
1633 | |||
1633 | PREFIX = 'mphase' |
|
1634 | PREFIX = 'mphase' | |
1634 |
|
1635 | |||
1635 | def __init__(self, **kwargs): |
|
1636 | def __init__(self, **kwargs): | |
1636 | Figure.__init__(self, **kwargs) |
|
1637 | Figure.__init__(self, **kwargs) | |
1637 | self.timerange = 24*60*60 |
|
1638 | self.timerange = 24*60*60 | |
1638 | self.isConfig = False |
|
1639 | self.isConfig = False | |
1639 | self.__nsubplots = 1 |
|
1640 | self.__nsubplots = 1 | |
1640 | self.counter_imagwr = 0 |
|
1641 | self.counter_imagwr = 0 | |
1641 | self.WIDTH = 600 |
|
1642 | self.WIDTH = 600 | |
1642 | self.HEIGHT = 300 |
|
1643 | self.HEIGHT = 300 | |
1643 | self.WIDTHPROF = 120 |
|
1644 | self.WIDTHPROF = 120 | |
1644 | self.HEIGHTPROF = 0 |
|
1645 | self.HEIGHTPROF = 0 | |
1645 | self.xdata = None |
|
1646 | self.xdata = None | |
1646 | self.ydata = None |
|
1647 | self.ydata = None | |
1647 |
|
1648 | |||
1648 | self.PLOT_CODE = MPHASE_CODE |
|
1649 | self.PLOT_CODE = MPHASE_CODE | |
1649 |
|
1650 | |||
1650 | self.FTP_WEI = None |
|
1651 | self.FTP_WEI = None | |
1651 | self.EXP_CODE = None |
|
1652 | self.EXP_CODE = None | |
1652 | self.SUB_EXP_CODE = None |
|
1653 | self.SUB_EXP_CODE = None | |
1653 | self.PLOT_POS = None |
|
1654 | self.PLOT_POS = None | |
1654 |
|
1655 | |||
1655 |
|
1656 | |||
1656 | self.filename_phase = None |
|
1657 | self.filename_phase = None | |
1657 |
|
1658 | |||
1658 | self.figfile = None |
|
1659 | self.figfile = None | |
1659 |
|
1660 | |||
1660 | def getSubplots(self): |
|
1661 | def getSubplots(self): | |
1661 |
|
1662 | |||
1662 | ncol = 1 |
|
1663 | ncol = 1 | |
1663 | nrow = 1 |
|
1664 | nrow = 1 | |
1664 |
|
1665 | |||
1665 | return nrow, ncol |
|
1666 | return nrow, ncol | |
1666 |
|
1667 | |||
1667 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1668 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
1668 |
|
1669 | |||
1669 | self.__showprofile = showprofile |
|
1670 | self.__showprofile = showprofile | |
1670 | self.nplots = nplots |
|
1671 | self.nplots = nplots | |
1671 |
|
1672 | |||
1672 | ncolspan = 7 |
|
1673 | ncolspan = 7 | |
1673 | colspan = 6 |
|
1674 | colspan = 6 | |
1674 | self.__nsubplots = 2 |
|
1675 | self.__nsubplots = 2 | |
1675 |
|
1676 | |||
1676 | self.createFigure(id = id, |
|
1677 | self.createFigure(id = id, | |
1677 | wintitle = wintitle, |
|
1678 | wintitle = wintitle, | |
1678 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1679 | widthplot = self.WIDTH+self.WIDTHPROF, | |
1679 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1680 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
1680 | show=show) |
|
1681 | show=show) | |
1681 |
|
1682 | |||
1682 | nrow, ncol = self.getSubplots() |
|
1683 | nrow, ncol = self.getSubplots() | |
1683 |
|
1684 | |||
1684 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1685 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
1685 |
|
1686 | |||
1686 |
|
1687 | |||
1687 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1688 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
1688 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1689 | xmin=None, xmax=None, ymin=None, ymax=None, | |
1689 | timerange=None, |
|
1690 | timerange=None, | |
1690 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1691 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
1691 | server=None, folder=None, username=None, password=None, |
|
1692 | server=None, folder=None, username=None, password=None, | |
1692 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1693 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1693 |
|
1694 | |||
1694 |
|
1695 | |||
1695 | tmin = None |
|
1696 | tmin = None | |
1696 | tmax = None |
|
1697 | tmax = None | |
1697 | x = dataOut.getTimeRange1(dataOut.outputInterval) |
|
1698 | x = dataOut.getTimeRange1(dataOut.outputInterval) | |
1698 | y = dataOut.getHeiRange() |
|
1699 | y = dataOut.getHeiRange() | |
1699 |
|
1700 | |||
1700 |
|
1701 | |||
1701 | #thisDatetime = dataOut.datatime |
|
1702 | #thisDatetime = dataOut.datatime | |
1702 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
1703 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) | |
1703 | title = wintitle + " Phase of Beacon Signal" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1704 | title = wintitle + " Phase of Beacon Signal" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1704 | xlabel = "Local Time" |
|
1705 | xlabel = "Local Time" | |
1705 | ylabel = "Phase" |
|
1706 | ylabel = "Phase" | |
1706 |
|
1707 | |||
1707 |
|
1708 | |||
1708 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1709 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
1709 | phase_beacon = dataOut.data_output |
|
1710 | phase_beacon = dataOut.data_output | |
1710 | update_figfile = False |
|
1711 | update_figfile = False | |
1711 |
|
1712 | |||
1712 | if not self.isConfig: |
|
1713 | if not self.isConfig: | |
1713 |
|
1714 | |||
1714 | self.nplots = phase_beacon.size |
|
1715 | self.nplots = phase_beacon.size | |
1715 |
|
1716 | |||
1716 | self.setup(id=id, |
|
1717 | self.setup(id=id, | |
1717 | nplots=self.nplots, |
|
1718 | nplots=self.nplots, | |
1718 | wintitle=wintitle, |
|
1719 | wintitle=wintitle, | |
1719 | showprofile=showprofile, |
|
1720 | showprofile=showprofile, | |
1720 | show=show) |
|
1721 | show=show) | |
1721 |
|
1722 | |||
1722 | if timerange is not None: |
|
1723 | if timerange is not None: | |
1723 | self.timerange = timerange |
|
1724 | self.timerange = timerange | |
1724 |
|
1725 | |||
1725 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1726 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1726 |
|
1727 | |||
1727 | if ymin == None: ymin = numpy.nanmin(phase_beacon) - 10.0 |
|
1728 | if ymin == None: ymin = numpy.nanmin(phase_beacon) - 10.0 | |
1728 | if ymax == None: ymax = numpy.nanmax(phase_beacon) + 10.0 |
|
1729 | if ymax == None: ymax = numpy.nanmax(phase_beacon) + 10.0 | |
1729 |
|
1730 | |||
1730 | self.FTP_WEI = ftp_wei |
|
1731 | self.FTP_WEI = ftp_wei | |
1731 | self.EXP_CODE = exp_code |
|
1732 | self.EXP_CODE = exp_code | |
1732 | self.SUB_EXP_CODE = sub_exp_code |
|
1733 | self.SUB_EXP_CODE = sub_exp_code | |
1733 | self.PLOT_POS = plot_pos |
|
1734 | self.PLOT_POS = plot_pos | |
1734 |
|
1735 | |||
1735 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1736 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1736 | self.isConfig = True |
|
1737 | self.isConfig = True | |
1737 | self.figfile = figfile |
|
1738 | self.figfile = figfile | |
1738 | self.xdata = numpy.array([]) |
|
1739 | self.xdata = numpy.array([]) | |
1739 | self.ydata = numpy.array([]) |
|
1740 | self.ydata = numpy.array([]) | |
1740 |
|
1741 | |||
1741 | #open file beacon phase |
|
1742 | #open file beacon phase | |
1742 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1743 | path = '%s%03d' %(self.PREFIX, self.id) | |
1743 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1744 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
1744 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1745 | self.filename_phase = os.path.join(figpath,beacon_file) | |
1745 | update_figfile = True |
|
1746 | update_figfile = True | |
1746 |
|
1747 | |||
1747 |
|
1748 | |||
1748 | #store data beacon phase |
|
1749 | #store data beacon phase | |
1749 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1750 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
1750 |
|
1751 | |||
1751 | self.setWinTitle(title) |
|
1752 | self.setWinTitle(title) | |
1752 |
|
1753 | |||
1753 |
|
1754 | |||
1754 | title = "Phase Offset %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1755 | title = "Phase Offset %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1755 |
|
1756 | |||
1756 | legendlabels = ["phase %d"%(chan) for chan in numpy.arange(self.nplots)] |
|
1757 | legendlabels = ["phase %d"%(chan) for chan in numpy.arange(self.nplots)] | |
1757 |
|
1758 | |||
1758 | axes = self.axesList[0] |
|
1759 | axes = self.axesList[0] | |
1759 |
|
1760 | |||
1760 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1761 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
1761 |
|
1762 | |||
1762 | if len(self.ydata)==0: |
|
1763 | if len(self.ydata)==0: | |
1763 | self.ydata = phase_beacon.reshape(-1,1) |
|
1764 | self.ydata = phase_beacon.reshape(-1,1) | |
1764 | else: |
|
1765 | else: | |
1765 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1766 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
1766 |
|
1767 | |||
1767 |
|
1768 | |||
1768 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1769 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
1769 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1770 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
1770 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1771 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
1771 | XAxisAsTime=True, grid='both' |
|
1772 | XAxisAsTime=True, grid='both' | |
1772 | ) |
|
1773 | ) | |
1773 |
|
1774 | |||
1774 | self.draw() |
|
1775 | self.draw() | |
1775 |
|
1776 | |||
1776 | self.save(figpath=figpath, |
|
1777 | self.save(figpath=figpath, | |
1777 | figfile=figfile, |
|
1778 | figfile=figfile, | |
1778 | save=save, |
|
1779 | save=save, | |
1779 | ftp=ftp, |
|
1780 | ftp=ftp, | |
1780 | wr_period=wr_period, |
|
1781 | wr_period=wr_period, | |
1781 | thisDatetime=thisDatetime, |
|
1782 | thisDatetime=thisDatetime, | |
1782 | update_figfile=update_figfile) |
|
1783 | update_figfile=update_figfile) | |
1783 |
|
1784 | |||
1784 | if dataOut.ltctime + dataOut.outputInterval >= self.xmax: |
|
1785 | if dataOut.ltctime + dataOut.outputInterval >= self.xmax: | |
1785 | self.counter_imagwr = wr_period |
|
1786 | self.counter_imagwr = wr_period | |
1786 | self.isConfig = False |
|
1787 | self.isConfig = False | |
1787 | update_figfile = True |
|
1788 | update_figfile = True | |
1788 |
|
1789 | |||
1789 |
|
1790 | |||
1790 |
|
1791 | |||
1791 | class NSMeteorDetection1Plot(Figure): |
|
1792 | class NSMeteorDetection1Plot(Figure): | |
1792 |
|
1793 | |||
1793 | isConfig = None |
|
1794 | isConfig = None | |
1794 | __nsubplots = None |
|
1795 | __nsubplots = None | |
1795 |
|
1796 | |||
1796 | WIDTHPROF = None |
|
1797 | WIDTHPROF = None | |
1797 | HEIGHTPROF = None |
|
1798 | HEIGHTPROF = None | |
1798 | PREFIX = 'nsm' |
|
1799 | PREFIX = 'nsm' | |
1799 |
|
1800 | |||
1800 | zminList = None |
|
1801 | zminList = None | |
1801 | zmaxList = None |
|
1802 | zmaxList = None | |
1802 | cmapList = None |
|
1803 | cmapList = None | |
1803 | titleList = None |
|
1804 | titleList = None | |
1804 | nPairs = None |
|
1805 | nPairs = None | |
1805 | nChannels = None |
|
1806 | nChannels = None | |
1806 | nParam = None |
|
1807 | nParam = None | |
1807 |
|
1808 | |||
1808 | def __init__(self, **kwargs): |
|
1809 | def __init__(self, **kwargs): | |
1809 | Figure.__init__(self, **kwargs) |
|
1810 | Figure.__init__(self, **kwargs) | |
1810 | self.isConfig = False |
|
1811 | self.isConfig = False | |
1811 | self.__nsubplots = 1 |
|
1812 | self.__nsubplots = 1 | |
1812 |
|
1813 | |||
1813 | self.WIDTH = 750 |
|
1814 | self.WIDTH = 750 | |
1814 | self.HEIGHT = 250 |
|
1815 | self.HEIGHT = 250 | |
1815 | self.WIDTHPROF = 120 |
|
1816 | self.WIDTHPROF = 120 | |
1816 | self.HEIGHTPROF = 0 |
|
1817 | self.HEIGHTPROF = 0 | |
1817 | self.counter_imagwr = 0 |
|
1818 | self.counter_imagwr = 0 | |
1818 |
|
1819 | |||
1819 | self.PLOT_CODE = SPEC_CODE |
|
1820 | self.PLOT_CODE = SPEC_CODE | |
1820 |
|
1821 | |||
1821 | self.FTP_WEI = None |
|
1822 | self.FTP_WEI = None | |
1822 | self.EXP_CODE = None |
|
1823 | self.EXP_CODE = None | |
1823 | self.SUB_EXP_CODE = None |
|
1824 | self.SUB_EXP_CODE = None | |
1824 | self.PLOT_POS = None |
|
1825 | self.PLOT_POS = None | |
1825 |
|
1826 | |||
1826 | self.__xfilter_ena = False |
|
1827 | self.__xfilter_ena = False | |
1827 | self.__yfilter_ena = False |
|
1828 | self.__yfilter_ena = False | |
1828 |
|
1829 | |||
1829 | def getSubplots(self): |
|
1830 | def getSubplots(self): | |
1830 |
|
1831 | |||
1831 | ncol = 3 |
|
1832 | ncol = 3 | |
1832 | nrow = int(numpy.ceil(self.nplots/3.0)) |
|
1833 | nrow = int(numpy.ceil(self.nplots/3.0)) | |
1833 |
|
1834 | |||
1834 | return nrow, ncol |
|
1835 | return nrow, ncol | |
1835 |
|
1836 | |||
1836 | def setup(self, id, nplots, wintitle, show=True): |
|
1837 | def setup(self, id, nplots, wintitle, show=True): | |
1837 |
|
1838 | |||
1838 | self.nplots = nplots |
|
1839 | self.nplots = nplots | |
1839 |
|
1840 | |||
1840 | ncolspan = 1 |
|
1841 | ncolspan = 1 | |
1841 | colspan = 1 |
|
1842 | colspan = 1 | |
1842 |
|
1843 | |||
1843 | self.createFigure(id = id, |
|
1844 | self.createFigure(id = id, | |
1844 | wintitle = wintitle, |
|
1845 | wintitle = wintitle, | |
1845 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
1846 | widthplot = self.WIDTH + self.WIDTHPROF, | |
1846 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
1847 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
1847 | show=show) |
|
1848 | show=show) | |
1848 |
|
1849 | |||
1849 | nrow, ncol = self.getSubplots() |
|
1850 | nrow, ncol = self.getSubplots() | |
1850 |
|
1851 | |||
1851 | counter = 0 |
|
1852 | counter = 0 | |
1852 | for y in range(nrow): |
|
1853 | for y in range(nrow): | |
1853 | for x in range(ncol): |
|
1854 | for x in range(ncol): | |
1854 |
|
1855 | |||
1855 | if counter >= self.nplots: |
|
1856 | if counter >= self.nplots: | |
1856 | break |
|
1857 | break | |
1857 |
|
1858 | |||
1858 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1859 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
1859 |
|
1860 | |||
1860 | counter += 1 |
|
1861 | counter += 1 | |
1861 |
|
1862 | |||
1862 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
1863 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, | |
1863 | xmin=None, xmax=None, ymin=None, ymax=None, SNRmin=None, SNRmax=None, |
|
1864 | xmin=None, xmax=None, ymin=None, ymax=None, SNRmin=None, SNRmax=None, | |
1864 | vmin=None, vmax=None, wmin=None, wmax=None, mode = 'SA', |
|
1865 | vmin=None, vmax=None, wmin=None, wmax=None, mode = 'SA', | |
1865 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1866 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
1866 | server=None, folder=None, username=None, password=None, |
|
1867 | server=None, folder=None, username=None, password=None, | |
1867 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
1868 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, | |
1868 | xaxis="frequency"): |
|
1869 | xaxis="frequency"): | |
1869 |
|
1870 | |||
1870 | """ |
|
1871 | """ | |
1871 |
|
1872 | |||
1872 | Input: |
|
1873 | Input: | |
1873 | dataOut : |
|
1874 | dataOut : | |
1874 | id : |
|
1875 | id : | |
1875 | wintitle : |
|
1876 | wintitle : | |
1876 | channelList : |
|
1877 | channelList : | |
1877 | showProfile : |
|
1878 | showProfile : | |
1878 | xmin : None, |
|
1879 | xmin : None, | |
1879 | xmax : None, |
|
1880 | xmax : None, | |
1880 | ymin : None, |
|
1881 | ymin : None, | |
1881 | ymax : None, |
|
1882 | ymax : None, | |
1882 | zmin : None, |
|
1883 | zmin : None, | |
1883 | zmax : None |
|
1884 | zmax : None | |
1884 | """ |
|
1885 | """ | |
1885 | #SEPARAR EN DOS PLOTS |
|
1886 | #SEPARAR EN DOS PLOTS | |
1886 | nParam = dataOut.data_param.shape[1] - 3 |
|
1887 | nParam = dataOut.data_param.shape[1] - 3 | |
1887 |
|
1888 | |||
1888 | utctime = dataOut.data_param[0,0] |
|
1889 | utctime = dataOut.data_param[0,0] | |
1889 | tmet = dataOut.data_param[:,1].astype(int) |
|
1890 | tmet = dataOut.data_param[:,1].astype(int) | |
1890 | hmet = dataOut.data_param[:,2].astype(int) |
|
1891 | hmet = dataOut.data_param[:,2].astype(int) | |
1891 |
|
1892 | |||
1892 | x = dataOut.abscissaList |
|
1893 | x = dataOut.abscissaList | |
1893 | y = dataOut.heightList |
|
1894 | y = dataOut.heightList | |
1894 |
|
1895 | |||
1895 | z = numpy.zeros((nParam, y.size, x.size - 1)) |
|
1896 | z = numpy.zeros((nParam, y.size, x.size - 1)) | |
1896 | z[:,:] = numpy.nan |
|
1897 | z[:,:] = numpy.nan | |
1897 | z[:,hmet,tmet] = dataOut.data_param[:,3:].T |
|
1898 | z[:,hmet,tmet] = dataOut.data_param[:,3:].T | |
1898 | z[0,:,:] = 10*numpy.log10(z[0,:,:]) |
|
1899 | z[0,:,:] = 10*numpy.log10(z[0,:,:]) | |
1899 |
|
1900 | |||
1900 | xlabel = "Time (s)" |
|
1901 | xlabel = "Time (s)" | |
1901 | ylabel = "Range (km)" |
|
1902 | ylabel = "Range (km)" | |
1902 |
|
1903 | |||
1903 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
1904 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) | |
1904 |
|
1905 | |||
1905 | if not self.isConfig: |
|
1906 | if not self.isConfig: | |
1906 |
|
1907 | |||
1907 | nplots = nParam |
|
1908 | nplots = nParam | |
1908 |
|
1909 | |||
1909 | self.setup(id=id, |
|
1910 | self.setup(id=id, | |
1910 | nplots=nplots, |
|
1911 | nplots=nplots, | |
1911 | wintitle=wintitle, |
|
1912 | wintitle=wintitle, | |
1912 | show=show) |
|
1913 | show=show) | |
1913 |
|
1914 | |||
1914 | if xmin is None: xmin = numpy.nanmin(x) |
|
1915 | if xmin is None: xmin = numpy.nanmin(x) | |
1915 | if xmax is None: xmax = numpy.nanmax(x) |
|
1916 | if xmax is None: xmax = numpy.nanmax(x) | |
1916 | if ymin is None: ymin = numpy.nanmin(y) |
|
1917 | if ymin is None: ymin = numpy.nanmin(y) | |
1917 | if ymax is None: ymax = numpy.nanmax(y) |
|
1918 | if ymax is None: ymax = numpy.nanmax(y) | |
1918 | if SNRmin is None: SNRmin = numpy.nanmin(z[0,:]) |
|
1919 | if SNRmin is None: SNRmin = numpy.nanmin(z[0,:]) | |
1919 | if SNRmax is None: SNRmax = numpy.nanmax(z[0,:]) |
|
1920 | if SNRmax is None: SNRmax = numpy.nanmax(z[0,:]) | |
1920 | if vmax is None: vmax = numpy.nanmax(numpy.abs(z[1,:])) |
|
1921 | if vmax is None: vmax = numpy.nanmax(numpy.abs(z[1,:])) | |
1921 | if vmin is None: vmin = -vmax |
|
1922 | if vmin is None: vmin = -vmax | |
1922 | if wmin is None: wmin = 0 |
|
1923 | if wmin is None: wmin = 0 | |
1923 | if wmax is None: wmax = 50 |
|
1924 | if wmax is None: wmax = 50 | |
1924 |
|
1925 | |||
1925 | pairsList = dataOut.groupList |
|
1926 | pairsList = dataOut.groupList | |
1926 | self.nPairs = len(dataOut.groupList) |
|
1927 | self.nPairs = len(dataOut.groupList) | |
1927 |
|
1928 | |||
1928 | zminList = [SNRmin, vmin, cmin] + [pmin]*self.nPairs |
|
1929 | zminList = [SNRmin, vmin, cmin] + [pmin]*self.nPairs | |
1929 | zmaxList = [SNRmax, vmax, cmax] + [pmax]*self.nPairs |
|
1930 | zmaxList = [SNRmax, vmax, cmax] + [pmax]*self.nPairs | |
1930 | titleList = ["SNR","Radial Velocity","Coherence"] |
|
1931 | titleList = ["SNR","Radial Velocity","Coherence"] | |
1931 | cmapList = ["jet","RdBu_r","jet"] |
|
1932 | cmapList = ["jet","RdBu_r","jet"] | |
1932 |
|
1933 | |||
1933 | for i in range(self.nPairs): |
|
1934 | for i in range(self.nPairs): | |
1934 | strAux1 = "Phase Difference "+ str(pairsList[i][0]) + str(pairsList[i][1]) |
|
1935 | strAux1 = "Phase Difference "+ str(pairsList[i][0]) + str(pairsList[i][1]) | |
1935 | titleList = titleList + [strAux1] |
|
1936 | titleList = titleList + [strAux1] | |
1936 | cmapList = cmapList + ["RdBu_r"] |
|
1937 | cmapList = cmapList + ["RdBu_r"] | |
1937 |
|
1938 | |||
1938 | self.zminList = zminList |
|
1939 | self.zminList = zminList | |
1939 | self.zmaxList = zmaxList |
|
1940 | self.zmaxList = zmaxList | |
1940 | self.cmapList = cmapList |
|
1941 | self.cmapList = cmapList | |
1941 | self.titleList = titleList |
|
1942 | self.titleList = titleList | |
1942 |
|
1943 | |||
1943 | self.FTP_WEI = ftp_wei |
|
1944 | self.FTP_WEI = ftp_wei | |
1944 | self.EXP_CODE = exp_code |
|
1945 | self.EXP_CODE = exp_code | |
1945 | self.SUB_EXP_CODE = sub_exp_code |
|
1946 | self.SUB_EXP_CODE = sub_exp_code | |
1946 | self.PLOT_POS = plot_pos |
|
1947 | self.PLOT_POS = plot_pos | |
1947 |
|
1948 | |||
1948 | self.isConfig = True |
|
1949 | self.isConfig = True | |
1949 |
|
1950 | |||
1950 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
1951 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
1951 |
|
1952 | |||
1952 | for i in range(nParam): |
|
1953 | for i in range(nParam): | |
1953 | title = self.titleList[i] + ": " +str_datetime |
|
1954 | title = self.titleList[i] + ": " +str_datetime | |
1954 | axes = self.axesList[i] |
|
1955 | axes = self.axesList[i] | |
1955 | axes.pcolor(x, y, z[i,:].T, |
|
1956 | axes.pcolor(x, y, z[i,:].T, | |
1956 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=self.zminList[i], zmax=self.zmaxList[i], |
|
1957 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=self.zminList[i], zmax=self.zmaxList[i], | |
1957 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=self.cmapList[i],ticksize=9, cblabel='') |
|
1958 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=self.cmapList[i],ticksize=9, cblabel='') | |
1958 | self.draw() |
|
1959 | self.draw() | |
1959 |
|
1960 | |||
1960 | if figfile == None: |
|
1961 | if figfile == None: | |
1961 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1962 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1962 | name = str_datetime |
|
1963 | name = str_datetime | |
1963 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
1964 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
1964 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
1965 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) | |
1965 | figfile = self.getFilename(name) |
|
1966 | figfile = self.getFilename(name) | |
1966 |
|
1967 | |||
1967 | self.save(figpath=figpath, |
|
1968 | self.save(figpath=figpath, | |
1968 | figfile=figfile, |
|
1969 | figfile=figfile, | |
1969 | save=save, |
|
1970 | save=save, | |
1970 | ftp=ftp, |
|
1971 | ftp=ftp, | |
1971 | wr_period=wr_period, |
|
1972 | wr_period=wr_period, | |
1972 | thisDatetime=thisDatetime) |
|
1973 | thisDatetime=thisDatetime) | |
1973 |
|
1974 | |||
1974 |
|
1975 | |||
1975 | class NSMeteorDetection2Plot(Figure): |
|
1976 | class NSMeteorDetection2Plot(Figure): | |
1976 |
|
1977 | |||
1977 | isConfig = None |
|
1978 | isConfig = None | |
1978 | __nsubplots = None |
|
1979 | __nsubplots = None | |
1979 |
|
1980 | |||
1980 | WIDTHPROF = None |
|
1981 | WIDTHPROF = None | |
1981 | HEIGHTPROF = None |
|
1982 | HEIGHTPROF = None | |
1982 | PREFIX = 'nsm' |
|
1983 | PREFIX = 'nsm' | |
1983 |
|
1984 | |||
1984 | zminList = None |
|
1985 | zminList = None | |
1985 | zmaxList = None |
|
1986 | zmaxList = None | |
1986 | cmapList = None |
|
1987 | cmapList = None | |
1987 | titleList = None |
|
1988 | titleList = None | |
1988 | nPairs = None |
|
1989 | nPairs = None | |
1989 | nChannels = None |
|
1990 | nChannels = None | |
1990 | nParam = None |
|
1991 | nParam = None | |
1991 |
|
1992 | |||
1992 | def __init__(self, **kwargs): |
|
1993 | def __init__(self, **kwargs): | |
1993 | Figure.__init__(self, **kwargs) |
|
1994 | Figure.__init__(self, **kwargs) | |
1994 | self.isConfig = False |
|
1995 | self.isConfig = False | |
1995 | self.__nsubplots = 1 |
|
1996 | self.__nsubplots = 1 | |
1996 |
|
1997 | |||
1997 | self.WIDTH = 750 |
|
1998 | self.WIDTH = 750 | |
1998 | self.HEIGHT = 250 |
|
1999 | self.HEIGHT = 250 | |
1999 | self.WIDTHPROF = 120 |
|
2000 | self.WIDTHPROF = 120 | |
2000 | self.HEIGHTPROF = 0 |
|
2001 | self.HEIGHTPROF = 0 | |
2001 | self.counter_imagwr = 0 |
|
2002 | self.counter_imagwr = 0 | |
2002 |
|
2003 | |||
2003 | self.PLOT_CODE = SPEC_CODE |
|
2004 | self.PLOT_CODE = SPEC_CODE | |
2004 |
|
2005 | |||
2005 | self.FTP_WEI = None |
|
2006 | self.FTP_WEI = None | |
2006 | self.EXP_CODE = None |
|
2007 | self.EXP_CODE = None | |
2007 | self.SUB_EXP_CODE = None |
|
2008 | self.SUB_EXP_CODE = None | |
2008 | self.PLOT_POS = None |
|
2009 | self.PLOT_POS = None | |
2009 |
|
2010 | |||
2010 | self.__xfilter_ena = False |
|
2011 | self.__xfilter_ena = False | |
2011 | self.__yfilter_ena = False |
|
2012 | self.__yfilter_ena = False | |
2012 |
|
2013 | |||
2013 | def getSubplots(self): |
|
2014 | def getSubplots(self): | |
2014 |
|
2015 | |||
2015 | ncol = 3 |
|
2016 | ncol = 3 | |
2016 | nrow = int(numpy.ceil(self.nplots/3.0)) |
|
2017 | nrow = int(numpy.ceil(self.nplots/3.0)) | |
2017 |
|
2018 | |||
2018 | return nrow, ncol |
|
2019 | return nrow, ncol | |
2019 |
|
2020 | |||
2020 | def setup(self, id, nplots, wintitle, show=True): |
|
2021 | def setup(self, id, nplots, wintitle, show=True): | |
2021 |
|
2022 | |||
2022 | self.nplots = nplots |
|
2023 | self.nplots = nplots | |
2023 |
|
2024 | |||
2024 | ncolspan = 1 |
|
2025 | ncolspan = 1 | |
2025 | colspan = 1 |
|
2026 | colspan = 1 | |
2026 |
|
2027 | |||
2027 | self.createFigure(id = id, |
|
2028 | self.createFigure(id = id, | |
2028 | wintitle = wintitle, |
|
2029 | wintitle = wintitle, | |
2029 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
2030 | widthplot = self.WIDTH + self.WIDTHPROF, | |
2030 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
2031 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
2031 | show=show) |
|
2032 | show=show) | |
2032 |
|
2033 | |||
2033 | nrow, ncol = self.getSubplots() |
|
2034 | nrow, ncol = self.getSubplots() | |
2034 |
|
2035 | |||
2035 | counter = 0 |
|
2036 | counter = 0 | |
2036 | for y in range(nrow): |
|
2037 | for y in range(nrow): | |
2037 | for x in range(ncol): |
|
2038 | for x in range(ncol): | |
2038 |
|
2039 | |||
2039 | if counter >= self.nplots: |
|
2040 | if counter >= self.nplots: | |
2040 | break |
|
2041 | break | |
2041 |
|
2042 | |||
2042 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
2043 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
2043 |
|
2044 | |||
2044 | counter += 1 |
|
2045 | counter += 1 | |
2045 |
|
2046 | |||
2046 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
2047 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, | |
2047 | xmin=None, xmax=None, ymin=None, ymax=None, SNRmin=None, SNRmax=None, |
|
2048 | xmin=None, xmax=None, ymin=None, ymax=None, SNRmin=None, SNRmax=None, | |
2048 | vmin=None, vmax=None, wmin=None, wmax=None, mode = 'SA', |
|
2049 | vmin=None, vmax=None, wmin=None, wmax=None, mode = 'SA', | |
2049 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
2050 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
2050 | server=None, folder=None, username=None, password=None, |
|
2051 | server=None, folder=None, username=None, password=None, | |
2051 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
2052 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, | |
2052 | xaxis="frequency"): |
|
2053 | xaxis="frequency"): | |
2053 |
|
2054 | |||
2054 | """ |
|
2055 | """ | |
2055 |
|
2056 | |||
2056 | Input: |
|
2057 | Input: | |
2057 | dataOut : |
|
2058 | dataOut : | |
2058 | id : |
|
2059 | id : | |
2059 | wintitle : |
|
2060 | wintitle : | |
2060 | channelList : |
|
2061 | channelList : | |
2061 | showProfile : |
|
2062 | showProfile : | |
2062 | xmin : None, |
|
2063 | xmin : None, | |
2063 | xmax : None, |
|
2064 | xmax : None, | |
2064 | ymin : None, |
|
2065 | ymin : None, | |
2065 | ymax : None, |
|
2066 | ymax : None, | |
2066 | zmin : None, |
|
2067 | zmin : None, | |
2067 | zmax : None |
|
2068 | zmax : None | |
2068 | """ |
|
2069 | """ | |
2069 | #Rebuild matrix |
|
2070 | #Rebuild matrix | |
2070 | utctime = dataOut.data_param[0,0] |
|
2071 | utctime = dataOut.data_param[0,0] | |
2071 | cmet = dataOut.data_param[:,1].astype(int) |
|
2072 | cmet = dataOut.data_param[:,1].astype(int) | |
2072 | tmet = dataOut.data_param[:,2].astype(int) |
|
2073 | tmet = dataOut.data_param[:,2].astype(int) | |
2073 | hmet = dataOut.data_param[:,3].astype(int) |
|
2074 | hmet = dataOut.data_param[:,3].astype(int) | |
2074 |
|
2075 | |||
2075 | nParam = 3 |
|
2076 | nParam = 3 | |
2076 | nChan = len(dataOut.groupList) |
|
2077 | nChan = len(dataOut.groupList) | |
2077 | x = dataOut.abscissaList |
|
2078 | x = dataOut.abscissaList | |
2078 | y = dataOut.heightList |
|
2079 | y = dataOut.heightList | |
2079 |
|
2080 | |||
2080 | z = numpy.full((nChan, nParam, y.size, x.size - 1),numpy.nan) |
|
2081 | z = numpy.full((nChan, nParam, y.size, x.size - 1),numpy.nan) | |
2081 | z[cmet,:,hmet,tmet] = dataOut.data_param[:,4:] |
|
2082 | z[cmet,:,hmet,tmet] = dataOut.data_param[:,4:] | |
2082 | z[:,0,:,:] = 10*numpy.log10(z[:,0,:,:]) #logarithmic scale |
|
2083 | z[:,0,:,:] = 10*numpy.log10(z[:,0,:,:]) #logarithmic scale | |
2083 | z = numpy.reshape(z, (nChan*nParam, y.size, x.size-1)) |
|
2084 | z = numpy.reshape(z, (nChan*nParam, y.size, x.size-1)) | |
2084 |
|
2085 | |||
2085 | xlabel = "Time (s)" |
|
2086 | xlabel = "Time (s)" | |
2086 | ylabel = "Range (km)" |
|
2087 | ylabel = "Range (km)" | |
2087 |
|
2088 | |||
2088 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
2089 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) | |
2089 |
|
2090 | |||
2090 | if not self.isConfig: |
|
2091 | if not self.isConfig: | |
2091 |
|
2092 | |||
2092 | nplots = nParam*nChan |
|
2093 | nplots = nParam*nChan | |
2093 |
|
2094 | |||
2094 | self.setup(id=id, |
|
2095 | self.setup(id=id, | |
2095 | nplots=nplots, |
|
2096 | nplots=nplots, | |
2096 | wintitle=wintitle, |
|
2097 | wintitle=wintitle, | |
2097 | show=show) |
|
2098 | show=show) | |
2098 |
|
2099 | |||
2099 | if xmin is None: xmin = numpy.nanmin(x) |
|
2100 | if xmin is None: xmin = numpy.nanmin(x) | |
2100 | if xmax is None: xmax = numpy.nanmax(x) |
|
2101 | if xmax is None: xmax = numpy.nanmax(x) | |
2101 | if ymin is None: ymin = numpy.nanmin(y) |
|
2102 | if ymin is None: ymin = numpy.nanmin(y) | |
2102 | if ymax is None: ymax = numpy.nanmax(y) |
|
2103 | if ymax is None: ymax = numpy.nanmax(y) | |
2103 | if SNRmin is None: SNRmin = numpy.nanmin(z[0,:]) |
|
2104 | if SNRmin is None: SNRmin = numpy.nanmin(z[0,:]) | |
2104 | if SNRmax is None: SNRmax = numpy.nanmax(z[0,:]) |
|
2105 | if SNRmax is None: SNRmax = numpy.nanmax(z[0,:]) | |
2105 | if vmax is None: vmax = numpy.nanmax(numpy.abs(z[1,:])) |
|
2106 | if vmax is None: vmax = numpy.nanmax(numpy.abs(z[1,:])) | |
2106 | if vmin is None: vmin = -vmax |
|
2107 | if vmin is None: vmin = -vmax | |
2107 | if wmin is None: wmin = 0 |
|
2108 | if wmin is None: wmin = 0 | |
2108 | if wmax is None: wmax = 50 |
|
2109 | if wmax is None: wmax = 50 | |
2109 |
|
2110 | |||
2110 | self.nChannels = nChan |
|
2111 | self.nChannels = nChan | |
2111 |
|
2112 | |||
2112 | zminList = [] |
|
2113 | zminList = [] | |
2113 | zmaxList = [] |
|
2114 | zmaxList = [] | |
2114 | titleList = [] |
|
2115 | titleList = [] | |
2115 | cmapList = [] |
|
2116 | cmapList = [] | |
2116 | for i in range(self.nChannels): |
|
2117 | for i in range(self.nChannels): | |
2117 | strAux1 = "SNR Channel "+ str(i) |
|
2118 | strAux1 = "SNR Channel "+ str(i) | |
2118 | strAux2 = "Radial Velocity Channel "+ str(i) |
|
2119 | strAux2 = "Radial Velocity Channel "+ str(i) | |
2119 | strAux3 = "Spectral Width Channel "+ str(i) |
|
2120 | strAux3 = "Spectral Width Channel "+ str(i) | |
2120 |
|
2121 | |||
2121 | titleList = titleList + [strAux1,strAux2,strAux3] |
|
2122 | titleList = titleList + [strAux1,strAux2,strAux3] | |
2122 | cmapList = cmapList + ["jet","RdBu_r","jet"] |
|
2123 | cmapList = cmapList + ["jet","RdBu_r","jet"] | |
2123 | zminList = zminList + [SNRmin,vmin,wmin] |
|
2124 | zminList = zminList + [SNRmin,vmin,wmin] | |
2124 | zmaxList = zmaxList + [SNRmax,vmax,wmax] |
|
2125 | zmaxList = zmaxList + [SNRmax,vmax,wmax] | |
2125 |
|
2126 | |||
2126 | self.zminList = zminList |
|
2127 | self.zminList = zminList | |
2127 | self.zmaxList = zmaxList |
|
2128 | self.zmaxList = zmaxList | |
2128 | self.cmapList = cmapList |
|
2129 | self.cmapList = cmapList | |
2129 | self.titleList = titleList |
|
2130 | self.titleList = titleList | |
2130 |
|
2131 | |||
2131 | self.FTP_WEI = ftp_wei |
|
2132 | self.FTP_WEI = ftp_wei | |
2132 | self.EXP_CODE = exp_code |
|
2133 | self.EXP_CODE = exp_code | |
2133 | self.SUB_EXP_CODE = sub_exp_code |
|
2134 | self.SUB_EXP_CODE = sub_exp_code | |
2134 | self.PLOT_POS = plot_pos |
|
2135 | self.PLOT_POS = plot_pos | |
2135 |
|
2136 | |||
2136 | self.isConfig = True |
|
2137 | self.isConfig = True | |
2137 |
|
2138 | |||
2138 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
2139 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
2139 |
|
2140 | |||
2140 | for i in range(self.nplots): |
|
2141 | for i in range(self.nplots): | |
2141 | title = self.titleList[i] + ": " +str_datetime |
|
2142 | title = self.titleList[i] + ": " +str_datetime | |
2142 | axes = self.axesList[i] |
|
2143 | axes = self.axesList[i] | |
2143 | axes.pcolor(x, y, z[i,:].T, |
|
2144 | axes.pcolor(x, y, z[i,:].T, | |
2144 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=self.zminList[i], zmax=self.zmaxList[i], |
|
2145 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=self.zminList[i], zmax=self.zmaxList[i], | |
2145 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=self.cmapList[i],ticksize=9, cblabel='') |
|
2146 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=self.cmapList[i],ticksize=9, cblabel='') | |
2146 | self.draw() |
|
2147 | self.draw() | |
2147 |
|
2148 | |||
2148 | if figfile == None: |
|
2149 | if figfile == None: | |
2149 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
2150 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
2150 | name = str_datetime |
|
2151 | name = str_datetime | |
2151 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
2152 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
2152 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
2153 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) | |
2153 | figfile = self.getFilename(name) |
|
2154 | figfile = self.getFilename(name) | |
2154 |
|
2155 | |||
2155 | self.save(figpath=figpath, |
|
2156 | self.save(figpath=figpath, | |
2156 | figfile=figfile, |
|
2157 | figfile=figfile, | |
2157 | save=save, |
|
2158 | save=save, | |
2158 | ftp=ftp, |
|
2159 | ftp=ftp, | |
2159 | wr_period=wr_period, |
|
2160 | wr_period=wr_period, | |
2160 | thisDatetime=thisDatetime) |
|
2161 | thisDatetime=thisDatetime) |
@@ -1,1605 +1,1605 | |||||
1 | ''' |
|
1 | ''' | |
2 | Created on Jul 9, 2014 |
|
2 | Created on Jul 9, 2014 | |
3 |
|
3 | |||
4 | @author: roj-idl71 |
|
4 | @author: roj-idl71 | |
5 | ''' |
|
5 | ''' | |
6 | import os |
|
6 | import os | |
7 | import datetime |
|
7 | import datetime | |
8 | import numpy |
|
8 | import numpy | |
9 |
|
9 | |||
10 | import matplotlib.pyplot as plt |
|
10 | import matplotlib.pyplot as plt | |
11 |
|
11 | |||
12 | from figure import Figure, isRealtime, isTimeInHourRange |
|
12 | from figure import Figure, isRealtime, isTimeInHourRange | |
13 | from plotting_codes import * |
|
13 | from plotting_codes import * | |
14 | from matplotlib.pyplot import savefig |
|
14 | from matplotlib.pyplot import savefig | |
15 |
|
15 | |||
16 | class SpectraPlot(Figure): |
|
16 | class SpectraPlot(Figure): | |
17 |
|
17 | |||
18 | isConfig = None |
|
18 | isConfig = None | |
19 | __nsubplots = None |
|
19 | __nsubplots = None | |
20 |
|
20 | |||
21 | WIDTHPROF = None |
|
21 | WIDTHPROF = None | |
22 | HEIGHTPROF = None |
|
22 | HEIGHTPROF = None | |
23 | PREFIX = 'spc' |
|
23 | PREFIX = 'spc' | |
24 |
|
24 | |||
25 | def __init__(self, **kwargs): |
|
25 | def __init__(self, **kwargs): | |
26 | Figure.__init__(self, **kwargs) |
|
26 | Figure.__init__(self, **kwargs) | |
27 | self.isConfig = False |
|
27 | self.isConfig = False | |
28 | self.__nsubplots = 1 |
|
28 | self.__nsubplots = 1 | |
29 |
|
29 | |||
30 | self.WIDTH = 300 |
|
30 | self.WIDTH = 300 | |
31 | self.HEIGHT = 300 |
|
31 | self.HEIGHT = 300 | |
32 | self.WIDTHPROF = 120 |
|
32 | self.WIDTHPROF = 120 | |
33 | self.HEIGHTPROF = 0 |
|
33 | self.HEIGHTPROF = 0 | |
34 | self.counter_imagwr = 0 |
|
34 | self.counter_imagwr = 0 | |
35 |
|
35 | |||
36 | self.PLOT_CODE = SPEC_CODE |
|
36 | self.PLOT_CODE = SPEC_CODE | |
37 |
|
37 | |||
38 | self.FTP_WEI = None |
|
38 | self.FTP_WEI = None | |
39 | self.EXP_CODE = None |
|
39 | self.EXP_CODE = None | |
40 | self.SUB_EXP_CODE = None |
|
40 | self.SUB_EXP_CODE = None | |
41 | self.PLOT_POS = None |
|
41 | self.PLOT_POS = None | |
42 |
|
42 | |||
43 | self.__xfilter_ena = False |
|
43 | self.__xfilter_ena = False | |
44 | self.__yfilter_ena = False |
|
44 | self.__yfilter_ena = False | |
45 |
|
45 | |||
46 | self.indice=1 |
|
46 | self.indice=1 | |
47 |
|
47 | |||
48 | def getSubplots(self): |
|
48 | def getSubplots(self): | |
49 |
|
49 | |||
50 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
50 | ncol = int(numpy.sqrt(self.nplots)+0.9) | |
51 | nrow = int(self.nplots*1./ncol + 0.9) |
|
51 | nrow = int(self.nplots*1./ncol + 0.9) | |
52 |
|
52 | |||
53 | return nrow, ncol |
|
53 | return nrow, ncol | |
54 |
|
54 | |||
55 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
55 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
56 |
|
56 | |||
57 | self.__showprofile = showprofile |
|
57 | self.__showprofile = showprofile | |
58 | self.nplots = nplots |
|
58 | self.nplots = nplots | |
59 |
|
59 | |||
60 | ncolspan = 1 |
|
60 | ncolspan = 1 | |
61 | colspan = 1 |
|
61 | colspan = 1 | |
62 | if showprofile: |
|
62 | if showprofile: | |
63 | ncolspan = 3 |
|
63 | ncolspan = 3 | |
64 | colspan = 2 |
|
64 | colspan = 2 | |
65 | self.__nsubplots = 2 |
|
65 | self.__nsubplots = 2 | |
66 |
|
66 | |||
67 | self.createFigure(id = id, |
|
67 | self.createFigure(id = id, | |
68 | wintitle = wintitle, |
|
68 | wintitle = wintitle, | |
69 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
69 | widthplot = self.WIDTH + self.WIDTHPROF, | |
70 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
70 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
71 | show=show) |
|
71 | show=show) | |
72 |
|
72 | |||
73 | nrow, ncol = self.getSubplots() |
|
73 | nrow, ncol = self.getSubplots() | |
74 |
|
74 | |||
75 | counter = 0 |
|
75 | counter = 0 | |
76 | for y in range(nrow): |
|
76 | for y in range(nrow): | |
77 | for x in range(ncol): |
|
77 | for x in range(ncol): | |
78 |
|
78 | |||
79 | if counter >= self.nplots: |
|
79 | if counter >= self.nplots: | |
80 | break |
|
80 | break | |
81 |
|
81 | |||
82 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
82 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
83 |
|
83 | |||
84 | if showprofile: |
|
84 | if showprofile: | |
85 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
85 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
86 |
|
86 | |||
87 | counter += 1 |
|
87 | counter += 1 | |
88 |
|
88 | |||
89 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
89 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, | |
90 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
90 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
91 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
91 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
92 | server=None, folder=None, username=None, password=None, |
|
92 | server=None, folder=None, username=None, password=None, | |
93 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
93 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, | |
94 | xaxis="frequency", colormap='jet', normFactor=None): |
|
94 | xaxis="frequency", colormap='jet', normFactor=None): | |
95 |
|
95 | |||
96 | """ |
|
96 | """ | |
97 |
|
97 | |||
98 | Input: |
|
98 | Input: | |
99 | dataOut : |
|
99 | dataOut : | |
100 | id : |
|
100 | id : | |
101 | wintitle : |
|
101 | wintitle : | |
102 | channelList : |
|
102 | channelList : | |
103 | showProfile : |
|
103 | showProfile : | |
104 | xmin : None, |
|
104 | xmin : None, | |
105 | xmax : None, |
|
105 | xmax : None, | |
106 | ymin : None, |
|
106 | ymin : None, | |
107 | ymax : None, |
|
107 | ymax : None, | |
108 | zmin : None, |
|
108 | zmin : None, | |
109 | zmax : None |
|
109 | zmax : None | |
110 | """ |
|
110 | """ | |
111 | if realtime: |
|
111 | if realtime: | |
112 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
112 | if not(isRealtime(utcdatatime = dataOut.utctime)): | |
113 | print 'Skipping this plot function' |
|
113 | print 'Skipping this plot function' | |
114 | return |
|
114 | return | |
115 |
|
115 | |||
116 | if channelList == None: |
|
116 | if channelList == None: | |
117 | channelIndexList = dataOut.channelIndexList |
|
117 | channelIndexList = dataOut.channelIndexList | |
118 | else: |
|
118 | else: | |
119 | channelIndexList = [] |
|
119 | channelIndexList = [] | |
120 | for channel in channelList: |
|
120 | for channel in channelList: | |
121 | if channel not in dataOut.channelList: |
|
121 | if channel not in dataOut.channelList: | |
122 | raise ValueError, "Channel %d is not in dataOut.channelList" %channel |
|
122 | raise ValueError, "Channel %d is not in dataOut.channelList" %channel | |
123 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
123 | channelIndexList.append(dataOut.channelList.index(channel)) | |
124 |
|
124 | |||
125 | if normFactor is None: |
|
125 | if normFactor is None: | |
126 | factor = dataOut.normFactor |
|
126 | factor = dataOut.normFactor | |
127 | else: |
|
127 | else: | |
128 | factor = normFactor |
|
128 | factor = normFactor | |
129 | if xaxis == "frequency": |
|
129 | if xaxis == "frequency": | |
130 | x = dataOut.getFreqRange(1)/1000. |
|
130 | x = dataOut.getFreqRange(1)/1000. | |
131 | xlabel = "Frequency (kHz)" |
|
131 | xlabel = "Frequency (kHz)" | |
132 |
|
132 | |||
133 | elif xaxis == "time": |
|
133 | elif xaxis == "time": | |
134 | x = dataOut.getAcfRange(1) |
|
134 | x = dataOut.getAcfRange(1) | |
135 | xlabel = "Time (ms)" |
|
135 | xlabel = "Time (ms)" | |
136 |
|
136 | |||
137 | else: |
|
137 | else: | |
138 | x = dataOut.getVelRange(1) |
|
138 | x = dataOut.getVelRange(1) | |
139 | xlabel = "Velocity (m/s)" |
|
139 | xlabel = "Velocity (m/s)" | |
140 |
|
140 | |||
141 | ylabel = "Range (Km)" |
|
141 | ylabel = "Range (Km)" | |
142 |
|
142 | |||
143 | y = dataOut.getHeiRange() |
|
143 | y = dataOut.getHeiRange() | |
144 |
|
144 | print 'dataOut.normFactor', dataOut.normFactor | ||
145 | z = dataOut.data_spc/factor |
|
145 | z = dataOut.data_spc/factor | |
146 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
146 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
147 | zdB = 10*numpy.log10(z) |
|
147 | zdB = 10*numpy.log10(z) | |
148 |
|
148 | |||
149 | avg = numpy.average(z, axis=1) |
|
149 | avg = numpy.average(z, axis=1) | |
150 | avgdB = 10*numpy.log10(avg) |
|
150 | avgdB = 10*numpy.log10(avg) | |
151 |
|
151 | |||
152 | noise = dataOut.getNoise()/factor |
|
152 | noise = dataOut.getNoise()/factor | |
153 | noisedB = 10*numpy.log10(noise) |
|
153 | noisedB = 10*numpy.log10(noise) | |
154 |
|
154 | |||
155 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
155 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
156 | title = wintitle + " Spectra" |
|
156 | title = wintitle + " Spectra" | |
157 |
|
157 | |||
158 |
|
158 | |||
159 |
|
159 | |||
160 | print 'len de X',len(x), numpy.shape(x), 'len de spc line',len(dataOut.data_spc[1,:,15]), numpy.shape(dataOut.data_spc) |
|
160 | print 'len de X',len(x), numpy.shape(x), 'len de spc line',len(dataOut.data_spc[1,:,15]), numpy.shape(dataOut.data_spc) | |
161 | print 'Altura:', y[0], y[1], y[13], y[14], y[10] |
|
161 | print 'Altura:', y[0], y[1], y[13], y[14], y[10] | |
162 | #a=z[1,:,15] |
|
162 | #a=z[1,:,15] | |
163 |
|
163 | |||
164 | # fig = plt.figure(10+self.indice) |
|
164 | # fig = plt.figure(10+self.indice) | |
165 | # plt.plot( x[0:128], zdB[0,:,10] ) |
|
165 | # plt.plot( x[0:128], zdB[0,:,10] ) | |
166 | # plt.axis([-12, 12, 15, 50]) |
|
166 | # plt.axis([-12, 12, 15, 50]) | |
167 | # plt.title(" %s" %( '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))) ) |
|
167 | # plt.title(" %s" %( '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))) ) | |
168 | # plt.ylabel('Intensidad [dB]') |
|
168 | # plt.ylabel('Intensidad [dB]') | |
169 | # plt.xlabel('Velocidad [m/s]') |
|
169 | # plt.xlabel('Velocidad [m/s]') | |
170 | # fig.savefig('/home/erick/Documents/Pics/to{}.png'.format(self.indice)) |
|
170 | # fig.savefig('/home/erick/Documents/Pics/to{}.png'.format(self.indice)) | |
171 | # |
|
171 | # | |
172 | # plt.show() |
|
172 | # plt.show() | |
173 | # |
|
173 | # | |
174 | # self.indice=self.indice+1 |
|
174 | # self.indice=self.indice+1 | |
175 |
|
175 | |||
176 |
|
176 | |||
177 |
|
177 | |||
178 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
178 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
179 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
179 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
180 |
|
180 | |||
181 | if not self.isConfig: |
|
181 | if not self.isConfig: | |
182 |
|
182 | |||
183 | nplots = len(channelIndexList) |
|
183 | nplots = len(channelIndexList) | |
184 |
|
184 | |||
185 | self.setup(id=id, |
|
185 | self.setup(id=id, | |
186 | nplots=nplots, |
|
186 | nplots=nplots, | |
187 | wintitle=wintitle, |
|
187 | wintitle=wintitle, | |
188 | showprofile=showprofile, |
|
188 | showprofile=showprofile, | |
189 | show=show) |
|
189 | show=show) | |
190 |
|
190 | |||
191 | if xmin == None: xmin = numpy.nanmin(x) |
|
191 | if xmin == None: xmin = numpy.nanmin(x) | |
192 | if xmax == None: xmax = numpy.nanmax(x) |
|
192 | if xmax == None: xmax = numpy.nanmax(x) | |
193 | if ymin == None: ymin = numpy.nanmin(y) |
|
193 | if ymin == None: ymin = numpy.nanmin(y) | |
194 | if ymax == None: ymax = numpy.nanmax(y) |
|
194 | if ymax == None: ymax = numpy.nanmax(y) | |
195 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
195 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 | |
196 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
196 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 | |
197 |
|
197 | |||
198 | self.FTP_WEI = ftp_wei |
|
198 | self.FTP_WEI = ftp_wei | |
199 | self.EXP_CODE = exp_code |
|
199 | self.EXP_CODE = exp_code | |
200 | self.SUB_EXP_CODE = sub_exp_code |
|
200 | self.SUB_EXP_CODE = sub_exp_code | |
201 | self.PLOT_POS = plot_pos |
|
201 | self.PLOT_POS = plot_pos | |
202 |
|
202 | |||
203 | self.isConfig = True |
|
203 | self.isConfig = True | |
204 |
|
204 | |||
205 | self.setWinTitle(title) |
|
205 | self.setWinTitle(title) | |
206 |
|
206 | |||
207 | for i in range(self.nplots): |
|
207 | for i in range(self.nplots): | |
208 | index = channelIndexList[i] |
|
208 | index = channelIndexList[i] | |
209 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
209 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
210 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) |
|
210 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) | |
211 | if len(dataOut.beam.codeList) != 0: |
|
211 | if len(dataOut.beam.codeList) != 0: | |
212 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) |
|
212 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) | |
213 |
|
213 | |||
214 | axes = self.axesList[i*self.__nsubplots] |
|
214 | axes = self.axesList[i*self.__nsubplots] | |
215 | axes.pcolor(x, y, zdB[index,:,:], |
|
215 | axes.pcolor(x, y, zdB[index,:,:], | |
216 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
216 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
217 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, |
|
217 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, | |
218 | ticksize=9, cblabel='') |
|
218 | ticksize=9, cblabel='') | |
219 |
|
219 | |||
220 | if self.__showprofile: |
|
220 | if self.__showprofile: | |
221 | axes = self.axesList[i*self.__nsubplots +1] |
|
221 | axes = self.axesList[i*self.__nsubplots +1] | |
222 | axes.pline(avgdB[index,:], y, |
|
222 | axes.pline(avgdB[index,:], y, | |
223 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
223 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
224 | xlabel='dB', ylabel='', title='', |
|
224 | xlabel='dB', ylabel='', title='', | |
225 | ytick_visible=False, |
|
225 | ytick_visible=False, | |
226 | grid='x') |
|
226 | grid='x') | |
227 |
|
227 | |||
228 | noiseline = numpy.repeat(noisedB[index], len(y)) |
|
228 | noiseline = numpy.repeat(noisedB[index], len(y)) | |
229 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
229 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) | |
230 |
|
230 | |||
231 | self.draw() |
|
231 | self.draw() | |
232 |
|
232 | |||
233 | if figfile == None: |
|
233 | if figfile == None: | |
234 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
234 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
235 | name = str_datetime |
|
235 | name = str_datetime | |
236 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
236 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
237 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
237 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) | |
238 | figfile = self.getFilename(name) |
|
238 | figfile = self.getFilename(name) | |
239 |
|
239 | |||
240 | self.save(figpath=figpath, |
|
240 | self.save(figpath=figpath, | |
241 | figfile=figfile, |
|
241 | figfile=figfile, | |
242 | save=save, |
|
242 | save=save, | |
243 | ftp=ftp, |
|
243 | ftp=ftp, | |
244 | wr_period=wr_period, |
|
244 | wr_period=wr_period, | |
245 | thisDatetime=thisDatetime) |
|
245 | thisDatetime=thisDatetime) | |
246 |
|
246 | |||
247 |
|
247 | |||
248 | class CrossSpectraPlot(Figure): |
|
248 | class CrossSpectraPlot(Figure): | |
249 |
|
249 | |||
250 | isConfig = None |
|
250 | isConfig = None | |
251 | __nsubplots = None |
|
251 | __nsubplots = None | |
252 |
|
252 | |||
253 | WIDTH = None |
|
253 | WIDTH = None | |
254 | HEIGHT = None |
|
254 | HEIGHT = None | |
255 | WIDTHPROF = None |
|
255 | WIDTHPROF = None | |
256 | HEIGHTPROF = None |
|
256 | HEIGHTPROF = None | |
257 | PREFIX = 'cspc' |
|
257 | PREFIX = 'cspc' | |
258 |
|
258 | |||
259 | def __init__(self, **kwargs): |
|
259 | def __init__(self, **kwargs): | |
260 | Figure.__init__(self, **kwargs) |
|
260 | Figure.__init__(self, **kwargs) | |
261 | self.isConfig = False |
|
261 | self.isConfig = False | |
262 | self.__nsubplots = 4 |
|
262 | self.__nsubplots = 4 | |
263 | self.counter_imagwr = 0 |
|
263 | self.counter_imagwr = 0 | |
264 | self.WIDTH = 250 |
|
264 | self.WIDTH = 250 | |
265 | self.HEIGHT = 250 |
|
265 | self.HEIGHT = 250 | |
266 | self.WIDTHPROF = 0 |
|
266 | self.WIDTHPROF = 0 | |
267 | self.HEIGHTPROF = 0 |
|
267 | self.HEIGHTPROF = 0 | |
268 |
|
268 | |||
269 | self.PLOT_CODE = CROSS_CODE |
|
269 | self.PLOT_CODE = CROSS_CODE | |
270 | self.FTP_WEI = None |
|
270 | self.FTP_WEI = None | |
271 | self.EXP_CODE = None |
|
271 | self.EXP_CODE = None | |
272 | self.SUB_EXP_CODE = None |
|
272 | self.SUB_EXP_CODE = None | |
273 | self.PLOT_POS = None |
|
273 | self.PLOT_POS = None | |
274 |
|
274 | |||
275 | self.indice=0 |
|
275 | self.indice=0 | |
276 |
|
276 | |||
277 | def getSubplots(self): |
|
277 | def getSubplots(self): | |
278 |
|
278 | |||
279 | ncol = 4 |
|
279 | ncol = 4 | |
280 | nrow = self.nplots |
|
280 | nrow = self.nplots | |
281 |
|
281 | |||
282 | return nrow, ncol |
|
282 | return nrow, ncol | |
283 |
|
283 | |||
284 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
284 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
285 |
|
285 | |||
286 | self.__showprofile = showprofile |
|
286 | self.__showprofile = showprofile | |
287 | self.nplots = nplots |
|
287 | self.nplots = nplots | |
288 |
|
288 | |||
289 | ncolspan = 1 |
|
289 | ncolspan = 1 | |
290 | colspan = 1 |
|
290 | colspan = 1 | |
291 |
|
291 | |||
292 | self.createFigure(id = id, |
|
292 | self.createFigure(id = id, | |
293 | wintitle = wintitle, |
|
293 | wintitle = wintitle, | |
294 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
294 | widthplot = self.WIDTH + self.WIDTHPROF, | |
295 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
295 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
296 | show=True) |
|
296 | show=True) | |
297 |
|
297 | |||
298 | nrow, ncol = self.getSubplots() |
|
298 | nrow, ncol = self.getSubplots() | |
299 |
|
299 | |||
300 | counter = 0 |
|
300 | counter = 0 | |
301 | for y in range(nrow): |
|
301 | for y in range(nrow): | |
302 | for x in range(ncol): |
|
302 | for x in range(ncol): | |
303 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
303 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
304 |
|
304 | |||
305 | counter += 1 |
|
305 | counter += 1 | |
306 |
|
306 | |||
307 | def run(self, dataOut, id, wintitle="", pairsList=None, |
|
307 | def run(self, dataOut, id, wintitle="", pairsList=None, | |
308 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
308 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
309 | coh_min=None, coh_max=None, phase_min=None, phase_max=None, |
|
309 | coh_min=None, coh_max=None, phase_min=None, phase_max=None, | |
310 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
310 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, | |
311 | power_cmap='jet', coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
311 | power_cmap='jet', coherence_cmap='jet', phase_cmap='RdBu_r', show=True, | |
312 | server=None, folder=None, username=None, password=None, |
|
312 | server=None, folder=None, username=None, password=None, | |
313 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, |
|
313 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, | |
314 | xaxis='frequency'): |
|
314 | xaxis='frequency'): | |
315 |
|
315 | |||
316 | """ |
|
316 | """ | |
317 |
|
317 | |||
318 | Input: |
|
318 | Input: | |
319 | dataOut : |
|
319 | dataOut : | |
320 | id : |
|
320 | id : | |
321 | wintitle : |
|
321 | wintitle : | |
322 | channelList : |
|
322 | channelList : | |
323 | showProfile : |
|
323 | showProfile : | |
324 | xmin : None, |
|
324 | xmin : None, | |
325 | xmax : None, |
|
325 | xmax : None, | |
326 | ymin : None, |
|
326 | ymin : None, | |
327 | ymax : None, |
|
327 | ymax : None, | |
328 | zmin : None, |
|
328 | zmin : None, | |
329 | zmax : None |
|
329 | zmax : None | |
330 | """ |
|
330 | """ | |
331 |
|
331 | |||
332 | if pairsList == None: |
|
332 | if pairsList == None: | |
333 | pairsIndexList = dataOut.pairsIndexList |
|
333 | pairsIndexList = dataOut.pairsIndexList | |
334 | else: |
|
334 | else: | |
335 | pairsIndexList = [] |
|
335 | pairsIndexList = [] | |
336 | for pair in pairsList: |
|
336 | for pair in pairsList: | |
337 | if pair not in dataOut.pairsList: |
|
337 | if pair not in dataOut.pairsList: | |
338 | raise ValueError, "Pair %s is not in dataOut.pairsList" %str(pair) |
|
338 | raise ValueError, "Pair %s is not in dataOut.pairsList" %str(pair) | |
339 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
