##// END OF EJS Templates
Update PedestalInformation
jespinoza -
r1443:ad8b94343301
parent child
Show More
@@ -1,662 +1,662
1 1 # Copyright (c) 2012-2020 Jicamarca Radio Observatory
2 2 # All rights reserved.
3 3 #
4 4 # Distributed under the terms of the BSD 3-clause license.
5 5 """API to create signal chain projects
6 6
7 7 The API is provide through class: Project
8 8 """
9 9
10 10 import re
11 11 import sys
12 12 import ast
13 13 import datetime
14 14 import traceback
15 15 import time
16 16 import multiprocessing
17 17 from multiprocessing import Process, Queue
18 18 from threading import Thread
19 19 from xml.etree.ElementTree import ElementTree, Element, SubElement
20 20
21 21 from schainpy.admin import Alarm, SchainWarning
22 22 from schainpy.model import *
23 23 from schainpy.utils import log
24 24
25 25 if 'darwin' in sys.platform and sys.version_info[0] == 3 and sys.version_info[1] > 7:
26 26 multiprocessing.set_start_method('fork')
27 27
28 28 class ConfBase():
29 29
30 30 def __init__(self):
31 31
32 32 self.id = '0'
33 33 self.name = None
34 34 self.priority = None
35 35 self.parameters = {}
36 36 self.object = None
37 37 self.operations = []
38 38
39 39 def getId(self):
40 40
41 41 return self.id
42 42
43 43 def getNewId(self):
44 44
45 45 return int(self.id) * 10 + len(self.operations) + 1
46 46
47 47 def updateId(self, new_id):
48 48
49 49 self.id = str(new_id)
50 50
51 51 n = 1
52 52 for conf in self.operations:
53 53 conf_id = str(int(new_id) * 10 + n)
54 54 conf.updateId(conf_id)
55 55 n += 1
56 56
57 57 def getKwargs(self):
58 58
59 59 params = {}
60 60
61 61 for key, value in self.parameters.items():
62 62 if value not in (None, '', ' '):
63 63 params[key] = value
64 64
65 65 return params
66 66
67 67 def update(self, **kwargs):
68 68
69 69 if 'format' not in kwargs:
70 70 kwargs['format'] = None
71 71 for key, value, fmt in kwargs.items():
72 72 self.addParameter(name=key, value=value, format=fmt)
73 73
74 74 def addParameter(self, name, value, format=None):
75 75 '''
76 76 '''
77 if os.path.isdir(value):
78 self.parameters[name] = value
77 if format is not None:
78 self.parameters[name] = eval(format)(value)
79 79 elif isinstance(value, str) and re.search(r'(\d+/\d+/\d+)', value):
80 80 self.parameters[name] = datetime.date(*[int(x) for x in value.split('/')])
81 81 elif isinstance(value, str) and re.search(r'(\d+:\d+:\d+)', value):
82 82 self.parameters[name] = datetime.time(*[int(x) for x in value.split(':')])
83 83 else:
84 84 try:
85 85 self.parameters[name] = ast.literal_eval(value)
86 86 except:
87 87 if isinstance(value, str) and ',' in value:
88 88 self.parameters[name] = value.split(',')
89 89 else:
90 90 self.parameters[name] = value
91 91
92 92 def getParameters(self):
93 93
94 94 params = {}
95 95 for key, value in self.parameters.items():
96 96 s = type(value).__name__
97 97 if s == 'date':
98 98 params[key] = value.strftime('%Y/%m/%d')
99 99 elif s == 'time':
100 100 params[key] = value.strftime('%H:%M:%S')
101 101 else:
102 102 params[key] = str(value)
103 103
104 104 return params
105 105
106 106 def makeXml(self, element):
107 107
108 108 xml = SubElement(element, self.ELEMENTNAME)
109 109 for label in self.xml_labels:
110 110 xml.set(label, str(getattr(self, label)))
111 111
112 112 for key, value in self.getParameters().items():
113 113 xml_param = SubElement(xml, 'Parameter')
114 114 xml_param.set('name', key)
115 115 xml_param.set('value', value)
116 116
117 117 for conf in self.operations:
118 118 conf.makeXml(xml)
119 119
120 120 def __str__(self):
121 121
122 122 if self.ELEMENTNAME == 'Operation':
123 123 s = ' {}[id={}]\n'.format(self.name, self.id)
124 124 else:
125 125 s = '{}[id={}, inputId={}]\n'.format(self.name, self.id, self.inputId)
126 126
