@@ -1,3857 +1,4238 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import math |
|
2 | import math | |
3 | from scipy import optimize, interpolate, signal, stats, ndimage |
|
3 | from scipy import optimize, interpolate, signal, stats, ndimage | |
4 | import scipy |
|
4 | import scipy | |
5 | import re |
|
5 | import re | |
6 | import datetime |
|
6 | import datetime | |
7 | import copy |
|
7 | import copy | |
8 | import sys |
|
8 | import sys | |
9 | import importlib |
|
9 | import importlib | |
10 | import itertools |
|
10 | import itertools | |
11 | from multiprocessing import Pool, TimeoutError |
|
11 | from multiprocessing import Pool, TimeoutError | |
12 | from multiprocessing.pool import ThreadPool |
|
12 | from multiprocessing.pool import ThreadPool | |
13 | import time |
|
13 | import time | |
14 |
|
14 | |||
15 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters |
|
15 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters | |
16 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
16 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator | |
17 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon |
|
17 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon | |
18 | from scipy import asarray as ar,exp |
|
18 | from scipy import asarray as ar,exp | |
19 | from scipy.optimize import curve_fit |
|
19 | from scipy.optimize import curve_fit | |
20 | from schainpy.utils import log |
|
20 | from schainpy.utils import log | |
21 | import warnings |
|
21 | import warnings | |
22 | from numpy import NaN |
|
22 | from numpy import NaN | |
23 | from scipy.optimize.optimize import OptimizeWarning |
|
23 | from scipy.optimize.optimize import OptimizeWarning | |
24 | warnings.filterwarnings('ignore') |
|
24 | warnings.filterwarnings('ignore') | |
25 |
|
25 | |||
|
26 | import matplotlib.pyplot as plt | |||
26 |
|
27 | |||
27 | SPEED_OF_LIGHT = 299792458 |
|
28 | SPEED_OF_LIGHT = 299792458 | |
28 |
|
29 | |||
29 |
|
30 | |||
30 | '''solving pickling issue''' |
|
31 | '''solving pickling issue''' | |
31 |
|
32 | |||
32 | def _pickle_method(method): |
|
33 | def _pickle_method(method): | |
33 | func_name = method.__func__.__name__ |
|
34 | func_name = method.__func__.__name__ | |
34 | obj = method.__self__ |
|
35 | obj = method.__self__ | |
35 | cls = method.__self__.__class__ |
|
36 | cls = method.__self__.__class__ | |
36 | return _unpickle_method, (func_name, obj, cls) |
|
37 | return _unpickle_method, (func_name, obj, cls) | |
37 |
|
38 | |||
38 | def _unpickle_method(func_name, obj, cls): |
|
39 | def _unpickle_method(func_name, obj, cls): | |
39 | for cls in cls.mro(): |
|
40 | for cls in cls.mro(): | |
40 | try: |
|
41 | try: | |
41 | func = cls.__dict__[func_name] |
|
42 | func = cls.__dict__[func_name] | |
42 | except KeyError: |
|
43 | except KeyError: | |
43 | pass |
|
44 | pass | |
44 | else: |
|
45 | else: | |
45 | break |
|
46 | break | |
46 | return func.__get__(obj, cls) |
|
47 | return func.__get__(obj, cls) | |
47 |
|
48 | |||
48 | @MPDecorator |
|
49 | @MPDecorator | |
49 | class ParametersProc(ProcessingUnit): |
|
50 | class ParametersProc(ProcessingUnit): | |
50 |
|
51 | |||
51 | METHODS = {} |
|
52 | METHODS = {} | |
52 | nSeconds = None |
|
53 | nSeconds = None | |
53 |
|
54 | |||
54 | def __init__(self): |
|
55 | def __init__(self): | |
55 | ProcessingUnit.__init__(self) |
|
56 | ProcessingUnit.__init__(self) | |
56 |
|
57 | |||
57 | # self.objectDict = {} |
|
58 | # self.objectDict = {} | |
58 | self.buffer = None |
|
59 | self.buffer = None | |
59 | self.firstdatatime = None |
|
60 | self.firstdatatime = None | |
60 | self.profIndex = 0 |
|
61 | self.profIndex = 0 | |
61 | self.dataOut = Parameters() |
|
62 | self.dataOut = Parameters() | |
62 | self.setupReq = False #Agregar a todas las unidades de proc |
|
63 | self.setupReq = False #Agregar a todas las unidades de proc | |
63 |
|
64 | |||
64 | def __updateObjFromInput(self): |
|
65 | def __updateObjFromInput(self): | |
65 |
|
66 | |||
66 | self.dataOut.inputUnit = self.dataIn.type |
|
67 | self.dataOut.inputUnit = self.dataIn.type | |
67 |
|
68 | |||
68 | self.dataOut.timeZone = self.dataIn.timeZone |
|
69 | self.dataOut.timeZone = self.dataIn.timeZone | |
69 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
70 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
70 | self.dataOut.errorCount = self.dataIn.errorCount |
|
71 | self.dataOut.errorCount = self.dataIn.errorCount | |
71 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
72 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
72 |
|
73 | |||
73 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
74 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
74 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
75 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
75 | self.dataOut.channelList = self.dataIn.channelList |
|
76 | self.dataOut.channelList = self.dataIn.channelList | |
76 | self.dataOut.heightList = self.dataIn.heightList |
|
77 | self.dataOut.heightList = self.dataIn.heightList | |
77 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
78 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
78 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
79 | # self.dataOut.nHeights = self.dataIn.nHeights | |
79 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
80 | # self.dataOut.nChannels = self.dataIn.nChannels | |
80 | self.dataOut.nBaud = self.dataIn.nBaud |
|
81 | self.dataOut.nBaud = self.dataIn.nBaud | |
81 | self.dataOut.nCode = self.dataIn.nCode |
|
82 | self.dataOut.nCode = self.dataIn.nCode | |
82 | self.dataOut.code = self.dataIn.code |
|
83 | self.dataOut.code = self.dataIn.code | |
83 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
84 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
84 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
85 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
85 | # self.dataOut.utctime = self.firstdatatime |
|
86 | # self.dataOut.utctime = self.firstdatatime | |
86 | self.dataOut.utctime = self.dataIn.utctime |
|
87 | self.dataOut.utctime = self.dataIn.utctime | |
87 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
88 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
88 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
89 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
89 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
90 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
90 | # self.dataOut.nIncohInt = 1 |
|
91 | # self.dataOut.nIncohInt = 1 | |
91 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
92 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
92 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
93 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
93 | self.dataOut.timeInterval1 = self.dataIn.timeInterval |
|
94 | self.dataOut.timeInterval1 = self.dataIn.timeInterval | |
94 | self.dataOut.heightList = self.dataIn.getHeiRange() |
|
95 | self.dataOut.heightList = self.dataIn.getHeiRange() | |
95 | self.dataOut.frequency = self.dataIn.frequency |
|
96 | self.dataOut.frequency = self.dataIn.frequency | |
96 | # self.dataOut.noise = self.dataIn.noise |
|
97 | # self.dataOut.noise = self.dataIn.noise | |
97 |
|
98 | |||
98 | def run(self): |
|
99 | def run(self): | |
99 |
|
100 | |||
100 |
|
101 | |||
101 |
|
102 | |||
102 | #---------------------- Voltage Data --------------------------- |
|
103 | #---------------------- Voltage Data --------------------------- | |
103 |
|
104 | |||
104 | if self.dataIn.type == "Voltage": |
|
105 | if self.dataIn.type == "Voltage": | |
105 |
|
106 | |||
106 | self.__updateObjFromInput() |
|
107 | self.__updateObjFromInput() | |
107 | self.dataOut.data_pre = self.dataIn.data.copy() |
|
108 | self.dataOut.data_pre = self.dataIn.data.copy() | |
108 | self.dataOut.flagNoData = False |
|
109 | self.dataOut.flagNoData = False | |
109 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
110 | self.dataOut.utctimeInit = self.dataIn.utctime | |
110 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds |
|
111 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds | |
111 | return |
|
112 | return | |
112 |
|
113 | |||
113 | #---------------------- Spectra Data --------------------------- |
|
114 | #---------------------- Spectra Data --------------------------- | |
114 |
|
115 | |||
115 | if self.dataIn.type == "Spectra": |
|
116 | if self.dataIn.type == "Spectra": | |
116 |
|
117 | |||
117 | self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc) |
|
118 | self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc) | |
118 | self.dataOut.data_spc = self.dataIn.data_spc |
|
119 | self.dataOut.data_spc = self.dataIn.data_spc | |
119 | self.dataOut.data_cspc = self.dataIn.data_cspc |
|
120 | self.dataOut.data_cspc = self.dataIn.data_cspc | |
120 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
121 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
121 | self.dataOut.nIncohInt = self.dataIn.nIncohInt |
|
122 | self.dataOut.nIncohInt = self.dataIn.nIncohInt | |
122 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints |
|
123 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints | |
123 | self.dataOut.ippFactor = self.dataIn.ippFactor |
|
124 | self.dataOut.ippFactor = self.dataIn.ippFactor | |
124 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
125 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
125 | self.dataOut.spc_noise = self.dataIn.getNoise() |
|
126 | self.dataOut.spc_noise = self.dataIn.getNoise() | |
126 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) |
|
127 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) | |
127 | # self.dataOut.normFactor = self.dataIn.normFactor |
|
128 | # self.dataOut.normFactor = self.dataIn.normFactor | |
128 | self.dataOut.pairsList = self.dataIn.pairsList |
|
129 | self.dataOut.pairsList = self.dataIn.pairsList | |
129 | self.dataOut.groupList = self.dataIn.pairsList |
|
130 | self.dataOut.groupList = self.dataIn.pairsList | |
130 | self.dataOut.flagNoData = False |
|
131 | self.dataOut.flagNoData = False | |
131 |
|
132 | |||
132 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
133 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels | |
133 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
134 | self.dataOut.ChanDist = self.dataIn.ChanDist | |
134 | else: self.dataOut.ChanDist = None |
|
135 | else: self.dataOut.ChanDist = None | |
135 |
|
136 | |||
136 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
137 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range | |
137 | # self.dataOut.VelRange = self.dataIn.VelRange |
|
138 | # self.dataOut.VelRange = self.dataIn.VelRange | |
138 | #else: self.dataOut.VelRange = None |
|
139 | #else: self.dataOut.VelRange = None | |
139 |
|
140 | |||
140 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant |
|
141 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant | |
141 | self.dataOut.RadarConst = self.dataIn.RadarConst |
|
142 | self.dataOut.RadarConst = self.dataIn.RadarConst | |
142 |
|
143 | |||
143 | if hasattr(self.dataIn, 'NPW'): #NPW |
|
144 | if hasattr(self.dataIn, 'NPW'): #NPW | |
144 | self.dataOut.NPW = self.dataIn.NPW |
|
145 | self.dataOut.NPW = self.dataIn.NPW | |
145 |
|
146 | |||
146 | if hasattr(self.dataIn, 'COFA'): #COFA |
|
147 | if hasattr(self.dataIn, 'COFA'): #COFA | |
147 | self.dataOut.COFA = self.dataIn.COFA |
|
148 | self.dataOut.COFA = self.dataIn.COFA | |
148 |
|
149 | |||
149 |
|
150 | |||
150 |
|
151 | |||
151 | #---------------------- Correlation Data --------------------------- |
|
152 | #---------------------- Correlation Data --------------------------- | |
152 |
|
153 | |||
153 | if self.dataIn.type == "Correlation": |
|
154 | if self.dataIn.type == "Correlation": | |
154 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() |
|
155 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() | |
155 |
|
156 | |||
156 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) |
|
157 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) | |
157 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) |
|
158 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) | |
158 | self.dataOut.groupList = (acf_pairs, ccf_pairs) |
|
159 | self.dataOut.groupList = (acf_pairs, ccf_pairs) | |
159 |
|
160 | |||
160 | self.dataOut.abscissaList = self.dataIn.lagRange |
|
161 | self.dataOut.abscissaList = self.dataIn.lagRange | |
161 | self.dataOut.noise = self.dataIn.noise |
|
162 | self.dataOut.noise = self.dataIn.noise | |
162 | self.dataOut.data_SNR = self.dataIn.SNR |
|
163 | self.dataOut.data_SNR = self.dataIn.SNR | |
163 | self.dataOut.flagNoData = False |
|
164 | self.dataOut.flagNoData = False | |
164 | self.dataOut.nAvg = self.dataIn.nAvg |
|
165 | self.dataOut.nAvg = self.dataIn.nAvg | |
165 |
|
166 | |||
166 | #---------------------- Parameters Data --------------------------- |
|
167 | #---------------------- Parameters Data --------------------------- | |
167 |
|
168 | |||
168 | if self.dataIn.type == "Parameters": |
|
169 | if self.dataIn.type == "Parameters": | |
169 | self.dataOut.copy(self.dataIn) |
|
170 | self.dataOut.copy(self.dataIn) | |
170 | self.dataOut.flagNoData = False |
|
171 | self.dataOut.flagNoData = False | |
171 |
|
172 | |||
172 | return True |
|
173 | return True | |
173 |
|
174 | |||
174 | self.__updateObjFromInput() |
|
175 | self.__updateObjFromInput() | |
175 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
176 | self.dataOut.utctimeInit = self.dataIn.utctime | |
176 | self.dataOut.paramInterval = self.dataIn.timeInterval |
|
177 | self.dataOut.paramInterval = self.dataIn.timeInterval | |
177 |
|
178 | |||
178 | return |
|
179 | return | |
179 |
|
180 | |||
180 |
|
181 | |||
181 | def target(tups): |
|
182 | def target(tups): | |
182 |
|
183 | |||
183 | obj, args = tups |
|
184 | obj, args = tups | |
184 |
|
185 | |||
185 | return obj.FitGau(args) |
|
186 | return obj.FitGau(args) | |
186 |
|
187 | |||
187 |
|
188 | |||
188 | class SpectralFilters(Operation): |
|
189 | class SpectralFilters(Operation): | |
189 |
|
190 | |||
190 | '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR |
|
191 | '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR | |
191 |
|
192 | |||
192 | LimitR : It is the limit in m/s of Rainfall |
|
193 | LimitR : It is the limit in m/s of Rainfall | |
193 | LimitW : It is the limit in m/s for Winds |
|
194 | LimitW : It is the limit in m/s for Winds | |
194 |
|
195 | |||
195 | Input: |
|
196 | Input: | |
196 |
|
197 | |||
197 | self.dataOut.data_pre : SPC and CSPC |
|
198 | self.dataOut.data_pre : SPC and CSPC | |
198 | self.dataOut.spc_range : To select wind and rainfall velocities |
|
199 | self.dataOut.spc_range : To select wind and rainfall velocities | |
199 |
|
200 | |||
200 | Affected: |
|
201 | Affected: | |
201 |
|
202 | |||
202 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind |
|
203 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |
203 | self.dataOut.spcparam_range : Used in SpcParamPlot |
|
204 | self.dataOut.spcparam_range : Used in SpcParamPlot | |
204 | self.dataOut.SPCparam : Used in PrecipitationProc |
|
205 | self.dataOut.SPCparam : Used in PrecipitationProc | |
205 |
|
206 | |||
206 |
|
207 | |||
207 | ''' |
|
208 | ''' | |
208 |
|
209 | |||
209 | def __init__(self): |
|
210 | def __init__(self): | |
210 | Operation.__init__(self) |
|
211 | Operation.__init__(self) | |
211 | self.i=0 |
|
212 | self.i=0 | |
212 |
|
213 | |||
213 | def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5): |
|
214 | def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5): | |
214 |
|
215 | |||
215 |
|
216 | |||
216 | #Limite de vientos |
|
217 | #Limite de vientos | |
217 | LimitR = PositiveLimit |
|
218 | LimitR = PositiveLimit | |
218 | LimitN = NegativeLimit |
|
219 | LimitN = NegativeLimit | |
219 |
|
220 | |||
220 | self.spc = dataOut.data_pre[0].copy() |
|
221 | self.spc = dataOut.data_pre[0].copy() | |
221 | self.cspc = dataOut.data_pre[1].copy() |
|
222 | self.cspc = dataOut.data_pre[1].copy() | |
222 |
|
223 | |||
223 | self.Num_Hei = self.spc.shape[2] |
|
224 | self.Num_Hei = self.spc.shape[2] | |
224 | self.Num_Bin = self.spc.shape[1] |
|
225 | self.Num_Bin = self.spc.shape[1] | |
225 | self.Num_Chn = self.spc.shape[0] |
|
226 | self.Num_Chn = self.spc.shape[0] | |
226 |
|
227 | |||
227 | VelRange = dataOut.spc_range[2] |
|
228 | VelRange = dataOut.spc_range[2] | |
228 | TimeRange = dataOut.spc_range[1] |
|
229 | TimeRange = dataOut.spc_range[1] | |
229 | FrecRange = dataOut.spc_range[0] |
|
230 | FrecRange = dataOut.spc_range[0] | |
230 |
|
231 | |||
231 | Vmax= 2*numpy.max(dataOut.spc_range[2]) |
|
232 | Vmax= 2*numpy.max(dataOut.spc_range[2]) | |
232 | Tmax= 2*numpy.max(dataOut.spc_range[1]) |
|
233 | Tmax= 2*numpy.max(dataOut.spc_range[1]) | |
233 | Fmax= 2*numpy.max(dataOut.spc_range[0]) |
|
234 | Fmax= 2*numpy.max(dataOut.spc_range[0]) | |
234 |
|
235 | |||
235 | Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()] |
|
236 | Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()] | |
236 | Breaker1R=numpy.where(VelRange == Breaker1R) |
|
237 | Breaker1R=numpy.where(VelRange == Breaker1R) | |
237 |
|
238 | |||
238 | Delta = self.Num_Bin/2 - Breaker1R[0] |
|
239 | Delta = self.Num_Bin/2 - Breaker1R[0] | |
239 |
|
240 | |||
240 |
|
241 | |||
241 | '''Reacomodando SPCrange''' |
|
242 | '''Reacomodando SPCrange''' | |
242 |
|
243 | |||
243 | VelRange=numpy.roll(VelRange,-(int(self.Num_Bin/2)) ,axis=0) |
|
244 | VelRange=numpy.roll(VelRange,-(int(self.Num_Bin/2)) ,axis=0) | |
244 |
|
245 | |||
245 | VelRange[-(int(self.Num_Bin/2)):]+= Vmax |
|
246 | VelRange[-(int(self.Num_Bin/2)):]+= Vmax | |
246 |
|
247 | |||
247 | FrecRange=numpy.roll(FrecRange,-(int(self.Num_Bin/2)),axis=0) |
|
248 | FrecRange=numpy.roll(FrecRange,-(int(self.Num_Bin/2)),axis=0) | |
248 |
|
249 | |||
249 | FrecRange[-(int(self.Num_Bin/2)):]+= Fmax |
|
250 | FrecRange[-(int(self.Num_Bin/2)):]+= Fmax | |
250 |
|
251 | |||
251 | TimeRange=numpy.roll(TimeRange,-(int(self.Num_Bin/2)),axis=0) |
|
252 | TimeRange=numpy.roll(TimeRange,-(int(self.Num_Bin/2)),axis=0) | |
252 |
|
253 | |||
253 | TimeRange[-(int(self.Num_Bin/2)):]+= Tmax |
|
254 | TimeRange[-(int(self.Num_Bin/2)):]+= Tmax | |
254 |
|
255 | |||
255 | ''' ------------------ ''' |
|
256 | ''' ------------------ ''' | |
256 |
|
257 | |||
257 | Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()] |
|
258 | Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()] | |
258 | Breaker2R=numpy.where(VelRange == Breaker2R) |
|
259 | Breaker2R=numpy.where(VelRange == Breaker2R) | |
259 |
|
260 | |||
260 |
|
261 | |||
261 | SPCroll = numpy.roll(self.spc,-(int(self.Num_Bin/2)) ,axis=1) |
|
262 | SPCroll = numpy.roll(self.spc,-(int(self.Num_Bin/2)) ,axis=1) | |
262 |
|
263 | |||
263 | SPCcut = SPCroll.copy() |
|
264 | SPCcut = SPCroll.copy() | |
264 | for i in range(self.Num_Chn): |
|
265 | for i in range(self.Num_Chn): | |
265 |
|
266 | |||
266 | SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i] |
|
267 | SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i] | |
267 | SPCcut[i,-int(Delta):,:] = dataOut.noise[i] |
|
268 | SPCcut[i,-int(Delta):,:] = dataOut.noise[i] | |
268 |
|
269 | |||
269 | SPCcut[i]=SPCcut[i]- dataOut.noise[i] |
|
270 | SPCcut[i]=SPCcut[i]- dataOut.noise[i] | |
270 | SPCcut[ numpy.where( SPCcut<0 ) ] = 1e-20 |
|
271 | SPCcut[ numpy.where( SPCcut<0 ) ] = 1e-20 | |
271 |
|
272 | |||
272 | SPCroll[i]=SPCroll[i]-dataOut.noise[i] |
|
273 | SPCroll[i]=SPCroll[i]-dataOut.noise[i] | |
273 | SPCroll[ numpy.where( SPCroll<0 ) ] = 1e-20 |
|
274 | SPCroll[ numpy.where( SPCroll<0 ) ] = 1e-20 | |
274 |
|
275 | |||
275 | SPC_ch1 = SPCroll |
|
276 | SPC_ch1 = SPCroll | |
276 |
|
277 | |||
277 | SPC_ch2 = SPCcut |
|
278 | SPC_ch2 = SPCcut | |
278 |
|
279 | |||
279 | SPCparam = (SPC_ch1, SPC_ch2, self.spc) |
|
280 | SPCparam = (SPC_ch1, SPC_ch2, self.spc) | |
280 | dataOut.SPCparam = numpy.asarray(SPCparam) |
|
281 | dataOut.SPCparam = numpy.asarray(SPCparam) | |
281 |
|
282 | |||
282 |
|
283 | |||
283 | dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1]) |
|
284 | dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1]) | |
284 |
|
285 | |||
285 | dataOut.spcparam_range[2]=VelRange |
|
286 | dataOut.spcparam_range[2]=VelRange | |
286 | dataOut.spcparam_range[1]=TimeRange |
|
287 | dataOut.spcparam_range[1]=TimeRange | |
287 | dataOut.spcparam_range[0]=FrecRange |
|
288 | dataOut.spcparam_range[0]=FrecRange | |
288 | return dataOut |
|
289 | return dataOut | |
289 |
|
290 | |||
290 | class GaussianFit(Operation): |
|
291 | class GaussianFit(Operation): | |
291 |
|
292 | |||
292 | ''' |
|
293 | ''' | |
293 | Function that fit of one and two generalized gaussians (gg) based |
|
294 | Function that fit of one and two generalized gaussians (gg) based | |
294 | on the PSD shape across an "power band" identified from a cumsum of |
|
295 | on the PSD shape across an "power band" identified from a cumsum of | |
295 | the measured spectrum - noise. |
|
296 | the measured spectrum - noise. | |
296 |
|
297 | |||
297 | Input: |
|
298 | Input: | |
298 | self.dataOut.data_pre : SelfSpectra |
|
299 | self.dataOut.data_pre : SelfSpectra | |
299 |
|
300 | |||
300 | Output: |
|
301 | Output: | |
301 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 |
|
302 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 | |
302 |
|
303 | |||
303 | ''' |
|
304 | ''' | |
304 | def __init__(self): |
|
305 | def __init__(self): | |
305 | Operation.__init__(self) |
|
306 | Operation.__init__(self) | |
306 | self.i=0 |
|
307 | self.i=0 | |
307 |
|
308 | |||
308 |
|
309 | |||
309 | def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points |
|
310 | def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
310 | """This routine will find a couple of generalized Gaussians to a power spectrum |
|
311 | """This routine will find a couple of generalized Gaussians to a power spectrum | |
311 | input: spc |
|
312 | input: spc | |
312 | output: |
|
313 | output: | |
313 | Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise |
|
314 | Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise | |
314 | """ |
|
315 | """ | |
315 |
|
316 | |||
316 | self.spc = dataOut.data_pre[0].copy() |
|
317 | self.spc = dataOut.data_pre[0].copy() | |
317 | self.Num_Hei = self.spc.shape[2] |
|
318 | self.Num_Hei = self.spc.shape[2] | |
318 | self.Num_Bin = self.spc.shape[1] |
|
319 | self.Num_Bin = self.spc.shape[1] | |
319 | self.Num_Chn = self.spc.shape[0] |
|
320 | self.Num_Chn = self.spc.shape[0] | |
320 | Vrange = dataOut.abscissaList |
|
321 | Vrange = dataOut.abscissaList | |
321 |
|
322 | |||
322 | GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
323 | GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
323 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
324 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
324 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
325 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
325 | SPC_ch1[:] = numpy.NaN |
|
326 | SPC_ch1[:] = numpy.NaN | |
326 | SPC_ch2[:] = numpy.NaN |
|
327 | SPC_ch2[:] = numpy.NaN | |
327 |
|
328 | |||
328 |
|
329 | |||
329 | start_time = time.time() |
|
330 | start_time = time.time() | |
330 |
|
331 | |||
331 | noise_ = dataOut.spc_noise[0].copy() |
|
332 | noise_ = dataOut.spc_noise[0].copy() | |
332 |
|
333 | |||
333 |
|
334 | |||
334 | pool = Pool(processes=self.Num_Chn) |
|
335 | pool = Pool(processes=self.Num_Chn) | |
335 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] |
|
336 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] | |
336 | objs = [self for __ in range(self.Num_Chn)] |
|
337 | objs = [self for __ in range(self.Num_Chn)] | |
337 | attrs = list(zip(objs, args)) |
|
338 | attrs = list(zip(objs, args)) | |
338 | gauSPC = pool.map(target, attrs) |
|
339 | gauSPC = pool.map(target, attrs) | |
339 | dataOut.SPCparam = numpy.asarray(SPCparam) |
|
340 | dataOut.SPCparam = numpy.asarray(SPCparam) | |
340 |
|
341 | |||
341 | ''' Parameters: |
|
342 | ''' Parameters: | |
342 | 1. Amplitude |
|
343 | 1. Amplitude | |
343 | 2. Shift |
|
344 | 2. Shift | |
344 | 3. Width |
|
345 | 3. Width | |
345 | 4. Power |
|
346 | 4. Power | |
346 | ''' |
|
347 | ''' | |
347 |
|
348 | |||
348 | def FitGau(self, X): |
|
349 | def FitGau(self, X): | |
349 |
|
350 | |||
350 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X |
|
351 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X | |
351 |
|
352 | |||
352 | SPCparam = [] |
|
353 | SPCparam = [] | |
353 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
354 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
354 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
355 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
355 | SPC_ch1[:] = 0#numpy.NaN |
|
356 | SPC_ch1[:] = 0#numpy.NaN | |
356 | SPC_ch2[:] = 0#numpy.NaN |
|
357 | SPC_ch2[:] = 0#numpy.NaN | |
357 |
|
358 | |||
358 |
|
359 | |||
359 |
|
360 | |||
360 | for ht in range(self.Num_Hei): |
|
361 | for ht in range(self.Num_Hei): | |
361 |
|
362 | |||
362 |
|
363 | |||
363 | spc = numpy.asarray(self.spc)[ch,:,ht] |
|
364 | spc = numpy.asarray(self.spc)[ch,:,ht] | |
364 |
|
365 | |||
365 | ############################################# |
|
366 | ############################################# | |
366 | # normalizing spc and noise |
|
367 | # normalizing spc and noise | |
367 | # This part differs from gg1 |
|
368 | # This part differs from gg1 | |
368 | spc_norm_max = max(spc) |
|
369 | spc_norm_max = max(spc) | |
369 | #spc = spc / spc_norm_max |
|
370 | #spc = spc / spc_norm_max | |
370 | pnoise = pnoise #/ spc_norm_max |
|
371 | pnoise = pnoise #/ spc_norm_max | |
371 | ############################################# |
|
372 | ############################################# | |
372 |
|
373 | |||
373 | fatspectra=1.0 |
|
374 | fatspectra=1.0 | |
374 |
|
375 | |||
375 | wnoise = noise_ #/ spc_norm_max |
|
376 | wnoise = noise_ #/ spc_norm_max | |
376 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
377 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |
377 | #if wnoise>1.1*pnoise: # to be tested later |
|
378 | #if wnoise>1.1*pnoise: # to be tested later | |
378 | # wnoise=pnoise |
|
379 | # wnoise=pnoise | |
379 | noisebl=wnoise*0.9; |
|
380 | noisebl=wnoise*0.9; | |
380 | noisebh=wnoise*1.1 |
|
381 | noisebh=wnoise*1.1 | |
381 | spc=spc-wnoise |
|
382 | spc=spc-wnoise | |
382 |
|
383 | |||
383 | minx=numpy.argmin(spc) |
|
384 | minx=numpy.argmin(spc) | |
384 | #spcs=spc.copy() |
|
385 | #spcs=spc.copy() | |
385 | spcs=numpy.roll(spc,-minx) |
|
386 | spcs=numpy.roll(spc,-minx) | |
386 | cum=numpy.cumsum(spcs) |
|
387 | cum=numpy.cumsum(spcs) | |
387 | tot_noise=wnoise * self.Num_Bin #64; |
|
388 | tot_noise=wnoise * self.Num_Bin #64; | |
388 |
|
389 | |||
389 | snr = sum(spcs)/tot_noise |
|
390 | snr = sum(spcs)/tot_noise | |
390 | snrdB=10.*numpy.log10(snr) |
|
391 | snrdB=10.*numpy.log10(snr) | |
391 |
|
392 | |||
392 | if snrdB < SNRlimit : |
|
393 | if snrdB < SNRlimit : | |
393 | snr = numpy.NaN |
|
394 | snr = numpy.NaN | |
394 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
395 | SPC_ch1[:,ht] = 0#numpy.NaN | |
395 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
396 | SPC_ch1[:,ht] = 0#numpy.NaN | |
396 | SPCparam = (SPC_ch1,SPC_ch2) |
|
397 | SPCparam = (SPC_ch1,SPC_ch2) | |
397 | continue |
|
398 | continue | |
398 |
|
399 | |||
399 |
|
400 | |||
400 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
401 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |
401 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
402 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
402 |
|
403 | |||
403 | cummax=max(cum); |
|
404 | cummax=max(cum); | |
404 | epsi=0.08*fatspectra # cumsum to narrow down the energy region |
|
405 | epsi=0.08*fatspectra # cumsum to narrow down the energy region | |
405 | cumlo=cummax*epsi; |
|
406 | cumlo=cummax*epsi; | |
406 | cumhi=cummax*(1-epsi) |
|
407 | cumhi=cummax*(1-epsi) | |
407 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
408 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
408 |
|
409 | |||
409 |
|
410 | |||
410 | if len(powerindex) < 1:# case for powerindex 0 |
|
411 | if len(powerindex) < 1:# case for powerindex 0 | |
411 | continue |
|
412 | continue | |
412 | powerlo=powerindex[0] |
|
413 | powerlo=powerindex[0] | |
413 | powerhi=powerindex[-1] |
|
414 | powerhi=powerindex[-1] | |
414 | powerwidth=powerhi-powerlo |
|
415 | powerwidth=powerhi-powerlo | |
415 |
|
416 | |||
416 | firstpeak=powerlo+powerwidth/10.# first gaussian energy location |
|
417 | firstpeak=powerlo+powerwidth/10.# first gaussian energy location | |
417 | secondpeak=powerhi-powerwidth/10.#second gaussian energy location |
|
418 | secondpeak=powerhi-powerwidth/10.#second gaussian energy location | |
418 | midpeak=(firstpeak+secondpeak)/2. |
|
419 | midpeak=(firstpeak+secondpeak)/2. | |
419 | firstamp=spcs[int(firstpeak)] |
|
420 | firstamp=spcs[int(firstpeak)] | |
420 | secondamp=spcs[int(secondpeak)] |
|
421 | secondamp=spcs[int(secondpeak)] | |
421 | midamp=spcs[int(midpeak)] |
|
422 | midamp=spcs[int(midpeak)] | |
422 |
|
423 | |||
423 | x=numpy.arange( self.Num_Bin ) |
|
424 | x=numpy.arange( self.Num_Bin ) | |
424 | y_data=spc+wnoise |
|
425 | y_data=spc+wnoise | |
425 |
|
426 | |||
426 | ''' single Gaussian ''' |
|
427 | ''' single Gaussian ''' | |
427 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) |
|
428 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) | |
428 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 |
|
429 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
429 | power0=2. |
|
430 | power0=2. | |
430 | amplitude0=midamp |
|
431 | amplitude0=midamp | |
431 | state0=[shift0,width0,amplitude0,power0,wnoise] |
|
432 | state0=[shift0,width0,amplitude0,power0,wnoise] | |
432 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
433 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
433 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
434 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |
434 |
|
435 | |||
435 | chiSq1=lsq1[1]; |
|
436 | chiSq1=lsq1[1]; | |
436 |
|
437 | |||
437 |
|
438 | |||
438 | if fatspectra<1.0 and powerwidth<4: |
|
439 | if fatspectra<1.0 and powerwidth<4: | |
439 | choice=0 |
|
440 | choice=0 | |
440 | Amplitude0=lsq1[0][2] |
|
441 | Amplitude0=lsq1[0][2] | |
441 | shift0=lsq1[0][0] |
|
442 | shift0=lsq1[0][0] | |
442 | width0=lsq1[0][1] |
|
443 | width0=lsq1[0][1] | |
443 | p0=lsq1[0][3] |
|
444 | p0=lsq1[0][3] | |
444 | Amplitude1=0. |
|
445 | Amplitude1=0. | |
445 | shift1=0. |
|
446 | shift1=0. | |
446 | width1=0. |
|
447 | width1=0. | |
447 | p1=0. |
|
448 | p1=0. | |
448 | noise=lsq1[0][4] |
|
449 | noise=lsq1[0][4] | |
449 | #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
450 | #return (numpy.array([shift0,width0,Amplitude0,p0]), | |
450 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
451 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |
451 |
|
452 | |||
452 | ''' two gaussians ''' |
|
453 | ''' two gaussians ''' | |
453 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
454 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |
454 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); |
|
455 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); | |
455 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
456 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) | |
456 | width0=powerwidth/6.; |
|
457 | width0=powerwidth/6.; | |
457 | width1=width0 |
|
458 | width1=width0 | |
458 | power0=2.; |
|
459 | power0=2.; | |
459 | power1=power0 |
|
460 | power1=power0 | |
460 | amplitude0=firstamp; |
|
461 | amplitude0=firstamp; | |
461 | amplitude1=secondamp |
|
462 | amplitude1=secondamp | |
462 | state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] |
|
463 | state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
463 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
464 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
464 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
465 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
465 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
466 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |
466 |
|
467 | |||
467 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) |
|
468 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) | |
468 |
|
469 | |||
469 |
|
470 | |||
470 | chiSq2=lsq2[1]; |
|
471 | chiSq2=lsq2[1]; | |
471 |
|
472 | |||
472 |
|
473 | |||
473 |
|
474 | |||
474 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
475 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
475 |
|
476 | |||
476 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error |
|
477 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error | |
477 | if oneG: |
|
478 | if oneG: | |
478 | choice=0 |
|
479 | choice=0 | |
479 | else: |
|
480 | else: | |
480 | w1=lsq2[0][1]; w2=lsq2[0][5] |
|
481 | w1=lsq2[0][1]; w2=lsq2[0][5] | |
481 | a1=lsq2[0][2]; a2=lsq2[0][6] |
|
482 | a1=lsq2[0][2]; a2=lsq2[0][6] | |
482 | p1=lsq2[0][3]; p2=lsq2[0][7] |
|
483 | p1=lsq2[0][3]; p2=lsq2[0][7] | |
483 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; |
|
484 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; | |
484 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; |
|
485 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; | |
485 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
486 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling | |
486 |
|
487 | |||
487 | if gp1>gp2: |
|
488 | if gp1>gp2: | |
488 | if a1>0.7*a2: |
|
489 | if a1>0.7*a2: | |
489 | choice=1 |
|
490 | choice=1 | |
490 | else: |
|
491 | else: | |
491 | choice=2 |
|
492 | choice=2 | |
492 | elif gp2>gp1: |
|
493 | elif gp2>gp1: | |
493 | if a2>0.7*a1: |
|
494 | if a2>0.7*a1: | |
494 | choice=2 |
|
495 | choice=2 | |
495 | else: |
|
496 | else: | |
496 | choice=1 |
|
497 | choice=1 | |
497 | else: |
|
498 | else: | |
498 | choice=numpy.argmax([a1,a2])+1 |
|
499 | choice=numpy.argmax([a1,a2])+1 | |
499 | #else: |
|
500 | #else: | |
500 | #choice=argmin([std2a,std2b])+1 |
|
501 | #choice=argmin([std2a,std2b])+1 | |
501 |
|
502 | |||
502 | else: # with low SNR go to the most energetic peak |
|
503 | else: # with low SNR go to the most energetic peak | |
503 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
504 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
504 |
|
505 | |||
505 |
|
506 | |||
506 | shift0=lsq2[0][0]; |
|
507 | shift0=lsq2[0][0]; | |
507 | vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) |
|
508 | vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) | |
508 | shift1=lsq2[0][4]; |
|
509 | shift1=lsq2[0][4]; | |
509 | vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) |
|
510 | vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) | |
510 |
|
511 | |||
511 | max_vel = 1.0 |
|
512 | max_vel = 1.0 | |
512 |
|
513 | |||
513 | #first peak will be 0, second peak will be 1 |
|
514 | #first peak will be 0, second peak will be 1 | |
514 | if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range |
|
515 | if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range | |
515 | shift0=lsq2[0][0] |
|
516 | shift0=lsq2[0][0] | |
516 | width0=lsq2[0][1] |
|
517 | width0=lsq2[0][1] | |
517 | Amplitude0=lsq2[0][2] |
|
518 | Amplitude0=lsq2[0][2] | |
518 | p0=lsq2[0][3] |
|
519 | p0=lsq2[0][3] | |
519 |
|
520 | |||
520 | shift1=lsq2[0][4] |
|
521 | shift1=lsq2[0][4] | |
521 | width1=lsq2[0][5] |
|
522 | width1=lsq2[0][5] | |
522 | Amplitude1=lsq2[0][6] |
|
523 | Amplitude1=lsq2[0][6] | |
523 | p1=lsq2[0][7] |
|
524 | p1=lsq2[0][7] | |
524 | noise=lsq2[0][8] |
|
525 | noise=lsq2[0][8] | |
525 | else: |
|
526 | else: | |
526 | shift1=lsq2[0][0] |
|
527 | shift1=lsq2[0][0] | |
527 | width1=lsq2[0][1] |
|
528 | width1=lsq2[0][1] | |
528 | Amplitude1=lsq2[0][2] |
|
529 | Amplitude1=lsq2[0][2] | |
529 | p1=lsq2[0][3] |
|
530 | p1=lsq2[0][3] | |
530 |
|
531 | |||
531 | shift0=lsq2[0][4] |
|
532 | shift0=lsq2[0][4] | |
532 | width0=lsq2[0][5] |
|
533 | width0=lsq2[0][5] | |
533 | Amplitude0=lsq2[0][6] |
|
534 | Amplitude0=lsq2[0][6] | |
534 | p0=lsq2[0][7] |
|
535 | p0=lsq2[0][7] | |
535 | noise=lsq2[0][8] |
|
536 | noise=lsq2[0][8] | |
536 |
|
537 | |||
537 | if Amplitude0<0.05: # in case the peak is noise |
|
538 | if Amplitude0<0.05: # in case the peak is noise | |
538 | shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN] |
|
539 | shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN] | |
539 | if Amplitude1<0.05: |
|
540 | if Amplitude1<0.05: | |
540 | shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN] |
|
541 | shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN] | |
541 |
|
542 | |||
542 |
|
543 | |||
543 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 |
|
544 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 | |
544 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 |
|
545 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 | |
545 | SPCparam = (SPC_ch1,SPC_ch2) |
|
546 | SPCparam = (SPC_ch1,SPC_ch2) | |
546 |
|
547 | |||
547 |
|
548 | |||
548 | return GauSPC |
|
549 | return GauSPC | |
549 |
|
550 | |||
550 | def y_model1(self,x,state): |
|
551 | def y_model1(self,x,state): | |
551 | shift0,width0,amplitude0,power0,noise=state |
|
552 | shift0,width0,amplitude0,power0,noise=state | |