339 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
340 |
|
340 | |||
341 | if not pairsIndexList: |
|
341 | if not pairsIndexList: | |
342 | return |
|
342 | return | |
343 |
|
343 | |||
344 | if len(pairsIndexList) > 4: |
|
344 | if len(pairsIndexList) > 4: | |
345 | pairsIndexList = pairsIndexList[0:4] |
|
345 | pairsIndexList = pairsIndexList[0:4] | |
346 |
|
346 | |||
347 | if normFactor is None: |
|
347 | if normFactor is None: | |
348 | factor = dataOut.normFactor |
|
348 | factor = dataOut.normFactor | |
349 | else: |
|
349 | else: | |
350 | factor = normFactor |
|
350 | factor = normFactor | |
351 | x = dataOut.getVelRange(1) |
|
351 | x = dataOut.getVelRange(1) | |
352 | y = dataOut.getHeiRange() |
|
352 | y = dataOut.getHeiRange() | |
353 | z = dataOut.data_spc[:,:,:]/factor |
|
353 | z = dataOut.data_spc[:,:,:]/factor | |
354 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
354 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
355 |
|
355 | |||
356 | noise = dataOut.noise/factor |
|
356 | noise = dataOut.noise/factor | |
357 |
|
357 | |||
358 | zdB = 10*numpy.log10(z) |
|
358 | zdB = 10*numpy.log10(z) | |
359 | noisedB = 10*numpy.log10(noise) |
|
359 | noisedB = 10*numpy.log10(noise) | |
360 |
|
360 | |||
361 | if coh_min == None: |
|
361 | if coh_min == None: | |
362 | coh_min = 0.0 |
|
362 | coh_min = 0.0 | |
363 | if coh_max == None: |
|
363 | if coh_max == None: | |
364 | coh_max = 1.0 |
|
364 | coh_max = 1.0 | |
365 |
|
365 | |||
366 | if phase_min == None: |
|
366 | if phase_min == None: | |
367 | phase_min = -180 |
|
367 | phase_min = -180 | |
368 | if phase_max == None: |
|
368 | if phase_max == None: | |
369 | phase_max = 180 |
|
369 | phase_max = 180 | |
370 |
|
370 | |||
371 | #thisDatetime = dataOut.datatime |
|
371 | #thisDatetime = dataOut.datatime | |
372 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
372 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
373 | title = wintitle + " Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
373 | title = wintitle + " Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
374 | # xlabel = "Velocity (m/s)" |
|
374 | # xlabel = "Velocity (m/s)" | |
375 | ylabel = "Range (Km)" |
|
375 | ylabel = "Range (Km)" | |
376 |
|
376 | |||
377 | if xaxis == "frequency": |
|
377 | if xaxis == "frequency": | |
378 | x = dataOut.getFreqRange(1)/1000. |
|
378 | x = dataOut.getFreqRange(1)/1000. | |
379 | xlabel = "Frequency (kHz)" |
|
379 | xlabel = "Frequency (kHz)" | |
380 |
|
380 | |||
381 | elif xaxis == "time": |
|
381 | elif xaxis == "time": | |
382 | x = dataOut.getAcfRange(1) |
|
382 | x = dataOut.getAcfRange(1) | |
383 | xlabel = "Time (ms)" |
|
383 | xlabel = "Time (ms)" | |
384 |
|
384 | |||
385 | else: |
|
385 | else: | |
386 | x = dataOut.getVelRange(1) |
|
386 | x = dataOut.getVelRange(1) | |
387 | xlabel = "Velocity (m/s)" |
|
387 | xlabel = "Velocity (m/s)" | |
388 |
|
388 | |||
389 | if not self.isConfig: |
|
389 | if not self.isConfig: | |
390 |
|
390 | |||
391 | nplots = len(pairsIndexList) |
|
391 | nplots = len(pairsIndexList) | |
392 |
|
392 | |||
393 | self.setup(id=id, |
|
393 | self.setup(id=id, | |
394 | nplots=nplots, |
|
394 | nplots=nplots, | |
395 | wintitle=wintitle, |
|
395 | wintitle=wintitle, | |
396 | showprofile=False, |
|
396 | showprofile=False, | |
397 | show=show) |
|
397 | show=show) | |
398 |
|
398 | |||
399 | avg = numpy.abs(numpy.average(z, axis=1)) |
|
399 | avg = numpy.abs(numpy.average(z, axis=1)) | |
400 | avgdB = 10*numpy.log10(avg) |
|
400 | avgdB = 10*numpy.log10(avg) | |
401 |
|
401 | |||
402 | if xmin == None: xmin = numpy.nanmin(x) |
|
402 | if xmin == None: xmin = numpy.nanmin(x) | |
403 | if xmax == None: xmax = numpy.nanmax(x) |
|
403 | if xmax == None: xmax = numpy.nanmax(x) | |
404 | if ymin == None: ymin = numpy.nanmin(y) |
|
404 | if ymin == None: ymin = numpy.nanmin(y) | |
405 | if ymax == None: ymax = numpy.nanmax(y) |
|
405 | if ymax == None: ymax = numpy.nanmax(y) | |
406 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
406 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 | |
407 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
407 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 | |
408 |
|
408 | |||
409 | self.FTP_WEI = ftp_wei |
|
409 | self.FTP_WEI = ftp_wei | |
410 | self.EXP_CODE = exp_code |
|
410 | self.EXP_CODE = exp_code | |
411 | self.SUB_EXP_CODE = sub_exp_code |
|
411 | self.SUB_EXP_CODE = sub_exp_code | |
412 | self.PLOT_POS = plot_pos |
|
412 | self.PLOT_POS = plot_pos | |
413 |
|
413 | |||
414 | self.isConfig = True |
|
414 | self.isConfig = True | |
415 |
|
415 | |||
416 | self.setWinTitle(title) |
|
416 | self.setWinTitle(title) | |
417 |
|
417 | |||
418 |
|
418 | |||
419 | for i in range(self.nplots): |
|
419 | for i in range(self.nplots): | |
420 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
420 | pair = dataOut.pairsList[pairsIndexList[i]] | |
421 |
|
421 | |||
422 | chan_index0 = dataOut.channelList.index(pair[0]) |
|
422 | chan_index0 = dataOut.channelList.index(pair[0]) | |
423 | chan_index1 = dataOut.channelList.index(pair[1]) |
|
423 | chan_index1 = dataOut.channelList.index(pair[1]) | |
424 |
|
424 | |||
425 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
425 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
426 | title = "Ch%d: %4.2fdB: %s" %(pair[0], noisedB[chan_index0], str_datetime) |
|
426 | title = "Ch%d: %4.2fdB: %s" %(pair[0], noisedB[chan_index0], str_datetime) | |
427 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index0,:,:]/factor) |
|
427 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index0,:,:]/factor) | |
428 | axes0 = self.axesList[i*self.__nsubplots] |
|
428 | axes0 = self.axesList[i*self.__nsubplots] | |
429 | axes0.pcolor(x, y, zdB, |
|
429 | axes0.pcolor(x, y, zdB, | |
430 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
430 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
431 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
431 | xlabel=xlabel, ylabel=ylabel, title=title, | |
432 | ticksize=9, colormap=power_cmap, cblabel='') |
|
432 | ticksize=9, colormap=power_cmap, cblabel='') | |
433 |
|
433 | |||
434 | title = "Ch%d: %4.2fdB: %s" %(pair[1], noisedB[chan_index1], str_datetime) |
|
434 | title = "Ch%d: %4.2fdB: %s" %(pair[1], noisedB[chan_index1], str_datetime) | |
435 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index1,:,:]/factor) |
|
435 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index1,:,:]/factor) | |
436 | axes0 = self.axesList[i*self.__nsubplots+1] |
|
436 | axes0 = self.axesList[i*self.__nsubplots+1] | |
437 | axes0.pcolor(x, y, zdB, |
|
437 | axes0.pcolor(x, y, zdB, | |
438 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
438 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
439 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
439 | xlabel=xlabel, ylabel=ylabel, title=title, | |
440 | ticksize=9, colormap=power_cmap, cblabel='') |
|
440 | ticksize=9, colormap=power_cmap, cblabel='') | |
441 |
|
441 | |||
442 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:] / numpy.sqrt( dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:] ) |
|
442 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:] / numpy.sqrt( dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:] ) | |
443 | coherence = numpy.abs(coherenceComplex) |
|
443 | coherence = numpy.abs(coherenceComplex) | |
444 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
444 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi | |
445 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi |
|
445 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi | |
446 |
|
446 | |||
447 |
|
447 | |||
448 |
|
448 | |||
449 |
|
449 | |||
450 | # #print 'FASE', numpy.shape(phase), y[25] |
|
450 | # #print 'FASE', numpy.shape(phase), y[25] | |
451 | # fig = plt.figure(10+self.indice) |
|
451 | # fig = plt.figure(10+self.indice) | |
452 | # #plt.plot( x[0:256],coherence[:,25] ) |
|
452 | # #plt.plot( x[0:256],coherence[:,25] ) | |
453 | # cohAv = numpy.average(coherence,1) |
|
453 | # cohAv = numpy.average(coherence,1) | |
454 | # |
|
454 | # | |
455 | # plt.plot( x[0:256],cohAv ) |
|
455 | # plt.plot( x[0:256],cohAv ) | |
456 | # #plt.axis([-12, 12, 15, 50]) |
|
456 | # #plt.axis([-12, 12, 15, 50]) | |
457 | # plt.title("%s" %( '%s %s, Channel %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S") , i))) |
|
457 | # plt.title("%s" %( '%s %s, Channel %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S") , i))) | |
458 | # plt.ylabel('Desfase [grados]') |
|
458 | # plt.ylabel('Desfase [grados]') | |
459 | # plt.xlabel('Velocidad [m/s]') |
|
459 | # plt.xlabel('Velocidad [m/s]') | |
460 | # fig.savefig('/home/erick/Documents/Pics/to{}.png'.format(self.indice)) |
|
460 | # fig.savefig('/home/erick/Documents/Pics/to{}.png'.format(self.indice)) | |
461 | # |
|
461 | # | |
462 | # plt.show() |
|
462 | # plt.show() | |
463 | # self.indice=self.indice+1 |
|
463 | # self.indice=self.indice+1 | |
464 |
|
464 | |||
465 |
|
465 | |||
466 | # print 'FASE', numpy.shape(phase), y[25] |
|
466 | # print 'FASE', numpy.shape(phase), y[25] | |
467 | # fig = plt.figure(10+self.indice) |
|
467 | # fig = plt.figure(10+self.indice) | |
468 | # plt.plot( x[0:256],phase[:,25] ) |
|
468 | # plt.plot( x[0:256],phase[:,25] ) | |
469 | # #plt.axis([-12, 12, 15, 50]) |
|
469 | # #plt.axis([-12, 12, 15, 50]) | |
470 | # plt.title("%s" %( '%s %s, Channel %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S") , i))) |
|
470 | # plt.title("%s" %( '%s %s, Channel %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S") , i))) | |
471 | # plt.ylabel('Desfase [grados]') |
|
471 | # plt.ylabel('Desfase [grados]') | |
472 | # plt.xlabel('Velocidad [m/s]') |
|
472 | # plt.xlabel('Velocidad [m/s]') | |
473 | # fig.savefig('/home/erick/Documents/Pics/to{}.png'.format(self.indice)) |
|
473 | # fig.savefig('/home/erick/Documents/Pics/to{}.png'.format(self.indice)) | |
474 | # |
|
474 | # | |
475 | # plt.show() |
|
475 | # plt.show() | |
476 | # self.indice=self.indice+1 |
|
476 | # self.indice=self.indice+1 | |
477 |
|
477 | |||
478 |
|
478 | |||
479 |
|
479 | |||
480 |
|
480 | |||
481 | title = "Coherence Ch%d * Ch%d" %(pair[0], pair[1]) |
|
481 | title = "Coherence Ch%d * Ch%d" %(pair[0], pair[1]) | |
482 | axes0 = self.axesList[i*self.__nsubplots+2] |
|
482 | axes0 = self.axesList[i*self.__nsubplots+2] | |
483 | axes0.pcolor(x, y, coherence, |
|
483 | axes0.pcolor(x, y, coherence, | |
484 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=coh_min, zmax=coh_max, |
|
484 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=coh_min, zmax=coh_max, | |
485 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
485 | xlabel=xlabel, ylabel=ylabel, title=title, | |
486 | ticksize=9, colormap=coherence_cmap, cblabel='') |
|
486 | ticksize=9, colormap=coherence_cmap, cblabel='') | |
487 |
|
487 | |||
488 | title = "Phase Ch%d * Ch%d" %(pair[0], pair[1]) |
|
488 | title = "Phase Ch%d * Ch%d" %(pair[0], pair[1]) | |
489 | axes0 = self.axesList[i*self.__nsubplots+3] |
|
489 | axes0 = self.axesList[i*self.__nsubplots+3] | |
490 | axes0.pcolor(x, y, phase, |
|
490 | axes0.pcolor(x, y, phase, | |
491 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
491 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, | |
492 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
492 | xlabel=xlabel, ylabel=ylabel, title=title, | |
493 | ticksize=9, colormap=phase_cmap, cblabel='') |
|
493 | ticksize=9, colormap=phase_cmap, cblabel='') | |
494 |
|
494 | |||
495 |
|
495 | |||
496 |
|
496 | |||
497 | self.draw() |
|
497 | self.draw() | |
498 |
|
498 | |||
499 | self.save(figpath=figpath, |
|
499 | self.save(figpath=figpath, | |
500 | figfile=figfile, |
|
500 | figfile=figfile, | |
501 | save=save, |
|
501 | save=save, | |
502 | ftp=ftp, |
|
502 | ftp=ftp, | |
503 | wr_period=wr_period, |
|
503 | wr_period=wr_period, | |
504 | thisDatetime=thisDatetime) |
|
504 | thisDatetime=thisDatetime) | |
505 |
|
505 | |||
506 |
|
506 | |||
507 | class RTIPlot(Figure): |
|
507 | class RTIPlot(Figure): | |
508 |
|
508 | |||
509 | __isConfig = None |
|
509 | __isConfig = None | |
510 | __nsubplots = None |
|
510 | __nsubplots = None | |
511 |
|
511 | |||
512 | WIDTHPROF = None |
|
512 | WIDTHPROF = None | |
513 | HEIGHTPROF = None |
|
513 | HEIGHTPROF = None | |
514 | PREFIX = 'rti' |
|
514 | PREFIX = 'rti' | |
515 |
|
515 | |||
516 | def __init__(self, **kwargs): |
|
516 | def __init__(self, **kwargs): | |
517 |
|
517 | |||
518 | Figure.__init__(self, **kwargs) |
|
518 | Figure.__init__(self, **kwargs) | |
519 | self.timerange = None |
|
519 | self.timerange = None | |
520 | self.isConfig = False |
|
520 | self.isConfig = False | |
521 | self.__nsubplots = 1 |
|
521 | self.__nsubplots = 1 | |
522 |
|
522 | |||
523 | self.WIDTH = 800 |
|
523 | self.WIDTH = 800 | |
524 | self.HEIGHT = 250 |
|
524 | self.HEIGHT = 250 | |
525 | self.WIDTHPROF = 120 |
|
525 | self.WIDTHPROF = 120 | |
526 | self.HEIGHTPROF = 0 |
|
526 | self.HEIGHTPROF = 0 | |
527 | self.counter_imagwr = 0 |
|
527 | self.counter_imagwr = 0 | |
528 |
|
528 | |||
529 | self.PLOT_CODE = RTI_CODE |
|
529 | self.PLOT_CODE = RTI_CODE | |
530 |
|
530 | |||
531 | self.FTP_WEI = None |
|
531 | self.FTP_WEI = None | |
532 | self.EXP_CODE = None |
|
532 | self.EXP_CODE = None | |
533 | self.SUB_EXP_CODE = None |
|
533 | self.SUB_EXP_CODE = None | |
534 | self.PLOT_POS = None |
|
534 | self.PLOT_POS = None | |
535 | self.tmin = None |
|
535 | self.tmin = None | |
536 | self.tmax = None |
|
536 | self.tmax = None | |
537 |
|
537 | |||
538 | self.xmin = None |
|
538 | self.xmin = None | |
539 | self.xmax = None |
|
539 | self.xmax = None | |
540 |
|
540 | |||
541 | self.figfile = None |
|
541 | self.figfile = None | |
542 |
|
542 | |||
543 | def getSubplots(self): |
|
543 | def getSubplots(self): | |
544 |
|
544 | |||
545 | ncol = 1 |
|
545 | ncol = 1 | |
546 | nrow = self.nplots |
|
546 | nrow = self.nplots | |
547 |
|
547 | |||
548 | return nrow, ncol |
|
548 | return nrow, ncol | |
549 |
|
549 | |||
550 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
550 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
551 |
|
551 | |||
552 | self.__showprofile = showprofile |
|
552 | self.__showprofile = showprofile | |
553 | self.nplots = nplots |
|
553 | self.nplots = nplots | |
554 |
|
554 | |||
555 | ncolspan = 1 |
|
555 | ncolspan = 1 | |
556 | colspan = 1 |
|
556 | colspan = 1 | |
557 | if showprofile: |
|
557 | if showprofile: | |
558 | ncolspan = 7 |
|
558 | ncolspan = 7 | |
559 | colspan = 6 |
|
559 | colspan = 6 | |
560 | self.__nsubplots = 2 |
|
560 | self.__nsubplots = 2 | |
561 |
|
561 | |||
562 | self.createFigure(id = id, |
|
562 | self.createFigure(id = id, | |
563 | wintitle = wintitle, |
|
563 | wintitle = wintitle, | |
564 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
564 | widthplot = self.WIDTH + self.WIDTHPROF, | |
565 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
565 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
566 | show=show) |
|
566 | show=show) | |
567 |
|
567 | |||
568 | nrow, ncol = self.getSubplots() |
|
568 | nrow, ncol = self.getSubplots() | |
569 |
|
569 | |||
570 | counter = 0 |
|
570 | counter = 0 | |
571 | for y in range(nrow): |
|
571 | for y in range(nrow): | |
572 | for x in range(ncol): |
|
572 | for x in range(ncol): | |
573 |
|
573 | |||
574 | if counter >= self.nplots: |
|
574 | if counter >= self.nplots: | |
575 | break |
|
575 | break | |
576 |
|
576 | |||
577 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
577 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
578 |
|
578 | |||
579 | if showprofile: |
|
579 | if showprofile: | |
580 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
580 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
581 |
|
581 | |||
582 | counter += 1 |
|
582 | counter += 1 | |
583 |
|
583 | |||
584 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
584 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', | |
585 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
585 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
586 | timerange=None, colormap='jet', |
|
586 | timerange=None, colormap='jet', | |
587 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
587 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, | |
588 | server=None, folder=None, username=None, password=None, |
|
588 | server=None, folder=None, username=None, password=None, | |
589 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, HEIGHT=None): |
|
589 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, HEIGHT=None): | |
590 |
|
590 | |||
591 | """ |
|
591 | """ | |
592 |
|
592 | |||
593 | Input: |
|
593 | Input: | |
594 | dataOut : |
|
594 | dataOut : | |
595 | id : |
|
595 | id : | |
596 | wintitle : |
|
596 | wintitle : | |
597 | channelList : |
|
597 | channelList : | |
598 | showProfile : |
|
598 | showProfile : | |
599 | xmin : None, |
|
599 | xmin : None, | |
600 | xmax : None, |
|
600 | xmax : None, | |
601 | ymin : None, |
|
601 | ymin : None, | |
602 | ymax : None, |
|
602 | ymax : None, | |
603 | zmin : None, |
|
603 | zmin : None, | |
604 | zmax : None |
|
604 | zmax : None | |
605 | """ |
|
605 | """ | |
606 |
|
606 | |||
607 | #colormap = kwargs.get('colormap', 'jet') |
|
607 | #colormap = kwargs.get('colormap', 'jet') | |
608 | if HEIGHT is not None: |
|
608 | if HEIGHT is not None: | |
609 | self.HEIGHT = HEIGHT |
|
609 | self.HEIGHT = HEIGHT | |
610 |
|
610 | |||
611 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
611 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
612 | return |
|
612 | return | |
613 |
|
613 | |||
614 | if channelList == None: |
|
614 | if channelList == None: | |
615 | channelIndexList = dataOut.channelIndexList |
|
615 | channelIndexList = dataOut.channelIndexList | |
616 | else: |
|
616 | else: | |
617 | channelIndexList = [] |
|
617 | channelIndexList = [] | |
618 | for channel in channelList: |
|
618 | for channel in channelList: | |
619 | if channel not in dataOut.channelList: |
|
619 | if channel not in dataOut.channelList: | |
620 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
620 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
621 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
621 | channelIndexList.append(dataOut.channelList.index(channel)) | |
622 |
|
622 | |||
623 | if normFactor is None: |
|
623 | if normFactor is None: | |
624 | factor = dataOut.normFactor |
|
624 | factor = dataOut.normFactor | |
625 | else: |
|
625 | else: | |
626 | factor = normFactor |
|
626 | factor = normFactor | |
627 |
|
627 | |||
628 | # factor = dataOut.normFactor |
|
628 | # factor = dataOut.normFactor | |
629 | x = dataOut.getTimeRange() |
|
629 | x = dataOut.getTimeRange() | |
630 | y = dataOut.getHeiRange() |
|
630 | y = dataOut.getHeiRange() | |
631 |
|
631 | |||
632 | z = dataOut.data_spc/factor |
|
632 | z = dataOut.data_spc/factor | |
633 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
633 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
634 | avg = numpy.average(z, axis=1) |
|
634 | avg = numpy.average(z, axis=1) | |
635 | avgdB = 10.*numpy.log10(avg) |
|
635 | avgdB = 10.*numpy.log10(avg) | |
636 | # avgdB = dataOut.getPower() |
|
636 | # avgdB = dataOut.getPower() | |
637 |
|
637 | |||
638 |
|
638 | |||
639 | thisDatetime = dataOut.datatime |
|
639 | thisDatetime = dataOut.datatime | |
640 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
640 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
641 | title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
641 | title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
642 | xlabel = "" |
|
642 | xlabel = "" | |
643 | ylabel = "Range (Km)" |
|
643 | ylabel = "Range (Km)" | |
644 |
|
644 | |||
645 | update_figfile = False |
|
645 | update_figfile = False | |
646 |
|
646 | |||
647 | if dataOut.ltctime >= self.xmax: |
|
647 | if dataOut.ltctime >= self.xmax: | |
648 | self.counter_imagwr = wr_period |
|
648 | self.counter_imagwr = wr_period | |
649 | self.isConfig = False |
|
649 | self.isConfig = False | |
650 | update_figfile = True |
|
650 | update_figfile = True | |
651 |
|
651 | |||
652 | if not self.isConfig: |
|
652 | if not self.isConfig: | |
653 |
|
653 | |||
654 | nplots = len(channelIndexList) |
|
654 | nplots = len(channelIndexList) | |
655 |
|
655 | |||
656 | self.setup(id=id, |
|
656 | self.setup(id=id, | |
657 | nplots=nplots, |
|
657 | nplots=nplots, | |
658 | wintitle=wintitle, |
|
658 | wintitle=wintitle, | |
659 | showprofile=showprofile, |
|
659 | showprofile=showprofile, | |
660 | show=show) |
|
660 | show=show) | |
661 |
|
661 | |||
662 | if timerange != None: |
|
662 | if timerange != None: | |
663 | self.timerange = timerange |
|
663 | self.timerange = timerange | |
664 |
|
664 | |||
665 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
665 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
666 |
|
666 | |||
667 | noise = dataOut.noise/factor |
|
667 | noise = dataOut.noise/factor | |
668 | noisedB = 10*numpy.log10(noise) |
|
668 | noisedB = 10*numpy.log10(noise) | |
669 |
|
669 | |||
670 | if ymin == None: ymin = numpy.nanmin(y) |
|
670 | if ymin == None: ymin = numpy.nanmin(y) | |
671 | if ymax == None: ymax = numpy.nanmax(y) |
|
671 | if ymax == None: ymax = numpy.nanmax(y) | |
672 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
672 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 | |
673 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
673 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 | |
674 |
|
674 | |||
675 | self.FTP_WEI = ftp_wei |
|
675 | self.FTP_WEI = ftp_wei | |
676 | self.EXP_CODE = exp_code |
|
676 | self.EXP_CODE = exp_code | |
677 | self.SUB_EXP_CODE = sub_exp_code |
|
677 | self.SUB_EXP_CODE = sub_exp_code | |
678 | self.PLOT_POS = plot_pos |
|
678 | self.PLOT_POS = plot_pos | |
679 |
|
679 | |||
680 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
680 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
681 | self.isConfig = True |
|
681 | self.isConfig = True | |
682 | self.figfile = figfile |
|
682 | self.figfile = figfile | |
683 | update_figfile = True |
|
683 | update_figfile = True | |
684 |
|
684 | |||
685 | self.setWinTitle(title) |
|
685 | self.setWinTitle(title) | |
686 |
|
686 | |||
687 | for i in range(self.nplots): |
|
687 | for i in range(self.nplots): | |
688 | index = channelIndexList[i] |
|
688 | index = channelIndexList[i] | |
689 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
689 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
690 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
690 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
691 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
691 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
692 | axes = self.axesList[i*self.__nsubplots] |
|
692 | axes = self.axesList[i*self.__nsubplots] | |
693 | zdB = avgdB[index].reshape((1,-1)) |
|
693 | zdB = avgdB[index].reshape((1,-1)) | |
694 | axes.pcolorbuffer(x, y, zdB, |
|
694 | axes.pcolorbuffer(x, y, zdB, | |
695 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
695 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
696 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
696 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
697 | ticksize=9, cblabel='', cbsize="1%", colormap=colormap) |
|
697 | ticksize=9, cblabel='', cbsize="1%", colormap=colormap) | |
698 |
|
698 | |||
699 | if self.__showprofile: |
|
699 | if self.__showprofile: | |
700 | axes = self.axesList[i*self.__nsubplots +1] |
|
700 | axes = self.axesList[i*self.__nsubplots +1] | |
701 | axes.pline(avgdB[index], y, |
|
701 | axes.pline(avgdB[index], y, | |
702 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
702 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
703 | xlabel='dB', ylabel='', title='', |
|
703 | xlabel='dB', ylabel='', title='', | |
704 | ytick_visible=False, |
|
704 | ytick_visible=False, | |
705 | grid='x') |
|
705 | grid='x') | |
706 |
|
706 | |||
707 | self.draw() |
|
707 | self.draw() | |
708 |
|
708 | |||
709 | self.save(figpath=figpath, |
|
709 | self.save(figpath=figpath, | |
710 | figfile=figfile, |
|
710 | figfile=figfile, | |
711 | save=save, |
|
711 | save=save, | |
712 | ftp=ftp, |
|
712 | ftp=ftp, | |
713 | wr_period=wr_period, |
|
713 | wr_period=wr_period, | |
714 | thisDatetime=thisDatetime, |
|
714 | thisDatetime=thisDatetime, | |
715 | update_figfile=update_figfile) |
|
715 | update_figfile=update_figfile) | |
716 |
|
716 | |||
717 | class CoherenceMap(Figure): |
|
717 | class CoherenceMap(Figure): | |
718 | isConfig = None |
|
718 | isConfig = None | |
719 | __nsubplots = None |
|
719 | __nsubplots = None | |
720 |
|
720 | |||
721 | WIDTHPROF = None |
|
721 | WIDTHPROF = None | |
722 | HEIGHTPROF = None |
|
722 | HEIGHTPROF = None | |
723 | PREFIX = 'cmap' |
|
723 | PREFIX = 'cmap' | |
724 |
|
724 | |||
725 | def __init__(self, **kwargs): |
|
725 | def __init__(self, **kwargs): | |
726 | Figure.__init__(self, **kwargs) |
|
726 | Figure.__init__(self, **kwargs) | |
727 | self.timerange = 2*60*60 |
|
727 | self.timerange = 2*60*60 | |
728 | self.isConfig = False |
|
728 | self.isConfig = False | |
729 | self.__nsubplots = 1 |
|
729 | self.__nsubplots = 1 | |
730 |
|
730 | |||
731 | self.WIDTH = 800 |
|
731 | self.WIDTH = 800 | |
732 | self.HEIGHT = 180 |
|
732 | self.HEIGHT = 180 | |
733 | self.WIDTHPROF = 120 |
|
733 | self.WIDTHPROF = 120 | |
734 | self.HEIGHTPROF = 0 |
|
734 | self.HEIGHTPROF = 0 | |
735 | self.counter_imagwr = 0 |
|
735 | self.counter_imagwr = 0 | |
736 |
|
736 | |||
737 | self.PLOT_CODE = COH_CODE |
|
737 | self.PLOT_CODE = COH_CODE | |
738 |
|
738 | |||
739 | self.FTP_WEI = None |
|
739 | self.FTP_WEI = None | |
740 | self.EXP_CODE = None |
|
740 | self.EXP_CODE = None | |
741 | self.SUB_EXP_CODE = None |
|
741 | self.SUB_EXP_CODE = None | |
742 | self.PLOT_POS = None |
|
742 | self.PLOT_POS = None | |
743 | self.counter_imagwr = 0 |
|
743 | self.counter_imagwr = 0 | |
744 |
|
744 | |||
745 | self.xmin = None |
|
745 | self.xmin = None | |
746 | self.xmax = None |
|
746 | self.xmax = None | |
747 |
|
747 | |||
748 | def getSubplots(self): |
|
748 | def getSubplots(self): | |
749 | ncol = 1 |
|
749 | ncol = 1 | |
750 | nrow = self.nplots*2 |
|
750 | nrow = self.nplots*2 | |
751 |
|
751 | |||
752 | return nrow, ncol |
|
752 | return nrow, ncol | |
753 |
|
753 | |||
754 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
754 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
755 | self.__showprofile = showprofile |
|
755 | self.__showprofile = showprofile | |
756 | self.nplots = nplots |
|
756 | self.nplots = nplots | |
757 |
|
757 | |||
758 | ncolspan = 1 |
|
758 | ncolspan = 1 | |
759 | colspan = 1 |
|
759 | colspan = 1 | |
760 | if showprofile: |
|
760 | if showprofile: | |
761 | ncolspan = 7 |
|
761 | ncolspan = 7 | |
762 | colspan = 6 |
|
762 | colspan = 6 | |
763 | self.__nsubplots = 2 |
|
763 | self.__nsubplots = 2 | |
764 |
|
764 | |||
765 | self.createFigure(id = id, |
|
765 | self.createFigure(id = id, | |
766 | wintitle = wintitle, |
|
766 | wintitle = wintitle, | |
767 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
767 | widthplot = self.WIDTH + self.WIDTHPROF, | |
768 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
768 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
769 | show=True) |
|
769 | show=True) | |
770 |
|
770 | |||
771 | nrow, ncol = self.getSubplots() |
|
771 | nrow, ncol = self.getSubplots() | |
772 |
|
772 | |||
773 | for y in range(nrow): |
|
773 | for y in range(nrow): | |
774 | for x in range(ncol): |
|
774 | for x in range(ncol): | |
775 |
|
775 | |||
776 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
776 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
777 |
|
777 | |||
778 | if showprofile: |
|
778 | if showprofile: | |
779 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
779 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
780 |
|
780 | |||
781 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
781 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
782 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
782 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
783 | timerange=None, phase_min=None, phase_max=None, |
|
783 | timerange=None, phase_min=None, phase_max=None, | |
784 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
784 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, | |
785 | coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
785 | coherence_cmap='jet', phase_cmap='RdBu_r', show=True, | |
786 | server=None, folder=None, username=None, password=None, |
|
786 | server=None, folder=None, username=None, password=None, | |
787 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
787 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
788 |
|
788 | |||
789 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
789 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
790 | return |
|
790 | return | |
791 |
|
791 | |||
792 | if pairsList == None: |
|
792 | if pairsList == None: | |
793 | pairsIndexList = dataOut.pairsIndexList |
|
793 | pairsIndexList = dataOut.pairsIndexList | |
794 | else: |
|
794 | else: | |
795 | pairsIndexList = [] |
|
795 | pairsIndexList = [] | |
796 | for pair in pairsList: |
|
796 | for pair in pairsList: | |
797 | if pair not in dataOut.pairsList: |
|
797 | if pair not in dataOut.pairsList: | |
798 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
798 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) | |
799 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
799 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
800 |
|
800 | |||
801 | if pairsIndexList == []: |
|
801 | if pairsIndexList == []: | |
802 | return |
|
802 | return | |
803 |
|
803 | |||
804 | if len(pairsIndexList) > 4: |
|
804 | if len(pairsIndexList) > 4: | |
805 | pairsIndexList = pairsIndexList[0:4] |
|
805 | pairsIndexList = pairsIndexList[0:4] | |
806 |
|
806 | |||
807 | if phase_min == None: |
|
807 | if phase_min == None: | |
808 | phase_min = -180 |
|
808 | phase_min = -180 | |
809 | if phase_max == None: |
|
809 | if phase_max == None: | |
810 | phase_max = 180 |
|
810 | phase_max = 180 | |
811 |
|
811 | |||
812 | x = dataOut.getTimeRange() |
|
812 | x = dataOut.getTimeRange() | |
813 | y = dataOut.getHeiRange() |
|
813 | y = dataOut.getHeiRange() | |
814 |
|
814 | |||
815 | thisDatetime = dataOut.datatime |
|
815 | thisDatetime = dataOut.datatime | |
816 |
|
816 | |||
817 | title = wintitle + " CoherenceMap" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
817 | title = wintitle + " CoherenceMap" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
818 | xlabel = "" |
|
818 | xlabel = "" | |
819 | ylabel = "Range (Km)" |
|
819 | ylabel = "Range (Km)" | |
820 | update_figfile = False |
|
820 | update_figfile = False | |
821 |
|
821 | |||
822 | if not self.isConfig: |
|
822 | if not self.isConfig: | |
823 | nplots = len(pairsIndexList) |
|
823 | nplots = len(pairsIndexList) | |
824 | self.setup(id=id, |
|
824 | self.setup(id=id, | |
825 | nplots=nplots, |
|
825 | nplots=nplots, | |
826 | wintitle=wintitle, |
|
826 | wintitle=wintitle, | |
827 | showprofile=showprofile, |
|
827 | showprofile=showprofile, | |
828 | show=show) |
|
828 | show=show) | |
829 |
|
829 | |||
830 | if timerange != None: |
|
830 | if timerange != None: | |
831 | self.timerange = timerange |
|
831 | self.timerange = timerange | |
832 |
|
832 | |||
833 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
833 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
834 |
|
834 | |||
835 | if ymin == None: ymin = numpy.nanmin(y) |
|
835 | if ymin == None: ymin = numpy.nanmin(y) | |
836 | if ymax == None: ymax = numpy.nanmax(y) |
|
836 | if ymax == None: ymax = numpy.nanmax(y) | |
837 | if zmin == None: zmin = 0. |
|
837 | if zmin == None: zmin = 0. | |
838 | if zmax == None: zmax = 1. |
|
838 | if zmax == None: zmax = 1. | |
839 |
|
839 | |||
840 | self.FTP_WEI = ftp_wei |
|
840 | self.FTP_WEI = ftp_wei | |
841 | self.EXP_CODE = exp_code |
|
841 | self.EXP_CODE = exp_code | |
842 | self.SUB_EXP_CODE = sub_exp_code |
|
842 | self.SUB_EXP_CODE = sub_exp_code | |
843 | self.PLOT_POS = plot_pos |
|
843 | self.PLOT_POS = plot_pos | |
844 |
|
844 | |||
845 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
845 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
846 |
|
846 | |||
847 | self.isConfig = True |
|
847 | self.isConfig = True | |
848 | update_figfile = True |
|
848 | update_figfile = True | |
849 |
|
849 | |||
850 | self.setWinTitle(title) |
|
850 | self.setWinTitle(title) | |
851 |
|
851 | |||
852 | for i in range(self.nplots): |
|
852 | for i in range(self.nplots): | |
853 |
|
853 | |||
854 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
854 | pair = dataOut.pairsList[pairsIndexList[i]] | |
855 |
|
855 | |||
856 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0) |
|
856 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0) | |
857 | powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0) |
|
857 | powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0) | |
858 | powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0) |
|
858 | powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0) | |
859 |
|
859 | |||
860 |
|
860 | |||
861 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
861 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
862 | coherence = numpy.abs(avgcoherenceComplex) |
|
862 | coherence = numpy.abs(avgcoherenceComplex) | |
863 |
|
863 | |||
864 | z = coherence.reshape((1,-1)) |
|
864 | z = coherence.reshape((1,-1)) | |
865 |
|
865 | |||
866 | counter = 0 |
|
866 | counter = 0 | |
867 |
|
867 | |||
868 | title = "Coherence Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
868 | title = "Coherence Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
869 | axes = self.axesList[i*self.__nsubplots*2] |
|
869 | axes = self.axesList[i*self.__nsubplots*2] | |
870 | axes.pcolorbuffer(x, y, z, |
|
870 | axes.pcolorbuffer(x, y, z, | |
871 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
871 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
872 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
872 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
873 | ticksize=9, cblabel='', colormap=coherence_cmap, cbsize="1%") |
|
873 | ticksize=9, cblabel='', colormap=coherence_cmap, cbsize="1%") | |
874 |
|
874 | |||
875 | if self.__showprofile: |
|
875 | if self.__showprofile: | |
876 | counter += 1 |
|
876 | counter += 1 | |
877 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
877 | axes = self.axesList[i*self.__nsubplots*2 + counter] | |
878 | axes.pline(coherence, y, |
|
878 | axes.pline(coherence, y, | |
879 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
879 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
880 | xlabel='', ylabel='', title='', ticksize=7, |
|
880 | xlabel='', ylabel='', title='', ticksize=7, | |
881 | ytick_visible=False, nxticks=5, |
|
881 | ytick_visible=False, nxticks=5, | |
882 | grid='x') |
|
882 | grid='x') | |
883 |
|
883 | |||
884 | counter += 1 |
|
884 | counter += 1 | |
885 |
|
885 | |||
886 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
886 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
887 |
|
887 | |||
888 | z = phase.reshape((1,-1)) |
|
888 | z = phase.reshape((1,-1)) | |
889 |
|
889 | |||
890 | title = "Phase Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
890 | title = "Phase Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
891 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
891 | axes = self.axesList[i*self.__nsubplots*2 + counter] | |
892 | axes.pcolorbuffer(x, y, z, |
|
892 | axes.pcolorbuffer(x, y, z, | |
893 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
893 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, | |
894 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
894 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
895 | ticksize=9, cblabel='', colormap=phase_cmap, cbsize="1%") |
|
895 | ticksize=9, cblabel='', colormap=phase_cmap, cbsize="1%") | |
896 |
|
896 | |||
897 | if self.__showprofile: |
|
897 | if self.__showprofile: | |
898 | counter += 1 |
|
898 | counter += 1 | |
899 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
899 | axes = self.axesList[i*self.__nsubplots*2 + counter] | |
900 | axes.pline(phase, y, |
|
900 | axes.pline(phase, y, | |
901 | xmin=phase_min, xmax=phase_max, ymin=ymin, ymax=ymax, |
|
901 | xmin=phase_min, xmax=phase_max, ymin=ymin, ymax=ymax, | |
902 | xlabel='', ylabel='', title='', ticksize=7, |
|
902 | xlabel='', ylabel='', title='', ticksize=7, | |
903 | ytick_visible=False, nxticks=4, |
|
903 | ytick_visible=False, nxticks=4, | |
904 | grid='x') |
|
904 | grid='x') | |
905 |
|
905 | |||
906 | self.draw() |
|
906 | self.draw() | |
907 |
|
907 | |||
908 | if dataOut.ltctime >= self.xmax: |
|
908 | if dataOut.ltctime >= self.xmax: | |
909 | self.counter_imagwr = wr_period |
|
909 | self.counter_imagwr = wr_period | |
910 | self.isConfig = False |
|
910 | self.isConfig = False | |
911 | update_figfile = True |
|
911 | update_figfile = True | |
912 |
|
912 | |||
913 | self.save(figpath=figpath, |
|
913 | self.save(figpath=figpath, | |
914 | figfile=figfile, |
|
914 | figfile=figfile, | |
915 | save=save, |
|
915 | save=save, | |
916 | ftp=ftp, |
|
916 | ftp=ftp, | |
917 | wr_period=wr_period, |
|
917 | wr_period=wr_period, | |
918 | thisDatetime=thisDatetime, |
|
918 | thisDatetime=thisDatetime, | |
919 | update_figfile=update_figfile) |
|
919 | update_figfile=update_figfile) | |
920 |
|
920 | |||
921 | class PowerProfilePlot(Figure): |
|
921 | class PowerProfilePlot(Figure): | |
922 |
|
922 | |||
923 | isConfig = None |
|
923 | isConfig = None | |
924 | __nsubplots = None |
|
924 | __nsubplots = None | |
925 |
|
925 | |||
926 | WIDTHPROF = None |
|
926 | WIDTHPROF = None | |
927 | HEIGHTPROF = None |
|
927 | HEIGHTPROF = None | |
928 | PREFIX = 'spcprofile' |
|
928 | PREFIX = 'spcprofile' | |
929 |
|
929 | |||
930 | def __init__(self, **kwargs): |
|
930 | def __init__(self, **kwargs): | |
931 | Figure.__init__(self, **kwargs) |
|
931 | Figure.__init__(self, **kwargs) | |
932 | self.isConfig = False |
|
932 | self.isConfig = False | |
933 | self.__nsubplots = 1 |
|
933 | self.__nsubplots = 1 | |
934 |
|
934 | |||
935 | self.PLOT_CODE = POWER_CODE |
|
935 | self.PLOT_CODE = POWER_CODE | |
936 |
|
936 | |||
937 | self.WIDTH = 300 |
|
937 | self.WIDTH = 300 | |
938 | self.HEIGHT = 500 |
|
938 | self.HEIGHT = 500 | |
939 | self.counter_imagwr = 0 |
|
939 | self.counter_imagwr = 0 | |
940 |
|
940 | |||
941 | def getSubplots(self): |
|
941 | def getSubplots(self): | |
942 | ncol = 1 |
|
942 | ncol = 1 | |
943 | nrow = 1 |
|
943 | nrow = 1 | |
944 |
|
944 | |||
945 | return nrow, ncol |
|
945 | return nrow, ncol | |
946 |
|
946 | |||
947 | def setup(self, id, nplots, wintitle, show): |
|
947 | def setup(self, id, nplots, wintitle, show): | |
948 |
|
948 | |||
949 | self.nplots = nplots |
|
949 | self.nplots = nplots | |
950 |
|
950 | |||
951 | ncolspan = 1 |
|
951 | ncolspan = 1 | |
952 | colspan = 1 |
|
952 | colspan = 1 | |
953 |
|
953 | |||
954 | self.createFigure(id = id, |
|
954 | self.createFigure(id = id, | |
955 | wintitle = wintitle, |
|
955 | wintitle = wintitle, | |
956 | widthplot = self.WIDTH, |
|
956 | widthplot = self.WIDTH, | |
957 | heightplot = self.HEIGHT, |
|
957 | heightplot = self.HEIGHT, | |
958 | show=show) |
|
958 | show=show) | |
959 |
|
959 | |||
960 | nrow, ncol = self.getSubplots() |
|
960 | nrow, ncol = self.getSubplots() | |
961 |
|
961 | |||
962 | counter = 0 |
|
962 | counter = 0 | |
963 | for y in range(nrow): |
|
963 | for y in range(nrow): | |
964 | for x in range(ncol): |
|
964 | for x in range(ncol): | |
965 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
965 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
966 |
|
966 | |||
967 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
967 | def run(self, dataOut, id, wintitle="", channelList=None, | |
968 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
968 | xmin=None, xmax=None, ymin=None, ymax=None, | |
969 | save=False, figpath='./', figfile=None, show=True, |
|
969 | save=False, figpath='./', figfile=None, show=True, | |
970 | ftp=False, wr_period=1, server=None, |
|
970 | ftp=False, wr_period=1, server=None, | |
971 | folder=None, username=None, password=None): |
|
971 | folder=None, username=None, password=None): | |
972 |
|
972 | |||
973 |
|
973 | |||
974 | if channelList == None: |
|
974 | if channelList == None: | |
975 | channelIndexList = dataOut.channelIndexList |
|
975 | channelIndexList = dataOut.channelIndexList | |
976 | channelList = dataOut.channelList |
|
976 | channelList = dataOut.channelList | |
977 | else: |
|
977 | else: | |
978 | channelIndexList = [] |
|
978 | channelIndexList = [] | |
979 | for channel in channelList: |
|
979 | for channel in channelList: | |
980 | if channel not in dataOut.channelList: |
|
980 | if channel not in dataOut.channelList: | |
981 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
981 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
982 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
982 | channelIndexList.append(dataOut.channelList.index(channel)) | |
983 |
|
983 | |||
984 | factor = dataOut.normFactor |
|
984 | factor = dataOut.normFactor | |
985 |
|
985 | |||
986 | y = dataOut.getHeiRange() |
|
986 | y = dataOut.getHeiRange() | |
987 |
|
987 | |||
988 | #for voltage |
|
988 | #for voltage | |
989 | if dataOut.type == 'Voltage': |
|
989 | if dataOut.type == 'Voltage': | |
990 | x = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) |
|
990 | x = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) | |
991 | x = x.real |
|
991 | x = x.real | |
992 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
992 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) | |
993 |
|
993 | |||
994 | #for spectra |
|
994 | #for spectra | |
995 | if dataOut.type == 'Spectra': |
|
995 | if dataOut.type == 'Spectra': | |
996 | x = dataOut.data_spc[channelIndexList,:,:]/factor |
|
996 | x = dataOut.data_spc[channelIndexList,:,:]/factor | |
997 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
997 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) | |
998 | x = numpy.average(x, axis=1) |
|
998 | x = numpy.average(x, axis=1) | |
999 |
|
999 | |||
1000 |
|
1000 | |||
1001 | xdB = 10*numpy.log10(x) |
|
1001 | xdB = 10*numpy.log10(x) | |
1002 |
|
1002 | |||
1003 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1003 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
1004 | title = wintitle + " Power Profile %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1004 | title = wintitle + " Power Profile %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1005 | xlabel = "dB" |
|
1005 | xlabel = "dB" | |
1006 | ylabel = "Range (Km)" |
|
1006 | ylabel = "Range (Km)" | |
1007 |
|
1007 | |||
1008 | if not self.isConfig: |
|
1008 | if not self.isConfig: | |
1009 |
|
1009 | |||
1010 | nplots = 1 |
|
1010 | nplots = 1 | |
1011 |
|
1011 | |||
1012 | self.setup(id=id, |
|
1012 | self.setup(id=id, | |
1013 | nplots=nplots, |
|
1013 | nplots=nplots, | |
1014 | wintitle=wintitle, |
|
1014 | wintitle=wintitle, | |
1015 | show=show) |
|
1015 | show=show) | |
1016 |
|
1016 | |||
1017 | if ymin == None: ymin = numpy.nanmin(y) |
|
1017 | if ymin == None: ymin = numpy.nanmin(y) | |
1018 | if ymax == None: ymax = numpy.nanmax(y) |
|
1018 | if ymax == None: ymax = numpy.nanmax(y) | |
1019 | if xmin == None: xmin = numpy.nanmin(xdB)*0.9 |
|
1019 | if xmin == None: xmin = numpy.nanmin(xdB)*0.9 | |
1020 | if xmax == None: xmax = numpy.nanmax(xdB)*1.1 |
|
1020 | if xmax == None: xmax = numpy.nanmax(xdB)*1.1 | |
1021 |
|
1021 | |||
1022 | self.isConfig = True |
|
1022 | self.isConfig = True | |
1023 |
|
1023 | |||
1024 | self.setWinTitle(title) |
|
1024 | self.setWinTitle(title) | |
1025 |
|
1025 | |||
1026 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1026 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
1027 | axes = self.axesList[0] |
|
1027 | axes = self.axesList[0] | |
1028 |
|
1028 | |||
1029 | legendlabels = ["channel %d"%x for x in channelList] |
|
1029 | legendlabels = ["channel %d"%x for x in channelList] | |
1030 | axes.pmultiline(xdB, y, |
|
1030 | axes.pmultiline(xdB, y, | |
1031 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1031 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |
1032 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
1032 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, | |
1033 | ytick_visible=True, nxticks=5, |
|
1033 | ytick_visible=True, nxticks=5, | |
1034 | grid='x') |
|
1034 | grid='x') | |
1035 |
|
1035 | |||
1036 | self.draw() |
|
1036 | self.draw() | |
1037 |
|
1037 | |||
1038 | self.save(figpath=figpath, |
|
1038 | self.save(figpath=figpath, | |
1039 | figfile=figfile, |
|
1039 | figfile=figfile, | |
1040 | save=save, |
|
1040 | save=save, | |
1041 | ftp=ftp, |
|
1041 | ftp=ftp, | |
1042 | wr_period=wr_period, |
|
1042 | wr_period=wr_period, | |
1043 | thisDatetime=thisDatetime) |
|
1043 | thisDatetime=thisDatetime) | |
1044 |
|
1044 | |||
1045 | class SpectraCutPlot(Figure): |
|
1045 | class SpectraCutPlot(Figure): | |
1046 |
|
1046 | |||
1047 | isConfig = None |
|
1047 | isConfig = None | |
1048 | __nsubplots = None |
|
1048 | __nsubplots = None | |
1049 |
|
1049 | |||
1050 | WIDTHPROF = None |
|
1050 | WIDTHPROF = None | |
1051 | HEIGHTPROF = None |
|
1051 | HEIGHTPROF = None | |
1052 | PREFIX = 'spc_cut' |
|
1052 | PREFIX = 'spc_cut' | |
1053 |
|
1053 | |||
1054 | def __init__(self, **kwargs): |
|
1054 | def __init__(self, **kwargs): | |
1055 | Figure.__init__(self, **kwargs) |
|
1055 | Figure.__init__(self, **kwargs) | |
1056 | self.isConfig = False |
|
1056 | self.isConfig = False | |
1057 | self.__nsubplots = 1 |
|
1057 | self.__nsubplots = 1 | |
1058 |
|
1058 | |||
1059 | self.PLOT_CODE = POWER_CODE |
|
1059 | self.PLOT_CODE = POWER_CODE | |
1060 |
|
1060 | |||
1061 | self.WIDTH = 700 |
|
1061 | self.WIDTH = 700 | |
1062 | self.HEIGHT = 500 |
|
1062 | self.HEIGHT = 500 | |
1063 | self.counter_imagwr = 0 |
|
1063 | self.counter_imagwr = 0 | |
1064 |
|
1064 | |||
1065 | def getSubplots(self): |
|
1065 | def getSubplots(self): | |
1066 | ncol = 1 |
|
1066 | ncol = 1 | |
1067 | nrow = 1 |
|
1067 | nrow = 1 | |
1068 |
|
1068 | |||
1069 | return nrow, ncol |
|
1069 | return nrow, ncol | |
1070 |
|
1070 | |||
1071 | def setup(self, id, nplots, wintitle, show): |
|
1071 | def setup(self, id, nplots, wintitle, show): | |
1072 |
|
1072 | |||
1073 | self.nplots = nplots |
|
1073 | self.nplots = nplots | |
1074 |
|
1074 | |||
1075 | ncolspan = 1 |
|
1075 | ncolspan = 1 | |
1076 | colspan = 1 |
|
1076 | colspan = 1 | |
1077 |
|
1077 | |||
1078 | self.createFigure(id = id, |
|
1078 | self.createFigure(id = id, | |
1079 | wintitle = wintitle, |
|
1079 | wintitle = wintitle, | |
1080 | widthplot = self.WIDTH, |
|
1080 | widthplot = self.WIDTH, | |
1081 | heightplot = self.HEIGHT, |
|
1081 | heightplot = self.HEIGHT, | |
1082 | show=show) |
|
1082 | show=show) | |
1083 |
|
1083 | |||
1084 | nrow, ncol = self.getSubplots() |
|
1084 | nrow, ncol = self.getSubplots() | |
1085 |
|
1085 | |||
1086 | counter = 0 |
|
1086 | counter = 0 | |
1087 | for y in range(nrow): |
|
1087 | for y in range(nrow): | |
1088 | for x in range(ncol): |
|
1088 | for x in range(ncol): | |
1089 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1089 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
1090 |
|
1090 | |||
1091 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
1091 | def run(self, dataOut, id, wintitle="", channelList=None, | |
1092 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1092 | xmin=None, xmax=None, ymin=None, ymax=None, | |
1093 | save=False, figpath='./', figfile=None, show=True, |
|
1093 | save=False, figpath='./', figfile=None, show=True, | |
1094 | ftp=False, wr_period=1, server=None, |
|
1094 | ftp=False, wr_period=1, server=None, | |
1095 | folder=None, username=None, password=None, |
|
1095 | folder=None, username=None, password=None, | |
1096 | xaxis="frequency"): |
|
1096 | xaxis="frequency"): | |
1097 |
|
1097 | |||
1098 |
|
1098 | |||
1099 | if channelList == None: |
|
1099 | if channelList == None: | |
1100 | channelIndexList = dataOut.channelIndexList |
|
1100 | channelIndexList = dataOut.channelIndexList | |
1101 | channelList = dataOut.channelList |
|
1101 | channelList = dataOut.channelList | |
1102 | else: |
|
1102 | else: | |
1103 | channelIndexList = [] |
|
1103 | channelIndexList = [] | |
1104 | for channel in channelList: |
|
1104 | for channel in channelList: | |
1105 | if channel not in dataOut.channelList: |
|
1105 | if channel not in dataOut.channelList: | |
1106 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
1106 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
1107 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1107 | channelIndexList.append(dataOut.channelList.index(channel)) | |
1108 |
|
1108 | |||
1109 | factor = dataOut.normFactor |
|
1109 | factor = dataOut.normFactor | |
1110 |
|
1110 | |||
1111 | y = dataOut.getHeiRange() |
|
1111 | y = dataOut.getHeiRange() | |
1112 |
|
1112 | |||
1113 | z = dataOut.data_spc/factor |
|
1113 | z = dataOut.data_spc/factor | |
1114 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1114 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
1115 |
|
1115 | |||
1116 | hei_index = numpy.arange(25)*3 + 20 |
|
1116 | hei_index = numpy.arange(25)*3 + 20 | |
1117 |
|
1117 | |||
1118 | if xaxis == "frequency": |
|
1118 | if xaxis == "frequency": | |
1119 | x = dataOut.getFreqRange()/1000. |
|
1119 | x = dataOut.getFreqRange()/1000. | |
1120 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1120 | zdB = 10*numpy.log10(z[0,:,hei_index]) | |
1121 | xlabel = "Frequency (kHz)" |
|
1121 | xlabel = "Frequency (kHz)" | |
1122 | ylabel = "Power (dB)" |
|
1122 | ylabel = "Power (dB)" | |
1123 |
|
1123 | |||
1124 | elif xaxis == "time": |
|
1124 | elif xaxis == "time": | |
1125 | x = dataOut.getAcfRange() |
|
1125 | x = dataOut.getAcfRange() | |
1126 | zdB = z[0,:,hei_index] |
|
1126 | zdB = z[0,:,hei_index] | |
1127 | xlabel = "Time (ms)" |
|
1127 | xlabel = "Time (ms)" | |
1128 | ylabel = "ACF" |
|
1128 | ylabel = "ACF" | |
1129 |
|
1129 | |||
1130 | else: |
|
1130 | else: | |
1131 | x = dataOut.getVelRange() |
|
1131 | x = dataOut.getVelRange() | |
1132 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1132 | zdB = 10*numpy.log10(z[0,:,hei_index]) | |
1133 | xlabel = "Velocity (m/s)" |
|
1133 | xlabel = "Velocity (m/s)" | |
1134 | ylabel = "Power (dB)" |
|
1134 | ylabel = "Power (dB)" | |
1135 |
|
1135 | |||
1136 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1136 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
1137 | title = wintitle + " Range Cuts %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1137 | title = wintitle + " Range Cuts %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1138 |
|
1138 | |||
1139 | if not self.isConfig: |
|
1139 | if not self.isConfig: | |
1140 |
|
1140 | |||
1141 | nplots = 1 |
|
1141 | nplots = 1 | |
1142 |
|
1142 | |||
1143 | self.setup(id=id, |
|
1143 | self.setup(id=id, | |
1144 | nplots=nplots, |
|
1144 | nplots=nplots, | |
1145 | wintitle=wintitle, |
|
1145 | wintitle=wintitle, | |
1146 | show=show) |
|
1146 | show=show) | |
1147 |
|
1147 | |||
1148 | if xmin == None: xmin = numpy.nanmin(x)*0.9 |
|
1148 | if xmin == None: xmin = numpy.nanmin(x)*0.9 | |
1149 | if xmax == None: xmax = numpy.nanmax(x)*1.1 |
|
1149 | if xmax == None: xmax = numpy.nanmax(x)*1.1 | |
1150 | if ymin == None: ymin = numpy.nanmin(zdB) |
|
1150 | if ymin == None: ymin = numpy.nanmin(zdB) | |
1151 | if ymax == None: ymax = numpy.nanmax(zdB) |
|
1151 | if ymax == None: ymax = numpy.nanmax(zdB) | |
1152 |
|
1152 | |||
1153 | self.isConfig = True |
|
1153 | self.isConfig = True | |
1154 |
|
1154 | |||
1155 | self.setWinTitle(title) |
|
1155 | self.setWinTitle(title) | |
1156 |
|
1156 | |||
1157 | title = "Spectra Cuts: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1157 | title = "Spectra Cuts: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
1158 | axes = self.axesList[0] |
|
1158 | axes = self.axesList[0] | |
1159 |
|
1159 | |||
1160 | legendlabels = ["Range = %dKm" %y[i] for i in hei_index] |
|
1160 | legendlabels = ["Range = %dKm" %y[i] for i in hei_index] | |
1161 |
|
1161 | |||
1162 | axes.pmultilineyaxis( x, zdB, |
|
1162 | axes.pmultilineyaxis( x, zdB, | |
1163 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1163 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |
1164 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
1164 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, | |
1165 | ytick_visible=True, nxticks=5, |
|
1165 | ytick_visible=True, nxticks=5, | |
1166 | grid='x') |
|
1166 | grid='x') | |
1167 |
|
1167 | |||
1168 | self.draw() |
|
1168 | self.draw() | |
1169 |
|
1169 | |||
1170 | self.save(figpath=figpath, |
|
1170 | self.save(figpath=figpath, | |
1171 | figfile=figfile, |
|
1171 | figfile=figfile, | |
1172 | save=save, |
|
1172 | save=save, | |
1173 | ftp=ftp, |
|
1173 | ftp=ftp, | |
1174 | wr_period=wr_period, |
|
1174 | wr_period=wr_period, | |
1175 | thisDatetime=thisDatetime) |
|
1175 | thisDatetime=thisDatetime) | |
1176 |
|
1176 | |||
1177 | class Noise(Figure): |
|
1177 | class Noise(Figure): | |
1178 |
|
1178 | |||
1179 | isConfig = None |
|
1179 | isConfig = None | |
1180 | __nsubplots = None |
|
1180 | __nsubplots = None | |
1181 |
|
1181 | |||
1182 | PREFIX = 'noise' |
|
1182 | PREFIX = 'noise' | |
1183 |
|
1183 | |||
1184 |
|
1184 | |||
1185 | def __init__(self, **kwargs): |
|
1185 | def __init__(self, **kwargs): | |
1186 | Figure.__init__(self, **kwargs) |
|
1186 | Figure.__init__(self, **kwargs) | |
1187 | self.timerange = 24*60*60 |
|
1187 | self.timerange = 24*60*60 | |
1188 | self.isConfig = False |
|
1188 | self.isConfig = False | |
1189 | self.__nsubplots = 1 |
|
1189 | self.__nsubplots = 1 | |
1190 | self.counter_imagwr = 0 |
|
1190 | self.counter_imagwr = 0 | |
1191 | self.WIDTH = 800 |
|
1191 | self.WIDTH = 800 | |
