@@ -1,1174 +1,1182 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Definition of diferent Data objects for different types of data |
|
6 | 6 | |
|
7 | 7 | Here you will find the diferent data objects for the different types |
|
8 | 8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
9 | 9 | processing units and operations. Currently the supported data objects are: |
|
10 | 10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
11 | 11 | """ |
|
12 | 12 | |
|
13 | 13 | import copy |
|
14 | 14 | import numpy |
|
15 | 15 | import datetime |
|
16 | 16 | import json |
|
17 | 17 | |
|
18 | 18 | import schainpy.admin |
|
19 | 19 | from schainpy.utils import log |
|
20 | 20 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
21 | 21 | from schainpy.model.data import _noise |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def getNumpyDtype(dataTypeCode): |
|
25 | 25 | |
|
26 | 26 | if dataTypeCode == 0: |
|
27 | 27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
28 | 28 | elif dataTypeCode == 1: |
|
29 | 29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
30 | 30 | elif dataTypeCode == 2: |
|
31 | 31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
32 | 32 | elif dataTypeCode == 3: |
|
33 | 33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
34 | 34 | elif dataTypeCode == 4: |
|
35 | 35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
36 | 36 | elif dataTypeCode == 5: |
|
37 | 37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
38 | 38 | else: |
|
39 | 39 | raise ValueError('dataTypeCode was not defined') |
|
40 | 40 | |
|
41 | 41 | return numpyDtype |
|
42 | 42 | |
|
43 | 43 | |
|
44 | 44 | def getDataTypeCode(numpyDtype): |
|
45 | 45 | |
|
46 | 46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
47 | 47 | datatype = 0 |
|
48 | 48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
49 | 49 | datatype = 1 |
|
50 | 50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
51 | 51 | datatype = 2 |
|
52 | 52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
53 | 53 | datatype = 3 |
|
54 | 54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
55 | 55 | datatype = 4 |
|
56 | 56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
57 | 57 | datatype = 5 |
|
58 | 58 | else: |
|
59 | 59 | datatype = None |
|
60 | 60 | |
|
61 | 61 | return datatype |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | def hildebrand_sekhon(data, navg): |
|
65 | 65 | """ |
|
66 | 66 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
67 | 67 | implementation technique is based on the fact that the standard deviation of the spectral |
|
68 | 68 | densities is equal to the mean spectral density for white Gaussian noise |
|
69 | 69 | |
|
70 | 70 | Inputs: |
|
71 | 71 | Data : heights |
|
72 | 72 | navg : numbers of averages |
|
73 | 73 | |
|
74 | 74 | Return: |
|
75 | 75 | mean : noise's level |
|
76 | 76 | """ |
|
77 | 77 | |
|
78 | 78 | sortdata = numpy.sort(data, axis=None) |
|
79 | 79 | #print(numpy.shape(data)) |
|
80 | 80 | #exit() |
|
81 | 81 | ''' |
|
82 | 82 | lenOfData = len(sortdata) |
|
83 | 83 | nums_min = lenOfData*0.2 |
|
84 | 84 | |
|
85 | 85 | if nums_min <= 5: |
|
86 | 86 | |
|
87 | 87 | nums_min = 5 |
|
88 | 88 | |
|
89 | 89 | sump = 0. |
|
90 | 90 | sumq = 0. |
|
91 | 91 | |
|
92 | 92 | j = 0 |
|
93 | 93 | cont = 1 |
|
94 | 94 | |
|
95 | 95 | while((cont == 1)and(j < lenOfData)): |
|
96 | 96 | |
|
97 | 97 | sump += sortdata[j] |
|
98 | 98 | sumq += sortdata[j]**2 |
|
99 | 99 | |
|
100 | 100 | if j > nums_min: |
|
101 | 101 | rtest = float(j)/(j-1) + 1.0/navg |
|
102 | 102 | if ((sumq*j) > (rtest*sump**2)): |
|
103 | 103 | j = j - 1 |
|
104 | 104 | sump = sump - sortdata[j] |
|
105 | 105 | sumq = sumq - sortdata[j]**2 |
|
106 | 106 | cont = 0 |
|
107 | 107 | |
|
108 | 108 | j += 1 |
|
109 | 109 | |
|
110 | 110 | lnoise = sump / j |
|
111 | 111 | ''' |
|
112 | 112 | return _noise.hildebrand_sekhon(sortdata, navg) |
|
113 | 113 | |
|
114 | 114 | |
|
115 | 115 | class Beam: |
|
116 | 116 | |
|
117 | 117 | def __init__(self): |
|
118 | 118 | self.codeList = [] |
|
119 | 119 | self.azimuthList = [] |
|
120 | 120 | self.zenithList = [] |
|
121 | 121 | |
|
122 | 122 | |
|
123 | 123 | class GenericData(object): |
|
124 | 124 | |
|
125 | 125 | flagNoData = True |
|
126 | 126 | blockReader = False |
|
127 | 127 | |
|
128 | 128 | def copy(self, inputObj=None): |
|
129 | 129 | |
|
130 | 130 | if inputObj == None: |
|
131 | 131 | return copy.deepcopy(self) |
|
132 | 132 | |
|
133 | 133 | for key in list(inputObj.__dict__.keys()): |
|
134 | 134 | |
|
135 | 135 | attribute = inputObj.__dict__[key] |
|
136 | 136 | |
|
137 | 137 | # If this attribute is a tuple or list |
|
138 | 138 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
139 | 139 | self.__dict__[key] = attribute[:] |
|
140 | 140 | continue |
|
141 | 141 | |
|
142 | 142 | # If this attribute is another object or instance |
|
143 | 143 | if hasattr(attribute, '__dict__'): |
|
144 | 144 | self.__dict__[key] = attribute.copy() |
|
145 | 145 | continue |
|
146 | 146 | |
|
147 | 147 | self.__dict__[key] = inputObj.__dict__[key] |
|
148 | 148 | |
|
149 | 149 | def deepcopy(self): |
|
150 | 150 | |
|
151 | 151 | return copy.deepcopy(self) |
