This diff has been collapsed as it changes many lines, (909 lines changed) Show them Hide them | |||
@@ -0,0 +1,909 | |||
|
1 | import numpy | |
|
2 | ||
|
3 | from jroproc_base import ProcessingUnit, Operation | |
|
4 | from schainpy.model.data.jrodata import Spectra | |
|
5 | from schainpy.model.data.jrodata import hildebrand_sekhon | |
|
6 | ||
|
7 | class SpectraLagsProc(ProcessingUnit): | |
|
8 | ||
|
9 | def __init__(self): | |
|
10 | ||
|
11 | ProcessingUnit.__init__(self) | |
|
12 | ||
|
13 | self.buffer = None | |
|
14 | self.firstdatatime = None | |
|
15 | self.profIndex = 0 | |
|
16 | self.dataOut = Spectra() | |
|
17 | self.id_min = None | |
|
18 | self.id_max = None | |
|
19 | ||
|
20 | def __updateSpecFromVoltage(self): | |
|
21 | ||
|
22 | self.dataOut.timeZone = self.dataIn.timeZone | |
|
23 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
|
24 | self.dataOut.errorCount = self.dataIn.errorCount | |
|
25 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
|
26 | ||
|
27 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
|
28 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
|
29 | self.dataOut.ippSeconds = self.dataIn.getDeltaH()*(10**-6)/0.15 | |
|
30 | ||
|
31 | self.dataOut.channelList = self.dataIn.channelList | |
|
32 | self.dataOut.heightList = self.dataIn.heightList | |
|
33 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
|
34 | ||
|
35 | self.dataOut.nBaud = self.dataIn.nBaud | |
|
36 | self.dataOut.nCode = self.dataIn.nCode | |
|
37 | self.dataOut.code = self.dataIn.code | |
|
38 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
|
39 | ||
|
40 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
|
41 | self.dataOut.utctime = self.firstdatatime | |
|
42 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
|
43 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
|
44 | self.dataOut.flagShiftFFT = False | |
|
45 | ||
|
46 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
|
47 | self.dataOut.nIncohInt = 1 | |
|
48 | ||
|
49 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
|
50 | ||
|
51 | self.dataOut.frequency = self.dataIn.frequency | |
|
52 | self.dataOut.realtime = self.dataIn.realtime | |
|
53 | ||
|
54 | self.dataOut.azimuth = self.dataIn.azimuth | |
|
55 | self.dataOut.zenith = self.dataIn.zenith | |
|
56 | ||
|
57 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |
|
58 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |
|
59 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |
|
60 | ||
|
61 | def __decodeData(self, nProfiles, code): | |
|
62 | ||
|
63 | if code is None: | |
|
64 | return | |
|
65 | ||
|
66 | for i in range(nProfiles): | |
|
67 | self.buffer[:,i,:] = self.buffer[:,i,:]*code[0][i] | |
|
68 | ||
|
69 | def __getFft(self): | |
|
70 | """ | |
|
71 | Convierte valores de Voltaje a Spectra | |
|
72 | ||
|
73 | Affected: | |
|
74 | self.dataOut.data_spc | |
|
75 | self.dataOut.data_cspc | |
|
76 | self.dataOut.data_dc | |
|
77 | self.dataOut.heightList | |
|
78 | self.profIndex | |
|
79 | self.buffer | |
|
80 | self.dataOut.flagNoData | |
|
81 | """ | |
|
82 | nsegments = self.dataOut.nHeights | |
|
83 | ||
|
84 | _fft_buffer = numpy.zeros((self.dataOut.nChannels, self.dataOut.nProfiles, nsegments), dtype='complex') | |
|
85 | ||
|
86 | for i in range(nsegments): | |
|
87 | try: | |
|
88 | _fft_buffer[:,:,i] = self.buffer[:,i:i+self.dataOut.nProfiles] | |
|
89 | ||
|
90 | if self.code is not None: | |
|
91 | _fft_buffer[:,:,i] = _fft_buffer[:,:,i]*self.code[0] | |
|
92 | except: | |
|
93 | pass | |
|
94 | ||
|
95 | fft_volt = numpy.fft.fft(_fft_buffer, n=self.dataOut.nFFTPoints, axis=1) | |
|
96 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |
|
97 | dc = fft_volt[:,0,:] | |
|
98 | ||
|
99 | #calculo de self-spectra | |
|
100 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) | |
|
101 | spc = fft_volt * numpy.conjugate(fft_volt) | |
|
102 | spc = spc.real | |
|
103 | ||
|
104 | blocksize = 0 | |
|
105 | blocksize += dc.size | |
|
106 | blocksize += spc.size | |
|
107 | ||
|
108 | cspc = None | |
|
109 | pairIndex = 0 | |