552 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
553 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
553 |
|
554 | |||
554 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) |
|
555 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) | |
555 |
|
556 | |||
556 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) |
|
557 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) | |
557 | return model0+model0u+model0d+noise |
|
558 | return model0+model0u+model0d+noise | |
558 |
|
559 | |||
559 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist |
|
560 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist | |
560 | shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state |
|
561 | shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state | |
561 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
562 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
562 |
|
563 | |||
563 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) |
|
564 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) | |
564 |
|
565 | |||
565 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) |
|
566 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) | |
566 | model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1) |
|
567 | model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1) | |
567 |
|
568 | |||
568 | model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) |
|
569 | model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) | |
569 |
|
570 | |||
570 | model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) |
|
571 | model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) | |
571 | return model0+model0u+model0d+model1+model1u+model1d+noise |
|
572 | return model0+model0u+model0d+model1+model1u+model1d+noise | |
572 |
|
573 | |||
573 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. |
|
574 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. | |
574 |
|
575 | |||
575 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented |
|
576 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented | |
576 |
|
577 | |||
577 | def misfit2(self,state,y_data,x,num_intg): |
|
578 | def misfit2(self,state,y_data,x,num_intg): | |
578 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) |
|
579 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) | |
579 |
|
580 | |||
580 |
|
581 | |||
581 |
|
582 | |||
582 | class PrecipitationProc(Operation): |
|
583 | class PrecipitationProc(Operation): | |
583 |
|
584 | |||
584 | ''' |
|
585 | ''' | |
585 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) |
|
586 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) | |
586 |
|
587 | |||
587 | Input: |
|
588 | Input: | |
588 | self.dataOut.data_pre : SelfSpectra |
|
589 | self.dataOut.data_pre : SelfSpectra | |
589 |
|
590 | |||
590 | Output: |
|
591 | Output: | |
591 |
|
592 | |||
592 | self.dataOut.data_output : Reflectivity factor, rainfall Rate |
|
593 | self.dataOut.data_output : Reflectivity factor, rainfall Rate | |
593 |
|
594 | |||
594 |
|
595 | |||
595 | Parameters affected: |
|
596 | Parameters affected: | |
596 | ''' |
|
597 | ''' | |
597 |
|
598 | |||
598 | def __init__(self): |
|
599 | def __init__(self): | |
599 | Operation.__init__(self) |
|
600 | Operation.__init__(self) | |
600 | self.i=0 |
|
601 | self.i=0 | |
601 |
|
602 | |||
602 |
|
603 | |||
603 | def gaus(self,xSamples,Amp,Mu,Sigma): |
|
604 | def gaus(self,xSamples,Amp,Mu,Sigma): | |
604 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) |
|
605 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) | |
605 |
|
606 | |||
606 |
|
607 | |||
607 |
|
608 | |||
608 | def Moments(self, ySamples, xSamples): |
|
609 | def Moments(self, ySamples, xSamples): | |
609 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 |
|
610 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 | |
610 | yNorm = ySamples / Pot |
|
611 | yNorm = ySamples / Pot | |
611 |
|
612 | |||
612 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento |
|
613 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento | |
613 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento |
|
614 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento | |
614 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral |
|
615 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral | |
615 |
|
616 | |||
616 | return numpy.array([Pot, Vr, Desv]) |
|
617 | return numpy.array([Pot, Vr, Desv]) | |
617 |
|
618 | |||
618 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, |
|
619 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, | |
619 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km = 0.93, Altitude=3350): |
|
620 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km = 0.93, Altitude=3350): | |
620 |
|
621 | |||
621 |
|
622 | |||
622 | Velrange = dataOut.spcparam_range[2] |
|
623 | Velrange = dataOut.spcparam_range[2] | |
623 | FrecRange = dataOut.spcparam_range[0] |
|
624 | FrecRange = dataOut.spcparam_range[0] | |
624 |
|
625 | |||
625 | dV= Velrange[1]-Velrange[0] |
|
626 | dV= Velrange[1]-Velrange[0] | |
626 | dF= FrecRange[1]-FrecRange[0] |
|
627 | dF= FrecRange[1]-FrecRange[0] | |
627 |
|
628 | |||
628 | if radar == "MIRA35C" : |
|
629 | if radar == "MIRA35C" : | |
629 |
|
630 | |||
630 | self.spc = dataOut.data_pre[0].copy() |
|
631 | self.spc = dataOut.data_pre[0].copy() | |
631 | self.Num_Hei = self.spc.shape[2] |
|
632 | self.Num_Hei = self.spc.shape[2] | |
632 | self.Num_Bin = self.spc.shape[1] |
|
633 | self.Num_Bin = self.spc.shape[1] | |
633 | self.Num_Chn = self.spc.shape[0] |
|
634 | self.Num_Chn = self.spc.shape[0] | |
634 | Ze = self.dBZeMODE2(dataOut) |
|
635 | Ze = self.dBZeMODE2(dataOut) | |
635 |
|
636 | |||
636 | else: |
|
637 | else: | |
637 |
|
638 | |||
638 | self.spc = dataOut.SPCparam[1].copy() #dataOut.data_pre[0].copy() # |
|
639 | self.spc = dataOut.SPCparam[1].copy() #dataOut.data_pre[0].copy() # | |
639 |
|
640 | |||
640 | """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX""" |
|
641 | """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX""" | |
641 |
|
642 | |||
642 | self.spc[:,:,0:7]= numpy.NaN |
|
643 | self.spc[:,:,0:7]= numpy.NaN | |
643 |
|
644 | |||
644 | """##########################################""" |
|
645 | """##########################################""" | |
645 |
|
646 | |||
646 | self.Num_Hei = self.spc.shape[2] |
|
647 | self.Num_Hei = self.spc.shape[2] | |
647 | self.Num_Bin = self.spc.shape[1] |
|
648 | self.Num_Bin = self.spc.shape[1] | |
648 | self.Num_Chn = self.spc.shape[0] |
|
649 | self.Num_Chn = self.spc.shape[0] | |
649 |
|
650 | |||
650 | ''' Se obtiene la constante del RADAR ''' |
|
651 | ''' Se obtiene la constante del RADAR ''' | |
651 |
|
652 | |||
652 | self.Pt = Pt |
|
653 | self.Pt = Pt | |
653 | self.Gt = Gt |
|
654 | self.Gt = Gt | |
654 | self.Gr = Gr |
|
655 | self.Gr = Gr | |
655 | self.Lambda = Lambda |
|
656 | self.Lambda = Lambda | |
656 | self.aL = aL |
|
657 | self.aL = aL | |
657 | self.tauW = tauW |
|
658 | self.tauW = tauW | |
658 | self.ThetaT = ThetaT |
|
659 | self.ThetaT = ThetaT | |
659 | self.ThetaR = ThetaR |
|
660 | self.ThetaR = ThetaR | |
660 |
|
661 | |||
661 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
662 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
662 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) |
|
663 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) | |
663 | RadarConstant = 10e-26 * Numerator / Denominator # |
|
664 | RadarConstant = 10e-26 * Numerator / Denominator # | |
664 |
|
665 | |||
665 | ''' ============================= ''' |
|
666 | ''' ============================= ''' | |
666 |
|
667 | |||
667 | self.spc[0] = (self.spc[0]-dataOut.noise[0]) |
|
668 | self.spc[0] = (self.spc[0]-dataOut.noise[0]) | |
668 | self.spc[1] = (self.spc[1]-dataOut.noise[1]) |
|
669 | self.spc[1] = (self.spc[1]-dataOut.noise[1]) | |
669 | self.spc[2] = (self.spc[2]-dataOut.noise[2]) |
|
670 | self.spc[2] = (self.spc[2]-dataOut.noise[2]) | |
670 |
|
671 | |||
671 | self.spc[ numpy.where(self.spc < 0)] = 0 |
|
672 | self.spc[ numpy.where(self.spc < 0)] = 0 | |
672 |
|
673 | |||
673 | SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise)) |
|
674 | SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise)) | |
674 | SPCmean[ numpy.where(SPCmean < 0)] = 0 |
|
675 | SPCmean[ numpy.where(SPCmean < 0)] = 0 | |
675 |
|
676 | |||
676 | ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
677 | ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
677 | ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
678 | ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
678 | ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
679 | ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
679 |
|
680 | |||
680 | Pr = SPCmean[:,:] |
|
681 | Pr = SPCmean[:,:] | |
681 |
|
682 | |||
682 | VelMeteoro = numpy.mean(SPCmean,axis=0) |
|
683 | VelMeteoro = numpy.mean(SPCmean,axis=0) | |
683 |
|
684 | |||
684 | D_range = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
685 | D_range = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
685 | SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
686 | SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
686 | N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
687 | N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
687 | V_mean = numpy.zeros(self.Num_Hei) |
|
688 | V_mean = numpy.zeros(self.Num_Hei) | |
688 | del_V = numpy.zeros(self.Num_Hei) |
|
689 | del_V = numpy.zeros(self.Num_Hei) | |
689 | Z = numpy.zeros(self.Num_Hei) |
|
690 | Z = numpy.zeros(self.Num_Hei) | |
690 | Ze = numpy.zeros(self.Num_Hei) |
|
691 | Ze = numpy.zeros(self.Num_Hei) | |
691 | RR = numpy.zeros(self.Num_Hei) |
|
692 | RR = numpy.zeros(self.Num_Hei) | |
692 |
|
693 | |||
693 | Range = dataOut.heightList*1000. |
|
694 | Range = dataOut.heightList*1000. | |
694 |
|
695 | |||
695 | for R in range(self.Num_Hei): |
|
696 | for R in range(self.Num_Hei): | |
696 |
|
697 | |||
697 | h = Range[R] + Altitude #Range from ground to radar pulse altitude |
|
698 | h = Range[R] + Altitude #Range from ground to radar pulse altitude | |
698 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity |
|
699 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity | |
699 |
|
700 | |||
700 | D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3 |
|
701 | D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3 | |
701 |
|
702 | |||
702 | '''NOTA: ETA(n) dn = ETA(f) df |
|
703 | '''NOTA: ETA(n) dn = ETA(f) df | |
703 |
|
704 | |||
704 | dn = 1 Diferencial de muestreo |
|
705 | dn = 1 Diferencial de muestreo | |
705 | df = ETA(n) / ETA(f) |
|
706 | df = ETA(n) / ETA(f) | |
706 |
|
707 | |||
707 | ''' |
|
708 | ''' | |
708 |
|
709 | |||
709 | ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA) |
|
710 | ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA) | |
710 |
|
711 | |||
711 | ETAv[:,R]=ETAn[:,R]/dV |
|
712 | ETAv[:,R]=ETAn[:,R]/dV | |
712 |
|
713 | |||
713 | ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R]) |
|
714 | ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R]) | |
714 |
|
715 | |||
715 | SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma) |
|
716 | SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma) | |
716 |
|
717 | |||
717 | N_dist[:,R] = ETAn[:,R] / SIGMA[:,R] |
|
718 | N_dist[:,R] = ETAn[:,R] / SIGMA[:,R] | |
718 |
|
719 | |||
719 | DMoments = self.Moments(Pr[:,R], Velrange[0:self.Num_Bin]) |
|
720 | DMoments = self.Moments(Pr[:,R], Velrange[0:self.Num_Bin]) | |
720 |
|
721 | |||
721 | try: |
|
722 | try: | |
722 | popt01,pcov = curve_fit(self.gaus, Velrange[0:self.Num_Bin] , Pr[:,R] , p0=DMoments) |
|
723 | popt01,pcov = curve_fit(self.gaus, Velrange[0:self.Num_Bin] , Pr[:,R] , p0=DMoments) | |
723 | except: |
|
724 | except: | |
724 | popt01=numpy.zeros(3) |
|
725 | popt01=numpy.zeros(3) | |
725 | popt01[1]= DMoments[1] |
|
726 | popt01[1]= DMoments[1] | |
726 |
|
727 | |||
727 | if popt01[1]<0 or popt01[1]>20: |
|
728 | if popt01[1]<0 or popt01[1]>20: | |
728 | popt01[1]=numpy.NaN |
|
729 | popt01[1]=numpy.NaN | |
729 |
|
730 | |||
730 |
|
731 | |||
731 | V_mean[R]=popt01[1] |
|
732 | V_mean[R]=popt01[1] | |
732 |
|
733 | |||
733 | Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 )#*10**-18 |
|
734 | Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 )#*10**-18 | |
734 |
|
735 | |||
735 | RR[R] = 0.0006*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate |
|
736 | RR[R] = 0.0006*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate | |
736 |
|
737 | |||
737 | Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( 10**-18*numpy.pi**5 * Km) |
|
738 | Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( 10**-18*numpy.pi**5 * Km) | |
738 |
|
739 | |||
739 |
|
740 | |||
740 |
|
741 | |||
741 | RR2 = (Z/200)**(1/1.6) |
|
742 | RR2 = (Z/200)**(1/1.6) | |
742 | dBRR = 10*numpy.log10(RR) |
|
743 | dBRR = 10*numpy.log10(RR) | |
743 | dBRR2 = 10*numpy.log10(RR2) |
|
744 | dBRR2 = 10*numpy.log10(RR2) | |
744 |
|
745 | |||
745 | dBZe = 10*numpy.log10(Ze) |
|
746 | dBZe = 10*numpy.log10(Ze) | |
746 | dBZ = 10*numpy.log10(Z) |
|
747 | dBZ = 10*numpy.log10(Z) | |
747 |
|
748 | |||
748 | dataOut.data_output = RR[8] |
|
749 | dataOut.data_output = RR[8] | |
749 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) |
|
750 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) | |
750 | dataOut.channelList = [0,1,2] |
|
751 | dataOut.channelList = [0,1,2] | |
751 |
|
752 | |||
752 | dataOut.data_param[0]=dBZ |
|
753 | dataOut.data_param[0]=dBZ | |
753 | dataOut.data_param[1]=V_mean |
|
754 | dataOut.data_param[1]=V_mean | |
754 | dataOut.data_param[2]=RR |
|
755 | dataOut.data_param[2]=RR | |
755 |
|
756 | |||
756 | return dataOut |
|
757 | return dataOut | |
757 |
|
758 | |||
758 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C |
|
759 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C | |
759 |
|
760 | |||
760 | NPW = dataOut.NPW |
|
761 | NPW = dataOut.NPW | |
761 | COFA = dataOut.COFA |
|
762 | COFA = dataOut.COFA | |
762 |
|
763 | |||
763 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) |
|
764 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) | |
764 | RadarConst = dataOut.RadarConst |
|
765 | RadarConst = dataOut.RadarConst | |
765 | #frequency = 34.85*10**9 |
|
766 | #frequency = 34.85*10**9 | |
766 |
|
767 | |||
767 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) |
|
768 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) | |
768 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN |
|
769 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN | |
769 |
|
770 | |||
770 | ETA = numpy.sum(SNR,1) |
|
771 | ETA = numpy.sum(SNR,1) | |
771 |
|
772 | |||
772 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) |
|
773 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) | |
773 |
|
774 | |||
774 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) |
|
775 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) | |
775 |
|
776 | |||
776 | for r in range(self.Num_Hei): |
|
777 | for r in range(self.Num_Hei): | |
777 |
|
778 | |||
778 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) |
|
779 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) | |
779 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) |
|
780 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) | |
780 |
|
781 | |||
781 | return Ze |
|
782 | return Ze | |
782 |
|
783 | |||
783 | # def GetRadarConstant(self): |
|
784 | # def GetRadarConstant(self): | |
784 | # |
|
785 | # | |
785 | # """ |
|
786 | # """ | |
786 | # Constants: |
|
787 | # Constants: | |
787 | # |
|
788 | # | |
788 | # Pt: Transmission Power dB 5kW 5000 |
|
789 | # Pt: Transmission Power dB 5kW 5000 | |
789 | # Gt: Transmission Gain dB 24.7 dB 295.1209 |
|
790 | # Gt: Transmission Gain dB 24.7 dB 295.1209 | |
790 | # Gr: Reception Gain dB 18.5 dB 70.7945 |
|
791 | # Gr: Reception Gain dB 18.5 dB 70.7945 | |
791 | # Lambda: Wavelenght m 0.6741 m 0.6741 |
|
792 | # Lambda: Wavelenght m 0.6741 m 0.6741 | |
792 | # aL: Attenuation loses dB 4dB 2.5118 |
|
793 | # aL: Attenuation loses dB 4dB 2.5118 | |
793 | # tauW: Width of transmission pulse s 4us 4e-6 |
|
794 | # tauW: Width of transmission pulse s 4us 4e-6 | |
794 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 |
|
795 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 | |
795 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 |
|
796 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 | |
796 | # |
|
797 | # | |
797 | # """ |
|
798 | # """ | |
798 | # |
|
799 | # | |
799 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
800 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
800 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) |
|
801 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) | |
801 | # RadarConstant = Numerator / Denominator |
|
802 | # RadarConstant = Numerator / Denominator | |
802 | # |
|
803 | # | |
803 | # return RadarConstant |
|
804 | # return RadarConstant | |
804 |
|
805 | |||
805 |
|
806 | |||
806 |
|
807 | |||
807 | class FullSpectralAnalysis(Operation): |
|
808 | class FullSpectralAnalysis(Operation): | |
808 |
|
809 | |||
809 | """ |
|
810 | """ | |
810 |
Function that implements Full Spectral Anal |
|
811 | Function that implements Full Spectral Analysis technique. | |
811 |
|
812 | |||
812 | Input: |
|
813 | Input: | |
813 |
self.dataOut.data_pre : SelfSpectra and CrossS |
|
814 | self.dataOut.data_pre : SelfSpectra and CrossSpectra data | |
814 | self.dataOut.groupList : Pairlist of channels |
|
815 | self.dataOut.groupList : Pairlist of channels | |
815 | self.dataOut.ChanDist : Physical distance between receivers |
|
816 | self.dataOut.ChanDist : Physical distance between receivers | |
816 |
|
817 | |||
817 |
|
818 | |||
818 | Output: |
|
819 | Output: | |
819 |
|
820 | |||
820 | self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind |
|
821 | self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind | |
821 |
|
822 | |||
822 |
|
823 | |||
823 | Parameters affected: Winds, height range, SNR |
|
824 | Parameters affected: Winds, height range, SNR | |
824 |
|
825 | |||
825 | """ |
|
826 | """ | |
826 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRlimit=7): |
|
827 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRlimit=7, minheight=None, maxheight=None): | |
827 |
|
828 | |||
828 | self.indice=int(numpy.random.rand()*1000) |
|
829 | self.indice=int(numpy.random.rand()*1000) | |
829 |
|
830 | |||
830 | spc = dataOut.data_pre[0].copy() |
|
831 | spc = dataOut.data_pre[0].copy() | |
831 | cspc = dataOut.data_pre[1] |
|
832 | cspc = dataOut.data_pre[1] | |
832 |
|
833 | |||
833 | """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX""" |
|
834 | """Erick: NOTE THE RANGE OF THE PULSE TX MUST BE REMOVED""" | |
834 |
|
835 | |||
835 | SNRspc = spc.copy() |
|
836 | SNRspc = spc.copy() | |
836 | SNRspc[:,:,0:7]= numpy.NaN |
|
837 | SNRspc[:,:,0:7]= numpy.NaN | |
837 |
|
838 | |||
838 | """##########################################""" |
|
839 | """##########################################""" | |
839 |
|
840 | |||
840 |
|
841 | |||
841 | nChannel = spc.shape[0] |
|
842 | nChannel = spc.shape[0] | |
842 | nProfiles = spc.shape[1] |
|
843 | nProfiles = spc.shape[1] | |
843 | nHeights = spc.shape[2] |
|
844 | nHeights = spc.shape[2] | |
844 |
|
845 | |||
|
846 | # first_height = 0.75 #km (ref: data header 20170822) | |||
|
847 | # resolution_height = 0.075 #km | |||
|
848 | ''' | |||
|
849 | finding height range. check this when radar parameters are changed! | |||
|
850 | ''' | |||
|
851 | if maxheight is not None: | |||
|
852 | # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical | |||
|
853 | range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better | |||
|
854 | else: | |||
|
855 | range_max = nHeights | |||
|
856 | if minheight is not None: | |||
|
857 | # range_min = int((minheight - first_height) / resolution_height) # theoretical | |||
|
858 | range_min = int(13.26 * minheight - 5) # empirical, works better | |||
|
859 | if range_min < 0: | |||
|
860 | range_min = 0 | |||
|
861 | else: | |||
|
862 | range_min = 0 | |||
|
863 | ||||
845 | pairsList = dataOut.groupList |
|
864 | pairsList = dataOut.groupList | |
846 | if dataOut.ChanDist is not None : |
|
865 | if dataOut.ChanDist is not None : | |
847 | ChanDist = dataOut.ChanDist |
|
866 | ChanDist = dataOut.ChanDist | |
848 | else: |
|
867 | else: | |
849 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) |
|
868 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) | |
850 |
|
869 | |||
851 | FrecRange = dataOut.spc_range[0] |
|
870 | FrecRange = dataOut.spc_range[0] | |
852 |
|
871 | |||
853 | ySamples=numpy.ones([nChannel,nProfiles]) |
|
|||
854 | phase=numpy.ones([nChannel,nProfiles]) |
|
|||
855 | CSPCSamples=numpy.ones([nChannel,nProfiles],dtype=numpy.complex_) |
|
|||
856 | coherence=numpy.ones([nChannel,nProfiles]) |
|
|||
857 | PhaseSlope=numpy.ones(nChannel) |
|
|||
858 | PhaseInter=numpy.ones(nChannel) |
|
|||
859 | data_SNR=numpy.zeros([nProfiles]) |
|
872 | data_SNR=numpy.zeros([nProfiles]) | |
860 |
|
||||
861 | data = dataOut.data_pre |
|
|||
862 | noise = dataOut.noise |
|
873 | noise = dataOut.noise | |
863 |
|
874 | |||
864 | dataOut.data_SNR = (numpy.mean(SNRspc,axis=1)- noise[0]) / noise[0] |
|
875 | dataOut.data_SNR = (numpy.mean(SNRspc,axis=1)- noise[0]) / noise[0] | |
865 |
|
876 | |||
866 | dataOut.data_SNR[numpy.where( dataOut.data_SNR <0 )] = 1e-20 |
|
877 | dataOut.data_SNR[numpy.where( dataOut.data_SNR <0 )] = 1e-20 | |
867 |
|
878 | |||
868 |
|
879 | |||
869 | data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN |
|
880 | data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN | |
870 |
|
881 | |||
871 | velocityX=[] |
|
882 | velocityX=[] | |
872 | velocityY=[] |
|
883 | velocityY=[] | |
873 | velocityV=[] |
|
884 | velocityV=[] | |
874 | PhaseLine=[] |
|
885 | PhaseLine=[] # unused afterwards | |
875 |
|
886 | |||
876 | dbSNR = 10*numpy.log10(dataOut.data_SNR) |
|
887 | dbSNR = 10*numpy.log10(dataOut.data_SNR) | |
877 | dbSNR = numpy.average(dbSNR,0) |
|
888 | dbSNR = numpy.average(dbSNR,0) | |
878 |
|
889 | |||
|
890 | '''***********************************************WIND ESTIMATION**************************************''' | |||
|
891 | ||||
879 | for Height in range(nHeights): |
|
892 | for Height in range(nHeights): | |
880 |
|
|
893 | ||
881 | [Vzon,Vmer,Vver, GaussCenter, PhaseSlope, FitGaussCSPC]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, dataOut.spc_range, dbSNR[Height], SNRlimit) |
|
894 | if Height >= range_min and Height < range_max: | |
882 | PhaseLine = numpy.append(PhaseLine, PhaseSlope) |
|
895 | # [Vzon,Vmer,Vver, GaussCenter, PhaseSlope, FitGaussCSPC] = self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, dataOut.spc_range, dbSNR[Height], SNRlimit) | |
|
896 | ||||
|
897 | # error_code unused, yet maybe useful for future analysis. | |||
|
898 | # Test | |||
|
899 | [Vzon,Vmer,Vver, error_code] = self.TestWindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, ChanDist, Height, noise, dataOut.spc_range, dbSNR[Height], SNRlimit) | |||
|
900 | ||||
|
901 | else: | |||
|
902 | Vzon,Vmer,Vver = 0., 0., numpy.NaN | |||
|
903 | ||||
883 |
|
904 | |||
884 | if abs(Vzon)<100. and abs(Vzon)> 0.: |
|
905 | if abs(Vzon) < 100. and abs(Vzon) > 0. and abs(Vmer) < 100. and abs(Vmer) > 0.: | |
885 |
velocityX=numpy.append(velocityX, Vzon) |
|
906 | velocityX=numpy.append(velocityX, Vzon) | |
886 |
|
907 | velocityY=numpy.append(velocityY, -Vmer) | ||
|
908 | ||||
887 | else: |
|
909 | else: | |
888 | velocityX=numpy.append(velocityX, numpy.NaN) |
|
910 | velocityX=numpy.append(velocityX, numpy.NaN) | |
889 |
|
||||
890 | if abs(Vmer)<100. and abs(Vmer) > 0.: |
|
|||
891 | velocityY=numpy.append(velocityY, -Vmer)#Vang |
|
|||
892 |
|
||||
893 | else: |
|
|||
894 | velocityY=numpy.append(velocityY, numpy.NaN) |
|
911 | velocityY=numpy.append(velocityY, numpy.NaN) | |
895 |
|
912 | |||
896 | if dbSNR[Height] > SNRlimit: |
|
913 | if dbSNR[Height] > SNRlimit: | |
897 |
velocityV=numpy.append(velocityV, -Vver) |
|
914 | velocityV=numpy.append(velocityV, -Vver) # reason for this minus sign -> convention? (taken from Ericks version) | |
898 | else: |
|
915 | else: | |
899 | velocityV=numpy.append(velocityV, numpy.NaN) |
|
916 | velocityV=numpy.append(velocityV, numpy.NaN) | |
900 |
|
||||
901 |
|
917 | |||
902 |
|
918 | |||
903 |
''' |
|
919 | '''Change the numpy.array (velocityX) sign when trying to process BLTR data (Erick)''' | |
904 |
data_output[0] = numpy.array(velocityX) |
|
920 | data_output[0] = numpy.array(velocityX) | |
905 |
data_output[1] = numpy.array(velocityY) |
|
921 | data_output[1] = numpy.array(velocityY) | |
906 |
data_output[2] = velocityV |
|
922 | data_output[2] = velocityV | |
907 |
|
923 | |||
908 | xFrec=FrecRange[0:spc.shape[1]] |
|
|||
909 |
|
924 | |||
910 | dataOut.data_output=data_output |
|
925 | dataOut.data_output = data_output | |
911 |
|
926 | |||
912 | return dataOut |
|
927 | return dataOut | |
913 |
|
928 | |||
914 |
|
929 | |||
915 | def moving_average(self,x, N=2): |
|
930 | def moving_average(self,x, N=2): | |
|
931 | """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """ | |||
916 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] |
|
932 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |
917 |
|
933 | |||
918 | def gaus(self,xSamples,Amp,Mu,Sigma): |
|
934 | def gaus(self,xSamples,Amp,Mu,Sigma): | |
919 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) |
|
935 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) | |
920 |
|
936 | |||
921 |
|
937 | |||
922 |
|
938 | |||
923 | def Moments(self, ySamples, xSamples): |
|
939 | def Moments(self, ySamples, xSamples): | |
924 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 |
|
940 | '''*** | |
|
941 | Variables corresponding to moments of distribution. | |||
|
942 | Also used as initial coefficients for curve_fit. | |||
|
943 | Vr was corrected. Only a velocity when x is velocity, of course. | |||
|
944 | ***''' | |||
|
945 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 | |||
925 | yNorm = ySamples / Pot |
|
946 | yNorm = ySamples / Pot | |
926 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento |
|
947 | x_range = (numpy.max(xSamples)-numpy.min(xSamples)) | |
927 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento |
|
948 | Vr = numpy.nansum( yNorm * xSamples )*x_range/len(xSamples) # Velocidad radial, mu, corrimiento doppler, primer momento | |
928 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral |
|
949 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento | |
|
950 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral | |||
929 |
|
951 | |||
930 | return numpy.array([Pot, Vr, Desv]) |
|
952 | return numpy.array([Pot, Vr, Desv]) | |
931 |
|
953 | |||
932 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit): |
|
954 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit): | |
933 |
|
955 | |||
934 |
|
956 | |||
935 |
|
957 | |||
936 | ySamples=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
958 | ySamples=numpy.ones([spc.shape[0],spc.shape[1]]) | |
937 | phase=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
959 | phase=numpy.ones([spc.shape[0],spc.shape[1]]) | |
938 | CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) |
|
960 | CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) | |
939 | coherence=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
961 | coherence=numpy.ones([spc.shape[0],spc.shape[1]]) | |
940 | PhaseSlope=numpy.zeros(spc.shape[0]) |
|
962 | PhaseSlope=numpy.zeros(spc.shape[0]) | |
941 | PhaseInter=numpy.ones(spc.shape[0]) |
|
963 | PhaseInter=numpy.ones(spc.shape[0]) | |
942 | xFrec=AbbsisaRange[0][0:spc.shape[1]] |
|
964 | xFrec=AbbsisaRange[0][0:spc.shape[1]] | |
943 | xVel =AbbsisaRange[2][0:spc.shape[1]] |
|
965 | xVel =AbbsisaRange[2][0:spc.shape[1]] | |
944 | Vv=numpy.empty(spc.shape[2])*0 |
|
966 | Vv=numpy.empty(spc.shape[2])*0 | |
945 | SPCav = numpy.average(spc, axis=0)-numpy.average(noise) #spc[0]-noise[0]# |
|
967 | SPCav = numpy.average(spc, axis=0)-numpy.average(noise) #spc[0]-noise[0]# | |
946 |
|
968 | |||
947 | SPCmoments = self.Moments(SPCav[:,Height], xVel ) |
|
969 | SPCmoments = self.Moments(SPCav[:,Height], xVel ) | |
948 | CSPCmoments = [] |
|
970 | CSPCmoments = [] | |
949 | cspcNoise = numpy.empty(3) |
|
971 | cspcNoise = numpy.empty(3) | |
950 |
|
972 | |||
951 | '''Getting Eij and Nij''' |
|
973 | '''Getting Eij and Nij''' | |
952 |
|
974 | |||
953 | Xi01=ChanDist[0][0] |
|
975 | Xi01=ChanDist[0][0] | |
954 | Eta01=ChanDist[0][1] |
|
976 | Eta01=ChanDist[0][1] | |
955 |
|
977 | |||
956 | Xi02=ChanDist[1][0] |
|
978 | Xi02=ChanDist[1][0] | |
957 | Eta02=ChanDist[1][1] |
|
979 | Eta02=ChanDist[1][1] | |
958 |
|
980 | |||
959 | Xi12=ChanDist[2][0] |
|
981 | Xi12=ChanDist[2][0] | |
960 | Eta12=ChanDist[2][1] |
|
982 | Eta12=ChanDist[2][1] | |
961 |
|
983 | |||
962 | z = spc.copy() |
|
984 | z = spc.copy() | |
963 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
985 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
964 |
|
986 | |||
965 | for i in range(spc.shape[0]): |
|
987 | for i in range(spc.shape[0]): | |
966 |
|
988 | |||
967 | '''****** Line of Data SPC ******''' |
|
989 | '''****** Line of Data SPC ******''' | |
968 | zline=z[i,:,Height].copy() - noise[i] # Se resta ruido |
|
990 | zline=z[i,:,Height].copy() - noise[i] # Se resta ruido | |
969 |
|
991 | |||
970 | '''****** SPC is normalized ******''' |
|
992 | '''****** SPC is normalized ******''' | |
971 | SmoothSPC =self.moving_average(zline.copy(),N=1) # Se suaviza el ruido |
|
993 | SmoothSPC =self.moving_average(zline.copy(),N=1) # Se suaviza el ruido | |
972 | FactNorm = SmoothSPC/numpy.nansum(SmoothSPC) # SPC Normalizado y suavizado |
|
994 | FactNorm = SmoothSPC/numpy.nansum(SmoothSPC) # SPC Normalizado y suavizado | |
973 |
|
995 | |||
974 | xSamples = xFrec # Se toma el rango de frecuncias |
|
996 | xSamples = xFrec # Se toma el rango de frecuncias | |
975 | ySamples[i] = FactNorm # Se toman los valores de SPC normalizado |
|
997 | ySamples[i] = FactNorm # Se toman los valores de SPC normalizado | |
976 |
|
998 | |||
977 | for i in range(spc.shape[0]): |
|
999 | for i in range(spc.shape[0]): | |
978 |
|
1000 | |||
979 | '''****** Line of Data CSPC ******''' |
|
1001 | '''****** Line of Data CSPC ******''' | |
980 | cspcLine = ( cspc[i,:,Height].copy())# - noise[i] ) # no! Se resta el ruido |
|
1002 | cspcLine = ( cspc[i,:,Height].copy())# - noise[i] ) # no! Se resta el ruido | |
981 | SmoothCSPC =self.moving_average(cspcLine,N=1) # Se suaviza el ruido |
|
1003 | SmoothCSPC =self.moving_average(cspcLine,N=1) # Se suaviza el ruido | |
982 | cspcNorm = SmoothCSPC/numpy.nansum(SmoothCSPC) # CSPC normalizado y suavizado |
|
1004 | cspcNorm = SmoothCSPC/numpy.nansum(SmoothCSPC) # CSPC normalizado y suavizado | |
983 |
|
1005 | |||
984 | '''****** CSPC is normalized with respect to Briggs and Vincent ******''' |
|
1006 | '''****** CSPC is normalized with respect to Briggs and Vincent ******''' | |
985 | chan_index0 = pairsList[i][0] |
|
1007 | chan_index0 = pairsList[i][0] | |
986 | chan_index1 = pairsList[i][1] |
|
1008 | chan_index1 = pairsList[i][1] | |
987 |
|
1009 | |||
988 | CSPCFactor= numpy.abs(numpy.nansum(ySamples[chan_index0]))**2 * numpy.abs(numpy.nansum(ySamples[chan_index1]))**2 |
|
1010 | CSPCFactor= numpy.abs(numpy.nansum(ySamples[chan_index0]))**2 * numpy.abs(numpy.nansum(ySamples[chan_index1]))**2 | |
989 | CSPCNorm = cspcNorm / numpy.sqrt(CSPCFactor) |
|
1011 | CSPCNorm = cspcNorm / numpy.sqrt(CSPCFactor) | |
990 |
|
1012 | |||
991 | CSPCSamples[i] = CSPCNorm |
|
1013 | CSPCSamples[i] = CSPCNorm | |
992 |
|
1014 | |||
993 | coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) |
|
1015 | coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) | |
994 |
|
1016 | |||
995 | #coherence[i]= self.moving_average(coherence[i],N=1) |
|
1017 | #coherence[i]= self.moving_average(coherence[i],N=1) | |
996 |
|
1018 | |||
997 | phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi |
|
1019 | phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi | |
998 |
|
1020 | |||
999 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPCSamples[0]), xSamples), |
|
1021 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPCSamples[0]), xSamples), | |
1000 | self.Moments(numpy.abs(CSPCSamples[1]), xSamples), |
|
1022 | self.Moments(numpy.abs(CSPCSamples[1]), xSamples), | |
1001 | self.Moments(numpy.abs(CSPCSamples[2]), xSamples)]) |
|
1023 | self.Moments(numpy.abs(CSPCSamples[2]), xSamples)]) | |
1002 |
|
1024 | |||
1003 |
|
1025 | |||
1004 | popt=[1e-10,0,1e-10] |
|
1026 | popt=[1e-10,0,1e-10] | |
1005 | popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10] |
|
1027 | popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10] | |
1006 | FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0 |
|
1028 | FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0 | |
1007 |
|
1029 | |||
1008 | CSPCMask01 = numpy.abs(CSPCSamples[0]) |
|
1030 | CSPCMask01 = numpy.abs(CSPCSamples[0]) | |
1009 | CSPCMask02 = numpy.abs(CSPCSamples[1]) |
|
1031 | CSPCMask02 = numpy.abs(CSPCSamples[1]) | |
1010 | CSPCMask12 = numpy.abs(CSPCSamples[2]) |
|
1032 | CSPCMask12 = numpy.abs(CSPCSamples[2]) | |
1011 |
|
1033 | |||
1012 | mask01 = ~numpy.isnan(CSPCMask01) |
|
1034 | mask01 = ~numpy.isnan(CSPCMask01) | |
1013 | mask02 = ~numpy.isnan(CSPCMask02) |
|
1035 | mask02 = ~numpy.isnan(CSPCMask02) | |
1014 | mask12 = ~numpy.isnan(CSPCMask12) |
|
1036 | mask12 = ~numpy.isnan(CSPCMask12) | |
1015 |
|
1037 | |||
1016 | #mask = ~numpy.isnan(CSPCMask01) |
|
1038 | #mask = ~numpy.isnan(CSPCMask01) | |
1017 | CSPCMask01 = CSPCMask01[mask01] |
|
1039 | CSPCMask01 = CSPCMask01[mask01] | |
1018 | CSPCMask02 = CSPCMask02[mask02] |
|
1040 | CSPCMask02 = CSPCMask02[mask02] | |
1019 | CSPCMask12 = CSPCMask12[mask12] |
|
1041 | CSPCMask12 = CSPCMask12[mask12] | |
1020 | #CSPCMask01 = numpy.ma.masked_invalid(CSPCMask01) |
|
1042 | #CSPCMask01 = numpy.ma.masked_invalid(CSPCMask01) | |
1021 |
|
1043 | |||
1022 |
|
1044 | |||
1023 |
|
1045 | |||
1024 | '''***Fit Gauss CSPC01***''' |
|
1046 | '''***Fit Gauss CSPC01***''' | |
1025 | if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3 : |
|
1047 | if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3 : | |
1026 | try: |
|
1048 | try: | |
1027 | popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0]) |
|
1049 | popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0]) | |
1028 | popt02,pcov = curve_fit(self.gaus,xSamples[mask02],numpy.abs(CSPCMask02),p0=CSPCmoments[1]) |
|
1050 | popt02,pcov = curve_fit(self.gaus,xSamples[mask02],numpy.abs(CSPCMask02),p0=CSPCmoments[1]) | |
1029 | popt12,pcov = curve_fit(self.gaus,xSamples[mask12],numpy.abs(CSPCMask12),p0=CSPCmoments[2]) |
|
1051 | popt12,pcov = curve_fit(self.gaus,xSamples[mask12],numpy.abs(CSPCMask12),p0=CSPCmoments[2]) | |
1030 | FitGauss01 = self.gaus(xSamples,*popt01) |
|
1052 | FitGauss01 = self.gaus(xSamples,*popt01) | |
1031 | FitGauss02 = self.gaus(xSamples,*popt02) |
|
1053 | FitGauss02 = self.gaus(xSamples,*popt02) | |
1032 | FitGauss12 = self.gaus(xSamples,*popt12) |
|
1054 | FitGauss12 = self.gaus(xSamples,*popt12) | |
1033 | except: |
|
1055 | except: | |
1034 | FitGauss01=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[0])) |
|
1056 | FitGauss01=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[0])) | |
1035 | FitGauss02=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[1])) |
|
1057 | FitGauss02=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[1])) | |
1036 | FitGauss12=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[2])) |
|
1058 | FitGauss12=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[2])) | |
1037 |
|
1059 | |||
1038 |
|
1060 | |||
1039 | CSPCopt = numpy.vstack([popt01,popt02,popt12]) |
|
1061 | CSPCopt = numpy.vstack([popt01,popt02,popt12]) | |
1040 |
|
1062 | |||
1041 | '''****** Getting fij width ******''' |
|
1063 | '''****** Getting fij width ******''' | |
1042 |
|
1064 | |||
1043 | yMean = numpy.average(ySamples, axis=0) # ySamples[0] |
|
1065 | yMean = numpy.average(ySamples, axis=0) # ySamples[0] | |
1044 |
|
1066 | |||
1045 | '''******* Getting fitting Gaussian *******''' |
|
1067 | '''******* Getting fitting Gaussian *******''' | |
1046 | meanGauss = sum(xSamples*yMean) / len(xSamples) # Mu, velocidad radial (frecuencia) |
|
1068 | meanGauss = sum(xSamples*yMean) / len(xSamples) # Mu, velocidad radial (frecuencia) | |
1047 | sigma2 = sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) # Varianza, Ancho espectral (frecuencia) |
|
1069 | sigma2 = sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) # Varianza, Ancho espectral (frecuencia) | |
1048 |
|
1070 | |||
1049 | yMoments = self.Moments(yMean, xSamples) |
|
1071 | yMoments = self.Moments(yMean, xSamples) | |
1050 |
|
1072 | |||
1051 | if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3: # and abs(meanGauss/sigma2) > 0.00001: |
|
1073 | if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3: # and abs(meanGauss/sigma2) > 0.00001: | |
1052 | try: |
|
1074 | try: | |
1053 | popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=yMoments) |
|
1075 | popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=yMoments) | |
