The requested changes are too big and content was truncated. Show full diff
@@ -1,88 +1,90 | |||
|
1 | 1 | basic = '''from schainpy.controller import Project |
|
2 | 2 | |
|
3 | 3 | desc = "{desc}" |
|
4 | 4 | project = Project() |
|
5 | 5 | project.setup(id='200', name="{name}", description=desc) |
|
6 | 6 | |
|
7 | 7 | voltage_reader = project.addReadUnit(datatype='VoltageReader', |
|
8 | 8 | path="{path}", |
|
9 | 9 | startDate="{startDate}", |
|
10 | 10 | endDate="{endDate}", |
|
11 | 11 | startTime="{startHour}", |
|
12 | 12 | endTime="{endHour}", |
|
13 | 13 | online=0, |
|
14 | 14 | verbose=1, |
|
15 | 15 | walk=1, |
|
16 | 16 | ) |
|
17 | 17 | |
|
18 | 18 | voltage_proc = project.addProcUnit(datatype='VoltageProc', inputId=voltage_reader.getId()) |
|
19 | 19 | |
|
20 | 20 | profile = voltage_proc.addOperation(name='ProfileSelector', optype='other') |
|
21 | 21 | profile.addParameter(name='profileRangeList', value='120,183', format='intlist') |
|
22 | 22 | |
|
23 | 23 | rti = voltage_proc.addOperation(name='RTIPlot', optype='other') |
|
24 | 24 | rti.addParameter(name='wintitle', value='Jicamarca Radio Observatory', format='str') |
|
25 | 25 | rti.addParameter(name='showprofile', value='0', format='int') |
|
26 | 26 | rti.addParameter(name='xmin', value='0', format='int') |
|
27 | 27 | rti.addParameter(name='xmax', value='24', format='int') |
|
28 | 28 | rti.addParameter(name='figpath', value="{figpath}", format='str') |
|
29 | 29 | rti.addParameter(name='wr_period', value='5', format='int') |
|
30 | 30 | rti.addParameter(name='exp_code', value='22', format='int') |
|
31 | 31 | |
|
32 | 32 | |
|
33 | 33 | controller.start() |
|
34 | 34 | ''' |
|
35 | 35 | |
|
36 | 36 | multiprocess = '''from schainpy.controller import Project, MPProject |
|
37 | 37 | from time import sleep |
|
38 | 38 | desc = "{desc}" |
|
39 | 39 | |
|
40 | 40 | #################### |
|
41 | 41 | # PLOTTER RECEIVER # |
|
42 | 42 | #################### |
|
43 | 43 | plotter = Project() |
|
44 | 44 | plotter.setup(id='100', name='receiver', description=desc) |
|
45 | 45 | |
|
46 |
receiver_p |
|
|
47 |
receiver_p |
|
|
46 | receiver_plot = plotter.addProcUnit(name='PlotterReceiver') | |
|
47 | receiver_plot.addParameter(name='throttle', value=20, format='int') | |
|
48 | receiver_plot.addParameter(name='plottypes', value='rti', format='str') | |
|
48 | 49 | |
|
49 |
rti = receiver_p |
|
|
50 | rti = receiver_plot.addOperation(name='PlotRTIData', optype='other') | |
|
50 | 51 | rti.addParameter(name='zmin', value='-40.0', format='float') |
|
51 | 52 | rti.addParameter(name='zmax', value='100.0', format='float') |
|
53 | rti.addParameter(name='decimation', value='200', format='int') | |
|
52 | 54 | rti.addParameter(name='xmin', value='0.0', format='int') |
|
53 | 55 | rti.addParameter(name='colormap', value='jet', format='str') |
|
54 | 56 | |
|
55 | 57 | plotter.start() |
|
56 | 58 | |
|
57 | 59 | sleep(2) |
|
58 | 60 | |
|
59 | 61 | ################ |
|
60 | 62 | # DATA EMITTER # |
|
61 | 63 | ################ |
|
62 | 64 | project = Project() |
|
63 | 65 | project.setup(id='200', name="{name}", description=desc) |
|
64 | 66 | |
|
65 | 67 | spectra_reader = project.addReadUnit(datatype='SpectraReader', |
|
66 | 68 | path="{path}", |
|
67 | 69 | startDate={startDate}, |
|
68 | 70 | endDate={endDate}, |
|
69 | 71 | startTime="{startHour}", |
|
70 | 72 | endTime="{endHour}", |
|
71 | 73 | online=0, |
|
72 | 74 | verbose=1, |
|
73 | 75 | walk=1, |
|
74 | 76 | ) |
|
75 | 77 | |
|
76 | 78 | spectra_proc = project.addProcUnit(datatype='Spectra', inputId=spectra_reader.getId()) |
|
77 | 79 | |
|
78 | 80 | parameters_proc = project.addProcUnit(datatype='ParametersProc', inputId=spectra_proc.getId()) |
|
79 | 81 | moments = parameters_proc.addOperation(name='SpectralMoments', optype='other') |
|
80 | 82 | |
|
81 | 83 | publish = parameters_proc.addOperation(name='PublishData', optype='other') |
|
82 | 84 | publish.addParameter(name='zeromq', value=1, format='int') |
|
83 | 85 | publish.addParameter(name='verbose', value=0, format='bool') |
|
84 | 86 | |
|
85 | 87 | MPProject(project, 16) |
|
86 | 88 | |
|
87 | 89 | |
|
88 | 90 | ''' |
@@ -1,109 +1,109 | |||
|
1 | 1 | ## CHANGELOG: |
|
2 | 2 | |
|
3 | 3 | ### 2.3 |
|
4 |
* Added high order function ` |
|
|
4 | * Added high order function `MPProject` for multiprocessing scripts. | |
|
5 | 5 | * Added two new Processing Units `PublishData` and `ReceiverData` for receiving and sending dataOut through multiple ways (tcp, ipc, inproc). |
|
6 | 6 | * Added a new graphics Processing Unit `PlotterReceiver`. It is decoupled from normal processing sequence with support for data generated by multiprocessing scripts. |
|
7 | 7 | * Added support for sending realtime graphic to web server. |
|
8 |
* GUI command `schain` |
|
|
8 | * GUI command `schain` is now `schainGUI`. | |
|
9 | 9 | * Added a CLI tool named `schain`. |
|
10 | 10 | * Scripts templates can be now generated with `schain generate`. |
|
11 | 11 | * Now it is possible to search Processing Units and Operations with `schain search [module]` to get the right name and its allowed parameters. |
|
12 | 12 | * `schain xml` to run xml scripts. |
|
13 | 13 | * Added suggestions when parameters are poorly written. |
|
14 | 14 | * `Controller.start()` now runs in a different process than the process calling it. |
|
15 | 15 | * Added `schainpy.utils.log` for log standarization. |
|
16 | 16 | * Running script on online mode no longer ignores date and hour. Issue #1109. |
|
17 | 17 | * Added support for receving voltage data directly from JARS (tcp, ipc). |
|
18 | 18 | * Updated README for MAC OS GUI installation. |
|
19 | 19 | * Setup now installs numpy. |
|
20 | 20 | |
|
21 | 21 | ### 2.2.6 |
|
22 | 22 | * Graphics generated by the GUI are now the same as generated by scripts. Issue #1074. |
|
23 | 23 | * Added support for C extensions. |
|
24 | 24 | * Function `hildebrand_sehkon` optimized with a C wrapper. |
|
25 | 25 | * Numpy version updated. |
|
26 | 26 | * Migration to GIT. |
|
27 | 27 | |
|
28 | 28 | ### 2.2.5: |
|
29 | 29 | * splitProfiles and combineProfiles modules were added to VoltageProc and Signal Chain GUI. |
|
30 | 30 | * nProfiles of USRP data (hdf5) is the number of profiles thera are in one second. |
|
31 | 31 | * jroPlotter works directly with data objects instead of dictionaries |
|
32 | 32 | * script "schain" was added to Signal Chain installer |
|
33 | 33 | |
|
34 | 34 | ### 2.2.4.1: |
|
35 | 35 | * jroIO_usrp.py is update to read Sandra's data |
|
36 | 36 | * decimation in Spectra and RTI plots is always enabled. |
