The requested changes are too big and content was truncated. Show full diff
@@ -1,678 +1,678 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | 6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
7 | 7 | from schainpy.utils import log |
|
8 | 8 | # libreria wradlib |
|
9 | 9 | import wradlib as wrl |
|
10 | 10 | |
|
11 | 11 | EARTH_RADIUS = 6.3710e3 |
|
12 | 12 | |
|
13 | 13 | |
|
14 | 14 | def ll2xy(lat1, lon1, lat2, lon2): |
|
15 | 15 | |
|
16 | 16 | p = 0.017453292519943295 |
|
17 | 17 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
18 | 18 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
19 | 19 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
20 | 20 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
21 | 21 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
22 | 22 | theta = -theta + numpy.pi/2 |
|
23 | 23 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
24 | 24 | |
|
25 | 25 | |
|
26 | 26 | def km2deg(km): |
|
27 | 27 | ''' |
|
28 | 28 | Convert distance in km to degrees |
|
29 | 29 | ''' |
|
30 | 30 | |
|
31 | 31 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
32 | 32 | |
|
33 | 33 | |
|
34 | 34 | |
|
35 | 35 | class SpectralMomentsPlot(SpectraPlot): |
|
36 | 36 | ''' |
|
37 | 37 | Plot for Spectral Moments |
|
38 | 38 | ''' |
|
39 | 39 | CODE = 'spc_moments' |
|
40 | 40 | # colormap = 'jet' |
|
41 | 41 | # plot_type = 'pcolor' |
|
42 | 42 | |
|
43 | 43 | class DobleGaussianPlot(SpectraPlot): |
|
44 | 44 | ''' |
|
45 | 45 | Plot for Double Gaussian Plot |
|
46 | 46 | ''' |
|
47 | 47 | CODE = 'gaussian_fit' |
|
48 | 48 | # colormap = 'jet' |
|
49 | 49 | # plot_type = 'pcolor' |
|
50 | 50 | |
|
51 | 51 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
52 | 52 | ''' |
|
53 | 53 | Plot SpectraCut with Double Gaussian Fit |
|
54 | 54 | ''' |
|
55 | 55 | CODE = 'cut_gaussian_fit' |
|
56 | 56 | |
|
57 | 57 | class SnrPlot(RTIPlot): |
|
58 | 58 | ''' |
|
59 | 59 | Plot for SNR Data |
|
60 | 60 | ''' |
|
61 | 61 | |
|
62 | 62 | CODE = 'snr' |
|
63 | 63 | colormap = 'jet' |
|
64 | 64 | |
|
65 | 65 | def update(self, dataOut): |
|
66 | 66 | |
|
67 | 67 | data = { |
|
68 | 68 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
69 | 69 | } |
|
70 | 70 | |
|
71 | 71 | return data, {} |
|
72 | 72 | |
|
73 | 73 | class DopplerPlot(RTIPlot): |
|
74 | 74 | ''' |
|
75 | 75 | Plot for DOPPLER Data (1st moment) |
|
76 | 76 | ''' |
|
77 | 77 | |
|
78 | 78 | CODE = 'dop' |
|
79 | 79 | colormap = 'jet' |
|
80 | 80 | |
|
81 | 81 | def update(self, dataOut): |
|
82 | 82 | |
|
83 | 83 | data = { |
|
84 | 84 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
85 | 85 | } |
|
86 | 86 | |
|
87 | 87 | return data, {} |
|
88 | 88 | |
|
89 | 89 | class PowerPlot(RTIPlot): |
|
90 | 90 | ''' |
|
91 | 91 | Plot for Power Data (0 moment) |
|
92 | 92 | ''' |
|
93 | 93 | |
|
94 | 94 | CODE = 'pow' |
|
95 | 95 | colormap = 'jet' |
|
96 | 96 | |
|
97 | 97 | def update(self, dataOut): |
|
98 | 98 | data = { |
|
99 | 99 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
100 | 100 | } |
|
101 | 101 | return data, {} |
|
102 | 102 | |
|
103 | 103 | class SpectralWidthPlot(RTIPlot): |
|
104 | 104 | ''' |
|
105 | 105 | Plot for Spectral Width Data (2nd moment) |
|
106 | 106 | ''' |
|
107 | 107 | |
|