127 127 for key, value in self.parameters.items():
128 128 if self.ELEMENTNAME == 'Operation':
129 129 s += ' {}: {}\n'.format(key, value)
130 130 else:
131 131 s += ' {}: {}\n'.format(key, value)
132 132
133 133 for conf in self.operations:
134 134 s += str(conf)
135 135
136 136 return s
137 137
138 138 class OperationConf(ConfBase):
139 139
140 140 ELEMENTNAME = 'Operation'
141 141 xml_labels = ['id', 'name']
142 142
143 143 def setup(self, id, name, priority, project_id, err_queue):
144 144
145 145 self.id = str(id)
146 146 self.project_id = project_id
147 147 self.name = name
148 148 self.type = 'other'
149 149 self.err_queue = err_queue
150 150
151 151 def readXml(self, element, project_id, err_queue):
152 152
153 153 self.id = element.get('id')
154 154 self.name = element.get('name')
155 155 self.type = 'other'
156 156 self.project_id = str(project_id)
157 157 self.err_queue = err_queue
158 158
159 159 for elm in element.iter('Parameter'):
160 160 self.addParameter(elm.get('name'), elm.get('value'))
161 161
162 162 def createObject(self):
163 163
164 164 className = eval(self.name)
165 165
166 166 if 'Plot' in self.name or 'Writer' in self.name or 'Send' in self.name or 'print' in self.name:
167 167 kwargs = self.getKwargs()
168 168 opObj = className(self.id, self.id, self.project_id, self.err_queue, **kwargs)
169 169 opObj.start()
170 170 self.type = 'external'
171 171 else:
172 172 opObj = className()
173 173
174 174 self.object = opObj
175 175 return opObj
176 176
177 177 class ProcUnitConf(ConfBase):
178 178
179 179 ELEMENTNAME = 'ProcUnit'
180 180 xml_labels = ['id', 'inputId', 'name']
181 181
182 182 def setup(self, project_id, id, name, datatype, inputId, err_queue):
183 183 '''
184 184 '''
185 185
186 186 if datatype == None and name == None:
187 187 raise ValueError('datatype or name should be defined')
188 188
189 189 if name == None:
190 190 if 'Proc' in datatype:
191 191 name = datatype
192 192 else:
193 193 name = '%sProc' % (datatype)
194 194
195 195 if datatype == None:
196 196 datatype = name.replace('Proc', '')
197 197
198 198 self.id = str(id)
199 199 self.project_id = project_id
200 200 self.name = name
201 201 self.datatype = datatype
202 202 self.inputId = inputId
203 203 self.err_queue = err_queue
204 204 self.operations = []
205 205 self.parameters = {}
206 206
207 207 def removeOperation(self, id):
208 208
209 209 i = [1 if x.id==id else 0 for x in self.operations]
210 210 self.operations.pop(i.index(1))
211 211
212 212 def getOperation(self, id):
213 213
214 214 for conf in self.operations:
215 215 if conf.id == id:
216 216 return conf
217 217
218 218 def addOperation(self, name, optype='self'):
219 219 '''
220 220 '''
221 221
222 222 id = self.getNewId()
223 223 conf = OperationConf()
224 224 conf.setup(id, name=name, priority='0', project_id=self.project_id, err_queue=self.err_queue)
225 225 self.operations.append(conf)
226 226
227 227 return conf
228 228
229 229 def readXml(self, element, project_id, err_queue):
230 230
231 231 self.id = element.get('id')
232 232 self.name = element.get('name')
233 233 self.inputId = None if element.get('inputId') == 'None' else element.get('inputId')
234 234 self.datatype = element.get('datatype', self.name.replace(self.ELEMENTNAME.replace('Unit', ''), ''))
235 235 self.project_id = str(project_id)
236 236 self.err_queue = err_queue
237 237 self.operations = []
238 238 self.parameters = {}
239 239
240 240 for elm in element:
241 241 if elm.tag == 'Parameter':
242 242 self.addParameter(elm.get('name'), elm.get('value'))
243 243 elif elm.tag == 'Operation':
244 244 conf = OperationConf()
245 245 conf.readXml(elm, project_id, err_queue)
246 246 self.operations.append(conf)
247 247
248 248 def createObjects(self):
249 249 '''
250 250 Instancia de unidades de procesamiento.