|
110 | ||
|
111 | if self.dataOut.pairsList != None: | |
|
112 | #calculo de cross-spectra | |
|
113 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |
|
114 | for pair in self.dataOut.pairsList: | |
|
115 | if pair[0] not in self.dataOut.channelList: | |
|
116 | raise ValueError, "Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList)) | |
|
117 | if pair[1] not in self.dataOut.channelList: | |
|
118 | raise ValueError, "Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList)) | |
|
119 | ||
|
120 | chan_index0 = self.dataOut.channelList.index(pair[0]) | |
|
121 | chan_index1 = self.dataOut.channelList.index(pair[1]) | |
|
122 | ||
|
123 | cspc[pairIndex,:,:] = fft_volt[chan_index0,:,:] * numpy.conjugate(fft_volt[chan_index1,:,:]) | |
|
124 | pairIndex += 1 | |
|
125 | blocksize += cspc.size | |
|
126 | ||
|
127 | self.dataOut.data_spc = spc | |
|
128 | self.dataOut.data_cspc = cspc | |
|
129 | self.dataOut.data_dc = dc | |
|
130 | self.dataOut.blockSize = blocksize | |
|
131 | self.dataOut.flagShiftFFT = True | |
|
132 | ||
|
133 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], code=None, nCode=1, nBaud=1): | |
|
134 | ||
|
135 | self.dataOut.flagNoData = True | |
|
136 | ||
|
137 | if code is not None: | |
|
138 | self.code = numpy.array(code).reshape(nCode,nBaud) | |
|
139 | else: | |
|
140 | self.code = None | |
|
141 | ||
|
142 | if self.dataIn.type == "Voltage": | |
|
143 | ||
|
144 | if nFFTPoints == None: | |
|
145 | raise ValueError, "This SpectraProc.run() need nFFTPoints input variable" | |
|
146 | ||
|
147 | if nProfiles == None: | |
|
148 | nProfiles = nFFTPoints | |
|
149 | ||
|
150 | self.dataOut.ippFactor = 1 | |
|
151 | ||
|
152 | self.dataOut.nFFTPoints = nFFTPoints | |
|
153 | self.dataOut.pairsList = pairsList | |
|
154 | ||
|
155 | # if self.buffer is None: | |
|
156 | # self.buffer = numpy.zeros( (self.dataIn.nChannels, nProfiles, self.dataIn.nHeights), | |
|
157 | # dtype='complex') | |
|
158 | ||
|
159 | if not self.dataIn.flagDataAsBlock: | |
|
160 | self.buffer = self.dataIn.data.copy() | |
|
161 | ||
|
162 | # for i in range(self.dataIn.nHeights): | |
|
163 | # self.buffer[:, self.profIndex, self.profIndex:] = voltage_data[:,:self.dataIn.nHeights - self.profIndex] | |
|
164 | # | |
|
165 | # self.profIndex += 1 | |
|
166 | ||
|
167 | else: | |
|
168 | raise ValueError, "" | |
|
169 | ||
|
170 | self.firstdatatime = self.dataIn.utctime | |
|
171 | ||
|
172 | self.profIndex == nProfiles | |
|
173 | ||
|
174 | self.__updateSpecFromVoltage() | |
|
175 | ||
|
176 | self.__getFft() | |
|
177 | ||
|
178 | self.dataOut.flagNoData = False | |
|
179 | ||
|
180 | return True | |
|
181 | ||
|
182 | raise ValueError, "The type of input object '%s' is not valid"%(self.dataIn.type) | |
|
183 | ||
|
184 | def __selectPairs(self, pairsList): | |
|
185 | ||
|
186 | if channelList == None: | |
|
187 | return | |
|
188 | ||
|
189 | pairsIndexListSelected = [] | |
|
190 | ||
|
191 | for thisPair in pairsList: | |
|
192 | ||
|
193 | if thisPair not in self.dataOut.pairsList: | |
|
194 | continue | |
|
195 | ||
|
196 | pairIndex = self.dataOut.pairsList.index(thisPair) | |
|
197 | ||
|
198 | pairsIndexListSelected.append(pairIndex) | |
|
199 | ||
|
200 | if not pairsIndexListSelected: | |
|
201 | self.dataOut.data_cspc = None | |
|
202 | self.dataOut.pairsList = [] | |
|
203 | return | |
|
204 | ||
|
205 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |
|
206 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] | |
|
207 | ||
|
208 | return | |
|
209 | ||
|
210 | def __selectPairsByChannel(self, channelList=None): | |
|
211 | ||
|
212 | if channelList == None: | |
|
213 | return | |
|
214 | ||
|
215 | pairsIndexListSelected = [] | |
|
216 | for pairIndex in self.dataOut.pairsIndexList: | |
|
217 | #First pair | |
|
218 | if self.dataOut.pairsList[pairIndex][0] not in channelList: | |
|
219 | continue | |
|
220 | #Second pair | |
|
221 | if self.dataOut.pairsList[pairIndex][1] not in channelList: | |
|
222 | continue | |
|
223 | ||
|
224 | pairsIndexListSelected.append(pairIndex) | |