1192 | self.HEIGHT = 400 |
|
1192 | self.HEIGHT = 400 | |
1193 | self.WIDTHPROF = 120 |
|
1193 | self.WIDTHPROF = 120 | |
1194 | self.HEIGHTPROF = 0 |
|
1194 | self.HEIGHTPROF = 0 | |
1195 | self.xdata = None |
|
1195 | self.xdata = None | |
1196 | self.ydata = None |
|
1196 | self.ydata = None | |
1197 |
|
1197 | |||
1198 | self.PLOT_CODE = NOISE_CODE |
|
1198 | self.PLOT_CODE = NOISE_CODE | |
1199 |
|
1199 | |||
1200 | self.FTP_WEI = None |
|
1200 | self.FTP_WEI = None | |
1201 | self.EXP_CODE = None |
|
1201 | self.EXP_CODE = None | |
1202 | self.SUB_EXP_CODE = None |
|
1202 | self.SUB_EXP_CODE = None | |
1203 | self.PLOT_POS = None |
|
1203 | self.PLOT_POS = None | |
1204 | self.figfile = None |
|
1204 | self.figfile = None | |
1205 |
|
1205 | |||
1206 | self.xmin = None |
|
1206 | self.xmin = None | |
1207 | self.xmax = None |
|
1207 | self.xmax = None | |
1208 |
|
1208 | |||
1209 | def getSubplots(self): |
|
1209 | def getSubplots(self): | |
1210 |
|
1210 | |||
1211 | ncol = 1 |
|
1211 | ncol = 1 | |
1212 | nrow = 1 |
|
1212 | nrow = 1 | |
1213 |
|
1213 | |||
1214 | return nrow, ncol |
|
1214 | return nrow, ncol | |
1215 |
|
1215 | |||
1216 | def openfile(self, filename): |
|
1216 | def openfile(self, filename): | |
1217 | dirname = os.path.dirname(filename) |
|
1217 | dirname = os.path.dirname(filename) | |
1218 |
|
1218 | |||
1219 | if not os.path.exists(dirname): |
|
1219 | if not os.path.exists(dirname): | |
1220 | os.mkdir(dirname) |
|
1220 | os.mkdir(dirname) | |
1221 |
|
1221 | |||
1222 | f = open(filename,'w+') |
|
1222 | f = open(filename,'w+') | |
1223 | f.write('\n\n') |
|
1223 | f.write('\n\n') | |
1224 | f.write('JICAMARCA RADIO OBSERVATORY - Noise \n') |
|
1224 | f.write('JICAMARCA RADIO OBSERVATORY - Noise \n') | |
1225 | f.write('DD MM YYYY HH MM SS Channel0 Channel1 Channel2 Channel3\n\n' ) |
|
1225 | f.write('DD MM YYYY HH MM SS Channel0 Channel1 Channel2 Channel3\n\n' ) | |
1226 | f.close() |
|
1226 | f.close() | |
1227 |
|
1227 | |||
1228 | def save_data(self, filename_phase, data, data_datetime): |
|
1228 | def save_data(self, filename_phase, data, data_datetime): | |
1229 |
|
1229 | |||
1230 | f=open(filename_phase,'a') |
|
1230 | f=open(filename_phase,'a') | |
1231 |
|
1231 | |||
1232 | timetuple_data = data_datetime.timetuple() |
|
1232 | timetuple_data = data_datetime.timetuple() | |
1233 | day = str(timetuple_data.tm_mday) |
|
1233 | day = str(timetuple_data.tm_mday) | |
1234 | month = str(timetuple_data.tm_mon) |
|
1234 | month = str(timetuple_data.tm_mon) | |
1235 | year = str(timetuple_data.tm_year) |
|
1235 | year = str(timetuple_data.tm_year) | |
1236 | hour = str(timetuple_data.tm_hour) |
|
1236 | hour = str(timetuple_data.tm_hour) | |
1237 | minute = str(timetuple_data.tm_min) |
|
1237 | minute = str(timetuple_data.tm_min) | |
1238 | second = str(timetuple_data.tm_sec) |
|
1238 | second = str(timetuple_data.tm_sec) | |
1239 |
|
1239 | |||
1240 | data_msg = '' |
|
1240 | data_msg = '' | |
1241 | for i in range(len(data)): |
|
1241 | for i in range(len(data)): | |
1242 | data_msg += str(data[i]) + ' ' |
|
1242 | data_msg += str(data[i]) + ' ' | |
1243 |
|
1243 | |||
1244 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' ' + data_msg + '\n') |
|
1244 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' ' + data_msg + '\n') | |
1245 | f.close() |
|
1245 | f.close() | |
1246 |
|
1246 | |||
1247 |
|
1247 | |||
1248 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1248 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
1249 |
|
1249 | |||
1250 | self.__showprofile = showprofile |
|
1250 | self.__showprofile = showprofile | |
1251 | self.nplots = nplots |
|
1251 | self.nplots = nplots | |
1252 |
|
1252 | |||
1253 | ncolspan = 7 |
|
1253 | ncolspan = 7 | |
1254 | colspan = 6 |
|
1254 | colspan = 6 | |
1255 | self.__nsubplots = 2 |
|
1255 | self.__nsubplots = 2 | |
1256 |
|
1256 | |||
1257 | self.createFigure(id = id, |
|
1257 | self.createFigure(id = id, | |
1258 | wintitle = wintitle, |
|
1258 | wintitle = wintitle, | |
1259 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1259 | widthplot = self.WIDTH+self.WIDTHPROF, | |
1260 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1260 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
1261 | show=show) |
|
1261 | show=show) | |
1262 |
|
1262 | |||
1263 | nrow, ncol = self.getSubplots() |
|
1263 | nrow, ncol = self.getSubplots() | |
1264 |
|
1264 | |||
1265 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1265 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
1266 |
|
1266 | |||
1267 |
|
1267 | |||
1268 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
1268 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', | |
1269 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1269 | xmin=None, xmax=None, ymin=None, ymax=None, | |
1270 | timerange=None, |
|
1270 | timerange=None, | |
1271 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1271 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
1272 | server=None, folder=None, username=None, password=None, |
|
1272 | server=None, folder=None, username=None, password=None, | |
1273 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1273 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1274 |
|
1274 | |||
1275 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1275 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
1276 | return |
|
1276 | return | |
1277 |
|
1277 | |||
1278 | if channelList == None: |
|
1278 | if channelList == None: | |
1279 | channelIndexList = dataOut.channelIndexList |
|
1279 | channelIndexList = dataOut.channelIndexList | |
1280 | channelList = dataOut.channelList |
|
1280 | channelList = dataOut.channelList | |
1281 | else: |
|
1281 | else: | |
1282 | channelIndexList = [] |
|
1282 | channelIndexList = [] | |
1283 | for channel in channelList: |
|
1283 | for channel in channelList: | |
1284 | if channel not in dataOut.channelList: |
|
1284 | if channel not in dataOut.channelList: | |
1285 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
1285 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
1286 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1286 | channelIndexList.append(dataOut.channelList.index(channel)) | |
1287 |
|
1287 | |||
1288 | x = dataOut.getTimeRange() |
|
1288 | x = dataOut.getTimeRange() | |
1289 | #y = dataOut.getHeiRange() |
|
1289 | #y = dataOut.getHeiRange() | |
1290 | factor = dataOut.normFactor |
|
1290 | factor = dataOut.normFactor | |
1291 | noise = dataOut.noise[channelIndexList]/factor |
|
1291 | noise = dataOut.noise[channelIndexList]/factor | |
1292 | noisedB = 10*numpy.log10(noise) |
|
1292 | noisedB = 10*numpy.log10(noise) | |
1293 |
|
1293 | |||
1294 | thisDatetime = dataOut.datatime |
|
1294 | thisDatetime = dataOut.datatime | |
1295 |
|
1295 | |||
1296 | title = wintitle + " Noise" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1296 | title = wintitle + " Noise" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1297 | xlabel = "" |
|
1297 | xlabel = "" | |
1298 | ylabel = "Intensity (dB)" |
|
1298 | ylabel = "Intensity (dB)" | |
1299 | update_figfile = False |
|
1299 | update_figfile = False | |
1300 |
|
1300 | |||
1301 | if not self.isConfig: |
|
1301 | if not self.isConfig: | |
1302 |
|
1302 | |||
1303 | nplots = 1 |
|
1303 | nplots = 1 | |
1304 |
|
1304 | |||
1305 | self.setup(id=id, |
|
1305 | self.setup(id=id, | |
1306 | nplots=nplots, |
|
1306 | nplots=nplots, | |
1307 | wintitle=wintitle, |
|
1307 | wintitle=wintitle, | |
1308 | showprofile=showprofile, |
|
1308 | showprofile=showprofile, | |
1309 | show=show) |
|
1309 | show=show) | |
1310 |
|
1310 | |||
1311 | if timerange != None: |
|
1311 | if timerange != None: | |
1312 | self.timerange = timerange |
|
1312 | self.timerange = timerange | |
1313 |
|
1313 | |||
1314 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1314 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1315 |
|
1315 | |||
1316 | if ymin == None: ymin = numpy.floor(numpy.nanmin(noisedB)) - 10.0 |
|
1316 | if ymin == None: ymin = numpy.floor(numpy.nanmin(noisedB)) - 10.0 | |
1317 | if ymax == None: ymax = numpy.nanmax(noisedB) + 10.0 |
|
1317 | if ymax == None: ymax = numpy.nanmax(noisedB) + 10.0 | |
1318 |
|
1318 | |||
1319 | self.FTP_WEI = ftp_wei |
|
1319 | self.FTP_WEI = ftp_wei | |
1320 | self.EXP_CODE = exp_code |
|
1320 | self.EXP_CODE = exp_code | |
1321 | self.SUB_EXP_CODE = sub_exp_code |
|
1321 | self.SUB_EXP_CODE = sub_exp_code | |
1322 | self.PLOT_POS = plot_pos |
|
1322 | self.PLOT_POS = plot_pos | |
1323 |
|
1323 | |||
1324 |
|
1324 | |||
1325 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1325 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1326 | self.isConfig = True |
|
1326 | self.isConfig = True | |
1327 | self.figfile = figfile |
|
1327 | self.figfile = figfile | |
1328 | self.xdata = numpy.array([]) |
|
1328 | self.xdata = numpy.array([]) | |
1329 | self.ydata = numpy.array([]) |
|
1329 | self.ydata = numpy.array([]) | |
1330 |
|
1330 | |||
1331 | update_figfile = True |
|
1331 | update_figfile = True | |
1332 |
|
1332 | |||
1333 | #open file beacon phase |
|
1333 | #open file beacon phase | |
1334 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1334 | path = '%s%03d' %(self.PREFIX, self.id) | |
1335 | noise_file = os.path.join(path,'%s.txt'%self.name) |
|
1335 | noise_file = os.path.join(path,'%s.txt'%self.name) | |
1336 | self.filename_noise = os.path.join(figpath,noise_file) |
|
1336 | self.filename_noise = os.path.join(figpath,noise_file) | |
1337 |
|
1337 | |||
1338 | self.setWinTitle(title) |
|
1338 | self.setWinTitle(title) | |
1339 |
|
1339 | |||
1340 | title = "Noise %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1340 | title = "Noise %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1341 |
|
1341 | |||
1342 | legendlabels = ["channel %d"%(idchannel) for idchannel in channelList] |
|
1342 | legendlabels = ["channel %d"%(idchannel) for idchannel in channelList] | |
1343 | axes = self.axesList[0] |
|
1343 | axes = self.axesList[0] | |
1344 |
|
1344 | |||
1345 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1345 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
1346 |
|
1346 | |||
1347 | if len(self.ydata)==0: |
|
1347 | if len(self.ydata)==0: | |
1348 | self.ydata = noisedB.reshape(-1,1) |
|
1348 | self.ydata = noisedB.reshape(-1,1) | |
1349 | else: |
|
1349 | else: | |
1350 | self.ydata = numpy.hstack((self.ydata, noisedB.reshape(-1,1))) |
|
1350 | self.ydata = numpy.hstack((self.ydata, noisedB.reshape(-1,1))) | |
1351 |
|
1351 | |||
1352 |
|
1352 | |||
1353 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1353 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
1354 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1354 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
1355 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1355 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
1356 | XAxisAsTime=True, grid='both' |
|
1356 | XAxisAsTime=True, grid='both' | |
1357 | ) |
|
1357 | ) | |
1358 |
|
1358 | |||
1359 | self.draw() |
|
1359 | self.draw() | |
1360 |
|
1360 | |||
1361 | if dataOut.ltctime >= self.xmax: |
|
1361 | if dataOut.ltctime >= self.xmax: | |
1362 | self.counter_imagwr = wr_period |
|
1362 | self.counter_imagwr = wr_period | |
1363 | self.isConfig = False |
|
1363 | self.isConfig = False | |
1364 | update_figfile = True |
|
1364 | update_figfile = True | |
1365 |
|
1365 | |||
1366 | self.save(figpath=figpath, |
|
1366 | self.save(figpath=figpath, | |
1367 | figfile=figfile, |
|
1367 | figfile=figfile, | |
1368 | save=save, |
|
1368 | save=save, | |
1369 | ftp=ftp, |
|
1369 | ftp=ftp, | |
1370 | wr_period=wr_period, |
|
1370 | wr_period=wr_period, | |
1371 | thisDatetime=thisDatetime, |
|
1371 | thisDatetime=thisDatetime, | |
1372 | update_figfile=update_figfile) |
|
1372 | update_figfile=update_figfile) | |
1373 |
|
1373 | |||
1374 | #store data beacon phase |
|
1374 | #store data beacon phase | |
1375 | if save: |
|
1375 | if save: | |
1376 | self.save_data(self.filename_noise, noisedB, thisDatetime) |
|
1376 | self.save_data(self.filename_noise, noisedB, thisDatetime) | |
1377 |
|
1377 | |||
1378 | class BeaconPhase(Figure): |
|
1378 | class BeaconPhase(Figure): | |
1379 |
|
1379 | |||
1380 | __isConfig = None |
|
1380 | __isConfig = None | |
1381 | __nsubplots = None |
|
1381 | __nsubplots = None | |
1382 |
|
1382 | |||
1383 | PREFIX = 'beacon_phase' |
|
1383 | PREFIX = 'beacon_phase' | |
1384 |
|
1384 | |||
1385 | def __init__(self, **kwargs): |
|
1385 | def __init__(self, **kwargs): | |
1386 | Figure.__init__(self, **kwargs) |
|
1386 | Figure.__init__(self, **kwargs) | |
1387 | self.timerange = 24*60*60 |
|
1387 | self.timerange = 24*60*60 | |
1388 | self.isConfig = False |
|
1388 | self.isConfig = False | |
1389 | self.__nsubplots = 1 |
|
1389 | self.__nsubplots = 1 | |
1390 | self.counter_imagwr = 0 |
|
1390 | self.counter_imagwr = 0 | |
1391 | self.WIDTH = 800 |
|
1391 | self.WIDTH = 800 | |
1392 | self.HEIGHT = 400 |
|
1392 | self.HEIGHT = 400 | |
1393 | self.WIDTHPROF = 120 |
|
1393 | self.WIDTHPROF = 120 | |
1394 | self.HEIGHTPROF = 0 |
|
1394 | self.HEIGHTPROF = 0 | |
1395 | self.xdata = None |
|
1395 | self.xdata = None | |
1396 | self.ydata = None |
|
1396 | self.ydata = None | |
1397 |
|
1397 | |||
1398 | self.PLOT_CODE = BEACON_CODE |
|
1398 | self.PLOT_CODE = BEACON_CODE | |
1399 |
|
1399 | |||
1400 | self.FTP_WEI = None |
|
1400 | self.FTP_WEI = None | |
1401 | self.EXP_CODE = None |
|
1401 | self.EXP_CODE = None | |
1402 | self.SUB_EXP_CODE = None |
|
1402 | self.SUB_EXP_CODE = None | |
1403 | self.PLOT_POS = None |
|
1403 | self.PLOT_POS = None | |
1404 |
|
1404 | |||
1405 | self.filename_phase = None |
|
1405 | self.filename_phase = None | |
1406 |
|
1406 | |||
1407 | self.figfile = None |
|
1407 | self.figfile = None | |
1408 |
|
1408 | |||
1409 | self.xmin = None |
|
1409 | self.xmin = None | |
1410 | self.xmax = None |
|
1410 | self.xmax = None | |
1411 |
|
1411 | |||
1412 | def getSubplots(self): |
|
1412 | def getSubplots(self): | |
1413 |
|
1413 | |||
1414 | ncol = 1 |
|
1414 | ncol = 1 | |
1415 | nrow = 1 |
|
1415 | nrow = 1 | |
1416 |
|
1416 | |||
1417 | return nrow, ncol |
|
1417 | return nrow, ncol | |
1418 |
|
1418 | |||
1419 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1419 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
1420 |
|
1420 | |||
1421 | self.__showprofile = showprofile |
|
1421 | self.__showprofile = showprofile | |
1422 | self.nplots = nplots |
|
1422 | self.nplots = nplots | |
1423 |
|
1423 | |||
1424 | ncolspan = 7 |
|
1424 | ncolspan = 7 | |
1425 | colspan = 6 |
|
1425 | colspan = 6 | |
1426 | self.__nsubplots = 2 |
|
1426 | self.__nsubplots = 2 | |
1427 |
|
1427 | |||
1428 | self.createFigure(id = id, |
|
1428 | self.createFigure(id = id, | |
1429 | wintitle = wintitle, |
|
1429 | wintitle = wintitle, | |
1430 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1430 | widthplot = self.WIDTH+self.WIDTHPROF, | |
1431 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1431 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
1432 | show=show) |
|
1432 | show=show) | |
1433 |
|
1433 | |||
1434 | nrow, ncol = self.getSubplots() |
|
1434 | nrow, ncol = self.getSubplots() | |
1435 |
|
1435 | |||
1436 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1436 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
1437 |
|
1437 | |||
1438 | def save_phase(self, filename_phase): |
|
1438 | def save_phase(self, filename_phase): | |
1439 | f = open(filename_phase,'w+') |
|
1439 | f = open(filename_phase,'w+') | |
1440 | f.write('\n\n') |
|
1440 | f.write('\n\n') | |
1441 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1441 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
1442 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1442 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
1443 | f.close() |
|
1443 | f.close() | |
1444 |
|
1444 | |||
1445 | def save_data(self, filename_phase, data, data_datetime): |
|
1445 | def save_data(self, filename_phase, data, data_datetime): | |
1446 | f=open(filename_phase,'a') |
|
1446 | f=open(filename_phase,'a') | |
1447 | timetuple_data = data_datetime.timetuple() |
|
1447 | timetuple_data = data_datetime.timetuple() | |
1448 | day = str(timetuple_data.tm_mday) |
|
1448 | day = str(timetuple_data.tm_mday) | |
1449 | month = str(timetuple_data.tm_mon) |
|
1449 | month = str(timetuple_data.tm_mon) | |
1450 | year = str(timetuple_data.tm_year) |
|
1450 | year = str(timetuple_data.tm_year) | |
1451 | hour = str(timetuple_data.tm_hour) |
|
1451 | hour = str(timetuple_data.tm_hour) | |
1452 | minute = str(timetuple_data.tm_min) |
|
1452 | minute = str(timetuple_data.tm_min) | |
1453 | second = str(timetuple_data.tm_sec) |
|
1453 | second = str(timetuple_data.tm_sec) | |
1454 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1454 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
1455 | f.close() |
|
1455 | f.close() | |
1456 |
|
1456 | |||
1457 |
|
1457 | |||
1458 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1458 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
1459 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1459 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
1460 | timerange=None, |
|
1460 | timerange=None, | |
1461 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1461 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
1462 | server=None, folder=None, username=None, password=None, |
|
1462 | server=None, folder=None, username=None, password=None, | |
1463 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1463 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1464 |
|
1464 | |||
1465 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1465 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
1466 | return |
|
1466 | return | |
1467 |
|
1467 | |||
1468 | if pairsList == None: |
|
1468 | if pairsList == None: | |
1469 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1469 | pairsIndexList = dataOut.pairsIndexList[:10] | |
1470 | else: |
|
1470 | else: | |
1471 | pairsIndexList = [] |
|
1471 | pairsIndexList = [] | |
1472 | for pair in pairsList: |
|
1472 | for pair in pairsList: | |
1473 | if pair not in dataOut.pairsList: |
|
1473 | if pair not in dataOut.pairsList: | |
1474 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
1474 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) | |
1475 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1475 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
1476 |
|
1476 | |||
1477 | if pairsIndexList == []: |
|
1477 | if pairsIndexList == []: | |
1478 | return |
|
1478 | return | |
1479 |
|
1479 | |||
1480 | # if len(pairsIndexList) > 4: |
|
1480 | # if len(pairsIndexList) > 4: | |
1481 | # pairsIndexList = pairsIndexList[0:4] |
|
1481 | # pairsIndexList = pairsIndexList[0:4] | |
1482 |
|
1482 | |||
1483 | hmin_index = None |
|
1483 | hmin_index = None | |
1484 | hmax_index = None |
|
1484 | hmax_index = None | |
1485 |
|
1485 | |||
1486 | if hmin != None and hmax != None: |
|
1486 | if hmin != None and hmax != None: | |
1487 | indexes = numpy.arange(dataOut.nHeights) |
|
1487 | indexes = numpy.arange(dataOut.nHeights) | |
1488 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1488 | hmin_list = indexes[dataOut.heightList >= hmin] | |
1489 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1489 | hmax_list = indexes[dataOut.heightList <= hmax] | |
1490 |
|
1490 | |||
1491 | if hmin_list.any(): |
|
1491 | if hmin_list.any(): | |
1492 | hmin_index = hmin_list[0] |
|
1492 | hmin_index = hmin_list[0] | |
1493 |
|
1493 | |||
1494 | if hmax_list.any(): |
|
1494 | if hmax_list.any(): | |
1495 | hmax_index = hmax_list[-1]+1 |
|
1495 | hmax_index = hmax_list[-1]+1 | |
1496 |
|
1496 | |||
1497 | x = dataOut.getTimeRange() |
|
1497 | x = dataOut.getTimeRange() | |
1498 | #y = dataOut.getHeiRange() |
|
1498 | #y = dataOut.getHeiRange() | |
1499 |
|
1499 | |||
1500 |
|
1500 | |||
1501 | thisDatetime = dataOut.datatime |
|
1501 | thisDatetime = dataOut.datatime | |
1502 |
|
1502 | |||
1503 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1503 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1504 | xlabel = "Local Time" |
|
1504 | xlabel = "Local Time" | |
1505 | ylabel = "Phase (degrees)" |
|
1505 | ylabel = "Phase (degrees)" | |
1506 |
|
1506 | |||
1507 | update_figfile = False |
|
1507 | update_figfile = False | |
1508 |
|
1508 | |||
1509 | nplots = len(pairsIndexList) |
|
1509 | nplots = len(pairsIndexList) | |
1510 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1510 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
1511 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1511 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
1512 | for i in range(nplots): |
|
1512 | for i in range(nplots): | |
1513 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1513 | pair = dataOut.pairsList[pairsIndexList[i]] | |
1514 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1514 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
1515 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1515 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
1516 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1516 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
1517 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1517 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
1518 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1518 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
1519 |
|
1519 | |||
1520 | #print "Phase %d%d" %(pair[0], pair[1]) |
|
1520 | #print "Phase %d%d" %(pair[0], pair[1]) | |
1521 | #print phase[dataOut.beacon_heiIndexList] |
|
1521 | #print phase[dataOut.beacon_heiIndexList] | |
1522 |
|
1522 | |||
1523 | if dataOut.beacon_heiIndexList: |
|
1523 | if dataOut.beacon_heiIndexList: | |
1524 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1524 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
1525 | else: |
|
1525 | else: | |
1526 | phase_beacon[i] = numpy.average(phase) |
|
1526 | phase_beacon[i] = numpy.average(phase) | |
1527 |
|
1527 | |||
1528 | if not self.isConfig: |
|
1528 | if not self.isConfig: | |
1529 |
|
1529 | |||
1530 | nplots = len(pairsIndexList) |
|
1530 | nplots = len(pairsIndexList) | |
1531 |
|
1531 | |||
1532 | self.setup(id=id, |
|
1532 | self.setup(id=id, | |
1533 | nplots=nplots, |
|
1533 | nplots=nplots, | |
1534 | wintitle=wintitle, |
|
1534 | wintitle=wintitle, | |
1535 | showprofile=showprofile, |
|
1535 | showprofile=showprofile, | |
1536 | show=show) |
|
1536 | show=show) | |
1537 |
|
1537 | |||
1538 | if timerange != None: |
|
1538 | if timerange != None: | |
1539 | self.timerange = timerange |
|
1539 | self.timerange = timerange | |
1540 |
|
1540 | |||
1541 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1541 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1542 |
|
1542 | |||
1543 | if ymin == None: ymin = 0 |
|
1543 | if ymin == None: ymin = 0 | |
1544 | if ymax == None: ymax = 360 |
|
1544 | if ymax == None: ymax = 360 | |
1545 |
|
1545 | |||
1546 | self.FTP_WEI = ftp_wei |
|
1546 | self.FTP_WEI = ftp_wei | |
1547 | self.EXP_CODE = exp_code |
|
1547 | self.EXP_CODE = exp_code | |
1548 | self.SUB_EXP_CODE = sub_exp_code |
|
1548 | self.SUB_EXP_CODE = sub_exp_code | |
1549 | self.PLOT_POS = plot_pos |
|
1549 | self.PLOT_POS = plot_pos | |
1550 |
|
1550 | |||
1551 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1551 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1552 | self.isConfig = True |
|
1552 | self.isConfig = True | |
1553 | self.figfile = figfile |
|
1553 | self.figfile = figfile | |
1554 | self.xdata = numpy.array([]) |
|
1554 | self.xdata = numpy.array([]) | |
1555 | self.ydata = numpy.array([]) |
|
1555 | self.ydata = numpy.array([]) | |
1556 |
|
1556 | |||
1557 | update_figfile = True |
|
1557 | update_figfile = True | |
1558 |
|
1558 | |||
1559 | #open file beacon phase |
|
1559 | #open file beacon phase | |
1560 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1560 | path = '%s%03d' %(self.PREFIX, self.id) | |
1561 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1561 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
1562 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1562 | self.filename_phase = os.path.join(figpath,beacon_file) | |
1563 | #self.save_phase(self.filename_phase) |
|
1563 | #self.save_phase(self.filename_phase) | |
1564 |
|
1564 | |||
1565 |
|
1565 | |||
1566 | #store data beacon phase |
|
1566 | #store data beacon phase | |
1567 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1567 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
1568 |
|
1568 | |||
1569 | self.setWinTitle(title) |
|
1569 | self.setWinTitle(title) | |
1570 |
|
1570 | |||
1571 |
|
1571 | |||
1572 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1572 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1573 |
|
1573 | |||
1574 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1574 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
1575 |
|
1575 | |||
1576 | axes = self.axesList[0] |
|
1576 | axes = self.axesList[0] | |
1577 |
|
1577 | |||
1578 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1578 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
1579 |
|
1579 | |||
1580 | if len(self.ydata)==0: |
|
1580 | if len(self.ydata)==0: | |
1581 | self.ydata = phase_beacon.reshape(-1,1) |
|
1581 | self.ydata = phase_beacon.reshape(-1,1) | |
1582 | else: |
|
1582 | else: | |
1583 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1583 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
1584 |
|
1584 | |||
1585 |
|
1585 | |||
1586 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1586 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
1587 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1587 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
1588 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1588 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
1589 | XAxisAsTime=True, grid='both' |
|
1589 | XAxisAsTime=True, grid='both' | |
1590 | ) |
|
1590 | ) | |
1591 |
|
1591 | |||
1592 | self.draw() |
|
1592 | self.draw() | |
1593 |
|
1593 | |||
1594 | if dataOut.ltctime >= self.xmax: |
|
1594 | if dataOut.ltctime >= self.xmax: | |
1595 | self.counter_imagwr = wr_period |
|
1595 | self.counter_imagwr = wr_period | |
1596 | self.isConfig = False |
|
1596 | self.isConfig = False | |
1597 | update_figfile = True |
|
1597 | update_figfile = True | |
1598 |
|
1598 | |||
1599 | self.save(figpath=figpath, |
|
1599 | self.save(figpath=figpath, | |
1600 | figfile=figfile, |
|
1600 | figfile=figfile, | |
1601 | save=save, |
|
1601 | save=save, | |
1602 | ftp=ftp, |
|
1602 | ftp=ftp, | |
1603 | wr_period=wr_period, |
|
1603 | wr_period=wr_period, | |
1604 | thisDatetime=thisDatetime, |
|
1604 | thisDatetime=thisDatetime, | |
1605 | update_figfile=update_figfile) |
|
1605 | update_figfile=update_figfile) |
@@ -1,3982 +1,4015 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import math |
|
2 | import math | |
3 | from scipy import optimize, interpolate, signal, stats, ndimage |
|
3 | from scipy import optimize, interpolate, signal, stats, ndimage | |
4 | import scipy |
|
4 | import scipy | |
5 | import re |
|
5 | import re | |
6 | import datetime |
|
6 | import datetime | |
7 | import copy |
|
7 | import copy | |
8 | import sys |
|
8 | import sys | |
9 | import importlib |
|
9 | import importlib | |
10 | import itertools |
|
10 | import itertools | |
11 | from multiprocessing import Pool, TimeoutError |
|
11 | from multiprocessing import Pool, TimeoutError | |
12 | from multiprocessing.pool import ThreadPool |
|
12 | from multiprocessing.pool import ThreadPool | |
13 | import copy_reg |
|
13 | import copy_reg | |
14 | import cPickle |
|
14 | import cPickle | |
15 | import types |
|
15 | import types | |
16 | from functools import partial |
|
16 | from functools import partial | |
17 | import time |
|
17 | import time | |
18 | #from sklearn.cluster import KMeans |
|
18 | #from sklearn.cluster import KMeans | |
19 |
|
19 | |||
20 | import matplotlib.pyplot as plt |
|
20 | import matplotlib.pyplot as plt | |
21 |
|
21 | |||
22 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters |
|
22 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters | |
23 | from jroproc_base import ProcessingUnit, Operation |
|
23 | from jroproc_base import ProcessingUnit, Operation | |
24 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon |
|
24 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon | |
25 | from scipy import asarray as ar,exp |
|
25 | from scipy import asarray as ar,exp | |
26 | from scipy.optimize import curve_fit |
|
26 | from scipy.optimize import curve_fit | |
27 |
|
27 | |||
28 | import warnings |
|
28 | import warnings | |
29 | from numpy import NaN |
|
29 | from numpy import NaN | |
30 | from scipy.optimize.optimize import OptimizeWarning |
|
30 | from scipy.optimize.optimize import OptimizeWarning | |
31 | from IPython.parallel.controller.scheduler import numpy |
|
|||
32 | warnings.filterwarnings('ignore') |
|
31 | warnings.filterwarnings('ignore') | |
33 |
|
32 | |||
34 |
|
33 | |||
35 | SPEED_OF_LIGHT = 299792458 |
|
34 | SPEED_OF_LIGHT = 299792458 | |
36 |
|
35 | |||
37 |
|
36 | |||
38 | '''solving pickling issue''' |
|
37 | '''solving pickling issue''' | |
39 |
|
38 | |||
40 | def _pickle_method(method): |
|
39 | def _pickle_method(method): | |
41 | func_name = method.im_func.__name__ |
|
40 | func_name = method.im_func.__name__ | |
42 | obj = method.im_self |
|
41 | obj = method.im_self | |
43 | cls = method.im_class |
|
42 | cls = method.im_class | |
44 | return _unpickle_method, (func_name, obj, cls) |
|
43 | return _unpickle_method, (func_name, obj, cls) | |
45 |
|
44 | |||
46 | def _unpickle_method(func_name, obj, cls): |
|
45 | def _unpickle_method(func_name, obj, cls): | |
47 | for cls in cls.mro(): |
|
46 | for cls in cls.mro(): | |
48 | try: |
|
47 | try: | |
49 | func = cls.__dict__[func_name] |
|
48 | func = cls.__dict__[func_name] | |
50 | except KeyError: |
|
49 | except KeyError: | |
51 | pass |
|
50 | pass | |
52 | else: |
|
51 | else: | |
53 | break |
|
52 | break | |
54 | return func.__get__(obj, cls) |
|
53 | return func.__get__(obj, cls) | |
55 |
|
54 | |||
56 | class ParametersProc(ProcessingUnit): |
|
55 | class ParametersProc(ProcessingUnit): | |
57 |
|
56 | |||
58 | nSeconds = None |
|
57 | nSeconds = None | |
59 |
|
58 | |||
60 | def __init__(self): |
|
59 | def __init__(self): | |
61 | ProcessingUnit.__init__(self) |
|
60 | ProcessingUnit.__init__(self) | |
62 |
|
61 | |||
63 | # self.objectDict = {} |
|
62 | # self.objectDict = {} | |
64 | self.buffer = None |
|
63 | self.buffer = None | |
65 | self.firstdatatime = None |
|
64 | self.firstdatatime = None | |
66 | self.profIndex = 0 |
|
65 | self.profIndex = 0 | |
67 | self.dataOut = Parameters() |
|
66 | self.dataOut = Parameters() | |
68 |
|
67 | |||
69 | def __updateObjFromInput(self): |
|
68 | def __updateObjFromInput(self): | |
70 |
|
69 | |||
71 | self.dataOut.inputUnit = self.dataIn.type |
|
70 | self.dataOut.inputUnit = self.dataIn.type | |
72 |
|
71 | |||
73 | self.dataOut.timeZone = self.dataIn.timeZone |
|
72 | self.dataOut.timeZone = self.dataIn.timeZone | |
74 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
73 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
75 | self.dataOut.errorCount = self.dataIn.errorCount |
|
74 | self.dataOut.errorCount = self.dataIn.errorCount | |
76 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
75 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
77 |
|
76 | |||
78 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
77 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
79 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
78 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
80 | self.dataOut.channelList = self.dataIn.channelList |
|
79 | self.dataOut.channelList = self.dataIn.channelList | |
81 | self.dataOut.heightList = self.dataIn.heightList |
|
80 | self.dataOut.heightList = self.dataIn.heightList | |
82 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
81 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
83 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
82 | # self.dataOut.nHeights = self.dataIn.nHeights | |
84 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
83 | # self.dataOut.nChannels = self.dataIn.nChannels | |
85 | self.dataOut.nBaud = self.dataIn.nBaud |
|
84 | self.dataOut.nBaud = self.dataIn.nBaud | |
86 | self.dataOut.nCode = self.dataIn.nCode |
|
85 | self.dataOut.nCode = self.dataIn.nCode | |
87 | self.dataOut.code = self.dataIn.code |
|
86 | self.dataOut.code = self.dataIn.code | |
88 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
87 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
89 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
88 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
90 | # self.dataOut.utctime = self.firstdatatime |
|
89 | # self.dataOut.utctime = self.firstdatatime | |
91 | self.dataOut.utctime = self.dataIn.utctime |
|
90 | self.dataOut.utctime = self.dataIn.utctime | |
92 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
91 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
93 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
92 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
94 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
93 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
95 | # self.dataOut.nIncohInt = 1 |
|
94 | # self.dataOut.nIncohInt = 1 | |
96 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
95 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
97 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
96 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
98 | self.dataOut.timeInterval1 = self.dataIn.timeInterval |
|
97 | self.dataOut.timeInterval1 = self.dataIn.timeInterval | |
99 | self.dataOut.heightList = self.dataIn.getHeiRange() |
|
98 | self.dataOut.heightList = self.dataIn.getHeiRange() | |
100 | self.dataOut.frequency = self.dataIn.frequency |
|
99 | self.dataOut.frequency = self.dataIn.frequency | |
101 | self.dataOut.noise = self.dataIn.noise |
|
100 | self.dataOut.noise = self.dataIn.noise | |
102 |
|
101 | |||
103 |
|
102 | |||
104 |
|
103 | |||
105 | def run(self): |
|
104 | def run(self): | |
106 |
|
105 | |||
107 | #---------------------- Voltage Data --------------------------- |
|
106 | #---------------------- Voltage Data --------------------------- | |
108 |
|
107 | |||
109 | if self.dataIn.type == "Voltage": |
|
108 | if self.dataIn.type == "Voltage": | |
110 |
|
109 | |||
111 | self.__updateObjFromInput() |
|
110 | self.__updateObjFromInput() | |
112 | self.dataOut.data_pre = self.dataIn.data.copy() |
|
111 | self.dataOut.data_pre = self.dataIn.data.copy() | |
113 | self.dataOut.flagNoData = False |
|
112 | self.dataOut.flagNoData = False | |
114 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
113 | self.dataOut.utctimeInit = self.dataIn.utctime | |
115 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds |
|
114 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds | |
116 | return |
|
115 | return | |
117 |
|
116 | |||
118 | #---------------------- Spectra Data --------------------------- |
|
117 | #---------------------- Spectra Data --------------------------- | |
119 |
|
118 | |||
120 | if self.dataIn.type == "Spectra": |
|
119 | if self.dataIn.type == "Spectra": | |
121 |
|
120 | |||
122 | self.dataOut.data_pre = (self.dataIn.data_spc , self.dataIn.data_cspc) |
|
121 | self.dataOut.data_pre = (self.dataIn.data_spc , self.dataIn.data_cspc) | |
123 | print 'self.dataIn.data_spc', self.dataIn.data_spc.shape |
|
122 | print 'self.dataIn.data_spc', self.dataIn.data_spc.shape | |
124 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
123 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
125 | self.dataOut.spc_noise = self.dataIn.getNoise() |
|
124 | self.dataOut.spc_noise = self.dataIn.getNoise() | |
126 | self.dataOut.spc_range = numpy.asanyarray((self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1) )) |
|
125 | self.dataOut.spc_range = numpy.asanyarray((self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1) )) | |
127 |
|
126 | |||
128 | self.dataOut.normFactor = self.dataIn.normFactor |
|
127 | self.dataOut.normFactor = self.dataIn.normFactor | |
129 | #self.dataOut.outputInterval = self.dataIn.outputInterval |
|
128 | #self.dataOut.outputInterval = self.dataIn.outputInterval | |
130 | self.dataOut.groupList = self.dataIn.pairsList |
|
129 | self.dataOut.groupList = self.dataIn.pairsList | |
131 | self.dataOut.flagNoData = False |
|
130 | self.dataOut.flagNoData = False | |
132 | #print 'datain chandist ',self.dataIn.ChanDist |
|
131 | #print 'datain chandist ',self.dataIn.ChanDist | |
133 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
132 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels | |
134 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
133 | self.dataOut.ChanDist = self.dataIn.ChanDist | |
135 | else: self.dataOut.ChanDist = None |
|
134 | else: self.dataOut.ChanDist = None | |
136 |
|
135 | |||
137 | print 'datain chandist ',self.dataOut.ChanDist |
|
136 | print 'datain chandist ',self.dataOut.ChanDist | |
138 |
|
137 | |||
139 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
138 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range | |
140 | # self.dataOut.VelRange = self.dataIn.VelRange |
|
139 | # self.dataOut.VelRange = self.dataIn.VelRange | |
141 | #else: self.dataOut.VelRange = None |
|
140 | #else: self.dataOut.VelRange = None | |
142 |
|
141 | |||
143 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant |
|
142 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant | |
144 | self.dataOut.RadarConst = self.dataIn.RadarConst |
|
143 | self.dataOut.RadarConst = self.dataIn.RadarConst | |
145 |
|
144 | |||
146 | if hasattr(self.dataIn, 'NPW'): #NPW |
|
145 | if hasattr(self.dataIn, 'NPW'): #NPW | |
147 | self.dataOut.NPW = self.dataIn.NPW |
|
146 | self.dataOut.NPW = self.dataIn.NPW | |
148 |
|
147 | |||
149 | if hasattr(self.dataIn, 'COFA'): #COFA |
|
148 | if hasattr(self.dataIn, 'COFA'): #COFA | |
150 | self.dataOut.COFA = self.dataIn.COFA |
|
149 | self.dataOut.COFA = self.dataIn.COFA | |
151 |
|
150 | |||
152 |
|
151 | |||
153 |
|
152 | |||
154 | #---------------------- Correlation Data --------------------------- |
|
153 | #---------------------- Correlation Data --------------------------- | |
155 |
|
154 | |||
156 | if self.dataIn.type == "Correlation": |
|
155 | if self.dataIn.type == "Correlation": | |
157 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() |
|
156 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() | |
158 |
|
157 | |||
159 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) |
|
158 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) | |
160 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) |
|
159 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) | |
161 | self.dataOut.groupList = (acf_pairs, ccf_pairs) |
|
160 | self.dataOut.groupList = (acf_pairs, ccf_pairs) | |
162 |
|
161 | |||
163 | self.dataOut.abscissaList = self.dataIn.lagRange |
|
162 | self.dataOut.abscissaList = self.dataIn.lagRange | |
164 | self.dataOut.noise = self.dataIn.noise |
|
163 | self.dataOut.noise = self.dataIn.noise | |
165 | self.dataOut.data_SNR = self.dataIn.SNR |
|
164 | self.dataOut.data_SNR = self.dataIn.SNR | |
166 | self.dataOut.flagNoData = False |
|
165 | self.dataOut.flagNoData = False | |
167 | self.dataOut.nAvg = self.dataIn.nAvg |
|
166 | self.dataOut.nAvg = self.dataIn.nAvg | |
168 |
|
167 | |||
169 | #---------------------- Parameters Data --------------------------- |
|
168 | #---------------------- Parameters Data --------------------------- | |
170 |
|
169 | |||
171 | if self.dataIn.type == "Parameters": |
|
170 | if self.dataIn.type == "Parameters": | |
172 | self.dataOut.copy(self.dataIn) |
|
171 | self.dataOut.copy(self.dataIn) | |
173 | self.dataOut.flagNoData = False |
|
172 | self.dataOut.flagNoData = False | |
174 |
|
173 | |||
175 | return True |
|
174 | return True | |
176 |
|
175 | |||
177 | self.__updateObjFromInput() |
|
176 | self.__updateObjFromInput() | |
178 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
177 | self.dataOut.utctimeInit = self.dataIn.utctime | |
179 | self.dataOut.paramInterval = self.dataIn.timeInterval |
|
178 | self.dataOut.paramInterval = self.dataIn.timeInterval | |
180 |
|
179 | |||
181 | return |
|
180 | return | |
182 |
|
181 | |||
183 |
|
182 | |||
184 | def target(tups): |
|
183 | def target(tups): | |
185 |
|
184 | |||
186 | obj, args = tups |
|
185 | obj, args = tups | |
187 | #print 'TARGETTT', obj, args |
|
186 | #print 'TARGETTT', obj, args | |
188 | return obj.FitGau(args) |
|
187 | return obj.FitGau(args) | |
189 |
|
188 | |||
190 |
|
189 | |||
191 | class SpectralFilters(Operation): |
|
190 | class SpectralFilters(Operation): | |
192 |
|
191 | |||
193 | '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR |
|
192 | '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR | |
194 |
|
193 | |||
195 | LimitR : It is the limit in m/s of Rainfall |
|
194 | LimitR : It is the limit in m/s of Rainfall | |
196 | LimitW : It is the limit in m/s for Winds |
|
195 | LimitW : It is the limit in m/s for Winds | |
197 |
|
196 | |||
198 | Input: |
|
197 | Input: | |
199 |
|
198 | |||
200 | self.dataOut.data_pre : SPC and CSPC |
|
199 | self.dataOut.data_pre : SPC and CSPC | |
201 | self.dataOut.spc_range : To select wind and rainfall velocities |
|
200 | self.dataOut.spc_range : To select wind and rainfall velocities | |
202 |
|
201 | |||
203 | Affected: |
|
202 | Affected: | |
204 |
|
203 | |||
205 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind |
|
204 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |
206 | self.dataOut.spcparam_range : Used in SpcParamPlot |
|
205 | self.dataOut.spcparam_range : Used in SpcParamPlot | |
207 | self.dataOut.SPCparam : Used in PrecipitationProc |
|
206 | self.dataOut.SPCparam : Used in PrecipitationProc | |
208 |
|
207 | |||
209 |
|
208 | |||
210 | ''' |
|
209 | ''' | |
211 |
|
210 | |||
212 | def __init__(self, **kwargs): |
|
211 | def __init__(self, **kwargs): | |
213 | Operation.__init__(self, **kwargs) |
|
212 | Operation.__init__(self, **kwargs) | |
214 | self.i=0 |
|
213 | self.i=0 | |
215 |
|
214 | |||
216 |
def run(self, dataOut, |
|
215 | def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5): | |
|
216 | ||||
217 |
|
217 | |||
218 | #Limite de vientos |
|
218 | #Limite de vientos | |
219 |
LimitR = |
|
219 | LimitR = PositiveLimit | |
220 |
Limit |
|
220 | LimitN = NegativeLimit | |
221 |
|
221 | |||
222 | self.spc = dataOut.data_pre[0].copy() |
|
222 | self.spc = dataOut.data_pre[0].copy() | |
223 | self.cspc = dataOut.data_pre[1].copy() |
|
223 | self.cspc = dataOut.data_pre[1].copy() | |
224 |
|
224 | |||
225 | self.Num_Hei = self.spc.shape[2] |
|
225 | self.Num_Hei = self.spc.shape[2] | |
226 | self.Num_Bin = self.spc.shape[1] |
|
226 | self.Num_Bin = self.spc.shape[1] | |
227 | self.Num_Chn = self.spc.shape[0] |
|
227 | self.Num_Chn = self.spc.shape[0] | |
228 |
|
228 | |||
229 | VelRange = dataOut.spc_range[2] |
|
229 | VelRange = dataOut.spc_range[2] | |
230 | TimeRange = dataOut.spc_range[1] |
|
230 | TimeRange = dataOut.spc_range[1] | |
231 | FrecRange = dataOut.spc_range[0] |
|
231 | FrecRange = dataOut.spc_range[0] | |
232 |
|
232 | |||
233 | Vmax= 2*numpy.max(dataOut.spc_range[2]) |
|
233 | Vmax= 2*numpy.max(dataOut.spc_range[2]) | |
234 | Tmax= 2*numpy.max(dataOut.spc_range[1]) |
|
234 | Tmax= 2*numpy.max(dataOut.spc_range[1]) | |
235 | Fmax= 2*numpy.max(dataOut.spc_range[0]) |
|
235 | Fmax= 2*numpy.max(dataOut.spc_range[0]) | |
236 |
|
236 | |||
237 |
Breaker1R=VelRange[numpy.abs(VelRange-(-Limit |
|
237 | Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()] | |
238 | Breaker1R=numpy.where(VelRange == Breaker1R) |
|
238 | Breaker1R=numpy.where(VelRange == Breaker1R) | |
239 |
|
239 | |||
240 | Breaker1W=VelRange[numpy.abs(VelRange-(-LimitW)).argmin()] |
|
240 | Delta = self.Num_Bin/2 - Breaker1R[0] | |
241 | Breaker1W=numpy.where(VelRange == Breaker1W) |
|
241 | ||
|
242 | #Breaker1W=VelRange[numpy.abs(VelRange-(-LimitW)).argmin()] | |||
|
243 | #Breaker1W=numpy.where(VelRange == Breaker1W) | |||
242 |
|
244 | |||
243 | Breaker2W=VelRange[numpy.abs(VelRange-(LimitW)).argmin()] |
|
245 | #Breaker2W=VelRange[numpy.abs(VelRange-(LimitW)).argmin()] | |
244 | Breaker2W=numpy.where(VelRange == Breaker2W) |
|
246 | #Breaker2W=numpy.where(VelRange == Breaker2W) | |
245 |
|
247 | |||
246 |
|
248 | |||
247 | '''Reacomodando SPCrange''' |
|
249 | '''Reacomodando SPCrange''' | |
248 |
|
250 | |||
249 |
VelRange=numpy.roll(VelRange,- |
|
251 | VelRange=numpy.roll(VelRange,-(self.Num_Bin/2) ,axis=0) | |
250 |
|
252 | |||
251 |
VelRange[- |
|
253 | VelRange[-(self.Num_Bin/2):]+= Vmax | |
252 |
|
254 | |||
253 |
FrecRange=numpy.roll(FrecRange,- |
|
255 | FrecRange=numpy.roll(FrecRange,-(self.Num_Bin/2),axis=0) | |
254 |
|
256 | |||
255 |
FrecRange[- |
|
257 | FrecRange[-(self.Num_Bin/2):]+= Fmax | |
256 |
|
258 | |||
257 |
TimeRange=numpy.roll(TimeRange,- |
|
259 | TimeRange=numpy.roll(TimeRange,-(self.Num_Bin/2),axis=0) | |
258 |
|
260 | |||
259 |
TimeRange[- |
|
261 | TimeRange[-(self.Num_Bin/2):]+= Tmax | |
260 |
|
262 | |||
261 | ''' ------------------ ''' |
|
263 | ''' ------------------ ''' | |
262 |
|
264 | |||
263 | Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()] |
|
265 | Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()] | |
264 | Breaker2R=numpy.where(VelRange == Breaker2R) |
|
266 | Breaker2R=numpy.where(VelRange == Breaker2R) | |
265 |
|
267 | |||
266 |
|
268 | |||
267 |
|
269 | SPCroll = numpy.roll(self.spc,-(self.Num_Bin/2) ,axis=1) | ||
268 |
|
||||
269 | SPCroll = numpy.roll(self.spc,-Breaker1R[0],axis=1) |
|
|||
270 |
|
270 | |||
271 | SPCcut = SPCroll.copy() |
|
271 | SPCcut = SPCroll.copy() | |
272 | for i in range(self.Num_Chn): |
|
272 | for i in range(self.Num_Chn): | |
|
273 | ||||
273 | SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i] |
|
274 | SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i] | |
|
275 | SPCcut[i,-int(Delta):,:] = dataOut.noise[i] | |||
274 |
|
276 | |||
275 | self.spc[i, 0:int(Breaker1W[0]) ,:] = dataOut.noise[i] |
|
277 | #self.spc[i, 0:int(Breaker1W[0]) ,:] = dataOut.noise[i] | |
276 | self.spc[i, int(Breaker2W[0]):self.Num_Bin ,:] = dataOut.noise[i] |
|
278 | #self.spc[i, int(Breaker2W[0]):self.Num_Bin ,:] = dataOut.noise[i] | |
277 |
|
279 | |||
278 | self.cspc[i, 0:int(Breaker1W[0]) ,:] = dataOut.noise[i] |
|
280 | #self.cspc[i, 0:int(Breaker1W[0]) ,:] = dataOut.noise[i] | |
279 | self.cspc[i, int(Breaker2W[0]):self.Num_Bin ,:] = dataOut.noise[i] |
|
281 | #self.cspc[i, int(Breaker2W[0]):self.Num_Bin ,:] = dataOut.noise[i] | |
280 |
|
282 | |||
281 |
|
283 | |||
|
284 | ||||
|
285 | ||||
282 | SPC_ch1 = SPCroll |
|
286 | SPC_ch1 = SPCroll | |
283 |
|
287 | |||
284 | SPC_ch2 = SPCcut |
|
288 | SPC_ch2 = SPCcut | |
285 |
|
289 | |||
286 | SPCparam = (SPC_ch1, SPC_ch2, self.spc) |
|
290 | SPCparam = (SPC_ch1, SPC_ch2, self.spc) | |
287 | dataOut.SPCparam = numpy.asarray(SPCparam) |
|
291 | dataOut.SPCparam = numpy.asarray(SPCparam) | |
288 |
|
292 | |||
289 | dataOut.data_pre= (self.spc , self.cspc) |
|
293 | #dataOut.data_pre= (self.spc , self.cspc) | |
290 |
|
294 | |||
291 | #dataOut.data_preParam = (self.spc , self.cspc) |
|
295 | #dataOut.data_preParam = (self.spc , self.cspc) | |
292 |
|
296 | |||
293 | dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1]) |
|
297 | dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1]) | |
294 |
|
298 | |||
295 | dataOut.spcparam_range[2]=VelRange |
|
299 | dataOut.spcparam_range[2]=VelRange | |
296 | dataOut.spcparam_range[1]=TimeRange |
|
300 | dataOut.spcparam_range[1]=TimeRange | |
297 | dataOut.spcparam_range[0]=FrecRange |
|
301 | dataOut.spcparam_range[0]=FrecRange | |
298 |
|
302 | |||
299 |
|
303 | |||
300 |
|
304 | |||
301 |
|
305 | |||
302 | class GaussianFit(Operation): |
|
306 | class GaussianFit(Operation): | |
303 |
|
307 | |||
304 | ''' |
|
308 | ''' | |
305 | Function that fit of one and two generalized gaussians (gg) based |
|
309 | Function that fit of one and two generalized gaussians (gg) based | |
306 | on the PSD shape across an "power band" identified from a cumsum of |
|
310 | on the PSD shape across an "power band" identified from a cumsum of | |
307 | the measured spectrum - noise. |
|
311 | the measured spectrum - noise. | |
308 |
|
312 | |||
309 | Input: |
|
313 | Input: | |
310 | self.dataOut.data_pre : SelfSpectra |
|
314 | self.dataOut.data_pre : SelfSpectra | |
311 |
|
315 | |||
312 | Output: |
|
316 | Output: | |
313 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 |
|
317 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 | |
314 |
|
318 | |||
315 | ''' |
|
319 | ''' | |
316 | def __init__(self, **kwargs): |
|
320 | def __init__(self, **kwargs): | |
317 | Operation.__init__(self, **kwargs) |
|
321 | Operation.__init__(self, **kwargs) | |
318 | self.i=0 |
|
322 | self.i=0 | |
319 |
|
323 | |||
320 |
|
324 | |||
321 | def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points |
|
325 | def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
322 | """This routine will find a couple of generalized Gaussians to a power spectrum |
|
326 | """This routine will find a couple of generalized Gaussians to a power spectrum | |
323 | input: spc |
|
327 | input: spc | |
324 | output: |
|
328 | output: | |
325 | Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise |
|
329 | Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise | |
326 | """ |
|
330 | """ | |
327 |
|
331 | |||
328 | self.spc = dataOut.data_pre[0].copy() |
|
332 | self.spc = dataOut.data_pre[0].copy() | |
329 |
|
333 | |||
330 |
|
334 | |||
331 | print 'SelfSpectra Shape', numpy.asarray(self.spc).shape |
|
335 | print 'SelfSpectra Shape', numpy.asarray(self.spc).shape | |
332 |
|
336 | |||
333 |
|
337 | |||
334 | #plt.figure(50) |
|
338 | #plt.figure(50) | |
335 | #plt.subplot(121) |
|
339 | #plt.subplot(121) | |
336 | #plt.plot(self.spc,'k',label='spc(66)') |
|
340 | #plt.plot(self.spc,'k',label='spc(66)') | |
337 | #plt.plot(xFrec,ySamples[1],'g',label='Ch1') |
|
341 | #plt.plot(xFrec,ySamples[1],'g',label='Ch1') | |
338 | #plt.plot(xFrec,ySamples[2],'r',label='Ch2') |
|
342 | #plt.plot(xFrec,ySamples[2],'r',label='Ch2') | |
339 | #plt.plot(xFrec,FitGauss,'yo:',label='fit') |
|
343 | #plt.plot(xFrec,FitGauss,'yo:',label='fit') | |
340 | #plt.legend() |
|
344 | #plt.legend() | |
341 | #plt.title('DATOS A ALTURA DE 7500 METROS') |
|
345 | #plt.title('DATOS A ALTURA DE 7500 METROS') | |
342 | #plt.show() |
|
346 | #plt.show() | |
343 |
|
347 | |||
344 | self.Num_Hei = self.spc.shape[2] |
|
348 | self.Num_Hei = self.spc.shape[2] | |
345 | #self.Num_Bin = len(self.spc) |
|
349 | #self.Num_Bin = len(self.spc) | |
346 | self.Num_Bin = self.spc.shape[1] |
|
350 | self.Num_Bin = self.spc.shape[1] | |
347 | self.Num_Chn = self.spc.shape[0] |
|
351 | self.Num_Chn = self.spc.shape[0] | |
348 | Vrange = dataOut.abscissaList |
|
352 | Vrange = dataOut.abscissaList | |
349 |
|
353 | |||
350 | GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
354 | GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
351 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
355 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
352 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
356 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
353 | SPC_ch1[:] = numpy.NaN |
|
357 | SPC_ch1[:] = numpy.NaN | |
354 | SPC_ch2[:] = numpy.NaN |
|
358 | SPC_ch2[:] = numpy.NaN | |
355 |
|
359 | |||
356 |
|
360 | |||
357 | start_time = time.time() |
|
361 | start_time = time.time() | |
358 |
|
362 | |||
359 | noise_ = dataOut.spc_noise[0].copy() |
|
363 | noise_ = dataOut.spc_noise[0].copy() | |
360 |
|
364 | |||
361 |
|
365 | |||
362 | pool = Pool(processes=self.Num_Chn) |
|
366 | pool = Pool(processes=self.Num_Chn) | |
363 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] |
|
367 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] | |
364 | objs = [self for __ in range(self.Num_Chn)] |
|
368 | objs = [self for __ in range(self.Num_Chn)] | |
365 | attrs = zip(objs, args) |
|
369 | attrs = zip(objs, args) | |
366 | gauSPC = pool.map(target, attrs) |
|
370 | gauSPC = pool.map(target, attrs) | |
367 | dataOut.SPCparam = numpy.asarray(SPCparam) |
|
371 | dataOut.SPCparam = numpy.asarray(SPCparam) | |
368 |
|
372 | |||
369 |
|
373 | |||
370 |
|
374 | |||
371 | print '========================================================' |
|
375 | print '========================================================' | |
372 | print 'total_time: ', time.time()-start_time |
|
376 | print 'total_time: ', time.time()-start_time | |
373 |
|
377 | |||
374 | # re-normalizing spc and noise |
|
378 | # re-normalizing spc and noise | |
375 | # This part differs from gg1 |
|
379 | # This part differs from gg1 | |
376 |
|
380 | |||
377 |
|
381 | |||
378 |
|
382 | |||
379 | ''' Parameters: |
|
383 | ''' Parameters: | |
380 | 1. Amplitude |
|
384 | 1. Amplitude | |
381 | 2. Shift |
|
385 | 2. Shift | |
382 | 3. Width |
|
386 | 3. Width | |
383 | 4. Power |
|
387 | 4. Power | |
384 | ''' |
|
388 | ''' | |
385 |
|
389 | |||
386 |
|
390 | |||
387 | ############################################################################### |
|
391 | ############################################################################### | |
388 | def FitGau(self, X): |
|
392 | def FitGau(self, X): | |
389 |
|
393 | |||
390 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X |
|
394 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X | |
391 | #print 'VARSSSS', ch, pnoise, noise, num_intg |
|
395 | #print 'VARSSSS', ch, pnoise, noise, num_intg | |
392 |
|
396 | |||
393 | #print 'HEIGHTS', self.Num_Hei |
|
397 | #print 'HEIGHTS', self.Num_Hei | |
394 |
|
398 | |||
395 | SPCparam = [] |
|
399 | SPCparam = [] | |
396 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
400 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