251 251 '''
252 252
253 253 className = eval(self.name)
254 254 kwargs = self.getKwargs()
255 255 procUnitObj = className()
256 256 procUnitObj.name = self.name
257 257 log.success('creating process...', self.name)
258 258
259 259 for conf in self.operations:
260 260
261 261 opObj = conf.createObject()
262 262
263 263 log.success('adding operation: {}, type:{}'.format(
264 264 conf.name,
265 265 conf.type), self.name)
266 266
267 267 procUnitObj.addOperation(conf, opObj)
268 268
269 269 self.object = procUnitObj
270 270
271 271 def run(self):
272 272 '''
273 273 '''
274 274
275 275 return self.object.call(**self.getKwargs())
276 276
277 277
278 278 class ReadUnitConf(ProcUnitConf):
279 279
280 280 ELEMENTNAME = 'ReadUnit'
281 281
282 282 def __init__(self):
283 283
284 284 self.id = None
285 285 self.datatype = None
286 286 self.name = None
287 287 self.inputId = None
288 288 self.operations = []
289 289 self.parameters = {}
290 290
291 291 def setup(self, project_id, id, name, datatype, err_queue, path='', startDate='', endDate='',
292 292 startTime='', endTime='', server=None, **kwargs):
293 293
294 294 if datatype == None and name == None:
295 295 raise ValueError('datatype or name should be defined')
296 296 if name == None:
297 297 if 'Reader' in datatype:
298 298 name = datatype
299 299 datatype = name.replace('Reader','')
300 300 else:
301 301 name = '{}Reader'.format(datatype)
302 302 if datatype == None:
303 303 if 'Reader' in name:
304 304 datatype = name.replace('Reader','')
305 305 else:
306 306 datatype = name
307 307 name = '{}Reader'.format(name)
308 308
309 309 self.id = id
310 310 self.project_id = project_id
311 311 self.name = name
312 312 self.datatype = datatype
313 313 self.err_queue = err_queue
314 314
315 self.addParameter(name='path', value=path)
315 self.addParameter(name='path', value=path, format='str')
316 316 self.addParameter(name='startDate', value=startDate)
317 317 self.addParameter(name='endDate', value=endDate)
318 318 self.addParameter(name='startTime', value=startTime)
319 319 self.addParameter(name='endTime', value=endTime)
320 320
321 321 for key, value in kwargs.items():
322 322 self.addParameter(name=key, value=value)
323 323
324 324
325 325 class Project(Process):
326 326 """API to create signal chain projects"""
327 327
328 328 ELEMENTNAME = 'Project'
329 329
330 330 def __init__(self, name=''):
331 331
332 332 Process.__init__(self)
333 333 self.id = '1'
334 334 if name:
335 335 self.name = '{} ({})'.format(Process.__name__, name)
336 336 self.filename = None
337 337 self.description = None
338 338 self.email = None
339 339 self.alarm = []
340 340 self.configurations = {}
341 341 # self.err_queue = Queue()
342 342 self.err_queue = None
343 343 self.started = False
344 344
345 345 def getNewId(self):
346 346
347 347 idList = list(self.configurations.keys())
348 348 id = int(self.id) * 10
349 349
350 350 while True:
351 351 id += 1
352 352
353 353 if str(id) in idList:
354 354 continue
355 355
356 356 break
357 357
358 358 return str(id)
359 359
360 360 def updateId(self, new_id):
361 361
362 362 self.id = str(new_id)
363 363
364 364 keyList = list(self.configurations.keys())