|
152 | 152 | |
|
153 | 153 | def isEmpty(self): |
|
154 | 154 | |
|
155 | 155 | return self.flagNoData |
|
156 | 156 | |
|
157 | 157 | def isReady(self): |
|
158 | 158 | |
|
159 | 159 | return not self.flagNoData |
|
160 | 160 | |
|
161 | 161 | |
|
162 | 162 | class JROData(GenericData): |
|
163 | 163 | |
|
164 | 164 | systemHeaderObj = SystemHeader() |
|
165 | 165 | radarControllerHeaderObj = RadarControllerHeader() |
|
166 | 166 | type = None |
|
167 | 167 | datatype = None # dtype but in string |
|
168 | 168 | nProfiles = None |
|
169 | 169 | heightList = None |
|
170 | 170 | channelList = None |
|
171 | 171 | flagDiscontinuousBlock = False |
|
172 | 172 | useLocalTime = False |
|
173 | 173 | utctime = None |
|
174 | 174 | timeZone = None |
|
175 | 175 | dstFlag = None |
|
176 | 176 | errorCount = None |
|
177 | 177 | blocksize = None |
|
178 | 178 | flagDecodeData = False # asumo q la data no esta decodificada |
|
179 | 179 | flagDeflipData = False # asumo q la data no esta sin flip |
|
180 | 180 | flagShiftFFT = False |
|
181 | 181 | nCohInt = None |
|
182 | 182 | windowOfFilter = 1 |
|
183 | 183 | C = 3e8 |
|
184 | 184 | frequency = 49.92e6 |
|
185 | 185 | realtime = False |
|
186 | 186 | beacon_heiIndexList = None |
|
187 | 187 | last_block = None |
|
188 | 188 | blocknow = None |
|
189 | 189 | azimuth = None |
|
190 | 190 | zenith = None |
|
191 | 191 | beam = Beam() |
|
192 | 192 | profileIndex = None |
|
193 | 193 | error = None |
|
194 | 194 | data = None |
|
195 | 195 | nmodes = None |
|
196 | 196 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
197 | 197 | |
|
198 | 198 | def __str__(self): |
|
199 | 199 | |
|
200 | 200 | try: |
|
201 | 201 | dt = self.datatime |
|
202 | 202 | except: |
|
203 | 203 | dt = 'None' |
|
204 | 204 | return '{} - {}'.format(self.type, dt) |
|
205 | 205 | |
|
206 | 206 | def getNoise(self): |
|
207 | 207 | |
|
208 | 208 | raise NotImplementedError |
|
209 | 209 | |
|
210 | 210 | @property |
|
211 | 211 | def nChannels(self): |
|
212 | 212 | |
|
213 | 213 | return len(self.channelList) |
|
214 | 214 | |
|
215 | 215 | @property |
|
216 | 216 | def channelIndexList(self): |
|
217 | 217 | |
|
218 | 218 | return list(range(self.nChannels)) |
|
219 | 219 | |
|
220 | 220 | @property |
|
221 | 221 | def nHeights(self): |
|
222 | 222 | |
|
223 | 223 | return len(self.heightList) |
|
224 | 224 | |
|
225 | 225 | def getDeltaH(self): |
|
226 | 226 | |
|
227 | 227 | return self.heightList[1] - self.heightList[0] |
|
228 | 228 | |
|
229 | 229 | @property |
|
230 | 230 | def ltctime(self): |
|
231 | 231 | |
|
232 | 232 | if self.useLocalTime: |
|
233 | 233 | return self.utctime - self.timeZone * 60 |
|
234 | 234 | |
|
235 | 235 | return self.utctime |
|
236 | 236 | |
|
237 | 237 | @property |
|
238 | 238 | def datatime(self): |
|
239 | 239 | |
|
240 | 240 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
241 | 241 | return datatimeValue |
|
242 | 242 | |
|
243 | 243 | def getTimeRange(self): |
|
244 | 244 | |
|
245 | 245 | datatime = [] |
|
246 | 246 | |
|
247 | 247 | datatime.append(self.ltctime) |
|
248 | 248 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
249 | 249 | |
|
250 | 250 | datatime = numpy.array(datatime) |
|
251 | 251 | |
|
252 | 252 | return datatime |
|
253 | 253 | |
|
254 | 254 | def getFmaxTimeResponse(self): |
|
255 | 255 | |
|
256 | 256 | period = (10 ** -6) * self.getDeltaH() / (0.15) |
|
257 | 257 | |
|
258 | 258 | PRF = 1. / (period * self.nCohInt) |
|
259 | 259 | |
|
260 | 260 | fmax = PRF |
|
261 | 261 | |
|
262 | 262 | return fmax |
|
263 | 263 | |
|
264 | 264 | def getFmax(self): |
|
265 | 265 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
266 | 266 | |
|
267 | 267 | fmax = PRF |
|
268 | 268 | return fmax |
|
269 | 269 | |
|
270 | 270 | def getVmax(self): |
|
271 | 271 | |
|
272 | 272 | _lambda = self.C / self.frequency |
|
273 | 273 | |
|
274 | 274 | vmax = self.getFmax() * _lambda / 2 |
|
275 | 275 | |
|
276 | 276 | return vmax |
|
277 | 277 | |
|
278 | 278 | @property |
|
279 | 279 | def ippSeconds(self): |
|
280 | 280 | ''' |
|
281 | 281 | ''' |
|
282 | 282 | return self.radarControllerHeaderObj.ippSeconds |
|
283 | 283 | |
|
284 | 284 | @ippSeconds.setter |
|
285 | 285 | def ippSeconds(self, ippSeconds): |
|
286 | 286 | ''' |
|
287 | 287 | ''' |
|
288 | 288 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
289 | 289 | |
|
290 | 290 | @property |
|
291 | 291 | def code(self): |
|
292 | 292 | ''' |
|
293 | 293 | ''' |
|
294 | 294 | return self.radarControllerHeaderObj.code |
|
295 | 295 | |
|
296 | 296 | @code.setter |
|
297 | 297 | def code(self, code): |
|
298 | 298 | ''' |
|
299 | 299 | ''' |
|
300 | 300 | self.radarControllerHeaderObj.code = code |
|
301 | 301 | |
|
302 | 302 | @property |
|
303 | 303 | def nCode(self): |
|
304 | 304 | ''' |
|
305 | 305 | ''' |
|
306 | 306 | return self.radarControllerHeaderObj.nCode |
|
307 | 307 | |
|
308 | 308 | @nCode.setter |
|
309 | 309 | def nCode(self, ncode): |
|
310 | 310 | ''' |
|
311 | 311 | ''' |
|
312 | 312 | self.radarControllerHeaderObj.nCode = ncode |
|
313 | 313 | |
|
314 | 314 | @property |
|
315 | 315 | def nBaud(self): |
|
316 | 316 | ''' |
|