|
225 | ||
|
226 | if not pairsIndexListSelected: | |
|
227 | self.dataOut.data_cspc = None | |
|
228 | self.dataOut.pairsList = [] | |
|
229 | return | |
|
230 | ||
|
231 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |
|
232 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] | |
|
233 | ||
|
234 | return | |
|
235 | ||
|
236 | def selectChannels(self, channelList): | |
|
237 | ||
|
238 | channelIndexList = [] | |
|
239 | ||
|
240 | for channel in channelList: | |
|
241 | if channel not in self.dataOut.channelList: | |
|
242 | raise ValueError, "Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" %(channel, str(self.dataOut.channelList)) | |
|
243 | ||
|
244 | index = self.dataOut.channelList.index(channel) | |
|
245 | channelIndexList.append(index) | |
|
246 | ||
|
247 | self.selectChannelsByIndex(channelIndexList) | |
|
248 | ||
|
249 | def selectChannelsByIndex(self, channelIndexList): | |
|
250 | """ | |
|
251 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
|
252 | ||
|
253 | Input: | |
|
254 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
|
255 | ||
|
256 | Affected: | |
|
257 | self.dataOut.data_spc | |
|
258 | self.dataOut.channelIndexList | |
|
259 | self.dataOut.nChannels | |
|
260 | ||
|
261 | Return: | |
|
262 | None | |
|
263 | """ | |
|
264 | ||
|
265 | for channelIndex in channelIndexList: | |
|
266 | if channelIndex not in self.dataOut.channelIndexList: | |
|
267 | raise ValueError, "Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " %(channelIndex, self.dataOut.channelIndexList) | |
|
268 | ||
|
269 | # nChannels = len(channelIndexList) | |
|
270 | ||
|
271 | data_spc = self.dataOut.data_spc[channelIndexList,:] | |
|
272 | data_dc = self.dataOut.data_dc[channelIndexList,:] | |
|
273 | ||
|
274 | self.dataOut.data_spc = data_spc | |
|
275 | self.dataOut.data_dc = data_dc | |
|
276 | ||
|
277 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
|
278 | # self.dataOut.nChannels = nChannels | |
|
279 | ||
|
280 | self.__selectPairsByChannel(self.dataOut.channelList) | |
|
281 | ||
|
282 | return 1 | |
|
283 | ||
|
284 | def selectHeights(self, minHei, maxHei): | |
|
285 | """ | |
|
286 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
|
287 | minHei <= height <= maxHei | |
|
288 | ||
|
289 | Input: | |
|
290 | minHei : valor minimo de altura a considerar | |
|
291 | maxHei : valor maximo de altura a considerar | |
|
292 | ||
|
293 | Affected: | |
|
294 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |
|
295 | ||
|
296 | Return: | |
|
297 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
|
298 | """ | |
|
299 | ||
|
300 | if (minHei > maxHei): | |
|
301 | raise ValueError, "Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei) | |
|
302 | ||
|
303 | if (minHei < self.dataOut.heightList[0]): | |
|
304 | minHei = self.dataOut.heightList[0] | |
|
305 | ||
|
306 | if (maxHei > self.dataOut.heightList[-1]): | |
|
307 | maxHei = self.dataOut.heightList[-1] | |
|
308 | ||
|
309 | minIndex = 0 | |
|
310 | maxIndex = 0 | |
|
311 | heights = self.dataOut.heightList | |
|
312 | ||
|
313 | inda = numpy.where(heights >= minHei) | |
|
314 | indb = numpy.where(heights <= maxHei) | |
|
315 | ||
|
316 | try: | |
|
317 | minIndex = inda[0][0] | |
|
318 | except: | |
|
319 | minIndex = 0 | |
|
320 | ||
|
321 | try: | |
|
322 | maxIndex = indb[0][-1] | |
|
323 | except: | |
|
324 | maxIndex = len(heights) | |
|
325 | ||
|
326 | self.selectHeightsByIndex(minIndex, maxIndex) | |
|
327 | ||
|
328 | return 1 | |
|
329 | ||
|
330 | def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None): | |
|
331 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
|
332 | ||
|
333 | if hei_ref != None: | |
|
334 | newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
|
335 | ||
|
336 | minIndex = min(newheis[0]) | |
|
337 | maxIndex = max(newheis[0]) | |
|
338 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] | |
|
339 | heightList = self.dataOut.heightList[minIndex:maxIndex+1] | |
|
340 | ||
|
341 | # determina indices | |
|