108 | 108 | CODE = 'width' |
|
109 | 109 | colormap = 'jet' |
|
110 | 110 | |
|
111 | 111 | def update(self, dataOut): |
|
112 | 112 | |
|
113 | 113 | data = { |
|
114 | 114 | 'width': dataOut.data_width |
|
115 | 115 | } |
|
116 | 116 | |
|
117 | 117 | return data, {} |
|
118 | 118 | |
|
119 | 119 | class SkyMapPlot(Plot): |
|
120 | 120 | ''' |
|
121 | 121 | Plot for meteors detection data |
|
122 | 122 | ''' |
|
123 | 123 | |
|
124 | 124 | CODE = 'param' |
|
125 | 125 | |
|
126 | 126 | def setup(self): |
|
127 | 127 | |
|
128 | 128 | self.ncols = 1 |
|
129 | 129 | self.nrows = 1 |
|
130 | 130 | self.width = 7.2 |
|
131 | 131 | self.height = 7.2 |
|
132 | 132 | self.nplots = 1 |
|
133 | 133 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
134 | 134 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
135 | 135 | self.polar = True |
|
136 | 136 | self.ymin = -180 |
|
137 | 137 | self.ymax = 180 |
|
138 | 138 | self.colorbar = False |
|
139 | 139 | |
|
140 | 140 | def plot(self): |
|
141 | 141 | |
|
142 | 142 | arrayParameters = numpy.concatenate(self.data['param']) |
|
143 | 143 | error = arrayParameters[:, -1] |
|
144 | 144 | indValid = numpy.where(error == 0)[0] |
|
145 | 145 | finalMeteor = arrayParameters[indValid, :] |
|
146 | 146 | finalAzimuth = finalMeteor[:, 3] |
|
147 | 147 | finalZenith = finalMeteor[:, 4] |
|
148 | 148 | |
|
149 | 149 | x = finalAzimuth * numpy.pi / 180 |
|
150 | 150 | y = finalZenith |
|
151 | 151 | |
|
152 | 152 | ax = self.axes[0] |
|
153 | 153 | |
|
154 | 154 | if ax.firsttime: |
|
155 | 155 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
156 | 156 | else: |
|
157 | 157 | ax.plot.set_data(x, y) |
|
158 | 158 | |
|
159 | 159 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
160 | 160 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
161 | 161 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
162 | 162 | dt2, |
|
163 | 163 | len(x)) |
|
164 | 164 | self.titles[0] = title |
|
165 | 165 | |
|
166 | 166 | |
|
167 | 167 | class GenericRTIPlot(Plot): |
|
168 | 168 | ''' |
|
169 | 169 | Plot for data_xxxx object |
|
170 | 170 | ''' |
|
171 | 171 | |
|
172 | 172 | CODE = 'param' |
|
173 | 173 | colormap = 'viridis' |
|
174 | 174 | plot_type = 'pcolorbuffer' |
|
175 | 175 | |
|
176 | 176 | def setup(self): |
|
177 | 177 | self.xaxis = 'time' |
|
178 | 178 | self.ncols = 1 |
|
179 | 179 | self.nrows = self.data.shape('param')[0] |
|
180 | 180 | self.nplots = self.nrows |
|
181 | 181 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
182 | 182 | |
|
183 | 183 | if not self.xlabel: |
|
184 | 184 | self.xlabel = 'Time' |
|
185 | 185 | |
|
186 | 186 | self.ylabel = 'Range [km]' |
|
187 | 187 | if not self.titles: |
|
188 | 188 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
189 | 189 | |
|
190 | 190 | def update(self, dataOut): |
|
191 | 191 | |
|
192 | 192 | data = { |
|
193 | 193 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
194 | 194 | } |
|
195 | 195 | |
|
196 | 196 | meta = {} |
|
197 | 197 | |
|
198 | 198 | return data, meta |
|
199 | 199 | |
|
200 | 200 | def plot(self): |
|
201 | 201 | # self.data.normalize_heights() |
|
202 | 202 | self.x = self.data.times |
|
203 | 203 | self.y = self.data.yrange |
|
204 | 204 | self.z = self.data['param'] |
|
205 | 205 | self.z = 10*numpy.log10(self.z) |