397 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
401 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
398 | SPC_ch1[:] = 0#numpy.NaN |
|
402 | SPC_ch1[:] = 0#numpy.NaN | |
399 | SPC_ch2[:] = 0#numpy.NaN |
|
403 | SPC_ch2[:] = 0#numpy.NaN | |
400 |
|
404 | |||
401 |
|
405 | |||
402 |
|
406 | |||
403 | for ht in range(self.Num_Hei): |
|
407 | for ht in range(self.Num_Hei): | |
404 | #print (numpy.asarray(self.spc).shape) |
|
408 | #print (numpy.asarray(self.spc).shape) | |
405 |
|
409 | |||
406 | #print 'TTTTT', ch , ht |
|
410 | #print 'TTTTT', ch , ht | |
407 | #print self.spc.shape |
|
411 | #print self.spc.shape | |
408 |
|
412 | |||
409 |
|
413 | |||
410 | spc = numpy.asarray(self.spc)[ch,:,ht] |
|
414 | spc = numpy.asarray(self.spc)[ch,:,ht] | |
411 |
|
415 | |||
412 | ############################################# |
|
416 | ############################################# | |
413 | # normalizing spc and noise |
|
417 | # normalizing spc and noise | |
414 | # This part differs from gg1 |
|
418 | # This part differs from gg1 | |
415 | spc_norm_max = max(spc) |
|
419 | spc_norm_max = max(spc) | |
416 | #spc = spc / spc_norm_max |
|
420 | #spc = spc / spc_norm_max | |
417 | pnoise = pnoise #/ spc_norm_max |
|
421 | pnoise = pnoise #/ spc_norm_max | |
418 | ############################################# |
|
422 | ############################################# | |
419 |
|
423 | |||
420 | fatspectra=1.0 |
|
424 | fatspectra=1.0 | |
421 |
|
425 | |||
422 | wnoise = noise_ #/ spc_norm_max |
|
426 | wnoise = noise_ #/ spc_norm_max | |
423 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
427 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |
424 | #if wnoise>1.1*pnoise: # to be tested later |
|
428 | #if wnoise>1.1*pnoise: # to be tested later | |
425 | # wnoise=pnoise |
|
429 | # wnoise=pnoise | |
426 | noisebl=wnoise*0.9; |
|
430 | noisebl=wnoise*0.9; | |
427 | noisebh=wnoise*1.1 |
|
431 | noisebh=wnoise*1.1 | |
428 | spc=spc-wnoise |
|
432 | spc=spc-wnoise | |
429 | # print 'wnoise', noise_[0], spc_norm_max, wnoise |
|
433 | # print 'wnoise', noise_[0], spc_norm_max, wnoise | |
430 | minx=numpy.argmin(spc) |
|
434 | minx=numpy.argmin(spc) | |
431 | #spcs=spc.copy() |
|
435 | #spcs=spc.copy() | |
432 | spcs=numpy.roll(spc,-minx) |
|
436 | spcs=numpy.roll(spc,-minx) | |
433 | cum=numpy.cumsum(spcs) |
|
437 | cum=numpy.cumsum(spcs) | |
434 | tot_noise=wnoise * self.Num_Bin #64; |
|
438 | tot_noise=wnoise * self.Num_Bin #64; | |
435 | #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise |
|
439 | #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise | |
436 | #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' |
|
440 | #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' | |
437 | #snr=tot_signal/tot_noise |
|
441 | #snr=tot_signal/tot_noise | |
438 | #snr=cum[-1]/tot_noise |
|
442 | #snr=cum[-1]/tot_noise | |
439 | snr = sum(spcs)/tot_noise |
|
443 | snr = sum(spcs)/tot_noise | |
440 | snrdB=10.*numpy.log10(snr) |
|
444 | snrdB=10.*numpy.log10(snr) | |
441 |
|
445 | |||
442 | if snrdB < SNRlimit : |
|
446 | if snrdB < SNRlimit : | |
443 | snr = numpy.NaN |
|
447 | snr = numpy.NaN | |
444 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
448 | SPC_ch1[:,ht] = 0#numpy.NaN | |
445 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
449 | SPC_ch1[:,ht] = 0#numpy.NaN | |
446 | SPCparam = (SPC_ch1,SPC_ch2) |
|
450 | SPCparam = (SPC_ch1,SPC_ch2) | |
447 | continue |
|
451 | continue | |
448 | #print 'snr',snrdB #, sum(spcs) , tot_noise |
|
452 | #print 'snr',snrdB #, sum(spcs) , tot_noise | |
449 |
|
453 | |||
450 |
|
454 | |||
451 |
|
455 | |||
452 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
456 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |
453 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
457 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
454 |
|
458 | |||
455 | cummax=max(cum); |
|
459 | cummax=max(cum); | |
456 | epsi=0.08*fatspectra # cumsum to narrow down the energy region |
|
460 | epsi=0.08*fatspectra # cumsum to narrow down the energy region | |
457 | cumlo=cummax*epsi; |
|
461 | cumlo=cummax*epsi; | |
458 | cumhi=cummax*(1-epsi) |
|
462 | cumhi=cummax*(1-epsi) | |
459 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
463 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
460 |
|
464 | |||
461 |
|
465 | |||
462 | if len(powerindex) < 1:# case for powerindex 0 |
|
466 | if len(powerindex) < 1:# case for powerindex 0 | |
463 | continue |
|
467 | continue | |
464 | powerlo=powerindex[0] |
|
468 | powerlo=powerindex[0] | |
465 | powerhi=powerindex[-1] |
|
469 | powerhi=powerindex[-1] | |
466 | powerwidth=powerhi-powerlo |
|
470 | powerwidth=powerhi-powerlo | |
467 |
|
471 | |||
468 | firstpeak=powerlo+powerwidth/10.# first gaussian energy location |
|
472 | firstpeak=powerlo+powerwidth/10.# first gaussian energy location | |
469 | secondpeak=powerhi-powerwidth/10.#second gaussian energy location |
|
473 | secondpeak=powerhi-powerwidth/10.#second gaussian energy location | |
470 | midpeak=(firstpeak+secondpeak)/2. |
|
474 | midpeak=(firstpeak+secondpeak)/2. | |
471 | firstamp=spcs[int(firstpeak)] |
|
475 | firstamp=spcs[int(firstpeak)] | |
472 | secondamp=spcs[int(secondpeak)] |
|
476 | secondamp=spcs[int(secondpeak)] | |
473 | midamp=spcs[int(midpeak)] |
|
477 | midamp=spcs[int(midpeak)] | |
474 |
|
478 | |||
475 | x=numpy.arange( self.Num_Bin ) |
|
479 | x=numpy.arange( self.Num_Bin ) | |
476 | y_data=spc+wnoise |
|
480 | y_data=spc+wnoise | |
477 |
|
481 | |||
478 | ''' single Gaussian ''' |
|
482 | ''' single Gaussian ''' | |
479 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) |
|
483 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) | |
480 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 |
|
484 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
481 | power0=2. |
|
485 | power0=2. | |
482 | amplitude0=midamp |
|
486 | amplitude0=midamp | |
483 | state0=[shift0,width0,amplitude0,power0,wnoise] |
|
487 | state0=[shift0,width0,amplitude0,power0,wnoise] | |
484 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
488 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
485 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
489 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |
486 |
|
490 | |||
487 | chiSq1=lsq1[1]; |
|
491 | chiSq1=lsq1[1]; | |
488 |
|
492 | |||
489 |
|
493 | |||
490 | if fatspectra<1.0 and powerwidth<4: |
|
494 | if fatspectra<1.0 and powerwidth<4: | |
491 | choice=0 |
|
495 | choice=0 | |
492 | Amplitude0=lsq1[0][2] |
|
496 | Amplitude0=lsq1[0][2] | |
493 | shift0=lsq1[0][0] |
|
497 | shift0=lsq1[0][0] | |
494 | width0=lsq1[0][1] |
|
498 | width0=lsq1[0][1] | |
495 | p0=lsq1[0][3] |
|
499 | p0=lsq1[0][3] | |
496 | Amplitude1=0. |
|
500 | Amplitude1=0. | |
497 | shift1=0. |
|
501 | shift1=0. | |
498 | width1=0. |
|
502 | width1=0. | |
499 | p1=0. |
|
503 | p1=0. | |
500 | noise=lsq1[0][4] |
|
504 | noise=lsq1[0][4] | |
501 | #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
505 | #return (numpy.array([shift0,width0,Amplitude0,p0]), | |
502 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
506 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |
503 |
|
507 | |||
504 | ''' two gaussians ''' |
|
508 | ''' two gaussians ''' | |
505 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
509 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |
506 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); |
|
510 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); | |
507 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
511 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) | |
508 | width0=powerwidth/6.; |
|
512 | width0=powerwidth/6.; | |
509 | width1=width0 |
|
513 | width1=width0 | |
510 | power0=2.; |
|
514 | power0=2.; | |
511 | power1=power0 |
|
515 | power1=power0 | |
512 | amplitude0=firstamp; |
|
516 | amplitude0=firstamp; | |
513 | amplitude1=secondamp |
|
517 | amplitude1=secondamp | |
514 | state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] |
|
518 | state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
515 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
519 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
516 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
520 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
517 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
521 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |
518 |
|
522 | |||
519 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) |
|
523 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) | |
520 |
|
524 | |||
521 |
|
525 | |||
522 | chiSq2=lsq2[1]; |
|
526 | chiSq2=lsq2[1]; | |
523 |
|
527 | |||
524 |
|
528 | |||
525 |
|
529 | |||
526 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
530 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
527 |
|
531 | |||
528 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error |
|
532 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error | |
529 | if oneG: |
|
533 | if oneG: | |
530 | choice=0 |
|
534 | choice=0 | |
531 | else: |
|
535 | else: | |
532 | w1=lsq2[0][1]; w2=lsq2[0][5] |
|
536 | w1=lsq2[0][1]; w2=lsq2[0][5] | |
533 | a1=lsq2[0][2]; a2=lsq2[0][6] |
|
537 | a1=lsq2[0][2]; a2=lsq2[0][6] | |
534 | p1=lsq2[0][3]; p2=lsq2[0][7] |
|
538 | p1=lsq2[0][3]; p2=lsq2[0][7] | |
535 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; |
|
539 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; | |
536 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; |
|
540 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; | |
537 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
541 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling | |
538 |
|
542 | |||
539 | if gp1>gp2: |
|
543 | if gp1>gp2: | |
540 | if a1>0.7*a2: |
|
544 | if a1>0.7*a2: | |
541 | choice=1 |
|
545 | choice=1 | |
542 | else: |
|
546 | else: | |
543 | choice=2 |
|
547 | choice=2 | |
544 | elif gp2>gp1: |
|
548 | elif gp2>gp1: | |
545 | if a2>0.7*a1: |
|
549 | if a2>0.7*a1: | |
546 | choice=2 |
|
550 | choice=2 | |
547 | else: |
|
551 | else: | |
548 | choice=1 |
|
552 | choice=1 | |
549 | else: |
|
553 | else: | |
550 | choice=numpy.argmax([a1,a2])+1 |
|
554 | choice=numpy.argmax([a1,a2])+1 | |
551 | #else: |
|
555 | #else: | |
552 | #choice=argmin([std2a,std2b])+1 |
|
556 | #choice=argmin([std2a,std2b])+1 | |
553 |
|
557 | |||
554 | else: # with low SNR go to the most energetic peak |
|
558 | else: # with low SNR go to the most energetic peak | |
555 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
559 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
556 |
|
560 | |||
557 |
|
561 | |||
558 | shift0=lsq2[0][0]; |
|
562 | shift0=lsq2[0][0]; | |
559 | vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) |
|
563 | vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) | |
560 | shift1=lsq2[0][4]; |
|
564 | shift1=lsq2[0][4]; | |
561 | vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) |
|
565 | vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) | |
562 |
|
566 | |||
563 | max_vel = 1.0 |
|
567 | max_vel = 1.0 | |
564 |
|
568 | |||
565 | #first peak will be 0, second peak will be 1 |
|
569 | #first peak will be 0, second peak will be 1 | |
566 | if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range |
|
570 | if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range | |
567 | shift0=lsq2[0][0] |
|
571 | shift0=lsq2[0][0] | |
568 | width0=lsq2[0][1] |
|
572 | width0=lsq2[0][1] | |
569 | Amplitude0=lsq2[0][2] |
|
573 | Amplitude0=lsq2[0][2] | |
570 | p0=lsq2[0][3] |
|
574 | p0=lsq2[0][3] | |
571 |
|
575 | |||
572 | shift1=lsq2[0][4] |
|
576 | shift1=lsq2[0][4] | |
573 | width1=lsq2[0][5] |
|
577 | width1=lsq2[0][5] | |
574 | Amplitude1=lsq2[0][6] |
|
578 | Amplitude1=lsq2[0][6] | |
575 | p1=lsq2[0][7] |
|
579 | p1=lsq2[0][7] | |
576 | noise=lsq2[0][8] |
|
580 | noise=lsq2[0][8] | |
577 | else: |
|
581 | else: | |
578 | shift1=lsq2[0][0] |
|
582 | shift1=lsq2[0][0] | |
579 | width1=lsq2[0][1] |
|
583 | width1=lsq2[0][1] | |
580 | Amplitude1=lsq2[0][2] |
|
584 | Amplitude1=lsq2[0][2] | |
581 | p1=lsq2[0][3] |
|
585 | p1=lsq2[0][3] | |
582 |
|
586 | |||
583 | shift0=lsq2[0][4] |
|
587 | shift0=lsq2[0][4] | |
584 | width0=lsq2[0][5] |
|
588 | width0=lsq2[0][5] | |
585 | Amplitude0=lsq2[0][6] |
|
589 | Amplitude0=lsq2[0][6] | |
586 | p0=lsq2[0][7] |
|
590 | p0=lsq2[0][7] | |
587 | noise=lsq2[0][8] |
|
591 | noise=lsq2[0][8] | |
588 |
|
592 | |||
589 | if Amplitude0<0.05: # in case the peak is noise |
|
593 | if Amplitude0<0.05: # in case the peak is noise | |
590 | shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN] |
|
594 | shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN] | |
591 | if Amplitude1<0.05: |
|
595 | if Amplitude1<0.05: | |
592 | shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN] |
|
596 | shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN] | |
593 |
|
597 | |||
594 |
|
598 | |||
595 | # if choice==0: # pick the single gaussian fit |
|
599 | # if choice==0: # pick the single gaussian fit | |
596 | # Amplitude0=lsq1[0][2] |
|
600 | # Amplitude0=lsq1[0][2] | |
597 | # shift0=lsq1[0][0] |
|
601 | # shift0=lsq1[0][0] | |
598 | # width0=lsq1[0][1] |
|
602 | # width0=lsq1[0][1] | |
599 | # p0=lsq1[0][3] |
|
603 | # p0=lsq1[0][3] | |
600 | # Amplitude1=0. |
|
604 | # Amplitude1=0. | |
601 | # shift1=0. |
|
605 | # shift1=0. | |
602 | # width1=0. |
|
606 | # width1=0. | |
603 | # p1=0. |
|
607 | # p1=0. | |
604 | # noise=lsq1[0][4] |
|
608 | # noise=lsq1[0][4] | |
605 | # elif choice==1: # take the first one of the 2 gaussians fitted |
|
609 | # elif choice==1: # take the first one of the 2 gaussians fitted | |
606 | # Amplitude0 = lsq2[0][2] |
|
610 | # Amplitude0 = lsq2[0][2] | |
607 | # shift0 = lsq2[0][0] |
|
611 | # shift0 = lsq2[0][0] | |
608 | # width0 = lsq2[0][1] |
|
612 | # width0 = lsq2[0][1] | |
609 | # p0 = lsq2[0][3] |
|
613 | # p0 = lsq2[0][3] | |
610 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 |
|
614 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 | |
611 | # shift1 = lsq2[0][4] # This is 0 in gg1 |
|
615 | # shift1 = lsq2[0][4] # This is 0 in gg1 | |
612 | # width1 = lsq2[0][5] # This is 0 in gg1 |
|
616 | # width1 = lsq2[0][5] # This is 0 in gg1 | |
613 | # p1 = lsq2[0][7] # This is 0 in gg1 |
|
617 | # p1 = lsq2[0][7] # This is 0 in gg1 | |
614 | # noise = lsq2[0][8] |
|
618 | # noise = lsq2[0][8] | |
615 | # else: # the second one |
|
619 | # else: # the second one | |
616 | # Amplitude0 = lsq2[0][6] |
|
620 | # Amplitude0 = lsq2[0][6] | |
617 | # shift0 = lsq2[0][4] |
|
621 | # shift0 = lsq2[0][4] | |
618 | # width0 = lsq2[0][5] |
|
622 | # width0 = lsq2[0][5] | |
619 | # p0 = lsq2[0][7] |
|
623 | # p0 = lsq2[0][7] | |
620 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 |
|
624 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 | |
621 | # shift1 = lsq2[0][0] # This is 0 in gg1 |
|
625 | # shift1 = lsq2[0][0] # This is 0 in gg1 | |
622 | # width1 = lsq2[0][1] # This is 0 in gg1 |
|
626 | # width1 = lsq2[0][1] # This is 0 in gg1 | |
623 | # p1 = lsq2[0][3] # This is 0 in gg1 |
|
627 | # p1 = lsq2[0][3] # This is 0 in gg1 | |
624 | # noise = lsq2[0][8] |
|
628 | # noise = lsq2[0][8] | |
625 |
|
629 | |||
626 | #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) |
|
630 | #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) | |
627 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 |
|
631 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 | |
628 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 |
|
632 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 | |
629 | #print 'SPC_ch1.shape',SPC_ch1.shape |
|
633 | #print 'SPC_ch1.shape',SPC_ch1.shape | |
630 | #print 'SPC_ch2.shape',SPC_ch2.shape |
|
634 | #print 'SPC_ch2.shape',SPC_ch2.shape | |
631 | #dataOut.data_param = SPC_ch1 |
|
635 | #dataOut.data_param = SPC_ch1 | |
632 | SPCparam = (SPC_ch1,SPC_ch2) |
|
636 | SPCparam = (SPC_ch1,SPC_ch2) | |
633 | #GauSPC[1] = SPC_ch2 |
|
637 | #GauSPC[1] = SPC_ch2 | |
634 |
|
638 | |||
635 | # print 'shift0', shift0 |
|
639 | # print 'shift0', shift0 | |
636 | # print 'Amplitude0', Amplitude0 |
|
640 | # print 'Amplitude0', Amplitude0 | |
637 | # print 'width0', width0 |
|
641 | # print 'width0', width0 | |
638 | # print 'p0', p0 |
|
642 | # print 'p0', p0 | |
639 | # print '========================' |
|
643 | # print '========================' | |
640 | # print 'shift1', shift1 |
|
644 | # print 'shift1', shift1 | |
641 | # print 'Amplitude1', Amplitude1 |
|
645 | # print 'Amplitude1', Amplitude1 | |
642 | # print 'width1', width1 |
|
646 | # print 'width1', width1 | |
643 | # print 'p1', p1 |
|
647 | # print 'p1', p1 | |
644 | # print 'noise', noise |
|
648 | # print 'noise', noise | |
645 | # print 's_noise', wnoise |
|
649 | # print 's_noise', wnoise | |
646 |
|
650 | |||
647 | return GauSPC |
|
651 | return GauSPC | |
648 |
|
652 | |||
649 | def y_model1(self,x,state): |
|
653 | def y_model1(self,x,state): | |
650 | shift0,width0,amplitude0,power0,noise=state |
|
654 | shift0,width0,amplitude0,power0,noise=state | |
651 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
655 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
652 |
|
656 | |||
653 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) |
|
657 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) | |
654 |
|
658 | |||
655 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) |
|
659 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) | |
656 | return model0+model0u+model0d+noise |
|
660 | return model0+model0u+model0d+noise | |
657 |
|
661 | |||
658 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist |
|
662 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist | |
659 | shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state |
|
663 | shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state | |
660 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
664 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
661 |
|
665 | |||
662 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) |
|
666 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) | |
663 |
|
667 | |||
664 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) |
|
668 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) | |
665 | model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1) |
|
669 | model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1) | |
666 |
|
670 | |||
667 | model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) |
|
671 | model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) | |
668 |
|
672 | |||
669 | model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) |
|
673 | model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) | |
670 | return model0+model0u+model0d+model1+model1u+model1d+noise |
|
674 | return model0+model0u+model0d+model1+model1u+model1d+noise | |
671 |
|
675 | |||
672 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. |
|
676 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. | |
673 |
|
677 | |||
674 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented |
|
678 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented | |
675 |
|
679 | |||
676 | def misfit2(self,state,y_data,x,num_intg): |
|
680 | def misfit2(self,state,y_data,x,num_intg): | |
677 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) |
|
681 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) | |
678 |
|
682 | |||
679 |
|
683 | |||
680 |
|
684 | |||
681 | class PrecipitationProc(Operation): |
|
685 | class PrecipitationProc(Operation): | |
682 |
|
686 | |||
683 | ''' |
|
687 | ''' | |
684 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) |
|
688 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) | |
685 |
|
689 | |||
686 | Input: |
|
690 | Input: | |
687 | self.dataOut.data_pre : SelfSpectra |
|
691 | self.dataOut.data_pre : SelfSpectra | |
688 |
|
692 | |||
689 | Output: |
|
693 | Output: | |
690 |
|
694 | |||
691 | self.dataOut.data_output : Reflectivity factor, rainfall Rate |
|
695 | self.dataOut.data_output : Reflectivity factor, rainfall Rate | |
692 |
|
696 | |||
693 |
|
697 | |||
694 | Parameters affected: |
|
698 | Parameters affected: | |
695 | ''' |
|
699 | ''' | |
696 | def gaus(self,xSamples,Amp,Mu,Sigma): |
|
700 | def gaus(self,xSamples,Amp,Mu,Sigma): | |
697 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) |
|
701 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) | |
698 |
|
702 | |||
699 |
|
703 | |||
700 |
|
704 | |||
701 | def Moments(self, ySamples, xSamples): |
|
705 | def Moments(self, ySamples, xSamples): | |
702 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 |
|
706 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 | |
703 | yNorm = ySamples / Pot |
|
707 | yNorm = ySamples / Pot | |
704 |
|
708 | |||
705 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento |
|
709 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento | |
706 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento |
|
710 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento | |
707 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral |
|
711 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral | |
708 |
|
712 | |||
709 | return numpy.array([Pot, Vr, Desv]) |
|
713 | return numpy.array([Pot, Vr, Desv]) | |
710 |
|
714 | |||
711 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, |
|
715 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, | |
712 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km = 0.93, Altitude=3350): |
|
716 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km = 0.93, Altitude=3350): | |
713 |
|
717 | |||
714 |
|
718 | |||
715 | Velrange = dataOut.spc_range[2] |
|
719 | Velrange = dataOut.spcparam_range[2] | |
716 | FrecRange = dataOut.spc_range[0] |
|
720 | FrecRange = dataOut.spcparam_range[0] | |
717 |
|
721 | |||
718 | dV= Velrange[1]-Velrange[0] |
|
722 | dV= Velrange[1]-Velrange[0] | |
719 | dF= FrecRange[1]-FrecRange[0] |
|
723 | dF= FrecRange[1]-FrecRange[0] | |
720 |
|
724 | |||
721 | if radar == "MIRA35C" : |
|
725 | if radar == "MIRA35C" : | |
722 |
|
726 | |||
723 | self.spc = dataOut.data_pre[0].copy() |
|
727 | self.spc = dataOut.data_pre[0].copy() | |
724 | self.Num_Hei = self.spc.shape[2] |
|
728 | self.Num_Hei = self.spc.shape[2] | |
725 | self.Num_Bin = self.spc.shape[1] |
|
729 | self.Num_Bin = self.spc.shape[1] | |
726 | self.Num_Chn = self.spc.shape[0] |
|
730 | self.Num_Chn = self.spc.shape[0] | |
727 | Ze = self.dBZeMODE2(dataOut) |
|
731 | Ze = self.dBZeMODE2(dataOut) | |
728 |
|
732 | |||
729 | else: |
|
733 | else: | |
730 |
|
734 | |||
731 | self.spc = dataOut.SPCparam[1] #dataOut.data_pre[0].copy() # |
|
735 | self.spc = dataOut.SPCparam[1].copy() #dataOut.data_pre[0].copy() # | |
732 | self.Num_Hei = self.spc.shape[2] |
|
736 | self.Num_Hei = self.spc.shape[2] | |
733 | self.Num_Bin = self.spc.shape[1] |
|
737 | self.Num_Bin = self.spc.shape[1] | |
734 | self.Num_Chn = self.spc.shape[0] |
|
738 | self.Num_Chn = self.spc.shape[0] | |
735 | print '==================== SPC SHAPE',numpy.shape(self.spc) |
|
739 | print '==================== SPC SHAPE',numpy.shape(self.spc) | |
736 |
|
740 | |||
737 |
|
741 | |||
738 | ''' Se obtiene la constante del RADAR ''' |
|
742 | ''' Se obtiene la constante del RADAR ''' | |
739 |
|
743 | |||
740 | self.Pt = Pt |
|
744 | self.Pt = Pt | |
741 | self.Gt = Gt |
|
745 | self.Gt = Gt | |
742 | self.Gr = Gr |
|
746 | self.Gr = Gr | |
743 | self.Lambda = Lambda |
|
747 | self.Lambda = Lambda | |
744 | self.aL = aL |
|
748 | self.aL = aL | |
745 | self.tauW = tauW |
|
749 | self.tauW = tauW | |
746 | self.ThetaT = ThetaT |
|
750 | self.ThetaT = ThetaT | |
747 | self.ThetaR = ThetaR |
|
751 | self.ThetaR = ThetaR | |
748 |
|
752 | |||
749 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
753 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
750 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) |
|
754 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) | |
751 | RadarConstant = 4.1396e+08# Numerator / Denominator |
|
755 | RadarConstant = 1/4.1396e+08# Numerator / Denominator # | |
752 | print '***' |
|
756 | print '***' | |
753 | print '*** RadarConstant' , RadarConstant, '****' |
|
757 | print '*** RadarConstant' , RadarConstant, '****' | |
754 | print '***' |
|
758 | print '***' | |
755 | ''' ============================= ''' |
|
759 | ''' ============================= ''' | |
756 |
|
760 | |||
757 | SPCmean = numpy.mean(self.spc,0) |
|
761 | self.spc[0] = self.spc[0]-dataOut.noise[0] | |
758 | ETAf = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
762 | self.spc[1] = self.spc[1]-dataOut.noise[1] | |
|
763 | self.spc[2] = self.spc[2]-dataOut.noise[2] | |||
|
764 | ||||
|
765 | self.spc[ numpy.where(self.spc < 0)] = 0 | |||
|
766 | ||||
|
767 | SPCmean = numpy.mean(self.spc,0) - numpy.mean(dataOut.noise) | |||
|
768 | SPCmean[ numpy.where(SPCmean < 0)] = 1e-20 | |||
|
769 | ||||
|
770 | ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
759 | ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
771 | ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
760 | ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
772 | ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
761 |
|
773 | |||
762 |
Pr = |
|
774 | Pr = SPCmean[:,:] | |
763 |
|
775 | |||
764 | VelMeteoro = numpy.mean(SPCmean,axis=0) |
|
776 | VelMeteoro = numpy.mean(SPCmean,axis=0) | |
765 |
|
777 | |||
766 | #print '==================== Vel SHAPE',VelMeteoro |
|
778 | #print '==================== Vel SHAPE',VelMeteoro | |
767 |
|
779 | |||
768 | D_range = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
780 | D_range = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
769 | SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
781 | SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
770 | N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
782 | N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
771 | D_mean = numpy.zeros(self.Num_Hei) |
|
783 | D_mean = numpy.zeros(self.Num_Hei) | |
772 | del_V = numpy.zeros(self.Num_Hei) |
|
784 | del_V = numpy.zeros(self.Num_Hei) | |
773 | Z = numpy.zeros(self.Num_Hei) |
|
785 | Z = numpy.zeros(self.Num_Hei) | |
774 | Ze = numpy.zeros(self.Num_Hei) |
|
786 | Ze = numpy.zeros(self.Num_Hei) | |
775 | RR = numpy.zeros(self.Num_Hei) |
|
787 | RR = numpy.zeros(self.Num_Hei) | |
776 |
|
788 | |||
|
789 | Range = dataOut.heightList*1000. | |||
777 |
|
790 | |||
778 | for R in range(self.Num_Hei): |
|
791 | for R in range(self.Num_Hei): | |
779 |
|
792 | |||
780 |
h = R |
|
793 | h = Range[R] + Altitude #Range from ground to radar pulse altitude | |
781 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity |
|
794 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity | |
782 |
|
795 | |||
783 |
D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 # |
|
796 | D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3 | |
|
797 | ||||
|
798 | '''NOTA: ETA(n) dn = ETA(f) df | |||
|
799 | ||||
|
800 | dn = 1 Diferencial de muestreo | |||
|
801 | df = ETA(n) / ETA(f) | |||
|
802 | ||||
|
803 | ''' | |||
784 |
|
804 | |||
785 |
ETA |
|
805 | ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA) | |
786 |
|
806 | |||
787 |
ETAv[:,R]=ETA |
|
807 | ETAv[:,R]=ETAn[:,R]/dV | |
788 |
|
808 | |||
789 | ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R]) |
|
809 | ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R]) | |
790 |
|
810 | |||
791 |
SIGMA[:,R] = numpy.pi**5 / Lambda**4 |
|
811 | SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma) | |
792 |
|
812 | |||
793 |
N_dist[:,R] = ETA |
|
813 | N_dist[:,R] = ETAn[:,R] / SIGMA[:,R] | |
794 |
|
814 | |||
795 | DMoments = self.Moments(Pr[:,R], D_range[:,R]) |
|
815 | DMoments = self.Moments(Pr[:,R], D_range[:,R]) | |
796 |
|
816 | |||
797 | try: |
|
817 | try: | |
798 | popt01,pcov = curve_fit(self.gaus, D_range[:,R] , Pr[:,R] , p0=DMoments) |
|
818 | popt01,pcov = curve_fit(self.gaus, D_range[:,R] , Pr[:,R] , p0=DMoments) | |
799 | except: |
|
819 | except: | |
800 | popt01=numpy.zeros(3) |
|
820 | popt01=numpy.zeros(3) | |
801 | popt01[1]= DMoments[1] |
|
821 | popt01[1]= DMoments[1] | |
802 | D_mean[R]=popt01[1] |
|
822 | D_mean[R]=popt01[1] | |
803 |
|
823 | |||
804 | Z[R] = numpy.nansum( N_dist[:,R] * D_range[:,R]**6 ) |
|
824 | Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 )*1e-18 | |
805 |
|
825 | |||
806 | RR[R] = 6*10**-4.*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate |
|
826 | RR[R] = 6*10**-4.*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate | |
807 |
|
827 | |||
808 |
Ze[R] = (numpy.nansum( |
|
828 | Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( numpy.pi**5 * Km) | |
809 |
|
829 | |||
810 |
|
830 | |||
811 |
|
831 | |||
812 | RR2 = (Z/200)**(1/1.6) |
|
832 | RR2 = (Z/200)**(1/1.6) | |
813 | dBRR = 10*numpy.log10(RR) |
|
833 | dBRR = 10*numpy.log10(RR) | |
814 | dBRR2 = 10*numpy.log10(RR2) |
|
834 | dBRR2 = 10*numpy.log10(RR2) | |
815 |
|
835 | |||
816 | dBZe = 10*numpy.log10(Ze) |
|
836 | dBZe = 10*numpy.log10(Ze) | |
817 | dBZ = 10*numpy.log10(Z) |
|
837 | dBZ = 10*numpy.log10(Z) | |
818 |
|
838 | |||
819 | dataOut.data_output = Z |
|
839 | dataOut.data_output = Z | |
820 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) |
|
840 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) | |
821 | dataOut.channelList = [0,1,2] |
|
841 | dataOut.channelList = [0,1,2] | |
822 |
|
842 | |||
823 | dataOut.data_param[0]=dBZ |
|
843 | dataOut.data_param[0]=dBZ | |
824 | dataOut.data_param[1]=dBZe |
|
844 | dataOut.data_param[1]=dBZe | |
825 |
dataOut.data_param[2]= |
|
845 | dataOut.data_param[2]=RR | |
826 |
|
846 | |||
827 |
print ' |
|
847 | #print 'VELRANGE', Velrange | |
828 |
|
|
848 | print 'Range', len(Range) | |
|
849 | print 'delv',del_V | |||
|
850 | #print 'DRANGE', D_range[:,50] | |||
|
851 | print 'NOISE', dataOut.noise[0] | |||
|
852 | print 'radarconstant', RadarConstant | |||
|
853 | print 'Range', Range | |||
|
854 | print 'ETAn SHAPE', ETAn.shape | |||
|
855 | print 'ETAn ', numpy.nansum(ETAn, axis=0) | |||
|
856 | print 'ETAd ', numpy.nansum(ETAd, axis=0) | |||
|
857 | print 'Pr ', numpy.nansum(Pr, axis=0) | |||
|
858 | print 'dataOut.SPCparam[1]', numpy.nansum(dataOut.SPCparam[1][0], axis=0) | |||
|
859 | print 'Ze ', dBZe | |||
829 | print 'Z ', dBZ |
|
860 | print 'Z ', dBZ | |
830 |
print 'RR ', |
|
861 | #print 'RR2 ', RR2 | |
|
862 | #print 'RR ', RR | |||
831 | #print 'RR2 ', dBRR2 |
|
863 | #print 'RR2 ', dBRR2 | |
832 | #print 'D_mean', D_mean |
|
864 | #print 'D_mean', D_mean | |
833 | #print 'del_V', del_V |
|
865 | #print 'del_V', del_V | |
834 | #print 'D_range',D_range.shape, D_range[:,30] |
|
866 | #print 'D_range',D_range.shape, D_range[:,30] | |
835 | #print 'Velrange', Velrange |
|
867 | #print 'Velrange', Velrange | |
836 | #print 'numpy.nansum( N_dist[:,R]', numpy.nansum( N_dist, axis=0) |
|
868 | #print 'numpy.nansum( N_dist[:,R]', numpy.nansum( N_dist, axis=0) | |
837 | #print 'dataOut.data_param SHAPE', dataOut.data_param.shape |
|
869 | #print 'dataOut.data_param SHAPE', dataOut.data_param.shape | |
838 |
|
870 | |||
839 |
|
871 | |||
840 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C |
|
872 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C | |
841 |
|
873 | |||
842 | NPW = dataOut.NPW |
|
874 | NPW = dataOut.NPW | |
843 | COFA = dataOut.COFA |
|
875 | COFA = dataOut.COFA | |
844 |
|
876 | |||
845 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) |
|
877 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) | |
846 | RadarConst = dataOut.RadarConst |
|
878 | RadarConst = dataOut.RadarConst | |
847 | #frequency = 34.85*10**9 |
|
879 | #frequency = 34.85*10**9 | |
848 |
|
880 | |||
849 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) |
|
881 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) | |
850 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN |
|
882 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN | |
851 |
|
883 | |||
852 | ETA = numpy.sum(SNR,1) |
|
884 | ETA = numpy.sum(SNR,1) | |
853 | print 'ETA' , ETA |
|
885 | print 'ETA' , ETA | |
854 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) |
|
886 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) | |
855 |
|
887 | |||
856 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) |
|
888 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) | |
857 |
|
889 | |||
858 | for r in range(self.Num_Hei): |
|
890 | for r in range(self.Num_Hei): | |
859 |
|
891 | |||
860 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) |
|
892 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) | |
861 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) |
|
893 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) | |
862 |
|
894 | |||
863 | return Ze |
|
895 | return Ze | |
864 |
|
896 | |||
865 | # def GetRadarConstant(self): |
|
897 | # def GetRadarConstant(self): | |
866 | # |
|
898 | # | |
867 | # """ |
|
899 | # """ | |
868 | # Constants: |
|
900 | # Constants: | |
869 | # |
|
901 | # | |
870 | # Pt: Transmission Power dB 5kW 5000 |
|
902 | # Pt: Transmission Power dB 5kW 5000 | |
871 | # Gt: Transmission Gain dB 24.7 dB 295.1209 |
|
903 | # Gt: Transmission Gain dB 24.7 dB 295.1209 | |
872 | # Gr: Reception Gain dB 18.5 dB 70.7945 |
|
904 | # Gr: Reception Gain dB 18.5 dB 70.7945 | |
873 | # Lambda: Wavelenght m 0.6741 m 0.6741 |
|
905 | # Lambda: Wavelenght m 0.6741 m 0.6741 | |
874 | # aL: Attenuation loses dB 4dB 2.5118 |
|
906 | # aL: Attenuation loses dB 4dB 2.5118 | |
875 | # tauW: Width of transmission pulse s 4us 4e-6 |
|
907 | # tauW: Width of transmission pulse s 4us 4e-6 | |
876 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 |
|
908 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 | |
877 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 |
|
909 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 | |
878 | # |
|
910 | # | |
879 | # """ |
|
911 | # """ | |
880 | # |
|
912 | # | |
881 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
913 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
882 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) |
|
914 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) | |
883 | # RadarConstant = Numerator / Denominator |
|
915 | # RadarConstant = Numerator / Denominator | |
884 | # |
|
916 | # | |
885 | # return RadarConstant |
|
917 | # return RadarConstant | |
886 |
|
918 | |||
887 |
|
919 | |||
888 |
|
920 | |||
889 | class FullSpectralAnalysis(Operation): |
|
921 | class FullSpectralAnalysis(Operation): | |
890 |
|
922 | |||
891 | """ |
|
923 | """ | |
892 | Function that implements Full Spectral Analisys technique. |
|
924 | Function that implements Full Spectral Analisys technique. | |
893 |
|
925 | |||
894 | Input: |
|
926 | Input: | |
895 | self.dataOut.data_pre : SelfSpectra and CrossSPectra data |
|
927 | self.dataOut.data_pre : SelfSpectra and CrossSPectra data | |
896 | self.dataOut.groupList : Pairlist of channels |
|
928 | self.dataOut.groupList : Pairlist of channels | |
897 | self.dataOut.ChanDist : Physical distance between receivers |
|
929 | self.dataOut.ChanDist : Physical distance between receivers | |
898 |
|
930 | |||
899 |
|
931 | |||
900 | Output: |
|
932 | Output: | |
901 |
|
933 | |||
902 | self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind |
|
934 | self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind | |
903 |
|
935 | |||
904 |
|
936 | |||
905 | Parameters affected: Winds, height range, SNR |
|
937 | Parameters affected: Winds, height range, SNR | |
906 |
|
938 | |||
907 | """ |
|
939 | """ | |
908 | def run(self, dataOut, E01=None, E02=None, E12=None, N01=None, N02=None, N12=None, SNRlimit=7): |
|
940 | def run(self, dataOut, E01=None, E02=None, E12=None, N01=None, N02=None, N12=None, SNRlimit=7): | |
909 |
|
941 | |||
910 | self.indice=int(numpy.random.rand()*1000) |
|
942 | self.indice=int(numpy.random.rand()*1000) | |
911 |
|
943 | |||
912 | spc = dataOut.data_pre[0].copy() |
|
944 | spc = dataOut.data_pre[0].copy() | |
913 | cspc = dataOut.data_pre[1] |
|
945 | cspc = dataOut.data_pre[1] | |
914 |
|
946 | |||
915 | nChannel = spc.shape[0] |
|
947 | nChannel = spc.shape[0] | |
916 | nProfiles = spc.shape[1] |
|
948 | nProfiles = spc.shape[1] | |
917 | nHeights = spc.shape[2] |
|
949 | nHeights = spc.shape[2] | |
918 |
|
950 | |||
919 | pairsList = dataOut.groupList |
|
951 | pairsList = dataOut.groupList | |
920 | if dataOut.ChanDist is not None : |
|
952 | if dataOut.ChanDist is not None : | |
921 | ChanDist = dataOut.ChanDist |
|
953 | ChanDist = dataOut.ChanDist | |
922 | else: |
|
954 | else: | |
923 | ChanDist = numpy.array([[E01, N01],[E02,N02],[E12,N12]]) |
|
955 | ChanDist = numpy.array([[E01, N01],[E02,N02],[E12,N12]]) | |
924 |
|
956 | |||
925 | FrecRange = dataOut.spc_range[0] |
|
957 | FrecRange = dataOut.spc_range[0] | |
926 |
|
958 | |||
927 | ySamples=numpy.ones([nChannel,nProfiles]) |
|
959 | ySamples=numpy.ones([nChannel,nProfiles]) | |
928 | phase=numpy.ones([nChannel,nProfiles]) |
|
960 | phase=numpy.ones([nChannel,nProfiles]) | |
929 | CSPCSamples=numpy.ones([nChannel,nProfiles],dtype=numpy.complex_) |
|
961 | CSPCSamples=numpy.ones([nChannel,nProfiles],dtype=numpy.complex_) | |
930 | coherence=numpy.ones([nChannel,nProfiles]) |
|
962 | coherence=numpy.ones([nChannel,nProfiles]) | |
931 | PhaseSlope=numpy.ones(nChannel) |
|
963 | PhaseSlope=numpy.ones(nChannel) | |
932 | PhaseInter=numpy.ones(nChannel) |
|
964 | PhaseInter=numpy.ones(nChannel) | |
933 | data_SNR=numpy.zeros([nProfiles]) |
|
965 | data_SNR=numpy.zeros([nProfiles]) | |
934 |
|
966 | |||
935 | data = dataOut.data_pre |
|
967 | data = dataOut.data_pre | |
936 | noise = dataOut.noise |
|
968 | noise = dataOut.noise | |
937 |
|
969 | |||
938 | dataOut.data_SNR = (numpy.mean(spc,axis=1)- noise[0]) / noise[0] |
|
970 | dataOut.data_SNR = (numpy.mean(spc,axis=1)- noise[0]) / noise[0] | |
939 |
|
971 | |||
|
972 | dataOut.data_SNR[numpy.where( dataOut.data_SNR <0 )] = 1e-20 | |||
|
973 | ||||
940 |
|
974 | |||
941 |
|
||||
942 | print dataOut.data_SNR.shape |
|
|||
943 | #FirstMoment = dataOut.moments[0,1,:]#numpy.average(dataOut.data_param[:,1,:],0) |
|
975 | #FirstMoment = dataOut.moments[0,1,:]#numpy.average(dataOut.data_param[:,1,:],0) | |
944 | #SecondMoment = numpy.average(dataOut.moments[:,2,:],0) |
|
976 | #SecondMoment = numpy.average(dataOut.moments[:,2,:],0) | |
945 |
|
977 | |||
946 | #SNRdBMean = [] |
|
978 | #SNRdBMean = [] | |
947 |
|
979 | |||
948 | data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN |
|
980 | data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN | |
949 |
|
981 | |||
950 | velocityX=[] |
|
982 | velocityX=[] | |
951 | velocityY=[] |
|
983 | velocityY=[] | |
952 | velocityV=[] |
|
984 | velocityV=[] | |
953 | PhaseLine=[] |
|
985 | PhaseLine=[] | |
954 |
|
986 | |||
955 | dbSNR = 10*numpy.log10(dataOut.data_SNR) |
|
987 | dbSNR = 10*numpy.log10(dataOut.data_SNR) | |
956 | dbSNR = numpy.average(dbSNR,0) |
|
988 | dbSNR = numpy.average(dbSNR,0) | |
957 |
|
989 | |||
958 | for Height in range(nHeights): |
|
990 | for Height in range(nHeights): | |
959 |
|
991 | |||
960 | [Vzon,Vmer,Vver, GaussCenter, PhaseSlope, FitGaussCSPC]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, dataOut.spc_range.copy(), dbSNR[Height], SNRlimit) |
|
992 | [Vzon,Vmer,Vver, GaussCenter, PhaseSlope, FitGaussCSPC]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, dataOut.spc_range.copy(), dbSNR[Height], SNRlimit) | |
961 | PhaseLine = numpy.append(PhaseLine, PhaseSlope) |
|
993 | PhaseLine = numpy.append(PhaseLine, PhaseSlope) | |
962 |
|
994 | |||
963 | if abs(Vzon)<100. and abs(Vzon)> 0.: |
|
995 | if abs(Vzon)<100. and abs(Vzon)> 0.: | |
964 | velocityX=numpy.append(velocityX, -Vzon)#Vmag |
|
996 | velocityX=numpy.append(velocityX, -Vzon)#Vmag | |
965 |
|
997 | |||
966 | else: |
|
998 | else: | |
967 | #print 'Vzon',Vzon |
|
999 | #print 'Vzon',Vzon | |
968 | velocityX=numpy.append(velocityX, numpy.NaN) |
|
1000 | velocityX=numpy.append(velocityX, numpy.NaN) | |
969 |
|
1001 | |||
970 | if abs(Vmer)<100. and abs(Vmer) > 0.: |
|
1002 | if abs(Vmer)<100. and abs(Vmer) > 0.: | |
971 | velocityY=numpy.append(velocityY, -Vmer)#Vang |
|
1003 | velocityY=numpy.append(velocityY, -Vmer)#Vang | |
972 |
|
1004 | |||
973 | else: |
|
1005 | else: | |
974 | #print 'Vmer',Vmer |
|
1006 | #print 'Vmer',Vmer | |
975 | velocityY=numpy.append(velocityY, numpy.NaN) |
|
1007 | velocityY=numpy.append(velocityY, numpy.NaN) | |
976 |
|
1008 | |||
977 | if dbSNR[Height] > SNRlimit: |
|
1009 | if dbSNR[Height] > SNRlimit: | |
978 | velocityV=numpy.append(velocityV, -Vver)#FirstMoment[Height]) |
|
1010 | velocityV=numpy.append(velocityV, -Vver)#FirstMoment[Height]) | |
979 | else: |
|
1011 | else: | |
980 | velocityV=numpy.append(velocityV, numpy.NaN) |
|
1012 | velocityV=numpy.append(velocityV, numpy.NaN) | |
981 | #FirstMoment[Height]= numpy.NaN |
|
1013 | #FirstMoment[Height]= numpy.NaN | |
982 | # if SNRdBMean[Height] <12: |
|
1014 | # if SNRdBMean[Height] <12: | |
983 | # FirstMoment[Height] = numpy.NaN |
|
1015 | # FirstMoment[Height] = numpy.NaN | |
984 | # velocityX[Height] = numpy.NaN |
|
1016 | # velocityX[Height] = numpy.NaN | |
985 | # velocityY[Height] = numpy.NaN |
|
1017 | # velocityY[Height] = numpy.NaN | |
986 |
|
1018 | |||
987 |
|
1019 | |||
988 |
|
1020 | |||
989 | data_output[0] = numpy.array(velocityX) #self.moving_average(numpy.array(velocityX) , N=1) |
|
1021 | data_output[0] = numpy.array(velocityX) #self.moving_average(numpy.array(velocityX) , N=1) | |
990 | data_output[1] = numpy.array(velocityY) #self.moving_average(numpy.array(velocityY) , N=1) |
|
1022 | data_output[1] = numpy.array(velocityY) #self.moving_average(numpy.array(velocityY) , N=1) | |
991 | data_output[2] = -velocityV#FirstMoment |
|
1023 | data_output[2] = -velocityV#FirstMoment | |
992 |
|
1024 | |||
993 | print 'FirstMoment', data_output[2] |
|
1025 | print 'FirstMoment', data_output[2] | |
994 | #print FirstMoment |
|
1026 | #print FirstMoment | |
995 | # print 'velocityX',numpy.shape(data_output[0]) |
|
1027 | # print 'velocityX',numpy.shape(data_output[0]) | |
996 | # print 'velocityX',data_output[0] |
|
1028 | # print 'velocityX',data_output[0] | |
997 | # print ' ' |
|
1029 | # print ' ' | |
998 | # print 'velocityY',numpy.shape(data_output[1]) |
|
1030 | # print 'velocityY',numpy.shape(data_output[1]) | |
999 | # print 'velocityY',data_output[1] |
|
1031 | # print 'velocityY',data_output[1] | |
1000 | # print 'velocityV',data_output[2] |
|
1032 | # print 'velocityV',data_output[2] | |
1001 | # print 'PhaseLine',PhaseLine |
|
1033 | # print 'PhaseLine',PhaseLine | |
1002 | #print numpy.array(velocityY) |
|
1034 | #print numpy.array(velocityY) | |
1003 | #print 'SNR' |
|
1035 | #print 'SNR' | |
1004 | #print 10*numpy.log10(dataOut.data_SNR) |
|
1036 | #print 10*numpy.log10(dataOut.data_SNR) | |
1005 | #print numpy.shape(10*numpy.log10(dataOut.data_SNR)) |
|
1037 | #print numpy.shape(10*numpy.log10(dataOut.data_SNR)) | |
1006 | print ' ' |
|
1038 | print ' ' | |
1007 |
|
1039 | |||
1008 | xFrec=FrecRange[0:spc.shape[1]] |
|
1040 | xFrec=FrecRange[0:spc.shape[1]] | |
1009 |
|
1041 | |||
1010 | dataOut.data_output=data_output |
|
1042 | dataOut.data_output=data_output | |
1011 |
|
1043 | |||
1012 | return |
|
1044 | return | |
1013 |
|
1045 | |||
1014 |
|
1046 | |||
1015 | def moving_average(self,x, N=2): |
|
1047 | def moving_average(self,x, N=2): | |
1016 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] |
|
1048 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |
1017 |
|
1049 | |||
1018 | def gaus(self,xSamples,Amp,Mu,Sigma): |
|
1050 | def gaus(self,xSamples,Amp,Mu,Sigma): | |
1019 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) |
|
1051 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) | |
1020 |
|
1052 | |||
1021 |
|
1053 | |||
1022 |
|
1054 | |||
1023 | def Moments(self, ySamples, xSamples): |
|
1055 | def Moments(self, ySamples, xSamples): | |
1024 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 |
|
1056 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 | |
1025 | yNorm = ySamples / Pot |
|
1057 | yNorm = ySamples / Pot | |
1026 |
|
||||
1027 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento |
|
1058 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento | |
1028 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento |
|
1059 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento | |
1029 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral |
|
1060 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral | |
1030 |
|
1061 | |||
1031 | return numpy.array([Pot, Vr, Desv]) |
|
1062 | return numpy.array([Pot, Vr, Desv]) | |
1032 |
|
1063 | |||
1033 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit): |
|
1064 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit): | |
1034 |
|
1065 | |||
1035 | # print ' ' |
|
1066 | ||
1036 | # print '######################## Height',Height, (1000 + 75*Height), '##############################' |
|
|||
1037 | # print ' ' |
|
|||
1038 |
|
1067 | |||
1039 | ySamples=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
1068 | ySamples=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1040 | phase=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
1069 | phase=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1041 | CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) |
|
1070 | CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) | |
1042 | coherence=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
1071 | coherence=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1043 | PhaseSlope=numpy.zeros(spc.shape[0]) |
|
1072 | PhaseSlope=numpy.zeros(spc.shape[0]) | |
1044 | PhaseInter=numpy.ones(spc.shape[0]) |
|
1073 | PhaseInter=numpy.ones(spc.shape[0]) | |
1045 | xFrec=AbbsisaRange[0][0:spc.shape[1]] |
|
1074 | xFrec=AbbsisaRange[0][0:spc.shape[1]] | |
1046 | xVel =AbbsisaRange[2][0:spc.shape[1]] |
|
1075 | xVel =AbbsisaRange[2][0:spc.shape[1]] | |
1047 | Vv=numpy.empty(spc.shape[2])*0 |
|
1076 | Vv=numpy.empty(spc.shape[2])*0 | |
1048 | SPCav = numpy.average(spc, axis=0)-numpy.average(noise) #spc[0]-noise[0]# |
|
1077 | SPCav = numpy.average(spc, axis=0)-numpy.average(noise) #spc[0]-noise[0]# | |
1049 |
|
1078 | |||
1050 | SPCmoments = self.Moments(SPCav[:,Height], xVel ) |
|
1079 | SPCmoments = self.Moments(SPCav[:,Height], xVel ) | |
1051 | CSPCmoments = [] |
|
1080 | CSPCmoments = [] | |
1052 | cspcNoise = numpy.empty(3) |
|
1081 | cspcNoise = numpy.empty(3) | |
1053 |
|
1082 | |||
1054 | '''Getting Eij and Nij''' |
|
1083 | '''Getting Eij and Nij''' | |
1055 |
|
1084 | |||
1056 | E01=ChanDist[0][0] |
|
1085 | E01=ChanDist[0][0] | |
1057 | N01=ChanDist[0][1] |
|
1086 | N01=ChanDist[0][1] | |
1058 |
|
1087 | |||
1059 | E02=ChanDist[1][0] |
|
1088 | E02=ChanDist[1][0] | |
1060 | N02=ChanDist[1][1] |
|
1089 | N02=ChanDist[1][1] | |
1061 |
|
1090 | |||
1062 | E12=ChanDist[2][0] |
|
1091 | E12=ChanDist[2][0] | |
1063 | N12=ChanDist[2][1] |
|
1092 | N12=ChanDist[2][1] | |
1064 |
|
1093 | |||
1065 | z = spc.copy() |
|
1094 | z = spc.copy() | |
1066 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1095 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
1067 |
|
1096 | |||
1068 | for i in range(spc.shape[0]): |
|
1097 | for i in range(spc.shape[0]): | |
1069 |
|
1098 | |||
1070 | '''****** Line of Data SPC ******''' |
|
1099 | '''****** Line of Data SPC ******''' | |
1071 | zline=z[i,:,Height].copy() - noise[i] # Se resta ruido |
|
1100 | zline=z[i,:,Height].copy() - noise[i] # Se resta ruido | |
1072 |
|
1101 | |||
1073 | '''****** SPC is normalized ******''' |
|
1102 | '''****** SPC is normalized ******''' | |
1074 | SmoothSPC =self.moving_average(zline.copy(),N=1) # Se suaviza el ruido |
|
1103 | SmoothSPC =self.moving_average(zline.copy(),N=1) # Se suaviza el ruido | |
1075 | FactNorm = SmoothSPC/numpy.nansum(SmoothSPC) # SPC Normalizado y suavizado |
|
1104 | FactNorm = SmoothSPC/numpy.nansum(SmoothSPC) # SPC Normalizado y suavizado | |
1076 |
|
1105 | |||
1077 | xSamples = xFrec # Se toma el rango de frecuncias |
|
1106 | xSamples = xFrec # Se toma el rango de frecuncias | |
1078 | ySamples[i] = FactNorm # Se toman los valores de SPC normalizado |
|
1107 | ySamples[i] = FactNorm # Se toman los valores de SPC normalizado | |
1079 |
|
1108 | |||
1080 | for i in range(spc.shape[0]): |
|
1109 | for i in range(spc.shape[0]): | |
1081 |
|
1110 | |||
1082 | '''****** Line of Data CSPC ******''' |
|
1111 | '''****** Line of Data CSPC ******''' | |
1083 | cspcLine = ( cspc[i,:,Height].copy())# - noise[i] ) # no! Se resta el ruido |
|
1112 | cspcLine = ( cspc[i,:,Height].copy())# - noise[i] ) # no! Se resta el ruido | |
1084 | SmoothCSPC =self.moving_average(cspcLine,N=1) # Se suaviza el ruido |
|
1113 | SmoothCSPC =self.moving_average(cspcLine,N=1) # Se suaviza el ruido | |
1085 | cspcNorm = SmoothCSPC/numpy.nansum(SmoothCSPC) # CSPC normalizado y suavizado |
|
1114 | cspcNorm = SmoothCSPC/numpy.nansum(SmoothCSPC) # CSPC normalizado y suavizado | |
1086 |
|
1115 | |||
1087 | '''****** CSPC is normalized with respect to Briggs and Vincent ******''' |
|
1116 | '''****** CSPC is normalized with respect to Briggs and Vincent ******''' | |
1088 | chan_index0 = pairsList[i][0] |
|
1117 | chan_index0 = pairsList[i][0] | |
1089 | chan_index1 = pairsList[i][1] |
|
1118 | chan_index1 = pairsList[i][1] | |
1090 |
|
1119 | |||
1091 | CSPCFactor= numpy.abs(numpy.nansum(ySamples[chan_index0]))**2 * numpy.abs(numpy.nansum(ySamples[chan_index1]))**2 |
|
1120 | CSPCFactor= numpy.abs(numpy.nansum(ySamples[chan_index0]))**2 * numpy.abs(numpy.nansum(ySamples[chan_index1]))**2 | |
1092 | CSPCNorm = cspcNorm / numpy.sqrt(CSPCFactor) |
|
1121 | CSPCNorm = cspcNorm / numpy.sqrt(CSPCFactor) | |
1093 |
|
1122 | |||
1094 | CSPCSamples[i] = CSPCNorm |
|
1123 | CSPCSamples[i] = CSPCNorm | |
1095 |
|
1124 | |||
1096 | coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) |
|
1125 | coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) | |
1097 |
|
1126 | |||
1098 | #coherence[i]= self.moving_average(coherence[i],N=1) |
|
1127 | #coherence[i]= self.moving_average(coherence[i],N=1) | |
1099 |
|
1128 | |||
1100 | phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi |
|
1129 | phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi | |
1101 |
|
1130 | |||
1102 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPCSamples[0]), xSamples), |
|
1131 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPCSamples[0]), xSamples), | |
1103 | self.Moments(numpy.abs(CSPCSamples[1]), xSamples), |
|
1132 | self.Moments(numpy.abs(CSPCSamples[1]), xSamples), | |
1104 | self.Moments(numpy.abs(CSPCSamples[2]), xSamples)]) |
|
1133 | self.Moments(numpy.abs(CSPCSamples[2]), xSamples)]) | |
1105 |
|
1134 | |||
1106 | #print '##### SUMA de SPC #####', len(ySamples) |
|
1135 | #print '##### SUMA de SPC #####', len(ySamples) | |
1107 | #print numpy.sum(ySamples[0]) |
|
1136 | #print numpy.sum(ySamples[0]) | |
1108 | #print '##### SUMA de CSPC #####', len(coherence) |
|
1137 | #print '##### SUMA de CSPC #####', len(coherence) | |
1109 | #print numpy.sum(numpy.abs(CSPCNorm)) |
|
1138 | #print numpy.sum(numpy.abs(CSPCNorm)) | |
1110 | #print numpy.sum(coherence[0]) |
|
1139 | #print numpy.sum(coherence[0]) | |
1111 | # print 'len',len(xSamples) |
|
1140 | # print 'len',len(xSamples) | |
1112 | # print 'CSPCmoments', numpy.shape(CSPCmoments) |
|
1141 | # print 'CSPCmoments', numpy.shape(CSPCmoments) | |
1113 | # print CSPCmoments |
|
1142 | # print CSPCmoments | |
1114 | # print '#######################' |
|
1143 | # print '#######################' | |
1115 |
|
1144 | |||
1116 |
popt=[1e-10, |
|
1145 | popt=[1e-10,0,1e-10] | |
1117 | popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10] |
|
1146 | popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10] | |
1118 | FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0 |
|
1147 | FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0 | |
1119 |
|
1148 | |||
1120 | CSPCMask01 = numpy.abs(CSPCSamples[0]) |
|
1149 | CSPCMask01 = numpy.abs(CSPCSamples[0]) | |
1121 | CSPCMask02 = numpy.abs(CSPCSamples[1]) |
|
1150 | CSPCMask02 = numpy.abs(CSPCSamples[1]) | |
1122 | CSPCMask12 = numpy.abs(CSPCSamples[2]) |
|
1151 | CSPCMask12 = numpy.abs(CSPCSamples[2]) | |
1123 |
|
1152 | |||
1124 | mask01 = ~numpy.isnan(CSPCMask01) |
|
1153 | mask01 = ~numpy.isnan(CSPCMask01) | |
1125 | mask02 = ~numpy.isnan(CSPCMask02) |
|
1154 | mask02 = ~numpy.isnan(CSPCMask02) | |
1126 | mask12 = ~numpy.isnan(CSPCMask12) |
|
1155 | mask12 = ~numpy.isnan(CSPCMask12) | |
1127 |
|
1156 | |||
1128 | #mask = ~numpy.isnan(CSPCMask01) |
|
1157 | #mask = ~numpy.isnan(CSPCMask01) | |
1129 | CSPCMask01 = CSPCMask01[mask01] |
|
1158 | CSPCMask01 = CSPCMask01[mask01] | |
1130 | CSPCMask02 = CSPCMask02[mask02] |
|
1159 | CSPCMask02 = CSPCMask02[mask02] | |
1131 | CSPCMask12 = CSPCMask12[mask12] |
|
1160 | CSPCMask12 = CSPCMask12[mask12] | |
1132 | #CSPCMask01 = numpy.ma.masked_invalid(CSPCMask01) |
|
1161 | #CSPCMask01 = numpy.ma.masked_invalid(CSPCMask01) | |
1133 |
|
1162 | |||
1134 |
|
1163 | |||
1135 |
|
1164 | |||
1136 | '''***Fit Gauss CSPC01***''' |
|
1165 | '''***Fit Gauss CSPC01***''' | |
1137 | if dbSNR > SNRlimit: |
|
1166 | if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3 : | |
1138 | try: |
|
1167 | try: | |
1139 | popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0]) |
|
1168 | popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0]) | |
1140 | popt02,pcov = curve_fit(self.gaus,xSamples[mask02],numpy.abs(CSPCMask02),p0=CSPCmoments[1]) |
|
1169 | popt02,pcov = curve_fit(self.gaus,xSamples[mask02],numpy.abs(CSPCMask02),p0=CSPCmoments[1]) | |
1141 | popt12,pcov = curve_fit(self.gaus,xSamples[mask12],numpy.abs(CSPCMask12),p0=CSPCmoments[2]) |
|
1170 | popt12,pcov = curve_fit(self.gaus,xSamples[mask12],numpy.abs(CSPCMask12),p0=CSPCmoments[2]) | |
1142 | FitGauss01 = self.gaus(xSamples,*popt01) |
|
1171 | FitGauss01 = self.gaus(xSamples,*popt01) | |
1143 | FitGauss02 = self.gaus(xSamples,*popt02) |
|
1172 | FitGauss02 = self.gaus(xSamples,*popt02) | |