342 | nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0])) | |
|
343 | avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0)) | |
|
344 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |
|
345 | beacon_heiIndexList = [] | |
|
346 | for val in avg_dB.tolist(): | |
|
347 | if val >= beacon_dB[0]: | |
|
348 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |
|
349 | ||
|
350 | #data_spc = data_spc[:,:,beacon_heiIndexList] | |
|
351 | data_cspc = None | |
|
352 | if self.dataOut.data_cspc is not None: | |
|
353 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] | |
|
354 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] | |
|
355 | ||
|
356 | data_dc = None | |
|
357 | if self.dataOut.data_dc is not None: | |
|
358 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] | |
|
359 | #data_dc = data_dc[:,beacon_heiIndexList] | |
|
360 | ||
|
361 | self.dataOut.data_spc = data_spc | |
|
362 | self.dataOut.data_cspc = data_cspc | |
|
363 | self.dataOut.data_dc = data_dc | |
|
364 | self.dataOut.heightList = heightList | |
|
365 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |
|
366 | ||
|
367 | return 1 | |
|
368 | ||
|
369 | ||
|
370 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
|
371 | """ | |
|
372 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
|
373 | minIndex <= index <= maxIndex | |
|
374 | ||
|
375 | Input: | |
|
376 | minIndex : valor de indice minimo de altura a considerar | |
|
377 | maxIndex : valor de indice maximo de altura a considerar | |
|
378 | ||
|
379 | Affected: | |
|
380 | self.dataOut.data_spc | |
|
381 | self.dataOut.data_cspc | |
|
382 | self.dataOut.data_dc | |
|
383 | self.dataOut.heightList | |
|
384 | ||
|
385 | Return: | |
|
386 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
|
387 | """ | |
|
388 | ||
|
389 | if (minIndex < 0) or (minIndex > maxIndex): | |
|
390 | raise ValueError, "Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex) | |
|
391 | ||
|
392 | if (maxIndex >= self.dataOut.nHeights): | |
|
393 | maxIndex = self.dataOut.nHeights-1 | |
|
394 | ||
|
395 | #Spectra | |
|
396 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] | |
|
397 | ||
|
398 | data_cspc = None | |
|
399 | if self.dataOut.data_cspc is not None: | |
|
400 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] | |
|
401 | ||
|
402 | data_dc = None | |
|
403 | if self.dataOut.data_dc is not None: | |
|
404 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] | |
|
405 | ||
|
406 | self.dataOut.data_spc = data_spc | |
|
407 | self.dataOut.data_cspc = data_cspc | |
|
408 | self.dataOut.data_dc = data_dc | |
|
409 | ||
|
410 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] | |
|
411 | ||
|
412 | return 1 | |
|
413 | ||
|
414 | def removeDC(self, mode = 2): | |
|
415 | jspectra = self.dataOut.data_spc | |
|
416 | jcspectra = self.dataOut.data_cspc | |
|
417 | ||
|
418 | ||
|
419 | num_chan = jspectra.shape[0] | |
|
420 | num_hei = jspectra.shape[2] | |
|
421 | ||
|
422 | if jcspectra is not None: | |
|
423 | jcspectraExist = True | |
|
424 | num_pairs = jcspectra.shape[0] | |
|
425 | else: jcspectraExist = False | |
|
426 | ||
|
427 | freq_dc = jspectra.shape[1]/2 | |
|
428 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc | |
|
429 | ||
|
430 | if ind_vel[0]<0: | |
|
431 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof | |
|
432 | ||
|
433 | if mode == 1: | |
|
434 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION | |
|
435 | ||
|
436 | if jcspectraExist: | |
|
437 | jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2 | |
|
438 | ||
|
439 | if mode == 2: | |
|
440 | ||
|
441 | vel = numpy.array([-2,-1,1,2]) | |
|
442 | xx = numpy.zeros([4,4]) | |
|
443 | ||
|
444 | for fil in range(4): | |
|
445 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) | |
|
446 | ||
|
447 | xx_inv = numpy.linalg.inv(xx) | |
|
448 | xx_aux = xx_inv[0,:] | |
|
449 | ||
|
450 | for ich in range(num_chan): | |
|
451 | yy = jspectra[ich,ind_vel,:] | |
|
452 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) | |
|
453 | ||
|
454 | junkid = jspectra[ich,freq_dc,:]<=0 | |