317 | 317 | ''' |
|
318 | 318 | return self.radarControllerHeaderObj.nBaud |
|
319 | 319 | |
|
320 | 320 | @nBaud.setter |
|
321 | 321 | def nBaud(self, nbaud): |
|
322 | 322 | ''' |
|
323 | 323 | ''' |
|
324 | 324 | self.radarControllerHeaderObj.nBaud = nbaud |
|
325 | 325 | |
|
326 | 326 | @property |
|
327 | 327 | def ipp(self): |
|
328 | 328 | ''' |
|
329 | 329 | ''' |
|
330 | 330 | return self.radarControllerHeaderObj.ipp |
|
331 | 331 | |
|
332 | 332 | @ipp.setter |
|
333 | 333 | def ipp(self, ipp): |
|
334 | 334 | ''' |
|
335 | 335 | ''' |
|
336 | 336 | self.radarControllerHeaderObj.ipp = ipp |
|
337 | 337 | |
|
338 | 338 | @property |
|
339 | 339 | def metadata(self): |
|
340 | 340 | ''' |
|
341 | 341 | ''' |
|
342 | 342 | |
|
343 | 343 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
344 | 344 | |
|
345 | 345 | |
|
346 | 346 | class Voltage(JROData): |
|
347 | 347 | |
|
348 | 348 | dataPP_POW = None |
|
349 | 349 | dataPP_DOP = None |
|
350 | 350 | dataPP_WIDTH = None |
|
351 | 351 | dataPP_SNR = None |
|
352 | 352 | |
|
353 | 353 | def __init__(self): |
|
354 | 354 | ''' |
|
355 | 355 | Constructor |
|
356 | 356 | ''' |
|
357 | 357 | |
|
358 | 358 | self.useLocalTime = True |
|
359 | 359 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
360 | 360 | self.systemHeaderObj = SystemHeader() |
|
361 | 361 | self.type = "Voltage" |
|
362 | 362 | self.data = None |
|
363 | 363 | self.nProfiles = None |
|
364 | 364 | self.heightList = None |
|
365 | 365 | self.channelList = None |
|
366 | 366 | self.flagNoData = True |
|
367 | 367 | self.flagDiscontinuousBlock = False |
|
368 | 368 | self.utctime = None |
|
369 | 369 | self.timeZone = 0 |
|
370 | 370 | self.dstFlag = None |
|
371 | 371 | self.errorCount = None |
|
372 | 372 | self.nCohInt = None |
|
373 | 373 | self.blocksize = None |
|
374 | 374 | self.flagCohInt = False |
|
375 | 375 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
376 | 376 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
377 | 377 | self.flagShiftFFT = False |
|
378 | 378 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
379 | 379 | self.profileIndex = 0 |
|
380 | 380 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
381 | 381 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
382 | 382 | |
|
383 | 383 | def getNoisebyHildebrand(self, channel=None): |
|
384 | 384 | """ |
|
385 | 385 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
386 | 386 | |
|
387 | 387 | Return: |
|
388 | 388 | noiselevel |
|
389 | 389 | """ |
|
390 | 390 | |
|
391 | 391 | if channel != None: |
|
392 | 392 | data = self.data[channel] |
|
393 | 393 | nChannels = 1 |
|
394 | 394 | else: |
|
395 | 395 | data = self.data |
|
396 | 396 | nChannels = self.nChannels |
|
397 | 397 | |
|
398 | 398 | noise = numpy.zeros(nChannels) |
|
399 | 399 | power = data * numpy.conjugate(data) |
|
400 | 400 | |
|
401 | 401 | for thisChannel in range(nChannels): |
|
402 | 402 | if nChannels == 1: |
|
403 | 403 | daux = power[:].real |
|
404 | 404 | else: |
|
405 | 405 | daux = power[thisChannel, :].real |
|
406 | 406 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
407 | 407 | |
|
408 | 408 | return noise |
|
409 | 409 | |
|
410 | 410 | def getNoise(self, type=1, channel=None): |
|
411 | 411 | |
|
412 | 412 | if type == 1: |
|
413 | 413 | noise = self.getNoisebyHildebrand(channel) |
|
414 | 414 | |
|
415 | 415 | return noise |
|
416 | 416 | |
|
417 | 417 | def getPower(self, channel=None): |
|
418 | 418 | |
|
419 | 419 | if channel != None: |
|
420 | 420 | data = self.data[channel] |
|
421 | 421 | else: |
|
422 | 422 | data = self.data |
|
423 | 423 | |
|
424 | 424 | power = data * numpy.conjugate(data) |
|
425 | 425 | powerdB = 10 * numpy.log10(power.real) |
|
426 | 426 | powerdB = numpy.squeeze(powerdB) |
|
427 | 427 | |
|
428 | 428 | return powerdB |
|
429 | 429 | |
|
430 | 430 | @property |
|
431 | 431 | def timeInterval(self): |
|
432 | 432 | |
|
433 | 433 | return self.ippSeconds * self.nCohInt |
|
434 | 434 | |
|
435 | 435 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
436 | 436 | |
|
437 | 437 | |
|
438 | 438 | class CrossProds(JROData): |
|
439 | 439 | |
|
440 | 440 | # data es un numpy array de 2 dmensiones (canales, alturas) |
|
441 | 441 | data = None |
|
442 | 442 | |
|
443 | 443 | def __init__(self): |
|
444 | 444 | ''' |
|
445 | 445 | Constructor |
|
446 | 446 | ''' |
|
447 | 447 | |
|
448 | 448 | self.useLocalTime = True |
|
449 | 449 | ''' |
|
450 | 450 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
451 | 451 | self.systemHeaderObj = SystemHeader() |
|
452 | 452 | self.type = "Voltage" |
|
453 | 453 | self.data = None |
|
454 | 454 | # self.dtype = None |
|
455 | 455 | # self.nChannels = 0 |
|
456 | 456 | # self.nHeights = 0 |
|
457 | 457 | self.nProfiles = None |
|
458 | 458 | self.heightList = None |
|
459 | 459 | self.channelList = None |
|
460 | 460 | # self.channelIndexList = None |
|
461 | 461 | self.flagNoData = True |
|
462 | 462 | self.flagDiscontinuousBlock = False |
|
463 | 463 | self.utctime = None |
|
464 | 464 | self.timeZone = None |
|
465 | 465 | self.dstFlag = None |
|
466 | 466 | self.errorCount = None |
|
467 | 467 | self.nCohInt = None |
|