365 365 keyList.sort()
366 366
367 367 n = 1
368 368 new_confs = {}
369 369
370 370 for procKey in keyList:
371 371
372 372 conf = self.configurations[procKey]
373 373 idProcUnit = str(int(self.id) * 10 + n)
374 374 conf.updateId(idProcUnit)
375 375 new_confs[idProcUnit] = conf
376 376 n += 1
377 377
378 378 self.configurations = new_confs
379 379
380 380 def setup(self, id=1, name='', description='', email=None, alarm=[]):
381 381
382 382 self.id = str(id)
383 383 self.description = description
384 384 self.email = email
385 385 self.alarm = alarm
386 386 if name:
387 387 self.name = '{} ({})'.format(Process.__name__, name)
388 388
389 389 def update(self, **kwargs):
390 390
391 391 for key, value in kwargs.items():
392 392 setattr(self, key, value)
393 393
394 394 def clone(self):
395 395
396 396 p = Project()
397 397 p.id = self.id
398 398 p.name = self.name
399 399 p.description = self.description
400 400 p.configurations = self.configurations.copy()
401 401
402 402 return p
403 403
404 404 def addReadUnit(self, id=None, datatype=None, name=None, **kwargs):
405 405
406 406 '''
407 407 '''
408 408
409 409 if id is None:
410 410 idReadUnit = self.getNewId()
411 411 else:
412 412 idReadUnit = str(id)
413 413
414 414 conf = ReadUnitConf()
415 415 conf.setup(self.id, idReadUnit, name, datatype, self.err_queue, **kwargs)
416 416 self.configurations[conf.id] = conf
417 417
418 418 return conf
419 419
420 420 def addProcUnit(self, id=None, inputId='0', datatype=None, name=None):
421 421
422 422 '''
423 423 '''
424 424
425 425 if id is None:
426 426 idProcUnit = self.getNewId()
427 427 else:
428 428 idProcUnit = id
429 429
430 430 conf = ProcUnitConf()
431 431 conf.setup(self.id, idProcUnit, name, datatype, inputId, self.err_queue)
432 432 self.configurations[conf.id] = conf
433 433
434 434 return conf
435 435
436 436 def removeProcUnit(self, id):
437 437
438 438 if id in self.configurations:
439 439 self.configurations.pop(id)
440 440
441 441 def getReadUnit(self):
442 442
443 443 for obj in list(self.configurations.values()):
444 444 if obj.ELEMENTNAME == 'ReadUnit':
445 445 return obj
446 446
447 447 return None
448 448
449 449 def getProcUnit(self, id):
450 450
451 451 return self.configurations[id]
452 452
453 453 def getUnits(self):
454 454
455 455 keys = list(self.configurations)
456 456 keys.sort()
457 457
458 458 for key in keys:
459 459 yield self.configurations[key]
460 460
461 461 def updateUnit(self, id, **kwargs):
462 462
463 463 conf = self.configurations[id].update(**kwargs)
464 464
465 465 def makeXml(self):
466 466
467 467 xml = Element('Project')
468 468 xml.set('id', str(self.id))
469 469 xml.set('name', self.name)
470 470 xml.set('description', self.description)
471 471
472 472 for conf in self.configurations.values():
473 473 conf.makeXml(xml)
474 474
475 475 self.xml = xml
476 476
477 477 def writeXml(self, filename=None):
478 478
479 479 if filename == None:
480 480 if self.filename:
481 481 filename = self.filename
482 482 else:
483 483 filename = 'schain.xml'
484 484
485 485 if not filename:
486 486 print('filename has not been defined. Use setFilename(filename) for do it.')