|
37 | 37 | * time* window option added to GUI |
|
38 | 38 | |
|
39 | 39 | ### 2.2.4: |
|
40 | 40 | * jroproc_spectra_lags.py added to schainpy |
|
41 | 41 | * Bug fixed in schainGUI: ProcUnit was created with the same id in some cases. |
|
42 | 42 | * Bug fixed in jroHeaderIO: Header size validation. |
|
43 | 43 | |
|
44 | 44 | ### 2.2.3.1: |
|
45 | 45 | * Filtering block by time has been added. |
|
46 | 46 | * Bug fixed plotting RTI, CoherenceMap and others using xmin and xmax parameters. The first day worked |
|
47 | 47 | properly but the next days did not. |
|
48 | 48 | |
|
49 | 49 | ### 2.2.3: |
|
50 | 50 | * Bug fixed in GUI: Error getting(reading) Code value |
|
51 | 51 | * Bug fixed in GUI: Flip option always needs channelList field |
|
52 | 52 | * Bug fixed in jrodata: when one branch modified a value in "dataOut" (example: dataOut.code) this value |
|
53 | 53 | was modified for every branch (because this was a reference). It was modified in data.copy() |
|
54 | 54 | * Bug fixed in jroproc_voltage.profileSelector(): rangeList replaces to profileRangeList. |
|
55 | 55 | |
|
56 | 56 | ### 2.2.2: |
|
57 | 57 | * VoltageProc: ProfileSelector, Reshape, Decoder with nTxs!=1 and getblock=True was tested |
|
58 | 58 | * Rawdata and testRawdata.py added to Signal Chain project |
|
59 | 59 | |
|
60 | 60 | ### 2.2.1: |
|
61 | 61 | * Bugs fixed in GUI |
|
62 | 62 | * Views were improved in GUI |
|
63 | 63 | * Support to MST* ISR experiments |
|
64 | 64 | * Bug fixed getting noise using hyldebrant. (minimum number of points > 20%) |
|
65 | 65 | * handleError added to jroplotter.py |
|
66 | 66 | |
|
67 | 67 | ### 2.2.0: |
|
68 | 68 | * GUI: use of external plotter |
|
69 | 69 | * Compatible with matplotlib 1.5.0 |
|
70 | 70 | |
|
71 | 71 | ### 2.1.5: |
|
72 | 72 | * serializer module added to Signal Chain |
|
73 | 73 | * jroplotter.py added to Signal Chain |
|
74 | 74 | |
|
75 | 75 | ### 2.1.4.2: |
|
76 | 76 | * A new Plotter Class was added |
|
77 | 77 | * Project.start() does not accept filename as a parameter anymore |
|
78 | 78 | |
|
79 | 79 | ### 2.1.4.1: |
|
80 | 80 | * Send notifications when an error different to ValueError is detected |
|
81 | 81 | |
|
82 | 82 | ### 2.1.4: |
|
83 | 83 | * Sending error notifications to signal chain administrator |
|
84 | 84 | * Login to email server added |
|
85 | 85 | |
|
86 | 86 | ### 2.1.3.3: |
|
87 | 87 | * Colored Button Icons were added to GUI |
|
88 | 88 | |
|
89 | 89 | ### 2.1.3.2: |
|
90 | 90 | * GUI: user interaction enhanced |
|
91 | 91 | * controller_api.py: Safe access to ControllerThead |
|
92 | 92 | |
|
93 | 93 | ### 2.1.3.1: |
|
94 | 94 | * GUI: every icon were resized |
|
95 | 95 | * jroproc_voltage.py: Print a message when "Read from code" option is selected and the code is not defined inside data file |
|
96 | 96 | |
|
97 | 97 | ### 2.1.3: |
|
98 | 98 | * jroplot_heispectra.py: SpectraHeisScope was not showing the right channels |
|
99 | 99 | * jroproc_voltage.py: Bug fixed selecting profiles (self.nProfiles took a wrong value), |
|
100 | 100 | Bug fixed selecting heights by block (selecting profiles instead heights) |
|
101 | 101 | * jroproc_voltage.py: New feature added: decoding data by block using FFT. |
|
102 | 102 | * jroIO_heispectra.py: Bug fixed in FitsReader. Using local Fits instance instead schainpy.mode.data.jrodata.Fits. |
|
103 | 103 | * jroIO_heispectra.py: Channel index list does not exist. |
|
104 | 104 | |
|
105 | 105 | ### 2.1.2: |
|
106 | 106 | * jroutils_ftp.py: Bug fixed, Any error sending file stopped the Server Thread |
|
107 | 107 | Server thread opens and closes remote server each time file list is sent |
|
108 | 108 | * jroplot_spectra.py: Noise path was not being created when noise data is saved. |
|
109 | 109 | * jroIO_base.py: startTime can be greater than endTime. Example: SpreadF [18:00 * 07:00] No newline at end of file |
@@ -1,819 +1,843 | |||
|
1 | 1 | |
|
2 | 2 | import os |
|
3 | 3 | import time |
|
4 | 4 | import glob |
|
5 | 5 | import datetime |
|
6 | 6 | from multiprocessing import Process |
|
7 | 7 | |
|
8 | 8 | import zmq |
|
9 | 9 | import numpy |
|
10 | 10 | import matplotlib |
|
11 | 11 | import matplotlib.pyplot as plt |
|
12 | 12 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
13 | 13 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator |
|
14 | 14 | |
|
15 | 15 | from schainpy.model.proc.jroproc_base import Operation |
|
16 | 16 | from schainpy.utils import log |
|
17 | 17 | |
|
18 | 18 | jet_values = matplotlib.pyplot.get_cmap("jet", 100)(numpy.arange(100))[10:90] |
|
19 |
blu_values = matplotlib.pyplot.get_cmap( |
|
|
20 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list("jro", numpy.vstack((blu_values, jet_values))) | |
|
19 | blu_values = matplotlib.pyplot.get_cmap( | |
|
20 | "seismic_r", 20)(numpy.arange(20))[10:15] | |
|
21 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( | |
|
22 | "jro", numpy.vstack((blu_values, jet_values))) | |
|
21 | 23 | matplotlib.pyplot.register_cmap(cmap=ncmap) |
|
22 | 24 | |
|
23 | func = lambda x, pos: '{}'.format(datetime.datetime.fromtimestamp(x).strftime('%H:%M')) | |
|
24 | 25 | |
|
25 | UT1970 = datetime.datetime(1970, 1, 1) - datetime.timedelta(seconds=time.timezone) | |
|
26 | def func(x, pos): return '{}'.format( | |
|
27 | datetime.datetime.fromtimestamp(x).strftime('%H:%M')) | |
|
28 | ||
|
29 | ||
|
30 | UT1970 = datetime.datetime(1970, 1, 1) - \ | |
|
31 | datetime.timedelta(seconds=time.timezone) | |
|
26 | 32 | |
|
27 | 33 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'RdBu_r', 'seismic')] |
|
28 | 34 | |
|
35 | ||
|
29 | 36 | class PlotData(Operation, Process): |
|
30 | 37 | ''' |
|
31 | 38 | Base class for Schain plotting operations |
|
32 | 39 | ''' |
|
33 | 40 | |
|
34 | 41 | CODE = 'Figure' |
|
35 | 42 | colormap = 'jro' |
|
36 | 43 | bgcolor = 'white' |
|
37 | 44 | CONFLATE = False |
|
38 | 45 | __MAXNUMX = 80 |
|
39 | 46 | __missing = 1E30 |
|
40 | 47 | |
|
41 | 48 | def __init__(self, **kwargs): |
|
42 | 49 | |
|
43 | 50 | Operation.__init__(self, plot=True, **kwargs) |
|
44 | 51 | Process.__init__(self) |
|
45 | 52 | self.kwargs['code'] = self.CODE |
|
46 | 53 | self.mp = False |
|
47 | 54 | self.data = None |
|
48 |
self.isConfig = False |
|
|
55 | self.isConfig = False | |
|
49 | 56 | self.figures = [] |
|
50 | 57 | self.axes = [] |
|
51 | 58 | self.cb_axes = [] |
|
52 | 59 | self.localtime = kwargs.pop('localtime', True) |
|
53 | 60 | self.show = kwargs.get('show', True) |
|
54 | 61 | self.save = kwargs.get('save', False) |
|