468 | 468 | self.blocksize = None |
|
469 | 469 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
470 | 470 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
471 | 471 | self.flagShiftFFT = False |
|
472 | 472 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
473 | 473 | self.profileIndex = 0 |
|
474 | 474 | |
|
475 | 475 | |
|
476 | 476 | def getNoisebyHildebrand(self, channel=None): |
|
477 | 477 | |
|
478 | 478 | |
|
479 | 479 | if channel != None: |
|
480 | 480 | data = self.data[channel] |
|
481 | 481 | nChannels = 1 |
|
482 | 482 | else: |
|
483 | 483 | data = self.data |
|
484 | 484 | nChannels = self.nChannels |
|
485 | 485 | |
|
486 | 486 | noise = numpy.zeros(nChannels) |
|
487 | 487 | power = data * numpy.conjugate(data) |
|
488 | 488 | |
|
489 | 489 | for thisChannel in range(nChannels): |
|
490 | 490 | if nChannels == 1: |
|
491 | 491 | daux = power[:].real |
|
492 | 492 | else: |
|
493 | 493 | daux = power[thisChannel, :].real |
|
494 | 494 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
495 | 495 | |
|
496 | 496 | return noise |
|
497 | 497 | |
|
498 | 498 | def getNoise(self, type=1, channel=None): |
|
499 | 499 | |
|
500 | 500 | if type == 1: |
|
501 | 501 | noise = self.getNoisebyHildebrand(channel) |
|
502 | 502 | |
|
503 | 503 | return noise |
|
504 | 504 | |
|
505 | 505 | def getPower(self, channel=None): |
|
506 | 506 | |
|
507 | 507 | if channel != None: |
|
508 | 508 | data = self.data[channel] |
|
509 | 509 | else: |
|
510 | 510 | data = self.data |
|
511 | 511 | |
|
512 | 512 | power = data * numpy.conjugate(data) |
|
513 | 513 | powerdB = 10 * numpy.log10(power.real) |
|
514 | 514 | powerdB = numpy.squeeze(powerdB) |
|
515 | 515 | |
|
516 | 516 | return powerdB |
|
517 | 517 | |
|
518 | 518 | def getTimeInterval(self): |
|
519 | 519 | |
|
520 | 520 | timeInterval = self.ippSeconds * self.nCohInt |
|
521 | 521 | |
|
522 | 522 | return timeInterval |
|
523 | 523 | |
|
524 | 524 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
525 | 525 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
526 | 526 | ''' |
|
527 | 527 | def getTimeInterval(self): |
|
528 | 528 | |
|
529 | 529 | timeInterval = self.ippSeconds * self.nCohInt |
|
530 | 530 | |
|
531 | 531 | return timeInterval |
|
532 | 532 | |
|
533 | 533 | |
|
534 | 534 | |
|
535 | 535 | class Spectra(JROData): |
|
536 | 536 | |
|
537 | 537 | def __init__(self): |
|
538 | 538 | ''' |
|
539 | 539 | Constructor |
|
540 | 540 | ''' |
|
541 | 541 | |
|
542 | 542 | self.data_dc = None |
|
543 | 543 | self.data_spc = None |
|
544 | 544 | self.data_cspc = None |
|
545 | self.diffcspectra = None # JULIA processing | |
|
545 | 546 | self.useLocalTime = True |
|
546 | 547 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
547 | 548 | self.systemHeaderObj = SystemHeader() |
|
548 | 549 | self.type = "Spectra" |
|
549 | 550 | self.timeZone = 0 |
|
550 | 551 | self.nProfiles = None |
|
551 | 552 | self.heightList = None |
|
552 | 553 | self.channelList = None |
|
553 | 554 | self.pairsList = None |
|
554 | 555 | self.flagNoData = True |
|
555 | 556 | self.flagDiscontinuousBlock = False |
|
556 | 557 | self.utctime = None |
|
557 | 558 | self.nCohInt = None |
|
558 | 559 | self.nIncohInt = None |
|
559 | 560 | self.blocksize = None |
|
560 | 561 | self.nFFTPoints = None |
|
561 | 562 | self.wavelength = None |
|
562 | 563 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
563 | 564 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
564 | 565 | self.flagShiftFFT = False |
|
565 | 566 | self.ippFactor = 1 |
|
566 | 567 | self.beacon_heiIndexList = [] |
|
567 | 568 | self.noise_estimation = None |
|
568 | 569 | self.spc_noise = None |
|
569 | 570 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
570 | 571 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp', 'nIncohInt', 'nFFTPoints', 'nProfiles', 'flagDecodeData'] |
|
572 | ||
|
571 | 573 | |
|
572 | 574 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
573 | 575 | """ |
|
574 | 576 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
575 | 577 | |
|
576 | 578 | Return: |
|
577 | 579 | noiselevel |
|
578 | 580 | """ |
|
579 | 581 | |
|
580 | 582 | noise = numpy.zeros(self.nChannels) |
|
581 | 583 | |
|
582 | 584 | for channel in range(self.nChannels): |
|
583 | 585 | daux = self.data_spc[channel, |
|
584 | 586 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
585 | 587 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
586 | 588 | |
|
587 | 589 | return noise |
|
588 | 590 | |
|
589 | 591 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
590 | 592 | |
|
591 | 593 | if self.spc_noise is not None: |
|
592 | 594 | # this was estimated by getNoise Operation defined in jroproc_parameters.py |
|
593 | 595 | return self.spc_noise |
|
594 | 596 | elif self.noise_estimation is not None: |
|
595 | 597 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
596 | 598 | return self.noise_estimation |
|
597 | 599 | else: |
|
598 | 600 | noise = self.getNoisebyHildebrand( |
|
599 | 601 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
600 | 602 | return noise |
|
601 | 603 | |
|
602 | 604 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
603 | 605 | |
|