|
206 | 206 | self.z = numpy.ma.masked_invalid(self.z) |
|
207 | 207 | |
|
208 | 208 | if self.decimation is None: |
|
209 | 209 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
210 | 210 | else: |
|
211 | 211 | x, y, z = self.fill_gaps(*self.decimate()) |
|
212 | 212 | |
|
213 | 213 | for n, ax in enumerate(self.axes): |
|
214 | 214 | |
|
215 | 215 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
216 | 216 | self.z[n]) |
|
217 | 217 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
218 | 218 | self.z[n]) |
|
219 | 219 | |
|
220 | 220 | if ax.firsttime: |
|
221 | 221 | if self.zlimits is not None: |
|
222 | 222 | self.zmin, self.zmax = self.zlimits[n] |
|
223 | 223 | |
|
224 | 224 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
225 | 225 | vmin=self.zmin, |
|
226 | 226 | vmax=self.zmax, |
|
227 | 227 | cmap=self.cmaps[n] |
|
228 | 228 | ) |
|
229 | 229 | else: |
|
230 | 230 | if self.zlimits is not None: |
|
231 | 231 | self.zmin, self.zmax = self.zlimits[n] |
|
232 | 232 | ax.collections.remove(ax.collections[0]) |
|
233 | 233 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
234 | 234 | vmin=self.zmin, |
|
235 | 235 | vmax=self.zmax, |
|
236 | 236 | cmap=self.cmaps[n] |
|
237 | 237 | ) |
|
238 | 238 | |
|
239 | 239 | |
|
240 | 240 | class PolarMapPlot(Plot): |
|
241 | 241 | ''' |
|
242 | 242 | Plot for weather radar |
|
243 | 243 | ''' |
|
244 | 244 | |
|
245 | 245 | CODE = 'param' |
|
246 | 246 | colormap = 'seismic' |
|
247 | 247 | |
|
248 | 248 | def setup(self): |
|
249 | 249 | self.ncols = 1 |
|
250 | 250 | self.nrows = 1 |
|
251 | 251 | self.width = 9 |
|
252 | 252 | self.height = 8 |
|
253 | 253 | self.mode = self.data.meta['mode'] |
|
254 | 254 | if self.channels is not None: |
|
255 | 255 | self.nplots = len(self.channels) |
|
256 | 256 | self.nrows = len(self.channels) |
|
257 | 257 | else: |
|
258 | 258 | self.nplots = self.data.shape(self.CODE)[0] |
|
259 | 259 | self.nrows = self.nplots |
|
260 | 260 | self.channels = list(range(self.nplots)) |
|
261 | 261 | if self.mode == 'E': |
|
262 | 262 | self.xlabel = 'Longitude' |
|
263 | 263 | self.ylabel = 'Latitude' |
|
264 | 264 | else: |
|
265 | 265 | self.xlabel = 'Range (km)' |
|
266 | 266 | self.ylabel = 'Height (km)' |
|
267 | 267 | self.bgcolor = 'white' |
|
268 | 268 | self.cb_labels = self.data.meta['units'] |
|
269 | 269 | self.lat = self.data.meta['latitude'] |
|
270 | 270 | self.lon = self.data.meta['longitude'] |
|
271 | 271 | self.xmin, self.xmax = float( |
|
272 | 272 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
273 | 273 | self.ymin, self.ymax = float( |
|
274 | 274 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
275 | 275 | # self.polar = True |
|
276 | 276 | |
|
277 | 277 | def plot(self): |
|
278 | 278 | |
|
279 | 279 | for n, ax in enumerate(self.axes): |
|
280 | 280 | data = self.data['param'][self.channels[n]] |
|
281 | 281 | |
|
282 | 282 | zeniths = numpy.linspace( |
|
283 | 283 | 0, self.data.meta['max_range'], data.shape[1]) |
|
284 | 284 | if self.mode == 'E': |
|
285 | 285 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
286 | 286 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
287 | 287 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