1054 | FitGauss=self.gaus(xSamples,*popt) |
|
1076 | FitGauss=self.gaus(xSamples,*popt) | |
1055 |
|
1077 | |||
1056 | except :#RuntimeError: |
|
1078 | except :#RuntimeError: | |
1057 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
1079 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
1058 |
|
1080 | |||
1059 |
|
1081 | |||
1060 | else: |
|
1082 | else: | |
1061 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
1083 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
1062 |
|
1084 | |||
1063 |
|
1085 | |||
1064 |
|
1086 | |||
1065 | '''****** Getting Fij ******''' |
|
1087 | '''****** Getting Fij ******''' | |
1066 | Fijcspc = CSPCopt[:,2]/2*3 |
|
1088 | Fijcspc = CSPCopt[:,2]/2*3 | |
1067 |
|
1089 | |||
1068 |
|
1090 | |||
1069 | GaussCenter = popt[1] #xFrec[GCpos] |
|
1091 | GaussCenter = popt[1] #xFrec[GCpos] | |
1070 | #Punto en Eje X de la Gaussiana donde se encuentra el centro |
|
1092 | #Punto en Eje X de la Gaussiana donde se encuentra el centro | |
1071 | ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()] |
|
1093 | ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()] | |
1072 | PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0] |
|
1094 | PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0] | |
1073 |
|
1095 | |||
1074 | #Punto e^-1 hubicado en la Gaussiana |
|
1096 | #Punto e^-1 hubicado en la Gaussiana | |
1075 | PeMinus1 = numpy.max(FitGauss)* numpy.exp(-1) |
|
1097 | PeMinus1 = numpy.max(FitGauss)* numpy.exp(-1) | |
1076 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss" |
|
1098 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss" | |
1077 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] |
|
1099 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] | |
1078 |
|
1100 | |||
1079 | if xSamples[PointFij] > xSamples[PointGauCenter]: |
|
1101 | if xSamples[PointFij] > xSamples[PointGauCenter]: | |
1080 | Fij = xSamples[PointFij] - xSamples[PointGauCenter] |
|
1102 | Fij = xSamples[PointFij] - xSamples[PointGauCenter] | |
1081 |
|
1103 | |||
1082 | else: |
|
1104 | else: | |
1083 | Fij = xSamples[PointGauCenter] - xSamples[PointFij] |
|
1105 | Fij = xSamples[PointGauCenter] - xSamples[PointFij] | |
1084 |
|
1106 | |||
1085 |
|
1107 | |||
1086 | '''****** Taking frequency ranges from SPCs ******''' |
|
1108 | '''****** Taking frequency ranges from SPCs ******''' | |
1087 |
|
1109 | |||
1088 |
|
1110 | |||
1089 | #GaussCenter = popt[1] #Primer momento 01 |
|
1111 | #GaussCenter = popt[1] #Primer momento 01 | |
1090 | GauWidth = popt[2] *3/2 #Ancho de banda de Gau01 |
|
1112 | GauWidth = popt[2] *3/2 #Ancho de banda de Gau01 | |
1091 | Range = numpy.empty(2) |
|
1113 | Range = numpy.empty(2) | |
1092 | Range[0] = GaussCenter - GauWidth |
|
1114 | Range[0] = GaussCenter - GauWidth | |
1093 | Range[1] = GaussCenter + GauWidth |
|
1115 | Range[1] = GaussCenter + GauWidth | |
1094 | #Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max) |
|
1116 | #Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max) | |
1095 | ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()] |
|
1117 | ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()] | |
1096 | ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()] |
|
1118 | ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()] | |
1097 |
|
1119 | |||
1098 | PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0] |
|
1120 | PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0] | |
1099 | PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0] |
|
1121 | PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0] | |
1100 |
|
1122 | |||
1101 | Range=numpy.array([ PointRangeMin, PointRangeMax ]) |
|
1123 | Range=numpy.array([ PointRangeMin, PointRangeMax ]) | |
1102 |
|
1124 | |||
1103 | FrecRange = xFrec[ Range[0] : Range[1] ] |
|
1125 | FrecRange = xFrec[ Range[0] : Range[1] ] | |
1104 | VelRange = xVel[ Range[0] : Range[1] ] |
|
1126 | VelRange = xVel[ Range[0] : Range[1] ] | |
1105 |
|
1127 | |||
1106 |
|
1128 | |||
1107 | '''****** Getting SCPC Slope ******''' |
|
1129 | '''****** Getting SCPC Slope ******''' | |
1108 |
|
1130 | |||
1109 | for i in range(spc.shape[0]): |
|
1131 | for i in range(spc.shape[0]): | |
1110 |
|
1132 | |||
1111 | if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.3: |
|
1133 | if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.3: | |
1112 | PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3) |
|
1134 | PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3) | |
1113 |
|
1135 | |||
1114 | '''***********************VelRange******************''' |
|
1136 | '''***********************VelRange******************''' | |
1115 |
|
1137 | |||
1116 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) |
|
1138 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) | |
1117 |
|
1139 | |||
1118 | if len(FrecRange) == len(PhaseRange): |
|
1140 | if len(FrecRange) == len(PhaseRange): | |
1119 | try: |
|
1141 | try: | |
1120 | slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange[mask], PhaseRange[mask]) |
|
1142 | slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange[mask], PhaseRange[mask]) | |
1121 | PhaseSlope[i]=slope |
|
1143 | PhaseSlope[i]=slope | |
1122 | PhaseInter[i]=intercept |
|
1144 | PhaseInter[i]=intercept | |
1123 | except: |
|
1145 | except: | |
1124 | PhaseSlope[i]=0 |
|
1146 | PhaseSlope[i]=0 | |
1125 | PhaseInter[i]=0 |
|
1147 | PhaseInter[i]=0 | |
1126 | else: |
|
1148 | else: | |
1127 | PhaseSlope[i]=0 |
|
1149 | PhaseSlope[i]=0 | |
1128 | PhaseInter[i]=0 |
|
1150 | PhaseInter[i]=0 | |
1129 | else: |
|
1151 | else: | |
1130 | PhaseSlope[i]=0 |
|
1152 | PhaseSlope[i]=0 | |
1131 | PhaseInter[i]=0 |
|
1153 | PhaseInter[i]=0 | |
1132 |
|
1154 | |||
1133 |
|
1155 | |||
1134 | '''Getting constant C''' |
|
1156 | '''Getting constant C''' | |
1135 | cC=(Fij*numpy.pi)**2 |
|
1157 | cC=(Fij*numpy.pi)**2 | |
1136 |
|
1158 | |||
1137 | '''****** Getting constants F and G ******''' |
|
1159 | '''****** Getting constants F and G ******''' | |
1138 | MijEijNij=numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) |
|
1160 | MijEijNij=numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) | |
1139 | MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) |
|
1161 | MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) | |
1140 | MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) |
|
1162 | MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) | |
1141 | MijResults=numpy.array([MijResult0,MijResult1]) |
|
1163 | MijResults=numpy.array([MijResult0,MijResult1]) | |
1142 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
1164 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |
1143 |
|
1165 | |||
1144 | '''****** Getting constants A, B and H ******''' |
|
1166 | '''****** Getting constants A, B and H ******''' | |
1145 | W01=numpy.nanmax( FitGauss01 ) #numpy.abs(CSPCSamples[0])) |
|
1167 | W01=numpy.nanmax( FitGauss01 ) #numpy.abs(CSPCSamples[0])) | |
1146 | W02=numpy.nanmax( FitGauss02 ) #numpy.abs(CSPCSamples[1])) |
|
1168 | W02=numpy.nanmax( FitGauss02 ) #numpy.abs(CSPCSamples[1])) | |
1147 | W12=numpy.nanmax( FitGauss12 ) #numpy.abs(CSPCSamples[2])) |
|
1169 | W12=numpy.nanmax( FitGauss12 ) #numpy.abs(CSPCSamples[2])) | |
1148 |
|
1170 | |||
1149 | WijResult0=((cF*Xi01+cG*Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) |
|
1171 | WijResult0=((cF*Xi01+cG*Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) | |
1150 | WijResult1=((cF*Xi02+cG*Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) |
|
1172 | WijResult1=((cF*Xi02+cG*Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) | |
1151 | WijResult2=((cF*Xi12+cG*Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) |
|
1173 | WijResult2=((cF*Xi12+cG*Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) | |
1152 |
|
1174 | |||
1153 | WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) |
|
1175 | WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) | |
1154 |
|
1176 | |||
1155 | WijEijNij=numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) |
|
1177 | WijEijNij=numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) | |
1156 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
1178 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |
1157 |
|
1179 | |||
1158 | VxVy=numpy.array([[cA,cH],[cH,cB]]) |
|
1180 | VxVy=numpy.array([[cA,cH],[cH,cB]]) | |
1159 | VxVyResults=numpy.array([-cF,-cG]) |
|
1181 | VxVyResults=numpy.array([-cF,-cG]) | |
1160 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) |
|
1182 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) | |
1161 |
|
1183 | |||
1162 | Vzon = Vy |
|
1184 | Vzon = Vy | |
1163 | Vmer = Vx |
|
1185 | Vmer = Vx | |
1164 | Vmag=numpy.sqrt(Vzon**2+Vmer**2) |
|
1186 | Vmag=numpy.sqrt(Vzon**2+Vmer**2) | |
1165 | Vang=numpy.arctan2(Vmer,Vzon) |
|
1187 | Vang=numpy.arctan2(Vmer,Vzon) | |
1166 | if numpy.abs( popt[1] ) < 3.5 and len(FrecRange)>4: |
|
1188 | if numpy.abs( popt[1] ) < 3.5 and len(FrecRange)>4: | |
1167 | Vver=popt[1] |
|
1189 | Vver=popt[1] | |
1168 | else: |
|
1190 | else: | |
1169 | Vver=numpy.NaN |
|
1191 | Vver=numpy.NaN | |
1170 | FitGaussCSPC = numpy.array([FitGauss01,FitGauss02,FitGauss12]) |
|
1192 | FitGaussCSPC = numpy.array([FitGauss01,FitGauss02,FitGauss12]) | |
1171 |
|
1193 | |||
1172 |
|
1194 | |||
1173 | return Vzon, Vmer, Vver, GaussCenter, PhaseSlope, FitGaussCSPC |
|
1195 | return Vzon, Vmer, Vver, GaussCenter, PhaseSlope, FitGaussCSPC | |
|
1196 | ||||
|
1197 | ||||
|
1198 | ||||
|
1199 | def StopWindEstimation(self, error_code): | |||
|
1200 | ''' | |||
|
1201 | the wind calculation and returns zeros | |||
|
1202 | ''' | |||
|
1203 | Vzon = 0 | |||
|
1204 | Vmer = 0 | |||
|
1205 | Vver = numpy.nan | |||
|
1206 | return Vzon, Vmer, Vver, error_code | |||
|
1207 | ||||
|
1208 | def AntiAliasing(self, interval, maxstep): | |||
|
1209 | """ | |||
|
1210 | function to prevent errors from aliased values when computing phaseslope | |||
|
1211 | """ | |||
|
1212 | antialiased = numpy.zeros(len(interval))*0.0 | |||
|
1213 | copyinterval = interval.copy() | |||
|
1214 | ||||
|
1215 | antialiased[0] = copyinterval[0] | |||
|
1216 | ||||
|
1217 | for i in range(1,len(antialiased)): | |||
|
1218 | ||||
|
1219 | step = interval[i] - interval[i-1] | |||
|
1220 | ||||
|
1221 | if step > maxstep: | |||
|
1222 | copyinterval -= 2*numpy.pi | |||
|
1223 | antialiased[i] = copyinterval[i] | |||
|
1224 | ||||
|
1225 | elif step < maxstep*(-1): | |||
|
1226 | copyinterval += 2*numpy.pi | |||
|
1227 | antialiased[i] = copyinterval[i] | |||
|
1228 | ||||
|
1229 | else: | |||
|
1230 | antialiased[i] = copyinterval[i].copy() | |||
|
1231 | ||||
|
1232 | return antialiased | |||
|
1233 | ||||
|
1234 | ||||
|
1235 | ||||
|
1236 | def TestWindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit): | |||
|
1237 | """ | |||
|
1238 | Function that Calculates Zonal, Meridional and Vertical wind velocities. | |||
|
1239 | Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019. | |||
|
1240 | ||||
|
1241 | Input: | |||
|
1242 | spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively. | |||
|
1243 | pairsList : Pairlist of channels | |||
|
1244 | ChanDist : array of xi_ij and eta_ij | |||
|
1245 | Height : height at which data is processed | |||
|
1246 | noise : noise in [channels] format for specific height | |||
|
1247 | Abbsisarange : range of the frequencies or velocities | |||
|
1248 | dbSNR, SNRlimit : signal to noise ratio in db, lower limit | |||
|
1249 | ||||
|
1250 | Output: | |||
|
1251 | Vzon, Vmer, Vver : wind velocities | |||
|
1252 | error_code : int that states where code is terminated | |||
|
1253 | ||||
|
1254 | 0 : no error detected | |||
|
1255 | 1 : Gaussian of mean spc exceeds widthlimit | |||
|
1256 | 2 : no Gaussian of mean spc found | |||
|
1257 | 3 : SNR to low or velocity to high -> prec. e.g. | |||
|
1258 | 4 : at least one Gaussian of cspc exceeds widthlimit | |||
|
1259 | 5 : zero out of three cspc Gaussian fits converged | |||
|
1260 | 6 : phase slope fit could not be found | |||
|
1261 | 7 : arrays used to fit phase have different length | |||
|
1262 | 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc) | |||
|
1263 | ||||
|
1264 | """ | |||
|
1265 | ||||
|
1266 | error_code = 0 | |||
|
1267 | ||||
|
1268 | ||||
|
1269 | SPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]]) # for normalized spc values for one height | |||
|
1270 | phase = numpy.ones([spc.shape[0],spc.shape[1]]) # phase between channels | |||
|
1271 | CSPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) # for normalized cspc values | |||
|
1272 | PhaseSlope = numpy.zeros(spc.shape[0]) # slope of the phases, channelwise | |||
|
1273 | PhaseInter = numpy.ones(spc.shape[0]) # intercept to the slope of the phases, channelwise | |||
|
1274 | xFrec = AbbsisaRange[0][0:spc.shape[1]] # frequency range | |||
|
1275 | xVel = AbbsisaRange[2][0:spc.shape[1]] # velocity range | |||
|
1276 | SPCav = numpy.average(spc, axis=0)-numpy.average(noise) # spc[0]-noise[0] | |||
|
1277 | ||||
|
1278 | SPCmoments_vel = self.Moments(SPCav, xVel ) # SPCmoments_vel[1] corresponds to vertical velocity and is used to determine if signal corresponds to wind (if .. <3) | |||
|
1279 | CSPCmoments = [] | |||
|
1280 | ||||
|
1281 | ||||
|
1282 | '''Getting Eij and Nij''' | |||
|
1283 | ||||
|
1284 | Xi01, Xi02, Xi12 = ChanDist[:,0] | |||
|
1285 | Eta01, Eta02, Eta12 = ChanDist[:,1] | |||
|
1286 | ||||
|
1287 | # update nov 19 | |||
|
1288 | widthlimit = 7 # maximum width in Hz of the gaussian, empirically determined. Anything above 10 is unrealistic, often values between 1 and 5 correspond to proper fits. | |||
|
1289 | ||||
|
1290 | '''************************* SPC is normalized ********************************''' | |||
|
1291 | ||||
|
1292 | spc_norm = spc.copy() # need copy() because untouched spc is needed for normalization of cspc below | |||
|
1293 | spc_norm = numpy.where(numpy.isfinite(spc_norm), spc_norm, numpy.NAN) | |||
|
1294 | ||||
|
1295 | for i in range(spc.shape[0]): | |||
|
1296 | ||||
|
1297 | spc_sub = spc_norm[i,:] - noise[i] # spc not smoothed here or in previous version. | |||
|
1298 | ||||
|
1299 | Factor_Norm = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc_sub)) # usually = Freq range / nfft | |||
|
1300 | normalized_spc = spc_sub / (numpy.nansum(numpy.abs(spc_sub)) * Factor_Norm) | |||
|
1301 | ||||
|
1302 | xSamples = xFrec # the frequency range is taken | |||
|
1303 | SPC_Samples[i] = normalized_spc # Normalized SPC values are taken | |||
|
1304 | ||||
|
1305 | '''********************** FITTING MEAN SPC GAUSSIAN **********************''' | |||
|
1306 | ||||
|
1307 | """ the gaussian of the mean: first subtract noise, then normalize. this is legal because | |||
|
1308 | you only fit the curve and don't need the absolute value of height for calculation, | |||
|
1309 | only for estimation of width. for normalization of cross spectra, you need initial, | |||
|
1310 | unnormalized self-spectra With noise. | |||
|
1311 | ||||
|
1312 | Technically, you don't even need to normalize the self-spectra, as you only need the | |||
|
1313 | width of the peak. However, it was left this way. Note that the normalization has a flaw: | |||
|
1314 | due to subtraction of the noise, some values are below zero. Raw "spc" values should be | |||
|
1315 | >= 0, as it is the modulus squared of the signals (complex * it's conjugate) | |||
|
1316 | """ | |||
|
1317 | ||||
|
1318 | SPCMean = numpy.average(SPC_Samples, axis=0) | |||
|
1319 | ||||
|
1320 | popt = [1e-10,0,1e-10] | |||
|
1321 | SPCMoments = self.Moments(SPCMean, xSamples) | |||
|
1322 | ||||
|
1323 | if dbSNR > SNRlimit and numpy.abs(SPCmoments_vel[1]) < 3: | |||
|
1324 | try: | |||
|
1325 | popt,pcov = curve_fit(self.gaus,xSamples,SPCMean,p0=SPCMoments)#, bounds=(-numpy.inf, [numpy.inf, numpy.inf, 10])). Setting bounds does not make the code faster but only keeps the fit from finding the minimum. | |||
|
1326 | if popt[2] > widthlimit: # CONDITION | |||
|
1327 | return self.StopWindEstimation(error_code = 1) | |||
|
1328 | ||||
|
1329 | FitGauss = self.gaus(xSamples,*popt) | |||
|
1330 | ||||
|
1331 | except :#RuntimeError: | |||
|
1332 | return self.StopWindEstimation(error_code = 2) | |||
|
1333 | ||||
|
1334 | else: | |||
|
1335 | return self.StopWindEstimation(error_code = 3) | |||
|
1336 | ||||
|
1337 | ||||
|
1338 | ||||
|
1339 | '''***************************** CSPC Normalization ************************* | |||
|
1340 | new section: | |||
|
1341 | The Spc spectra are used to normalize the crossspectra. Peaks from precipitation | |||
|
1342 | influence the norm which is not desired. First, a range is identified where the | |||
|
1343 | wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area | |||
|
1344 | around it gets cut off and values replaced by mean determined by the boundary | |||
|
1345 | data -> sum_noise (spc is not normalized here, thats why the noise is important) | |||
|
1346 | ||||
|
1347 | The sums are then added and multiplied by range/datapoints, because you need | |||
|
1348 | an integral and not a sum for normalization. | |||
|
1349 | ||||
|
1350 | A norm is found according to Briggs 92. | |||
|
1351 | ''' | |||
|
1352 | ||||
|
1353 | radarWavelength = 0.6741 # meters | |||
|
1354 | count_limit_freq = numpy.abs(popt[1]) + widthlimit # Hz, m/s can be also used if velocity is desired abscissa. | |||
|
1355 | # count_limit_freq = numpy.max(xFrec) | |||
|
1356 | ||||
|
1357 | channel_integrals = numpy.zeros(3) | |||
|
1358 | ||||
|
1359 | for i in range(spc.shape[0]): | |||
|
1360 | ''' | |||
|
1361 | find the point in array corresponding to count_limit frequency. | |||
|
1362 | sum over all frequencies in the range around zero Hz @ math.ceil(N_freq/2) | |||
|
1363 | ''' | |||
|
1364 | N_freq = numpy.count_nonzero(~numpy.isnan(spc[i,:])) | |||
|
1365 | count_limit_int = int(math.ceil( count_limit_freq / numpy.max(xFrec) * (N_freq / 2) )) # gives integer point | |||
|
1366 | sum_wind = numpy.nansum( spc[i, (math.ceil(N_freq/2) - count_limit_int) : (math.ceil(N_freq / 2) + count_limit_int)] ) #N_freq/2 is where frequency (velocity) is zero, i.e. middle of spectrum. | |||
|
1367 | sum_noise = (numpy.mean(spc[i, :4]) + numpy.mean(spc[i, -6:-2]))/2.0 * (N_freq - 2*count_limit_int) | |||
|
1368 | channel_integrals[i] = (sum_noise + sum_wind) * (2*numpy.max(xFrec) / N_freq) | |||
|
1369 | ||||
|
1370 | ||||
|
1371 | cross_integrals_peak = numpy.zeros(3) | |||
|
1372 | # cross_integrals_totalrange = numpy.zeros(3) | |||
|
1373 | ||||
|
1374 | for i in range(spc.shape[0]): | |||
|
1375 | ||||
|
1376 | cspc_norm = cspc[i,:].copy() # cspc not smoothed here or in previous version | |||
|
1377 | ||||
|
1378 | chan_index0 = pairsList[i][0] | |||
|
1379 | chan_index1 = pairsList[i][1] | |||
|
1380 | ||||
|
1381 | cross_integrals_peak[i] = channel_integrals[chan_index0]*channel_integrals[chan_index1] | |||
|
1382 | normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_peak[i]) | |||
|
1383 | CSPC_Samples[i] = normalized_cspc | |||
|
1384 | ||||
|
1385 | ''' Finding cross integrals without subtracting any peaks:''' | |||
|
1386 | # FactorNorm0 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index0,:])) | |||
|
1387 | # FactorNorm1 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index1,:])) | |||
|
1388 | # cross_integrals_totalrange[i] = (numpy.nansum(spc[chan_index0,:])) * FactorNorm0 * (numpy.nansum(spc[chan_index1,:])) * FactorNorm1 | |||
|
1389 | # normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_totalrange[i]) | |||
|
1390 | # CSPC_Samples[i] = normalized_cspc | |||
|
1391 | ||||
|
1392 | ||||
|
1393 | phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real) | |||
|
1394 | ||||
|
1395 | ||||
|
1396 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0]), xSamples), | |||
|
1397 | self.Moments(numpy.abs(CSPC_Samples[1]), xSamples), | |||
|
1398 | self.Moments(numpy.abs(CSPC_Samples[2]), xSamples)]) | |||
|
1399 | ||||
|
1400 | ||||
|
1401 | '''***Sorting out NaN entries***''' | |||
|
1402 | CSPCMask01 = numpy.abs(CSPC_Samples[0]) | |||
|
1403 | CSPCMask02 = numpy.abs(CSPC_Samples[1]) | |||
|
1404 | CSPCMask12 = numpy.abs(CSPC_Samples[2]) | |||
|
1405 | ||||
|
1406 | mask01 = ~numpy.isnan(CSPCMask01) | |||
|
1407 | mask02 = ~numpy.isnan(CSPCMask02) | |||
|
1408 | mask12 = ~numpy.isnan(CSPCMask12) | |||
|
1409 | ||||
|
1410 | CSPCMask01 = CSPCMask01[mask01] | |||
|
1411 | CSPCMask02 = CSPCMask02[mask02] | |||
|
1412 | CSPCMask12 = CSPCMask12[mask12] | |||
|
1413 | ||||
1174 |
|
1414 | |||
|
1415 | popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10] | |||
|
1416 | FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0 | |||
|
1417 | ||||
|
1418 | '''*******************************FIT GAUSS CSPC************************************''' | |||
|
1419 | ||||
|
1420 | try: | |||
|
1421 | popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0]) | |||
|
1422 | if popt01[2] > widthlimit: # CONDITION | |||
|
1423 | return self.StopWindEstimation(error_code = 4) | |||
|
1424 | ||||
|
1425 | popt02,pcov = curve_fit(self.gaus,xSamples[mask02],numpy.abs(CSPCMask02),p0=CSPCmoments[1]) | |||
|
1426 | if popt02[2] > widthlimit: # CONDITION | |||
|
1427 | return self.StopWindEstimation(error_code = 4) | |||
|
1428 | ||||
|
1429 | popt12,pcov = curve_fit(self.gaus,xSamples[mask12],numpy.abs(CSPCMask12),p0=CSPCmoments[2]) | |||
|
1430 | if popt12[2] > widthlimit: # CONDITION | |||
|
1431 | return self.StopWindEstimation(error_code = 4) | |||
|
1432 | ||||
|
1433 | FitGauss01 = self.gaus(xSamples, *popt01) | |||
|
1434 | FitGauss02 = self.gaus(xSamples, *popt02) | |||
|
1435 | FitGauss12 = self.gaus(xSamples, *popt12) | |||
|
1436 | ||||
|
1437 | except: | |||
|
1438 | return self.StopWindEstimation(error_code = 5) | |||
|
1439 | ||||
|
1440 | ||||
|
1441 | '''************* Getting Fij ***************''' | |||
|
1442 | ||||
|
1443 | ||||
|
1444 | #Punto en Eje X de la Gaussiana donde se encuentra el centro -- x-axis point of the gaussian where the center is located | |||
|
1445 | # -> PointGauCenter | |||
|
1446 | GaussCenter = popt[1] | |||
|
1447 | ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()] | |||
|
1448 | PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0] | |||
|
1449 | ||||
|
1450 | #Punto e^-1 hubicado en la Gaussiana -- point where e^-1 is located in the gaussian | |||
|
1451 | PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1) | |||
|
1452 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss" | |||
|
1453 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] | |||
|
1454 | ||||
|
1455 | Fij = numpy.abs(xSamples[PointFij] - xSamples[PointGauCenter]) | |||
|
1456 | ||||
|
1457 | '''********** Taking frequency ranges from mean SPCs **********''' | |||
|
1458 | ||||
|
1459 | #GaussCenter = popt[1] #Primer momento 01 | |||
|
1460 | GauWidth = popt[2] * 3/2 #Ancho de banda de Gau01 -- Bandwidth of Gau01 TODO why *3/2? | |||
|
1461 | Range = numpy.empty(2) | |||
|
1462 | Range[0] = GaussCenter - GauWidth | |||
|
1463 | Range[1] = GaussCenter + GauWidth | |||
|
1464 | #Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max) -- Point in x-axis where the bandwidth is located (min:max) | |||
|
1465 | ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()] | |||
|
1466 | ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()] | |||
|
1467 | ||||
|
1468 | PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0] | |||
|
1469 | PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0] | |||
|
1470 | ||||
|
1471 | Range = numpy.array([ PointRangeMin, PointRangeMax ]) | |||
|
1472 | ||||
|
1473 | FrecRange = xFrec[ Range[0] : Range[1] ] | |||
|
1474 | ||||
|
1475 | ||||
|
1476 | '''************************** Getting Phase Slope ***************************''' | |||
|
1477 | ||||
|
1478 | for i in range(1,3): # Changed to only compute two | |||
|
1479 | ||||
|
1480 | if len(FrecRange) > 5 and len(FrecRange) < spc.shape[1] * 0.3: | |||
|
1481 | # PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=1) #used before to smooth phase with N=3 | |||
|
1482 | PhaseRange = phase[i,Range[0]:Range[1]].copy() | |||
|
1483 | ||||
|
1484 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) | |||
|
1485 | ||||
|
1486 | ||||
|
1487 | if len(FrecRange) == len(PhaseRange): | |||
|
1488 | ||||
|
1489 | try: | |||
|
1490 | slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5)) | |||
|
1491 | PhaseSlope[i] = slope | |||
|
1492 | PhaseInter[i] = intercept | |||
|
1493 | ||||
|
1494 | except: | |||
|
1495 | return self.StopWindEstimation(error_code = 6) | |||
|
1496 | ||||
|
1497 | else: | |||
|
1498 | return self.StopWindEstimation(error_code = 7) | |||
|
1499 | ||||
|
1500 | else: | |||
|
1501 | return self.StopWindEstimation(error_code = 8) | |||
|
1502 | ||||
|
1503 | ||||
|
1504 | ||||
|
1505 | '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***''' | |||
|
1506 | ||||
|
1507 | '''Getting constant C''' | |||
|
1508 | cC=(Fij*numpy.pi)**2 | |||
|
1509 | ||||
|
1510 | '''****** Getting constants F and G ******''' | |||
|
1511 | MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) | |||
|
1512 | MijResult0 = (-PhaseSlope[1] * cC) / (2*numpy.pi) | |||
|
1513 | MijResult1 = (-PhaseSlope[2] * cC) / (2*numpy.pi) | |||
|
1514 | MijResults = numpy.array([MijResult0,MijResult1]) | |||
|
1515 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |||
|
1516 | ||||
|
1517 | '''****** Getting constants A, B and H ******''' | |||
|
1518 | W01 = numpy.nanmax( FitGauss01 ) | |||
|
1519 | W02 = numpy.nanmax( FitGauss02 ) | |||
|
1520 | W12 = numpy.nanmax( FitGauss12 ) | |||
|
1521 | ||||
|
1522 | WijResult0 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) | |||
|
1523 | WijResult1 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC)) | |||
|
1524 | WijResult2 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) | |||
|
1525 | ||||
|
1526 | WijResults = numpy.array([WijResult0, WijResult1, WijResult2]) | |||
|
1527 | ||||
|
1528 | WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) | |||
|
1529 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |||
|
1530 | ||||
|
1531 | VxVy = numpy.array([[cA,cH],[cH,cB]]) | |||
|
1532 | VxVyResults = numpy.array([-cF,-cG]) | |||
|
1533 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) | |||
|
1534 | ||||
|
1535 | Vzon = Vy | |||
|
1536 | Vmer = Vx | |||
|
1537 | ||||
|
1538 | # Vmag=numpy.sqrt(Vzon**2+Vmer**2) # unused | |||
|
1539 | # Vang=numpy.arctan2(Vmer,Vzon) # unused | |||
|
1540 | ||||
|
1541 | ||||
|
1542 | ''' using frequency as abscissa. Due to three channels, the offzenith angle is zero | |||
|
1543 | and Vrad equal to Vver. formula taken from Briggs 92, figure 4. | |||
|
1544 | ''' | |||
|
1545 | if numpy.abs( popt[1] ) < 3.5 and len(FrecRange) > 4: | |||
|
1546 | Vver = 0.5 * radarWavelength * popt[1] * 100 # *100 to get cm (/s) | |||
|
1547 | else: | |||
|
1548 | Vver = numpy.NaN | |||
|
1549 | ||||
|
1550 | error_code = 0 | |||
|
1551 | ||||
|
1552 | return Vzon, Vmer, Vver, error_code | |||
|
1553 | ||||
|
1554 | ||||
|
1555 | ||||
1175 | class SpectralMoments(Operation): |
|
1556 | class SpectralMoments(Operation): | |
1176 |
|
1557 | |||
1177 | ''' |
|
1558 | ''' | |
1178 | Function SpectralMoments() |
|
1559 | Function SpectralMoments() | |
1179 |
|
1560 | |||
1180 | Calculates moments (power, mean, standard deviation) and SNR of the signal |
|
1561 | Calculates moments (power, mean, standard deviation) and SNR of the signal | |
1181 |
|
1562 | |||
1182 | Type of dataIn: Spectra |
|
1563 | Type of dataIn: Spectra | |
1183 |
|
1564 | |||
1184 | Configuration Parameters: |
|
1565 | Configuration Parameters: | |
1185 |
|
1566 | |||
1186 | dirCosx : Cosine director in X axis |
|
1567 | dirCosx : Cosine director in X axis | |
1187 | dirCosy : Cosine director in Y axis |
|
1568 | dirCosy : Cosine director in Y axis | |
1188 |
|
1569 | |||
1189 | elevation : |
|
1570 | elevation : | |
1190 | azimuth : |
|
1571 | azimuth : | |
1191 |
|
1572 | |||
1192 | Input: |
|
1573 | Input: | |
1193 | channelList : simple channel list to select e.g. [2,3,7] |
|
1574 | channelList : simple channel list to select e.g. [2,3,7] | |
1194 | self.dataOut.data_pre : Spectral data |
|
1575 | self.dataOut.data_pre : Spectral data | |
1195 | self.dataOut.abscissaList : List of frequencies |
|
1576 | self.dataOut.abscissaList : List of frequencies | |
1196 | self.dataOut.noise : Noise level per channel |
|
1577 | self.dataOut.noise : Noise level per channel | |
1197 |
|
1578 | |||
1198 | Affected: |
|
1579 | Affected: | |
1199 | self.dataOut.moments : Parameters per channel |
|
1580 | self.dataOut.moments : Parameters per channel | |
1200 | self.dataOut.data_SNR : SNR per channel |
|
1581 | self.dataOut.data_SNR : SNR per channel | |
1201 |
|
1582 | |||
1202 | ''' |
|
1583 | ''' | |
1203 |
|
1584 | |||
1204 | def run(self, dataOut): |
|
1585 | def run(self, dataOut): | |
1205 |
|
1586 | |||
1206 | #dataOut.data_pre = dataOut.data_pre[0] |
|
1587 | #dataOut.data_pre = dataOut.data_pre[0] | |
1207 | data = dataOut.data_pre[0] |
|
1588 | data = dataOut.data_pre[0] | |
1208 | absc = dataOut.abscissaList[:-1] |
|
1589 | absc = dataOut.abscissaList[:-1] | |
1209 | noise = dataOut.noise |
|
1590 | noise = dataOut.noise | |
1210 | nChannel = data.shape[0] |
|
1591 | nChannel = data.shape[0] | |
1211 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) |
|
1592 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) | |
1212 |
|
1593 | |||
1213 | for ind in range(nChannel): |
|
1594 | for ind in range(nChannel): | |
1214 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) |
|
1595 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) | |
1215 |
|
1596 | |||
1216 | dataOut.moments = data_param[:,1:,:] |
|
1597 | dataOut.moments = data_param[:,1:,:] | |
1217 | dataOut.data_SNR = data_param[:,0] |
|
1598 | dataOut.data_SNR = data_param[:,0] | |
1218 | dataOut.data_POW = data_param[:,1] |
|
1599 | dataOut.data_POW = data_param[:,1] | |
1219 | dataOut.data_DOP = data_param[:,2] |
|
1600 | dataOut.data_DOP = data_param[:,2] | |
1220 | dataOut.data_WIDTH = data_param[:,3] |
|
1601 | dataOut.data_WIDTH = data_param[:,3] | |
1221 | return dataOut |
|
1602 | return dataOut | |
1222 |
|
1603 | |||
1223 | def __calculateMoments(self, oldspec, oldfreq, n0, |
|
1604 | def __calculateMoments(self, oldspec, oldfreq, n0, | |
1224 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
1605 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |
1225 |
|
1606 | |||
1226 | if (nicoh is None): nicoh = 1 |
|
1607 | if (nicoh is None): nicoh = 1 | |
1227 | if (graph is None): graph = 0 |
|
1608 | if (graph is None): graph = 0 | |
1228 | if (smooth is None): smooth = 0 |
|
1609 | if (smooth is None): smooth = 0 | |
1229 | elif (self.smooth < 3): smooth = 0 |
|
1610 | elif (self.smooth < 3): smooth = 0 | |
1230 |
|
1611 | |||
1231 | if (type1 is None): type1 = 0 |
|
1612 | if (type1 is None): type1 = 0 | |
1232 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 |
|
1613 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 | |
1233 | if (snrth is None): snrth = -3 |
|
1614 | if (snrth is None): snrth = -3 | |
1234 | if (dc is None): dc = 0 |
|
1615 | if (dc is None): dc = 0 | |
1235 | if (aliasing is None): aliasing = 0 |
|
1616 | if (aliasing is None): aliasing = 0 | |
1236 | if (oldfd is None): oldfd = 0 |
|
1617 | if (oldfd is None): oldfd = 0 | |
1237 | if (wwauto is None): wwauto = 0 |
|
1618 | if (wwauto is None): wwauto = 0 | |
1238 |
|
1619 | |||
1239 | if (n0 < 1.e-20): n0 = 1.e-20 |
|
1620 | if (n0 < 1.e-20): n0 = 1.e-20 | |
1240 |
|
1621 | |||
1241 | freq = oldfreq |
|
1622 | freq = oldfreq | |
1242 | vec_power = numpy.zeros(oldspec.shape[1]) |
|
1623 | vec_power = numpy.zeros(oldspec.shape[1]) | |
1243 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
1624 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
1244 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
1625 | vec_w = numpy.zeros(oldspec.shape[1]) | |
1245 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
1626 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
1246 |
|
1627 | |||
1247 | oldspec = numpy.ma.masked_invalid(oldspec) |
|
1628 | oldspec = numpy.ma.masked_invalid(oldspec) | |
1248 |
|
1629 | |||
1249 | for ind in range(oldspec.shape[1]): |
|
1630 | for ind in range(oldspec.shape[1]): | |
1250 |
|
1631 | |||
1251 | spec = oldspec[:,ind] |
|
1632 | spec = oldspec[:,ind] | |
1252 | aux = spec*fwindow |
|
1633 | aux = spec*fwindow | |
1253 | max_spec = aux.max() |
|
1634 | max_spec = aux.max() | |
1254 | m = list(aux).index(max_spec) |
|
1635 | m = list(aux).index(max_spec) | |
1255 |
|
1636 | |||
1256 | #Smooth |
|
1637 | #Smooth | |
1257 | if (smooth == 0): spec2 = spec |
|
1638 | if (smooth == 0): spec2 = spec | |
1258 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
1639 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
1259 |
|
1640 | |||
1260 | # Calculo de Momentos |
|
1641 | # Calculo de Momentos | |
1261 | bb = spec2[list(range(m,spec2.size))] |
|
1642 | bb = spec2[list(range(m,spec2.size))] | |
1262 | bb = (bb<n0).nonzero() |
|
1643 | bb = (bb<n0).nonzero() | |
1263 | bb = bb[0] |
|
1644 | bb = bb[0] | |
1264 |
|
1645 | |||
1265 | ss = spec2[list(range(0,m + 1))] |
|
1646 | ss = spec2[list(range(0,m + 1))] | |
1266 | ss = (ss<n0).nonzero() |
|
1647 | ss = (ss<n0).nonzero() | |
1267 | ss = ss[0] |
|
1648 | ss = ss[0] | |
1268 |
|
1649 | |||
1269 | if (bb.size == 0): |
|
1650 | if (bb.size == 0): | |
1270 | bb0 = spec.size - 1 - m |
|
1651 | bb0 = spec.size - 1 - m | |
1271 | else: |
|
1652 | else: | |
1272 | bb0 = bb[0] - 1 |
|
1653 | bb0 = bb[0] - 1 | |
1273 | if (bb0 < 0): |
|
1654 | if (bb0 < 0): | |
1274 | bb0 = 0 |
|
1655 | bb0 = 0 | |
1275 |
|
1656 | |||
1276 | if (ss.size == 0): ss1 = 1 |
|
1657 | if (ss.size == 0): ss1 = 1 | |
1277 | else: ss1 = max(ss) + 1 |
|
1658 | else: ss1 = max(ss) + 1 | |
1278 |
|
1659 | |||
1279 | if (ss1 > m): ss1 = m |
|
1660 | if (ss1 > m): ss1 = m | |
1280 |
|
1661 | |||
1281 | valid = numpy.asarray(list(range(int(m + bb0 - ss1 + 1)))) + ss1 |
|
1662 | valid = numpy.asarray(list(range(int(m + bb0 - ss1 + 1)))) + ss1 | |
1282 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() |
|
1663 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() | |
1283 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power |
|
1664 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power | |
1284 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) |
|
1665 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |
1285 | snr = (spec2.mean()-n0)/n0 |
|
1666 | snr = (spec2.mean()-n0)/n0 | |
1286 |
|
1667 | |||
1287 | if (snr < 1.e-20) : |
|
1668 | if (snr < 1.e-20) : | |
1288 | snr = 1.e-20 |
|
1669 | snr = 1.e-20 | |
1289 |
|
1670 | |||
1290 | vec_power[ind] = power |
|
1671 | vec_power[ind] = power | |
1291 | vec_fd[ind] = fd |
|
1672 | vec_fd[ind] = fd | |
1292 | vec_w[ind] = w |
|
1673 | vec_w[ind] = w | |
1293 | vec_snr[ind] = snr |
|
1674 | vec_snr[ind] = snr | |
1294 |
|
1675 | |||
1295 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
1676 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
1296 | return moments |
|
1677 | return moments | |
1297 |
|
1678 | |||
1298 | #------------------ Get SA Parameters -------------------------- |
|
1679 | #------------------ Get SA Parameters -------------------------- | |
1299 |
|
1680 | |||
1300 | def GetSAParameters(self): |
|
1681 | def GetSAParameters(self): | |
1301 | #SA en frecuencia |
|
1682 | #SA en frecuencia | |
1302 | pairslist = self.dataOut.groupList |
|
1683 | pairslist = self.dataOut.groupList | |
1303 | num_pairs = len(pairslist) |
|
1684 | num_pairs = len(pairslist) | |
1304 |
|
1685 | |||
1305 | vel = self.dataOut.abscissaList |
|
1686 | vel = self.dataOut.abscissaList | |
1306 | spectra = self.dataOut.data_pre |
|
1687 | spectra = self.dataOut.data_pre | |
1307 | cspectra = self.dataIn.data_cspc |
|
1688 | cspectra = self.dataIn.data_cspc | |
1308 | delta_v = vel[1] - vel[0] |
|
1689 | delta_v = vel[1] - vel[0] | |
1309 |
|
1690 | |||
1310 | #Calculating the power spectrum |
|
1691 | #Calculating the power spectrum | |
1311 | spc_pow = numpy.sum(spectra, 3)*delta_v |
|
1692 | spc_pow = numpy.sum(spectra, 3)*delta_v | |
1312 | #Normalizing Spectra |
|
1693 | #Normalizing Spectra | |
1313 | norm_spectra = spectra/spc_pow |
|
1694 | norm_spectra = spectra/spc_pow | |
1314 | #Calculating the norm_spectra at peak |
|
1695 | #Calculating the norm_spectra at peak | |
1315 | max_spectra = numpy.max(norm_spectra, 3) |
|
1696 | max_spectra = numpy.max(norm_spectra, 3) | |
1316 |
|
1697 | |||
1317 | #Normalizing Cross Spectra |
|
1698 | #Normalizing Cross Spectra | |
1318 | norm_cspectra = numpy.zeros(cspectra.shape) |
|
1699 | norm_cspectra = numpy.zeros(cspectra.shape) | |
1319 |
|
1700 | |||
1320 | for i in range(num_chan): |
|
1701 | for i in range(num_chan): | |
1321 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) |
|
1702 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) | |
1322 |
|
1703 | |||
1323 | max_cspectra = numpy.max(norm_cspectra,2) |
|
1704 | max_cspectra = numpy.max(norm_cspectra,2) | |
1324 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) |
|
1705 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) | |
1325 |
|
1706 | |||