604 | 606 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
605 | 607 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
606 | 608 | |
|
607 | 609 | return freqrange |
|
608 | 610 | |
|
609 | 611 | def getAcfRange(self, extrapoints=0): |
|
610 | 612 | |
|
611 | 613 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
612 | 614 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
613 | 615 | |
|
614 | 616 | return freqrange |
|
615 | 617 | |
|
616 | 618 | def getFreqRange(self, extrapoints=0): |
|
617 | 619 | |
|
618 | 620 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
619 | 621 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
620 | 622 | |
|
621 | 623 | return freqrange |
|
622 | 624 | |
|
623 | 625 | def getVelRange(self, extrapoints=0): |
|
624 | 626 | |
|
625 | 627 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
626 | 628 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
627 | 629 | |
|
628 | 630 | if self.nmodes: |
|
629 | 631 | return velrange / self.nmodes |
|
630 | 632 | else: |
|
631 | 633 | return velrange |
|
632 | 634 | |
|
633 | 635 | @property |
|
634 | 636 | def nPairs(self): |
|
635 | 637 | |
|
636 | 638 | return len(self.pairsList) |
|
637 | 639 | |
|
638 | 640 | @property |
|
639 | 641 | def pairsIndexList(self): |
|
640 | 642 | |
|
641 | 643 | return list(range(self.nPairs)) |
|
642 | 644 | |
|
643 | 645 | @property |
|
644 | 646 | def normFactor(self): |
|
645 | 647 | |
|
646 | 648 | pwcode = 1 |
|
647 | 649 | |
|
648 | 650 | if self.flagDecodeData: |
|
649 | 651 | pwcode = numpy.sum(self.code[0] ** 2) |
|
650 | 652 | # normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
651 | 653 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
652 | 654 | |
|
653 | 655 | return normFactor |
|
654 | 656 | |
|
655 | 657 | @property |
|
656 | 658 | def flag_cspc(self): |
|
657 | 659 | |
|
658 | 660 | if self.data_cspc is None: |
|
659 | 661 | return True |
|
660 | 662 | |
|
661 | 663 | return False |
|
662 | 664 | |
|
663 | 665 | @property |
|
664 | 666 | def flag_dc(self): |
|
665 | 667 | |
|
666 | 668 | if self.data_dc is None: |
|
667 | 669 | return True |
|
668 | 670 | |
|
669 | 671 | return False |
|
670 | 672 | |
|
671 | 673 | @property |
|
672 | 674 | def timeInterval(self): |
|
673 | 675 | |
|
674 | 676 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
675 | 677 | if self.nmodes: |
|
676 | 678 | return self.nmodes * timeInterval |
|
677 | 679 | else: |
|
678 | 680 | return timeInterval |
|
679 | 681 | |
|
680 | 682 | def getPower(self): |
|
681 | 683 | |
|
682 | 684 | factor = self.normFactor |
|
683 | 685 | z = self.data_spc / factor |
|
684 | 686 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
685 | 687 | avg = numpy.average(z, axis=1) |
|
686 | 688 | |
|
687 | 689 | return 10 * numpy.log10(avg) |
|
688 | 690 | |
|
689 | 691 | def getCoherence(self, pairsList=None, phase=False): |
|
690 | 692 | |
|
691 | 693 | z = [] |
|
692 | 694 | if pairsList is None: |
|
693 | 695 | pairsIndexList = self.pairsIndexList |
|
694 | 696 | else: |
|
695 | 697 | pairsIndexList = [] |
|
696 | 698 | for pair in pairsList: |
|
697 | 699 | if pair not in self.pairsList: |
|
698 | 700 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
699 | 701 | pair)) |
|
700 | 702 | pairsIndexList.append(self.pairsList.index(pair)) |
|
701 | 703 | for i in range(len(pairsIndexList)): |
|
702 | 704 | pair = self.pairsList[pairsIndexList[i]] |
|
703 | 705 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
704 | 706 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
705 | 707 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
706 | 708 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
707 | 709 | if phase: |
|
708 | 710 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
709 | 711 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
710 | 712 | else: |
|
711 | 713 | data = numpy.abs(avgcoherenceComplex) |
|
712 | 714 | |
|
713 | 715 | z.append(data) |
|
714 | 716 | |
|
715 | 717 | return numpy.array(z) |
|
716 | 718 | |
|
717 | 719 | def setValue(self, value): |
|
718 | 720 | |
|
719 | 721 | print("This property should not be initialized") |
|
720 | 722 | |
|
721 | 723 | return |
|
722 | 724 | |
|
723 | 725 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
724 | 726 | |
|
725 | 727 | |
|
726 | 728 | class SpectraHeis(Spectra): |
|
727 | 729 | |
|
728 | 730 | def __init__(self): |
|
729 | 731 | |
|
730 | 732 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
731 | 733 | self.systemHeaderObj = SystemHeader() |
|
732 | 734 | self.type = "SpectraHeis" |
|
733 | 735 | self.nProfiles = None |
|
734 | 736 | self.heightList = None |
|
735 | 737 | self.channelList = None |
|
736 | 738 | self.flagNoData = True |
|
737 | 739 | self.flagDiscontinuousBlock = False |
|
738 | 740 | self.utctime = None |
|
739 | 741 | self.blocksize = None |
|
740 | 742 | self.profileIndex = 0 |
|
741 | 743 | self.nCohInt = 1 |
|
742 | 744 | self.nIncohInt = 1 |
|
743 | 745 | |
|
744 | 746 | @property |
|
745 | 747 | def normFactor(self): |
|
746 | 748 | pwcode = 1 |
|
747 | 749 | if self.flagDecodeData: |
|
748 | 750 | pwcode = numpy.sum(self.code[0] ** 2) |
|
749 | 751 | |
|