|
455 | cjunkid = sum(junkid) | |
|
456 | ||
|
457 | if cjunkid.any(): | |
|
458 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 | |
|
459 | ||
|
460 | if jcspectraExist: | |
|
461 | for ip in range(num_pairs): | |
|
462 | yy = jcspectra[ip,ind_vel,:] | |
|
463 | jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy) | |
|
464 | ||
|
465 | ||
|
466 | self.dataOut.data_spc = jspectra | |
|
467 | self.dataOut.data_cspc = jcspectra | |
|
468 | ||
|
469 | return 1 | |
|
470 | ||
|
471 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): | |
|
472 | ||
|
473 | jspectra = self.dataOut.data_spc | |
|
474 | jcspectra = self.dataOut.data_cspc | |
|
475 | jnoise = self.dataOut.getNoise() | |
|
476 | num_incoh = self.dataOut.nIncohInt | |
|
477 | ||
|
478 | num_channel = jspectra.shape[0] | |
|
479 | num_prof = jspectra.shape[1] | |
|
480 | num_hei = jspectra.shape[2] | |
|
481 | ||
|
482 | #hei_interf | |
|
483 | if hei_interf is None: | |
|
484 | count_hei = num_hei/2 #Como es entero no importa | |
|
485 | hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei | |
|
486 | hei_interf = numpy.asarray(hei_interf)[0] | |
|
487 | #nhei_interf | |
|
488 | if (nhei_interf == None): | |
|
489 | nhei_interf = 5 | |
|
490 | if (nhei_interf < 1): | |
|
491 | nhei_interf = 1 | |
|
492 | if (nhei_interf > count_hei): | |
|
493 | nhei_interf = count_hei | |
|
494 | if (offhei_interf == None): | |
|
495 | offhei_interf = 0 | |
|
496 | ||
|
497 | ind_hei = range(num_hei) | |
|
498 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |
|
499 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |
|
500 | mask_prof = numpy.asarray(range(num_prof)) | |
|
501 | num_mask_prof = mask_prof.size | |
|
502 | comp_mask_prof = [0, num_prof/2] | |
|
503 | ||
|
504 | ||
|
505 | #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |
|
506 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |
|
507 | jnoise = numpy.nan | |
|
508 | noise_exist = jnoise[0] < numpy.Inf | |
|
509 | ||
|
510 | #Subrutina de Remocion de la Interferencia | |
|
511 | for ich in range(num_channel): | |
|
512 | #Se ordena los espectros segun su potencia (menor a mayor) | |
|
513 | power = jspectra[ich,mask_prof,:] | |
|
514 | power = power[:,hei_interf] | |
|
515 | power = power.sum(axis = 0) | |
|
516 | psort = power.ravel().argsort() | |
|
517 | ||
|
518 | #Se estima la interferencia promedio en los Espectros de Potencia empleando | |
|
519 | junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]] | |
|
520 | ||
|
521 | if noise_exist: | |
|
522 | # tmp_noise = jnoise[ich] / num_prof | |
|
523 | tmp_noise = jnoise[ich] | |
|
524 | junkspc_interf = junkspc_interf - tmp_noise | |
|
525 | #junkspc_interf[:,comp_mask_prof] = 0 | |
|
526 | ||
|
527 | jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf | |
|
528 | jspc_interf = jspc_interf.transpose() | |
|
529 | #Calculando el espectro de interferencia promedio | |
|
530 | noiseid = numpy.where(jspc_interf <= tmp_noise/ numpy.sqrt(num_incoh)) | |
|
531 | noiseid = noiseid[0] | |
|
532 | cnoiseid = noiseid.size | |
|
533 | interfid = numpy.where(jspc_interf > tmp_noise/ numpy.sqrt(num_incoh)) | |
|
534 | interfid = interfid[0] | |
|
535 | cinterfid = interfid.size | |
|
536 | ||
|
537 | if (cnoiseid > 0): jspc_interf[noiseid] = 0 | |
|
538 | ||
|
539 | #Expandiendo los perfiles a limpiar | |
|
540 | if (cinterfid > 0): | |
|
541 | new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof | |
|
542 | new_interfid = numpy.asarray(new_interfid) | |
|
543 | new_interfid = {x for x in new_interfid} | |
|
544 | new_interfid = numpy.array(list(new_interfid)) | |
|
545 | new_cinterfid = new_interfid.size | |
|
546 | else: new_cinterfid = 0 | |
|
547 | ||
|
548 | for ip in range(new_cinterfid): | |
|
549 | ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort() | |
|
550 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]] | |
|
551 | ||
|
552 | ||
|
553 | jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices | |
|
554 | ||
|
555 | #Removiendo la interferencia del punto de mayor interferencia | |
|