288 | 288 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
289 | 289 | x = km2deg(x) + self.lon |
|
290 | 290 | y = km2deg(y) + self.lat |
|
291 | 291 | else: |
|
292 | 292 | azimuths = numpy.radians(self.data.yrange) |
|
293 | 293 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
294 | 294 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
295 | 295 | self.y = zeniths |
|
296 | 296 | |
|
297 | 297 | if ax.firsttime: |
|
298 | 298 | if self.zlimits is not None: |
|
299 | 299 | self.zmin, self.zmax = self.zlimits[n] |
|
300 | 300 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
301 | 301 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
302 | 302 | vmin=self.zmin, |
|
303 | 303 | vmax=self.zmax, |
|
304 | 304 | cmap=self.cmaps[n]) |
|
305 | 305 | else: |
|
306 | 306 | if self.zlimits is not None: |
|
307 | 307 | self.zmin, self.zmax = self.zlimits[n] |
|
308 | 308 | ax.collections.remove(ax.collections[0]) |
|
309 | 309 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
310 | 310 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
311 | 311 | vmin=self.zmin, |
|
312 | 312 | vmax=self.zmax, |
|
313 | 313 | cmap=self.cmaps[n]) |
|
314 | 314 | |
|
315 | 315 | if self.mode == 'A': |
|
316 | 316 | continue |
|
317 | 317 | |
|
318 | 318 | # plot district names |
|
319 | 319 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
320 | 320 | for line in f: |
|
321 | 321 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
322 | 322 | lat = float(lat) |
|
323 | 323 | lon = float(lon) |
|
324 | 324 | # ax.plot(lon, lat, '.b', ms=2) |
|
325 | 325 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
326 | 326 | va='bottom', size='8', color='black') |
|
327 | 327 | |
|
328 | 328 | # plot limites |
|
329 | 329 | limites = [] |
|
330 | 330 | tmp = [] |
|
331 | 331 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
332 | 332 | if '#' in line: |
|
333 | 333 | if tmp: |
|
334 | 334 | limites.append(tmp) |
|
335 | 335 | tmp = [] |
|
336 | 336 | continue |
|
337 | 337 | values = line.strip().split(',') |
|
338 | 338 | tmp.append((float(values[0]), float(values[1]))) |
|
339 | 339 | for points in limites: |
|
340 | 340 | ax.add_patch( |
|
341 | 341 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
342 | 342 | |
|
343 | 343 | # plot Cuencas |
|
344 | 344 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
345 | 345 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
346 | 346 | values = [line.strip().split(',') for line in f] |
|
347 | 347 | points = [(float(s[0]), float(s[1])) for s in values] |
|
348 | 348 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
349 | 349 | |
|
350 | 350 | # plot grid |
|
351 | 351 | for r in (15, 30, 45, 60): |
|
352 | 352 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
353 | 353 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
354 | 354 | ax.text( |
|
355 | 355 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
356 | 356 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
357 | 357 | '{}km'.format(r), |
|
358 | 358 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
359 | 359 | |
|
360 | 360 | if self.mode == 'E': |
|
361 | 361 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
362 | 362 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
363 | 363 | else: |
|