750 | 752 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
751 | 753 | |
|
752 | 754 | return normFactor |
|
753 | 755 | |
|
754 | 756 | @property |
|
755 | 757 | def timeInterval(self): |
|
756 | 758 | |
|
757 | 759 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
758 | 760 | |
|
759 | 761 | |
|
760 | 762 | class Fits(JROData): |
|
761 | 763 | |
|
762 | 764 | def __init__(self): |
|
763 | 765 | |
|
764 | 766 | self.type = "Fits" |
|
765 | 767 | self.nProfiles = None |
|
766 | 768 | self.heightList = None |
|
767 | 769 | self.channelList = None |
|
768 | 770 | self.flagNoData = True |
|
769 | 771 | self.utctime = None |
|
770 | 772 | self.nCohInt = 1 |
|
771 | 773 | self.nIncohInt = 1 |
|
772 | 774 | self.useLocalTime = True |
|
773 | 775 | self.profileIndex = 0 |
|
774 | 776 | self.timeZone = 0 |
|
775 | 777 | |
|
776 | 778 | def getTimeRange(self): |
|
777 | 779 | |
|
778 | 780 | datatime = [] |
|
779 | 781 | |
|
780 | 782 | datatime.append(self.ltctime) |
|
781 | 783 | datatime.append(self.ltctime + self.timeInterval) |
|
782 | 784 | |
|
783 | 785 | datatime = numpy.array(datatime) |
|
784 | 786 | |
|
785 | 787 | return datatime |
|
786 | 788 | |
|
787 | 789 | def getChannelIndexList(self): |
|
788 | 790 | |
|
789 | 791 | return list(range(self.nChannels)) |
|
790 | 792 | |
|
791 | 793 | def getNoise(self, type=1): |
|
792 | 794 | |
|
793 | 795 | |
|
794 | 796 | if type == 1: |
|
795 | 797 | noise = self.getNoisebyHildebrand() |
|
796 | 798 | |
|
797 | 799 | if type == 2: |
|
798 | 800 | noise = self.getNoisebySort() |
|
799 | 801 | |
|
800 | 802 | if type == 3: |
|
801 | 803 | noise = self.getNoisebyWindow() |
|
802 | 804 | |
|
803 | 805 | return noise |
|
804 | 806 | |
|
805 | 807 | @property |
|
806 | 808 | def timeInterval(self): |
|
807 | 809 | |
|
808 | 810 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
809 | 811 | |
|
810 | 812 | return timeInterval |
|
811 | 813 | |
|
812 | 814 | @property |
|
813 | 815 | def ippSeconds(self): |
|
814 | 816 | ''' |
|
815 | 817 | ''' |
|
816 | 818 | return self.ipp_sec |
|
817 | 819 | |
|
818 | 820 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
819 | 821 | |
|
820 | 822 | |
|
821 | 823 | class Correlation(JROData): |
|
822 | 824 | |
|
823 | 825 | def __init__(self): |
|
824 | 826 | ''' |
|
825 | 827 | Constructor |
|
826 | 828 | ''' |
|
827 | 829 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
828 | 830 | self.systemHeaderObj = SystemHeader() |
|
829 | 831 | self.type = "Correlation" |
|
830 | 832 | self.data = None |
|
831 | 833 | self.dtype = None |
|
832 | 834 | self.nProfiles = None |
|
833 | 835 | self.heightList = None |
|
834 | 836 | self.channelList = None |
|
835 | 837 | self.flagNoData = True |
|
836 | 838 | self.flagDiscontinuousBlock = False |
|
837 | 839 | self.utctime = None |
|
838 | 840 | self.timeZone = 0 |
|
839 | 841 | self.dstFlag = None |
|
840 | 842 | self.errorCount = None |
|
841 | 843 | self.blocksize = None |
|
842 | 844 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
843 | 845 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
844 | 846 | self.pairsList = None |
|
845 | 847 | self.nPoints = None |
|
846 | 848 | |
|
847 | 849 | def getPairsList(self): |
|
848 | 850 | |
|
849 | 851 | return self.pairsList |
|
850 | 852 | |
|
851 | 853 | def getNoise(self, mode=2): |
|
852 | 854 | |
|
853 | 855 | indR = numpy.where(self.lagR == 0)[0][0] |
|
854 | 856 | indT = numpy.where(self.lagT == 0)[0][0] |
|
855 | 857 | |
|
856 | 858 | jspectra0 = self.data_corr[:, :, indR, :] |
|
857 | 859 | jspectra = copy.copy(jspectra0) |
|
858 | 860 | |
|
859 | 861 | num_chan = jspectra.shape[0] |
|
860 | 862 | num_hei = jspectra.shape[2] |
|
861 | 863 | |
|
862 | 864 | freq_dc = jspectra.shape[1] / 2 |
|
863 | 865 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
864 | 866 | |
|
865 | 867 | if ind_vel[0] < 0: |
|
866 | 868 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
867 | 869 | range(0, 1))] + self.num_prof |
|
868 | 870 | |
|
869 | 871 | if mode == 1: |
|
870 | 872 | jspectra[:, freq_dc, :] = ( |
|
871 | 873 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
872 | 874 | |
|
873 | 875 | if mode == 2: |
|
874 | 876 | |
|
875 | 877 | vel = numpy.array([-2, -1, 1, 2]) |
|
876 | 878 | xx = numpy.zeros([4, 4]) |
|
877 | 879 | |
|
878 | 880 | for fil in range(4): |
|
879 | 881 | xx[fil, :] = vel[fil] ** numpy.asarray(list(range(4))) |
|
880 | 882 | |
|
881 | 883 | xx_inv = numpy.linalg.inv(xx) |
|
882 | 884 | xx_aux = xx_inv[0, :] |
|
883 | 885 | |
|
884 | 886 | for ich in range(num_chan): |
|
885 | 887 | yy = jspectra[ich, ind_vel, :] |
|
886 | 888 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
887 | 889 | |
|
888 | 890 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
889 | 891 | cjunkid = sum(junkid) |
|
890 | 892 | |
|
891 | 893 | if cjunkid.any(): |
|
892 | 894 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
893 | 895 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
894 | 896 | |
|
895 | 897 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
896 | 898 | |
|
897 | 899 | return noise |
|
898 | 900 | |
|
899 | 901 | @property |
|
900 | 902 | def timeInterval(self): |
|
901 | 903 | |
|
