##// END OF EJS Templates
Update PedestalInformation
jespinoza -
r1443:ad8b94343301
parent child
Show More
@@ -1,662 +1,662
1 # Copyright (c) 2012-2020 Jicamarca Radio Observatory
1 # Copyright (c) 2012-2020 Jicamarca Radio Observatory
2 # All rights reserved.
2 # All rights reserved.
3 #
3 #
4 # Distributed under the terms of the BSD 3-clause license.
4 # Distributed under the terms of the BSD 3-clause license.
5 """API to create signal chain projects
5 """API to create signal chain projects
6
6
7 The API is provide through class: Project
7 The API is provide through class: Project
8 """
8 """
9
9
10 import re
10 import re
11 import sys
11 import sys
12 import ast
12 import ast
13 import datetime
13 import datetime
14 import traceback
14 import traceback
15 import time
15 import time
16 import multiprocessing
16 import multiprocessing
17 from multiprocessing import Process, Queue
17 from multiprocessing import Process, Queue
18 from threading import Thread
18 from threading import Thread
19 from xml.etree.ElementTree import ElementTree, Element, SubElement
19 from xml.etree.ElementTree import ElementTree, Element, SubElement
20
20
21 from schainpy.admin import Alarm, SchainWarning
21 from schainpy.admin import Alarm, SchainWarning
22 from schainpy.model import *
22 from schainpy.model import *
23 from schainpy.utils import log
23 from schainpy.utils import log
24
24
25 if 'darwin' in sys.platform and sys.version_info[0] == 3 and sys.version_info[1] > 7:
25 if 'darwin' in sys.platform and sys.version_info[0] == 3 and sys.version_info[1] > 7:
26 multiprocessing.set_start_method('fork')
26 multiprocessing.set_start_method('fork')
27
27
28 class ConfBase():
28 class ConfBase():
29
29
30 def __init__(self):
30 def __init__(self):
31
31
32 self.id = '0'
32 self.id = '0'
33 self.name = None
33 self.name = None
34 self.priority = None
34 self.priority = None
35 self.parameters = {}
35 self.parameters = {}
36 self.object = None
36 self.object = None
37 self.operations = []
37 self.operations = []
38
38
39 def getId(self):
39 def getId(self):
40
40
41 return self.id
41 return self.id
42
42
43 def getNewId(self):
43 def getNewId(self):
44
44
45 return int(self.id) * 10 + len(self.operations) + 1
45 return int(self.id) * 10 + len(self.operations) + 1
46
46
47 def updateId(self, new_id):
47 def updateId(self, new_id):
48
48
49 self.id = str(new_id)
49 self.id = str(new_id)
50
50
51 n = 1
51 n = 1
52 for conf in self.operations:
52 for conf in self.operations:
53 conf_id = str(int(new_id) * 10 + n)
53 conf_id = str(int(new_id) * 10 + n)
54 conf.updateId(conf_id)
54 conf.updateId(conf_id)
55 n += 1
55 n += 1
56
56
57 def getKwargs(self):
57 def getKwargs(self):
58
58
59 params = {}
59 params = {}
60
60
61 for key, value in self.parameters.items():
61 for key, value in self.parameters.items():
62 if value not in (None, '', ' '):
62 if value not in (None, '', ' '):
63 params[key] = value
63 params[key] = value
64
64
65 return params
65 return params
66
66
67 def update(self, **kwargs):
67 def update(self, **kwargs):
68
68
69 if 'format' not in kwargs:
69 if 'format' not in kwargs:
70 kwargs['format'] = None
70 kwargs['format'] = None
71 for key, value, fmt in kwargs.items():
71 for key, value, fmt in kwargs.items():
72 self.addParameter(name=key, value=value, format=fmt)
72 self.addParameter(name=key, value=value, format=fmt)
73
73
74 def addParameter(self, name, value, format=None):
74 def addParameter(self, name, value, format=None):
75 '''
75 '''
76 '''
76 '''
77 if os.path.isdir(value):
77 if format is not None:
78 self.parameters[name] = value
78 self.parameters[name] = eval(format)(value)
79 elif isinstance(value, str) and re.search(r'(\d+/\d+/\d+)', value):
79 elif isinstance(value, str) and re.search(r'(\d+/\d+/\d+)', value):
80 self.parameters[name] = datetime.date(*[int(x) for x in value.split('/')])
80 self.parameters[name] = datetime.date(*[int(x) for x in value.split('/')])
81 elif isinstance(value, str) and re.search(r'(\d+:\d+:\d+)', value):
81 elif isinstance(value, str) and re.search(r'(\d+:\d+:\d+)', value):
82 self.parameters[name] = datetime.time(*[int(x) for x in value.split(':')])
82 self.parameters[name] = datetime.time(*[int(x) for x in value.split(':')])
83 else:
83 else:
84 try:
84 try:
85 self.parameters[name] = ast.literal_eval(value)
85 self.parameters[name] = ast.literal_eval(value)
86 except:
86 except:
87 if isinstance(value, str) and ',' in value:
87 if isinstance(value, str) and ',' in value:
88 self.parameters[name] = value.split(',')
88 self.parameters[name] = value.split(',')
89 else:
89 else:
90 self.parameters[name] = value
90 self.parameters[name] = value
91
91
92 def getParameters(self):
92 def getParameters(self):
93
93
94 params = {}
94 params = {}
95 for key, value in self.parameters.items():
95 for key, value in self.parameters.items():
96 s = type(value).__name__
96 s = type(value).__name__
97 if s == 'date':
97 if s == 'date':
98 params[key] = value.strftime('%Y/%m/%d')
98 params[key] = value.strftime('%Y/%m/%d')
99 elif s == 'time':
99 elif s == 'time':
100 params[key] = value.strftime('%H:%M:%S')
100 params[key] = value.strftime('%H:%M:%S')
101 else:
101 else:
102 params[key] = str(value)
102 params[key] = str(value)
103
103
104 return params
104 return params
105
105
106 def makeXml(self, element):
106 def makeXml(self, element):
107
107
108 xml = SubElement(element, self.ELEMENTNAME)
108 xml = SubElement(element, self.ELEMENTNAME)
109 for label in self.xml_labels:
109 for label in self.xml_labels:
110 xml.set(label, str(getattr(self, label)))
110 xml.set(label, str(getattr(self, label)))
111
111
112 for key, value in self.getParameters().items():
112 for key, value in self.getParameters().items():
113 xml_param = SubElement(xml, 'Parameter')
113 xml_param = SubElement(xml, 'Parameter')
114 xml_param.set('name', key)
114 xml_param.set('name', key)
115 xml_param.set('value', value)
115 xml_param.set('value', value)
116
116
117 for conf in self.operations:
117 for conf in self.operations:
118 conf.makeXml(xml)
118 conf.makeXml(xml)
119
119
120 def __str__(self):
120 def __str__(self):
121
121
122 if self.ELEMENTNAME == 'Operation':
122 if self.ELEMENTNAME == 'Operation':
123 s = ' {}[id={}]\n'.format(self.name, self.id)
123 s = ' {}[id={}]\n'.format(self.name, self.id)
124 else:
124 else:
125 s = '{}[id={}, inputId={}]\n'.format(self.name, self.id, self.inputId)
125 s = '{}[id={}, inputId={}]\n'.format(self.name, self.id, self.inputId)
126
126
127 for key, value in self.parameters.items():
127 for key, value in self.parameters.items():
128 if self.ELEMENTNAME == 'Operation':
128 if self.ELEMENTNAME == 'Operation':
129 s += ' {}: {}\n'.format(key, value)
129 s += ' {}: {}\n'.format(key, value)
130 else:
130 else:
131 s += ' {}: {}\n'.format(key, value)
131 s += ' {}: {}\n'.format(key, value)
132
132
133 for conf in self.operations:
133 for conf in self.operations:
134 s += str(conf)
134 s += str(conf)
135
135
136 return s
136 return s
137
137
138 class OperationConf(ConfBase):
138 class OperationConf(ConfBase):
139
139
140 ELEMENTNAME = 'Operation'
140 ELEMENTNAME = 'Operation'
141 xml_labels = ['id', 'name']
141 xml_labels = ['id', 'name']
142
142
143 def setup(self, id, name, priority, project_id, err_queue):
143 def setup(self, id, name, priority, project_id, err_queue):
144
144
145 self.id = str(id)
145 self.id = str(id)
146 self.project_id = project_id
146 self.project_id = project_id
147 self.name = name
147 self.name = name
148 self.type = 'other'
148 self.type = 'other'
149 self.err_queue = err_queue
149 self.err_queue = err_queue
150
150
151 def readXml(self, element, project_id, err_queue):
151 def readXml(self, element, project_id, err_queue):
152
152
153 self.id = element.get('id')
153 self.id = element.get('id')
154 self.name = element.get('name')
154 self.name = element.get('name')
155 self.type = 'other'
155 self.type = 'other'
156 self.project_id = str(project_id)
156 self.project_id = str(project_id)
157 self.err_queue = err_queue
157 self.err_queue = err_queue
158
158
159 for elm in element.iter('Parameter'):
159 for elm in element.iter('Parameter'):
160 self.addParameter(elm.get('name'), elm.get('value'))
160 self.addParameter(elm.get('name'), elm.get('value'))
161
161
162 def createObject(self):
162 def createObject(self):
163
163
164 className = eval(self.name)
164 className = eval(self.name)
165
165
166 if 'Plot' in self.name or 'Writer' in self.name or 'Send' in self.name or 'print' in self.name:
166 if 'Plot' in self.name or 'Writer' in self.name or 'Send' in self.name or 'print' in self.name:
167 kwargs = self.getKwargs()
167 kwargs = self.getKwargs()
168 opObj = className(self.id, self.id, self.project_id, self.err_queue, **kwargs)
168 opObj = className(self.id, self.id, self.project_id, self.err_queue, **kwargs)
169 opObj.start()
169 opObj.start()
170 self.type = 'external'
170 self.type = 'external'
171 else:
171 else:
172 opObj = className()
172 opObj = className()
173
173
174 self.object = opObj
174 self.object = opObj
175 return opObj
175 return opObj
176
176
177 class ProcUnitConf(ConfBase):
177 class ProcUnitConf(ConfBase):
178
178
179 ELEMENTNAME = 'ProcUnit'
179 ELEMENTNAME = 'ProcUnit'
180 xml_labels = ['id', 'inputId', 'name']
180 xml_labels = ['id', 'inputId', 'name']
181
181
182 def setup(self, project_id, id, name, datatype, inputId, err_queue):
182 def setup(self, project_id, id, name, datatype, inputId, err_queue):
183 '''
183 '''
184 '''
184 '''
185
185
186 if datatype == None and name == None:
186 if datatype == None and name == None:
187 raise ValueError('datatype or name should be defined')
187 raise ValueError('datatype or name should be defined')
188
188
189 if name == None:
189 if name == None:
190 if 'Proc' in datatype:
190 if 'Proc' in datatype:
191 name = datatype
191 name = datatype
192 else:
192 else:
193 name = '%sProc' % (datatype)
193 name = '%sProc' % (datatype)
194
194
195 if datatype == None:
195 if datatype == None:
196 datatype = name.replace('Proc', '')
196 datatype = name.replace('Proc', '')
197
197
198 self.id = str(id)
198 self.id = str(id)
199 self.project_id = project_id
199 self.project_id = project_id
200 self.name = name
200 self.name = name
201 self.datatype = datatype
201 self.datatype = datatype
202 self.inputId = inputId
202 self.inputId = inputId
203 self.err_queue = err_queue
203 self.err_queue = err_queue
204 self.operations = []
204 self.operations = []
205 self.parameters = {}
205 self.parameters = {}
206
206
207 def removeOperation(self, id):
207 def removeOperation(self, id):
208
208
209 i = [1 if x.id==id else 0 for x in self.operations]
209 i = [1 if x.id==id else 0 for x in self.operations]
210 self.operations.pop(i.index(1))
210 self.operations.pop(i.index(1))
211
211
212 def getOperation(self, id):
212 def getOperation(self, id):
213
213
214 for conf in self.operations:
214 for conf in self.operations:
215 if conf.id == id:
215 if conf.id == id:
216 return conf
216 return conf
217
217
218 def addOperation(self, name, optype='self'):
218 def addOperation(self, name, optype='self'):
219 '''
219 '''
220 '''
220 '''
221
221
222 id = self.getNewId()
222 id = self.getNewId()
223 conf = OperationConf()
223 conf = OperationConf()
224 conf.setup(id, name=name, priority='0', project_id=self.project_id, err_queue=self.err_queue)
224 conf.setup(id, name=name, priority='0', project_id=self.project_id, err_queue=self.err_queue)
225 self.operations.append(conf)
225 self.operations.append(conf)
226
226
227 return conf
227 return conf
228
228
229 def readXml(self, element, project_id, err_queue):
229 def readXml(self, element, project_id, err_queue):
230
230
231 self.id = element.get('id')
231 self.id = element.get('id')
232 self.name = element.get('name')
232 self.name = element.get('name')
233 self.inputId = None if element.get('inputId') == 'None' else element.get('inputId')
233 self.inputId = None if element.get('inputId') == 'None' else element.get('inputId')
234 self.datatype = element.get('datatype', self.name.replace(self.ELEMENTNAME.replace('Unit', ''), ''))
234 self.datatype = element.get('datatype', self.name.replace(self.ELEMENTNAME.replace('Unit', ''), ''))
235 self.project_id = str(project_id)
235 self.project_id = str(project_id)
236 self.err_queue = err_queue
236 self.err_queue = err_queue
237 self.operations = []
237 self.operations = []
238 self.parameters = {}
238 self.parameters = {}
239
239
240 for elm in element:
240 for elm in element:
241 if elm.tag == 'Parameter':
241 if elm.tag == 'Parameter':
242 self.addParameter(elm.get('name'), elm.get('value'))
242 self.addParameter(elm.get('name'), elm.get('value'))
243 elif elm.tag == 'Operation':
243 elif elm.tag == 'Operation':
244 conf = OperationConf()
244 conf = OperationConf()
245 conf.readXml(elm, project_id, err_queue)
245 conf.readXml(elm, project_id, err_queue)
246 self.operations.append(conf)
246 self.operations.append(conf)
247
247
248 def createObjects(self):
248 def createObjects(self):
249 '''
249 '''
250 Instancia de unidades de procesamiento.
250 Instancia de unidades de procesamiento.
251 '''
251 '''
252
252
253 className = eval(self.name)
253 className = eval(self.name)
254 kwargs = self.getKwargs()
254 kwargs = self.getKwargs()
255 procUnitObj = className()
255 procUnitObj = className()
256 procUnitObj.name = self.name
256 procUnitObj.name = self.name
257 log.success('creating process...', self.name)
257 log.success('creating process...', self.name)
258
258
259 for conf in self.operations:
259 for conf in self.operations:
260
260
261 opObj = conf.createObject()
261 opObj = conf.createObject()
262
262
263 log.success('adding operation: {}, type:{}'.format(
263 log.success('adding operation: {}, type:{}'.format(
264 conf.name,
264 conf.name,
265 conf.type), self.name)
265 conf.type), self.name)
266
266
267 procUnitObj.addOperation(conf, opObj)
267 procUnitObj.addOperation(conf, opObj)
268
268
269 self.object = procUnitObj
269 self.object = procUnitObj
270
270
271 def run(self):
271 def run(self):
272 '''
272 '''
273 '''
273 '''
274
274
275 return self.object.call(**self.getKwargs())
275 return self.object.call(**self.getKwargs())
276
276
277
277
278 class ReadUnitConf(ProcUnitConf):
278 class ReadUnitConf(ProcUnitConf):
279
279
280 ELEMENTNAME = 'ReadUnit'
280 ELEMENTNAME = 'ReadUnit'
281
281
282 def __init__(self):
282 def __init__(self):
283
283
284 self.id = None
284 self.id = None
285 self.datatype = None
285 self.datatype = None
286 self.name = None
286 self.name = None
287 self.inputId = None
287 self.inputId = None
288 self.operations = []
288 self.operations = []
289 self.parameters = {}
289 self.parameters = {}
290
290
291 def setup(self, project_id, id, name, datatype, err_queue, path='', startDate='', endDate='',
291 def setup(self, project_id, id, name, datatype, err_queue, path='', startDate='', endDate='',
292 startTime='', endTime='', server=None, **kwargs):
292 startTime='', endTime='', server=None, **kwargs):
293
293
294 if datatype == None and name == None:
294 if datatype == None and name == None:
295 raise ValueError('datatype or name should be defined')
295 raise ValueError('datatype or name should be defined')
296 if name == None:
296 if name == None:
297 if 'Reader' in datatype:
297 if 'Reader' in datatype:
298 name = datatype
298 name = datatype
299 datatype = name.replace('Reader','')
299 datatype = name.replace('Reader','')
300 else:
300 else:
301 name = '{}Reader'.format(datatype)
301 name = '{}Reader'.format(datatype)
302 if datatype == None:
302 if datatype == None:
303 if 'Reader' in name:
303 if 'Reader' in name:
304 datatype = name.replace('Reader','')
304 datatype = name.replace('Reader','')
305 else:
305 else:
306 datatype = name
306 datatype = name
307 name = '{}Reader'.format(name)
307 name = '{}Reader'.format(name)
308
308
309 self.id = id
309 self.id = id
310 self.project_id = project_id
310 self.project_id = project_id
311 self.name = name
311 self.name = name
312 self.datatype = datatype
312 self.datatype = datatype
313 self.err_queue = err_queue
313 self.err_queue = err_queue
314
314
315 self.addParameter(name='path', value=path)
315 self.addParameter(name='path', value=path, format='str')
316 self.addParameter(name='startDate', value=startDate)
316 self.addParameter(name='startDate', value=startDate)
317 self.addParameter(name='endDate', value=endDate)
317 self.addParameter(name='endDate', value=endDate)
318 self.addParameter(name='startTime', value=startTime)
318 self.addParameter(name='startTime', value=startTime)
319 self.addParameter(name='endTime', value=endTime)
319 self.addParameter(name='endTime', value=endTime)
320
320
321 for key, value in kwargs.items():
321 for key, value in kwargs.items():
322 self.addParameter(name=key, value=value)
322 self.addParameter(name=key, value=value)
323
323
324
324
325 class Project(Process):
325 class Project(Process):
326 """API to create signal chain projects"""
326 """API to create signal chain projects"""
327
327
328 ELEMENTNAME = 'Project'
328 ELEMENTNAME = 'Project'
329
329
330 def __init__(self, name=''):
330 def __init__(self, name=''):
331
331
332 Process.__init__(self)
332 Process.__init__(self)
333 self.id = '1'
333 self.id = '1'
334 if name:
334 if name:
335 self.name = '{} ({})'.format(Process.__name__, name)
335 self.name = '{} ({})'.format(Process.__name__, name)
336 self.filename = None
336 self.filename = None
337 self.description = None
337 self.description = None
338 self.email = None
338 self.email = None
339 self.alarm = []
339 self.alarm = []
340 self.configurations = {}
340 self.configurations = {}
341 # self.err_queue = Queue()
341 # self.err_queue = Queue()
342 self.err_queue = None
342 self.err_queue = None
343 self.started = False
343 self.started = False
344
344
345 def getNewId(self):
345 def getNewId(self):
346
346
347 idList = list(self.configurations.keys())
347 idList = list(self.configurations.keys())
348 id = int(self.id) * 10
348 id = int(self.id) * 10
349
349
350 while True:
350 while True:
351 id += 1
351 id += 1
352
352
353 if str(id) in idList:
353 if str(id) in idList:
354 continue
354 continue
355
355
356 break
356 break
357
357
358 return str(id)
358 return str(id)
359
359
360 def updateId(self, new_id):
360 def updateId(self, new_id):
361
361
362 self.id = str(new_id)
362 self.id = str(new_id)
363
363
364 keyList = list(self.configurations.keys())
364 keyList = list(self.configurations.keys())
365 keyList.sort()
365 keyList.sort()
366
366
367 n = 1
367 n = 1
368 new_confs = {}
368 new_confs = {}
369
369
370 for procKey in keyList:
370 for procKey in keyList:
371
371
372 conf = self.configurations[procKey]
372 conf = self.configurations[procKey]
373 idProcUnit = str(int(self.id) * 10 + n)
373 idProcUnit = str(int(self.id) * 10 + n)
374 conf.updateId(idProcUnit)
374 conf.updateId(idProcUnit)
375 new_confs[idProcUnit] = conf
375 new_confs[idProcUnit] = conf
376 n += 1
376 n += 1
377
377
378 self.configurations = new_confs
378 self.configurations = new_confs
379
379
380 def setup(self, id=1, name='', description='', email=None, alarm=[]):
380 def setup(self, id=1, name='', description='', email=None, alarm=[]):
381
381
382 self.id = str(id)
382 self.id = str(id)
383 self.description = description
383 self.description = description
384 self.email = email
384 self.email = email
385 self.alarm = alarm
385 self.alarm = alarm
386 if name:
386 if name:
387 self.name = '{} ({})'.format(Process.__name__, name)
387 self.name = '{} ({})'.format(Process.__name__, name)
388
388
389 def update(self, **kwargs):
389 def update(self, **kwargs):
390
390
391 for key, value in kwargs.items():
391 for key, value in kwargs.items():
392 setattr(self, key, value)
392 setattr(self, key, value)
393
393
394 def clone(self):
394 def clone(self):
395
395
396 p = Project()
396 p = Project()
397 p.id = self.id
397 p.id = self.id
398 p.name = self.name
398 p.name = self.name
399 p.description = self.description
399 p.description = self.description
400 p.configurations = self.configurations.copy()
400 p.configurations = self.configurations.copy()
401
401
402 return p
402 return p
403
403
404 def addReadUnit(self, id=None, datatype=None, name=None, **kwargs):
404 def addReadUnit(self, id=None, datatype=None, name=None, **kwargs):
405
405
406 '''
406 '''
407 '''
407 '''
408
408
409 if id is None:
409 if id is None:
410 idReadUnit = self.getNewId()
410 idReadUnit = self.getNewId()
411 else:
411 else:
412 idReadUnit = str(id)
412 idReadUnit = str(id)
413
413
414 conf = ReadUnitConf()
414 conf = ReadUnitConf()
415 conf.setup(self.id, idReadUnit, name, datatype, self.err_queue, **kwargs)
415 conf.setup(self.id, idReadUnit, name, datatype, self.err_queue, **kwargs)
416 self.configurations[conf.id] = conf
416 self.configurations[conf.id] = conf
417
417
418 return conf
418 return conf
419
419
420 def addProcUnit(self, id=None, inputId='0', datatype=None, name=None):
420 def addProcUnit(self, id=None, inputId='0', datatype=None, name=None):
421
421
422 '''
422 '''
423 '''
423 '''
424
424
425 if id is None:
425 if id is None:
426 idProcUnit = self.getNewId()
426 idProcUnit = self.getNewId()
427 else:
427 else:
428 idProcUnit = id
428 idProcUnit = id
429
429
430 conf = ProcUnitConf()
430 conf = ProcUnitConf()
431 conf.setup(self.id, idProcUnit, name, datatype, inputId, self.err_queue)
431 conf.setup(self.id, idProcUnit, name, datatype, inputId, self.err_queue)
432 self.configurations[conf.id] = conf
432 self.configurations[conf.id] = conf
433
433
434 return conf
434 return conf
435
435
436 def removeProcUnit(self, id):
436 def removeProcUnit(self, id):
437
437
438 if id in self.configurations:
438 if id in self.configurations:
439 self.configurations.pop(id)
439 self.configurations.pop(id)
440
440
441 def getReadUnit(self):
441 def getReadUnit(self):
442
442
443 for obj in list(self.configurations.values()):
443 for obj in list(self.configurations.values()):
444 if obj.ELEMENTNAME == 'ReadUnit':
444 if obj.ELEMENTNAME == 'ReadUnit':
445 return obj
445 return obj
446
446
447 return None
447 return None
448
448
449 def getProcUnit(self, id):
449 def getProcUnit(self, id):
450
450
451 return self.configurations[id]
451 return self.configurations[id]
452
452
453 def getUnits(self):
453 def getUnits(self):
454
454
455 keys = list(self.configurations)
455 keys = list(self.configurations)
456 keys.sort()
456 keys.sort()
457
457
458 for key in keys:
458 for key in keys:
459 yield self.configurations[key]
459 yield self.configurations[key]
460
460
461 def updateUnit(self, id, **kwargs):
461 def updateUnit(self, id, **kwargs):
462
462
463 conf = self.configurations[id].update(**kwargs)
463 conf = self.configurations[id].update(**kwargs)
464
464
465 def makeXml(self):
465 def makeXml(self):
466
466
467 xml = Element('Project')
467 xml = Element('Project')
468 xml.set('id', str(self.id))
468 xml.set('id', str(self.id))
469 xml.set('name', self.name)
469 xml.set('name', self.name)
470 xml.set('description', self.description)
470 xml.set('description', self.description)
471
471
472 for conf in self.configurations.values():
472 for conf in self.configurations.values():
473 conf.makeXml(xml)
473 conf.makeXml(xml)
474
474
475 self.xml = xml
475 self.xml = xml
476
476
477 def writeXml(self, filename=None):
477 def writeXml(self, filename=None):
478
478
479 if filename == None:
479 if filename == None:
480 if self.filename:
480 if self.filename:
481 filename = self.filename
481 filename = self.filename
482 else:
482 else:
483 filename = 'schain.xml'
483 filename = 'schain.xml'
484
484
485 if not filename:
485 if not filename:
486 print('filename has not been defined. Use setFilename(filename) for do it.')
486 print('filename has not been defined. Use setFilename(filename) for do it.')
487 return 0
487 return 0
488
488
489 abs_file = os.path.abspath(filename)
489 abs_file = os.path.abspath(filename)
490
490
491 if not os.access(os.path.dirname(abs_file), os.W_OK):
491 if not os.access(os.path.dirname(abs_file), os.W_OK):
492 print('No write permission on %s' % os.path.dirname(abs_file))
492 print('No write permission on %s' % os.path.dirname(abs_file))
493 return 0
493 return 0
494
494
495 if os.path.isfile(abs_file) and not(os.access(abs_file, os.W_OK)):
495 if os.path.isfile(abs_file) and not(os.access(abs_file, os.W_OK)):
496 print('File %s already exists and it could not be overwriten' % abs_file)
496 print('File %s already exists and it could not be overwriten' % abs_file)
497 return 0
497 return 0
498
498
499 self.makeXml()
499 self.makeXml()
500
500
501 ElementTree(self.xml).write(abs_file, method='xml')
501 ElementTree(self.xml).write(abs_file, method='xml')
502
502
503 self.filename = abs_file
503 self.filename = abs_file
504
504
505 return 1
505 return 1
506
506
507 def readXml(self, filename):
507 def readXml(self, filename):
508
508
509 abs_file = os.path.abspath(filename)
509 abs_file = os.path.abspath(filename)
510
510
511 self.configurations = {}
511 self.configurations = {}
512
512
513 try:
513 try:
514 self.xml = ElementTree().parse(abs_file)
514 self.xml = ElementTree().parse(abs_file)
515 except:
515 except:
516 log.error('Error reading %s, verify file format' % filename)
516 log.error('Error reading %s, verify file format' % filename)
517 return 0
517 return 0
518
518
519 self.id = self.xml.get('id')
519 self.id = self.xml.get('id')
520 self.name = self.xml.get('name')
520 self.name = self.xml.get('name')
521 self.description = self.xml.get('description')
521 self.description = self.xml.get('description')
522
522
523 for element in self.xml:
523 for element in self.xml:
524 if element.tag == 'ReadUnit':
524 if element.tag == 'ReadUnit':
525 conf = ReadUnitConf()
525 conf = ReadUnitConf()
526 conf.readXml(element, self.id, self.err_queue)
526 conf.readXml(element, self.id, self.err_queue)
527 self.configurations[conf.id] = conf
527 self.configurations[conf.id] = conf
528 elif element.tag == 'ProcUnit':
528 elif element.tag == 'ProcUnit':
529 conf = ProcUnitConf()
529 conf = ProcUnitConf()
530 input_proc = self.configurations[element.get('inputId')]
530 input_proc = self.configurations[element.get('inputId')]
531 conf.readXml(element, self.id, self.err_queue)
531 conf.readXml(element, self.id, self.err_queue)
532 self.configurations[conf.id] = conf
532 self.configurations[conf.id] = conf
533
533
534 self.filename = abs_file
534 self.filename = abs_file
535
535
536 return 1
536 return 1
537
537
538 def __str__(self):
538 def __str__(self):
539
539
540 text = '\nProject[id=%s, name=%s, description=%s]\n\n' % (
540 text = '\nProject[id=%s, name=%s, description=%s]\n\n' % (
541 self.id,
541 self.id,
542 self.name,
542 self.name,
543 self.description,
543 self.description,
544 )
544 )
545
545
546 for conf in self.configurations.values():
546 for conf in self.configurations.values():
547 text += '{}'.format(conf)
547 text += '{}'.format(conf)
548
548
549 return text
549 return text
550
550
551 def createObjects(self):
551 def createObjects(self):
552
552
553 keys = list(self.configurations.keys())
553 keys = list(self.configurations.keys())
554 keys.sort()
554 keys.sort()
555 for key in keys:
555 for key in keys:
556 conf = self.configurations[key]
556 conf = self.configurations[key]
557 conf.createObjects()
557 conf.createObjects()
558 if conf.inputId is not None:
558 if conf.inputId is not None:
559 conf.object.setInput(self.configurations[conf.inputId].object)
559 conf.object.setInput(self.configurations[conf.inputId].object)
560
560
561 def monitor(self):
561 def monitor(self):
562
562
563 t = Thread(target=self._monitor, args=(self.err_queue, self.ctx))
563 t = Thread(target=self._monitor, args=(self.err_queue, self.ctx))
564 t.start()
564 t.start()
565
565
566 def _monitor(self, queue, ctx):
566 def _monitor(self, queue, ctx):
567
567
568 import socket
568 import socket
569
569
570 procs = 0
570 procs = 0
571 err_msg = ''
571 err_msg = ''
572
572
573 while True:
573 while True:
574 msg = queue.get()
574 msg = queue.get()
575 if '#_start_#' in msg:
575 if '#_start_#' in msg:
576 procs += 1
576 procs += 1
577 elif '#_end_#' in msg:
577 elif '#_end_#' in msg:
578 procs -=1
578 procs -=1
579 else:
579 else:
580 err_msg = msg
580 err_msg = msg
581
581
582 if procs == 0 or 'Traceback' in err_msg:
582 if procs == 0 or 'Traceback' in err_msg:
583 break
583 break
584 time.sleep(0.1)
584 time.sleep(0.1)
585
585
586 if '|' in err_msg:
586 if '|' in err_msg:
587 name, err = err_msg.split('|')
587 name, err = err_msg.split('|')
588 if 'SchainWarning' in err:
588 if 'SchainWarning' in err:
589 log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), name)
589 log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), name)
590 elif 'SchainError' in err:
590 elif 'SchainError' in err:
591 log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), name)
591 log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), name)
592 else:
592 else:
593 log.error(err, name)
593 log.error(err, name)
594 else:
594 else:
595 name, err = self.name, err_msg
595 name, err = self.name, err_msg
596
596
597 time.sleep(1)
597 time.sleep(1)
598
598
599 ctx.term()
599 ctx.term()
600
600
601 message = ''.join(err)
601 message = ''.join(err)
602
602
603 if err_msg:
603 if err_msg:
604 subject = 'SChain v%s: Error running %s\n' % (
604 subject = 'SChain v%s: Error running %s\n' % (
605 schainpy.__version__, self.name)
605 schainpy.__version__, self.name)
606
606
607 subtitle = 'Hostname: %s\n' % socket.gethostbyname(
607 subtitle = 'Hostname: %s\n' % socket.gethostbyname(
608 socket.gethostname())
608 socket.gethostname())
609 subtitle += 'Working directory: %s\n' % os.path.abspath('./')
609 subtitle += 'Working directory: %s\n' % os.path.abspath('./')
610 subtitle += 'Configuration file: %s\n' % self.filename
610 subtitle += 'Configuration file: %s\n' % self.filename
611 subtitle += 'Time: %s\n' % str(datetime.datetime.now())
611 subtitle += 'Time: %s\n' % str(datetime.datetime.now())
612
612
613 readUnitConfObj = self.getReadUnit()
613 readUnitConfObj = self.getReadUnit()
614 if readUnitConfObj:
614 if readUnitConfObj:
615 subtitle += '\nInput parameters:\n'
615 subtitle += '\nInput parameters:\n'
616 subtitle += '[Data path = %s]\n' % readUnitConfObj.parameters['path']
616 subtitle += '[Data path = %s]\n' % readUnitConfObj.parameters['path']
617 subtitle += '[Start date = %s]\n' % readUnitConfObj.parameters['startDate']
617 subtitle += '[Start date = %s]\n' % readUnitConfObj.parameters['startDate']
618 subtitle += '[End date = %s]\n' % readUnitConfObj.parameters['endDate']
618 subtitle += '[End date = %s]\n' % readUnitConfObj.parameters['endDate']
619 subtitle += '[Start time = %s]\n' % readUnitConfObj.parameters['startTime']
619 subtitle += '[Start time = %s]\n' % readUnitConfObj.parameters['startTime']
620 subtitle += '[End time = %s]\n' % readUnitConfObj.parameters['endTime']
620 subtitle += '[End time = %s]\n' % readUnitConfObj.parameters['endTime']
621
621
622 a = Alarm(
622 a = Alarm(
623 modes=self.alarm,
623 modes=self.alarm,
624 email=self.email,
624 email=self.email,
625 message=message,
625 message=message,
626 subject=subject,
626 subject=subject,
627 subtitle=subtitle,
627 subtitle=subtitle,
628 filename=self.filename
628 filename=self.filename
629 )
629 )
630
630
631 a.start()
631 a.start()
632
632
633 def setFilename(self, filename):
633 def setFilename(self, filename):
634
634
635 self.filename = filename
635 self.filename = filename
636
636
637 def runProcs(self):
637 def runProcs(self):
638
638
639 err = False
639 err = False
640 n = len(self.configurations)
640 n = len(self.configurations)
641
641
642 while not err:
642 while not err:
643 for conf in self.getUnits():
643 for conf in self.getUnits():
644 ok = conf.run()
644 ok = conf.run()
645 if ok == 'Error':
645 if ok == 'Error':
646 n -= 1
646 n -= 1
647 continue
647 continue
648 elif not ok:
648 elif not ok:
649 break
649 break
650 if n == 0:
650 if n == 0:
651 err = True
651 err = True
652
652
653 def run(self):
653 def run(self):
654
654
655 log.success('\nStarting Project {} [id={}]'.format(self.name, self.id), tag='')
655 log.success('\nStarting Project {} [id={}]'.format(self.name, self.id), tag='')
656 self.started = True
656 self.started = True
657 self.start_time = time.time()
657 self.start_time = time.time()
658 self.createObjects()
658 self.createObjects()
659 self.runProcs()
659 self.runProcs()
660 log.success('{} Done (Time: {:4.2f}s)'.format(
660 log.success('{} Done (Time: {:4.2f}s)'.format(
661 self.name,
661 self.name,
662 time.time()-self.start_time), '')
662 time.time()-self.start_time), '')
@@ -1,2378 +1,2383
1 import os
1 import os
2 import datetime
2 import datetime
3 import numpy
3 import numpy
4 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
4 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
5
5
6 from schainpy.model.graphics.jroplot_base import Plot, plt
6 from schainpy.model.graphics.jroplot_base import Plot, plt
7 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
7 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
8 from schainpy.utils import log
8 from schainpy.utils import log
9 # libreria wradlib
9 # libreria wradlib
10 import wradlib as wrl
10 import wradlib as wrl
11
11
12 EARTH_RADIUS = 6.3710e3
12 EARTH_RADIUS = 6.3710e3
13
13
14
14
15 def ll2xy(lat1, lon1, lat2, lon2):
15 def ll2xy(lat1, lon1, lat2, lon2):
16
16
17 p = 0.017453292519943295
17 p = 0.017453292519943295
18 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
18 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
19 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
19 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
20 r = 12742 * numpy.arcsin(numpy.sqrt(a))
20 r = 12742 * numpy.arcsin(numpy.sqrt(a))
21 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
21 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
22 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
22 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
23 theta = -theta + numpy.pi/2
23 theta = -theta + numpy.pi/2
24 return r*numpy.cos(theta), r*numpy.sin(theta)
24 return r*numpy.cos(theta), r*numpy.sin(theta)
25
25
26
26
27 def km2deg(km):
27 def km2deg(km):
28 '''
28 '''
29 Convert distance in km to degrees
29 Convert distance in km to degrees
30 '''
30 '''
31
31
32 return numpy.rad2deg(km/EARTH_RADIUS)
32 return numpy.rad2deg(km/EARTH_RADIUS)
33
33
34
34
35
35
36 class SpectralMomentsPlot(SpectraPlot):
36 class SpectralMomentsPlot(SpectraPlot):
37 '''
37 '''
38 Plot for Spectral Moments
38 Plot for Spectral Moments
39 '''
39 '''
40 CODE = 'spc_moments'
40 CODE = 'spc_moments'
41 # colormap = 'jet'
41 # colormap = 'jet'
42 # plot_type = 'pcolor'
42 # plot_type = 'pcolor'
43
43
44 class DobleGaussianPlot(SpectraPlot):
44 class DobleGaussianPlot(SpectraPlot):
45 '''
45 '''
46 Plot for Double Gaussian Plot
46 Plot for Double Gaussian Plot
47 '''
47 '''
48 CODE = 'gaussian_fit'
48 CODE = 'gaussian_fit'
49 # colormap = 'jet'
49 # colormap = 'jet'
50 # plot_type = 'pcolor'
50 # plot_type = 'pcolor'
51
51
52 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
52 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
53 '''
53 '''
54 Plot SpectraCut with Double Gaussian Fit
54 Plot SpectraCut with Double Gaussian Fit
55 '''
55 '''
56 CODE = 'cut_gaussian_fit'
56 CODE = 'cut_gaussian_fit'
57
57
58 class SnrPlot(RTIPlot):
58 class SnrPlot(RTIPlot):
59 '''
59 '''
60 Plot for SNR Data
60 Plot for SNR Data
61 '''
61 '''
62
62
63 CODE = 'snr'
63 CODE = 'snr'
64 colormap = 'jet'
64 colormap = 'jet'
65
65
66 def update(self, dataOut):
66 def update(self, dataOut):
67
67
68 data = {
68 data = {
69 'snr': 10*numpy.log10(dataOut.data_snr)
69 'snr': 10*numpy.log10(dataOut.data_snr)
70 }
70 }
71
71
72 return data, {}
72 return data, {}
73
73
74 class DopplerPlot(RTIPlot):
74 class DopplerPlot(RTIPlot):
75 '''
75 '''
76 Plot for DOPPLER Data (1st moment)
76 Plot for DOPPLER Data (1st moment)
77 '''
77 '''
78
78
79 CODE = 'dop'
79 CODE = 'dop'
80 colormap = 'jet'
80 colormap = 'jet'
81
81
82 def update(self, dataOut):
82 def update(self, dataOut):
83
83
84 data = {
84 data = {
85 'dop': 10*numpy.log10(dataOut.data_dop)
85 'dop': 10*numpy.log10(dataOut.data_dop)
86 }
86 }
87
87
88 return data, {}
88 return data, {}
89
89
90 class PowerPlot(RTIPlot):
90 class PowerPlot(RTIPlot):
91 '''
91 '''
92 Plot for Power Data (0 moment)
92 Plot for Power Data (0 moment)
93 '''
93 '''
94
94
95 CODE = 'pow'
95 CODE = 'pow'
96 colormap = 'jet'
96 colormap = 'jet'
97
97
98 def update(self, dataOut):
98 def update(self, dataOut):
99 data = {
99 data = {
100 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
100 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
101 }
101 }
102 return data, {}
102 return data, {}
103
103
104 class SpectralWidthPlot(RTIPlot):
104 class SpectralWidthPlot(RTIPlot):
105 '''
105 '''
106 Plot for Spectral Width Data (2nd moment)
106 Plot for Spectral Width Data (2nd moment)
107 '''
107 '''
108
108
109 CODE = 'width'
109 CODE = 'width'
110 colormap = 'jet'
110 colormap = 'jet'
111
111
112 def update(self, dataOut):
112 def update(self, dataOut):
113
113
114 data = {
114 data = {
115 'width': dataOut.data_width
115 'width': dataOut.data_width
116 }
116 }
117
117
118 return data, {}
118 return data, {}
119
119
120 class SkyMapPlot(Plot):
120 class SkyMapPlot(Plot):
121 '''
121 '''
122 Plot for meteors detection data
122 Plot for meteors detection data
123 '''
123 '''
124
124
125 CODE = 'param'
125 CODE = 'param'
126
126
127 def setup(self):
127 def setup(self):
128
128
129 self.ncols = 1
129 self.ncols = 1
130 self.nrows = 1
130 self.nrows = 1
131 self.width = 7.2
131 self.width = 7.2
132 self.height = 7.2
132 self.height = 7.2
133 self.nplots = 1
133 self.nplots = 1
134 self.xlabel = 'Zonal Zenith Angle (deg)'
134 self.xlabel = 'Zonal Zenith Angle (deg)'
135 self.ylabel = 'Meridional Zenith Angle (deg)'
135 self.ylabel = 'Meridional Zenith Angle (deg)'
136 self.polar = True
136 self.polar = True
137 self.ymin = -180
137 self.ymin = -180
138 self.ymax = 180
138 self.ymax = 180
139 self.colorbar = False
139 self.colorbar = False
140
140
141 def plot(self):
141 def plot(self):
142
142
143 arrayParameters = numpy.concatenate(self.data['param'])
143 arrayParameters = numpy.concatenate(self.data['param'])
144 error = arrayParameters[:, -1]
144 error = arrayParameters[:, -1]
145 indValid = numpy.where(error == 0)[0]
145 indValid = numpy.where(error == 0)[0]
146 finalMeteor = arrayParameters[indValid, :]
146 finalMeteor = arrayParameters[indValid, :]
147 finalAzimuth = finalMeteor[:, 3]
147 finalAzimuth = finalMeteor[:, 3]
148 finalZenith = finalMeteor[:, 4]
148 finalZenith = finalMeteor[:, 4]
149
149
150 x = finalAzimuth * numpy.pi / 180
150 x = finalAzimuth * numpy.pi / 180
151 y = finalZenith
151 y = finalZenith
152
152
153 ax = self.axes[0]
153 ax = self.axes[0]
154
154
155 if ax.firsttime:
155 if ax.firsttime:
156 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
156 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
157 else:
157 else:
158 ax.plot.set_data(x, y)
158 ax.plot.set_data(x, y)
159
159
160 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
160 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
161 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
161 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
162 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
162 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
163 dt2,
163 dt2,
164 len(x))
164 len(x))
165 self.titles[0] = title
165 self.titles[0] = title
166
166
167
167
168 class GenericRTIPlot(Plot):
168 class GenericRTIPlot(Plot):
169 '''
169 '''
170 Plot for data_xxxx object
170 Plot for data_xxxx object
171 '''
171 '''
172
172
173 CODE = 'param'
173 CODE = 'param'
174 colormap = 'viridis'
174 colormap = 'viridis'
175 plot_type = 'pcolorbuffer'
175 plot_type = 'pcolorbuffer'
176
176
177 def setup(self):
177 def setup(self):
178 self.xaxis = 'time'
178 self.xaxis = 'time'
179 self.ncols = 1
179 self.ncols = 1
180 self.nrows = self.data.shape('param')[0]
180 self.nrows = self.data.shape('param')[0]
181 self.nplots = self.nrows
181 self.nplots = self.nrows
182 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
182 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
183
183
184 if not self.xlabel:
184 if not self.xlabel:
185 self.xlabel = 'Time'
185 self.xlabel = 'Time'
186
186
187 self.ylabel = 'Range [km]'
187 self.ylabel = 'Range [km]'
188 if not self.titles:
188 if not self.titles:
189 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
189 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
190
190
191 def update(self, dataOut):
191 def update(self, dataOut):
192
192
193 data = {
193 data = {
194 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
194 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
195 }
195 }
196
196
197 meta = {}
197 meta = {}
198
198
199 return data, meta
199 return data, meta
200
200
201 def plot(self):
201 def plot(self):
202 # self.data.normalize_heights()
202 # self.data.normalize_heights()
203 self.x = self.data.times
203 self.x = self.data.times
204 self.y = self.data.yrange
204 self.y = self.data.yrange
205 self.z = self.data['param']
205 self.z = self.data['param']
206 self.z = 10*numpy.log10(self.z)
206 self.z = 10*numpy.log10(self.z)
207 self.z = numpy.ma.masked_invalid(self.z)
207 self.z = numpy.ma.masked_invalid(self.z)
208
208
209 if self.decimation is None:
209 if self.decimation is None:
210 x, y, z = self.fill_gaps(self.x, self.y, self.z)
210 x, y, z = self.fill_gaps(self.x, self.y, self.z)
211 else:
211 else:
212 x, y, z = self.fill_gaps(*self.decimate())
212 x, y, z = self.fill_gaps(*self.decimate())
213
213
214 for n, ax in enumerate(self.axes):
214 for n, ax in enumerate(self.axes):
215
215
216 self.zmax = self.zmax if self.zmax is not None else numpy.max(
216 self.zmax = self.zmax if self.zmax is not None else numpy.max(
217 self.z[n])
217 self.z[n])
218 self.zmin = self.zmin if self.zmin is not None else numpy.min(
218 self.zmin = self.zmin if self.zmin is not None else numpy.min(
219 self.z[n])
219 self.z[n])
220
220
221 if ax.firsttime:
221 if ax.firsttime:
222 if self.zlimits is not None:
222 if self.zlimits is not None:
223 self.zmin, self.zmax = self.zlimits[n]
223 self.zmin, self.zmax = self.zlimits[n]
224
224
225 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
225 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
226 vmin=self.zmin,
226 vmin=self.zmin,
227 vmax=self.zmax,
227 vmax=self.zmax,
228 cmap=self.cmaps[n]
228 cmap=self.cmaps[n]
229 )
229 )
230 else:
230 else:
231 if self.zlimits is not None:
231 if self.zlimits is not None:
232 self.zmin, self.zmax = self.zlimits[n]
232 self.zmin, self.zmax = self.zlimits[n]
233 ax.collections.remove(ax.collections[0])
233 ax.collections.remove(ax.collections[0])
234 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
234 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
235 vmin=self.zmin,
235 vmin=self.zmin,
236 vmax=self.zmax,
236 vmax=self.zmax,
237 cmap=self.cmaps[n]
237 cmap=self.cmaps[n]
238 )
238 )
239
239
240
240
241 class PolarMapPlot(Plot):
241 class PolarMapPlot(Plot):
242 '''
242 '''
243 Plot for weather radar
243 Plot for weather radar
244 '''
244 '''
245
245
246 CODE = 'param'
246 CODE = 'param'
247 colormap = 'seismic'
247 colormap = 'seismic'
248
248
249 def setup(self):
249 def setup(self):
250 self.ncols = 1
250 self.ncols = 1
251 self.nrows = 1
251 self.nrows = 1
252 self.width = 9
252 self.width = 9
253 self.height = 8
253 self.height = 8
254 self.mode = self.data.meta['mode']
254 self.mode = self.data.meta['mode']
255 if self.channels is not None:
255 if self.channels is not None:
256 self.nplots = len(self.channels)
256 self.nplots = len(self.channels)
257 self.nrows = len(self.channels)
257 self.nrows = len(self.channels)
258 else:
258 else:
259 self.nplots = self.data.shape(self.CODE)[0]
259 self.nplots = self.data.shape(self.CODE)[0]
260 self.nrows = self.nplots
260 self.nrows = self.nplots
261 self.channels = list(range(self.nplots))
261 self.channels = list(range(self.nplots))
262 if self.mode == 'E':
262 if self.mode == 'E':
263 self.xlabel = 'Longitude'
263 self.xlabel = 'Longitude'
264 self.ylabel = 'Latitude'
264 self.ylabel = 'Latitude'
265 else:
265 else:
266 self.xlabel = 'Range (km)'
266 self.xlabel = 'Range (km)'
267 self.ylabel = 'Height (km)'
267 self.ylabel = 'Height (km)'
268 self.bgcolor = 'white'
268 self.bgcolor = 'white'
269 self.cb_labels = self.data.meta['units']
269 self.cb_labels = self.data.meta['units']
270 self.lat = self.data.meta['latitude']
270 self.lat = self.data.meta['latitude']
271 self.lon = self.data.meta['longitude']
271 self.lon = self.data.meta['longitude']
272 self.xmin, self.xmax = float(
272 self.xmin, self.xmax = float(
273 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
273 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
274 self.ymin, self.ymax = float(
274 self.ymin, self.ymax = float(
275 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
275 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
276 # self.polar = True
276 # self.polar = True
277
277
278 def plot(self):
278 def plot(self):
279
279
280 for n, ax in enumerate(self.axes):
280 for n, ax in enumerate(self.axes):
281 data = self.data['param'][self.channels[n]]
281 data = self.data['param'][self.channels[n]]
282
282
283 zeniths = numpy.linspace(
283 zeniths = numpy.linspace(
284 0, self.data.meta['max_range'], data.shape[1])
284 0, self.data.meta['max_range'], data.shape[1])
285 if self.mode == 'E':
285 if self.mode == 'E':
286 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
286 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
287 r, theta = numpy.meshgrid(zeniths, azimuths)
287 r, theta = numpy.meshgrid(zeniths, azimuths)
288 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
288 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
289 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
289 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
290 x = km2deg(x) + self.lon
290 x = km2deg(x) + self.lon
291 y = km2deg(y) + self.lat
291 y = km2deg(y) + self.lat
292 else:
292 else:
293 azimuths = numpy.radians(self.data.yrange)
293 azimuths = numpy.radians(self.data.yrange)
294 r, theta = numpy.meshgrid(zeniths, azimuths)
294 r, theta = numpy.meshgrid(zeniths, azimuths)
295 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
295 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
296 self.y = zeniths
296 self.y = zeniths
297
297
298 if ax.firsttime:
298 if ax.firsttime:
299 if self.zlimits is not None:
299 if self.zlimits is not None:
300 self.zmin, self.zmax = self.zlimits[n]
300 self.zmin, self.zmax = self.zlimits[n]
301 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
301 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
302 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
302 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
303 vmin=self.zmin,
303 vmin=self.zmin,
304 vmax=self.zmax,
304 vmax=self.zmax,
305 cmap=self.cmaps[n])
305 cmap=self.cmaps[n])
306 else:
306 else:
307 if self.zlimits is not None:
307 if self.zlimits is not None:
308 self.zmin, self.zmax = self.zlimits[n]
308 self.zmin, self.zmax = self.zlimits[n]
309 ax.collections.remove(ax.collections[0])
309 ax.collections.remove(ax.collections[0])
310 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
310 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
311 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
311 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
312 vmin=self.zmin,
312 vmin=self.zmin,
313 vmax=self.zmax,
313 vmax=self.zmax,
314 cmap=self.cmaps[n])
314 cmap=self.cmaps[n])
315
315
316 if self.mode == 'A':
316 if self.mode == 'A':
317 continue
317 continue
318
318
319 # plot district names
319 # plot district names
320 f = open('/data/workspace/schain_scripts/distrito.csv')
320 f = open('/data/workspace/schain_scripts/distrito.csv')
321 for line in f:
321 for line in f:
322 label, lon, lat = [s.strip() for s in line.split(',') if s]
322 label, lon, lat = [s.strip() for s in line.split(',') if s]
323 lat = float(lat)
323 lat = float(lat)
324 lon = float(lon)
324 lon = float(lon)
325 # ax.plot(lon, lat, '.b', ms=2)
325 # ax.plot(lon, lat, '.b', ms=2)
326 ax.text(lon, lat, label.decode('utf8'), ha='center',
326 ax.text(lon, lat, label.decode('utf8'), ha='center',
327 va='bottom', size='8', color='black')
327 va='bottom', size='8', color='black')
328
328
329 # plot limites
329 # plot limites
330 limites = []
330 limites = []
331 tmp = []
331 tmp = []
332 for line in open('/data/workspace/schain_scripts/lima.csv'):
332 for line in open('/data/workspace/schain_scripts/lima.csv'):
333 if '#' in line:
333 if '#' in line:
334 if tmp:
334 if tmp:
335 limites.append(tmp)
335 limites.append(tmp)
336 tmp = []
336 tmp = []
337 continue
337 continue
338 values = line.strip().split(',')
338 values = line.strip().split(',')
339 tmp.append((float(values[0]), float(values[1])))
339 tmp.append((float(values[0]), float(values[1])))
340 for points in limites:
340 for points in limites:
341 ax.add_patch(
341 ax.add_patch(
342 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
342 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
343
343
344 # plot Cuencas
344 # plot Cuencas
345 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
345 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
346 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
346 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
347 values = [line.strip().split(',') for line in f]
347 values = [line.strip().split(',') for line in f]
348 points = [(float(s[0]), float(s[1])) for s in values]
348 points = [(float(s[0]), float(s[1])) for s in values]
349 ax.add_patch(Polygon(points, ec='b', fc='none'))
349 ax.add_patch(Polygon(points, ec='b', fc='none'))
350
350
351 # plot grid
351 # plot grid
352 for r in (15, 30, 45, 60):
352 for r in (15, 30, 45, 60):
353 ax.add_artist(plt.Circle((self.lon, self.lat),
353 ax.add_artist(plt.Circle((self.lon, self.lat),
354 km2deg(r), color='0.6', fill=False, lw=0.2))
354 km2deg(r), color='0.6', fill=False, lw=0.2))
355 ax.text(
355 ax.text(
356 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
356 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
357 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
357 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
358 '{}km'.format(r),
358 '{}km'.format(r),
359 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
359 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
360
360
361 if self.mode == 'E':
361 if self.mode == 'E':
362 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
362 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
363 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
363 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
364 else:
364 else:
365 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
365 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
366 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
366 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
367
367
368 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
368 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
369 self.titles = ['{} {}'.format(
369 self.titles = ['{} {}'.format(
370 self.data.parameters[x], title) for x in self.channels]
370 self.data.parameters[x], title) for x in self.channels]
371
371
372 class WeatherPlot(Plot):
372 class WeatherPlot(Plot):
373 CODE = 'weather'
373 CODE = 'weather'
374 plot_name = 'weather'
374 plot_name = 'weather'
375 plot_type = 'ppistyle'
375 plot_type = 'ppistyle'
376 buffering = False
376 buffering = False
377
377
378 def setup(self):
378 def setup(self):
379 self.ncols = 1
379 self.ncols = 1
380 self.nrows = 1
380 self.nrows = 1
381 self.width =8
381 self.width =8
382 self.height =8
382 self.height =8
383 self.nplots= 1
383 self.nplots= 1
384 self.ylabel= 'Range [Km]'
384 self.ylabel= 'Range [Km]'
385 self.titles= ['Weather']
385 self.titles= ['Weather']
386 self.colorbar=False
386 self.colorbar=False
387 self.ini =0
387 self.ini =0
388 self.len_azi =0
388 self.len_azi =0
389 self.buffer_ini = None
389 self.buffer_ini = None
390 self.buffer_azi = None
390 self.buffer_azi = None
391 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
391 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
392 self.flag =0
392 self.flag =0
393 self.indicador= 0
393 self.indicador= 0
394 self.last_data_azi = None
394 self.last_data_azi = None
395 self.val_mean = None
395 self.val_mean = None
396
396
397 def update(self, dataOut):
397 def update(self, dataOut):
398
398
399 data = {}
399 data = {}
400 meta = {}
400 meta = {}
401 if hasattr(dataOut, 'dataPP_POWER'):
401 if hasattr(dataOut, 'dataPP_POWER'):
402 factor = 1
402 factor = 1
403 if hasattr(dataOut, 'nFFTPoints'):
403 if hasattr(dataOut, 'nFFTPoints'):
404 factor = dataOut.normFactor
404 factor = dataOut.normFactor
405 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
405 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
406 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
406 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
407 data['azi'] = dataOut.data_azi
407 data['azi'] = dataOut.data_azi
408 data['ele'] = dataOut.data_ele
408 data['ele'] = dataOut.data_ele
409 return data, meta
409 return data, meta
410
410
411 def get2List(self,angulos):
411 def get2List(self,angulos):
412 list1=[]
412 list1=[]
413 list2=[]
413 list2=[]
414 for i in reversed(range(len(angulos))):
414 for i in reversed(range(len(angulos))):
415 diff_ = angulos[i]-angulos[i-1]
415 diff_ = angulos[i]-angulos[i-1]
416 if diff_ >1.5:
416 if diff_ >1.5:
417 list1.append(i-1)
417 list1.append(i-1)
418 list2.append(diff_)
418 list2.append(diff_)
419 return list(reversed(list1)),list(reversed(list2))
419 return list(reversed(list1)),list(reversed(list2))
420
420
421 def fixData360(self,list_,ang_):
421 def fixData360(self,list_,ang_):
422 if list_[0]==-1:
422 if list_[0]==-1:
423 vec = numpy.where(ang_<ang_[0])
423 vec = numpy.where(ang_<ang_[0])
424 ang_[vec] = ang_[vec]+360
424 ang_[vec] = ang_[vec]+360
425 return ang_
425 return ang_
426 return ang_
426 return ang_
427
427
428 def fixData360HL(self,angulos):
428 def fixData360HL(self,angulos):
429 vec = numpy.where(angulos>=360)
429 vec = numpy.where(angulos>=360)
430 angulos[vec]=angulos[vec]-360
430 angulos[vec]=angulos[vec]-360
431 return angulos
431 return angulos
432
432
433 def search_pos(self,pos,list_):
433 def search_pos(self,pos,list_):
434 for i in range(len(list_)):
434 for i in range(len(list_)):
435 if pos == list_[i]:
435 if pos == list_[i]:
436 return True,i
436 return True,i
437 i=None
437 i=None
438 return False,i
438 return False,i
439
439
440 def fixDataComp(self,ang_,list1_,list2_):
440 def fixDataComp(self,ang_,list1_,list2_):
441 size = len(ang_)
441 size = len(ang_)
442 size2 = 0
442 size2 = 0
443 for i in range(len(list2_)):
443 for i in range(len(list2_)):
444 size2=size2+round(list2_[i])-1
444 size2=size2+round(list2_[i])-1
445 new_size= size+size2
445 new_size= size+size2
446 ang_new = numpy.zeros(new_size)
446 ang_new = numpy.zeros(new_size)
447 ang_new2 = numpy.zeros(new_size)
447 ang_new2 = numpy.zeros(new_size)
448
448
449 tmp = 0
449 tmp = 0
450 c = 0
450 c = 0
451 for i in range(len(ang_)):
451 for i in range(len(ang_)):
452 ang_new[tmp +c] = ang_[i]
452 ang_new[tmp +c] = ang_[i]
453 ang_new2[tmp+c] = ang_[i]
453 ang_new2[tmp+c] = ang_[i]
454 condition , value = self.search_pos(i,list1_)
454 condition , value = self.search_pos(i,list1_)
455 if condition:
455 if condition:
456 pos = tmp + c + 1
456 pos = tmp + c + 1
457 for k in range(round(list2_[value])-1):
457 for k in range(round(list2_[value])-1):
458 ang_new[pos+k] = ang_new[pos+k-1]+1
458 ang_new[pos+k] = ang_new[pos+k-1]+1
459 ang_new2[pos+k] = numpy.nan
459 ang_new2[pos+k] = numpy.nan
460 tmp = pos +k
460 tmp = pos +k
461 c = 0
461 c = 0
462 c=c+1
462 c=c+1
463 return ang_new,ang_new2
463 return ang_new,ang_new2
464
464
465 def globalCheckPED(self,angulos):
465 def globalCheckPED(self,angulos):
466 l1,l2 = self.get2List(angulos)
466 l1,l2 = self.get2List(angulos)
467 if len(l1)>0:
467 if len(l1)>0:
468 angulos2 = self.fixData360(list_=l1,ang_=angulos)
468 angulos2 = self.fixData360(list_=l1,ang_=angulos)
469 l1,l2 = self.get2List(angulos2)
469 l1,l2 = self.get2List(angulos2)
470
470
471 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
471 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
472 ang1_ = self.fixData360HL(ang1_)
472 ang1_ = self.fixData360HL(ang1_)
473 ang2_ = self.fixData360HL(ang2_)
473 ang2_ = self.fixData360HL(ang2_)
474 else:
474 else:
475 ang1_= angulos
475 ang1_= angulos
476 ang2_= angulos
476 ang2_= angulos
477 return ang1_,ang2_
477 return ang1_,ang2_
478
478
479 def analizeDATA(self,data_azi):
479 def analizeDATA(self,data_azi):
480 list1 = []
480 list1 = []
481 list2 = []
481 list2 = []
482 dat = data_azi
482 dat = data_azi
483 for i in reversed(range(1,len(dat))):
483 for i in reversed(range(1,len(dat))):
484 if dat[i]>dat[i-1]:
484 if dat[i]>dat[i-1]:
485 diff = int(dat[i])-int(dat[i-1])
485 diff = int(dat[i])-int(dat[i-1])
486 else:
486 else:
487 diff = 360+int(dat[i])-int(dat[i-1])
487 diff = 360+int(dat[i])-int(dat[i-1])
488 if diff > 1:
488 if diff > 1:
489 list1.append(i-1)
489 list1.append(i-1)
490 list2.append(diff-1)
490 list2.append(diff-1)
491 return list1,list2
491 return list1,list2
492
492
493 def fixDATANEW(self,data_azi,data_weather):
493 def fixDATANEW(self,data_azi,data_weather):
494 list1,list2 = self.analizeDATA(data_azi)
494 list1,list2 = self.analizeDATA(data_azi)
495 if len(list1)== 0:
495 if len(list1)== 0:
496 return data_azi,data_weather
496 return data_azi,data_weather
497 else:
497 else:
498 resize = 0
498 resize = 0
499 for i in range(len(list2)):
499 for i in range(len(list2)):
500 resize= resize + list2[i]
500 resize= resize + list2[i]
501 new_data_azi = numpy.resize(data_azi,resize)
501 new_data_azi = numpy.resize(data_azi,resize)
502 new_data_weather= numpy.resize(date_weather,resize)
502 new_data_weather= numpy.resize(date_weather,resize)
503
503
504 for i in range(len(list2)):
504 for i in range(len(list2)):
505 j=0
505 j=0
506 position=list1[i]+1
506 position=list1[i]+1
507 for j in range(list2[i]):
507 for j in range(list2[i]):
508 new_data_azi[position+j]=new_data_azi[position+j-1]+1
508 new_data_azi[position+j]=new_data_azi[position+j-1]+1
509 return new_data_azi
509 return new_data_azi
510
510
511 def fixDATA(self,data_azi):
511 def fixDATA(self,data_azi):
512 data=data_azi
512 data=data_azi
513 for i in range(len(data)):
513 for i in range(len(data)):
514 if numpy.isnan(data[i]):
514 if numpy.isnan(data[i]):
515 data[i]=data[i-1]+1
515 data[i]=data[i-1]+1
516 return data
516 return data
517
517
518 def replaceNAN(self,data_weather,data_azi,val):
518 def replaceNAN(self,data_weather,data_azi,val):
519 data= data_azi
519 data= data_azi
520 data_T= data_weather
520 data_T= data_weather
521 if data.shape[0]> data_T.shape[0]:
521 if data.shape[0]> data_T.shape[0]:
522 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
522 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
523 c = 0
523 c = 0
524 for i in range(len(data)):
524 for i in range(len(data)):
525 if numpy.isnan(data[i]):
525 if numpy.isnan(data[i]):