1144 | FitGauss12 = self.gaus(xSamples,*popt12) |
|
1173 | FitGauss12 = self.gaus(xSamples,*popt12) | |
1145 | except: |
|
1174 | except: | |
1146 | FitGauss01=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[0])) |
|
1175 | FitGauss01=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[0])) | |
1147 | FitGauss02=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[1])) |
|
1176 | FitGauss02=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[1])) | |
1148 | FitGauss12=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[2])) |
|
1177 | FitGauss12=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[2])) | |
1149 |
|
1178 | |||
1150 |
|
1179 | |||
1151 | CSPCopt = numpy.vstack([popt01,popt02,popt12]) |
|
1180 | CSPCopt = numpy.vstack([popt01,popt02,popt12]) | |
1152 |
|
1181 | |||
1153 | '''****** Getting fij width ******''' |
|
1182 | '''****** Getting fij width ******''' | |
1154 |
|
1183 | |||
1155 | yMean = numpy.average(ySamples, axis=0) # ySamples[0] |
|
1184 | yMean = numpy.average(ySamples, axis=0) # ySamples[0] | |
1156 |
|
1185 | |||
1157 | '''******* Getting fitting Gaussian *******''' |
|
1186 | '''******* Getting fitting Gaussian *******''' | |
1158 | meanGauss = sum(xSamples*yMean) / len(xSamples) # Mu, velocidad radial (frecuencia) |
|
1187 | meanGauss = sum(xSamples*yMean) / len(xSamples) # Mu, velocidad radial (frecuencia) | |
1159 | sigma2 = sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) # Varianza, Ancho espectral (frecuencia) |
|
1188 | sigma2 = sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) # Varianza, Ancho espectral (frecuencia) | |
1160 |
|
1189 | |||
1161 | yMoments = self.Moments(yMean, xSamples) |
|
1190 | yMoments = self.Moments(yMean, xSamples) | |
1162 |
|
1191 | |||
1163 | if dbSNR > SNRlimit: # and abs(meanGauss/sigma2) > 0.00001: |
|
1192 | if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3: # and abs(meanGauss/sigma2) > 0.00001: | |
1164 | try: |
|
1193 | try: | |
1165 | popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=yMoments) |
|
1194 | popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=yMoments) | |
1166 | FitGauss=self.gaus(xSamples,*popt) |
|
1195 | FitGauss=self.gaus(xSamples,*popt) | |
1167 |
|
1196 | |||
1168 | except :#RuntimeError: |
|
1197 | except :#RuntimeError: | |
1169 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
1198 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
1170 |
|
1199 | |||
1171 |
|
1200 | |||
1172 | else: |
|
1201 | else: | |
1173 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
1202 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
1174 |
|
1203 | |||
1175 |
|
1204 | |||
1176 |
|
1205 | |||
1177 | '''****** Getting Fij ******''' |
|
1206 | '''****** Getting Fij ******''' | |
1178 | Fijcspc = CSPCopt[:,2]/2*3 |
|
1207 | Fijcspc = CSPCopt[:,2]/2*3 | |
1179 |
|
1208 | |||
1180 | #GauWidth = (popt[2]/2)*3 |
|
1209 | ||
1181 | GaussCenter = popt[1] #xFrec[GCpos] |
|
1210 | GaussCenter = popt[1] #xFrec[GCpos] | |
1182 | #Punto en Eje X de la Gaussiana donde se encuentra el centro |
|
1211 | #Punto en Eje X de la Gaussiana donde se encuentra el centro | |
1183 | ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()] |
|
1212 | ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()] | |
1184 | PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0] |
|
1213 | PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0] | |
1185 |
|
1214 | |||
1186 | #Punto e^-1 hubicado en la Gaussiana |
|
1215 | #Punto e^-1 hubicado en la Gaussiana | |
1187 | PeMinus1 = numpy.max(FitGauss)* numpy.exp(-1) |
|
1216 | PeMinus1 = numpy.max(FitGauss)* numpy.exp(-1) | |
1188 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss" |
|
1217 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss" | |
1189 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] |
|
1218 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] | |
1190 |
|
1219 | |||
1191 | if xSamples[PointFij] > xSamples[PointGauCenter]: |
|
1220 | if xSamples[PointFij] > xSamples[PointGauCenter]: | |
1192 | Fij = xSamples[PointFij] - xSamples[PointGauCenter] |
|
1221 | Fij = xSamples[PointFij] - xSamples[PointGauCenter] | |
1193 |
|
1222 | |||
1194 | else: |
|
1223 | else: | |
1195 | Fij = xSamples[PointGauCenter] - xSamples[PointFij] |
|
1224 | Fij = xSamples[PointGauCenter] - xSamples[PointFij] | |
1196 |
|
1225 | |||
1197 | # print 'CSPCopt' |
|
1226 | # print 'CSPCopt' | |
1198 | # print CSPCopt |
|
1227 | # print CSPCopt | |
1199 | # print 'popt' |
|
1228 | # print 'popt' | |
1200 | # print popt |
|
1229 | # print popt | |
1201 | # print '#######################################' |
|
1230 | # print '#######################################' | |
1202 | #print 'dataOut.data_param', numpy.shape(data_param) |
|
1231 | #print 'dataOut.data_param', numpy.shape(data_param) | |
1203 | #print 'dataOut.data_param0', data_param[0,0,Height] |
|
1232 | #print 'dataOut.data_param0', data_param[0,0,Height] | |
1204 | #print 'dataOut.data_param1', data_param[0,1,Height] |
|
1233 | #print 'dataOut.data_param1', data_param[0,1,Height] | |
1205 | #print 'dataOut.data_param2', data_param[0,2,Height] |
|
1234 | #print 'dataOut.data_param2', data_param[0,2,Height] | |
1206 |
|
1235 | |||
1207 |
|
1236 | |||
1208 | # print 'yMoments', yMoments |
|
1237 | # print 'yMoments', yMoments | |
1209 | # print 'Moments', SPCmoments |
|
1238 | # print 'Moments', SPCmoments | |
1210 | # print 'Fij2 Moment', Fij |
|
1239 | # print 'Fij2 Moment', Fij | |
1211 | # #print 'Fij', Fij, 'popt[2]/2',popt[2]/2 |
|
1240 | # #print 'Fij', Fij, 'popt[2]/2',popt[2]/2 | |
1212 | # print 'Fijcspc',Fijcspc |
|
1241 | # print 'Fijcspc',Fijcspc | |
1213 | # print '#######################################' |
|
1242 | # print '#######################################' | |
1214 |
|
1243 | |||
1215 |
|
1244 | |||
1216 | '''****** Taking frequency ranges from SPCs ******''' |
|
1245 | '''****** Taking frequency ranges from SPCs ******''' | |
1217 |
|
1246 | |||
1218 |
|
1247 | |||
1219 | #GaussCenter = popt[1] #Primer momento 01 |
|
1248 | #GaussCenter = popt[1] #Primer momento 01 | |
1220 | GauWidth = popt[2] *3/2 #Ancho de banda de Gau01 |
|
1249 | GauWidth = popt[2] *3/2 #Ancho de banda de Gau01 | |
1221 | Range = numpy.empty(2) |
|
1250 | Range = numpy.empty(2) | |
1222 | Range[0] = GaussCenter - GauWidth |
|
1251 | Range[0] = GaussCenter - GauWidth | |
1223 | Range[1] = GaussCenter + GauWidth |
|
1252 | Range[1] = GaussCenter + GauWidth | |
1224 | #Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max) |
|
1253 | #Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max) | |
1225 | ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()] |
|
1254 | ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()] | |
1226 | ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()] |
|
1255 | ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()] | |
1227 |
|
1256 | |||
1228 | PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0] |
|
1257 | PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0] | |
1229 | PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0] |
|
1258 | PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0] | |
1230 |
|
1259 | |||
1231 | Range=numpy.array([ PointRangeMin, PointRangeMax ]) |
|
1260 | Range=numpy.array([ PointRangeMin, PointRangeMax ]) | |
1232 |
|
1261 | |||
1233 | FrecRange = xFrec[ Range[0] : Range[1] ] |
|
1262 | FrecRange = xFrec[ Range[0] : Range[1] ] | |
1234 | VelRange = xVel[ Range[0] : Range[1] ] |
|
1263 | VelRange = xVel[ Range[0] : Range[1] ] | |
1235 |
|
1264 | |||
1236 |
|
1265 | |||
1237 | #print 'RANGE: ', Range |
|
1266 | #print 'RANGE: ', Range | |
1238 | #print 'FrecRange', numpy.shape(FrecRange)#,FrecRange |
|
1267 | #print 'FrecRange', numpy.shape(FrecRange)#,FrecRange | |
1239 | #print 'len: ', len(FrecRange) |
|
1268 | #print 'len: ', len(FrecRange) | |
1240 |
|
1269 | |||
1241 | '''****** Getting SCPC Slope ******''' |
|
1270 | '''****** Getting SCPC Slope ******''' | |
1242 |
|
1271 | |||
1243 | for i in range(spc.shape[0]): |
|
1272 | for i in range(spc.shape[0]): | |
1244 |
|
1273 | |||
1245 |
if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0. |
|
1274 | if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.3: | |
1246 | PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3) |
|
1275 | PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3) | |
1247 |
|
1276 | |||
1248 | #print 'Ancho espectral Frecuencias', FrecRange[-1]-FrecRange[0], 'Hz' |
|
1277 | #print 'Ancho espectral Frecuencias', FrecRange[-1]-FrecRange[0], 'Hz' | |
1249 | #print 'Ancho espectral Velocidades', VelRange[-1]-VelRange[0], 'm/s' |
|
1278 | #print 'Ancho espectral Velocidades', VelRange[-1]-VelRange[0], 'm/s' | |
1250 | #print 'FrecRange', len(FrecRange) , FrecRange |
|
1279 | #print 'FrecRange', len(FrecRange) , FrecRange | |
1251 | #print 'VelRange', len(VelRange) , VelRange |
|
1280 | #print 'VelRange', len(VelRange) , VelRange | |
1252 | #print 'PhaseRange', numpy.shape(PhaseRange), PhaseRange |
|
1281 | #print 'PhaseRange', numpy.shape(PhaseRange), PhaseRange | |
1253 | #print ' ' |
|
1282 | #print ' ' | |
1254 |
|
1283 | |||
1255 | '''***********************VelRange******************''' |
|
1284 | '''***********************VelRange******************''' | |
1256 |
|
1285 | |||
1257 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) |
|
1286 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) | |
1258 |
|
1287 | |||
1259 | if len(FrecRange) == len(PhaseRange): |
|
1288 | if len(FrecRange) == len(PhaseRange): | |
1260 | try: |
|
1289 | try: | |
1261 | slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange[mask], PhaseRange[mask]) |
|
1290 | slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange[mask], PhaseRange[mask]) | |
1262 | PhaseSlope[i]=slope |
|
1291 | PhaseSlope[i]=slope | |
1263 | PhaseInter[i]=intercept |
|
1292 | PhaseInter[i]=intercept | |
1264 | except: |
|
1293 | except: | |
1265 | PhaseSlope[i]=0 |
|
1294 | PhaseSlope[i]=0 | |
1266 | PhaseInter[i]=0 |
|
1295 | PhaseInter[i]=0 | |
1267 | else: |
|
1296 | else: | |
1268 | PhaseSlope[i]=0 |
|
1297 | PhaseSlope[i]=0 | |
1269 | PhaseInter[i]=0 |
|
1298 | PhaseInter[i]=0 | |
1270 | else: |
|
1299 | else: | |
1271 | PhaseSlope[i]=0 |
|
1300 | PhaseSlope[i]=0 | |
1272 | PhaseInter[i]=0 |
|
1301 | PhaseInter[i]=0 | |
1273 |
|
1302 | |||
1274 |
|
1303 | |||
1275 | '''Getting constant C''' |
|
1304 | '''Getting constant C''' | |
1276 | cC=(Fij*numpy.pi)**2 |
|
1305 | cC=(Fij*numpy.pi)**2 | |
1277 |
|
1306 | |||
1278 | '''****** Getting constants F and G ******''' |
|
1307 | '''****** Getting constants F and G ******''' | |
1279 | MijEijNij=numpy.array([[E02,N02], [E12,N12]]) |
|
1308 | MijEijNij=numpy.array([[E02,N02], [E12,N12]]) | |
1280 | MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) |
|
1309 | MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) | |
1281 | MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) |
|
1310 | MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) | |
1282 | MijResults=numpy.array([MijResult0,MijResult1]) |
|
1311 | MijResults=numpy.array([MijResult0,MijResult1]) | |
1283 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
1312 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |
1284 |
|
1313 | |||
1285 | '''****** Getting constants A, B and H ******''' |
|
1314 | '''****** Getting constants A, B and H ******''' | |
1286 | W01=numpy.nanmax( FitGauss01 ) #numpy.abs(CSPCSamples[0])) |
|
1315 | W01=numpy.nanmax( FitGauss01 ) #numpy.abs(CSPCSamples[0])) | |
1287 | W02=numpy.nanmax( FitGauss02 ) #numpy.abs(CSPCSamples[1])) |
|
1316 | W02=numpy.nanmax( FitGauss02 ) #numpy.abs(CSPCSamples[1])) | |
1288 | W12=numpy.nanmax( FitGauss12 ) #numpy.abs(CSPCSamples[2])) |
|
1317 | W12=numpy.nanmax( FitGauss12 ) #numpy.abs(CSPCSamples[2])) | |
1289 |
|
1318 | |||
1290 | WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) |
|
1319 | WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) | |
1291 | WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) |
|
1320 | WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) | |
1292 | WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) |
|
1321 | WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) | |
1293 |
|
1322 | |||
1294 | WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) |
|
1323 | WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) | |
1295 |
|
1324 | |||
1296 | WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ]) |
|
1325 | WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ]) | |
1297 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
1326 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |
1298 |
|
1327 | |||
1299 | VxVy=numpy.array([[cA,cH],[cH,cB]]) |
|
1328 | VxVy=numpy.array([[cA,cH],[cH,cB]]) | |
1300 | VxVyResults=numpy.array([-cF,-cG]) |
|
1329 | VxVyResults=numpy.array([-cF,-cG]) | |
1301 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) |
|
1330 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) | |
1302 |
|
1331 | |||
1303 | #print 'MijResults, cC, PhaseSlope', MijResults, cC, PhaseSlope |
|
1332 | #print 'MijResults, cC, PhaseSlope', MijResults, cC, PhaseSlope | |
1304 | #print 'W01,02,12', W01, W02, W12 |
|
1333 | #print 'W01,02,12', W01, W02, W12 | |
1305 | #print 'WijResult0,1,2',WijResult0, WijResult1, WijResult2, 'Results', WijResults |
|
1334 | #print 'WijResult0,1,2',WijResult0, WijResult1, WijResult2, 'Results', WijResults | |
1306 | #print 'cA,cB,cH, cF, cG', cA, cB, cH, cF, cG |
|
1335 | #print 'cA,cB,cH, cF, cG', cA, cB, cH, cF, cG | |
1307 | #print 'VxVy', VxVyResults |
|
1336 | #print 'VxVy', VxVyResults | |
1308 | #print '###########################****************************************' |
|
1337 | #print '###########################****************************************' | |
1309 | Vzon = Vy |
|
1338 | Vzon = Vy | |
1310 | Vmer = Vx |
|
1339 | Vmer = Vx | |
1311 | Vmag=numpy.sqrt(Vzon**2+Vmer**2) |
|
1340 | Vmag=numpy.sqrt(Vzon**2+Vmer**2) | |
1312 | Vang=numpy.arctan2(Vmer,Vzon) |
|
1341 | Vang=numpy.arctan2(Vmer,Vzon) | |
1313 | Vver=SPCmoments[1] |
|
1342 | if numpy.abs( popt[1] ) < 3.5 and len(FrecRange)>4: | |
|
1343 | Vver=popt[1] | |||
|
1344 | else: | |||
|
1345 | Vver=numpy.NaN | |||
1314 | FitGaussCSPC = numpy.array([FitGauss01,FitGauss02,FitGauss12]) |
|
1346 | FitGaussCSPC = numpy.array([FitGauss01,FitGauss02,FitGauss12]) | |
1315 |
|
1347 | |||
1316 |
|
1348 | |||
1317 | # ''' Ploteo por altura ''' |
|
1349 | # ''' Ploteo por altura ''' | |
1318 | # if Height == 28: |
|
1350 | # if Height == 28: | |
1319 | # for i in range(3): |
|
1351 | # for i in range(3): | |
1320 | # #print 'FASE', numpy.shape(phase), y[25] |
|
1352 | # #print 'FASE', numpy.shape(phase), y[25] | |
1321 | # #print numpy.shape(coherence) |
|
1353 | # #print numpy.shape(coherence) | |
1322 | # fig = plt.figure(10+self.indice) |
|
1354 | # fig = plt.figure(10+self.indice) | |
1323 | # #plt.plot( x[0:256],coherence[:,25] ) |
|
1355 | # #plt.plot( x[0:256],coherence[:,25] ) | |
1324 | # #cohAv = numpy.average(coherence[i],1) |
|
1356 | # #cohAv = numpy.average(coherence[i],1) | |
1325 | # Pendiente = FrecRange * PhaseSlope[i] |
|
1357 | # Pendiente = FrecRange * PhaseSlope[i] | |
1326 | # plt.plot( FrecRange, Pendiente) |
|
1358 | # plt.plot( FrecRange, Pendiente) | |
1327 | # plt.plot( xFrec,phase[i]) |
|
1359 | # plt.plot( xFrec,phase[i]) | |
1328 | # |
|
1360 | # | |
1329 | # CSPCmean = numpy.mean(numpy.abs(CSPCSamples),0) |
|
1361 | # CSPCmean = numpy.mean(numpy.abs(CSPCSamples),0) | |
1330 | # #plt.plot(xFrec, FitGauss01) |
|
1362 | # #plt.plot(xFrec, FitGauss01) | |
1331 | # #plt.plot(xFrec, CSPCmean) |
|
1363 | # #plt.plot(xFrec, CSPCmean) | |
1332 | # #plt.plot(xFrec, numpy.abs(CSPCSamples[0])) |
|
1364 | # #plt.plot(xFrec, numpy.abs(CSPCSamples[0])) | |
1333 | # #plt.plot(xFrec, FitGauss) |
|
1365 | # #plt.plot(xFrec, FitGauss) | |
1334 | # #plt.plot(xFrec, yMean) |
|
1366 | # #plt.plot(xFrec, yMean) | |
1335 | # #plt.plot(xFrec, numpy.abs(coherence[0])) |
|
1367 | # #plt.plot(xFrec, numpy.abs(coherence[0])) | |
1336 | # |
|
1368 | # | |
1337 | # #plt.axis([-12, 12, 15, 50]) |
|
1369 | # #plt.axis([-12, 12, 15, 50]) | |
1338 | # #plt.title("%s" %( '%s %s, Channel %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S") , i))) |
|
1370 | # #plt.title("%s" %( '%s %s, Channel %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S") , i))) | |
1339 | # plt.ylabel('Desfase [rad]') |
|
1371 | # plt.ylabel('Desfase [rad]') | |
1340 | # #plt.ylabel('CSPC normalizado') |
|
1372 | # #plt.ylabel('CSPC normalizado') | |
1341 | # plt.xlabel('Frec range [Hz]') |
|
1373 | # plt.xlabel('Frec range [Hz]') | |
1342 |
|
1374 | |||
1343 | #fig.savefig('/home/erick/Documents/Pics/to{}.png'.format(self.indice)) |
|
1375 | #fig.savefig('/home/erick/Documents/Pics/to{}.png'.format(self.indice)) | |
1344 |
|
1376 | |||
1345 | # plt.show() |
|
1377 | # plt.show() | |
1346 | # self.indice=self.indice+1 |
|
1378 | # self.indice=self.indice+1 | |
1347 |
|
1379 | |||
1348 |
|
1380 | |||
1349 |
|
1381 | |||
1350 |
|
1382 | |||
1351 |
|
1383 | |||
1352 | # print 'vzon y vmer', Vzon, Vmer |
|
1384 | # print 'vzon y vmer', Vzon, Vmer | |
1353 | return Vzon, Vmer, Vver, GaussCenter, PhaseSlope, FitGaussCSPC |
|
1385 | return Vzon, Vmer, Vver, GaussCenter, PhaseSlope, FitGaussCSPC | |
1354 |
|
1386 | |||
1355 | class SpectralMoments(Operation): |
|
1387 | class SpectralMoments(Operation): | |
1356 |
|
1388 | |||
1357 | ''' |
|
1389 | ''' | |
1358 | Function SpectralMoments() |
|
1390 | Function SpectralMoments() | |
1359 |
|
1391 | |||
1360 | Calculates moments (power, mean, standard deviation) and SNR of the signal |
|
1392 | Calculates moments (power, mean, standard deviation) and SNR of the signal | |
1361 |
|
1393 | |||
1362 | Type of dataIn: Spectra |
|
1394 | Type of dataIn: Spectra | |
1363 |
|
1395 | |||
1364 | Configuration Parameters: |
|
1396 | Configuration Parameters: | |
1365 |
|
1397 | |||
1366 | dirCosx : Cosine director in X axis |
|
1398 | dirCosx : Cosine director in X axis | |
1367 | dirCosy : Cosine director in Y axis |
|
1399 | dirCosy : Cosine director in Y axis | |
1368 |
|
1400 | |||
1369 | elevation : |
|
1401 | elevation : | |
1370 | azimuth : |
|
1402 | azimuth : | |
1371 |
|
1403 | |||
1372 | Input: |
|
1404 | Input: | |
1373 | channelList : simple channel list to select e.g. [2,3,7] |
|
1405 | channelList : simple channel list to select e.g. [2,3,7] | |
1374 | self.dataOut.data_pre : Spectral data |
|
1406 | self.dataOut.data_pre : Spectral data | |
1375 | self.dataOut.abscissaList : List of frequencies |
|
1407 | self.dataOut.abscissaList : List of frequencies | |
1376 | self.dataOut.noise : Noise level per channel |
|
1408 | self.dataOut.noise : Noise level per channel | |
1377 |
|
1409 | |||
1378 | Affected: |
|
1410 | Affected: | |
1379 | self.dataOut.moments : Parameters per channel |
|
1411 | self.dataOut.moments : Parameters per channel | |
1380 | self.dataOut.data_SNR : SNR per channel |
|
1412 | self.dataOut.data_SNR : SNR per channel | |
1381 |
|
1413 | |||
1382 | ''' |
|
1414 | ''' | |
1383 |
|
1415 | |||
1384 | def run(self, dataOut): |
|
1416 | def run(self, dataOut): | |
1385 |
|
1417 | |||
1386 | #dataOut.data_pre = dataOut.data_pre[0] |
|
1418 | #dataOut.data_pre = dataOut.data_pre[0] | |
1387 | data = dataOut.data_pre[0] |
|
1419 | data = dataOut.data_pre[0] | |
1388 | absc = dataOut.abscissaList[:-1] |
|
1420 | absc = dataOut.abscissaList[:-1] | |
1389 | noise = dataOut.noise |
|
1421 | noise = dataOut.noise | |
1390 | nChannel = data.shape[0] |
|
1422 | nChannel = data.shape[0] | |
1391 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) |
|
1423 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) | |
1392 |
|
1424 | |||
1393 | for ind in range(nChannel): |
|
1425 | for ind in range(nChannel): | |
1394 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) |
|
1426 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) | |
1395 |
|
1427 | |||
1396 | dataOut.moments = data_param[:,1:,:] |
|
1428 | dataOut.moments = data_param[:,1:,:] | |
1397 | dataOut.data_SNR = data_param[:,0] |
|
1429 | dataOut.data_SNR = data_param[:,0] | |
1398 | return |
|
1430 | return | |
1399 |
|
1431 | |||
1400 | def __calculateMoments(self, oldspec, oldfreq, n0, |
|
1432 | def __calculateMoments(self, oldspec, oldfreq, n0, | |
1401 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
1433 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |
1402 |
|
1434 | |||
1403 | if (nicoh == None): nicoh = 1 |
|
1435 | if (nicoh == None): nicoh = 1 | |
1404 | if (graph == None): graph = 0 |
|
1436 | if (graph == None): graph = 0 | |
1405 | if (smooth == None): smooth = 0 |
|
1437 | if (smooth == None): smooth = 0 | |
1406 | elif (self.smooth < 3): smooth = 0 |
|
1438 | elif (self.smooth < 3): smooth = 0 | |
1407 |
|
1439 | |||
1408 | if (type1 == None): type1 = 0 |
|
1440 | if (type1 == None): type1 = 0 | |
1409 | if (fwindow == None): fwindow = numpy.zeros(oldfreq.size) + 1 |
|
1441 | if (fwindow == None): fwindow = numpy.zeros(oldfreq.size) + 1 | |
1410 | if (snrth == None): snrth = -3 |
|
1442 | if (snrth == None): snrth = -3 | |
1411 | if (dc == None): dc = 0 |
|
1443 | if (dc == None): dc = 0 | |
1412 | if (aliasing == None): aliasing = 0 |
|
1444 | if (aliasing == None): aliasing = 0 | |
1413 | if (oldfd == None): oldfd = 0 |
|
1445 | if (oldfd == None): oldfd = 0 | |
1414 | if (wwauto == None): wwauto = 0 |
|
1446 | if (wwauto == None): wwauto = 0 | |
1415 |
|
1447 | |||
1416 | if (n0 < 1.e-20): n0 = 1.e-20 |
|
1448 | if (n0 < 1.e-20): n0 = 1.e-20 | |
1417 |
|
1449 | |||
1418 | freq = oldfreq |
|
1450 | freq = oldfreq | |
1419 | vec_power = numpy.zeros(oldspec.shape[1]) |
|
1451 | vec_power = numpy.zeros(oldspec.shape[1]) | |
1420 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
1452 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
1421 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
1453 | vec_w = numpy.zeros(oldspec.shape[1]) | |
1422 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
1454 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
1423 |
|
1455 | |||
1424 | oldspec = numpy.ma.masked_invalid(oldspec) |
|
1456 | oldspec = numpy.ma.masked_invalid(oldspec) | |
1425 |
|
1457 | |||
1426 | for ind in range(oldspec.shape[1]): |
|
1458 | for ind in range(oldspec.shape[1]): | |
1427 |
|
1459 | |||
1428 | spec = oldspec[:,ind] |
|
1460 | spec = oldspec[:,ind] | |
1429 | aux = spec*fwindow |
|
1461 | aux = spec*fwindow | |
1430 | max_spec = aux.max() |
|
1462 | max_spec = aux.max() | |
1431 | m = list(aux).index(max_spec) |
|
1463 | m = list(aux).index(max_spec) | |
1432 |
|
1464 | |||
1433 | #Smooth |
|
1465 | #Smooth | |
1434 | if (smooth == 0): spec2 = spec |
|
1466 | if (smooth == 0): spec2 = spec | |
1435 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
1467 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
1436 |
|
1468 | |||
1437 | # Calculo de Momentos |
|
1469 | # Calculo de Momentos | |
1438 | bb = spec2[range(m,spec2.size)] |
|
1470 | bb = spec2[range(m,spec2.size)] | |
1439 | bb = (bb<n0).nonzero() |
|
1471 | bb = (bb<n0).nonzero() | |
1440 | bb = bb[0] |
|
1472 | bb = bb[0] | |
1441 |
|
1473 | |||
1442 | ss = spec2[range(0,m + 1)] |
|
1474 | ss = spec2[range(0,m + 1)] | |
1443 | ss = (ss<n0).nonzero() |
|
1475 | ss = (ss<n0).nonzero() | |
1444 | ss = ss[0] |
|
1476 | ss = ss[0] | |
1445 |
|
1477 | |||
1446 | if (bb.size == 0): |
|
1478 | if (bb.size == 0): | |
1447 | bb0 = spec.size - 1 - m |
|
1479 | bb0 = spec.size - 1 - m | |
1448 | else: |
|
1480 | else: | |
1449 | bb0 = bb[0] - 1 |
|
1481 | bb0 = bb[0] - 1 | |
1450 | if (bb0 < 0): |
|
1482 | if (bb0 < 0): | |
1451 | bb0 = 0 |
|
1483 | bb0 = 0 | |
1452 |
|
1484 | |||
1453 | if (ss.size == 0): ss1 = 1 |
|
1485 | if (ss.size == 0): ss1 = 1 | |
1454 | else: ss1 = max(ss) + 1 |
|
1486 | else: ss1 = max(ss) + 1 | |
1455 |
|
1487 | |||
1456 | if (ss1 > m): ss1 = m |
|
1488 | if (ss1 > m): ss1 = m | |
1457 |
|
1489 | |||
1458 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 |
|
1490 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 | |
1459 | power = ( (spec2[valid] - n0) * fwindow[valid] ).sum() |
|
1491 | power = ( (spec2[valid] - n0) * fwindow[valid] ).sum() | |
1460 | fd = ( (spec2[valid]- n0) * freq[valid] * fwindow[valid] ).sum() / power |
|
1492 | fd = ( (spec2[valid]- n0) * freq[valid] * fwindow[valid] ).sum() / power | |
|
1493 | ||||
1461 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) |
|
1494 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |
1462 | snr = (spec2.mean()-n0)/n0 |
|
1495 | snr = (spec2.mean()-n0)/n0 | |
1463 |
|
1496 | |||
1464 | if (snr < 1.e-20) : |
|
1497 | if (snr < 1.e-20) : | |
1465 | snr = 1.e-20 |
|
1498 | snr = 1.e-20 | |
1466 |
|
1499 | |||
1467 | vec_power[ind] = power |
|
1500 | vec_power[ind] = power | |
1468 | vec_fd[ind] = fd |
|
1501 | vec_fd[ind] = fd | |
1469 | vec_w[ind] = w |
|
1502 | vec_w[ind] = w | |
1470 | vec_snr[ind] = snr |
|
1503 | vec_snr[ind] = snr | |
1471 |
|
1504 | |||
1472 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
1505 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
1473 | return moments |
|
1506 | return moments | |
1474 |
|
1507 | |||
1475 | #------------------ Get SA Parameters -------------------------- |
|
1508 | #------------------ Get SA Parameters -------------------------- | |
1476 |
|
1509 | |||
1477 | def GetSAParameters(self): |
|
1510 | def GetSAParameters(self): | |
1478 | #SA en frecuencia |
|
1511 | #SA en frecuencia | |
1479 | pairslist = self.dataOut.groupList |
|
1512 | pairslist = self.dataOut.groupList | |
1480 | num_pairs = len(pairslist) |
|
1513 | num_pairs = len(pairslist) | |
1481 |
|
1514 | |||
1482 | vel = self.dataOut.abscissaList |
|
1515 | vel = self.dataOut.abscissaList | |
1483 | spectra = self.dataOut.data_pre |
|
1516 | spectra = self.dataOut.data_pre | |
1484 | cspectra = self.dataIn.data_cspc |
|
1517 | cspectra = self.dataIn.data_cspc | |
1485 | delta_v = vel[1] - vel[0] |
|
1518 | delta_v = vel[1] - vel[0] | |
1486 |
|
1519 | |||
1487 | #Calculating the power spectrum |
|
1520 | #Calculating the power spectrum | |
1488 | spc_pow = numpy.sum(spectra, 3)*delta_v |
|
1521 | spc_pow = numpy.sum(spectra, 3)*delta_v | |
1489 | #Normalizing Spectra |
|
1522 | #Normalizing Spectra | |
1490 | norm_spectra = spectra/spc_pow |
|
1523 | norm_spectra = spectra/spc_pow | |
1491 | #Calculating the norm_spectra at peak |
|
1524 | #Calculating the norm_spectra at peak | |
1492 | max_spectra = numpy.max(norm_spectra, 3) |
|
1525 | max_spectra = numpy.max(norm_spectra, 3) | |
1493 |
|
1526 | |||
1494 | #Normalizing Cross Spectra |
|
1527 | #Normalizing Cross Spectra | |
1495 | norm_cspectra = numpy.zeros(cspectra.shape) |
|
1528 | norm_cspectra = numpy.zeros(cspectra.shape) | |
1496 |
|
1529 | |||
1497 | for i in range(num_chan): |
|
1530 | for i in range(num_chan): | |
1498 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) |
|
1531 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) | |
1499 |
|
1532 | |||
1500 | max_cspectra = numpy.max(norm_cspectra,2) |
|
1533 | max_cspectra = numpy.max(norm_cspectra,2) | |
1501 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) |
|
1534 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) | |
1502 |
|
1535 | |||
1503 | for i in range(num_pairs): |
|
1536 | for i in range(num_pairs): | |
1504 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) |
|
1537 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) | |
1505 | #------------------- Get Lags ---------------------------------- |
|
1538 | #------------------- Get Lags ---------------------------------- | |
1506 |
|
1539 | |||
1507 | class SALags(Operation): |
|
1540 | class SALags(Operation): | |
1508 | ''' |
|
1541 | ''' | |
1509 | Function GetMoments() |
|
1542 | Function GetMoments() | |
1510 |
|
1543 | |||
1511 | Input: |
|
1544 | Input: | |
1512 | self.dataOut.data_pre |
|
1545 | self.dataOut.data_pre | |
1513 | self.dataOut.abscissaList |
|
1546 | self.dataOut.abscissaList | |
1514 | self.dataOut.noise |
|
1547 | self.dataOut.noise | |
1515 | self.dataOut.normFactor |
|
1548 | self.dataOut.normFactor | |
1516 | self.dataOut.data_SNR |
|
1549 | self.dataOut.data_SNR | |
1517 | self.dataOut.groupList |
|
1550 | self.dataOut.groupList | |
1518 | self.dataOut.nChannels |
|
1551 | self.dataOut.nChannels | |
1519 |
|
1552 | |||
1520 | Affected: |
|
1553 | Affected: | |
1521 | self.dataOut.data_param |
|
1554 | self.dataOut.data_param | |
1522 |
|
1555 | |||
1523 | ''' |
|
1556 | ''' | |
1524 | def run(self, dataOut): |
|
1557 | def run(self, dataOut): | |
1525 | data_acf = dataOut.data_pre[0] |
|
1558 | data_acf = dataOut.data_pre[0] | |
1526 | data_ccf = dataOut.data_pre[1] |
|
1559 | data_ccf = dataOut.data_pre[1] | |
1527 | normFactor_acf = dataOut.normFactor[0] |
|
1560 | normFactor_acf = dataOut.normFactor[0] | |
1528 | normFactor_ccf = dataOut.normFactor[1] |
|
1561 | normFactor_ccf = dataOut.normFactor[1] | |
1529 | pairs_acf = dataOut.groupList[0] |
|
1562 | pairs_acf = dataOut.groupList[0] | |
1530 | pairs_ccf = dataOut.groupList[1] |
|
1563 | pairs_ccf = dataOut.groupList[1] | |
1531 |
|
1564 | |||
1532 | nHeights = dataOut.nHeights |
|
1565 | nHeights = dataOut.nHeights | |
1533 | absc = dataOut.abscissaList |
|
1566 | absc = dataOut.abscissaList | |
1534 | noise = dataOut.noise |
|
1567 | noise = dataOut.noise | |
1535 | SNR = dataOut.data_SNR |
|
1568 | SNR = dataOut.data_SNR | |
1536 | nChannels = dataOut.nChannels |
|
1569 | nChannels = dataOut.nChannels | |
1537 | # pairsList = dataOut.groupList |
|
1570 | # pairsList = dataOut.groupList | |
1538 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
1571 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
1539 |
|
1572 | |||
1540 | for l in range(len(pairs_acf)): |
|
1573 | for l in range(len(pairs_acf)): | |
1541 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] |
|
1574 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] | |
1542 |
|
1575 | |||
1543 | for l in range(len(pairs_ccf)): |
|
1576 | for l in range(len(pairs_ccf)): | |
1544 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] |
|
1577 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] | |
1545 |
|
1578 | |||
1546 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) |
|
1579 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) | |
1547 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) |
|
1580 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) | |
1548 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) |
|
1581 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) | |
1549 | return |
|
1582 | return | |
1550 |
|
1583 | |||
1551 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1584 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
1552 | # |
|
1585 | # | |
1553 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1586 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1554 | # |
|
1587 | # | |
1555 | # for l in range(len(pairsList)): |
|
1588 | # for l in range(len(pairsList)): | |
1556 | # firstChannel = pairsList[l][0] |
|
1589 | # firstChannel = pairsList[l][0] | |
1557 | # secondChannel = pairsList[l][1] |
|
1590 | # secondChannel = pairsList[l][1] | |
1558 | # |
|
1591 | # | |
1559 | # #Obteniendo pares de Autocorrelacion |
|
1592 | # #Obteniendo pares de Autocorrelacion | |
1560 | # if firstChannel == secondChannel: |
|
1593 | # if firstChannel == secondChannel: | |
1561 | # pairsAutoCorr[firstChannel] = int(l) |
|
1594 | # pairsAutoCorr[firstChannel] = int(l) | |
1562 | # |
|
1595 | # | |
1563 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1596 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
1564 | # |
|
1597 | # | |
1565 | # pairsCrossCorr = range(len(pairsList)) |
|
1598 | # pairsCrossCorr = range(len(pairsList)) | |
1566 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1599 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1567 | # |
|
1600 | # | |
1568 | # return pairsAutoCorr, pairsCrossCorr |
|
1601 | # return pairsAutoCorr, pairsCrossCorr | |
1569 |
|
1602 | |||
1570 | def __calculateTaus(self, data_acf, data_ccf, lagRange): |
|
1603 | def __calculateTaus(self, data_acf, data_ccf, lagRange): | |
1571 |
|
1604 | |||
1572 | lag0 = data_acf.shape[1]/2 |
|
1605 | lag0 = data_acf.shape[1]/2 | |
1573 | #Funcion de Autocorrelacion |
|
1606 | #Funcion de Autocorrelacion | |
1574 | mean_acf = stats.nanmean(data_acf, axis = 0) |
|
1607 | mean_acf = stats.nanmean(data_acf, axis = 0) | |
1575 |
|
1608 | |||
1576 | #Obtencion Indice de TauCross |
|
1609 | #Obtencion Indice de TauCross | |
1577 | ind_ccf = data_ccf.argmax(axis = 1) |
|
1610 | ind_ccf = data_ccf.argmax(axis = 1) | |
1578 | #Obtencion Indice de TauAuto |
|
1611 | #Obtencion Indice de TauAuto | |
1579 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') |
|
1612 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') | |
1580 | ccf_lag0 = data_ccf[:,lag0,:] |
|
1613 | ccf_lag0 = data_ccf[:,lag0,:] | |
1581 |
|
1614 | |||
1582 | for i in range(ccf_lag0.shape[0]): |
|
1615 | for i in range(ccf_lag0.shape[0]): | |
1583 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) |
|
1616 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) | |
1584 |
|
1617 | |||
1585 | #Obtencion de TauCross y TauAuto |
|
1618 | #Obtencion de TauCross y TauAuto | |
1586 | tau_ccf = lagRange[ind_ccf] |
|
1619 | tau_ccf = lagRange[ind_ccf] | |
1587 | tau_acf = lagRange[ind_acf] |
|
1620 | tau_acf = lagRange[ind_acf] | |
1588 |
|
1621 | |||
1589 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) |
|
1622 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) | |
1590 |
|
1623 | |||
1591 | tau_ccf[Nan1,Nan2] = numpy.nan |
|
1624 | tau_ccf[Nan1,Nan2] = numpy.nan | |
1592 | tau_acf[Nan1,Nan2] = numpy.nan |
|
1625 | tau_acf[Nan1,Nan2] = numpy.nan | |
1593 | tau = numpy.vstack((tau_ccf,tau_acf)) |
|
1626 | tau = numpy.vstack((tau_ccf,tau_acf)) | |
1594 |
|
1627 | |||
1595 | return tau |
|
1628 | return tau | |
1596 |
|
1629 | |||
1597 | def __calculateLag1Phase(self, data, lagTRange): |
|
1630 | def __calculateLag1Phase(self, data, lagTRange): | |
1598 | data1 = stats.nanmean(data, axis = 0) |
|
1631 | data1 = stats.nanmean(data, axis = 0) | |
1599 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 |
|
1632 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |
1600 |
|
1633 | |||
1601 | phase = numpy.angle(data1[lag1,:]) |
|
1634 | phase = numpy.angle(data1[lag1,:]) | |
1602 |
|
1635 | |||
1603 | return phase |
|
1636 | return phase | |
1604 |
|
1637 | |||
1605 | class SpectralFitting(Operation): |
|
1638 | class SpectralFitting(Operation): | |
1606 | ''' |
|
1639 | ''' | |
1607 | Function GetMoments() |
|
1640 | Function GetMoments() | |
1608 |
|
1641 | |||
1609 | Input: |
|
1642 | Input: | |
1610 | Output: |
|
1643 | Output: | |
1611 | Variables modified: |
|
1644 | Variables modified: | |
1612 | ''' |
|
1645 | ''' | |
1613 |
|
1646 | |||
1614 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): |
|
1647 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): | |
1615 |
|
1648 | |||
1616 |
|
1649 | |||
1617 | if path != None: |
|
1650 | if path != None: | |
1618 | sys.path.append(path) |
|
1651 | sys.path.append(path) | |
1619 | self.dataOut.library = importlib.import_module(file) |
|
1652 | self.dataOut.library = importlib.import_module(file) | |
1620 |
|
1653 | |||
1621 | #To be inserted as a parameter |
|
1654 | #To be inserted as a parameter | |
1622 | groupArray = numpy.array(groupList) |
|
1655 | groupArray = numpy.array(groupList) | |
1623 | # groupArray = numpy.array([[0,1],[2,3]]) |
|
1656 | # groupArray = numpy.array([[0,1],[2,3]]) | |
1624 | self.dataOut.groupList = groupArray |
|
1657 | self.dataOut.groupList = groupArray | |
1625 |
|
1658 | |||
1626 | nGroups = groupArray.shape[0] |
|
1659 | nGroups = groupArray.shape[0] | |
1627 | nChannels = self.dataIn.nChannels |
|
1660 | nChannels = self.dataIn.nChannels | |
1628 | nHeights=self.dataIn.heightList.size |
|
1661 | nHeights=self.dataIn.heightList.size | |
1629 |
|
1662 | |||
1630 | #Parameters Array |
|
1663 | #Parameters Array | |
1631 | self.dataOut.data_param = None |
|
1664 | self.dataOut.data_param = None | |
1632 |
|
1665 | |||
1633 | #Set constants |
|
1666 | #Set constants | |
1634 | constants = self.dataOut.library.setConstants(self.dataIn) |
|
1667 | constants = self.dataOut.library.setConstants(self.dataIn) | |
1635 | self.dataOut.constants = constants |
|
1668 | self.dataOut.constants = constants | |
1636 | M = self.dataIn.normFactor |
|
1669 | M = self.dataIn.normFactor | |
1637 | N = self.dataIn.nFFTPoints |
|
1670 | N = self.dataIn.nFFTPoints | |
1638 | ippSeconds = self.dataIn.ippSeconds |
|
1671 | ippSeconds = self.dataIn.ippSeconds | |
1639 | K = self.dataIn.nIncohInt |
|
1672 | K = self.dataIn.nIncohInt | |
1640 | pairsArray = numpy.array(self.dataIn.pairsList) |
|
1673 | pairsArray = numpy.array(self.dataIn.pairsList) | |
1641 |
|
1674 | |||
1642 | #List of possible combinations |
|
1675 | #List of possible combinations | |
1643 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) |
|
1676 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |
1644 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') |
|
1677 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |
1645 |
|
1678 | |||
1646 | if getSNR: |
|
1679 | if getSNR: | |
1647 | listChannels = groupArray.reshape((groupArray.size)) |
|
1680 | listChannels = groupArray.reshape((groupArray.size)) | |
1648 | listChannels.sort() |
|
1681 | listChannels.sort() | |
1649 | noise = self.dataIn.getNoise() |
|
1682 | noise = self.dataIn.getNoise() | |
1650 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) |
|
1683 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) | |
1651 |
|
1684 | |||
1652 | for i in range(nGroups): |
|
1685 | for i in range(nGroups): | |
1653 | coord = groupArray[i,:] |
|
1686 | coord = groupArray[i,:] | |
1654 |
|
1687 | |||
1655 | #Input data array |
|
1688 | #Input data array | |
1656 | data = self.dataIn.data_spc[coord,:,:]/(M*N) |
|
1689 | data = self.dataIn.data_spc[coord,:,:]/(M*N) | |
1657 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) |
|
1690 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |
1658 |
|
1691 | |||
1659 | #Cross Spectra data array for Covariance Matrixes |
|
1692 | #Cross Spectra data array for Covariance Matrixes | |
1660 | ind = 0 |
|
1693 | ind = 0 | |
1661 | for pairs in listComb: |
|
1694 | for pairs in listComb: | |
1662 | pairsSel = numpy.array([coord[x],coord[y]]) |
|
1695 | pairsSel = numpy.array([coord[x],coord[y]]) | |
1663 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) |
|
1696 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |
1664 | ind += 1 |
|
1697 | ind += 1 | |
1665 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) |
|
1698 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) | |
1666 | dataCross = dataCross**2/K |
|
1699 | dataCross = dataCross**2/K | |
1667 |
|
1700 | |||
1668 | for h in range(nHeights): |
|
1701 | for h in range(nHeights): | |
1669 | # print self.dataOut.heightList[h] |
|
1702 | # print self.dataOut.heightList[h] | |
1670 |
|
1703 | |||
1671 | #Input |
|
1704 | #Input | |
1672 | d = data[:,h] |
|
1705 | d = data[:,h] | |
1673 |
|
1706 | |||
1674 | #Covariance Matrix |
|
1707 | #Covariance Matrix | |
1675 | D = numpy.diag(d**2/K) |
|
1708 | D = numpy.diag(d**2/K) | |
1676 | ind = 0 |
|
1709 | ind = 0 | |
1677 | for pairs in listComb: |
|
1710 | for pairs in listComb: | |
1678 | #Coordinates in Covariance Matrix |
|
1711 | #Coordinates in Covariance Matrix | |
1679 | x = pairs[0] |
|
1712 | x = pairs[0] | |
1680 | y = pairs[1] |
|
1713 | y = pairs[1] | |
1681 | #Channel Index |
|
1714 | #Channel Index | |
1682 | S12 = dataCross[ind,:,h] |
|
1715 | S12 = dataCross[ind,:,h] | |
1683 | D12 = numpy.diag(S12) |
|
1716 | D12 = numpy.diag(S12) | |
1684 | #Completing Covariance Matrix with Cross Spectras |
|
1717 | #Completing Covariance Matrix with Cross Spectras | |
1685 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 |
|
1718 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |
1686 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 |
|
1719 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |
1687 | ind += 1 |
|
1720 | ind += 1 | |
1688 | Dinv=numpy.linalg.inv(D) |
|
1721 | Dinv=numpy.linalg.inv(D) | |
1689 | L=numpy.linalg.cholesky(Dinv) |
|
1722 | L=numpy.linalg.cholesky(Dinv) | |
1690 | LT=L.T |
|
1723 | LT=L.T | |
1691 |
|
1724 | |||
1692 | dp = numpy.dot(LT,d) |
|
1725 | dp = numpy.dot(LT,d) | |
1693 |
|
1726 | |||
1694 | #Initial values |
|
1727 | #Initial values | |
1695 | data_spc = self.dataIn.data_spc[coord,:,h] |
|
1728 | data_spc = self.dataIn.data_spc[coord,:,h] | |
1696 |
|
1729 | |||
1697 | if (h>0)and(error1[3]<5): |
|
1730 | if (h>0)and(error1[3]<5): | |
1698 | p0 = self.dataOut.data_param[i,:,h-1] |
|
1731 | p0 = self.dataOut.data_param[i,:,h-1] | |
1699 | else: |
|
1732 | else: | |
1700 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) |
|
1733 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) | |
1701 |
|
1734 | |||
1702 | try: |
|
1735 | try: | |
1703 | #Least Squares |
|
1736 | #Least Squares | |
1704 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) |
|
1737 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |
1705 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) |
|
1738 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |
1706 | #Chi square error |
|
1739 | #Chi square error | |
1707 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) |
|
1740 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |
1708 | #Error with Jacobian |
|
1741 | #Error with Jacobian | |
1709 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) |
|
1742 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) | |
1710 | except: |
|
1743 | except: | |
1711 | minp = p0*numpy.nan |
|
1744 | minp = p0*numpy.nan | |
1712 | error0 = numpy.nan |
|
1745 | error0 = numpy.nan | |
1713 | error1 = p0*numpy.nan |
|
1746 | error1 = p0*numpy.nan | |
1714 |
|
1747 | |||
1715 | #Save |
|
1748 | #Save | |
1716 | if self.dataOut.data_param == None: |
|
1749 | if self.dataOut.data_param == None: | |
1717 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan |
|
1750 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |
1718 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan |
|
1751 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |
1719 |
|
1752 | |||
1720 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) |
|
1753 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |
1721 | self.dataOut.data_param[i,:,h] = minp |
|
1754 | self.dataOut.data_param[i,:,h] = minp | |
1722 | return |
|
1755 | return | |
1723 |
|
1756 | |||
1724 | def __residFunction(self, p, dp, LT, constants): |
|
1757 | def __residFunction(self, p, dp, LT, constants): | |
1725 |
|
1758 | |||
1726 | fm = self.dataOut.library.modelFunction(p, constants) |
|
1759 | fm = self.dataOut.library.modelFunction(p, constants) | |
1727 | fmp=numpy.dot(LT,fm) |
|
1760 | fmp=numpy.dot(LT,fm) | |
1728 |
|
1761 | |||
1729 | return dp-fmp |
|
1762 | return dp-fmp | |
1730 |
|
1763 | |||
1731 | def __getSNR(self, z, noise): |
|
1764 | def __getSNR(self, z, noise): | |
1732 |
|
1765 | |||
1733 | avg = numpy.average(z, axis=1) |
|
1766 | avg = numpy.average(z, axis=1) | |
1734 | SNR = (avg.T-noise)/noise |
|
1767 | SNR = (avg.T-noise)/noise | |
1735 | SNR = SNR.T |
|
1768 | SNR = SNR.T | |
1736 | return SNR |
|
1769 | return SNR | |
1737 |
|
1770 | |||
1738 | def __chisq(p,chindex,hindex): |
|
1771 | def __chisq(p,chindex,hindex): | |
1739 | #similar to Resid but calculates CHI**2 |
|
1772 | #similar to Resid but calculates CHI**2 | |
1740 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) |
|
1773 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |
1741 | dp=numpy.dot(LT,d) |
|
1774 | dp=numpy.dot(LT,d) | |
1742 | fmp=numpy.dot(LT,fm) |
|
1775 | fmp=numpy.dot(LT,fm) | |
1743 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) |
|
1776 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |
1744 | return chisq |
|
1777 | return chisq | |
1745 |
|
1778 | |||
1746 | class WindProfiler(Operation): |
|
1779 | class WindProfiler(Operation): | |
1747 |
|
1780 | |||
1748 | __isConfig = False |
|
1781 | __isConfig = False | |
1749 |
|
1782 | |||
1750 | __initime = None |
|
1783 | __initime = None | |
1751 | __lastdatatime = None |
|
1784 | __lastdatatime = None | |
1752 | __integrationtime = None |
|
1785 | __integrationtime = None | |
1753 |
|
1786 | |||
1754 | __buffer = None |
|
1787 | __buffer = None | |
1755 |
|
1788 | |||
1756 | __dataReady = False |
|
1789 | __dataReady = False | |
1757 |
|
1790 | |||
1758 | __firstdata = None |
|
1791 | __firstdata = None | |
1759 |
|
1792 | |||
1760 | n = None |
|
1793 | n = None | |
1761 |
|
1794 | |||
1762 | def __init__(self, **kwargs): |
|
1795 | def __init__(self, **kwargs): | |
1763 | Operation.__init__(self, **kwargs) |
|
1796 | Operation.__init__(self, **kwargs) | |
1764 |
|
1797 | |||
1765 | def __calculateCosDir(self, elev, azim): |
|
1798 | def __calculateCosDir(self, elev, azim): | |
1766 | zen = (90 - elev)*numpy.pi/180 |
|
1799 | zen = (90 - elev)*numpy.pi/180 | |
1767 | azim = azim*numpy.pi/180 |
|
1800 | azim = azim*numpy.pi/180 | |
1768 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) |
|
1801 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |
1769 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) |
|
1802 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |
1770 |
|
1803 | |||
1771 | signX = numpy.sign(numpy.cos(azim)) |
|
1804 | signX = numpy.sign(numpy.cos(azim)) | |
1772 | signY = numpy.sign(numpy.sin(azim)) |
|
1805 | signY = numpy.sign(numpy.sin(azim)) | |
1773 |
|
1806 | |||
1774 | cosDirX = numpy.copysign(cosDirX, signX) |
|
1807 | cosDirX = numpy.copysign(cosDirX, signX) | |
1775 | cosDirY = numpy.copysign(cosDirY, signY) |
|
1808 | cosDirY = numpy.copysign(cosDirY, signY) | |
1776 | return cosDirX, cosDirY |
|
1809 | return cosDirX, cosDirY | |
1777 |
|
1810 | |||
1778 | def __calculateAngles(self, theta_x, theta_y, azimuth): |
|
1811 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |
1779 |
|
1812 | |||
1780 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) |
|
1813 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |
1781 | zenith_arr = numpy.arccos(dir_cosw) |
|
1814 | zenith_arr = numpy.arccos(dir_cosw) | |
1782 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 |
|
1815 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |
1783 |
|
1816 | |||
1784 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) |
|
1817 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |
1785 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) |
|
1818 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |
1786 |
|
1819 | |||
1787 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw |
|
1820 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |
1788 |
|
1821 | |||
1789 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): |
|
1822 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |
1790 |
|
1823 | |||
1791 | # |
|
1824 | # | |
1792 | if horOnly: |
|
1825 | if horOnly: | |
1793 | A = numpy.c_[dir_cosu,dir_cosv] |
|
1826 | A = numpy.c_[dir_cosu,dir_cosv] | |
1794 | else: |
|
1827 | else: | |
1795 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] |
|
1828 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] | |
1796 | A = numpy.asmatrix(A) |
|
1829 | A = numpy.asmatrix(A) | |
1797 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() |
|
1830 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() | |
1798 |
|
1831 | |||
1799 | return A1 |
|
1832 | return A1 | |
1800 |
|
1833 | |||
1801 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
1834 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
1802 | listPhi = phi.tolist() |
|
1835 | listPhi = phi.tolist() | |
1803 | maxid = listPhi.index(max(listPhi)) |
|
1836 | maxid = listPhi.index(max(listPhi)) | |
1804 | minid = listPhi.index(min(listPhi)) |
|
1837 | minid = listPhi.index(min(listPhi)) | |
1805 |
|
1838 | |||
1806 | rango = range(len(phi)) |
|
1839 | rango = range(len(phi)) | |
1807 | # rango = numpy.delete(rango,maxid) |
|
1840 | # rango = numpy.delete(rango,maxid) | |
1808 |
|
1841 | |||
1809 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
1842 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
1810 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
1843 | heiRangAux = heiRang*math.cos(phi[minid]) | |
1811 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
1844 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
1812 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
1845 | heiRang1 = numpy.delete(heiRang1,indOut) | |
1813 |
|
1846 | |||
1814 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1847 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1815 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1848 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1816 |
|
1849 | |||
1817 | for i in rango: |
|
1850 | for i in rango: | |
1818 | x = heiRang*math.cos(phi[i]) |
|
1851 | x = heiRang*math.cos(phi[i]) | |
1819 | y1 = velRadial[i,:] |
|
1852 | y1 = velRadial[i,:] | |
1820 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
1853 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
1821 |
|
1854 | |||
1822 | x1 = heiRang1 |
|
1855 | x1 = heiRang1 | |
1823 | y11 = f1(x1) |
|
1856 | y11 = f1(x1) | |
1824 |
|
1857 | |||
1825 | y2 = SNR[i,:] |
|
1858 | y2 = SNR[i,:] | |
1826 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
1859 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
1827 | y21 = f2(x1) |
|
1860 | y21 = f2(x1) | |
1828 |
|
1861 | |||
1829 | velRadial1[i,:] = y11 |
|
1862 | velRadial1[i,:] = y11 | |
1830 | SNR1[i,:] = y21 |
|
1863 | SNR1[i,:] = y21 | |
1831 |
|
1864 | |||
1832 | return heiRang1, velRadial1, SNR1 |
|
1865 | return heiRang1, velRadial1, SNR1 | |
1833 |
|
1866 | |||
1834 | def __calculateVelUVW(self, A, velRadial): |
|
1867 | def __calculateVelUVW(self, A, velRadial): | |
1835 |
|
1868 | |||
1836 | #Operacion Matricial |
|
1869 | #Operacion Matricial | |
1837 | # velUVW = numpy.zeros((velRadial.shape[1],3)) |
|
1870 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |
1838 | # for ind in range(velRadial.shape[1]): |
|
1871 | # for ind in range(velRadial.shape[1]): | |
1839 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) |
|
1872 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) | |
1840 | # velUVW = velUVW.transpose() |
|
1873 | # velUVW = velUVW.transpose() | |
1841 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) |
|
1874 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |
1842 | velUVW[:,:] = numpy.dot(A,velRadial) |
|
1875 | velUVW[:,:] = numpy.dot(A,velRadial) | |
1843 |
|
1876 | |||
1844 |
|
1877 | |||
1845 | return velUVW |
|
1878 | return velUVW | |
1846 |
|
1879 | |||
1847 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): |
|
1880 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |
1848 |
|
1881 | |||
1849 | def techniqueDBS(self, kwargs): |
|
1882 | def techniqueDBS(self, kwargs): | |
1850 | """ |
|
1883 | """ | |
1851 | Function that implements Doppler Beam Swinging (DBS) technique. |
|
1884 | Function that implements Doppler Beam Swinging (DBS) technique. | |
1852 |
|
1885 | |||
1853 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1886 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1854 | Direction correction (if necessary), Ranges and SNR |
|
1887 | Direction correction (if necessary), Ranges and SNR | |
1855 |
|
1888 | |||
1856 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1889 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1857 |
|
1890 | |||
1858 | Parameters affected: Winds, height range, SNR |
|
1891 | Parameters affected: Winds, height range, SNR | |
1859 | """ |
|
1892 | """ | |
1860 | velRadial0 = kwargs['velRadial'] |
|
1893 | velRadial0 = kwargs['velRadial'] | |
1861 | heiRang = kwargs['heightList'] |
|
1894 | heiRang = kwargs['heightList'] | |
1862 | SNR0 = kwargs['SNR'] |
|
1895 | SNR0 = kwargs['SNR'] | |
1863 |
|
1896 | |||
1864 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): |
|
1897 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): | |
1865 | theta_x = numpy.array(kwargs['dirCosx']) |
|
1898 | theta_x = numpy.array(kwargs['dirCosx']) | |
1866 | theta_y = numpy.array(kwargs['dirCosy']) |
|
1899 | theta_y = numpy.array(kwargs['dirCosy']) | |
1867 | else: |
|
1900 | else: | |
1868 | elev = numpy.array(kwargs['elevation']) |
|
1901 | elev = numpy.array(kwargs['elevation']) | |
1869 | azim = numpy.array(kwargs['azimuth']) |
|
1902 | azim = numpy.array(kwargs['azimuth']) | |
1870 | theta_x, theta_y = self.__calculateCosDir(elev, azim) |
|
1903 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |
1871 | azimuth = kwargs['correctAzimuth'] |
|
1904 | azimuth = kwargs['correctAzimuth'] | |
1872 | if kwargs.has_key('horizontalOnly'): |
|
1905 | if kwargs.has_key('horizontalOnly'): | |
1873 | horizontalOnly = kwargs['horizontalOnly'] |
|
1906 | horizontalOnly = kwargs['horizontalOnly'] | |
1874 | else: horizontalOnly = False |
|
1907 | else: horizontalOnly = False | |
1875 | if kwargs.has_key('correctFactor'): |
|
1908 | if kwargs.has_key('correctFactor'): | |
1876 | correctFactor = kwargs['correctFactor'] |
|
1909 | correctFactor = kwargs['correctFactor'] | |
1877 | else: correctFactor = 1 |
|
1910 | else: correctFactor = 1 | |
1878 | if kwargs.has_key('channelList'): |
|
1911 | if kwargs.has_key('channelList'): | |
1879 | channelList = kwargs['channelList'] |
|
1912 | channelList = kwargs['channelList'] | |
1880 | if len(channelList) == 2: |
|
1913 | if len(channelList) == 2: | |
1881 | horizontalOnly = True |
|
1914 | horizontalOnly = True | |
1882 | arrayChannel = numpy.array(channelList) |
|
1915 | arrayChannel = numpy.array(channelList) | |
1883 | param = param[arrayChannel,:,:] |
|
1916 | param = param[arrayChannel,:,:] | |
1884 | theta_x = theta_x[arrayChannel] |
|
1917 | theta_x = theta_x[arrayChannel] | |
1885 | theta_y = theta_y[arrayChannel] |
|
1918 | theta_y = theta_y[arrayChannel] | |
1886 |
|
1919 | |||