487 487 return 0
488 488
489 489 abs_file = os.path.abspath(filename)
490 490
491 491 if not os.access(os.path.dirname(abs_file), os.W_OK):
492 492 print('No write permission on %s' % os.path.dirname(abs_file))
493 493 return 0
494 494
495 495 if os.path.isfile(abs_file) and not(os.access(abs_file, os.W_OK)):
496 496 print('File %s already exists and it could not be overwriten' % abs_file)
497 497 return 0
498 498
499 499 self.makeXml()
500 500
501 501 ElementTree(self.xml).write(abs_file, method='xml')
502 502
503 503 self.filename = abs_file
504 504
505 505 return 1
506 506
507 507 def readXml(self, filename):
508 508
509 509 abs_file = os.path.abspath(filename)
510 510
511 511 self.configurations = {}
512 512
513 513 try:
514 514 self.xml = ElementTree().parse(abs_file)
515 515 except:
516 516 log.error('Error reading %s, verify file format' % filename)
517 517 return 0
518 518
519 519 self.id = self.xml.get('id')
520 520 self.name = self.xml.get('name')
521 521 self.description = self.xml.get('description')
522 522
523 523 for element in self.xml:
524 524 if element.tag == 'ReadUnit':
525 525 conf = ReadUnitConf()
526 526 conf.readXml(element, self.id, self.err_queue)
527 527 self.configurations[conf.id] = conf
528 528 elif element.tag == 'ProcUnit':
529 529 conf = ProcUnitConf()
530 530 input_proc = self.configurations[element.get('inputId')]
531 531 conf.readXml(element, self.id, self.err_queue)
532 532 self.configurations[conf.id] = conf
533 533
534 534 self.filename = abs_file
535 535
536 536 return 1
537 537
538 538 def __str__(self):
539 539
540 540 text = '\nProject[id=%s, name=%s, description=%s]\n\n' % (
541 541 self.id,
542 542 self.name,
543 543 self.description,
544 544 )
545 545
546 546 for conf in self.configurations.values():
547 547 text += '{}'.format(conf)
548 548
549 549 return text
550 550
551 551 def createObjects(self):
552 552
553 553 keys = list(self.configurations.keys())
554 554 keys.sort()
555 555 for key in keys:
556 556 conf = self.configurations[key]
557 557 conf.createObjects()
558 558 if conf.inputId is not None:
559 559 conf.object.setInput(self.configurations[conf.inputId].object)
560 560
561 561 def monitor(self):
562 562
563 563 t = Thread(target=self._monitor, args=(self.err_queue, self.ctx))
564 564 t.start()
565 565
566 566 def _monitor(self, queue, ctx):
567 567
568 568 import socket
569 569
570 570 procs = 0
571 571 err_msg = ''
572 572
573 573 while True:
574 574 msg = queue.get()
575 575 if '#_start_#' in msg:
576 576 procs += 1
577 577 elif '#_end_#' in msg:
578 578 procs -=1
579 579 else:
580 580 err_msg = msg
581 581
582 582 if procs == 0 or 'Traceback' in err_msg:
583 583 break
584 584 time.sleep(0.1)
585 585
586 586 if '|' in err_msg:
587 587 name, err = err_msg.split('|')
588 588 if 'SchainWarning' in err:
589 589 log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), name)
590 590 elif 'SchainError' in err:
591 591 log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), name)
592 592 else:
593 593 log.error(err, name)
594 594 else:
595 595 name, err = self.name, err_msg
596 596
597 597 time.sleep(1)
598 598
599 599 ctx.term()
600 600
601 601 message = ''.join(err)
602 602
603 603 if err_msg:
604 604 subject = 'SChain v%s: Error running %s\n' % (
605 605 schainpy.__version__, self.name)
606 606
607 607 subtitle = 'Hostname: %s\n' % socket.gethostbyname(