526 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
526 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
527 else:
527 else:
528 data_N[i,:]=data_T[c,:]
528 data_N[i,:]=data_T[c,:]
529 c=c+1
529 c=c+1
530 return data_N
530 return data_N
531 else:
531 else:
532 for i in range(len(data)):
532 for i in range(len(data)):
533 if numpy.isnan(data[i]):
533 if numpy.isnan(data[i]):
534 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
534 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
535 return data_T
535 return data_T
536
536
537 def const_ploteo(self,data_weather,data_azi,step,res):
537 def const_ploteo(self,data_weather,data_azi,step,res):
538 if self.ini==0:
538 if self.ini==0:
539 #-------
539 #-------
540 n = (360/res)-len(data_azi)
540 n = (360/res)-len(data_azi)
541 #--------------------- new -------------------------
541 #--------------------- new -------------------------
542 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
542 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
543 #------------------------
543 #------------------------
544 start = data_azi_new[-1] + res
544 start = data_azi_new[-1] + res
545 end = data_azi_new[0] - res
545 end = data_azi_new[0] - res
546 #------ new
546 #------ new
547 self.last_data_azi = end
547 self.last_data_azi = end
548 if start>end:
548 if start>end:
549 end = end + 360
549 end = end + 360
550 azi_vacia = numpy.linspace(start,end,int(n))
550 azi_vacia = numpy.linspace(start,end,int(n))
551 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
551 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
552 data_azi = numpy.hstack((data_azi_new,azi_vacia))
552 data_azi = numpy.hstack((data_azi_new,azi_vacia))
553 # RADAR
553 # RADAR
554 val_mean = numpy.mean(data_weather[:,-1])
554 val_mean = numpy.mean(data_weather[:,-1])
555 self.val_mean = val_mean
555 self.val_mean = val_mean
556 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
556 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
557 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
557 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
558 data_weather = numpy.vstack((data_weather,data_weather_cmp))
558 data_weather = numpy.vstack((data_weather,data_weather_cmp))
559 else:
559 else:
560 # azimuth
560 # azimuth
561 flag=0
561 flag=0
562 start_azi = self.res_azi[0]
562 start_azi = self.res_azi[0]
563 #-----------new------------
563 #-----------new------------
564 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
564 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
565 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
565 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
566 #--------------------------
566 #--------------------------
567 start = data_azi[0]
567 start = data_azi[0]
568 end = data_azi[-1]
568 end = data_azi[-1]
569 self.last_data_azi= end
569 self.last_data_azi= end
570 if start< start_azi:
570 if start< start_azi:
571 start = start +360
571 start = start +360
572 if end <start_azi:
572 if end <start_azi:
573 end = end +360
573 end = end +360
574
574
575 pos_ini = int((start-start_azi)/res)
575 pos_ini = int((start-start_azi)/res)
576 len_azi = len(data_azi)
576 len_azi = len(data_azi)
577 if (360-pos_ini)<len_azi:
577 if (360-pos_ini)<len_azi:
578 if pos_ini+1==360:
578 if pos_ini+1==360:
579 pos_ini=0
579 pos_ini=0
580 else:
580 else:
581 flag=1
581 flag=1
582 dif= 360-pos_ini
582 dif= 360-pos_ini
583 comp= len_azi-dif
583 comp= len_azi-dif
584 #-----------------
584 #-----------------
585 if flag==0:
585 if flag==0:
586 # AZIMUTH
586 # AZIMUTH
587 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
587 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
588 # RADAR
588 # RADAR
589 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
589 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
590 else:
590 else:
591 # AZIMUTH
591 # AZIMUTH
592 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
592 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
593 self.res_azi[0:comp] = data_azi[dif:]
593 self.res_azi[0:comp] = data_azi[dif:]
594 # RADAR
594 # RADAR
595 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
595 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
596 self.res_weather[0:comp,:] = data_weather[dif:,:]
596 self.res_weather[0:comp,:] = data_weather[dif:,:]
597 flag=0
597 flag=0
598 data_azi = self.res_azi
598 data_azi = self.res_azi
599 data_weather = self.res_weather
599 data_weather = self.res_weather
600
600
601 return data_weather,data_azi
601 return data_weather,data_azi
602
602
603 def plot(self):
603 def plot(self):
604 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
604 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
605 data = self.data[-1]
605 data = self.data[-1]
606 r = self.data.yrange
606 r = self.data.yrange
607 delta_height = r[1]-r[0]
607 delta_height = r[1]-r[0]
608 r_mask = numpy.where(r>=0)[0]
608 r_mask = numpy.where(r>=0)[0]
609 r = numpy.arange(len(r_mask))*delta_height
609 r = numpy.arange(len(r_mask))*delta_height
610 self.y = 2*r
610 self.y = 2*r
611 # RADAR
611 # RADAR
612 #data_weather = data['weather']
612 #data_weather = data['weather']
613 # PEDESTAL
613 # PEDESTAL
614 #data_azi = data['azi']
614 #data_azi = data['azi']
615 res = 1
615 res = 1
616 # STEP
616 # STEP
617 step = (360/(res*data['weather'].shape[0]))
617 step = (360/(res*data['weather'].shape[0]))
618
618
619 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
619 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
620 self.res_ele = numpy.mean(data['ele'])
620 self.res_ele = numpy.mean(data['ele'])
621 ################# PLOTEO ###################
621 ################# PLOTEO ###################
622 for i,ax in enumerate(self.axes):
622 for i,ax in enumerate(self.axes):
623 self.zmin = self.zmin if self.zmin else 20
624 self.zmax = self.zmax if self.zmax else 80
623 if ax.firsttime:
625 if ax.firsttime:
624 plt.clf()
626 plt.clf()
625 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
627 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=self.zmin, vmax=self.zmax)
626 else:
628 else:
627 plt.clf()
629 plt.clf()
628 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
630 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=self.zmin, vmax=self.zmax)
629 caax = cgax.parasites[0]
631 caax = cgax.parasites[0]
630 paax = cgax.parasites[1]
632 paax = cgax.parasites[1]
631 cbar = plt.gcf().colorbar(pm, pad=0.075)
633 cbar = plt.gcf().colorbar(pm, pad=0.075)
632 caax.set_xlabel('x_range [km]')
634 caax.set_xlabel('x_range [km]')
633 caax.set_ylabel('y_range [km]')
635 caax.set_ylabel('y_range [km]')
634 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right')
636 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " EL: "+str(round(self.res_ele, 1)), transform=caax.transAxes, va='bottom',ha='right')
635
637
636 self.ini= self.ini+1
638 self.ini= self.ini+1
637
639
638
640
639 class WeatherRHIPlot(Plot):
641 class WeatherRHIPlot(Plot):
640 CODE = 'weather'
642 CODE = 'weather'
641 plot_name = 'weather'
643 plot_name = 'weather'
642 plot_type = 'rhistyle'
644 plot_type = 'rhistyle'
643 buffering = False
645 buffering = False
644 data_ele_tmp = None
646 data_ele_tmp = None
645
647
646 def setup(self):
648 def setup(self):
647 print("********************")
649 print("********************")
648 print("********************")
650 print("********************")
649 print("********************")
651 print("********************")
650 print("SETUP WEATHER PLOT")
652 print("SETUP WEATHER PLOT")
651 self.ncols = 1
653 self.ncols = 1
652 self.nrows = 1
654 self.nrows = 1
653 self.nplots= 1
655 self.nplots= 1
654 self.ylabel= 'Range [Km]'
656 self.ylabel= 'Range [Km]'
655 self.titles= ['Weather']
657 self.titles= ['Weather']
656 if self.channels is not None:
658 if self.channels is not None:
657 self.nplots = len(self.channels)
659 self.nplots = len(self.channels)
658 self.nrows = len(self.channels)
660 self.nrows = len(self.channels)
659 else:
661 else:
660 self.nplots = self.data.shape(self.CODE)[0]
662 self.nplots = self.data.shape(self.CODE)[0]
661 self.nrows = self.nplots
663 self.nrows = self.nplots
662 self.channels = list(range(self.nplots))
664 self.channels = list(range(self.nplots))
663 print("channels",self.channels)
665 print("channels",self.channels)
664 print("que saldra", self.data.shape(self.CODE)[0])
666 print("que saldra", self.data.shape(self.CODE)[0])
665 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
667 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
666 print("self.titles",self.titles)
668 print("self.titles",self.titles)
667 self.colorbar=False
669 self.colorbar=False
668 self.width =8
670 self.width =12
669 self.height =8
671 self.height =8
670 self.ini =0
672 self.ini =0
671 self.len_azi =0
673 self.len_azi =0
672 self.buffer_ini = None
674 self.buffer_ini = None
673 self.buffer_ele = None
675 self.buffer_ele = None
674 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
676 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
675 self.flag =0
677 self.flag =0
676 self.indicador= 0
678 self.indicador= 0
677 self.last_data_ele = None
679 self.last_data_ele = None
678 self.val_mean = None
680 self.val_mean = None
679
681
680 def update(self, dataOut):
682 def update(self, dataOut):
681
683
682 data = {}
684 data = {}
683 meta = {}
685 meta = {}
684 if hasattr(dataOut, 'dataPP_POWER'):
686 if hasattr(dataOut, 'dataPP_POWER'):
685 factor = 1
687 factor = 1
686 if hasattr(dataOut, 'nFFTPoints'):
688 if hasattr(dataOut, 'nFFTPoints'):
687 factor = dataOut.normFactor
689 factor = dataOut.normFactor
688 print("dataOut",dataOut.data_360.shape)
690 print("dataOut",dataOut.data_360.shape)
689 #
691 #
690 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
692 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
691 #
693 #
692 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
694 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
693 data['azi'] = dataOut.data_azi
695 data['azi'] = dataOut.data_azi
694 data['ele'] = dataOut.data_ele
696 data['ele'] = dataOut.data_ele
695 #print("UPDATE")
697 #print("UPDATE")
696 #print("data[weather]",data['weather'].shape)
698 #print("data[weather]",data['weather'].shape)
697 #print("data[azi]",data['azi'])
699 #print("data[azi]",data['azi'])
698 return data, meta
700 return data, meta
699
701
700 def get2List(self,angulos):
702 def get2List(self,angulos):
701 list1=[]
703 list1=[]
702 list2=[]
704 list2=[]
703 for i in reversed(range(len(angulos))):
705 for i in reversed(range(len(angulos))):
704 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
706 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
705 diff_ = angulos[i]-angulos[i-1]
707 diff_ = angulos[i]-angulos[i-1]
706 if abs(diff_) >1.5:
708 if abs(diff_) >1.5:
707 list1.append(i-1)
709 list1.append(i-1)
708 list2.append(diff_)
710 list2.append(diff_)
709 return list(reversed(list1)),list(reversed(list2))
711 return list(reversed(list1)),list(reversed(list2))
710
712
711 def fixData90(self,list_,ang_):
713 def fixData90(self,list_,ang_):
712 if list_[0]==-1:
714 if list_[0]==-1:
713 vec = numpy.where(ang_<ang_[0])
715 vec = numpy.where(ang_<ang_[0])
714 ang_[vec] = ang_[vec]+90
716 ang_[vec] = ang_[vec]+90
715 return ang_
717 return ang_
716 return ang_
718 return ang_
717
719
718 def fixData90HL(self,angulos):
720 def fixData90HL(self,angulos):
719 vec = numpy.where(angulos>=90)
721 vec = numpy.where(angulos>=90)
720 angulos[vec]=angulos[vec]-90
722 angulos[vec]=angulos[vec]-90
721 return angulos
723 return angulos
722
724
723
725
724 def search_pos(self,pos,list_):
726 def search_pos(self,pos,list_):
725 for i in range(len(list_)):
727 for i in range(len(list_)):
726 if pos == list_[i]:
728 if pos == list_[i]:
727 return True,i
729 return True,i
728 i=None
730 i=None
729 return False,i
731 return False,i
730
732
731 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
733 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
732 size = len(ang_)
734 size = len(ang_)
733 size2 = 0
735 size2 = 0
734 for i in range(len(list2_)):
736 for i in range(len(list2_)):
735 size2=size2+round(abs(list2_[i]))-1
737 size2=size2+round(abs(list2_[i]))-1
736 new_size= size+size2
738 new_size= size+size2
737 ang_new = numpy.zeros(new_size)
739 ang_new = numpy.zeros(new_size)
738 ang_new2 = numpy.zeros(new_size)
740 ang_new2 = numpy.zeros(new_size)
739
741
740 tmp = 0
742 tmp = 0
741 c = 0
743 c = 0
742 for i in range(len(ang_)):
744 for i in range(len(ang_)):
743 ang_new[tmp +c] = ang_[i]
745 ang_new[tmp +c] = ang_[i]
744 ang_new2[tmp+c] = ang_[i]
746 ang_new2[tmp+c] = ang_[i]
745 condition , value = self.search_pos(i,list1_)
747 condition , value = self.search_pos(i,list1_)
746 if condition:
748 if condition:
747 pos = tmp + c + 1
749 pos = tmp + c + 1
748 for k in range(round(abs(list2_[value]))-1):
750 for k in range(round(abs(list2_[value]))-1):
749 if tipo_case==0 or tipo_case==3:#subida
751 if tipo_case==0 or tipo_case==3:#subida
750 ang_new[pos+k] = ang_new[pos+k-1]+1
752 ang_new[pos+k] = ang_new[pos+k-1]+1
751 ang_new2[pos+k] = numpy.nan
753 ang_new2[pos+k] = numpy.nan
752 elif tipo_case==1 or tipo_case==2:#bajada
754 elif tipo_case==1 or tipo_case==2:#bajada
753 ang_new[pos+k] = ang_new[pos+k-1]-1
755 ang_new[pos+k] = ang_new[pos+k-1]-1
754 ang_new2[pos+k] = numpy.nan
756 ang_new2[pos+k] = numpy.nan
755
757
756 tmp = pos +k
758 tmp = pos +k
757 c = 0
759 c = 0
758 c=c+1
760 c=c+1
759 return ang_new,ang_new2
761 return ang_new,ang_new2
760
762
761 def globalCheckPED(self,angulos,tipo_case):
763 def globalCheckPED(self,angulos,tipo_case):
762 l1,l2 = self.get2List(angulos)
764 l1,l2 = self.get2List(angulos)
763 ##print("l1",l1)
765 ##print("l1",l1)
764 ##print("l2",l2)
766 ##print("l2",l2)
765 if len(l1)>0:
767 if len(l1)>0:
766 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
768 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
767 #l1,l2 = self.get2List(angulos2)
769 #l1,l2 = self.get2List(angulos2)
768 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
770 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
769 #ang1_ = self.fixData90HL(ang1_)
771 #ang1_ = self.fixData90HL(ang1_)
770 #ang2_ = self.fixData90HL(ang2_)
772 #ang2_ = self.fixData90HL(ang2_)
771 else:
773 else:
772 ang1_= angulos
774 ang1_= angulos
773 ang2_= angulos
775 ang2_= angulos
774 return ang1_,ang2_
776 return ang1_,ang2_
775
777
776
778
777 def replaceNAN(self,data_weather,data_ele,val):
779 def replaceNAN(self,data_weather,data_ele,val):
778 data= data_ele
780 data= data_ele
779 data_T= data_weather
781 data_T= data_weather
780 if data.shape[0]> data_T.shape[0]:
782 if data.shape[0]> data_T.shape[0]:
781 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
783 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
782 c = 0
784 c = 0
783 for i in range(len(data)):
785 for i in range(len(data)):
784 if numpy.isnan(data[i]):
786 if numpy.isnan(data[i]):
785 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
787 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
786 else:
788 else:
787 data_N[i,:]=data_T[c,:]
789 data_N[i,:]=data_T[c,:]
788 c=c+1
790 c=c+1
789 return data_N
791 return data_N
790 else:
792 else:
791 for i in range(len(data)):
793 for i in range(len(data)):
792 if numpy.isnan(data[i]):
794 if numpy.isnan(data[i]):
793 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
795 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
794 return data_T
796 return data_T
795
797
796 def check_case(self,data_ele,ang_max,ang_min):
798 def check_case(self,data_ele,ang_max,ang_min):
797 start = data_ele[0]
799 start = data_ele[0]
798 end = data_ele[-1]
800 end = data_ele[-1]
799 number = (end-start)
801 number = (end-start)
800 len_ang=len(data_ele)
802 len_ang=len(data_ele)
801 print("start",start)
803 print("start",start)
802 print("end",end)
804 print("end",end)
803 print("number",number)
805 print("number",number)
804
806
805 print("len_ang",len_ang)
807 print("len_ang",len_ang)
806
808
807 #exit(1)
809 #exit(1)
808
810
809 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
811 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
810 return 0
812 return 0
811 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
813 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
812 # return 1
814 # return 1
813 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
815 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
814 return 1
816 return 1
815 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
817 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
816 return 2
818 return 2
817 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
819 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
818 return 3
820 return 3
819
821
820
822
821 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
823 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
822 ang_max= ang_max
824 ang_max= ang_max
823 ang_min= ang_min
825 ang_min= ang_min
824 data_weather=data_weather
826 data_weather=data_weather
825 val_ch=val_ch
827 val_ch=val_ch
826 ##print("*********************DATA WEATHER**************************************")
828 ##print("*********************DATA WEATHER**************************************")
827 ##print(data_weather)
829 ##print(data_weather)
828 if self.ini==0:
830 if self.ini==0:
829 '''
831 '''
830 print("**********************************************")
832 print("**********************************************")
831 print("**********************************************")
833 print("**********************************************")
832 print("***************ini**************")
834 print("***************ini**************")
833 print("**********************************************")
835 print("**********************************************")
834 print("**********************************************")
836 print("**********************************************")
835 '''
837 '''
836 #print("data_ele",data_ele)
838 #print("data_ele",data_ele)
837 #----------------------------------------------------------
839 #----------------------------------------------------------
838 tipo_case = self.check_case(data_ele,ang_max,ang_min)
840 tipo_case = self.check_case(data_ele,ang_max,ang_min)
839 print("check_case",tipo_case)
841 print("check_case",tipo_case)
840 #exit(1)
842 #exit(1)
841 #--------------------- new -------------------------
843 #--------------------- new -------------------------
842 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
844 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
843
845
844 #-------------------------CAMBIOS RHI---------------------------------
846 #-------------------------CAMBIOS RHI---------------------------------
845 start= ang_min
847 start= ang_min
846 end = ang_max
848 end = ang_max
847 n= (ang_max-ang_min)/res
849 n= (ang_max-ang_min)/res
848 #------ new
850 #------ new
849 self.start_data_ele = data_ele_new[0]
851 self.start_data_ele = data_ele_new[0]
850 self.end_data_ele = data_ele_new[-1]
852 self.end_data_ele = data_ele_new[-1]
851 if tipo_case==0 or tipo_case==3: # SUBIDA
853 if tipo_case==0 or tipo_case==3: # SUBIDA
852 n1= round(self.start_data_ele)- start
854 n1= round(self.start_data_ele)- start
853 n2= end - round(self.end_data_ele)
855 n2= end - round(self.end_data_ele)
854 print(self.start_data_ele)
856 print(self.start_data_ele)
855 print(self.end_data_ele)
857 print(self.end_data_ele)
856 if n1>0:
858 if n1>0:
857 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
859 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
858 ele1_nan= numpy.ones(n1)*numpy.nan
860 ele1_nan= numpy.ones(n1)*numpy.nan
859 data_ele = numpy.hstack((ele1,data_ele_new))
861 data_ele = numpy.hstack((ele1,data_ele_new))
860 print("ele1_nan",ele1_nan.shape)
862 print("ele1_nan",ele1_nan.shape)
861 print("data_ele_old",data_ele_old.shape)
863 print("data_ele_old",data_ele_old.shape)
862 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
864 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
863 if n2>0:
865 if n2>0:
864 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
866 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
865 ele2_nan= numpy.ones(n2)*numpy.nan
867 ele2_nan= numpy.ones(n2)*numpy.nan
866 data_ele = numpy.hstack((data_ele,ele2))
868 data_ele = numpy.hstack((data_ele,ele2))
867 print("ele2_nan",ele2_nan.shape)
869 print("ele2_nan",ele2_nan.shape)
868 print("data_ele_old",data_ele_old.shape)
870 print("data_ele_old",data_ele_old.shape)
869 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
871 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
870
872
871 if tipo_case==1 or tipo_case==2: # BAJADA
873 if tipo_case==1 or tipo_case==2: # BAJADA
872 data_ele_new = data_ele_new[::-1] # reversa
874 data_ele_new = data_ele_new[::-1] # reversa
873 data_ele_old = data_ele_old[::-1]# reversa
875 data_ele_old = data_ele_old[::-1]# reversa
874 data_weather = data_weather[::-1,:]# reversa
876 data_weather = data_weather[::-1,:]# reversa
875 vec= numpy.where(data_ele_new<ang_max)
877 vec= numpy.where(data_ele_new<ang_max)
876 data_ele_new = data_ele_new[vec]
878 data_ele_new = data_ele_new[vec]
877 data_ele_old = data_ele_old[vec]
879 data_ele_old = data_ele_old[vec]
878 data_weather = data_weather[vec[0]]
880 data_weather = data_weather[vec[0]]
879 vec2= numpy.where(0<data_ele_new)
881 vec2= numpy.where(0<data_ele_new)
880 data_ele_new = data_ele_new[vec2]
882 data_ele_new = data_ele_new[vec2]
881 data_ele_old = data_ele_old[vec2]
883 data_ele_old = data_ele_old[vec2]
882 data_weather = data_weather[vec2[0]]
884 data_weather = data_weather[vec2[0]]
883 self.start_data_ele = data_ele_new[0]
885 self.start_data_ele = data_ele_new[0]
884 self.end_data_ele = data_ele_new[-1]
886 self.end_data_ele = data_ele_new[-1]
885
887
886 n1= round(self.start_data_ele)- start
888 n1= round(self.start_data_ele)- start
887 n2= end - round(self.end_data_ele)-1
889 n2= end - round(self.end_data_ele)-1
888 print(self.start_data_ele)
890 print(self.start_data_ele)
889 print(self.end_data_ele)
891 print(self.end_data_ele)
890 if n1>0:
892 if n1>0:
891 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
893 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
892 ele1_nan= numpy.ones(n1)*numpy.nan
894 ele1_nan= numpy.ones(n1)*numpy.nan
893 data_ele = numpy.hstack((ele1,data_ele_new))
895 data_ele = numpy.hstack((ele1,data_ele_new))
894 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
896 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
895 if n2>0:
897 if n2>0:
896 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
898 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
897 ele2_nan= numpy.ones(n2)*numpy.nan
899 ele2_nan= numpy.ones(n2)*numpy.nan
898 data_ele = numpy.hstack((data_ele,ele2))
900 data_ele = numpy.hstack((data_ele,ele2))
899 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
901 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
900 # RADAR
902 # RADAR
901 # NOTA data_ele y data_weather es la variable que retorna
903 # NOTA data_ele y data_weather es la variable que retorna
902 val_mean = numpy.mean(data_weather[:,-1])
904 val_mean = numpy.mean(data_weather[:,-1])
903 self.val_mean = val_mean
905 self.val_mean = val_mean
904 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
906 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
905 self.data_ele_tmp[val_ch]= data_ele_old
907 self.data_ele_tmp[val_ch]= data_ele_old
906 else:
908 else:
907 #print("**********************************************")
909 #print("**********************************************")
908 #print("****************VARIABLE**********************")
910 #print("****************VARIABLE**********************")
909 #-------------------------CAMBIOS RHI---------------------------------
911 #-------------------------CAMBIOS RHI---------------------------------
910 #---------------------------------------------------------------------
912 #---------------------------------------------------------------------
911 ##print("INPUT data_ele",data_ele)
913 ##print("INPUT data_ele",data_ele)
912 flag=0
914 flag=0
913 start_ele = self.res_ele[0]
915 start_ele = self.res_ele[0]
914 tipo_case = self.check_case(data_ele,ang_max,ang_min)
916 tipo_case = self.check_case(data_ele,ang_max,ang_min)
915 #print("TIPO DE DATA",tipo_case)
917 #print("TIPO DE DATA",tipo_case)
916 #-----------new------------
918 #-----------new------------
917 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
919 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
918 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
920 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
919
921
920 #-------------------------------NEW RHI ITERATIVO-------------------------
922 #-------------------------------NEW RHI ITERATIVO-------------------------
921
923
922 if tipo_case==0 : # SUBIDA
924 if tipo_case==0 : # SUBIDA
923 vec = numpy.where(data_ele<ang_max)
925 vec = numpy.where(data_ele<ang_max)
924 data_ele = data_ele[vec]
926 data_ele = data_ele[vec]
925 data_ele_old = data_ele_old[vec]
927 data_ele_old = data_ele_old[vec]
926 data_weather = data_weather[vec[0]]
928 data_weather = data_weather[vec[0]]
927
929
928 vec2 = numpy.where(0<data_ele)
930 vec2 = numpy.where(0<data_ele)
929 data_ele= data_ele[vec2]
931 data_ele= data_ele[vec2]
930 data_ele_old= data_ele_old[vec2]
932 data_ele_old= data_ele_old[vec2]
931 ##print(data_ele_new)
933 ##print(data_ele_new)
932 data_weather= data_weather[vec2[0]]
934 data_weather= data_weather[vec2[0]]
933
935
934 new_i_ele = int(round(data_ele[0]))
936 new_i_ele = int(round(data_ele[0]))
935 new_f_ele = int(round(data_ele[-1]))
937 new_f_ele = int(round(data_ele[-1]))
936 #print(new_i_ele)
938 #print(new_i_ele)
937 #print(new_f_ele)
939 #print(new_f_ele)
938 #print(data_ele,len(data_ele))
940 #print(data_ele,len(data_ele))
939 #print(data_ele_old,len(data_ele_old))
941 #print(data_ele_old,len(data_ele_old))
940 if new_i_ele< 2:
942 if new_i_ele< 2:
941 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
943 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
942 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
944 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
943 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
945 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
944 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
946 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
945 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
947 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
946 data_ele = self.res_ele
948 data_ele = self.res_ele
947 data_weather = self.res_weather[val_ch]
949 data_weather = self.res_weather[val_ch]
948
950
949 elif tipo_case==1 : #BAJADA
951 elif tipo_case==1 : #BAJADA
950 data_ele = data_ele[::-1] # reversa
952 data_ele = data_ele[::-1] # reversa
951 data_ele_old = data_ele_old[::-1]# reversa
953 data_ele_old = data_ele_old[::-1]# reversa
952 data_weather = data_weather[::-1,:]# reversa
954 data_weather = data_weather[::-1,:]# reversa
953 vec= numpy.where(data_ele<ang_max)
955 vec= numpy.where(data_ele<ang_max)
954 data_ele = data_ele[vec]
956 data_ele = data_ele[vec]
955 data_ele_old = data_ele_old[vec]
957 data_ele_old = data_ele_old[vec]
956 data_weather = data_weather[vec[0]]
958 data_weather = data_weather[vec[0]]
957 vec2= numpy.where(0<data_ele)
959 vec2= numpy.where(0<data_ele)
958 data_ele = data_ele[vec2]
960 data_ele = data_ele[vec2]
959 data_ele_old = data_ele_old[vec2]
961 data_ele_old = data_ele_old[vec2]
960 data_weather = data_weather[vec2[0]]
962 data_weather = data_weather[vec2[0]]
961
963
962
964
963 new_i_ele = int(round(data_ele[0]))
965 new_i_ele = int(round(data_ele[0]))
964 new_f_ele = int(round(data_ele[-1]))
966 new_f_ele = int(round(data_ele[-1]))
965 #print(data_ele)
967 #print(data_ele)
966 #print(ang_max)
968 #print(ang_max)
967 #print(data_ele_old)
969 #print(data_ele_old)
968 if new_i_ele <= 1:
970 if new_i_ele <= 1:
969 new_i_ele = 1
971 new_i_ele = 1
970 if round(data_ele[-1])>=ang_max-1:
972 if round(data_ele[-1])>=ang_max-1:
971 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
973 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
972 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
974 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
973 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
975 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
974 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
976 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
975 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
977 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
976 data_ele = self.res_ele
978 data_ele = self.res_ele
977 data_weather = self.res_weather[val_ch]
979 data_weather = self.res_weather[val_ch]
978
980
979 elif tipo_case==2: #bajada
981 elif tipo_case==2: #bajada
980 vec = numpy.where(data_ele<ang_max)
982 vec = numpy.where(data_ele<ang_max)
981 data_ele = data_ele[vec]
983 data_ele = data_ele[vec]
982 data_weather= data_weather[vec[0]]
984 data_weather= data_weather[vec[0]]
983
985
984 len_vec = len(vec)
986 len_vec = len(vec)
985 data_ele_new = data_ele[::-1] # reversa
987 data_ele_new = data_ele[::-1] # reversa
986 data_weather = data_weather[::-1,:]
988 data_weather = data_weather[::-1,:]
987 new_i_ele = int(data_ele_new[0])
989 new_i_ele = int(data_ele_new[0])
988 new_f_ele = int(data_ele_new[-1])
990 new_f_ele = int(data_ele_new[-1])
989
991
990 n1= new_i_ele- ang_min
992 n1= new_i_ele- ang_min
991 n2= ang_max - new_f_ele-1
993 n2= ang_max - new_f_ele-1
992 if n1>0:
994 if n1>0:
993 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
995 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
994 ele1_nan= numpy.ones(n1)*numpy.nan
996 ele1_nan= numpy.ones(n1)*numpy.nan
995 data_ele = numpy.hstack((ele1,data_ele_new))
997 data_ele = numpy.hstack((ele1,data_ele_new))
996 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
998 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
997 if n2>0:
999 if n2>0:
998 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1000 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
999 ele2_nan= numpy.ones(n2)*numpy.nan
1001 ele2_nan= numpy.ones(n2)*numpy.nan
1000 data_ele = numpy.hstack((data_ele,ele2))
1002 data_ele = numpy.hstack((data_ele,ele2))
1001 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1003 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1002
1004
1003 self.data_ele_tmp[val_ch] = data_ele_old
1005 self.data_ele_tmp[val_ch] = data_ele_old
1004 self.res_ele = data_ele
1006 self.res_ele = data_ele
1005 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1007 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1006 data_ele = self.res_ele
1008 data_ele = self.res_ele
1007 data_weather = self.res_weather[val_ch]
1009 data_weather = self.res_weather[val_ch]
1008
1010
1009 elif tipo_case==3:#subida
1011 elif tipo_case==3:#subida
1010 vec = numpy.where(0<data_ele)
1012 vec = numpy.where(0<data_ele)
1011 data_ele= data_ele[vec]
1013 data_ele= data_ele[vec]
1012 data_ele_new = data_ele
1014 data_ele_new = data_ele
1013 data_ele_old= data_ele_old[vec]
1015 data_ele_old= data_ele_old[vec]
1014 data_weather= data_weather[vec[0]]
1016 data_weather= data_weather[vec[0]]
1015 pos_ini = numpy.argmin(data_ele)
1017 pos_ini = numpy.argmin(data_ele)
1016 if pos_ini>0:
1018 if pos_ini>0:
1017 len_vec= len(data_ele)
1019 len_vec= len(data_ele)
1018 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1020 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1019 #print(vec3)
1021 #print(vec3)
1020 data_ele= data_ele[vec3]
1022 data_ele= data_ele[vec3]
1021 data_ele_new = data_ele
1023 data_ele_new = data_ele
1022 data_ele_old= data_ele_old[vec3]
1024 data_ele_old= data_ele_old[vec3]
1023 data_weather= data_weather[vec3]
1025 data_weather= data_weather[vec3]
1024
1026
1025 new_i_ele = int(data_ele_new[0])
1027 new_i_ele = int(data_ele_new[0])
1026 new_f_ele = int(data_ele_new[-1])
1028 new_f_ele = int(data_ele_new[-1])
1027 n1= new_i_ele- ang_min
1029 n1= new_i_ele- ang_min
1028 n2= ang_max - new_f_ele-1
1030 n2= ang_max - new_f_ele-1
1029 if n1>0:
1031 if n1>0:
1030 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1032 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1031 ele1_nan= numpy.ones(n1)*numpy.nan
1033 ele1_nan= numpy.ones(n1)*numpy.nan
1032 data_ele = numpy.hstack((ele1,data_ele_new))
1034 data_ele = numpy.hstack((ele1,data_ele_new))
1033 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1035 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1034 if n2>0:
1036 if n2>0:
1035 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1037 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1036 ele2_nan= numpy.ones(n2)*numpy.nan
1038 ele2_nan= numpy.ones(n2)*numpy.nan
1037 data_ele = numpy.hstack((data_ele,ele2))
1039 data_ele = numpy.hstack((data_ele,ele2))
1038 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1040 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1039
1041
1040 self.data_ele_tmp[val_ch] = data_ele_old
1042 self.data_ele_tmp[val_ch] = data_ele_old
1041 self.res_ele = data_ele
1043 self.res_ele = data_ele
1042 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1044 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1043 data_ele = self.res_ele
1045 data_ele = self.res_ele
1044 data_weather = self.res_weather[val_ch]
1046 data_weather = self.res_weather[val_ch]
1045 #print("self.data_ele_tmp",self.data_ele_tmp)
1047 #print("self.data_ele_tmp",self.data_ele_tmp)
1046 return data_weather,data_ele
1048 return data_weather,data_ele
1047
1049
1048
1050
1049 def plot(self):
1051 def plot(self):
1050 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1052 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1051 data = self.data[-1]
1053 data = self.data[-1]
1052 r = self.data.yrange
1054 r = self.data.yrange
1053 delta_height = r[1]-r[0]
1055 delta_height = r[1]-r[0]
1054 r_mask = numpy.where(r>=0)[0]
1056 r_mask = numpy.where(r>=0)[0]
1055 ##print("delta_height",delta_height)
1057 ##print("delta_height",delta_height)
1056 #print("r_mask",r_mask,len(r_mask))
1058 #print("r_mask",r_mask,len(r_mask))
1057 r = numpy.arange(len(r_mask))*delta_height
1059 r = numpy.arange(len(r_mask))*delta_height
1058 self.y = 2*r
1060 self.y = 2*r
1059 res = 1
1061 res = 1
1060 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1062 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1061 ang_max = self.ang_max
1063 ang_max = self.ang_max
1062 ang_min = self.ang_min
1064 ang_min = self.ang_min
1063 var_ang =ang_max - ang_min
1065 var_ang =ang_max - ang_min
1064 step = (int(var_ang)/(res*data['weather'].shape[0]))
1066 step = (int(var_ang)/(res*data['weather'].shape[0]))
1065 ###print("step",step)
1067 ###print("step",step)
1066 #--------------------------------------------------------
1068 #--------------------------------------------------------
1067 ##print('weather',data['weather'].shape)
1069 ##print('weather',data['weather'].shape)
1068 ##print('ele',data['ele'].shape)
1070 ##print('ele',data['ele'].shape)
1069
1071
1070 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1072 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1071 ###self.res_azi = numpy.mean(data['azi'])
1073 ###self.res_azi = numpy.mean(data['azi'])
1072 ###print("self.res_ele",self.res_ele)
1074 ###print("self.res_ele",self.res_ele)
1073 plt.clf()
1075 plt.clf()
1074 subplots = [121, 122]
1076 subplots = [121, 122]
1077 cg={'angular_spacing': 20.}
1075 if self.ini==0:
1078 if self.ini==0:
1076 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1079 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1077 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1080 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1078 print("SHAPE",self.data_ele_tmp.shape)
1081 print("SHAPE",self.data_ele_tmp.shape)
1079
1082
1080 for i,ax in enumerate(self.axes):
1083 for i,ax in enumerate(self.axes):
1081 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1084 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1082 self.res_azi = numpy.mean(data['azi'])
1085 self.res_azi = numpy.mean(data['azi'])
1083 if i==0:
1086 if i==0:
1084 print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
1087 print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
1088 self.zmin = self.zmin if self.zmin else 20
1089 self.zmax = self.zmax if self.zmax else 80
1085 if ax.firsttime:
1090 if ax.firsttime:
1086 #plt.clf()
1091 #plt.clf()
1087 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1092 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj=cg,vmin=self.zmin, vmax=self.zmax)
1088 #fig=self.figures[0]
1093 #fig=self.figures[0]
1089 else:
1094 else:
1090 #plt.clf()
1095 #plt.clf()
1091 if i==0:
1096 if i==0:
1092 print(self.res_weather[i])
1097 print(self.res_weather[i])
1093 print(self.res_ele)
1098 print(self.res_ele)
1094 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1099 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj=cg,vmin=self.zmin, vmax=self.zmax)
1095 caax = cgax.parasites[0]
1100 caax = cgax.parasites[0]
1096 paax = cgax.parasites[1]
1101 paax = cgax.parasites[1]
1097 cbar = plt.gcf().colorbar(pm, pad=0.075)
1102 cbar = plt.gcf().colorbar(pm, pad=0.075)
1098 caax.set_xlabel('x_range [km]')
1103 caax.set_xlabel('x_range [km]')
1099 caax.set_ylabel('y_range [km]')
1104 caax.set_ylabel('y_range [km]')
1100 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1105 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1101 print("***************************self.ini****************************",self.ini)
1106 print("***************************self.ini****************************",self.ini)
1102 self.ini= self.ini+1
1107 self.ini= self.ini+1
1103
1108
1104 class WeatherRHI_vRF2_Plot(Plot):
1109 class WeatherRHI_vRF2_Plot(Plot):
1105 CODE = 'weather'
1110 CODE = 'weather'
1106 plot_name = 'weather'
1111 plot_name = 'weather'
1107 plot_type = 'rhistyle'
1112 plot_type = 'rhistyle'
1108 buffering = False
1113 buffering = False
1109 data_ele_tmp = None
1114 data_ele_tmp = None
1110
1115
1111 def setup(self):
1116 def setup(self):
1112 print("********************")
1117 print("********************")
1113 print("********************")
1118 print("********************")
1114 print("********************")
1119 print("********************")
1115 print("SETUP WEATHER PLOT")
1120 print("SETUP WEATHER PLOT")
1116 self.ncols = 1
1121 self.ncols = 1
1117 self.nrows = 1
1122 self.nrows = 1
1118 self.nplots= 1
1123 self.nplots= 1
1119 self.ylabel= 'Range [Km]'
1124 self.ylabel= 'Range [Km]'
1120 self.titles= ['Weather']
1125 self.titles= ['Weather']
1121 if self.channels is not None:
1126 if self.channels is not None:
1122 self.nplots = len(self.channels)
1127 self.nplots = len(self.channels)
1123 self.nrows = len(self.channels)
1128 self.nrows = len(self.channels)
1124 else:
1129 else:
1125 self.nplots = self.data.shape(self.CODE)[0]
1130 self.nplots = self.data.shape(self.CODE)[0]
1126 self.nrows = self.nplots
1131 self.nrows = self.nplots
1127 self.channels = list(range(self.nplots))
1132 self.channels = list(range(self.nplots))
1128 print("channels",self.channels)
1133 print("channels",self.channels)
1129 print("que saldra", self.data.shape(self.CODE)[0])
1134 print("que saldra", self.data.shape(self.CODE)[0])
1130 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1135 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1131 print("self.titles",self.titles)
1136 print("self.titles",self.titles)
1132 self.colorbar=False
1137 self.colorbar=False
1133 self.width =8
1138 self.width =8
1134 self.height =8
1139 self.height =8
1135 self.ini =0
1140 self.ini =0
1136 self.len_azi =0
1141 self.len_azi =0
1137 self.buffer_ini = None
1142 self.buffer_ini = None
1138 self.buffer_ele = None
1143 self.buffer_ele = None
1139 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1144 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1140 self.flag =0
1145 self.flag =0
1141 self.indicador= 0
1146 self.indicador= 0
1142 self.last_data_ele = None
1147 self.last_data_ele = None
1143 self.val_mean = None
1148 self.val_mean = None
1144
1149
1145 def update(self, dataOut):
1150 def update(self, dataOut):
1146
1151
1147 data = {}
1152 data = {}
1148 meta = {}
1153 meta = {}
1149 if hasattr(dataOut, 'dataPP_POWER'):
1154 if hasattr(dataOut, 'dataPP_POWER'):
1150 factor = 1
1155 factor = 1
1151 if hasattr(dataOut, 'nFFTPoints'):
1156 if hasattr(dataOut, 'nFFTPoints'):
1152 factor = dataOut.normFactor
1157 factor = dataOut.normFactor
1153 print("dataOut",dataOut.data_360.shape)
1158 print("dataOut",dataOut.data_360.shape)
1154 #
1159 #
1155 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1160 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1156 #
1161 #
1157 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1162 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1158 data['azi'] = dataOut.data_azi
1163 data['azi'] = dataOut.data_azi
1159 data['ele'] = dataOut.data_ele
1164 data['ele'] = dataOut.data_ele
1160 data['case_flag'] = dataOut.case_flag
1165 data['case_flag'] = dataOut.case_flag
1161 #print("UPDATE")
1166 #print("UPDATE")
1162 #print("data[weather]",data['weather'].shape)
1167 #print("data[weather]",data['weather'].shape)
1163 #print("data[azi]",data['azi'])
1168 #print("data[azi]",data['azi'])
1164 return data, meta
1169 return data, meta
1165
1170
1166 def get2List(self,angulos):
1171 def get2List(self,angulos):
1167 list1=[]
1172 list1=[]
1168 list2=[]
1173 list2=[]
1169 for i in reversed(range(len(angulos))):
1174 for i in reversed(range(len(angulos))):
1170 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1175 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1171 diff_ = angulos[i]-angulos[i-1]
1176 diff_ = angulos[i]-angulos[i-1]
1172 if abs(diff_) >1.5:
1177 if abs(diff_) >1.5:
1173 list1.append(i-1)
1178 list1.append(i-1)
1174 list2.append(diff_)
1179 list2.append(diff_)
1175 return list(reversed(list1)),list(reversed(list2))
1180 return list(reversed(list1)),list(reversed(list2))
1176
1181
1177 def fixData90(self,list_,ang_):
1182 def fixData90(self,list_,ang_):
1178 if list_[0]==-1:
1183 if list_[0]==-1:
1179 vec = numpy.where(ang_<ang_[0])
1184 vec = numpy.where(ang_<ang_[0])
1180 ang_[vec] = ang_[vec]+90
1185 ang_[vec] = ang_[vec]+90
1181 return ang_
1186 return ang_
1182 return ang_
1187 return ang_
1183
1188
1184 def fixData90HL(self,angulos):
1189 def fixData90HL(self,angulos):
1185 vec = numpy.where(angulos>=90)
1190 vec = numpy.where(angulos>=90)
1186 angulos[vec]=angulos[vec]-90
1191 angulos[vec]=angulos[vec]-90
1187 return angulos
1192 return angulos
1188
1193
1189
1194
1190 def search_pos(self,pos,list_):
1195 def search_pos(self,pos,list_):
1191 for i in range(len(list_)):
1196 for i in range(len(list_)):
1192 if pos == list_[i]:
1197 if pos == list_[i]:
1193 return True,i
1198 return True,i
1194 i=None
1199 i=None
1195 return False,i
1200 return False,i
1196
1201
1197 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1202 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1198 size = len(ang_)
1203 size = len(ang_)
1199 size2 = 0
1204 size2 = 0
1200 for i in range(len(list2_)):
1205 for i in range(len(list2_)):
1201 size2=size2+round(abs(list2_[i]))-1
1206 size2=size2+round(abs(list2_[i]))-1
1202 new_size= size+size2
1207 new_size= size+size2
1203 ang_new = numpy.zeros(new_size)
1208 ang_new = numpy.zeros(new_size)
1204 ang_new2 = numpy.zeros(new_size)
1209 ang_new2 = numpy.zeros(new_size)
1205
1210
1206 tmp = 0
1211 tmp = 0
1207 c = 0
1212 c = 0
1208 for i in range(len(ang_)):
1213 for i in range(len(ang_)):
1209 ang_new[tmp +c] = ang_[i]
1214 ang_new[tmp +c] = ang_[i]
1210 ang_new2[tmp+c] = ang_[i]
1215 ang_new2[tmp+c] = ang_[i]
1211 condition , value = self.search_pos(i,list1_)
1216 condition , value = self.search_pos(i,list1_)
1212 if condition:
1217 if condition:
1213 pos = tmp + c + 1
1218 pos = tmp + c + 1
1214 for k in range(round(abs(list2_[value]))-1):
1219 for k in range(round(abs(list2_[value]))-1):
1215 if tipo_case==0 or tipo_case==3:#subida
1220 if tipo_case==0 or tipo_case==3:#subida
1216 ang_new[pos+k] = ang_new[pos+k-1]+1
1221 ang_new[pos+k] = ang_new[pos+k-1]+1
1217 ang_new2[pos+k] = numpy.nan
1222 ang_new2[pos+k] = numpy.nan
1218 elif tipo_case==1 or tipo_case==2:#bajada
1223 elif tipo_case==1 or tipo_case==2:#bajada
1219 ang_new[pos+k] = ang_new[pos+k-1]-1
1224 ang_new[pos+k] = ang_new[pos+k-1]-1
1220 ang_new2[pos+k] = numpy.nan
1225 ang_new2[pos+k] = numpy.nan
1221
1226
1222 tmp = pos +k
1227 tmp = pos +k
1223 c = 0
1228 c = 0
1224 c=c+1
1229 c=c+1
1225 return ang_new,ang_new2
1230 return ang_new,ang_new2
1226
1231
1227 def globalCheckPED(self,angulos,tipo_case):
1232 def globalCheckPED(self,angulos,tipo_case):
1228 l1,l2 = self.get2List(angulos)
1233 l1,l2 = self.get2List(angulos)
1229 ##print("l1",l1)
1234 ##print("l1",l1)
1230 ##print("l2",l2)
1235 ##print("l2",l2)
1231 if len(l1)>0:
1236 if len(l1)>0:
1232 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1237 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1233 #l1,l2 = self.get2List(angulos2)
1238 #l1,l2 = self.get2List(angulos2)
1234 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1239 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1235 #ang1_ = self.fixData90HL(ang1_)
1240 #ang1_ = self.fixData90HL(ang1_)
1236 #ang2_ = self.fixData90HL(ang2_)
1241 #ang2_ = self.fixData90HL(ang2_)
1237 else:
1242 else:
1238 ang1_= angulos
1243 ang1_= angulos
1239 ang2_= angulos
1244 ang2_= angulos
1240 return ang1_,ang2_
1245 return ang1_,ang2_
1241
1246
1242
1247
1243 def replaceNAN(self,data_weather,data_ele,val):
1248 def replaceNAN(self,data_weather,data_ele,val):
1244 data= data_ele
1249 data= data_ele
1245 data_T= data_weather
1250 data_T= data_weather
1246 if data.shape[0]> data_T.shape[0]:
1251 if data.shape[0]> data_T.shape[0]:
1247 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1252 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1248 c = 0
1253 c = 0
1249 for i in range(len(data)):
1254 for i in range(len(data)):
1250 if numpy.isnan(data[i]):
1255 if numpy.isnan(data[i]):
1251 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1256 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1252 else:
1257 else:
1253 data_N[i,:]=data_T[c,:]
1258 data_N[i,:]=data_T[c,:]
1254 c=c+1
1259 c=c+1
1255 return data_N
1260 return data_N
1256 else:
1261 else:
1257 for i in range(len(data)):
1262 for i in range(len(data)):
1258 if numpy.isnan(data[i]):
1263 if numpy.isnan(data[i]):
1259 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1264 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1260 return data_T
1265 return data_T
1261
1266
1262 def check_case(self,data_ele,ang_max,ang_min):
1267 def check_case(self,data_ele,ang_max,ang_min):
1263 start = data_ele[0]
1268 start = data_ele[0]
1264 end = data_ele[-1]
1269 end = data_ele[-1]
1265 number = (end-start)
1270 number = (end-start)
1266 len_ang=len(data_ele)
1271 len_ang=len(data_ele)
1267 print("start",start)
1272 print("start",start)
1268 print("end",end)
1273 print("end",end)
1269 print("number",number)
1274 print("number",number)
1270
1275
1271 print("len_ang",len_ang)
1276 print("len_ang",len_ang)
1272
1277
1273 #exit(1)
1278 #exit(1)
1274
1279
1275 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
1280 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
1276 return 0
1281 return 0
1277 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
1282 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
1278 # return 1
1283 # return 1
1279 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
1284 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
1280 return 1
1285 return 1
1281 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
1286 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
1282 return 2
1287 return 2
1283 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
1288 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
1284 return 3
1289 return 3
1285
1290
1286
1291
1287 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1292 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1288 ang_max= ang_max
1293 ang_max= ang_max
1289 ang_min= ang_min
1294 ang_min= ang_min
1290 data_weather=data_weather
1295 data_weather=data_weather
1291 val_ch=val_ch
1296 val_ch=val_ch
1292 ##print("*********************DATA WEATHER**************************************")
1297 ##print("*********************DATA WEATHER**************************************")
1293 ##print(data_weather)
1298 ##print(data_weather)
1294 if self.ini==0:
1299 if self.ini==0:
1295 '''
1300 '''
1296 print("**********************************************")
1301 print("**********************************************")
1297 print("**********************************************")
1302 print("**********************************************")
1298 print("***************ini**************")
1303 print("***************ini**************")
1299 print("**********************************************")
1304 print("**********************************************")
1300 print("**********************************************")
1305 print("**********************************************")
1301 '''
1306 '''
1302 #print("data_ele",data_ele)
1307 #print("data_ele",data_ele)
1303 #----------------------------------------------------------
1308 #----------------------------------------------------------
1304 tipo_case = case_flag[-1]
1309 tipo_case = case_flag[-1]
1305 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1310 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1306 print("check_case",tipo_case)
1311 print("check_case",tipo_case)
1307 #exit(1)
1312 #exit(1)
1308 #--------------------- new -------------------------
1313 #--------------------- new -------------------------
1309 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1314 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1310
1315
1311 #-------------------------CAMBIOS RHI---------------------------------
1316 #-------------------------CAMBIOS RHI---------------------------------
1312 start= ang_min
1317 start= ang_min
1313 end = ang_max
1318 end = ang_max
1314 n= (ang_max-ang_min)/res
1319 n= (ang_max-ang_min)/res
1315 #------ new
1320 #------ new
1316 self.start_data_ele = data_ele_new[0]
1321 self.start_data_ele = data_ele_new[0]
1317 self.end_data_ele = data_ele_new[-1]
1322 self.end_data_ele = data_ele_new[-1]
1318 if tipo_case==0 or tipo_case==3: # SUBIDA
1323 if tipo_case==0 or tipo_case==3: # SUBIDA
1319 n1= round(self.start_data_ele)- start
1324 n1= round(self.start_data_ele)- start
1320 n2= end - round(self.end_data_ele)
1325 n2= end - round(self.end_data_ele)
1321 print(self.start_data_ele)
1326 print(self.start_data_ele)
1322 print(self.end_data_ele)
1327 print(self.end_data_ele)
1323 if n1>0:
1328 if n1>0:
1324 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1329 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1325 ele1_nan= numpy.ones(n1)*numpy.nan
1330 ele1_nan= numpy.ones(n1)*numpy.nan
1326 data_ele = numpy.hstack((ele1,data_ele_new))
1331 data_ele = numpy.hstack((ele1,data_ele_new))
1327 print("ele1_nan",ele1_nan.shape)
1332 print("ele1_nan",ele1_nan.shape)
1328 print("data_ele_old",data_ele_old.shape)
1333 print("data_ele_old",data_ele_old.shape)
1329 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1334 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1330 if n2>0:
1335 if n2>0:
1331 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1336 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1332 ele2_nan= numpy.ones(n2)*numpy.nan
1337 ele2_nan= numpy.ones(n2)*numpy.nan
1333 data_ele = numpy.hstack((data_ele,ele2))
1338 data_ele = numpy.hstack((data_ele,ele2))
1334 print("ele2_nan",ele2_nan.shape)
1339 print("ele2_nan",ele2_nan.shape)
1335 print("data_ele_old",data_ele_old.shape)
1340 print("data_ele_old",data_ele_old.shape)
1336 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1341 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1337
1342
1338 if tipo_case==1 or tipo_case==2: # BAJADA
1343 if tipo_case==1 or tipo_case==2: # BAJADA
1339 data_ele_new = data_ele_new[::-1] # reversa
1344 data_ele_new = data_ele_new[::-1] # reversa
1340 data_ele_old = data_ele_old[::-1]# reversa
1345 data_ele_old = data_ele_old[::-1]# reversa
1341 data_weather = data_weather[::-1,:]# reversa
1346 data_weather = data_weather[::-1,:]# reversa
1342 vec= numpy.where(data_ele_new<ang_max)
1347 vec= numpy.where(data_ele_new<ang_max)
1343 data_ele_new = data_ele_new[vec]
1348 data_ele_new = data_ele_new[vec]
1344 data_ele_old = data_ele_old[vec]
1349 data_ele_old = data_ele_old[vec]
1345 data_weather = data_weather[vec[0]]
1350 data_weather = data_weather[vec[0]]
1346 vec2= numpy.where(0<data_ele_new)
1351 vec2= numpy.where(0<data_ele_new)
1347 data_ele_new = data_ele_new[vec2]
1352 data_ele_new = data_ele_new[vec2]
1348 data_ele_old = data_ele_old[vec2]
1353 data_ele_old = data_ele_old[vec2]
1349 data_weather = data_weather[vec2[0]]
1354 data_weather = data_weather[vec2[0]]
1350 self.start_data_ele = data_ele_new[0]
1355 self.start_data_ele = data_ele_new[0]
1351 self.end_data_ele = data_ele_new[-1]
1356 self.end_data_ele = data_ele_new[-1]
1352
1357
1353 n1= round(self.start_data_ele)- start
1358 n1= round(self.start_data_ele)- start
1354 n2= end - round(self.end_data_ele)-1
1359 n2= end - round(self.end_data_ele)-1
1355 print(self.start_data_ele)
1360 print(self.start_data_ele)
1356 print(self.end_data_ele)
1361 print(self.end_data_ele)
1357 if n1>0:
1362 if n1>0:
1358 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1363 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1359 ele1_nan= numpy.ones(n1)*numpy.nan
1364 ele1_nan= numpy.ones(n1)*numpy.nan
1360 data_ele = numpy.hstack((ele1,data_ele_new))
1365 data_ele = numpy.hstack((ele1,data_ele_new))
1361 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1366 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1362 if n2>0:
1367 if n2>0:
1363 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1368 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1364 ele2_nan= numpy.ones(n2)*numpy.nan
1369 ele2_nan= numpy.ones(n2)*numpy.nan
1365 data_ele = numpy.hstack((data_ele,ele2))
1370 data_ele = numpy.hstack((data_ele,ele2))
1366 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1371 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1367 # RADAR
1372 # RADAR
1368 # NOTA data_ele y data_weather es la variable que retorna
1373 # NOTA data_ele y data_weather es la variable que retorna
1369 val_mean = numpy.mean(data_weather[:,-1])
1374 val_mean = numpy.mean(data_weather[:,-1])
1370 self.val_mean = val_mean
1375 self.val_mean = val_mean
1371 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1376 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1372 print("eleold",data_ele_old)
1377 print("eleold",data_ele_old)
1373 print(self.data_ele_tmp[val_ch])
1378 print(self.data_ele_tmp[val_ch])
1374 print(data_ele_old.shape[0])
1379 print(data_ele_old.shape[0])
1375 print(self.data_ele_tmp[val_ch].shape[0])
1380 print(self.data_ele_tmp[val_ch].shape[0])
1376 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
1381 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
1377 import sys
1382 import sys
1378 print("EXIT",self.ini)
1383 print("EXIT",self.ini)
1379
1384
1380 sys.exit(1)
1385 sys.exit(1)
1381 self.data_ele_tmp[val_ch]= data_ele_old
1386 self.data_ele_tmp[val_ch]= data_ele_old
1382 else:
1387 else:
1383 #print("**********************************************")
1388 #print("**********************************************")
1384 #print("****************VARIABLE**********************")
1389 #print("****************VARIABLE**********************")
1385 #-------------------------CAMBIOS RHI---------------------------------
1390 #-------------------------CAMBIOS RHI---------------------------------
1386 #---------------------------------------------------------------------
1391 #---------------------------------------------------------------------
1387 ##print("INPUT data_ele",data_ele)
1392 ##print("INPUT data_ele",data_ele)
1388 flag=0
1393 flag=0
1389 start_ele = self.res_ele[0]
1394 start_ele = self.res_ele[0]
1390 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1395 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1391 tipo_case = case_flag[-1]
1396 tipo_case = case_flag[-1]
1392 #print("TIPO DE DATA",tipo_case)
1397 #print("TIPO DE DATA",tipo_case)
1393 #-----------new------------
1398 #-----------new------------
1394 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
1399 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
1395 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1400 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1396
1401
1397 #-------------------------------NEW RHI ITERATIVO-------------------------
1402 #-------------------------------NEW RHI ITERATIVO-------------------------
1398
1403
1399 if tipo_case==0 : # SUBIDA
1404 if tipo_case==0 : # SUBIDA
1400 vec = numpy.where(data_ele<ang_max)
1405 vec = numpy.where(data_ele<ang_max)
1401 data_ele = data_ele[vec]
1406 data_ele = data_ele[vec]
1402 data_ele_old = data_ele_old[vec]
1407 data_ele_old = data_ele_old[vec]
1403 data_weather = data_weather[vec[0]]
1408 data_weather = data_weather[vec[0]]
1404
1409
1405 vec2 = numpy.where(0<data_ele)
1410 vec2 = numpy.where(0<data_ele)
1406 data_ele= data_ele[vec2]
1411 data_ele= data_ele[vec2]
1407 data_ele_old= data_ele_old[vec2]
1412 data_ele_old= data_ele_old[vec2]
1408 ##print(data_ele_new)
1413 ##print(data_ele_new)
1409 data_weather= data_weather[vec2[0]]
1414 data_weather= data_weather[vec2[0]]
1410
1415
1411 new_i_ele = int(round(data_ele[0]))
1416 new_i_ele = int(round(data_ele[0]))
1412 new_f_ele = int(round(data_ele[-1]))
1417 new_f_ele = int(round(data_ele[-1]))
1413 #print(new_i_ele)
1418 #print(new_i_ele)
1414 #print(new_f_ele)
1419 #print(new_f_ele)
1415 #print(data_ele,len(data_ele))
1420 #print(data_ele,len(data_ele))
1416 #print(data_ele_old,len(data_ele_old))
1421 #print(data_ele_old,len(data_ele_old))
1417 if new_i_ele< 2:
1422 if new_i_ele< 2:
1418 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1423 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1419 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1424 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1420 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
1425 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
1421 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
1426 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
1422 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
1427 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
1423 data_ele = self.res_ele
1428 data_ele = self.res_ele
1424 data_weather = self.res_weather[val_ch]
1429 data_weather = self.res_weather[val_ch]
1425
1430
1426 elif tipo_case==1 : #BAJADA
1431 elif tipo_case==1 : #BAJADA
1427 data_ele = data_ele[::-1] # reversa
1432 data_ele = data_ele[::-1] # reversa
1428 data_ele_old = data_ele_old[::-1]# reversa
1433 data_ele_old = data_ele_old[::-1]# reversa
1429 data_weather = data_weather[::-1,:]# reversa
1434 data_weather = data_weather[::-1,:]# reversa
1430 vec= numpy.where(data_ele<ang_max)
1435 vec= numpy.where(data_ele<ang_max)
1431 data_ele = data_ele[vec]
1436 data_ele = data_ele[vec]