556 | ListAux = jspc_interf[mask_prof].tolist() | |
|
557 | maxid = ListAux.index(max(ListAux)) | |
|
558 | ||
|
559 | ||
|
560 | if cinterfid > 0: | |
|
561 | for ip in range(cinterfid*(interf == 2) - 1): | |
|
562 | ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/numpy.sqrt(num_incoh))).nonzero() | |
|
563 | cind = len(ind) | |
|
564 | ||
|
565 | if (cind > 0): | |
|
566 | jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/numpy.sqrt(num_incoh)) | |
|
567 | ||
|
568 | ind = numpy.array([-2,-1,1,2]) | |
|
569 | xx = numpy.zeros([4,4]) | |
|
570 | ||
|
571 | for id1 in range(4): | |
|
572 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) | |
|
573 | ||
|
574 | xx_inv = numpy.linalg.inv(xx) | |
|
575 | xx = xx_inv[:,0] | |
|
576 | ind = (ind + maxid + num_mask_prof)%num_mask_prof | |
|
577 | yy = jspectra[ich,mask_prof[ind],:] | |
|
578 | jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) | |
|
579 | ||
|
580 | ||
|
581 | indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/numpy.sqrt(num_incoh))).nonzero() | |
|
582 | jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/numpy.sqrt(num_incoh)) | |
|
583 | ||
|
584 | #Remocion de Interferencia en el Cross Spectra | |
|
585 | if jcspectra is None: return jspectra, jcspectra | |
|
586 | num_pairs = jcspectra.size/(num_prof*num_hei) | |
|
587 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |
|
588 | ||
|
589 | for ip in range(num_pairs): | |
|
590 | ||
|
591 | #------------------------------------------- | |
|
592 | ||
|
593 | cspower = numpy.abs(jcspectra[ip,mask_prof,:]) | |
|
594 | cspower = cspower[:,hei_interf] | |
|
595 | cspower = cspower.sum(axis = 0) | |
|
596 | ||
|
597 | cspsort = cspower.ravel().argsort() | |
|
598 | junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]] | |
|
599 | junkcspc_interf = junkcspc_interf.transpose() | |
|
600 | jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf | |
|
601 | ||
|
602 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |
|
603 | ||
|
604 | median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) | |
|
605 | median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) | |
|
606 | junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag) | |
|
607 | ||
|
608 | for iprof in range(num_prof): | |
|
609 | ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort() | |
|
610 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]] | |
|
611 | ||
|
612 | #Removiendo la Interferencia | |
|
613 | jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf | |
|
614 | ||
|
615 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |
|
616 | maxid = ListAux.index(max(ListAux)) | |
|
617 | ||
|
618 | ind = numpy.array([-2,-1,1,2]) | |
|
619 | xx = numpy.zeros([4,4]) | |
|
620 | ||
|
621 | for id1 in range(4): | |
|
622 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) | |
|
623 | ||
|
624 | xx_inv = numpy.linalg.inv(xx) | |
|
625 | xx = xx_inv[:,0] | |
|
626 | ||
|
627 | ind = (ind + maxid + num_mask_prof)%num_mask_prof | |
|
628 | yy = jcspectra[ip,mask_prof[ind],:] | |
|
629 | jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) | |
|
630 | ||
|
631 | #Guardar Resultados | |
|
632 | self.dataOut.data_spc = jspectra | |
|
633 | self.dataOut.data_cspc = jcspectra | |
|
634 | ||
|
635 | return 1 | |
|
636 | ||
|
637 | def setRadarFrequency(self, frequency=None): | |
|
638 | ||
|
639 | if frequency != None: | |
|
640 | self.dataOut.frequency = frequency | |
|
641 | ||
|
642 | return 1 | |
|
643 | ||
|
644 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |
|
645 | #validacion de rango | |
|
646 | if minHei == None: | |
|
647 | minHei = self.dataOut.heightList[0] | |
|
648 | ||
|
649 | if maxHei == None: | |
|
650 | maxHei = self.dataOut.heightList[-1] | |
|
651 | ||
|
652 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
|
653 | print 'minHei: %.2f is out of the heights range'%(minHei) | |
|
654 | print 'minHei is setting to %.2f'%(self.dataOut.heightList[0]) | |
|
655 | minHei = self.dataOut.heightList[0] | |
|
656 | ||
|
657 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