608 608 socket.gethostname())
609 609 subtitle += 'Working directory: %s\n' % os.path.abspath('./')
610 610 subtitle += 'Configuration file: %s\n' % self.filename
611 611 subtitle += 'Time: %s\n' % str(datetime.datetime.now())
612 612
613 613 readUnitConfObj = self.getReadUnit()
614 614 if readUnitConfObj:
615 615 subtitle += '\nInput parameters:\n'
616 616 subtitle += '[Data path = %s]\n' % readUnitConfObj.parameters['path']
617 617 subtitle += '[Start date = %s]\n' % readUnitConfObj.parameters['startDate']
618 618 subtitle += '[End date = %s]\n' % readUnitConfObj.parameters['endDate']
619 619 subtitle += '[Start time = %s]\n' % readUnitConfObj.parameters['startTime']
620 620 subtitle += '[End time = %s]\n' % readUnitConfObj.parameters['endTime']
621 621
622 622 a = Alarm(
623 623 modes=self.alarm,
624 624 email=self.email,
625 625 message=message,
626 626 subject=subject,
627 627 subtitle=subtitle,
628 628 filename=self.filename
629 629 )
630 630
631 631 a.start()
632 632
633 633 def setFilename(self, filename):
634 634
635 635 self.filename = filename
636 636
637 637 def runProcs(self):
638 638
639 639 err = False
640 640 n = len(self.configurations)
641 641
642 642 while not err:
643 643 for conf in self.getUnits():
644 644 ok = conf.run()
645 645 if ok == 'Error':
646 646 n -= 1
647 647 continue
648 648 elif not ok:
649 649 break
650 650 if n == 0:
651 651 err = True
652 652
653 653 def run(self):
654 654
655 655 log.success('\nStarting Project {} [id={}]'.format(self.name, self.id), tag='')
656 656 self.started = True
657 657 self.start_time = time.time()
658 658 self.createObjects()
659 659 self.runProcs()
660 660 log.success('{} Done (Time: {:4.2f}s)'.format(
661 661 self.name,
662 662 time.time()-self.start_time), '')
@@ -1,2378 +1,2383
1 1 import os
2 2 import datetime
3 3 import numpy
4 4 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
5 5
6 6 from schainpy.model.graphics.jroplot_base import Plot, plt
7 7 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
8 8 from schainpy.utils import log
9 9 # libreria wradlib
10 10 import wradlib as wrl
11 11
12 12 EARTH_RADIUS = 6.3710e3
13 13
14 14
15 15 def ll2xy(lat1, lon1, lat2, lon2):
16 16
17 17 p = 0.017453292519943295
18 18 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
19 19 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
20 20 r = 12742 * numpy.arcsin(numpy.sqrt(a))
21 21 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
22 22 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
23 23 theta = -theta + numpy.pi/2
24 24 return r*numpy.cos(theta), r*numpy.sin(theta)
25 25
26 26
27 27 def km2deg(km):
28 28 '''
29 29 Convert distance in km to degrees
30 30 '''
31 31
32 32 return numpy.rad2deg(km/EARTH_RADIUS)
33 33
34 34
35 35
36 36 class SpectralMomentsPlot(SpectraPlot):
37 37 '''
38 38 Plot for Spectral Moments
39 39 '''
40 40 CODE = 'spc_moments'
41 41 # colormap = 'jet'
42 42 # plot_type = 'pcolor'
43 43
44 44 class DobleGaussianPlot(SpectraPlot):
45 45 '''
46 46 Plot for Double Gaussian Plot
47 47 '''
48 48 CODE = 'gaussian_fit'
49 49 # colormap = 'jet'
50 50 # plot_type = 'pcolor'
51 51
52 52 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
53 53 '''
54 54 Plot SpectraCut with Double Gaussian Fit
55 55 '''
56 56 CODE = 'cut_gaussian_fit'
57 57
58 58 class SnrPlot(RTIPlot):
59 59 '''
60 60 Plot for SNR Data
61 61 '''
62 62