1326 | for i in range(num_pairs): |
|
1707 | for i in range(num_pairs): | |
1327 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) |
|
1708 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) | |
1328 | #------------------- Get Lags ---------------------------------- |
|
1709 | #------------------- Get Lags ---------------------------------- | |
1329 |
|
1710 | |||
1330 | class SALags(Operation): |
|
1711 | class SALags(Operation): | |
1331 | ''' |
|
1712 | ''' | |
1332 | Function GetMoments() |
|
1713 | Function GetMoments() | |
1333 |
|
1714 | |||
1334 | Input: |
|
1715 | Input: | |
1335 | self.dataOut.data_pre |
|
1716 | self.dataOut.data_pre | |
1336 | self.dataOut.abscissaList |
|
1717 | self.dataOut.abscissaList | |
1337 | self.dataOut.noise |
|
1718 | self.dataOut.noise | |
1338 | self.dataOut.normFactor |
|
1719 | self.dataOut.normFactor | |
1339 | self.dataOut.data_SNR |
|
1720 | self.dataOut.data_SNR | |
1340 | self.dataOut.groupList |
|
1721 | self.dataOut.groupList | |
1341 | self.dataOut.nChannels |
|
1722 | self.dataOut.nChannels | |
1342 |
|
1723 | |||
1343 | Affected: |
|
1724 | Affected: | |
1344 | self.dataOut.data_param |
|
1725 | self.dataOut.data_param | |
1345 |
|
1726 | |||
1346 | ''' |
|
1727 | ''' | |
1347 | def run(self, dataOut): |
|
1728 | def run(self, dataOut): | |
1348 | data_acf = dataOut.data_pre[0] |
|
1729 | data_acf = dataOut.data_pre[0] | |
1349 | data_ccf = dataOut.data_pre[1] |
|
1730 | data_ccf = dataOut.data_pre[1] | |
1350 | normFactor_acf = dataOut.normFactor[0] |
|
1731 | normFactor_acf = dataOut.normFactor[0] | |
1351 | normFactor_ccf = dataOut.normFactor[1] |
|
1732 | normFactor_ccf = dataOut.normFactor[1] | |
1352 | pairs_acf = dataOut.groupList[0] |
|
1733 | pairs_acf = dataOut.groupList[0] | |
1353 | pairs_ccf = dataOut.groupList[1] |
|
1734 | pairs_ccf = dataOut.groupList[1] | |
1354 |
|
1735 | |||
1355 | nHeights = dataOut.nHeights |
|
1736 | nHeights = dataOut.nHeights | |
1356 | absc = dataOut.abscissaList |
|
1737 | absc = dataOut.abscissaList | |
1357 | noise = dataOut.noise |
|
1738 | noise = dataOut.noise | |
1358 | SNR = dataOut.data_SNR |
|
1739 | SNR = dataOut.data_SNR | |
1359 | nChannels = dataOut.nChannels |
|
1740 | nChannels = dataOut.nChannels | |
1360 | # pairsList = dataOut.groupList |
|
1741 | # pairsList = dataOut.groupList | |
1361 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
1742 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
1362 |
|
1743 | |||
1363 | for l in range(len(pairs_acf)): |
|
1744 | for l in range(len(pairs_acf)): | |
1364 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] |
|
1745 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] | |
1365 |
|
1746 | |||
1366 | for l in range(len(pairs_ccf)): |
|
1747 | for l in range(len(pairs_ccf)): | |
1367 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] |
|
1748 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] | |
1368 |
|
1749 | |||
1369 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) |
|
1750 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) | |
1370 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) |
|
1751 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) | |
1371 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) |
|
1752 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) | |
1372 | return |
|
1753 | return | |
1373 |
|
1754 | |||
1374 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1755 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
1375 | # |
|
1756 | # | |
1376 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1757 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1377 | # |
|
1758 | # | |
1378 | # for l in range(len(pairsList)): |
|
1759 | # for l in range(len(pairsList)): | |
1379 | # firstChannel = pairsList[l][0] |
|
1760 | # firstChannel = pairsList[l][0] | |
1380 | # secondChannel = pairsList[l][1] |
|
1761 | # secondChannel = pairsList[l][1] | |
1381 | # |
|
1762 | # | |
1382 | # #Obteniendo pares de Autocorrelacion |
|
1763 | # #Obteniendo pares de Autocorrelacion | |
1383 | # if firstChannel == secondChannel: |
|
1764 | # if firstChannel == secondChannel: | |
1384 | # pairsAutoCorr[firstChannel] = int(l) |
|
1765 | # pairsAutoCorr[firstChannel] = int(l) | |
1385 | # |
|
1766 | # | |
1386 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1767 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
1387 | # |
|
1768 | # | |
1388 | # pairsCrossCorr = range(len(pairsList)) |
|
1769 | # pairsCrossCorr = range(len(pairsList)) | |
1389 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1770 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1390 | # |
|
1771 | # | |
1391 | # return pairsAutoCorr, pairsCrossCorr |
|
1772 | # return pairsAutoCorr, pairsCrossCorr | |
1392 |
|
1773 | |||
1393 | def __calculateTaus(self, data_acf, data_ccf, lagRange): |
|
1774 | def __calculateTaus(self, data_acf, data_ccf, lagRange): | |
1394 |
|
1775 | |||
1395 | lag0 = data_acf.shape[1]/2 |
|
1776 | lag0 = data_acf.shape[1]/2 | |
1396 | #Funcion de Autocorrelacion |
|
1777 | #Funcion de Autocorrelacion | |
1397 | mean_acf = stats.nanmean(data_acf, axis = 0) |
|
1778 | mean_acf = stats.nanmean(data_acf, axis = 0) | |
1398 |
|
1779 | |||
1399 | #Obtencion Indice de TauCross |
|
1780 | #Obtencion Indice de TauCross | |
1400 | ind_ccf = data_ccf.argmax(axis = 1) |
|
1781 | ind_ccf = data_ccf.argmax(axis = 1) | |
1401 | #Obtencion Indice de TauAuto |
|
1782 | #Obtencion Indice de TauAuto | |
1402 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') |
|
1783 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') | |
1403 | ccf_lag0 = data_ccf[:,lag0,:] |
|
1784 | ccf_lag0 = data_ccf[:,lag0,:] | |
1404 |
|
1785 | |||
1405 | for i in range(ccf_lag0.shape[0]): |
|
1786 | for i in range(ccf_lag0.shape[0]): | |
1406 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) |
|
1787 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) | |
1407 |
|
1788 | |||
1408 | #Obtencion de TauCross y TauAuto |
|
1789 | #Obtencion de TauCross y TauAuto | |
1409 | tau_ccf = lagRange[ind_ccf] |
|
1790 | tau_ccf = lagRange[ind_ccf] | |
1410 | tau_acf = lagRange[ind_acf] |
|
1791 | tau_acf = lagRange[ind_acf] | |
1411 |
|
1792 | |||
1412 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) |
|
1793 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) | |
1413 |
|
1794 | |||
1414 | tau_ccf[Nan1,Nan2] = numpy.nan |
|
1795 | tau_ccf[Nan1,Nan2] = numpy.nan | |
1415 | tau_acf[Nan1,Nan2] = numpy.nan |
|
1796 | tau_acf[Nan1,Nan2] = numpy.nan | |
1416 | tau = numpy.vstack((tau_ccf,tau_acf)) |
|
1797 | tau = numpy.vstack((tau_ccf,tau_acf)) | |
1417 |
|
1798 | |||
1418 | return tau |
|
1799 | return tau | |
1419 |
|
1800 | |||
1420 | def __calculateLag1Phase(self, data, lagTRange): |
|
1801 | def __calculateLag1Phase(self, data, lagTRange): | |
1421 | data1 = stats.nanmean(data, axis = 0) |
|
1802 | data1 = stats.nanmean(data, axis = 0) | |
1422 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 |
|
1803 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |
1423 |
|
1804 | |||
1424 | phase = numpy.angle(data1[lag1,:]) |
|
1805 | phase = numpy.angle(data1[lag1,:]) | |
1425 |
|
1806 | |||
1426 | return phase |
|
1807 | return phase | |
1427 |
|
1808 | |||
1428 | class SpectralFitting(Operation): |
|
1809 | class SpectralFitting(Operation): | |
1429 | ''' |
|
1810 | ''' | |
1430 | Function GetMoments() |
|
1811 | Function GetMoments() | |
1431 |
|
1812 | |||
1432 | Input: |
|
1813 | Input: | |
1433 | Output: |
|
1814 | Output: | |
1434 | Variables modified: |
|
1815 | Variables modified: | |
1435 | ''' |
|
1816 | ''' | |
1436 |
|
1817 | |||
1437 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): |
|
1818 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): | |
1438 |
|
1819 | |||
1439 |
|
1820 | |||
1440 | if path != None: |
|
1821 | if path != None: | |
1441 | sys.path.append(path) |
|
1822 | sys.path.append(path) | |
1442 | self.dataOut.library = importlib.import_module(file) |
|
1823 | self.dataOut.library = importlib.import_module(file) | |
1443 |
|
1824 | |||
1444 | #To be inserted as a parameter |
|
1825 | #To be inserted as a parameter | |
1445 | groupArray = numpy.array(groupList) |
|
1826 | groupArray = numpy.array(groupList) | |
1446 | # groupArray = numpy.array([[0,1],[2,3]]) |
|
1827 | # groupArray = numpy.array([[0,1],[2,3]]) | |
1447 | self.dataOut.groupList = groupArray |
|
1828 | self.dataOut.groupList = groupArray | |
1448 |
|
1829 | |||
1449 | nGroups = groupArray.shape[0] |
|
1830 | nGroups = groupArray.shape[0] | |
1450 | nChannels = self.dataIn.nChannels |
|
1831 | nChannels = self.dataIn.nChannels | |
1451 | nHeights=self.dataIn.heightList.size |
|
1832 | nHeights=self.dataIn.heightList.size | |
1452 |
|
1833 | |||
1453 | #Parameters Array |
|
1834 | #Parameters Array | |
1454 | self.dataOut.data_param = None |
|
1835 | self.dataOut.data_param = None | |
1455 |
|
1836 | |||
1456 | #Set constants |
|
1837 | #Set constants | |
1457 | constants = self.dataOut.library.setConstants(self.dataIn) |
|
1838 | constants = self.dataOut.library.setConstants(self.dataIn) | |
1458 | self.dataOut.constants = constants |
|
1839 | self.dataOut.constants = constants | |
1459 | M = self.dataIn.normFactor |
|
1840 | M = self.dataIn.normFactor | |
1460 | N = self.dataIn.nFFTPoints |
|
1841 | N = self.dataIn.nFFTPoints | |
1461 | ippSeconds = self.dataIn.ippSeconds |
|
1842 | ippSeconds = self.dataIn.ippSeconds | |
1462 | K = self.dataIn.nIncohInt |
|
1843 | K = self.dataIn.nIncohInt | |
1463 | pairsArray = numpy.array(self.dataIn.pairsList) |
|
1844 | pairsArray = numpy.array(self.dataIn.pairsList) | |
1464 |
|
1845 | |||
1465 | #List of possible combinations |
|
1846 | #List of possible combinations | |
1466 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) |
|
1847 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |
1467 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') |
|
1848 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |
1468 |
|
1849 | |||
1469 | if getSNR: |
|
1850 | if getSNR: | |
1470 | listChannels = groupArray.reshape((groupArray.size)) |
|
1851 | listChannels = groupArray.reshape((groupArray.size)) | |
1471 | listChannels.sort() |
|
1852 | listChannels.sort() | |
1472 | noise = self.dataIn.getNoise() |
|
1853 | noise = self.dataIn.getNoise() | |
1473 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) |
|
1854 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) | |
1474 |
|
1855 | |||
1475 | for i in range(nGroups): |
|
1856 | for i in range(nGroups): | |
1476 | coord = groupArray[i,:] |
|
1857 | coord = groupArray[i,:] | |
1477 |
|
1858 | |||
1478 | #Input data array |
|
1859 | #Input data array | |
1479 | data = self.dataIn.data_spc[coord,:,:]/(M*N) |
|
1860 | data = self.dataIn.data_spc[coord,:,:]/(M*N) | |
1480 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) |
|
1861 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |
1481 |
|
1862 | |||
1482 | #Cross Spectra data array for Covariance Matrixes |
|
1863 | #Cross Spectra data array for Covariance Matrixes | |
1483 | ind = 0 |
|
1864 | ind = 0 | |
1484 | for pairs in listComb: |
|
1865 | for pairs in listComb: | |
1485 | pairsSel = numpy.array([coord[x],coord[y]]) |
|
1866 | pairsSel = numpy.array([coord[x],coord[y]]) | |
1486 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) |
|
1867 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |
1487 | ind += 1 |
|
1868 | ind += 1 | |
1488 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) |
|
1869 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) | |
1489 | dataCross = dataCross**2/K |
|
1870 | dataCross = dataCross**2/K | |
1490 |
|
1871 | |||
1491 | for h in range(nHeights): |
|
1872 | for h in range(nHeights): | |
1492 |
|
1873 | |||
1493 | #Input |
|
1874 | #Input | |
1494 | d = data[:,h] |
|
1875 | d = data[:,h] | |
1495 |
|
1876 | |||
1496 | #Covariance Matrix |
|
1877 | #Covariance Matrix | |
1497 | D = numpy.diag(d**2/K) |
|
1878 | D = numpy.diag(d**2/K) | |
1498 | ind = 0 |
|
1879 | ind = 0 | |
1499 | for pairs in listComb: |
|
1880 | for pairs in listComb: | |
1500 | #Coordinates in Covariance Matrix |
|
1881 | #Coordinates in Covariance Matrix | |
1501 | x = pairs[0] |
|
1882 | x = pairs[0] | |
1502 | y = pairs[1] |
|
1883 | y = pairs[1] | |
1503 | #Channel Index |
|
1884 | #Channel Index | |
1504 | S12 = dataCross[ind,:,h] |
|
1885 | S12 = dataCross[ind,:,h] | |
1505 | D12 = numpy.diag(S12) |
|
1886 | D12 = numpy.diag(S12) | |
1506 | #Completing Covariance Matrix with Cross Spectras |
|
1887 | #Completing Covariance Matrix with Cross Spectras | |
1507 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 |
|
1888 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |
1508 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 |
|
1889 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |
1509 | ind += 1 |
|
1890 | ind += 1 | |
1510 | Dinv=numpy.linalg.inv(D) |
|
1891 | Dinv=numpy.linalg.inv(D) | |
1511 | L=numpy.linalg.cholesky(Dinv) |
|
1892 | L=numpy.linalg.cholesky(Dinv) | |
1512 | LT=L.T |
|
1893 | LT=L.T | |
1513 |
|
1894 | |||
1514 | dp = numpy.dot(LT,d) |
|
1895 | dp = numpy.dot(LT,d) | |
1515 |
|
1896 | |||
1516 | #Initial values |
|
1897 | #Initial values | |
1517 | data_spc = self.dataIn.data_spc[coord,:,h] |
|
1898 | data_spc = self.dataIn.data_spc[coord,:,h] | |
1518 |
|
1899 | |||
1519 | if (h>0)and(error1[3]<5): |
|
1900 | if (h>0)and(error1[3]<5): | |
1520 | p0 = self.dataOut.data_param[i,:,h-1] |
|
1901 | p0 = self.dataOut.data_param[i,:,h-1] | |
1521 | else: |
|
1902 | else: | |
1522 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) |
|
1903 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) | |
1523 |
|
1904 | |||
1524 | try: |
|
1905 | try: | |
1525 | #Least Squares |
|
1906 | #Least Squares | |
1526 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) |
|
1907 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |
1527 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) |
|
1908 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |
1528 | #Chi square error |
|
1909 | #Chi square error | |
1529 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) |
|
1910 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |
1530 | #Error with Jacobian |
|
1911 | #Error with Jacobian | |
1531 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) |
|
1912 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) | |
1532 | except: |
|
1913 | except: | |
1533 | minp = p0*numpy.nan |
|
1914 | minp = p0*numpy.nan | |
1534 | error0 = numpy.nan |
|
1915 | error0 = numpy.nan | |
1535 | error1 = p0*numpy.nan |
|
1916 | error1 = p0*numpy.nan | |
1536 |
|
1917 | |||
1537 | #Save |
|
1918 | #Save | |
1538 | if self.dataOut.data_param is None: |
|
1919 | if self.dataOut.data_param is None: | |
1539 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan |
|
1920 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |
1540 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan |
|
1921 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |
1541 |
|
1922 | |||
1542 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) |
|
1923 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |
1543 | self.dataOut.data_param[i,:,h] = minp |
|
1924 | self.dataOut.data_param[i,:,h] = minp | |
1544 | return |
|
1925 | return | |
1545 |
|
1926 | |||
1546 | def __residFunction(self, p, dp, LT, constants): |
|
1927 | def __residFunction(self, p, dp, LT, constants): | |
1547 |
|
1928 | |||
1548 | fm = self.dataOut.library.modelFunction(p, constants) |
|
1929 | fm = self.dataOut.library.modelFunction(p, constants) | |
1549 | fmp=numpy.dot(LT,fm) |
|
1930 | fmp=numpy.dot(LT,fm) | |
1550 |
|
1931 | |||
1551 | return dp-fmp |
|
1932 | return dp-fmp | |
1552 |
|
1933 | |||
1553 | def __getSNR(self, z, noise): |
|
1934 | def __getSNR(self, z, noise): | |
1554 |
|
1935 | |||
1555 | avg = numpy.average(z, axis=1) |
|
1936 | avg = numpy.average(z, axis=1) | |
1556 | SNR = (avg.T-noise)/noise |
|
1937 | SNR = (avg.T-noise)/noise | |
1557 | SNR = SNR.T |
|
1938 | SNR = SNR.T | |
1558 | return SNR |
|
1939 | return SNR | |
1559 |
|
1940 | |||
1560 | def __chisq(p,chindex,hindex): |
|
1941 | def __chisq(p,chindex,hindex): | |
1561 | #similar to Resid but calculates CHI**2 |
|
1942 | #similar to Resid but calculates CHI**2 | |
1562 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) |
|
1943 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |
1563 | dp=numpy.dot(LT,d) |
|
1944 | dp=numpy.dot(LT,d) | |
1564 | fmp=numpy.dot(LT,fm) |
|
1945 | fmp=numpy.dot(LT,fm) | |
1565 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) |
|
1946 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |
1566 | return chisq |
|
1947 | return chisq | |
1567 |
|
1948 | |||
1568 | class WindProfiler(Operation): |
|
1949 | class WindProfiler(Operation): | |
1569 |
|
1950 | |||
1570 | __isConfig = False |
|
1951 | __isConfig = False | |
1571 |
|
1952 | |||
1572 | __initime = None |
|
1953 | __initime = None | |
1573 | __lastdatatime = None |
|
1954 | __lastdatatime = None | |
1574 | __integrationtime = None |
|
1955 | __integrationtime = None | |
1575 |
|
1956 | |||
1576 | __buffer = None |
|
1957 | __buffer = None | |
1577 |
|
1958 | |||
1578 | __dataReady = False |
|
1959 | __dataReady = False | |
1579 |
|
1960 | |||
1580 | __firstdata = None |
|
1961 | __firstdata = None | |
1581 |
|
1962 | |||
1582 | n = None |
|
1963 | n = None | |
1583 |
|
1964 | |||
1584 | def __init__(self): |
|
1965 | def __init__(self): | |
1585 | Operation.__init__(self) |
|
1966 | Operation.__init__(self) | |
1586 |
|
1967 | |||
1587 | def __calculateCosDir(self, elev, azim): |
|
1968 | def __calculateCosDir(self, elev, azim): | |
1588 | zen = (90 - elev)*numpy.pi/180 |
|
1969 | zen = (90 - elev)*numpy.pi/180 | |
1589 | azim = azim*numpy.pi/180 |
|
1970 | azim = azim*numpy.pi/180 | |
1590 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) |
|
1971 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |
1591 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) |
|
1972 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |
1592 |
|
1973 | |||
1593 | signX = numpy.sign(numpy.cos(azim)) |
|
1974 | signX = numpy.sign(numpy.cos(azim)) | |
1594 | signY = numpy.sign(numpy.sin(azim)) |
|
1975 | signY = numpy.sign(numpy.sin(azim)) | |
1595 |
|
1976 | |||
1596 | cosDirX = numpy.copysign(cosDirX, signX) |
|
1977 | cosDirX = numpy.copysign(cosDirX, signX) | |
1597 | cosDirY = numpy.copysign(cosDirY, signY) |
|
1978 | cosDirY = numpy.copysign(cosDirY, signY) | |
1598 | return cosDirX, cosDirY |
|
1979 | return cosDirX, cosDirY | |
1599 |
|
1980 | |||
1600 | def __calculateAngles(self, theta_x, theta_y, azimuth): |
|
1981 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |
1601 |
|
1982 | |||
1602 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) |
|
1983 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |
1603 | zenith_arr = numpy.arccos(dir_cosw) |
|
1984 | zenith_arr = numpy.arccos(dir_cosw) | |
1604 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 |
|
1985 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |
1605 |
|
1986 | |||
1606 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) |
|
1987 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |
1607 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) |
|
1988 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |
1608 |
|
1989 | |||
1609 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw |
|
1990 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |
1610 |
|
1991 | |||
1611 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): |
|
1992 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |
1612 |
|
1993 | |||
1613 | # |
|
1994 | # | |
1614 | if horOnly: |
|
1995 | if horOnly: | |
1615 | A = numpy.c_[dir_cosu,dir_cosv] |
|
1996 | A = numpy.c_[dir_cosu,dir_cosv] | |
1616 | else: |
|
1997 | else: | |
1617 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] |
|
1998 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] | |
1618 | A = numpy.asmatrix(A) |
|
1999 | A = numpy.asmatrix(A) | |
1619 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() |
|
2000 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() | |
1620 |
|
2001 | |||
1621 | return A1 |
|
2002 | return A1 | |
1622 |
|
2003 | |||
1623 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
2004 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
1624 | listPhi = phi.tolist() |
|
2005 | listPhi = phi.tolist() | |
1625 | maxid = listPhi.index(max(listPhi)) |
|
2006 | maxid = listPhi.index(max(listPhi)) | |
1626 | minid = listPhi.index(min(listPhi)) |
|
2007 | minid = listPhi.index(min(listPhi)) | |
1627 |
|
2008 | |||
1628 | rango = list(range(len(phi))) |
|
2009 | rango = list(range(len(phi))) | |
1629 | # rango = numpy.delete(rango,maxid) |
|
2010 | # rango = numpy.delete(rango,maxid) | |
1630 |
|
2011 | |||
1631 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
2012 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
1632 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
2013 | heiRangAux = heiRang*math.cos(phi[minid]) | |
1633 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
2014 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
1634 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
2015 | heiRang1 = numpy.delete(heiRang1,indOut) | |
1635 |
|
2016 | |||
1636 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2017 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1637 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2018 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1638 |
|
2019 | |||
1639 | for i in rango: |
|
2020 | for i in rango: | |
1640 | x = heiRang*math.cos(phi[i]) |
|
2021 | x = heiRang*math.cos(phi[i]) | |
1641 | y1 = velRadial[i,:] |
|
2022 | y1 = velRadial[i,:] | |
1642 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
2023 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
1643 |
|
2024 | |||
1644 | x1 = heiRang1 |
|
2025 | x1 = heiRang1 | |
1645 | y11 = f1(x1) |
|
2026 | y11 = f1(x1) | |
1646 |
|
2027 | |||
1647 | y2 = SNR[i,:] |
|
2028 | y2 = SNR[i,:] | |
1648 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
2029 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
1649 | y21 = f2(x1) |
|
2030 | y21 = f2(x1) | |
1650 |
|
2031 | |||
1651 | velRadial1[i,:] = y11 |
|
2032 | velRadial1[i,:] = y11 | |
1652 | SNR1[i,:] = y21 |
|
2033 | SNR1[i,:] = y21 | |
1653 |
|
2034 | |||
1654 | return heiRang1, velRadial1, SNR1 |
|
2035 | return heiRang1, velRadial1, SNR1 | |
1655 |
|
2036 | |||
1656 | def __calculateVelUVW(self, A, velRadial): |
|
2037 | def __calculateVelUVW(self, A, velRadial): | |
1657 |
|
2038 | |||
1658 | #Operacion Matricial |
|
2039 | #Operacion Matricial | |
1659 | # velUVW = numpy.zeros((velRadial.shape[1],3)) |
|
2040 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |
1660 | # for ind in range(velRadial.shape[1]): |
|
2041 | # for ind in range(velRadial.shape[1]): | |
1661 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) |
|
2042 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) | |
1662 | # velUVW = velUVW.transpose() |
|
2043 | # velUVW = velUVW.transpose() | |
1663 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) |
|
2044 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |
1664 | velUVW[:,:] = numpy.dot(A,velRadial) |
|
2045 | velUVW[:,:] = numpy.dot(A,velRadial) | |
1665 |
|
2046 | |||
1666 |
|
2047 | |||
1667 | return velUVW |
|
2048 | return velUVW | |
1668 |
|
2049 | |||
1669 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): |
|
2050 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |
1670 |
|
2051 | |||
1671 | def techniqueDBS(self, kwargs): |
|
2052 | def techniqueDBS(self, kwargs): | |
1672 | """ |
|
2053 | """ | |
1673 | Function that implements Doppler Beam Swinging (DBS) technique. |
|
2054 | Function that implements Doppler Beam Swinging (DBS) technique. | |
1674 |
|
2055 | |||
1675 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
2056 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1676 | Direction correction (if necessary), Ranges and SNR |
|
2057 | Direction correction (if necessary), Ranges and SNR | |
1677 |
|
2058 | |||
1678 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
2059 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1679 |
|
2060 | |||
1680 | Parameters affected: Winds, height range, SNR |
|
2061 | Parameters affected: Winds, height range, SNR | |
1681 | """ |
|
2062 | """ | |
1682 | velRadial0 = kwargs['velRadial'] |
|
2063 | velRadial0 = kwargs['velRadial'] | |
1683 | heiRang = kwargs['heightList'] |
|
2064 | heiRang = kwargs['heightList'] | |
1684 | SNR0 = kwargs['SNR'] |
|
2065 | SNR0 = kwargs['SNR'] | |
1685 |
|
2066 | |||
1686 | if 'dirCosx' in kwargs and 'dirCosy' in kwargs: |
|
2067 | if 'dirCosx' in kwargs and 'dirCosy' in kwargs: | |
1687 | theta_x = numpy.array(kwargs['dirCosx']) |
|
2068 | theta_x = numpy.array(kwargs['dirCosx']) | |
1688 | theta_y = numpy.array(kwargs['dirCosy']) |
|
2069 | theta_y = numpy.array(kwargs['dirCosy']) | |
1689 | else: |
|
2070 | else: | |
1690 | elev = numpy.array(kwargs['elevation']) |
|
2071 | elev = numpy.array(kwargs['elevation']) | |
1691 | azim = numpy.array(kwargs['azimuth']) |
|
2072 | azim = numpy.array(kwargs['azimuth']) | |
1692 | theta_x, theta_y = self.__calculateCosDir(elev, azim) |
|
2073 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |
1693 | azimuth = kwargs['correctAzimuth'] |
|
2074 | azimuth = kwargs['correctAzimuth'] | |
1694 | if 'horizontalOnly' in kwargs: |
|
2075 | if 'horizontalOnly' in kwargs: | |
1695 | horizontalOnly = kwargs['horizontalOnly'] |
|
2076 | horizontalOnly = kwargs['horizontalOnly'] | |
1696 | else: horizontalOnly = False |
|
2077 | else: horizontalOnly = False | |
1697 | if 'correctFactor' in kwargs: |
|
2078 | if 'correctFactor' in kwargs: | |
1698 | correctFactor = kwargs['correctFactor'] |
|
2079 | correctFactor = kwargs['correctFactor'] | |
1699 | else: correctFactor = 1 |
|
2080 | else: correctFactor = 1 | |
1700 | if 'channelList' in kwargs: |
|
2081 | if 'channelList' in kwargs: | |
1701 | channelList = kwargs['channelList'] |
|
2082 | channelList = kwargs['channelList'] | |
1702 | if len(channelList) == 2: |
|
2083 | if len(channelList) == 2: | |
1703 | horizontalOnly = True |
|
2084 | horizontalOnly = True | |
1704 | arrayChannel = numpy.array(channelList) |
|
2085 | arrayChannel = numpy.array(channelList) | |
1705 | param = param[arrayChannel,:,:] |
|
2086 | param = param[arrayChannel,:,:] | |
1706 | theta_x = theta_x[arrayChannel] |
|
2087 | theta_x = theta_x[arrayChannel] | |
1707 | theta_y = theta_y[arrayChannel] |
|
2088 | theta_y = theta_y[arrayChannel] | |
1708 |
|
2089 | |||
1709 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
2090 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
1710 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) |
|
2091 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) | |
1711 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) |
|
2092 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |
1712 |
|
2093 | |||
1713 | #Calculo de Componentes de la velocidad con DBS |
|
2094 | #Calculo de Componentes de la velocidad con DBS | |
1714 | winds = self.__calculateVelUVW(A,velRadial1) |
|
2095 | winds = self.__calculateVelUVW(A,velRadial1) | |
1715 |
|
2096 | |||
1716 | return winds, heiRang1, SNR1 |
|
2097 | return winds, heiRang1, SNR1 | |
1717 |
|
2098 | |||
1718 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): |
|
2099 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): | |
1719 |
|
2100 | |||
1720 | nPairs = len(pairs_ccf) |
|
2101 | nPairs = len(pairs_ccf) | |
1721 | posx = numpy.asarray(posx) |
|
2102 | posx = numpy.asarray(posx) | |
1722 | posy = numpy.asarray(posy) |
|
2103 | posy = numpy.asarray(posy) | |
1723 |
|
2104 | |||
1724 | #Rotacion Inversa para alinear con el azimuth |
|
2105 | #Rotacion Inversa para alinear con el azimuth | |
1725 | if azimuth!= None: |
|
2106 | if azimuth!= None: | |
1726 | azimuth = azimuth*math.pi/180 |
|
2107 | azimuth = azimuth*math.pi/180 | |
1727 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) |
|
2108 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) | |
1728 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) |
|
2109 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) | |
1729 | else: |
|
2110 | else: | |
1730 | posx1 = posx |
|
2111 | posx1 = posx | |
1731 | posy1 = posy |
|
2112 | posy1 = posy | |
1732 |
|
2113 | |||
1733 | #Calculo de Distancias |
|
2114 | #Calculo de Distancias | |
1734 | distx = numpy.zeros(nPairs) |
|
2115 | distx = numpy.zeros(nPairs) | |
1735 | disty = numpy.zeros(nPairs) |
|
2116 | disty = numpy.zeros(nPairs) | |
1736 | dist = numpy.zeros(nPairs) |
|
2117 | dist = numpy.zeros(nPairs) | |
1737 | ang = numpy.zeros(nPairs) |
|
2118 | ang = numpy.zeros(nPairs) | |
1738 |
|
2119 | |||
1739 | for i in range(nPairs): |
|
2120 | for i in range(nPairs): | |
1740 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] |
|
2121 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] | |
1741 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] |
|
2122 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] | |
1742 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) |
|
2123 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |
1743 | ang[i] = numpy.arctan2(disty[i],distx[i]) |
|
2124 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |
1744 |
|
2125 | |||
1745 | return distx, disty, dist, ang |
|
2126 | return distx, disty, dist, ang | |
1746 | #Calculo de Matrices |
|
2127 | #Calculo de Matrices | |
1747 | # nPairs = len(pairs) |
|
2128 | # nPairs = len(pairs) | |
1748 | # ang1 = numpy.zeros((nPairs, 2, 1)) |
|
2129 | # ang1 = numpy.zeros((nPairs, 2, 1)) | |
1749 | # dist1 = numpy.zeros((nPairs, 2, 1)) |
|
2130 | # dist1 = numpy.zeros((nPairs, 2, 1)) | |
1750 | # |
|
2131 | # | |
1751 | # for j in range(nPairs): |
|
2132 | # for j in range(nPairs): | |
1752 | # dist1[j,0,0] = dist[pairs[j][0]] |
|
2133 | # dist1[j,0,0] = dist[pairs[j][0]] | |
1753 | # dist1[j,1,0] = dist[pairs[j][1]] |
|
2134 | # dist1[j,1,0] = dist[pairs[j][1]] | |
1754 | # ang1[j,0,0] = ang[pairs[j][0]] |
|
2135 | # ang1[j,0,0] = ang[pairs[j][0]] | |
1755 | # ang1[j,1,0] = ang[pairs[j][1]] |
|
2136 | # ang1[j,1,0] = ang[pairs[j][1]] | |
1756 | # |
|
2137 | # | |
1757 | # return distx,disty, dist1,ang1 |
|
2138 | # return distx,disty, dist1,ang1 | |
1758 |
|
2139 | |||
1759 |
|
2140 | |||
1760 | def __calculateVelVer(self, phase, lagTRange, _lambda): |
|
2141 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |
1761 |
|
2142 | |||
1762 | Ts = lagTRange[1] - lagTRange[0] |
|
2143 | Ts = lagTRange[1] - lagTRange[0] | |
1763 | velW = -_lambda*phase/(4*math.pi*Ts) |
|
2144 | velW = -_lambda*phase/(4*math.pi*Ts) | |
1764 |
|
2145 | |||
1765 | return velW |
|
2146 | return velW | |
1766 |
|
2147 | |||
1767 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): |
|
2148 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |
1768 | nPairs = tau1.shape[0] |
|
2149 | nPairs = tau1.shape[0] | |
1769 | nHeights = tau1.shape[1] |
|
2150 | nHeights = tau1.shape[1] | |
1770 | vel = numpy.zeros((nPairs,3,nHeights)) |
|
2151 | vel = numpy.zeros((nPairs,3,nHeights)) | |
1771 | dist1 = numpy.reshape(dist, (dist.size,1)) |
|
2152 | dist1 = numpy.reshape(dist, (dist.size,1)) | |
1772 |
|
2153 | |||
1773 | angCos = numpy.cos(ang) |
|
2154 | angCos = numpy.cos(ang) | |
1774 | angSin = numpy.sin(ang) |
|
2155 | angSin = numpy.sin(ang) | |
1775 |
|
2156 | |||
1776 | vel0 = dist1*tau1/(2*tau2**2) |
|
2157 | vel0 = dist1*tau1/(2*tau2**2) | |
1777 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) |
|
2158 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |
1778 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) |
|
2159 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |
1779 |
|
2160 | |||
1780 | ind = numpy.where(numpy.isinf(vel)) |
|
2161 | ind = numpy.where(numpy.isinf(vel)) | |
1781 | vel[ind] = numpy.nan |
|
2162 | vel[ind] = numpy.nan | |
1782 |
|
2163 | |||
1783 | return vel |
|
2164 | return vel | |
1784 |
|
2165 | |||
1785 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
2166 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
1786 | # |
|
2167 | # | |
1787 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
2168 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1788 | # |
|
2169 | # | |
1789 | # for l in range(len(pairsList)): |
|
2170 | # for l in range(len(pairsList)): | |
1790 | # firstChannel = pairsList[l][0] |
|
2171 | # firstChannel = pairsList[l][0] | |
1791 | # secondChannel = pairsList[l][1] |
|
2172 | # secondChannel = pairsList[l][1] | |
1792 | # |
|
2173 | # | |
1793 | # #Obteniendo pares de Autocorrelacion |
|
2174 | # #Obteniendo pares de Autocorrelacion | |
1794 | # if firstChannel == secondChannel: |
|
2175 | # if firstChannel == secondChannel: | |
1795 | # pairsAutoCorr[firstChannel] = int(l) |
|
2176 | # pairsAutoCorr[firstChannel] = int(l) | |
1796 | # |
|
2177 | # | |
1797 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
2178 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
1798 | # |
|
2179 | # | |
1799 | # pairsCrossCorr = range(len(pairsList)) |
|
2180 | # pairsCrossCorr = range(len(pairsList)) | |
1800 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
2181 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1801 | # |
|
2182 | # | |
1802 | # return pairsAutoCorr, pairsCrossCorr |
|
2183 | # return pairsAutoCorr, pairsCrossCorr | |
1803 |
|
2184 | |||
1804 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): |
|
2185 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |
1805 | def techniqueSA(self, kwargs): |
|
2186 | def techniqueSA(self, kwargs): | |
1806 |
|
2187 | |||
1807 | """ |
|
2188 | """ | |
1808 | Function that implements Spaced Antenna (SA) technique. |
|
2189 | Function that implements Spaced Antenna (SA) technique. | |
1809 |
|
2190 | |||
1810 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
2191 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1811 | Direction correction (if necessary), Ranges and SNR |
|
2192 | Direction correction (if necessary), Ranges and SNR | |
1812 |
|
2193 | |||
1813 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
2194 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1814 |
|
2195 | |||
1815 | Parameters affected: Winds |
|
2196 | Parameters affected: Winds | |
1816 | """ |
|
2197 | """ | |
1817 | position_x = kwargs['positionX'] |
|
2198 | position_x = kwargs['positionX'] | |
1818 | position_y = kwargs['positionY'] |
|
2199 | position_y = kwargs['positionY'] | |
1819 | azimuth = kwargs['azimuth'] |
|
2200 | azimuth = kwargs['azimuth'] | |
1820 |
|
2201 | |||
1821 | if 'correctFactor' in kwargs: |
|
2202 | if 'correctFactor' in kwargs: | |
1822 | correctFactor = kwargs['correctFactor'] |
|
2203 | correctFactor = kwargs['correctFactor'] | |
1823 | else: |
|
2204 | else: | |
1824 | correctFactor = 1 |
|
2205 | correctFactor = 1 | |
1825 |
|
2206 | |||
1826 | groupList = kwargs['groupList'] |
|
2207 | groupList = kwargs['groupList'] | |
1827 | pairs_ccf = groupList[1] |
|
2208 | pairs_ccf = groupList[1] | |
1828 | tau = kwargs['tau'] |
|
2209 | tau = kwargs['tau'] | |
1829 | _lambda = kwargs['_lambda'] |
|
2210 | _lambda = kwargs['_lambda'] | |
1830 |
|
2211 | |||
1831 | #Cross Correlation pairs obtained |
|
2212 | #Cross Correlation pairs obtained | |
1832 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) |
|
2213 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) | |
1833 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] |
|
2214 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |
1834 | # pairsSelArray = numpy.array(pairsSelected) |
|
2215 | # pairsSelArray = numpy.array(pairsSelected) | |
1835 | # pairs = [] |
|
2216 | # pairs = [] | |
1836 | # |
|
2217 | # | |
1837 | # #Wind estimation pairs obtained |
|
2218 | # #Wind estimation pairs obtained | |
1838 | # for i in range(pairsSelArray.shape[0]/2): |
|
2219 | # for i in range(pairsSelArray.shape[0]/2): | |
1839 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] |
|
2220 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |
1840 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] |
|
2221 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |
1841 | # pairs.append((ind1,ind2)) |
|
2222 | # pairs.append((ind1,ind2)) | |
1842 |
|
2223 | |||
1843 | indtau = tau.shape[0]/2 |
|
2224 | indtau = tau.shape[0]/2 | |
1844 | tau1 = tau[:indtau,:] |
|
2225 | tau1 = tau[:indtau,:] | |
1845 | tau2 = tau[indtau:-1,:] |
|
2226 | tau2 = tau[indtau:-1,:] | |
1846 | # tau1 = tau1[pairs,:] |
|
2227 | # tau1 = tau1[pairs,:] | |
1847 | # tau2 = tau2[pairs,:] |
|
2228 | # tau2 = tau2[pairs,:] | |
1848 | phase1 = tau[-1,:] |
|
2229 | phase1 = tau[-1,:] | |
1849 |
|
2230 | |||
1850 | #--------------------------------------------------------------------- |
|
2231 | #--------------------------------------------------------------------- | |
1851 | #Metodo Directo |
|
2232 | #Metodo Directo | |
1852 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) |
|
2233 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) | |
1853 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) |
|
2234 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |
1854 | winds = stats.nanmean(winds, axis=0) |
|
2235 | winds = stats.nanmean(winds, axis=0) | |
1855 | #--------------------------------------------------------------------- |
|
2236 | #--------------------------------------------------------------------- | |
1856 | #Metodo General |
|
2237 | #Metodo General | |
1857 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) |
|
2238 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) | |
1858 | # #Calculo Coeficientes de Funcion de Correlacion |
|
2239 | # #Calculo Coeficientes de Funcion de Correlacion | |
1859 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) |
|
2240 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) | |
1860 | # #Calculo de Velocidades |
|
2241 | # #Calculo de Velocidades | |
1861 | # winds = self.calculateVelUV(F,G,A,B,H) |
|
2242 | # winds = self.calculateVelUV(F,G,A,B,H) | |
1862 |
|
2243 | |||
1863 | #--------------------------------------------------------------------- |
|
2244 | #--------------------------------------------------------------------- | |
1864 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) |
|
2245 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |
1865 | winds = correctFactor*winds |
|
2246 | winds = correctFactor*winds | |
1866 | return winds |
|
2247 | return winds | |
1867 |
|
2248 | |||
1868 | def __checkTime(self, currentTime, paramInterval, outputInterval): |
|
2249 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |
1869 |
|
2250 | |||
1870 | dataTime = currentTime + paramInterval |
|
2251 | dataTime = currentTime + paramInterval | |
1871 | deltaTime = dataTime - self.__initime |
|
2252 | deltaTime = dataTime - self.__initime | |
1872 |
|
2253 | |||
1873 | if deltaTime >= outputInterval or deltaTime < 0: |
|
2254 | if deltaTime >= outputInterval or deltaTime < 0: | |
1874 | self.__dataReady = True |
|
2255 | self.__dataReady = True | |
1875 | return |
|
2256 | return | |
1876 |
|
2257 | |||
1877 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): |
|
2258 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |
1878 | ''' |
|
2259 | ''' | |
1879 | Function that implements winds estimation technique with detected meteors. |
|
2260 | Function that implements winds estimation technique with detected meteors. | |
1880 |
|
2261 | |||
1881 | Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
2262 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |
1882 |
|
2263 | |||
1883 | Output: Winds estimation (Zonal and Meridional) |
|
2264 | Output: Winds estimation (Zonal and Meridional) | |
1884 |
|
2265 | |||
1885 | Parameters affected: Winds |
|
2266 | Parameters affected: Winds | |
1886 | ''' |
|
2267 | ''' | |
1887 | #Settings |
|
2268 | #Settings | |
1888 | nInt = (heightMax - heightMin)/2 |
|
2269 | nInt = (heightMax - heightMin)/2 | |
1889 | nInt = int(nInt) |
|
2270 | nInt = int(nInt) | |
1890 | winds = numpy.zeros((2,nInt))*numpy.nan |
|
2271 | winds = numpy.zeros((2,nInt))*numpy.nan | |
1891 |
|
2272 | |||
1892 | #Filter errors |
|
2273 | #Filter errors | |
1893 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] |
|
2274 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] | |
1894 | finalMeteor = arrayMeteor[error,:] |
|
2275 | finalMeteor = arrayMeteor[error,:] | |
1895 |
|
2276 | |||
1896 | #Meteor Histogram |
|
2277 | #Meteor Histogram | |
1897 | finalHeights = finalMeteor[:,2] |
|
2278 | finalHeights = finalMeteor[:,2] | |
1898 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) |
|
2279 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |
1899 | nMeteorsPerI = hist[0] |
|
2280 | nMeteorsPerI = hist[0] | |
1900 | heightPerI = hist[1] |
|
2281 | heightPerI = hist[1] | |
1901 |
|
2282 | |||
1902 | #Sort of meteors |
|
2283 | #Sort of meteors | |
1903 | indSort = finalHeights.argsort() |
|
2284 | indSort = finalHeights.argsort() | |
1904 | finalMeteor2 = finalMeteor[indSort,:] |
|
2285 | finalMeteor2 = finalMeteor[indSort,:] | |
1905 |
|
2286 | |||
1906 | # Calculating winds |
|
2287 | # Calculating winds | |
1907 | ind1 = 0 |
|
2288 | ind1 = 0 | |
1908 | ind2 = 0 |
|
2289 | ind2 = 0 | |
1909 |
|
2290 | |||
1910 | for i in range(nInt): |
|
2291 | for i in range(nInt): | |
1911 | nMet = nMeteorsPerI[i] |
|
2292 | nMet = nMeteorsPerI[i] | |
1912 | ind1 = ind2 |
|
2293 | ind1 = ind2 | |
1913 | ind2 = ind1 + nMet |
|
2294 | ind2 = ind1 + nMet | |
1914 |
|
2295 | |||
1915 | meteorAux = finalMeteor2[ind1:ind2,:] |
|
2296 | meteorAux = finalMeteor2[ind1:ind2,:] | |
1916 |
|
2297 | |||
1917 | if meteorAux.shape[0] >= meteorThresh: |
|
2298 | if meteorAux.shape[0] >= meteorThresh: | |
1918 | vel = meteorAux[:, 6] |
|
2299 | vel = meteorAux[:, 6] | |
1919 | zen = meteorAux[:, 4]*numpy.pi/180 |
|
2300 | zen = meteorAux[:, 4]*numpy.pi/180 | |
1920 | azim = meteorAux[:, 3]*numpy.pi/180 |
|
2301 | azim = meteorAux[:, 3]*numpy.pi/180 | |
1921 |
|
2302 | |||
1922 | n = numpy.cos(zen) |
|
2303 | n = numpy.cos(zen) | |
1923 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) |
|
2304 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |
1924 | # l = m*numpy.tan(azim) |
|
2305 | # l = m*numpy.tan(azim) | |
1925 | l = numpy.sin(zen)*numpy.sin(azim) |
|
2306 | l = numpy.sin(zen)*numpy.sin(azim) | |
1926 | m = numpy.sin(zen)*numpy.cos(azim) |
|
2307 | m = numpy.sin(zen)*numpy.cos(azim) | |
1927 |
|
2308 | |||
1928 | A = numpy.vstack((l, m)).transpose() |
|
2309 | A = numpy.vstack((l, m)).transpose() | |
1929 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) |
|
2310 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |
1930 | windsAux = numpy.dot(A1, vel) |
|
2311 | windsAux = numpy.dot(A1, vel) | |
1931 |
|
2312 | |||
1932 | winds[0,i] = windsAux[0] |
|
2313 | winds[0,i] = windsAux[0] | |
1933 | winds[1,i] = windsAux[1] |
|
2314 | winds[1,i] = windsAux[1] | |
1934 |
|
2315 | |||
1935 | return winds, heightPerI[:-1] |
|
2316 | return winds, heightPerI[:-1] | |
1936 |
|
2317 | |||
1937 | def techniqueNSM_SA(self, **kwargs): |
|
2318 | def techniqueNSM_SA(self, **kwargs): | |
1938 | metArray = kwargs['metArray'] |
|
2319 | metArray = kwargs['metArray'] | |
1939 | heightList = kwargs['heightList'] |
|
2320 | heightList = kwargs['heightList'] | |
1940 | timeList = kwargs['timeList'] |
|
2321 | timeList = kwargs['timeList'] | |
1941 |
|
2322 | |||
1942 | rx_location = kwargs['rx_location'] |
|
2323 | rx_location = kwargs['rx_location'] | |
1943 | groupList = kwargs['groupList'] |
|
2324 | groupList = kwargs['groupList'] | |
1944 | azimuth = kwargs['azimuth'] |
|
2325 | azimuth = kwargs['azimuth'] | |
1945 | dfactor = kwargs['dfactor'] |
|
2326 | dfactor = kwargs['dfactor'] | |
1946 | k = kwargs['k'] |
|
2327 | k = kwargs['k'] | |
1947 |
|
2328 | |||
1948 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) |
|
2329 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) | |
1949 | d = dist*dfactor |
|
2330 | d = dist*dfactor | |
1950 | #Phase calculation |
|
2331 | #Phase calculation | |
1951 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) |
|
2332 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) | |
1952 |
|
2333 | |||
1953 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities |
|
2334 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities | |
1954 |
|
2335 | |||
1955 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
2336 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
1956 | azimuth1 = azimuth1*numpy.pi/180 |
|
2337 | azimuth1 = azimuth1*numpy.pi/180 | |
1957 |
|
2338 | |||
1958 | for i in range(heightList.size): |
|
2339 | for i in range(heightList.size): | |
1959 | h = heightList[i] |
|
2340 | h = heightList[i] | |
1960 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] |
|
2341 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] | |
1961 | metHeight = metArray1[indH,:] |
|
2342 | metHeight = metArray1[indH,:] | |
1962 | if metHeight.shape[0] >= 2: |
|
2343 | if metHeight.shape[0] >= 2: | |
1963 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities |
|
2344 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities | |
1964 | iazim = metHeight[:,1].astype(int) |
|
2345 | iazim = metHeight[:,1].astype(int) | |
1965 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths |
|
2346 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths | |
1966 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) |
|
2347 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) | |
1967 | A = numpy.asmatrix(A) |
|
2348 | A = numpy.asmatrix(A) | |
1968 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() |
|
2349 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() | |
1969 | velHor = numpy.dot(A1,velAux) |
|
2350 | velHor = numpy.dot(A1,velAux) | |
1970 |
|
2351 | |||
1971 | velEst[i,:] = numpy.squeeze(velHor) |
|
2352 | velEst[i,:] = numpy.squeeze(velHor) | |
1972 | return velEst |
|
2353 | return velEst | |
1973 |
|
2354 | |||
1974 | def __getPhaseSlope(self, metArray, heightList, timeList): |
|
2355 | def __getPhaseSlope(self, metArray, heightList, timeList): | |
1975 | meteorList = [] |
|
2356 | meteorList = [] | |
1976 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 |
|
2357 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 | |
1977 | #Putting back together the meteor matrix |
|
2358 | #Putting back together the meteor matrix | |
1978 | utctime = metArray[:,0] |
|
2359 | utctime = metArray[:,0] | |
1979 | uniqueTime = numpy.unique(utctime) |
|
2360 | uniqueTime = numpy.unique(utctime) | |
1980 |
|
2361 | |||
1981 | phaseDerThresh = 0.5 |
|
2362 | phaseDerThresh = 0.5 | |
1982 | ippSeconds = timeList[1] - timeList[0] |
|
2363 | ippSeconds = timeList[1] - timeList[0] | |
1983 | sec = numpy.where(timeList>1)[0][0] |
|
2364 | sec = numpy.where(timeList>1)[0][0] | |
1984 | nPairs = metArray.shape[1] - 6 |
|
2365 | nPairs = metArray.shape[1] - 6 | |
1985 | nHeights = len(heightList) |
|
2366 | nHeights = len(heightList) | |
1986 |
|
2367 | |||
1987 | for t in uniqueTime: |
|
2368 | for t in uniqueTime: | |
1988 | metArray1 = metArray[utctime==t,:] |
|
2369 | metArray1 = metArray[utctime==t,:] | |
1989 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh |
|
2370 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh | |
1990 | tmet = metArray1[:,1].astype(int) |
|
2371 | tmet = metArray1[:,1].astype(int) | |
1991 | hmet = metArray1[:,2].astype(int) |
|
2372 | hmet = metArray1[:,2].astype(int) | |
1992 |
|
2373 | |||
1993 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) |
|
2374 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) | |
1994 | metPhase[:,:] = numpy.nan |
|
2375 | metPhase[:,:] = numpy.nan | |
1995 | metPhase[:,hmet,tmet] = metArray1[:,6:].T |
|
2376 | metPhase[:,hmet,tmet] = metArray1[:,6:].T | |
1996 |
|
2377 | |||
1997 | #Delete short trails |
|
2378 | #Delete short trails | |
1998 | metBool = ~numpy.isnan(metPhase[0,:,:]) |
|
2379 | metBool = ~numpy.isnan(metPhase[0,:,:]) | |
1999 | heightVect = numpy.sum(metBool, axis = 1) |
|
2380 | heightVect = numpy.sum(metBool, axis = 1) | |
2000 | metBool[heightVect<sec,:] = False |
|
2381 | metBool[heightVect<sec,:] = False | |
2001 | metPhase[:,heightVect<sec,:] = numpy.nan |
|
2382 | metPhase[:,heightVect<sec,:] = numpy.nan | |
2002 |
|
2383 | |||
2003 | #Derivative |
|
2384 | #Derivative | |
2004 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) |
|
2385 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) | |
2005 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) |
|
2386 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) | |
2006 | metPhase[phDerAux] = numpy.nan |
|
2387 | metPhase[phDerAux] = numpy.nan | |
2007 |
|
2388 | |||
2008 | #--------------------------METEOR DETECTION ----------------------------------------- |
|
2389 | #--------------------------METEOR DETECTION ----------------------------------------- | |
2009 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] |
|
2390 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] | |
2010 |
|
2391 | |||
2011 | for p in numpy.arange(nPairs): |
|
2392 | for p in numpy.arange(nPairs): | |
2012 | phase = metPhase[p,:,:] |
|
2393 | phase = metPhase[p,:,:] | |
2013 | phDer = metDer[p,:,:] |
|
2394 | phDer = metDer[p,:,:] | |
2014 |
|
2395 | |||
2015 | for h in indMet: |
|
2396 | for h in indMet: | |
2016 | height = heightList[h] |
|
2397 | height = heightList[h] | |
2017 | phase1 = phase[h,:] #82 |
|
2398 | phase1 = phase[h,:] #82 | |
2018 | phDer1 = phDer[h,:] |
|
2399 | phDer1 = phDer[h,:] | |
2019 |
|
2400 | |||
2020 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap |
|
2401 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap | |
2021 |
|
2402 | |||
2022 | indValid = numpy.where(~numpy.isnan(phase1))[0] |
|
2403 | indValid = numpy.where(~numpy.isnan(phase1))[0] | |
2023 | initMet = indValid[0] |
|
2404 | initMet = indValid[0] | |
2024 | endMet = 0 |
|
2405 | endMet = 0 | |
2025 |
|
2406 | |||
2026 | for i in range(len(indValid)-1): |
|
2407 | for i in range(len(indValid)-1): | |
2027 |
|
2408 | |||
2028 | #Time difference |
|
2409 | #Time difference | |
2029 | inow = indValid[i] |
|
2410 | inow = indValid[i] | |
2030 | inext = indValid[i+1] |
|
2411 | inext = indValid[i+1] | |
2031 | idiff = inext - inow |
|
2412 | idiff = inext - inow | |
2032 | #Phase difference |
|
2413 | #Phase difference | |
2033 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) |
|
2414 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) | |
2034 |
|
2415 | |||
2035 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor |
|
2416 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor | |
2036 | sizeTrail = inow - initMet + 1 |
|
2417 | sizeTrail = inow - initMet + 1 | |
2037 | if sizeTrail>3*sec: #Too short meteors |
|
2418 | if sizeTrail>3*sec: #Too short meteors | |
2038 | x = numpy.arange(initMet,inow+1)*ippSeconds |
|
2419 | x = numpy.arange(initMet,inow+1)*ippSeconds | |
2039 | y = phase1[initMet:inow+1] |
|
2420 | y = phase1[initMet:inow+1] | |
2040 | ynnan = ~numpy.isnan(y) |
|
2421 | ynnan = ~numpy.isnan(y) | |
2041 | x = x[ynnan] |
|
2422 | x = x[ynnan] | |
2042 | y = y[ynnan] |
|
2423 | y = y[ynnan] | |
2043 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) |
|
2424 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) | |
2044 | ylin = x*slope + intercept |
|
2425 | ylin = x*slope + intercept | |
2045 | rsq = r_value**2 |
|
2426 | rsq = r_value**2 | |
2046 | if rsq > 0.5: |
|
2427 | if rsq > 0.5: | |
2047 | vel = slope#*height*1000/(k*d) |
|
2428 | vel = slope#*height*1000/(k*d) | |
2048 | estAux = numpy.array([utctime,p,height, vel, rsq]) |
|
2429 | estAux = numpy.array([utctime,p,height, vel, rsq]) | |
2049 | meteorList.append(estAux) |
|
2430 | meteorList.append(estAux) | |
2050 | initMet = inext |
|
2431 | initMet = inext | |
2051 | metArray2 = numpy.array(meteorList) |
|
2432 | metArray2 = numpy.array(meteorList) | |
2052 |
|
2433 | |||
2053 | return metArray2 |
|
2434 | return metArray2 | |
2054 |
|
2435 | |||
2055 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): |
|
2436 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): | |
2056 |
|
2437 | |||
2057 | azimuth1 = numpy.zeros(len(pairslist)) |
|
2438 | azimuth1 = numpy.zeros(len(pairslist)) | |
2058 | dist = numpy.zeros(len(pairslist)) |
|
2439 | dist = numpy.zeros(len(pairslist)) | |
2059 |
|
2440 | |||
2060 | for i in range(len(rx_location)): |
|
2441 | for i in range(len(rx_location)): | |
2061 | ch0 = pairslist[i][0] |
|
2442 | ch0 = pairslist[i][0] | |
2062 | ch1 = pairslist[i][1] |
|
2443 | ch1 = pairslist[i][1] | |
2063 |
|
2444 | |||
2064 | diffX = rx_location[ch0][0] - rx_location[ch1][0] |
|
2445 | diffX = rx_location[ch0][0] - rx_location[ch1][0] | |
2065 | diffY = rx_location[ch0][1] - rx_location[ch1][1] |
|
2446 | diffY = rx_location[ch0][1] - rx_location[ch1][1] | |
2066 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi |
|
2447 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi | |
2067 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) |
|
2448 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) | |
2068 |
|
2449 | |||
2069 | azimuth1 -= azimuth0 |
|
2450 | azimuth1 -= azimuth0 | |
2070 | return azimuth1, dist |
|
2451 | return azimuth1, dist | |
2071 |
|
2452 | |||
2072 | def techniqueNSM_DBS(self, **kwargs): |
|
2453 | def techniqueNSM_DBS(self, **kwargs): | |
2073 | metArray = kwargs['metArray'] |
|
2454 | metArray = kwargs['metArray'] | |
2074 | heightList = kwargs['heightList'] |
|
2455 | heightList = kwargs['heightList'] | |
2075 | timeList = kwargs['timeList'] |
|
2456 | timeList = kwargs['timeList'] | |
2076 | azimuth = kwargs['azimuth'] |
|
2457 | azimuth = kwargs['azimuth'] | |
2077 | theta_x = numpy.array(kwargs['theta_x']) |
|
2458 | theta_x = numpy.array(kwargs['theta_x']) | |
2078 | theta_y = numpy.array(kwargs['theta_y']) |
|
2459 | theta_y = numpy.array(kwargs['theta_y']) | |
2079 |
|
2460 | |||
2080 | utctime = metArray[:,0] |
|
2461 | utctime = metArray[:,0] | |
2081 | cmet = metArray[:,1].astype(int) |
|
2462 | cmet = metArray[:,1].astype(int) | |
2082 | hmet = metArray[:,3].astype(int) |
|
2463 | hmet = metArray[:,3].astype(int) | |
2083 | SNRmet = metArray[:,4] |
|
2464 | SNRmet = metArray[:,4] | |
2084 | vmet = metArray[:,5] |
|
2465 | vmet = metArray[:,5] | |
2085 | spcmet = metArray[:,6] |
|
2466 | spcmet = metArray[:,6] | |
2086 |
|
2467 | |||
2087 | nChan = numpy.max(cmet) + 1 |
|
2468 | nChan = numpy.max(cmet) + 1 | |
2088 | nHeights = len(heightList) |
|
2469 | nHeights = len(heightList) | |
2089 |
|
2470 | |||
2090 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
2471 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
2091 | hmet = heightList[hmet] |
|
2472 | hmet = heightList[hmet] | |
2092 | h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights |
|
2473 | h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights | |
2093 |
|
2474 | |||
2094 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
2475 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
2095 |
|
2476 | |||
2096 | for i in range(nHeights - 1): |
|
2477 | for i in range(nHeights - 1): | |
2097 | hmin = heightList[i] |
|
2478 | hmin = heightList[i] | |
2098 | hmax = heightList[i + 1] |
|
2479 | hmax = heightList[i + 1] | |
2099 |
|
2480 | |||
2100 | thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) |
|
2481 | thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) | |
2101 | indthisH = numpy.where(thisH) |
|
2482 | indthisH = numpy.where(thisH) | |
2102 |
|
2483 | |||
2103 | if numpy.size(indthisH) > 3: |
|
2484 | if numpy.size(indthisH) > 3: | |
2104 |
|
2485 | |||
2105 | vel_aux = vmet[thisH] |
|
2486 | vel_aux = vmet[thisH] | |
2106 | chan_aux = cmet[thisH] |
|
2487 | chan_aux = cmet[thisH] | |
2107 | cosu_aux = dir_cosu[chan_aux] |
|
2488 | cosu_aux = dir_cosu[chan_aux] | |
2108 | cosv_aux = dir_cosv[chan_aux] |
|
2489 | cosv_aux = dir_cosv[chan_aux] | |
2109 | cosw_aux = dir_cosw[chan_aux] |
|
2490 | cosw_aux = dir_cosw[chan_aux] | |
2110 |
|
2491 | |||
2111 | nch = numpy.size(numpy.unique(chan_aux)) |
|
2492 | nch = numpy.size(numpy.unique(chan_aux)) | |
2112 | if nch > 1: |
|
2493 | if nch > 1: | |
2113 | A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) |
|
2494 | A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) | |
2114 | velEst[i,:] = numpy.dot(A,vel_aux) |
|
2495 | velEst[i,:] = numpy.dot(A,vel_aux) | |
2115 |
|
2496 | |||
2116 | return velEst |
|
2497 | return velEst | |
2117 |
|
2498 | |||
2118 | def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): |
|
2499 | def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): | |
2119 |
|
2500 | |||
2120 | param = dataOut.data_param |
|
2501 | param = dataOut.data_param | |
2121 | if dataOut.abscissaList != None: |
|
2502 | if dataOut.abscissaList != None: | |
2122 | absc = dataOut.abscissaList[:-1] |
|
2503 | absc = dataOut.abscissaList[:-1] | |
2123 | # noise = dataOut.noise |
|
2504 | # noise = dataOut.noise | |
2124 | heightList = dataOut.heightList |
|
2505 | heightList = dataOut.heightList | |
2125 | SNR = dataOut.data_SNR |
|
2506 | SNR = dataOut.data_SNR | |
2126 |
|
2507 | |||
2127 | if technique == 'DBS': |
|
2508 | if technique == 'DBS': | |
2128 |
|
2509 | |||
2129 | kwargs['velRadial'] = param[:,1,:] #Radial velocity |
|
2510 | kwargs['velRadial'] = param[:,1,:] #Radial velocity | |
2130 | kwargs['heightList'] = heightList |
|
2511 | kwargs['heightList'] = heightList | |
2131 | kwargs['SNR'] = SNR |
|
2512 | kwargs['SNR'] = SNR | |
2132 |
|
2513 | |||
2133 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function |
|
2514 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function | |
2134 | dataOut.utctimeInit = dataOut.utctime |
|
2515 | dataOut.utctimeInit = dataOut.utctime | |
2135 | dataOut.outputInterval = dataOut.paramInterval |
|
2516 | dataOut.outputInterval = dataOut.paramInterval | |
2136 |
|
2517 | |||
2137 | elif technique == 'SA': |
|
2518 | elif technique == 'SA': | |
2138 |
|
2519 | |||
2139 | #Parameters |
|
2520 | #Parameters | |
2140 | # position_x = kwargs['positionX'] |
|
2521 | # position_x = kwargs['positionX'] | |
2141 | # position_y = kwargs['positionY'] |
|
2522 | # position_y = kwargs['positionY'] | |
2142 | # azimuth = kwargs['azimuth'] |
|
2523 | # azimuth = kwargs['azimuth'] | |
2143 | # |
|
2524 | # | |
2144 | # if kwargs.has_key('crosspairsList'): |
|
2525 | # if kwargs.has_key('crosspairsList'): | |
2145 | # pairs = kwargs['crosspairsList'] |
|
2526 | # pairs = kwargs['crosspairsList'] | |
2146 | # else: |
|
2527 | # else: | |
2147 | # pairs = None |
|
2528 | # pairs = None | |
2148 | # |
|
2529 | # | |
2149 | # if kwargs.has_key('correctFactor'): |
|
2530 | # if kwargs.has_key('correctFactor'): | |
2150 | # correctFactor = kwargs['correctFactor'] |
|
2531 | # correctFactor = kwargs['correctFactor'] | |
2151 | # else: |
|
2532 | # else: | |
2152 | # correctFactor = 1 |
|
2533 | # correctFactor = 1 | |
2153 |
|
2534 | |||
2154 | # tau = dataOut.data_param |
|
2535 | # tau = dataOut.data_param | |
2155 | # _lambda = dataOut.C/dataOut.frequency |
|
2536 | # _lambda = dataOut.C/dataOut.frequency | |
2156 | # pairsList = dataOut.groupList |
|
2537 | # pairsList = dataOut.groupList | |
2157 | # nChannels = dataOut.nChannels |
|
2538 | # nChannels = dataOut.nChannels | |
2158 |
|
2539 | |||
2159 | kwargs['groupList'] = dataOut.groupList |
|
2540 | kwargs['groupList'] = dataOut.groupList | |
2160 | kwargs['tau'] = dataOut.data_param |
|
2541 | kwargs['tau'] = dataOut.data_param | |
2161 | kwargs['_lambda'] = dataOut.C/dataOut.frequency |
|
2542 | kwargs['_lambda'] = dataOut.C/dataOut.frequency | |
2162 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) |
|
2543 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) | |
2163 | dataOut.data_output = self.techniqueSA(kwargs) |
|
2544 | dataOut.data_output = self.techniqueSA(kwargs) | |
2164 | dataOut.utctimeInit = dataOut.utctime |
|
2545 | dataOut.utctimeInit = dataOut.utctime | |
2165 | dataOut.outputInterval = dataOut.timeInterval |
|
2546 | dataOut.outputInterval = dataOut.timeInterval | |
2166 |
|
2547 | |||
2167 | elif technique == 'Meteors': |
|
2548 | elif technique == 'Meteors': | |
2168 | dataOut.flagNoData = True |
|
2549 | dataOut.flagNoData = True | |
2169 | self.__dataReady = False |
|
2550 | self.__dataReady = False | |
2170 |
|
2551 | |||
2171 | if 'nHours' in kwargs: |
|
2552 | if 'nHours' in kwargs: | |
2172 | nHours = kwargs['nHours'] |
|
2553 | nHours = kwargs['nHours'] | |
2173 | else: |
|
2554 | else: | |
2174 | nHours = 1 |
|
2555 | nHours = 1 | |
2175 |
|
2556 | |||
2176 | if 'meteorsPerBin' in kwargs: |
|
2557 | if 'meteorsPerBin' in kwargs: | |
2177 | meteorThresh = kwargs['meteorsPerBin'] |
|
2558 | meteorThresh = kwargs['meteorsPerBin'] | |
2178 | else: |
|
2559 | else: | |
2179 | meteorThresh = 6 |
|
2560 | meteorThresh = 6 | |
2180 |
|
2561 | |||
2181 | if 'hmin' in kwargs: |
|
2562 | if 'hmin' in kwargs: | |
2182 | hmin = kwargs['hmin'] |
|
2563 | hmin = kwargs['hmin'] | |
2183 | else: hmin = 70 |
|
2564 | else: hmin = 70 | |
2184 | if 'hmax' in kwargs: |
|
2565 | if 'hmax' in kwargs: | |
2185 | hmax = kwargs['hmax'] |
|
2566 | hmax = kwargs['hmax'] | |
2186 | else: hmax = 110 |
|
2567 | else: hmax = 110 | |
2187 |
|
2568 | |||
2188 | dataOut.outputInterval = nHours*3600 |
|
2569 | dataOut.outputInterval = nHours*3600 | |
2189 |
|
2570 | |||
2190 | if self.__isConfig == False: |
|
2571 | if self.__isConfig == False: | |
2191 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2572 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2192 | #Get Initial LTC time |
|
2573 | #Get Initial LTC time | |
2193 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2574 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2194 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2575 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2195 |
|
2576 | |||
2196 | self.__isConfig = True |
|
2577 | self.__isConfig = True | |
2197 |
|
2578 | |||
2198 | if self.__buffer is None: |
|
2579 | if self.__buffer is None: | |
2199 | self.__buffer = dataOut.data_param |
|
2580 | self.__buffer = dataOut.data_param | |
2200 | self.__firstdata = copy.copy(dataOut) |
|
2581 | self.__firstdata = copy.copy(dataOut) | |
2201 |
|
2582 | |||
2202 | else: |
|
2583 | else: | |
2203 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2584 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2204 |
|
2585 | |||
2205 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2586 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2206 |
|
2587 | |||
2207 | if self.__dataReady: |
|
2588 | if self.__dataReady: | |
2208 | dataOut.utctimeInit = self.__initime |
|
2589 | dataOut.utctimeInit = self.__initime | |
2209 |
|
2590 | |||
2210 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2591 | self.__initime += dataOut.outputInterval #to erase time offset | |
2211 |
|
2592 | |||
2212 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) |
|
2593 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |
2213 | dataOut.flagNoData = False |
|
2594 | dataOut.flagNoData = False | |
2214 | self.__buffer = None |
|
2595 | self.__buffer = None | |
2215 |
|
2596 | |||
2216 | elif technique == 'Meteors1': |
|
2597 | elif technique == 'Meteors1': | |
2217 | dataOut.flagNoData = True |
|
2598 | dataOut.flagNoData = True | |
2218 | self.__dataReady = False |
|
2599 | self.__dataReady = False | |
2219 |
|
2600 | |||
2220 | if 'nMins' in kwargs: |
|
2601 | if 'nMins' in kwargs: | |
2221 | nMins = kwargs['nMins'] |
|
2602 | nMins = kwargs['nMins'] | |
2222 | else: nMins = 20 |
|
2603 | else: nMins = 20 | |
2223 | if 'rx_location' in kwargs: |
|
2604 | if 'rx_location' in kwargs: | |
2224 | rx_location = kwargs['rx_location'] |
|
2605 | rx_location = kwargs['rx_location'] | |
2225 | else: rx_location = [(0,1),(1,1),(1,0)] |
|
2606 | else: rx_location = [(0,1),(1,1),(1,0)] | |
2226 | if 'azimuth' in kwargs: |
|
2607 | if 'azimuth' in kwargs: | |
2227 | azimuth = kwargs['azimuth'] |
|
2608 | azimuth = kwargs['azimuth'] | |
2228 | else: azimuth = 51.06 |
|
2609 | else: azimuth = 51.06 | |
2229 | if 'dfactor' in kwargs: |
|
2610 | if 'dfactor' in kwargs: | |
2230 | dfactor = kwargs['dfactor'] |
|
2611 | dfactor = kwargs['dfactor'] | |
2231 | if 'mode' in kwargs: |
|
2612 | if 'mode' in kwargs: | |
2232 | mode = kwargs['mode'] |
|
2613 | mode = kwargs['mode'] | |
2233 | if 'theta_x' in kwargs: |
|
2614 | if 'theta_x' in kwargs: | |
2234 | theta_x = kwargs['theta_x'] |
|
2615 | theta_x = kwargs['theta_x'] | |
2235 | if 'theta_y' in kwargs: |
|
2616 | if 'theta_y' in kwargs: | |
2236 | theta_y = kwargs['theta_y'] |
|
2617 | theta_y = kwargs['theta_y'] | |
2237 | else: mode = 'SA' |
|
2618 | else: mode = 'SA' | |
2238 |
|
2619 | |||
2239 | #Borrar luego esto |
|
2620 | #Borrar luego esto | |
2240 | if dataOut.groupList is None: |
|
2621 | if dataOut.groupList is None: | |
2241 | dataOut.groupList = [(0,1),(0,2),(1,2)] |
|
2622 | dataOut.groupList = [(0,1),(0,2),(1,2)] | |
2242 | groupList = dataOut.groupList |
|
2623 | groupList = dataOut.groupList | |
2243 | C = 3e8 |
|
2624 | C = 3e8 | |
2244 | freq = 50e6 |
|
2625 | freq = 50e6 | |
2245 | lamb = C/freq |
|
2626 | lamb = C/freq | |
2246 | k = 2*numpy.pi/lamb |
|
2627 | k = 2*numpy.pi/lamb | |
2247 |
|
2628 | |||
2248 | timeList = dataOut.abscissaList |
|
2629 | timeList = dataOut.abscissaList | |
2249 | heightList = dataOut.heightList |
|
2630 | heightList = dataOut.heightList | |
2250 |
|
2631 | |||
2251 | if self.__isConfig == False: |
|
2632 | if self.__isConfig == False: | |
2252 | dataOut.outputInterval = nMins*60 |
|
2633 | dataOut.outputInterval = nMins*60 | |
2253 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2634 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2254 | #Get Initial LTC time |
|
2635 | #Get Initial LTC time | |
2255 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2636 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2256 | minuteAux = initime.minute |
|
2637 | minuteAux = initime.minute | |
2257 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) |
|
2638 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) | |
2258 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2639 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2259 |
|
2640 | |||
2260 | self.__isConfig = True |
|
2641 | self.__isConfig = True | |
2261 |
|
2642 | |||
2262 | if self.__buffer is None: |
|
2643 | if self.__buffer is None: | |
2263 | self.__buffer = dataOut.data_param |
|
2644 | self.__buffer = dataOut.data_param | |
2264 | self.__firstdata = copy.copy(dataOut) |
|
2645 | self.__firstdata = copy.copy(dataOut) | |
2265 |
|
2646 | |||
2266 | else: |
|
2647 | else: | |
2267 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2648 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2268 |
|
2649 | |||
2269 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2650 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2270 |
|
2651 | |||
2271 | if self.__dataReady: |
|
2652 | if self.__dataReady: | |
2272 | dataOut.utctimeInit = self.__initime |
|
2653 | dataOut.utctimeInit = self.__initime | |
2273 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2654 | self.__initime += dataOut.outputInterval #to erase time offset | |
2274 |
|
2655 | |||
2275 | metArray = self.__buffer |
|
2656 | metArray = self.__buffer | |
2276 | if mode == 'SA': |
|
2657 | if mode == 'SA': | |
2277 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) |
|
2658 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) | |
2278 | elif mode == 'DBS': |
|
2659 | elif mode == 'DBS': | |
2279 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y) |
|
2660 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y) | |
2280 | dataOut.data_output = dataOut.data_output.T |
|
2661 | dataOut.data_output = dataOut.data_output.T | |
2281 | dataOut.flagNoData = False |
|
2662 | dataOut.flagNoData = False | |
2282 | self.__buffer = None |
|
2663 | self.__buffer = None | |
2283 |
|
2664 | |||
2284 | return |
|
2665 | return | |
2285 |
|
2666 | |||
2286 | class EWDriftsEstimation(Operation): |
|
2667 | class EWDriftsEstimation(Operation): | |
2287 |
|
2668 | |||
2288 | def __init__(self): |
|
2669 | def __init__(self): | |
2289 | Operation.__init__(self) |
|
2670 | Operation.__init__(self) | |
2290 |
|
2671 | |||
2291 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
2672 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
2292 | listPhi = phi.tolist() |
|
2673 | listPhi = phi.tolist() | |
2293 | maxid = listPhi.index(max(listPhi)) |
|
2674 | maxid = listPhi.index(max(listPhi)) | |
2294 | minid = listPhi.index(min(listPhi)) |
|
2675 | minid = listPhi.index(min(listPhi)) | |
2295 |
|
2676 | |||
2296 | rango = list(range(len(phi))) |
|
2677 | rango = list(range(len(phi))) | |
2297 | # rango = numpy.delete(rango,maxid) |
|
2678 | # rango = numpy.delete(rango,maxid) | |
2298 |
|
2679 | |||
2299 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
2680 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
2300 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
2681 | heiRangAux = heiRang*math.cos(phi[minid]) | |
2301 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
2682 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
2302 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
2683 | heiRang1 = numpy.delete(heiRang1,indOut) | |
2303 |
|
2684 | |||
2304 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2685 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2305 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2686 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2306 |
|
2687 | |||
2307 | for i in rango: |
|
2688 | for i in rango: | |
2308 | x = heiRang*math.cos(phi[i]) |
|
2689 | x = heiRang*math.cos(phi[i]) | |
2309 | y1 = velRadial[i,:] |
|
2690 | y1 = velRadial[i,:] | |
2310 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
2691 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
2311 |
|
2692 | |||
2312 | x1 = heiRang1 |
|
2693 | x1 = heiRang1 | |
2313 | y11 = f1(x1) |
|
2694 | y11 = f1(x1) | |
2314 |
|
2695 | |||
2315 | y2 = SNR[i,:] |
|
2696 | y2 = SNR[i,:] | |
2316 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
2697 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
2317 | y21 = f2(x1) |
|
2698 | y21 = f2(x1) | |
2318 |
|
2699 | |||
2319 | velRadial1[i,:] = y11 |
|
2700 | velRadial1[i,:] = y11 | |
2320 | SNR1[i,:] = y21 |
|
2701 | SNR1[i,:] = y21 | |
2321 |
|
2702 | |||
2322 | return heiRang1, velRadial1, SNR1 |
|
2703 | return heiRang1, velRadial1, SNR1 | |
2323 |
|
2704 | |||
2324 | def run(self, dataOut, zenith, zenithCorrection): |
|
2705 | def run(self, dataOut, zenith, zenithCorrection): | |
2325 | heiRang = dataOut.heightList |
|
2706 | heiRang = dataOut.heightList | |
2326 | velRadial = dataOut.data_param[:,3,:] |
|
2707 | velRadial = dataOut.data_param[:,3,:] | |
2327 | SNR = dataOut.data_SNR |
|
2708 | SNR = dataOut.data_SNR | |
2328 |
|
2709 | |||
2329 | zenith = numpy.array(zenith) |
|
2710 | zenith = numpy.array(zenith) | |
2330 | zenith -= zenithCorrection |
|
2711 | zenith -= zenithCorrection | |
2331 | zenith *= numpy.pi/180 |
|
2712 | zenith *= numpy.pi/180 | |
2332 |
|
2713 | |||
2333 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) |
|
2714 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |
2334 |
|
2715 | |||
2335 | alp = zenith[0] |
|
2716 | alp = zenith[0] | |
2336 | bet = zenith[1] |
|
2717 | bet = zenith[1] | |
2337 |
|
2718 | |||
2338 | w_w = velRadial1[0,:] |
|
2719 | w_w = velRadial1[0,:] | |
2339 | w_e = velRadial1[1,:] |
|
2720 | w_e = velRadial1[1,:] | |
2340 |
|
2721 | |||
2341 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) |
|
2722 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |
2342 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) |
|
2723 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |
2343 |
|
2724 | |||
2344 | winds = numpy.vstack((u,w)) |
|
2725 | winds = numpy.vstack((u,w)) | |
2345 |
|
2726 | |||
2346 | dataOut.heightList = heiRang1 |
|
2727 | dataOut.heightList = heiRang1 | |
2347 | dataOut.data_output = winds |
|
2728 | dataOut.data_output = winds | |
2348 | dataOut.data_SNR = SNR1 |
|
2729 | dataOut.data_SNR = SNR1 | |
2349 |
|
2730 | |||
2350 | dataOut.utctimeInit = dataOut.utctime |
|
2731 | dataOut.utctimeInit = dataOut.utctime | |
2351 | dataOut.outputInterval = dataOut.timeInterval |
|
2732 | dataOut.outputInterval = dataOut.timeInterval | |
2352 | return |
|
2733 | return | |
2353 |
|
2734 | |||
2354 | #--------------- Non Specular Meteor ---------------- |
|
2735 | #--------------- Non Specular Meteor ---------------- | |
2355 |
|
2736 | |||
2356 | class NonSpecularMeteorDetection(Operation): |
|
2737 | class NonSpecularMeteorDetection(Operation): | |
2357 |
|
2738 | |||
2358 | def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): |
|
2739 | def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): | |
2359 | data_acf = dataOut.data_pre[0] |
|
2740 | data_acf = dataOut.data_pre[0] | |
2360 | data_ccf = dataOut.data_pre[1] |
|
2741 | data_ccf = dataOut.data_pre[1] | |
2361 | pairsList = dataOut.groupList[1] |
|
2742 | pairsList = dataOut.groupList[1] | |
2362 |
|
2743 | |||
2363 | lamb = dataOut.C/dataOut.frequency |
|
2744 | lamb = dataOut.C/dataOut.frequency | |
2364 | tSamp = dataOut.ippSeconds*dataOut.nCohInt |
|
2745 | tSamp = dataOut.ippSeconds*dataOut.nCohInt | |
2365 | paramInterval = dataOut.paramInterval |
|
2746 | paramInterval = dataOut.paramInterval | |
2366 |
|
2747 | |||
2367 | nChannels = data_acf.shape[0] |
|
2748 | nChannels = data_acf.shape[0] | |
2368 | nLags = data_acf.shape[1] |
|
2749 | nLags = data_acf.shape[1] | |
2369 | nProfiles = data_acf.shape[2] |
|
2750 | nProfiles = data_acf.shape[2] | |
2370 | nHeights = dataOut.nHeights |
|
2751 | nHeights = dataOut.nHeights | |
2371 | nCohInt = dataOut.nCohInt |
|
2752 | nCohInt = dataOut.nCohInt | |
2372 | sec = numpy.round(nProfiles/dataOut.paramInterval) |
|
2753 | sec = numpy.round(nProfiles/dataOut.paramInterval) | |
2373 | heightList = dataOut.heightList |
|
2754 | heightList = dataOut.heightList | |
2374 | ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg |
|
2755 | ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg | |
2375 | utctime = dataOut.utctime |
|
2756 | utctime = dataOut.utctime | |
2376 |
|
2757 | |||
2377 | dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) |