55 | 62 | self.colormap = kwargs.get('colormap', self.colormap) |
|
56 | 63 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
57 | 64 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
58 | 65 | self.colormaps = kwargs.get('colormaps', None) |
|
59 | 66 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) |
|
60 | 67 | self.showprofile = kwargs.get('showprofile', False) |
|
61 | 68 | self.title = kwargs.get('wintitle', self.CODE.upper()) |
|
62 | 69 | self.cb_label = kwargs.get('cb_label', None) |
|
63 | 70 | self.cb_labels = kwargs.get('cb_labels', None) |
|
64 | 71 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
65 | 72 | self.zmin = kwargs.get('zmin', None) |
|
66 | 73 | self.zmax = kwargs.get('zmax', None) |
|
67 | 74 | self.zlimits = kwargs.get('zlimits', None) |
|
68 |
self.xmin = kwargs.get('xmin', None) |
|
|
75 | self.xmin = kwargs.get('xmin', None) | |
|
69 | 76 | self.xmax = kwargs.get('xmax', None) |
|
70 | 77 | self.xrange = kwargs.get('xrange', 24) |
|
71 | 78 | self.ymin = kwargs.get('ymin', None) |
|
72 | 79 | self.ymax = kwargs.get('ymax', None) |
|
73 | 80 | self.xlabel = kwargs.get('xlabel', None) |
|
74 |
self.__MAXNUMY = kwargs.get('decimation', 100) |
|
|
81 | self.__MAXNUMY = kwargs.get('decimation', 100) | |
|
75 | 82 | self.showSNR = kwargs.get('showSNR', False) |
|
76 | 83 | self.oneFigure = kwargs.get('oneFigure', True) |
|
77 | 84 | self.width = kwargs.get('width', None) |
|
78 | 85 | self.height = kwargs.get('height', None) |
|
79 | 86 | self.colorbar = kwargs.get('colorbar', True) |
|
80 | 87 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) |
|
81 | 88 | self.titles = ['' for __ in range(16)] |
|
82 | 89 | |
|
83 | 90 | def __setup(self): |
|
84 | 91 | ''' |
|
85 | 92 | Common setup for all figures, here figures and axes are created |
|
86 | 93 | ''' |
|
87 | 94 | |
|
88 | 95 | self.setup() |
|
89 | 96 | |
|
90 | 97 | self.time_label = 'LT' if self.localtime else 'UTC' |
|
91 | 98 | |
|
92 | 99 | if self.width is None: |
|
93 | 100 | self.width = 8 |
|
94 | 101 | |
|
95 | 102 | self.figures = [] |
|
96 | 103 | self.axes = [] |
|
97 | 104 | self.cb_axes = [] |
|
98 | 105 | self.pf_axes = [] |
|
99 | 106 | self.cmaps = [] |
|
100 | 107 | |
|
101 | size = '15%' if self.ncols==1 else '30%' | |
|
102 | pad = '4%' if self.ncols==1 else '8%' | |
|
108 | size = '15%' if self.ncols == 1 else '30%' | |
|
109 | pad = '4%' if self.ncols == 1 else '8%' | |
|
103 | 110 | |
|
104 | 111 | if self.oneFigure: |
|
105 | 112 | if self.height is None: |
|
106 | self.height = 1.4*self.nrows + 1 | |
|
113 | self.height = 1.4 * self.nrows + 1 | |
|
107 | 114 | fig = plt.figure(figsize=(self.width, self.height), |
|
108 | 115 | edgecolor='k', |
|
109 | 116 | facecolor='w') |
|
110 | 117 | self.figures.append(fig) |
|
111 |
for n in range(self.nplots): |
|
|
112 | ax = fig.add_subplot(self.nrows, self.ncols, n+1) | |
|
118 | for n in range(self.nplots): | |
|
119 | ax = fig.add_subplot(self.nrows, self.ncols, n + 1) | |
|
113 | 120 | ax.tick_params(labelsize=8) |
|
114 | 121 | ax.firsttime = True |
|
115 | 122 | ax.index = 0 |
|
116 |
self.axes.append(ax) |
|
|
123 | self.axes.append(ax) | |
|
117 | 124 | if self.showprofile: |
|
118 | 125 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
119 |
cax.tick_params(labelsize=8) |
|
|
126 | cax.tick_params(labelsize=8) | |
|
120 | 127 | self.pf_axes.append(cax) |
|
121 | 128 | else: |
|
122 | 129 | if self.height is None: |
|
123 | 130 | self.height = 3 |
|
124 | 131 | for n in range(self.nplots): |
|
125 | 132 | fig = plt.figure(figsize=(self.width, self.height), |
|
126 |
|
|
|
127 |
|
|
|
133 | edgecolor='k', | |
|
134 | facecolor='w') | |
|
128 | 135 | ax = fig.add_subplot(1, 1, 1) |
|
129 | 136 | ax.tick_params(labelsize=8) |
|
130 | 137 | ax.firsttime = True |
|
131 | 138 | ax.index = 0 |
|
132 |
self.figures.append(fig) |
|
|
139 | self.figures.append(fig) | |
|
133 | 140 | self.axes.append(ax) |
|
134 | 141 | if self.showprofile: |
|
135 | 142 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
136 |
cax.tick_params(labelsize=8) |
|
|
143 | cax.tick_params(labelsize=8) | |
|
137 | 144 | self.pf_axes.append(cax) |
|
138 | ||
|
145 | ||
|
139 | 146 | for n in range(self.nrows): |
|
140 | 147 | if self.colormaps is not None: |
|
141 |
cmap = plt.get_cmap(self.colormaps[n]) |
|
|
148 | cmap = plt.get_cmap(self.colormaps[n]) | |
|
142 | 149 | else: |
|
143 | 150 | cmap = plt.get_cmap(self.colormap) |
|
144 | 151 | cmap.set_bad(self.bgcolor, 1.) |
|
145 | 152 | self.cmaps.append(cmap) |
|
146 | 153 | |
|
147 | 154 | for fig in self.figures: |
|
148 | 155 | fig.canvas.mpl_connect('key_press_event', self.event_key_press) |
|
149 | 156 | |
|
150 | 157 | def event_key_press(self, event): |
|
151 | 158 | ''' |
|
152 | 159 | ''' |
|
153 | 160 | |
|
154 | 161 | for ax in self.axes: |
|
155 | 162 | if ax == event.inaxes: |
|
156 | 163 | if event.key == 'down': |
|
157 | 164 | ax.index += 1 |
|
158 | 165 | elif event.key == 'up': |
|
159 | 166 | ax.index -= 1 |
|
160 | 167 | if ax.index < 0: |
|
161 |
ax.index = len(CMAPS) - 1 |
|
|
168 | ax.index = len(CMAPS) - 1 | |
|
162 | 169 | elif ax.index == len(CMAPS): |
|
163 | 170 | ax.index = 0 |
|
164 | 171 | cmap = CMAPS[ax.index] |
|
165 | 172 | ax.cbar.set_cmap(cmap) |
|
166 | 173 | ax.cbar.draw_all() |
|
167 |
ax.plt.set_cmap(cmap) |
|
|
174 | ax.plt.set_cmap(cmap) | |
|
168 | 175 | ax.cbar.patch.figure.canvas.draw() |
|
169 | 176 | |
|
170 | 177 | def __add_axes(self, ax, size='30%', pad='8%'): |
|
171 | 178 | ''' |
|
172 | 179 | Add new axes to the given figure |
|
173 | 180 | ''' |
|
174 | 181 | divider = make_axes_locatable(ax) |
|
175 | 182 | nax = divider.new_horizontal(size=size, pad=pad) |
|
176 |
ax.figure.add_axes(nax) |
|
|
183 | ax.figure.add_axes(nax) | |
|
177 | 184 | return nax |
|
178 | 185 | |
|
179 | 186 | self.setup() |
|
180 | 187 | |
|
181 | 188 | def setup(self): |
|
182 | 189 | ''' |
|
183 | 190 | This method should be implemented in the child class, the following |
|
184 | 191 | attributes should be set: |
|
185 | ||
|
192 | ||
|
186 | 193 | self.nrows: number of rows |
|
187 | 194 | self.ncols: number of cols |
|
188 | 195 | self.nplots: number of plots (channels or pairs) |
|
189 | 196 | self.ylabel: label for Y axes |
|
190 | 197 | self.titles: list of axes title |
|
191 | 198 | |
|
192 | 199 | ''' |
|
193 | 200 | raise(NotImplementedError, 'Implement this method in child class') |
|
194 | 201 | |
|
195 | 202 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
196 | 203 | ''' |
|
197 | 204 | Create a masked array for missing data |