63 63 CODE = 'snr'
64 64 colormap = 'jet'
65 65
66 66 def update(self, dataOut):
67 67
68 68 data = {
69 69 'snr': 10*numpy.log10(dataOut.data_snr)
70 70 }
71 71
72 72 return data, {}
73 73
74 74 class DopplerPlot(RTIPlot):
75 75 '''
76 76 Plot for DOPPLER Data (1st moment)
77 77 '''
78 78
79 79 CODE = 'dop'
80 80 colormap = 'jet'
81 81
82 82 def update(self, dataOut):
83 83
84 84 data = {
85 85 'dop': 10*numpy.log10(dataOut.data_dop)
86 86 }
87 87
88 88 return data, {}
89 89
90 90 class PowerPlot(RTIPlot):
91 91 '''
92 92 Plot for Power Data (0 moment)
93 93 '''
94 94
95 95 CODE = 'pow'
96 96 colormap = 'jet'
97 97
98 98 def update(self, dataOut):
99 99 data = {
100 100 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
101 101 }
102 102 return data, {}
103 103
104 104 class SpectralWidthPlot(RTIPlot):
105 105 '''
106 106 Plot for Spectral Width Data (2nd moment)
107 107 '''
108 108
109 109 CODE = 'width'
110 110 colormap = 'jet'
111 111
112 112 def update(self, dataOut):
113 113
114 114 data = {
115 115 'width': dataOut.data_width
116 116 }
117 117
118 118 return data, {}
119 119
120 120 class SkyMapPlot(Plot):
121 121 '''
122 122 Plot for meteors detection data
123 123 '''
124 124
125 125 CODE = 'param'
126 126
127 127 def setup(self):
128 128
129 129 self.ncols = 1
130 130 self.nrows = 1
131 131 self.width = 7.2
132 132 self.height = 7.2
133 133 self.nplots = 1
134 134 self.xlabel = 'Zonal Zenith Angle (deg)'
135 135 self.ylabel = 'Meridional Zenith Angle (deg)'
136 136 self.polar = True
137 137 self.ymin = -180
138 138 self.ymax = 180
139 139 self.colorbar = False
140 140
141 141 def plot(self):
142 142
143 143 arrayParameters = numpy.concatenate(self.data['param'])
144 144 error = arrayParameters[:, -1]
145 145 indValid = numpy.where(error == 0)[0]
146 146 finalMeteor = arrayParameters[indValid, :]
147 147 finalAzimuth = finalMeteor[:, 3]
148 148 finalZenith = finalMeteor[:, 4]
149 149
150 150 x = finalAzimuth * numpy.pi / 180
151 151 y = finalZenith
152 152
153 153 ax = self.axes[0]
154 154
155 155 if ax.firsttime:
156 156 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
157 157 else:
158 158 ax.plot.set_data(x, y)
159 159
160 160 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
161 161 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
162 162 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
163 163 dt2,
164 164 len(x))
165 165 self.titles[0] = title
166 166
167 167
168 168 class GenericRTIPlot(Plot):
169 169 '''
170 170 Plot for data_xxxx object
171 171 '''
172 172
173 173 CODE = 'param'
174 174 colormap = 'viridis'
175 175 plot_type = 'pcolorbuffer'
176 176
177 177 def setup(self):
178 178 self.xaxis = 'time'
179 179 self.ncols = 1
180 180 self.nrows = self.data.shape('param')[0]
181 181 self.nplots = self.nrows
182 182 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
183 183
184 184 if not self.xlabel:
185 185 self.xlabel = 'Time'
186 186
187 187 self.ylabel = 'Range [km]'
188 188 if not self.titles:
189 189 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
190 190
191 191 def update(self, dataOut):
192 192
193 193 data = {
194 194 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
195 195 }
196 196
197 197 meta = {}
198 198
199 199 return data, meta
200 200
201 201 def plot(self):
202 202 # self.data.normalize_heights()
203 203 self.x = self.data.times