|
2758 | dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) | |
2378 |
|
2759 | |||
2379 | #------------------------ SNR -------------------------------------- |
|
2760 | #------------------------ SNR -------------------------------------- | |
2380 | power = data_acf[:,0,:,:].real |
|
2761 | power = data_acf[:,0,:,:].real | |
2381 | noise = numpy.zeros(nChannels) |
|
2762 | noise = numpy.zeros(nChannels) | |
2382 | SNR = numpy.zeros(power.shape) |
|
2763 | SNR = numpy.zeros(power.shape) | |
2383 | for i in range(nChannels): |
|
2764 | for i in range(nChannels): | |
2384 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) |
|
2765 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) | |
2385 | SNR[i] = (power[i]-noise[i])/noise[i] |
|
2766 | SNR[i] = (power[i]-noise[i])/noise[i] | |
2386 | SNRm = numpy.nanmean(SNR, axis = 0) |
|
2767 | SNRm = numpy.nanmean(SNR, axis = 0) | |
2387 | SNRdB = 10*numpy.log10(SNR) |
|
2768 | SNRdB = 10*numpy.log10(SNR) | |
2388 |
|
2769 | |||
2389 | if mode == 'SA': |
|
2770 | if mode == 'SA': | |
2390 | dataOut.groupList = dataOut.groupList[1] |
|
2771 | dataOut.groupList = dataOut.groupList[1] | |
2391 | nPairs = data_ccf.shape[0] |
|
2772 | nPairs = data_ccf.shape[0] | |
2392 | #---------------------- Coherence and Phase -------------------------- |
|
2773 | #---------------------- Coherence and Phase -------------------------- | |
2393 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2774 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) | |
2394 | # phase1 = numpy.copy(phase) |
|
2775 | # phase1 = numpy.copy(phase) | |
2395 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2776 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) | |
2396 |
|
2777 | |||
2397 | for p in range(nPairs): |
|
2778 | for p in range(nPairs): | |
2398 | ch0 = pairsList[p][0] |
|
2779 | ch0 = pairsList[p][0] | |
2399 | ch1 = pairsList[p][1] |
|
2780 | ch1 = pairsList[p][1] | |
2400 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) |
|
2781 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) | |
2401 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter |
|
2782 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter | |
2402 | # phase1[p,:,:] = numpy.angle(ccf) #median filter |
|
2783 | # phase1[p,:,:] = numpy.angle(ccf) #median filter | |
2403 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter |
|
2784 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter | |
2404 | # coh1[p,:,:] = numpy.abs(ccf) #median filter |
|
2785 | # coh1[p,:,:] = numpy.abs(ccf) #median filter | |
2405 | coh = numpy.nanmax(coh1, axis = 0) |
|
2786 | coh = numpy.nanmax(coh1, axis = 0) | |
2406 | # struc = numpy.ones((5,1)) |
|
2787 | # struc = numpy.ones((5,1)) | |
2407 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) |
|
2788 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) | |
2408 | #---------------------- Radial Velocity ---------------------------- |
|
2789 | #---------------------- Radial Velocity ---------------------------- | |
2409 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) |
|
2790 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) | |
2410 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) |
|
2791 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) | |
2411 |
|
2792 | |||
2412 | if allData: |
|
2793 | if allData: | |
2413 | boolMetFin = ~numpy.isnan(SNRm) |
|
2794 | boolMetFin = ~numpy.isnan(SNRm) | |
2414 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2795 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
2415 | else: |
|
2796 | else: | |
2416 | #------------------------ Meteor mask --------------------------------- |
|
2797 | #------------------------ Meteor mask --------------------------------- | |
2417 | # #SNR mask |
|
2798 | # #SNR mask | |
2418 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) |
|
2799 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) | |
2419 | # |
|
2800 | # | |
2420 | # #Erase small objects |
|
2801 | # #Erase small objects | |
2421 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) |
|
2802 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) | |
2422 | # |
|
2803 | # | |
2423 | # auxEEJ = numpy.sum(boolMet1,axis=0) |
|
2804 | # auxEEJ = numpy.sum(boolMet1,axis=0) | |
2424 | # indOver = auxEEJ>nProfiles*0.8 #Use this later |
|
2805 | # indOver = auxEEJ>nProfiles*0.8 #Use this later | |
2425 | # indEEJ = numpy.where(indOver)[0] |
|
2806 | # indEEJ = numpy.where(indOver)[0] | |
2426 | # indNEEJ = numpy.where(~indOver)[0] |
|
2807 | # indNEEJ = numpy.where(~indOver)[0] | |
2427 | # |
|
2808 | # | |
2428 | # boolMetFin = boolMet1 |
|
2809 | # boolMetFin = boolMet1 | |
2429 | # |
|
2810 | # | |
2430 | # if indEEJ.size > 0: |
|
2811 | # if indEEJ.size > 0: | |
2431 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ |
|
2812 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ | |
2432 | # |
|
2813 | # | |
2433 | # boolMet2 = coh > cohThresh |
|
2814 | # boolMet2 = coh > cohThresh | |
2434 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) |
|
2815 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) | |
2435 | # |
|
2816 | # | |
2436 | # #Final Meteor mask |
|
2817 | # #Final Meteor mask | |
2437 | # boolMetFin = boolMet1|boolMet2 |
|
2818 | # boolMetFin = boolMet1|boolMet2 | |
2438 |
|
2819 | |||
2439 | #Coherence mask |
|
2820 | #Coherence mask | |
2440 | boolMet1 = coh > 0.75 |
|
2821 | boolMet1 = coh > 0.75 | |
2441 | struc = numpy.ones((30,1)) |
|
2822 | struc = numpy.ones((30,1)) | |
2442 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) |
|
2823 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) | |
2443 |
|
2824 | |||
2444 | #Derivative mask |
|
2825 | #Derivative mask | |
2445 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2826 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
2446 | boolMet2 = derPhase < 0.2 |
|
2827 | boolMet2 = derPhase < 0.2 | |
2447 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) |
|
2828 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) | |
2448 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) |
|
2829 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) | |
2449 | boolMet2 = ndimage.median_filter(boolMet2,size=5) |
|
2830 | boolMet2 = ndimage.median_filter(boolMet2,size=5) | |
2450 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) |
|
2831 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) | |
2451 | # #Final mask |
|
2832 | # #Final mask | |
2452 | # boolMetFin = boolMet2 |
|
2833 | # boolMetFin = boolMet2 | |
2453 | boolMetFin = boolMet1&boolMet2 |
|
2834 | boolMetFin = boolMet1&boolMet2 | |
2454 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) |
|
2835 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) | |
2455 | #Creating data_param |
|
2836 | #Creating data_param | |
2456 | coordMet = numpy.where(boolMetFin) |
|
2837 | coordMet = numpy.where(boolMetFin) | |
2457 |
|
2838 | |||
2458 | tmet = coordMet[0] |
|
2839 | tmet = coordMet[0] | |
2459 | hmet = coordMet[1] |
|
2840 | hmet = coordMet[1] | |
2460 |
|
2841 | |||
2461 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) |
|
2842 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) | |
2462 | data_param[:,0] = utctime |
|
2843 | data_param[:,0] = utctime | |
2463 | data_param[:,1] = tmet |
|
2844 | data_param[:,1] = tmet | |
2464 | data_param[:,2] = hmet |
|
2845 | data_param[:,2] = hmet | |
2465 | data_param[:,3] = SNRm[tmet,hmet] |
|
2846 | data_param[:,3] = SNRm[tmet,hmet] | |
2466 | data_param[:,4] = velRad[tmet,hmet] |
|
2847 | data_param[:,4] = velRad[tmet,hmet] | |
2467 | data_param[:,5] = coh[tmet,hmet] |
|
2848 | data_param[:,5] = coh[tmet,hmet] | |
2468 | data_param[:,6:] = phase[:,tmet,hmet].T |
|
2849 | data_param[:,6:] = phase[:,tmet,hmet].T | |
2469 |
|
2850 | |||
2470 | elif mode == 'DBS': |
|
2851 | elif mode == 'DBS': | |
2471 | dataOut.groupList = numpy.arange(nChannels) |
|
2852 | dataOut.groupList = numpy.arange(nChannels) | |
2472 |
|
2853 | |||
2473 | #Radial Velocities |
|
2854 | #Radial Velocities | |
2474 | phase = numpy.angle(data_acf[:,1,:,:]) |
|
2855 | phase = numpy.angle(data_acf[:,1,:,:]) | |
2475 | # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2856 | # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) | |
2476 | velRad = phase*lamb/(4*numpy.pi*tSamp) |
|
2857 | velRad = phase*lamb/(4*numpy.pi*tSamp) | |
2477 |
|
2858 | |||
2478 | #Spectral width |
|
2859 | #Spectral width | |
2479 | # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2860 | # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) | |
2480 | # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) |
|
2861 | # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) | |
2481 | acf1 = data_acf[:,1,:,:] |
|
2862 | acf1 = data_acf[:,1,:,:] | |
2482 | acf2 = data_acf[:,2,:,:] |
|
2863 | acf2 = data_acf[:,2,:,:] | |
2483 |
|
2864 | |||
2484 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) |
|
2865 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) | |
2485 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) |
|
2866 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) | |
2486 | if allData: |
|
2867 | if allData: | |
2487 | boolMetFin = ~numpy.isnan(SNRdB) |
|
2868 | boolMetFin = ~numpy.isnan(SNRdB) | |
2488 | else: |
|
2869 | else: | |
2489 | #SNR |
|
2870 | #SNR | |
2490 | boolMet1 = (SNRdB>SNRthresh) #SNR mask |
|
2871 | boolMet1 = (SNRdB>SNRthresh) #SNR mask | |
2491 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) |
|
2872 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) | |
2492 |
|
2873 | |||
2493 | #Radial velocity |
|
2874 | #Radial velocity | |
2494 | boolMet2 = numpy.abs(velRad) < 20 |
|
2875 | boolMet2 = numpy.abs(velRad) < 20 | |
2495 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) |
|
2876 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) | |
2496 |
|
2877 | |||
2497 | #Spectral Width |
|
2878 | #Spectral Width | |
2498 | boolMet3 = spcWidth < 30 |
|
2879 | boolMet3 = spcWidth < 30 | |
2499 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) |
|
2880 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) | |
2500 | # boolMetFin = self.__erase_small(boolMet1, 10,5) |
|
2881 | # boolMetFin = self.__erase_small(boolMet1, 10,5) | |
2501 | boolMetFin = boolMet1&boolMet2&boolMet3 |
|
2882 | boolMetFin = boolMet1&boolMet2&boolMet3 | |
2502 |
|
2883 | |||
2503 | #Creating data_param |
|
2884 | #Creating data_param | |
2504 | coordMet = numpy.where(boolMetFin) |
|
2885 | coordMet = numpy.where(boolMetFin) | |
2505 |
|
2886 | |||
2506 | cmet = coordMet[0] |
|
2887 | cmet = coordMet[0] | |
2507 | tmet = coordMet[1] |
|
2888 | tmet = coordMet[1] | |
2508 | hmet = coordMet[2] |
|
2889 | hmet = coordMet[2] | |
2509 |
|
2890 | |||
2510 | data_param = numpy.zeros((tmet.size, 7)) |
|
2891 | data_param = numpy.zeros((tmet.size, 7)) | |
2511 | data_param[:,0] = utctime |
|
2892 | data_param[:,0] = utctime | |
2512 | data_param[:,1] = cmet |
|
2893 | data_param[:,1] = cmet | |
2513 | data_param[:,2] = tmet |
|
2894 | data_param[:,2] = tmet | |
2514 | data_param[:,3] = hmet |
|
2895 | data_param[:,3] = hmet | |
2515 | data_param[:,4] = SNR[cmet,tmet,hmet].T |
|
2896 | data_param[:,4] = SNR[cmet,tmet,hmet].T | |
2516 | data_param[:,5] = velRad[cmet,tmet,hmet].T |
|
2897 | data_param[:,5] = velRad[cmet,tmet,hmet].T | |
2517 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T |
|
2898 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T | |
2518 |
|
2899 | |||
2519 | # self.dataOut.data_param = data_int |
|
2900 | # self.dataOut.data_param = data_int | |
2520 | if len(data_param) == 0: |
|
2901 | if len(data_param) == 0: | |
2521 | dataOut.flagNoData = True |
|
2902 | dataOut.flagNoData = True | |
2522 | else: |
|
2903 | else: | |
2523 | dataOut.data_param = data_param |
|
2904 | dataOut.data_param = data_param | |
2524 |
|
2905 | |||
2525 | def __erase_small(self, binArray, threshX, threshY): |
|
2906 | def __erase_small(self, binArray, threshX, threshY): | |
2526 | labarray, numfeat = ndimage.measurements.label(binArray) |
|
2907 | labarray, numfeat = ndimage.measurements.label(binArray) | |
2527 | binArray1 = numpy.copy(binArray) |
|
2908 | binArray1 = numpy.copy(binArray) | |
2528 |
|
2909 | |||
2529 | for i in range(1,numfeat + 1): |
|
2910 | for i in range(1,numfeat + 1): | |
2530 | auxBin = (labarray==i) |
|
2911 | auxBin = (labarray==i) | |
2531 | auxSize = auxBin.sum() |
|
2912 | auxSize = auxBin.sum() | |
2532 |
|
2913 | |||
2533 | x,y = numpy.where(auxBin) |
|
2914 | x,y = numpy.where(auxBin) | |
2534 | widthX = x.max() - x.min() |
|
2915 | widthX = x.max() - x.min() | |
2535 | widthY = y.max() - y.min() |
|
2916 | widthY = y.max() - y.min() | |
2536 |
|
2917 | |||
2537 | #width X: 3 seg -> 12.5*3 |
|
2918 | #width X: 3 seg -> 12.5*3 | |
2538 | #width Y: |
|
2919 | #width Y: | |
2539 |
|
2920 | |||
2540 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): |
|
2921 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): | |
2541 | binArray1[auxBin] = False |
|
2922 | binArray1[auxBin] = False | |
2542 |
|
2923 | |||
2543 | return binArray1 |
|
2924 | return binArray1 | |
2544 |
|
2925 | |||
2545 | #--------------- Specular Meteor ---------------- |
|
2926 | #--------------- Specular Meteor ---------------- | |
2546 |
|
2927 | |||
2547 | class SMDetection(Operation): |
|
2928 | class SMDetection(Operation): | |
2548 | ''' |
|
2929 | ''' | |
2549 | Function DetectMeteors() |
|
2930 | Function DetectMeteors() | |
2550 | Project developed with paper: |
|
2931 | Project developed with paper: | |
2551 | HOLDSWORTH ET AL. 2004 |
|
2932 | HOLDSWORTH ET AL. 2004 | |
2552 |
|
2933 | |||
2553 | Input: |
|
2934 | Input: | |
2554 | self.dataOut.data_pre |
|
2935 | self.dataOut.data_pre | |
2555 |
|
2936 | |||
2556 | centerReceiverIndex: From the channels, which is the center receiver |
|
2937 | centerReceiverIndex: From the channels, which is the center receiver | |
2557 |
|
2938 | |||
2558 | hei_ref: Height reference for the Beacon signal extraction |
|
2939 | hei_ref: Height reference for the Beacon signal extraction | |
2559 | tauindex: |
|
2940 | tauindex: | |
2560 | predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
2941 | predefinedPhaseShifts: Predefined phase offset for the voltge signals | |
2561 |
|
2942 | |||
2562 | cohDetection: Whether to user Coherent detection or not |
|
2943 | cohDetection: Whether to user Coherent detection or not | |
2563 | cohDet_timeStep: Coherent Detection calculation time step |
|
2944 | cohDet_timeStep: Coherent Detection calculation time step | |
2564 | cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
2945 | cohDet_thresh: Coherent Detection phase threshold to correct phases | |
2565 |
|
2946 | |||
2566 | noise_timeStep: Noise calculation time step |
|
2947 | noise_timeStep: Noise calculation time step | |
2567 | noise_multiple: Noise multiple to define signal threshold |
|
2948 | noise_multiple: Noise multiple to define signal threshold | |
2568 |
|
2949 | |||
2569 | multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
2950 | multDet_timeLimit: Multiple Detection Removal time limit in seconds | |
2570 | multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
2951 | multDet_rangeLimit: Multiple Detection Removal range limit in km | |
2571 |
|
2952 | |||
2572 | phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
2953 | phaseThresh: Maximum phase difference between receiver to be consider a meteor | |
2573 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
2954 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |
2574 |
|
2955 | |||
2575 | hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
2956 | hmin: Minimum Height of the meteor to use it in the further wind estimations | |
2576 | hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
2957 | hmax: Maximum Height of the meteor to use it in the further wind estimations | |
2577 | azimuth: Azimuth angle correction |
|
2958 | azimuth: Azimuth angle correction | |
2578 |
|
2959 | |||
2579 | Affected: |
|
2960 | Affected: | |
2580 | self.dataOut.data_param |
|
2961 | self.dataOut.data_param | |
2581 |
|
2962 | |||
2582 | Rejection Criteria (Errors): |
|
2963 | Rejection Criteria (Errors): | |
2583 | 0: No error; analysis OK |
|
2964 | 0: No error; analysis OK | |
2584 | 1: SNR < SNR threshold |
|
2965 | 1: SNR < SNR threshold | |
2585 | 2: angle of arrival (AOA) ambiguously determined |
|
2966 | 2: angle of arrival (AOA) ambiguously determined | |
2586 | 3: AOA estimate not feasible |
|
2967 | 3: AOA estimate not feasible | |
2587 | 4: Large difference in AOAs obtained from different antenna baselines |
|
2968 | 4: Large difference in AOAs obtained from different antenna baselines | |
2588 | 5: echo at start or end of time series |
|
2969 | 5: echo at start or end of time series | |
2589 | 6: echo less than 5 examples long; too short for analysis |
|
2970 | 6: echo less than 5 examples long; too short for analysis | |
2590 | 7: echo rise exceeds 0.3s |
|
2971 | 7: echo rise exceeds 0.3s | |
2591 | 8: echo decay time less than twice rise time |
|
2972 | 8: echo decay time less than twice rise time | |
2592 | 9: large power level before echo |
|
2973 | 9: large power level before echo | |
2593 | 10: large power level after echo |
|
2974 | 10: large power level after echo | |
2594 | 11: poor fit to amplitude for estimation of decay time |
|
2975 | 11: poor fit to amplitude for estimation of decay time | |
2595 | 12: poor fit to CCF phase variation for estimation of radial drift velocity |
|
2976 | 12: poor fit to CCF phase variation for estimation of radial drift velocity | |
2596 | 13: height unresolvable echo: not valid height within 70 to 110 km |
|
2977 | 13: height unresolvable echo: not valid height within 70 to 110 km | |
2597 | 14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
2978 | 14: height ambiguous echo: more then one possible height within 70 to 110 km | |
2598 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
2979 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |
2599 | 16: oscilatory echo, indicating event most likely not an underdense echo |
|
2980 | 16: oscilatory echo, indicating event most likely not an underdense echo | |
2600 |
|
2981 | |||
2601 | 17: phase difference in meteor Reestimation |
|
2982 | 17: phase difference in meteor Reestimation | |
2602 |
|
2983 | |||
2603 | Data Storage: |
|
2984 | Data Storage: | |
2604 | Meteors for Wind Estimation (8): |
|
2985 | Meteors for Wind Estimation (8): | |
2605 | Utc Time | Range Height |
|
2986 | Utc Time | Range Height | |
2606 | Azimuth Zenith errorCosDir |
|
2987 | Azimuth Zenith errorCosDir | |
2607 | VelRad errorVelRad |
|
2988 | VelRad errorVelRad | |
2608 | Phase0 Phase1 Phase2 Phase3 |
|
2989 | Phase0 Phase1 Phase2 Phase3 | |
2609 | TypeError |
|
2990 | TypeError | |
2610 |
|
2991 | |||
2611 | ''' |
|
2992 | ''' | |
2612 |
|
2993 | |||
2613 | def run(self, dataOut, hei_ref = None, tauindex = 0, |
|
2994 | def run(self, dataOut, hei_ref = None, tauindex = 0, | |
2614 | phaseOffsets = None, |
|
2995 | phaseOffsets = None, | |
2615 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, |
|
2996 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |
2616 | noise_timeStep = 4, noise_multiple = 4, |
|
2997 | noise_timeStep = 4, noise_multiple = 4, | |
2617 | multDet_timeLimit = 1, multDet_rangeLimit = 3, |
|
2998 | multDet_timeLimit = 1, multDet_rangeLimit = 3, | |
2618 | phaseThresh = 20, SNRThresh = 5, |
|
2999 | phaseThresh = 20, SNRThresh = 5, | |
2619 | hmin = 50, hmax=150, azimuth = 0, |
|
3000 | hmin = 50, hmax=150, azimuth = 0, | |
2620 | channelPositions = None) : |
|
3001 | channelPositions = None) : | |
2621 |
|
3002 | |||
2622 |
|
3003 | |||
2623 | #Getting Pairslist |
|
3004 | #Getting Pairslist | |
2624 | if channelPositions is None: |
|
3005 | if channelPositions is None: | |
2625 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3006 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
2626 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3007 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
2627 | meteorOps = SMOperations() |
|
3008 | meteorOps = SMOperations() | |
2628 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3009 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
2629 | heiRang = dataOut.getHeiRange() |
|
3010 | heiRang = dataOut.getHeiRange() | |
2630 | #Get Beacon signal - No Beacon signal anymore |
|
3011 | #Get Beacon signal - No Beacon signal anymore | |
2631 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
3012 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
2632 | # |
|
3013 | # | |
2633 | # if hei_ref != None: |
|
3014 | # if hei_ref != None: | |
2634 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
3015 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
2635 | # |
|
3016 | # | |
2636 |
|
3017 | |||
2637 |
|
3018 | |||
2638 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** |
|
3019 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |
2639 | # see if the user put in pre defined phase shifts |
|
3020 | # see if the user put in pre defined phase shifts | |
2640 | voltsPShift = dataOut.data_pre.copy() |
|
3021 | voltsPShift = dataOut.data_pre.copy() | |
2641 |
|
3022 | |||
2642 | # if predefinedPhaseShifts != None: |
|
3023 | # if predefinedPhaseShifts != None: | |
2643 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 |
|
3024 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |
2644 | # |
|
3025 | # | |
2645 | # # elif beaconPhaseShifts: |
|
3026 | # # elif beaconPhaseShifts: | |
2646 | # # #get hardware phase shifts using beacon signal |
|
3027 | # # #get hardware phase shifts using beacon signal | |
2647 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) |
|
3028 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |
2648 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) |
|
3029 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |
2649 | # |
|
3030 | # | |
2650 | # else: |
|
3031 | # else: | |
2651 | # hardwarePhaseShifts = numpy.zeros(5) |
|
3032 | # hardwarePhaseShifts = numpy.zeros(5) | |
2652 | # |
|
3033 | # | |
2653 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') |
|
3034 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |
2654 | # for i in range(self.dataOut.data_pre.shape[0]): |
|
3035 | # for i in range(self.dataOut.data_pre.shape[0]): | |
2655 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) |
|
3036 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |
2656 |
|
3037 | |||
2657 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* |
|
3038 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |
2658 |
|
3039 | |||
2659 | #Remove DC |
|
3040 | #Remove DC | |
2660 | voltsDC = numpy.mean(voltsPShift,1) |
|
3041 | voltsDC = numpy.mean(voltsPShift,1) | |
2661 | voltsDC = numpy.mean(voltsDC,1) |
|
3042 | voltsDC = numpy.mean(voltsDC,1) | |
2662 | for i in range(voltsDC.shape[0]): |
|
3043 | for i in range(voltsDC.shape[0]): | |
2663 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] |
|
3044 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |
2664 |
|
3045 | |||
2665 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift |
|
3046 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |
2666 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] |
|
3047 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |
2667 |
|
3048 | |||
2668 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** |
|
3049 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |
2669 | #Coherent Detection |
|
3050 | #Coherent Detection | |
2670 | if cohDetection: |
|
3051 | if cohDetection: | |
2671 | #use coherent detection to get the net power |
|
3052 | #use coherent detection to get the net power | |
2672 | cohDet_thresh = cohDet_thresh*numpy.pi/180 |
|
3053 | cohDet_thresh = cohDet_thresh*numpy.pi/180 | |
2673 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) |
|
3054 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) | |
2674 |
|
3055 | |||
2675 | #Non-coherent detection! |
|
3056 | #Non-coherent detection! | |
2676 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) |
|
3057 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |
2677 | #********** END OF COH/NON-COH POWER CALCULATION********************** |
|
3058 | #********** END OF COH/NON-COH POWER CALCULATION********************** | |
2678 |
|
3059 | |||
2679 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** |
|
3060 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |
2680 | #Get noise |
|
3061 | #Get noise | |
2681 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) |
|
3062 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) | |
2682 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) |
|
3063 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) | |
2683 | #Get signal threshold |
|
3064 | #Get signal threshold | |
2684 | signalThresh = noise_multiple*noise |
|
3065 | signalThresh = noise_multiple*noise | |
2685 | #Meteor echoes detection |
|
3066 | #Meteor echoes detection | |
2686 | listMeteors = self.__findMeteors(powerNet, signalThresh) |
|
3067 | listMeteors = self.__findMeteors(powerNet, signalThresh) | |
2687 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** |
|
3068 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |
2688 |
|
3069 | |||
2689 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** |
|
3070 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |
2690 | #Parameters |
|
3071 | #Parameters | |
2691 | heiRange = dataOut.getHeiRange() |
|
3072 | heiRange = dataOut.getHeiRange() | |
2692 | rangeInterval = heiRange[1] - heiRange[0] |
|
3073 | rangeInterval = heiRange[1] - heiRange[0] | |
2693 | rangeLimit = multDet_rangeLimit/rangeInterval |
|
3074 | rangeLimit = multDet_rangeLimit/rangeInterval | |
2694 | timeLimit = multDet_timeLimit/dataOut.timeInterval |
|
3075 | timeLimit = multDet_timeLimit/dataOut.timeInterval | |
2695 | #Multiple detection removals |
|
3076 | #Multiple detection removals | |
2696 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) |
|
3077 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |
2697 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** |
|
3078 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |
2698 |
|
3079 | |||
2699 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** |
|
3080 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |
2700 | #Parameters |
|
3081 | #Parameters | |
2701 | phaseThresh = phaseThresh*numpy.pi/180 |
|
3082 | phaseThresh = phaseThresh*numpy.pi/180 | |
2702 | thresh = [phaseThresh, noise_multiple, SNRThresh] |
|
3083 | thresh = [phaseThresh, noise_multiple, SNRThresh] | |
2703 | #Meteor reestimation (Errors N 1, 6, 12, 17) |
|
3084 | #Meteor reestimation (Errors N 1, 6, 12, 17) | |
2704 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) |
|
3085 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) | |
2705 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) |
|
3086 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) | |
2706 | #Estimation of decay times (Errors N 7, 8, 11) |
|
3087 | #Estimation of decay times (Errors N 7, 8, 11) | |
2707 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) |
|
3088 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) | |
2708 | #******************* END OF METEOR REESTIMATION ******************* |
|
3089 | #******************* END OF METEOR REESTIMATION ******************* | |
2709 |
|
3090 | |||
2710 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** |
|
3091 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |
2711 | #Calculating Radial Velocity (Error N 15) |
|
3092 | #Calculating Radial Velocity (Error N 15) | |
2712 | radialStdThresh = 10 |
|
3093 | radialStdThresh = 10 | |
2713 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) |
|
3094 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) | |
2714 |
|
3095 | |||
2715 | if len(listMeteors4) > 0: |
|
3096 | if len(listMeteors4) > 0: | |
2716 | #Setting New Array |
|
3097 | #Setting New Array | |
2717 | date = dataOut.utctime |
|
3098 | date = dataOut.utctime | |
2718 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) |
|
3099 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |
2719 |
|
3100 | |||
2720 | #Correcting phase offset |
|
3101 | #Correcting phase offset | |
2721 | if phaseOffsets != None: |
|
3102 | if phaseOffsets != None: | |
2722 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
3103 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
2723 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
3104 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
2724 |
|
3105 | |||
2725 | #Second Pairslist |
|
3106 | #Second Pairslist | |
2726 | pairsList = [] |
|
3107 | pairsList = [] | |
2727 | pairx = (0,1) |
|
3108 | pairx = (0,1) | |
2728 | pairy = (2,3) |
|
3109 | pairy = (2,3) | |
2729 | pairsList.append(pairx) |
|
3110 | pairsList.append(pairx) | |
2730 | pairsList.append(pairy) |
|
3111 | pairsList.append(pairy) | |
2731 |
|
3112 | |||
2732 | jph = numpy.array([0,0,0,0]) |
|
3113 | jph = numpy.array([0,0,0,0]) | |
2733 | h = (hmin,hmax) |
|
3114 | h = (hmin,hmax) | |
2734 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
3115 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
2735 |
|
3116 | |||
2736 | # #Calculate AOA (Error N 3, 4) |
|
3117 | # #Calculate AOA (Error N 3, 4) | |
2737 | # #JONES ET AL. 1998 |
|
3118 | # #JONES ET AL. 1998 | |
2738 | # error = arrayParameters[:,-1] |
|
3119 | # error = arrayParameters[:,-1] | |
2739 | # AOAthresh = numpy.pi/8 |
|
3120 | # AOAthresh = numpy.pi/8 | |
2740 | # phases = -arrayParameters[:,9:13] |
|
3121 | # phases = -arrayParameters[:,9:13] | |
2741 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
3122 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |
2742 | # |
|
3123 | # | |
2743 | # #Calculate Heights (Error N 13 and 14) |
|
3124 | # #Calculate Heights (Error N 13 and 14) | |
2744 | # error = arrayParameters[:,-1] |
|
3125 | # error = arrayParameters[:,-1] | |
2745 | # Ranges = arrayParameters[:,2] |
|
3126 | # Ranges = arrayParameters[:,2] | |
2746 | # zenith = arrayParameters[:,5] |
|
3127 | # zenith = arrayParameters[:,5] | |
2747 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) |
|
3128 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) | |
2748 | # error = arrayParameters[:,-1] |
|
3129 | # error = arrayParameters[:,-1] | |
2749 | #********************* END OF PARAMETERS CALCULATION ************************** |
|
3130 | #********************* END OF PARAMETERS CALCULATION ************************** | |
2750 |
|
3131 | |||
2751 | #***************************+ PASS DATA TO NEXT STEP ********************** |
|
3132 | #***************************+ PASS DATA TO NEXT STEP ********************** | |
2752 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) |
|
3133 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) | |
2753 | dataOut.data_param = arrayParameters |
|
3134 | dataOut.data_param = arrayParameters | |
2754 |
|
3135 | |||
2755 | if arrayParameters is None: |
|
3136 | if arrayParameters is None: | |
2756 | dataOut.flagNoData = True |
|
3137 | dataOut.flagNoData = True | |
2757 | else: |
|
3138 | else: | |
2758 | dataOut.flagNoData = True |
|
3139 | dataOut.flagNoData = True | |
2759 |
|
3140 | |||
2760 | return |
|
3141 | return | |
2761 |
|
3142 | |||
2762 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): |
|
3143 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |
2763 |
|
3144 | |||
2764 | minIndex = min(newheis[0]) |
|
3145 | minIndex = min(newheis[0]) | |
2765 | maxIndex = max(newheis[0]) |
|
3146 | maxIndex = max(newheis[0]) | |
2766 |
|
3147 | |||
2767 | voltage = voltage0[:,:,minIndex:maxIndex+1] |
|
3148 | voltage = voltage0[:,:,minIndex:maxIndex+1] | |
2768 | nLength = voltage.shape[1]/n |
|
3149 | nLength = voltage.shape[1]/n | |
2769 | nMin = 0 |
|
3150 | nMin = 0 | |
2770 | nMax = 0 |
|
3151 | nMax = 0 | |
2771 | phaseOffset = numpy.zeros((len(pairslist),n)) |
|
3152 | phaseOffset = numpy.zeros((len(pairslist),n)) | |
2772 |
|
3153 | |||
2773 | for i in range(n): |
|
3154 | for i in range(n): | |
2774 | nMax += nLength |
|
3155 | nMax += nLength | |
2775 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) |
|
3156 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |
2776 | phaseCCF = numpy.mean(phaseCCF, axis = 2) |
|
3157 | phaseCCF = numpy.mean(phaseCCF, axis = 2) | |
2777 | phaseOffset[:,i] = phaseCCF.transpose() |
|
3158 | phaseOffset[:,i] = phaseCCF.transpose() | |
2778 | nMin = nMax |
|
3159 | nMin = nMax | |
2779 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) |
|
3160 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |
2780 |
|
3161 | |||
2781 | #Remove Outliers |
|
3162 | #Remove Outliers | |
2782 | factor = 2 |
|
3163 | factor = 2 | |
2783 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) |
|
3164 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |
2784 | dw = numpy.std(wt,axis = 1) |
|
3165 | dw = numpy.std(wt,axis = 1) | |
2785 | dw = dw.reshape((dw.size,1)) |
|
3166 | dw = dw.reshape((dw.size,1)) | |
2786 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) |
|
3167 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |
2787 | phaseOffset[ind] = numpy.nan |
|
3168 | phaseOffset[ind] = numpy.nan | |
2788 | phaseOffset = stats.nanmean(phaseOffset, axis=1) |
|
3169 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |
2789 |
|
3170 | |||
2790 | return phaseOffset |
|
3171 | return phaseOffset | |
2791 |
|
3172 | |||
2792 | def __shiftPhase(self, data, phaseShift): |
|
3173 | def __shiftPhase(self, data, phaseShift): | |
2793 | #this will shift the phase of a complex number |
|
3174 | #this will shift the phase of a complex number | |
2794 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) |
|
3175 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |
2795 | return dataShifted |
|
3176 | return dataShifted | |
2796 |
|
3177 | |||
2797 | def __estimatePhaseDifference(self, array, pairslist): |
|
3178 | def __estimatePhaseDifference(self, array, pairslist): | |
2798 | nChannel = array.shape[0] |
|
3179 | nChannel = array.shape[0] | |
2799 | nHeights = array.shape[2] |
|
3180 | nHeights = array.shape[2] | |
2800 | numPairs = len(pairslist) |
|
3181 | numPairs = len(pairslist) | |
2801 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) |
|
3182 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |
2802 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) |
|
3183 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |
2803 |
|
3184 | |||
2804 | #Correct phases |
|
3185 | #Correct phases | |
2805 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] |
|
3186 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |
2806 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
3187 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
2807 |
|
3188 | |||
2808 | if indDer[0].shape[0] > 0: |
|
3189 | if indDer[0].shape[0] > 0: | |
2809 | for i in range(indDer[0].shape[0]): |
|
3190 | for i in range(indDer[0].shape[0]): | |
2810 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) |
|
3191 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |
2811 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi |
|
3192 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |
2812 |
|
3193 | |||
2813 | # for j in range(numSides): |
|
3194 | # for j in range(numSides): | |
2814 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) |
|
3195 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |
2815 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) |
|
3196 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |
2816 | # |
|
3197 | # | |
2817 | #Linear |
|
3198 | #Linear | |
2818 | phaseInt = numpy.zeros((numPairs,1)) |
|
3199 | phaseInt = numpy.zeros((numPairs,1)) | |
2819 | angAllCCF = phaseCCF[:,[0,1,3,4],0] |
|
3200 | angAllCCF = phaseCCF[:,[0,1,3,4],0] | |
2820 | for j in range(numPairs): |
|
3201 | for j in range(numPairs): | |
2821 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) |
|
3202 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) | |
2822 | phaseInt[j] = fit[1] |
|
3203 | phaseInt[j] = fit[1] | |
2823 | #Phase Differences |
|
3204 | #Phase Differences | |
2824 | phaseDiff = phaseInt - phaseCCF[:,2,:] |
|
3205 | phaseDiff = phaseInt - phaseCCF[:,2,:] | |
2825 | phaseArrival = phaseInt.reshape(phaseInt.size) |
|
3206 | phaseArrival = phaseInt.reshape(phaseInt.size) | |
2826 |
|
3207 | |||
2827 | #Dealias |
|
3208 | #Dealias | |
2828 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) |
|
3209 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) | |
2829 | # indAlias = numpy.where(phaseArrival > numpy.pi) |
|
3210 | # indAlias = numpy.where(phaseArrival > numpy.pi) | |
2830 | # phaseArrival[indAlias] -= 2*numpy.pi |
|
3211 | # phaseArrival[indAlias] -= 2*numpy.pi | |
2831 | # indAlias = numpy.where(phaseArrival < -numpy.pi) |
|
3212 | # indAlias = numpy.where(phaseArrival < -numpy.pi) | |
2832 | # phaseArrival[indAlias] += 2*numpy.pi |
|
3213 | # phaseArrival[indAlias] += 2*numpy.pi | |
2833 |
|
3214 | |||
2834 | return phaseDiff, phaseArrival |
|
3215 | return phaseDiff, phaseArrival | |
2835 |
|
3216 | |||
2836 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): |
|
3217 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |
2837 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power |
|
3218 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |
2838 | #find the phase shifts of each channel over 1 second intervals |
|
3219 | #find the phase shifts of each channel over 1 second intervals | |
2839 | #only look at ranges below the beacon signal |
|
3220 | #only look at ranges below the beacon signal | |
2840 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
3221 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
2841 | numBlocks = int(volts.shape[1]/numProfPerBlock) |
|
3222 | numBlocks = int(volts.shape[1]/numProfPerBlock) | |
2842 | numHeights = volts.shape[2] |
|
3223 | numHeights = volts.shape[2] | |
2843 | nChannel = volts.shape[0] |
|
3224 | nChannel = volts.shape[0] | |
2844 | voltsCohDet = volts.copy() |
|
3225 | voltsCohDet = volts.copy() | |
2845 |
|
3226 | |||
2846 | pairsarray = numpy.array(pairslist) |
|
3227 | pairsarray = numpy.array(pairslist) | |
2847 | indSides = pairsarray[:,1] |
|
3228 | indSides = pairsarray[:,1] | |
2848 | # indSides = numpy.array(range(nChannel)) |
|
3229 | # indSides = numpy.array(range(nChannel)) | |
2849 | # indSides = numpy.delete(indSides, indCenter) |
|
3230 | # indSides = numpy.delete(indSides, indCenter) | |
2850 | # |
|
3231 | # | |
2851 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) |
|
3232 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |
2852 | listBlocks = numpy.array_split(volts, numBlocks, 1) |
|
3233 | listBlocks = numpy.array_split(volts, numBlocks, 1) | |
2853 |
|
3234 | |||
2854 | startInd = 0 |
|
3235 | startInd = 0 | |
2855 | endInd = 0 |
|
3236 | endInd = 0 | |
2856 |
|
3237 | |||
2857 | for i in range(numBlocks): |
|
3238 | for i in range(numBlocks): | |
2858 | startInd = endInd |
|
3239 | startInd = endInd | |
2859 | endInd = endInd + listBlocks[i].shape[1] |
|
3240 | endInd = endInd + listBlocks[i].shape[1] | |
2860 |
|
3241 | |||
2861 | arrayBlock = listBlocks[i] |
|
3242 | arrayBlock = listBlocks[i] | |
2862 | # arrayBlockCenter = listCenter[i] |
|
3243 | # arrayBlockCenter = listCenter[i] | |
2863 |
|
3244 | |||
2864 | #Estimate the Phase Difference |
|
3245 | #Estimate the Phase Difference | |
2865 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) |
|
3246 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |
2866 | #Phase Difference RMS |
|
3247 | #Phase Difference RMS | |
2867 | arrayPhaseRMS = numpy.abs(phaseDiff) |
|
3248 | arrayPhaseRMS = numpy.abs(phaseDiff) | |
2868 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) |
|
3249 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) | |
2869 | indPhase = numpy.where(phaseRMSaux==4) |
|
3250 | indPhase = numpy.where(phaseRMSaux==4) | |
2870 | #Shifting |
|
3251 | #Shifting | |
2871 | if indPhase[0].shape[0] > 0: |
|
3252 | if indPhase[0].shape[0] > 0: | |
2872 | for j in range(indSides.size): |
|
3253 | for j in range(indSides.size): | |
2873 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) |
|
3254 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |
2874 | voltsCohDet[:,startInd:endInd,:] = arrayBlock |
|
3255 | voltsCohDet[:,startInd:endInd,:] = arrayBlock | |
2875 |
|
3256 | |||
2876 | return voltsCohDet |
|
3257 | return voltsCohDet | |
2877 |
|
3258 | |||
2878 | def __calculateCCF(self, volts, pairslist ,laglist): |
|
3259 | def __calculateCCF(self, volts, pairslist ,laglist): | |
2879 |
|
3260 | |||
2880 | nHeights = volts.shape[2] |
|
3261 | nHeights = volts.shape[2] | |
2881 | nPoints = volts.shape[1] |
|
3262 | nPoints = volts.shape[1] | |
2882 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') |
|
3263 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |
2883 |
|
3264 | |||
2884 | for i in range(len(pairslist)): |
|
3265 | for i in range(len(pairslist)): | |
2885 | volts1 = volts[pairslist[i][0]] |
|
3266 | volts1 = volts[pairslist[i][0]] | |
2886 | volts2 = volts[pairslist[i][1]] |
|
3267 | volts2 = volts[pairslist[i][1]] | |
2887 |
|
3268 | |||
2888 | for t in range(len(laglist)): |
|
3269 | for t in range(len(laglist)): | |
2889 | idxT = laglist[t] |
|
3270 | idxT = laglist[t] | |
2890 | if idxT >= 0: |
|
3271 | if idxT >= 0: | |
2891 | vStacked = numpy.vstack((volts2[idxT:,:], |
|
3272 | vStacked = numpy.vstack((volts2[idxT:,:], | |
2892 | numpy.zeros((idxT, nHeights),dtype='complex'))) |
|
3273 | numpy.zeros((idxT, nHeights),dtype='complex'))) | |
2893 | else: |
|
3274 | else: | |
2894 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), |
|
3275 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |
2895 | volts2[:(nPoints + idxT),:])) |
|
3276 | volts2[:(nPoints + idxT),:])) | |
2896 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) |
|
3277 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |
2897 |
|
3278 | |||
2898 | vStacked = None |
|
3279 | vStacked = None | |
2899 | return voltsCCF |
|
3280 | return voltsCCF | |
2900 |
|
3281 | |||
2901 | def __getNoise(self, power, timeSegment, timeInterval): |
|
3282 | def __getNoise(self, power, timeSegment, timeInterval): | |
2902 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
3283 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
2903 | numBlocks = int(power.shape[0]/numProfPerBlock) |
|
3284 | numBlocks = int(power.shape[0]/numProfPerBlock) | |
2904 | numHeights = power.shape[1] |
|
3285 | numHeights = power.shape[1] | |
2905 |
|
3286 | |||
2906 | listPower = numpy.array_split(power, numBlocks, 0) |
|
3287 | listPower = numpy.array_split(power, numBlocks, 0) | |
2907 | noise = numpy.zeros((power.shape[0], power.shape[1])) |
|
3288 | noise = numpy.zeros((power.shape[0], power.shape[1])) | |
2908 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) |
|
3289 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |
2909 |
|
3290 | |||
2910 | startInd = 0 |
|
3291 | startInd = 0 | |
2911 | endInd = 0 |
|
3292 | endInd = 0 | |
2912 |
|
3293 | |||
2913 | for i in range(numBlocks): #split por canal |
|
3294 | for i in range(numBlocks): #split por canal | |
2914 | startInd = endInd |
|
3295 | startInd = endInd | |
2915 | endInd = endInd + listPower[i].shape[0] |
|
3296 | endInd = endInd + listPower[i].shape[0] | |
2916 |
|
3297 | |||
2917 | arrayBlock = listPower[i] |
|
3298 | arrayBlock = listPower[i] | |
2918 | noiseAux = numpy.mean(arrayBlock, 0) |
|
3299 | noiseAux = numpy.mean(arrayBlock, 0) | |
2919 | # noiseAux = numpy.median(noiseAux) |
|
3300 | # noiseAux = numpy.median(noiseAux) | |
2920 | # noiseAux = numpy.mean(arrayBlock) |
|
3301 | # noiseAux = numpy.mean(arrayBlock) | |
2921 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux |
|
3302 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |
2922 |
|
3303 | |||
2923 | noiseAux1 = numpy.mean(arrayBlock) |
|
3304 | noiseAux1 = numpy.mean(arrayBlock) | |
2924 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 |
|
3305 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |
2925 |
|
3306 | |||
2926 | return noise, noise1 |
|
3307 | return noise, noise1 | |
2927 |
|
3308 | |||
2928 | def __findMeteors(self, power, thresh): |
|
3309 | def __findMeteors(self, power, thresh): | |
2929 | nProf = power.shape[0] |
|
3310 | nProf = power.shape[0] | |
2930 | nHeights = power.shape[1] |
|
3311 | nHeights = power.shape[1] | |
2931 | listMeteors = [] |
|
3312 | listMeteors = [] | |
2932 |
|
3313 | |||
2933 | for i in range(nHeights): |
|
3314 | for i in range(nHeights): | |
2934 | powerAux = power[:,i] |
|
3315 | powerAux = power[:,i] | |
2935 | threshAux = thresh[:,i] |
|
3316 | threshAux = thresh[:,i] | |
2936 |
|
3317 | |||
2937 | indUPthresh = numpy.where(powerAux > threshAux)[0] |
|
3318 | indUPthresh = numpy.where(powerAux > threshAux)[0] | |
2938 | indDNthresh = numpy.where(powerAux <= threshAux)[0] |
|
3319 | indDNthresh = numpy.where(powerAux <= threshAux)[0] | |
2939 |
|
3320 | |||
2940 | j = 0 |
|
3321 | j = 0 | |
2941 |
|
3322 | |||
2942 | while (j < indUPthresh.size - 2): |
|
3323 | while (j < indUPthresh.size - 2): | |
2943 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): |
|
3324 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |
2944 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) |
|
3325 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |
2945 | indDNthresh = indDNthresh[indDNAux] |
|
3326 | indDNthresh = indDNthresh[indDNAux] | |
2946 |
|
3327 | |||
2947 | if (indDNthresh.size > 0): |
|
3328 | if (indDNthresh.size > 0): | |
2948 | indEnd = indDNthresh[0] - 1 |
|
3329 | indEnd = indDNthresh[0] - 1 | |
2949 | indInit = indUPthresh[j] |
|
3330 | indInit = indUPthresh[j] | |
2950 |
|
3331 | |||
2951 | meteor = powerAux[indInit:indEnd + 1] |
|
3332 | meteor = powerAux[indInit:indEnd + 1] | |
2952 | indPeak = meteor.argmax() + indInit |
|
3333 | indPeak = meteor.argmax() + indInit | |
2953 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) |
|
3334 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |
2954 |
|
3335 | |||
2955 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! |
|
3336 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |
2956 | j = numpy.where(indUPthresh == indEnd)[0] + 1 |
|
3337 | j = numpy.where(indUPthresh == indEnd)[0] + 1 | |
2957 | else: j+=1 |
|
3338 | else: j+=1 | |
2958 | else: j+=1 |
|
3339 | else: j+=1 | |
2959 |
|
3340 | |||
2960 | return listMeteors |
|
3341 | return listMeteors | |
2961 |
|
3342 | |||
2962 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): |
|
3343 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |
2963 |
|
3344 | |||
2964 | arrayMeteors = numpy.asarray(listMeteors) |
|
3345 | arrayMeteors = numpy.asarray(listMeteors) | |
2965 | listMeteors1 = [] |
|
3346 | listMeteors1 = [] | |
2966 |
|
3347 | |||
2967 | while arrayMeteors.shape[0] > 0: |
|
3348 | while arrayMeteors.shape[0] > 0: | |
2968 | FLAs = arrayMeteors[:,4] |
|
3349 | FLAs = arrayMeteors[:,4] | |
2969 | maxFLA = FLAs.argmax() |
|
3350 | maxFLA = FLAs.argmax() | |
2970 | listMeteors1.append(arrayMeteors[maxFLA,:]) |
|
3351 | listMeteors1.append(arrayMeteors[maxFLA,:]) | |
2971 |
|
3352 | |||
2972 | MeteorInitTime = arrayMeteors[maxFLA,1] |
|
3353 | MeteorInitTime = arrayMeteors[maxFLA,1] | |
2973 | MeteorEndTime = arrayMeteors[maxFLA,3] |
|
3354 | MeteorEndTime = arrayMeteors[maxFLA,3] | |
2974 | MeteorHeight = arrayMeteors[maxFLA,0] |
|
3355 | MeteorHeight = arrayMeteors[maxFLA,0] | |
2975 |
|
3356 | |||
2976 | #Check neighborhood |
|
3357 | #Check neighborhood | |
2977 | maxHeightIndex = MeteorHeight + rangeLimit |
|
3358 | maxHeightIndex = MeteorHeight + rangeLimit | |
2978 | minHeightIndex = MeteorHeight - rangeLimit |
|
3359 | minHeightIndex = MeteorHeight - rangeLimit | |
2979 | minTimeIndex = MeteorInitTime - timeLimit |
|
3360 | minTimeIndex = MeteorInitTime - timeLimit | |
2980 | maxTimeIndex = MeteorEndTime + timeLimit |
|
3361 | maxTimeIndex = MeteorEndTime + timeLimit | |
2981 |
|
3362 | |||
2982 | #Check Heights |
|
3363 | #Check Heights | |
2983 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) |
|
3364 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |
2984 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) |
|
3365 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |
2985 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) |
|
3366 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |
2986 |
|
3367 | |||
2987 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) |
|
3368 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |
2988 |
|
3369 | |||
2989 | return listMeteors1 |
|
3370 | return listMeteors1 | |
2990 |
|
3371 | |||
2991 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): |
|
3372 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |
2992 | numHeights = volts.shape[2] |
|
3373 | numHeights = volts.shape[2] | |
2993 | nChannel = volts.shape[0] |
|
3374 | nChannel = volts.shape[0] | |
2994 |
|
3375 | |||
2995 | thresholdPhase = thresh[0] |
|
3376 | thresholdPhase = thresh[0] | |
2996 | thresholdNoise = thresh[1] |
|
3377 | thresholdNoise = thresh[1] | |
2997 | thresholdDB = float(thresh[2]) |
|
3378 | thresholdDB = float(thresh[2]) | |
2998 |
|
3379 | |||
2999 | thresholdDB1 = 10**(thresholdDB/10) |
|
3380 | thresholdDB1 = 10**(thresholdDB/10) | |
3000 | pairsarray = numpy.array(pairslist) |
|
3381 | pairsarray = numpy.array(pairslist) | |
3001 | indSides = pairsarray[:,1] |
|
3382 | indSides = pairsarray[:,1] | |
3002 |
|
3383 | |||
3003 | pairslist1 = list(pairslist) |
|
3384 | pairslist1 = list(pairslist) | |
3004 | pairslist1.append((0,1)) |
|
3385 | pairslist1.append((0,1)) | |
3005 | pairslist1.append((3,4)) |
|
3386 | pairslist1.append((3,4)) | |
3006 |
|
3387 | |||
3007 | listMeteors1 = [] |
|
3388 | listMeteors1 = [] | |
3008 | listPowerSeries = [] |
|
3389 | listPowerSeries = [] | |
3009 | listVoltageSeries = [] |
|
3390 | listVoltageSeries = [] | |
3010 | #volts has the war data |
|
3391 | #volts has the war data | |
3011 |
|
3392 | |||
3012 | if frequency == 30e6: |
|
3393 | if frequency == 30e6: | |
3013 | timeLag = 45*10**-3 |
|
3394 | timeLag = 45*10**-3 | |
3014 | else: |
|
3395 | else: | |
3015 | timeLag = 15*10**-3 |
|
3396 | timeLag = 15*10**-3 | |
3016 | lag = numpy.ceil(timeLag/timeInterval) |
|
3397 | lag = numpy.ceil(timeLag/timeInterval) | |
3017 |
|
3398 | |||
3018 | for i in range(len(listMeteors)): |
|
3399 | for i in range(len(listMeteors)): | |
3019 |
|
3400 | |||
3020 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### |
|
3401 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |
3021 | meteorAux = numpy.zeros(16) |
|
3402 | meteorAux = numpy.zeros(16) | |
3022 |
|
3403 | |||
3023 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) |
|
3404 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |
3024 | mHeight = listMeteors[i][0] |
|
3405 | mHeight = listMeteors[i][0] | |
3025 | mStart = listMeteors[i][1] |
|
3406 | mStart = listMeteors[i][1] | |
3026 | mPeak = listMeteors[i][2] |
|
3407 | mPeak = listMeteors[i][2] | |
3027 | mEnd = listMeteors[i][3] |
|
3408 | mEnd = listMeteors[i][3] | |
3028 |
|
3409 | |||
3029 | #get the volt data between the start and end times of the meteor |
|
3410 | #get the volt data between the start and end times of the meteor | |
3030 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] |
|
3411 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |
3031 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3412 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
3032 |
|
3413 | |||
3033 | #3.6. Phase Difference estimation |
|
3414 | #3.6. Phase Difference estimation | |
3034 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) |
|
3415 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |
3035 |
|
3416 | |||
3036 | #3.7. Phase difference removal & meteor start, peak and end times reestimated |
|
3417 | #3.7. Phase difference removal & meteor start, peak and end times reestimated | |
3037 | #meteorVolts0.- all Channels, all Profiles |
|
3418 | #meteorVolts0.- all Channels, all Profiles | |
3038 | meteorVolts0 = volts[:,:,mHeight] |
|
3419 | meteorVolts0 = volts[:,:,mHeight] | |
3039 | meteorThresh = noise[:,mHeight]*thresholdNoise |
|
3420 | meteorThresh = noise[:,mHeight]*thresholdNoise | |
3040 | meteorNoise = noise[:,mHeight] |
|
3421 | meteorNoise = noise[:,mHeight] | |
3041 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting |
|
3422 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |
3042 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power |
|
3423 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |
3043 |
|
3424 | |||
3044 | #Times reestimation |
|
3425 | #Times reestimation | |
3045 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] |
|
3426 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |
3046 | if mStart1.size > 0: |
|
3427 | if mStart1.size > 0: | |
3047 | mStart1 = mStart1[-1] + 1 |
|
3428 | mStart1 = mStart1[-1] + 1 | |
3048 |
|
3429 | |||
3049 | else: |
|
3430 | else: | |
3050 | mStart1 = mPeak |
|
3431 | mStart1 = mPeak | |
3051 |
|
3432 | |||
3052 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 |
|
3433 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |
3053 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] |
|
3434 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |
3054 | if mEndDecayTime1.size == 0: |
|
3435 | if mEndDecayTime1.size == 0: | |
3055 | mEndDecayTime1 = powerNet0.size |
|
3436 | mEndDecayTime1 = powerNet0.size | |
3056 | else: |
|
3437 | else: | |
3057 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 |
|
3438 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |
3058 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() |
|
3439 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |
3059 |
|
3440 | |||
3060 | #meteorVolts1.- all Channels, from start to end |
|
3441 | #meteorVolts1.- all Channels, from start to end | |
3061 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] |
|
3442 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |
3062 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] |
|
3443 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |
3063 | if meteorVolts2.shape[1] == 0: |
|
3444 | if meteorVolts2.shape[1] == 0: | |
3064 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] |
|
3445 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] | |
3065 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) |
|
3446 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |
3066 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) |
|
3447 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |
3067 | ##################### END PARAMETERS REESTIMATION ######################### |
|
3448 | ##################### END PARAMETERS REESTIMATION ######################### | |
3068 |
|
3449 | |||
3069 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## |
|
3450 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |
3070 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3451 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |
3071 | if meteorVolts2.shape[1] > 0: |
|
3452 | if meteorVolts2.shape[1] > 0: | |
3072 | #Phase Difference re-estimation |
|
3453 | #Phase Difference re-estimation | |
3073 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation |
|
3454 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |
3074 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) |
|
3455 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |
3075 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) |
|
3456 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |
3076 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) |
|
3457 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |
3077 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting |
|
3458 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |
3078 |
|
3459 | |||
3079 | #Phase Difference RMS |
|
3460 | #Phase Difference RMS | |
3080 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) |
|
3461 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |
3081 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) |
|
3462 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |
3082 | #Data from Meteor |
|
3463 | #Data from Meteor | |
3083 | mPeak1 = powerNet1.argmax() + mStart1 |
|
3464 | mPeak1 = powerNet1.argmax() + mStart1 | |
3084 | mPeakPower1 = powerNet1.max() |
|
3465 | mPeakPower1 = powerNet1.max() | |
3085 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) |
|
3466 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) | |
3086 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux |
|
3467 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux | |
3087 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) |
|
3468 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) | |
3088 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) |
|
3469 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) | |
3089 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] |
|
3470 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] | |
3090 | #Vectorize |
|
3471 | #Vectorize | |
3091 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] |
|
3472 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |
3092 | meteorAux[7:11] = phaseDiffint[0:4] |
|
3473 | meteorAux[7:11] = phaseDiffint[0:4] | |
3093 |
|
3474 | |||
3094 | #Rejection Criterions |
|
3475 | #Rejection Criterions | |
3095 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation |
|
3476 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |
3096 | meteorAux[-1] = 17 |
|
3477 | meteorAux[-1] = 17 | |
3097 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB |
|
3478 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |
3098 | meteorAux[-1] = 1 |
|
3479 | meteorAux[-1] = 1 | |
3099 |
|
3480 | |||
3100 |
|
3481 | |||
3101 | else: |
|
3482 | else: | |
3102 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] |
|
3483 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |
3103 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3484 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |
3104 | PowerSeries = 0 |
|
3485 | PowerSeries = 0 | |
3105 |
|
3486 | |||
3106 | listMeteors1.append(meteorAux) |
|
3487 | listMeteors1.append(meteorAux) | |
3107 | listPowerSeries.append(PowerSeries) |
|
3488 | listPowerSeries.append(PowerSeries) | |
3108 | listVoltageSeries.append(meteorVolts1) |
|
3489 | listVoltageSeries.append(meteorVolts1) | |
3109 |
|
3490 | |||
3110 | return listMeteors1, listPowerSeries, listVoltageSeries |
|
3491 | return listMeteors1, listPowerSeries, listVoltageSeries | |
3111 |
|
3492 | |||
3112 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): |
|
3493 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |
3113 |
|
3494 | |||
3114 | threshError = 10 |
|
3495 | threshError = 10 | |
3115 | #Depending if it is 30 or 50 MHz |
|
3496 | #Depending if it is 30 or 50 MHz | |
3116 | if frequency == 30e6: |
|
3497 | if frequency == 30e6: | |
3117 | timeLag = 45*10**-3 |
|
3498 | timeLag = 45*10**-3 | |
3118 | else: |
|
3499 | else: | |
3119 | timeLag = 15*10**-3 |
|
3500 | timeLag = 15*10**-3 | |
3120 | lag = numpy.ceil(timeLag/timeInterval) |
|
3501 | lag = numpy.ceil(timeLag/timeInterval) | |
3121 |
|
3502 | |||
3122 | listMeteors1 = [] |
|
3503 | listMeteors1 = [] | |
3123 |
|
3504 | |||
3124 | for i in range(len(listMeteors)): |
|
3505 | for i in range(len(listMeteors)): | |
3125 | meteorPower = listPower[i] |
|
3506 | meteorPower = listPower[i] | |
3126 | meteorAux = listMeteors[i] |
|
3507 | meteorAux = listMeteors[i] | |
3127 |
|
3508 | |||
3128 | if meteorAux[-1] == 0: |
|
3509 | if meteorAux[-1] == 0: | |
3129 |
|
3510 | |||
3130 | try: |
|
3511 | try: | |
3131 | indmax = meteorPower.argmax() |
|
3512 | indmax = meteorPower.argmax() | |
3132 | indlag = indmax + lag |
|
3513 | indlag = indmax + lag | |
3133 |
|
3514 | |||
3134 | y = meteorPower[indlag:] |
|
3515 | y = meteorPower[indlag:] | |
3135 | x = numpy.arange(0, y.size)*timeLag |
|
3516 | x = numpy.arange(0, y.size)*timeLag | |
3136 |
|
3517 | |||
3137 | #first guess |
|
3518 | #first guess | |
3138 | a = y[0] |
|
3519 | a = y[0] | |
3139 | tau = timeLag |
|
3520 | tau = timeLag | |
3140 | #exponential fit |
|
3521 | #exponential fit | |
3141 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) |
|
3522 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) | |
3142 | y1 = self.__exponential_function(x, *popt) |
|
3523 | y1 = self.__exponential_function(x, *popt) | |
3143 | #error estimation |
|
3524 | #error estimation | |
3144 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) |
|
3525 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |
3145 |
|
3526 | |||
3146 | decayTime = popt[1] |
|
3527 | decayTime = popt[1] | |
3147 | riseTime = indmax*timeInterval |
|
3528 | riseTime = indmax*timeInterval | |
3148 | meteorAux[11:13] = [decayTime, error] |
|
3529 | meteorAux[11:13] = [decayTime, error] | |
3149 |
|
3530 | |||
3150 | #Table items 7, 8 and 11 |
|
3531 | #Table items 7, 8 and 11 | |
3151 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s |
|
3532 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |
3152 | meteorAux[-1] = 7 |
|
3533 | meteorAux[-1] = 7 | |
3153 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time |
|
3534 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |
3154 | meteorAux[-1] = 8 |
|
3535 | meteorAux[-1] = 8 | |
3155 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time |
|
3536 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |
3156 | meteorAux[-1] = 11 |
|
3537 | meteorAux[-1] = 11 | |
3157 |
|
3538 | |||
3158 |
|
3539 | |||
3159 | except: |
|
3540 | except: | |
3160 | meteorAux[-1] = 11 |
|
3541 | meteorAux[-1] = 11 | |
3161 |
|
3542 | |||
3162 |
|
3543 | |||
3163 | listMeteors1.append(meteorAux) |
|
3544 | listMeteors1.append(meteorAux) | |
3164 |
|
3545 | |||
3165 | return listMeteors1 |
|
3546 | return listMeteors1 | |
3166 |
|
3547 | |||
3167 | #Exponential Function |
|
3548 | #Exponential Function | |
3168 |
|
3549 | |||
3169 | def __exponential_function(self, x, a, tau): |
|
3550 | def __exponential_function(self, x, a, tau): | |
3170 | y = a*numpy.exp(-x/tau) |
|
3551 | y = a*numpy.exp(-x/tau) | |
3171 | return y |
|
3552 | return y | |
3172 |
|
3553 | |||
3173 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): |
|
3554 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |
3174 |
|
3555 | |||
3175 | pairslist1 = list(pairslist) |
|
3556 | pairslist1 = list(pairslist) | |
3176 | pairslist1.append((0,1)) |
|
3557 | pairslist1.append((0,1)) | |
3177 | pairslist1.append((3,4)) |
|
3558 | pairslist1.append((3,4)) | |
3178 | numPairs = len(pairslist1) |
|
3559 | numPairs = len(pairslist1) | |
3179 | #Time Lag |
|
3560 | #Time Lag | |
3180 | timeLag = 45*10**-3 |
|
3561 | timeLag = 45*10**-3 | |
3181 | c = 3e8 |
|
3562 | c = 3e8 | |
3182 | lag = numpy.ceil(timeLag/timeInterval) |
|
3563 | lag = numpy.ceil(timeLag/timeInterval) | |
3183 | freq = 30e6 |
|
3564 | freq = 30e6 | |
3184 |
|
3565 | |||
3185 | listMeteors1 = [] |
|
3566 | listMeteors1 = [] | |
3186 |
|
3567 | |||
3187 | for i in range(len(listMeteors)): |
|
3568 | for i in range(len(listMeteors)): | |
3188 | meteorAux = listMeteors[i] |
|
3569 | meteorAux = listMeteors[i] | |
3189 | if meteorAux[-1] == 0: |
|
3570 | if meteorAux[-1] == 0: | |
3190 | mStart = listMeteors[i][1] |
|
3571 | mStart = listMeteors[i][1] | |
3191 | mPeak = listMeteors[i][2] |
|
3572 | mPeak = listMeteors[i][2] | |
3192 | mLag = mPeak - mStart + lag |
|
3573 | mLag = mPeak - mStart + lag | |
3193 |
|
3574 | |||
3194 | #get the volt data between the start and end times of the meteor |
|
3575 | #get the volt data between the start and end times of the meteor | |
3195 | meteorVolts = listVolts[i] |
|
3576 | meteorVolts = listVolts[i] | |
3196 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3577 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
3197 |
|
3578 | |||
3198 | #Get CCF |
|
3579 | #Get CCF | |
3199 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) |
|
3580 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |
3200 |
|
3581 | |||
3201 | #Method 2 |
|
3582 | #Method 2 | |
3202 | slopes = numpy.zeros(numPairs) |
|
3583 | slopes = numpy.zeros(numPairs) | |
3203 | time = numpy.array([-2,-1,1,2])*timeInterval |
|
3584 | time = numpy.array([-2,-1,1,2])*timeInterval | |
3204 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) |
|
3585 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) | |
3205 |
|
3586 | |||
3206 | #Correct phases |
|
3587 | #Correct phases | |
3207 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] |
|
3588 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |
3208 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
3589 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
3209 |
|
3590 | |||
3210 | if indDer[0].shape[0] > 0: |
|
3591 | if indDer[0].shape[0] > 0: | |
3211 | for i in range(indDer[0].shape[0]): |
|
3592 | for i in range(indDer[0].shape[0]): | |
3212 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) |
|
3593 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |
3213 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi |
|
3594 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |
3214 |
|
3595 | |||
3215 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) |
|
3596 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) | |
3216 | for j in range(numPairs): |
|
3597 | for j in range(numPairs): | |
3217 | fit = stats.linregress(time, angAllCCF[j,:]) |
|
3598 | fit = stats.linregress(time, angAllCCF[j,:]) | |
3218 | slopes[j] = fit[0] |
|
3599 | slopes[j] = fit[0] | |
3219 |
|
3600 | |||
3220 | #Remove Outlier |
|
3601 | #Remove Outlier | |
3221 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3602 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
3222 | # slopes = numpy.delete(slopes,indOut) |
|
3603 | # slopes = numpy.delete(slopes,indOut) | |
3223 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3604 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
3224 | # slopes = numpy.delete(slopes,indOut) |
|
3605 | # slopes = numpy.delete(slopes,indOut) | |
3225 |
|
3606 | |||
3226 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3607 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |
3227 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3608 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |
3228 | meteorAux[-2] = radialError |
|
3609 | meteorAux[-2] = radialError | |
3229 | meteorAux[-3] = radialVelocity |
|
3610 | meteorAux[-3] = radialVelocity | |
3230 |
|
3611 | |||
3231 | #Setting Error |
|
3612 | #Setting Error | |
3232 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s |
|
3613 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |
3233 | if numpy.abs(radialVelocity) > 200: |
|
3614 | if numpy.abs(radialVelocity) > 200: | |
3234 | meteorAux[-1] = 15 |
|
3615 | meteorAux[-1] = 15 | |
3235 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity |
|
3616 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |
3236 | elif radialError > radialStdThresh: |
|
3617 | elif radialError > radialStdThresh: | |
3237 | meteorAux[-1] = 12 |
|
3618 | meteorAux[-1] = 12 | |
3238 |
|
3619 | |||
3239 | listMeteors1.append(meteorAux) |
|
3620 | listMeteors1.append(meteorAux) | |
3240 | return listMeteors1 |
|
3621 | return listMeteors1 | |
3241 |
|
3622 | |||
3242 | def __setNewArrays(self, listMeteors, date, heiRang): |
|
3623 | def __setNewArrays(self, listMeteors, date, heiRang): | |
3243 |
|
3624 | |||
3244 | #New arrays |
|
3625 | #New arrays | |
3245 | arrayMeteors = numpy.array(listMeteors) |
|
3626 | arrayMeteors = numpy.array(listMeteors) | |
3246 | arrayParameters = numpy.zeros((len(listMeteors), 13)) |
|
3627 | arrayParameters = numpy.zeros((len(listMeteors), 13)) | |
3247 |
|
3628 | |||
3248 | #Date inclusion |
|
3629 | #Date inclusion | |
3249 | # date = re.findall(r'\((.*?)\)', date) |
|
3630 | # date = re.findall(r'\((.*?)\)', date) | |
3250 | # date = date[0].split(',') |
|
3631 | # date = date[0].split(',') | |
3251 | # date = map(int, date) |
|
3632 | # date = map(int, date) | |
3252 | # |
|
3633 | # | |
3253 | # if len(date)<6: |
|
3634 | # if len(date)<6: | |
3254 | # date.append(0) |
|
3635 | # date.append(0) | |
3255 | # |
|
3636 | # | |
3256 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] |
|
3637 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |
3257 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) |
|
3638 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |
3258 | arrayDate = numpy.tile(date, (len(listMeteors))) |
|
3639 | arrayDate = numpy.tile(date, (len(listMeteors))) | |
3259 |
|
3640 | |||
3260 | #Meteor array |
|
3641 | #Meteor array | |
3261 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] |
|
3642 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |
3262 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) |
|
3643 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |
3263 |
|
3644 | |||
3264 | #Parameters Array |
|
3645 | #Parameters Array | |
3265 | arrayParameters[:,0] = arrayDate #Date |
|
3646 | arrayParameters[:,0] = arrayDate #Date | |
3266 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range |
|
3647 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range | |
3267 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error |
|
3648 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error | |
3268 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases |
|
3649 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases | |
3269 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error |
|
3650 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error | |
3270 |
|
3651 | |||
3271 |
|
3652 | |||
3272 | return arrayParameters |
|
3653 | return arrayParameters | |
3273 |
|
3654 | |||
3274 | class CorrectSMPhases(Operation): |
|
3655 | class CorrectSMPhases(Operation): | |
3275 |
|
3656 | |||
3276 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): |
|
3657 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): | |
3277 |
|
3658 | |||
3278 | arrayParameters = dataOut.data_param |
|
3659 | arrayParameters = dataOut.data_param | |
3279 | pairsList = [] |
|
3660 | pairsList = [] | |
3280 | pairx = (0,1) |
|
3661 | pairx = (0,1) | |
3281 | pairy = (2,3) |
|
3662 | pairy = (2,3) | |
3282 | pairsList.append(pairx) |
|
3663 | pairsList.append(pairx) | |
3283 | pairsList.append(pairy) |
|
3664 | pairsList.append(pairy) | |
3284 | jph = numpy.zeros(4) |
|
3665 | jph = numpy.zeros(4) | |
3285 |
|
3666 | |||
3286 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
3667 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
3287 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
3668 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
3288 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) |
|
3669 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) | |
3289 |
|
3670 | |||
3290 | meteorOps = SMOperations() |
|
3671 | meteorOps = SMOperations() | |
3291 | if channelPositions is None: |
|
3672 | if channelPositions is None: | |
3292 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3673 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
3293 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3674 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
3294 |
|
3675 | |||
3295 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3676 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
3296 | h = (hmin,hmax) |
|
3677 | h = (hmin,hmax) | |
3297 |
|
3678 | |||
3298 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
3679 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
3299 |
|
3680 | |||
3300 | dataOut.data_param = arrayParameters |
|
3681 | dataOut.data_param = arrayParameters | |
3301 | return |
|
3682 | return | |
3302 |
|
3683 | |||
3303 | class SMPhaseCalibration(Operation): |
|
3684 | class SMPhaseCalibration(Operation): | |
3304 |
|
3685 | |||
3305 | __buffer = None |
|
3686 | __buffer = None | |
3306 |
|
3687 | |||
3307 | __initime = None |
|
3688 | __initime = None | |
3308 |
|
3689 | |||
3309 | __dataReady = False |
|
3690 | __dataReady = False | |
3310 |
|
3691 | |||
3311 | __isConfig = False |
|
3692 | __isConfig = False | |
3312 |
|
3693 | |||
3313 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): |
|
3694 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): | |
3314 |
|
3695 | |||
3315 | dataTime = currentTime + paramInterval |
|
3696 | dataTime = currentTime + paramInterval | |
3316 | deltaTime = dataTime - initTime |
|
3697 | deltaTime = dataTime - initTime | |
3317 |
|
3698 | |||
3318 | if deltaTime >= outputInterval or deltaTime < 0: |
|
3699 | if deltaTime >= outputInterval or deltaTime < 0: | |
3319 | return True |
|
3700 | return True | |
3320 |
|
3701 | |||
3321 | return False |
|
3702 | return False | |
3322 |
|
3703 | |||
3323 | def __getGammas(self, pairs, d, phases): |
|
3704 | def __getGammas(self, pairs, d, phases): | |
3324 | gammas = numpy.zeros(2) |
|
3705 | gammas = numpy.zeros(2) | |
3325 |
|
3706 | |||
3326 | for i in range(len(pairs)): |
|
3707 | for i in range(len(pairs)): | |
3327 |
|
3708 | |||
3328 | pairi = pairs[i] |
|
3709 | pairi = pairs[i] | |
3329 |
|
3710 | |||
3330 | phip3 = phases[:,pairi[0]] |
|
3711 | phip3 = phases[:,pairi[0]] | |
3331 | d3 = d[pairi[0]] |
|
3712 | d3 = d[pairi[0]] | |
3332 | phip2 = phases[:,pairi[1]] |
|
3713 | phip2 = phases[:,pairi[1]] | |
3333 | d2 = d[pairi[1]] |
|
3714 | d2 = d[pairi[1]] | |
3334 | #Calculating gamma |
|
3715 | #Calculating gamma | |
3335 | # jdcos = alp1/(k*d1) |
|
3716 | # jdcos = alp1/(k*d1) | |
3336 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) |
|
3717 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) | |
3337 | jgamma = -phip2*d3/d2 - phip3 |
|
3718 | jgamma = -phip2*d3/d2 - phip3 | |
3338 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) |
|
3719 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) | |
3339 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi |
|
3720 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi | |
3340 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi |
|
3721 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi | |
3341 |
|
3722 | |||
3342 | #Revised distribution |
|
3723 | #Revised distribution | |
3343 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) |
|
3724 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) | |
3344 |
|
3725 | |||
3345 | #Histogram |
|
3726 | #Histogram | |
3346 | nBins = 64 |