1887 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
1920 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
1888 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) |
|
1921 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) | |
1889 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) |
|
1922 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |
1890 |
|
1923 | |||
1891 | #Calculo de Componentes de la velocidad con DBS |
|
1924 | #Calculo de Componentes de la velocidad con DBS | |
1892 | winds = self.__calculateVelUVW(A,velRadial1) |
|
1925 | winds = self.__calculateVelUVW(A,velRadial1) | |
1893 |
|
1926 | |||
1894 | return winds, heiRang1, SNR1 |
|
1927 | return winds, heiRang1, SNR1 | |
1895 |
|
1928 | |||
1896 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): |
|
1929 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): | |
1897 |
|
1930 | |||
1898 | nPairs = len(pairs_ccf) |
|
1931 | nPairs = len(pairs_ccf) | |
1899 | posx = numpy.asarray(posx) |
|
1932 | posx = numpy.asarray(posx) | |
1900 | posy = numpy.asarray(posy) |
|
1933 | posy = numpy.asarray(posy) | |
1901 |
|
1934 | |||
1902 | #Rotacion Inversa para alinear con el azimuth |
|
1935 | #Rotacion Inversa para alinear con el azimuth | |
1903 | if azimuth!= None: |
|
1936 | if azimuth!= None: | |
1904 | azimuth = azimuth*math.pi/180 |
|
1937 | azimuth = azimuth*math.pi/180 | |
1905 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) |
|
1938 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) | |
1906 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) |
|
1939 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) | |
1907 | else: |
|
1940 | else: | |
1908 | posx1 = posx |
|
1941 | posx1 = posx | |
1909 | posy1 = posy |
|
1942 | posy1 = posy | |
1910 |
|
1943 | |||
1911 | #Calculo de Distancias |
|
1944 | #Calculo de Distancias | |
1912 | distx = numpy.zeros(nPairs) |
|
1945 | distx = numpy.zeros(nPairs) | |
1913 | disty = numpy.zeros(nPairs) |
|
1946 | disty = numpy.zeros(nPairs) | |
1914 | dist = numpy.zeros(nPairs) |
|
1947 | dist = numpy.zeros(nPairs) | |
1915 | ang = numpy.zeros(nPairs) |
|
1948 | ang = numpy.zeros(nPairs) | |
1916 |
|
1949 | |||
1917 | for i in range(nPairs): |
|
1950 | for i in range(nPairs): | |
1918 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] |
|
1951 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] | |
1919 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] |
|
1952 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] | |
1920 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) |
|
1953 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |
1921 | ang[i] = numpy.arctan2(disty[i],distx[i]) |
|
1954 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |
1922 |
|
1955 | |||
1923 | return distx, disty, dist, ang |
|
1956 | return distx, disty, dist, ang | |
1924 | #Calculo de Matrices |
|
1957 | #Calculo de Matrices | |
1925 | # nPairs = len(pairs) |
|
1958 | # nPairs = len(pairs) | |
1926 | # ang1 = numpy.zeros((nPairs, 2, 1)) |
|
1959 | # ang1 = numpy.zeros((nPairs, 2, 1)) | |
1927 | # dist1 = numpy.zeros((nPairs, 2, 1)) |
|
1960 | # dist1 = numpy.zeros((nPairs, 2, 1)) | |
1928 | # |
|
1961 | # | |
1929 | # for j in range(nPairs): |
|
1962 | # for j in range(nPairs): | |
1930 | # dist1[j,0,0] = dist[pairs[j][0]] |
|
1963 | # dist1[j,0,0] = dist[pairs[j][0]] | |
1931 | # dist1[j,1,0] = dist[pairs[j][1]] |
|
1964 | # dist1[j,1,0] = dist[pairs[j][1]] | |
1932 | # ang1[j,0,0] = ang[pairs[j][0]] |
|
1965 | # ang1[j,0,0] = ang[pairs[j][0]] | |
1933 | # ang1[j,1,0] = ang[pairs[j][1]] |
|
1966 | # ang1[j,1,0] = ang[pairs[j][1]] | |
1934 | # |
|
1967 | # | |
1935 | # return distx,disty, dist1,ang1 |
|
1968 | # return distx,disty, dist1,ang1 | |
1936 |
|
1969 | |||
1937 |
|
1970 | |||
1938 | def __calculateVelVer(self, phase, lagTRange, _lambda): |
|
1971 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |
1939 |
|
1972 | |||
1940 | Ts = lagTRange[1] - lagTRange[0] |
|
1973 | Ts = lagTRange[1] - lagTRange[0] | |
1941 | velW = -_lambda*phase/(4*math.pi*Ts) |
|
1974 | velW = -_lambda*phase/(4*math.pi*Ts) | |
1942 |
|
1975 | |||
1943 | return velW |
|
1976 | return velW | |
1944 |
|
1977 | |||
1945 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): |
|
1978 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |
1946 | nPairs = tau1.shape[0] |
|
1979 | nPairs = tau1.shape[0] | |
1947 | nHeights = tau1.shape[1] |
|
1980 | nHeights = tau1.shape[1] | |
1948 | vel = numpy.zeros((nPairs,3,nHeights)) |
|
1981 | vel = numpy.zeros((nPairs,3,nHeights)) | |
1949 | dist1 = numpy.reshape(dist, (dist.size,1)) |
|
1982 | dist1 = numpy.reshape(dist, (dist.size,1)) | |
1950 |
|
1983 | |||
1951 | angCos = numpy.cos(ang) |
|
1984 | angCos = numpy.cos(ang) | |
1952 | angSin = numpy.sin(ang) |
|
1985 | angSin = numpy.sin(ang) | |
1953 |
|
1986 | |||
1954 | vel0 = dist1*tau1/(2*tau2**2) |
|
1987 | vel0 = dist1*tau1/(2*tau2**2) | |
1955 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) |
|
1988 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |
1956 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) |
|
1989 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |
1957 |
|
1990 | |||
1958 | ind = numpy.where(numpy.isinf(vel)) |
|
1991 | ind = numpy.where(numpy.isinf(vel)) | |
1959 | vel[ind] = numpy.nan |
|
1992 | vel[ind] = numpy.nan | |
1960 |
|
1993 | |||
1961 | return vel |
|
1994 | return vel | |
1962 |
|
1995 | |||
1963 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1996 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
1964 | # |
|
1997 | # | |
1965 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1998 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1966 | # |
|
1999 | # | |
1967 | # for l in range(len(pairsList)): |
|
2000 | # for l in range(len(pairsList)): | |
1968 | # firstChannel = pairsList[l][0] |
|
2001 | # firstChannel = pairsList[l][0] | |
1969 | # secondChannel = pairsList[l][1] |
|
2002 | # secondChannel = pairsList[l][1] | |
1970 | # |
|
2003 | # | |
1971 | # #Obteniendo pares de Autocorrelacion |
|
2004 | # #Obteniendo pares de Autocorrelacion | |
1972 | # if firstChannel == secondChannel: |
|
2005 | # if firstChannel == secondChannel: | |
1973 | # pairsAutoCorr[firstChannel] = int(l) |
|
2006 | # pairsAutoCorr[firstChannel] = int(l) | |
1974 | # |
|
2007 | # | |
1975 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
2008 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
1976 | # |
|
2009 | # | |
1977 | # pairsCrossCorr = range(len(pairsList)) |
|
2010 | # pairsCrossCorr = range(len(pairsList)) | |
1978 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
2011 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1979 | # |
|
2012 | # | |
1980 | # return pairsAutoCorr, pairsCrossCorr |
|
2013 | # return pairsAutoCorr, pairsCrossCorr | |
1981 |
|
2014 | |||
1982 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): |
|
2015 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |
1983 | def techniqueSA(self, kwargs): |
|
2016 | def techniqueSA(self, kwargs): | |
1984 |
|
2017 | |||
1985 | """ |
|
2018 | """ | |
1986 | Function that implements Spaced Antenna (SA) technique. |
|
2019 | Function that implements Spaced Antenna (SA) technique. | |
1987 |
|
2020 | |||
1988 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
2021 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1989 | Direction correction (if necessary), Ranges and SNR |
|
2022 | Direction correction (if necessary), Ranges and SNR | |
1990 |
|
2023 | |||
1991 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
2024 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1992 |
|
2025 | |||
1993 | Parameters affected: Winds |
|
2026 | Parameters affected: Winds | |
1994 | """ |
|
2027 | """ | |
1995 | position_x = kwargs['positionX'] |
|
2028 | position_x = kwargs['positionX'] | |
1996 | position_y = kwargs['positionY'] |
|
2029 | position_y = kwargs['positionY'] | |
1997 | azimuth = kwargs['azimuth'] |
|
2030 | azimuth = kwargs['azimuth'] | |
1998 |
|
2031 | |||
1999 | if kwargs.has_key('correctFactor'): |
|
2032 | if kwargs.has_key('correctFactor'): | |
2000 | correctFactor = kwargs['correctFactor'] |
|
2033 | correctFactor = kwargs['correctFactor'] | |
2001 | else: |
|
2034 | else: | |
2002 | correctFactor = 1 |
|
2035 | correctFactor = 1 | |
2003 |
|
2036 | |||
2004 | groupList = kwargs['groupList'] |
|
2037 | groupList = kwargs['groupList'] | |
2005 | pairs_ccf = groupList[1] |
|
2038 | pairs_ccf = groupList[1] | |
2006 | tau = kwargs['tau'] |
|
2039 | tau = kwargs['tau'] | |
2007 | _lambda = kwargs['_lambda'] |
|
2040 | _lambda = kwargs['_lambda'] | |
2008 |
|
2041 | |||
2009 | #Cross Correlation pairs obtained |
|
2042 | #Cross Correlation pairs obtained | |
2010 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) |
|
2043 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) | |
2011 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] |
|
2044 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |
2012 | # pairsSelArray = numpy.array(pairsSelected) |
|
2045 | # pairsSelArray = numpy.array(pairsSelected) | |
2013 | # pairs = [] |
|
2046 | # pairs = [] | |
2014 | # |
|
2047 | # | |
2015 | # #Wind estimation pairs obtained |
|
2048 | # #Wind estimation pairs obtained | |
2016 | # for i in range(pairsSelArray.shape[0]/2): |
|
2049 | # for i in range(pairsSelArray.shape[0]/2): | |
2017 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] |
|
2050 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |
2018 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] |
|
2051 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |
2019 | # pairs.append((ind1,ind2)) |
|
2052 | # pairs.append((ind1,ind2)) | |
2020 |
|
2053 | |||
2021 | indtau = tau.shape[0]/2 |
|
2054 | indtau = tau.shape[0]/2 | |
2022 | tau1 = tau[:indtau,:] |
|
2055 | tau1 = tau[:indtau,:] | |
2023 | tau2 = tau[indtau:-1,:] |
|
2056 | tau2 = tau[indtau:-1,:] | |
2024 | # tau1 = tau1[pairs,:] |
|
2057 | # tau1 = tau1[pairs,:] | |
2025 | # tau2 = tau2[pairs,:] |
|
2058 | # tau2 = tau2[pairs,:] | |
2026 | phase1 = tau[-1,:] |
|
2059 | phase1 = tau[-1,:] | |
2027 |
|
2060 | |||
2028 | #--------------------------------------------------------------------- |
|
2061 | #--------------------------------------------------------------------- | |
2029 | #Metodo Directo |
|
2062 | #Metodo Directo | |
2030 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) |
|
2063 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) | |
2031 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) |
|
2064 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |
2032 | winds = stats.nanmean(winds, axis=0) |
|
2065 | winds = stats.nanmean(winds, axis=0) | |
2033 | #--------------------------------------------------------------------- |
|
2066 | #--------------------------------------------------------------------- | |
2034 | #Metodo General |
|
2067 | #Metodo General | |
2035 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) |
|
2068 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) | |
2036 | # #Calculo Coeficientes de Funcion de Correlacion |
|
2069 | # #Calculo Coeficientes de Funcion de Correlacion | |
2037 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) |
|
2070 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) | |
2038 | # #Calculo de Velocidades |
|
2071 | # #Calculo de Velocidades | |
2039 | # winds = self.calculateVelUV(F,G,A,B,H) |
|
2072 | # winds = self.calculateVelUV(F,G,A,B,H) | |
2040 |
|
2073 | |||
2041 | #--------------------------------------------------------------------- |
|
2074 | #--------------------------------------------------------------------- | |
2042 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) |
|
2075 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |
2043 | winds = correctFactor*winds |
|
2076 | winds = correctFactor*winds | |
2044 | return winds |
|
2077 | return winds | |
2045 |
|
2078 | |||
2046 | def __checkTime(self, currentTime, paramInterval, outputInterval): |
|
2079 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |
2047 |
|
2080 | |||
2048 | dataTime = currentTime + paramInterval |
|
2081 | dataTime = currentTime + paramInterval | |
2049 | deltaTime = dataTime - self.__initime |
|
2082 | deltaTime = dataTime - self.__initime | |
2050 |
|
2083 | |||
2051 | if deltaTime >= outputInterval or deltaTime < 0: |
|
2084 | if deltaTime >= outputInterval or deltaTime < 0: | |
2052 | self.__dataReady = True |
|
2085 | self.__dataReady = True | |
2053 | return |
|
2086 | return | |
2054 |
|
2087 | |||
2055 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): |
|
2088 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |
2056 | ''' |
|
2089 | ''' | |
2057 | Function that implements winds estimation technique with detected meteors. |
|
2090 | Function that implements winds estimation technique with detected meteors. | |
2058 |
|
2091 | |||
2059 | Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
2092 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |
2060 |
|
2093 | |||
2061 | Output: Winds estimation (Zonal and Meridional) |
|
2094 | Output: Winds estimation (Zonal and Meridional) | |
2062 |
|
2095 | |||
2063 | Parameters affected: Winds |
|
2096 | Parameters affected: Winds | |
2064 | ''' |
|
2097 | ''' | |
2065 | # print arrayMeteor.shape |
|
2098 | # print arrayMeteor.shape | |
2066 | #Settings |
|
2099 | #Settings | |
2067 | nInt = (heightMax - heightMin)/2 |
|
2100 | nInt = (heightMax - heightMin)/2 | |
2068 | # print nInt |
|
2101 | # print nInt | |
2069 | nInt = int(nInt) |
|
2102 | nInt = int(nInt) | |
2070 | # print nInt |
|
2103 | # print nInt | |
2071 | winds = numpy.zeros((2,nInt))*numpy.nan |
|
2104 | winds = numpy.zeros((2,nInt))*numpy.nan | |
2072 |
|
2105 | |||
2073 | #Filter errors |
|
2106 | #Filter errors | |
2074 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] |
|
2107 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] | |
2075 | finalMeteor = arrayMeteor[error,:] |
|
2108 | finalMeteor = arrayMeteor[error,:] | |
2076 |
|
2109 | |||
2077 | #Meteor Histogram |
|
2110 | #Meteor Histogram | |
2078 | finalHeights = finalMeteor[:,2] |
|
2111 | finalHeights = finalMeteor[:,2] | |
2079 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) |
|
2112 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |
2080 | nMeteorsPerI = hist[0] |
|
2113 | nMeteorsPerI = hist[0] | |
2081 | heightPerI = hist[1] |
|
2114 | heightPerI = hist[1] | |
2082 |
|
2115 | |||
2083 | #Sort of meteors |
|
2116 | #Sort of meteors | |
2084 | indSort = finalHeights.argsort() |
|
2117 | indSort = finalHeights.argsort() | |
2085 | finalMeteor2 = finalMeteor[indSort,:] |
|
2118 | finalMeteor2 = finalMeteor[indSort,:] | |
2086 |
|
2119 | |||
2087 | # Calculating winds |
|
2120 | # Calculating winds | |
2088 | ind1 = 0 |
|
2121 | ind1 = 0 | |
2089 | ind2 = 0 |
|
2122 | ind2 = 0 | |
2090 |
|
2123 | |||
2091 | for i in range(nInt): |
|
2124 | for i in range(nInt): | |
2092 | nMet = nMeteorsPerI[i] |
|
2125 | nMet = nMeteorsPerI[i] | |
2093 | ind1 = ind2 |
|
2126 | ind1 = ind2 | |
2094 | ind2 = ind1 + nMet |
|
2127 | ind2 = ind1 + nMet | |
2095 |
|
2128 | |||
2096 | meteorAux = finalMeteor2[ind1:ind2,:] |
|
2129 | meteorAux = finalMeteor2[ind1:ind2,:] | |
2097 |
|
2130 | |||
2098 | if meteorAux.shape[0] >= meteorThresh: |
|
2131 | if meteorAux.shape[0] >= meteorThresh: | |
2099 | vel = meteorAux[:, 6] |
|
2132 | vel = meteorAux[:, 6] | |
2100 | zen = meteorAux[:, 4]*numpy.pi/180 |
|
2133 | zen = meteorAux[:, 4]*numpy.pi/180 | |
2101 | azim = meteorAux[:, 3]*numpy.pi/180 |
|
2134 | azim = meteorAux[:, 3]*numpy.pi/180 | |
2102 |
|
2135 | |||
2103 | n = numpy.cos(zen) |
|
2136 | n = numpy.cos(zen) | |
2104 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) |
|
2137 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |
2105 | # l = m*numpy.tan(azim) |
|
2138 | # l = m*numpy.tan(azim) | |
2106 | l = numpy.sin(zen)*numpy.sin(azim) |
|
2139 | l = numpy.sin(zen)*numpy.sin(azim) | |
2107 | m = numpy.sin(zen)*numpy.cos(azim) |
|
2140 | m = numpy.sin(zen)*numpy.cos(azim) | |
2108 |
|
2141 | |||
2109 | A = numpy.vstack((l, m)).transpose() |
|
2142 | A = numpy.vstack((l, m)).transpose() | |
2110 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) |
|
2143 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |
2111 | windsAux = numpy.dot(A1, vel) |
|
2144 | windsAux = numpy.dot(A1, vel) | |
2112 |
|
2145 | |||
2113 | winds[0,i] = windsAux[0] |
|
2146 | winds[0,i] = windsAux[0] | |
2114 | winds[1,i] = windsAux[1] |
|
2147 | winds[1,i] = windsAux[1] | |
2115 |
|
2148 | |||
2116 | return winds, heightPerI[:-1] |
|
2149 | return winds, heightPerI[:-1] | |
2117 |
|
2150 | |||
2118 | def techniqueNSM_SA(self, **kwargs): |
|
2151 | def techniqueNSM_SA(self, **kwargs): | |
2119 | metArray = kwargs['metArray'] |
|
2152 | metArray = kwargs['metArray'] | |
2120 | heightList = kwargs['heightList'] |
|
2153 | heightList = kwargs['heightList'] | |
2121 | timeList = kwargs['timeList'] |
|
2154 | timeList = kwargs['timeList'] | |
2122 |
|
2155 | |||
2123 | rx_location = kwargs['rx_location'] |
|
2156 | rx_location = kwargs['rx_location'] | |
2124 | groupList = kwargs['groupList'] |
|
2157 | groupList = kwargs['groupList'] | |
2125 | azimuth = kwargs['azimuth'] |
|
2158 | azimuth = kwargs['azimuth'] | |
2126 | dfactor = kwargs['dfactor'] |
|
2159 | dfactor = kwargs['dfactor'] | |
2127 | k = kwargs['k'] |
|
2160 | k = kwargs['k'] | |
2128 |
|
2161 | |||
2129 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) |
|
2162 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) | |
2130 | d = dist*dfactor |
|
2163 | d = dist*dfactor | |
2131 | #Phase calculation |
|
2164 | #Phase calculation | |
2132 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) |
|
2165 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) | |
2133 |
|
2166 | |||
2134 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities |
|
2167 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities | |
2135 |
|
2168 | |||
2136 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
2169 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
2137 | azimuth1 = azimuth1*numpy.pi/180 |
|
2170 | azimuth1 = azimuth1*numpy.pi/180 | |
2138 |
|
2171 | |||
2139 | for i in range(heightList.size): |
|
2172 | for i in range(heightList.size): | |
2140 | h = heightList[i] |
|
2173 | h = heightList[i] | |
2141 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] |
|
2174 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] | |
2142 | metHeight = metArray1[indH,:] |
|
2175 | metHeight = metArray1[indH,:] | |
2143 | if metHeight.shape[0] >= 2: |
|
2176 | if metHeight.shape[0] >= 2: | |
2144 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities |
|
2177 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities | |
2145 | iazim = metHeight[:,1].astype(int) |
|
2178 | iazim = metHeight[:,1].astype(int) | |
2146 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths |
|
2179 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths | |
2147 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) |
|
2180 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) | |
2148 | A = numpy.asmatrix(A) |
|
2181 | A = numpy.asmatrix(A) | |
2149 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() |
|
2182 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() | |
2150 | velHor = numpy.dot(A1,velAux) |
|
2183 | velHor = numpy.dot(A1,velAux) | |
2151 |
|
2184 | |||
2152 | velEst[i,:] = numpy.squeeze(velHor) |
|
2185 | velEst[i,:] = numpy.squeeze(velHor) | |
2153 | return velEst |
|
2186 | return velEst | |
2154 |
|
2187 | |||
2155 | def __getPhaseSlope(self, metArray, heightList, timeList): |
|
2188 | def __getPhaseSlope(self, metArray, heightList, timeList): | |
2156 | meteorList = [] |
|
2189 | meteorList = [] | |
2157 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 |
|
2190 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 | |
2158 | #Putting back together the meteor matrix |
|
2191 | #Putting back together the meteor matrix | |
2159 | utctime = metArray[:,0] |
|
2192 | utctime = metArray[:,0] | |
2160 | uniqueTime = numpy.unique(utctime) |
|
2193 | uniqueTime = numpy.unique(utctime) | |
2161 |
|
2194 | |||
2162 | phaseDerThresh = 0.5 |
|
2195 | phaseDerThresh = 0.5 | |
2163 | ippSeconds = timeList[1] - timeList[0] |
|
2196 | ippSeconds = timeList[1] - timeList[0] | |
2164 | sec = numpy.where(timeList>1)[0][0] |
|
2197 | sec = numpy.where(timeList>1)[0][0] | |
2165 | nPairs = metArray.shape[1] - 6 |
|
2198 | nPairs = metArray.shape[1] - 6 | |
2166 | nHeights = len(heightList) |
|
2199 | nHeights = len(heightList) | |
2167 |
|
2200 | |||
2168 | for t in uniqueTime: |
|
2201 | for t in uniqueTime: | |
2169 | metArray1 = metArray[utctime==t,:] |
|
2202 | metArray1 = metArray[utctime==t,:] | |
2170 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh |
|
2203 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh | |
2171 | tmet = metArray1[:,1].astype(int) |
|
2204 | tmet = metArray1[:,1].astype(int) | |
2172 | hmet = metArray1[:,2].astype(int) |
|
2205 | hmet = metArray1[:,2].astype(int) | |
2173 |
|
2206 | |||
2174 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) |
|
2207 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) | |
2175 | metPhase[:,:] = numpy.nan |
|
2208 | metPhase[:,:] = numpy.nan | |
2176 | metPhase[:,hmet,tmet] = metArray1[:,6:].T |
|
2209 | metPhase[:,hmet,tmet] = metArray1[:,6:].T | |
2177 |
|
2210 | |||
2178 | #Delete short trails |
|
2211 | #Delete short trails | |
2179 | metBool = ~numpy.isnan(metPhase[0,:,:]) |
|
2212 | metBool = ~numpy.isnan(metPhase[0,:,:]) | |
2180 | heightVect = numpy.sum(metBool, axis = 1) |
|
2213 | heightVect = numpy.sum(metBool, axis = 1) | |
2181 | metBool[heightVect<sec,:] = False |
|
2214 | metBool[heightVect<sec,:] = False | |
2182 | metPhase[:,heightVect<sec,:] = numpy.nan |
|
2215 | metPhase[:,heightVect<sec,:] = numpy.nan | |
2183 |
|
2216 | |||
2184 | #Derivative |
|
2217 | #Derivative | |
2185 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) |
|
2218 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) | |
2186 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) |
|
2219 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) | |
2187 | metPhase[phDerAux] = numpy.nan |
|
2220 | metPhase[phDerAux] = numpy.nan | |
2188 |
|
2221 | |||
2189 | #--------------------------METEOR DETECTION ----------------------------------------- |
|
2222 | #--------------------------METEOR DETECTION ----------------------------------------- | |
2190 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] |
|
2223 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] | |
2191 |
|
2224 | |||
2192 | for p in numpy.arange(nPairs): |
|
2225 | for p in numpy.arange(nPairs): | |
2193 | phase = metPhase[p,:,:] |
|
2226 | phase = metPhase[p,:,:] | |
2194 | phDer = metDer[p,:,:] |
|
2227 | phDer = metDer[p,:,:] | |
2195 |
|
2228 | |||
2196 | for h in indMet: |
|
2229 | for h in indMet: | |
2197 | height = heightList[h] |
|
2230 | height = heightList[h] | |
2198 | phase1 = phase[h,:] #82 |
|
2231 | phase1 = phase[h,:] #82 | |
2199 | phDer1 = phDer[h,:] |
|
2232 | phDer1 = phDer[h,:] | |
2200 |
|
2233 | |||
2201 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap |
|
2234 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap | |
2202 |
|
2235 | |||
2203 | indValid = numpy.where(~numpy.isnan(phase1))[0] |
|
2236 | indValid = numpy.where(~numpy.isnan(phase1))[0] | |
2204 | initMet = indValid[0] |
|
2237 | initMet = indValid[0] | |
2205 | endMet = 0 |
|
2238 | endMet = 0 | |
2206 |
|
2239 | |||
2207 | for i in range(len(indValid)-1): |
|
2240 | for i in range(len(indValid)-1): | |
2208 |
|
2241 | |||
2209 | #Time difference |
|
2242 | #Time difference | |
2210 | inow = indValid[i] |
|
2243 | inow = indValid[i] | |
2211 | inext = indValid[i+1] |
|
2244 | inext = indValid[i+1] | |
2212 | idiff = inext - inow |
|
2245 | idiff = inext - inow | |
2213 | #Phase difference |
|
2246 | #Phase difference | |
2214 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) |
|
2247 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) | |
2215 |
|
2248 | |||
2216 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor |
|
2249 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor | |
2217 | sizeTrail = inow - initMet + 1 |
|
2250 | sizeTrail = inow - initMet + 1 | |
2218 | if sizeTrail>3*sec: #Too short meteors |
|
2251 | if sizeTrail>3*sec: #Too short meteors | |
2219 | x = numpy.arange(initMet,inow+1)*ippSeconds |
|
2252 | x = numpy.arange(initMet,inow+1)*ippSeconds | |
2220 | y = phase1[initMet:inow+1] |
|
2253 | y = phase1[initMet:inow+1] | |
2221 | ynnan = ~numpy.isnan(y) |
|
2254 | ynnan = ~numpy.isnan(y) | |
2222 | x = x[ynnan] |
|
2255 | x = x[ynnan] | |
2223 | y = y[ynnan] |
|
2256 | y = y[ynnan] | |
2224 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) |
|
2257 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) | |
2225 | ylin = x*slope + intercept |
|
2258 | ylin = x*slope + intercept | |
2226 | rsq = r_value**2 |
|
2259 | rsq = r_value**2 | |
2227 | if rsq > 0.5: |
|
2260 | if rsq > 0.5: | |
2228 | vel = slope#*height*1000/(k*d) |
|
2261 | vel = slope#*height*1000/(k*d) | |
2229 | estAux = numpy.array([utctime,p,height, vel, rsq]) |
|
2262 | estAux = numpy.array([utctime,p,height, vel, rsq]) | |
2230 | meteorList.append(estAux) |
|
2263 | meteorList.append(estAux) | |
2231 | initMet = inext |
|
2264 | initMet = inext | |
2232 | metArray2 = numpy.array(meteorList) |
|
2265 | metArray2 = numpy.array(meteorList) | |
2233 |
|
2266 | |||
2234 | return metArray2 |
|
2267 | return metArray2 | |
2235 |
|
2268 | |||
2236 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): |
|
2269 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): | |
2237 |
|
2270 | |||
2238 | azimuth1 = numpy.zeros(len(pairslist)) |
|
2271 | azimuth1 = numpy.zeros(len(pairslist)) | |
2239 | dist = numpy.zeros(len(pairslist)) |
|
2272 | dist = numpy.zeros(len(pairslist)) | |
2240 |
|
2273 | |||
2241 | for i in range(len(rx_location)): |
|
2274 | for i in range(len(rx_location)): | |
2242 | ch0 = pairslist[i][0] |
|
2275 | ch0 = pairslist[i][0] | |
2243 | ch1 = pairslist[i][1] |
|
2276 | ch1 = pairslist[i][1] | |
2244 |
|
2277 | |||
2245 | diffX = rx_location[ch0][0] - rx_location[ch1][0] |
|
2278 | diffX = rx_location[ch0][0] - rx_location[ch1][0] | |
2246 | diffY = rx_location[ch0][1] - rx_location[ch1][1] |
|
2279 | diffY = rx_location[ch0][1] - rx_location[ch1][1] | |
2247 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi |
|
2280 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi | |
2248 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) |
|
2281 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) | |
2249 |
|
2282 | |||
2250 | azimuth1 -= azimuth0 |
|
2283 | azimuth1 -= azimuth0 | |
2251 | return azimuth1, dist |
|
2284 | return azimuth1, dist | |
2252 |
|
2285 | |||
2253 | def techniqueNSM_DBS(self, **kwargs): |
|
2286 | def techniqueNSM_DBS(self, **kwargs): | |
2254 | metArray = kwargs['metArray'] |
|
2287 | metArray = kwargs['metArray'] | |
2255 | heightList = kwargs['heightList'] |
|
2288 | heightList = kwargs['heightList'] | |
2256 | timeList = kwargs['timeList'] |
|
2289 | timeList = kwargs['timeList'] | |
2257 | zenithList = kwargs['zenithList'] |
|
2290 | zenithList = kwargs['zenithList'] | |
2258 | nChan = numpy.max(cmet) + 1 |
|
2291 | nChan = numpy.max(cmet) + 1 | |
2259 | nHeights = len(heightList) |
|
2292 | nHeights = len(heightList) | |
2260 |
|
2293 | |||
2261 | utctime = metArray[:,0] |
|
2294 | utctime = metArray[:,0] | |
2262 | cmet = metArray[:,1] |
|
2295 | cmet = metArray[:,1] | |
2263 | hmet = metArray1[:,3].astype(int) |
|
2296 | hmet = metArray1[:,3].astype(int) | |
2264 | h1met = heightList[hmet]*zenithList[cmet] |
|
2297 | h1met = heightList[hmet]*zenithList[cmet] | |
2265 | vmet = metArray1[:,5] |
|
2298 | vmet = metArray1[:,5] | |
2266 |
|
2299 | |||
2267 | for i in range(nHeights - 1): |
|
2300 | for i in range(nHeights - 1): | |
2268 | hmin = heightList[i] |
|
2301 | hmin = heightList[i] | |
2269 | hmax = heightList[i + 1] |
|
2302 | hmax = heightList[i + 1] | |
2270 |
|
2303 | |||
2271 | vthisH = vmet[(h1met>=hmin) & (h1met<hmax)] |
|
2304 | vthisH = vmet[(h1met>=hmin) & (h1met<hmax)] | |
2272 |
|
2305 | |||
2273 |
|
2306 | |||
2274 |
|
2307 | |||
2275 | return data_output |
|
2308 | return data_output | |
2276 |
|
2309 | |||
2277 | def run(self, dataOut, technique, positionY, positionX, azimuth, **kwargs): |
|
2310 | def run(self, dataOut, technique, positionY, positionX, azimuth, **kwargs): | |
2278 |
|
2311 | |||
2279 | param = dataOut.data_param |
|
2312 | param = dataOut.data_param | |
2280 | if dataOut.abscissaList != None: |
|
2313 | if dataOut.abscissaList != None: | |
2281 | absc = dataOut.abscissaList[:-1] |
|
2314 | absc = dataOut.abscissaList[:-1] | |
2282 | noise = dataOut.noise |
|
2315 | noise = dataOut.noise | |
2283 | heightList = dataOut.heightList |
|
2316 | heightList = dataOut.heightList | |
2284 | SNR = dataOut.data_SNR |
|
2317 | SNR = dataOut.data_SNR | |
2285 |
|
2318 | |||
2286 | if technique == 'DBS': |
|
2319 | if technique == 'DBS': | |
2287 |
|
2320 | |||
2288 | kwargs['velRadial'] = param[:,1,:] #Radial velocity |
|
2321 | kwargs['velRadial'] = param[:,1,:] #Radial velocity | |
2289 | kwargs['heightList'] = heightList |
|
2322 | kwargs['heightList'] = heightList | |
2290 | kwargs['SNR'] = SNR |
|
2323 | kwargs['SNR'] = SNR | |
2291 |
|
2324 | |||
2292 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function |
|
2325 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function | |
2293 | dataOut.utctimeInit = dataOut.utctime |
|
2326 | dataOut.utctimeInit = dataOut.utctime | |
2294 | dataOut.outputInterval = dataOut.paramInterval |
|
2327 | dataOut.outputInterval = dataOut.paramInterval | |
2295 |
|
2328 | |||
2296 | elif technique == 'SA': |
|
2329 | elif technique == 'SA': | |
2297 |
|
2330 | |||
2298 | #Parameters |
|
2331 | #Parameters | |
2299 | # position_x = kwargs['positionX'] |
|
2332 | # position_x = kwargs['positionX'] | |
2300 | # position_y = kwargs['positionY'] |
|
2333 | # position_y = kwargs['positionY'] | |
2301 | # azimuth = kwargs['azimuth'] |
|
2334 | # azimuth = kwargs['azimuth'] | |
2302 | # |
|
2335 | # | |
2303 | # if kwargs.has_key('crosspairsList'): |
|
2336 | # if kwargs.has_key('crosspairsList'): | |
2304 | # pairs = kwargs['crosspairsList'] |
|
2337 | # pairs = kwargs['crosspairsList'] | |
2305 | # else: |
|
2338 | # else: | |
2306 | # pairs = None |
|
2339 | # pairs = None | |
2307 | # |
|
2340 | # | |
2308 | # if kwargs.has_key('correctFactor'): |
|
2341 | # if kwargs.has_key('correctFactor'): | |
2309 | # correctFactor = kwargs['correctFactor'] |
|
2342 | # correctFactor = kwargs['correctFactor'] | |
2310 | # else: |
|
2343 | # else: | |
2311 | # correctFactor = 1 |
|
2344 | # correctFactor = 1 | |
2312 |
|
2345 | |||
2313 | # tau = dataOut.data_param |
|
2346 | # tau = dataOut.data_param | |
2314 | # _lambda = dataOut.C/dataOut.frequency |
|
2347 | # _lambda = dataOut.C/dataOut.frequency | |
2315 | # pairsList = dataOut.groupList |
|
2348 | # pairsList = dataOut.groupList | |
2316 | # nChannels = dataOut.nChannels |
|
2349 | # nChannels = dataOut.nChannels | |
2317 |
|
2350 | |||
2318 | kwargs['groupList'] = dataOut.groupList |
|
2351 | kwargs['groupList'] = dataOut.groupList | |
2319 | kwargs['tau'] = dataOut.data_param |
|
2352 | kwargs['tau'] = dataOut.data_param | |
2320 | kwargs['_lambda'] = dataOut.C/dataOut.frequency |
|
2353 | kwargs['_lambda'] = dataOut.C/dataOut.frequency | |
2321 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) |
|
2354 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) | |
2322 | dataOut.data_output = self.techniqueSA(kwargs) |
|
2355 | dataOut.data_output = self.techniqueSA(kwargs) | |
2323 | dataOut.utctimeInit = dataOut.utctime |
|
2356 | dataOut.utctimeInit = dataOut.utctime | |
2324 | dataOut.outputInterval = dataOut.timeInterval |
|
2357 | dataOut.outputInterval = dataOut.timeInterval | |
2325 |
|
2358 | |||
2326 | elif technique == 'Meteors': |
|
2359 | elif technique == 'Meteors': | |
2327 | dataOut.flagNoData = True |
|
2360 | dataOut.flagNoData = True | |
2328 | self.__dataReady = False |
|
2361 | self.__dataReady = False | |
2329 |
|
2362 | |||
2330 | if kwargs.has_key('nHours'): |
|
2363 | if kwargs.has_key('nHours'): | |
2331 | nHours = kwargs['nHours'] |
|
2364 | nHours = kwargs['nHours'] | |
2332 | else: |
|
2365 | else: | |
2333 | nHours = 1 |
|
2366 | nHours = 1 | |
2334 |
|
2367 | |||
2335 | if kwargs.has_key('meteorsPerBin'): |
|
2368 | if kwargs.has_key('meteorsPerBin'): | |
2336 | meteorThresh = kwargs['meteorsPerBin'] |
|
2369 | meteorThresh = kwargs['meteorsPerBin'] | |
2337 | else: |
|
2370 | else: | |
2338 | meteorThresh = 6 |
|
2371 | meteorThresh = 6 | |
2339 |
|
2372 | |||
2340 | if kwargs.has_key('hmin'): |
|
2373 | if kwargs.has_key('hmin'): | |
2341 | hmin = kwargs['hmin'] |
|
2374 | hmin = kwargs['hmin'] | |
2342 | else: hmin = 70 |
|
2375 | else: hmin = 70 | |
2343 | if kwargs.has_key('hmax'): |
|
2376 | if kwargs.has_key('hmax'): | |
2344 | hmax = kwargs['hmax'] |
|
2377 | hmax = kwargs['hmax'] | |
2345 | else: hmax = 110 |
|
2378 | else: hmax = 110 | |
2346 |
|
2379 | |||
2347 | dataOut.outputInterval = nHours*3600 |
|
2380 | dataOut.outputInterval = nHours*3600 | |
2348 |
|
2381 | |||
2349 | if self.__isConfig == False: |
|
2382 | if self.__isConfig == False: | |
2350 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2383 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2351 | #Get Initial LTC time |
|
2384 | #Get Initial LTC time | |
2352 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2385 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2353 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2386 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2354 |
|
2387 | |||
2355 | self.__isConfig = True |
|
2388 | self.__isConfig = True | |
2356 |
|
2389 | |||
2357 | if self.__buffer == None: |
|
2390 | if self.__buffer == None: | |
2358 | self.__buffer = dataOut.data_param |
|
2391 | self.__buffer = dataOut.data_param | |
2359 | self.__firstdata = copy.copy(dataOut) |
|
2392 | self.__firstdata = copy.copy(dataOut) | |
2360 |
|
2393 | |||
2361 | else: |
|
2394 | else: | |
2362 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2395 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2363 |
|
2396 | |||
2364 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2397 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2365 |
|
2398 | |||
2366 | if self.__dataReady: |
|
2399 | if self.__dataReady: | |
2367 | dataOut.utctimeInit = self.__initime |
|
2400 | dataOut.utctimeInit = self.__initime | |
2368 |
|
2401 | |||
2369 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2402 | self.__initime += dataOut.outputInterval #to erase time offset | |
2370 |
|
2403 | |||
2371 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) |
|
2404 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |
2372 | dataOut.flagNoData = False |
|
2405 | dataOut.flagNoData = False | |
2373 | self.__buffer = None |
|
2406 | self.__buffer = None | |
2374 |
|
2407 | |||
2375 | elif technique == 'Meteors1': |
|
2408 | elif technique == 'Meteors1': | |
2376 | dataOut.flagNoData = True |
|
2409 | dataOut.flagNoData = True | |
2377 | self.__dataReady = False |
|
2410 | self.__dataReady = False | |
2378 |
|
2411 | |||
2379 | if kwargs.has_key('nMins'): |
|
2412 | if kwargs.has_key('nMins'): | |
2380 | nMins = kwargs['nMins'] |
|
2413 | nMins = kwargs['nMins'] | |
2381 | else: nMins = 20 |
|
2414 | else: nMins = 20 | |
2382 | if kwargs.has_key('rx_location'): |
|
2415 | if kwargs.has_key('rx_location'): | |
2383 | rx_location = kwargs['rx_location'] |
|
2416 | rx_location = kwargs['rx_location'] | |
2384 | else: rx_location = [(0,1),(1,1),(1,0)] |
|
2417 | else: rx_location = [(0,1),(1,1),(1,0)] | |
2385 | if kwargs.has_key('azimuth'): |
|
2418 | if kwargs.has_key('azimuth'): | |
2386 | azimuth = kwargs['azimuth'] |
|
2419 | azimuth = kwargs['azimuth'] | |
2387 | else: azimuth = 51 |
|
2420 | else: azimuth = 51 | |
2388 | if kwargs.has_key('dfactor'): |
|
2421 | if kwargs.has_key('dfactor'): | |
2389 | dfactor = kwargs['dfactor'] |
|
2422 | dfactor = kwargs['dfactor'] | |
2390 | if kwargs.has_key('mode'): |
|
2423 | if kwargs.has_key('mode'): | |
2391 | mode = kwargs['mode'] |
|
2424 | mode = kwargs['mode'] | |
2392 | else: mode = 'SA' |
|
2425 | else: mode = 'SA' | |
2393 |
|
2426 | |||
2394 | #Borrar luego esto |
|
2427 | #Borrar luego esto | |
2395 | if dataOut.groupList == None: |
|
2428 | if dataOut.groupList == None: | |
2396 | dataOut.groupList = [(0,1),(0,2),(1,2)] |
|
2429 | dataOut.groupList = [(0,1),(0,2),(1,2)] | |
2397 | groupList = dataOut.groupList |
|
2430 | groupList = dataOut.groupList | |
2398 | C = 3e8 |
|
2431 | C = 3e8 | |
2399 | freq = 50e6 |
|
2432 | freq = 50e6 | |
2400 | lamb = C/freq |
|
2433 | lamb = C/freq | |
2401 | k = 2*numpy.pi/lamb |
|
2434 | k = 2*numpy.pi/lamb | |
2402 |
|
2435 | |||
2403 | timeList = dataOut.abscissaList |
|
2436 | timeList = dataOut.abscissaList | |
2404 | heightList = dataOut.heightList |
|
2437 | heightList = dataOut.heightList | |
2405 |
|
2438 | |||
2406 | if self.__isConfig == False: |
|
2439 | if self.__isConfig == False: | |
2407 | dataOut.outputInterval = nMins*60 |
|
2440 | dataOut.outputInterval = nMins*60 | |
2408 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2441 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2409 | #Get Initial LTC time |
|
2442 | #Get Initial LTC time | |
2410 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2443 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2411 | minuteAux = initime.minute |
|
2444 | minuteAux = initime.minute | |
2412 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) |
|
2445 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) | |
2413 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2446 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2414 |
|
2447 | |||
2415 | self.__isConfig = True |
|
2448 | self.__isConfig = True | |
2416 |
|
2449 | |||
2417 | if self.__buffer == None: |
|
2450 | if self.__buffer == None: | |
2418 | self.__buffer = dataOut.data_param |
|
2451 | self.__buffer = dataOut.data_param | |
2419 | self.__firstdata = copy.copy(dataOut) |
|
2452 | self.__firstdata = copy.copy(dataOut) | |
2420 |
|
2453 | |||
2421 | else: |
|
2454 | else: | |
2422 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2455 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2423 |
|
2456 | |||
2424 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2457 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2425 |
|
2458 | |||
2426 | if self.__dataReady: |
|
2459 | if self.__dataReady: | |
2427 | dataOut.utctimeInit = self.__initime |
|
2460 | dataOut.utctimeInit = self.__initime | |
2428 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2461 | self.__initime += dataOut.outputInterval #to erase time offset | |
2429 |
|
2462 | |||
2430 | metArray = self.__buffer |
|
2463 | metArray = self.__buffer | |
2431 | if mode == 'SA': |
|
2464 | if mode == 'SA': | |
2432 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) |
|
2465 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) | |
2433 | elif mode == 'DBS': |
|
2466 | elif mode == 'DBS': | |
2434 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList) |
|
2467 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList) | |
2435 | dataOut.data_output = dataOut.data_output.T |
|
2468 | dataOut.data_output = dataOut.data_output.T | |
2436 | dataOut.flagNoData = False |
|
2469 | dataOut.flagNoData = False | |
2437 | self.__buffer = None |
|
2470 | self.__buffer = None | |
2438 |
|
2471 | |||
2439 | return |
|
2472 | return | |
2440 |
|
2473 | |||
2441 | class EWDriftsEstimation(Operation): |
|
2474 | class EWDriftsEstimation(Operation): | |
2442 |
|
2475 | |||
2443 | def __init__(self): |
|
2476 | def __init__(self): | |
2444 | Operation.__init__(self) |
|
2477 | Operation.__init__(self) | |
2445 |
|
2478 | |||
2446 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
2479 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
2447 | listPhi = phi.tolist() |
|
2480 | listPhi = phi.tolist() | |
2448 | maxid = listPhi.index(max(listPhi)) |
|
2481 | maxid = listPhi.index(max(listPhi)) | |
2449 | minid = listPhi.index(min(listPhi)) |
|
2482 | minid = listPhi.index(min(listPhi)) | |
2450 |
|
2483 | |||
2451 | rango = range(len(phi)) |
|
2484 | rango = range(len(phi)) | |
2452 | # rango = numpy.delete(rango,maxid) |
|
2485 | # rango = numpy.delete(rango,maxid) | |
2453 |
|
2486 | |||
2454 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
2487 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
2455 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
2488 | heiRangAux = heiRang*math.cos(phi[minid]) | |
2456 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
2489 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
2457 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
2490 | heiRang1 = numpy.delete(heiRang1,indOut) | |
2458 |
|
2491 | |||
2459 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2492 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2460 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2493 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2461 |
|
2494 | |||
2462 | for i in rango: |
|
2495 | for i in rango: | |
2463 | x = heiRang*math.cos(phi[i]) |
|
2496 | x = heiRang*math.cos(phi[i]) | |
2464 | y1 = velRadial[i,:] |
|
2497 | y1 = velRadial[i,:] | |
2465 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
2498 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
2466 |
|
2499 | |||
2467 | x1 = heiRang1 |
|
2500 | x1 = heiRang1 | |
2468 | y11 = f1(x1) |
|
2501 | y11 = f1(x1) | |
2469 |
|
2502 | |||
2470 | y2 = SNR[i,:] |
|
2503 | y2 = SNR[i,:] | |
2471 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
2504 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
2472 | y21 = f2(x1) |
|
2505 | y21 = f2(x1) | |
2473 |
|
2506 | |||
2474 | velRadial1[i,:] = y11 |
|
2507 | velRadial1[i,:] = y11 | |
2475 | SNR1[i,:] = y21 |
|
2508 | SNR1[i,:] = y21 | |
2476 |
|
2509 | |||
2477 | return heiRang1, velRadial1, SNR1 |
|
2510 | return heiRang1, velRadial1, SNR1 | |
2478 |
|
2511 | |||
2479 | def run(self, dataOut, zenith, zenithCorrection): |
|
2512 | def run(self, dataOut, zenith, zenithCorrection): | |
2480 | heiRang = dataOut.heightList |
|
2513 | heiRang = dataOut.heightList | |
2481 | velRadial = dataOut.data_param[:,3,:] |
|
2514 | velRadial = dataOut.data_param[:,3,:] | |
2482 | SNR = dataOut.data_SNR |
|
2515 | SNR = dataOut.data_SNR | |
2483 |
|
2516 | |||
2484 | zenith = numpy.array(zenith) |
|
2517 | zenith = numpy.array(zenith) | |
2485 | zenith -= zenithCorrection |
|
2518 | zenith -= zenithCorrection | |
2486 | zenith *= numpy.pi/180 |
|
2519 | zenith *= numpy.pi/180 | |
2487 |
|
2520 | |||
2488 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) |
|
2521 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |
2489 |
|
2522 | |||
2490 | alp = zenith[0] |
|
2523 | alp = zenith[0] | |
2491 | bet = zenith[1] |
|
2524 | bet = zenith[1] | |
2492 |
|
2525 | |||
2493 | w_w = velRadial1[0,:] |
|
2526 | w_w = velRadial1[0,:] | |
2494 | w_e = velRadial1[1,:] |
|
2527 | w_e = velRadial1[1,:] | |
2495 |
|
2528 | |||
2496 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) |
|
2529 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |
2497 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) |
|
2530 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |
2498 |
|
2531 | |||
2499 | winds = numpy.vstack((u,w)) |
|
2532 | winds = numpy.vstack((u,w)) | |
2500 |
|
2533 | |||
2501 | dataOut.heightList = heiRang1 |
|
2534 | dataOut.heightList = heiRang1 | |
2502 | dataOut.data_output = winds |
|
2535 | dataOut.data_output = winds | |
2503 | dataOut.data_SNR = SNR1 |
|
2536 | dataOut.data_SNR = SNR1 | |
2504 |
|
2537 | |||
2505 | dataOut.utctimeInit = dataOut.utctime |
|
2538 | dataOut.utctimeInit = dataOut.utctime | |
2506 | dataOut.outputInterval = dataOut.timeInterval |
|
2539 | dataOut.outputInterval = dataOut.timeInterval | |
2507 | return |
|
2540 | return | |
2508 |
|
2541 | |||
2509 | #--------------- Non Specular Meteor ---------------- |
|
2542 | #--------------- Non Specular Meteor ---------------- | |
2510 |
|
2543 | |||
2511 | class NonSpecularMeteorDetection(Operation): |
|
2544 | class NonSpecularMeteorDetection(Operation): | |
2512 |
|
2545 | |||
2513 | def run(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): |
|
2546 | def run(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): | |
2514 | data_acf = self.dataOut.data_pre[0] |
|
2547 | data_acf = self.dataOut.data_pre[0] | |
2515 | data_ccf = self.dataOut.data_pre[1] |
|
2548 | data_ccf = self.dataOut.data_pre[1] | |
2516 |
|
2549 | |||
2517 | lamb = self.dataOut.C/self.dataOut.frequency |
|
2550 | lamb = self.dataOut.C/self.dataOut.frequency | |
2518 | tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt |
|
2551 | tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt | |
2519 | paramInterval = self.dataOut.paramInterval |
|
2552 | paramInterval = self.dataOut.paramInterval | |
2520 |
|
2553 | |||
2521 | nChannels = data_acf.shape[0] |
|
2554 | nChannels = data_acf.shape[0] | |
2522 | nLags = data_acf.shape[1] |
|
2555 | nLags = data_acf.shape[1] | |
2523 | nProfiles = data_acf.shape[2] |
|
2556 | nProfiles = data_acf.shape[2] | |
2524 | nHeights = self.dataOut.nHeights |
|
2557 | nHeights = self.dataOut.nHeights | |
2525 | nCohInt = self.dataOut.nCohInt |
|
2558 | nCohInt = self.dataOut.nCohInt | |
2526 | sec = numpy.round(nProfiles/self.dataOut.paramInterval) |
|
2559 | sec = numpy.round(nProfiles/self.dataOut.paramInterval) | |
2527 | heightList = self.dataOut.heightList |
|
2560 | heightList = self.dataOut.heightList | |
2528 | ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg |
|
2561 | ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg | |
2529 | utctime = self.dataOut.utctime |
|
2562 | utctime = self.dataOut.utctime | |
2530 |
|
2563 | |||
2531 | self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) |
|
2564 | self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) | |
2532 |
|
2565 | |||
2533 | #------------------------ SNR -------------------------------------- |
|
2566 | #------------------------ SNR -------------------------------------- | |
2534 | power = data_acf[:,0,:,:].real |
|
2567 | power = data_acf[:,0,:,:].real | |
2535 | noise = numpy.zeros(nChannels) |
|
2568 | noise = numpy.zeros(nChannels) | |
2536 | SNR = numpy.zeros(power.shape) |
|
2569 | SNR = numpy.zeros(power.shape) | |
2537 | for i in range(nChannels): |
|
2570 | for i in range(nChannels): | |
2538 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) |
|
2571 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) | |
2539 | SNR[i] = (power[i]-noise[i])/noise[i] |
|
2572 | SNR[i] = (power[i]-noise[i])/noise[i] | |
2540 | SNRm = numpy.nanmean(SNR, axis = 0) |
|
2573 | SNRm = numpy.nanmean(SNR, axis = 0) | |
2541 | SNRdB = 10*numpy.log10(SNR) |
|
2574 | SNRdB = 10*numpy.log10(SNR) | |
2542 |
|
2575 | |||
2543 | if mode == 'SA': |
|
2576 | if mode == 'SA': | |
2544 | nPairs = data_ccf.shape[0] |
|
2577 | nPairs = data_ccf.shape[0] | |
2545 | #---------------------- Coherence and Phase -------------------------- |
|
2578 | #---------------------- Coherence and Phase -------------------------- | |
2546 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2579 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) | |
2547 | # phase1 = numpy.copy(phase) |
|
2580 | # phase1 = numpy.copy(phase) | |
2548 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2581 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) | |
2549 |
|
2582 | |||
2550 | for p in range(nPairs): |
|
2583 | for p in range(nPairs): | |
2551 | ch0 = self.dataOut.groupList[p][0] |
|
2584 | ch0 = self.dataOut.groupList[p][0] | |
2552 | ch1 = self.dataOut.groupList[p][1] |
|
2585 | ch1 = self.dataOut.groupList[p][1] | |
2553 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) |
|
2586 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) | |
2554 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter |
|
2587 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter | |
2555 | # phase1[p,:,:] = numpy.angle(ccf) #median filter |
|
2588 | # phase1[p,:,:] = numpy.angle(ccf) #median filter | |
2556 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter |
|
2589 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter | |
2557 | # coh1[p,:,:] = numpy.abs(ccf) #median filter |
|
2590 | # coh1[p,:,:] = numpy.abs(ccf) #median filter | |
2558 | coh = numpy.nanmax(coh1, axis = 0) |
|
2591 | coh = numpy.nanmax(coh1, axis = 0) | |
2559 | # struc = numpy.ones((5,1)) |
|
2592 | # struc = numpy.ones((5,1)) | |
2560 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) |
|
2593 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) | |
2561 | #---------------------- Radial Velocity ---------------------------- |
|
2594 | #---------------------- Radial Velocity ---------------------------- | |
2562 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) |
|
2595 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) | |
2563 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) |
|
2596 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) | |
2564 |
|
2597 | |||
2565 | if allData: |
|
2598 | if allData: | |
2566 | boolMetFin = ~numpy.isnan(SNRm) |
|
2599 | boolMetFin = ~numpy.isnan(SNRm) | |
2567 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2600 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
2568 | else: |
|
2601 | else: | |
2569 | #------------------------ Meteor mask --------------------------------- |
|
2602 | #------------------------ Meteor mask --------------------------------- | |
2570 | # #SNR mask |
|
2603 | # #SNR mask | |
2571 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) |
|
2604 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) | |
2572 | # |
|
2605 | # | |
2573 | # #Erase small objects |
|
2606 | # #Erase small objects | |
2574 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) |
|
2607 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) | |
2575 | # |
|
2608 | # | |
2576 | # auxEEJ = numpy.sum(boolMet1,axis=0) |
|
2609 | # auxEEJ = numpy.sum(boolMet1,axis=0) | |
2577 | # indOver = auxEEJ>nProfiles*0.8 #Use this later |
|
2610 | # indOver = auxEEJ>nProfiles*0.8 #Use this later | |
2578 | # indEEJ = numpy.where(indOver)[0] |
|
2611 | # indEEJ = numpy.where(indOver)[0] | |
2579 | # indNEEJ = numpy.where(~indOver)[0] |
|
2612 | # indNEEJ = numpy.where(~indOver)[0] | |
2580 | # |
|
2613 | # | |
2581 | # boolMetFin = boolMet1 |
|
2614 | # boolMetFin = boolMet1 | |
2582 | # |
|
2615 | # | |
2583 | # if indEEJ.size > 0: |
|
2616 | # if indEEJ.size > 0: | |
2584 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ |
|
2617 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ | |
2585 | # |
|
2618 | # | |
2586 | # boolMet2 = coh > cohThresh |
|
2619 | # boolMet2 = coh > cohThresh | |
2587 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) |
|
2620 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) | |
2588 | # |
|
2621 | # | |
2589 | # #Final Meteor mask |
|
2622 | # #Final Meteor mask | |
2590 | # boolMetFin = boolMet1|boolMet2 |
|
2623 | # boolMetFin = boolMet1|boolMet2 | |
2591 |
|
2624 | |||
2592 | #Coherence mask |
|
2625 | #Coherence mask | |
2593 | boolMet1 = coh > 0.75 |
|
2626 | boolMet1 = coh > 0.75 | |
2594 | struc = numpy.ones((30,1)) |
|
2627 | struc = numpy.ones((30,1)) | |
2595 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) |
|
2628 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) | |
2596 |
|
2629 | |||
2597 | #Derivative mask |
|
2630 | #Derivative mask | |
2598 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2631 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
2599 | boolMet2 = derPhase < 0.2 |
|
2632 | boolMet2 = derPhase < 0.2 | |
2600 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) |
|
2633 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) | |
2601 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) |
|
2634 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) | |
2602 | boolMet2 = ndimage.median_filter(boolMet2,size=5) |
|
2635 | boolMet2 = ndimage.median_filter(boolMet2,size=5) | |
2603 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) |
|
2636 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) | |
2604 | # #Final mask |
|
2637 | # #Final mask | |
2605 | # boolMetFin = boolMet2 |
|
2638 | # boolMetFin = boolMet2 | |
2606 | boolMetFin = boolMet1&boolMet2 |
|
2639 | boolMetFin = boolMet1&boolMet2 | |
2607 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) |
|
2640 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) | |
2608 | #Creating data_param |
|
2641 | #Creating data_param | |
2609 | coordMet = numpy.where(boolMetFin) |
|
2642 | coordMet = numpy.where(boolMetFin) | |
2610 |
|
2643 | |||
2611 | tmet = coordMet[0] |
|
2644 | tmet = coordMet[0] | |
2612 | hmet = coordMet[1] |
|
2645 | hmet = coordMet[1] | |
2613 |
|
2646 | |||
2614 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) |
|
2647 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) | |
2615 | data_param[:,0] = utctime |
|
2648 | data_param[:,0] = utctime | |
2616 | data_param[:,1] = tmet |
|
2649 | data_param[:,1] = tmet | |
2617 | data_param[:,2] = hmet |
|
2650 | data_param[:,2] = hmet | |
2618 | data_param[:,3] = SNRm[tmet,hmet] |
|
2651 | data_param[:,3] = SNRm[tmet,hmet] | |
2619 | data_param[:,4] = velRad[tmet,hmet] |
|
2652 | data_param[:,4] = velRad[tmet,hmet] | |
2620 | data_param[:,5] = coh[tmet,hmet] |
|
2653 | data_param[:,5] = coh[tmet,hmet] | |
2621 | data_param[:,6:] = phase[:,tmet,hmet].T |
|
2654 | data_param[:,6:] = phase[:,tmet,hmet].T | |
2622 |
|
2655 | |||
2623 | elif mode == 'DBS': |
|
2656 | elif mode == 'DBS': | |
2624 | self.dataOut.groupList = numpy.arange(nChannels) |
|
2657 | self.dataOut.groupList = numpy.arange(nChannels) | |
2625 |
|
2658 | |||