|
658 | print 'maxHei: %.2f is out of the heights range'%(maxHei) | |
|
659 | print 'maxHei is setting to %.2f'%(self.dataOut.heightList[-1]) | |
|
660 | maxHei = self.dataOut.heightList[-1] | |
|
661 | ||
|
662 | # validacion de velocidades | |
|
663 | velrange = self.dataOut.getVelRange(1) | |
|
664 | ||
|
665 | if minVel == None: | |
|
666 | minVel = velrange[0] | |
|
667 | ||
|
668 | if maxVel == None: | |
|
669 | maxVel = velrange[-1] | |
|
670 | ||
|
671 | if (minVel < velrange[0]) or (minVel > maxVel): | |
|
672 | print 'minVel: %.2f is out of the velocity range'%(minVel) | |
|
673 | print 'minVel is setting to %.2f'%(velrange[0]) | |
|
674 | minVel = velrange[0] | |
|
675 | ||
|
676 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
|
677 | print 'maxVel: %.2f is out of the velocity range'%(maxVel) | |
|
678 | print 'maxVel is setting to %.2f'%(velrange[-1]) | |
|
679 | maxVel = velrange[-1] | |
|
680 | ||
|
681 | # seleccion de indices para rango | |
|
682 | minIndex = 0 | |
|
683 | maxIndex = 0 | |
|
684 | heights = self.dataOut.heightList | |
|
685 | ||
|
686 | inda = numpy.where(heights >= minHei) | |
|
687 | indb = numpy.where(heights <= maxHei) | |
|
688 | ||
|
689 | try: | |
|
690 | minIndex = inda[0][0] | |
|
691 | except: | |
|
692 | minIndex = 0 | |
|
693 | ||
|
694 | try: | |
|
695 | maxIndex = indb[0][-1] | |
|
696 | except: | |
|
697 | maxIndex = len(heights) | |
|
698 | ||
|
699 | if (minIndex < 0) or (minIndex > maxIndex): | |
|
700 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) | |
|
701 | ||
|
702 | if (maxIndex >= self.dataOut.nHeights): | |
|
703 | maxIndex = self.dataOut.nHeights-1 | |
|
704 | ||
|
705 | # seleccion de indices para velocidades | |
|
706 | indminvel = numpy.where(velrange >= minVel) | |
|
707 | indmaxvel = numpy.where(velrange <= maxVel) | |
|
708 | try: | |
|
709 | minIndexVel = indminvel[0][0] | |
|
710 | except: | |
|
711 | minIndexVel = 0 | |
|
712 | ||
|
713 | try: | |
|
714 | maxIndexVel = indmaxvel[0][-1] | |
|
715 | except: | |
|
716 | maxIndexVel = len(velrange) | |
|
717 | ||
|
718 | #seleccion del espectro | |
|
719 | data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1] | |
|
720 | #estimacion de ruido | |
|
721 | noise = numpy.zeros(self.dataOut.nChannels) | |
|
722 | ||
|
723 | for channel in range(self.dataOut.nChannels): | |
|
724 | daux = data_spc[channel,:,:] | |
|
725 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) | |
|
726 | ||
|
727 | self.dataOut.noise_estimation = noise.copy() | |
|
728 | ||
|
729 | return 1 | |
|
730 | ||
|
731 | class IncohIntLags(Operation): | |
|
732 | ||
|
733 | ||
|
734 | __profIndex = 0 | |
|
735 | __withOverapping = False | |
|
736 | ||
|
737 | __byTime = False | |
|
738 | __initime = None | |
|
739 | __lastdatatime = None | |
|
740 | __integrationtime = None | |
|
741 | ||
|
742 | __buffer_spc = None | |
|
743 | __buffer_cspc = None | |
|
744 | __buffer_dc = None | |
|
745 | ||
|
746 | __dataReady = False | |
|
747 | ||
|
748 | __timeInterval = None | |
|
749 | ||
|
750 | n = None | |
|
751 | ||
|
752 | ||
|
753 | ||
|
754 | def __init__(self): | |
|
755 | ||
|
756 | Operation.__init__(self) | |
|
757 | # self.isConfig = False | |
|
758 | ||
|
759 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
|
760 | """ | |
|
761 | Set the parameters of the integration class. | |
|
762 | ||
|
763 | Inputs: | |
|
764 | ||
|
765 | n : Number of coherent integrations | |
|
766 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
|
767 | overlapping : | |
|
768 | ||
|
769 | """ | |
|
770 | ||
|
771 | self.__initime = None | |
|
772 | self.__lastdatatime = 0 | |
|
773 | ||
|
774 | self.__buffer_spc = 0 | |
|
775 | self.__buffer_cspc = 0 | |
|
776 | self.__buffer_dc = 0 | |
|
777 | ||
|
778 | self.__profIndex = 0 | |
|
779 | self.__dataReady = False | |
|
780 | self.__byTime = False | |
|
781 | ||
|
782 | if n is None and timeInterval is None: | |
|
783 | raise ValueError, "n or timeInterval should be specified ..." | |
|
784 | ||
|
785 | if n is not None: | |
|
786 | self.n = int(n) | |
|