|
198 | 205 | ''' |
|
199 | 206 | if x_buffer.shape[0] < 2: |
|
200 | 207 | return x_buffer, y_buffer, z_buffer |
|
201 | 208 | |
|
202 | 209 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
203 | 210 | x_median = numpy.median(deltas) |
|
204 | 211 | |
|
205 | index = numpy.where(deltas > 5*x_median) | |
|
212 | index = numpy.where(deltas > 5 * x_median) | |
|
206 | 213 | |
|
207 | 214 | if len(index[0]) != 0: |
|
208 | 215 | z_buffer[::, index[0], ::] = self.__missing |
|
209 | 216 | z_buffer = numpy.ma.masked_inside(z_buffer, |
|
210 | 0.99*self.__missing, | |
|
211 | 1.01*self.__missing) | |
|
217 | 0.99 * self.__missing, | |
|
218 | 1.01 * self.__missing) | |
|
212 | 219 | |
|
213 | 220 | return x_buffer, y_buffer, z_buffer |
|
214 | 221 | |
|
215 | 222 | def decimate(self): |
|
216 | 223 | |
|
217 | 224 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
218 | dy = int(len(self.y)/self.__MAXNUMY) + 1 | |
|
225 | dy = int(len(self.y) / self.__MAXNUMY) + 1 | |
|
219 | 226 | |
|
220 | 227 | # x = self.x[::dx] |
|
221 | 228 | x = self.x |
|
222 | 229 | y = self.y[::dy] |
|
223 | 230 | z = self.z[::, ::, ::dy] |
|
224 | ||
|
231 | ||
|
225 | 232 | return x, y, z |
|
226 | 233 | |
|
227 | 234 | def format(self): |
|
228 | 235 | ''' |
|
229 | 236 | Set min and max values, labels, ticks and titles |
|
230 | 237 | ''' |
|
231 | 238 | |
|
232 | 239 | if self.xmin is None: |
|
233 | 240 | xmin = self.min_time |
|
234 | 241 | else: |
|
235 | 242 | if self.xaxis is 'time': |
|
236 | 243 | dt = datetime.datetime.fromtimestamp(self.min_time) |
|
237 | 244 | xmin = (datetime.datetime.combine(dt.date(), |
|
238 | datetime.time(int(self.xmin), 0, 0))-UT1970).total_seconds() | |
|
245 | datetime.time(int(self.xmin), 0, 0)) - UT1970).total_seconds() | |
|
239 | 246 | else: |
|
240 | 247 | xmin = self.xmin |
|
241 | 248 | |
|
242 | 249 | if self.xmax is None: |
|
243 | xmax = xmin+self.xrange*60*60 | |
|
250 | xmax = xmin + self.xrange * 60 * 60 | |
|
244 | 251 | else: |
|
245 | 252 | if self.xaxis is 'time': |
|
246 | 253 | dt = datetime.datetime.fromtimestamp(self.min_time) |
|
247 | 254 | xmax = (datetime.datetime.combine(dt.date(), |
|
248 | datetime.time(int(self.xmax), 0, 0))-UT1970).total_seconds() | |
|
255 | datetime.time(int(self.xmax), 0, 0)) - UT1970).total_seconds() | |
|
249 | 256 | else: |
|
250 | 257 | xmax = self.xmax |
|
251 | ||
|
258 | ||
|
252 | 259 | ymin = self.ymin if self.ymin else numpy.nanmin(self.y) |
|
253 | 260 | ymax = self.ymax if self.ymax else numpy.nanmax(self.y) |
|
254 | ||
|
255 | ystep = 200 if ymax>= 800 else 100 if ymax>=400 else 50 if ymax>=200 else 20 | |
|
256 | 261 | |
|
257 | for n, ax in enumerate(self.axes): | |
|
262 | ystep = 200 if ymax >= 800 else 100 if ymax >= 400 else 50 if ymax >= 200 else 20 | |
|
263 | ||
|
264 | for n, ax in enumerate(self.axes): | |
|
258 | 265 | if ax.firsttime: |
|
259 | 266 | ax.set_facecolor(self.bgcolor) |
|
260 | 267 | ax.yaxis.set_major_locator(MultipleLocator(ystep)) |
|
261 |
if self.xaxis is 'time': |
|
|
268 | if self.xaxis is 'time': | |
|
262 | 269 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
263 |
ax.xaxis.set_major_locator(LinearLocator(9)) |
|
|
270 | ax.xaxis.set_major_locator(LinearLocator(9)) | |
|
264 | 271 | if self.xlabel is not None: |
|
265 | 272 | ax.set_xlabel(self.xlabel) |
|
266 |
ax.set_ylabel(self.ylabel) |
|
|
273 | ax.set_ylabel(self.ylabel) | |
|
267 | 274 | ax.firsttime = False |
|
268 | 275 | if self.showprofile: |
|
269 | 276 | self.pf_axes[n].set_ylim(ymin, ymax) |
|
270 |
self.pf_axes[n].set_xlim(self.zmin, self.zmax) |
|
|
277 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) | |
|
271 | 278 | self.pf_axes[n].set_xlabel('dB') |
|
272 | 279 | self.pf_axes[n].grid(b=True, axis='x') |
|
273 |
[tick.set_visible(False) |
|
|
280 | [tick.set_visible(False) | |
|
281 | for tick in self.pf_axes[n].get_yticklabels()] | |
|
274 | 282 | if self.colorbar: |
|
275 | 283 | ax.cbar = plt.colorbar(ax.plt, ax=ax, pad=0.02, aspect=10) |
|
276 | 284 | ax.cbar.ax.tick_params(labelsize=8) |
|
277 | 285 | if self.cb_label: |
|
278 | 286 | ax.cbar.set_label(self.cb_label, size=8) |
|
279 | 287 | elif self.cb_labels: |
|
280 | 288 | ax.cbar.set_label(self.cb_labels[n], size=8) |
|
281 | ||
|
289 | ||
|
282 | 290 | ax.set_title('{} - {} {}'.format( |
|
283 |
|
|
|
284 |
|
|
|
285 |
self. |
|
|
291 | self.titles[n], | |
|
292 | datetime.datetime.fromtimestamp( | |
|
293 | self.max_time).strftime('%H:%M:%S'), | |
|
294 | self.time_label), | |
|
286 | 295 | size=8) |
|
287 | 296 | ax.set_xlim(xmin, xmax) |
|
288 | 297 | ax.set_ylim(ymin, ymax) |
|
289 | 298 | |
|
290 | 299 | def __plot(self): |
|
291 | 300 | ''' |
|
292 | 301 | ''' |
|
293 | 302 | log.success('Plotting', self.name) |
|
294 | ||
|
303 | ||
|
295 | 304 | self.plot() |
|
296 | 305 | self.format() |
|
297 | ||
|
306 | ||
|
298 | 307 | for n, fig in enumerate(self.figures): |
|
299 | 308 | if self.nrows == 0 or self.nplots == 0: |
|
300 | 309 | log.warning('No data', self.name) |
|
301 | 310 | continue |
|
302 | 311 | if self.show: |
|
303 | 312 | fig.show() |
|
304 | ||
|
313 | ||
|
305 | 314 | fig.tight_layout() |
|
306 |
fig.canvas.manager.set_window_title('{} - {}'.format(self.title, |
|
|
315 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, | |
|
307 | 316 | datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d'))) |
|
308 | 317 | # fig.canvas.draw() |
|
309 | ||
|
318 | ||
|
310 | 319 | if self.save and self.data.ended: |
|
311 | 320 | channels = range(self.nrows) |
|
312 | 321 | if self.oneFigure: |
|
313 | 322 | label = '' |
|
314 | 323 | else: |
|
315 | 324 | label = '_{}'.format(channels[n]) |
|
316 | 325 | figname = os.path.join( |
|
317 | 326 | self.save, |
|
318 | 327 | '{}{}_{}.png'.format( |
|
319 | 328 | self.CODE, |
|
320 | 329 | label, |
|
321 |
datetime.datetime.fromtimestamp( |
|
|
330 | datetime.datetime.fromtimestamp( | |
|
331 | self.saveTime).strftime('%y%m%d_%H%M%S') | |
|
322 | 332 | ) |
|
323 | 333 | ) |
|
324 | 334 | print 'Saving figure: {}'.format(figname) |
|
325 | 335 | fig.savefig(figname) |
|
326 | 336 | |
|
327 | 337 | def plot(self): |
|
328 | 338 | ''' |
|
329 | 339 | ''' |
|
330 | 340 | raise(NotImplementedError, 'Implement this method in child class') |
|
331 | 341 | |
|
332 | 342 | def run(self): |
|
333 | 343 | |
|
334 | 344 | log.success('Starting', self.name) |
|
335 | 345 | |
|
336 | 346 | context = zmq.Context() |
|
337 | 347 | receiver = context.socket(zmq.SUB) |
|
338 | 348 | receiver.setsockopt(zmq.SUBSCRIBE, '') |
|
339 | 349 | receiver.setsockopt(zmq.CONFLATE, self.CONFLATE) |