1432 data_ele_old = data_ele_old[vec]
1437 data_ele_old = data_ele_old[vec]
1433 data_weather = data_weather[vec[0]]
1438 data_weather = data_weather[vec[0]]
1434 vec2= numpy.where(0<data_ele)
1439 vec2= numpy.where(0<data_ele)
1435 data_ele = data_ele[vec2]
1440 data_ele = data_ele[vec2]
1436 data_ele_old = data_ele_old[vec2]
1441 data_ele_old = data_ele_old[vec2]
1437 data_weather = data_weather[vec2[0]]
1442 data_weather = data_weather[vec2[0]]
1438
1443
1439
1444
1440 new_i_ele = int(round(data_ele[0]))
1445 new_i_ele = int(round(data_ele[0]))
1441 new_f_ele = int(round(data_ele[-1]))
1446 new_f_ele = int(round(data_ele[-1]))
1442 #print(data_ele)
1447 #print(data_ele)
1443 #print(ang_max)
1448 #print(ang_max)
1444 #print(data_ele_old)
1449 #print(data_ele_old)
1445 if new_i_ele <= 1:
1450 if new_i_ele <= 1:
1446 new_i_ele = 1
1451 new_i_ele = 1
1447 if round(data_ele[-1])>=ang_max-1:
1452 if round(data_ele[-1])>=ang_max-1:
1448 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1453 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1449 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1454 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1450 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
1455 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
1451 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
1456 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
1452 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
1457 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
1453 data_ele = self.res_ele
1458 data_ele = self.res_ele
1454 data_weather = self.res_weather[val_ch]
1459 data_weather = self.res_weather[val_ch]
1455
1460
1456 elif tipo_case==2: #bajada
1461 elif tipo_case==2: #bajada
1457 vec = numpy.where(data_ele<ang_max)
1462 vec = numpy.where(data_ele<ang_max)
1458 data_ele = data_ele[vec]
1463 data_ele = data_ele[vec]
1459 data_weather= data_weather[vec[0]]
1464 data_weather= data_weather[vec[0]]
1460
1465
1461 len_vec = len(vec)
1466 len_vec = len(vec)
1462 data_ele_new = data_ele[::-1] # reversa
1467 data_ele_new = data_ele[::-1] # reversa
1463 data_weather = data_weather[::-1,:]
1468 data_weather = data_weather[::-1,:]
1464 new_i_ele = int(data_ele_new[0])
1469 new_i_ele = int(data_ele_new[0])
1465 new_f_ele = int(data_ele_new[-1])
1470 new_f_ele = int(data_ele_new[-1])
1466
1471
1467 n1= new_i_ele- ang_min
1472 n1= new_i_ele- ang_min
1468 n2= ang_max - new_f_ele-1
1473 n2= ang_max - new_f_ele-1
1469 if n1>0:
1474 if n1>0:
1470 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1475 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1471 ele1_nan= numpy.ones(n1)*numpy.nan
1476 ele1_nan= numpy.ones(n1)*numpy.nan
1472 data_ele = numpy.hstack((ele1,data_ele_new))
1477 data_ele = numpy.hstack((ele1,data_ele_new))
1473 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1478 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1474 if n2>0:
1479 if n2>0:
1475 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1480 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1476 ele2_nan= numpy.ones(n2)*numpy.nan
1481 ele2_nan= numpy.ones(n2)*numpy.nan
1477 data_ele = numpy.hstack((data_ele,ele2))
1482 data_ele = numpy.hstack((data_ele,ele2))
1478 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1483 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1479
1484
1480 self.data_ele_tmp[val_ch] = data_ele_old
1485 self.data_ele_tmp[val_ch] = data_ele_old
1481 self.res_ele = data_ele
1486 self.res_ele = data_ele
1482 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1487 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1483 data_ele = self.res_ele
1488 data_ele = self.res_ele
1484 data_weather = self.res_weather[val_ch]
1489 data_weather = self.res_weather[val_ch]
1485
1490
1486 elif tipo_case==3:#subida
1491 elif tipo_case==3:#subida
1487 vec = numpy.where(0<data_ele)
1492 vec = numpy.where(0<data_ele)
1488 data_ele= data_ele[vec]
1493 data_ele= data_ele[vec]
1489 data_ele_new = data_ele
1494 data_ele_new = data_ele
1490 data_ele_old= data_ele_old[vec]
1495 data_ele_old= data_ele_old[vec]
1491 data_weather= data_weather[vec[0]]
1496 data_weather= data_weather[vec[0]]
1492 pos_ini = numpy.argmin(data_ele)
1497 pos_ini = numpy.argmin(data_ele)
1493 if pos_ini>0:
1498 if pos_ini>0:
1494 len_vec= len(data_ele)
1499 len_vec= len(data_ele)
1495 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1500 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1496 #print(vec3)
1501 #print(vec3)
1497 data_ele= data_ele[vec3]
1502 data_ele= data_ele[vec3]
1498 data_ele_new = data_ele
1503 data_ele_new = data_ele
1499 data_ele_old= data_ele_old[vec3]
1504 data_ele_old= data_ele_old[vec3]
1500 data_weather= data_weather[vec3]
1505 data_weather= data_weather[vec3]
1501
1506
1502 new_i_ele = int(data_ele_new[0])
1507 new_i_ele = int(data_ele_new[0])
1503 new_f_ele = int(data_ele_new[-1])
1508 new_f_ele = int(data_ele_new[-1])
1504 n1= new_i_ele- ang_min
1509 n1= new_i_ele- ang_min
1505 n2= ang_max - new_f_ele-1
1510 n2= ang_max - new_f_ele-1
1506 if n1>0:
1511 if n1>0:
1507 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1512 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1508 ele1_nan= numpy.ones(n1)*numpy.nan
1513 ele1_nan= numpy.ones(n1)*numpy.nan
1509 data_ele = numpy.hstack((ele1,data_ele_new))
1514 data_ele = numpy.hstack((ele1,data_ele_new))
1510 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1515 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1511 if n2>0:
1516 if n2>0:
1512 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1517 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1513 ele2_nan= numpy.ones(n2)*numpy.nan
1518 ele2_nan= numpy.ones(n2)*numpy.nan
1514 data_ele = numpy.hstack((data_ele,ele2))
1519 data_ele = numpy.hstack((data_ele,ele2))
1515 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1520 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1516
1521
1517 self.data_ele_tmp[val_ch] = data_ele_old
1522 self.data_ele_tmp[val_ch] = data_ele_old
1518 self.res_ele = data_ele
1523 self.res_ele = data_ele
1519 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1524 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1520 data_ele = self.res_ele
1525 data_ele = self.res_ele
1521 data_weather = self.res_weather[val_ch]
1526 data_weather = self.res_weather[val_ch]
1522 #print("self.data_ele_tmp",self.data_ele_tmp)
1527 #print("self.data_ele_tmp",self.data_ele_tmp)
1523 return data_weather,data_ele
1528 return data_weather,data_ele
1524
1529
1525
1530
1526 def plot(self):
1531 def plot(self):
1527 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1532 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1528 data = self.data[-1]
1533 data = self.data[-1]
1529 r = self.data.yrange
1534 r = self.data.yrange
1530 delta_height = r[1]-r[0]
1535 delta_height = r[1]-r[0]
1531 r_mask = numpy.where(r>=0)[0]
1536 r_mask = numpy.where(r>=0)[0]
1532 ##print("delta_height",delta_height)
1537 ##print("delta_height",delta_height)
1533 #print("r_mask",r_mask,len(r_mask))
1538 #print("r_mask",r_mask,len(r_mask))
1534 r = numpy.arange(len(r_mask))*delta_height
1539 r = numpy.arange(len(r_mask))*delta_height
1535 self.y = 2*r
1540 self.y = 2*r
1536 res = 1
1541 res = 1
1537 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1542 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1538 ang_max = self.ang_max
1543 ang_max = self.ang_max
1539 ang_min = self.ang_min
1544 ang_min = self.ang_min
1540 var_ang =ang_max - ang_min
1545 var_ang =ang_max - ang_min
1541 step = (int(var_ang)/(res*data['weather'].shape[0]))
1546 step = (int(var_ang)/(res*data['weather'].shape[0]))
1542 ###print("step",step)
1547 ###print("step",step)
1543 #--------------------------------------------------------
1548 #--------------------------------------------------------
1544 ##print('weather',data['weather'].shape)
1549 ##print('weather',data['weather'].shape)
1545 ##print('ele',data['ele'].shape)
1550 ##print('ele',data['ele'].shape)
1546
1551
1547 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1552 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1548 ###self.res_azi = numpy.mean(data['azi'])
1553 ###self.res_azi = numpy.mean(data['azi'])
1549 ###print("self.res_ele",self.res_ele)
1554 ###print("self.res_ele",self.res_ele)
1550 plt.clf()
1555 plt.clf()
1551 subplots = [121, 122]
1556 subplots = [121, 122]
1552 try:
1557 try:
1553 if self.data[-2]['ele'].max()<data['ele'].max():
1558 if self.data[-2]['ele'].max()<data['ele'].max():
1554 self.ini=0
1559 self.ini=0
1555 except:
1560 except:
1556 pass
1561 pass
1557 if self.ini==0:
1562 if self.ini==0:
1558 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1563 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1559 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1564 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1560 print("SHAPE",self.data_ele_tmp.shape)
1565 print("SHAPE",self.data_ele_tmp.shape)
1561
1566
1562 for i,ax in enumerate(self.axes):
1567 for i,ax in enumerate(self.axes):
1563 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1568 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1564 self.res_azi = numpy.mean(data['azi'])
1569 self.res_azi = numpy.mean(data['azi'])
1565
1570
1566 if ax.firsttime:
1571 if ax.firsttime:
1567 #plt.clf()
1572 #plt.clf()
1568 print("Frist Plot")
1573 print("Frist Plot")
1569 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1574 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1570 #fig=self.figures[0]
1575 #fig=self.figures[0]
1571 else:
1576 else:
1572 #plt.clf()
1577 #plt.clf()
1573 print("ELSE PLOT")
1578 print("ELSE PLOT")
1574 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1579 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1575 caax = cgax.parasites[0]
1580 caax = cgax.parasites[0]
1576 paax = cgax.parasites[1]
1581 paax = cgax.parasites[1]
1577 cbar = plt.gcf().colorbar(pm, pad=0.075)
1582 cbar = plt.gcf().colorbar(pm, pad=0.075)
1578 caax.set_xlabel('x_range [km]')
1583 caax.set_xlabel('x_range [km]')
1579 caax.set_ylabel('y_range [km]')
1584 caax.set_ylabel('y_range [km]')
1580 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1585 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1581 print("***************************self.ini****************************",self.ini)
1586 print("***************************self.ini****************************",self.ini)
1582 self.ini= self.ini+1
1587 self.ini= self.ini+1
1583
1588
1584 class WeatherRHI_vRF_Plot(Plot):
1589 class WeatherRHI_vRF_Plot(Plot):
1585 CODE = 'weather'
1590 CODE = 'weather'
1586 plot_name = 'weather'
1591 plot_name = 'weather'
1587 plot_type = 'rhistyle'
1592 plot_type = 'rhistyle'
1588 buffering = False
1593 buffering = False
1589 data_ele_tmp = None
1594 data_ele_tmp = None
1590
1595
1591 def setup(self):
1596 def setup(self):
1592 print("********************")
1597 print("********************")
1593 print("********************")
1598 print("********************")
1594 print("********************")
1599 print("********************")
1595 print("SETUP WEATHER PLOT")
1600 print("SETUP WEATHER PLOT")
1596 self.ncols = 1
1601 self.ncols = 1
1597 self.nrows = 1
1602 self.nrows = 1
1598 self.nplots= 1
1603 self.nplots= 1
1599 self.ylabel= 'Range [Km]'
1604 self.ylabel= 'Range [Km]'
1600 self.titles= ['Weather']
1605 self.titles= ['Weather']
1601 if self.channels is not None:
1606 if self.channels is not None:
1602 self.nplots = len(self.channels)
1607 self.nplots = len(self.channels)
1603 self.nrows = len(self.channels)
1608 self.nrows = len(self.channels)
1604 else:
1609 else:
1605 self.nplots = self.data.shape(self.CODE)[0]
1610 self.nplots = self.data.shape(self.CODE)[0]
1606 self.nrows = self.nplots
1611 self.nrows = self.nplots
1607 self.channels = list(range(self.nplots))
1612 self.channels = list(range(self.nplots))
1608 print("channels",self.channels)
1613 print("channels",self.channels)
1609 print("que saldra", self.data.shape(self.CODE)[0])
1614 print("que saldra", self.data.shape(self.CODE)[0])
1610 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1615 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1611 print("self.titles",self.titles)
1616 print("self.titles",self.titles)
1612 self.colorbar=False
1617 self.colorbar=False
1613 self.width =8
1618 self.width =8
1614 self.height =8
1619 self.height =8
1615 self.ini =0
1620 self.ini =0
1616 self.len_azi =0
1621 self.len_azi =0
1617 self.buffer_ini = None
1622 self.buffer_ini = None
1618 self.buffer_ele = None
1623 self.buffer_ele = None
1619 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1624 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1620 self.flag =0
1625 self.flag =0
1621 self.indicador= 0
1626 self.indicador= 0
1622 self.last_data_ele = None
1627 self.last_data_ele = None
1623 self.val_mean = None
1628 self.val_mean = None
1624
1629
1625 def update(self, dataOut):
1630 def update(self, dataOut):
1626
1631
1627 data = {}
1632 data = {}
1628 meta = {}
1633 meta = {}
1629 if hasattr(dataOut, 'dataPP_POWER'):
1634 if hasattr(dataOut, 'dataPP_POWER'):
1630 factor = 1
1635 factor = 1
1631 if hasattr(dataOut, 'nFFTPoints'):
1636 if hasattr(dataOut, 'nFFTPoints'):
1632 factor = dataOut.normFactor
1637 factor = dataOut.normFactor
1633 print("dataOut",dataOut.data_360.shape)
1638 print("dataOut",dataOut.data_360.shape)
1634 #
1639 #
1635 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1640 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1636 #
1641 #
1637 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1642 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1638 data['azi'] = dataOut.data_azi
1643 data['azi'] = dataOut.data_azi
1639 data['ele'] = dataOut.data_ele
1644 data['ele'] = dataOut.data_ele
1640 data['case_flag'] = dataOut.case_flag
1645 data['case_flag'] = dataOut.case_flag
1641 #print("UPDATE")
1646 #print("UPDATE")
1642 #print("data[weather]",data['weather'].shape)
1647 #print("data[weather]",data['weather'].shape)
1643 #print("data[azi]",data['azi'])
1648 #print("data[azi]",data['azi'])
1644 return data, meta
1649 return data, meta
1645
1650
1646 def get2List(self,angulos):
1651 def get2List(self,angulos):
1647 list1=[]
1652 list1=[]
1648 list2=[]
1653 list2=[]
1649 #print(angulos)
1654 #print(angulos)
1650 #exit(1)
1655 #exit(1)
1651 for i in reversed(range(len(angulos))):
1656 for i in reversed(range(len(angulos))):
1652 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1657 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1653 diff_ = angulos[i]-angulos[i-1]
1658 diff_ = angulos[i]-angulos[i-1]
1654 if abs(diff_) >1.5:
1659 if abs(diff_) >1.5:
1655 list1.append(i-1)
1660 list1.append(i-1)
1656 list2.append(diff_)
1661 list2.append(diff_)
1657 return list(reversed(list1)),list(reversed(list2))
1662 return list(reversed(list1)),list(reversed(list2))
1658
1663
1659 def fixData90(self,list_,ang_):
1664 def fixData90(self,list_,ang_):
1660 if list_[0]==-1:
1665 if list_[0]==-1:
1661 vec = numpy.where(ang_<ang_[0])
1666 vec = numpy.where(ang_<ang_[0])
1662 ang_[vec] = ang_[vec]+90
1667 ang_[vec] = ang_[vec]+90
1663 return ang_
1668 return ang_
1664 return ang_
1669 return ang_
1665
1670
1666 def fixData90HL(self,angulos):
1671 def fixData90HL(self,angulos):
1667 vec = numpy.where(angulos>=90)
1672 vec = numpy.where(angulos>=90)
1668 angulos[vec]=angulos[vec]-90
1673 angulos[vec]=angulos[vec]-90
1669 return angulos
1674 return angulos
1670
1675
1671
1676
1672 def search_pos(self,pos,list_):
1677 def search_pos(self,pos,list_):
1673 for i in range(len(list_)):
1678 for i in range(len(list_)):
1674 if pos == list_[i]:
1679 if pos == list_[i]:
1675 return True,i
1680 return True,i
1676 i=None
1681 i=None
1677 return False,i
1682 return False,i
1678
1683
1679 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1684 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1680 size = len(ang_)
1685 size = len(ang_)
1681 size2 = 0
1686 size2 = 0
1682 for i in range(len(list2_)):
1687 for i in range(len(list2_)):
1683 size2=size2+round(abs(list2_[i]))-1
1688 size2=size2+round(abs(list2_[i]))-1
1684 new_size= size+size2
1689 new_size= size+size2
1685 ang_new = numpy.zeros(new_size)
1690 ang_new = numpy.zeros(new_size)
1686 ang_new2 = numpy.zeros(new_size)
1691 ang_new2 = numpy.zeros(new_size)
1687
1692
1688 tmp = 0
1693 tmp = 0
1689 c = 0
1694 c = 0
1690 for i in range(len(ang_)):
1695 for i in range(len(ang_)):
1691 ang_new[tmp +c] = ang_[i]
1696 ang_new[tmp +c] = ang_[i]
1692 ang_new2[tmp+c] = ang_[i]
1697 ang_new2[tmp+c] = ang_[i]
1693 condition , value = self.search_pos(i,list1_)
1698 condition , value = self.search_pos(i,list1_)
1694 if condition:
1699 if condition:
1695 pos = tmp + c + 1
1700 pos = tmp + c + 1
1696 for k in range(round(abs(list2_[value]))-1):
1701 for k in range(round(abs(list2_[value]))-1):
1697 if tipo_case==0 or tipo_case==3:#subida
1702 if tipo_case==0 or tipo_case==3:#subida
1698 ang_new[pos+k] = ang_new[pos+k-1]+1
1703 ang_new[pos+k] = ang_new[pos+k-1]+1
1699 ang_new2[pos+k] = numpy.nan
1704 ang_new2[pos+k] = numpy.nan
1700 elif tipo_case==1 or tipo_case==2:#bajada
1705 elif tipo_case==1 or tipo_case==2:#bajada
1701 ang_new[pos+k] = ang_new[pos+k-1]-1
1706 ang_new[pos+k] = ang_new[pos+k-1]-1
1702 ang_new2[pos+k] = numpy.nan
1707 ang_new2[pos+k] = numpy.nan
1703
1708
1704 tmp = pos +k
1709 tmp = pos +k
1705 c = 0
1710 c = 0
1706 c=c+1
1711 c=c+1
1707 return ang_new,ang_new2
1712 return ang_new,ang_new2
1708
1713
1709 def globalCheckPED(self,angulos,tipo_case):
1714 def globalCheckPED(self,angulos,tipo_case):
1710 l1,l2 = self.get2List(angulos)
1715 l1,l2 = self.get2List(angulos)
1711 print("l1",l1)
1716 print("l1",l1)
1712 print("l2",l2)
1717 print("l2",l2)
1713 if len(l1)>0:
1718 if len(l1)>0:
1714 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1719 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1715 #l1,l2 = self.get2List(angulos2)
1720 #l1,l2 = self.get2List(angulos2)
1716 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1721 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1717 #ang1_ = self.fixData90HL(ang1_)
1722 #ang1_ = self.fixData90HL(ang1_)
1718 #ang2_ = self.fixData90HL(ang2_)
1723 #ang2_ = self.fixData90HL(ang2_)
1719 else:
1724 else:
1720 ang1_= angulos
1725 ang1_= angulos
1721 ang2_= angulos
1726 ang2_= angulos
1722 return ang1_,ang2_
1727 return ang1_,ang2_
1723
1728
1724
1729
1725 def replaceNAN(self,data_weather,data_ele,val):
1730 def replaceNAN(self,data_weather,data_ele,val):
1726 data= data_ele
1731 data= data_ele
1727 data_T= data_weather
1732 data_T= data_weather
1728 #print(data.shape[0])
1733 #print(data.shape[0])
1729 #print(data_T.shape[0])
1734 #print(data_T.shape[0])
1730 #exit(1)
1735 #exit(1)
1731 if data.shape[0]> data_T.shape[0]:
1736 if data.shape[0]> data_T.shape[0]:
1732 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1737 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1733 c = 0
1738 c = 0
1734 for i in range(len(data)):
1739 for i in range(len(data)):
1735 if numpy.isnan(data[i]):
1740 if numpy.isnan(data[i]):
1736 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1741 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1737 else:
1742 else:
1738 data_N[i,:]=data_T[c,:]
1743 data_N[i,:]=data_T[c,:]
1739 c=c+1
1744 c=c+1
1740 return data_N
1745 return data_N
1741 else:
1746 else:
1742 for i in range(len(data)):
1747 for i in range(len(data)):
1743 if numpy.isnan(data[i]):
1748 if numpy.isnan(data[i]):
1744 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1749 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1745 return data_T
1750 return data_T
1746
1751
1747
1752
1748 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1753 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1749 ang_max= ang_max
1754 ang_max= ang_max
1750 ang_min= ang_min
1755 ang_min= ang_min
1751 data_weather=data_weather
1756 data_weather=data_weather
1752 val_ch=val_ch
1757 val_ch=val_ch
1753 ##print("*********************DATA WEATHER**************************************")
1758 ##print("*********************DATA WEATHER**************************************")
1754 ##print(data_weather)
1759 ##print(data_weather)
1755
1760
1756 '''
1761 '''
1757 print("**********************************************")
1762 print("**********************************************")
1758 print("**********************************************")
1763 print("**********************************************")
1759 print("***************ini**************")
1764 print("***************ini**************")
1760 print("**********************************************")
1765 print("**********************************************")
1761 print("**********************************************")
1766 print("**********************************************")
1762 '''
1767 '''
1763 #print("data_ele",data_ele)
1768 #print("data_ele",data_ele)
1764 #----------------------------------------------------------
1769 #----------------------------------------------------------
1765
1770
1766 #exit(1)
1771 #exit(1)
1767 tipo_case = case_flag[-1]
1772 tipo_case = case_flag[-1]
1768 print("tipo_case",tipo_case)
1773 print("tipo_case",tipo_case)
1769 #--------------------- new -------------------------
1774 #--------------------- new -------------------------
1770 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1775 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1771
1776
1772 #-------------------------CAMBIOS RHI---------------------------------
1777 #-------------------------CAMBIOS RHI---------------------------------
1773
1778
1774 vec = numpy.where(data_ele<ang_max)
1779 vec = numpy.where(data_ele<ang_max)
1775 data_ele = data_ele[vec]
1780 data_ele = data_ele[vec]
1776 data_weather= data_weather[vec[0]]
1781 data_weather= data_weather[vec[0]]
1777
1782
1778 len_vec = len(vec)
1783 len_vec = len(vec)
1779 data_ele_new = data_ele[::-1] # reversa
1784 data_ele_new = data_ele[::-1] # reversa
1780 data_weather = data_weather[::-1,:]
1785 data_weather = data_weather[::-1,:]
1781 new_i_ele = int(data_ele_new[0])
1786 new_i_ele = int(data_ele_new[0])
1782 new_f_ele = int(data_ele_new[-1])
1787 new_f_ele = int(data_ele_new[-1])
1783
1788
1784 n1= new_i_ele- ang_min
1789 n1= new_i_ele- ang_min
1785 n2= ang_max - new_f_ele-1
1790 n2= ang_max - new_f_ele-1
1786 if n1>0:
1791 if n1>0:
1787 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1792 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1788 ele1_nan= numpy.ones(n1)*numpy.nan
1793 ele1_nan= numpy.ones(n1)*numpy.nan
1789 data_ele = numpy.hstack((ele1,data_ele_new))
1794 data_ele = numpy.hstack((ele1,data_ele_new))
1790 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1795 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1791 if n2>0:
1796 if n2>0:
1792 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1797 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1793 ele2_nan= numpy.ones(n2)*numpy.nan
1798 ele2_nan= numpy.ones(n2)*numpy.nan
1794 data_ele = numpy.hstack((data_ele,ele2))
1799 data_ele = numpy.hstack((data_ele,ele2))
1795 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1800 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1796
1801
1797
1802
1798 print("ele shape",data_ele.shape)
1803 print("ele shape",data_ele.shape)
1799 print(data_ele)
1804 print(data_ele)
1800
1805
1801 #print("self.data_ele_tmp",self.data_ele_tmp)
1806 #print("self.data_ele_tmp",self.data_ele_tmp)
1802 val_mean = numpy.mean(data_weather[:,-1])
1807 val_mean = numpy.mean(data_weather[:,-1])
1803 self.val_mean = val_mean
1808 self.val_mean = val_mean
1804 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1809 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1805 self.data_ele_tmp[val_ch]= data_ele_old
1810 self.data_ele_tmp[val_ch]= data_ele_old
1806
1811
1807
1812
1808 print("data_weather shape",data_weather.shape)
1813 print("data_weather shape",data_weather.shape)
1809 print(data_weather)
1814 print(data_weather)
1810 #exit(1)
1815 #exit(1)
1811 return data_weather,data_ele
1816 return data_weather,data_ele
1812
1817
1813
1818
1814 def plot(self):
1819 def plot(self):
1815 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1820 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1816 data = self.data[-1]
1821 data = self.data[-1]
1817 r = self.data.yrange
1822 r = self.data.yrange
1818 delta_height = r[1]-r[0]
1823 delta_height = r[1]-r[0]
1819 r_mask = numpy.where(r>=0)[0]
1824 r_mask = numpy.where(r>=0)[0]
1820 ##print("delta_height",delta_height)
1825 ##print("delta_height",delta_height)
1821 #print("r_mask",r_mask,len(r_mask))
1826 #print("r_mask",r_mask,len(r_mask))
1822 r = numpy.arange(len(r_mask))*delta_height
1827 r = numpy.arange(len(r_mask))*delta_height
1823 self.y = 2*r
1828 self.y = 2*r
1824 res = 1
1829 res = 1
1825 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1830 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1826 ang_max = self.ang_max
1831 ang_max = self.ang_max
1827 ang_min = self.ang_min
1832 ang_min = self.ang_min
1828 var_ang =ang_max - ang_min
1833 var_ang =ang_max - ang_min
1829 step = (int(var_ang)/(res*data['weather'].shape[0]))
1834 step = (int(var_ang)/(res*data['weather'].shape[0]))
1830 ###print("step",step)
1835 ###print("step",step)
1831 #--------------------------------------------------------
1836 #--------------------------------------------------------
1832 ##print('weather',data['weather'].shape)
1837 ##print('weather',data['weather'].shape)
1833 ##print('ele',data['ele'].shape)
1838 ##print('ele',data['ele'].shape)
1834
1839
1835 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1840 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1836 ###self.res_azi = numpy.mean(data['azi'])
1841 ###self.res_azi = numpy.mean(data['azi'])
1837 ###print("self.res_ele",self.res_ele)
1842 ###print("self.res_ele",self.res_ele)
1838 plt.clf()
1843 plt.clf()
1839 subplots = [121, 122]
1844 subplots = [121, 122]
1840 if self.ini==0:
1845 if self.ini==0:
1841 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1846 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1842 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1847 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1843 print("SHAPE",self.data_ele_tmp.shape)
1848 print("SHAPE",self.data_ele_tmp.shape)
1844
1849
1845 for i,ax in enumerate(self.axes):
1850 for i,ax in enumerate(self.axes):
1846 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1851 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1847 self.res_azi = numpy.mean(data['azi'])
1852 self.res_azi = numpy.mean(data['azi'])
1848
1853
1849 print(self.res_ele)
1854 print(self.res_ele)
1850 #exit(1)
1855 #exit(1)
1851 if ax.firsttime:
1856 if ax.firsttime:
1852 #plt.clf()
1857 #plt.clf()
1853 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1858 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1854 #fig=self.figures[0]
1859 #fig=self.figures[0]
1855 else:
1860 else:
1856
1861
1857 #plt.clf()
1862 #plt.clf()
1858 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1863 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1859 caax = cgax.parasites[0]
1864 caax = cgax.parasites[0]
1860 paax = cgax.parasites[1]
1865 paax = cgax.parasites[1]
1861 cbar = plt.gcf().colorbar(pm, pad=0.075)
1866 cbar = plt.gcf().colorbar(pm, pad=0.075)
1862 caax.set_xlabel('x_range [km]')
1867 caax.set_xlabel('x_range [km]')
1863 caax.set_ylabel('y_range [km]')
1868 caax.set_ylabel('y_range [km]')
1864 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1869 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1865 print("***************************self.ini****************************",self.ini)
1870 print("***************************self.ini****************************",self.ini)
1866 self.ini= self.ini+1
1871 self.ini= self.ini+1
1867
1872
1868 class WeatherRHI_vRF3_Plot(Plot):
1873 class WeatherRHI_vRF3_Plot(Plot):
1869 CODE = 'weather'
1874 CODE = 'weather'
1870 plot_name = 'weather'
1875 plot_name = 'weather'
1871 plot_type = 'rhistyle'
1876 plot_type = 'rhistyle'
1872 buffering = False
1877 buffering = False
1873 data_ele_tmp = None
1878 data_ele_tmp = None
1874
1879
1875 def setup(self):
1880 def setup(self):
1876 print("********************")
1881 print("********************")
1877 print("********************")
1882 print("********************")
1878 print("********************")
1883 print("********************")
1879 print("SETUP WEATHER PLOT")
1884 print("SETUP WEATHER PLOT")
1880 self.ncols = 1
1885 self.ncols = 1
1881 self.nrows = 1
1886 self.nrows = 1
1882 self.nplots= 1
1887 self.nplots= 1
1883 self.ylabel= 'Range [Km]'
1888 self.ylabel= 'Range [Km]'
1884 self.titles= ['Weather']
1889 self.titles= ['Weather']
1885 if self.channels is not None:
1890 if self.channels is not None:
1886 self.nplots = len(self.channels)
1891 self.nplots = len(self.channels)
1887 self.nrows = len(self.channels)
1892 self.nrows = len(self.channels)
1888 else:
1893 else:
1889 self.nplots = self.data.shape(self.CODE)[0]
1894 self.nplots = self.data.shape(self.CODE)[0]
1890 self.nrows = self.nplots
1895 self.nrows = self.nplots
1891 self.channels = list(range(self.nplots))
1896 self.channels = list(range(self.nplots))
1892 print("channels",self.channels)
1897 print("channels",self.channels)
1893 print("que saldra", self.data.shape(self.CODE)[0])
1898 print("que saldra", self.data.shape(self.CODE)[0])
1894 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1899 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1895 print("self.titles",self.titles)
1900 print("self.titles",self.titles)
1896 self.colorbar=False
1901 self.colorbar=False
1897 self.width =8
1902 self.width =8
1898 self.height =8
1903 self.height =8
1899 self.ini =0
1904 self.ini =0
1900 self.len_azi =0
1905 self.len_azi =0
1901 self.buffer_ini = None
1906 self.buffer_ini = None
1902 self.buffer_ele = None
1907 self.buffer_ele = None
1903 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1908 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1904 self.flag =0
1909 self.flag =0
1905 self.indicador= 0
1910 self.indicador= 0
1906 self.last_data_ele = None
1911 self.last_data_ele = None
1907 self.val_mean = None
1912 self.val_mean = None
1908
1913
1909 def update(self, dataOut):
1914 def update(self, dataOut):
1910
1915
1911 data = {}
1916 data = {}
1912 meta = {}
1917 meta = {}
1913 if hasattr(dataOut, 'dataPP_POWER'):
1918 if hasattr(dataOut, 'dataPP_POWER'):
1914 factor = 1
1919 factor = 1
1915 if hasattr(dataOut, 'nFFTPoints'):
1920 if hasattr(dataOut, 'nFFTPoints'):
1916 factor = dataOut.normFactor
1921 factor = dataOut.normFactor
1917 print("dataOut",dataOut.data_360.shape)
1922 print("dataOut",dataOut.data_360.shape)
1918 #
1923 #
1919 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1924 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1920 #
1925 #
1921 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1926 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1922 data['azi'] = dataOut.data_azi
1927 data['azi'] = dataOut.data_azi
1923 data['ele'] = dataOut.data_ele
1928 data['ele'] = dataOut.data_ele
1924 #data['case_flag'] = dataOut.case_flag
1929 #data['case_flag'] = dataOut.case_flag
1925 #print("UPDATE")
1930 #print("UPDATE")
1926 #print("data[weather]",data['weather'].shape)
1931 #print("data[weather]",data['weather'].shape)
1927 #print("data[azi]",data['azi'])
1932 #print("data[azi]",data['azi'])
1928 return data, meta
1933 return data, meta
1929
1934
1930 def get2List(self,angulos):
1935 def get2List(self,angulos):
1931 list1=[]
1936 list1=[]
1932 list2=[]
1937 list2=[]
1933 for i in reversed(range(len(angulos))):
1938 for i in reversed(range(len(angulos))):
1934 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1939 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1935 diff_ = angulos[i]-angulos[i-1]
1940 diff_ = angulos[i]-angulos[i-1]
1936 if abs(diff_) >1.5:
1941 if abs(diff_) >1.5:
1937 list1.append(i-1)
1942 list1.append(i-1)
1938 list2.append(diff_)
1943 list2.append(diff_)
1939 return list(reversed(list1)),list(reversed(list2))
1944 return list(reversed(list1)),list(reversed(list2))
1940
1945
1941 def fixData90(self,list_,ang_):
1946 def fixData90(self,list_,ang_):
1942 if list_[0]==-1:
1947 if list_[0]==-1:
1943 vec = numpy.where(ang_<ang_[0])
1948 vec = numpy.where(ang_<ang_[0])
1944 ang_[vec] = ang_[vec]+90
1949 ang_[vec] = ang_[vec]+90
1945 return ang_
1950 return ang_
1946 return ang_
1951 return ang_
1947
1952
1948 def fixData90HL(self,angulos):
1953 def fixData90HL(self,angulos):
1949 vec = numpy.where(angulos>=90)
1954 vec = numpy.where(angulos>=90)
1950 angulos[vec]=angulos[vec]-90
1955 angulos[vec]=angulos[vec]-90
1951 return angulos
1956 return angulos
1952
1957
1953
1958
1954 def search_pos(self,pos,list_):
1959 def search_pos(self,pos,list_):
1955 for i in range(len(list_)):
1960 for i in range(len(list_)):
1956 if pos == list_[i]:
1961 if pos == list_[i]:
1957 return True,i
1962 return True,i
1958 i=None
1963 i=None
1959 return False,i
1964 return False,i
1960
1965
1961 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1966 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1962 size = len(ang_)
1967 size = len(ang_)
1963 size2 = 0
1968 size2 = 0
1964 for i in range(len(list2_)):
1969 for i in range(len(list2_)):
1965 size2=size2+round(abs(list2_[i]))-1
1970 size2=size2+round(abs(list2_[i]))-1
1966 new_size= size+size2
1971 new_size= size+size2
1967 ang_new = numpy.zeros(new_size)
1972 ang_new = numpy.zeros(new_size)
1968 ang_new2 = numpy.zeros(new_size)
1973 ang_new2 = numpy.zeros(new_size)
1969
1974
1970 tmp = 0
1975 tmp = 0
1971 c = 0
1976 c = 0
1972 for i in range(len(ang_)):
1977 for i in range(len(ang_)):
1973 ang_new[tmp +c] = ang_[i]
1978 ang_new[tmp +c] = ang_[i]
1974 ang_new2[tmp+c] = ang_[i]
1979 ang_new2[tmp+c] = ang_[i]
1975 condition , value = self.search_pos(i,list1_)
1980 condition , value = self.search_pos(i,list1_)
1976 if condition:
1981 if condition:
1977 pos = tmp + c + 1
1982 pos = tmp + c + 1
1978 for k in range(round(abs(list2_[value]))-1):
1983 for k in range(round(abs(list2_[value]))-1):
1979 if tipo_case==0 or tipo_case==3:#subida
1984 if tipo_case==0 or tipo_case==3:#subida
1980 ang_new[pos+k] = ang_new[pos+k-1]+1
1985 ang_new[pos+k] = ang_new[pos+k-1]+1
1981 ang_new2[pos+k] = numpy.nan
1986 ang_new2[pos+k] = numpy.nan
1982 elif tipo_case==1 or tipo_case==2:#bajada
1987 elif tipo_case==1 or tipo_case==2:#bajada
1983 ang_new[pos+k] = ang_new[pos+k-1]-1
1988 ang_new[pos+k] = ang_new[pos+k-1]-1
1984 ang_new2[pos+k] = numpy.nan
1989 ang_new2[pos+k] = numpy.nan
1985
1990
1986 tmp = pos +k
1991 tmp = pos +k
1987 c = 0
1992 c = 0
1988 c=c+1
1993 c=c+1
1989 return ang_new,ang_new2
1994 return ang_new,ang_new2
1990
1995
1991 def globalCheckPED(self,angulos,tipo_case):
1996 def globalCheckPED(self,angulos,tipo_case):
1992 l1,l2 = self.get2List(angulos)
1997 l1,l2 = self.get2List(angulos)
1993 ##print("l1",l1)
1998 ##print("l1",l1)
1994 ##print("l2",l2)
1999 ##print("l2",l2)
1995 if len(l1)>0:
2000 if len(l1)>0:
1996 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
2001 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1997 #l1,l2 = self.get2List(angulos2)
2002 #l1,l2 = self.get2List(angulos2)
1998 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
2003 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1999 #ang1_ = self.fixData90HL(ang1_)
2004 #ang1_ = self.fixData90HL(ang1_)
2000 #ang2_ = self.fixData90HL(ang2_)
2005 #ang2_ = self.fixData90HL(ang2_)
2001 else:
2006 else:
2002 ang1_= angulos
2007 ang1_= angulos
2003 ang2_= angulos
2008 ang2_= angulos
2004 return ang1_,ang2_
2009 return ang1_,ang2_
2005
2010
2006
2011
2007 def replaceNAN(self,data_weather,data_ele,val):
2012 def replaceNAN(self,data_weather,data_ele,val):
2008 data= data_ele
2013 data= data_ele
2009 data_T= data_weather
2014 data_T= data_weather
2010
2015
2011 if data.shape[0]> data_T.shape[0]:
2016 if data.shape[0]> data_T.shape[0]:
2012 print("IF")
2017 print("IF")
2013 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
2018 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
2014 c = 0
2019 c = 0
2015 for i in range(len(data)):
2020 for i in range(len(data)):
2016 if numpy.isnan(data[i]):
2021 if numpy.isnan(data[i]):
2017 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2022 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2018 else:
2023 else:
2019 data_N[i,:]=data_T[c,:]
2024 data_N[i,:]=data_T[c,:]
2020 c=c+1
2025 c=c+1
2021 return data_N
2026 return data_N
2022 else:
2027 else:
2023 print("else")
2028 print("else")
2024 for i in range(len(data)):
2029 for i in range(len(data)):
2025 if numpy.isnan(data[i]):
2030 if numpy.isnan(data[i]):
2026 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2031 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2027 return data_T
2032 return data_T
2028
2033
2029 def check_case(self,data_ele,ang_max,ang_min):
2034 def check_case(self,data_ele,ang_max,ang_min):
2030 start = data_ele[0]
2035 start = data_ele[0]
2031 end = data_ele[-1]
2036 end = data_ele[-1]
2032 number = (end-start)
2037 number = (end-start)
2033 len_ang=len(data_ele)
2038 len_ang=len(data_ele)
2034 print("start",start)
2039 print("start",start)
2035 print("end",end)
2040 print("end",end)
2036 print("number",number)
2041 print("number",number)
2037
2042
2038 print("len_ang",len_ang)
2043 print("len_ang",len_ang)
2039
2044
2040 #exit(1)
2045 #exit(1)
2041
2046
2042 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
2047 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
2043 return 0
2048 return 0
2044 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
2049 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
2045 # return 1
2050 # return 1
2046 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
2051 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
2047 return 1
2052 return 1
2048 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
2053 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
2049 return 2
2054 return 2
2050 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
2055 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
2051 return 3
2056 return 3
2052
2057
2053
2058
2054 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
2059 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
2055 ang_max= ang_max
2060 ang_max= ang_max
2056 ang_min= ang_min
2061 ang_min= ang_min
2057 data_weather=data_weather
2062 data_weather=data_weather
2058 val_ch=val_ch
2063 val_ch=val_ch
2059 ##print("*********************DATA WEATHER**************************************")
2064 ##print("*********************DATA WEATHER**************************************")
2060 ##print(data_weather)
2065 ##print(data_weather)
2061 if self.ini==0:
2066 if self.ini==0:
2062
2067
2063 #--------------------- new -------------------------
2068 #--------------------- new -------------------------
2064 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
2069 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
2065
2070
2066 #-------------------------CAMBIOS RHI---------------------------------
2071 #-------------------------CAMBIOS RHI---------------------------------
2067 start= ang_min
2072 start= ang_min
2068 end = ang_max
2073 end = ang_max
2069 n= (ang_max-ang_min)/res
2074 n= (ang_max-ang_min)/res
2070 #------ new
2075 #------ new
2071 self.start_data_ele = data_ele_new[0]
2076 self.start_data_ele = data_ele_new[0]
2072 self.end_data_ele = data_ele_new[-1]
2077 self.end_data_ele = data_ele_new[-1]
2073 if tipo_case==0 or tipo_case==3: # SUBIDA
2078 if tipo_case==0 or tipo_case==3: # SUBIDA
2074 n1= round(self.start_data_ele)- start
2079 n1= round(self.start_data_ele)- start
2075 n2= end - round(self.end_data_ele)
2080 n2= end - round(self.end_data_ele)
2076 print(self.start_data_ele)
2081 print(self.start_data_ele)
2077 print(self.end_data_ele)
2082 print(self.end_data_ele)
2078 if n1>0:
2083 if n1>0:
2079 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2084 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2080 ele1_nan= numpy.ones(n1)*numpy.nan
2085 ele1_nan= numpy.ones(n1)*numpy.nan
2081 data_ele = numpy.hstack((ele1,data_ele_new))
2086 data_ele = numpy.hstack((ele1,data_ele_new))
2082 print("ele1_nan",ele1_nan.shape)
2087 print("ele1_nan",ele1_nan.shape)
2083 print("data_ele_old",data_ele_old.shape)
2088 print("data_ele_old",data_ele_old.shape)
2084 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2089 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2085 if n2>0:
2090 if n2>0:
2086 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2091 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2087 ele2_nan= numpy.ones(n2)*numpy.nan
2092 ele2_nan= numpy.ones(n2)*numpy.nan
2088 data_ele = numpy.hstack((data_ele,ele2))
2093 data_ele = numpy.hstack((data_ele,ele2))
2089 print("ele2_nan",ele2_nan.shape)
2094 print("ele2_nan",ele2_nan.shape)
2090 print("data_ele_old",data_ele_old.shape)
2095 print("data_ele_old",data_ele_old.shape)
2091 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2096 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2092
2097
2093 if tipo_case==1 or tipo_case==2: # BAJADA
2098 if tipo_case==1 or tipo_case==2: # BAJADA
2094 data_ele_new = data_ele_new[::-1] # reversa
2099 data_ele_new = data_ele_new[::-1] # reversa
2095 data_ele_old = data_ele_old[::-1]# reversa
2100 data_ele_old = data_ele_old[::-1]# reversa
2096 data_weather = data_weather[::-1,:]# reversa
2101 data_weather = data_weather[::-1,:]# reversa
2097 vec= numpy.where(data_ele_new<ang_max)
2102 vec= numpy.where(data_ele_new<ang_max)
2098 data_ele_new = data_ele_new[vec]
2103 data_ele_new = data_ele_new[vec]
2099 data_ele_old = data_ele_old[vec]
2104 data_ele_old = data_ele_old[vec]
2100 data_weather = data_weather[vec[0]]
2105 data_weather = data_weather[vec[0]]
2101 vec2= numpy.where(0<data_ele_new)
2106 vec2= numpy.where(0<data_ele_new)
2102 data_ele_new = data_ele_new[vec2]
2107 data_ele_new = data_ele_new[vec2]
2103 data_ele_old = data_ele_old[vec2]
2108 data_ele_old = data_ele_old[vec2]
2104 data_weather = data_weather[vec2[0]]
2109 data_weather = data_weather[vec2[0]]
2105 self.start_data_ele = data_ele_new[0]
2110 self.start_data_ele = data_ele_new[0]
2106 self.end_data_ele = data_ele_new[-1]
2111 self.end_data_ele = data_ele_new[-1]
2107
2112
2108 n1= round(self.start_data_ele)- start
2113 n1= round(self.start_data_ele)- start
2109 n2= end - round(self.end_data_ele)-1
2114 n2= end - round(self.end_data_ele)-1
2110 print(self.start_data_ele)
2115 print(self.start_data_ele)
2111 print(self.end_data_ele)
2116 print(self.end_data_ele)
2112 if n1>0:
2117 if n1>0:
2113 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2118 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2114 ele1_nan= numpy.ones(n1)*numpy.nan
2119 ele1_nan= numpy.ones(n1)*numpy.nan
2115 data_ele = numpy.hstack((ele1,data_ele_new))
2120 data_ele = numpy.hstack((ele1,data_ele_new))
2116 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2121 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2117 if n2>0:
2122 if n2>0:
2118 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2123 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2119 ele2_nan= numpy.ones(n2)*numpy.nan
2124 ele2_nan= numpy.ones(n2)*numpy.nan
2120 data_ele = numpy.hstack((data_ele,ele2))
2125 data_ele = numpy.hstack((data_ele,ele2))
2121 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2126 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2122 # RADAR
2127 # RADAR
2123 # NOTA data_ele y data_weather es la variable que retorna
2128 # NOTA data_ele y data_weather es la variable que retorna
2124 val_mean = numpy.mean(data_weather[:,-1])
2129 val_mean = numpy.mean(data_weather[:,-1])
2125 self.val_mean = val_mean
2130 self.val_mean = val_mean
2126 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2131 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2127 print("eleold",data_ele_old)
2132 print("eleold",data_ele_old)
2128 print(self.data_ele_tmp[val_ch])
2133 print(self.data_ele_tmp[val_ch])
2129 print(data_ele_old.shape[0])
2134 print(data_ele_old.shape[0])
2130 print(self.data_ele_tmp[val_ch].shape[0])
2135 print(self.data_ele_tmp[val_ch].shape[0])
2131 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
2136 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
2132 import sys
2137 import sys
2133 print("EXIT",self.ini)
2138 print("EXIT",self.ini)
2134
2139
2135 sys.exit(1)
2140 sys.exit(1)
2136 self.data_ele_tmp[val_ch]= data_ele_old
2141 self.data_ele_tmp[val_ch]= data_ele_old
2137 else:
2142 else:
2138 #print("**********************************************")
2143 #print("**********************************************")
2139 #print("****************VARIABLE**********************")
2144 #print("****************VARIABLE**********************")
2140 #-------------------------CAMBIOS RHI---------------------------------
2145 #-------------------------CAMBIOS RHI---------------------------------
2141 #---------------------------------------------------------------------
2146 #---------------------------------------------------------------------
2142 ##print("INPUT data_ele",data_ele)
2147 ##print("INPUT data_ele",data_ele)
2143 flag=0
2148 flag=0
2144 start_ele = self.res_ele[0]
2149 start_ele = self.res_ele[0]
2145 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
2150 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
2146 tipo_case = case_flag[-1]
2151 tipo_case = case_flag[-1]
2147 #print("TIPO DE DATA",tipo_case)
2152 #print("TIPO DE DATA",tipo_case)
2148 #-----------new------------
2153 #-----------new------------
2149 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
2154 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
2150 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2155 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2151
2156
2152 #-------------------------------NEW RHI ITERATIVO-------------------------
2157 #-------------------------------NEW RHI ITERATIVO-------------------------
2153
2158
2154 if tipo_case==0 : # SUBIDA
2159 if tipo_case==0 : # SUBIDA
2155 vec = numpy.where(data_ele<ang_max)
2160 vec = numpy.where(data_ele<ang_max)
2156 data_ele = data_ele[vec]
2161 data_ele = data_ele[vec]
2157 data_ele_old = data_ele_old[vec]
2162 data_ele_old = data_ele_old[vec]
2158 data_weather = data_weather[vec[0]]
2163 data_weather = data_weather[vec[0]]
2159
2164
2160 vec2 = numpy.where(0<data_ele)
2165 vec2 = numpy.where(0<data_ele)
2161 data_ele= data_ele[vec2]
2166 data_ele= data_ele[vec2]
2162 data_ele_old= data_ele_old[vec2]
2167 data_ele_old= data_ele_old[vec2]
2163 ##print(data_ele_new)
2168 ##print(data_ele_new)
2164 data_weather= data_weather[vec2[0]]
2169 data_weather= data_weather[vec2[0]]
2165
2170
2166 new_i_ele = int(round(data_ele[0]))
2171 new_i_ele = int(round(data_ele[0]))
2167 new_f_ele = int(round(data_ele[-1]))
2172 new_f_ele = int(round(data_ele[-1]))
2168 #print(new_i_ele)
2173 #print(new_i_ele)
2169 #print(new_f_ele)
2174 #print(new_f_ele)
2170 #print(data_ele,len(data_ele))
2175 #print(data_ele,len(data_ele))
2171 #print(data_ele_old,len(data_ele_old))
2176 #print(data_ele_old,len(data_ele_old))
2172 if new_i_ele< 2:
2177 if new_i_ele< 2:
2173 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2178 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2174 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2179 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2175 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
2180 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
2176 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
2181 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
2177 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
2182 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
2178 data_ele = self.res_ele
2183 data_ele = self.res_ele
2179 data_weather = self.res_weather[val_ch]
2184 data_weather = self.res_weather[val_ch]
2180
2185
2181 elif tipo_case==1 : #BAJADA
2186 elif tipo_case==1 : #BAJADA
2182 data_ele = data_ele[::-1] # reversa
2187 data_ele = data_ele[::-1] # reversa
2183 data_ele_old = data_ele_old[::-1]# reversa
2188 data_ele_old = data_ele_old[::-1]# reversa
2184 data_weather = data_weather[::-1,:]# reversa
2189 data_weather = data_weather[::-1,:]# reversa
2185 vec= numpy.where(data_ele<ang_max)
2190 vec= numpy.where(data_ele<ang_max)
2186 data_ele = data_ele[vec]
2191 data_ele = data_ele[vec]
2187 data_ele_old = data_ele_old[vec]
2192 data_ele_old = data_ele_old[vec]
2188 data_weather = data_weather[vec[0]]
2193 data_weather = data_weather[vec[0]]
2189 vec2= numpy.where(0<data_ele)
2194 vec2= numpy.where(0<data_ele)
2190 data_ele = data_ele[vec2]
2195 data_ele = data_ele[vec2]
2191 data_ele_old = data_ele_old[vec2]
2196 data_ele_old = data_ele_old[vec2]
2192 data_weather = data_weather[vec2[0]]
2197 data_weather = data_weather[vec2[0]]
2193
2198
2194
2199
2195 new_i_ele = int(round(data_ele[0]))
2200 new_i_ele = int(round(data_ele[0]))
2196 new_f_ele = int(round(data_ele[-1]))
2201 new_f_ele = int(round(data_ele[-1]))
2197 #print(data_ele)
2202 #print(data_ele)
2198 #print(ang_max)
2203 #print(ang_max)
2199 #print(data_ele_old)
2204 #print(data_ele_old)
2200 if new_i_ele <= 1:
2205 if new_i_ele <= 1:
2201 new_i_ele = 1
2206 new_i_ele = 1
2202 if round(data_ele[-1])>=ang_max-1:
2207 if round(data_ele[-1])>=ang_max-1:
2203 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2208 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2204 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2209 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2205 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
2210 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
2206 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
2211 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
2207 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
2212 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
2208 data_ele = self.res_ele
2213 data_ele = self.res_ele
2209 data_weather = self.res_weather[val_ch]
2214 data_weather = self.res_weather[val_ch]
2210
2215
2211 elif tipo_case==2: #bajada
2216 elif tipo_case==2: #bajada
2212 vec = numpy.where(data_ele<ang_max)
2217 vec = numpy.where(data_ele<ang_max)
2213 data_ele = data_ele[vec]
2218 data_ele = data_ele[vec]
2214 data_weather= data_weather[vec[0]]
2219 data_weather= data_weather[vec[0]]
2215
2220
2216 len_vec = len(vec)
2221 len_vec = len(vec)
2217 data_ele_new = data_ele[::-1] # reversa
2222 data_ele_new = data_ele[::-1] # reversa
2218 data_weather = data_weather[::-1,:]
2223 data_weather = data_weather[::-1,:]
2219 new_i_ele = int(data_ele_new[0])
2224 new_i_ele = int(data_ele_new[0])
2220 new_f_ele = int(data_ele_new[-1])
2225 new_f_ele = int(data_ele_new[-1])
2221
2226
2222 n1= new_i_ele- ang_min
2227 n1= new_i_ele- ang_min
2223 n2= ang_max - new_f_ele-1
2228 n2= ang_max - new_f_ele-1
2224 if n1>0:
2229 if n1>0:
2225 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2230 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2226 ele1_nan= numpy.ones(n1)*numpy.nan
2231 ele1_nan= numpy.ones(n1)*numpy.nan
2227 data_ele = numpy.hstack((ele1,data_ele_new))
2232 data_ele = numpy.hstack((ele1,data_ele_new))
2228 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2233 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2229 if n2>0:
2234 if n2>0:
2230 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2235 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2231 ele2_nan= numpy.ones(n2)*numpy.nan
2236 ele2_nan= numpy.ones(n2)*numpy.nan
2232 data_ele = numpy.hstack((data_ele,ele2))
2237 data_ele = numpy.hstack((data_ele,ele2))
2233 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2238 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2234
2239
2235 self.data_ele_tmp[val_ch] = data_ele_old
2240 self.data_ele_tmp[val_ch] = data_ele_old
2236 self.res_ele = data_ele
2241 self.res_ele = data_ele
2237 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2242 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2238 data_ele = self.res_ele
2243 data_ele = self.res_ele
2239 data_weather = self.res_weather[val_ch]
2244 data_weather = self.res_weather[val_ch]
2240
2245
2241 elif tipo_case==3:#subida
2246 elif tipo_case==3:#subida
2242 vec = numpy.where(0<data_ele)
2247 vec = numpy.where(0<data_ele)
2243 data_ele= data_ele[vec]
2248 data_ele= data_ele[vec]
2244 data_ele_new = data_ele
2249 data_ele_new = data_ele
2245 data_ele_old= data_ele_old[vec]
2250 data_ele_old= data_ele_old[vec]
2246 data_weather= data_weather[vec[0]]
2251 data_weather= data_weather[vec[0]]
2247 pos_ini = numpy.argmin(data_ele)
2252 pos_ini = numpy.argmin(data_ele)
2248 if pos_ini>0:
2253 if pos_ini>0:
2249 len_vec= len(data_ele)
2254 len_vec= len(data_ele)
2250 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
2255 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
2251 #print(vec3)
2256 #print(vec3)
2252 data_ele= data_ele[vec3]
2257 data_ele= data_ele[vec3]
2253 data_ele_new = data_ele
2258 data_ele_new = data_ele
2254 data_ele_old= data_ele_old[vec3]
2259 data_ele_old= data_ele_old[vec3]
2255 data_weather= data_weather[vec3]
2260 data_weather= data_weather[vec3]
2256
2261
2257 new_i_ele = int(data_ele_new[0])
2262 new_i_ele = int(data_ele_new[0])
2258 new_f_ele = int(data_ele_new[-1])
2263 new_f_ele = int(data_ele_new[-1])
2259 n1= new_i_ele- ang_min
2264 n1= new_i_ele- ang_min
2260 n2= ang_max - new_f_ele-1
2265 n2= ang_max - new_f_ele-1
2261 if n1>0:
2266 if n1>0:
2262 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2267 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2263 ele1_nan= numpy.ones(n1)*numpy.nan
2268 ele1_nan= numpy.ones(n1)*numpy.nan
2264 data_ele = numpy.hstack((ele1,data_ele_new))
2269 data_ele = numpy.hstack((ele1,data_ele_new))
2265 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2270 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2266 if n2>0:
2271 if n2>0:
2267 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2272 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2268 ele2_nan= numpy.ones(n2)*numpy.nan
2273 ele2_nan= numpy.ones(n2)*numpy.nan
2269 data_ele = numpy.hstack((data_ele,ele2))
2274 data_ele = numpy.hstack((data_ele,ele2))
2270 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2275 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2271
2276
2272 self.data_ele_tmp[val_ch] = data_ele_old
2277 self.data_ele_tmp[val_ch] = data_ele_old
2273 self.res_ele = data_ele
2278 self.res_ele = data_ele
2274 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2279 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2275 data_ele = self.res_ele
2280 data_ele = self.res_ele
2276 data_weather = self.res_weather[val_ch]
2281 data_weather = self.res_weather[val_ch]
2277 #print("self.data_ele_tmp",self.data_ele_tmp)
2282 #print("self.data_ele_tmp",self.data_ele_tmp)
2278 return data_weather,data_ele
2283 return data_weather,data_ele
2279
2284
2280 def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min):
2285 def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min):
2281
2286
2282 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1)
2287 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1)
2283
2288
2284 data_ele = data_ele_old.copy()
2289 data_ele = data_ele_old.copy()
2285
2290
2286 diff_1 = ang_max - data_ele[0]
2291 diff_1 = ang_max - data_ele[0]
2287 angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan
2292 angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan
2288
2293
2289 diff_2 = data_ele[-1]-ang_min
2294 diff_2 = data_ele[-1]-ang_min
2290 angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan
2295 angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan
2291
2296
2292 angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan))
2297 angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan))
2293
2298
2294 print(angles_filled)
2299 print(angles_filled)
2295
2300
2296 data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan
2301 data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan
2297 data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan
2302 data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan
2298
2303
2299 data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0)
2304 data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0)
2300 #val_mean = numpy.mean(data_weather[:,-1])
2305 #val_mean = numpy.mean(data_weather[:,-1])
2301 #self.val_mean = val_mean
2306 #self.val_mean = val_mean
2302 print(data_filled)
2307 print(data_filled)
2303 data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan)
2308 data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan)
2304
2309
2305 print(data_filled)
2310 print(data_filled)
2306 print(data_filled.shape)
2311 print(data_filled.shape)
2307 print(angles_filled.shape)
2312 print(angles_filled.shape)
2308
2313
2309 return data_filled,angles_filled
2314 return data_filled,angles_filled
2310
2315
2311 def plot(self):
2316 def plot(self):
2312 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
2317 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
2313 data = self.data[-1]
2318 data = self.data[-1]
2314 r = self.data.yrange
2319 r = self.data.yrange
2315 delta_height = r[1]-r[0]
2320 delta_height = r[1]-r[0]
2316 r_mask = numpy.where(r>=0)[0]
2321 r_mask = numpy.where(r>=0)[0]
2317 self.r_mask =r_mask
2322 self.r_mask =r_mask
2318 ##print("delta_height",delta_height)
2323 ##print("delta_height",delta_height)
2319 #print("r_mask",r_mask,len(r_mask))
2324 #print("r_mask",r_mask,len(r_mask))
2320 r = numpy.arange(len(r_mask))*delta_height
2325 r = numpy.arange(len(r_mask))*delta_height
2321 self.y = 2*r
2326 self.y = 2*r
2322 res = 1
2327 res = 1
2323 ###print("data['weather'].shape[0]",data['weather'].shape[0])
2328 ###print("data['weather'].shape[0]",data['weather'].shape[0])
2324 ang_max = self.ang_max
2329 ang_max = self.ang_max
2325 ang_min = self.ang_min
2330 ang_min = self.ang_min
2326 var_ang =ang_max - ang_min
2331 var_ang =ang_max - ang_min
2327 step = (int(var_ang)/(res*data['weather'].shape[0]))
2332 step = (int(var_ang)/(res*data['weather'].shape[0]))
2328 ###print("step",step)
2333 ###print("step",step)
2329 #--------------------------------------------------------
2334 #--------------------------------------------------------
2330 ##print('weather',data['weather'].shape)
2335 ##print('weather',data['weather'].shape)
2331 ##print('ele',data['ele'].shape)
2336 ##print('ele',data['ele'].shape)
2332
2337
2333 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
2338 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
2334 ###self.res_azi = numpy.mean(data['azi'])
2339 ###self.res_azi = numpy.mean(data['azi'])
2335 ###print("self.res_ele",self.res_ele)
2340 ###print("self.res_ele",self.res_ele)
2336
2341
2337 plt.clf()
2342 plt.clf()
2338 subplots = [121, 122]
2343 subplots = [121, 122]
2339 #if self.ini==0:
2344 #if self.ini==0:
2340 #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
2345 #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
2341 #print("SHAPE",self.data_ele_tmp.shape)
2346 #print("SHAPE",self.data_ele_tmp.shape)
2342
2347
2343 for i,ax in enumerate(self.axes):
2348 for i,ax in enumerate(self.axes):
2344 res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min)
2349 res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min)