902 | 904 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
903 | 905 | |
|
904 | 906 | def splitFunctions(self): |
|
905 | 907 | |
|
906 | 908 | pairsList = self.pairsList |
|
907 | 909 | ccf_pairs = [] |
|
908 | 910 | acf_pairs = [] |
|
909 | 911 | ccf_ind = [] |
|
910 | 912 | acf_ind = [] |
|
911 | 913 | for l in range(len(pairsList)): |
|
912 | 914 | chan0 = pairsList[l][0] |
|
913 | 915 | chan1 = pairsList[l][1] |
|
914 | 916 | |
|
915 | 917 | # Obteniendo pares de Autocorrelacion |
|
916 | 918 | if chan0 == chan1: |
|
917 | 919 | acf_pairs.append(chan0) |
|
918 | 920 | acf_ind.append(l) |
|
919 | 921 | else: |
|
920 | 922 | ccf_pairs.append(pairsList[l]) |
|
921 | 923 | ccf_ind.append(l) |
|
922 | 924 | |
|
923 | 925 | data_acf = self.data_cf[acf_ind] |
|
924 | 926 | data_ccf = self.data_cf[ccf_ind] |
|
925 | 927 | |
|
926 | 928 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
927 | 929 | |
|
928 | 930 | @property |
|
929 | 931 | def normFactor(self): |
|
930 | 932 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
931 | 933 | acf_pairs = numpy.array(acf_pairs) |
|
932 | 934 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
933 | 935 | |
|
934 | 936 | for p in range(self.nPairs): |
|
935 | 937 | pair = self.pairsList[p] |
|
936 | 938 | |
|
937 | 939 | ch0 = pair[0] |
|
938 | 940 | ch1 = pair[1] |
|
939 | 941 | |
|
940 | 942 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
941 | 943 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
942 | 944 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
943 | 945 | |
|
944 | 946 | return normFactor |
|
945 | 947 | |
|
946 | 948 | |
|
947 | 949 | class Parameters(Spectra): |
|
948 | 950 | |
|
949 | 951 | groupList = None # List of Pairs, Groups, etc |
|
950 | 952 | data_param = None # Parameters obtained |
|
951 | 953 | data_pre = None # Data Pre Parametrization |
|
952 | 954 | data_SNR = None # Signal to Noise Ratio |
|
953 | 955 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
954 | 956 | utctimeInit = None # Initial UTC time |
|
955 | 957 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
956 | 958 | useLocalTime = True |
|
957 | 959 | # Fitting |
|
958 | 960 | data_error = None # Error of the estimation |
|
959 | 961 | constants = None |
|
960 | 962 | library = None |
|
961 | 963 | # Output signal |
|
962 | 964 | outputInterval = None # Time interval to calculate output signal in seconds |
|
963 | 965 | data_output = None # Out signal |
|
964 | 966 | nAvg = None |
|
965 | 967 | noise_estimation = None |
|
966 | 968 | GauSPC = None # Fit gaussian SPC |
|
967 | 969 | spc_noise = None |
|
970 | # | |
|
971 | ||
|
968 | 972 | |
|
969 | 973 | def __init__(self): |
|
970 | 974 | ''' |
|
971 | 975 | Constructor |
|
972 | 976 | ''' |
|
973 | 977 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
974 | 978 | self.systemHeaderObj = SystemHeader() |
|
975 | 979 | self.type = "Parameters" |
|
976 | 980 | self.timeZone = 0 |
|
977 | 981 | self.ippFactor = 1 |
|
978 | ||
|
982 | # JULIA processing | |
|
983 | self.diffcspectra = None | |
|
984 | self.ccfpar = None | |
|
985 | # JULIA processing | |
|
986 | ||
|
979 | 987 | def getTimeRange1(self, interval): |
|
980 | 988 | |
|
981 | 989 | datatime = [] |
|
982 | 990 | |
|
983 | 991 | if self.useLocalTime: |
|
984 | 992 | time1 = self.utctimeInit - self.timeZone * 60 |
|
985 | 993 | else: |
|
986 | 994 | time1 = self.utctimeInit |
|
987 | 995 | |
|
988 | 996 | datatime.append(time1) |
|
989 | 997 | datatime.append(time1 + interval) |
|
990 | 998 | datatime = numpy.array(datatime) |
|
991 | 999 | |
|
992 | 1000 | return datatime |
|
993 | 1001 | |
|
994 | 1002 | @property |
|
995 | 1003 | def timeInterval(self): |
|
996 | 1004 | |
|
997 | 1005 | if hasattr(self, 'timeInterval1'): |
|
998 | 1006 | return self.timeInterval1 |
|
999 | 1007 | else: |
|
1000 | 1008 | return self.paramInterval |
|
1001 | 1009 | |
|
1002 | 1010 | |
|
1003 | 1011 | def setValue(self, value): |
|
1004 | 1012 | |
|
1005 | 1013 | print("This property should not be initialized") |
|
1006 | 1014 | |
|
1007 | 1015 | return |
|
1008 | 1016 | |
|
1009 | 1017 | |
|
1010 | 1018 | class PlotterData(object): |
|
1011 | 1019 | ''' |
|
1012 | 1020 | Object to hold data to be plotted |
|
1013 | 1021 | ''' |
|
1014 | 1022 | |
|
1015 | 1023 | MAXNUMX = 200 |
|
1016 | 1024 | MAXNUMY = 200 |
|
1017 | 1025 | |
|
1018 | 1026 | def __init__(self, code, exp_code, localtime=True): |
|
1019 | 1027 | |
|
1020 | 1028 | self.key = code |
|
1021 | 1029 | self.exp_code = exp_code |
|
1022 | 1030 | self.ready = False |
|
1023 | 1031 | self.flagNoData = False |
|
1024 | 1032 | self.localtime = localtime |
|
1025 | 1033 | self.data = {} |
|
1026 | 1034 | self.meta = {} |
|
1027 | 1035 | self.__heights = [] |
|
1028 | 1036 | |
|
1029 | 1037 | def __str__(self): |
|
1030 | 1038 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
1031 | 1039 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
1032 | 1040 | |
|
1033 | 1041 | def __len__(self): |
|
1034 | 1042 | return len(self.data) |
|
1035 | 1043 | |
|
1036 | 1044 | def __getitem__(self, key): |
|
1037 | 1045 | if isinstance(key, int): |
|
1038 | 1046 | return self.data[self.times[key]] |
|