|
3727 | nBins = 64 | |
3347 | rmin = -0.5*numpy.pi |
|
3728 | rmin = -0.5*numpy.pi | |
3348 | rmax = 0.5*numpy.pi |
|
3729 | rmax = 0.5*numpy.pi | |
3349 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) |
|
3730 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) | |
3350 |
|
3731 | |||
3351 | meteorsY = phaseHisto[0] |
|
3732 | meteorsY = phaseHisto[0] | |
3352 | phasesX = phaseHisto[1][:-1] |
|
3733 | phasesX = phaseHisto[1][:-1] | |
3353 | width = phasesX[1] - phasesX[0] |
|
3734 | width = phasesX[1] - phasesX[0] | |
3354 | phasesX += width/2 |
|
3735 | phasesX += width/2 | |
3355 |
|
3736 | |||
3356 | #Gaussian aproximation |
|
3737 | #Gaussian aproximation | |
3357 | bpeak = meteorsY.argmax() |
|
3738 | bpeak = meteorsY.argmax() | |
3358 | peak = meteorsY.max() |
|
3739 | peak = meteorsY.max() | |
3359 | jmin = bpeak - 5 |
|
3740 | jmin = bpeak - 5 | |
3360 | jmax = bpeak + 5 + 1 |
|
3741 | jmax = bpeak + 5 + 1 | |
3361 |
|
3742 | |||
3362 | if jmin<0: |
|
3743 | if jmin<0: | |
3363 | jmin = 0 |
|
3744 | jmin = 0 | |
3364 | jmax = 6 |
|
3745 | jmax = 6 | |
3365 | elif jmax > meteorsY.size: |
|
3746 | elif jmax > meteorsY.size: | |
3366 | jmin = meteorsY.size - 6 |
|
3747 | jmin = meteorsY.size - 6 | |
3367 | jmax = meteorsY.size |
|
3748 | jmax = meteorsY.size | |
3368 |
|
3749 | |||
3369 | x0 = numpy.array([peak,bpeak,50]) |
|
3750 | x0 = numpy.array([peak,bpeak,50]) | |
3370 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) |
|
3751 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) | |
3371 |
|
3752 | |||
3372 | #Gammas |
|
3753 | #Gammas | |
3373 | gammas[i] = coeff[0][1] |
|
3754 | gammas[i] = coeff[0][1] | |
3374 |
|
3755 | |||
3375 | return gammas |
|
3756 | return gammas | |
3376 |
|
3757 | |||
3377 | def __residualFunction(self, coeffs, y, t): |
|
3758 | def __residualFunction(self, coeffs, y, t): | |
3378 |
|
3759 | |||
3379 | return y - self.__gauss_function(t, coeffs) |
|
3760 | return y - self.__gauss_function(t, coeffs) | |
3380 |
|
3761 | |||
3381 | def __gauss_function(self, t, coeffs): |
|
3762 | def __gauss_function(self, t, coeffs): | |
3382 |
|
3763 | |||
3383 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) |
|
3764 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) | |
3384 |
|
3765 | |||
3385 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): |
|
3766 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): | |
3386 | meteorOps = SMOperations() |
|
3767 | meteorOps = SMOperations() | |
3387 | nchan = 4 |
|
3768 | nchan = 4 | |
3388 | pairx = pairsList[0] #x es 0 |
|
3769 | pairx = pairsList[0] #x es 0 | |
3389 | pairy = pairsList[1] #y es 1 |
|
3770 | pairy = pairsList[1] #y es 1 | |
3390 | center_xangle = 0 |
|
3771 | center_xangle = 0 | |
3391 | center_yangle = 0 |
|
3772 | center_yangle = 0 | |
3392 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) |
|
3773 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) | |
3393 | ntimes = len(range_angle) |
|
3774 | ntimes = len(range_angle) | |
3394 |
|
3775 | |||
3395 | nstepsx = 20 |
|
3776 | nstepsx = 20 | |
3396 | nstepsy = 20 |
|
3777 | nstepsy = 20 | |
3397 |
|
3778 | |||
3398 | for iz in range(ntimes): |
|
3779 | for iz in range(ntimes): | |
3399 | min_xangle = -range_angle[iz]/2 + center_xangle |
|
3780 | min_xangle = -range_angle[iz]/2 + center_xangle | |
3400 | max_xangle = range_angle[iz]/2 + center_xangle |
|
3781 | max_xangle = range_angle[iz]/2 + center_xangle | |
3401 | min_yangle = -range_angle[iz]/2 + center_yangle |
|
3782 | min_yangle = -range_angle[iz]/2 + center_yangle | |
3402 | max_yangle = range_angle[iz]/2 + center_yangle |
|
3783 | max_yangle = range_angle[iz]/2 + center_yangle | |
3403 |
|
3784 | |||
3404 | inc_x = (max_xangle-min_xangle)/nstepsx |
|
3785 | inc_x = (max_xangle-min_xangle)/nstepsx | |
3405 | inc_y = (max_yangle-min_yangle)/nstepsy |
|
3786 | inc_y = (max_yangle-min_yangle)/nstepsy | |
3406 |
|
3787 | |||
3407 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle |
|
3788 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle | |
3408 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle |
|
3789 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle | |
3409 | penalty = numpy.zeros((nstepsx,nstepsy)) |
|
3790 | penalty = numpy.zeros((nstepsx,nstepsy)) | |
3410 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) |
|
3791 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) | |
3411 | jph = numpy.zeros(nchan) |
|
3792 | jph = numpy.zeros(nchan) | |
3412 |
|
3793 | |||
3413 | # Iterations looking for the offset |
|
3794 | # Iterations looking for the offset | |
3414 | for iy in range(int(nstepsy)): |
|
3795 | for iy in range(int(nstepsy)): | |
3415 | for ix in range(int(nstepsx)): |
|
3796 | for ix in range(int(nstepsx)): | |
3416 | d3 = d[pairsList[1][0]] |
|
3797 | d3 = d[pairsList[1][0]] | |
3417 | d2 = d[pairsList[1][1]] |
|
3798 | d2 = d[pairsList[1][1]] | |
3418 | d5 = d[pairsList[0][0]] |
|
3799 | d5 = d[pairsList[0][0]] | |
3419 | d4 = d[pairsList[0][1]] |
|
3800 | d4 = d[pairsList[0][1]] | |
3420 |
|
3801 | |||
3421 | alp2 = alpha_y[iy] #gamma 1 |
|
3802 | alp2 = alpha_y[iy] #gamma 1 | |
3422 | alp4 = alpha_x[ix] #gamma 0 |
|
3803 | alp4 = alpha_x[ix] #gamma 0 | |
3423 |
|
3804 | |||
3424 | alp3 = -alp2*d3/d2 - gammas[1] |
|
3805 | alp3 = -alp2*d3/d2 - gammas[1] | |
3425 | alp5 = -alp4*d5/d4 - gammas[0] |
|
3806 | alp5 = -alp4*d5/d4 - gammas[0] | |
3426 | # jph[pairy[1]] = alpha_y[iy] |
|
3807 | # jph[pairy[1]] = alpha_y[iy] | |
3427 | # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] |
|
3808 | # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] | |
3428 |
|
3809 | |||
3429 | # jph[pairx[1]] = alpha_x[ix] |
|
3810 | # jph[pairx[1]] = alpha_x[ix] | |
3430 | # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] |
|
3811 | # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] | |
3431 | jph[pairsList[0][1]] = alp4 |
|
3812 | jph[pairsList[0][1]] = alp4 | |
3432 | jph[pairsList[0][0]] = alp5 |
|
3813 | jph[pairsList[0][0]] = alp5 | |
3433 | jph[pairsList[1][0]] = alp3 |
|
3814 | jph[pairsList[1][0]] = alp3 | |
3434 | jph[pairsList[1][1]] = alp2 |
|
3815 | jph[pairsList[1][1]] = alp2 | |
3435 | jph_array[:,ix,iy] = jph |
|
3816 | jph_array[:,ix,iy] = jph | |
3436 | # d = [2.0,2.5,2.5,2.0] |
|
3817 | # d = [2.0,2.5,2.5,2.0] | |
3437 | #falta chequear si va a leer bien los meteoros |
|
3818 | #falta chequear si va a leer bien los meteoros | |
3438 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) |
|
3819 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) | |
3439 | error = meteorsArray1[:,-1] |
|
3820 | error = meteorsArray1[:,-1] | |
3440 | ind1 = numpy.where(error==0)[0] |
|
3821 | ind1 = numpy.where(error==0)[0] | |
3441 | penalty[ix,iy] = ind1.size |
|
3822 | penalty[ix,iy] = ind1.size | |
3442 |
|
3823 | |||
3443 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) |
|
3824 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) | |
3444 | phOffset = jph_array[:,i,j] |
|
3825 | phOffset = jph_array[:,i,j] | |
3445 |
|
3826 | |||
3446 | center_xangle = phOffset[pairx[1]] |
|
3827 | center_xangle = phOffset[pairx[1]] | |
3447 | center_yangle = phOffset[pairy[1]] |
|
3828 | center_yangle = phOffset[pairy[1]] | |
3448 |
|
3829 | |||
3449 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) |
|
3830 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) | |
3450 | phOffset = phOffset*180/numpy.pi |
|
3831 | phOffset = phOffset*180/numpy.pi | |
3451 | return phOffset |
|
3832 | return phOffset | |
3452 |
|
3833 | |||
3453 |
|
3834 | |||
3454 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): |
|
3835 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): | |
3455 |
|
3836 | |||
3456 | dataOut.flagNoData = True |
|
3837 | dataOut.flagNoData = True | |
3457 | self.__dataReady = False |
|
3838 | self.__dataReady = False | |
3458 | dataOut.outputInterval = nHours*3600 |
|
3839 | dataOut.outputInterval = nHours*3600 | |
3459 |
|
3840 | |||
3460 | if self.__isConfig == False: |
|
3841 | if self.__isConfig == False: | |
3461 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
3842 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
3462 | #Get Initial LTC time |
|
3843 | #Get Initial LTC time | |
3463 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
3844 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
3464 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
3845 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
3465 |
|
3846 | |||
3466 | self.__isConfig = True |
|
3847 | self.__isConfig = True | |
3467 |
|
3848 | |||
3468 | if self.__buffer is None: |
|
3849 | if self.__buffer is None: | |
3469 | self.__buffer = dataOut.data_param.copy() |
|
3850 | self.__buffer = dataOut.data_param.copy() | |
3470 |
|
3851 | |||
3471 | else: |
|
3852 | else: | |
3472 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
3853 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
3473 |
|
3854 | |||
3474 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
3855 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
3475 |
|
3856 | |||
3476 | if self.__dataReady: |
|
3857 | if self.__dataReady: | |
3477 | dataOut.utctimeInit = self.__initime |
|
3858 | dataOut.utctimeInit = self.__initime | |
3478 | self.__initime += dataOut.outputInterval #to erase time offset |
|
3859 | self.__initime += dataOut.outputInterval #to erase time offset | |
3479 |
|
3860 | |||
3480 | freq = dataOut.frequency |
|
3861 | freq = dataOut.frequency | |
3481 | c = dataOut.C #m/s |
|
3862 | c = dataOut.C #m/s | |
3482 | lamb = c/freq |
|
3863 | lamb = c/freq | |
3483 | k = 2*numpy.pi/lamb |
|
3864 | k = 2*numpy.pi/lamb | |
3484 | azimuth = 0 |
|
3865 | azimuth = 0 | |
3485 | h = (hmin, hmax) |
|
3866 | h = (hmin, hmax) | |
3486 | # pairs = ((0,1),(2,3)) #Estrella |
|
3867 | # pairs = ((0,1),(2,3)) #Estrella | |
3487 | # pairs = ((1,0),(2,3)) #T |
|
3868 | # pairs = ((1,0),(2,3)) #T | |
3488 |
|
3869 | |||
3489 | if channelPositions is None: |
|
3870 | if channelPositions is None: | |
3490 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3871 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
3491 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3872 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
3492 | meteorOps = SMOperations() |
|
3873 | meteorOps = SMOperations() | |
3493 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3874 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
3494 |
|
3875 | |||
3495 | #Checking correct order of pairs |
|
3876 | #Checking correct order of pairs | |
3496 | pairs = [] |
|
3877 | pairs = [] | |
3497 | if distances[1] > distances[0]: |
|
3878 | if distances[1] > distances[0]: | |
3498 | pairs.append((1,0)) |
|
3879 | pairs.append((1,0)) | |
3499 | else: |
|
3880 | else: | |
3500 | pairs.append((0,1)) |
|
3881 | pairs.append((0,1)) | |
3501 |
|
3882 | |||
3502 | if distances[3] > distances[2]: |
|
3883 | if distances[3] > distances[2]: | |
3503 | pairs.append((3,2)) |
|
3884 | pairs.append((3,2)) | |
3504 | else: |
|
3885 | else: | |
3505 | pairs.append((2,3)) |
|
3886 | pairs.append((2,3)) | |
3506 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] |
|
3887 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] | |
3507 |
|
3888 | |||
3508 | meteorsArray = self.__buffer |
|
3889 | meteorsArray = self.__buffer | |
3509 | error = meteorsArray[:,-1] |
|
3890 | error = meteorsArray[:,-1] | |
3510 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) |
|
3891 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) | |
3511 | ind1 = numpy.where(boolError)[0] |
|
3892 | ind1 = numpy.where(boolError)[0] | |
3512 | meteorsArray = meteorsArray[ind1,:] |
|
3893 | meteorsArray = meteorsArray[ind1,:] | |
3513 | meteorsArray[:,-1] = 0 |
|
3894 | meteorsArray[:,-1] = 0 | |
3514 | phases = meteorsArray[:,8:12] |
|
3895 | phases = meteorsArray[:,8:12] | |
3515 |
|
3896 | |||
3516 | #Calculate Gammas |
|
3897 | #Calculate Gammas | |
3517 | gammas = self.__getGammas(pairs, distances, phases) |
|
3898 | gammas = self.__getGammas(pairs, distances, phases) | |
3518 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 |
|
3899 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 | |
3519 | #Calculate Phases |
|
3900 | #Calculate Phases | |
3520 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) |
|
3901 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) | |
3521 | phasesOff = phasesOff.reshape((1,phasesOff.size)) |
|
3902 | phasesOff = phasesOff.reshape((1,phasesOff.size)) | |
3522 | dataOut.data_output = -phasesOff |
|
3903 | dataOut.data_output = -phasesOff | |
3523 | dataOut.flagNoData = False |
|
3904 | dataOut.flagNoData = False | |
3524 | self.__buffer = None |
|
3905 | self.__buffer = None | |
3525 |
|
3906 | |||
3526 |
|
3907 | |||
3527 | return |
|
3908 | return | |
3528 |
|
3909 | |||
3529 | class SMOperations(): |
|
3910 | class SMOperations(): | |
3530 |
|
3911 | |||
3531 | def __init__(self): |
|
3912 | def __init__(self): | |
3532 |
|
3913 | |||
3533 | return |
|
3914 | return | |
3534 |
|
3915 | |||
3535 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): |
|
3916 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): | |
3536 |
|
3917 | |||
3537 | arrayParameters = arrayParameters0.copy() |
|
3918 | arrayParameters = arrayParameters0.copy() | |
3538 | hmin = h[0] |
|
3919 | hmin = h[0] | |
3539 | hmax = h[1] |
|
3920 | hmax = h[1] | |
3540 |
|
3921 | |||
3541 | #Calculate AOA (Error N 3, 4) |
|
3922 | #Calculate AOA (Error N 3, 4) | |
3542 | #JONES ET AL. 1998 |
|
3923 | #JONES ET AL. 1998 | |
3543 | AOAthresh = numpy.pi/8 |
|
3924 | AOAthresh = numpy.pi/8 | |
3544 | error = arrayParameters[:,-1] |
|
3925 | error = arrayParameters[:,-1] | |
3545 | phases = -arrayParameters[:,8:12] + jph |
|
3926 | phases = -arrayParameters[:,8:12] + jph | |
3546 | # phases = numpy.unwrap(phases) |
|
3927 | # phases = numpy.unwrap(phases) | |
3547 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) |
|
3928 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) | |
3548 |
|
3929 | |||
3549 | #Calculate Heights (Error N 13 and 14) |
|
3930 | #Calculate Heights (Error N 13 and 14) | |
3550 | error = arrayParameters[:,-1] |
|
3931 | error = arrayParameters[:,-1] | |
3551 | Ranges = arrayParameters[:,1] |
|
3932 | Ranges = arrayParameters[:,1] | |
3552 | zenith = arrayParameters[:,4] |
|
3933 | zenith = arrayParameters[:,4] | |
3553 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) |
|
3934 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |
3554 |
|
3935 | |||
3555 | #----------------------- Get Final data ------------------------------------ |
|
3936 | #----------------------- Get Final data ------------------------------------ | |
3556 | # error = arrayParameters[:,-1] |
|
3937 | # error = arrayParameters[:,-1] | |
3557 | # ind1 = numpy.where(error==0)[0] |
|
3938 | # ind1 = numpy.where(error==0)[0] | |
3558 | # arrayParameters = arrayParameters[ind1,:] |
|
3939 | # arrayParameters = arrayParameters[ind1,:] | |
3559 |
|
3940 | |||
3560 | return arrayParameters |
|
3941 | return arrayParameters | |
3561 |
|
3942 | |||
3562 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): |
|
3943 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): | |
3563 |
|
3944 | |||
3564 | arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3945 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |
3565 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) |
|
3946 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) | |
3566 |
|
3947 | |||
3567 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3948 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
3568 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3949 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
3569 | arrayAOA[:,2] = cosDirError |
|
3950 | arrayAOA[:,2] = cosDirError | |
3570 |
|
3951 | |||
3571 | azimuthAngle = arrayAOA[:,0] |
|
3952 | azimuthAngle = arrayAOA[:,0] | |
3572 | zenithAngle = arrayAOA[:,1] |
|
3953 | zenithAngle = arrayAOA[:,1] | |
3573 |
|
3954 | |||
3574 | #Setting Error |
|
3955 | #Setting Error | |
3575 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] |
|
3956 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] | |
3576 | error[indError] = 0 |
|
3957 | error[indError] = 0 | |
3577 | #Number 3: AOA not fesible |
|
3958 | #Number 3: AOA not fesible | |
3578 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3959 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
3579 | error[indInvalid] = 3 |
|
3960 | error[indInvalid] = 3 | |
3580 | #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3961 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |
3581 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3962 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
3582 | error[indInvalid] = 4 |
|
3963 | error[indInvalid] = 4 | |
3583 | return arrayAOA, error |
|
3964 | return arrayAOA, error | |
3584 |
|
3965 | |||
3585 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): |
|
3966 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): | |
3586 |
|
3967 | |||
3587 | #Initializing some variables |
|
3968 | #Initializing some variables | |
3588 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3969 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
3589 | ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3970 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |
3590 |
|
3971 | |||
3591 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3972 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
3592 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3973 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
3593 |
|
3974 | |||
3594 |
|
3975 | |||
3595 | for i in range(2): |
|
3976 | for i in range(2): | |
3596 | ph0 = arrayPhase[:,pairsList[i][0]] |
|
3977 | ph0 = arrayPhase[:,pairsList[i][0]] | |
3597 | ph1 = arrayPhase[:,pairsList[i][1]] |
|
3978 | ph1 = arrayPhase[:,pairsList[i][1]] | |
3598 | d0 = distances[pairsList[i][0]] |
|
3979 | d0 = distances[pairsList[i][0]] | |
3599 | d1 = distances[pairsList[i][1]] |
|
3980 | d1 = distances[pairsList[i][1]] | |
3600 |
|
3981 | |||
3601 | ph0_aux = ph0 + ph1 |
|
3982 | ph0_aux = ph0 + ph1 | |
3602 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) |
|
3983 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) | |
3603 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi |
|
3984 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi | |
3604 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi |
|
3985 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi | |
3605 | #First Estimation |
|
3986 | #First Estimation | |
3606 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) |
|
3987 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) | |
3607 |
|
3988 | |||
3608 | #Most-Accurate Second Estimation |
|
3989 | #Most-Accurate Second Estimation | |
3609 | phi1_aux = ph0 - ph1 |
|
3990 | phi1_aux = ph0 - ph1 | |
3610 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3991 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
3611 | #Direction Cosine 1 |
|
3992 | #Direction Cosine 1 | |
3612 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) |
|
3993 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) | |
3613 |
|
3994 | |||
3614 | #Searching the correct Direction Cosine |
|
3995 | #Searching the correct Direction Cosine | |
3615 | cosdir0_aux = cosdir0[:,i] |
|
3996 | cosdir0_aux = cosdir0[:,i] | |
3616 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
3997 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
3617 | #Minimum Distance |
|
3998 | #Minimum Distance | |
3618 | cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
3999 | cosDiff = (cosdir1 - cosdir0_aux)**2 | |
3619 | indcos = cosDiff.argmin(axis = 1) |
|
4000 | indcos = cosDiff.argmin(axis = 1) | |
3620 | #Saving Value obtained |
|
4001 | #Saving Value obtained | |
3621 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
4002 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
3622 |
|
4003 | |||
3623 | return cosdir0, cosdir |
|
4004 | return cosdir0, cosdir | |
3624 |
|
4005 | |||
3625 | def __calculateAOA(self, cosdir, azimuth): |
|
4006 | def __calculateAOA(self, cosdir, azimuth): | |
3626 | cosdirX = cosdir[:,0] |
|
4007 | cosdirX = cosdir[:,0] | |
3627 | cosdirY = cosdir[:,1] |
|
4008 | cosdirY = cosdir[:,1] | |
3628 |
|
4009 | |||
3629 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
4010 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
3630 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east |
|
4011 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east | |
3631 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
4012 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
3632 |
|
4013 | |||
3633 | return angles |
|
4014 | return angles | |
3634 |
|
4015 | |||
3635 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
4016 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
3636 |
|
4017 | |||
3637 | Ramb = 375 #Ramb = c/(2*PRF) |
|
4018 | Ramb = 375 #Ramb = c/(2*PRF) | |
3638 | Re = 6371 #Earth Radius |
|
4019 | Re = 6371 #Earth Radius | |
3639 | heights = numpy.zeros(Ranges.shape) |
|
4020 | heights = numpy.zeros(Ranges.shape) | |
3640 |
|
4021 | |||
3641 | R_aux = numpy.array([0,1,2])*Ramb |
|
4022 | R_aux = numpy.array([0,1,2])*Ramb | |
3642 | R_aux = R_aux.reshape(1,R_aux.size) |
|
4023 | R_aux = R_aux.reshape(1,R_aux.size) | |
3643 |
|
4024 | |||
3644 | Ranges = Ranges.reshape(Ranges.size,1) |
|
4025 | Ranges = Ranges.reshape(Ranges.size,1) | |
3645 |
|
4026 | |||
3646 | Ri = Ranges + R_aux |
|
4027 | Ri = Ranges + R_aux | |
3647 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
4028 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
3648 |
|
4029 | |||
3649 | #Check if there is a height between 70 and 110 km |
|
4030 | #Check if there is a height between 70 and 110 km | |
3650 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
4031 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
3651 | ind_h = numpy.where(h_bool == 1)[0] |
|
4032 | ind_h = numpy.where(h_bool == 1)[0] | |
3652 |
|
4033 | |||
3653 | hCorr = hi[ind_h, :] |
|
4034 | hCorr = hi[ind_h, :] | |
3654 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
4035 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
3655 |
|
4036 | |||
3656 | hCorr = hi[ind_hCorr][:len(ind_h)] |
|
4037 | hCorr = hi[ind_hCorr][:len(ind_h)] | |
3657 | heights[ind_h] = hCorr |
|
4038 | heights[ind_h] = hCorr | |
3658 |
|
4039 | |||
3659 | #Setting Error |
|
4040 | #Setting Error | |
3660 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
4041 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
3661 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
4042 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
3662 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] |
|
4043 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] | |
3663 | error[indError] = 0 |
|
4044 | error[indError] = 0 | |
3664 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
4045 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
3665 | error[indInvalid2] = 14 |
|
4046 | error[indInvalid2] = 14 | |
3666 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
4047 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
3667 | error[indInvalid1] = 13 |
|
4048 | error[indInvalid1] = 13 | |
3668 |
|
4049 | |||
3669 | return heights, error |
|
4050 | return heights, error | |
3670 |
|
4051 | |||
3671 | def getPhasePairs(self, channelPositions): |
|
4052 | def getPhasePairs(self, channelPositions): | |
3672 | chanPos = numpy.array(channelPositions) |
|
4053 | chanPos = numpy.array(channelPositions) | |
3673 | listOper = list(itertools.combinations(list(range(5)),2)) |
|
4054 | listOper = list(itertools.combinations(list(range(5)),2)) | |
3674 |
|
4055 | |||
3675 | distances = numpy.zeros(4) |
|
4056 | distances = numpy.zeros(4) | |
3676 | axisX = [] |
|
4057 | axisX = [] | |
3677 | axisY = [] |
|
4058 | axisY = [] | |
3678 | distX = numpy.zeros(3) |
|
4059 | distX = numpy.zeros(3) | |
3679 | distY = numpy.zeros(3) |
|
4060 | distY = numpy.zeros(3) | |
3680 | ix = 0 |
|
4061 | ix = 0 | |
3681 | iy = 0 |
|
4062 | iy = 0 | |
3682 |
|
4063 | |||
3683 | pairX = numpy.zeros((2,2)) |
|
4064 | pairX = numpy.zeros((2,2)) | |
3684 | pairY = numpy.zeros((2,2)) |
|
4065 | pairY = numpy.zeros((2,2)) | |
3685 |
|
4066 | |||
3686 | for i in range(len(listOper)): |
|
4067 | for i in range(len(listOper)): | |
3687 | pairi = listOper[i] |
|
4068 | pairi = listOper[i] | |
3688 |
|
4069 | |||
3689 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) |
|
4070 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) | |
3690 |
|
4071 | |||
3691 | if posDif[0] == 0: |
|
4072 | if posDif[0] == 0: | |
3692 | axisY.append(pairi) |
|
4073 | axisY.append(pairi) | |
3693 | distY[iy] = posDif[1] |
|
4074 | distY[iy] = posDif[1] | |
3694 | iy += 1 |
|
4075 | iy += 1 | |
3695 | elif posDif[1] == 0: |
|
4076 | elif posDif[1] == 0: | |
3696 | axisX.append(pairi) |
|
4077 | axisX.append(pairi) | |
3697 | distX[ix] = posDif[0] |
|
4078 | distX[ix] = posDif[0] | |
3698 | ix += 1 |
|
4079 | ix += 1 | |
3699 |
|
4080 | |||
3700 | for i in range(2): |
|
4081 | for i in range(2): | |
3701 | if i==0: |
|
4082 | if i==0: | |
3702 | dist0 = distX |
|
4083 | dist0 = distX | |
3703 | axis0 = axisX |
|
4084 | axis0 = axisX | |
3704 | else: |
|
4085 | else: | |
3705 | dist0 = distY |
|
4086 | dist0 = distY | |
3706 | axis0 = axisY |
|
4087 | axis0 = axisY | |
3707 |
|
4088 | |||
3708 | side = numpy.argsort(dist0)[:-1] |
|
4089 | side = numpy.argsort(dist0)[:-1] | |
3709 | axis0 = numpy.array(axis0)[side,:] |
|
4090 | axis0 = numpy.array(axis0)[side,:] | |
3710 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) |
|
4091 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) | |
3711 | axis1 = numpy.unique(numpy.reshape(axis0,4)) |
|
4092 | axis1 = numpy.unique(numpy.reshape(axis0,4)) | |
3712 | side = axis1[axis1 != chanC] |
|
4093 | side = axis1[axis1 != chanC] | |
3713 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] |
|
4094 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] | |
3714 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] |
|
4095 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] | |
3715 | if diff1<0: |
|
4096 | if diff1<0: | |
3716 | chan2 = side[0] |
|
4097 | chan2 = side[0] | |
3717 | d2 = numpy.abs(diff1) |
|
4098 | d2 = numpy.abs(diff1) | |
3718 | chan1 = side[1] |
|
4099 | chan1 = side[1] | |
3719 | d1 = numpy.abs(diff2) |
|
4100 | d1 = numpy.abs(diff2) | |
3720 | else: |
|
4101 | else: | |
3721 | chan2 = side[1] |
|
4102 | chan2 = side[1] | |
3722 | d2 = numpy.abs(diff2) |
|
4103 | d2 = numpy.abs(diff2) | |
3723 | chan1 = side[0] |
|
4104 | chan1 = side[0] | |
3724 | d1 = numpy.abs(diff1) |
|
4105 | d1 = numpy.abs(diff1) | |
3725 |
|
4106 | |||
3726 | if i==0: |
|
4107 | if i==0: | |
3727 | chanCX = chanC |
|
4108 | chanCX = chanC | |
3728 | chan1X = chan1 |
|
4109 | chan1X = chan1 | |
3729 | chan2X = chan2 |
|
4110 | chan2X = chan2 | |
3730 | distances[0:2] = numpy.array([d1,d2]) |
|
4111 | distances[0:2] = numpy.array([d1,d2]) | |
3731 | else: |
|
4112 | else: | |
3732 | chanCY = chanC |
|
4113 | chanCY = chanC | |
3733 | chan1Y = chan1 |
|
4114 | chan1Y = chan1 | |
3734 | chan2Y = chan2 |
|
4115 | chan2Y = chan2 | |
3735 | distances[2:4] = numpy.array([d1,d2]) |
|
4116 | distances[2:4] = numpy.array([d1,d2]) | |
3736 | # axisXsides = numpy.reshape(axisX[ix,:],4) |
|
4117 | # axisXsides = numpy.reshape(axisX[ix,:],4) | |
3737 | # |
|
4118 | # | |
3738 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) |
|
4119 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) | |
3739 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) |
|
4120 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) | |
3740 | # |
|
4121 | # | |
3741 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] |
|
4122 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] | |
3742 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] |
|
4123 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] | |
3743 | # channel25X = int(pairX[0,ind25X]) |
|
4124 | # channel25X = int(pairX[0,ind25X]) | |
3744 | # channel20X = int(pairX[1,ind20X]) |
|
4125 | # channel20X = int(pairX[1,ind20X]) | |
3745 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] |
|
4126 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] | |
3746 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] |
|
4127 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] | |
3747 | # channel25Y = int(pairY[0,ind25Y]) |
|
4128 | # channel25Y = int(pairY[0,ind25Y]) | |
3748 | # channel20Y = int(pairY[1,ind20Y]) |
|
4129 | # channel20Y = int(pairY[1,ind20Y]) | |
3749 |
|
4130 | |||
3750 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] |
|
4131 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] | |
3751 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] |
|
4132 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] | |
3752 |
|
4133 | |||
3753 | return pairslist, distances |
|
4134 | return pairslist, distances | |
3754 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
4135 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |
3755 | # |
|
4136 | # | |
3756 | # arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
4137 | # arrayAOA = numpy.zeros((phases.shape[0],3)) | |
3757 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
4138 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |
3758 | # |
|
4139 | # | |
3759 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
4140 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
3760 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
4141 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
3761 | # arrayAOA[:,2] = cosDirError |
|
4142 | # arrayAOA[:,2] = cosDirError | |
3762 | # |
|
4143 | # | |
3763 | # azimuthAngle = arrayAOA[:,0] |
|
4144 | # azimuthAngle = arrayAOA[:,0] | |
3764 | # zenithAngle = arrayAOA[:,1] |
|
4145 | # zenithAngle = arrayAOA[:,1] | |
3765 | # |
|
4146 | # | |
3766 | # #Setting Error |
|
4147 | # #Setting Error | |
3767 | # #Number 3: AOA not fesible |
|
4148 | # #Number 3: AOA not fesible | |
3768 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
4149 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
3769 | # error[indInvalid] = 3 |
|
4150 | # error[indInvalid] = 3 | |
3770 | # #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
4151 | # #Number 4: Large difference in AOAs obtained from different antenna baselines | |
3771 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
4152 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
3772 | # error[indInvalid] = 4 |
|
4153 | # error[indInvalid] = 4 | |
3773 | # return arrayAOA, error |
|
4154 | # return arrayAOA, error | |
3774 | # |
|
4155 | # | |
3775 | # def __getDirectionCosines(self, arrayPhase, pairsList): |
|
4156 | # def __getDirectionCosines(self, arrayPhase, pairsList): | |
3776 | # |
|
4157 | # | |
3777 | # #Initializing some variables |
|
4158 | # #Initializing some variables | |
3778 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
4159 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
3779 | # ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
4160 | # ang_aux = ang_aux.reshape(1,ang_aux.size) | |
3780 | # |
|
4161 | # | |
3781 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
4162 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
3782 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
4163 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
3783 | # |
|
4164 | # | |
3784 | # |
|
4165 | # | |
3785 | # for i in range(2): |
|
4166 | # for i in range(2): | |
3786 | # #First Estimation |
|
4167 | # #First Estimation | |
3787 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
4168 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |
3788 | # #Dealias |
|
4169 | # #Dealias | |
3789 | # indcsi = numpy.where(phi0_aux > numpy.pi) |
|
4170 | # indcsi = numpy.where(phi0_aux > numpy.pi) | |
3790 | # phi0_aux[indcsi] -= 2*numpy.pi |
|
4171 | # phi0_aux[indcsi] -= 2*numpy.pi | |
3791 | # indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
4172 | # indcsi = numpy.where(phi0_aux < -numpy.pi) | |
3792 | # phi0_aux[indcsi] += 2*numpy.pi |
|
4173 | # phi0_aux[indcsi] += 2*numpy.pi | |
3793 | # #Direction Cosine 0 |
|
4174 | # #Direction Cosine 0 | |
3794 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
4175 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |
3795 | # |
|
4176 | # | |
3796 | # #Most-Accurate Second Estimation |
|
4177 | # #Most-Accurate Second Estimation | |
3797 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
4178 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |
3798 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
4179 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
3799 | # #Direction Cosine 1 |
|
4180 | # #Direction Cosine 1 | |
3800 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) |
|
4181 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |
3801 | # |
|
4182 | # | |
3802 | # #Searching the correct Direction Cosine |
|
4183 | # #Searching the correct Direction Cosine | |
3803 | # cosdir0_aux = cosdir0[:,i] |
|
4184 | # cosdir0_aux = cosdir0[:,i] | |
3804 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
4185 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
3805 | # #Minimum Distance |
|
4186 | # #Minimum Distance | |
3806 | # cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
4187 | # cosDiff = (cosdir1 - cosdir0_aux)**2 | |
3807 | # indcos = cosDiff.argmin(axis = 1) |
|
4188 | # indcos = cosDiff.argmin(axis = 1) | |
3808 | # #Saving Value obtained |
|
4189 | # #Saving Value obtained | |
3809 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
4190 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
3810 | # |
|
4191 | # | |
3811 | # return cosdir0, cosdir |
|
4192 | # return cosdir0, cosdir | |
3812 | # |
|
4193 | # | |
3813 | # def __calculateAOA(self, cosdir, azimuth): |
|
4194 | # def __calculateAOA(self, cosdir, azimuth): | |
3814 | # cosdirX = cosdir[:,0] |
|
4195 | # cosdirX = cosdir[:,0] | |
3815 | # cosdirY = cosdir[:,1] |
|
4196 | # cosdirY = cosdir[:,1] | |
3816 | # |
|
4197 | # | |
3817 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
4198 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
3818 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east |
|
4199 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |
3819 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
4200 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
3820 | # |
|
4201 | # | |
3821 | # return angles |
|
4202 | # return angles | |
3822 | # |
|
4203 | # | |
3823 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
4204 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
3824 | # |
|
4205 | # | |
3825 | # Ramb = 375 #Ramb = c/(2*PRF) |
|
4206 | # Ramb = 375 #Ramb = c/(2*PRF) | |
3826 | # Re = 6371 #Earth Radius |
|
4207 | # Re = 6371 #Earth Radius | |
3827 | # heights = numpy.zeros(Ranges.shape) |
|
4208 | # heights = numpy.zeros(Ranges.shape) | |
3828 | # |
|
4209 | # | |
3829 | # R_aux = numpy.array([0,1,2])*Ramb |
|
4210 | # R_aux = numpy.array([0,1,2])*Ramb | |
3830 | # R_aux = R_aux.reshape(1,R_aux.size) |
|
4211 | # R_aux = R_aux.reshape(1,R_aux.size) | |
3831 | # |
|
4212 | # | |
3832 | # Ranges = Ranges.reshape(Ranges.size,1) |
|
4213 | # Ranges = Ranges.reshape(Ranges.size,1) | |
3833 | # |
|
4214 | # | |
3834 | # Ri = Ranges + R_aux |
|
4215 | # Ri = Ranges + R_aux | |
3835 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
4216 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
3836 | # |
|
4217 | # | |
3837 | # #Check if there is a height between 70 and 110 km |
|
4218 | # #Check if there is a height between 70 and 110 km | |
3838 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
4219 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
3839 | # ind_h = numpy.where(h_bool == 1)[0] |
|
4220 | # ind_h = numpy.where(h_bool == 1)[0] | |
3840 | # |
|
4221 | # | |
3841 | # hCorr = hi[ind_h, :] |
|
4222 | # hCorr = hi[ind_h, :] | |
3842 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
4223 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
3843 | # |
|
4224 | # | |
3844 | # hCorr = hi[ind_hCorr] |
|
4225 | # hCorr = hi[ind_hCorr] | |
3845 | # heights[ind_h] = hCorr |
|
4226 | # heights[ind_h] = hCorr | |
3846 | # |
|
4227 | # | |
3847 | # #Setting Error |
|
4228 | # #Setting Error | |
3848 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
4229 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
3849 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
4230 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
3850 | # |
|
4231 | # | |
3851 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
4232 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
3852 | # error[indInvalid2] = 14 |
|
4233 | # error[indInvalid2] = 14 | |
3853 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
4234 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
3854 | # error[indInvalid1] = 13 |
|
4235 | # error[indInvalid1] = 13 | |
3855 | # |
|
4236 | # | |
3856 | # return heights, error |
|
4237 | # return heights, error | |
3857 | No newline at end of file |
|
4238 |
General Comments 0
You need to be logged in to leave comments.
Login now