2345 self.res_azi = numpy.mean(data['azi'])
2350 self.res_azi = numpy.mean(data['azi'])
2346
2351
2347 if ax.firsttime:
2352 if ax.firsttime:
2348 #plt.clf()
2353 #plt.clf()
2349 print("Frist Plot")
2354 print("Frist Plot")
2350 print(data['weather'][i][:,r_mask].shape)
2355 print(data['weather'][i][:,r_mask].shape)
2351 print(data['ele'].shape)
2356 print(data['ele'].shape)
2352 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2357 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2353 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2358 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2354 gh = cgax.get_grid_helper()
2359 gh = cgax.get_grid_helper()
2355 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2360 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2356 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2361 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2357 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2362 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2358
2363
2359
2364
2360 #fig=self.figures[0]
2365 #fig=self.figures[0]
2361 else:
2366 else:
2362 #plt.clf()
2367 #plt.clf()
2363 print("ELSE PLOT")
2368 print("ELSE PLOT")
2364 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2369 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2365 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2370 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2366 gh = cgax.get_grid_helper()
2371 gh = cgax.get_grid_helper()
2367 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2372 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2368 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2373 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2369 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2374 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2370
2375
2371 caax = cgax.parasites[0]
2376 caax = cgax.parasites[0]
2372 paax = cgax.parasites[1]
2377 paax = cgax.parasites[1]
2373 cbar = plt.gcf().colorbar(pm, pad=0.075)
2378 cbar = plt.gcf().colorbar(pm, pad=0.075)
2374 caax.set_xlabel('x_range [km]')
2379 caax.set_xlabel('x_range [km]')
2375 caax.set_ylabel('y_range [km]')
2380 caax.set_ylabel('y_range [km]')
2376 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
2381 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
2377 print("***************************self.ini****************************",self.ini)
2382 print("***************************self.ini****************************",self.ini)
2378 self.ini= self.ini+1
2383 self.ini= self.ini+1
@@ -1,4708 +1,4718
1
1
2 import os
2 import os
3 import time
3 import time
4 import math
4 import math
5
5
6 import re
6 import re
7 import datetime
7 import datetime
8 import copy
8 import copy
9 import sys
9 import sys
10 import importlib
10 import importlib
11 import itertools
11 import itertools
12
12
13 from multiprocessing import Pool, TimeoutError
13 from multiprocessing import Pool, TimeoutError
14 from multiprocessing.pool import ThreadPool
14 from multiprocessing.pool import ThreadPool
15 import numpy
15 import numpy
16 import glob
16 import glob
17 import scipy
17 import scipy
18 import h5py
18 import h5py
19 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
19 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
20 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
20 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
21 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
21 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
22 from scipy import asarray as ar,exp
22 from scipy import asarray as ar,exp
23 from scipy.optimize import curve_fit
23 from scipy.optimize import curve_fit
24 from schainpy.utils import log
24 from schainpy.utils import log
25 import schainpy.admin
25 import schainpy.admin
26 import warnings
26 import warnings
27 from scipy import optimize, interpolate, signal, stats, ndimage
27 from scipy import optimize, interpolate, signal, stats, ndimage
28 from scipy.optimize.optimize import OptimizeWarning
28 from scipy.optimize.optimize import OptimizeWarning
29 warnings.filterwarnings('ignore')
29 warnings.filterwarnings('ignore')
30
30
31
31
32 SPEED_OF_LIGHT = 299792458
32 SPEED_OF_LIGHT = 299792458
33
33
34 '''solving pickling issue'''
34 '''solving pickling issue'''
35
35
36 def _pickle_method(method):
36 def _pickle_method(method):
37 func_name = method.__func__.__name__
37 func_name = method.__func__.__name__
38 obj = method.__self__
38 obj = method.__self__
39 cls = method.__self__.__class__
39 cls = method.__self__.__class__
40 return _unpickle_method, (func_name, obj, cls)
40 return _unpickle_method, (func_name, obj, cls)
41
41
42 def _unpickle_method(func_name, obj, cls):
42 def _unpickle_method(func_name, obj, cls):
43 for cls in cls.mro():
43 for cls in cls.mro():
44 try:
44 try:
45 func = cls.__dict__[func_name]
45 func = cls.__dict__[func_name]
46 except KeyError:
46 except KeyError:
47 pass
47 pass
48 else:
48 else:
49 break
49 break
50 return func.__get__(obj, cls)
50 return func.__get__(obj, cls)
51
51
52 def isNumber(str):
52 def isNumber(str):
53 try:
53 try:
54 float(str)
54 float(str)
55 return True
55 return True
56 except:
56 except:
57 return False
57 return False
58
58
59 class ParametersProc(ProcessingUnit):
59 class ParametersProc(ProcessingUnit):
60
60
61 METHODS = {}
61 METHODS = {}
62 nSeconds = None
62 nSeconds = None
63
63
64 def __init__(self):
64 def __init__(self):
65 ProcessingUnit.__init__(self)
65 ProcessingUnit.__init__(self)
66
66
67 # self.objectDict = {}
67 # self.objectDict = {}
68 self.buffer = None
68 self.buffer = None
69 self.firstdatatime = None
69 self.firstdatatime = None
70 self.profIndex = 0
70 self.profIndex = 0
71 self.dataOut = Parameters()
71 self.dataOut = Parameters()
72 self.setupReq = False #Agregar a todas las unidades de proc
72 self.setupReq = False #Agregar a todas las unidades de proc
73
73
74 def __updateObjFromInput(self):
74 def __updateObjFromInput(self):
75
75
76 self.dataOut.inputUnit = self.dataIn.type
76 self.dataOut.inputUnit = self.dataIn.type
77
77
78 self.dataOut.timeZone = self.dataIn.timeZone
78 self.dataOut.timeZone = self.dataIn.timeZone
79 self.dataOut.dstFlag = self.dataIn.dstFlag
79 self.dataOut.dstFlag = self.dataIn.dstFlag
80 self.dataOut.errorCount = self.dataIn.errorCount
80 self.dataOut.errorCount = self.dataIn.errorCount
81 self.dataOut.useLocalTime = self.dataIn.useLocalTime
81 self.dataOut.useLocalTime = self.dataIn.useLocalTime
82
82
83 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
83 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
84 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
84 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
85 self.dataOut.channelList = self.dataIn.channelList
85 self.dataOut.channelList = self.dataIn.channelList
86 self.dataOut.heightList = self.dataIn.heightList
86 self.dataOut.heightList = self.dataIn.heightList
87 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
87 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
88 # self.dataOut.nHeights = self.dataIn.nHeights
88 # self.dataOut.nHeights = self.dataIn.nHeights
89 # self.dataOut.nChannels = self.dataIn.nChannels
89 # self.dataOut.nChannels = self.dataIn.nChannels
90 # self.dataOut.nBaud = self.dataIn.nBaud
90 # self.dataOut.nBaud = self.dataIn.nBaud
91 # self.dataOut.nCode = self.dataIn.nCode
91 # self.dataOut.nCode = self.dataIn.nCode
92 # self.dataOut.code = self.dataIn.code
92 # self.dataOut.code = self.dataIn.code
93 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
93 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
94 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
94 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
95 # self.dataOut.utctime = self.firstdatatime
95 # self.dataOut.utctime = self.firstdatatime
96 self.dataOut.utctime = self.dataIn.utctime
96 self.dataOut.utctime = self.dataIn.utctime
97 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
97 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
98 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
98 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
99 self.dataOut.nCohInt = self.dataIn.nCohInt
99 self.dataOut.nCohInt = self.dataIn.nCohInt
100 # self.dataOut.nIncohInt = 1
100 # self.dataOut.nIncohInt = 1
101 # self.dataOut.ippSeconds = self.dataIn.ippSeconds
101 # self.dataOut.ippSeconds = self.dataIn.ippSeconds
102 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
102 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
103 self.dataOut.timeInterval1 = self.dataIn.timeInterval
103 self.dataOut.timeInterval1 = self.dataIn.timeInterval
104 self.dataOut.heightList = self.dataIn.heightList
104 self.dataOut.heightList = self.dataIn.heightList
105 self.dataOut.frequency = self.dataIn.frequency
105 self.dataOut.frequency = self.dataIn.frequency
106 # self.dataOut.noise = self.dataIn.noise
106 # self.dataOut.noise = self.dataIn.noise
107
107
108 def run(self):
108 def run(self):
109
109
110
110
111 #print("HOLA MUNDO SOY YO")
111 #print("HOLA MUNDO SOY YO")
112 #---------------------- Voltage Data ---------------------------
112 #---------------------- Voltage Data ---------------------------
113
113
114 if self.dataIn.type == "Voltage":
114 if self.dataIn.type == "Voltage":
115
115
116 self.__updateObjFromInput()
116 self.__updateObjFromInput()
117 self.dataOut.data_pre = self.dataIn.data.copy()
117 self.dataOut.data_pre = self.dataIn.data.copy()
118 self.dataOut.flagNoData = False
118 self.dataOut.flagNoData = False
119 self.dataOut.utctimeInit = self.dataIn.utctime
119 self.dataOut.utctimeInit = self.dataIn.utctime
120 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
120 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
121
121
122 if hasattr(self.dataIn, 'flagDataAsBlock'):
122 if hasattr(self.dataIn, 'flagDataAsBlock'):
123 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
123 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
124
124
125 if hasattr(self.dataIn, 'profileIndex'):
125 if hasattr(self.dataIn, 'profileIndex'):
126 self.dataOut.profileIndex = self.dataIn.profileIndex
126 self.dataOut.profileIndex = self.dataIn.profileIndex
127
127
128 if hasattr(self.dataIn, 'dataPP_POW'):
128 if hasattr(self.dataIn, 'dataPP_POW'):
129 self.dataOut.dataPP_POW = self.dataIn.dataPP_POW
129 self.dataOut.dataPP_POW = self.dataIn.dataPP_POW
130
130
131 if hasattr(self.dataIn, 'dataPP_POWER'):
131 if hasattr(self.dataIn, 'dataPP_POWER'):
132 self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER
132 self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER
133
133
134 if hasattr(self.dataIn, 'dataPP_DOP'):
134 if hasattr(self.dataIn, 'dataPP_DOP'):
135 self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP
135 self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP
136
136
137 if hasattr(self.dataIn, 'dataPP_SNR'):
137 if hasattr(self.dataIn, 'dataPP_SNR'):
138 self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR
138 self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR
139
139
140 if hasattr(self.dataIn, 'dataPP_WIDTH'):
140 if hasattr(self.dataIn, 'dataPP_WIDTH'):
141 self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH
141 self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH
142 return
142 return
143
143
144 #---------------------- Spectra Data ---------------------------
144 #---------------------- Spectra Data ---------------------------
145
145
146 if self.dataIn.type == "Spectra":
146 if self.dataIn.type == "Spectra":
147 #print("que paso en spectra")
147 #print("que paso en spectra")
148 self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc]
148 self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc]
149 self.dataOut.data_spc = self.dataIn.data_spc
149 self.dataOut.data_spc = self.dataIn.data_spc
150 self.dataOut.data_cspc = self.dataIn.data_cspc
150 self.dataOut.data_cspc = self.dataIn.data_cspc
151 self.dataOut.nProfiles = self.dataIn.nProfiles
151 self.dataOut.nProfiles = self.dataIn.nProfiles
152 self.dataOut.nIncohInt = self.dataIn.nIncohInt
152 self.dataOut.nIncohInt = self.dataIn.nIncohInt
153 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
153 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
154 self.dataOut.ippFactor = self.dataIn.ippFactor
154 self.dataOut.ippFactor = self.dataIn.ippFactor
155 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
155 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
156 self.dataOut.spc_noise = self.dataIn.getNoise()
156 self.dataOut.spc_noise = self.dataIn.getNoise()
157 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
157 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
158 # self.dataOut.normFactor = self.dataIn.normFactor
158 # self.dataOut.normFactor = self.dataIn.normFactor
159 self.dataOut.pairsList = self.dataIn.pairsList
159 self.dataOut.pairsList = self.dataIn.pairsList
160 self.dataOut.groupList = self.dataIn.pairsList
160 self.dataOut.groupList = self.dataIn.pairsList
161 self.dataOut.flagNoData = False
161 self.dataOut.flagNoData = False
162
162
163 if hasattr(self.dataIn, 'flagDataAsBlock'):
163 if hasattr(self.dataIn, 'flagDataAsBlock'):
164 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
164 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
165
165
166 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
166 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
167 self.dataOut.ChanDist = self.dataIn.ChanDist
167 self.dataOut.ChanDist = self.dataIn.ChanDist
168 else: self.dataOut.ChanDist = None
168 else: self.dataOut.ChanDist = None
169
169
170 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
170 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
171 # self.dataOut.VelRange = self.dataIn.VelRange
171 # self.dataOut.VelRange = self.dataIn.VelRange
172 #else: self.dataOut.VelRange = None
172 #else: self.dataOut.VelRange = None
173
173
174 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
174 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
175 self.dataOut.RadarConst = self.dataIn.RadarConst
175 self.dataOut.RadarConst = self.dataIn.RadarConst
176
176
177 if hasattr(self.dataIn, 'NPW'): #NPW
177 if hasattr(self.dataIn, 'NPW'): #NPW
178 self.dataOut.NPW = self.dataIn.NPW
178 self.dataOut.NPW = self.dataIn.NPW
179
179
180 if hasattr(self.dataIn, 'COFA'): #COFA
180 if hasattr(self.dataIn, 'COFA'): #COFA
181 self.dataOut.COFA = self.dataIn.COFA
181 self.dataOut.COFA = self.dataIn.COFA
182
182
183
183
184
184
185 #---------------------- Correlation Data ---------------------------
185 #---------------------- Correlation Data ---------------------------
186
186
187 if self.dataIn.type == "Correlation":
187 if self.dataIn.type == "Correlation":
188 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
188 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
189
189
190 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
190 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
191 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
191 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
192 self.dataOut.groupList = (acf_pairs, ccf_pairs)
192 self.dataOut.groupList = (acf_pairs, ccf_pairs)
193
193
194 self.dataOut.abscissaList = self.dataIn.lagRange
194 self.dataOut.abscissaList = self.dataIn.lagRange
195 self.dataOut.noise = self.dataIn.noise
195 self.dataOut.noise = self.dataIn.noise
196 self.dataOut.data_snr = self.dataIn.SNR
196 self.dataOut.data_snr = self.dataIn.SNR
197 self.dataOut.flagNoData = False
197 self.dataOut.flagNoData = False
198 self.dataOut.nAvg = self.dataIn.nAvg
198 self.dataOut.nAvg = self.dataIn.nAvg
199
199
200 #---------------------- Parameters Data ---------------------------
200 #---------------------- Parameters Data ---------------------------
201
201
202 if self.dataIn.type == "Parameters":
202 if self.dataIn.type == "Parameters":
203 self.dataOut.copy(self.dataIn)
203 self.dataOut.copy(self.dataIn)
204 self.dataOut.flagNoData = False
204 self.dataOut.flagNoData = False
205 #print("yo si entre")
205 #print("yo si entre")
206
206
207 return True
207 return True
208
208
209 self.__updateObjFromInput()
209 self.__updateObjFromInput()
210 #print("yo si entre2")
210 #print("yo si entre2")
211
211
212 self.dataOut.utctimeInit = self.dataIn.utctime
212 self.dataOut.utctimeInit = self.dataIn.utctime
213 self.dataOut.paramInterval = self.dataIn.timeInterval
213 self.dataOut.paramInterval = self.dataIn.timeInterval
214 #print("soy spectra ",self.dataOut.utctimeInit)
214 #print("soy spectra ",self.dataOut.utctimeInit)
215 return
215 return
216
216
217
217
218 def target(tups):
218 def target(tups):
219
219
220 obj, args = tups
220 obj, args = tups
221
221
222 return obj.FitGau(args)
222 return obj.FitGau(args)
223
223
224 class RemoveWideGC(Operation):
224 class RemoveWideGC(Operation):
225 ''' This class remove the wide clutter and replace it with a simple interpolation points
225 ''' This class remove the wide clutter and replace it with a simple interpolation points
226 This mainly applies to CLAIRE radar
226 This mainly applies to CLAIRE radar
227
227
228 ClutterWidth : Width to look for the clutter peak
228 ClutterWidth : Width to look for the clutter peak
229
229
230 Input:
230 Input:
231
231
232 self.dataOut.data_pre : SPC and CSPC
232 self.dataOut.data_pre : SPC and CSPC
233 self.dataOut.spc_range : To select wind and rainfall velocities
233 self.dataOut.spc_range : To select wind and rainfall velocities
234
234
235 Affected:
235 Affected:
236
236
237 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
237 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
238
238
239 Written by D. ScipiΓ³n 25.02.2021
239 Written by D. ScipiΓ³n 25.02.2021
240 '''
240 '''
241 def __init__(self):
241 def __init__(self):
242 Operation.__init__(self)
242 Operation.__init__(self)
243 self.i = 0
243 self.i = 0
244 self.ich = 0
244 self.ich = 0
245 self.ir = 0
245 self.ir = 0
246
246
247 def run(self, dataOut, ClutterWidth=2.5):
247 def run(self, dataOut, ClutterWidth=2.5):
248 # print ('Entering RemoveWideGC ... ')
248 # print ('Entering RemoveWideGC ... ')
249
249
250 self.spc = dataOut.data_pre[0].copy()
250 self.spc = dataOut.data_pre[0].copy()
251 self.spc_out = dataOut.data_pre[0].copy()
251 self.spc_out = dataOut.data_pre[0].copy()
252 self.Num_Chn = self.spc.shape[0]
252 self.Num_Chn = self.spc.shape[0]
253 self.Num_Hei = self.spc.shape[2]
253 self.Num_Hei = self.spc.shape[2]
254 VelRange = dataOut.spc_range[2][:-1]
254 VelRange = dataOut.spc_range[2][:-1]
255 dv = VelRange[1]-VelRange[0]
255 dv = VelRange[1]-VelRange[0]
256
256
257 # Find the velocities that corresponds to zero
257 # Find the velocities that corresponds to zero
258 gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth))
258 gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth))
259
259
260 # Removing novalid data from the spectra
260 # Removing novalid data from the spectra
261 for ich in range(self.Num_Chn) :
261 for ich in range(self.Num_Chn) :
262 for ir in range(self.Num_Hei) :
262 for ir in range(self.Num_Hei) :
263 # Estimate the noise at each range
263 # Estimate the noise at each range
264 HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt)
264 HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt)
265
265
266 # Removing the noise floor at each range
266 # Removing the noise floor at each range
267 novalid = numpy.where(self.spc[ich,:,ir] < HSn)
267 novalid = numpy.where(self.spc[ich,:,ir] < HSn)
268 self.spc[ich,novalid,ir] = HSn
268 self.spc[ich,novalid,ir] = HSn
269
269
270 junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn)
270 junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn)
271 j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0))
271 j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0))
272 j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0))
272 j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0))
273 if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) :
273 if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) :
274 continue
274 continue
275 junk3 = numpy.squeeze(numpy.diff(j1index))
275 junk3 = numpy.squeeze(numpy.diff(j1index))
276 junk4 = numpy.squeeze(numpy.diff(j2index))
276 junk4 = numpy.squeeze(numpy.diff(j2index))
277
277
278 valleyindex = j2index[numpy.where(junk4>1)]
278 valleyindex = j2index[numpy.where(junk4>1)]
279 peakindex = j1index[numpy.where(junk3>1)]
279 peakindex = j1index[numpy.where(junk3>1)]
280
280
281 isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv))
281 isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv))
282 if numpy.size(isvalid) == 0 :
282 if numpy.size(isvalid) == 0 :
283 continue
283 continue
284 if numpy.size(isvalid) >1 :
284 if numpy.size(isvalid) >1 :
285 vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir])
285 vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir])
286 isvalid = isvalid[vindex]
286 isvalid = isvalid[vindex]
287
287
288 # clutter peak
288 # clutter peak
289 gcpeak = peakindex[isvalid]
289 gcpeak = peakindex[isvalid]
290 vl = numpy.where(valleyindex < gcpeak)
290 vl = numpy.where(valleyindex < gcpeak)
291 if numpy.size(vl) == 0:
291 if numpy.size(vl) == 0:
292 continue
292 continue
293 gcvl = valleyindex[vl[0][-1]]
293 gcvl = valleyindex[vl[0][-1]]
294 vr = numpy.where(valleyindex > gcpeak)
294 vr = numpy.where(valleyindex > gcpeak)
295 if numpy.size(vr) == 0:
295 if numpy.size(vr) == 0:
296 continue
296 continue
297 gcvr = valleyindex[vr[0][0]]
297 gcvr = valleyindex[vr[0][0]]
298
298
299 # Removing the clutter
299 # Removing the clutter
300 interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]])
300 interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]])
301 gcindex = gc_values[gcvl+1:gcvr-1]
301 gcindex = gc_values[gcvl+1:gcvr-1]
302 self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir])
302 self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir])
303
303
304 dataOut.data_pre[0] = self.spc_out
304 dataOut.data_pre[0] = self.spc_out
305 #print ('Leaving RemoveWideGC ... ')
305 #print ('Leaving RemoveWideGC ... ')
306 return dataOut
306 return dataOut
307
307
308 class SpectralFilters(Operation):
308 class SpectralFilters(Operation):
309 ''' This class allows to replace the novalid values with noise for each channel
309 ''' This class allows to replace the novalid values with noise for each channel
310 This applies to CLAIRE RADAR
310 This applies to CLAIRE RADAR
311
311
312 PositiveLimit : RightLimit of novalid data
312 PositiveLimit : RightLimit of novalid data
313 NegativeLimit : LeftLimit of novalid data
313 NegativeLimit : LeftLimit of novalid data
314
314
315 Input:
315 Input:
316
316
317 self.dataOut.data_pre : SPC and CSPC
317 self.dataOut.data_pre : SPC and CSPC
318 self.dataOut.spc_range : To select wind and rainfall velocities
318 self.dataOut.spc_range : To select wind and rainfall velocities
319
319
320 Affected:
320 Affected:
321
321
322 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
322 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
323
323
324 Written by D. ScipiΓ³n 29.01.2021
324 Written by D. ScipiΓ³n 29.01.2021
325 '''
325 '''
326 def __init__(self):
326 def __init__(self):
327 Operation.__init__(self)
327 Operation.__init__(self)
328 self.i = 0
328 self.i = 0
329
329
330 def run(self, dataOut, ):
330 def run(self, dataOut, ):
331
331
332 self.spc = dataOut.data_pre[0].copy()
332 self.spc = dataOut.data_pre[0].copy()
333 self.Num_Chn = self.spc.shape[0]
333 self.Num_Chn = self.spc.shape[0]
334 VelRange = dataOut.spc_range[2]
334 VelRange = dataOut.spc_range[2]
335
335
336 # novalid corresponds to data within the Negative and PositiveLimit
336 # novalid corresponds to data within the Negative and PositiveLimit
337
337
338
338
339 # Removing novalid data from the spectra
339 # Removing novalid data from the spectra
340 for i in range(self.Num_Chn):
340 for i in range(self.Num_Chn):
341 self.spc[i,novalid,:] = dataOut.noise[i]
341 self.spc[i,novalid,:] = dataOut.noise[i]
342 dataOut.data_pre[0] = self.spc
342 dataOut.data_pre[0] = self.spc
343 return dataOut
343 return dataOut
344
344
345 class GaussianFit(Operation):
345 class GaussianFit(Operation):
346
346
347 '''
347 '''
348 Function that fit of one and two generalized gaussians (gg) based
348 Function that fit of one and two generalized gaussians (gg) based
349 on the PSD shape across an "power band" identified from a cumsum of
349 on the PSD shape across an "power band" identified from a cumsum of
350 the measured spectrum - noise.
350 the measured spectrum - noise.
351
351
352 Input:
352 Input:
353 self.dataOut.data_pre : SelfSpectra
353 self.dataOut.data_pre : SelfSpectra
354
354
355 Output:
355 Output:
356 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
356 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
357
357
358 '''
358 '''
359 def __init__(self):
359 def __init__(self):
360 Operation.__init__(self)
360 Operation.__init__(self)
361 self.i=0
361 self.i=0
362
362
363
363
364 # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
364 # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
365 def run(self, dataOut, SNRdBlimit=-9, method='generalized'):
365 def run(self, dataOut, SNRdBlimit=-9, method='generalized'):
366 """This routine will find a couple of generalized Gaussians to a power spectrum
366 """This routine will find a couple of generalized Gaussians to a power spectrum
367 methods: generalized, squared
367 methods: generalized, squared
368 input: spc
368 input: spc
369 output:
369 output:
370 noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1
370 noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1
371 """
371 """
372 print ('Entering ',method,' double Gaussian fit')
372 print ('Entering ',method,' double Gaussian fit')
373 self.spc = dataOut.data_pre[0].copy()
373 self.spc = dataOut.data_pre[0].copy()
374 self.Num_Hei = self.spc.shape[2]
374 self.Num_Hei = self.spc.shape[2]
375 self.Num_Bin = self.spc.shape[1]
375 self.Num_Bin = self.spc.shape[1]
376 self.Num_Chn = self.spc.shape[0]
376 self.Num_Chn = self.spc.shape[0]
377
377
378 start_time = time.time()
378 start_time = time.time()
379
379
380 pool = Pool(processes=self.Num_Chn)
380 pool = Pool(processes=self.Num_Chn)
381 args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)]
381 args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)]
382 objs = [self for __ in range(self.Num_Chn)]
382 objs = [self for __ in range(self.Num_Chn)]
383 attrs = list(zip(objs, args))
383 attrs = list(zip(objs, args))
384 DGauFitParam = pool.map(target, attrs)
384 DGauFitParam = pool.map(target, attrs)
385 # Parameters:
385 # Parameters:
386 # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power
386 # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power
387 dataOut.DGauFitParams = numpy.asarray(DGauFitParam)
387 dataOut.DGauFitParams = numpy.asarray(DGauFitParam)
388
388
389 # Double Gaussian Curves
389 # Double Gaussian Curves
390 gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
390 gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
391 gau0[:] = numpy.NaN
391 gau0[:] = numpy.NaN
392 gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
392 gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
393 gau1[:] = numpy.NaN
393 gau1[:] = numpy.NaN
394 x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1)))
394 x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1)))
395 for iCh in range(self.Num_Chn):
395 for iCh in range(self.Num_Chn):
396 N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin))
396 N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin))
397 N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin))
397 N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin))
398 A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin))
398 A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin))
399 A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin))
399 A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin))
400 v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin))
400 v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin))
401 v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin))
401 v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin))
402 s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin))
402 s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin))
403 s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin))
403 s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin))
404 if method == 'genealized':
404 if method == 'genealized':
405 p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin))
405 p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin))
406 p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin))
406 p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin))
407 elif method == 'squared':
407 elif method == 'squared':
408 p0 = 2.
408 p0 = 2.
409 p1 = 2.
409 p1 = 2.
410 gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0
410 gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0
411 gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1
411 gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1
412 dataOut.GaussFit0 = gau0
412 dataOut.GaussFit0 = gau0
413 dataOut.GaussFit1 = gau1
413 dataOut.GaussFit1 = gau1
414
414
415 print('Leaving ',method ,' double Gaussian fit')
415 print('Leaving ',method ,' double Gaussian fit')
416 return dataOut
416 return dataOut
417
417
418 def FitGau(self, X):
418 def FitGau(self, X):
419 # print('Entering FitGau')
419 # print('Entering FitGau')
420 # Assigning the variables
420 # Assigning the variables
421 Vrange, ch, wnoise, num_intg, SNRlimit = X
421 Vrange, ch, wnoise, num_intg, SNRlimit = X
422 # Noise Limits
422 # Noise Limits
423 noisebl = wnoise * 0.9
423 noisebl = wnoise * 0.9
424 noisebh = wnoise * 1.1
424 noisebh = wnoise * 1.1
425 # Radar Velocity
425 # Radar Velocity
426 Va = max(Vrange)
426 Va = max(Vrange)
427 deltav = Vrange[1] - Vrange[0]
427 deltav = Vrange[1] - Vrange[0]
428 x = numpy.arange(self.Num_Bin)
428 x = numpy.arange(self.Num_Bin)
429
429
430 # print ('stop 0')
430 # print ('stop 0')
431
431
432 # 5 parameters, 2 Gaussians
432 # 5 parameters, 2 Gaussians
433 DGauFitParam = numpy.zeros([5, self.Num_Hei,2])
433 DGauFitParam = numpy.zeros([5, self.Num_Hei,2])
434 DGauFitParam[:] = numpy.NaN
434 DGauFitParam[:] = numpy.NaN
435
435
436 # SPCparam = []
436 # SPCparam = []
437 # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei])
437 # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei])
438 # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei])
438 # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei])
439 # SPC_ch1[:] = 0 #numpy.NaN
439 # SPC_ch1[:] = 0 #numpy.NaN
440 # SPC_ch2[:] = 0 #numpy.NaN
440 # SPC_ch2[:] = 0 #numpy.NaN
441 # print ('stop 1')
441 # print ('stop 1')
442 for ht in range(self.Num_Hei):
442 for ht in range(self.Num_Hei):
443 # print (ht)
443 # print (ht)
444 # print ('stop 2')
444 # print ('stop 2')
445 # Spectra at each range
445 # Spectra at each range
446 spc = numpy.asarray(self.spc)[ch,:,ht]
446 spc = numpy.asarray(self.spc)[ch,:,ht]
447 snr = ( spc.mean() - wnoise ) / wnoise
447 snr = ( spc.mean() - wnoise ) / wnoise
448 snrdB = 10.*numpy.log10(snr)
448 snrdB = 10.*numpy.log10(snr)
449
449
450 #print ('stop 3')
450 #print ('stop 3')
451 if snrdB < SNRlimit :
451 if snrdB < SNRlimit :
452 # snr = numpy.NaN
452 # snr = numpy.NaN
453 # SPC_ch1[:,ht] = 0#numpy.NaN
453 # SPC_ch1[:,ht] = 0#numpy.NaN
454 # SPC_ch1[:,ht] = 0#numpy.NaN
454 # SPC_ch1[:,ht] = 0#numpy.NaN
455 # SPCparam = (SPC_ch1,SPC_ch2)
455 # SPCparam = (SPC_ch1,SPC_ch2)
456 # print ('SNR less than SNRth')
456 # print ('SNR less than SNRth')
457 continue
457 continue
458 # wnoise = hildebrand_sekhon(spc,num_intg)
458 # wnoise = hildebrand_sekhon(spc,num_intg)
459 # print ('stop 2.01')
459 # print ('stop 2.01')
460 #############################################
460 #############################################
461 # normalizing spc and noise
461 # normalizing spc and noise
462 # This part differs from gg1
462 # This part differs from gg1
463 # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021
463 # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021
464 #spc = spc / spc_norm_max
464 #spc = spc / spc_norm_max
465 # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
465 # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
466 #############################################
466 #############################################
467
467
468 # print ('stop 2.1')
468 # print ('stop 2.1')
469 fatspectra=1.0
469 fatspectra=1.0
470 # noise per channel.... we might want to use the noise at each range
470 # noise per channel.... we might want to use the noise at each range
471
471
472 # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
472 # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
473 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
473 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
474 #if wnoise>1.1*pnoise: # to be tested later
474 #if wnoise>1.1*pnoise: # to be tested later
475 # wnoise=pnoise
475 # wnoise=pnoise
476 # noisebl = wnoise*0.9
476 # noisebl = wnoise*0.9
477 # noisebh = wnoise*1.1
477 # noisebh = wnoise*1.1
478 spc = spc - wnoise # signal
478 spc = spc - wnoise # signal
479
479
480 # print ('stop 2.2')
480 # print ('stop 2.2')
481 minx = numpy.argmin(spc)
481 minx = numpy.argmin(spc)
482 #spcs=spc.copy()
482 #spcs=spc.copy()
483 spcs = numpy.roll(spc,-minx)
483 spcs = numpy.roll(spc,-minx)
484 cum = numpy.cumsum(spcs)
484 cum = numpy.cumsum(spcs)
485 # tot_noise = wnoise * self.Num_Bin #64;
485 # tot_noise = wnoise * self.Num_Bin #64;
486
486
487 # print ('stop 2.3')
487 # print ('stop 2.3')
488 # snr = sum(spcs) / tot_noise
488 # snr = sum(spcs) / tot_noise
489 # snrdB = 10.*numpy.log10(snr)
489 # snrdB = 10.*numpy.log10(snr)
490 #print ('stop 3')
490 #print ('stop 3')
491 # if snrdB < SNRlimit :
491 # if snrdB < SNRlimit :
492 # snr = numpy.NaN
492 # snr = numpy.NaN
493 # SPC_ch1[:,ht] = 0#numpy.NaN
493 # SPC_ch1[:,ht] = 0#numpy.NaN
494 # SPC_ch1[:,ht] = 0#numpy.NaN
494 # SPC_ch1[:,ht] = 0#numpy.NaN
495 # SPCparam = (SPC_ch1,SPC_ch2)
495 # SPCparam = (SPC_ch1,SPC_ch2)
496 # print ('SNR less than SNRth')
496 # print ('SNR less than SNRth')
497 # continue
497 # continue
498
498
499
499
500 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
500 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
501 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
501 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
502 # print ('stop 4')
502 # print ('stop 4')
503 cummax = max(cum)
503 cummax = max(cum)
504 epsi = 0.08 * fatspectra # cumsum to narrow down the energy region
504 epsi = 0.08 * fatspectra # cumsum to narrow down the energy region
505 cumlo = cummax * epsi
505 cumlo = cummax * epsi
506 cumhi = cummax * (1-epsi)
506 cumhi = cummax * (1-epsi)
507 powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
507 powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
508
508
509 # print ('stop 5')
509 # print ('stop 5')
510 if len(powerindex) < 1:# case for powerindex 0
510 if len(powerindex) < 1:# case for powerindex 0
511 # print ('powerindex < 1')
511 # print ('powerindex < 1')
512 continue
512 continue
513 powerlo = powerindex[0]
513 powerlo = powerindex[0]
514 powerhi = powerindex[-1]
514 powerhi = powerindex[-1]
515 powerwidth = powerhi-powerlo
515 powerwidth = powerhi-powerlo
516 if powerwidth <= 1:
516 if powerwidth <= 1:
517 # print('powerwidth <= 1')
517 # print('powerwidth <= 1')
518 continue
518 continue
519
519
520 # print ('stop 6')
520 # print ('stop 6')
521 firstpeak = powerlo + powerwidth/10.# first gaussian energy location
521 firstpeak = powerlo + powerwidth/10.# first gaussian energy location
522 secondpeak = powerhi - powerwidth/10. #second gaussian energy location
522 secondpeak = powerhi - powerwidth/10. #second gaussian energy location
523 midpeak = (firstpeak + secondpeak)/2.
523 midpeak = (firstpeak + secondpeak)/2.
524 firstamp = spcs[int(firstpeak)]
524 firstamp = spcs[int(firstpeak)]
525 secondamp = spcs[int(secondpeak)]
525 secondamp = spcs[int(secondpeak)]
526 midamp = spcs[int(midpeak)]
526 midamp = spcs[int(midpeak)]
527
527
528 y_data = spc + wnoise
528 y_data = spc + wnoise
529
529
530 ''' single Gaussian '''
530 ''' single Gaussian '''
531 shift0 = numpy.mod(midpeak+minx, self.Num_Bin )
531 shift0 = numpy.mod(midpeak+minx, self.Num_Bin )
532 width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4
532 width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4
533 power0 = 2.
533 power0 = 2.
534 amplitude0 = midamp
534 amplitude0 = midamp
535 state0 = [shift0,width0,amplitude0,power0,wnoise]
535 state0 = [shift0,width0,amplitude0,power0,wnoise]
536 bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
536 bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
537 lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True)
537 lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True)
538 # print ('stop 7.1')
538 # print ('stop 7.1')
539 # print (bnds)
539 # print (bnds)
540
540
541 chiSq1=lsq1[1]
541 chiSq1=lsq1[1]
542
542
543 # print ('stop 8')
543 # print ('stop 8')
544 if fatspectra<1.0 and powerwidth<4:
544 if fatspectra<1.0 and powerwidth<4:
545 choice=0
545 choice=0
546 Amplitude0=lsq1[0][2]
546 Amplitude0=lsq1[0][2]
547 shift0=lsq1[0][0]
547 shift0=lsq1[0][0]
548 width0=lsq1[0][1]
548 width0=lsq1[0][1]
549 p0=lsq1[0][3]
549 p0=lsq1[0][3]
550 Amplitude1=0.
550 Amplitude1=0.
551 shift1=0.
551 shift1=0.
552 width1=0.
552 width1=0.
553 p1=0.
553 p1=0.
554 noise=lsq1[0][4]
554 noise=lsq1[0][4]
555 #return (numpy.array([shift0,width0,Amplitude0,p0]),
555 #return (numpy.array([shift0,width0,Amplitude0,p0]),
556 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
556 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
557
557
558 # print ('stop 9')
558 # print ('stop 9')
559 ''' two Gaussians '''
559 ''' two Gaussians '''
560 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
560 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
561 shift0 = numpy.mod(firstpeak+minx, self.Num_Bin )
561 shift0 = numpy.mod(firstpeak+minx, self.Num_Bin )
562 shift1 = numpy.mod(secondpeak+minx, self.Num_Bin )
562 shift1 = numpy.mod(secondpeak+minx, self.Num_Bin )
563 width0 = powerwidth/6.
563 width0 = powerwidth/6.
564 width1 = width0
564 width1 = width0
565 power0 = 2.
565 power0 = 2.
566 power1 = power0
566 power1 = power0
567 amplitude0 = firstamp
567 amplitude0 = firstamp
568 amplitude1 = secondamp
568 amplitude1 = secondamp
569 state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
569 state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
570 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
570 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
571 bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
571 bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
572 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
572 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
573
573
574 # print ('stop 10')
574 # print ('stop 10')
575 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
575 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
576
576
577 # print ('stop 11')
577 # print ('stop 11')
578 chiSq2 = lsq2[1]
578 chiSq2 = lsq2[1]
579
579
580 # print ('stop 12')
580 # print ('stop 12')
581
581
582 oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
582 oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
583
583
584 # print ('stop 13')
584 # print ('stop 13')
585 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
585 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
586 if oneG:
586 if oneG:
587 choice = 0
587 choice = 0
588 else:
588 else:
589 w1 = lsq2[0][1]; w2 = lsq2[0][5]
589 w1 = lsq2[0][1]; w2 = lsq2[0][5]
590 a1 = lsq2[0][2]; a2 = lsq2[0][6]
590 a1 = lsq2[0][2]; a2 = lsq2[0][6]
591 p1 = lsq2[0][3]; p2 = lsq2[0][7]
591 p1 = lsq2[0][3]; p2 = lsq2[0][7]
592 s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1
592 s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1
593 s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2
593 s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2
594 gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling
594 gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling
595
595
596 if gp1>gp2:
596 if gp1>gp2:
597 if a1>0.7*a2:
597 if a1>0.7*a2:
598 choice = 1
598 choice = 1
599 else:
599 else:
600 choice = 2
600 choice = 2
601 elif gp2>gp1:
601 elif gp2>gp1:
602 if a2>0.7*a1:
602 if a2>0.7*a1:
603 choice = 2
603 choice = 2
604 else:
604 else:
605 choice = 1
605 choice = 1
606 else:
606 else:
607 choice = numpy.argmax([a1,a2])+1
607 choice = numpy.argmax([a1,a2])+1
608 #else:
608 #else:
609 #choice=argmin([std2a,std2b])+1
609 #choice=argmin([std2a,std2b])+1
610
610
611 else: # with low SNR go to the most energetic peak
611 else: # with low SNR go to the most energetic peak
612 choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
612 choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
613
613
614 # print ('stop 14')
614 # print ('stop 14')
615 shift0 = lsq2[0][0]
615 shift0 = lsq2[0][0]
616 vel0 = Vrange[0] + shift0 * deltav
616 vel0 = Vrange[0] + shift0 * deltav
617 shift1 = lsq2[0][4]
617 shift1 = lsq2[0][4]
618 # vel1=Vrange[0] + shift1 * deltav
618 # vel1=Vrange[0] + shift1 * deltav
619
619
620 # max_vel = 1.0
620 # max_vel = 1.0
621 # Va = max(Vrange)
621 # Va = max(Vrange)
622 # deltav = Vrange[1]-Vrange[0]
622 # deltav = Vrange[1]-Vrange[0]
623 # print ('stop 15')
623 # print ('stop 15')
624 #first peak will be 0, second peak will be 1
624 #first peak will be 0, second peak will be 1
625 # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021
625 # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021
626 if vel0 > -Va and vel0 < Va : #first peak is in the correct range
626 if vel0 > -Va and vel0 < Va : #first peak is in the correct range
627 shift0 = lsq2[0][0]
627 shift0 = lsq2[0][0]
628 width0 = lsq2[0][1]
628 width0 = lsq2[0][1]
629 Amplitude0 = lsq2[0][2]
629 Amplitude0 = lsq2[0][2]
630 p0 = lsq2[0][3]
630 p0 = lsq2[0][3]
631
631
632 shift1 = lsq2[0][4]
632 shift1 = lsq2[0][4]
633 width1 = lsq2[0][5]
633 width1 = lsq2[0][5]
634 Amplitude1 = lsq2[0][6]
634 Amplitude1 = lsq2[0][6]
635 p1 = lsq2[0][7]
635 p1 = lsq2[0][7]
636 noise = lsq2[0][8]
636 noise = lsq2[0][8]
637 else:
637 else:
638 shift1 = lsq2[0][0]
638 shift1 = lsq2[0][0]
639 width1 = lsq2[0][1]
639 width1 = lsq2[0][1]
640 Amplitude1 = lsq2[0][2]
640 Amplitude1 = lsq2[0][2]
641 p1 = lsq2[0][3]
641 p1 = lsq2[0][3]
642
642
643 shift0 = lsq2[0][4]
643 shift0 = lsq2[0][4]
644 width0 = lsq2[0][5]
644 width0 = lsq2[0][5]
645 Amplitude0 = lsq2[0][6]
645 Amplitude0 = lsq2[0][6]
646 p0 = lsq2[0][7]
646 p0 = lsq2[0][7]
647 noise = lsq2[0][8]
647 noise = lsq2[0][8]
648
648
649 if Amplitude0<0.05: # in case the peak is noise
649 if Amplitude0<0.05: # in case the peak is noise
650 shift0,width0,Amplitude0,p0 = 4*[numpy.NaN]
650 shift0,width0,Amplitude0,p0 = 4*[numpy.NaN]
651 if Amplitude1<0.05:
651 if Amplitude1<0.05:
652 shift1,width1,Amplitude1,p1 = 4*[numpy.NaN]
652 shift1,width1,Amplitude1,p1 = 4*[numpy.NaN]
653
653
654 # print ('stop 16 ')
654 # print ('stop 16 ')
655 # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0)
655 # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0)
656 # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1)
656 # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1)
657 # SPCparam = (SPC_ch1,SPC_ch2)
657 # SPCparam = (SPC_ch1,SPC_ch2)
658
658
659 DGauFitParam[0,ht,0] = noise
659 DGauFitParam[0,ht,0] = noise
660 DGauFitParam[0,ht,1] = noise
660 DGauFitParam[0,ht,1] = noise
661 DGauFitParam[1,ht,0] = Amplitude0
661 DGauFitParam[1,ht,0] = Amplitude0
662 DGauFitParam[1,ht,1] = Amplitude1
662 DGauFitParam[1,ht,1] = Amplitude1
663 DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav
663 DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav
664 DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav
664 DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav
665 DGauFitParam[3,ht,0] = width0 * deltav
665 DGauFitParam[3,ht,0] = width0 * deltav
666 DGauFitParam[3,ht,1] = width1 * deltav
666 DGauFitParam[3,ht,1] = width1 * deltav
667 DGauFitParam[4,ht,0] = p0
667 DGauFitParam[4,ht,0] = p0
668 DGauFitParam[4,ht,1] = p1
668 DGauFitParam[4,ht,1] = p1
669
669
670 # print (DGauFitParam.shape)
670 # print (DGauFitParam.shape)
671 # print ('Leaving FitGau')
671 # print ('Leaving FitGau')
672 return DGauFitParam
672 return DGauFitParam
673 # return SPCparam
673 # return SPCparam
674 # return GauSPC
674 # return GauSPC
675
675
676 def y_model1(self,x,state):
676 def y_model1(self,x,state):
677 shift0, width0, amplitude0, power0, noise = state
677 shift0, width0, amplitude0, power0, noise = state
678 model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0)
678 model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0)
679 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
679 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
680 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
680 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
681 return model0 + model0u + model0d + noise
681 return model0 + model0u + model0d + noise
682
682
683 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
683 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
684 shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state
684 shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state
685 model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
685 model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
686 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
686 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
687 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
687 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
688
688
689 model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1)
689 model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1)
690 model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1)
690 model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1)
691 model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1)
691 model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1)
692 return model0 + model0u + model0d + model1 + model1u + model1d + noise
692 return model0 + model0u + model0d + model1 + model1u + model1d + noise
693
693
694 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
694 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
695
695
696 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
696 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
697
697
698 def misfit2(self,state,y_data,x,num_intg):
698 def misfit2(self,state,y_data,x,num_intg):
699 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
699 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
700
700
701
701
702
702
703 class PrecipitationProc(Operation):
703 class PrecipitationProc(Operation):
704
704
705 '''
705 '''
706 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
706 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
707
707
708 Input:
708 Input:
709 self.dataOut.data_pre : SelfSpectra
709 self.dataOut.data_pre : SelfSpectra
710
710
711 Output:
711 Output:
712
712
713 self.dataOut.data_output : Reflectivity factor, rainfall Rate
713 self.dataOut.data_output : Reflectivity factor, rainfall Rate
714
714
715
715
716 Parameters affected:
716 Parameters affected:
717 '''
717 '''
718
718
719 def __init__(self):
719 def __init__(self):
720 Operation.__init__(self)
720 Operation.__init__(self)
721 self.i=0
721 self.i=0
722
722
723 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
723 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
724 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30):
724 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30):
725
725
726 # print ('Entering PrecepitationProc ... ')
726 # print ('Entering PrecepitationProc ... ')
727
727
728 if radar == "MIRA35C" :
728 if radar == "MIRA35C" :
729
729
730 self.spc = dataOut.data_pre[0].copy()
730 self.spc = dataOut.data_pre[0].copy()
731 self.Num_Hei = self.spc.shape[2]
731 self.Num_Hei = self.spc.shape[2]
732 self.Num_Bin = self.spc.shape[1]
732 self.Num_Bin = self.spc.shape[1]
733 self.Num_Chn = self.spc.shape[0]
733 self.Num_Chn = self.spc.shape[0]
734 Ze = self.dBZeMODE2(dataOut)
734 Ze = self.dBZeMODE2(dataOut)
735
735
736 else:
736 else:
737
737
738 self.spc = dataOut.data_pre[0].copy()
738 self.spc = dataOut.data_pre[0].copy()
739
739
740 #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX
740 #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX
741 self.spc[:,:,0:7]= numpy.NaN
741 self.spc[:,:,0:7]= numpy.NaN
742
742
743 self.Num_Hei = self.spc.shape[2]
743 self.Num_Hei = self.spc.shape[2]
744 self.Num_Bin = self.spc.shape[1]
744 self.Num_Bin = self.spc.shape[1]
745 self.Num_Chn = self.spc.shape[0]
745 self.Num_Chn = self.spc.shape[0]
746
746
747 VelRange = dataOut.spc_range[2]
747 VelRange = dataOut.spc_range[2]
748
748
749 ''' Se obtiene la constante del RADAR '''
749 ''' Se obtiene la constante del RADAR '''
750
750
751 self.Pt = Pt
751 self.Pt = Pt
752 self.Gt = Gt
752 self.Gt = Gt
753 self.Gr = Gr
753 self.Gr = Gr
754 self.Lambda = Lambda
754 self.Lambda = Lambda
755 self.aL = aL
755 self.aL = aL
756 self.tauW = tauW
756 self.tauW = tauW
757 self.ThetaT = ThetaT
757 self.ThetaT = ThetaT
758 self.ThetaR = ThetaR
758 self.ThetaR = ThetaR
759 self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB
759 self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB
760 self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB
760 self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB
761 self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB
761 self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB
762
762
763 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
763 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
764 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
764 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
765 RadarConstant = 10e-26 * Numerator / Denominator #
765 RadarConstant = 10e-26 * Numerator / Denominator #
766 ExpConstant = 10**(40/10) #Constante Experimental
766 ExpConstant = 10**(40/10) #Constante Experimental
767
767
768 SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
768 SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
769 for i in range(self.Num_Chn):
769 for i in range(self.Num_Chn):
770 SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i]
770 SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i]
771 SignalPower[numpy.where(SignalPower < 0)] = 1e-20
771 SignalPower[numpy.where(SignalPower < 0)] = 1e-20
772
772
773 SPCmean = numpy.mean(SignalPower, 0)
773 SPCmean = numpy.mean(SignalPower, 0)
774 Pr = SPCmean[:,:]/dataOut.normFactor
774 Pr = SPCmean[:,:]/dataOut.normFactor
775
775
776 # Declaring auxiliary variables
776 # Declaring auxiliary variables
777 Range = dataOut.heightList*1000. #Range in m
777 Range = dataOut.heightList*1000. #Range in m
778 # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei]
778 # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei]
779 rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin))
779 rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin))
780 zMtrx = rMtrx+Altitude
780 zMtrx = rMtrx+Altitude
781 # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei]
781 # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei]
782 VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1)))
782 VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1)))
783
783
784 # height dependence to air density Foote and Du Toit (1969)
784 # height dependence to air density Foote and Du Toit (1969)
785 delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2
785 delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2
786 VMtrx = VelMtrx / delv_z #Normalized velocity
786 VMtrx = VelMtrx / delv_z #Normalized velocity
787 VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN
787 VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN
788 # Diameter is related to the fall speed of falling drops
788 # Diameter is related to the fall speed of falling drops
789 D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm]
789 D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm]
790 # Only valid for D>= 0.16 mm
790 # Only valid for D>= 0.16 mm
791 D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN
791 D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN
792
792
793 #Calculate Radar Reflectivity ETAn
793 #Calculate Radar Reflectivity ETAn
794 ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA)
794 ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA)
795 ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z
795 ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z
796 # Radar Cross Section
796 # Radar Cross Section
797 sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4
797 sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4
798 # Drop Size Distribution
798 # Drop Size Distribution
799 DSD = ETAn / sigmaD
799 DSD = ETAn / sigmaD
800 # Equivalente Reflectivy
800 # Equivalente Reflectivy
801 Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0)
801 Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0)
802 Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3]
802 Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3]
803 # RainFall Rate
803 # RainFall Rate
804 RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr
804 RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr
805
805
806 # Censoring the data
806 # Censoring the data
807 # Removing data with SNRth < 0dB se debe considerar el SNR por canal
807 # Removing data with SNRth < 0dB se debe considerar el SNR por canal
808 SNRth = 10**(SNRdBlimit/10) #-30dB
808 SNRth = 10**(SNRdBlimit/10) #-30dB
809 novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better
809 novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better
810 W = numpy.nanmean(dataOut.data_dop,0)
810 W = numpy.nanmean(dataOut.data_dop,0)
811 W[novalid] = numpy.NaN
811 W[novalid] = numpy.NaN
812 Ze_org[novalid] = numpy.NaN
812 Ze_org[novalid] = numpy.NaN
813 RR[novalid] = numpy.NaN
813 RR[novalid] = numpy.NaN
814
814
815 dataOut.data_output = RR[8]
815 dataOut.data_output = RR[8]
816 dataOut.data_param = numpy.ones([3,self.Num_Hei])
816 dataOut.data_param = numpy.ones([3,self.Num_Hei])
817 dataOut.channelList = [0,1,2]
817 dataOut.channelList = [0,1,2]
818
818
819 dataOut.data_param[0]=10*numpy.log10(Ze_org)
819 dataOut.data_param[0]=10*numpy.log10(Ze_org)
820 dataOut.data_param[1]=-W
820 dataOut.data_param[1]=-W
821 dataOut.data_param[2]=RR
821 dataOut.data_param[2]=RR
822
822
823 # print ('Leaving PrecepitationProc ... ')
823 # print ('Leaving PrecepitationProc ... ')
824 return dataOut
824 return dataOut
825
825
826 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
826 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
827
827
828 NPW = dataOut.NPW
828 NPW = dataOut.NPW
829 COFA = dataOut.COFA
829 COFA = dataOut.COFA
830
830
831 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
831 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
832 RadarConst = dataOut.RadarConst
832 RadarConst = dataOut.RadarConst
833 #frequency = 34.85*10**9
833 #frequency = 34.85*10**9
834
834
835 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
835 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
836 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
836 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
837
837
838 ETA = numpy.sum(SNR,1)
838 ETA = numpy.sum(SNR,1)
839
839
840 ETA = numpy.where(ETA != 0. , ETA, numpy.NaN)
840 ETA = numpy.where(ETA != 0. , ETA, numpy.NaN)
841
841
842 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
842 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
843
843
844 for r in range(self.Num_Hei):
844 for r in range(self.Num_Hei):
845
845
846 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
846 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
847 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
847 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
848
848
849 return Ze
849 return Ze
850
850
851 # def GetRadarConstant(self):
851 # def GetRadarConstant(self):
852 #
852 #
853 # """
853 # """
854 # Constants:
854 # Constants:
855 #
855 #
856 # Pt: Transmission Power dB 5kW 5000
856 # Pt: Transmission Power dB 5kW 5000
857 # Gt: Transmission Gain dB 24.7 dB 295.1209
857 # Gt: Transmission Gain dB 24.7 dB 295.1209
858 # Gr: Reception Gain dB 18.5 dB 70.7945
858 # Gr: Reception Gain dB 18.5 dB 70.7945
859 # Lambda: Wavelenght m 0.6741 m 0.6741
859 # Lambda: Wavelenght m 0.6741 m 0.6741
860 # aL: Attenuation loses dB 4dB 2.5118
860 # aL: Attenuation loses dB 4dB 2.5118
861 # tauW: Width of transmission pulse s 4us 4e-6
861 # tauW: Width of transmission pulse s 4us 4e-6
862 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
862 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
863 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
863 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
864 #
864 #
865 # """
865 # """
866 #
866 #
867 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
867 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
868 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
868 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
869 # RadarConstant = Numerator / Denominator
869 # RadarConstant = Numerator / Denominator
870 #
870 #
871 # return RadarConstant
871 # return RadarConstant
872
872
873
873
874
874
875 class FullSpectralAnalysis(Operation):
875 class FullSpectralAnalysis(Operation):
876
876
877 """
877 """
878 Function that implements Full Spectral Analysis technique.
878 Function that implements Full Spectral Analysis technique.
879
879
880 Input:
880 Input:
881 self.dataOut.data_pre : SelfSpectra and CrossSpectra data
881 self.dataOut.data_pre : SelfSpectra and CrossSpectra data
882 self.dataOut.groupList : Pairlist of channels
882 self.dataOut.groupList : Pairlist of channels
883 self.dataOut.ChanDist : Physical distance between receivers
883 self.dataOut.ChanDist : Physical distance between receivers
884
884
885
885
886 Output:
886 Output:
887
887
888 self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind
888 self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind
889
889
890
890
891 Parameters affected: Winds, height range, SNR
891 Parameters affected: Winds, height range, SNR
892
892
893 """
893 """
894 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30,
894 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30,
895 minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None):
895 minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None):
896
896
897 spc = dataOut.data_pre[0].copy()
897 spc = dataOut.data_pre[0].copy()
898 cspc = dataOut.data_pre[1]
898 cspc = dataOut.data_pre[1]
899 nHeights = spc.shape[2]
899 nHeights = spc.shape[2]
900
900
901 # first_height = 0.75 #km (ref: data header 20170822)
901 # first_height = 0.75 #km (ref: data header 20170822)
902 # resolution_height = 0.075 #km
902 # resolution_height = 0.075 #km
903 '''
903 '''
904 finding height range. check this when radar parameters are changed!