364 | 364 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
365 | 365 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
366 | 366 | |
|
367 | 367 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
368 | 368 | self.titles = ['{} {}'.format( |
|
369 | 369 | self.data.parameters[x], title) for x in self.channels] |
|
370 | 370 | |
|
371 | 371 | class WeatherPlot(Plot): |
|
372 | 372 | CODE = 'weather' |
|
373 | 373 | plot_name = 'weather' |
|
374 | 374 | plot_type = 'ppistyle' |
|
375 | 375 | buffering = False |
|
376 | 376 | |
|
377 | 377 | def setup(self): |
|
378 | 378 | self.ncols = 1 |
|
379 | 379 | self.nrows = 1 |
|
380 | 380 | self.nplots= 1 |
|
381 | 381 | self.ylabel= 'Range [Km]' |
|
382 | 382 | self.titles= ['Weather'] |
|
383 | 383 | self.colorbar=False |
|
384 | 384 | self.width =8 |
|
385 | 385 | self.height =8 |
|
386 | 386 | self.ini =0 |
|
387 | 387 | self.len_azi =0 |
|
388 | 388 | self.buffer_ini = None |
|
389 | 389 | self.buffer_azi = None |
|
390 | 390 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
391 | 391 | self.flag =0 |
|
392 | 392 | self.indicador= 0 |
|
393 | 393 | self.last_data_azi = None |
|
394 | 394 | self.val_mean = None |
|
395 | 395 | |
|
396 | 396 | def update(self, dataOut): |
|
397 | 397 | |
|
398 | 398 | data = {} |
|
399 | 399 | meta = {} |
|
400 | 400 | if hasattr(dataOut, 'dataPP_POWER'): |
|
401 | 401 | factor = 1 |
|
402 | 402 | |
|
403 | 403 | if hasattr(dataOut, 'nFFTPoints'): |
|
404 | 404 | factor = dataOut.normFactor |
|
405 | 405 | |
|
406 | 406 | ####print("factor",factor) |
|
407 | 407 | data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
408 | 408 | ####print("weather",data['weather']) |
|
409 | 409 | data['azi'] = dataOut.data_azi |
|
410 | 410 | return data, meta |
|
411 | 411 | |
|
412 | 412 | def get2List(self,angulos): |
|
413 | 413 | list1=[] |
|
414 | 414 | list2=[] |
|
415 | 415 | for i in reversed(range(len(angulos))): |
|
416 | 416 | diff_ = angulos[i]-angulos[i-1] |
|
417 | 417 | if diff_ >1.5: |
|
418 | 418 | list1.append(i-1) |
|
419 | 419 | list2.append(diff_) |
|
420 | 420 | return list(reversed(list1)),list(reversed(list2)) |
|
421 | 421 | |
|
422 | 422 | def fixData360(self,list_,ang_): |
|
423 | 423 | if list_[0]==-1: |
|
424 | 424 | vec = numpy.where(ang_<ang_[0]) |
|
425 | 425 | ang_[vec] = ang_[vec]+360 |
|
426 | 426 | return ang_ |
|
427 | 427 | return ang_ |
|
428 | 428 | |
|
429 | 429 | |
|
430 | 430 | def fixData360HL(self,angulos): |
|
431 | 431 | vec = numpy.where(angulos>=360) |
|
432 | 432 | angulos[vec]=angulos[vec]-360 |
|
433 | 433 | return angulos |
|
434 | 434 | |
|
435 | 435 | def search_pos(self,pos,list_): |
|
436 | 436 | for i in range(len(list_)): |
|
437 | 437 | if pos == list_[i]: |
|
438 | 438 | return True,i |
|
439 | 439 | i=None |
|
440 | 440 | return False,i |
|
441 | 441 | |
|
442 | 442 | def fixDataComp(self,ang_,list1_,list2_): |
|
443 | 443 | size = len(ang_) |
|
444 | 444 | size2 = 0 |
|
445 | 445 | for i in range(len(list2_)): |
|
446 | 446 | size2=size2+list2_[i]-1 |
|
447 | 447 | new_size= size+size2 |
|
448 | 448 | ang_new = numpy.zeros(new_size) |
|
449 | 449 | ang_new2 = numpy.zeros(new_size) |
|
450 | 450 | |
|
451 | 451 | tmp = 0 |
|
452 | 452 | c = 0 |
|
453 | 453 | for i in range(len(ang_)): |
|