|
340 | 350 | |
|
341 | 351 | if 'server' in self.kwargs['parent']: |
|
342 | receiver.connect('ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server'])) | |
|
352 | receiver.connect( | |
|
353 | 'ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server'])) | |
|
343 | 354 | else: |
|
344 |
receiver.connect("ipc:///tmp/zmq.plots") |
|
|
355 | receiver.connect("ipc:///tmp/zmq.plots") | |
|
345 | 356 | |
|
346 | 357 | while True: |
|
347 | 358 | try: |
|
348 | 359 | self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) |
|
349 | ||
|
360 | ||
|
350 | 361 | if self.localtime: |
|
351 | 362 | self.times = self.data.times - time.timezone |
|
352 | 363 | else: |
|
353 | 364 | self.times = self.data.times |
|
354 | ||
|
365 | ||
|
355 | 366 | self.min_time = self.times[0] |
|
356 | 367 | self.max_time = self.times[-1] |
|
357 | 368 | |
|
358 | 369 | if self.isConfig is False: |
|
359 | 370 | self.__setup() |
|
360 | 371 | self.isConfig = True |
|
361 | ||
|
372 | ||
|
362 | 373 | self.__plot() |
|
363 | 374 | |
|
364 | 375 | except zmq.Again as e: |
|
365 | 376 | log.log('Waiting for data...') |
|
366 | 377 | if self.data: |
|
367 | 378 | plt.pause(self.data.throttle) |
|
368 | 379 | else: |
|
369 | 380 | time.sleep(2) |
|
370 | 381 | |
|
371 | 382 | def close(self): |
|
372 | 383 | if self.data: |
|
373 | 384 | self.__plot() |
|
374 | 385 | |
|
386 | ||
|
375 | 387 | class PlotSpectraData(PlotData): |
|
376 | 388 | ''' |
|
377 | 389 | Plot for Spectra data |
|
378 | 390 | ''' |
|
379 | 391 | |
|
380 | 392 | CODE = 'spc' |
|
381 |
colormap = 'jro' |
|
|
393 | colormap = 'jro' | |
|
382 | 394 | |
|
383 | 395 | def setup(self): |
|
384 | 396 | self.nplots = len(self.data.channels) |
|
385 | self.ncols = int(numpy.sqrt(self.nplots)+ 0.9) | |
|
386 | self.nrows = int((1.0*self.nplots/self.ncols) + 0.9) | |
|
387 | self.width = 3.4*self.ncols | |
|
388 | self.height = 3*self.nrows | |
|
397 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
|
398 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
|
399 | self.width = 3.4 * self.ncols | |
|
400 | self.height = 3 * self.nrows | |
|
389 | 401 | self.cb_label = 'dB' |
|
390 |
if self.showprofile: |
|
|
391 | self.width += 0.8*self.ncols | |
|
402 | if self.showprofile: | |
|
403 | self.width += 0.8 * self.ncols | |
|
392 | 404 | |
|
393 | 405 | self.ylabel = 'Range [Km]' |
|
394 | 406 | |
|
395 | 407 | def plot(self): |
|
396 | 408 | if self.xaxis == "frequency": |
|
397 | 409 | x = self.data.xrange[0] |
|
398 | 410 | self.xlabel = "Frequency (kHz)" |
|
399 | 411 | elif self.xaxis == "time": |
|
400 | 412 | x = self.data.xrange[1] |
|
401 | 413 | self.xlabel = "Time (ms)" |
|
402 | 414 | else: |
|
403 | 415 | x = self.data.xrange[2] |
|
404 | 416 | self.xlabel = "Velocity (m/s)" |
|
405 | 417 | |
|
406 | 418 | if self.CODE == 'spc_mean': |
|
407 | 419 | x = self.data.xrange[2] |
|
408 | 420 | self.xlabel = "Velocity (m/s)" |
|
409 | 421 | |
|
410 | 422 | self.titles = [] |
|
411 | 423 | |
|
412 | 424 | y = self.data.heights |
|
413 | 425 | self.y = y |
|
414 | 426 | z = self.data['spc'] |
|
415 | ||
|
427 | ||
|
416 | 428 | for n, ax in enumerate(self.axes): |
|
417 | 429 | noise = self.data['noise'][n][-1] |
|
418 | 430 | if self.CODE == 'spc_mean': |
|
419 | 431 | mean = self.data['mean'][n][-1] |
|
420 | 432 | if ax.firsttime: |
|
421 | 433 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
422 | 434 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
423 | 435 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
424 | 436 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
425 | 437 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
426 | vmin=self.zmin, | |
|
427 | vmax=self.zmax, | |
|
428 | cmap=plt.get_cmap(self.colormap) | |
|
429 |
) |
|
|
438 | vmin=self.zmin, | |
|
439 | vmax=self.zmax, | |
|
440 | cmap=plt.get_cmap(self.colormap) | |
|
441 | ) | |
|
430 | 442 | |
|
431 | 443 | if self.showprofile: |
|
432 |
ax.plt_profile= self.pf_axes[n].plot( |
|
|
444 | ax.plt_profile = self.pf_axes[n].plot( | |
|
445 | self.data['rti'][n][-1], y)[0] | |
|
433 | 446 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
434 |
|
|
|
447 | color="k", linestyle="dashed", lw=1)[0] | |
|
435 | 448 | if self.CODE == 'spc_mean': |
|
436 | 449 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
437 | 450 | else: |
|
438 | 451 | ax.plt.set_array(z[n].T.ravel()) |
|
439 | 452 | if self.showprofile: |
|
440 | 453 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
441 | 454 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
442 | 455 | if self.CODE == 'spc_mean': |
|
443 | 456 | ax.plt_mean.set_data(mean, y) |
|
444 | 457 | |
|
445 | 458 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
446 | 459 | self.saveTime = self.max_time |
|
447 | 460 | |
|
448 | 461 | |
|
449 | 462 | class PlotCrossSpectraData(PlotData): |
|
450 | 463 | |
|
451 | 464 | CODE = 'cspc' |
|
452 | 465 | zmin_coh = None |
|
453 | 466 | zmax_coh = None |
|
454 | 467 | zmin_phase = None |
|
455 |
zmax_phase = None |
|
|
468 | zmax_phase = None | |
|
456 | 469 | |
|
457 | 470 | def setup(self): |
|
458 | 471 | |
|
459 | 472 | self.ncols = 4 |
|
460 | 473 | self.nrows = len(self.data.pairs) |
|
461 | self.nplots = self.nrows*4 | |
|
462 | self.width = 3.4*self.ncols | |
|
463 | self.height = 3*self.nrows | |
|
474 | self.nplots = self.nrows * 4 | |
|
475 | self.width = 3.4 * self.ncols | |
|
476 | self.height = 3 * self.nrows | |
|
464 | 477 | self.ylabel = 'Range [Km]' |
|
465 |
self.showprofile = False |
|
|
478 | self.showprofile = False | |
|
466 | 479 | |
|
467 | 480 | def plot(self): |
|
468 | 481 | |
|
469 | 482 | if self.xaxis == "frequency": |
|
470 | 483 | x = self.data.xrange[0] |
|
471 | 484 | self.xlabel = "Frequency (kHz)" |
|
472 | 485 | elif self.xaxis == "time": |
|
473 | 486 | x = self.data.xrange[1] |
|
474 | 487 | self.xlabel = "Time (ms)" |
|
475 | 488 | else: |
|
476 | 489 | x = self.data.xrange[2] |
|
477 | 490 | self.xlabel = "Velocity (m/s)" |
|
478 | 491 | |
|
479 | 492 | self.titles = [] |
|
480 | 493 | |
|
481 | 494 | y = self.data.heights |
|
482 | 495 | self.y = y |
|
483 | 496 | spc = self.data['spc'] |
|
484 | 497 | cspc = self.data['cspc'] |
|
485 | 498 | |
|
486 | 499 | for n in range(self.nrows): |
|
487 | 500 | noise = self.data['noise'][n][-1] |
|
488 | 501 | pair = self.data.pairs[n] |
|
489 | ax = self.axes[4*n] | |
|
490 | ax3 = self.axes[4*n+3] | |
|
502 | ax = self.axes[4 * n] | |
|
503 | ax3 = self.axes[4 * n + 3] | |
|
491 | 504 | if ax.firsttime: |
|