2626 | #Radial Velocities |
|
2659 | #Radial Velocities | |
2627 | # phase = numpy.angle(data_acf[:,1,:,:]) |
|
2660 | # phase = numpy.angle(data_acf[:,1,:,:]) | |
2628 | phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2661 | phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) | |
2629 | velRad = phase*lamb/(4*numpy.pi*tSamp) |
|
2662 | velRad = phase*lamb/(4*numpy.pi*tSamp) | |
2630 |
|
2663 | |||
2631 | #Spectral width |
|
2664 | #Spectral width | |
2632 | acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2665 | acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) | |
2633 | acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) |
|
2666 | acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) | |
2634 |
|
2667 | |||
2635 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) |
|
2668 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) | |
2636 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) |
|
2669 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) | |
2637 | if allData: |
|
2670 | if allData: | |
2638 | boolMetFin = ~numpy.isnan(SNRdB) |
|
2671 | boolMetFin = ~numpy.isnan(SNRdB) | |
2639 | else: |
|
2672 | else: | |
2640 | #SNR |
|
2673 | #SNR | |
2641 | boolMet1 = (SNRdB>SNRthresh) #SNR mask |
|
2674 | boolMet1 = (SNRdB>SNRthresh) #SNR mask | |
2642 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) |
|
2675 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) | |
2643 |
|
2676 | |||
2644 | #Radial velocity |
|
2677 | #Radial velocity | |
2645 | boolMet2 = numpy.abs(velRad) < 30 |
|
2678 | boolMet2 = numpy.abs(velRad) < 30 | |
2646 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) |
|
2679 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) | |
2647 |
|
2680 | |||
2648 | #Spectral Width |
|
2681 | #Spectral Width | |
2649 | boolMet3 = spcWidth < 30 |
|
2682 | boolMet3 = spcWidth < 30 | |
2650 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) |
|
2683 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) | |
2651 | # boolMetFin = self.__erase_small(boolMet1, 10,5) |
|
2684 | # boolMetFin = self.__erase_small(boolMet1, 10,5) | |
2652 | boolMetFin = boolMet1&boolMet2&boolMet3 |
|
2685 | boolMetFin = boolMet1&boolMet2&boolMet3 | |
2653 |
|
2686 | |||
2654 | #Creating data_param |
|
2687 | #Creating data_param | |
2655 | coordMet = numpy.where(boolMetFin) |
|
2688 | coordMet = numpy.where(boolMetFin) | |
2656 |
|
2689 | |||
2657 | cmet = coordMet[0] |
|
2690 | cmet = coordMet[0] | |
2658 | tmet = coordMet[1] |
|
2691 | tmet = coordMet[1] | |
2659 | hmet = coordMet[2] |
|
2692 | hmet = coordMet[2] | |
2660 |
|
2693 | |||
2661 | data_param = numpy.zeros((tmet.size, 7)) |
|
2694 | data_param = numpy.zeros((tmet.size, 7)) | |
2662 | data_param[:,0] = utctime |
|
2695 | data_param[:,0] = utctime | |
2663 | data_param[:,1] = cmet |
|
2696 | data_param[:,1] = cmet | |
2664 | data_param[:,2] = tmet |
|
2697 | data_param[:,2] = tmet | |
2665 | data_param[:,3] = hmet |
|
2698 | data_param[:,3] = hmet | |
2666 | data_param[:,4] = SNR[cmet,tmet,hmet].T |
|
2699 | data_param[:,4] = SNR[cmet,tmet,hmet].T | |
2667 | data_param[:,5] = velRad[cmet,tmet,hmet].T |
|
2700 | data_param[:,5] = velRad[cmet,tmet,hmet].T | |
2668 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T |
|
2701 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T | |
2669 |
|
2702 | |||
2670 | # self.dataOut.data_param = data_int |
|
2703 | # self.dataOut.data_param = data_int | |
2671 | if len(data_param) == 0: |
|
2704 | if len(data_param) == 0: | |
2672 | self.dataOut.flagNoData = True |
|
2705 | self.dataOut.flagNoData = True | |
2673 | else: |
|
2706 | else: | |
2674 | self.dataOut.data_param = data_param |
|
2707 | self.dataOut.data_param = data_param | |
2675 |
|
2708 | |||
2676 | def __erase_small(self, binArray, threshX, threshY): |
|
2709 | def __erase_small(self, binArray, threshX, threshY): | |
2677 | labarray, numfeat = ndimage.measurements.label(binArray) |
|
2710 | labarray, numfeat = ndimage.measurements.label(binArray) | |
2678 | binArray1 = numpy.copy(binArray) |
|
2711 | binArray1 = numpy.copy(binArray) | |
2679 |
|
2712 | |||
2680 | for i in range(1,numfeat + 1): |
|
2713 | for i in range(1,numfeat + 1): | |
2681 | auxBin = (labarray==i) |
|
2714 | auxBin = (labarray==i) | |
2682 | auxSize = auxBin.sum() |
|
2715 | auxSize = auxBin.sum() | |
2683 |
|
2716 | |||
2684 | x,y = numpy.where(auxBin) |
|
2717 | x,y = numpy.where(auxBin) | |
2685 | widthX = x.max() - x.min() |
|
2718 | widthX = x.max() - x.min() | |
2686 | widthY = y.max() - y.min() |
|
2719 | widthY = y.max() - y.min() | |
2687 |
|
2720 | |||
2688 | #width X: 3 seg -> 12.5*3 |
|
2721 | #width X: 3 seg -> 12.5*3 | |
2689 | #width Y: |
|
2722 | #width Y: | |
2690 |
|
2723 | |||
2691 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): |
|
2724 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): | |
2692 | binArray1[auxBin] = False |
|
2725 | binArray1[auxBin] = False | |
2693 |
|
2726 | |||
2694 | return binArray1 |
|
2727 | return binArray1 | |
2695 |
|
2728 | |||
2696 | #--------------- Specular Meteor ---------------- |
|
2729 | #--------------- Specular Meteor ---------------- | |
2697 |
|
2730 | |||
2698 | class SMDetection(Operation): |
|
2731 | class SMDetection(Operation): | |
2699 | ''' |
|
2732 | ''' | |
2700 | Function DetectMeteors() |
|
2733 | Function DetectMeteors() | |
2701 | Project developed with paper: |
|
2734 | Project developed with paper: | |
2702 | HOLDSWORTH ET AL. 2004 |
|
2735 | HOLDSWORTH ET AL. 2004 | |
2703 |
|
2736 | |||
2704 | Input: |
|
2737 | Input: | |
2705 | self.dataOut.data_pre |
|
2738 | self.dataOut.data_pre | |
2706 |
|
2739 | |||
2707 | centerReceiverIndex: From the channels, which is the center receiver |
|
2740 | centerReceiverIndex: From the channels, which is the center receiver | |
2708 |
|
2741 | |||
2709 | hei_ref: Height reference for the Beacon signal extraction |
|
2742 | hei_ref: Height reference for the Beacon signal extraction | |
2710 | tauindex: |
|
2743 | tauindex: | |
2711 | predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
2744 | predefinedPhaseShifts: Predefined phase offset for the voltge signals | |
2712 |
|
2745 | |||
2713 | cohDetection: Whether to user Coherent detection or not |
|
2746 | cohDetection: Whether to user Coherent detection or not | |
2714 | cohDet_timeStep: Coherent Detection calculation time step |
|
2747 | cohDet_timeStep: Coherent Detection calculation time step | |
2715 | cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
2748 | cohDet_thresh: Coherent Detection phase threshold to correct phases | |
2716 |
|
2749 | |||
2717 | noise_timeStep: Noise calculation time step |
|
2750 | noise_timeStep: Noise calculation time step | |
2718 | noise_multiple: Noise multiple to define signal threshold |
|
2751 | noise_multiple: Noise multiple to define signal threshold | |
2719 |
|
2752 | |||
2720 | multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
2753 | multDet_timeLimit: Multiple Detection Removal time limit in seconds | |
2721 | multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
2754 | multDet_rangeLimit: Multiple Detection Removal range limit in km | |
2722 |
|
2755 | |||
2723 | phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
2756 | phaseThresh: Maximum phase difference between receiver to be consider a meteor | |
2724 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
2757 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |
2725 |
|
2758 | |||
2726 | hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
2759 | hmin: Minimum Height of the meteor to use it in the further wind estimations | |
2727 | hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
2760 | hmax: Maximum Height of the meteor to use it in the further wind estimations | |
2728 | azimuth: Azimuth angle correction |
|
2761 | azimuth: Azimuth angle correction | |
2729 |
|
2762 | |||
2730 | Affected: |
|
2763 | Affected: | |
2731 | self.dataOut.data_param |
|
2764 | self.dataOut.data_param | |
2732 |
|
2765 | |||
2733 | Rejection Criteria (Errors): |
|
2766 | Rejection Criteria (Errors): | |
2734 | 0: No error; analysis OK |
|
2767 | 0: No error; analysis OK | |
2735 | 1: SNR < SNR threshold |
|
2768 | 1: SNR < SNR threshold | |
2736 | 2: angle of arrival (AOA) ambiguously determined |
|
2769 | 2: angle of arrival (AOA) ambiguously determined | |
2737 | 3: AOA estimate not feasible |
|
2770 | 3: AOA estimate not feasible | |
2738 | 4: Large difference in AOAs obtained from different antenna baselines |
|
2771 | 4: Large difference in AOAs obtained from different antenna baselines | |
2739 | 5: echo at start or end of time series |
|
2772 | 5: echo at start or end of time series | |
2740 | 6: echo less than 5 examples long; too short for analysis |
|
2773 | 6: echo less than 5 examples long; too short for analysis | |
2741 | 7: echo rise exceeds 0.3s |
|
2774 | 7: echo rise exceeds 0.3s | |
2742 | 8: echo decay time less than twice rise time |
|
2775 | 8: echo decay time less than twice rise time | |
2743 | 9: large power level before echo |
|
2776 | 9: large power level before echo | |
2744 | 10: large power level after echo |
|
2777 | 10: large power level after echo | |
2745 | 11: poor fit to amplitude for estimation of decay time |
|
2778 | 11: poor fit to amplitude for estimation of decay time | |
2746 | 12: poor fit to CCF phase variation for estimation of radial drift velocity |
|
2779 | 12: poor fit to CCF phase variation for estimation of radial drift velocity | |
2747 | 13: height unresolvable echo: not valid height within 70 to 110 km |
|
2780 | 13: height unresolvable echo: not valid height within 70 to 110 km | |
2748 | 14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
2781 | 14: height ambiguous echo: more then one possible height within 70 to 110 km | |
2749 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
2782 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |
2750 | 16: oscilatory echo, indicating event most likely not an underdense echo |
|
2783 | 16: oscilatory echo, indicating event most likely not an underdense echo | |
2751 |
|
2784 | |||
2752 | 17: phase difference in meteor Reestimation |
|
2785 | 17: phase difference in meteor Reestimation | |
2753 |
|
2786 | |||
2754 | Data Storage: |
|
2787 | Data Storage: | |
2755 | Meteors for Wind Estimation (8): |
|
2788 | Meteors for Wind Estimation (8): | |
2756 | Utc Time | Range Height |
|
2789 | Utc Time | Range Height | |
2757 | Azimuth Zenith errorCosDir |
|
2790 | Azimuth Zenith errorCosDir | |
2758 | VelRad errorVelRad |
|
2791 | VelRad errorVelRad | |
2759 | Phase0 Phase1 Phase2 Phase3 |
|
2792 | Phase0 Phase1 Phase2 Phase3 | |
2760 | TypeError |
|
2793 | TypeError | |
2761 |
|
2794 | |||
2762 | ''' |
|
2795 | ''' | |
2763 |
|
2796 | |||
2764 | def run(self, dataOut, hei_ref = None, tauindex = 0, |
|
2797 | def run(self, dataOut, hei_ref = None, tauindex = 0, | |
2765 | phaseOffsets = None, |
|
2798 | phaseOffsets = None, | |
2766 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, |
|
2799 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |
2767 | noise_timeStep = 4, noise_multiple = 4, |
|
2800 | noise_timeStep = 4, noise_multiple = 4, | |
2768 | multDet_timeLimit = 1, multDet_rangeLimit = 3, |
|
2801 | multDet_timeLimit = 1, multDet_rangeLimit = 3, | |
2769 | phaseThresh = 20, SNRThresh = 5, |
|
2802 | phaseThresh = 20, SNRThresh = 5, | |
2770 | hmin = 50, hmax=150, azimuth = 0, |
|
2803 | hmin = 50, hmax=150, azimuth = 0, | |
2771 | channelPositions = None) : |
|
2804 | channelPositions = None) : | |
2772 |
|
2805 | |||
2773 |
|
2806 | |||
2774 | #Getting Pairslist |
|
2807 | #Getting Pairslist | |
2775 | if channelPositions == None: |
|
2808 | if channelPositions == None: | |
2776 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
2809 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
2777 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
2810 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
2778 | meteorOps = SMOperations() |
|
2811 | meteorOps = SMOperations() | |
2779 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
2812 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
2780 | heiRang = dataOut.getHeiRange() |
|
2813 | heiRang = dataOut.getHeiRange() | |
2781 | #Get Beacon signal - No Beacon signal anymore |
|
2814 | #Get Beacon signal - No Beacon signal anymore | |
2782 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
2815 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
2783 | # |
|
2816 | # | |
2784 | # if hei_ref != None: |
|
2817 | # if hei_ref != None: | |
2785 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
2818 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
2786 | # |
|
2819 | # | |
2787 |
|
2820 | |||
2788 |
|
2821 | |||
2789 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** |
|
2822 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |
2790 | # see if the user put in pre defined phase shifts |
|
2823 | # see if the user put in pre defined phase shifts | |
2791 | voltsPShift = dataOut.data_pre.copy() |
|
2824 | voltsPShift = dataOut.data_pre.copy() | |
2792 |
|
2825 | |||
2793 | # if predefinedPhaseShifts != None: |
|
2826 | # if predefinedPhaseShifts != None: | |
2794 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 |
|
2827 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |
2795 | # |
|
2828 | # | |
2796 | # # elif beaconPhaseShifts: |
|
2829 | # # elif beaconPhaseShifts: | |
2797 | # # #get hardware phase shifts using beacon signal |
|
2830 | # # #get hardware phase shifts using beacon signal | |
2798 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) |
|
2831 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |
2799 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) |
|
2832 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |
2800 | # |
|
2833 | # | |
2801 | # else: |
|
2834 | # else: | |
2802 | # hardwarePhaseShifts = numpy.zeros(5) |
|
2835 | # hardwarePhaseShifts = numpy.zeros(5) | |
2803 | # |
|
2836 | # | |
2804 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') |
|
2837 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |
2805 | # for i in range(self.dataOut.data_pre.shape[0]): |
|
2838 | # for i in range(self.dataOut.data_pre.shape[0]): | |
2806 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) |
|
2839 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |
2807 |
|
2840 | |||
2808 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* |
|
2841 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |
2809 |
|
2842 | |||
2810 | #Remove DC |
|
2843 | #Remove DC | |
2811 | voltsDC = numpy.mean(voltsPShift,1) |
|
2844 | voltsDC = numpy.mean(voltsPShift,1) | |
2812 | voltsDC = numpy.mean(voltsDC,1) |
|
2845 | voltsDC = numpy.mean(voltsDC,1) | |
2813 | for i in range(voltsDC.shape[0]): |
|
2846 | for i in range(voltsDC.shape[0]): | |
2814 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] |
|
2847 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |
2815 |
|
2848 | |||
2816 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift |
|
2849 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |
2817 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] |
|
2850 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |
2818 |
|
2851 | |||
2819 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** |
|
2852 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |
2820 | #Coherent Detection |
|
2853 | #Coherent Detection | |
2821 | if cohDetection: |
|
2854 | if cohDetection: | |
2822 | #use coherent detection to get the net power |
|
2855 | #use coherent detection to get the net power | |
2823 | cohDet_thresh = cohDet_thresh*numpy.pi/180 |
|
2856 | cohDet_thresh = cohDet_thresh*numpy.pi/180 | |
2824 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) |
|
2857 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) | |
2825 |
|
2858 | |||
2826 | #Non-coherent detection! |
|
2859 | #Non-coherent detection! | |
2827 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) |
|
2860 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |
2828 | #********** END OF COH/NON-COH POWER CALCULATION********************** |
|
2861 | #********** END OF COH/NON-COH POWER CALCULATION********************** | |
2829 |
|
2862 | |||
2830 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** |
|
2863 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |
2831 | #Get noise |
|
2864 | #Get noise | |
2832 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) |
|
2865 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) | |
2833 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) |
|
2866 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) | |
2834 | #Get signal threshold |
|
2867 | #Get signal threshold | |
2835 | signalThresh = noise_multiple*noise |
|
2868 | signalThresh = noise_multiple*noise | |
2836 | #Meteor echoes detection |
|
2869 | #Meteor echoes detection | |
2837 | listMeteors = self.__findMeteors(powerNet, signalThresh) |
|
2870 | listMeteors = self.__findMeteors(powerNet, signalThresh) | |
2838 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** |
|
2871 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |
2839 |
|
2872 | |||
2840 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** |
|
2873 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |
2841 | #Parameters |
|
2874 | #Parameters | |
2842 | heiRange = dataOut.getHeiRange() |
|
2875 | heiRange = dataOut.getHeiRange() | |
2843 | rangeInterval = heiRange[1] - heiRange[0] |
|
2876 | rangeInterval = heiRange[1] - heiRange[0] | |
2844 | rangeLimit = multDet_rangeLimit/rangeInterval |
|
2877 | rangeLimit = multDet_rangeLimit/rangeInterval | |
2845 | timeLimit = multDet_timeLimit/dataOut.timeInterval |
|
2878 | timeLimit = multDet_timeLimit/dataOut.timeInterval | |
2846 | #Multiple detection removals |
|
2879 | #Multiple detection removals | |
2847 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) |
|
2880 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |
2848 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** |
|
2881 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |
2849 |
|
2882 | |||
2850 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** |
|
2883 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |
2851 | #Parameters |
|
2884 | #Parameters | |
2852 | phaseThresh = phaseThresh*numpy.pi/180 |
|
2885 | phaseThresh = phaseThresh*numpy.pi/180 | |
2853 | thresh = [phaseThresh, noise_multiple, SNRThresh] |
|
2886 | thresh = [phaseThresh, noise_multiple, SNRThresh] | |
2854 | #Meteor reestimation (Errors N 1, 6, 12, 17) |
|
2887 | #Meteor reestimation (Errors N 1, 6, 12, 17) | |
2855 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) |
|
2888 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) | |
2856 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) |
|
2889 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) | |
2857 | #Estimation of decay times (Errors N 7, 8, 11) |
|
2890 | #Estimation of decay times (Errors N 7, 8, 11) | |
2858 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) |
|
2891 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) | |
2859 | #******************* END OF METEOR REESTIMATION ******************* |
|
2892 | #******************* END OF METEOR REESTIMATION ******************* | |
2860 |
|
2893 | |||
2861 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** |
|
2894 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |
2862 | #Calculating Radial Velocity (Error N 15) |
|
2895 | #Calculating Radial Velocity (Error N 15) | |
2863 | radialStdThresh = 10 |
|
2896 | radialStdThresh = 10 | |
2864 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) |
|
2897 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) | |
2865 |
|
2898 | |||
2866 | if len(listMeteors4) > 0: |
|
2899 | if len(listMeteors4) > 0: | |
2867 | #Setting New Array |
|
2900 | #Setting New Array | |
2868 | date = dataOut.utctime |
|
2901 | date = dataOut.utctime | |
2869 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) |
|
2902 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |
2870 |
|
2903 | |||
2871 | #Correcting phase offset |
|
2904 | #Correcting phase offset | |
2872 | if phaseOffsets != None: |
|
2905 | if phaseOffsets != None: | |
2873 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
2906 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
2874 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
2907 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
2875 |
|
2908 | |||
2876 | #Second Pairslist |
|
2909 | #Second Pairslist | |
2877 | pairsList = [] |
|
2910 | pairsList = [] | |
2878 | pairx = (0,1) |
|
2911 | pairx = (0,1) | |
2879 | pairy = (2,3) |
|
2912 | pairy = (2,3) | |
2880 | pairsList.append(pairx) |
|
2913 | pairsList.append(pairx) | |
2881 | pairsList.append(pairy) |
|
2914 | pairsList.append(pairy) | |
2882 |
|
2915 | |||
2883 | jph = numpy.array([0,0,0,0]) |
|
2916 | jph = numpy.array([0,0,0,0]) | |
2884 | h = (hmin,hmax) |
|
2917 | h = (hmin,hmax) | |
2885 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
2918 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
2886 |
|
2919 | |||
2887 | # #Calculate AOA (Error N 3, 4) |
|
2920 | # #Calculate AOA (Error N 3, 4) | |
2888 | # #JONES ET AL. 1998 |
|
2921 | # #JONES ET AL. 1998 | |
2889 | # error = arrayParameters[:,-1] |
|
2922 | # error = arrayParameters[:,-1] | |
2890 | # AOAthresh = numpy.pi/8 |
|
2923 | # AOAthresh = numpy.pi/8 | |
2891 | # phases = -arrayParameters[:,9:13] |
|
2924 | # phases = -arrayParameters[:,9:13] | |
2892 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
2925 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |
2893 | # |
|
2926 | # | |
2894 | # #Calculate Heights (Error N 13 and 14) |
|
2927 | # #Calculate Heights (Error N 13 and 14) | |
2895 | # error = arrayParameters[:,-1] |
|
2928 | # error = arrayParameters[:,-1] | |
2896 | # Ranges = arrayParameters[:,2] |
|
2929 | # Ranges = arrayParameters[:,2] | |
2897 | # zenith = arrayParameters[:,5] |
|
2930 | # zenith = arrayParameters[:,5] | |
2898 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) |
|
2931 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) | |
2899 | # error = arrayParameters[:,-1] |
|
2932 | # error = arrayParameters[:,-1] | |
2900 | #********************* END OF PARAMETERS CALCULATION ************************** |
|
2933 | #********************* END OF PARAMETERS CALCULATION ************************** | |
2901 |
|
2934 | |||
2902 | #***************************+ PASS DATA TO NEXT STEP ********************** |
|
2935 | #***************************+ PASS DATA TO NEXT STEP ********************** | |
2903 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) |
|
2936 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) | |
2904 | dataOut.data_param = arrayParameters |
|
2937 | dataOut.data_param = arrayParameters | |
2905 |
|
2938 | |||
2906 | if arrayParameters == None: |
|
2939 | if arrayParameters == None: | |
2907 | dataOut.flagNoData = True |
|
2940 | dataOut.flagNoData = True | |
2908 | else: |
|
2941 | else: | |
2909 | dataOut.flagNoData = True |
|
2942 | dataOut.flagNoData = True | |
2910 |
|
2943 | |||
2911 | return |
|
2944 | return | |
2912 |
|
2945 | |||
2913 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): |
|
2946 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |
2914 |
|
2947 | |||
2915 | minIndex = min(newheis[0]) |
|
2948 | minIndex = min(newheis[0]) | |
2916 | maxIndex = max(newheis[0]) |
|
2949 | maxIndex = max(newheis[0]) | |
2917 |
|
2950 | |||
2918 | voltage = voltage0[:,:,minIndex:maxIndex+1] |
|
2951 | voltage = voltage0[:,:,minIndex:maxIndex+1] | |
2919 | nLength = voltage.shape[1]/n |
|
2952 | nLength = voltage.shape[1]/n | |
2920 | nMin = 0 |
|
2953 | nMin = 0 | |
2921 | nMax = 0 |
|
2954 | nMax = 0 | |
2922 | phaseOffset = numpy.zeros((len(pairslist),n)) |
|
2955 | phaseOffset = numpy.zeros((len(pairslist),n)) | |
2923 |
|
2956 | |||
2924 | for i in range(n): |
|
2957 | for i in range(n): | |
2925 | nMax += nLength |
|
2958 | nMax += nLength | |
2926 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) |
|
2959 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |
2927 | phaseCCF = numpy.mean(phaseCCF, axis = 2) |
|
2960 | phaseCCF = numpy.mean(phaseCCF, axis = 2) | |
2928 | phaseOffset[:,i] = phaseCCF.transpose() |
|
2961 | phaseOffset[:,i] = phaseCCF.transpose() | |
2929 | nMin = nMax |
|
2962 | nMin = nMax | |
2930 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) |
|
2963 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |
2931 |
|
2964 | |||
2932 | #Remove Outliers |
|
2965 | #Remove Outliers | |
2933 | factor = 2 |
|
2966 | factor = 2 | |
2934 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) |
|
2967 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |
2935 | dw = numpy.std(wt,axis = 1) |
|
2968 | dw = numpy.std(wt,axis = 1) | |
2936 | dw = dw.reshape((dw.size,1)) |
|
2969 | dw = dw.reshape((dw.size,1)) | |
2937 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) |
|
2970 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |
2938 | phaseOffset[ind] = numpy.nan |
|
2971 | phaseOffset[ind] = numpy.nan | |
2939 | phaseOffset = stats.nanmean(phaseOffset, axis=1) |
|
2972 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |
2940 |
|
2973 | |||
2941 | return phaseOffset |
|
2974 | return phaseOffset | |
2942 |
|
2975 | |||
2943 | def __shiftPhase(self, data, phaseShift): |
|
2976 | def __shiftPhase(self, data, phaseShift): | |
2944 | #this will shift the phase of a complex number |
|
2977 | #this will shift the phase of a complex number | |
2945 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) |
|
2978 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |
2946 | return dataShifted |
|
2979 | return dataShifted | |
2947 |
|
2980 | |||
2948 | def __estimatePhaseDifference(self, array, pairslist): |
|
2981 | def __estimatePhaseDifference(self, array, pairslist): | |
2949 | nChannel = array.shape[0] |
|
2982 | nChannel = array.shape[0] | |
2950 | nHeights = array.shape[2] |
|
2983 | nHeights = array.shape[2] | |
2951 | numPairs = len(pairslist) |
|
2984 | numPairs = len(pairslist) | |
2952 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) |
|
2985 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |
2953 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) |
|
2986 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |
2954 |
|
2987 | |||
2955 | #Correct phases |
|
2988 | #Correct phases | |
2956 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] |
|
2989 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |
2957 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
2990 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
2958 |
|
2991 | |||
2959 | if indDer[0].shape[0] > 0: |
|
2992 | if indDer[0].shape[0] > 0: | |
2960 | for i in range(indDer[0].shape[0]): |
|
2993 | for i in range(indDer[0].shape[0]): | |
2961 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) |
|
2994 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |
2962 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi |
|
2995 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |
2963 |
|
2996 | |||
2964 | # for j in range(numSides): |
|
2997 | # for j in range(numSides): | |
2965 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) |
|
2998 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |
2966 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) |
|
2999 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |
2967 | # |
|
3000 | # | |
2968 | #Linear |
|
3001 | #Linear | |
2969 | phaseInt = numpy.zeros((numPairs,1)) |
|
3002 | phaseInt = numpy.zeros((numPairs,1)) | |
2970 | angAllCCF = phaseCCF[:,[0,1,3,4],0] |
|
3003 | angAllCCF = phaseCCF[:,[0,1,3,4],0] | |
2971 | for j in range(numPairs): |
|
3004 | for j in range(numPairs): | |
2972 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) |
|
3005 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) | |
2973 | phaseInt[j] = fit[1] |
|
3006 | phaseInt[j] = fit[1] | |
2974 | #Phase Differences |
|
3007 | #Phase Differences | |
2975 | phaseDiff = phaseInt - phaseCCF[:,2,:] |
|
3008 | phaseDiff = phaseInt - phaseCCF[:,2,:] | |
2976 | phaseArrival = phaseInt.reshape(phaseInt.size) |
|
3009 | phaseArrival = phaseInt.reshape(phaseInt.size) | |
2977 |
|
3010 | |||
2978 | #Dealias |
|
3011 | #Dealias | |
2979 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) |
|
3012 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) | |
2980 | # indAlias = numpy.where(phaseArrival > numpy.pi) |
|
3013 | # indAlias = numpy.where(phaseArrival > numpy.pi) | |
2981 | # phaseArrival[indAlias] -= 2*numpy.pi |
|
3014 | # phaseArrival[indAlias] -= 2*numpy.pi | |
2982 | # indAlias = numpy.where(phaseArrival < -numpy.pi) |
|
3015 | # indAlias = numpy.where(phaseArrival < -numpy.pi) | |
2983 | # phaseArrival[indAlias] += 2*numpy.pi |
|
3016 | # phaseArrival[indAlias] += 2*numpy.pi | |
2984 |
|
3017 | |||
2985 | return phaseDiff, phaseArrival |
|
3018 | return phaseDiff, phaseArrival | |
2986 |
|
3019 | |||
2987 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): |
|
3020 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |
2988 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power |
|
3021 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |
2989 | #find the phase shifts of each channel over 1 second intervals |
|
3022 | #find the phase shifts of each channel over 1 second intervals | |
2990 | #only look at ranges below the beacon signal |
|
3023 | #only look at ranges below the beacon signal | |
2991 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
3024 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
2992 | numBlocks = int(volts.shape[1]/numProfPerBlock) |
|
3025 | numBlocks = int(volts.shape[1]/numProfPerBlock) | |
2993 | numHeights = volts.shape[2] |
|
3026 | numHeights = volts.shape[2] | |
2994 | nChannel = volts.shape[0] |
|
3027 | nChannel = volts.shape[0] | |
2995 | voltsCohDet = volts.copy() |
|
3028 | voltsCohDet = volts.copy() | |
2996 |
|
3029 | |||
2997 | pairsarray = numpy.array(pairslist) |
|
3030 | pairsarray = numpy.array(pairslist) | |
2998 | indSides = pairsarray[:,1] |
|
3031 | indSides = pairsarray[:,1] | |
2999 | # indSides = numpy.array(range(nChannel)) |
|
3032 | # indSides = numpy.array(range(nChannel)) | |
3000 | # indSides = numpy.delete(indSides, indCenter) |
|
3033 | # indSides = numpy.delete(indSides, indCenter) | |
3001 | # |
|
3034 | # | |
3002 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) |
|
3035 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |
3003 | listBlocks = numpy.array_split(volts, numBlocks, 1) |
|
3036 | listBlocks = numpy.array_split(volts, numBlocks, 1) | |
3004 |
|
3037 | |||
3005 | startInd = 0 |
|
3038 | startInd = 0 | |
3006 | endInd = 0 |
|
3039 | endInd = 0 | |
3007 |
|
3040 | |||
3008 | for i in range(numBlocks): |
|
3041 | for i in range(numBlocks): | |
3009 | startInd = endInd |
|
3042 | startInd = endInd | |
3010 | endInd = endInd + listBlocks[i].shape[1] |
|
3043 | endInd = endInd + listBlocks[i].shape[1] | |
3011 |
|
3044 | |||
3012 | arrayBlock = listBlocks[i] |
|
3045 | arrayBlock = listBlocks[i] | |
3013 | # arrayBlockCenter = listCenter[i] |
|
3046 | # arrayBlockCenter = listCenter[i] | |
3014 |
|
3047 | |||
3015 | #Estimate the Phase Difference |
|
3048 | #Estimate the Phase Difference | |
3016 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) |
|
3049 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |
3017 | #Phase Difference RMS |
|
3050 | #Phase Difference RMS | |
3018 | arrayPhaseRMS = numpy.abs(phaseDiff) |
|
3051 | arrayPhaseRMS = numpy.abs(phaseDiff) | |
3019 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) |
|
3052 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) | |
3020 | indPhase = numpy.where(phaseRMSaux==4) |
|
3053 | indPhase = numpy.where(phaseRMSaux==4) | |
3021 | #Shifting |
|
3054 | #Shifting | |
3022 | if indPhase[0].shape[0] > 0: |
|
3055 | if indPhase[0].shape[0] > 0: | |
3023 | for j in range(indSides.size): |
|
3056 | for j in range(indSides.size): | |
3024 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) |
|
3057 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |
3025 | voltsCohDet[:,startInd:endInd,:] = arrayBlock |
|
3058 | voltsCohDet[:,startInd:endInd,:] = arrayBlock | |
3026 |
|
3059 | |||
3027 | return voltsCohDet |
|
3060 | return voltsCohDet | |
3028 |
|
3061 | |||
3029 | def __calculateCCF(self, volts, pairslist ,laglist): |
|
3062 | def __calculateCCF(self, volts, pairslist ,laglist): | |
3030 |
|
3063 | |||
3031 | nHeights = volts.shape[2] |
|
3064 | nHeights = volts.shape[2] | |
3032 | nPoints = volts.shape[1] |
|
3065 | nPoints = volts.shape[1] | |
3033 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') |
|
3066 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |
3034 |
|
3067 | |||
3035 | for i in range(len(pairslist)): |
|
3068 | for i in range(len(pairslist)): | |
3036 | volts1 = volts[pairslist[i][0]] |
|
3069 | volts1 = volts[pairslist[i][0]] | |
3037 | volts2 = volts[pairslist[i][1]] |
|
3070 | volts2 = volts[pairslist[i][1]] | |
3038 |
|
3071 | |||
3039 | for t in range(len(laglist)): |
|
3072 | for t in range(len(laglist)): | |
3040 | idxT = laglist[t] |
|
3073 | idxT = laglist[t] | |
3041 | if idxT >= 0: |
|
3074 | if idxT >= 0: | |
3042 | vStacked = numpy.vstack((volts2[idxT:,:], |
|
3075 | vStacked = numpy.vstack((volts2[idxT:,:], | |
3043 | numpy.zeros((idxT, nHeights),dtype='complex'))) |
|
3076 | numpy.zeros((idxT, nHeights),dtype='complex'))) | |
3044 | else: |
|
3077 | else: | |
3045 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), |
|
3078 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |
3046 | volts2[:(nPoints + idxT),:])) |
|
3079 | volts2[:(nPoints + idxT),:])) | |
3047 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) |
|
3080 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |
3048 |
|
3081 | |||
3049 | vStacked = None |
|
3082 | vStacked = None | |
3050 | return voltsCCF |
|
3083 | return voltsCCF | |
3051 |
|
3084 | |||
3052 | def __getNoise(self, power, timeSegment, timeInterval): |
|
3085 | def __getNoise(self, power, timeSegment, timeInterval): | |
3053 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
3086 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
3054 | numBlocks = int(power.shape[0]/numProfPerBlock) |
|
3087 | numBlocks = int(power.shape[0]/numProfPerBlock) | |
3055 | numHeights = power.shape[1] |
|
3088 | numHeights = power.shape[1] | |
3056 |
|
3089 | |||
3057 | listPower = numpy.array_split(power, numBlocks, 0) |
|
3090 | listPower = numpy.array_split(power, numBlocks, 0) | |
3058 | noise = numpy.zeros((power.shape[0], power.shape[1])) |
|
3091 | noise = numpy.zeros((power.shape[0], power.shape[1])) | |
3059 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) |
|
3092 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |
3060 |
|
3093 | |||
3061 | startInd = 0 |
|
3094 | startInd = 0 | |
3062 | endInd = 0 |
|
3095 | endInd = 0 | |
3063 |
|
3096 | |||
3064 | for i in range(numBlocks): #split por canal |
|
3097 | for i in range(numBlocks): #split por canal | |
3065 | startInd = endInd |
|
3098 | startInd = endInd | |
3066 | endInd = endInd + listPower[i].shape[0] |
|
3099 | endInd = endInd + listPower[i].shape[0] | |
3067 |
|
3100 | |||
3068 | arrayBlock = listPower[i] |
|
3101 | arrayBlock = listPower[i] | |
3069 | noiseAux = numpy.mean(arrayBlock, 0) |
|
3102 | noiseAux = numpy.mean(arrayBlock, 0) | |
3070 | # noiseAux = numpy.median(noiseAux) |
|
3103 | # noiseAux = numpy.median(noiseAux) | |
3071 | # noiseAux = numpy.mean(arrayBlock) |
|
3104 | # noiseAux = numpy.mean(arrayBlock) | |
3072 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux |
|
3105 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |
3073 |
|
3106 | |||
3074 | noiseAux1 = numpy.mean(arrayBlock) |
|
3107 | noiseAux1 = numpy.mean(arrayBlock) | |
3075 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 |
|
3108 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |
3076 |
|
3109 | |||
3077 | return noise, noise1 |
|
3110 | return noise, noise1 | |
3078 |
|
3111 | |||
3079 | def __findMeteors(self, power, thresh): |
|
3112 | def __findMeteors(self, power, thresh): | |
3080 | nProf = power.shape[0] |
|
3113 | nProf = power.shape[0] | |
3081 | nHeights = power.shape[1] |
|
3114 | nHeights = power.shape[1] | |
3082 | listMeteors = [] |
|
3115 | listMeteors = [] | |
3083 |
|
3116 | |||
3084 | for i in range(nHeights): |
|
3117 | for i in range(nHeights): | |
3085 | powerAux = power[:,i] |
|
3118 | powerAux = power[:,i] | |
3086 | threshAux = thresh[:,i] |
|
3119 | threshAux = thresh[:,i] | |
3087 |
|
3120 | |||
3088 | indUPthresh = numpy.where(powerAux > threshAux)[0] |
|
3121 | indUPthresh = numpy.where(powerAux > threshAux)[0] | |
3089 | indDNthresh = numpy.where(powerAux <= threshAux)[0] |
|
3122 | indDNthresh = numpy.where(powerAux <= threshAux)[0] | |
3090 |
|
3123 | |||
3091 | j = 0 |
|
3124 | j = 0 | |
3092 |
|
3125 | |||
3093 | while (j < indUPthresh.size - 2): |
|
3126 | while (j < indUPthresh.size - 2): | |
3094 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): |
|
3127 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |
3095 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) |
|
3128 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |
3096 | indDNthresh = indDNthresh[indDNAux] |
|
3129 | indDNthresh = indDNthresh[indDNAux] | |
3097 |
|
3130 | |||
3098 | if (indDNthresh.size > 0): |
|
3131 | if (indDNthresh.size > 0): | |
3099 | indEnd = indDNthresh[0] - 1 |
|
3132 | indEnd = indDNthresh[0] - 1 | |
3100 | indInit = indUPthresh[j] |
|
3133 | indInit = indUPthresh[j] | |
3101 |
|
3134 | |||
3102 | meteor = powerAux[indInit:indEnd + 1] |
|
3135 | meteor = powerAux[indInit:indEnd + 1] | |
3103 | indPeak = meteor.argmax() + indInit |
|
3136 | indPeak = meteor.argmax() + indInit | |
3104 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) |
|
3137 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |
3105 |
|
3138 | |||
3106 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! |
|
3139 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |
3107 | j = numpy.where(indUPthresh == indEnd)[0] + 1 |
|
3140 | j = numpy.where(indUPthresh == indEnd)[0] + 1 | |
3108 | else: j+=1 |
|
3141 | else: j+=1 | |
3109 | else: j+=1 |
|
3142 | else: j+=1 | |
3110 |
|
3143 | |||
3111 | return listMeteors |
|
3144 | return listMeteors | |
3112 |
|
3145 | |||
3113 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): |
|
3146 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |
3114 |
|
3147 | |||
3115 | arrayMeteors = numpy.asarray(listMeteors) |
|
3148 | arrayMeteors = numpy.asarray(listMeteors) | |
3116 | listMeteors1 = [] |
|
3149 | listMeteors1 = [] | |
3117 |
|
3150 | |||
3118 | while arrayMeteors.shape[0] > 0: |
|
3151 | while arrayMeteors.shape[0] > 0: | |
3119 | FLAs = arrayMeteors[:,4] |
|
3152 | FLAs = arrayMeteors[:,4] | |
3120 | maxFLA = FLAs.argmax() |
|
3153 | maxFLA = FLAs.argmax() | |
3121 | listMeteors1.append(arrayMeteors[maxFLA,:]) |
|
3154 | listMeteors1.append(arrayMeteors[maxFLA,:]) | |
3122 |
|
3155 | |||
3123 | MeteorInitTime = arrayMeteors[maxFLA,1] |
|
3156 | MeteorInitTime = arrayMeteors[maxFLA,1] | |
3124 | MeteorEndTime = arrayMeteors[maxFLA,3] |
|
3157 | MeteorEndTime = arrayMeteors[maxFLA,3] | |
3125 | MeteorHeight = arrayMeteors[maxFLA,0] |
|
3158 | MeteorHeight = arrayMeteors[maxFLA,0] | |
3126 |
|
3159 | |||
3127 | #Check neighborhood |
|
3160 | #Check neighborhood | |
3128 | maxHeightIndex = MeteorHeight + rangeLimit |
|
3161 | maxHeightIndex = MeteorHeight + rangeLimit | |
3129 | minHeightIndex = MeteorHeight - rangeLimit |
|
3162 | minHeightIndex = MeteorHeight - rangeLimit | |
3130 | minTimeIndex = MeteorInitTime - timeLimit |
|
3163 | minTimeIndex = MeteorInitTime - timeLimit | |
3131 | maxTimeIndex = MeteorEndTime + timeLimit |
|
3164 | maxTimeIndex = MeteorEndTime + timeLimit | |
3132 |
|
3165 | |||
3133 | #Check Heights |
|
3166 | #Check Heights | |
3134 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) |
|
3167 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |
3135 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) |
|
3168 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |
3136 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) |
|
3169 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |
3137 |
|
3170 | |||
3138 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) |
|
3171 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |
3139 |
|
3172 | |||
3140 | return listMeteors1 |
|
3173 | return listMeteors1 | |
3141 |
|
3174 | |||
3142 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): |
|
3175 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |
3143 | numHeights = volts.shape[2] |
|
3176 | numHeights = volts.shape[2] | |
3144 | nChannel = volts.shape[0] |
|
3177 | nChannel = volts.shape[0] | |
3145 |
|
3178 | |||
3146 | thresholdPhase = thresh[0] |
|
3179 | thresholdPhase = thresh[0] | |
3147 | thresholdNoise = thresh[1] |
|
3180 | thresholdNoise = thresh[1] | |
3148 | thresholdDB = float(thresh[2]) |
|
3181 | thresholdDB = float(thresh[2]) | |
3149 |
|
3182 | |||
3150 | thresholdDB1 = 10**(thresholdDB/10) |
|
3183 | thresholdDB1 = 10**(thresholdDB/10) | |
3151 | pairsarray = numpy.array(pairslist) |
|
3184 | pairsarray = numpy.array(pairslist) | |
3152 | indSides = pairsarray[:,1] |
|
3185 | indSides = pairsarray[:,1] | |
3153 |
|
3186 | |||
3154 | pairslist1 = list(pairslist) |
|
3187 | pairslist1 = list(pairslist) | |
3155 | pairslist1.append((0,1)) |
|
3188 | pairslist1.append((0,1)) | |
3156 | pairslist1.append((3,4)) |
|
3189 | pairslist1.append((3,4)) | |
3157 |
|
3190 | |||
3158 | listMeteors1 = [] |
|
3191 | listMeteors1 = [] | |
3159 | listPowerSeries = [] |
|
3192 | listPowerSeries = [] | |
3160 | listVoltageSeries = [] |
|
3193 | listVoltageSeries = [] | |
3161 | #volts has the war data |
|
3194 | #volts has the war data | |
3162 |
|
3195 | |||
3163 | if frequency == 30e6: |
|
3196 | if frequency == 30e6: | |
3164 | timeLag = 45*10**-3 |
|
3197 | timeLag = 45*10**-3 | |
3165 | else: |
|
3198 | else: | |
3166 | timeLag = 15*10**-3 |
|
3199 | timeLag = 15*10**-3 | |
3167 | lag = numpy.ceil(timeLag/timeInterval) |
|
3200 | lag = numpy.ceil(timeLag/timeInterval) | |
3168 |
|
3201 | |||
3169 | for i in range(len(listMeteors)): |
|
3202 | for i in range(len(listMeteors)): | |
3170 |
|
3203 | |||
3171 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### |
|
3204 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |
3172 | meteorAux = numpy.zeros(16) |
|
3205 | meteorAux = numpy.zeros(16) | |
3173 |
|
3206 | |||
3174 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) |
|
3207 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |
3175 | mHeight = listMeteors[i][0] |
|
3208 | mHeight = listMeteors[i][0] | |
3176 | mStart = listMeteors[i][1] |
|
3209 | mStart = listMeteors[i][1] | |
3177 | mPeak = listMeteors[i][2] |
|
3210 | mPeak = listMeteors[i][2] | |
3178 | mEnd = listMeteors[i][3] |
|
3211 | mEnd = listMeteors[i][3] | |
3179 |
|
3212 | |||
3180 | #get the volt data between the start and end times of the meteor |
|
3213 | #get the volt data between the start and end times of the meteor | |
3181 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] |
|
3214 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |
3182 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3215 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
3183 |
|
3216 | |||
3184 | #3.6. Phase Difference estimation |
|
3217 | #3.6. Phase Difference estimation | |
3185 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) |
|
3218 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |
3186 |
|
3219 | |||
3187 | #3.7. Phase difference removal & meteor start, peak and end times reestimated |
|
3220 | #3.7. Phase difference removal & meteor start, peak and end times reestimated | |
3188 | #meteorVolts0.- all Channels, all Profiles |
|
3221 | #meteorVolts0.- all Channels, all Profiles | |
3189 | meteorVolts0 = volts[:,:,mHeight] |
|
3222 | meteorVolts0 = volts[:,:,mHeight] | |
3190 | meteorThresh = noise[:,mHeight]*thresholdNoise |
|
3223 | meteorThresh = noise[:,mHeight]*thresholdNoise | |
3191 | meteorNoise = noise[:,mHeight] |
|
3224 | meteorNoise = noise[:,mHeight] | |
3192 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting |
|
3225 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |
3193 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power |
|
3226 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |
3194 |
|
3227 | |||
3195 | #Times reestimation |
|
3228 | #Times reestimation | |
3196 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] |
|
3229 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |
3197 | if mStart1.size > 0: |
|
3230 | if mStart1.size > 0: | |
3198 | mStart1 = mStart1[-1] + 1 |
|
3231 | mStart1 = mStart1[-1] + 1 | |
3199 |
|
3232 | |||
3200 | else: |
|
3233 | else: | |
3201 | mStart1 = mPeak |
|
3234 | mStart1 = mPeak | |
3202 |
|
3235 | |||
3203 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 |
|
3236 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |
3204 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] |
|
3237 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |
3205 | if mEndDecayTime1.size == 0: |
|
3238 | if mEndDecayTime1.size == 0: | |
3206 | mEndDecayTime1 = powerNet0.size |
|
3239 | mEndDecayTime1 = powerNet0.size | |
3207 | else: |
|
3240 | else: | |
3208 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 |
|
3241 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |
3209 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() |
|
3242 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |
3210 |
|
3243 | |||
3211 | #meteorVolts1.- all Channels, from start to end |
|
3244 | #meteorVolts1.- all Channels, from start to end | |
3212 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] |
|
3245 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |
3213 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] |
|
3246 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |
3214 | if meteorVolts2.shape[1] == 0: |
|
3247 | if meteorVolts2.shape[1] == 0: | |
3215 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] |
|
3248 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] | |
3216 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) |
|
3249 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |
3217 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) |
|
3250 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |
3218 | ##################### END PARAMETERS REESTIMATION ######################### |
|
3251 | ##################### END PARAMETERS REESTIMATION ######################### | |
3219 |
|
3252 | |||
3220 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## |
|
3253 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |
3221 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3254 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |
3222 | if meteorVolts2.shape[1] > 0: |
|
3255 | if meteorVolts2.shape[1] > 0: | |
3223 | #Phase Difference re-estimation |
|
3256 | #Phase Difference re-estimation | |
3224 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation |
|
3257 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |
3225 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) |
|
3258 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |
3226 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) |
|
3259 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |
3227 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) |
|
3260 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |
3228 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting |
|
3261 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |
3229 |
|
3262 | |||
3230 | #Phase Difference RMS |
|
3263 | #Phase Difference RMS | |
3231 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) |
|
3264 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |
3232 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) |
|
3265 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |
3233 | #Data from Meteor |
|
3266 | #Data from Meteor | |
3234 | mPeak1 = powerNet1.argmax() + mStart1 |
|
3267 | mPeak1 = powerNet1.argmax() + mStart1 | |
3235 | mPeakPower1 = powerNet1.max() |
|
3268 | mPeakPower1 = powerNet1.max() | |
3236 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) |
|
3269 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) | |
3237 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux |
|
3270 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux | |
3238 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) |
|
3271 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) | |
3239 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) |
|
3272 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) | |
3240 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] |
|
3273 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] | |
3241 | #Vectorize |
|
3274 | #Vectorize | |
3242 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] |
|
3275 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |
3243 | meteorAux[7:11] = phaseDiffint[0:4] |
|
3276 | meteorAux[7:11] = phaseDiffint[0:4] | |
3244 |
|
3277 | |||
3245 | #Rejection Criterions |
|
3278 | #Rejection Criterions | |
3246 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation |
|
3279 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |
3247 | meteorAux[-1] = 17 |
|
3280 | meteorAux[-1] = 17 | |
3248 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB |
|
3281 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |
3249 | meteorAux[-1] = 1 |
|
3282 | meteorAux[-1] = 1 | |
3250 |
|
3283 | |||
3251 |
|
3284 | |||
3252 | else: |
|
3285 | else: | |
3253 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] |
|
3286 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |
3254 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3287 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |
3255 | PowerSeries = 0 |
|
3288 | PowerSeries = 0 | |
3256 |
|
3289 | |||
3257 | listMeteors1.append(meteorAux) |
|
3290 | listMeteors1.append(meteorAux) | |
3258 | listPowerSeries.append(PowerSeries) |
|
3291 | listPowerSeries.append(PowerSeries) | |
3259 | listVoltageSeries.append(meteorVolts1) |
|
3292 | listVoltageSeries.append(meteorVolts1) | |
3260 |
|
3293 | |||
3261 | return listMeteors1, listPowerSeries, listVoltageSeries |
|
3294 | return listMeteors1, listPowerSeries, listVoltageSeries | |
3262 |
|
3295 | |||
3263 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): |
|
3296 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |
3264 |
|
3297 | |||
3265 | threshError = 10 |
|
3298 | threshError = 10 | |
3266 | #Depending if it is 30 or 50 MHz |
|
3299 | #Depending if it is 30 or 50 MHz | |
3267 | if frequency == 30e6: |
|
3300 | if frequency == 30e6: | |
3268 | timeLag = 45*10**-3 |
|
3301 | timeLag = 45*10**-3 | |
3269 | else: |
|
3302 | else: | |
3270 | timeLag = 15*10**-3 |
|
3303 | timeLag = 15*10**-3 | |
3271 | lag = numpy.ceil(timeLag/timeInterval) |
|
3304 | lag = numpy.ceil(timeLag/timeInterval) | |
3272 |
|
3305 | |||
3273 | listMeteors1 = [] |
|
3306 | listMeteors1 = [] | |
3274 |
|
3307 | |||
3275 | for i in range(len(listMeteors)): |
|
3308 | for i in range(len(listMeteors)): | |
3276 | meteorPower = listPower[i] |
|
3309 | meteorPower = listPower[i] | |
3277 | meteorAux = listMeteors[i] |
|
3310 | meteorAux = listMeteors[i] | |
3278 |
|
3311 | |||
3279 | if meteorAux[-1] == 0: |
|
3312 | if meteorAux[-1] == 0: | |
3280 |
|
3313 | |||
3281 | try: |
|
3314 | try: | |
3282 | indmax = meteorPower.argmax() |
|
3315 | indmax = meteorPower.argmax() | |
3283 | indlag = indmax + lag |
|
3316 | indlag = indmax + lag | |
3284 |
|
3317 | |||
3285 | y = meteorPower[indlag:] |
|
3318 | y = meteorPower[indlag:] | |
3286 | x = numpy.arange(0, y.size)*timeLag |
|
3319 | x = numpy.arange(0, y.size)*timeLag | |
3287 |
|
3320 | |||
3288 | #first guess |
|
3321 | #first guess | |
3289 | a = y[0] |
|
3322 | a = y[0] | |
3290 | tau = timeLag |
|
3323 | tau = timeLag | |
3291 | #exponential fit |
|
3324 | #exponential fit | |
3292 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) |
|
3325 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) | |
3293 | y1 = self.__exponential_function(x, *popt) |
|
3326 | y1 = self.__exponential_function(x, *popt) | |
3294 | #error estimation |
|
3327 | #error estimation | |
3295 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) |
|
3328 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |
3296 |
|
3329 | |||
3297 | decayTime = popt[1] |
|
3330 | decayTime = popt[1] | |
3298 | riseTime = indmax*timeInterval |
|
3331 | riseTime = indmax*timeInterval | |
3299 | meteorAux[11:13] = [decayTime, error] |
|
3332 | meteorAux[11:13] = [decayTime, error] | |
3300 |
|
3333 | |||
3301 | #Table items 7, 8 and 11 |
|
3334 | #Table items 7, 8 and 11 | |
3302 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s |
|
3335 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |
3303 | meteorAux[-1] = 7 |
|
3336 | meteorAux[-1] = 7 | |
3304 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time |
|
3337 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |
3305 | meteorAux[-1] = 8 |
|
3338 | meteorAux[-1] = 8 | |
3306 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time |
|
3339 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |
3307 | meteorAux[-1] = 11 |
|
3340 | meteorAux[-1] = 11 | |
3308 |
|
3341 | |||
3309 |
|
3342 | |||
3310 | except: |
|
3343 | except: | |
3311 | meteorAux[-1] = 11 |
|
3344 | meteorAux[-1] = 11 | |
3312 |
|
3345 | |||
3313 |
|
3346 | |||
3314 | listMeteors1.append(meteorAux) |
|
3347 | listMeteors1.append(meteorAux) | |
3315 |
|
3348 | |||
3316 | return listMeteors1 |
|
3349 | return listMeteors1 | |
3317 |
|
3350 | |||
3318 | #Exponential Function |
|
3351 | #Exponential Function | |
3319 |
|
3352 | |||
3320 | def __exponential_function(self, x, a, tau): |
|
3353 | def __exponential_function(self, x, a, tau): | |
3321 | y = a*numpy.exp(-x/tau) |
|
3354 | y = a*numpy.exp(-x/tau) | |