454 | 454 | ang_new[tmp +c] = ang_[i] |
|
455 | 455 | ang_new2[tmp+c] = ang_[i] |
|
456 | 456 | condition , value = self.search_pos(i,list1_) |
|
457 | 457 | if condition: |
|
458 | 458 | pos = tmp + c + 1 |
|
459 | 459 | for k in range(list2_[value]-1): |
|
460 | 460 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
461 | 461 | ang_new2[pos+k] = numpy.nan |
|
462 | 462 | tmp = pos +k |
|
463 | 463 | c = 0 |
|
464 | 464 | c=c+1 |
|
465 | 465 | return ang_new,ang_new2 |
|
466 | 466 | |
|
467 | 467 | |
|
468 | 468 | def globalCheckPED(self,angulos): |
|
469 | 469 | l1,l2 = self.get2List(angulos) |
|
470 | 470 | if len(l1)>0: |
|
471 | 471 | angulos2 = self.fixData360(list_=l1,ang_=angulos) |
|
472 | 472 | l1,l2 = self.get2List(angulos2) |
|
473 | 473 | |
|
474 | 474 | ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2) |
|
475 | 475 | ang1_ = self.fixData360HL(ang1_) |
|
476 | 476 | ang2_ = self.fixData360HL(ang2_) |
|
477 | 477 | |
|
478 | 478 | else: |
|
479 | 479 | ang1_= angulos |
|
480 | 480 | ang2_= angulos |
|
481 | 481 | return ang1_,ang2_ |
|
482 | 482 | |
|
483 | 483 | def analizeDATA(self,data_azi): |
|
484 | 484 | list1 = [] |
|
485 | 485 | list2 = [] |
|
486 | 486 | dat = data_azi |
|
487 | 487 | for i in reversed(range(1,len(dat))): |
|
488 | 488 | if dat[i]>dat[i-1]: |
|
489 | 489 | diff = int(dat[i])-int(dat[i-1]) |
|
490 | 490 | else: |
|
491 | 491 | diff = 360+int(dat[i])-int(dat[i-1]) |
|
492 | 492 | if diff > 1: |
|
493 | 493 | list1.append(i-1) |
|
494 | 494 | list2.append(diff-1) |
|
495 | 495 | return list1,list2 |
|
496 | 496 | |
|
497 | 497 | def fixDATANEW(self,data_azi,data_weather): |
|
498 | 498 | list1,list2 = self.analizeDATA(data_azi) |
|
499 | 499 | if len(list1)== 0: |
|
500 | 500 | return data_azi,data_weather |
|
501 | 501 | else: |
|
502 | 502 | resize = 0 |
|
503 | 503 | for i in range(len(list2)): |
|
504 | 504 | resize= resize + list2[i] |
|
505 | 505 | new_data_azi = numpy.resize(data_azi,resize) |
|
506 | 506 | new_data_weather= numpy.resize(date_weather,resize) |
|
507 | 507 | |
|
508 | 508 | for i in range(len(list2)): |
|
509 | 509 | j=0 |
|
510 | 510 | position=list1[i]+1 |
|
511 | 511 | for j in range(list2[i]): |
|
512 | 512 | new_data_azi[position+j]=new_data_azi[position+j-1]+1 |
|
513 | 513 | |
|
514 | 514 | return new_data_azi |
|
515 | 515 | |
|
516 | 516 | def fixDATA(self,data_azi): |
|
517 | 517 | data=data_azi |
|
518 | 518 | for i in range(len(data)): |
|
519 | 519 | if numpy.isnan(data[i]): |
|
520 | 520 | data[i]=data[i-1]+1 |
|
521 | 521 | return data |
|
522 | 522 | |
|
523 | 523 | def replaceNAN(self,data_weather,data_azi,val): |
|
524 | 524 | ####print("----------------activeNEWFUNCTION") |
|
525 | 525 | data= data_azi |
|
526 | 526 | data_T= data_weather |
|
527 | 527 | ####print("data_azi",data_azi) |
|
528 | 528 | ####print("VAL:",val) |
|
529 | 529 | ####print("SHAPE",data_T.shape) |
|
530 | 530 | for i in range(len(data)): |
|
531 | 531 | if numpy.isnan(data[i]): |
|
532 | 532 | ####print("NAN") |
|
533 | data_T[i,:]=numpy.ones(data_T.shape[1])*val | |
|
534 |
|
|
|
533 | #data_T[i,:]=numpy.ones(data_T.shape[1])*val | |
|
534 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
|
535 | 535 | return data_T |
|
536 | 536 | |
|