787 | else: | |
|
788 | self.__integrationtime = int(timeInterval) #if (type(timeInterval)!=integer) -> change this line | |
|
789 | self.n = None | |
|
790 | self.__byTime = True | |
|
791 | ||
|
792 | def putData(self, data_spc, data_cspc, data_dc): | |
|
793 | ||
|
794 | """ | |
|
795 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
|
796 | ||
|
797 | """ | |
|
798 | ||
|
799 | self.__buffer_spc += data_spc | |
|
800 | ||
|
801 | if data_cspc is None: | |
|
802 | self.__buffer_cspc = None | |
|
803 | else: | |
|
804 | self.__buffer_cspc += data_cspc | |
|
805 | ||
|
806 | if data_dc is None: | |
|
807 | self.__buffer_dc = None | |
|
808 | else: | |
|
809 | self.__buffer_dc += data_dc | |
|
810 | ||
|
811 | self.__profIndex += 1 | |
|
812 | ||
|
813 | return | |
|
814 | ||
|
815 | def pushData(self): | |
|
816 | """ | |
|
817 | Return the sum of the last profiles and the profiles used in the sum. | |
|
818 | ||
|
819 | Affected: | |
|
820 | ||
|
821 | self.__profileIndex | |
|
822 | ||
|
823 | """ | |
|
824 | ||
|
825 | data_spc = self.__buffer_spc | |
|
826 | data_cspc = self.__buffer_cspc | |
|
827 | data_dc = self.__buffer_dc | |
|
828 | n = self.__profIndex | |
|
829 | ||
|
830 | self.__buffer_spc = 0 | |
|
831 | self.__buffer_cspc = 0 | |
|
832 | self.__buffer_dc = 0 | |
|
833 | self.__profIndex = 0 | |
|
834 | ||
|
835 | return data_spc, data_cspc, data_dc, n | |
|
836 | ||
|
837 | def byProfiles(self, *args): | |
|
838 | ||
|
839 | self.__dataReady = False | |
|
840 | avgdata_spc = None | |
|
841 | avgdata_cspc = None | |
|
842 | avgdata_dc = None | |
|
843 | ||
|
844 | self.putData(*args) | |
|
845 | ||
|
846 | if self.__profIndex == self.n: | |
|
847 | ||
|
848 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
|
849 | self.n = n | |
|
850 | self.__dataReady = True | |
|
851 | ||
|
852 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
|
853 | ||
|
854 | def byTime(self, datatime, *args): | |
|
855 | ||
|
856 | self.__dataReady = False | |
|
857 | avgdata_spc = None | |
|
858 | avgdata_cspc = None | |
|
859 | avgdata_dc = None | |
|
860 | ||
|
861 | self.putData(*args) | |
|
862 | ||
|
863 | if (datatime - self.__initime) >= self.__integrationtime: | |
|
864 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
|
865 | self.n = n | |
|
866 | self.__dataReady = True | |
|
867 | ||
|
868 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
|
869 | ||
|
870 | def integrate(self, datatime, *args): | |
|
871 | ||
|
872 | if self.__profIndex == 0: | |
|
873 | self.__initime = datatime | |
|
874 | ||
|
875 | if self.__byTime: | |
|
876 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args) | |
|
877 | else: | |
|
878 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
|
879 | ||
|
880 | if not self.__dataReady: | |
|
881 | return None, None, None, None | |
|
882 | ||
|
883 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |
|
884 | ||
|
885 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | |
|
886 | ||
|
887 | if n==1: | |
|
888 | return | |
|
889 | ||
|
890 | dataOut.flagNoData = True | |
|
891 | ||
|
892 | if not self.isConfig: | |
|
893 | self.setup(n, timeInterval, overlapping) | |
|
894 | self.isConfig = True | |
|
895 | ||
|
896 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |
|
897 | dataOut.data_spc, | |
|
898 | dataOut.data_cspc, | |
|
899 | dataOut.data_dc) | |
|
900 | ||
|
901 | if self.__dataReady: | |
|
902 | ||
|
903 | dataOut.data_spc = avgdata_spc | |
|
904 | dataOut.data_cspc = avgdata_cspc | |
|
905 | dataOut.data_dc = avgdata_dc | |
|
906 | ||
|
907 | dataOut.nIncohInt *= self.n | |
|
908 | dataOut.utctime = avgdatatime | |
|
909 | dataOut.flagNoData = False |
@@ -9,4 +9,5 from jroproc_spectra import * | |||
|
9 | 9 | from jroproc_heispectra import * |
|
10 | 10 | from jroproc_amisr import * |
|
11 | 11 | from jroproc_correlation import * |
|
12 | from jroproc_parameters import * No newline at end of file | |
|
12 | from jroproc_parameters import * | |
|
13 | from jroproc_spectra_lags import * No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now