3322 | return y |
|
3355 | return y | |
3323 |
|
3356 | |||
3324 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): |
|
3357 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |
3325 |
|
3358 | |||
3326 | pairslist1 = list(pairslist) |
|
3359 | pairslist1 = list(pairslist) | |
3327 | pairslist1.append((0,1)) |
|
3360 | pairslist1.append((0,1)) | |
3328 | pairslist1.append((3,4)) |
|
3361 | pairslist1.append((3,4)) | |
3329 | numPairs = len(pairslist1) |
|
3362 | numPairs = len(pairslist1) | |
3330 | #Time Lag |
|
3363 | #Time Lag | |
3331 | timeLag = 45*10**-3 |
|
3364 | timeLag = 45*10**-3 | |
3332 | c = 3e8 |
|
3365 | c = 3e8 | |
3333 | lag = numpy.ceil(timeLag/timeInterval) |
|
3366 | lag = numpy.ceil(timeLag/timeInterval) | |
3334 | freq = 30e6 |
|
3367 | freq = 30e6 | |
3335 |
|
3368 | |||
3336 | listMeteors1 = [] |
|
3369 | listMeteors1 = [] | |
3337 |
|
3370 | |||
3338 | for i in range(len(listMeteors)): |
|
3371 | for i in range(len(listMeteors)): | |
3339 | meteorAux = listMeteors[i] |
|
3372 | meteorAux = listMeteors[i] | |
3340 | if meteorAux[-1] == 0: |
|
3373 | if meteorAux[-1] == 0: | |
3341 | mStart = listMeteors[i][1] |
|
3374 | mStart = listMeteors[i][1] | |
3342 | mPeak = listMeteors[i][2] |
|
3375 | mPeak = listMeteors[i][2] | |
3343 | mLag = mPeak - mStart + lag |
|
3376 | mLag = mPeak - mStart + lag | |
3344 |
|
3377 | |||
3345 | #get the volt data between the start and end times of the meteor |
|
3378 | #get the volt data between the start and end times of the meteor | |
3346 | meteorVolts = listVolts[i] |
|
3379 | meteorVolts = listVolts[i] | |
3347 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3380 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
3348 |
|
3381 | |||
3349 | #Get CCF |
|
3382 | #Get CCF | |
3350 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) |
|
3383 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |
3351 |
|
3384 | |||
3352 | #Method 2 |
|
3385 | #Method 2 | |
3353 | slopes = numpy.zeros(numPairs) |
|
3386 | slopes = numpy.zeros(numPairs) | |
3354 | time = numpy.array([-2,-1,1,2])*timeInterval |
|
3387 | time = numpy.array([-2,-1,1,2])*timeInterval | |
3355 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) |
|
3388 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) | |
3356 |
|
3389 | |||
3357 | #Correct phases |
|
3390 | #Correct phases | |
3358 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] |
|
3391 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |
3359 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
3392 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
3360 |
|
3393 | |||
3361 | if indDer[0].shape[0] > 0: |
|
3394 | if indDer[0].shape[0] > 0: | |
3362 | for i in range(indDer[0].shape[0]): |
|
3395 | for i in range(indDer[0].shape[0]): | |
3363 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) |
|
3396 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |
3364 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi |
|
3397 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |
3365 |
|
3398 | |||
3366 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) |
|
3399 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) | |
3367 | for j in range(numPairs): |
|
3400 | for j in range(numPairs): | |
3368 | fit = stats.linregress(time, angAllCCF[j,:]) |
|
3401 | fit = stats.linregress(time, angAllCCF[j,:]) | |
3369 | slopes[j] = fit[0] |
|
3402 | slopes[j] = fit[0] | |
3370 |
|
3403 | |||
3371 | #Remove Outlier |
|
3404 | #Remove Outlier | |
3372 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3405 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
3373 | # slopes = numpy.delete(slopes,indOut) |
|
3406 | # slopes = numpy.delete(slopes,indOut) | |
3374 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3407 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
3375 | # slopes = numpy.delete(slopes,indOut) |
|
3408 | # slopes = numpy.delete(slopes,indOut) | |
3376 |
|
3409 | |||
3377 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3410 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |
3378 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3411 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |
3379 | meteorAux[-2] = radialError |
|
3412 | meteorAux[-2] = radialError | |
3380 | meteorAux[-3] = radialVelocity |
|
3413 | meteorAux[-3] = radialVelocity | |
3381 |
|
3414 | |||
3382 | #Setting Error |
|
3415 | #Setting Error | |
3383 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s |
|
3416 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |
3384 | if numpy.abs(radialVelocity) > 200: |
|
3417 | if numpy.abs(radialVelocity) > 200: | |
3385 | meteorAux[-1] = 15 |
|
3418 | meteorAux[-1] = 15 | |
3386 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity |
|
3419 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |
3387 | elif radialError > radialStdThresh: |
|
3420 | elif radialError > radialStdThresh: | |
3388 | meteorAux[-1] = 12 |
|
3421 | meteorAux[-1] = 12 | |
3389 |
|
3422 | |||
3390 | listMeteors1.append(meteorAux) |
|
3423 | listMeteors1.append(meteorAux) | |
3391 | return listMeteors1 |
|
3424 | return listMeteors1 | |
3392 |
|
3425 | |||
3393 | def __setNewArrays(self, listMeteors, date, heiRang): |
|
3426 | def __setNewArrays(self, listMeteors, date, heiRang): | |
3394 |
|
3427 | |||
3395 | #New arrays |
|
3428 | #New arrays | |
3396 | arrayMeteors = numpy.array(listMeteors) |
|
3429 | arrayMeteors = numpy.array(listMeteors) | |
3397 | arrayParameters = numpy.zeros((len(listMeteors), 13)) |
|
3430 | arrayParameters = numpy.zeros((len(listMeteors), 13)) | |
3398 |
|
3431 | |||
3399 | #Date inclusion |
|
3432 | #Date inclusion | |
3400 | # date = re.findall(r'\((.*?)\)', date) |
|
3433 | # date = re.findall(r'\((.*?)\)', date) | |
3401 | # date = date[0].split(',') |
|
3434 | # date = date[0].split(',') | |
3402 | # date = map(int, date) |
|
3435 | # date = map(int, date) | |
3403 | # |
|
3436 | # | |
3404 | # if len(date)<6: |
|
3437 | # if len(date)<6: | |
3405 | # date.append(0) |
|
3438 | # date.append(0) | |
3406 | # |
|
3439 | # | |
3407 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] |
|
3440 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |
3408 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) |
|
3441 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |
3409 | arrayDate = numpy.tile(date, (len(listMeteors))) |
|
3442 | arrayDate = numpy.tile(date, (len(listMeteors))) | |
3410 |
|
3443 | |||
3411 | #Meteor array |
|
3444 | #Meteor array | |
3412 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] |
|
3445 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |
3413 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) |
|
3446 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |
3414 |
|
3447 | |||
3415 | #Parameters Array |
|
3448 | #Parameters Array | |
3416 | arrayParameters[:,0] = arrayDate #Date |
|
3449 | arrayParameters[:,0] = arrayDate #Date | |
3417 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range |
|
3450 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range | |
3418 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error |
|
3451 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error | |
3419 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases |
|
3452 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases | |
3420 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error |
|
3453 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error | |
3421 |
|
3454 | |||
3422 |
|
3455 | |||
3423 | return arrayParameters |
|
3456 | return arrayParameters | |
3424 |
|
3457 | |||
3425 | class CorrectSMPhases(Operation): |
|
3458 | class CorrectSMPhases(Operation): | |
3426 |
|
3459 | |||
3427 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): |
|
3460 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): | |
3428 |
|
3461 | |||
3429 | arrayParameters = dataOut.data_param |
|
3462 | arrayParameters = dataOut.data_param | |
3430 | pairsList = [] |
|
3463 | pairsList = [] | |
3431 | pairx = (0,1) |
|
3464 | pairx = (0,1) | |
3432 | pairy = (2,3) |
|
3465 | pairy = (2,3) | |
3433 | pairsList.append(pairx) |
|
3466 | pairsList.append(pairx) | |
3434 | pairsList.append(pairy) |
|
3467 | pairsList.append(pairy) | |
3435 | jph = numpy.zeros(4) |
|
3468 | jph = numpy.zeros(4) | |
3436 |
|
3469 | |||
3437 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
3470 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
3438 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
3471 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
3439 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) |
|
3472 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) | |
3440 |
|
3473 | |||
3441 | meteorOps = SMOperations() |
|
3474 | meteorOps = SMOperations() | |
3442 | if channelPositions == None: |
|
3475 | if channelPositions == None: | |
3443 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3476 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
3444 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3477 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
3445 |
|
3478 | |||
3446 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3479 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
3447 | h = (hmin,hmax) |
|
3480 | h = (hmin,hmax) | |
3448 |
|
3481 | |||
3449 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
3482 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
3450 |
|
3483 | |||
3451 | dataOut.data_param = arrayParameters |
|
3484 | dataOut.data_param = arrayParameters | |
3452 | return |
|
3485 | return | |
3453 |
|
3486 | |||
3454 | class SMPhaseCalibration(Operation): |
|
3487 | class SMPhaseCalibration(Operation): | |
3455 |
|
3488 | |||
3456 | __buffer = None |
|
3489 | __buffer = None | |
3457 |
|
3490 | |||
3458 | __initime = None |
|
3491 | __initime = None | |
3459 |
|
3492 | |||
3460 | __dataReady = False |
|
3493 | __dataReady = False | |
3461 |
|
3494 | |||
3462 | __isConfig = False |
|
3495 | __isConfig = False | |
3463 |
|
3496 | |||
3464 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): |
|
3497 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): | |
3465 |
|
3498 | |||
3466 | dataTime = currentTime + paramInterval |
|
3499 | dataTime = currentTime + paramInterval | |
3467 | deltaTime = dataTime - initTime |
|
3500 | deltaTime = dataTime - initTime | |
3468 |
|
3501 | |||
3469 | if deltaTime >= outputInterval or deltaTime < 0: |
|
3502 | if deltaTime >= outputInterval or deltaTime < 0: | |
3470 | return True |
|
3503 | return True | |
3471 |
|
3504 | |||
3472 | return False |
|
3505 | return False | |
3473 |
|
3506 | |||
3474 | def __getGammas(self, pairs, d, phases): |
|
3507 | def __getGammas(self, pairs, d, phases): | |
3475 | gammas = numpy.zeros(2) |
|
3508 | gammas = numpy.zeros(2) | |
3476 |
|
3509 | |||
3477 | for i in range(len(pairs)): |
|
3510 | for i in range(len(pairs)): | |
3478 |
|
3511 | |||
3479 | pairi = pairs[i] |
|
3512 | pairi = pairs[i] | |
3480 |
|
3513 | |||
3481 | phip3 = phases[:,pairi[1]] |
|
3514 | phip3 = phases[:,pairi[1]] | |
3482 | d3 = d[pairi[1]] |
|
3515 | d3 = d[pairi[1]] | |
3483 | phip2 = phases[:,pairi[0]] |
|
3516 | phip2 = phases[:,pairi[0]] | |
3484 | d2 = d[pairi[0]] |
|
3517 | d2 = d[pairi[0]] | |
3485 | #Calculating gamma |
|
3518 | #Calculating gamma | |
3486 | # jdcos = alp1/(k*d1) |
|
3519 | # jdcos = alp1/(k*d1) | |
3487 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) |
|
3520 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) | |
3488 | jgamma = -phip2*d3/d2 - phip3 |
|
3521 | jgamma = -phip2*d3/d2 - phip3 | |
3489 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) |
|
3522 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) | |
3490 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi |
|
3523 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi | |
3491 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi |
|
3524 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi | |
3492 |
|
3525 | |||
3493 | #Revised distribution |
|
3526 | #Revised distribution | |
3494 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) |
|
3527 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) | |
3495 |
|
3528 | |||
3496 | #Histogram |
|
3529 | #Histogram | |
3497 | nBins = 64.0 |
|
3530 | nBins = 64.0 | |
3498 | rmin = -0.5*numpy.pi |
|
3531 | rmin = -0.5*numpy.pi | |
3499 | rmax = 0.5*numpy.pi |
|
3532 | rmax = 0.5*numpy.pi | |
3500 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) |
|
3533 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) | |
3501 |
|
3534 | |||
3502 | meteorsY = phaseHisto[0] |
|
3535 | meteorsY = phaseHisto[0] | |
3503 | phasesX = phaseHisto[1][:-1] |
|
3536 | phasesX = phaseHisto[1][:-1] | |
3504 | width = phasesX[1] - phasesX[0] |
|
3537 | width = phasesX[1] - phasesX[0] | |
3505 | phasesX += width/2 |
|
3538 | phasesX += width/2 | |
3506 |
|
3539 | |||
3507 | #Gaussian aproximation |
|
3540 | #Gaussian aproximation | |
3508 | bpeak = meteorsY.argmax() |
|
3541 | bpeak = meteorsY.argmax() | |
3509 | peak = meteorsY.max() |
|
3542 | peak = meteorsY.max() | |
3510 | jmin = bpeak - 5 |
|
3543 | jmin = bpeak - 5 | |
3511 | jmax = bpeak + 5 + 1 |
|
3544 | jmax = bpeak + 5 + 1 | |
3512 |
|
3545 | |||
3513 | if jmin<0: |
|
3546 | if jmin<0: | |
3514 | jmin = 0 |
|
3547 | jmin = 0 | |
3515 | jmax = 6 |
|
3548 | jmax = 6 | |
3516 | elif jmax > meteorsY.size: |
|
3549 | elif jmax > meteorsY.size: | |
3517 | jmin = meteorsY.size - 6 |
|
3550 | jmin = meteorsY.size - 6 | |
3518 | jmax = meteorsY.size |
|
3551 | jmax = meteorsY.size | |
3519 |
|
3552 | |||
3520 | x0 = numpy.array([peak,bpeak,50]) |
|
3553 | x0 = numpy.array([peak,bpeak,50]) | |
3521 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) |
|
3554 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) | |
3522 |
|
3555 | |||
3523 | #Gammas |
|
3556 | #Gammas | |
3524 | gammas[i] = coeff[0][1] |
|
3557 | gammas[i] = coeff[0][1] | |
3525 |
|
3558 | |||
3526 | return gammas |
|
3559 | return gammas | |
3527 |
|
3560 | |||
3528 | def __residualFunction(self, coeffs, y, t): |
|
3561 | def __residualFunction(self, coeffs, y, t): | |
3529 |
|
3562 | |||
3530 | return y - self.__gauss_function(t, coeffs) |
|
3563 | return y - self.__gauss_function(t, coeffs) | |
3531 |
|
3564 | |||
3532 | def __gauss_function(self, t, coeffs): |
|
3565 | def __gauss_function(self, t, coeffs): | |
3533 |
|
3566 | |||
3534 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) |
|
3567 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) | |
3535 |
|
3568 | |||
3536 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): |
|
3569 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): | |
3537 | meteorOps = SMOperations() |
|
3570 | meteorOps = SMOperations() | |
3538 | nchan = 4 |
|
3571 | nchan = 4 | |
3539 | pairx = pairsList[0] |
|
3572 | pairx = pairsList[0] | |
3540 | pairy = pairsList[1] |
|
3573 | pairy = pairsList[1] | |
3541 | center_xangle = 0 |
|
3574 | center_xangle = 0 | |
3542 | center_yangle = 0 |
|
3575 | center_yangle = 0 | |
3543 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) |
|
3576 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) | |
3544 | ntimes = len(range_angle) |
|
3577 | ntimes = len(range_angle) | |
3545 |
|
3578 | |||
3546 | nstepsx = 20.0 |
|
3579 | nstepsx = 20.0 | |
3547 | nstepsy = 20.0 |
|
3580 | nstepsy = 20.0 | |
3548 |
|
3581 | |||
3549 | for iz in range(ntimes): |
|
3582 | for iz in range(ntimes): | |
3550 | min_xangle = -range_angle[iz]/2 + center_xangle |
|
3583 | min_xangle = -range_angle[iz]/2 + center_xangle | |
3551 | max_xangle = range_angle[iz]/2 + center_xangle |
|
3584 | max_xangle = range_angle[iz]/2 + center_xangle | |
3552 | min_yangle = -range_angle[iz]/2 + center_yangle |
|
3585 | min_yangle = -range_angle[iz]/2 + center_yangle | |
3553 | max_yangle = range_angle[iz]/2 + center_yangle |
|
3586 | max_yangle = range_angle[iz]/2 + center_yangle | |
3554 |
|
3587 | |||
3555 | inc_x = (max_xangle-min_xangle)/nstepsx |
|
3588 | inc_x = (max_xangle-min_xangle)/nstepsx | |
3556 | inc_y = (max_yangle-min_yangle)/nstepsy |
|
3589 | inc_y = (max_yangle-min_yangle)/nstepsy | |
3557 |
|
3590 | |||
3558 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle |
|
3591 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle | |
3559 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle |
|
3592 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle | |
3560 | penalty = numpy.zeros((nstepsx,nstepsy)) |
|
3593 | penalty = numpy.zeros((nstepsx,nstepsy)) | |
3561 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) |
|
3594 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) | |
3562 | jph = numpy.zeros(nchan) |
|
3595 | jph = numpy.zeros(nchan) | |
3563 |
|
3596 | |||
3564 | # Iterations looking for the offset |
|
3597 | # Iterations looking for the offset | |
3565 | for iy in range(int(nstepsy)): |
|
3598 | for iy in range(int(nstepsy)): | |
3566 | for ix in range(int(nstepsx)): |
|
3599 | for ix in range(int(nstepsx)): | |
3567 | jph[pairy[1]] = alpha_y[iy] |
|
3600 | jph[pairy[1]] = alpha_y[iy] | |
3568 | jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] |
|
3601 | jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] | |
3569 |
|
3602 | |||
3570 | jph[pairx[1]] = alpha_x[ix] |
|
3603 | jph[pairx[1]] = alpha_x[ix] | |
3571 | jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] |
|
3604 | jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] | |
3572 |
|
3605 | |||
3573 | jph_array[:,ix,iy] = jph |
|
3606 | jph_array[:,ix,iy] = jph | |
3574 |
|
3607 | |||
3575 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) |
|
3608 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) | |
3576 | error = meteorsArray1[:,-1] |
|
3609 | error = meteorsArray1[:,-1] | |
3577 | ind1 = numpy.where(error==0)[0] |
|
3610 | ind1 = numpy.where(error==0)[0] | |
3578 | penalty[ix,iy] = ind1.size |
|
3611 | penalty[ix,iy] = ind1.size | |
3579 |
|
3612 | |||
3580 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) |
|
3613 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) | |
3581 | phOffset = jph_array[:,i,j] |
|
3614 | phOffset = jph_array[:,i,j] | |
3582 |
|
3615 | |||
3583 | center_xangle = phOffset[pairx[1]] |
|
3616 | center_xangle = phOffset[pairx[1]] | |
3584 | center_yangle = phOffset[pairy[1]] |
|
3617 | center_yangle = phOffset[pairy[1]] | |
3585 |
|
3618 | |||
3586 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) |
|
3619 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) | |
3587 | phOffset = phOffset*180/numpy.pi |
|
3620 | phOffset = phOffset*180/numpy.pi | |
3588 | return phOffset |
|
3621 | return phOffset | |
3589 |
|
3622 | |||
3590 |
|
3623 | |||
3591 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): |
|
3624 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): | |
3592 |
|
3625 | |||
3593 | dataOut.flagNoData = True |
|
3626 | dataOut.flagNoData = True | |
3594 | self.__dataReady = False |
|
3627 | self.__dataReady = False | |
3595 | dataOut.outputInterval = nHours*3600 |
|
3628 | dataOut.outputInterval = nHours*3600 | |
3596 |
|
3629 | |||
3597 | if self.__isConfig == False: |
|
3630 | if self.__isConfig == False: | |
3598 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
3631 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
3599 | #Get Initial LTC time |
|
3632 | #Get Initial LTC time | |
3600 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
3633 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
3601 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
3634 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
3602 |
|
3635 | |||
3603 | self.__isConfig = True |
|
3636 | self.__isConfig = True | |
3604 |
|
3637 | |||
3605 | if self.__buffer == None: |
|
3638 | if self.__buffer == None: | |
3606 | self.__buffer = dataOut.data_param.copy() |
|
3639 | self.__buffer = dataOut.data_param.copy() | |
3607 |
|
3640 | |||
3608 | else: |
|
3641 | else: | |
3609 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
3642 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
3610 |
|
3643 | |||
3611 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
3644 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
3612 |
|
3645 | |||
3613 | if self.__dataReady: |
|
3646 | if self.__dataReady: | |
3614 | dataOut.utctimeInit = self.__initime |
|
3647 | dataOut.utctimeInit = self.__initime | |
3615 | self.__initime += dataOut.outputInterval #to erase time offset |
|
3648 | self.__initime += dataOut.outputInterval #to erase time offset | |
3616 |
|
3649 | |||
3617 | freq = dataOut.frequency |
|
3650 | freq = dataOut.frequency | |
3618 | c = dataOut.C #m/s |
|
3651 | c = dataOut.C #m/s | |
3619 | lamb = c/freq |
|
3652 | lamb = c/freq | |
3620 | k = 2*numpy.pi/lamb |
|
3653 | k = 2*numpy.pi/lamb | |
3621 | azimuth = 0 |
|
3654 | azimuth = 0 | |
3622 | h = (hmin, hmax) |
|
3655 | h = (hmin, hmax) | |
3623 | pairs = ((0,1),(2,3)) |
|
3656 | pairs = ((0,1),(2,3)) | |
3624 |
|
3657 | |||
3625 | if channelPositions == None: |
|
3658 | if channelPositions == None: | |
3626 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3659 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
3627 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3660 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
3628 | meteorOps = SMOperations() |
|
3661 | meteorOps = SMOperations() | |
3629 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3662 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
3630 |
|
3663 | |||
3631 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] |
|
3664 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] | |
3632 |
|
3665 | |||
3633 | meteorsArray = self.__buffer |
|
3666 | meteorsArray = self.__buffer | |
3634 | error = meteorsArray[:,-1] |
|
3667 | error = meteorsArray[:,-1] | |
3635 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) |
|
3668 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) | |
3636 | ind1 = numpy.where(boolError)[0] |
|
3669 | ind1 = numpy.where(boolError)[0] | |
3637 | meteorsArray = meteorsArray[ind1,:] |
|
3670 | meteorsArray = meteorsArray[ind1,:] | |
3638 | meteorsArray[:,-1] = 0 |
|
3671 | meteorsArray[:,-1] = 0 | |
3639 | phases = meteorsArray[:,8:12] |
|
3672 | phases = meteorsArray[:,8:12] | |
3640 |
|
3673 | |||
3641 | #Calculate Gammas |
|
3674 | #Calculate Gammas | |
3642 | gammas = self.__getGammas(pairs, distances, phases) |
|
3675 | gammas = self.__getGammas(pairs, distances, phases) | |
3643 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 |
|
3676 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 | |
3644 | #Calculate Phases |
|
3677 | #Calculate Phases | |
3645 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) |
|
3678 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) | |
3646 | phasesOff = phasesOff.reshape((1,phasesOff.size)) |
|
3679 | phasesOff = phasesOff.reshape((1,phasesOff.size)) | |
3647 | dataOut.data_output = -phasesOff |
|
3680 | dataOut.data_output = -phasesOff | |
3648 | dataOut.flagNoData = False |
|
3681 | dataOut.flagNoData = False | |
3649 | self.__buffer = None |
|
3682 | self.__buffer = None | |
3650 |
|
3683 | |||
3651 |
|
3684 | |||
3652 | return |
|
3685 | return | |
3653 |
|
3686 | |||
3654 | class SMOperations(): |
|
3687 | class SMOperations(): | |
3655 |
|
3688 | |||
3656 | def __init__(self): |
|
3689 | def __init__(self): | |
3657 |
|
3690 | |||
3658 | return |
|
3691 | return | |
3659 |
|
3692 | |||
3660 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): |
|
3693 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): | |
3661 |
|
3694 | |||
3662 | arrayParameters = arrayParameters0.copy() |
|
3695 | arrayParameters = arrayParameters0.copy() | |
3663 | hmin = h[0] |
|
3696 | hmin = h[0] | |
3664 | hmax = h[1] |
|
3697 | hmax = h[1] | |
3665 |
|
3698 | |||
3666 | #Calculate AOA (Error N 3, 4) |
|
3699 | #Calculate AOA (Error N 3, 4) | |
3667 | #JONES ET AL. 1998 |
|
3700 | #JONES ET AL. 1998 | |
3668 | AOAthresh = numpy.pi/8 |
|
3701 | AOAthresh = numpy.pi/8 | |
3669 | error = arrayParameters[:,-1] |
|
3702 | error = arrayParameters[:,-1] | |
3670 | phases = -arrayParameters[:,8:12] + jph |
|
3703 | phases = -arrayParameters[:,8:12] + jph | |
3671 | # phases = numpy.unwrap(phases) |
|
3704 | # phases = numpy.unwrap(phases) | |
3672 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) |
|
3705 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) | |
3673 |
|
3706 | |||
3674 | #Calculate Heights (Error N 13 and 14) |
|
3707 | #Calculate Heights (Error N 13 and 14) | |
3675 | error = arrayParameters[:,-1] |
|
3708 | error = arrayParameters[:,-1] | |
3676 | Ranges = arrayParameters[:,1] |
|
3709 | Ranges = arrayParameters[:,1] | |
3677 | zenith = arrayParameters[:,4] |
|
3710 | zenith = arrayParameters[:,4] | |
3678 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) |
|
3711 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |
3679 |
|
3712 | |||
3680 | #----------------------- Get Final data ------------------------------------ |
|
3713 | #----------------------- Get Final data ------------------------------------ | |
3681 | # error = arrayParameters[:,-1] |
|
3714 | # error = arrayParameters[:,-1] | |
3682 | # ind1 = numpy.where(error==0)[0] |
|
3715 | # ind1 = numpy.where(error==0)[0] | |
3683 | # arrayParameters = arrayParameters[ind1,:] |
|
3716 | # arrayParameters = arrayParameters[ind1,:] | |
3684 |
|
3717 | |||
3685 | return arrayParameters |
|
3718 | return arrayParameters | |
3686 |
|
3719 | |||
3687 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): |
|
3720 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): | |
3688 |
|
3721 | |||
3689 | arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3722 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |
3690 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) |
|
3723 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) | |
3691 |
|
3724 | |||
3692 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3725 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
3693 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3726 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
3694 | arrayAOA[:,2] = cosDirError |
|
3727 | arrayAOA[:,2] = cosDirError | |
3695 |
|
3728 | |||
3696 | azimuthAngle = arrayAOA[:,0] |
|
3729 | azimuthAngle = arrayAOA[:,0] | |
3697 | zenithAngle = arrayAOA[:,1] |
|
3730 | zenithAngle = arrayAOA[:,1] | |
3698 |
|
3731 | |||
3699 | #Setting Error |
|
3732 | #Setting Error | |
3700 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] |
|
3733 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] | |
3701 | error[indError] = 0 |
|
3734 | error[indError] = 0 | |
3702 | #Number 3: AOA not fesible |
|
3735 | #Number 3: AOA not fesible | |
3703 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3736 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
3704 | error[indInvalid] = 3 |
|
3737 | error[indInvalid] = 3 | |
3705 | #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3738 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |
3706 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3739 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
3707 | error[indInvalid] = 4 |
|
3740 | error[indInvalid] = 4 | |
3708 | return arrayAOA, error |
|
3741 | return arrayAOA, error | |
3709 |
|
3742 | |||
3710 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): |
|
3743 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): | |
3711 |
|
3744 | |||
3712 | #Initializing some variables |
|
3745 | #Initializing some variables | |
3713 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3746 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
3714 | ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3747 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |
3715 |
|
3748 | |||
3716 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3749 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
3717 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3750 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
3718 |
|
3751 | |||
3719 |
|
3752 | |||
3720 | for i in range(2): |
|
3753 | for i in range(2): | |
3721 | ph0 = arrayPhase[:,pairsList[i][0]] |
|
3754 | ph0 = arrayPhase[:,pairsList[i][0]] | |
3722 | ph1 = arrayPhase[:,pairsList[i][1]] |
|
3755 | ph1 = arrayPhase[:,pairsList[i][1]] | |
3723 | d0 = distances[pairsList[i][0]] |
|
3756 | d0 = distances[pairsList[i][0]] | |
3724 | d1 = distances[pairsList[i][1]] |
|
3757 | d1 = distances[pairsList[i][1]] | |
3725 |
|
3758 | |||
3726 | ph0_aux = ph0 + ph1 |
|
3759 | ph0_aux = ph0 + ph1 | |
3727 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) |
|
3760 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) | |
3728 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi |
|
3761 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi | |
3729 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi |
|
3762 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi | |
3730 | #First Estimation |
|
3763 | #First Estimation | |
3731 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) |
|
3764 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) | |
3732 |
|
3765 | |||
3733 | #Most-Accurate Second Estimation |
|
3766 | #Most-Accurate Second Estimation | |
3734 | phi1_aux = ph0 - ph1 |
|
3767 | phi1_aux = ph0 - ph1 | |
3735 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3768 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
3736 | #Direction Cosine 1 |
|
3769 | #Direction Cosine 1 | |
3737 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) |
|
3770 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) | |
3738 |
|
3771 | |||
3739 | #Searching the correct Direction Cosine |
|
3772 | #Searching the correct Direction Cosine | |
3740 | cosdir0_aux = cosdir0[:,i] |
|
3773 | cosdir0_aux = cosdir0[:,i] | |
3741 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
3774 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
3742 | #Minimum Distance |
|
3775 | #Minimum Distance | |
3743 | cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
3776 | cosDiff = (cosdir1 - cosdir0_aux)**2 | |
3744 | indcos = cosDiff.argmin(axis = 1) |
|
3777 | indcos = cosDiff.argmin(axis = 1) | |
3745 | #Saving Value obtained |
|
3778 | #Saving Value obtained | |
3746 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
3779 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
3747 |
|
3780 | |||
3748 | return cosdir0, cosdir |
|
3781 | return cosdir0, cosdir | |
3749 |
|
3782 | |||
3750 | def __calculateAOA(self, cosdir, azimuth): |
|
3783 | def __calculateAOA(self, cosdir, azimuth): | |
3751 | cosdirX = cosdir[:,0] |
|
3784 | cosdirX = cosdir[:,0] | |
3752 | cosdirY = cosdir[:,1] |
|
3785 | cosdirY = cosdir[:,1] | |
3753 |
|
3786 | |||
3754 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
3787 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
3755 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east |
|
3788 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east | |
3756 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
3789 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
3757 |
|
3790 | |||
3758 | return angles |
|
3791 | return angles | |
3759 |
|
3792 | |||
3760 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
3793 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
3761 |
|
3794 | |||
3762 | Ramb = 375 #Ramb = c/(2*PRF) |
|
3795 | Ramb = 375 #Ramb = c/(2*PRF) | |
3763 | Re = 6371 #Earth Radius |
|
3796 | Re = 6371 #Earth Radius | |
3764 | heights = numpy.zeros(Ranges.shape) |
|
3797 | heights = numpy.zeros(Ranges.shape) | |
3765 |
|
3798 | |||
3766 | R_aux = numpy.array([0,1,2])*Ramb |
|
3799 | R_aux = numpy.array([0,1,2])*Ramb | |
3767 | R_aux = R_aux.reshape(1,R_aux.size) |
|
3800 | R_aux = R_aux.reshape(1,R_aux.size) | |
3768 |
|
3801 | |||
3769 | Ranges = Ranges.reshape(Ranges.size,1) |
|
3802 | Ranges = Ranges.reshape(Ranges.size,1) | |
3770 |
|
3803 | |||
3771 | Ri = Ranges + R_aux |
|
3804 | Ri = Ranges + R_aux | |
3772 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
3805 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
3773 |
|
3806 | |||
3774 | #Check if there is a height between 70 and 110 km |
|
3807 | #Check if there is a height between 70 and 110 km | |
3775 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
3808 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
3776 | ind_h = numpy.where(h_bool == 1)[0] |
|
3809 | ind_h = numpy.where(h_bool == 1)[0] | |
3777 |
|
3810 | |||
3778 | hCorr = hi[ind_h, :] |
|
3811 | hCorr = hi[ind_h, :] | |
3779 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
3812 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
3780 |
|
3813 | |||
3781 | hCorr = hi[ind_hCorr] |
|
3814 | hCorr = hi[ind_hCorr] | |
3782 | heights[ind_h] = hCorr |
|
3815 | heights[ind_h] = hCorr | |
3783 |
|
3816 | |||
3784 | #Setting Error |
|
3817 | #Setting Error | |
3785 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
3818 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
3786 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
3819 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
3787 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] |
|
3820 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] | |
3788 | error[indError] = 0 |
|
3821 | error[indError] = 0 | |
3789 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
3822 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
3790 | error[indInvalid2] = 14 |
|
3823 | error[indInvalid2] = 14 | |
3791 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
3824 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
3792 | error[indInvalid1] = 13 |
|
3825 | error[indInvalid1] = 13 | |
3793 |
|
3826 | |||
3794 | return heights, error |
|
3827 | return heights, error | |
3795 |
|
3828 | |||
3796 | def getPhasePairs(self, channelPositions): |
|
3829 | def getPhasePairs(self, channelPositions): | |
3797 | chanPos = numpy.array(channelPositions) |
|
3830 | chanPos = numpy.array(channelPositions) | |
3798 | listOper = list(itertools.combinations(range(5),2)) |
|
3831 | listOper = list(itertools.combinations(range(5),2)) | |
3799 |
|
3832 | |||
3800 | distances = numpy.zeros(4) |
|
3833 | distances = numpy.zeros(4) | |
3801 | axisX = [] |
|
3834 | axisX = [] | |
3802 | axisY = [] |
|
3835 | axisY = [] | |
3803 | distX = numpy.zeros(3) |
|
3836 | distX = numpy.zeros(3) | |
3804 | distY = numpy.zeros(3) |
|
3837 | distY = numpy.zeros(3) | |
3805 | ix = 0 |
|
3838 | ix = 0 | |
3806 | iy = 0 |
|
3839 | iy = 0 | |
3807 |
|
3840 | |||
3808 | pairX = numpy.zeros((2,2)) |
|
3841 | pairX = numpy.zeros((2,2)) | |
3809 | pairY = numpy.zeros((2,2)) |
|
3842 | pairY = numpy.zeros((2,2)) | |
3810 |
|
3843 | |||
3811 | for i in range(len(listOper)): |
|
3844 | for i in range(len(listOper)): | |
3812 | pairi = listOper[i] |
|
3845 | pairi = listOper[i] | |
3813 |
|
3846 | |||
3814 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) |
|
3847 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) | |
3815 |
|
3848 | |||
3816 | if posDif[0] == 0: |
|
3849 | if posDif[0] == 0: | |
3817 | axisY.append(pairi) |
|
3850 | axisY.append(pairi) | |
3818 | distY[iy] = posDif[1] |
|
3851 | distY[iy] = posDif[1] | |
3819 | iy += 1 |
|
3852 | iy += 1 | |
3820 | elif posDif[1] == 0: |
|
3853 | elif posDif[1] == 0: | |
3821 | axisX.append(pairi) |
|
3854 | axisX.append(pairi) | |
3822 | distX[ix] = posDif[0] |
|
3855 | distX[ix] = posDif[0] | |
3823 | ix += 1 |
|
3856 | ix += 1 | |
3824 |
|
3857 | |||
3825 | for i in range(2): |
|
3858 | for i in range(2): | |
3826 | if i==0: |
|
3859 | if i==0: | |
3827 | dist0 = distX |
|
3860 | dist0 = distX | |
3828 | axis0 = axisX |
|
3861 | axis0 = axisX | |
3829 | else: |
|
3862 | else: | |
3830 | dist0 = distY |
|
3863 | dist0 = distY | |
3831 | axis0 = axisY |
|
3864 | axis0 = axisY | |
3832 |
|
3865 | |||
3833 | side = numpy.argsort(dist0)[:-1] |
|
3866 | side = numpy.argsort(dist0)[:-1] | |
3834 | axis0 = numpy.array(axis0)[side,:] |
|
3867 | axis0 = numpy.array(axis0)[side,:] | |
3835 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) |
|
3868 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) | |
3836 | axis1 = numpy.unique(numpy.reshape(axis0,4)) |
|
3869 | axis1 = numpy.unique(numpy.reshape(axis0,4)) | |
3837 | side = axis1[axis1 != chanC] |
|
3870 | side = axis1[axis1 != chanC] | |
3838 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] |
|
3871 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] | |
3839 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] |
|
3872 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] | |
3840 | if diff1<0: |
|
3873 | if diff1<0: | |
3841 | chan2 = side[0] |
|
3874 | chan2 = side[0] | |
3842 | d2 = numpy.abs(diff1) |
|
3875 | d2 = numpy.abs(diff1) | |
3843 | chan1 = side[1] |
|
3876 | chan1 = side[1] | |
3844 | d1 = numpy.abs(diff2) |
|
3877 | d1 = numpy.abs(diff2) | |
3845 | else: |
|
3878 | else: | |
3846 | chan2 = side[1] |
|
3879 | chan2 = side[1] | |
3847 | d2 = numpy.abs(diff2) |
|
3880 | d2 = numpy.abs(diff2) | |
3848 | chan1 = side[0] |
|
3881 | chan1 = side[0] | |
3849 | d1 = numpy.abs(diff1) |
|
3882 | d1 = numpy.abs(diff1) | |
3850 |
|
3883 | |||
3851 | if i==0: |
|
3884 | if i==0: | |
3852 | chanCX = chanC |
|
3885 | chanCX = chanC | |
3853 | chan1X = chan1 |
|
3886 | chan1X = chan1 | |
3854 | chan2X = chan2 |
|
3887 | chan2X = chan2 | |
3855 | distances[0:2] = numpy.array([d1,d2]) |
|
3888 | distances[0:2] = numpy.array([d1,d2]) | |
3856 | else: |
|
3889 | else: | |
3857 | chanCY = chanC |
|
3890 | chanCY = chanC | |
3858 | chan1Y = chan1 |
|
3891 | chan1Y = chan1 | |
3859 | chan2Y = chan2 |
|
3892 | chan2Y = chan2 | |
3860 | distances[2:4] = numpy.array([d1,d2]) |
|
3893 | distances[2:4] = numpy.array([d1,d2]) | |
3861 | # axisXsides = numpy.reshape(axisX[ix,:],4) |
|
3894 | # axisXsides = numpy.reshape(axisX[ix,:],4) | |
3862 | # |
|
3895 | # | |
3863 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) |
|
3896 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) | |
3864 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) |
|
3897 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) | |
3865 | # |
|
3898 | # | |
3866 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] |
|
3899 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] | |
3867 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] |
|
3900 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] | |
3868 | # channel25X = int(pairX[0,ind25X]) |
|
3901 | # channel25X = int(pairX[0,ind25X]) | |
3869 | # channel20X = int(pairX[1,ind20X]) |
|
3902 | # channel20X = int(pairX[1,ind20X]) | |
3870 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] |
|
3903 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] | |
3871 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] |
|
3904 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] | |
3872 | # channel25Y = int(pairY[0,ind25Y]) |
|
3905 | # channel25Y = int(pairY[0,ind25Y]) | |
3873 | # channel20Y = int(pairY[1,ind20Y]) |
|
3906 | # channel20Y = int(pairY[1,ind20Y]) | |
3874 |
|
3907 | |||
3875 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] |
|
3908 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] | |
3876 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] |
|
3909 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] | |
3877 |
|
3910 | |||
3878 | return pairslist, distances |
|
3911 | return pairslist, distances | |
3879 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
3912 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |
3880 | # |
|
3913 | # | |
3881 | # arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3914 | # arrayAOA = numpy.zeros((phases.shape[0],3)) | |
3882 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
3915 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |
3883 | # |
|
3916 | # | |
3884 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3917 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
3885 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3918 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
3886 | # arrayAOA[:,2] = cosDirError |
|
3919 | # arrayAOA[:,2] = cosDirError | |
3887 | # |
|
3920 | # | |
3888 | # azimuthAngle = arrayAOA[:,0] |
|
3921 | # azimuthAngle = arrayAOA[:,0] | |
3889 | # zenithAngle = arrayAOA[:,1] |
|
3922 | # zenithAngle = arrayAOA[:,1] | |
3890 | # |
|
3923 | # | |
3891 | # #Setting Error |
|
3924 | # #Setting Error | |
3892 | # #Number 3: AOA not fesible |
|
3925 | # #Number 3: AOA not fesible | |
3893 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3926 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
3894 | # error[indInvalid] = 3 |
|
3927 | # error[indInvalid] = 3 | |
3895 | # #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3928 | # #Number 4: Large difference in AOAs obtained from different antenna baselines | |
3896 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3929 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
3897 | # error[indInvalid] = 4 |
|
3930 | # error[indInvalid] = 4 | |
3898 | # return arrayAOA, error |
|
3931 | # return arrayAOA, error | |
3899 | # |
|
3932 | # | |
3900 | # def __getDirectionCosines(self, arrayPhase, pairsList): |
|
3933 | # def __getDirectionCosines(self, arrayPhase, pairsList): | |
3901 | # |
|
3934 | # | |
3902 | # #Initializing some variables |
|
3935 | # #Initializing some variables | |
3903 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3936 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
3904 | # ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3937 | # ang_aux = ang_aux.reshape(1,ang_aux.size) | |
3905 | # |
|
3938 | # | |
3906 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3939 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
3907 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3940 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
3908 | # |
|
3941 | # | |
3909 | # |
|
3942 | # | |
3910 | # for i in range(2): |
|
3943 | # for i in range(2): | |
3911 | # #First Estimation |
|
3944 | # #First Estimation | |
3912 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
3945 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |
3913 | # #Dealias |
|
3946 | # #Dealias | |
3914 | # indcsi = numpy.where(phi0_aux > numpy.pi) |
|
3947 | # indcsi = numpy.where(phi0_aux > numpy.pi) | |
3915 | # phi0_aux[indcsi] -= 2*numpy.pi |
|
3948 | # phi0_aux[indcsi] -= 2*numpy.pi | |
3916 | # indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
3949 | # indcsi = numpy.where(phi0_aux < -numpy.pi) | |
3917 | # phi0_aux[indcsi] += 2*numpy.pi |
|
3950 | # phi0_aux[indcsi] += 2*numpy.pi | |
3918 | # #Direction Cosine 0 |
|
3951 | # #Direction Cosine 0 | |
3919 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
3952 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |
3920 | # |
|
3953 | # | |
3921 | # #Most-Accurate Second Estimation |
|
3954 | # #Most-Accurate Second Estimation | |
3922 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
3955 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |
3923 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3956 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
3924 | # #Direction Cosine 1 |
|
3957 | # #Direction Cosine 1 | |
3925 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) |
|
3958 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |
3926 | # |
|
3959 | # | |
3927 | # #Searching the correct Direction Cosine |
|
3960 | # #Searching the correct Direction Cosine | |
3928 | # cosdir0_aux = cosdir0[:,i] |
|
3961 | # cosdir0_aux = cosdir0[:,i] | |
3929 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
3962 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
3930 | # #Minimum Distance |
|
3963 | # #Minimum Distance | |
3931 | # cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
3964 | # cosDiff = (cosdir1 - cosdir0_aux)**2 | |
3932 | # indcos = cosDiff.argmin(axis = 1) |
|
3965 | # indcos = cosDiff.argmin(axis = 1) | |
3933 | # #Saving Value obtained |
|
3966 | # #Saving Value obtained | |
3934 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
3967 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
3935 | # |
|
3968 | # | |
3936 | # return cosdir0, cosdir |
|
3969 | # return cosdir0, cosdir | |
3937 | # |
|
3970 | # | |
3938 | # def __calculateAOA(self, cosdir, azimuth): |
|
3971 | # def __calculateAOA(self, cosdir, azimuth): | |
3939 | # cosdirX = cosdir[:,0] |
|
3972 | # cosdirX = cosdir[:,0] | |
3940 | # cosdirY = cosdir[:,1] |
|
3973 | # cosdirY = cosdir[:,1] | |
3941 | # |
|
3974 | # | |
3942 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
3975 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
3943 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east |
|
3976 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |
3944 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
3977 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
3945 | # |
|
3978 | # | |
3946 | # return angles |
|
3979 | # return angles | |
3947 | # |
|
3980 | # | |
3948 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
3981 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
3949 | # |
|
3982 | # | |
3950 | # Ramb = 375 #Ramb = c/(2*PRF) |
|
3983 | # Ramb = 375 #Ramb = c/(2*PRF) | |
3951 | # Re = 6371 #Earth Radius |
|
3984 | # Re = 6371 #Earth Radius | |
3952 | # heights = numpy.zeros(Ranges.shape) |
|
3985 | # heights = numpy.zeros(Ranges.shape) | |
3953 | # |
|
3986 | # | |
3954 | # R_aux = numpy.array([0,1,2])*Ramb |
|
3987 | # R_aux = numpy.array([0,1,2])*Ramb | |
3955 | # R_aux = R_aux.reshape(1,R_aux.size) |
|
3988 | # R_aux = R_aux.reshape(1,R_aux.size) | |
3956 | # |
|
3989 | # | |
3957 | # Ranges = Ranges.reshape(Ranges.size,1) |
|
3990 | # Ranges = Ranges.reshape(Ranges.size,1) | |
3958 | # |
|
3991 | # | |
3959 | # Ri = Ranges + R_aux |
|
3992 | # Ri = Ranges + R_aux | |
3960 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
3993 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
3961 | # |
|
3994 | # | |
3962 | # #Check if there is a height between 70 and 110 km |
|
3995 | # #Check if there is a height between 70 and 110 km | |
3963 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
3996 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
3964 | # ind_h = numpy.where(h_bool == 1)[0] |
|
3997 | # ind_h = numpy.where(h_bool == 1)[0] | |
3965 | # |
|
3998 | # | |
3966 | # hCorr = hi[ind_h, :] |
|
3999 | # hCorr = hi[ind_h, :] | |
3967 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
4000 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
3968 | # |
|
4001 | # | |
3969 | # hCorr = hi[ind_hCorr] |
|
4002 | # hCorr = hi[ind_hCorr] | |
3970 | # heights[ind_h] = hCorr |
|
4003 | # heights[ind_h] = hCorr | |
3971 | # |
|
4004 | # | |
3972 | # #Setting Error |
|
4005 | # #Setting Error | |
3973 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
4006 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
3974 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
4007 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
3975 | # |
|
4008 | # | |
3976 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
4009 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
3977 | # error[indInvalid2] = 14 |
|
4010 | # error[indInvalid2] = 14 | |
3978 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
4011 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
3979 | # error[indInvalid1] = 13 |
|
4012 | # error[indInvalid1] = 13 | |
3980 | # |
|
4013 | # | |
3981 | # return heights, error |
|
4014 | # return heights, error | |
3982 | No newline at end of file |
|
4015 |
@@ -1,1 +1,1 | |||||
1 |
<Project description="Segundo Test" id="191" name="test01"><ReadUnit datatype="SpectraReader" id="1911" inputId="0" name="SpectraReader"><Operation id="19111" name="run" priority="1" type="self"><Parameter format="str" id="191111" name="datatype" value="SpectraReader" /><Parameter format="str" id="191112" name="path" value="/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdataCLAIRE/Extra" /><Parameter format="date" id="191113" name="startDate" value="2018/02/01" /><Parameter format="date" id="191114" name="endDate" value="2018/02/01" /><Parameter format="time" id="191115" name="startTime" value="17:00:00" /><Parameter format="time" id="191116" name="endTime" value="20:00:00" /><Parameter format="int" id="191118" name="online" value="0" /><Parameter format="int" id="191119" name="walk" value="1" /></Operation><Operation id="19112" name="printInfo" priority="2" type="self" /><Operation id="19113" name="printNumberOfBlock" priority="3" type="self" /></ReadUnit><ProcUnit datatype="Parameters" id="1913" inputId="1912" name="ParametersProc"><Operation id="19131" name="run" priority="1" type="self" /><Operation id="19132" name="SpectralFilters" priority="2" type="other"><Parameter format="float" id="191321" name=" |
|
1 | <Project description="Segundo Test" id="191" name="test01"><ReadUnit datatype="SpectraReader" id="1911" inputId="0" name="SpectraReader"><Operation id="19111" name="run" priority="1" type="self"><Parameter format="str" id="191111" name="datatype" value="SpectraReader" /><Parameter format="str" id="191112" name="path" value="/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdataCLAIRE/Extra" /><Parameter format="date" id="191113" name="startDate" value="2018/02/01" /><Parameter format="date" id="191114" name="endDate" value="2018/02/01" /><Parameter format="time" id="191115" name="startTime" value="17:00:00" /><Parameter format="time" id="191116" name="endTime" value="20:00:00" /><Parameter format="int" id="191118" name="online" value="0" /><Parameter format="int" id="191119" name="walk" value="1" /></Operation><Operation id="19112" name="printInfo" priority="2" type="self" /><Operation id="19113" name="printNumberOfBlock" priority="3" type="self" /></ReadUnit><ProcUnit datatype="Parameters" id="1913" inputId="1912" name="ParametersProc"><Operation id="19131" name="run" priority="1" type="self" /><Operation id="19132" name="SpectralFilters" priority="2" type="other"><Parameter format="float" id="191321" name="PositiveLimit" value="1.5" /><Parameter format="float" id="191322" name="NegativeLimit" value="3.5" /></Operation><Operation id="19133" name="FullSpectralAnalysis" priority="3" type="other"><Parameter format="float" id="191331" name="SNRlimit" value="-16" /><Parameter format="float" id="191332" name="E01" value="1.500" /><Parameter format="float" id="191333" name="E02" value="1.500" /><Parameter format="float" id="191334" name="E12" value="0" /><Parameter format="float" id="191335" name="N01" value="0.875" /><Parameter format="float" id="191336" name="N02" value="-0.875" /><Parameter format="float" id="191337" name="N12" value="-1.750" /></Operation><Operation id="19134" name="WindProfilerPlot" priority="4" type="other"><Parameter format="int" id="191341" name="id" value="4" /><Parameter format="str" id="191342" name="wintitle" value="Wind Profiler" /><Parameter format="float" id="191343" name="xmin" value="17" /><Parameter format="float" id="191344" name="xmax" value="20" /><Parameter format="float" id="191345" name="ymin" value="0" /><Parameter format="int" id="191346" name="ymax" value="11" /><Parameter format="float" id="191347" name="zmin" value="-20" /><Parameter format="float" id="191348" name="zmax" value="20" /><Parameter format="float" id="191349" name="SNRmin" value="-20" /><Parameter format="float" id="191350" name="SNRmax" value="20" /><Parameter format="float" id="191351" name="zmin_ver" value="-200" /><Parameter format="float" id="191352" name="zmax_ver" value="200" /><Parameter format="float" id="191353" name="SNRthresh" value="-20" /><Parameter format="int" id="191354" name="save" value="1" /><Parameter format="str" id="191355" name="figpath" value="/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdataCLAIRE/Extra" /></Operation><Operation id="19135" name="PrecipitationProc" priority="5" type="other" /><Operation id="19136" name="ParametersPlot" priority="6" type="other"><Parameter format="int" id="191361" name="id" value="10" /><Parameter format="str" id="191362" name="wintitle" value="First_gg" /><Parameter format="str" id="191363" name="colormap" value="ocean_r" /><Parameter format="int" id="191364" name="zmin" value="50" /><Parameter format="int" id="191365" name="zmax" value="100" /><Parameter format="int" id="191366" name="ymin" value="0" /><Parameter format="int" id="191367" name="ymax" value="11" /><Parameter format="int" id="191368" name="xmin" value="17" /><Parameter format="int" id="191369" name="xmax" value="20" /><Parameter format="int" id="191370" name="save" value="1" /><Parameter format="str" id="191371" name="figpath" value="/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdataCLAIRE/Extra" /></Operation><Operation id="19137" name="SpcParamPlot" priority="7" type="other"><Parameter format="int" id="191371" name="id" value="21" /><Parameter format="str" id="191372" name="wintitle" value="Primer eco removido" /><Parameter format="str" id="191373" name="xaxis" value="velocity" /><Parameter format="int" id="191374" name="showprofile" value="1" /><Parameter format="int" id="191375" name="zmin" value="10" /><Parameter format="int" id="191376" name="zmax" value="40" /><Parameter format="int" id="191377" name="Selector" value="1" /></Operation><Operation id="19138" name="ParamWriter" priority="8" type="other"><Parameter format="str" id="191381" name="path" value="/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdatatest/test1024" /><Parameter format="int" id="191382" name="blocksPerFile" value="100" /><Parameter format="list" id="191383" name="metadataList" value="heightList,timeZone,paramInterval" /><Parameter format="list" id="191384" name="dataList" value="data_output,data_SNR,utctime,utctimeInit" /></Operation></ProcUnit><ProcUnit datatype="SpectraProc" id="1912" inputId="1911" name="SpectraProc"><Operation id="19121" name="run" priority="1" type="self" /><Operation id="19122" name="setRadarFrequency" priority="2" type="self"><Parameter format="float" id="191221" name="frequency" value="445.09e6" /></Operation></ProcUnit></Project> No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now