1039 | 1047 | elif isinstance(key, str): |
|
1040 | 1048 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
1041 | 1049 | if ret.ndim > 1: |
|
1042 | 1050 | ret = numpy.swapaxes(ret, 0, 1) |
|
1043 | 1051 | return ret |
|
1044 | 1052 | |
|
1045 | 1053 | def __contains__(self, key): |
|
1046 | 1054 | return key in self.data[self.min_time] |
|
1047 | 1055 | |
|
1048 | 1056 | def setup(self): |
|
1049 | 1057 | ''' |
|
1050 | 1058 | Configure object |
|
1051 | 1059 | ''' |
|
1052 | 1060 | self.type = '' |
|
1053 | 1061 | self.ready = False |
|
1054 | 1062 | del self.data |
|
1055 | 1063 | self.data = {} |
|
1056 | 1064 | self.__heights = [] |
|
1057 | 1065 | self.__all_heights = set() |
|
1058 | 1066 | |
|
1059 | 1067 | def shape(self, key): |
|
1060 | 1068 | ''' |
|
1061 | 1069 | Get the shape of the one-element data for the given key |
|
1062 | 1070 | ''' |
|
1063 | 1071 | |
|
1064 | 1072 | if len(self.data[self.min_time][key]): |
|
1065 | 1073 | return self.data[self.min_time][key].shape |
|
1066 | 1074 | return (0,) |
|
1067 | 1075 | |
|
1068 | 1076 | def update(self, data, tm, meta={}): |
|
1069 | 1077 | ''' |
|
1070 | 1078 | Update data object with new dataOut |
|
1071 | 1079 | ''' |
|
1072 | 1080 | |
|
1073 | 1081 | self.data[tm] = data |
|
1074 | 1082 | |
|
1075 | 1083 | for key, value in meta.items(): |
|
1076 | 1084 | setattr(self, key, value) |
|
1077 | 1085 | |
|
1078 | 1086 | def normalize_heights(self): |
|
1079 | 1087 | ''' |
|
1080 | 1088 | Ensure same-dimension of the data for different heighList |
|
1081 | 1089 | ''' |
|
1082 | 1090 | |
|
1083 | 1091 | H = numpy.array(list(self.__all_heights)) |
|
1084 | 1092 | H.sort() |
|
1085 | 1093 | for key in self.data: |
|
1086 | 1094 | shape = self.shape(key)[:-1] + H.shape |
|
1087 | 1095 | for tm, obj in list(self.data[key].items()): |
|
1088 | 1096 | h = self.__heights[self.times.tolist().index(tm)] |
|
1089 | 1097 | if H.size == h.size: |
|
1090 | 1098 | continue |
|
1091 | 1099 | index = numpy.where(numpy.in1d(H, h))[0] |
|
1092 | 1100 | dummy = numpy.zeros(shape) + numpy.nan |
|
1093 | 1101 | if len(shape) == 2: |
|
1094 | 1102 | dummy[:, index] = obj |
|
1095 | 1103 | else: |
|
1096 | 1104 | dummy[index] = obj |
|
1097 | 1105 | self.data[key][tm] = dummy |
|
1098 | 1106 | |
|
1099 | 1107 | self.__heights = [H for tm in self.times] |
|
1100 | 1108 | |
|
1101 | 1109 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
1102 | 1110 | ''' |
|
1103 | 1111 | Convert data to json |
|
1104 | 1112 | ''' |
|
1105 | 1113 | |
|
1106 | 1114 | meta = {} |
|
1107 | 1115 | meta['xrange'] = [] |
|
1108 | 1116 | dy = int(len(self.yrange) / self.MAXNUMY) + 1 |
|
1109 | 1117 | tmp = self.data[tm][self.key] |
|
1110 | 1118 | shape = tmp.shape |
|
1111 | 1119 | if len(shape) == 2: |
|
1112 | 1120 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1113 | 1121 | elif len(shape) == 3: |
|
1114 | 1122 | dx = int(self.data[tm][self.key].shape[1] / self.MAXNUMX) + 1 |
|
1115 | 1123 | data = self.roundFloats( |
|
1116 | 1124 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1117 | 1125 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1118 | 1126 | else: |
|
1119 | 1127 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1120 | 1128 | |
|
1121 | 1129 | ret = { |
|
1122 | 1130 | 'plot': plot_name, |
|
1123 | 1131 | 'code': self.exp_code, |
|
1124 | 1132 | 'time': float(tm), |
|
1125 | 1133 | 'data': data, |
|
1126 | 1134 | } |
|
1127 | 1135 | meta['type'] = plot_type |
|
1128 | 1136 | meta['interval'] = float(self.interval) |
|
1129 | 1137 | meta['localtime'] = self.localtime |
|
1130 | 1138 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1131 | 1139 | meta.update(self.meta) |
|
1132 | 1140 | ret['metadata'] = meta |
|
1133 | 1141 | return json.dumps(ret) |
|
1134 | 1142 | |
|
1135 | 1143 | @property |
|
1136 | 1144 | def times(self): |
|
1137 | 1145 | ''' |
|
1138 | 1146 | Return the list of times of the current data |
|
1139 | 1147 | ''' |
|
1140 | 1148 | |
|
1141 | 1149 | ret = [t for t in self.data] |
|
1142 | 1150 | ret.sort() |
|
1143 | 1151 | return numpy.array(ret) |
|
1144 | 1152 | |
|
1145 | 1153 | @property |
|
1146 | 1154 | def min_time(self): |
|
1147 | 1155 | ''' |
|
1148 | 1156 | Return the minimun time value |
|
1149 | 1157 | ''' |
|
1150 | 1158 | |
|
1151 | 1159 | return self.times[0] |
|
1152 | 1160 | |
|
1153 | 1161 | @property |
|
1154 | 1162 | def max_time(self): |
|
1155 | 1163 | ''' |
|
1156 | 1164 | Return the maximun time value |
|
1157 | 1165 | ''' |
|
1158 | 1166 | |
|
1159 | 1167 | return self.times[-1] |
|
1160 | 1168 | |
|
1161 | 1169 | # @property |
|
1162 | 1170 | # def heights(self): |
|
1163 | 1171 | # ''' |
|
1164 | 1172 | # Return the list of heights of the current data |
|
1165 | 1173 | # ''' |
|
1166 | 1174 | |
|
1167 | 1175 | # return numpy.array(self.__heights[-1]) |
|
1168 | 1176 | |
|
1169 | 1177 | @staticmethod |
|
1170 | 1178 | def roundFloats(obj): |
|
1171 | 1179 | if isinstance(obj, list): |
|
1172 | 1180 | return list(map(PlotterData.roundFloats, obj)) |
|
1173 | 1181 | elif isinstance(obj, float): |
|
1174 | 1182 | return round(obj, 2) |
General Comments 0
You need to be logged in to leave comments.
Login now