492 | 505 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
493 | 506 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
494 | 507 | self.zmin = self.zmin if self.zmin else numpy.nanmin(spc) |
|
495 |
self.zmax = self.zmax if self.zmax else numpy.nanmax(spc) |
|
|
508 | self.zmax = self.zmax if self.zmax else numpy.nanmax(spc) | |
|
496 | 509 | ax.plt = ax.pcolormesh(x, y, spc[pair[0]].T, |
|
497 | 510 | vmin=self.zmin, |
|
498 | 511 | vmax=self.zmax, |
|
499 | 512 | cmap=plt.get_cmap(self.colormap) |
|
500 |
) |
|
|
513 | ) | |
|
501 | 514 | else: |
|
502 | 515 | ax.plt.set_array(spc[pair[0]].T.ravel()) |
|
503 | 516 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
504 | 517 | |
|
505 | ax = self.axes[4*n+1] | |
|
506 |
if ax.firsttime: |
|
|
518 | ax = self.axes[4 * n + 1] | |
|
519 | if ax.firsttime: | |
|
507 | 520 | ax.plt = ax.pcolormesh(x, y, spc[pair[1]].T, |
|
508 | 521 | vmin=self.zmin, |
|
509 | 522 | vmax=self.zmax, |
|
510 | 523 | cmap=plt.get_cmap(self.colormap) |
|
511 | 524 | ) |
|
512 | 525 | else: |
|
513 | 526 | ax.plt.set_array(spc[pair[1]].T.ravel()) |
|
514 | 527 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
515 | 528 | |
|
516 | out = cspc[n]/numpy.sqrt(spc[pair[0]]*spc[pair[1]]) | |
|
529 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
|
517 | 530 | coh = numpy.abs(out) |
|
518 | phase = numpy.arctan2(out.imag, out.real)*180/numpy.pi | |
|
519 | ||
|
520 | ax = self.axes[4*n+2] | |
|
521 |
if ax.firsttime: |
|
|
531 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
|
532 | ||
|
533 | ax = self.axes[4 * n + 2] | |
|
534 | if ax.firsttime: | |
|
522 | 535 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
523 | 536 | vmin=0, |
|
524 | 537 | vmax=1, |
|
525 | 538 | cmap=plt.get_cmap(self.colormap_coh) |
|
526 | 539 | ) |
|
527 | 540 | else: |
|
528 | 541 | ax.plt.set_array(coh.T.ravel()) |
|
529 | self.titles.append('Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
|
542 | self.titles.append( | |
|
543 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
|
530 | 544 | |
|
531 | ax = self.axes[4*n+3] | |
|
545 | ax = self.axes[4 * n + 3] | |
|
532 | 546 | if ax.firsttime: |
|
533 | 547 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
534 | 548 | vmin=-180, |
|
535 | 549 | vmax=180, |
|
536 | 550 | cmap=plt.get_cmap(self.colormap_phase) |
|
537 | 551 | ) |
|
538 | 552 | else: |
|
539 | 553 | ax.plt.set_array(phase.T.ravel()) |
|
540 | 554 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
541 | ||
|
555 | ||
|
542 | 556 | self.saveTime = self.max_time |
|
543 | 557 | |
|
544 | 558 | |
|
545 | 559 | class PlotSpectraMeanData(PlotSpectraData): |
|
546 | 560 | ''' |
|
547 | 561 | Plot for Spectra and Mean |
|
548 | 562 | ''' |
|
549 | 563 | CODE = 'spc_mean' |
|
550 | 564 | colormap = 'jro' |
|
551 | 565 | |
|
552 | 566 | |
|
553 | 567 | class PlotRTIData(PlotData): |
|
554 | 568 | ''' |
|
555 | 569 | Plot for RTI data |
|
556 | 570 | ''' |
|
557 | 571 | |
|
558 | 572 | CODE = 'rti' |
|
559 | 573 | colormap = 'jro' |
|
560 | 574 | |
|
561 | 575 | def setup(self): |
|
562 | 576 | self.xaxis = 'time' |
|
563 |
self.ncols = 1 |
|
|
577 | self.ncols = 1 | |
|
564 | 578 | self.nrows = len(self.data.channels) |
|
565 | 579 | self.nplots = len(self.data.channels) |
|
566 | 580 | self.ylabel = 'Range [Km]' |
|
567 | 581 | self.cb_label = 'dB' |
|
568 |
self.titles = ['{} Channel {}'.format( |
|
|
582 | self.titles = ['{} Channel {}'.format( | |
|
583 | self.CODE.upper(), x) for x in range(self.nrows)] | |
|
569 | 584 | |
|
570 | 585 | def plot(self): |
|
571 | 586 | self.x = self.times |
|
572 | 587 | self.y = self.data.heights |
|
573 | 588 | self.z = self.data[self.CODE] |
|
574 | 589 | self.z = numpy.ma.masked_invalid(self.z) |
|
575 | 590 | |
|
576 | 591 | for n, ax in enumerate(self.axes): |
|
577 |
x, y, z = self.fill_gaps(*self.decimate()) |
|
|
592 | x, y, z = self.fill_gaps(*self.decimate()) | |
|
578 | 593 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
579 | 594 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
580 |
if ax.firsttime: |
|
|
595 | if ax.firsttime: | |
|
581 | 596 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
582 | vmin=self.zmin, | |
|
583 | vmax=self.zmax, | |
|
584 | cmap=plt.get_cmap(self.colormap) | |
|
585 | ) | |
|
597 | vmin=self.zmin, | |
|
598 | vmax=self.zmax, | |
|
599 | cmap=plt.get_cmap(self.colormap) | |
|
600 | ) | |
|
586 | 601 | if self.showprofile: |
|
587 |
ax.plot_profile= self.pf_axes[n].plot( |
|
|
602 | ax.plot_profile = self.pf_axes[n].plot( | |
|
603 | self.data['rti'][n][-1], self.y)[0] | |
|
588 | 604 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
589 | 605 | color="k", linestyle="dashed", lw=1)[0] |
|
590 | 606 | else: |
|
591 | 607 | ax.collections.remove(ax.collections[0]) |
|
592 | 608 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
593 | 609 | vmin=self.zmin, |
|
594 | 610 | vmax=self.zmax, |
|
595 | 611 | cmap=plt.get_cmap(self.colormap) |
|
596 | ) | |
|
612 | ) | |
|
597 | 613 | if self.showprofile: |
|
598 | 614 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
599 |
ax.plot_noise.set_data(numpy.repeat( |
|
|
615 | ax.plot_noise.set_data(numpy.repeat( | |
|
616 | self.data['noise'][n][-1], len(self.y)), self.y) | |
|
600 | 617 | |
|
601 |
self.saveTime = self.min_time |
|
|
618 | self.saveTime = self.min_time | |
|
602 | 619 | |
|
603 | 620 | |
|
604 | 621 | class PlotCOHData(PlotRTIData): |
|
605 | 622 | ''' |
|
606 | 623 | Plot for Coherence data |
|
607 | 624 | ''' |
|
608 | 625 | |
|
609 | 626 | CODE = 'coh' |
|
610 | 627 | |
|
611 | 628 | def setup(self): |
|
612 | 629 | self.xaxis = 'time' |
|
613 | 630 | self.ncols = 1 |
|
614 | 631 | self.nrows = len(self.data.pairs) |
|
615 | 632 | self.nplots = len(self.data.pairs) |
|
616 |
self.ylabel = 'Range [Km]' |
|
|
633 | self.ylabel = 'Range [Km]' | |
|
617 | 634 | if self.CODE == 'coh': |
|
618 | 635 | self.cb_label = '' |
|
619 | self.titles = ['Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
|
636 | self.titles = [ | |
|
637 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
|
620 | 638 | else: |
|
621 | 639 | self.cb_label = 'Degrees' |
|
622 | self.titles = ['Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
|
640 | self.titles = [ | |
|
641 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
|
623 | 642 | |
|
624 | 643 | |
|
625 | 644 | class PlotPHASEData(PlotCOHData): |
|
626 | 645 | ''' |
|
627 | 646 | Plot for Phase map data |
|
628 | 647 | ''' |
|
629 | 648 | |
|
630 | 649 | CODE = 'phase' |
|
631 | 650 | colormap = 'seismic' |
|
632 | 651 | |
|
633 | 652 | |