904 finding height range. check this when radar parameters are changed!
905 '''
905 '''
906 if maxheight is not None:
906 if maxheight is not None:
907 # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical
907 # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical
908 range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better
908 range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better
909 else:
909 else:
910 range_max = nHeights
910 range_max = nHeights
911 if minheight is not None:
911 if minheight is not None:
912 # range_min = int((minheight - first_height) / resolution_height) # theoretical
912 # range_min = int((minheight - first_height) / resolution_height) # theoretical
913 range_min = int(13.26 * minheight - 5) # empirical, works better
913 range_min = int(13.26 * minheight - 5) # empirical, works better
914 if range_min < 0:
914 if range_min < 0:
915 range_min = 0
915 range_min = 0
916 else:
916 else:
917 range_min = 0
917 range_min = 0
918
918
919 pairsList = dataOut.groupList
919 pairsList = dataOut.groupList
920 if dataOut.ChanDist is not None :
920 if dataOut.ChanDist is not None :
921 ChanDist = dataOut.ChanDist
921 ChanDist = dataOut.ChanDist
922 else:
922 else:
923 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
923 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
924
924
925 # 4 variables: zonal, meridional, vertical, and average SNR
925 # 4 variables: zonal, meridional, vertical, and average SNR
926 data_param = numpy.zeros([4,nHeights]) * numpy.NaN
926 data_param = numpy.zeros([4,nHeights]) * numpy.NaN
927 velocityX = numpy.zeros([nHeights]) * numpy.NaN
927 velocityX = numpy.zeros([nHeights]) * numpy.NaN
928 velocityY = numpy.zeros([nHeights]) * numpy.NaN
928 velocityY = numpy.zeros([nHeights]) * numpy.NaN
929 velocityZ = numpy.zeros([nHeights]) * numpy.NaN
929 velocityZ = numpy.zeros([nHeights]) * numpy.NaN
930
930
931 dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0))
931 dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0))
932
932
933 '''***********************************************WIND ESTIMATION**************************************'''
933 '''***********************************************WIND ESTIMATION**************************************'''
934 for Height in range(nHeights):
934 for Height in range(nHeights):
935
935
936 if Height >= range_min and Height < range_max:
936 if Height >= range_min and Height < range_max:
937 # error_code will be useful in future analysis
937 # error_code will be useful in future analysis
938 [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList,
938 [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList,
939 ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency)
939 ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency)
940
940
941 if abs(Vzon) < 100. and abs(Vmer) < 100.:
941 if abs(Vzon) < 100. and abs(Vmer) < 100.:
942 velocityX[Height] = Vzon
942 velocityX[Height] = Vzon
943 velocityY[Height] = -Vmer
943 velocityY[Height] = -Vmer
944 velocityZ[Height] = Vver
944 velocityZ[Height] = Vver
945
945
946 # Censoring data with SNR threshold
946 # Censoring data with SNR threshold
947 dbSNR [dbSNR < SNRdBlimit] = numpy.NaN
947 dbSNR [dbSNR < SNRdBlimit] = numpy.NaN
948
948
949 data_param[0] = velocityX
949 data_param[0] = velocityX
950 data_param[1] = velocityY
950 data_param[1] = velocityY
951 data_param[2] = velocityZ
951 data_param[2] = velocityZ
952 data_param[3] = dbSNR
952 data_param[3] = dbSNR
953 dataOut.data_param = data_param
953 dataOut.data_param = data_param
954 return dataOut
954 return dataOut
955
955
956 def moving_average(self,x, N=2):
956 def moving_average(self,x, N=2):
957 """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """
957 """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """
958 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
958 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
959
959
960 def gaus(self,xSamples,Amp,Mu,Sigma):
960 def gaus(self,xSamples,Amp,Mu,Sigma):
961 return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2)
961 return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2)
962
962
963 def Moments(self, ySamples, xSamples):
963 def Moments(self, ySamples, xSamples):
964 Power = numpy.nanmean(ySamples) # Power, 0th Moment
964 Power = numpy.nanmean(ySamples) # Power, 0th Moment
965 yNorm = ySamples / numpy.nansum(ySamples)
965 yNorm = ySamples / numpy.nansum(ySamples)
966 RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment
966 RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment
967 Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment
967 Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment
968 StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral
968 StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral
969 return numpy.array([Power,RadVel,StdDev])
969 return numpy.array([Power,RadVel,StdDev])
970
970
971 def StopWindEstimation(self, error_code):
971 def StopWindEstimation(self, error_code):
972 Vzon = numpy.NaN
972 Vzon = numpy.NaN
973 Vmer = numpy.NaN
973 Vmer = numpy.NaN
974 Vver = numpy.NaN
974 Vver = numpy.NaN
975 return Vzon, Vmer, Vver, error_code
975 return Vzon, Vmer, Vver, error_code
976
976
977 def AntiAliasing(self, interval, maxstep):
977 def AntiAliasing(self, interval, maxstep):
978 """
978 """
979 function to prevent errors from aliased values when computing phaseslope
979 function to prevent errors from aliased values when computing phaseslope
980 """
980 """
981 antialiased = numpy.zeros(len(interval))
981 antialiased = numpy.zeros(len(interval))
982 copyinterval = interval.copy()
982 copyinterval = interval.copy()
983
983
984 antialiased[0] = copyinterval[0]
984 antialiased[0] = copyinterval[0]
985
985
986 for i in range(1,len(antialiased)):
986 for i in range(1,len(antialiased)):
987 step = interval[i] - interval[i-1]
987 step = interval[i] - interval[i-1]
988 if step > maxstep:
988 if step > maxstep:
989 copyinterval -= 2*numpy.pi
989 copyinterval -= 2*numpy.pi
990 antialiased[i] = copyinterval[i]
990 antialiased[i] = copyinterval[i]
991 elif step < maxstep*(-1):
991 elif step < maxstep*(-1):
992 copyinterval += 2*numpy.pi
992 copyinterval += 2*numpy.pi
993 antialiased[i] = copyinterval[i]
993 antialiased[i] = copyinterval[i]
994 else:
994 else:
995 antialiased[i] = copyinterval[i].copy()
995 antialiased[i] = copyinterval[i].copy()
996
996
997 return antialiased
997 return antialiased
998
998
999 def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq):
999 def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq):
1000 """
1000 """
1001 Function that Calculates Zonal, Meridional and Vertical wind velocities.
1001 Function that Calculates Zonal, Meridional and Vertical wind velocities.
1002 Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019.
1002 Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019.
1003
1003
1004 Input:
1004 Input:
1005 spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively.
1005 spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively.
1006 pairsList : Pairlist of channels
1006 pairsList : Pairlist of channels
1007 ChanDist : array of xi_ij and eta_ij
1007 ChanDist : array of xi_ij and eta_ij
1008 Height : height at which data is processed
1008 Height : height at which data is processed
1009 noise : noise in [channels] format for specific height
1009 noise : noise in [channels] format for specific height
1010 Abbsisarange : range of the frequencies or velocities
1010 Abbsisarange : range of the frequencies or velocities
1011 dbSNR, SNRlimit : signal to noise ratio in db, lower limit
1011 dbSNR, SNRlimit : signal to noise ratio in db, lower limit
1012
1012
1013 Output:
1013 Output:
1014 Vzon, Vmer, Vver : wind velocities
1014 Vzon, Vmer, Vver : wind velocities
1015 error_code : int that states where code is terminated
1015 error_code : int that states where code is terminated
1016
1016
1017 0 : no error detected
1017 0 : no error detected
1018 1 : Gaussian of mean spc exceeds widthlimit
1018 1 : Gaussian of mean spc exceeds widthlimit
1019 2 : no Gaussian of mean spc found
1019 2 : no Gaussian of mean spc found
1020 3 : SNR to low or velocity to high -> prec. e.g.
1020 3 : SNR to low or velocity to high -> prec. e.g.
1021 4 : at least one Gaussian of cspc exceeds widthlimit
1021 4 : at least one Gaussian of cspc exceeds widthlimit
1022 5 : zero out of three cspc Gaussian fits converged
1022 5 : zero out of three cspc Gaussian fits converged
1023 6 : phase slope fit could not be found
1023 6 : phase slope fit could not be found
1024 7 : arrays used to fit phase have different length
1024 7 : arrays used to fit phase have different length
1025 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc)
1025 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc)
1026
1026
1027 """
1027 """
1028
1028
1029 error_code = 0
1029 error_code = 0
1030
1030
1031 nChan = spc.shape[0]
1031 nChan = spc.shape[0]
1032 nProf = spc.shape[1]
1032 nProf = spc.shape[1]
1033 nPair = cspc.shape[0]
1033 nPair = cspc.shape[0]
1034
1034
1035 SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height
1035 SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height
1036 CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values
1036 CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values
1037 phase = numpy.zeros([nPair, nProf]) # phase between channels
1037 phase = numpy.zeros([nPair, nProf]) # phase between channels
1038 PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise
1038 PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise
1039 PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise
1039 PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise
1040 xFrec = AbbsisaRange[0][:-1] # frequency range
1040 xFrec = AbbsisaRange[0][:-1] # frequency range
1041 xVel = AbbsisaRange[2][:-1] # velocity range
1041 xVel = AbbsisaRange[2][:-1] # velocity range
1042 xSamples = xFrec # the frequency range is taken
1042 xSamples = xFrec # the frequency range is taken
1043 delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x
1043 delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x
1044
1044
1045 # only consider velocities with in NegativeLimit and PositiveLimit
1045 # only consider velocities with in NegativeLimit and PositiveLimit
1046 if (NegativeLimit is None):
1046 if (NegativeLimit is None):
1047 NegativeLimit = numpy.min(xVel)
1047 NegativeLimit = numpy.min(xVel)
1048 if (PositiveLimit is None):
1048 if (PositiveLimit is None):
1049 PositiveLimit = numpy.max(xVel)
1049 PositiveLimit = numpy.max(xVel)
1050 xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit))
1050 xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit))
1051 xSamples_zoom = xSamples[xvalid]
1051 xSamples_zoom = xSamples[xvalid]
1052
1052
1053 '''Getting Eij and Nij'''
1053 '''Getting Eij and Nij'''
1054 Xi01, Xi02, Xi12 = ChanDist[:,0]
1054 Xi01, Xi02, Xi12 = ChanDist[:,0]
1055 Eta01, Eta02, Eta12 = ChanDist[:,1]
1055 Eta01, Eta02, Eta12 = ChanDist[:,1]
1056
1056
1057 # spwd limit - updated by D. ScipiΓ³n 30.03.2021
1057 # spwd limit - updated by D. ScipiΓ³n 30.03.2021
1058 widthlimit = 10
1058 widthlimit = 10
1059 '''************************* SPC is normalized ********************************'''
1059 '''************************* SPC is normalized ********************************'''
1060 spc_norm = spc.copy()
1060 spc_norm = spc.copy()
1061 # For each channel
1061 # For each channel
1062 for i in range(nChan):
1062 for i in range(nChan):
1063 spc_sub = spc_norm[i,:] - noise[i] # only the signal power
1063 spc_sub = spc_norm[i,:] - noise[i] # only the signal power
1064 SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x)
1064 SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x)
1065
1065
1066 '''********************** FITTING MEAN SPC GAUSSIAN **********************'''
1066 '''********************** FITTING MEAN SPC GAUSSIAN **********************'''
1067
1067
1068 """ the gaussian of the mean: first subtract noise, then normalize. this is legal because
1068 """ the gaussian of the mean: first subtract noise, then normalize. this is legal because
1069 you only fit the curve and don't need the absolute value of height for calculation,
1069 you only fit the curve and don't need the absolute value of height for calculation,
1070 only for estimation of width. for normalization of cross spectra, you need initial,
1070 only for estimation of width. for normalization of cross spectra, you need initial,
1071 unnormalized self-spectra With noise.
1071 unnormalized self-spectra With noise.
1072
1072
1073 Technically, you don't even need to normalize the self-spectra, as you only need the
1073 Technically, you don't even need to normalize the self-spectra, as you only need the
1074 width of the peak. However, it was left this way. Note that the normalization has a flaw:
1074 width of the peak. However, it was left this way. Note that the normalization has a flaw:
1075 due to subtraction of the noise, some values are below zero. Raw "spc" values should be
1075 due to subtraction of the noise, some values are below zero. Raw "spc" values should be
1076 >= 0, as it is the modulus squared of the signals (complex * it's conjugate)
1076 >= 0, as it is the modulus squared of the signals (complex * it's conjugate)
1077 """
1077 """
1078 # initial conditions
1078 # initial conditions
1079 popt = [1e-10,0,1e-10]
1079 popt = [1e-10,0,1e-10]
1080 # Spectra average
1080 # Spectra average
1081 SPCMean = numpy.average(SPC_Samples,0)
1081 SPCMean = numpy.average(SPC_Samples,0)
1082 # Moments in frequency
1082 # Moments in frequency
1083 SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom)
1083 SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom)
1084
1084
1085 # Gauss Fit SPC in frequency domain
1085 # Gauss Fit SPC in frequency domain
1086 if dbSNR > SNRlimit: # only if SNR > SNRth
1086 if dbSNR > SNRlimit: # only if SNR > SNRth
1087 try:
1087 try:
1088 popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments)
1088 popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments)
1089 if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION
1089 if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION
1090 return self.StopWindEstimation(error_code = 1)
1090 return self.StopWindEstimation(error_code = 1)
1091 FitGauss = self.gaus(xSamples_zoom,*popt)
1091 FitGauss = self.gaus(xSamples_zoom,*popt)
1092 except :#RuntimeError:
1092 except :#RuntimeError:
1093 return self.StopWindEstimation(error_code = 2)
1093 return self.StopWindEstimation(error_code = 2)
1094 else:
1094 else:
1095 return self.StopWindEstimation(error_code = 3)
1095 return self.StopWindEstimation(error_code = 3)
1096
1096
1097 '''***************************** CSPC Normalization *************************
1097 '''***************************** CSPC Normalization *************************
1098 The Spc spectra are used to normalize the crossspectra. Peaks from precipitation
1098 The Spc spectra are used to normalize the crossspectra. Peaks from precipitation
1099 influence the norm which is not desired. First, a range is identified where the
1099 influence the norm which is not desired. First, a range is identified where the
1100 wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area
1100 wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area
1101 around it gets cut off and values replaced by mean determined by the boundary
1101 around it gets cut off and values replaced by mean determined by the boundary
1102 data -> sum_noise (spc is not normalized here, thats why the noise is important)
1102 data -> sum_noise (spc is not normalized here, thats why the noise is important)
1103
1103
1104 The sums are then added and multiplied by range/datapoints, because you need
1104 The sums are then added and multiplied by range/datapoints, because you need
1105 an integral and not a sum for normalization.
1105 an integral and not a sum for normalization.
1106
1106
1107 A norm is found according to Briggs 92.
1107 A norm is found according to Briggs 92.
1108 '''
1108 '''
1109 # for each pair
1109 # for each pair
1110 for i in range(nPair):
1110 for i in range(nPair):
1111 cspc_norm = cspc[i,:].copy()
1111 cspc_norm = cspc[i,:].copy()
1112 chan_index0 = pairsList[i][0]
1112 chan_index0 = pairsList[i][0]
1113 chan_index1 = pairsList[i][1]
1113 chan_index1 = pairsList[i][1]
1114 CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x)
1114 CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x)
1115 phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real)
1115 phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real)
1116
1116
1117 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom),
1117 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom),
1118 self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom),
1118 self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom),
1119 self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)])
1119 self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)])
1120
1120
1121 popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10]
1121 popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10]
1122 FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples))
1122 FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples))
1123
1123
1124 '''*******************************FIT GAUSS CSPC************************************'''
1124 '''*******************************FIT GAUSS CSPC************************************'''
1125 try:
1125 try:
1126 popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0])
1126 popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0])
1127 if popt01[2] > widthlimit: # CONDITION
1127 if popt01[2] > widthlimit: # CONDITION
1128 return self.StopWindEstimation(error_code = 4)
1128 return self.StopWindEstimation(error_code = 4)
1129 popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1])
1129 popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1])
1130 if popt02[2] > widthlimit: # CONDITION
1130 if popt02[2] > widthlimit: # CONDITION
1131 return self.StopWindEstimation(error_code = 4)
1131 return self.StopWindEstimation(error_code = 4)
1132 popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2])
1132 popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2])
1133 if popt12[2] > widthlimit: # CONDITION
1133 if popt12[2] > widthlimit: # CONDITION
1134 return self.StopWindEstimation(error_code = 4)
1134 return self.StopWindEstimation(error_code = 4)
1135
1135
1136 FitGauss01 = self.gaus(xSamples_zoom, *popt01)
1136 FitGauss01 = self.gaus(xSamples_zoom, *popt01)
1137 FitGauss02 = self.gaus(xSamples_zoom, *popt02)
1137 FitGauss02 = self.gaus(xSamples_zoom, *popt02)
1138 FitGauss12 = self.gaus(xSamples_zoom, *popt12)
1138 FitGauss12 = self.gaus(xSamples_zoom, *popt12)
1139 except:
1139 except:
1140 return self.StopWindEstimation(error_code = 5)
1140 return self.StopWindEstimation(error_code = 5)
1141
1141
1142
1142
1143 '''************* Getting Fij ***************'''
1143 '''************* Getting Fij ***************'''
1144 # x-axis point of the gaussian where the center is located from GaussFit of spectra
1144 # x-axis point of the gaussian where the center is located from GaussFit of spectra
1145 GaussCenter = popt[1]
1145 GaussCenter = popt[1]
1146 ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()]
1146 ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()]
1147 PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0]
1147 PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0]
1148
1148
1149 # Point where e^-1 is located in the gaussian
1149 # Point where e^-1 is located in the gaussian
1150 PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1)
1150 PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1)
1151 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss"
1151 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss"
1152 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1152 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1153 Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter])
1153 Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter])
1154
1154
1155 '''********** Taking frequency ranges from mean SPCs **********'''
1155 '''********** Taking frequency ranges from mean SPCs **********'''
1156 GauWidth = popt[2] * 3/2 # Bandwidth of Gau01
1156 GauWidth = popt[2] * 3/2 # Bandwidth of Gau01
1157 Range = numpy.empty(2)
1157 Range = numpy.empty(2)
1158 Range[0] = GaussCenter - GauWidth
1158 Range[0] = GaussCenter - GauWidth
1159 Range[1] = GaussCenter + GauWidth
1159 Range[1] = GaussCenter + GauWidth
1160 # Point in x-axis where the bandwidth is located (min:max)
1160 # Point in x-axis where the bandwidth is located (min:max)
1161 ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()]
1161 ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()]
1162 ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()]
1162 ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()]
1163 PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0]
1163 PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0]
1164 PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0]
1164 PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0]
1165 Range = numpy.array([ PointRangeMin, PointRangeMax ])
1165 Range = numpy.array([ PointRangeMin, PointRangeMax ])
1166 FrecRange = xSamples_zoom[ Range[0] : Range[1] ]
1166 FrecRange = xSamples_zoom[ Range[0] : Range[1] ]
1167
1167
1168 '''************************** Getting Phase Slope ***************************'''
1168 '''************************** Getting Phase Slope ***************************'''
1169 for i in range(nPair):
1169 for i in range(nPair):
1170 if len(FrecRange) > 5:
1170 if len(FrecRange) > 5:
1171 PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy()
1171 PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy()
1172 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1172 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1173 if len(FrecRange) == len(PhaseRange):
1173 if len(FrecRange) == len(PhaseRange):
1174 try:
1174 try:
1175 slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5))
1175 slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5))
1176 PhaseSlope[i] = slope
1176 PhaseSlope[i] = slope
1177 PhaseInter[i] = intercept
1177 PhaseInter[i] = intercept
1178 except:
1178 except:
1179 return self.StopWindEstimation(error_code = 6)
1179 return self.StopWindEstimation(error_code = 6)
1180 else:
1180 else:
1181 return self.StopWindEstimation(error_code = 7)
1181 return self.StopWindEstimation(error_code = 7)
1182 else:
1182 else:
1183 return self.StopWindEstimation(error_code = 8)
1183 return self.StopWindEstimation(error_code = 8)
1184
1184
1185 '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***'''
1185 '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***'''
1186
1186
1187 '''Getting constant C'''
1187 '''Getting constant C'''
1188 cC=(Fij*numpy.pi)**2
1188 cC=(Fij*numpy.pi)**2
1189
1189
1190 '''****** Getting constants F and G ******'''
1190 '''****** Getting constants F and G ******'''
1191 MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1191 MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1192 # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]])
1192 # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]])
1193 # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi)
1193 # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi)
1194 MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi)
1194 MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi)
1195 MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi)
1195 MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi)
1196 # MijResults = numpy.array([MijResult0, MijResult1, MijResult2])
1196 # MijResults = numpy.array([MijResult0, MijResult1, MijResult2])
1197 MijResults = numpy.array([MijResult1, MijResult2])
1197 MijResults = numpy.array([MijResult1, MijResult2])
1198 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1198 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1199
1199
1200 '''****** Getting constants A, B and H ******'''
1200 '''****** Getting constants A, B and H ******'''
1201 W01 = numpy.nanmax( FitGauss01 )
1201 W01 = numpy.nanmax( FitGauss01 )
1202 W02 = numpy.nanmax( FitGauss02 )
1202 W02 = numpy.nanmax( FitGauss02 )
1203 W12 = numpy.nanmax( FitGauss12 )
1203 W12 = numpy.nanmax( FitGauss12 )
1204
1204
1205 WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC))
1205 WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC))
1206 WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC))
1206 WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC))
1207 WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC))
1207 WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC))
1208 WijResults = numpy.array([WijResult01, WijResult02, WijResult12])
1208 WijResults = numpy.array([WijResult01, WijResult02, WijResult12])
1209
1209
1210 WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1210 WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1211 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1211 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1212
1212
1213 VxVy = numpy.array([[cA,cH],[cH,cB]])
1213 VxVy = numpy.array([[cA,cH],[cH,cB]])
1214 VxVyResults = numpy.array([-cF,-cG])
1214 VxVyResults = numpy.array([-cF,-cG])
1215 (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults)
1215 (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults)
1216 Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq)
1216 Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq)
1217 error_code = 0
1217 error_code = 0
1218
1218
1219 return Vzon, Vmer, Vver, error_code
1219 return Vzon, Vmer, Vver, error_code
1220
1220
1221 class SpectralMoments(Operation):
1221 class SpectralMoments(Operation):
1222
1222
1223 '''
1223 '''
1224 Function SpectralMoments()
1224 Function SpectralMoments()
1225
1225
1226 Calculates moments (power, mean, standard deviation) and SNR of the signal
1226 Calculates moments (power, mean, standard deviation) and SNR of the signal
1227
1227
1228 Type of dataIn: Spectra
1228 Type of dataIn: Spectra
1229
1229
1230 Configuration Parameters:
1230 Configuration Parameters:
1231
1231
1232 dirCosx : Cosine director in X axis
1232 dirCosx : Cosine director in X axis
1233 dirCosy : Cosine director in Y axis
1233 dirCosy : Cosine director in Y axis
1234
1234
1235 elevation :
1235 elevation :
1236 azimuth :
1236 azimuth :
1237
1237
1238 Input:
1238 Input:
1239 channelList : simple channel list to select e.g. [2,3,7]
1239 channelList : simple channel list to select e.g. [2,3,7]
1240 self.dataOut.data_pre : Spectral data
1240 self.dataOut.data_pre : Spectral data
1241 self.dataOut.abscissaList : List of frequencies
1241 self.dataOut.abscissaList : List of frequencies
1242 self.dataOut.noise : Noise level per channel
1242 self.dataOut.noise : Noise level per channel
1243
1243
1244 Affected:
1244 Affected:
1245 self.dataOut.moments : Parameters per channel
1245 self.dataOut.moments : Parameters per channel
1246 self.dataOut.data_snr : SNR per channel
1246 self.dataOut.data_snr : SNR per channel
1247
1247
1248 '''
1248 '''
1249
1249
1250 def run(self, dataOut):
1250 def run(self, dataOut):
1251
1251
1252 data = dataOut.data_pre[0]
1252 data = dataOut.data_pre[0]
1253 absc = dataOut.abscissaList[:-1]
1253 absc = dataOut.abscissaList[:-1]
1254 noise = dataOut.noise
1254 noise = dataOut.noise
1255 nChannel = data.shape[0]
1255 nChannel = data.shape[0]
1256 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
1256 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
1257
1257
1258 for ind in range(nChannel):
1258 for ind in range(nChannel):
1259 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1259 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1260
1260
1261 dataOut.moments = data_param[:,1:,:]
1261 dataOut.moments = data_param[:,1:,:]
1262 dataOut.data_snr = data_param[:,0]
1262 dataOut.data_snr = data_param[:,0]
1263 dataOut.data_pow = data_param[:,1]
1263 dataOut.data_pow = data_param[:,1]
1264 dataOut.data_dop = data_param[:,2]
1264 dataOut.data_dop = data_param[:,2]
1265 dataOut.data_width = data_param[:,3]
1265 dataOut.data_width = data_param[:,3]
1266 return dataOut
1266 return dataOut
1267
1267
1268 def __calculateMoments(self, oldspec, oldfreq, n0,
1268 def __calculateMoments(self, oldspec, oldfreq, n0,
1269 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1269 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1270
1270
1271 if (nicoh is None): nicoh = 1
1271 if (nicoh is None): nicoh = 1
1272 if (graph is None): graph = 0
1272 if (graph is None): graph = 0
1273 if (smooth is None): smooth = 0
1273 if (smooth is None): smooth = 0
1274 elif (self.smooth < 3): smooth = 0
1274 elif (self.smooth < 3): smooth = 0
1275
1275
1276 if (type1 is None): type1 = 0
1276 if (type1 is None): type1 = 0
1277 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
1277 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
1278 if (snrth is None): snrth = -3
1278 if (snrth is None): snrth = -3
1279 if (dc is None): dc = 0
1279 if (dc is None): dc = 0
1280 if (aliasing is None): aliasing = 0
1280 if (aliasing is None): aliasing = 0
1281 if (oldfd is None): oldfd = 0
1281 if (oldfd is None): oldfd = 0
1282 if (wwauto is None): wwauto = 0
1282 if (wwauto is None): wwauto = 0
1283
1283
1284 if (n0 < 1.e-20): n0 = 1.e-20
1284 if (n0 < 1.e-20): n0 = 1.e-20
1285
1285
1286 freq = oldfreq
1286 freq = oldfreq
1287 vec_power = numpy.zeros(oldspec.shape[1])
1287 vec_power = numpy.zeros(oldspec.shape[1])
1288 vec_fd = numpy.zeros(oldspec.shape[1])
1288 vec_fd = numpy.zeros(oldspec.shape[1])
1289 vec_w = numpy.zeros(oldspec.shape[1])
1289 vec_w = numpy.zeros(oldspec.shape[1])
1290 vec_snr = numpy.zeros(oldspec.shape[1])
1290 vec_snr = numpy.zeros(oldspec.shape[1])
1291
1291
1292 # oldspec = numpy.ma.masked_invalid(oldspec)
1292 # oldspec = numpy.ma.masked_invalid(oldspec)
1293 for ind in range(oldspec.shape[1]):
1293 for ind in range(oldspec.shape[1]):
1294
1294
1295 spec = oldspec[:,ind]
1295 spec = oldspec[:,ind]
1296 aux = spec*fwindow
1296 aux = spec*fwindow
1297 max_spec = aux.max()
1297 max_spec = aux.max()
1298 m = aux.tolist().index(max_spec)
1298 m = aux.tolist().index(max_spec)
1299
1299
1300 # Smooth
1300 # Smooth
1301 if (smooth == 0):
1301 if (smooth == 0):
1302 spec2 = spec
1302 spec2 = spec
1303 else:
1303 else:
1304 spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1304 spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1305
1305
1306 # Moments Estimation
1306 # Moments Estimation
1307 bb = spec2[numpy.arange(m,spec2.size)]
1307 bb = spec2[numpy.arange(m,spec2.size)]
1308 bb = (bb<n0).nonzero()
1308 bb = (bb<n0).nonzero()
1309 bb = bb[0]
1309 bb = bb[0]
1310
1310
1311 ss = spec2[numpy.arange(0,m + 1)]
1311 ss = spec2[numpy.arange(0,m + 1)]
1312 ss = (ss<n0).nonzero()
1312 ss = (ss<n0).nonzero()
1313 ss = ss[0]
1313 ss = ss[0]
1314
1314
1315 if (bb.size == 0):
1315 if (bb.size == 0):
1316 bb0 = spec.size - 1 - m
1316 bb0 = spec.size - 1 - m
1317 else:
1317 else:
1318 bb0 = bb[0] - 1
1318 bb0 = bb[0] - 1
1319 if (bb0 < 0):
1319 if (bb0 < 0):
1320 bb0 = 0
1320 bb0 = 0
1321
1321
1322 if (ss.size == 0):
1322 if (ss.size == 0):
1323 ss1 = 1
1323 ss1 = 1
1324 else:
1324 else:
1325 ss1 = max(ss) + 1
1325 ss1 = max(ss) + 1
1326
1326
1327 if (ss1 > m):
1327 if (ss1 > m):
1328 ss1 = m
1328 ss1 = m
1329
1329
1330 #valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1
1330 #valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1
1331 valid = numpy.arange(1,oldspec.shape[0])# valid perfil completo igual pulsepair
1331 valid = numpy.arange(1,oldspec.shape[0])# valid perfil completo igual pulsepair
1332 signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1332 signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1333 total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1333 total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1334 power = ((spec2[valid] - n0) * fwindow[valid]).sum()
1334 power = ((spec2[valid] - n0) * fwindow[valid]).sum()
1335 fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power
1335 fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power
1336 w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power)
1336 w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power)
1337 snr = (spec2.mean()-n0)/n0
1337 snr = (spec2.mean()-n0)/n0
1338 if (snr < 1.e-20) :
1338 if (snr < 1.e-20) :
1339 snr = 1.e-20
1339 snr = 1.e-20
1340
1340
1341 # vec_power[ind] = power #D. ScipiΓ³n replaced with the line below
1341 # vec_power[ind] = power #D. ScipiΓ³n replaced with the line below
1342 vec_power[ind] = total_power
1342 vec_power[ind] = total_power
1343 vec_fd[ind] = fd
1343 vec_fd[ind] = fd
1344 vec_w[ind] = w
1344 vec_w[ind] = w
1345 vec_snr[ind] = snr
1345 vec_snr[ind] = snr
1346
1346
1347 return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1347 return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1348
1348
1349 #------------------ Get SA Parameters --------------------------
1349 #------------------ Get SA Parameters --------------------------
1350
1350
1351 def GetSAParameters(self):
1351 def GetSAParameters(self):
1352 #SA en frecuencia
1352 #SA en frecuencia
1353 pairslist = self.dataOut.groupList
1353 pairslist = self.dataOut.groupList
1354 num_pairs = len(pairslist)
1354 num_pairs = len(pairslist)
1355
1355
1356 vel = self.dataOut.abscissaList
1356 vel = self.dataOut.abscissaList
1357 spectra = self.dataOut.data_pre
1357 spectra = self.dataOut.data_pre
1358 cspectra = self.dataIn.data_cspc
1358 cspectra = self.dataIn.data_cspc
1359 delta_v = vel[1] - vel[0]
1359 delta_v = vel[1] - vel[0]
1360
1360
1361 #Calculating the power spectrum
1361 #Calculating the power spectrum
1362 spc_pow = numpy.sum(spectra, 3)*delta_v
1362 spc_pow = numpy.sum(spectra, 3)*delta_v
1363 #Normalizing Spectra
1363 #Normalizing Spectra
1364 norm_spectra = spectra/spc_pow
1364 norm_spectra = spectra/spc_pow
1365 #Calculating the norm_spectra at peak
1365 #Calculating the norm_spectra at peak
1366 max_spectra = numpy.max(norm_spectra, 3)
1366 max_spectra = numpy.max(norm_spectra, 3)
1367
1367
1368 #Normalizing Cross Spectra
1368 #Normalizing Cross Spectra
1369 norm_cspectra = numpy.zeros(cspectra.shape)
1369 norm_cspectra = numpy.zeros(cspectra.shape)
1370
1370
1371 for i in range(num_chan):
1371 for i in range(num_chan):
1372 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1372 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1373
1373
1374 max_cspectra = numpy.max(norm_cspectra,2)
1374 max_cspectra = numpy.max(norm_cspectra,2)
1375 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1375 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1376
1376
1377 for i in range(num_pairs):
1377 for i in range(num_pairs):
1378 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1378 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1379 #------------------- Get Lags ----------------------------------
1379 #------------------- Get Lags ----------------------------------
1380
1380
1381 class SALags(Operation):
1381 class SALags(Operation):
1382 '''
1382 '''
1383 Function GetMoments()
1383 Function GetMoments()
1384
1384
1385 Input:
1385 Input:
1386 self.dataOut.data_pre
1386 self.dataOut.data_pre
1387 self.dataOut.abscissaList
1387 self.dataOut.abscissaList
1388 self.dataOut.noise
1388 self.dataOut.noise
1389 self.dataOut.normFactor
1389 self.dataOut.normFactor
1390 self.dataOut.data_snr
1390 self.dataOut.data_snr
1391 self.dataOut.groupList
1391 self.dataOut.groupList
1392 self.dataOut.nChannels
1392 self.dataOut.nChannels
1393
1393
1394 Affected:
1394 Affected:
1395 self.dataOut.data_param
1395 self.dataOut.data_param
1396
1396
1397 '''
1397 '''
1398 def run(self, dataOut):
1398 def run(self, dataOut):
1399 data_acf = dataOut.data_pre[0]
1399 data_acf = dataOut.data_pre[0]
1400 data_ccf = dataOut.data_pre[1]
1400 data_ccf = dataOut.data_pre[1]
1401 normFactor_acf = dataOut.normFactor[0]
1401 normFactor_acf = dataOut.normFactor[0]
1402 normFactor_ccf = dataOut.normFactor[1]
1402 normFactor_ccf = dataOut.normFactor[1]
1403 pairs_acf = dataOut.groupList[0]
1403 pairs_acf = dataOut.groupList[0]
1404 pairs_ccf = dataOut.groupList[1]
1404 pairs_ccf = dataOut.groupList[1]
1405
1405
1406 nHeights = dataOut.nHeights
1406 nHeights = dataOut.nHeights
1407 absc = dataOut.abscissaList
1407 absc = dataOut.abscissaList
1408 noise = dataOut.noise
1408 noise = dataOut.noise
1409 SNR = dataOut.data_snr
1409 SNR = dataOut.data_snr
1410 nChannels = dataOut.nChannels
1410 nChannels = dataOut.nChannels
1411 # pairsList = dataOut.groupList
1411 # pairsList = dataOut.groupList
1412 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
1412 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
1413
1413
1414 for l in range(len(pairs_acf)):
1414 for l in range(len(pairs_acf)):
1415 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1415 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1416
1416
1417 for l in range(len(pairs_ccf)):
1417 for l in range(len(pairs_ccf)):
1418 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1418 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1419
1419
1420 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1420 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1421 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1421 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1422 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1422 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1423 return
1423 return
1424
1424
1425 # def __getPairsAutoCorr(self, pairsList, nChannels):
1425 # def __getPairsAutoCorr(self, pairsList, nChannels):
1426 #
1426 #
1427 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1427 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1428 #
1428 #
1429 # for l in range(len(pairsList)):
1429 # for l in range(len(pairsList)):
1430 # firstChannel = pairsList[l][0]
1430 # firstChannel = pairsList[l][0]
1431 # secondChannel = pairsList[l][1]
1431 # secondChannel = pairsList[l][1]
1432 #
1432 #
1433 # #Obteniendo pares de Autocorrelacion
1433 # #Obteniendo pares de Autocorrelacion
1434 # if firstChannel == secondChannel:
1434 # if firstChannel == secondChannel:
1435 # pairsAutoCorr[firstChannel] = int(l)
1435 # pairsAutoCorr[firstChannel] = int(l)
1436 #
1436 #
1437 # pairsAutoCorr = pairsAutoCorr.astype(int)
1437 # pairsAutoCorr = pairsAutoCorr.astype(int)
1438 #
1438 #
1439 # pairsCrossCorr = range(len(pairsList))
1439 # pairsCrossCorr = range(len(pairsList))
1440 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1440 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1441 #
1441 #
1442 # return pairsAutoCorr, pairsCrossCorr
1442 # return pairsAutoCorr, pairsCrossCorr
1443
1443
1444 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1444 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1445
1445
1446 lag0 = data_acf.shape[1]/2
1446 lag0 = data_acf.shape[1]/2
1447 #Funcion de Autocorrelacion
1447 #Funcion de Autocorrelacion
1448 mean_acf = stats.nanmean(data_acf, axis = 0)
1448 mean_acf = stats.nanmean(data_acf, axis = 0)
1449
1449
1450 #Obtencion Indice de TauCross
1450 #Obtencion Indice de TauCross
1451 ind_ccf = data_ccf.argmax(axis = 1)
1451 ind_ccf = data_ccf.argmax(axis = 1)
1452 #Obtencion Indice de TauAuto
1452 #Obtencion Indice de TauAuto
1453 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1453 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1454 ccf_lag0 = data_ccf[:,lag0,:]
1454 ccf_lag0 = data_ccf[:,lag0,:]
1455
1455
1456 for i in range(ccf_lag0.shape[0]):
1456 for i in range(ccf_lag0.shape[0]):
1457 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1457 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1458
1458
1459 #Obtencion de TauCross y TauAuto
1459 #Obtencion de TauCross y TauAuto
1460 tau_ccf = lagRange[ind_ccf]
1460 tau_ccf = lagRange[ind_ccf]
1461 tau_acf = lagRange[ind_acf]
1461 tau_acf = lagRange[ind_acf]
1462
1462
1463 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1463 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1464
1464
1465 tau_ccf[Nan1,Nan2] = numpy.nan
1465 tau_ccf[Nan1,Nan2] = numpy.nan
1466 tau_acf[Nan1,Nan2] = numpy.nan
1466 tau_acf[Nan1,Nan2] = numpy.nan
1467 tau = numpy.vstack((tau_ccf,tau_acf))
1467 tau = numpy.vstack((tau_ccf,tau_acf))
1468
1468
1469 return tau
1469 return tau
1470
1470
1471 def __calculateLag1Phase(self, data, lagTRange):
1471 def __calculateLag1Phase(self, data, lagTRange):
1472 data1 = stats.nanmean(data, axis = 0)
1472 data1 = stats.nanmean(data, axis = 0)
1473 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1473 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1474
1474
1475 phase = numpy.angle(data1[lag1,:])
1475 phase = numpy.angle(data1[lag1,:])
1476
1476
1477 return phase
1477 return phase
1478
1478
1479 class SpectralFitting(Operation):
1479 class SpectralFitting(Operation):
1480 '''
1480 '''
1481 Function GetMoments()
1481 Function GetMoments()
1482
1482
1483 Input:
1483 Input:
1484 Output:
1484 Output:
1485 Variables modified:
1485 Variables modified:
1486 '''
1486 '''
1487
1487
1488 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1488 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1489
1489
1490
1490
1491 if path != None:
1491 if path != None:
1492 sys.path.append(path)
1492 sys.path.append(path)
1493 self.dataOut.library = importlib.import_module(file)
1493 self.dataOut.library = importlib.import_module(file)
1494
1494
1495 #To be inserted as a parameter
1495 #To be inserted as a parameter
1496 groupArray = numpy.array(groupList)
1496 groupArray = numpy.array(groupList)
1497 # groupArray = numpy.array([[0,1],[2,3]])
1497 # groupArray = numpy.array([[0,1],[2,3]])
1498 self.dataOut.groupList = groupArray
1498 self.dataOut.groupList = groupArray
1499
1499
1500 nGroups = groupArray.shape[0]
1500 nGroups = groupArray.shape[0]
1501 nChannels = self.dataIn.nChannels
1501 nChannels = self.dataIn.nChannels
1502 nHeights=self.dataIn.heightList.size
1502 nHeights=self.dataIn.heightList.size
1503
1503
1504 #Parameters Array
1504 #Parameters Array
1505 self.dataOut.data_param = None
1505 self.dataOut.data_param = None
1506
1506
1507 #Set constants
1507 #Set constants
1508 constants = self.dataOut.library.setConstants(self.dataIn)
1508 constants = self.dataOut.library.setConstants(self.dataIn)
1509 self.dataOut.constants = constants
1509 self.dataOut.constants = constants
1510 M = self.dataIn.normFactor
1510 M = self.dataIn.normFactor
1511 N = self.dataIn.nFFTPoints
1511 N = self.dataIn.nFFTPoints
1512 ippSeconds = self.dataIn.ippSeconds
1512 ippSeconds = self.dataIn.ippSeconds
1513 K = self.dataIn.nIncohInt
1513 K = self.dataIn.nIncohInt
1514 pairsArray = numpy.array(self.dataIn.pairsList)
1514 pairsArray = numpy.array(self.dataIn.pairsList)
1515
1515
1516 #List of possible combinations
1516 #List of possible combinations
1517 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1517 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1518 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1518 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1519
1519
1520 if getSNR:
1520 if getSNR:
1521 listChannels = groupArray.reshape((groupArray.size))
1521 listChannels = groupArray.reshape((groupArray.size))
1522 listChannels.sort()
1522 listChannels.sort()
1523 noise = self.dataIn.getNoise()
1523 noise = self.dataIn.getNoise()
1524 self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1524 self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1525
1525
1526 for i in range(nGroups):
1526 for i in range(nGroups):
1527 coord = groupArray[i,:]
1527 coord = groupArray[i,:]
1528
1528
1529 #Input data array
1529 #Input data array
1530 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1530 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1531 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1531 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1532
1532
1533 #Cross Spectra data array for Covariance Matrixes
1533 #Cross Spectra data array for Covariance Matrixes
1534 ind = 0
1534 ind = 0
1535 for pairs in listComb:
1535 for pairs in listComb:
1536 pairsSel = numpy.array([coord[x],coord[y]])
1536 pairsSel = numpy.array([coord[x],coord[y]])
1537 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
1537 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
1538 ind += 1
1538 ind += 1
1539 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1539 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1540 dataCross = dataCross**2/K
1540 dataCross = dataCross**2/K
1541
1541
1542 for h in range(nHeights):
1542 for h in range(nHeights):
1543
1543
1544 #Input
1544 #Input
1545 d = data[:,h]
1545 d = data[:,h]
1546
1546
1547 #Covariance Matrix
1547 #Covariance Matrix
1548 D = numpy.diag(d**2/K)
1548 D = numpy.diag(d**2/K)
1549 ind = 0
1549 ind = 0
1550 for pairs in listComb:
1550 for pairs in listComb:
1551 #Coordinates in Covariance Matrix
1551 #Coordinates in Covariance Matrix
1552 x = pairs[0]
1552 x = pairs[0]
1553 y = pairs[1]
1553 y = pairs[1]
1554 #Channel Index
1554 #Channel Index
1555 S12 = dataCross[ind,:,h]
1555 S12 = dataCross[ind,:,h]
1556 D12 = numpy.diag(S12)
1556 D12 = numpy.diag(S12)
1557 #Completing Covariance Matrix with Cross Spectras
1557 #Completing Covariance Matrix with Cross Spectras
1558 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
1558 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
1559 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
1559 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
1560 ind += 1
1560 ind += 1
1561 Dinv=numpy.linalg.inv(D)
1561 Dinv=numpy.linalg.inv(D)
1562 L=numpy.linalg.cholesky(Dinv)
1562 L=numpy.linalg.cholesky(Dinv)
1563 LT=L.T
1563 LT=L.T
1564
1564
1565 dp = numpy.dot(LT,d)
1565 dp = numpy.dot(LT,d)
1566
1566
1567 #Initial values
1567 #Initial values
1568 data_spc = self.dataIn.data_spc[coord,:,h]
1568 data_spc = self.dataIn.data_spc[coord,:,h]
1569
1569
1570 if (h>0)and(error1[3]<5):
1570 if (h>0)and(error1[3]<5):
1571 p0 = self.dataOut.data_param[i,:,h-1]
1571 p0 = self.dataOut.data_param[i,:,h-1]
1572 else:
1572 else:
1573 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1573 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1574
1574
1575 try:
1575 try:
1576 #Least Squares
1576 #Least Squares
1577 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
1577 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
1578 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
1578 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
1579 #Chi square error
1579 #Chi square error
1580 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
1580 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
1581 #Error with Jacobian
1581 #Error with Jacobian
1582 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
1582 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
1583 except:
1583 except:
1584 minp = p0*numpy.nan
1584 minp = p0*numpy.nan
1585 error0 = numpy.nan
1585 error0 = numpy.nan
1586 error1 = p0*numpy.nan
1586 error1 = p0*numpy.nan
1587
1587
1588 #Save
1588 #Save
1589 if self.dataOut.data_param is None:
1589 if self.dataOut.data_param is None:
1590 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1590 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1591 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1591 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1592
1592
1593 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1593 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1594 self.dataOut.data_param[i,:,h] = minp
1594 self.dataOut.data_param[i,:,h] = minp
1595 return
1595 return
1596
1596
1597 def __residFunction(self, p, dp, LT, constants):
1597 def __residFunction(self, p, dp, LT, constants):
1598
1598
1599 fm = self.dataOut.library.modelFunction(p, constants)
1599 fm = self.dataOut.library.modelFunction(p, constants)
1600 fmp=numpy.dot(LT,fm)
1600 fmp=numpy.dot(LT,fm)
1601
1601
1602 return dp-fmp
1602 return dp-fmp
1603
1603
1604 def __getSNR(self, z, noise):
1604 def __getSNR(self, z, noise):
1605
1605
1606 avg = numpy.average(z, axis=1)
1606 avg = numpy.average(z, axis=1)
1607 SNR = (avg.T-noise)/noise
1607 SNR = (avg.T-noise)/noise
1608 SNR = SNR.T
1608 SNR = SNR.T
1609 return SNR
1609 return SNR
1610
1610
1611 def __chisq(p,chindex,hindex):
1611 def __chisq(p,chindex,hindex):
1612 #similar to Resid but calculates CHI**2
1612 #similar to Resid but calculates CHI**2
1613 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
1613 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
1614 dp=numpy.dot(LT,d)
1614 dp=numpy.dot(LT,d)
1615 fmp=numpy.dot(LT,fm)
1615 fmp=numpy.dot(LT,fm)
1616 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1616 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1617 return chisq
1617 return chisq
1618
1618
1619 class WindProfiler(Operation):
1619 class WindProfiler(Operation):
1620
1620
1621 __isConfig = False
1621 __isConfig = False
1622
1622
1623 __initime = None
1623 __initime = None
1624 __lastdatatime = None
1624 __lastdatatime = None
1625 __integrationtime = None
1625 __integrationtime = None
1626
1626
1627 __buffer = None
1627 __buffer = None
1628
1628
1629 __dataReady = False
1629 __dataReady = False
1630
1630
1631 __firstdata = None
1631 __firstdata = None
1632
1632
1633 n = None
1633 n = None
1634
1634
1635 def __init__(self):
1635 def __init__(self):
1636 Operation.__init__(self)
1636 Operation.__init__(self)
1637
1637
1638 def __calculateCosDir(self, elev, azim):
1638 def __calculateCosDir(self, elev, azim):
1639 zen = (90 - elev)*numpy.pi/180
1639 zen = (90 - elev)*numpy.pi/180
1640 azim = azim*numpy.pi/180
1640 azim = azim*numpy.pi/180
1641 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1641 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1642 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1642 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1643
1643
1644 signX = numpy.sign(numpy.cos(azim))
1644 signX = numpy.sign(numpy.cos(azim))
1645 signY = numpy.sign(numpy.sin(azim))
1645 signY = numpy.sign(numpy.sin(azim))
1646
1646
1647 cosDirX = numpy.copysign(cosDirX, signX)
1647 cosDirX = numpy.copysign(cosDirX, signX)
1648 cosDirY = numpy.copysign(cosDirY, signY)
1648 cosDirY = numpy.copysign(cosDirY, signY)
1649 return cosDirX, cosDirY
1649 return cosDirX, cosDirY
1650
1650
1651 def __calculateAngles(self, theta_x, theta_y, azimuth):
1651 def __calculateAngles(self, theta_x, theta_y, azimuth):
1652
1652
1653 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1653 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1654 zenith_arr = numpy.arccos(dir_cosw)
1654 zenith_arr = numpy.arccos(dir_cosw)
1655 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1655 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1656
1656
1657 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1657 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1658 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1658 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1659
1659
1660 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1660 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1661
1661
1662 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1662 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1663
1663
1664 #
1664 #
1665 if horOnly:
1665 if horOnly:
1666 A = numpy.c_[dir_cosu,dir_cosv]
1666 A = numpy.c_[dir_cosu,dir_cosv]
1667 else:
1667 else:
1668 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
1668 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
1669 A = numpy.asmatrix(A)
1669 A = numpy.asmatrix(A)
1670 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
1670 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
1671
1671
1672 return A1
1672 return A1
1673
1673
1674 def __correctValues(self, heiRang, phi, velRadial, SNR):
1674 def __correctValues(self, heiRang, phi, velRadial, SNR):
1675 listPhi = phi.tolist()
1675 listPhi = phi.tolist()
1676 maxid = listPhi.index(max(listPhi))
1676 maxid = listPhi.index(max(listPhi))
1677 minid = listPhi.index(min(listPhi))
1677 minid = listPhi.index(min(listPhi))
1678
1678
1679 rango = list(range(len(phi)))
1679 rango = list(range(len(phi)))
1680 # rango = numpy.delete(rango,maxid)
1680 # rango = numpy.delete(rango,maxid)
1681
1681
1682 heiRang1 = heiRang*math.cos(phi[maxid])
1682 heiRang1 = heiRang*math.cos(phi[maxid])
1683 heiRangAux = heiRang*math.cos(phi[minid])
1683 heiRangAux = heiRang*math.cos(phi[minid])
1684 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1684 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1685 heiRang1 = numpy.delete(heiRang1,indOut)
1685 heiRang1 = numpy.delete(heiRang1,indOut)
1686
1686
1687 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1687 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1688 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1688 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1689
1689
1690 for i in rango:
1690 for i in rango:
1691 x = heiRang*math.cos(phi[i])
1691 x = heiRang*math.cos(phi[i])
1692 y1 = velRadial[i,:]
1692 y1 = velRadial[i,:]
1693 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1693 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1694
1694
1695 x1 = heiRang1
1695 x1 = heiRang1
1696 y11 = f1(x1)
1696 y11 = f1(x1)
1697
1697
1698 y2 = SNR[i,:]
1698 y2 = SNR[i,:]
1699 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1699 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1700 y21 = f2(x1)
1700 y21 = f2(x1)
1701
1701
1702 velRadial1[i,:] = y11
1702 velRadial1[i,:] = y11
1703 SNR1[i,:] = y21
1703 SNR1[i,:] = y21
1704
1704
1705 return heiRang1, velRadial1, SNR1
1705 return heiRang1, velRadial1, SNR1
1706
1706
1707 def __calculateVelUVW(self, A, velRadial):
1707 def __calculateVelUVW(self, A, velRadial):
1708
1708
1709 #Operacion Matricial
1709 #Operacion Matricial
1710 # velUVW = numpy.zeros((velRadial.shape[1],3))
1710 # velUVW = numpy.zeros((velRadial.shape[1],3))
1711 # for ind in range(velRadial.shape[1]):
1711 # for ind in range(velRadial.shape[1]):
1712 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
1712 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
1713 # velUVW = velUVW.transpose()
1713 # velUVW = velUVW.transpose()
1714 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1714 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1715 velUVW[:,:] = numpy.dot(A,velRadial)
1715 velUVW[:,:] = numpy.dot(A,velRadial)
1716
1716
1717
1717
1718 return velUVW
1718 return velUVW
1719
1719
1720 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1720 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1721
1721
1722 def techniqueDBS(self, kwargs):
1722 def techniqueDBS(self, kwargs):
1723 """
1723 """
1724 Function that implements Doppler Beam Swinging (DBS) technique.
1724 Function that implements Doppler Beam Swinging (DBS) technique.
1725
1725
1726 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1726 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1727 Direction correction (if necessary), Ranges and SNR
1727 Direction correction (if necessary), Ranges and SNR
1728
1728
1729 Output: Winds estimation (Zonal, Meridional and Vertical)
1729 Output: Winds estimation (Zonal, Meridional and Vertical)
1730
1730
1731 Parameters affected: Winds, height range, SNR
1731 Parameters affected: Winds, height range, SNR
1732 """
1732 """
1733 velRadial0 = kwargs['velRadial']
1733 velRadial0 = kwargs['velRadial']
1734 heiRang = kwargs['heightList']
1734 heiRang = kwargs['heightList']
1735 SNR0 = kwargs['SNR']
1735 SNR0 = kwargs['SNR']
1736
1736
1737 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1737 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1738 theta_x = numpy.array(kwargs['dirCosx'])
1738 theta_x = numpy.array(kwargs['dirCosx'])
1739 theta_y = numpy.array(kwargs['dirCosy'])
1739 theta_y = numpy.array(kwargs['dirCosy'])
1740 else:
1740 else:
1741 elev = numpy.array(kwargs['elevation'])
1741 elev = numpy.array(kwargs['elevation'])
1742 azim = numpy.array(kwargs['azimuth'])
1742 azim = numpy.array(kwargs['azimuth'])
1743 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1743 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1744 azimuth = kwargs['correctAzimuth']
1744 azimuth = kwargs['correctAzimuth']
1745 if 'horizontalOnly' in kwargs:
1745 if 'horizontalOnly' in kwargs:
1746 horizontalOnly = kwargs['horizontalOnly']
1746 horizontalOnly = kwargs['horizontalOnly']
1747 else: horizontalOnly = False
1747 else: horizontalOnly = False
1748 if 'correctFactor' in kwargs:
1748 if 'correctFactor' in kwargs:
1749 correctFactor = kwargs['correctFactor']
1749 correctFactor = kwargs['correctFactor']
1750 else: correctFactor = 1
1750 else: correctFactor = 1
1751 if 'channelList' in kwargs:
1751 if 'channelList' in kwargs:
1752 channelList = kwargs['channelList']
1752 channelList = kwargs['channelList']
1753 if len(channelList) == 2:
1753 if len(channelList) == 2:
1754 horizontalOnly = True
1754 horizontalOnly = True
1755 arrayChannel = numpy.array(channelList)
1755 arrayChannel = numpy.array(channelList)
1756 param = param[arrayChannel,:,:]
1756 param = param[arrayChannel,:,:]
1757 theta_x = theta_x[arrayChannel]
1757 theta_x = theta_x[arrayChannel]
1758 theta_y = theta_y[arrayChannel]
1758 theta_y = theta_y[arrayChannel]
1759
1759
1760 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1760 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1761 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1761 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1762 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1762 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1763
1763
1764 #Calculo de Componentes de la velocidad con DBS
1764 #Calculo de Componentes de la velocidad con DBS
1765 winds = self.__calculateVelUVW(A,velRadial1)
1765 winds = self.__calculateVelUVW(A,velRadial1)
1766
1766
1767 return winds, heiRang1, SNR1
1767 return winds, heiRang1, SNR1
1768
1768
1769 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1769 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1770
1770
1771 nPairs = len(pairs_ccf)
1771 nPairs = len(pairs_ccf)
1772 posx = numpy.asarray(posx)
1772 posx = numpy.asarray(posx)
1773 posy = numpy.asarray(posy)
1773 posy = numpy.asarray(posy)
1774
1774
1775 #Rotacion Inversa para alinear con el azimuth
1775 #Rotacion Inversa para alinear con el azimuth
1776 if azimuth!= None:
1776 if azimuth!= None:
1777 azimuth = azimuth*math.pi/180
1777 azimuth = azimuth*math.pi/180
1778 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
1778 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
1779 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
1779 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
1780 else:
1780 else:
1781 posx1 = posx
1781 posx1 = posx
1782 posy1 = posy
1782 posy1 = posy
1783
1783
1784 #Calculo de Distancias
1784 #Calculo de Distancias
1785 distx = numpy.zeros(nPairs)
1785 distx = numpy.zeros(nPairs)
1786 disty = numpy.zeros(nPairs)
1786 disty = numpy.zeros(nPairs)
1787 dist = numpy.zeros(nPairs)
1787 dist = numpy.zeros(nPairs)
1788 ang = numpy.zeros(nPairs)
1788 ang = numpy.zeros(nPairs)
1789
1789
1790 for i in range(nPairs):
1790 for i in range(nPairs):
1791 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1791 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1792 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1792 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1793 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1793 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1794 ang[i] = numpy.arctan2(disty[i],distx[i])
1794 ang[i] = numpy.arctan2(disty[i],distx[i])
1795
1795
1796 return distx, disty, dist, ang
1796 return distx, disty, dist, ang
1797 #Calculo de Matrices
1797 #Calculo de Matrices
1798 # nPairs = len(pairs)
1798 # nPairs = len(pairs)
1799 # ang1 = numpy.zeros((nPairs, 2, 1))
1799 # ang1 = numpy.zeros((nPairs, 2, 1))
1800 # dist1 = numpy.zeros((nPairs, 2, 1))
1800 # dist1 = numpy.zeros((nPairs, 2, 1))
1801 #
1801 #
1802 # for j in range(nPairs):
1802 # for j in range(nPairs):
1803 # dist1[j,0,0] = dist[pairs[j][0]]
1803 # dist1[j,0,0] = dist[pairs[j][0]]
1804 # dist1[j,1,0] = dist[pairs[j][1]]
1804 # dist1[j,1,0] = dist[pairs[j][1]]
1805 # ang1[j,0,0] = ang[pairs[j][0]]
1805 # ang1[j,0,0] = ang[pairs[j][0]]
1806 # ang1[j,1,0] = ang[pairs[j][1]]
1806 # ang1[j,1,0] = ang[pairs[j][1]]
1807 #
1807 #
1808 # return distx,disty, dist1,ang1
1808 # return distx,disty, dist1,ang1
1809
1809
1810
1810
1811 def __calculateVelVer(self, phase, lagTRange, _lambda):
1811 def __calculateVelVer(self, phase, lagTRange, _lambda):
1812
1812
1813 Ts = lagTRange[1] - lagTRange[0]
1813 Ts = lagTRange[1] - lagTRange[0]
1814 velW = -_lambda*phase/(4*math.pi*Ts)
1814 velW = -_lambda*phase/(4*math.pi*Ts)
1815
1815
1816 return velW
1816 return velW
1817
1817
1818 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1818 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1819 nPairs = tau1.shape[0]
1819 nPairs = tau1.shape[0]
1820 nHeights = tau1.shape[1]
1820 nHeights = tau1.shape[1]
1821 vel = numpy.zeros((nPairs,3,nHeights))
1821 vel = numpy.zeros((nPairs,3,nHeights))
1822 dist1 = numpy.reshape(dist, (dist.size,1))
1822 dist1 = numpy.reshape(dist, (dist.size,1))
1823
1823
1824 angCos = numpy.cos(ang)
1824 angCos = numpy.cos(ang)
1825 angSin = numpy.sin(ang)
1825 angSin = numpy.sin(ang)
1826
1826
1827 vel0 = dist1*tau1/(2*tau2**2)
1827 vel0 = dist1*tau1/(2*tau2**2)
1828 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1828 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1829 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1829 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1830
1830
1831 ind = numpy.where(numpy.isinf(vel))
1831 ind = numpy.where(numpy.isinf(vel))
1832 vel[ind] = numpy.nan
1832 vel[ind] = numpy.nan
1833
1833
1834 return vel
1834 return vel
1835
1835
1836 # def __getPairsAutoCorr(self, pairsList, nChannels):
1836 # def __getPairsAutoCorr(self, pairsList, nChannels):
1837 #
1837 #
1838 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1838 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1839 #
1839 #
1840 # for l in range(len(pairsList)):
1840 # for l in range(len(pairsList)):
1841 # firstChannel = pairsList[l][0]
1841 # firstChannel = pairsList[l][0]
1842 # secondChannel = pairsList[l][1]
1842 # secondChannel = pairsList[l][1]
1843 #
1843 #
1844 # #Obteniendo pares de Autocorrelacion
1844 # #Obteniendo pares de Autocorrelacion
1845 # if firstChannel == secondChannel:
1845 # if firstChannel == secondChannel:
1846 # pairsAutoCorr[firstChannel] = int(l)
1846 # pairsAutoCorr[firstChannel] = int(l)
1847 #
1847 #
1848 # pairsAutoCorr = pairsAutoCorr.astype(int)
1848 # pairsAutoCorr = pairsAutoCorr.astype(int)
1849 #
1849 #
1850 # pairsCrossCorr = range(len(pairsList))
1850 # pairsCrossCorr = range(len(pairsList))
1851 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1851 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1852 #
1852 #
1853 # return pairsAutoCorr, pairsCrossCorr
1853 # return pairsAutoCorr, pairsCrossCorr
1854
1854
1855 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1855 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1856 def techniqueSA(self, kwargs):
1856 def techniqueSA(self, kwargs):
1857
1857
1858 """
1858 """