537 | 537 | def const_ploteo(self,data_weather,data_azi,step,res): |
|
538 | 538 | if self.ini==0: |
|
539 | 539 | #------- AZIMUTH |
|
540 | 540 | n = (360/res)-len(data_azi) |
|
541 | 541 | #--------------------- new ------------------------- |
|
542 | 542 | ####data_azi_old = data_azi |
|
543 | 543 | data_azi_new ,data_azi_old= self.globalCheckPED(data_azi) |
|
544 | 544 | #------------------------ |
|
545 | 545 | ####data_azi_new = self.fixDATA(data_azi) |
|
546 | 546 | #ata_azi_new = self.fixDATANEW(data_azi) |
|
547 | 547 | |
|
548 | 548 | start = data_azi_new[-1] + res |
|
549 | 549 | end = data_azi_new[0] - res |
|
550 | 550 | ##### new |
|
551 | 551 | self.last_data_azi = end |
|
552 | 552 | if start>end: |
|
553 | 553 | end = end + 360 |
|
554 | 554 | azi_vacia = numpy.linspace(start,end,int(n)) |
|
555 | 555 | azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) |
|
556 | 556 | data_azi = numpy.hstack((data_azi_new,azi_vacia)) |
|
557 | 557 | # RADAR |
|
558 | 558 | val_mean = numpy.mean(data_weather[:,-1]) |
|
559 | 559 | self.val_mean = val_mean |
|
560 | 560 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean |
|
561 | 561 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) |
|
562 | 562 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) |
|
563 | 563 | else: |
|
564 | 564 | # azimuth |
|
565 | 565 | flag=0 |
|
566 | 566 | start_azi = self.res_azi[0] |
|
567 | 567 | #-----------new------------ |
|
568 | 568 | data_azi ,data_azi_old= self.globalCheckPED(data_azi) |
|
569 | 569 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) |
|
570 | 570 | #-------------------------- |
|
571 | 571 | ####data_azi_old = data_azi |
|
572 | 572 | ### weather ### |
|
573 | 573 | ####data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) |
|
574 | 574 | |
|
575 | 575 | ####if numpy.isnan(data_azi[0]): |
|
576 | 576 | #### data_azi[0]=self.last_data_azi+1 |
|
577 | 577 | ####data_azi = self.fixDATA(data_azi) |
|
578 | 578 | start = data_azi[0] |
|
579 | 579 | end = data_azi[-1] |
|
580 | 580 | self.last_data_azi= end |
|
581 | 581 | ####print("start",start) |
|
582 | 582 | ####print("end",end) |
|
583 | 583 | if start< start_azi: |
|
584 | 584 | start = start +360 |
|
585 | 585 | if end <start_azi: |
|
586 | 586 | end = end +360 |
|
587 | 587 | ####print("start",start) |
|
588 | 588 | ####print("end",end) |
|
589 | 589 | #### AQUI SERA LA MAGIA |
|
590 | 590 | pos_ini = int((start-start_azi)/res) |
|
591 | 591 | len_azi = len(data_azi) |
|
592 | 592 | if (360-pos_ini)<len_azi: |
|
593 | 593 | if pos_ini+1==360: |
|
594 | 594 | pos_ini=0 |
|
595 | 595 | else: |
|
596 | 596 | flag=1 |
|
597 | 597 | dif= 360-pos_ini |
|
598 | 598 | comp= len_azi-dif |
|
599 | 599 | |
|
600 | 600 | #----------------- |
|
601 | 601 | ####print(pos_ini) |
|
602 | 602 | ####print(len_azi) |
|
603 | 603 | ####print("shape",self.res_azi.shape) |
|
604 | 604 | if flag==0: |
|
605 | 605 | # AZIMUTH |
|
606 | 606 | self.res_azi[pos_ini:pos_ini+len_azi] = data_azi |
|
607 | 607 | # RADAR |
|
608 | 608 | self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather |
|
609 | 609 | else: |
|
610 | 610 | # AZIMUTH |
|
611 | 611 | self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] |
|
612 | 612 | self.res_azi[0:comp] = data_azi[dif:] |
|
613 | 613 | # RADAR |
|