|
634 | 653 | class PlotNoiseData(PlotData): |
|
635 | 654 | ''' |
|
636 | 655 | Plot for noise |
|
637 | 656 | ''' |
|
638 | 657 | |
|
639 | 658 | CODE = 'noise' |
|
640 | 659 | |
|
641 | 660 | def setup(self): |
|
642 | 661 | self.xaxis = 'time' |
|
643 | 662 | self.ncols = 1 |
|
644 | 663 | self.nrows = 1 |
|
645 | 664 | self.nplots = 1 |
|
646 | 665 | self.ylabel = 'Intensity [dB]' |
|
647 | 666 | self.titles = ['Noise'] |
|
648 | 667 | self.colorbar = False |
|
649 | 668 | |
|
650 | 669 | def plot(self): |
|
651 | 670 | |
|
652 | 671 | x = self.times |
|
653 | 672 | xmin = self.min_time |
|
654 | xmax = xmin+self.xrange*60*60 | |
|
673 | xmax = xmin + self.xrange * 60 * 60 | |
|
655 | 674 | Y = self.data[self.CODE] |
|
656 | ||
|
675 | ||
|
657 | 676 | if self.axes[0].firsttime: |
|
658 | 677 | for ch in self.data.channels: |
|
659 | 678 | y = Y[ch] |
|
660 | 679 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
661 | 680 | plt.legend() |
|
662 | 681 | else: |
|
663 | 682 | for ch in self.data.channels: |
|
664 | 683 | y = Y[ch] |
|
665 | 684 | self.axes[0].lines[ch].set_data(x, y) |
|
666 | ||
|
685 | ||
|
667 | 686 | self.ymin = numpy.nanmin(Y) - 5 |
|
668 | 687 | self.ymax = numpy.nanmax(Y) + 5 |
|
669 | 688 | self.saveTime = self.min_time |
|
670 | 689 | |
|
671 | 690 | |
|
672 | 691 | class PlotSNRData(PlotRTIData): |
|
673 | 692 | ''' |
|
674 | 693 | Plot for SNR Data |
|
675 | 694 | ''' |
|
676 | 695 | |
|
677 | 696 | CODE = 'snr' |
|
678 | 697 | colormap = 'jet' |
|
679 | 698 | |
|
680 | 699 | |
|
681 | 700 | class PlotDOPData(PlotRTIData): |
|
682 | 701 | ''' |
|
683 | 702 | Plot for DOPPLER Data |
|
684 | 703 | ''' |
|
685 | 704 | |
|
686 | 705 | CODE = 'dop' |
|
687 | 706 | colormap = 'jet' |
|
688 | 707 | |
|
689 | 708 | |
|
690 | 709 | class PlotSkyMapData(PlotData): |
|
691 | 710 | ''' |
|
692 | 711 | Plot for meteors detection data |
|
693 | 712 | ''' |
|
694 | 713 | |
|
695 | 714 | CODE = 'met' |
|
696 | 715 | |
|
697 | 716 | def setup(self): |
|
698 | 717 | |
|
699 | 718 | self.ncols = 1 |
|
700 | 719 | self.nrows = 1 |
|
701 | 720 | self.width = 7.2 |
|
702 | 721 | self.height = 7.2 |
|
703 | 722 | |
|
704 | 723 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
705 | 724 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
706 | 725 | |
|
707 | 726 | if self.figure is None: |
|
708 | 727 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
709 | 728 | edgecolor='k', |
|
710 | 729 | facecolor='w') |
|
711 | 730 | else: |
|
712 | 731 | self.figure.clf() |
|
713 | 732 | |
|
714 | self.ax = plt.subplot2grid((self.nrows, self.ncols), (0, 0), 1, 1, polar=True) | |
|
733 | self.ax = plt.subplot2grid( | |
|
734 | (self.nrows, self.ncols), (0, 0), 1, 1, polar=True) | |
|
715 | 735 | self.ax.firsttime = True |
|
716 | 736 | |
|
717 | ||
|
718 | 737 | def plot(self): |
|
719 | 738 | |
|
720 |
arrayParameters = numpy.concatenate( |
|
|
721 | error = arrayParameters[:,-1] | |
|
739 | arrayParameters = numpy.concatenate( | |
|
740 | [self.data['param'][t] for t in self.times]) | |
|
741 | error = arrayParameters[:, -1] | |
|
722 | 742 | indValid = numpy.where(error == 0)[0] |
|
723 | finalMeteor = arrayParameters[indValid,:] | |
|
724 | finalAzimuth = finalMeteor[:,3] | |
|
725 | finalZenith = finalMeteor[:,4] | |
|
743 | finalMeteor = arrayParameters[indValid, :] | |
|
744 | finalAzimuth = finalMeteor[:, 3] | |
|
745 | finalZenith = finalMeteor[:, 4] | |
|
726 | 746 | |
|
727 | x = finalAzimuth*numpy.pi/180 | |
|
747 | x = finalAzimuth * numpy.pi / 180 | |
|
728 | 748 | y = finalZenith |
|
729 | 749 | |
|
730 | 750 | if self.ax.firsttime: |
|
731 | 751 | self.ax.plot = self.ax.plot(x, y, 'bo', markersize=5)[0] |
|
732 | self.ax.set_ylim(0,90) | |
|
733 | self.ax.set_yticks(numpy.arange(0,90,20)) | |
|
752 | self.ax.set_ylim(0, 90) | |
|
753 | self.ax.set_yticks(numpy.arange(0, 90, 20)) | |
|
734 | 754 | self.ax.set_xlabel(self.xlabel) |
|
735 | 755 | self.ax.set_ylabel(self.ylabel) |
|
736 | 756 | self.ax.yaxis.labelpad = 40 |
|
737 | 757 | self.ax.firsttime = False |
|
738 | 758 | else: |
|
739 | 759 | self.ax.plot.set_data(x, y) |
|
740 | 760 | |
|
741 | ||
|
742 |
|
|
|
743 |
dt2 = datetime.datetime.fromtimestamp( |
|
|
761 | dt1 = datetime.datetime.fromtimestamp( | |
|
762 | self.min_time).strftime('%y/%m/%d %H:%M:%S') | |
|
763 | dt2 = datetime.datetime.fromtimestamp( | |
|
764 | self.max_time).strftime('%y/%m/%d %H:%M:%S') | |
|
744 | 765 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
745 | 766 | dt2, |
|
746 | 767 | len(x)) |
|
747 | 768 | self.ax.set_title(title, size=8) |
|
748 | 769 | |
|
749 | 770 | self.saveTime = self.max_time |
|
750 | 771 | |
|
772 | ||
|
751 | 773 | class PlotParamData(PlotRTIData): |
|
752 | 774 | ''' |
|
753 | 775 | Plot for data_param object |
|
754 | 776 | ''' |
|
755 | 777 | |
|
756 | 778 | CODE = 'param' |
|
757 | 779 | colormap = 'seismic' |
|
758 | 780 | |
|
759 | 781 | def setup(self): |
|
760 | 782 | self.xaxis = 'time' |
|
761 | 783 | self.ncols = 1 |
|
762 | 784 | self.nrows = self.data.shape(self.CODE)[0] |
|
763 | 785 | self.nplots = self.nrows |
|
764 | 786 | if self.showSNR: |
|
765 | 787 | self.nrows += 1 |
|
766 | 788 | self.nplots += 1 |
|
767 | ||
|
789 | ||
|
768 | 790 | self.ylabel = 'Height [Km]' |
|
769 | 791 | self.titles = self.data.parameters \ |
|
770 | 792 | if self.data.parameters else ['Param {}'.format(x) for x in xrange(self.nrows)] |
|
771 | 793 | if self.showSNR: |
|
772 | 794 | self.titles.append('SNR') |
|
773 | 795 | |
|
774 | 796 | def plot(self): |
|
775 |
self.data.normalize_heights() |
|
|
797 | self.data.normalize_heights() | |
|
776 | 798 | self.x = self.times |
|
777 | 799 | self.y = self.data.heights |
|
778 |
if self.showSNR: |
|
|
800 | if self.showSNR: | |
|
779 | 801 | self.z = numpy.concatenate( |
|
780 | 802 | (self.data[self.CODE], self.data['snr']) |
|
781 | 803 | ) |
|
782 | 804 | else: |
|
783 | 805 | self.z = self.data[self.CODE] |
|
784 | 806 | |
|
785 | 807 | self.z = numpy.ma.masked_invalid(self.z) |
|
786 | 808 | |
|
787 | 809 | for n, ax in enumerate(self.axes): |
|
788 | 810 | |
|
789 | 811 | x, y, z = self.fill_gaps(*self.decimate()) |
|
790 | 812 | |
|
791 | 813 | if ax.firsttime: |
|
792 | 814 | if self.zlimits is not None: |
|
793 | 815 | self.zmin, self.zmax = self.zlimits[n] |
|
794 |
self.zmax = self.zmax if self.zmax is not None else numpy.nanmax( |
|
|
816 | self.zmax = self.zmax if self.zmax is not None else numpy.nanmax( | |
|
817 | abs(self.z[:-1, :])) | |
|
795 | 818 | self.zmin = self.zmin if self.zmin is not None else -self.zmax |