1859 Function that implements Spaced Antenna (SA) technique.
1859 Function that implements Spaced Antenna (SA) technique.
1860
1860
1861 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1861 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1862 Direction correction (if necessary), Ranges and SNR
1862 Direction correction (if necessary), Ranges and SNR
1863
1863
1864 Output: Winds estimation (Zonal, Meridional and Vertical)
1864 Output: Winds estimation (Zonal, Meridional and Vertical)
1865
1865
1866 Parameters affected: Winds
1866 Parameters affected: Winds
1867 """
1867 """
1868 position_x = kwargs['positionX']
1868 position_x = kwargs['positionX']
1869 position_y = kwargs['positionY']
1869 position_y = kwargs['positionY']
1870 azimuth = kwargs['azimuth']
1870 azimuth = kwargs['azimuth']
1871
1871
1872 if 'correctFactor' in kwargs:
1872 if 'correctFactor' in kwargs:
1873 correctFactor = kwargs['correctFactor']
1873 correctFactor = kwargs['correctFactor']
1874 else:
1874 else:
1875 correctFactor = 1
1875 correctFactor = 1
1876
1876
1877 groupList = kwargs['groupList']
1877 groupList = kwargs['groupList']
1878 pairs_ccf = groupList[1]
1878 pairs_ccf = groupList[1]
1879 tau = kwargs['tau']
1879 tau = kwargs['tau']
1880 _lambda = kwargs['_lambda']
1880 _lambda = kwargs['_lambda']
1881
1881
1882 #Cross Correlation pairs obtained
1882 #Cross Correlation pairs obtained
1883 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1883 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1884 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1884 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1885 # pairsSelArray = numpy.array(pairsSelected)
1885 # pairsSelArray = numpy.array(pairsSelected)
1886 # pairs = []
1886 # pairs = []
1887 #
1887 #
1888 # #Wind estimation pairs obtained
1888 # #Wind estimation pairs obtained
1889 # for i in range(pairsSelArray.shape[0]/2):
1889 # for i in range(pairsSelArray.shape[0]/2):
1890 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1890 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1891 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1891 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1892 # pairs.append((ind1,ind2))
1892 # pairs.append((ind1,ind2))
1893
1893
1894 indtau = tau.shape[0]/2
1894 indtau = tau.shape[0]/2
1895 tau1 = tau[:indtau,:]
1895 tau1 = tau[:indtau,:]
1896 tau2 = tau[indtau:-1,:]
1896 tau2 = tau[indtau:-1,:]
1897 # tau1 = tau1[pairs,:]
1897 # tau1 = tau1[pairs,:]
1898 # tau2 = tau2[pairs,:]
1898 # tau2 = tau2[pairs,:]
1899 phase1 = tau[-1,:]
1899 phase1 = tau[-1,:]
1900
1900
1901 #---------------------------------------------------------------------
1901 #---------------------------------------------------------------------
1902 #Metodo Directo
1902 #Metodo Directo
1903 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1903 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1904 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1904 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1905 winds = stats.nanmean(winds, axis=0)
1905 winds = stats.nanmean(winds, axis=0)
1906 #---------------------------------------------------------------------
1906 #---------------------------------------------------------------------
1907 #Metodo General
1907 #Metodo General
1908 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
1908 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
1909 # #Calculo Coeficientes de Funcion de Correlacion
1909 # #Calculo Coeficientes de Funcion de Correlacion
1910 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
1910 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
1911 # #Calculo de Velocidades
1911 # #Calculo de Velocidades
1912 # winds = self.calculateVelUV(F,G,A,B,H)
1912 # winds = self.calculateVelUV(F,G,A,B,H)
1913
1913
1914 #---------------------------------------------------------------------
1914 #---------------------------------------------------------------------
1915 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
1915 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
1916 winds = correctFactor*winds
1916 winds = correctFactor*winds
1917 return winds
1917 return winds
1918
1918
1919 def __checkTime(self, currentTime, paramInterval, outputInterval):
1919 def __checkTime(self, currentTime, paramInterval, outputInterval):
1920
1920
1921 dataTime = currentTime + paramInterval
1921 dataTime = currentTime + paramInterval
1922 deltaTime = dataTime - self.__initime
1922 deltaTime = dataTime - self.__initime
1923
1923
1924 if deltaTime >= outputInterval or deltaTime < 0:
1924 if deltaTime >= outputInterval or deltaTime < 0:
1925 self.__dataReady = True
1925 self.__dataReady = True
1926 return
1926 return
1927
1927
1928 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
1928 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
1929 '''
1929 '''
1930 Function that implements winds estimation technique with detected meteors.
1930 Function that implements winds estimation technique with detected meteors.
1931
1931
1932 Input: Detected meteors, Minimum meteor quantity to wind estimation
1932 Input: Detected meteors, Minimum meteor quantity to wind estimation
1933
1933
1934 Output: Winds estimation (Zonal and Meridional)
1934 Output: Winds estimation (Zonal and Meridional)
1935
1935
1936 Parameters affected: Winds
1936 Parameters affected: Winds
1937 '''
1937 '''
1938 #Settings
1938 #Settings
1939 nInt = (heightMax - heightMin)/2
1939 nInt = (heightMax - heightMin)/2
1940 nInt = int(nInt)
1940 nInt = int(nInt)
1941 winds = numpy.zeros((2,nInt))*numpy.nan
1941 winds = numpy.zeros((2,nInt))*numpy.nan
1942
1942
1943 #Filter errors
1943 #Filter errors
1944 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
1944 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
1945 finalMeteor = arrayMeteor[error,:]
1945 finalMeteor = arrayMeteor[error,:]
1946
1946
1947 #Meteor Histogram
1947 #Meteor Histogram
1948 finalHeights = finalMeteor[:,2]
1948 finalHeights = finalMeteor[:,2]
1949 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
1949 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
1950 nMeteorsPerI = hist[0]
1950 nMeteorsPerI = hist[0]
1951 heightPerI = hist[1]
1951 heightPerI = hist[1]
1952
1952
1953 #Sort of meteors
1953 #Sort of meteors
1954 indSort = finalHeights.argsort()
1954 indSort = finalHeights.argsort()
1955 finalMeteor2 = finalMeteor[indSort,:]
1955 finalMeteor2 = finalMeteor[indSort,:]
1956
1956
1957 # Calculating winds
1957 # Calculating winds
1958 ind1 = 0
1958 ind1 = 0
1959 ind2 = 0
1959 ind2 = 0
1960
1960
1961 for i in range(nInt):
1961 for i in range(nInt):
1962 nMet = nMeteorsPerI[i]
1962 nMet = nMeteorsPerI[i]
1963 ind1 = ind2
1963 ind1 = ind2
1964 ind2 = ind1 + nMet
1964 ind2 = ind1 + nMet
1965
1965
1966 meteorAux = finalMeteor2[ind1:ind2,:]
1966 meteorAux = finalMeteor2[ind1:ind2,:]
1967
1967
1968 if meteorAux.shape[0] >= meteorThresh:
1968 if meteorAux.shape[0] >= meteorThresh:
1969 vel = meteorAux[:, 6]
1969 vel = meteorAux[:, 6]
1970 zen = meteorAux[:, 4]*numpy.pi/180
1970 zen = meteorAux[:, 4]*numpy.pi/180
1971 azim = meteorAux[:, 3]*numpy.pi/180
1971 azim = meteorAux[:, 3]*numpy.pi/180
1972
1972
1973 n = numpy.cos(zen)
1973 n = numpy.cos(zen)
1974 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
1974 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
1975 # l = m*numpy.tan(azim)
1975 # l = m*numpy.tan(azim)
1976 l = numpy.sin(zen)*numpy.sin(azim)
1976 l = numpy.sin(zen)*numpy.sin(azim)
1977 m = numpy.sin(zen)*numpy.cos(azim)
1977 m = numpy.sin(zen)*numpy.cos(azim)
1978
1978
1979 A = numpy.vstack((l, m)).transpose()
1979 A = numpy.vstack((l, m)).transpose()
1980 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
1980 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
1981 windsAux = numpy.dot(A1, vel)
1981 windsAux = numpy.dot(A1, vel)
1982
1982
1983 winds[0,i] = windsAux[0]
1983 winds[0,i] = windsAux[0]
1984 winds[1,i] = windsAux[1]
1984 winds[1,i] = windsAux[1]
1985
1985
1986 return winds, heightPerI[:-1]
1986 return winds, heightPerI[:-1]
1987
1987
1988 def techniqueNSM_SA(self, **kwargs):
1988 def techniqueNSM_SA(self, **kwargs):
1989 metArray = kwargs['metArray']
1989 metArray = kwargs['metArray']
1990 heightList = kwargs['heightList']
1990 heightList = kwargs['heightList']
1991 timeList = kwargs['timeList']
1991 timeList = kwargs['timeList']
1992
1992
1993 rx_location = kwargs['rx_location']
1993 rx_location = kwargs['rx_location']
1994 groupList = kwargs['groupList']
1994 groupList = kwargs['groupList']
1995 azimuth = kwargs['azimuth']
1995 azimuth = kwargs['azimuth']
1996 dfactor = kwargs['dfactor']
1996 dfactor = kwargs['dfactor']
1997 k = kwargs['k']
1997 k = kwargs['k']
1998
1998
1999 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
1999 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
2000 d = dist*dfactor
2000 d = dist*dfactor
2001 #Phase calculation
2001 #Phase calculation
2002 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
2002 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
2003
2003
2004 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
2004 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
2005
2005
2006 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2006 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2007 azimuth1 = azimuth1*numpy.pi/180
2007 azimuth1 = azimuth1*numpy.pi/180
2008
2008
2009 for i in range(heightList.size):
2009 for i in range(heightList.size):
2010 h = heightList[i]
2010 h = heightList[i]
2011 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
2011 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
2012 metHeight = metArray1[indH,:]
2012 metHeight = metArray1[indH,:]
2013 if metHeight.shape[0] >= 2:
2013 if metHeight.shape[0] >= 2:
2014 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
2014 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
2015 iazim = metHeight[:,1].astype(int)
2015 iazim = metHeight[:,1].astype(int)
2016 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
2016 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
2017 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
2017 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
2018 A = numpy.asmatrix(A)
2018 A = numpy.asmatrix(A)
2019 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
2019 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
2020 velHor = numpy.dot(A1,velAux)
2020 velHor = numpy.dot(A1,velAux)
2021
2021
2022 velEst[i,:] = numpy.squeeze(velHor)
2022 velEst[i,:] = numpy.squeeze(velHor)
2023 return velEst
2023 return velEst
2024
2024
2025 def __getPhaseSlope(self, metArray, heightList, timeList):
2025 def __getPhaseSlope(self, metArray, heightList, timeList):
2026 meteorList = []
2026 meteorList = []
2027 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
2027 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
2028 #Putting back together the meteor matrix
2028 #Putting back together the meteor matrix
2029 utctime = metArray[:,0]
2029 utctime = metArray[:,0]
2030 uniqueTime = numpy.unique(utctime)
2030 uniqueTime = numpy.unique(utctime)
2031
2031
2032 phaseDerThresh = 0.5
2032 phaseDerThresh = 0.5
2033 ippSeconds = timeList[1] - timeList[0]
2033 ippSeconds = timeList[1] - timeList[0]
2034 sec = numpy.where(timeList>1)[0][0]
2034 sec = numpy.where(timeList>1)[0][0]
2035 nPairs = metArray.shape[1] - 6
2035 nPairs = metArray.shape[1] - 6
2036 nHeights = len(heightList)
2036 nHeights = len(heightList)
2037
2037
2038 for t in uniqueTime:
2038 for t in uniqueTime:
2039 metArray1 = metArray[utctime==t,:]
2039 metArray1 = metArray[utctime==t,:]
2040 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
2040 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
2041 tmet = metArray1[:,1].astype(int)
2041 tmet = metArray1[:,1].astype(int)
2042 hmet = metArray1[:,2].astype(int)
2042 hmet = metArray1[:,2].astype(int)
2043
2043
2044 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
2044 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
2045 metPhase[:,:] = numpy.nan
2045 metPhase[:,:] = numpy.nan
2046 metPhase[:,hmet,tmet] = metArray1[:,6:].T
2046 metPhase[:,hmet,tmet] = metArray1[:,6:].T
2047
2047
2048 #Delete short trails
2048 #Delete short trails
2049 metBool = ~numpy.isnan(metPhase[0,:,:])
2049 metBool = ~numpy.isnan(metPhase[0,:,:])
2050 heightVect = numpy.sum(metBool, axis = 1)
2050 heightVect = numpy.sum(metBool, axis = 1)
2051 metBool[heightVect<sec,:] = False
2051 metBool[heightVect<sec,:] = False
2052 metPhase[:,heightVect<sec,:] = numpy.nan
2052 metPhase[:,heightVect<sec,:] = numpy.nan
2053
2053
2054 #Derivative
2054 #Derivative
2055 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2055 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2056 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2056 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2057 metPhase[phDerAux] = numpy.nan
2057 metPhase[phDerAux] = numpy.nan
2058
2058
2059 #--------------------------METEOR DETECTION -----------------------------------------
2059 #--------------------------METEOR DETECTION -----------------------------------------
2060 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2060 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2061
2061
2062 for p in numpy.arange(nPairs):
2062 for p in numpy.arange(nPairs):
2063 phase = metPhase[p,:,:]
2063 phase = metPhase[p,:,:]
2064 phDer = metDer[p,:,:]
2064 phDer = metDer[p,:,:]
2065
2065
2066 for h in indMet:
2066 for h in indMet:
2067 height = heightList[h]
2067 height = heightList[h]
2068 phase1 = phase[h,:] #82
2068 phase1 = phase[h,:] #82
2069 phDer1 = phDer[h,:]
2069 phDer1 = phDer[h,:]
2070
2070
2071 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2071 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2072
2072
2073 indValid = numpy.where(~numpy.isnan(phase1))[0]
2073 indValid = numpy.where(~numpy.isnan(phase1))[0]
2074 initMet = indValid[0]
2074 initMet = indValid[0]
2075 endMet = 0
2075 endMet = 0
2076
2076
2077 for i in range(len(indValid)-1):
2077 for i in range(len(indValid)-1):
2078
2078
2079 #Time difference
2079 #Time difference
2080 inow = indValid[i]
2080 inow = indValid[i]
2081 inext = indValid[i+1]
2081 inext = indValid[i+1]
2082 idiff = inext - inow
2082 idiff = inext - inow
2083 #Phase difference
2083 #Phase difference
2084 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2084 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2085
2085
2086 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2086 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2087 sizeTrail = inow - initMet + 1
2087 sizeTrail = inow - initMet + 1
2088 if sizeTrail>3*sec: #Too short meteors
2088 if sizeTrail>3*sec: #Too short meteors
2089 x = numpy.arange(initMet,inow+1)*ippSeconds
2089 x = numpy.arange(initMet,inow+1)*ippSeconds
2090 y = phase1[initMet:inow+1]
2090 y = phase1[initMet:inow+1]
2091 ynnan = ~numpy.isnan(y)
2091 ynnan = ~numpy.isnan(y)
2092 x = x[ynnan]
2092 x = x[ynnan]
2093 y = y[ynnan]
2093 y = y[ynnan]
2094 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
2094 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
2095 ylin = x*slope + intercept
2095 ylin = x*slope + intercept
2096 rsq = r_value**2
2096 rsq = r_value**2
2097 if rsq > 0.5:
2097 if rsq > 0.5:
2098 vel = slope#*height*1000/(k*d)
2098 vel = slope#*height*1000/(k*d)
2099 estAux = numpy.array([utctime,p,height, vel, rsq])
2099 estAux = numpy.array([utctime,p,height, vel, rsq])
2100 meteorList.append(estAux)
2100 meteorList.append(estAux)
2101 initMet = inext
2101 initMet = inext
2102 metArray2 = numpy.array(meteorList)
2102 metArray2 = numpy.array(meteorList)
2103
2103
2104 return metArray2
2104 return metArray2
2105
2105
2106 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2106 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2107
2107
2108 azimuth1 = numpy.zeros(len(pairslist))
2108 azimuth1 = numpy.zeros(len(pairslist))
2109 dist = numpy.zeros(len(pairslist))
2109 dist = numpy.zeros(len(pairslist))
2110
2110
2111 for i in range(len(rx_location)):
2111 for i in range(len(rx_location)):
2112 ch0 = pairslist[i][0]
2112 ch0 = pairslist[i][0]
2113 ch1 = pairslist[i][1]
2113 ch1 = pairslist[i][1]
2114
2114
2115 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2115 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2116 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2116 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2117 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2117 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2118 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2118 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2119
2119
2120 azimuth1 -= azimuth0
2120 azimuth1 -= azimuth0
2121 return azimuth1, dist
2121 return azimuth1, dist
2122
2122
2123 def techniqueNSM_DBS(self, **kwargs):
2123 def techniqueNSM_DBS(self, **kwargs):
2124 metArray = kwargs['metArray']
2124 metArray = kwargs['metArray']
2125 heightList = kwargs['heightList']
2125 heightList = kwargs['heightList']
2126 timeList = kwargs['timeList']
2126 timeList = kwargs['timeList']
2127 azimuth = kwargs['azimuth']
2127 azimuth = kwargs['azimuth']
2128 theta_x = numpy.array(kwargs['theta_x'])
2128 theta_x = numpy.array(kwargs['theta_x'])
2129 theta_y = numpy.array(kwargs['theta_y'])
2129 theta_y = numpy.array(kwargs['theta_y'])
2130
2130
2131 utctime = metArray[:,0]
2131 utctime = metArray[:,0]
2132 cmet = metArray[:,1].astype(int)
2132 cmet = metArray[:,1].astype(int)
2133 hmet = metArray[:,3].astype(int)
2133 hmet = metArray[:,3].astype(int)
2134 SNRmet = metArray[:,4]
2134 SNRmet = metArray[:,4]
2135 vmet = metArray[:,5]
2135 vmet = metArray[:,5]
2136 spcmet = metArray[:,6]
2136 spcmet = metArray[:,6]
2137
2137
2138 nChan = numpy.max(cmet) + 1
2138 nChan = numpy.max(cmet) + 1
2139 nHeights = len(heightList)
2139 nHeights = len(heightList)
2140
2140
2141 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
2141 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
2142 hmet = heightList[hmet]
2142 hmet = heightList[hmet]
2143 h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights
2143 h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights
2144
2144
2145 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2145 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2146
2146
2147 for i in range(nHeights - 1):
2147 for i in range(nHeights - 1):
2148 hmin = heightList[i]
2148 hmin = heightList[i]
2149 hmax = heightList[i + 1]
2149 hmax = heightList[i + 1]
2150
2150
2151 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2151 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2152 indthisH = numpy.where(thisH)
2152 indthisH = numpy.where(thisH)
2153
2153
2154 if numpy.size(indthisH) > 3:
2154 if numpy.size(indthisH) > 3:
2155
2155
2156 vel_aux = vmet[thisH]
2156 vel_aux = vmet[thisH]
2157 chan_aux = cmet[thisH]
2157 chan_aux = cmet[thisH]
2158 cosu_aux = dir_cosu[chan_aux]
2158 cosu_aux = dir_cosu[chan_aux]
2159 cosv_aux = dir_cosv[chan_aux]
2159 cosv_aux = dir_cosv[chan_aux]
2160 cosw_aux = dir_cosw[chan_aux]
2160 cosw_aux = dir_cosw[chan_aux]
2161
2161
2162 nch = numpy.size(numpy.unique(chan_aux))
2162 nch = numpy.size(numpy.unique(chan_aux))
2163 if nch > 1:
2163 if nch > 1:
2164 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2164 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2165 velEst[i,:] = numpy.dot(A,vel_aux)
2165 velEst[i,:] = numpy.dot(A,vel_aux)
2166
2166
2167 return velEst
2167 return velEst
2168
2168
2169 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
2169 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
2170
2170
2171 param = dataOut.data_param
2171 param = dataOut.data_param
2172 if dataOut.abscissaList != None:
2172 if dataOut.abscissaList != None:
2173 absc = dataOut.abscissaList[:-1]
2173 absc = dataOut.abscissaList[:-1]
2174 # noise = dataOut.noise
2174 # noise = dataOut.noise
2175 heightList = dataOut.heightList
2175 heightList = dataOut.heightList
2176 SNR = dataOut.data_snr
2176 SNR = dataOut.data_snr
2177
2177
2178 if technique == 'DBS':
2178 if technique == 'DBS':
2179
2179
2180 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2180 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2181 kwargs['heightList'] = heightList
2181 kwargs['heightList'] = heightList
2182 kwargs['SNR'] = SNR
2182 kwargs['SNR'] = SNR
2183
2183
2184 dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function
2184 dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function
2185 dataOut.utctimeInit = dataOut.utctime
2185 dataOut.utctimeInit = dataOut.utctime
2186 dataOut.outputInterval = dataOut.paramInterval
2186 dataOut.outputInterval = dataOut.paramInterval
2187
2187
2188 elif technique == 'SA':
2188 elif technique == 'SA':
2189
2189
2190 #Parameters
2190 #Parameters
2191 # position_x = kwargs['positionX']
2191 # position_x = kwargs['positionX']
2192 # position_y = kwargs['positionY']
2192 # position_y = kwargs['positionY']
2193 # azimuth = kwargs['azimuth']
2193 # azimuth = kwargs['azimuth']
2194 #
2194 #
2195 # if kwargs.has_key('crosspairsList'):
2195 # if kwargs.has_key('crosspairsList'):
2196 # pairs = kwargs['crosspairsList']
2196 # pairs = kwargs['crosspairsList']
2197 # else:
2197 # else:
2198 # pairs = None
2198 # pairs = None
2199 #
2199 #
2200 # if kwargs.has_key('correctFactor'):
2200 # if kwargs.has_key('correctFactor'):
2201 # correctFactor = kwargs['correctFactor']
2201 # correctFactor = kwargs['correctFactor']
2202 # else:
2202 # else:
2203 # correctFactor = 1
2203 # correctFactor = 1
2204
2204
2205 # tau = dataOut.data_param
2205 # tau = dataOut.data_param
2206 # _lambda = dataOut.C/dataOut.frequency
2206 # _lambda = dataOut.C/dataOut.frequency
2207 # pairsList = dataOut.groupList
2207 # pairsList = dataOut.groupList
2208 # nChannels = dataOut.nChannels
2208 # nChannels = dataOut.nChannels
2209
2209
2210 kwargs['groupList'] = dataOut.groupList
2210 kwargs['groupList'] = dataOut.groupList
2211 kwargs['tau'] = dataOut.data_param
2211 kwargs['tau'] = dataOut.data_param
2212 kwargs['_lambda'] = dataOut.C/dataOut.frequency
2212 kwargs['_lambda'] = dataOut.C/dataOut.frequency
2213 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
2213 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
2214 dataOut.data_output = self.techniqueSA(kwargs)
2214 dataOut.data_output = self.techniqueSA(kwargs)
2215 dataOut.utctimeInit = dataOut.utctime
2215 dataOut.utctimeInit = dataOut.utctime
2216 dataOut.outputInterval = dataOut.timeInterval
2216 dataOut.outputInterval = dataOut.timeInterval
2217
2217
2218 elif technique == 'Meteors':
2218 elif technique == 'Meteors':
2219 dataOut.flagNoData = True
2219 dataOut.flagNoData = True
2220 self.__dataReady = False
2220 self.__dataReady = False
2221
2221
2222 if 'nHours' in kwargs:
2222 if 'nHours' in kwargs:
2223 nHours = kwargs['nHours']
2223 nHours = kwargs['nHours']
2224 else:
2224 else:
2225 nHours = 1
2225 nHours = 1
2226
2226
2227 if 'meteorsPerBin' in kwargs:
2227 if 'meteorsPerBin' in kwargs:
2228 meteorThresh = kwargs['meteorsPerBin']
2228 meteorThresh = kwargs['meteorsPerBin']
2229 else:
2229 else:
2230 meteorThresh = 6
2230 meteorThresh = 6
2231
2231
2232 if 'hmin' in kwargs:
2232 if 'hmin' in kwargs:
2233 hmin = kwargs['hmin']
2233 hmin = kwargs['hmin']
2234 else: hmin = 70
2234 else: hmin = 70
2235 if 'hmax' in kwargs:
2235 if 'hmax' in kwargs:
2236 hmax = kwargs['hmax']
2236 hmax = kwargs['hmax']
2237 else: hmax = 110
2237 else: hmax = 110
2238
2238
2239 dataOut.outputInterval = nHours*3600
2239 dataOut.outputInterval = nHours*3600
2240
2240
2241 if self.__isConfig == False:
2241 if self.__isConfig == False:
2242 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2242 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2243 #Get Initial LTC time
2243 #Get Initial LTC time
2244 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2244 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2245 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2245 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2246
2246
2247 self.__isConfig = True
2247 self.__isConfig = True
2248
2248
2249 if self.__buffer is None:
2249 if self.__buffer is None:
2250 self.__buffer = dataOut.data_param
2250 self.__buffer = dataOut.data_param
2251 self.__firstdata = copy.copy(dataOut)
2251 self.__firstdata = copy.copy(dataOut)
2252
2252
2253 else:
2253 else:
2254 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2254 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2255
2255
2256 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2256 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2257
2257
2258 if self.__dataReady:
2258 if self.__dataReady:
2259 dataOut.utctimeInit = self.__initime
2259 dataOut.utctimeInit = self.__initime
2260
2260
2261 self.__initime += dataOut.outputInterval #to erase time offset
2261 self.__initime += dataOut.outputInterval #to erase time offset
2262
2262
2263 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2263 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2264 dataOut.flagNoData = False
2264 dataOut.flagNoData = False
2265 self.__buffer = None
2265 self.__buffer = None
2266
2266
2267 elif technique == 'Meteors1':
2267 elif technique == 'Meteors1':
2268 dataOut.flagNoData = True
2268 dataOut.flagNoData = True
2269 self.__dataReady = False
2269 self.__dataReady = False
2270
2270
2271 if 'nMins' in kwargs:
2271 if 'nMins' in kwargs:
2272 nMins = kwargs['nMins']
2272 nMins = kwargs['nMins']
2273 else: nMins = 20
2273 else: nMins = 20
2274 if 'rx_location' in kwargs:
2274 if 'rx_location' in kwargs:
2275 rx_location = kwargs['rx_location']
2275 rx_location = kwargs['rx_location']
2276 else: rx_location = [(0,1),(1,1),(1,0)]
2276 else: rx_location = [(0,1),(1,1),(1,0)]
2277 if 'azimuth' in kwargs:
2277 if 'azimuth' in kwargs:
2278 azimuth = kwargs['azimuth']
2278 azimuth = kwargs['azimuth']
2279 else: azimuth = 51.06
2279 else: azimuth = 51.06
2280 if 'dfactor' in kwargs:
2280 if 'dfactor' in kwargs:
2281 dfactor = kwargs['dfactor']
2281 dfactor = kwargs['dfactor']
2282 if 'mode' in kwargs:
2282 if 'mode' in kwargs:
2283 mode = kwargs['mode']
2283 mode = kwargs['mode']
2284 if 'theta_x' in kwargs:
2284 if 'theta_x' in kwargs:
2285 theta_x = kwargs['theta_x']
2285 theta_x = kwargs['theta_x']
2286 if 'theta_y' in kwargs:
2286 if 'theta_y' in kwargs:
2287 theta_y = kwargs['theta_y']
2287 theta_y = kwargs['theta_y']
2288 else: mode = 'SA'
2288 else: mode = 'SA'
2289
2289
2290 #Borrar luego esto
2290 #Borrar luego esto
2291 if dataOut.groupList is None:
2291 if dataOut.groupList is None:
2292 dataOut.groupList = [(0,1),(0,2),(1,2)]
2292 dataOut.groupList = [(0,1),(0,2),(1,2)]
2293 groupList = dataOut.groupList
2293 groupList = dataOut.groupList
2294 C = 3e8
2294 C = 3e8
2295 freq = 50e6
2295 freq = 50e6
2296 lamb = C/freq
2296 lamb = C/freq
2297 k = 2*numpy.pi/lamb
2297 k = 2*numpy.pi/lamb
2298
2298
2299 timeList = dataOut.abscissaList
2299 timeList = dataOut.abscissaList
2300 heightList = dataOut.heightList
2300 heightList = dataOut.heightList
2301
2301
2302 if self.__isConfig == False:
2302 if self.__isConfig == False:
2303 dataOut.outputInterval = nMins*60
2303 dataOut.outputInterval = nMins*60
2304 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2304 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2305 #Get Initial LTC time
2305 #Get Initial LTC time
2306 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2306 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2307 minuteAux = initime.minute
2307 minuteAux = initime.minute
2308 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
2308 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
2309 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2309 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2310
2310
2311 self.__isConfig = True
2311 self.__isConfig = True
2312
2312
2313 if self.__buffer is None:
2313 if self.__buffer is None:
2314 self.__buffer = dataOut.data_param
2314 self.__buffer = dataOut.data_param
2315 self.__firstdata = copy.copy(dataOut)
2315 self.__firstdata = copy.copy(dataOut)
2316
2316
2317 else:
2317 else:
2318 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2318 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2319
2319
2320 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2320 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2321
2321
2322 if self.__dataReady:
2322 if self.__dataReady:
2323 dataOut.utctimeInit = self.__initime
2323 dataOut.utctimeInit = self.__initime
2324 self.__initime += dataOut.outputInterval #to erase time offset
2324 self.__initime += dataOut.outputInterval #to erase time offset
2325
2325
2326 metArray = self.__buffer
2326 metArray = self.__buffer
2327 if mode == 'SA':
2327 if mode == 'SA':
2328 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
2328 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
2329 elif mode == 'DBS':
2329 elif mode == 'DBS':
2330 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y)
2330 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y)
2331 dataOut.data_output = dataOut.data_output.T
2331 dataOut.data_output = dataOut.data_output.T
2332 dataOut.flagNoData = False
2332 dataOut.flagNoData = False
2333 self.__buffer = None
2333 self.__buffer = None
2334
2334
2335 return
2335 return
2336
2336
2337 class EWDriftsEstimation(Operation):
2337 class EWDriftsEstimation(Operation):
2338
2338
2339 def __init__(self):
2339 def __init__(self):
2340 Operation.__init__(self)
2340 Operation.__init__(self)
2341
2341
2342 def __correctValues(self, heiRang, phi, velRadial, SNR):
2342 def __correctValues(self, heiRang, phi, velRadial, SNR):
2343 listPhi = phi.tolist()
2343 listPhi = phi.tolist()
2344 maxid = listPhi.index(max(listPhi))
2344 maxid = listPhi.index(max(listPhi))
2345 minid = listPhi.index(min(listPhi))
2345 minid = listPhi.index(min(listPhi))
2346
2346
2347 rango = list(range(len(phi)))
2347 rango = list(range(len(phi)))
2348 # rango = numpy.delete(rango,maxid)
2348 # rango = numpy.delete(rango,maxid)
2349
2349
2350 heiRang1 = heiRang*math.cos(phi[maxid])
2350 heiRang1 = heiRang*math.cos(phi[maxid])
2351 heiRangAux = heiRang*math.cos(phi[minid])
2351 heiRangAux = heiRang*math.cos(phi[minid])
2352 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2352 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2353 heiRang1 = numpy.delete(heiRang1,indOut)
2353 heiRang1 = numpy.delete(heiRang1,indOut)
2354
2354
2355 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2355 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2356 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2356 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2357
2357
2358 for i in rango:
2358 for i in rango:
2359 x = heiRang*math.cos(phi[i])
2359 x = heiRang*math.cos(phi[i])
2360 y1 = velRadial[i,:]
2360 y1 = velRadial[i,:]
2361 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2361 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2362
2362
2363 x1 = heiRang1
2363 x1 = heiRang1
2364 y11 = f1(x1)
2364 y11 = f1(x1)
2365
2365
2366 y2 = SNR[i,:]
2366 y2 = SNR[i,:]
2367 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2367 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2368 y21 = f2(x1)
2368 y21 = f2(x1)
2369
2369
2370 velRadial1[i,:] = y11
2370 velRadial1[i,:] = y11
2371 SNR1[i,:] = y21
2371 SNR1[i,:] = y21
2372
2372
2373 return heiRang1, velRadial1, SNR1
2373 return heiRang1, velRadial1, SNR1
2374
2374
2375 def run(self, dataOut, zenith, zenithCorrection):
2375 def run(self, dataOut, zenith, zenithCorrection):
2376 heiRang = dataOut.heightList
2376 heiRang = dataOut.heightList
2377 velRadial = dataOut.data_param[:,3,:]
2377 velRadial = dataOut.data_param[:,3,:]
2378 SNR = dataOut.data_snr
2378 SNR = dataOut.data_snr
2379
2379
2380 zenith = numpy.array(zenith)
2380 zenith = numpy.array(zenith)
2381 zenith -= zenithCorrection
2381 zenith -= zenithCorrection
2382 zenith *= numpy.pi/180
2382 zenith *= numpy.pi/180
2383
2383
2384 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2384 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2385
2385
2386 alp = zenith[0]
2386 alp = zenith[0]
2387 bet = zenith[1]
2387 bet = zenith[1]
2388
2388
2389 w_w = velRadial1[0,:]
2389 w_w = velRadial1[0,:]
2390 w_e = velRadial1[1,:]
2390 w_e = velRadial1[1,:]
2391
2391
2392 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2392 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2393 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2393 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2394
2394
2395 winds = numpy.vstack((u,w))
2395 winds = numpy.vstack((u,w))
2396
2396
2397 dataOut.heightList = heiRang1
2397 dataOut.heightList = heiRang1
2398 dataOut.data_output = winds
2398 dataOut.data_output = winds
2399 dataOut.data_snr = SNR1
2399 dataOut.data_snr = SNR1
2400
2400
2401 dataOut.utctimeInit = dataOut.utctime
2401 dataOut.utctimeInit = dataOut.utctime
2402 dataOut.outputInterval = dataOut.timeInterval
2402 dataOut.outputInterval = dataOut.timeInterval
2403 return
2403 return
2404
2404
2405 #--------------- Non Specular Meteor ----------------
2405 #--------------- Non Specular Meteor ----------------
2406
2406
2407 class NonSpecularMeteorDetection(Operation):
2407 class NonSpecularMeteorDetection(Operation):
2408
2408
2409 def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
2409 def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
2410 data_acf = dataOut.data_pre[0]
2410 data_acf = dataOut.data_pre[0]
2411 data_ccf = dataOut.data_pre[1]
2411 data_ccf = dataOut.data_pre[1]
2412 pairsList = dataOut.groupList[1]
2412 pairsList = dataOut.groupList[1]
2413
2413
2414 lamb = dataOut.C/dataOut.frequency
2414 lamb = dataOut.C/dataOut.frequency
2415 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2415 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2416 paramInterval = dataOut.paramInterval
2416 paramInterval = dataOut.paramInterval
2417
2417
2418 nChannels = data_acf.shape[0]
2418 nChannels = data_acf.shape[0]
2419 nLags = data_acf.shape[1]
2419 nLags = data_acf.shape[1]
2420 nProfiles = data_acf.shape[2]
2420 nProfiles = data_acf.shape[2]
2421 nHeights = dataOut.nHeights
2421 nHeights = dataOut.nHeights
2422 nCohInt = dataOut.nCohInt
2422 nCohInt = dataOut.nCohInt
2423 sec = numpy.round(nProfiles/dataOut.paramInterval)
2423 sec = numpy.round(nProfiles/dataOut.paramInterval)
2424 heightList = dataOut.heightList
2424 heightList = dataOut.heightList
2425 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2425 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2426 utctime = dataOut.utctime
2426 utctime = dataOut.utctime
2427
2427
2428 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2428 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2429
2429
2430 #------------------------ SNR --------------------------------------
2430 #------------------------ SNR --------------------------------------
2431 power = data_acf[:,0,:,:].real
2431 power = data_acf[:,0,:,:].real
2432 noise = numpy.zeros(nChannels)
2432 noise = numpy.zeros(nChannels)
2433 SNR = numpy.zeros(power.shape)
2433 SNR = numpy.zeros(power.shape)
2434 for i in range(nChannels):
2434 for i in range(nChannels):
2435 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
2435 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
2436 SNR[i] = (power[i]-noise[i])/noise[i]
2436 SNR[i] = (power[i]-noise[i])/noise[i]
2437 SNRm = numpy.nanmean(SNR, axis = 0)
2437 SNRm = numpy.nanmean(SNR, axis = 0)
2438 SNRdB = 10*numpy.log10(SNR)
2438 SNRdB = 10*numpy.log10(SNR)
2439
2439
2440 if mode == 'SA':
2440 if mode == 'SA':
2441 dataOut.groupList = dataOut.groupList[1]
2441 dataOut.groupList = dataOut.groupList[1]
2442 nPairs = data_ccf.shape[0]
2442 nPairs = data_ccf.shape[0]
2443 #---------------------- Coherence and Phase --------------------------
2443 #---------------------- Coherence and Phase --------------------------
2444 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2444 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2445 # phase1 = numpy.copy(phase)
2445 # phase1 = numpy.copy(phase)
2446 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2446 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2447
2447
2448 for p in range(nPairs):
2448 for p in range(nPairs):
2449 ch0 = pairsList[p][0]
2449 ch0 = pairsList[p][0]
2450 ch1 = pairsList[p][1]
2450 ch1 = pairsList[p][1]
2451 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2451 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2452 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2452 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2453 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2453 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2454 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2454 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2455 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2455 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2456 coh = numpy.nanmax(coh1, axis = 0)
2456 coh = numpy.nanmax(coh1, axis = 0)
2457 # struc = numpy.ones((5,1))
2457 # struc = numpy.ones((5,1))
2458 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2458 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2459 #---------------------- Radial Velocity ----------------------------
2459 #---------------------- Radial Velocity ----------------------------
2460 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2460 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2461 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2461 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2462
2462
2463 if allData:
2463 if allData:
2464 boolMetFin = ~numpy.isnan(SNRm)
2464 boolMetFin = ~numpy.isnan(SNRm)
2465 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2465 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2466 else:
2466 else:
2467 #------------------------ Meteor mask ---------------------------------
2467 #------------------------ Meteor mask ---------------------------------
2468 # #SNR mask
2468 # #SNR mask
2469 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2469 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2470 #
2470 #
2471 # #Erase small objects
2471 # #Erase small objects
2472 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2472 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2473 #
2473 #
2474 # auxEEJ = numpy.sum(boolMet1,axis=0)
2474 # auxEEJ = numpy.sum(boolMet1,axis=0)
2475 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2475 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2476 # indEEJ = numpy.where(indOver)[0]
2476 # indEEJ = numpy.where(indOver)[0]
2477 # indNEEJ = numpy.where(~indOver)[0]
2477 # indNEEJ = numpy.where(~indOver)[0]
2478 #
2478 #
2479 # boolMetFin = boolMet1
2479 # boolMetFin = boolMet1
2480 #
2480 #
2481 # if indEEJ.size > 0:
2481 # if indEEJ.size > 0:
2482 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2482 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2483 #
2483 #
2484 # boolMet2 = coh > cohThresh
2484 # boolMet2 = coh > cohThresh
2485 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2485 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2486 #
2486 #
2487 # #Final Meteor mask
2487 # #Final Meteor mask
2488 # boolMetFin = boolMet1|boolMet2
2488 # boolMetFin = boolMet1|boolMet2
2489
2489
2490 #Coherence mask
2490 #Coherence mask
2491 boolMet1 = coh > 0.75
2491 boolMet1 = coh > 0.75
2492 struc = numpy.ones((30,1))
2492 struc = numpy.ones((30,1))
2493 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2493 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2494
2494
2495 #Derivative mask
2495 #Derivative mask
2496 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2496 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2497 boolMet2 = derPhase < 0.2
2497 boolMet2 = derPhase < 0.2
2498 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
2498 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
2499 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
2499 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
2500 boolMet2 = ndimage.median_filter(boolMet2,size=5)
2500 boolMet2 = ndimage.median_filter(boolMet2,size=5)
2501 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
2501 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
2502 # #Final mask
2502 # #Final mask
2503 # boolMetFin = boolMet2
2503 # boolMetFin = boolMet2
2504 boolMetFin = boolMet1&boolMet2
2504 boolMetFin = boolMet1&boolMet2
2505 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
2505 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
2506 #Creating data_param
2506 #Creating data_param
2507 coordMet = numpy.where(boolMetFin)
2507 coordMet = numpy.where(boolMetFin)
2508
2508
2509 tmet = coordMet[0]
2509 tmet = coordMet[0]
2510 hmet = coordMet[1]
2510 hmet = coordMet[1]
2511
2511
2512 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2512 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2513 data_param[:,0] = utctime
2513 data_param[:,0] = utctime
2514 data_param[:,1] = tmet
2514 data_param[:,1] = tmet
2515 data_param[:,2] = hmet
2515 data_param[:,2] = hmet
2516 data_param[:,3] = SNRm[tmet,hmet]
2516 data_param[:,3] = SNRm[tmet,hmet]
2517 data_param[:,4] = velRad[tmet,hmet]
2517 data_param[:,4] = velRad[tmet,hmet]
2518 data_param[:,5] = coh[tmet,hmet]
2518 data_param[:,5] = coh[tmet,hmet]
2519 data_param[:,6:] = phase[:,tmet,hmet].T
2519 data_param[:,6:] = phase[:,tmet,hmet].T
2520
2520
2521 elif mode == 'DBS':
2521 elif mode == 'DBS':
2522 dataOut.groupList = numpy.arange(nChannels)
2522 dataOut.groupList = numpy.arange(nChannels)
2523
2523
2524 #Radial Velocities
2524 #Radial Velocities
2525 phase = numpy.angle(data_acf[:,1,:,:])
2525 phase = numpy.angle(data_acf[:,1,:,:])
2526 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2526 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2527 velRad = phase*lamb/(4*numpy.pi*tSamp)
2527 velRad = phase*lamb/(4*numpy.pi*tSamp)
2528
2528
2529 #Spectral width
2529 #Spectral width
2530 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2530 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2531 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
2531 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
2532 acf1 = data_acf[:,1,:,:]
2532 acf1 = data_acf[:,1,:,:]
2533 acf2 = data_acf[:,2,:,:]
2533 acf2 = data_acf[:,2,:,:]
2534
2534
2535 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
2535 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
2536 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
2536 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
2537 if allData:
2537 if allData:
2538 boolMetFin = ~numpy.isnan(SNRdB)
2538 boolMetFin = ~numpy.isnan(SNRdB)
2539 else:
2539 else:
2540 #SNR
2540 #SNR
2541 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2541 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2542 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2542 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2543
2543
2544 #Radial velocity
2544 #Radial velocity
2545 boolMet2 = numpy.abs(velRad) < 20
2545 boolMet2 = numpy.abs(velRad) < 20
2546 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2546 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2547
2547
2548 #Spectral Width
2548 #Spectral Width
2549 boolMet3 = spcWidth < 30
2549 boolMet3 = spcWidth < 30
2550 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2550 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2551 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2551 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2552 boolMetFin = boolMet1&boolMet2&boolMet3
2552 boolMetFin = boolMet1&boolMet2&boolMet3
2553
2553
2554 #Creating data_param
2554 #Creating data_param
2555 coordMet = numpy.where(boolMetFin)
2555 coordMet = numpy.where(boolMetFin)
2556
2556
2557 cmet = coordMet[0]
2557 cmet = coordMet[0]
2558 tmet = coordMet[1]
2558 tmet = coordMet[1]
2559 hmet = coordMet[2]
2559 hmet = coordMet[2]
2560
2560
2561 data_param = numpy.zeros((tmet.size, 7))
2561 data_param = numpy.zeros((tmet.size, 7))
2562 data_param[:,0] = utctime
2562 data_param[:,0] = utctime
2563 data_param[:,1] = cmet
2563 data_param[:,1] = cmet
2564 data_param[:,2] = tmet
2564 data_param[:,2] = tmet
2565 data_param[:,3] = hmet
2565 data_param[:,3] = hmet
2566 data_param[:,4] = SNR[cmet,tmet,hmet].T
2566 data_param[:,4] = SNR[cmet,tmet,hmet].T
2567 data_param[:,5] = velRad[cmet,tmet,hmet].T
2567 data_param[:,5] = velRad[cmet,tmet,hmet].T
2568 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2568 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2569
2569
2570 # self.dataOut.data_param = data_int
2570 # self.dataOut.data_param = data_int
2571 if len(data_param) == 0:
2571 if len(data_param) == 0:
2572 dataOut.flagNoData = True
2572 dataOut.flagNoData = True
2573 else:
2573 else:
2574 dataOut.data_param = data_param
2574 dataOut.data_param = data_param
2575
2575
2576 def __erase_small(self, binArray, threshX, threshY):
2576 def __erase_small(self, binArray, threshX, threshY):
2577 labarray, numfeat = ndimage.measurements.label(binArray)
2577 labarray, numfeat = ndimage.measurements.label(binArray)
2578 binArray1 = numpy.copy(binArray)
2578 binArray1 = numpy.copy(binArray)
2579
2579
2580 for i in range(1,numfeat + 1):
2580 for i in range(1,numfeat + 1):
2581 auxBin = (labarray==i)
2581 auxBin = (labarray==i)
2582 auxSize = auxBin.sum()
2582 auxSize = auxBin.sum()
2583
2583
2584 x,y = numpy.where(auxBin)
2584 x,y = numpy.where(auxBin)
2585 widthX = x.max() - x.min()
2585 widthX = x.max() - x.min()
2586 widthY = y.max() - y.min()
2586 widthY = y.max() - y.min()
2587
2587
2588 #width X: 3 seg -> 12.5*3
2588 #width X: 3 seg -> 12.5*3
2589 #width Y:
2589 #width Y:
2590
2590
2591 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2591 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2592 binArray1[auxBin] = False
2592 binArray1[auxBin] = False
2593
2593
2594 return binArray1
2594 return binArray1
2595
2595
2596 #--------------- Specular Meteor ----------------
2596 #--------------- Specular Meteor ----------------
2597
2597
2598 class SMDetection(Operation):
2598 class SMDetection(Operation):
2599 '''
2599 '''
2600 Function DetectMeteors()
2600 Function DetectMeteors()
2601 Project developed with paper:
2601 Project developed with paper:
2602 HOLDSWORTH ET AL. 2004
2602 HOLDSWORTH ET AL. 2004
2603
2603
2604 Input:
2604 Input:
2605 self.dataOut.data_pre
2605 self.dataOut.data_pre
2606
2606
2607 centerReceiverIndex: From the channels, which is the center receiver
2607 centerReceiverIndex: From the channels, which is the center receiver
2608
2608
2609 hei_ref: Height reference for the Beacon signal extraction
2609 hei_ref: Height reference for the Beacon signal extraction
2610 tauindex:
2610 tauindex:
2611 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2611 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2612
2612
2613 cohDetection: Whether to user Coherent detection or not
2613 cohDetection: Whether to user Coherent detection or not
2614 cohDet_timeStep: Coherent Detection calculation time step
2614 cohDet_timeStep: Coherent Detection calculation time step
2615 cohDet_thresh: Coherent Detection phase threshold to correct phases
2615 cohDet_thresh: Coherent Detection phase threshold to correct phases
2616
2616
2617 noise_timeStep: Noise calculation time step
2617 noise_timeStep: Noise calculation time step
2618 noise_multiple: Noise multiple to define signal threshold
2618 noise_multiple: Noise multiple to define signal threshold
2619
2619
2620 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2620 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2621 multDet_rangeLimit: Multiple Detection Removal range limit in km
2621 multDet_rangeLimit: Multiple Detection Removal range limit in km
2622
2622
2623 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2623 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2624 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2624 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2625
2625
2626 hmin: Minimum Height of the meteor to use it in the further wind estimations
2626 hmin: Minimum Height of the meteor to use it in the further wind estimations
2627 hmax: Maximum Height of the meteor to use it in the further wind estimations
2627 hmax: Maximum Height of the meteor to use it in the further wind estimations
2628 azimuth: Azimuth angle correction
2628 azimuth: Azimuth angle correction
2629
2629
2630 Affected:
2630 Affected:
2631 self.dataOut.data_param
2631 self.dataOut.data_param
2632
2632
2633 Rejection Criteria (Errors):
2633 Rejection Criteria (Errors):
2634 0: No error; analysis OK
2634 0: No error; analysis OK
2635 1: SNR < SNR threshold
2635 1: SNR < SNR threshold
2636 2: angle of arrival (AOA) ambiguously determined
2636 2: angle of arrival (AOA) ambiguously determined
2637 3: AOA estimate not feasible
2637 3: AOA estimate not feasible
2638 4: Large difference in AOAs obtained from different antenna baselines
2638 4: Large difference in AOAs obtained from different antenna baselines
2639 5: echo at start or end of time series
2639 5: echo at start or end of time series
2640 6: echo less than 5 examples long; too short for analysis
2640 6: echo less than 5 examples long; too short for analysis
2641 7: echo rise exceeds 0.3s
2641 7: echo rise exceeds 0.3s
2642 8: echo decay time less than twice rise time
2642 8: echo decay time less than twice rise time
2643 9: large power level before echo
2643 9: large power level before echo
2644 10: large power level after echo
2644 10: large power level after echo
2645 11: poor fit to amplitude for estimation of decay time
2645 11: poor fit to amplitude for estimation of decay time
2646 12: poor fit to CCF phase variation for estimation of radial drift velocity
2646 12: poor fit to CCF phase variation for estimation of radial drift velocity
2647 13: height unresolvable echo: not valid height within 70 to 110 km
2647 13: height unresolvable echo: not valid height within 70 to 110 km
2648 14: height ambiguous echo: more then one possible height within 70 to 110 km
2648 14: height ambiguous echo: more then one possible height within 70 to 110 km
2649 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2649 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2650 16: oscilatory echo, indicating event most likely not an underdense echo
2650 16: oscilatory echo, indicating event most likely not an underdense echo
2651
2651
2652 17: phase difference in meteor Reestimation
2652 17: phase difference in meteor Reestimation
2653
2653
2654 Data Storage:
2654 Data Storage:
2655 Meteors for Wind Estimation (8):
2655 Meteors for Wind Estimation (8):
2656 Utc Time | Range Height
2656 Utc Time | Range Height
2657 Azimuth Zenith errorCosDir
2657 Azimuth Zenith errorCosDir
2658 VelRad errorVelRad
2658 VelRad errorVelRad
2659 Phase0 Phase1 Phase2 Phase3
2659 Phase0 Phase1 Phase2 Phase3
2660 TypeError
2660 TypeError
2661
2661
2662 '''
2662 '''
2663
2663
2664 def run(self, dataOut, hei_ref = None, tauindex = 0,
2664 def run(self, dataOut, hei_ref = None, tauindex = 0,
2665 phaseOffsets = None,
2665 phaseOffsets = None,
2666 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2666 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2667 noise_timeStep = 4, noise_multiple = 4,
2667 noise_timeStep = 4, noise_multiple = 4,
2668 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2668 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2669 phaseThresh = 20, SNRThresh = 5,
2669 phaseThresh = 20, SNRThresh = 5,
2670 hmin = 50, hmax=150, azimuth = 0,
2670 hmin = 50, hmax=150, azimuth = 0,
2671 channelPositions = None) :
2671 channelPositions = None) :
2672
2672
2673
2673
2674 #Getting Pairslist
2674 #Getting Pairslist
2675 if channelPositions is None:
2675 if channelPositions is None:
2676 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2676 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2677 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2677 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2678 meteorOps = SMOperations()
2678 meteorOps = SMOperations()
2679 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2679 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2680 heiRang = dataOut.heightList
2680 heiRang = dataOut.heightList
2681 #Get Beacon signal - No Beacon signal anymore
2681 #Get Beacon signal - No Beacon signal anymore
2682 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2682 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2683 #
2683 #
2684 # if hei_ref != None:
2684 # if hei_ref != None:
2685 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2685 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2686 #
2686 #
2687
2687
2688
2688
2689 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2689 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2690 # see if the user put in pre defined phase shifts
2690 # see if the user put in pre defined phase shifts
2691 voltsPShift = dataOut.data_pre.copy()
2691 voltsPShift = dataOut.data_pre.copy()
2692
2692
2693 # if predefinedPhaseShifts != None:
2693 # if predefinedPhaseShifts != None:
2694 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2694 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2695 #
2695 #
2696 # # elif beaconPhaseShifts:
2696 # # elif beaconPhaseShifts:
2697 # # #get hardware phase shifts using beacon signal
2697 # # #get hardware phase shifts using beacon signal
2698 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2698 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2699 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2699 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2700 #
2700 #
2701 # else:
2701 # else:
2702 # hardwarePhaseShifts = numpy.zeros(5)
2702 # hardwarePhaseShifts = numpy.zeros(5)
2703 #
2703 #
2704 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2704 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2705 # for i in range(self.dataOut.data_pre.shape[0]):
2705 # for i in range(self.dataOut.data_pre.shape[0]):
2706 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2706 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2707
2707
2708 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2708 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2709
2709
2710 #Remove DC
2710 #Remove DC
2711 voltsDC = numpy.mean(voltsPShift,1)
2711 voltsDC = numpy.mean(voltsPShift,1)
2712 voltsDC = numpy.mean(voltsDC,1)
2712 voltsDC = numpy.mean(voltsDC,1)
2713 for i in range(voltsDC.shape[0]):
2713 for i in range(voltsDC.shape[0]):
2714 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2714 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2715
2715
2716 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2716 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2717 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2717 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2718
2718
2719 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2719 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2720 #Coherent Detection
2720 #Coherent Detection
2721 if cohDetection:
2721 if cohDetection:
2722 #use coherent detection to get the net power
2722 #use coherent detection to get the net power
2723 cohDet_thresh = cohDet_thresh*numpy.pi/180
2723 cohDet_thresh = cohDet_thresh*numpy.pi/180
2724 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2724 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2725
2725
2726 #Non-coherent detection!
2726 #Non-coherent detection!