614 | 614 | self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] |
|
615 | 615 | self.res_weather[0:comp,:] = data_weather[dif:,:] |
|
616 | 616 | flag=0 |
|
617 | 617 | data_azi = self.res_azi |
|
618 | 618 | data_weather = self.res_weather |
|
619 | 619 | |
|
620 | 620 | return data_weather,data_azi |
|
621 | 621 | |
|
622 | 622 | def plot(self): |
|
623 | 623 | #print("--------------------------------------",self.ini,"-----------------------------------") |
|
624 | 624 | #numpy.set_printoptions(suppress=True) |
|
625 | 625 | ####print("times: ",self.data.times) |
|
626 | 626 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
627 | 627 | #print("times: ",thisDatetime) |
|
628 | 628 | data = self.data[-1] |
|
629 | 629 | ####ALTURA altura_tmp_h |
|
630 | 630 | ###print("Y RANGES",self.data.yrange,len(self.data.yrange)) |
|
631 | 631 | ###altura_h = (data['weather'].shape[1])/10.0 |
|
632 | 632 | ###stoprange = float(altura_h*0.3)#stoprange = float(33*1.5) por ahora 400 |
|
633 | 633 | ###rangestep = float(0.03) |
|
634 | 634 | ###r = numpy.arange(0, stoprange, rangestep) |
|
635 | 635 | ###print("r",r,len(r)) |
|
636 | 636 | #-----------------------------update---------------------- |
|
637 | 637 | r= self.data.yrange |
|
638 | 638 | delta_height = r[1]-r[0] |
|
639 | 639 | #print("1",r) |
|
640 | 640 | r_mask= numpy.where(r>=0)[0] |
|
641 | 641 | r = numpy.arange(len(r_mask))*delta_height |
|
642 | 642 | #print("2",r) |
|
643 | 643 | self.y = 2*r |
|
644 | 644 | ######self.y = self.data.yrange |
|
645 | 645 | # RADAR |
|
646 | 646 | #data_weather = data['weather'] |
|
647 | 647 | # PEDESTAL |
|
648 | 648 | #data_azi = data['azi'] |
|
649 | 649 | res = 1 |
|
650 | 650 | # STEP |
|
651 | 651 | step = (360/(res*data['weather'].shape[0])) |
|
652 | 652 | #print("shape wr_data", wr_data.shape) |
|
653 | 653 | #print("shape wr_azi",wr_azi.shape) |
|
654 | 654 | #print("step",step) |
|
655 | 655 | ####print("Time---->",self.data.times[-1],thisDatetime) |
|
656 | 656 | #print("alturas", len(self.y))numpy.where(r>=0) |
|
657 | 657 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res) |
|
658 | 658 | #numpy.set_printoptions(suppress=True) |
|
659 | 659 | #print("resultado",self.res_azi) |
|
660 | 660 | ###########################/DATA_RM/10_tmp/ch0############################### |
|
661 | 661 | ################# PLOTEO ################### |
|
662 | 662 | ########################################################## |
|
663 | 663 | |
|
664 | 664 | for i,ax in enumerate(self.axes): |
|
665 | 665 | if ax.firsttime: |
|
666 | 666 | plt.clf() |
|
667 | 667 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=8, vmax=35) |
|
668 | 668 | else: |
|
669 | 669 | plt.clf() |
|
670 | 670 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=8, vmax=35) |
|
671 | 671 | caax = cgax.parasites[0] |
|
672 | 672 | paax = cgax.parasites[1] |
|
673 | 673 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
674 | 674 | caax.set_xlabel('x_range [km]') |
|
675 | 675 | caax.set_ylabel('y_range [km]') |
|
676 | 676 | plt.text(1.0, 1.05, 'azimuth '+str(thisDatetime)+" step "+str(self.ini), transform=caax.transAxes, va='bottom',ha='right') |
|
677 | 677 | |
|
678 | 678 | self.ini= self.ini+1 |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now