|
796 | ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n], | |
|
819 | ax.plt = ax.pcolormesh(x, y, z[n, :, :].T * self.factors[n], | |
|
797 | 820 | vmin=self.zmin, |
|
798 | 821 | vmax=self.zmax, |
|
799 | 822 | cmap=self.cmaps[n] |
|
800 |
) |
|
|
823 | ) | |
|
801 | 824 | else: |
|
802 | 825 | if self.zlimits is not None: |
|
803 | 826 | self.zmin, self.zmax = self.zlimits[n] |
|
804 | 827 | ax.collections.remove(ax.collections[0]) |
|
805 | ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n], | |
|
828 | ax.plt = ax.pcolormesh(x, y, z[n, :, :].T * self.factors[n], | |
|
806 | 829 | vmin=self.zmin, |
|
807 | 830 | vmax=self.zmax, |
|
808 | 831 | cmap=self.cmaps[n] |
|
809 | ) | |
|
832 | ) | |
|
810 | 833 | |
|
811 | 834 | self.saveTime = self.min_time |
|
812 | 835 | |
|
836 | ||
|
813 | 837 | class PlotOuputData(PlotParamData): |
|
814 | 838 | ''' |
|
815 | 839 | Plot data_output object |
|
816 | 840 | ''' |
|
817 | 841 | |
|
818 | 842 | CODE = 'output' |
|
819 | 843 | colormap = 'seismic' |
@@ -1,141 +1,143 | |||
|
1 | 1 | ''' |
|
2 | 2 | @author: Daniel Suarez |
|
3 | 3 | ''' |
|
4 | 4 | import numpy |
|
5 | 5 | from jroproc_base import ProcessingUnit, Operation |
|
6 | 6 | from schainpy.model.data.jroamisr import AMISR |
|
7 | 7 | |
|
8 | 8 | class AMISRProc(ProcessingUnit): |
|
9 | def __init__(self): | |
|
10 | ProcessingUnit.__init__(self) | |
|
9 | def __init__(self, **kwargs): | |
|
10 | ProcessingUnit.__init__(self, **kwargs) | |
|
11 | 11 | self.objectDict = {} |
|
12 | 12 | self.dataOut = AMISR() |
|
13 | 13 | |
|
14 | 14 | def run(self): |
|
15 | 15 | if self.dataIn.type == 'AMISR': |
|
16 | 16 | self.dataOut.copy(self.dataIn) |
|
17 | 17 | |
|
18 | 18 | |
|
19 | 19 | class PrintInfo(Operation): |
|
20 | def __init__(self): | |
|
20 | def __init__(self, **kwargs): | |
|
21 | Operation.__init__(self, **kwargs) | |
|
21 | 22 | self.__isPrinted = False |
|
22 | 23 | |
|
23 | 24 | def run(self, dataOut): |
|
24 | 25 | |
|
25 | 26 | if not self.__isPrinted: |
|
26 | 27 | print 'Number of Records by File: %d'%dataOut.nRecords |
|
27 | 28 | print 'Number of Pulses: %d'%dataOut.nProfiles |
|
28 | 29 | print 'Number of Pulses by Frame: %d'%dataOut.npulseByFrame |
|
29 | 30 | print 'Number of Samples by Pulse: %d'%len(dataOut.heightList) |
|
30 | 31 | print 'Ipp Seconds: %f'%dataOut.ippSeconds |
|
31 | 32 | print 'Number of Beams: %d'%dataOut.nBeams |
|
32 | 33 | print 'BeamCodes:' |
|
33 | 34 | beamStrList = ['Beam %d -> Code=%d, azimuth=%2.2f, zenith=%2.2f, gain=%2.2f'%(k,v[0],v[1],v[2],v[3]) for k,v in dataOut.beamCodeDict.items()] |
|
34 | 35 | for b in beamStrList: |
|
35 | 36 | print b |
|
36 | 37 | self.__isPrinted = True |
|
37 | 38 | |
|
38 | 39 | return |
|
39 | 40 | |
|
40 | 41 | |
|
41 | 42 | class BeamSelector(Operation): |
|
42 | 43 | profileIndex = None |
|
43 | 44 | nProfiles = None |
|
44 | 45 | |
|
45 | def __init__(self): | |
|
46 | ||
|
46 | def __init__(self, **kwargs): | |
|
47 | Operation.__init__(self, **kwargs) | |
|
47 | 48 | self.profileIndex = 0 |
|
48 | 49 | self.__isConfig = False |
|
49 | 50 | |
|
50 | 51 | def incIndex(self): |
|
51 | 52 | self.profileIndex += 1 |
|
52 | 53 | |
|
53 | 54 | if self.profileIndex >= self.nProfiles: |
|
54 | 55 | self.profileIndex = 0 |
|
55 | 56 | |
|
56 | 57 | def isProfileInRange(self, minIndex, maxIndex): |
|
57 | 58 | |
|
58 | 59 | if self.profileIndex < minIndex: |
|
59 | 60 | return False |
|
60 | 61 | |
|
61 | 62 | if self.profileIndex > maxIndex: |
|
62 | 63 | return False |
|
63 | 64 | |
|
64 | 65 | return True |
|
65 | 66 | |
|
66 | 67 | def isProfileInList(self, profileList): |
|
67 | 68 | |
|
68 | 69 | if self.profileIndex not in profileList: |
|
69 | 70 | return False |
|
70 | 71 | |
|
71 | 72 | return True |
|
72 | 73 | |
|
73 | 74 | def run(self, dataOut, beam=None): |
|
74 | 75 | |
|
75 | 76 | dataOut.flagNoData = True |
|
76 | 77 | |
|
77 | 78 | if not(self.__isConfig): |
|
78 | 79 | |
|
79 | 80 | self.nProfiles = dataOut.nProfiles |
|
80 | 81 | self.profileIndex = dataOut.profileIndex |
|
81 | 82 | self.__isConfig = True |
|
82 | 83 | |
|
83 | 84 | if beam != None: |
|
84 | 85 | if self.isProfileInList(dataOut.beamRangeDict[beam]): |
|
85 | 86 | beamInfo = dataOut.beamCodeDict[beam] |
|
86 | 87 | dataOut.azimuth = beamInfo[1] |
|
87 | 88 | dataOut.zenith = beamInfo[2] |
|
88 | 89 | dataOut.gain = beamInfo[3] |
|
89 | 90 | dataOut.flagNoData = False |
|
90 | 91 | |
|
91 | 92 | self.incIndex() |
|
92 | 93 | return 1 |
|
93 | 94 | |
|
94 | 95 | else: |
|
95 | 96 | raise ValueError, "BeamSelector needs beam value" |
|
96 | 97 | |
|
97 | 98 | return 0 |
|
98 | 99 | |
|
99 | 100 | class ProfileToChannels(Operation): |
|
100 | 101 | |
|
101 | def __init__(self): | |
|
102 | def __init__(self, **kwargs): | |
|
103 | Operation.__init__(self, **kwargs) | |
|
102 | 104 | self.__isConfig = False |
|
103 | 105 | self.__counter_chan = 0 |
|
104 | 106 | self.buffer = None |
|
105 | 107 | |
|
106 | 108 | def isProfileInList(self, profileList): |
|
107 | 109 | |
|
108 | 110 | if self.profileIndex not in profileList: |
|
109 | 111 | return False |
|
110 | 112 | |
|
111 | 113 | return True |
|
112 | 114 | |
|
113 | 115 | def run(self, dataOut): |
|
114 | 116 | |
|
115 | 117 | dataOut.flagNoData = True |
|
116 | 118 | |
|
117 | 119 | if not(self.__isConfig): |
|
118 | 120 | nchannels = len(dataOut.beamRangeDict.keys()) |
|
119 | 121 | nsamples = dataOut.nHeights |
|
120 | 122 | self.buffer = numpy.zeros((nchannels, nsamples), dtype = 'complex128') |
|
121 | 123 | dataOut.beam.codeList = [dataOut.beamCodeDict[x][0] for x in range(nchannels)] |
|
122 | 124 | dataOut.beam.azimuthList = [dataOut.beamCodeDict[x][1] for x in range(nchannels)] |
|
123 | 125 | dataOut.beam.zenithList = [dataOut.beamCodeDict[x][2] for x in range(nchannels)] |
|
124 | 126 | self.__isConfig = True |
|
125 | 127 | |
|
126 | 128 | for i in range(self.buffer.shape[0]): |
|
127 | 129 | if dataOut.profileIndex in dataOut.beamRangeDict[i]: |
|
128 | 130 | self.buffer[i,:] = dataOut.data |
|
129 | 131 | break |
|
130 | 132 | |
|
131 | 133 | |
|
132 | 134 | self.__counter_chan += 1 |
|
133 | 135 | |
|
134 | 136 | if self.__counter_chan >= self.buffer.shape[0]: |
|
135 | 137 | self.__counter_chan = 0 |
|
136 | 138 | dataOut.data = self.buffer.copy() |
|
137 | 139 | dataOut.channelList = range(self.buffer.shape[0]) |
|
138 | 140 | self.__isConfig = False |
|
139 | 141 | dataOut.flagNoData = False |
|
140 | 142 | pass |
|
141 | 143 | No newline at end of file |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now