2727 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2727 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2728 #********** END OF COH/NON-COH POWER CALCULATION**********************
2728 #********** END OF COH/NON-COH POWER CALCULATION**********************
2729
2729
2730 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2730 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2731 #Get noise
2731 #Get noise
2732 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
2732 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
2733 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
2733 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
2734 #Get signal threshold
2734 #Get signal threshold
2735 signalThresh = noise_multiple*noise
2735 signalThresh = noise_multiple*noise
2736 #Meteor echoes detection
2736 #Meteor echoes detection
2737 listMeteors = self.__findMeteors(powerNet, signalThresh)
2737 listMeteors = self.__findMeteors(powerNet, signalThresh)
2738 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2738 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2739
2739
2740 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2740 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2741 #Parameters
2741 #Parameters
2742 heiRange = dataOut.heightList
2742 heiRange = dataOut.heightList
2743 rangeInterval = heiRange[1] - heiRange[0]
2743 rangeInterval = heiRange[1] - heiRange[0]
2744 rangeLimit = multDet_rangeLimit/rangeInterval
2744 rangeLimit = multDet_rangeLimit/rangeInterval
2745 timeLimit = multDet_timeLimit/dataOut.timeInterval
2745 timeLimit = multDet_timeLimit/dataOut.timeInterval
2746 #Multiple detection removals
2746 #Multiple detection removals
2747 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2747 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2748 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2748 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2749
2749
2750 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2750 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2751 #Parameters
2751 #Parameters
2752 phaseThresh = phaseThresh*numpy.pi/180
2752 phaseThresh = phaseThresh*numpy.pi/180
2753 thresh = [phaseThresh, noise_multiple, SNRThresh]
2753 thresh = [phaseThresh, noise_multiple, SNRThresh]
2754 #Meteor reestimation (Errors N 1, 6, 12, 17)
2754 #Meteor reestimation (Errors N 1, 6, 12, 17)
2755 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
2755 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
2756 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
2756 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
2757 #Estimation of decay times (Errors N 7, 8, 11)
2757 #Estimation of decay times (Errors N 7, 8, 11)
2758 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2758 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2759 #******************* END OF METEOR REESTIMATION *******************
2759 #******************* END OF METEOR REESTIMATION *******************
2760
2760
2761 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2761 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2762 #Calculating Radial Velocity (Error N 15)
2762 #Calculating Radial Velocity (Error N 15)
2763 radialStdThresh = 10
2763 radialStdThresh = 10
2764 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2764 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2765
2765
2766 if len(listMeteors4) > 0:
2766 if len(listMeteors4) > 0:
2767 #Setting New Array
2767 #Setting New Array
2768 date = dataOut.utctime
2768 date = dataOut.utctime
2769 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2769 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2770
2770
2771 #Correcting phase offset
2771 #Correcting phase offset
2772 if phaseOffsets != None:
2772 if phaseOffsets != None:
2773 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2773 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2774 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2774 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2775
2775
2776 #Second Pairslist
2776 #Second Pairslist
2777 pairsList = []
2777 pairsList = []
2778 pairx = (0,1)
2778 pairx = (0,1)
2779 pairy = (2,3)
2779 pairy = (2,3)
2780 pairsList.append(pairx)
2780 pairsList.append(pairx)
2781 pairsList.append(pairy)
2781 pairsList.append(pairy)
2782
2782
2783 jph = numpy.array([0,0,0,0])
2783 jph = numpy.array([0,0,0,0])
2784 h = (hmin,hmax)
2784 h = (hmin,hmax)
2785 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2785 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2786
2786
2787 # #Calculate AOA (Error N 3, 4)
2787 # #Calculate AOA (Error N 3, 4)
2788 # #JONES ET AL. 1998
2788 # #JONES ET AL. 1998
2789 # error = arrayParameters[:,-1]
2789 # error = arrayParameters[:,-1]
2790 # AOAthresh = numpy.pi/8
2790 # AOAthresh = numpy.pi/8
2791 # phases = -arrayParameters[:,9:13]
2791 # phases = -arrayParameters[:,9:13]
2792 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2792 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2793 #
2793 #
2794 # #Calculate Heights (Error N 13 and 14)
2794 # #Calculate Heights (Error N 13 and 14)
2795 # error = arrayParameters[:,-1]
2795 # error = arrayParameters[:,-1]
2796 # Ranges = arrayParameters[:,2]
2796 # Ranges = arrayParameters[:,2]
2797 # zenith = arrayParameters[:,5]
2797 # zenith = arrayParameters[:,5]
2798 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2798 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2799 # error = arrayParameters[:,-1]
2799 # error = arrayParameters[:,-1]
2800 #********************* END OF PARAMETERS CALCULATION **************************
2800 #********************* END OF PARAMETERS CALCULATION **************************
2801
2801
2802 #***************************+ PASS DATA TO NEXT STEP **********************
2802 #***************************+ PASS DATA TO NEXT STEP **********************
2803 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2803 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2804 dataOut.data_param = arrayParameters
2804 dataOut.data_param = arrayParameters
2805
2805
2806 if arrayParameters is None:
2806 if arrayParameters is None:
2807 dataOut.flagNoData = True
2807 dataOut.flagNoData = True
2808 else:
2808 else:
2809 dataOut.flagNoData = True
2809 dataOut.flagNoData = True
2810
2810
2811 return
2811 return
2812
2812
2813 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2813 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2814
2814
2815 minIndex = min(newheis[0])
2815 minIndex = min(newheis[0])
2816 maxIndex = max(newheis[0])
2816 maxIndex = max(newheis[0])
2817
2817
2818 voltage = voltage0[:,:,minIndex:maxIndex+1]
2818 voltage = voltage0[:,:,minIndex:maxIndex+1]
2819 nLength = voltage.shape[1]/n
2819 nLength = voltage.shape[1]/n
2820 nMin = 0
2820 nMin = 0
2821 nMax = 0
2821 nMax = 0
2822 phaseOffset = numpy.zeros((len(pairslist),n))
2822 phaseOffset = numpy.zeros((len(pairslist),n))
2823
2823
2824 for i in range(n):
2824 for i in range(n):
2825 nMax += nLength
2825 nMax += nLength
2826 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2826 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2827 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2827 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2828 phaseOffset[:,i] = phaseCCF.transpose()
2828 phaseOffset[:,i] = phaseCCF.transpose()
2829 nMin = nMax
2829 nMin = nMax
2830 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2830 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2831
2831
2832 #Remove Outliers
2832 #Remove Outliers
2833 factor = 2
2833 factor = 2
2834 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2834 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2835 dw = numpy.std(wt,axis = 1)
2835 dw = numpy.std(wt,axis = 1)
2836 dw = dw.reshape((dw.size,1))
2836 dw = dw.reshape((dw.size,1))
2837 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2837 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2838 phaseOffset[ind] = numpy.nan
2838 phaseOffset[ind] = numpy.nan
2839 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2839 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2840
2840
2841 return phaseOffset
2841 return phaseOffset
2842
2842
2843 def __shiftPhase(self, data, phaseShift):
2843 def __shiftPhase(self, data, phaseShift):
2844 #this will shift the phase of a complex number
2844 #this will shift the phase of a complex number
2845 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2845 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2846 return dataShifted
2846 return dataShifted
2847
2847
2848 def __estimatePhaseDifference(self, array, pairslist):
2848 def __estimatePhaseDifference(self, array, pairslist):
2849 nChannel = array.shape[0]
2849 nChannel = array.shape[0]
2850 nHeights = array.shape[2]
2850 nHeights = array.shape[2]
2851 numPairs = len(pairslist)
2851 numPairs = len(pairslist)
2852 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2852 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2853 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2853 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2854
2854
2855 #Correct phases
2855 #Correct phases
2856 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2856 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2857 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2857 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2858
2858
2859 if indDer[0].shape[0] > 0:
2859 if indDer[0].shape[0] > 0:
2860 for i in range(indDer[0].shape[0]):
2860 for i in range(indDer[0].shape[0]):
2861 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2861 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2862 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2862 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2863
2863
2864 # for j in range(numSides):
2864 # for j in range(numSides):
2865 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2865 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2866 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2866 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2867 #
2867 #
2868 #Linear
2868 #Linear
2869 phaseInt = numpy.zeros((numPairs,1))
2869 phaseInt = numpy.zeros((numPairs,1))
2870 angAllCCF = phaseCCF[:,[0,1,3,4],0]
2870 angAllCCF = phaseCCF[:,[0,1,3,4],0]
2871 for j in range(numPairs):
2871 for j in range(numPairs):
2872 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
2872 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
2873 phaseInt[j] = fit[1]
2873 phaseInt[j] = fit[1]
2874 #Phase Differences
2874 #Phase Differences
2875 phaseDiff = phaseInt - phaseCCF[:,2,:]
2875 phaseDiff = phaseInt - phaseCCF[:,2,:]
2876 phaseArrival = phaseInt.reshape(phaseInt.size)
2876 phaseArrival = phaseInt.reshape(phaseInt.size)
2877
2877
2878 #Dealias
2878 #Dealias
2879 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2879 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2880 # indAlias = numpy.where(phaseArrival > numpy.pi)
2880 # indAlias = numpy.where(phaseArrival > numpy.pi)
2881 # phaseArrival[indAlias] -= 2*numpy.pi
2881 # phaseArrival[indAlias] -= 2*numpy.pi
2882 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2882 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2883 # phaseArrival[indAlias] += 2*numpy.pi
2883 # phaseArrival[indAlias] += 2*numpy.pi
2884
2884
2885 return phaseDiff, phaseArrival
2885 return phaseDiff, phaseArrival
2886
2886
2887 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2887 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2888 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2888 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2889 #find the phase shifts of each channel over 1 second intervals
2889 #find the phase shifts of each channel over 1 second intervals
2890 #only look at ranges below the beacon signal
2890 #only look at ranges below the beacon signal
2891 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2891 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2892 numBlocks = int(volts.shape[1]/numProfPerBlock)
2892 numBlocks = int(volts.shape[1]/numProfPerBlock)
2893 numHeights = volts.shape[2]
2893 numHeights = volts.shape[2]
2894 nChannel = volts.shape[0]
2894 nChannel = volts.shape[0]
2895 voltsCohDet = volts.copy()
2895 voltsCohDet = volts.copy()
2896
2896
2897 pairsarray = numpy.array(pairslist)
2897 pairsarray = numpy.array(pairslist)
2898 indSides = pairsarray[:,1]
2898 indSides = pairsarray[:,1]
2899 # indSides = numpy.array(range(nChannel))
2899 # indSides = numpy.array(range(nChannel))
2900 # indSides = numpy.delete(indSides, indCenter)
2900 # indSides = numpy.delete(indSides, indCenter)
2901 #
2901 #
2902 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2902 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2903 listBlocks = numpy.array_split(volts, numBlocks, 1)
2903 listBlocks = numpy.array_split(volts, numBlocks, 1)
2904
2904
2905 startInd = 0
2905 startInd = 0
2906 endInd = 0
2906 endInd = 0
2907
2907
2908 for i in range(numBlocks):
2908 for i in range(numBlocks):
2909 startInd = endInd
2909 startInd = endInd
2910 endInd = endInd + listBlocks[i].shape[1]
2910 endInd = endInd + listBlocks[i].shape[1]
2911
2911
2912 arrayBlock = listBlocks[i]
2912 arrayBlock = listBlocks[i]
2913 # arrayBlockCenter = listCenter[i]
2913 # arrayBlockCenter = listCenter[i]
2914
2914
2915 #Estimate the Phase Difference
2915 #Estimate the Phase Difference
2916 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
2916 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
2917 #Phase Difference RMS
2917 #Phase Difference RMS
2918 arrayPhaseRMS = numpy.abs(phaseDiff)
2918 arrayPhaseRMS = numpy.abs(phaseDiff)
2919 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
2919 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
2920 indPhase = numpy.where(phaseRMSaux==4)
2920 indPhase = numpy.where(phaseRMSaux==4)
2921 #Shifting
2921 #Shifting
2922 if indPhase[0].shape[0] > 0:
2922 if indPhase[0].shape[0] > 0:
2923 for j in range(indSides.size):
2923 for j in range(indSides.size):
2924 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
2924 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
2925 voltsCohDet[:,startInd:endInd,:] = arrayBlock
2925 voltsCohDet[:,startInd:endInd,:] = arrayBlock
2926
2926
2927 return voltsCohDet
2927 return voltsCohDet
2928
2928
2929 def __calculateCCF(self, volts, pairslist ,laglist):
2929 def __calculateCCF(self, volts, pairslist ,laglist):
2930
2930
2931 nHeights = volts.shape[2]
2931 nHeights = volts.shape[2]
2932 nPoints = volts.shape[1]
2932 nPoints = volts.shape[1]
2933 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
2933 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
2934
2934
2935 for i in range(len(pairslist)):
2935 for i in range(len(pairslist)):
2936 volts1 = volts[pairslist[i][0]]
2936 volts1 = volts[pairslist[i][0]]
2937 volts2 = volts[pairslist[i][1]]
2937 volts2 = volts[pairslist[i][1]]
2938
2938
2939 for t in range(len(laglist)):
2939 for t in range(len(laglist)):
2940 idxT = laglist[t]
2940 idxT = laglist[t]
2941 if idxT >= 0:
2941 if idxT >= 0:
2942 vStacked = numpy.vstack((volts2[idxT:,:],
2942 vStacked = numpy.vstack((volts2[idxT:,:],
2943 numpy.zeros((idxT, nHeights),dtype='complex')))
2943 numpy.zeros((idxT, nHeights),dtype='complex')))
2944 else:
2944 else:
2945 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
2945 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
2946 volts2[:(nPoints + idxT),:]))
2946 volts2[:(nPoints + idxT),:]))
2947 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
2947 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
2948
2948
2949 vStacked = None
2949 vStacked = None
2950 return voltsCCF
2950 return voltsCCF
2951
2951
2952 def __getNoise(self, power, timeSegment, timeInterval):
2952 def __getNoise(self, power, timeSegment, timeInterval):
2953 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2953 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2954 numBlocks = int(power.shape[0]/numProfPerBlock)
2954 numBlocks = int(power.shape[0]/numProfPerBlock)
2955 numHeights = power.shape[1]
2955 numHeights = power.shape[1]
2956
2956
2957 listPower = numpy.array_split(power, numBlocks, 0)
2957 listPower = numpy.array_split(power, numBlocks, 0)
2958 noise = numpy.zeros((power.shape[0], power.shape[1]))
2958 noise = numpy.zeros((power.shape[0], power.shape[1]))
2959 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
2959 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
2960
2960
2961 startInd = 0
2961 startInd = 0
2962 endInd = 0
2962 endInd = 0
2963
2963
2964 for i in range(numBlocks): #split por canal
2964 for i in range(numBlocks): #split por canal
2965 startInd = endInd
2965 startInd = endInd
2966 endInd = endInd + listPower[i].shape[0]
2966 endInd = endInd + listPower[i].shape[0]
2967
2967
2968 arrayBlock = listPower[i]
2968 arrayBlock = listPower[i]
2969 noiseAux = numpy.mean(arrayBlock, 0)
2969 noiseAux = numpy.mean(arrayBlock, 0)
2970 # noiseAux = numpy.median(noiseAux)
2970 # noiseAux = numpy.median(noiseAux)
2971 # noiseAux = numpy.mean(arrayBlock)
2971 # noiseAux = numpy.mean(arrayBlock)
2972 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
2972 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
2973
2973
2974 noiseAux1 = numpy.mean(arrayBlock)
2974 noiseAux1 = numpy.mean(arrayBlock)
2975 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
2975 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
2976
2976
2977 return noise, noise1
2977 return noise, noise1
2978
2978
2979 def __findMeteors(self, power, thresh):
2979 def __findMeteors(self, power, thresh):
2980 nProf = power.shape[0]
2980 nProf = power.shape[0]
2981 nHeights = power.shape[1]
2981 nHeights = power.shape[1]
2982 listMeteors = []
2982 listMeteors = []
2983
2983
2984 for i in range(nHeights):
2984 for i in range(nHeights):
2985 powerAux = power[:,i]
2985 powerAux = power[:,i]
2986 threshAux = thresh[:,i]
2986 threshAux = thresh[:,i]
2987
2987
2988 indUPthresh = numpy.where(powerAux > threshAux)[0]
2988 indUPthresh = numpy.where(powerAux > threshAux)[0]
2989 indDNthresh = numpy.where(powerAux <= threshAux)[0]
2989 indDNthresh = numpy.where(powerAux <= threshAux)[0]
2990
2990
2991 j = 0
2991 j = 0
2992
2992
2993 while (j < indUPthresh.size - 2):
2993 while (j < indUPthresh.size - 2):
2994 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
2994 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
2995 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
2995 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
2996 indDNthresh = indDNthresh[indDNAux]
2996 indDNthresh = indDNthresh[indDNAux]
2997
2997
2998 if (indDNthresh.size > 0):
2998 if (indDNthresh.size > 0):
2999 indEnd = indDNthresh[0] - 1
2999 indEnd = indDNthresh[0] - 1
3000 indInit = indUPthresh[j]
3000 indInit = indUPthresh[j]
3001
3001
3002 meteor = powerAux[indInit:indEnd + 1]
3002 meteor = powerAux[indInit:indEnd + 1]
3003 indPeak = meteor.argmax() + indInit
3003 indPeak = meteor.argmax() + indInit
3004 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
3004 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
3005
3005
3006 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
3006 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
3007 j = numpy.where(indUPthresh == indEnd)[0] + 1
3007 j = numpy.where(indUPthresh == indEnd)[0] + 1
3008 else: j+=1
3008 else: j+=1
3009 else: j+=1
3009 else: j+=1
3010
3010
3011 return listMeteors
3011 return listMeteors
3012
3012
3013 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
3013 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
3014
3014
3015 arrayMeteors = numpy.asarray(listMeteors)
3015 arrayMeteors = numpy.asarray(listMeteors)
3016 listMeteors1 = []
3016 listMeteors1 = []
3017
3017
3018 while arrayMeteors.shape[0] > 0:
3018 while arrayMeteors.shape[0] > 0:
3019 FLAs = arrayMeteors[:,4]
3019 FLAs = arrayMeteors[:,4]
3020 maxFLA = FLAs.argmax()
3020 maxFLA = FLAs.argmax()
3021 listMeteors1.append(arrayMeteors[maxFLA,:])
3021 listMeteors1.append(arrayMeteors[maxFLA,:])
3022
3022
3023 MeteorInitTime = arrayMeteors[maxFLA,1]
3023 MeteorInitTime = arrayMeteors[maxFLA,1]
3024 MeteorEndTime = arrayMeteors[maxFLA,3]
3024 MeteorEndTime = arrayMeteors[maxFLA,3]
3025 MeteorHeight = arrayMeteors[maxFLA,0]
3025 MeteorHeight = arrayMeteors[maxFLA,0]
3026
3026
3027 #Check neighborhood
3027 #Check neighborhood
3028 maxHeightIndex = MeteorHeight + rangeLimit
3028 maxHeightIndex = MeteorHeight + rangeLimit
3029 minHeightIndex = MeteorHeight - rangeLimit
3029 minHeightIndex = MeteorHeight - rangeLimit
3030 minTimeIndex = MeteorInitTime - timeLimit
3030 minTimeIndex = MeteorInitTime - timeLimit
3031 maxTimeIndex = MeteorEndTime + timeLimit
3031 maxTimeIndex = MeteorEndTime + timeLimit
3032
3032
3033 #Check Heights
3033 #Check Heights
3034 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
3034 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
3035 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
3035 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
3036 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
3036 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
3037
3037
3038 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
3038 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
3039
3039
3040 return listMeteors1
3040 return listMeteors1
3041
3041
3042 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
3042 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
3043 numHeights = volts.shape[2]
3043 numHeights = volts.shape[2]
3044 nChannel = volts.shape[0]
3044 nChannel = volts.shape[0]
3045
3045
3046 thresholdPhase = thresh[0]
3046 thresholdPhase = thresh[0]
3047 thresholdNoise = thresh[1]
3047 thresholdNoise = thresh[1]
3048 thresholdDB = float(thresh[2])
3048 thresholdDB = float(thresh[2])
3049
3049
3050 thresholdDB1 = 10**(thresholdDB/10)
3050 thresholdDB1 = 10**(thresholdDB/10)
3051 pairsarray = numpy.array(pairslist)
3051 pairsarray = numpy.array(pairslist)
3052 indSides = pairsarray[:,1]
3052 indSides = pairsarray[:,1]
3053
3053
3054 pairslist1 = list(pairslist)
3054 pairslist1 = list(pairslist)
3055 pairslist1.append((0,1))
3055 pairslist1.append((0,1))
3056 pairslist1.append((3,4))
3056 pairslist1.append((3,4))
3057
3057
3058 listMeteors1 = []
3058 listMeteors1 = []
3059 listPowerSeries = []
3059 listPowerSeries = []
3060 listVoltageSeries = []
3060 listVoltageSeries = []
3061 #volts has the war data
3061 #volts has the war data
3062
3062
3063 if frequency == 30e6:
3063 if frequency == 30e6:
3064 timeLag = 45*10**-3
3064 timeLag = 45*10**-3
3065 else:
3065 else:
3066 timeLag = 15*10**-3
3066 timeLag = 15*10**-3
3067 lag = numpy.ceil(timeLag/timeInterval)
3067 lag = numpy.ceil(timeLag/timeInterval)
3068
3068
3069 for i in range(len(listMeteors)):
3069 for i in range(len(listMeteors)):
3070
3070
3071 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3071 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3072 meteorAux = numpy.zeros(16)
3072 meteorAux = numpy.zeros(16)
3073
3073
3074 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3074 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3075 mHeight = listMeteors[i][0]
3075 mHeight = listMeteors[i][0]
3076 mStart = listMeteors[i][1]
3076 mStart = listMeteors[i][1]
3077 mPeak = listMeteors[i][2]
3077 mPeak = listMeteors[i][2]
3078 mEnd = listMeteors[i][3]
3078 mEnd = listMeteors[i][3]
3079
3079
3080 #get the volt data between the start and end times of the meteor
3080 #get the volt data between the start and end times of the meteor
3081 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3081 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3082 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3082 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3083
3083
3084 #3.6. Phase Difference estimation
3084 #3.6. Phase Difference estimation
3085 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3085 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3086
3086
3087 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3087 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3088 #meteorVolts0.- all Channels, all Profiles
3088 #meteorVolts0.- all Channels, all Profiles
3089 meteorVolts0 = volts[:,:,mHeight]
3089 meteorVolts0 = volts[:,:,mHeight]
3090 meteorThresh = noise[:,mHeight]*thresholdNoise
3090 meteorThresh = noise[:,mHeight]*thresholdNoise
3091 meteorNoise = noise[:,mHeight]
3091 meteorNoise = noise[:,mHeight]
3092 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3092 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3093 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3093 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3094
3094
3095 #Times reestimation
3095 #Times reestimation
3096 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3096 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3097 if mStart1.size > 0:
3097 if mStart1.size > 0:
3098 mStart1 = mStart1[-1] + 1
3098 mStart1 = mStart1[-1] + 1
3099
3099
3100 else:
3100 else:
3101 mStart1 = mPeak
3101 mStart1 = mPeak
3102
3102
3103 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3103 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3104 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3104 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3105 if mEndDecayTime1.size == 0:
3105 if mEndDecayTime1.size == 0:
3106 mEndDecayTime1 = powerNet0.size
3106 mEndDecayTime1 = powerNet0.size
3107 else:
3107 else:
3108 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3108 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3109 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3109 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3110
3110
3111 #meteorVolts1.- all Channels, from start to end
3111 #meteorVolts1.- all Channels, from start to end
3112 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3112 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3113 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
3113 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
3114 if meteorVolts2.shape[1] == 0:
3114 if meteorVolts2.shape[1] == 0:
3115 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
3115 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
3116 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3116 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3117 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3117 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3118 ##################### END PARAMETERS REESTIMATION #########################
3118 ##################### END PARAMETERS REESTIMATION #########################
3119
3119
3120 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3120 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3121 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3121 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3122 if meteorVolts2.shape[1] > 0:
3122 if meteorVolts2.shape[1] > 0:
3123 #Phase Difference re-estimation
3123 #Phase Difference re-estimation
3124 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3124 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3125 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3125 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3126 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3126 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3127 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3127 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3128 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3128 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3129
3129
3130 #Phase Difference RMS
3130 #Phase Difference RMS
3131 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3131 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3132 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
3132 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
3133 #Data from Meteor
3133 #Data from Meteor
3134 mPeak1 = powerNet1.argmax() + mStart1
3134 mPeak1 = powerNet1.argmax() + mStart1
3135 mPeakPower1 = powerNet1.max()
3135 mPeakPower1 = powerNet1.max()
3136 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
3136 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
3137 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
3137 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
3138 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
3138 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
3139 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
3139 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
3140 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
3140 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
3141 #Vectorize
3141 #Vectorize
3142 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3142 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3143 meteorAux[7:11] = phaseDiffint[0:4]
3143 meteorAux[7:11] = phaseDiffint[0:4]
3144
3144
3145 #Rejection Criterions
3145 #Rejection Criterions
3146 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3146 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3147 meteorAux[-1] = 17
3147 meteorAux[-1] = 17
3148 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3148 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3149 meteorAux[-1] = 1
3149 meteorAux[-1] = 1
3150
3150
3151
3151
3152 else:
3152 else:
3153 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3153 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3154 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3154 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3155 PowerSeries = 0
3155 PowerSeries = 0
3156
3156
3157 listMeteors1.append(meteorAux)
3157 listMeteors1.append(meteorAux)
3158 listPowerSeries.append(PowerSeries)
3158 listPowerSeries.append(PowerSeries)
3159 listVoltageSeries.append(meteorVolts1)
3159 listVoltageSeries.append(meteorVolts1)
3160
3160
3161 return listMeteors1, listPowerSeries, listVoltageSeries
3161 return listMeteors1, listPowerSeries, listVoltageSeries
3162
3162
3163 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3163 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3164
3164
3165 threshError = 10
3165 threshError = 10
3166 #Depending if it is 30 or 50 MHz
3166 #Depending if it is 30 or 50 MHz
3167 if frequency == 30e6:
3167 if frequency == 30e6:
3168 timeLag = 45*10**-3
3168 timeLag = 45*10**-3
3169 else:
3169 else:
3170 timeLag = 15*10**-3
3170 timeLag = 15*10**-3
3171 lag = numpy.ceil(timeLag/timeInterval)
3171 lag = numpy.ceil(timeLag/timeInterval)
3172
3172
3173 listMeteors1 = []
3173 listMeteors1 = []
3174
3174
3175 for i in range(len(listMeteors)):
3175 for i in range(len(listMeteors)):
3176 meteorPower = listPower[i]
3176 meteorPower = listPower[i]
3177 meteorAux = listMeteors[i]
3177 meteorAux = listMeteors[i]
3178
3178
3179 if meteorAux[-1] == 0:
3179 if meteorAux[-1] == 0:
3180
3180
3181 try:
3181 try:
3182 indmax = meteorPower.argmax()
3182 indmax = meteorPower.argmax()
3183 indlag = indmax + lag
3183 indlag = indmax + lag
3184
3184
3185 y = meteorPower[indlag:]
3185 y = meteorPower[indlag:]
3186 x = numpy.arange(0, y.size)*timeLag
3186 x = numpy.arange(0, y.size)*timeLag
3187
3187
3188 #first guess
3188 #first guess
3189 a = y[0]
3189 a = y[0]
3190 tau = timeLag
3190 tau = timeLag
3191 #exponential fit
3191 #exponential fit
3192 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
3192 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
3193 y1 = self.__exponential_function(x, *popt)
3193 y1 = self.__exponential_function(x, *popt)
3194 #error estimation
3194 #error estimation
3195 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3195 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3196
3196
3197 decayTime = popt[1]
3197 decayTime = popt[1]
3198 riseTime = indmax*timeInterval
3198 riseTime = indmax*timeInterval
3199 meteorAux[11:13] = [decayTime, error]
3199 meteorAux[11:13] = [decayTime, error]
3200
3200
3201 #Table items 7, 8 and 11
3201 #Table items 7, 8 and 11
3202 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3202 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3203 meteorAux[-1] = 7
3203 meteorAux[-1] = 7
3204 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3204 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3205 meteorAux[-1] = 8
3205 meteorAux[-1] = 8
3206 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3206 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3207 meteorAux[-1] = 11
3207 meteorAux[-1] = 11
3208
3208
3209
3209
3210 except:
3210 except:
3211 meteorAux[-1] = 11
3211 meteorAux[-1] = 11
3212
3212
3213
3213
3214 listMeteors1.append(meteorAux)
3214 listMeteors1.append(meteorAux)
3215
3215
3216 return listMeteors1
3216 return listMeteors1
3217
3217
3218 #Exponential Function
3218 #Exponential Function
3219
3219
3220 def __exponential_function(self, x, a, tau):
3220 def __exponential_function(self, x, a, tau):
3221 y = a*numpy.exp(-x/tau)
3221 y = a*numpy.exp(-x/tau)
3222 return y
3222 return y
3223
3223
3224 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3224 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3225
3225
3226 pairslist1 = list(pairslist)
3226 pairslist1 = list(pairslist)
3227 pairslist1.append((0,1))
3227 pairslist1.append((0,1))
3228 pairslist1.append((3,4))
3228 pairslist1.append((3,4))
3229 numPairs = len(pairslist1)
3229 numPairs = len(pairslist1)
3230 #Time Lag
3230 #Time Lag
3231 timeLag = 45*10**-3
3231 timeLag = 45*10**-3
3232 c = 3e8
3232 c = 3e8
3233 lag = numpy.ceil(timeLag/timeInterval)
3233 lag = numpy.ceil(timeLag/timeInterval)
3234 freq = 30e6
3234 freq = 30e6
3235
3235
3236 listMeteors1 = []
3236 listMeteors1 = []
3237
3237
3238 for i in range(len(listMeteors)):
3238 for i in range(len(listMeteors)):
3239 meteorAux = listMeteors[i]
3239 meteorAux = listMeteors[i]
3240 if meteorAux[-1] == 0:
3240 if meteorAux[-1] == 0:
3241 mStart = listMeteors[i][1]
3241 mStart = listMeteors[i][1]
3242 mPeak = listMeteors[i][2]
3242 mPeak = listMeteors[i][2]
3243 mLag = mPeak - mStart + lag
3243 mLag = mPeak - mStart + lag
3244
3244
3245 #get the volt data between the start and end times of the meteor
3245 #get the volt data between the start and end times of the meteor
3246 meteorVolts = listVolts[i]
3246 meteorVolts = listVolts[i]
3247 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3247 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3248
3248
3249 #Get CCF
3249 #Get CCF
3250 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3250 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3251
3251
3252 #Method 2
3252 #Method 2
3253 slopes = numpy.zeros(numPairs)
3253 slopes = numpy.zeros(numPairs)
3254 time = numpy.array([-2,-1,1,2])*timeInterval
3254 time = numpy.array([-2,-1,1,2])*timeInterval
3255 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3255 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3256
3256
3257 #Correct phases
3257 #Correct phases
3258 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3258 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3259 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3259 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3260
3260
3261 if indDer[0].shape[0] > 0:
3261 if indDer[0].shape[0] > 0:
3262 for i in range(indDer[0].shape[0]):
3262 for i in range(indDer[0].shape[0]):
3263 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3263 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3264 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
3264 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
3265
3265
3266 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
3266 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
3267 for j in range(numPairs):
3267 for j in range(numPairs):
3268 fit = stats.linregress(time, angAllCCF[j,:])
3268 fit = stats.linregress(time, angAllCCF[j,:])
3269 slopes[j] = fit[0]
3269 slopes[j] = fit[0]
3270
3270
3271 #Remove Outlier
3271 #Remove Outlier
3272 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3272 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3273 # slopes = numpy.delete(slopes,indOut)
3273 # slopes = numpy.delete(slopes,indOut)
3274 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3274 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3275 # slopes = numpy.delete(slopes,indOut)
3275 # slopes = numpy.delete(slopes,indOut)
3276
3276
3277 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3277 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3278 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3278 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3279 meteorAux[-2] = radialError
3279 meteorAux[-2] = radialError
3280 meteorAux[-3] = radialVelocity
3280 meteorAux[-3] = radialVelocity
3281
3281
3282 #Setting Error
3282 #Setting Error
3283 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3283 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3284 if numpy.abs(radialVelocity) > 200:
3284 if numpy.abs(radialVelocity) > 200:
3285 meteorAux[-1] = 15
3285 meteorAux[-1] = 15
3286 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3286 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3287 elif radialError > radialStdThresh:
3287 elif radialError > radialStdThresh:
3288 meteorAux[-1] = 12
3288 meteorAux[-1] = 12
3289
3289
3290 listMeteors1.append(meteorAux)
3290 listMeteors1.append(meteorAux)
3291 return listMeteors1
3291 return listMeteors1
3292
3292
3293 def __setNewArrays(self, listMeteors, date, heiRang):
3293 def __setNewArrays(self, listMeteors, date, heiRang):
3294
3294
3295 #New arrays
3295 #New arrays
3296 arrayMeteors = numpy.array(listMeteors)
3296 arrayMeteors = numpy.array(listMeteors)
3297 arrayParameters = numpy.zeros((len(listMeteors), 13))
3297 arrayParameters = numpy.zeros((len(listMeteors), 13))
3298
3298
3299 #Date inclusion
3299 #Date inclusion
3300 # date = re.findall(r'\((.*?)\)', date)
3300 # date = re.findall(r'\((.*?)\)', date)
3301 # date = date[0].split(',')
3301 # date = date[0].split(',')
3302 # date = map(int, date)
3302 # date = map(int, date)
3303 #
3303 #
3304 # if len(date)<6:
3304 # if len(date)<6:
3305 # date.append(0)
3305 # date.append(0)
3306 #
3306 #
3307 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3307 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3308 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3308 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3309 arrayDate = numpy.tile(date, (len(listMeteors)))
3309 arrayDate = numpy.tile(date, (len(listMeteors)))
3310
3310
3311 #Meteor array
3311 #Meteor array
3312 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3312 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3313 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3313 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3314
3314
3315 #Parameters Array
3315 #Parameters Array
3316 arrayParameters[:,0] = arrayDate #Date
3316 arrayParameters[:,0] = arrayDate #Date
3317 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
3317 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
3318 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
3318 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
3319 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3319 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3320 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3320 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3321
3321
3322
3322
3323 return arrayParameters
3323 return arrayParameters
3324
3324
3325 class CorrectSMPhases(Operation):
3325 class CorrectSMPhases(Operation):
3326
3326
3327 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3327 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3328
3328
3329 arrayParameters = dataOut.data_param
3329 arrayParameters = dataOut.data_param
3330 pairsList = []
3330 pairsList = []
3331 pairx = (0,1)
3331 pairx = (0,1)
3332 pairy = (2,3)
3332 pairy = (2,3)
3333 pairsList.append(pairx)
3333 pairsList.append(pairx)
3334 pairsList.append(pairy)
3334 pairsList.append(pairy)
3335 jph = numpy.zeros(4)
3335 jph = numpy.zeros(4)
3336
3336
3337 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3337 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3338 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3338 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3339 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3339 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3340
3340
3341 meteorOps = SMOperations()
3341 meteorOps = SMOperations()
3342 if channelPositions is None:
3342 if channelPositions is None:
3343 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3343 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3344 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3344 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3345
3345
3346 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3346 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3347 h = (hmin,hmax)
3347 h = (hmin,hmax)
3348
3348
3349 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3349 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3350
3350
3351 dataOut.data_param = arrayParameters
3351 dataOut.data_param = arrayParameters
3352 return
3352 return
3353
3353
3354 class SMPhaseCalibration(Operation):
3354 class SMPhaseCalibration(Operation):
3355
3355
3356 __buffer = None
3356 __buffer = None
3357
3357
3358 __initime = None
3358 __initime = None
3359
3359
3360 __dataReady = False
3360 __dataReady = False
3361
3361
3362 __isConfig = False
3362 __isConfig = False
3363
3363
3364 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3364 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3365
3365
3366 dataTime = currentTime + paramInterval
3366 dataTime = currentTime + paramInterval
3367 deltaTime = dataTime - initTime
3367 deltaTime = dataTime - initTime
3368
3368
3369 if deltaTime >= outputInterval or deltaTime < 0:
3369 if deltaTime >= outputInterval or deltaTime < 0:
3370 return True
3370 return True
3371
3371
3372 return False
3372 return False
3373
3373
3374 def __getGammas(self, pairs, d, phases):
3374 def __getGammas(self, pairs, d, phases):
3375 gammas = numpy.zeros(2)
3375 gammas = numpy.zeros(2)
3376
3376
3377 for i in range(len(pairs)):
3377 for i in range(len(pairs)):
3378
3378
3379 pairi = pairs[i]
3379 pairi = pairs[i]
3380
3380
3381 phip3 = phases[:,pairi[0]]
3381 phip3 = phases[:,pairi[0]]
3382 d3 = d[pairi[0]]
3382 d3 = d[pairi[0]]
3383 phip2 = phases[:,pairi[1]]
3383 phip2 = phases[:,pairi[1]]
3384 d2 = d[pairi[1]]
3384 d2 = d[pairi[1]]
3385 #Calculating gamma
3385 #Calculating gamma
3386 # jdcos = alp1/(k*d1)
3386 # jdcos = alp1/(k*d1)
3387 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
3387 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
3388 jgamma = -phip2*d3/d2 - phip3
3388 jgamma = -phip2*d3/d2 - phip3
3389 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3389 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3390 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3390 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3391 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3391 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3392
3392
3393 #Revised distribution
3393 #Revised distribution
3394 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3394 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3395
3395
3396 #Histogram
3396 #Histogram
3397 nBins = 64
3397 nBins = 64
3398 rmin = -0.5*numpy.pi
3398 rmin = -0.5*numpy.pi
3399 rmax = 0.5*numpy.pi
3399 rmax = 0.5*numpy.pi
3400 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3400 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3401
3401
3402 meteorsY = phaseHisto[0]
3402 meteorsY = phaseHisto[0]
3403 phasesX = phaseHisto[1][:-1]
3403 phasesX = phaseHisto[1][:-1]
3404 width = phasesX[1] - phasesX[0]
3404 width = phasesX[1] - phasesX[0]
3405 phasesX += width/2
3405 phasesX += width/2
3406
3406
3407 #Gaussian aproximation
3407 #Gaussian aproximation
3408 bpeak = meteorsY.argmax()
3408 bpeak = meteorsY.argmax()
3409 peak = meteorsY.max()
3409 peak = meteorsY.max()
3410 jmin = bpeak - 5
3410 jmin = bpeak - 5
3411 jmax = bpeak + 5 + 1
3411 jmax = bpeak + 5 + 1
3412
3412
3413 if jmin<0:
3413 if jmin<0:
3414 jmin = 0
3414 jmin = 0
3415 jmax = 6
3415 jmax = 6
3416 elif jmax > meteorsY.size:
3416 elif jmax > meteorsY.size:
3417 jmin = meteorsY.size - 6
3417 jmin = meteorsY.size - 6
3418 jmax = meteorsY.size
3418 jmax = meteorsY.size
3419
3419
3420 x0 = numpy.array([peak,bpeak,50])
3420 x0 = numpy.array([peak,bpeak,50])
3421 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3421 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3422
3422
3423 #Gammas
3423 #Gammas
3424 gammas[i] = coeff[0][1]
3424 gammas[i] = coeff[0][1]
3425
3425
3426 return gammas
3426 return gammas
3427
3427
3428 def __residualFunction(self, coeffs, y, t):
3428 def __residualFunction(self, coeffs, y, t):
3429
3429
3430 return y - self.__gauss_function(t, coeffs)
3430 return y - self.__gauss_function(t, coeffs)
3431
3431
3432 def __gauss_function(self, t, coeffs):
3432 def __gauss_function(self, t, coeffs):
3433
3433
3434 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3434 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3435
3435
3436 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
3436 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
3437 meteorOps = SMOperations()
3437 meteorOps = SMOperations()
3438 nchan = 4
3438 nchan = 4
3439 pairx = pairsList[0] #x es 0
3439 pairx = pairsList[0] #x es 0
3440 pairy = pairsList[1] #y es 1
3440 pairy = pairsList[1] #y es 1
3441 center_xangle = 0
3441 center_xangle = 0
3442 center_yangle = 0
3442 center_yangle = 0
3443 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
3443 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
3444 ntimes = len(range_angle)
3444 ntimes = len(range_angle)
3445
3445
3446 nstepsx = 20
3446 nstepsx = 20
3447 nstepsy = 20
3447 nstepsy = 20
3448
3448
3449 for iz in range(ntimes):
3449 for iz in range(ntimes):
3450 min_xangle = -range_angle[iz]/2 + center_xangle
3450 min_xangle = -range_angle[iz]/2 + center_xangle
3451 max_xangle = range_angle[iz]/2 + center_xangle
3451 max_xangle = range_angle[iz]/2 + center_xangle
3452 min_yangle = -range_angle[iz]/2 + center_yangle
3452 min_yangle = -range_angle[iz]/2 + center_yangle
3453 max_yangle = range_angle[iz]/2 + center_yangle
3453 max_yangle = range_angle[iz]/2 + center_yangle
3454
3454
3455 inc_x = (max_xangle-min_xangle)/nstepsx
3455 inc_x = (max_xangle-min_xangle)/nstepsx
3456 inc_y = (max_yangle-min_yangle)/nstepsy
3456 inc_y = (max_yangle-min_yangle)/nstepsy
3457
3457
3458 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3458 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3459 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3459 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3460 penalty = numpy.zeros((nstepsx,nstepsy))
3460 penalty = numpy.zeros((nstepsx,nstepsy))
3461 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3461 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3462 jph = numpy.zeros(nchan)
3462 jph = numpy.zeros(nchan)
3463
3463
3464 # Iterations looking for the offset
3464 # Iterations looking for the offset
3465 for iy in range(int(nstepsy)):
3465 for iy in range(int(nstepsy)):
3466 for ix in range(int(nstepsx)):
3466 for ix in range(int(nstepsx)):
3467 d3 = d[pairsList[1][0]]
3467 d3 = d[pairsList[1][0]]
3468 d2 = d[pairsList[1][1]]
3468 d2 = d[pairsList[1][1]]
3469 d5 = d[pairsList[0][0]]
3469 d5 = d[pairsList[0][0]]
3470 d4 = d[pairsList[0][1]]
3470 d4 = d[pairsList[0][1]]
3471
3471
3472 alp2 = alpha_y[iy] #gamma 1
3472 alp2 = alpha_y[iy] #gamma 1
3473 alp4 = alpha_x[ix] #gamma 0
3473 alp4 = alpha_x[ix] #gamma 0
3474
3474
3475 alp3 = -alp2*d3/d2 - gammas[1]
3475 alp3 = -alp2*d3/d2 - gammas[1]
3476 alp5 = -alp4*d5/d4 - gammas[0]
3476 alp5 = -alp4*d5/d4 - gammas[0]
3477 # jph[pairy[1]] = alpha_y[iy]
3477 # jph[pairy[1]] = alpha_y[iy]
3478 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3478 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3479
3479
3480 # jph[pairx[1]] = alpha_x[ix]
3480 # jph[pairx[1]] = alpha_x[ix]
3481 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3481 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3482 jph[pairsList[0][1]] = alp4
3482 jph[pairsList[0][1]] = alp4
3483 jph[pairsList[0][0]] = alp5
3483 jph[pairsList[0][0]] = alp5
3484 jph[pairsList[1][0]] = alp3
3484 jph[pairsList[1][0]] = alp3
3485 jph[pairsList[1][1]] = alp2
3485 jph[pairsList[1][1]] = alp2
3486 jph_array[:,ix,iy] = jph
3486 jph_array[:,ix,iy] = jph
3487 # d = [2.0,2.5,2.5,2.0]
3487 # d = [2.0,2.5,2.5,2.0]
3488 #falta chequear si va a leer bien los meteoros
3488 #falta chequear si va a leer bien los meteoros
3489 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3489 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3490 error = meteorsArray1[:,-1]
3490 error = meteorsArray1[:,-1]
3491 ind1 = numpy.where(error==0)[0]
3491 ind1 = numpy.where(error==0)[0]
3492 penalty[ix,iy] = ind1.size
3492 penalty[ix,iy] = ind1.size
3493
3493
3494 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3494 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3495 phOffset = jph_array[:,i,j]
3495 phOffset = jph_array[:,i,j]
3496
3496
3497 center_xangle = phOffset[pairx[1]]
3497 center_xangle = phOffset[pairx[1]]
3498 center_yangle = phOffset[pairy[1]]
3498 center_yangle = phOffset[pairy[1]]
3499
3499
3500 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3500 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3501 phOffset = phOffset*180/numpy.pi
3501 phOffset = phOffset*180/numpy.pi
3502 return phOffset
3502 return phOffset
3503
3503
3504
3504
3505 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3505 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3506
3506
3507 dataOut.flagNoData = True
3507 dataOut.flagNoData = True
3508 self.__dataReady = False
3508 self.__dataReady = False
3509 dataOut.outputInterval = nHours*3600
3509 dataOut.outputInterval = nHours*3600
3510
3510
3511 if self.__isConfig == False:
3511 if self.__isConfig == False:
3512 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3512 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3513 #Get Initial LTC time
3513 #Get Initial LTC time
3514 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
3514 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
3515 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3515 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3516
3516
3517 self.__isConfig = True
3517 self.__isConfig = True
3518
3518
3519 if self.__buffer is None:
3519 if self.__buffer is None:
3520 self.__buffer = dataOut.data_param.copy()
3520 self.__buffer = dataOut.data_param.copy()
3521
3521
3522 else:
3522 else:
3523 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3523 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3524
3524
3525 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3525 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3526
3526
3527 if self.__dataReady:
3527 if self.__dataReady:
3528 dataOut.utctimeInit = self.__initime
3528 dataOut.utctimeInit = self.__initime
3529 self.__initime += dataOut.outputInterval #to erase time offset
3529 self.__initime += dataOut.outputInterval #to erase time offset
3530
3530
3531 freq = dataOut.frequency
3531 freq = dataOut.frequency
3532 c = dataOut.C #m/s
3532 c = dataOut.C #m/s
3533 lamb = c/freq
3533 lamb = c/freq
3534 k = 2*numpy.pi/lamb
3534 k = 2*numpy.pi/lamb
3535 azimuth = 0
3535 azimuth = 0
3536 h = (hmin, hmax)
3536 h = (hmin, hmax)
3537 # pairs = ((0,1),(2,3)) #Estrella
3537 # pairs = ((0,1),(2,3)) #Estrella
3538 # pairs = ((1,0),(2,3)) #T
3538 # pairs = ((1,0),(2,3)) #T
3539
3539
3540 if channelPositions is None:
3540 if channelPositions is None:
3541 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3541 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3542 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3542 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3543 meteorOps = SMOperations()
3543 meteorOps = SMOperations()
3544 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3544 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3545
3545
3546 #Checking correct order of pairs
3546 #Checking correct order of pairs
3547 pairs = []
3547 pairs = []
3548 if distances[1] > distances[0]:
3548 if distances[1] > distances[0]:
3549 pairs.append((1,0))
3549 pairs.append((1,0))
3550 else:
3550 else:
3551 pairs.append((0,1))
3551 pairs.append((0,1))
3552
3552
3553 if distances[3] > distances[2]:
3553 if distances[3] > distances[2]:
3554 pairs.append((3,2))
3554 pairs.append((3,2))
3555 else:
3555 else:
3556 pairs.append((2,3))
3556 pairs.append((2,3))
3557 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3557 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3558
3558
3559 meteorsArray = self.__buffer
3559 meteorsArray = self.__buffer
3560 error = meteorsArray[:,-1]
3560 error = meteorsArray[:,-1]
3561 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
3561 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
3562 ind1 = numpy.where(boolError)[0]
3562 ind1 = numpy.where(boolError)[0]
3563 meteorsArray = meteorsArray[ind1,:]
3563 meteorsArray = meteorsArray[ind1,:]
3564 meteorsArray[:,-1] = 0
3564 meteorsArray[:,-1] = 0
3565 phases = meteorsArray[:,8:12]
3565 phases = meteorsArray[:,8:12]
3566
3566
3567 #Calculate Gammas
3567 #Calculate Gammas
3568 gammas = self.__getGammas(pairs, distances, phases)
3568 gammas = self.__getGammas(pairs, distances, phases)
3569 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
3569 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
3570 #Calculate Phases
3570 #Calculate Phases
3571 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
3571 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
3572 phasesOff = phasesOff.reshape((1,phasesOff.size))
3572 phasesOff = phasesOff.reshape((1,phasesOff.size))
3573 dataOut.data_output = -phasesOff
3573 dataOut.data_output = -phasesOff
3574 dataOut.flagNoData = False
3574 dataOut.flagNoData = False
3575 self.__buffer = None
3575 self.__buffer = None
3576
3576
3577
3577
3578 return
3578 return
3579
3579
3580 class SMOperations():
3580 class SMOperations():
3581
3581
3582 def __init__(self):
3582 def __init__(self):
3583
3583
3584 return
3584 return
3585
3585
3586 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3586 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3587
3587
3588 arrayParameters = arrayParameters0.copy()
3588 arrayParameters = arrayParameters0.copy()
3589 hmin = h[0]
3589 hmin = h[0]
3590 hmax = h[1]
3590 hmax = h[1]
3591
3591
3592 #Calculate AOA (Error N 3, 4)
3592 #Calculate AOA (Error N 3, 4)
3593 #JONES ET AL. 1998
3593 #JONES ET AL. 1998
3594 AOAthresh = numpy.pi/8
3594 AOAthresh = numpy.pi/8
3595 error = arrayParameters[:,-1]
3595 error = arrayParameters[:,-1]
3596 phases = -arrayParameters[:,8:12] + jph
3596 phases = -arrayParameters[:,8:12] + jph
3597 # phases = numpy.unwrap(phases)
3597 # phases = numpy.unwrap(phases)
3598 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3598 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3599
3599
3600 #Calculate Heights (Error N 13 and 14)
3600 #Calculate Heights (Error N 13 and 14)
3601 error = arrayParameters[:,-1]
3601 error = arrayParameters[:,-1]
3602 Ranges = arrayParameters[:,1]
3602 Ranges = arrayParameters[:,1]
3603 zenith = arrayParameters[:,4]
3603 zenith = arrayParameters[:,4]
3604 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3604 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3605
3605
3606 #----------------------- Get Final data ------------------------------------
3606 #----------------------- Get Final data ------------------------------------
3607 # error = arrayParameters[:,-1]
3607 # error = arrayParameters[:,-1]
3608 # ind1 = numpy.where(error==0)[0]
3608 # ind1 = numpy.where(error==0)[0]
3609 # arrayParameters = arrayParameters[ind1,:]
3609 # arrayParameters = arrayParameters[ind1,:]
3610
3610
3611 return arrayParameters
3611 return arrayParameters
3612
3612
3613 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3613 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3614
3614
3615 arrayAOA = numpy.zeros((phases.shape[0],3))
3615 arrayAOA = numpy.zeros((phases.shape[0],3))
3616 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3616 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3617
3617
3618 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3618 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3619 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3619 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3620 arrayAOA[:,2] = cosDirError
3620 arrayAOA[:,2] = cosDirError
3621
3621
3622 azimuthAngle = arrayAOA[:,0]
3622 azimuthAngle = arrayAOA[:,0]
3623 zenithAngle = arrayAOA[:,1]
3623 zenithAngle = arrayAOA[:,1]
3624
3624
3625 #Setting Error
3625 #Setting Error
3626 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3626 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3627 error[indError] = 0
3627 error[indError] = 0
3628 #Number 3: AOA not fesible
3628 #Number 3: AOA not fesible
3629 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3629 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3630 error[indInvalid] = 3
3630 error[indInvalid] = 3
3631 #Number 4: Large difference in AOAs obtained from different antenna baselines
3631 #Number 4: Large difference in AOAs obtained from different antenna baselines
3632 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3632 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3633 error[indInvalid] = 4
3633 error[indInvalid] = 4
3634 return arrayAOA, error
3634 return arrayAOA, error
3635
3635
3636 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3636 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3637
3637
3638 #Initializing some variables
3638 #Initializing some variables
3639 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3639 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3640 ang_aux = ang_aux.reshape(1,ang_aux.size)
3640 ang_aux = ang_aux.reshape(1,ang_aux.size)
3641
3641
3642 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3642 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3643 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3643 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3644
3644
3645
3645
3646 for i in range(2):
3646 for i in range(2):
3647 ph0 = arrayPhase[:,pairsList[i][0]]
3647 ph0 = arrayPhase[:,pairsList[i][0]]
3648 ph1 = arrayPhase[:,pairsList[i][1]]
3648 ph1 = arrayPhase[:,pairsList[i][1]]
3649 d0 = distances[pairsList[i][0]]
3649 d0 = distances[pairsList[i][0]]
3650 d1 = distances[pairsList[i][1]]
3650 d1 = distances[pairsList[i][1]]
3651
3651
3652 ph0_aux = ph0 + ph1
3652 ph0_aux = ph0 + ph1
3653 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3653 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3654 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3654 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3655 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3655 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3656 #First Estimation
3656 #First Estimation
3657 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3657 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3658
3658
3659 #Most-Accurate Second Estimation
3659 #Most-Accurate Second Estimation
3660 phi1_aux = ph0 - ph1
3660 phi1_aux = ph0 - ph1
3661 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3661 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3662 #Direction Cosine 1
3662 #Direction Cosine 1
3663 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3663 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3664
3664
3665 #Searching the correct Direction Cosine
3665 #Searching the correct Direction Cosine
3666 cosdir0_aux = cosdir0[:,i]
3666 cosdir0_aux = cosdir0[:,i]
3667 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3667 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3668 #Minimum Distance
3668 #Minimum Distance
3669 cosDiff = (cosdir1 - cosdir0_aux)**2
3669 cosDiff = (cosdir1 - cosdir0_aux)**2
3670 indcos = cosDiff.argmin(axis = 1)
3670 indcos = cosDiff.argmin(axis = 1)
3671 #Saving Value obtained
3671 #Saving Value obtained
3672 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3672 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3673
3673
3674 return cosdir0, cosdir
3674 return cosdir0, cosdir
3675
3675
3676 def __calculateAOA(self, cosdir, azimuth):
3676 def __calculateAOA(self, cosdir, azimuth):
3677 cosdirX = cosdir[:,0]
3677 cosdirX = cosdir[:,0]
3678 cosdirY = cosdir[:,1]
3678 cosdirY = cosdir[:,1]
3679
3679
3680 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3680 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3681 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3681 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3682 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3682 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3683
3683
3684 return angles
3684 return angles
3685
3685
3686 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3686 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3687
3687
3688 Ramb = 375 #Ramb = c/(2*PRF)
3688 Ramb = 375 #Ramb = c/(2*PRF)
3689 Re = 6371 #Earth Radius
3689 Re = 6371 #Earth Radius
3690 heights = numpy.zeros(Ranges.shape)
3690 heights = numpy.zeros(Ranges.shape)
3691
3691
3692 R_aux = numpy.array([0,1,2])*Ramb
3692 R_aux = numpy.array([0,1,2])*Ramb
3693 R_aux = R_aux.reshape(1,R_aux.size)
3693 R_aux = R_aux.reshape(1,R_aux.size)
3694
3694
3695 Ranges = Ranges.reshape(Ranges.size,1)
3695 Ranges = Ranges.reshape(Ranges.size,1)
3696
3696
3697 Ri = Ranges + R_aux
3697 Ri = Ranges + R_aux
3698 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3698 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3699
3699
3700 #Check if there is a height between 70 and 110 km
3700 #Check if there is a height between 70 and 110 km
3701 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3701 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3702 ind_h = numpy.where(h_bool == 1)[0]
3702 ind_h = numpy.where(h_bool == 1)[0]
3703
3703
3704 hCorr = hi[ind_h, :]
3704 hCorr = hi[ind_h, :]
3705 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3705 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3706
3706
3707 hCorr = hi[ind_hCorr][:len(ind_h)]
3707 hCorr = hi[ind_hCorr][:len(ind_h)]
3708 heights[ind_h] = hCorr
3708 heights[ind_h] = hCorr
3709
3709
3710 #Setting Error
3710 #Setting Error
3711 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3711 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3712 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3712 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3713 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3713 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3714 error[indError] = 0
3714 error[indError] = 0
3715 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3715 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3716 error[indInvalid2] = 14
3716 error[indInvalid2] = 14
3717 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3717 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3718 error[indInvalid1] = 13
3718 error[indInvalid1] = 13
3719
3719
3720 return heights, error
3720 return heights, error
3721
3721
3722 def getPhasePairs(self, channelPositions):
3722 def getPhasePairs(self, channelPositions):
3723 chanPos = numpy.array(channelPositions)
3723 chanPos = numpy.array(channelPositions)
3724 listOper = list(itertools.combinations(list(range(5)),2))
3724 listOper = list(itertools.combinations(list(range(5)),2))
3725
3725
3726 distances = numpy.zeros(4)
3726 distances = numpy.zeros(4)
3727 axisX = []
3727 axisX = []
3728 axisY = []
3728 axisY = []
3729 distX = numpy.zeros(3)
3729 distX = numpy.zeros(3)
3730 distY = numpy.zeros(3)
3730 distY = numpy.zeros(3)
3731 ix = 0
3731 ix = 0
3732 iy = 0
3732 iy = 0
3733
3733
3734 pairX = numpy.zeros((2,2))
3734 pairX = numpy.zeros((2,2))
3735 pairY = numpy.zeros((2,2))
3735 pairY = numpy.zeros((2,2))
3736
3736
3737 for i in range(len(listOper)):
3737 for i in range(len(listOper)):
3738 pairi = listOper[i]
3738 pairi = listOper[i]
3739
3739
3740 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3740 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3741
3741
3742 if posDif[0] == 0:
3742 if posDif[0] == 0:
3743 axisY.append(pairi)
3743 axisY.append(pairi)
3744 distY[iy] = posDif[1]
3744 distY[iy] = posDif[1]
3745 iy += 1
3745 iy += 1
3746 elif posDif[1] == 0:
3746 elif posDif[1] == 0:
3747 axisX.append(pairi)
3747 axisX.append(pairi)
3748 distX[ix] = posDif[0]
3748 distX[ix] = posDif[0]
3749 ix += 1
3749 ix += 1
3750
3750
3751 for i in range(2):
3751 for i in range(2):
3752 if i==0:
3752 if i==0:
3753 dist0 = distX
3753 dist0 = distX
3754 axis0 = axisX
3754 axis0 = axisX
3755 else:
3755 else:
3756 dist0 = distY
3756 dist0 = distY
3757 axis0 = axisY
3757 axis0 = axisY
3758
3758
3759 side = numpy.argsort(dist0)[:-1]
3759 side = numpy.argsort(dist0)[:-1]
3760 axis0 = numpy.array(axis0)[side,:]
3760 axis0 = numpy.array(axis0)[side,:]
3761 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
3761 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
3762 axis1 = numpy.unique(numpy.reshape(axis0,4))
3762 axis1 = numpy.unique(numpy.reshape(axis0,4))
3763 side = axis1[axis1 != chanC]
3763 side = axis1[axis1 != chanC]
3764 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3764 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3765 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3765 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3766 if diff1<0:
3766 if diff1<0:
3767 chan2 = side[0]
3767 chan2 = side[0]
3768 d2 = numpy.abs(diff1)
3768 d2 = numpy.abs(diff1)
3769 chan1 = side[1]
3769 chan1 = side[1]
3770 d1 = numpy.abs(diff2)
3770 d1 = numpy.abs(diff2)
3771 else:
3771 else:
3772 chan2 = side[1]
3772 chan2 = side[1]
3773 d2 = numpy.abs(diff2)
3773 d2 = numpy.abs(diff2)
3774 chan1 = side[0]
3774 chan1 = side[0]
3775 d1 = numpy.abs(diff1)
3775 d1 = numpy.abs(diff1)
3776
3776
3777 if i==0:
3777 if i==0:
3778 chanCX = chanC
3778 chanCX = chanC
3779 chan1X = chan1
3779 chan1X = chan1
3780 chan2X = chan2
3780 chan2X = chan2
3781 distances[0:2] = numpy.array([d1,d2])
3781 distances[0:2] = numpy.array([d1,d2])
3782 else:
3782 else:
3783 chanCY = chanC
3783 chanCY = chanC
3784 chan1Y = chan1
3784 chan1Y = chan1
3785 chan2Y = chan2
3785 chan2Y = chan2
3786 distances[2:4] = numpy.array([d1,d2])
3786 distances[2:4] = numpy.array([d1,d2])
3787 # axisXsides = numpy.reshape(axisX[ix,:],4)
3787 # axisXsides = numpy.reshape(axisX[ix,:],4)
3788 #
3788 #
3789 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3789 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3790 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3790 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3791 #
3791 #
3792 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3792 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3793 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3793 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3794 # channel25X = int(pairX[0,ind25X])
3794 # channel25X = int(pairX[0,ind25X])
3795 # channel20X = int(pairX[1,ind20X])
3795 # channel20X = int(pairX[1,ind20X])
3796 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
3796 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
3797 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3797 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3798 # channel25Y = int(pairY[0,ind25Y])
3798 # channel25Y = int(pairY[0,ind25Y])
3799 # channel20Y = int(pairY[1,ind20Y])
3799 # channel20Y = int(pairY[1,ind20Y])
3800
3800
3801 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3801 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3802 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3802 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3803
3803
3804 return pairslist, distances
3804 return pairslist, distances
3805 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3805 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3806 #
3806 #
3807 # arrayAOA = numpy.zeros((phases.shape[0],3))
3807 # arrayAOA = numpy.zeros((phases.shape[0],3))
3808 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3808 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3809 #
3809 #
3810 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3810 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3811 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3811 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3812 # arrayAOA[:,2] = cosDirError
3812 # arrayAOA[:,2] = cosDirError
3813 #
3813 #
3814 # azimuthAngle = arrayAOA[:,0]
3814 # azimuthAngle = arrayAOA[:,0]
3815 # zenithAngle = arrayAOA[:,1]
3815 # zenithAngle = arrayAOA[:,1]
3816 #
3816 #
3817 # #Setting Error
3817 # #Setting Error
3818 # #Number 3: AOA not fesible
3818 # #Number 3: AOA not fesible
3819 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3819 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3820 # error[indInvalid] = 3
3820 # error[indInvalid] = 3
3821 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3821 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3822 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3822 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3823 # error[indInvalid] = 4
3823 # error[indInvalid] = 4
3824 # return arrayAOA, error
3824 # return arrayAOA, error
3825 #
3825 #
3826 # def __getDirectionCosines(self, arrayPhase, pairsList):
3826 # def __getDirectionCosines(self, arrayPhase, pairsList):
3827 #
3827 #
3828 # #Initializing some variables
3828 # #Initializing some variables
3829 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3829 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3830 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3830 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3831 #
3831 #
3832 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3832 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3833 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3833 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3834 #
3834 #
3835 #
3835 #
3836 # for i in range(2):
3836 # for i in range(2):
3837 # #First Estimation
3837 # #First Estimation
3838 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3838 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3839 # #Dealias
3839 # #Dealias
3840 # indcsi = numpy.where(phi0_aux > numpy.pi)
3840 # indcsi = numpy.where(phi0_aux > numpy.pi)
3841 # phi0_aux[indcsi] -= 2*numpy.pi
3841 # phi0_aux[indcsi] -= 2*numpy.pi
3842 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3842 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3843 # phi0_aux[indcsi] += 2*numpy.pi
3843 # phi0_aux[indcsi] += 2*numpy.pi
3844 # #Direction Cosine 0
3844 # #Direction Cosine 0
3845 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3845 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3846 #
3846 #
3847 # #Most-Accurate Second Estimation
3847 # #Most-Accurate Second Estimation
3848 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3848 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3849 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3849 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3850 # #Direction Cosine 1
3850 # #Direction Cosine 1
3851 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3851 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3852 #
3852 #
3853 # #Searching the correct Direction Cosine
3853 # #Searching the correct Direction Cosine
3854 # cosdir0_aux = cosdir0[:,i]
3854 # cosdir0_aux = cosdir0[:,i]
3855 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3855 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3856 # #Minimum Distance
3856 # #Minimum Distance
3857 # cosDiff = (cosdir1 - cosdir0_aux)**2
3857 # cosDiff = (cosdir1 - cosdir0_aux)**2
3858 # indcos = cosDiff.argmin(axis = 1)
3858 # indcos = cosDiff.argmin(axis = 1)
3859 # #Saving Value obtained
3859 # #Saving Value obtained
3860 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3860 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3861 #
3861 #
3862 # return cosdir0, cosdir
3862 # return cosdir0, cosdir
3863 #
3863 #
3864 # def __calculateAOA(self, cosdir, azimuth):
3864 # def __calculateAOA(self, cosdir, azimuth):
3865 # cosdirX = cosdir[:,0]
3865 # cosdirX = cosdir[:,0]
3866 # cosdirY = cosdir[:,1]
3866 # cosdirY = cosdir[:,1]
3867 #
3867 #
3868 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3868 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3869 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3869 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3870 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3870 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3871 #
3871 #
3872 # return angles
3872 # return angles
3873 #
3873 #
3874 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3874 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3875 #
3875 #
3876 # Ramb = 375 #Ramb = c/(2*PRF)
3876 # Ramb = 375 #Ramb = c/(2*PRF)
3877 # Re = 6371 #Earth Radius
3877 # Re = 6371 #Earth Radius
3878 # heights = numpy.zeros(Ranges.shape)
3878 # heights = numpy.zeros(Ranges.shape)
3879 #
3879 #
3880 # R_aux = numpy.array([0,1,2])*Ramb
3880 # R_aux = numpy.array([0,1,2])*Ramb
3881 # R_aux = R_aux.reshape(1,R_aux.size)
3881 # R_aux = R_aux.reshape(1,R_aux.size)
3882 #
3882 #
3883 # Ranges = Ranges.reshape(Ranges.size,1)
3883 # Ranges = Ranges.reshape(Ranges.size,1)
3884 #
3884 #
3885 # Ri = Ranges + R_aux
3885 # Ri = Ranges + R_aux
3886 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3886 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3887 #
3887 #
3888 # #Check if there is a height between 70 and 110 km
3888 # #Check if there is a height between 70 and 110 km
3889 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3889 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3890 # ind_h = numpy.where(h_bool == 1)[0]
3890 # ind_h = numpy.where(h_bool == 1)[0]
3891 #
3891 #
3892 # hCorr = hi[ind_h, :]
3892 # hCorr = hi[ind_h, :]
3893 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3893 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3894 #
3894 #
3895 # hCorr = hi[ind_hCorr]
3895 # hCorr = hi[ind_hCorr]
3896 # heights[ind_h] = hCorr
3896 # heights[ind_h] = hCorr
3897 #
3897 #
3898 # #Setting Error
3898 # #Setting Error
3899 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3899 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3900 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3900 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3901 #
3901 #
3902 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3902 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3903 # error[indInvalid2] = 14
3903 # error[indInvalid2] = 14
3904 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3904 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3905 # error[indInvalid1] = 13
3905 # error[indInvalid1] = 13
3906 #
3906 #
3907 # return heights, error
3907 # return heights, error
3908
3908
3909
3909
3910 class WeatherRadar(Operation):
3910 class WeatherRadar(Operation):
3911 '''
3911 '''
3912 Function tat implements Weather Radar operations-
3912 Function tat implements Weather Radar operations-
3913 Input:
3913 Input:
3914 Output:
3914 Output:
3915 Parameters affected:
3915 Parameters affected:
3916 '''
3916 '''
3917 isConfig = False
3917 isConfig = False
3918 variableList = None
3918 variableList = None
3919
3919
3920 def __init__(self):
3920 def __init__(self):
3921 Operation.__init__(self)
3921 Operation.__init__(self)
3922
3922
3923 def setup(self,dataOut,variableList= None,Pt=0,Gt=0,Gr=0,lambda_=0, aL=0,
3923 def setup(self,dataOut,variableList= None,Pt=0,Gt=0,Gr=0,lambda_=0, aL=0,
3924 tauW= 0,thetaT=0,thetaR=0,Km =0):
3924 tauW= 0,thetaT=0,thetaR=0,Km =0):
3925 self.nCh = dataOut.nChannels
3925 self.nCh = dataOut.nChannels
3926 self.nHeis = dataOut.nHeights
3926 self.nHeis = dataOut.nHeights
3927 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
3927 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
3928 self.Range = numpy.arange(dataOut.nHeights)*deltaHeight + dataOut.heightList[0]
3928 self.Range = numpy.arange(dataOut.nHeights)*deltaHeight + dataOut.heightList[0]
3929 self.Range = self.Range.reshape(1,self.nHeis)
3929 self.Range = self.Range.reshape(1,self.nHeis)
3930 self.Range = numpy.tile(self.Range,[self.nCh,1])
3930 self.Range = numpy.tile(self.Range,[self.nCh,1])
3931 '''-----------1 Constante del Radar----------'''
3931 '''-----------1 Constante del Radar----------'''
3932 self.Pt = Pt
3932 self.Pt = Pt
3933 self.Gt = Gt
3933 self.Gt = Gt
3934 self.Gr = Gr
3934 self.Gr = Gr
3935 self.lambda_ = lambda_
3935 self.lambda_ = lambda_
3936 self.aL = aL
3936 self.aL = aL
3937 self.tauW = tauW
3937 self.tauW = tauW
3938 self.thetaT = thetaT
3938 self.thetaT = thetaT
3939 self.thetaR = thetaR
3939 self.thetaR = thetaR
3940 self.Km = Km
3940 self.Km = Km
3941 Numerator = ((4*numpy.pi)**3 * aL**2 * 16 *numpy.log(2))
3941 Numerator = ((4*numpy.pi)**3 * aL**2 * 16 *numpy.log(2))
3942 Denominator = (Pt * Gt * Gr * lambda_**2 * SPEED_OF_LIGHT * tauW * numpy.pi*thetaT*thetaR)
3942 Denominator = (Pt * Gt * Gr * lambda_**2 * SPEED_OF_LIGHT * tauW * numpy.pi*thetaT*thetaR)
3943 self.RadarConstant = Numerator/Denominator
3943 self.RadarConstant = Numerator/Denominator
3944 self.variableList= variableList
3944 self.variableList= variableList
3945
3945
3946 def setMoments(self,dataOut,i):
3946 def setMoments(self,dataOut,i):
3947
3947
3948 type = dataOut.inputUnit
3948 type = dataOut.inputUnit
3949 nCh = dataOut.nChannels
3949 nCh = dataOut.nChannels
3950 nHeis = dataOut.nHeights
3950 nHeis = dataOut.nHeights
3951 data_param = numpy.zeros((nCh,4,nHeis))
3951 data_param = numpy.zeros((nCh,4,nHeis))
3952 if type == "Voltage":
3952 if type == "Voltage":
3953 factor = dataOut.normFactor
3953 factor = dataOut.normFactor
3954 data_param[:,0,:] = dataOut.dataPP_POW/(factor)
3954 data_param[:,0,:] = dataOut.dataPP_POW/(factor)
3955 data_param[:,1,:] = dataOut.dataPP_DOP
3955 data_param[:,1,:] = dataOut.dataPP_DOP
3956 data_param[:,2,:] = dataOut.dataPP_WIDTH
3956 data_param[:,2,:] = dataOut.dataPP_WIDTH
3957 data_param[:,3,:] = dataOut.dataPP_SNR
3957 data_param[:,3,:] = dataOut.dataPP_SNR
3958 if type == "Spectra":
3958 if type == "Spectra":
3959 data_param[:,0,:] = dataOut.data_POW
3959 data_param[:,0,:] = dataOut.data_POW
3960 data_param[:,1,:] = dataOut.data_DOP
3960 data_param[:,1,:] = dataOut.data_DOP
3961 data_param[:,2,:] = dataOut.data_WIDTH
3961 data_param[:,2,:] = dataOut.data_WIDTH
3962 data_param[:,3,:] = dataOut.data_SNR
3962 data_param[:,3,:] = dataOut.data_SNR
3963
3963
3964 return data_param[:,i,:]
3964 return data_param[:,i,:]
3965
3965
3966 def getCoeficienteCorrelacionROhv_R(self,dataOut):
3966 def getCoeficienteCorrelacionROhv_R(self,dataOut):
3967 type = dataOut.inputUnit
3967 type = dataOut.inputUnit
3968 nHeis = dataOut.nHeights
3968 nHeis = dataOut.nHeights
3969 data_RhoHV_R = numpy.zeros((nHeis))
3969 data_RhoHV_R = numpy.zeros((nHeis))
3970 if type == "Voltage":
3970 if type == "Voltage":
3971 powa = dataOut.dataPP_POWER[0]
3971 powa = dataOut.dataPP_POWER[0]
3972 powb = dataOut.dataPP_POWER[1]
3972 powb = dataOut.dataPP_POWER[1]
3973 ccf = dataOut.dataPP_CCF
3973 ccf = dataOut.dataPP_CCF
3974 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3974 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3975 data_RhoHV_R = numpy.abs(avgcoherenceComplex)
3975 data_RhoHV_R = numpy.abs(avgcoherenceComplex)
3976 if type == "Spectra":
3976 if type == "Spectra":
3977 data_RhoHV_R = dataOut.getCoherence()
3977 data_RhoHV_R = dataOut.getCoherence()
3978
3978
3979 return data_RhoHV_R
3979 return data_RhoHV_R
3980
3980
3981 def getFasediferencialPhiD_P(self,dataOut,phase= True):
3981 def getFasediferencialPhiD_P(self,dataOut,phase= True):
3982 type = dataOut.inputUnit
3982 type = dataOut.inputUnit
3983 nHeis = dataOut.nHeights
3983 nHeis = dataOut.nHeights
3984 data_PhiD_P = numpy.zeros((nHeis))
3984 data_PhiD_P = numpy.zeros((nHeis))
3985 if type == "Voltage":
3985 if type == "Voltage":
3986 powa = dataOut.dataPP_POWER[0]
3986 powa = dataOut.dataPP_POWER[0]
3987 powb = dataOut.dataPP_POWER[1]
3987 powb = dataOut.dataPP_POWER[1]
3988 ccf = dataOut.dataPP_CCF
3988 ccf = dataOut.dataPP_CCF
3989 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3989 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3990 if phase:
3990 if phase:
3991 data_PhiD_P = numpy.arctan2(avgcoherenceComplex.imag,
3991 data_PhiD_P = numpy.arctan2(avgcoherenceComplex.imag,
3992 avgcoherenceComplex.real) * 180 / numpy.pi
3992 avgcoherenceComplex.real) * 180 / numpy.pi
3993 if type == "Spectra":
3993 if type == "Spectra":
3994 data_PhiD_P = dataOut.getCoherence(phase = phase)
3994 data_PhiD_P = dataOut.getCoherence(phase = phase)
3995
3995
3996 return data_PhiD_P
3996 return data_PhiD_P
3997
3997
3998 def getReflectividad_D(self,dataOut):
3998 def getReflectividad_D(self,dataOut):
3999 '''-----------------------------Potencia de Radar -Signal S-----------------------------'''
3999 '''-----------------------------Potencia de Radar -Signal S-----------------------------'''
4000
4000
4001 Pr = self.setMoments(dataOut,0)
4001 Pr = self.setMoments(dataOut,0)
4002
4002
4003 '''-----------2 Reflectividad del Radar y Factor de Reflectividad------'''
4003 '''-----------2 Reflectividad del Radar y Factor de Reflectividad------'''
4004 self.n_radar = numpy.zeros((self.nCh,self.nHeis))
4004 self.n_radar = numpy.zeros((self.nCh,self.nHeis))
4005 self.Z_radar = numpy.zeros((self.nCh,self.nHeis))
4005 self.Z_radar = numpy.zeros((self.nCh,self.nHeis))
4006 for R in range(self.nHeis):
4006 for R in range(self.nHeis):
4007 self.n_radar[:,R] = self.RadarConstant*Pr[:,R]* (self.Range[:,R])**2
4007 self.n_radar[:,R] = self.RadarConstant*Pr[:,R]* (self.Range[:,R])**2
4008
4008
4009 self.Z_radar[:,R] = self.n_radar[:,R]* self.lambda_**4/( numpy.pi**5 * self.Km**2)
4009 self.Z_radar[:,R] = self.n_radar[:,R]* self.lambda_**4/( numpy.pi**5 * self.Km**2)
4010
4010
4011 '''----------- Factor de Reflectividad Equivalente lamda_ < 10 cm , lamda_= 3.2cm-------'''
4011 '''----------- Factor de Reflectividad Equivalente lamda_ < 10 cm , lamda_= 3.2cm-------'''
4012 Zeh = self.Z_radar
4012 Zeh = self.Z_radar
4013 dBZeh = 10*numpy.log10(Zeh)
4013 dBZeh = 10*numpy.log10(Zeh)
4014 Zdb_D = dBZeh[0] - dBZeh[1]
4014 Zdb_D = dBZeh[0] - dBZeh[1]
4015 return Zdb_D
4015 return Zdb_D
4016
4016
4017 def getRadialVelocity_V(self,dataOut):
4017 def getRadialVelocity_V(self,dataOut):
4018 velRadial_V = self.setMoments(dataOut,1)
4018 velRadial_V = self.setMoments(dataOut,1)
4019 return velRadial_V
4019 return velRadial_V
4020
4020
4021 def getAnchoEspectral_W(self,dataOut):
4021 def getAnchoEspectral_W(self,dataOut):
4022 Sigmav_W = self.setMoments(dataOut,2)
4022 Sigmav_W = self.setMoments(dataOut,2)
4023 return Sigmav_W
4023 return Sigmav_W
4024
4024
4025
4025
4026 def run(self,dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4026 def run(self,dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4027 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93):
4027 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93):
4028
4028
4029 if not self.isConfig:
4029 if not self.isConfig:
4030 self.setup(dataOut= dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4030 self.setup(dataOut= dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4031 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93)
4031 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93)
4032 self.isConfig = True
4032 self.isConfig = True
4033
4033
4034 for i in range(len(self.variableList)):
4034 for i in range(len(self.variableList)):
4035 if self.variableList[i]=='ReflectividadDiferencial':
4035 if self.variableList[i]=='ReflectividadDiferencial':
4036 dataOut.Zdb_D =self.getReflectividad_D(dataOut=dataOut)
4036 dataOut.Zdb_D =self.getReflectividad_D(dataOut=dataOut)
4037 if self.variableList[i]=='FaseDiferencial':
4037 if self.variableList[i]=='FaseDiferencial':
4038 dataOut.PhiD_P =self.getFasediferencialPhiD_P(dataOut=dataOut, phase=True)
4038 dataOut.PhiD_P =self.getFasediferencialPhiD_P(dataOut=dataOut, phase=True)
4039 if self.variableList[i] == "CoeficienteCorrelacion":
4039 if self.variableList[i] == "CoeficienteCorrelacion":
4040 dataOut.RhoHV_R = self.getCoeficienteCorrelacionROhv_R(dataOut)
4040 dataOut.RhoHV_R = self.getCoeficienteCorrelacionROhv_R(dataOut)
4041 if self.variableList[i] =="VelocidadRadial":
4041 if self.variableList[i] =="VelocidadRadial":
4042 dataOut.velRadial_V = self.getRadialVelocity_V(dataOut)
4042 dataOut.velRadial_V = self.getRadialVelocity_V(dataOut)
4043 if self.variableList[i] =="AnchoEspectral":
4043 if self.variableList[i] =="AnchoEspectral":
4044 dataOut.Sigmav_W = self.getAnchoEspectral_W(dataOut)
4044 dataOut.Sigmav_W = self.getAnchoEspectral_W(dataOut)
4045 return dataOut
4045 return dataOut
4046
4046
4047 class PedestalInformation(Operation):
4047 class PedestalInformation(Operation):
4048
4048
4049 def __init__(self):
4049 def __init__(self):
4050 Operation.__init__(self)
4050 Operation.__init__(self)
4051 self.filename = False
4051 self.filename = False
4052
4052
4053 def find_file(self, timestamp):
4053 def find_file(self, timestamp):
4054
4054
4055 dt = datetime.datetime.utcfromtimestamp(timestamp)
4055 dt = datetime.datetime.utcfromtimestamp(timestamp)
4056 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4056 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4057
4057
4058 if not os.path.exists(path):
4058 if not os.path.exists(path):
4059 return False, False
4059 return False, False
4060 fileList = glob.glob(os.path.join(path, '*.h5'))
4060 fileList = glob.glob(os.path.join(path, '*.h5'))
4061 fileList.sort()
4061 fileList.sort()
4062 for fullname in fileList:
4062 print(fileList)
4063 filename = fullname.split('/')[-1]
4063 return fileList
4064 number = int(filename[4:14])
4065 if number <= timestamp:
4066 return number, fullname
4067 return False, False
4068
4064
4069 def find_next_file(self):
4065 def find_next_file(self):
4070
4066
4071 while True:
4067 while True:
4068 if self.utctime < self.utcfile:
4069 self.flagNoData = True
4070 break
4071 self.flagNoData = False
4072 file_size = len(self.fp['Data']['utc'])
4072 file_size = len(self.fp['Data']['utc'])
4073 if self.utctime < self.utcfile+file_size*self.interval:
4073 if self.utctime < self.utcfile+file_size*self.interval:
4074 break
4074 break
4075 self.utcfile += file_size*self.interval
4075 dt = datetime.datetime.utcfromtimestamp(self.utcfile)
4076 if dt.second > 0:
4077 self.utcfile -= dt.second
4078 self.utcfile += self.samples*self.interval
4076 dt = datetime.datetime.utcfromtimestamp(self.utctime)
4079 dt = datetime.datetime.utcfromtimestamp(self.utctime)
4077 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4080 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4078 self.filename = os.path.join(path, 'pos@{}.000.h5'.format(self.utcfile))
4081 self.filename = os.path.join(path, 'pos@{}.000.h5'.format(int(self.utcfile)))
4082 print('ACQ time: ', self.utctime, 'POS time: ', self.utcfile)
4083 print('Next file: ', self.filename)
4079 if not os.path.exists(self.filename):
4084 if not os.path.exists(self.filename):
4080 log.warning('Waiting for position files...', self.name)
4085 log.warning('Waiting for position files...', self.name)
4081
4086
4082 if not os.path.exists(self.filename):
4087 if not os.path.exists(self.filename):
4083
4088
4084 raise IOError('No new position files found in {}'.format(path))
4089 raise IOError('No new position files found in {}'.format(path))
4085 self.fp.close()
4090 self.fp.close()
4086 self.fp = h5py.File(self.filename, 'r')
4091 self.fp = h5py.File(self.filename, 'r')
4087 log.log('Opening file: {}'.format(self.filename), self.name)
4092 log.log('Opening file: {}'.format(self.filename), self.name)
4088
4093
4089 def get_values(self):
4094 def get_values(self):
4090
4095
4096 if self.flagNoData:
4097 return numpy.nan, numpy.nan
4098 else:
4091 index = int((self.utctime-self.utcfile)/self.interval)
4099 index = int((self.utctime-self.utcfile)/self.interval)
4092 return self.fp['Data']['azi_pos'][index], self.fp['Data']['ele_pos'][index]
4100 return self.fp['Data']['azi_pos'][index], self.fp['Data']['ele_pos'][index]
4093
4101
4094 def setup(self, dataOut, path, conf, samples, interval, wr_exp):
4102 def setup(self, dataOut, path, conf, samples, interval, wr_exp):
4095
4103
4096 self.path = path
4104 self.path = path
4097 self.conf = conf
4105 self.conf = conf
4098 self.samples = samples
4106 self.samples = samples
4099 self.interval = interval
4107 self.interval = interval
4100 self.utcfile, self.filename = self.find_file(dataOut.utctime)
4108 filelist = self.find_file(dataOut.utctime)
4101
4109
4102 if not self.filename:
4110 if not filelist:
4103 log.error('No position files found in {}'.format(path), self.name)
4111 log.error('No position files found in {}'.format(path), self.name)
4104 raise IOError('No position files found in {}'.format(path))
4112 raise IOError('No position files found in {}'.format(path))
4105 else:
4113 else:
4114 self.filename = filelist[0]
4115 self.utcfile = int(self.filename.split('/')[-1][4:14])
4106 log.log('Opening file: {}'.format(self.filename), self.name)
4116 log.log('Opening file: {}'.format(self.filename), self.name)
4107 self.fp = h5py.File(self.filename, 'r')
4117 self.fp = h5py.File(self.filename, 'r')
4108
4118
4109 def run(self, dataOut, path, conf=None, samples=1500, interval=0.04, wr_exp=None):
4119 def run(self, dataOut, path, conf=None, samples=1500, interval=0.04, wr_exp=None, offset=0):
4110
4120
4111 if not self.isConfig:
4121 if not self.isConfig:
4112 self.setup(dataOut, path, conf, samples, interval, wr_exp)
4122 self.setup(dataOut, path, conf, samples, interval, wr_exp)
4113 self.isConfig = True
4123 self.isConfig = True
4114
4124
4115 self.utctime = dataOut.utctime
4125 self.utctime = dataOut.utctime + offset
4116
4126
4117 self.find_next_file()
4127 self.find_next_file()
4118
4128
4119 az, el = self.get_values()
4129 az, el = self.get_values()
4120 dataOut.flagNoData = False
4130 dataOut.flagNoData = False
4121
4131
4122 if numpy.isnan(az) or numpy.isnan(el) :
4132 if numpy.isnan(az) or numpy.isnan(el) :
4123 dataOut.flagNoData = True
4133 dataOut.flagNoData = True
4124 return dataOut
4134 return dataOut
4125
4135
4126 dataOut.azimuth = az
4136 dataOut.azimuth = az
4127 dataOut.elevation = el
4137 dataOut.elevation = el
4128 # print('AZ: ', az, ' EL: ', el)
4138 # print('AZ: ', az, ' EL: ', el)
4129 return dataOut
4139 return dataOut
4130
4140
4131 class Block360(Operation):
4141 class Block360(Operation):
4132 '''
4142 '''
4133 '''
4143 '''
4134 isConfig = False
4144 isConfig = False
4135 __profIndex = 0
4145 __profIndex = 0
4136 __initime = None
4146 __initime = None
4137 __lastdatatime = None
4147 __lastdatatime = None
4138 __buffer = None
4148 __buffer = None
4139 __dataReady = False
4149 __dataReady = False
4140 n = None
4150 n = None
4141 __nch = 0
4151 __nch = 0
4142 __nHeis = 0
4152 __nHeis = 0
4143 index = 0
4153 index = 0
4144 mode = 0
4154 mode = 0
4145
4155
4146 def __init__(self,**kwargs):
4156 def __init__(self,**kwargs):
4147 Operation.__init__(self,**kwargs)
4157 Operation.__init__(self,**kwargs)
4148
4158
4149 def setup(self, dataOut, n = None, mode = None):
4159 def setup(self, dataOut, n = None, mode = None):
4150 '''
4160 '''
4151 n= Numero de PRF's de entrada
4161 n= Numero de PRF's de entrada
4152 '''
4162 '''
4153 self.__initime = None
4163 self.__initime = None
4154 self.__lastdatatime = 0
4164 self.__lastdatatime = 0
4155 self.__dataReady = False
4165 self.__dataReady = False
4156 self.__buffer = 0
4166 self.__buffer = 0
4157 self.__buffer_1D = 0
4167 self.__buffer_1D = 0
4158 self.__profIndex = 0
4168 self.__profIndex = 0
4159 self.index = 0
4169 self.index = 0
4160 self.__nch = dataOut.nChannels
4170 self.__nch = dataOut.nChannels
4161 self.__nHeis = dataOut.nHeights
4171 self.__nHeis = dataOut.nHeights
4162 ##print("ELVALOR DE n es:", n)
4172 ##print("ELVALOR DE n es:", n)
4163 if n == None:
4173 if n == None:
4164 raise ValueError("n should be specified.")
4174 raise ValueError("n should be specified.")
4165
4175
4166 if mode == None:
4176 if mode == None:
4167 raise ValueError("mode should be specified.")
4177 raise ValueError("mode should be specified.")
4168
4178
4169 if n != None:
4179 if n != None:
4170 if n<1:
4180 if n<1:
4171 print("n should be greater than 2")
4181 print("n should be greater than 2")
4172 raise ValueError("n should be greater than 2")
4182 raise ValueError("n should be greater than 2")
4173
4183
4174 self.n = n
4184 self.n = n
4175 self.mode = mode
4185 self.mode = mode
4176 #print("self.mode",self.mode)
4186 #print("self.mode",self.mode)
4177 #print("nHeights")
4187 #print("nHeights")
4178 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4188 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4179 self.__buffer2 = numpy.zeros(n)
4189 self.__buffer2 = numpy.zeros(n)
4180 self.__buffer3 = numpy.zeros(n)
4190 self.__buffer3 = numpy.zeros(n)
4181
4191
4182
4192
4183
4193
4184
4194
4185 def putData(self,data,mode):
4195 def putData(self,data,mode):
4186 '''
4196 '''
4187 Add a profile to he __buffer and increase in one the __profiel Index
4197 Add a profile to he __buffer and increase in one the __profiel Index
4188 '''
4198 '''
4189 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4199 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4190 #print("line 4049",data.azimuth.shape,data.azimuth)
4200 #print("line 4049",data.azimuth.shape,data.azimuth)
4191 if self.mode==0:
4201 if self.mode==0:
4192 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4202 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4193 if self.mode==1:
4203 if self.mode==1:
4194 self.__buffer[:,self.__profIndex,:]= data.data_pow
4204 self.__buffer[:,self.__profIndex,:]= data.data_pow
4195 #print("me casi",self.index,data.azimuth[self.index])
4205 #print("me casi",self.index,data.azimuth[self.index])
4196 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4206 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4197 #print("magic",data.profileIndex)
4207 #print("magic",data.profileIndex)
4198 #print(data.azimuth[self.index])
4208 #print(data.azimuth[self.index])
4199 #print("index",self.index)
4209 #print("index",self.index)
4200
4210
4201 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4211 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4202 self.__buffer2[self.__profIndex] = data.azimuth
4212 self.__buffer2[self.__profIndex] = data.azimuth
4203 self.__buffer3[self.__profIndex] = data.elevation
4213 self.__buffer3[self.__profIndex] = data.elevation
4204 #print("q pasa")
4214 #print("q pasa")
4205 #####self.index+=1
4215 #####self.index+=1
4206 #print("index",self.index,data.azimuth[:10])
4216 #print("index",self.index,data.azimuth[:10])
4207 self.__profIndex += 1
4217 self.__profIndex += 1
4208 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4218 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4209
4219
4210 def pushData(self,data):
4220 def pushData(self,data):
4211 '''
4221 '''
4212 Return the PULSEPAIR and the profiles used in the operation
4222 Return the PULSEPAIR and the profiles used in the operation
4213 Affected : self.__profileIndex
4223 Affected : self.__profileIndex
4214 '''
4224 '''
4215 #print("pushData")
4225 #print("pushData")
4216
4226
4217 data_360 = self.__buffer
4227 data_360 = self.__buffer
4218 data_p = self.__buffer2
4228 data_p = self.__buffer2
4219 data_e = self.__buffer3
4229 data_e = self.__buffer3
4220 n = self.__profIndex
4230 n = self.__profIndex
4221
4231
4222 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4232 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4223 self.__buffer2 = numpy.zeros(self.n)
4233 self.__buffer2 = numpy.zeros(self.n)
4224 self.__buffer3 = numpy.zeros(self.n)
4234 self.__buffer3 = numpy.zeros(self.n)
4225 self.__profIndex = 0
4235 self.__profIndex = 0
4226 #print("pushData")
4236 #print("pushData")
4227 return data_360,n,data_p,data_e
4237 return data_360,n,data_p,data_e
4228
4238
4229
4239
4230 def byProfiles(self,dataOut):
4240 def byProfiles(self,dataOut):
4231
4241
4232 self.__dataReady = False
4242 self.__dataReady = False
4233 data_360 = None
4243 data_360 = None
4234 data_p = None
4244 data_p = None
4235 data_e = None
4245 data_e = None
4236 #print("dataOu",dataOut.dataPP_POW)
4246 #print("dataOu",dataOut.dataPP_POW)
4237 self.putData(data=dataOut,mode = self.mode)
4247 self.putData(data=dataOut,mode = self.mode)
4238 ##### print("profIndex",self.__profIndex)
4248 ##### print("profIndex",self.__profIndex)
4239 if self.__profIndex == self.n:
4249 if self.__profIndex == self.n:
4240 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4250 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4241 self.__dataReady = True
4251 self.__dataReady = True
4242
4252
4243 return data_360,data_p,data_e
4253 return data_360,data_p,data_e
4244
4254
4245
4255
4246 def blockOp(self, dataOut, datatime= None):
4256 def blockOp(self, dataOut, datatime= None):
4247 if self.__initime == None:
4257 if self.__initime == None:
4248 self.__initime = datatime
4258 self.__initime = datatime
4249 data_360,data_p,data_e = self.byProfiles(dataOut)
4259 data_360,data_p,data_e = self.byProfiles(dataOut)
4250 self.__lastdatatime = datatime
4260 self.__lastdatatime = datatime
4251
4261
4252 if data_360 is None:
4262 if data_360 is None:
4253 return None, None,None,None
4263 return None, None,None,None
4254
4264
4255
4265
4256 avgdatatime = self.__initime
4266 avgdatatime = self.__initime
4257 if self.n==1:
4267 if self.n==1:
4258 avgdatatime = datatime
4268 avgdatatime = datatime
4259 deltatime = datatime - self.__lastdatatime
4269 deltatime = datatime - self.__lastdatatime
4260 self.__initime = datatime
4270 self.__initime = datatime
4261 #print(data_360.shape,avgdatatime,data_p.shape)
4271 #print(data_360.shape,avgdatatime,data_p.shape)
4262 return data_360,avgdatatime,data_p,data_e
4272 return data_360,avgdatatime,data_p,data_e
4263
4273
4264 def run(self, dataOut,n = None,mode=None,**kwargs):
4274 def run(self, dataOut,n = None,mode=None,**kwargs):
4265 #print("BLOCK 360 HERE WE GO MOMENTOS")
4275 #print("BLOCK 360 HERE WE GO MOMENTOS")
4266 print("Block 360")
4276 print("Block 360")
4267 #exit(1)
4277 #exit(1)
4268 if not self.isConfig:
4278 if not self.isConfig:
4269 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4279 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4270 ####self.index = 0
4280 ####self.index = 0
4271 #print("comova",self.isConfig)
4281 #print("comova",self.isConfig)
4272 self.isConfig = True
4282 self.isConfig = True
4273 ####if self.index==dataOut.azimuth.shape[0]:
4283 ####if self.index==dataOut.azimuth.shape[0]:
4274 #### self.index=0
4284 #### self.index=0
4275 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4285 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4276 dataOut.flagNoData = True
4286 dataOut.flagNoData = True
4277
4287
4278 if self.__dataReady:
4288 if self.__dataReady:
4279 dataOut.data_360 = data_360 # S
4289 dataOut.data_360 = data_360 # S
4280 #print("DATA 360")
4290 #print("DATA 360")
4281 #print(dataOut.data_360)
4291 #print(dataOut.data_360)
4282 #print("---------------------------------------------------------------------------------")
4292 #print("---------------------------------------------------------------------------------")
4283 print("---------------------------DATAREADY---------------------------------------------")
4293 print("---------------------------DATAREADY---------------------------------------------")
4284 #print("---------------------------------------------------------------------------------")
4294 #print("---------------------------------------------------------------------------------")
4285 #print("data_360",dataOut.data_360.shape)
4295 #print("data_360",dataOut.data_360.shape)
4286 dataOut.data_azi = data_p
4296 dataOut.data_azi = data_p
4287 dataOut.data_ele = data_e
4297 dataOut.data_ele = data_e
4288 ###print("azi: ",dataOut.data_azi)
4298 ###print("azi: ",dataOut.data_azi)
4289 #print("ele: ",dataOut.data_ele)
4299 #print("ele: ",dataOut.data_ele)
4290 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4300 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4291 dataOut.utctime = avgdatatime
4301 dataOut.utctime = avgdatatime
4292 dataOut.flagNoData = False
4302 dataOut.flagNoData = False
4293 return dataOut
4303 return dataOut
4294
4304
4295 class Block360_vRF(Operation):
4305 class Block360_vRF(Operation):
4296 '''
4306 '''
4297 '''
4307 '''
4298 isConfig = False
4308 isConfig = False
4299 __profIndex = 0
4309 __profIndex = 0
4300 __initime = None
4310 __initime = None
4301 __lastdatatime = None
4311 __lastdatatime = None
4302 __buffer = None
4312 __buffer = None
4303 __dataReady = False
4313 __dataReady = False
4304 n = None
4314 n = None
4305 __nch = 0
4315 __nch = 0
4306 __nHeis = 0
4316 __nHeis = 0
4307 index = 0
4317 index = 0
4308 mode = 0
4318 mode = 0
4309
4319
4310 def __init__(self,**kwargs):
4320 def __init__(self,**kwargs):
4311 Operation.__init__(self,**kwargs)
4321 Operation.__init__(self,**kwargs)
4312
4322
4313 def setup(self, dataOut, n = None, mode = None):
4323 def setup(self, dataOut, n = None, mode = None):
4314 '''
4324 '''
4315 n= Numero de PRF's de entrada
4325 n= Numero de PRF's de entrada
4316 '''
4326 '''
4317 self.__initime = None
4327 self.__initime = None
4318 self.__lastdatatime = 0
4328 self.__lastdatatime = 0
4319 self.__dataReady = False
4329 self.__dataReady = False
4320 self.__buffer = 0
4330 self.__buffer = 0
4321 self.__buffer_1D = 0
4331 self.__buffer_1D = 0
4322 self.__profIndex = 0
4332 self.__profIndex = 0
4323 self.index = 0
4333 self.index = 0
4324 self.__nch = dataOut.nChannels
4334 self.__nch = dataOut.nChannels
4325 self.__nHeis = dataOut.nHeights
4335 self.__nHeis = dataOut.nHeights
4326 ##print("ELVALOR DE n es:", n)
4336 ##print("ELVALOR DE n es:", n)
4327 if n == None:
4337 if n == None:
4328 raise ValueError("n should be specified.")
4338 raise ValueError("n should be specified.")
4329
4339
4330 if mode == None:
4340 if mode == None:
4331 raise ValueError("mode should be specified.")
4341 raise ValueError("mode should be specified.")
4332
4342
4333 if n != None:
4343 if n != None:
4334 if n<1:
4344 if n<1:
4335 print("n should be greater than 2")
4345 print("n should be greater than 2")
4336 raise ValueError("n should be greater than 2")
4346 raise ValueError("n should be greater than 2")
4337
4347
4338 self.n = n
4348 self.n = n
4339 self.mode = mode
4349 self.mode = mode
4340 #print("self.mode",self.mode)
4350 #print("self.mode",self.mode)
4341 #print("nHeights")
4351 #print("nHeights")
4342 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4352 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4343 self.__buffer2 = numpy.zeros(n)
4353 self.__buffer2 = numpy.zeros(n)
4344 self.__buffer3 = numpy.zeros(n)
4354 self.__buffer3 = numpy.zeros(n)
4345
4355
4346
4356
4347
4357
4348
4358
4349 def putData(self,data,mode):
4359 def putData(self,data,mode):
4350 '''
4360 '''
4351 Add a profile to he __buffer and increase in one the __profiel Index
4361 Add a profile to he __buffer and increase in one the __profiel Index
4352 '''
4362 '''
4353 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4363 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4354 #print("line 4049",data.azimuth.shape,data.azimuth)
4364 #print("line 4049",data.azimuth.shape,data.azimuth)
4355 if self.mode==0:
4365 if self.mode==0:
4356 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4366 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4357 if self.mode==1:
4367 if self.mode==1:
4358 self.__buffer[:,self.__profIndex,:]= data.data_pow
4368 self.__buffer[:,self.__profIndex,:]= data.data_pow
4359 #print("me casi",self.index,data.azimuth[self.index])
4369 #print("me casi",self.index,data.azimuth[self.index])
4360 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4370 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4361 #print("magic",data.profileIndex)
4371 #print("magic",data.profileIndex)
4362 #print(data.azimuth[self.index])
4372 #print(data.azimuth[self.index])
4363 #print("index",self.index)
4373 #print("index",self.index)
4364
4374
4365 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4375 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4366 self.__buffer2[self.__profIndex] = data.azimuth
4376 self.__buffer2[self.__profIndex] = data.azimuth
4367 self.__buffer3[self.__profIndex] = data.elevation
4377 self.__buffer3[self.__profIndex] = data.elevation
4368 #print("q pasa")
4378 #print("q pasa")
4369 #####self.index+=1
4379 #####self.index+=1
4370 #print("index",self.index,data.azimuth[:10])
4380 #print("index",self.index,data.azimuth[:10])
4371 self.__profIndex += 1
4381 self.__profIndex += 1
4372 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4382 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4373
4383
4374 def pushData(self,data):
4384 def pushData(self,data):
4375 '''
4385 '''
4376 Return the PULSEPAIR and the profiles used in the operation
4386 Return the PULSEPAIR and the profiles used in the operation
4377 Affected : self.__profileIndex
4387 Affected : self.__profileIndex
4378 '''
4388 '''
4379 #print("pushData")
4389 #print("pushData")
4380
4390
4381 data_360 = self.__buffer
4391 data_360 = self.__buffer
4382 data_p = self.__buffer2
4392 data_p = self.__buffer2
4383 data_e = self.__buffer3
4393 data_e = self.__buffer3
4384 n = self.__profIndex
4394 n = self.__profIndex
4385
4395
4386 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4396 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4387 self.__buffer2 = numpy.zeros(self.n)
4397 self.__buffer2 = numpy.zeros(self.n)
4388 self.__buffer3 = numpy.zeros(self.n)
4398 self.__buffer3 = numpy.zeros(self.n)
4389 self.__profIndex = 0
4399 self.__profIndex = 0
4390 #print("pushData")
4400 #print("pushData")
4391 return data_360,n,data_p,data_e
4401 return data_360,n,data_p,data_e
4392
4402
4393
4403
4394 def byProfiles(self,dataOut):
4404 def byProfiles(self,dataOut):
4395
4405
4396 self.__dataReady = False
4406 self.__dataReady = False
4397 data_360 = None
4407 data_360 = None
4398 data_p = None
4408 data_p = None
4399 data_e = None
4409 data_e = None
4400 #print("dataOu",dataOut.dataPP_POW)
4410 #print("dataOu",dataOut.dataPP_POW)
4401 self.putData(data=dataOut,mode = self.mode)
4411 self.putData(data=dataOut,mode = self.mode)
4402 ##### print("profIndex",self.__profIndex)
4412 ##### print("profIndex",self.__profIndex)
4403 if self.__profIndex == self.n:
4413 if self.__profIndex == self.n:
4404 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4414 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4405 self.__dataReady = True
4415 self.__dataReady = True
4406
4416
4407 return data_360,data_p,data_e
4417 return data_360,data_p,data_e
4408
4418
4409
4419
4410 def blockOp(self, dataOut, datatime= None):
4420 def blockOp(self, dataOut, datatime= None):
4411 if self.__initime == None:
4421 if self.__initime == None:
4412 self.__initime = datatime
4422 self.__initime = datatime
4413 data_360,data_p,data_e = self.byProfiles(dataOut)
4423 data_360,data_p,data_e = self.byProfiles(dataOut)
4414 self.__lastdatatime = datatime
4424 self.__lastdatatime = datatime
4415
4425
4416 if data_360 is None:
4426 if data_360 is None:
4417 return None, None,None,None
4427 return None, None,None,None
4418
4428
4419
4429
4420 avgdatatime = self.__initime
4430 avgdatatime = self.__initime
4421 if self.n==1:
4431 if self.n==1:
4422 avgdatatime = datatime
4432 avgdatatime = datatime
4423 deltatime = datatime - self.__lastdatatime
4433 deltatime = datatime - self.__lastdatatime
4424 self.__initime = datatime
4434 self.__initime = datatime
4425 #print(data_360.shape,avgdatatime,data_p.shape)
4435 #print(data_360.shape,avgdatatime,data_p.shape)
4426 return data_360,avgdatatime,data_p,data_e
4436 return data_360,avgdatatime,data_p,data_e
4427
4437
4428 def checkcase(self,data_ele):
4438 def checkcase(self,data_ele):
4429 start = data_ele[0]
4439 start = data_ele[0]
4430 end = data_ele[-1]
4440 end = data_ele[-1]
4431 diff_angle = (end-start)
4441 diff_angle = (end-start)
4432 len_ang=len(data_ele)
4442 len_ang=len(data_ele)
4433 print("start",start)
4443 print("start",start)
4434 print("end",end)
4444 print("end",end)
4435 print("number",diff_angle)
4445 print("number",diff_angle)
4436
4446
4437 print("len_ang",len_ang)
4447 print("len_ang",len_ang)
4438
4448
4439 aux = (data_ele<0).any(axis=0)
4449 aux = (data_ele<0).any(axis=0)
4440
4450
4441 #exit(1)
4451 #exit(1)
4442 if diff_angle<0 and aux!=1: #Bajada
4452 if diff_angle<0 and aux!=1: #Bajada
4443 return 1
4453 return 1
4444 elif diff_angle<0 and aux==1: #Bajada con angulos negativos
4454 elif diff_angle<0 and aux==1: #Bajada con angulos negativos
4445 return 0
4455 return 0
4446 elif diff_angle == 0: # This case happens when the angle reaches the max_angle if n = 2
4456 elif diff_angle == 0: # This case happens when the angle reaches the max_angle if n = 2
4447 self.flagEraseFirstData = 1
4457 self.flagEraseFirstData = 1
4448 print("ToDO this case")
4458 print("ToDO this case")
4449 exit(1)
4459 exit(1)
4450 elif diff_angle>0: #Subida
4460 elif diff_angle>0: #Subida
4451 return 0
4461 return 0
4452
4462
4453 def run(self, dataOut,n = None,mode=None,**kwargs):
4463 def run(self, dataOut,n = None,mode=None,**kwargs):
4454 #print("BLOCK 360 HERE WE GO MOMENTOS")
4464 #print("BLOCK 360 HERE WE GO MOMENTOS")
4455 print("Block 360")
4465 print("Block 360")
4456
4466
4457 #exit(1)
4467 #exit(1)
4458 if not self.isConfig:
4468 if not self.isConfig:
4459 if n == 1:
4469 if n == 1:
4460 print("*******************Min Value is 2. Setting n = 2*******************")
4470 print("*******************Min Value is 2. Setting n = 2*******************")
4461 n = 2
4471 n = 2
4462 #exit(1)
4472 #exit(1)
4463 print(n)
4473 print(n)
4464 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4474 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4465 ####self.index = 0
4475 ####self.index = 0
4466 #print("comova",self.isConfig)
4476 #print("comova",self.isConfig)
4467 self.isConfig = True
4477 self.isConfig = True
4468 ####if self.index==dataOut.azimuth.shape[0]:
4478 ####if self.index==dataOut.azimuth.shape[0]:
4469 #### self.index=0
4479 #### self.index=0
4470 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4480 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4471 dataOut.flagNoData = True
4481 dataOut.flagNoData = True
4472
4482
4473 if self.__dataReady:
4483 if self.__dataReady:
4474 dataOut.data_360 = data_360 # S
4484 dataOut.data_360 = data_360 # S
4475 #print("DATA 360")
4485 #print("DATA 360")
4476 #print(dataOut.data_360)
4486 #print(dataOut.data_360)
4477 #print("---------------------------------------------------------------------------------")
4487 #print("---------------------------------------------------------------------------------")
4478 print("---------------------------DATAREADY---------------------------------------------")
4488 print("---------------------------DATAREADY---------------------------------------------")
4479 #print("---------------------------------------------------------------------------------")
4489 #print("---------------------------------------------------------------------------------")
4480 #print("data_360",dataOut.data_360.shape)
4490 #print("data_360",dataOut.data_360.shape)
4481 dataOut.data_azi = data_p
4491 dataOut.data_azi = data_p
4482 dataOut.data_ele = data_e
4492 dataOut.data_ele = data_e
4483 ###print("azi: ",dataOut.data_azi)
4493 ###print("azi: ",dataOut.data_azi)
4484 #print("ele: ",dataOut.data_ele)
4494 #print("ele: ",dataOut.data_ele)
4485 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4495 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4486 dataOut.utctime = avgdatatime
4496 dataOut.utctime = avgdatatime
4487
4497
4488 dataOut.case_flag = self.checkcase(dataOut.data_ele)
4498 dataOut.case_flag = self.checkcase(dataOut.data_ele)
4489 if dataOut.case_flag: #Si estΓ‘ de bajada empieza a plotear
4499 if dataOut.case_flag: #Si estΓ‘ de bajada empieza a plotear
4490 print("INSIDE CASE FLAG BAJADA")
4500 print("INSIDE CASE FLAG BAJADA")
4491 dataOut.flagNoData = False
4501 dataOut.flagNoData = False
4492 else:
4502 else:
4493 print("CASE SUBIDA")
4503 print("CASE SUBIDA")
4494 dataOut.flagNoData = True
4504 dataOut.flagNoData = True
4495
4505
4496 #dataOut.flagNoData = False
4506 #dataOut.flagNoData = False
4497 return dataOut
4507 return dataOut
4498
4508
4499 class Block360_vRF2(Operation):
4509 class Block360_vRF2(Operation):
4500 '''
4510 '''
4501 '''
4511 '''
4502 isConfig = False
4512 isConfig = False
4503 __profIndex = 0
4513 __profIndex = 0
4504 __initime = None
4514 __initime = None
4505 __lastdatatime = None
4515 __lastdatatime = None
4506 __buffer = None
4516 __buffer = None
4507 __dataReady = False
4517 __dataReady = False
4508 n = None
4518 n = None
4509 __nch = 0
4519 __nch = 0
4510 __nHeis = 0
4520 __nHeis = 0
4511 index = 0
4521 index = 0
4512 mode = 0
4522 mode = 0
4513
4523
4514 def __init__(self,**kwargs):
4524 def __init__(self,**kwargs):
4515 Operation.__init__(self,**kwargs)
4525 Operation.__init__(self,**kwargs)
4516
4526
4517 def setup(self, dataOut, n = None, mode = None):
4527 def setup(self, dataOut, n = None, mode = None):
4518 '''
4528 '''
4519 n= Numero de PRF's de entrada
4529 n= Numero de PRF's de entrada
4520 '''
4530 '''
4521 self.__initime = None
4531 self.__initime = None
4522 self.__lastdatatime = 0
4532 self.__lastdatatime = 0
4523 self.__dataReady = False
4533 self.__dataReady = False
4524 self.__buffer = 0
4534 self.__buffer = 0
4525 self.__buffer_1D = 0
4535 self.__buffer_1D = 0
4526 #self.__profIndex = 0
4536 #self.__profIndex = 0
4527 self.index = 0
4537 self.index = 0
4528 self.__nch = dataOut.nChannels
4538 self.__nch = dataOut.nChannels
4529 self.__nHeis = dataOut.nHeights
4539 self.__nHeis = dataOut.nHeights
4530
4540
4531 self.mode = mode
4541 self.mode = mode
4532 #print("self.mode",self.mode)
4542 #print("self.mode",self.mode)
4533 #print("nHeights")
4543 #print("nHeights")
4534 self.__buffer = []
4544 self.__buffer = []
4535 self.__buffer2 = []
4545 self.__buffer2 = []
4536 self.__buffer3 = []
4546 self.__buffer3 = []
4537
4547
4538 def putData(self,data,mode):
4548 def putData(self,data,mode):
4539 '''
4549 '''
4540 Add a profile to he __buffer and increase in one the __profiel Index
4550 Add a profile to he __buffer and increase in one the __profiel Index
4541 '''
4551 '''
4542 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4552 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4543 #print("line 4049",data.azimuth.shape,data.azimuth)
4553 #print("line 4049",data.azimuth.shape,data.azimuth)
4544 if self.mode==0:
4554 if self.mode==0:
4545 self.__buffer.append(data.dataPP_POWER)# PRIMER MOMENTO
4555 self.__buffer.append(data.dataPP_POWER)# PRIMER MOMENTO
4546 if self.mode==1:
4556 if self.mode==1:
4547 self.__buffer.append(data.data_pow)
4557 self.__buffer.append(data.data_pow)
4548 #print("me casi",self.index,data.azimuth[self.index])
4558 #print("me casi",self.index,data.azimuth[self.index])
4549 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4559 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4550 #print("magic",data.profileIndex)
4560 #print("magic",data.profileIndex)
4551 #print(data.azimuth[self.index])
4561 #print(data.azimuth[self.index])
4552 #print("index",self.index)
4562 #print("index",self.index)
4553
4563
4554 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4564 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4555 self.__buffer2.append(data.azimuth)
4565 self.__buffer2.append(data.azimuth)
4556 self.__buffer3.append(data.elevation)
4566 self.__buffer3.append(data.elevation)
4557 self.__profIndex += 1
4567 self.__profIndex += 1
4558 #print("q pasa")
4568 #print("q pasa")
4559 return numpy.array(self.__buffer3) #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4569 return numpy.array(self.__buffer3) #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4560
4570
4561 def pushData(self,data):
4571 def pushData(self,data):
4562 '''
4572 '''
4563 Return the PULSEPAIR and the profiles used in the operation
4573 Return the PULSEPAIR and the profiles used in the operation
4564 Affected : self.__profileIndex
4574 Affected : self.__profileIndex
4565 '''
4575 '''
4566 #print("pushData")
4576 #print("pushData")
4567
4577
4568 data_360 = numpy.array(self.__buffer).transpose(1,0,2)
4578 data_360 = numpy.array(self.__buffer).transpose(1,0,2)
4569 data_p = numpy.array(self.__buffer2)
4579 data_p = numpy.array(self.__buffer2)
4570 data_e = numpy.array(self.__buffer3)
4580 data_e = numpy.array(self.__buffer3)
4571 n = self.__profIndex
4581 n = self.__profIndex
4572
4582
4573 self.__buffer = []
4583 self.__buffer = []
4574 self.__buffer2 = []
4584 self.__buffer2 = []
4575 self.__buffer3 = []
4585 self.__buffer3 = []
4576 self.__profIndex = 0
4586 self.__profIndex = 0
4577 #print("pushData")
4587 #print("pushData")
4578 return data_360,n,data_p,data_e
4588 return data_360,n,data_p,data_e
4579
4589
4580
4590
4581 def byProfiles(self,dataOut):
4591 def byProfiles(self,dataOut):
4582
4592
4583 self.__dataReady = False
4593 self.__dataReady = False
4584 data_360 = None
4594 data_360 = None
4585 data_p = None
4595 data_p = None
4586 data_e = None
4596 data_e = None
4587 #print("dataOu",dataOut.dataPP_POW)
4597 #print("dataOu",dataOut.dataPP_POW)
4588
4598
4589 elevations = self.putData(data=dataOut,mode = self.mode)
4599 elevations = self.putData(data=dataOut,mode = self.mode)
4590 ##### print("profIndex",self.__profIndex)
4600 ##### print("profIndex",self.__profIndex)
4591
4601
4592
4602
4593 if self.__profIndex > 1:
4603 if self.__profIndex > 1:
4594 case_flag = self.checkcase(elevations)
4604 case_flag = self.checkcase(elevations)
4595
4605
4596 if case_flag == 0: #Subida
4606 if case_flag == 0: #Subida
4597 #Se borra el dato anterior para liberar buffer y comparar el dato actual con el siguiente
4607 #Se borra el dato anterior para liberar buffer y comparar el dato actual con el siguiente
4598 if len(self.__buffer) == 2: #Cuando estΓ‘ de subida
4608 if len(self.__buffer) == 2: #Cuando estΓ‘ de subida
4599 self.__buffer.pop(0) #Erase first data
4609 self.__buffer.pop(0) #Erase first data
4600 self.__buffer2.pop(0)
4610 self.__buffer2.pop(0)
4601 self.__buffer3.pop(0)
4611 self.__buffer3.pop(0)
4602 self.__profIndex -= 1
4612 self.__profIndex -= 1
4603 else: #Cuando ha estado de bajada y ha vuelto a subir
4613 else: #Cuando ha estado de bajada y ha vuelto a subir
4604 #print("else",self.__buffer3)
4614 #print("else",self.__buffer3)
4605 self.__buffer.pop() #Erase last data
4615 self.__buffer.pop() #Erase last data
4606 self.__buffer2.pop()
4616 self.__buffer2.pop()
4607 self.__buffer3.pop()
4617 self.__buffer3.pop()
4608 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4618 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4609 #print(data_360.shape)
4619 #print(data_360.shape)
4610 #print(data_e.shape)
4620 #print(data_e.shape)
4611 #exit(1)
4621 #exit(1)
4612 self.__dataReady = True
4622 self.__dataReady = True
4613 '''
4623 '''
4614 elif elevations[-1]<0.:
4624 elif elevations[-1]<0.:
4615 if len(self.__buffer) == 2:
4625 if len(self.__buffer) == 2:
4616 self.__buffer.pop(0) #Erase first data
4626 self.__buffer.pop(0) #Erase first data
4617 self.__buffer2.pop(0)
4627 self.__buffer2.pop(0)
4618 self.__buffer3.pop(0)
4628 self.__buffer3.pop(0)
4619 self.__profIndex -= 1
4629 self.__profIndex -= 1
4620 else:
4630 else:
4621 self.__buffer.pop() #Erase last data
4631 self.__buffer.pop() #Erase last data
4622 self.__buffer2.pop()
4632 self.__buffer2.pop()
4623 self.__buffer3.pop()
4633 self.__buffer3.pop()
4624 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4634 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4625 self.__dataReady = True
4635 self.__dataReady = True
4626 '''
4636 '''
4627
4637
4628
4638
4629 '''
4639 '''
4630 if self.__profIndex == self.n:
4640 if self.__profIndex == self.n:
4631 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4641 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4632 self.__dataReady = True
4642 self.__dataReady = True
4633 '''
4643 '''
4634
4644
4635 return data_360,data_p,data_e
4645 return data_360,data_p,data_e
4636
4646
4637
4647
4638 def blockOp(self, dataOut, datatime= None):
4648 def blockOp(self, dataOut, datatime= None):
4639 if self.__initime == None:
4649 if self.__initime == None:
4640 self.__initime = datatime
4650 self.__initime = datatime
4641 data_360,data_p,data_e = self.byProfiles(dataOut)
4651 data_360,data_p,data_e = self.byProfiles(dataOut)
4642 self.__lastdatatime = datatime
4652 self.__lastdatatime = datatime
4643
4653
4644 if data_360 is None:
4654 if data_360 is None:
4645 return None, None,None,None
4655 return None, None,None,None
4646
4656
4647
4657
4648 avgdatatime = self.__initime
4658 avgdatatime = self.__initime
4649 if self.n==1:
4659 if self.n==1:
4650 avgdatatime = datatime
4660 avgdatatime = datatime
4651 deltatime = datatime - self.__lastdatatime
4661 deltatime = datatime - self.__lastdatatime
4652 self.__initime = datatime
4662 self.__initime = datatime
4653 #print(data_360.shape,avgdatatime,data_p.shape)
4663 #print(data_360.shape,avgdatatime,data_p.shape)
4654 return data_360,avgdatatime,data_p,data_e
4664 return data_360,avgdatatime,data_p,data_e
4655
4665
4656 def checkcase(self,data_ele):
4666 def checkcase(self,data_ele):
4657 print(data_ele)
4667 print(data_ele)
4658 start = data_ele[-2]
4668 start = data_ele[-2]
4659 end = data_ele[-1]
4669 end = data_ele[-1]
4660 diff_angle = (end-start)
4670 diff_angle = (end-start)
4661 len_ang=len(data_ele)
4671 len_ang=len(data_ele)
4662
4672
4663 if diff_angle > 0: #Subida
4673 if diff_angle > 0: #Subida
4664 return 0
4674 return 0
4665
4675
4666 def run(self, dataOut,n = None,mode=None,**kwargs):
4676 def run(self, dataOut,n = None,mode=None,**kwargs):
4667 #print("BLOCK 360 HERE WE GO MOMENTOS")
4677 #print("BLOCK 360 HERE WE GO MOMENTOS")
4668 print("Block 360")
4678 print("Block 360")
4669
4679
4670 #exit(1)
4680 #exit(1)
4671 if not self.isConfig:
4681 if not self.isConfig:
4672
4682
4673 print(n)
4683 print(n)
4674 self.setup(dataOut = dataOut ,mode= mode ,**kwargs)
4684 self.setup(dataOut = dataOut ,mode= mode ,**kwargs)
4675 ####self.index = 0
4685 ####self.index = 0
4676 #print("comova",self.isConfig)
4686 #print("comova",self.isConfig)
4677 self.isConfig = True
4687 self.isConfig = True
4678 ####if self.index==dataOut.azimuth.shape[0]:
4688 ####if self.index==dataOut.azimuth.shape[0]:
4679 #### self.index=0
4689 #### self.index=0
4680
4690
4681 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4691 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4682
4692
4683
4693
4684
4694
4685
4695
4686 dataOut.flagNoData = True
4696 dataOut.flagNoData = True
4687
4697
4688 if self.__dataReady:
4698 if self.__dataReady:
4689 dataOut.data_360 = data_360 # S
4699 dataOut.data_360 = data_360 # S
4690 #print("DATA 360")
4700 #print("DATA 360")
4691 #print(dataOut.data_360)
4701 #print(dataOut.data_360)
4692 #print("---------------------------------------------------------------------------------")
4702 #print("---------------------------------------------------------------------------------")
4693 print("---------------------------DATAREADY---------------------------------------------")
4703 print("---------------------------DATAREADY---------------------------------------------")
4694 #print("---------------------------------------------------------------------------------")
4704 #print("---------------------------------------------------------------------------------")
4695 #print("data_360",dataOut.data_360.shape)
4705 #print("data_360",dataOut.data_360.shape)
4696 print(data_e)
4706 print(data_e)
4697 #exit(1)
4707 #exit(1)
4698 dataOut.data_azi = data_p
4708 dataOut.data_azi = data_p
4699 dataOut.data_ele = data_e
4709 dataOut.data_ele = data_e
4700 ###print("azi: ",dataOut.data_azi)
4710 ###print("azi: ",dataOut.data_azi)
4701 #print("ele: ",dataOut.data_ele)
4711 #print("ele: ",dataOut.data_ele)
4702 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4712 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4703 dataOut.utctime = avgdatatime
4713 dataOut.utctime = avgdatatime
4704
4714
4705
4715
4706
4716
4707 dataOut.flagNoData = False
4717 dataOut.flagNoData = False
4708 return dataOut
4718 return dataOut
General Comments 0
You need to be logged in to leave comments. Login now