204 204 self.y = self.data.yrange
205 205 self.z = self.data['param']
206 206 self.z = 10*numpy.log10(self.z)
207 207 self.z = numpy.ma.masked_invalid(self.z)
208 208
209 209 if self.decimation is None:
210 210 x, y, z = self.fill_gaps(self.x, self.y, self.z)
211 211 else:
212 212 x, y, z = self.fill_gaps(*self.decimate())
213 213
214 214 for n, ax in enumerate(self.axes):
215 215
216 216 self.zmax = self.zmax if self.zmax is not None else numpy.max(
217 217 self.z[n])
218 218 self.zmin = self.zmin if self.zmin is not None else numpy.min(
219 219 self.z[n])
220 220
221 221 if ax.firsttime:
222 222 if self.zlimits is not None:
223 223 self.zmin, self.zmax = self.zlimits[n]
224 224
225 225 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
226 226 vmin=self.zmin,
227 227 vmax=self.zmax,
228 228 cmap=self.cmaps[n]
229 229 )
230 230 else:
231 231 if self.zlimits is not None:
232 232 self.zmin, self.zmax = self.zlimits[n]
233 233 ax.collections.remove(ax.collections[0])
234 234 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
235 235 vmin=self.zmin,
236 236 vmax=self.zmax,
237 237 cmap=self.cmaps[n]
238 238 )
239 239
240 240
241 241 class PolarMapPlot(Plot):
242 242 '''
243 243 Plot for weather radar
244 244 '''
245 245
246 246 CODE = 'param'
247 247 colormap = 'seismic'
248 248
249 249 def setup(self):
250 250 self.ncols = 1
251 251 self.nrows = 1
252 252 self.width = 9
253 253 self.height = 8
254 254 self.mode = self.data.meta['mode']
255 255 if self.channels is not None:
256 256 self.nplots = len(self.channels)
257 257 self.nrows = len(self.channels)
258 258 else:
259 259 self.nplots = self.data.shape(self.CODE)[0]
260 260 self.nrows = self.nplots
261 261 self.channels = list(range(self.nplots))
262 262 if self.mode == 'E':
263 263 self.xlabel = 'Longitude'
264 264 self.ylabel = 'Latitude'
265 265 else:
266 266 self.xlabel = 'Range (km)'
267 267 self.ylabel = 'Height (km)'
268 268 self.bgcolor = 'white'
269 269 self.cb_labels = self.data.meta['units']
270 270 self.lat = self.data.meta['latitude']
271 271 self.lon = self.data.meta['longitude']
272 272 self.xmin, self.xmax = float(
273 273 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
274 274 self.ymin, self.ymax = float(
275 275 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
276 276 # self.polar = True
277 277
278 278 def plot(self):
279 279
280 280 for n, ax in enumerate(self.axes):
281 281 data = self.data['param'][self.channels[n]]
282 282
283 283 zeniths = numpy.linspace(
284 284 0, self.data.meta['max_range'], data.shape[1])
285 285 if self.mode == 'E':
286 286 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
287 287 r, theta = numpy.meshgrid(zeniths, azimuths)
288 288 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
289 289 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
290 290 x = km2deg(x) + self.lon
291 291 y = km2deg(y) + self.lat
292 292 else:
293 293 azimuths = numpy.radians(self.data.yrange)
294 294 r, theta = numpy.meshgrid(zeniths, azimuths)
295 295 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
296 296 self.y = zeniths
297 297
298 298 if ax.firsttime:
299 299 if self.zlimits is not None:
300 300 self.zmin, self.zmax = self.zlimits[n]
301 301 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
302 302 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
303 303 vmin=self.zmin,
304 304 vmax=self.zmax,
305 305 cmap=self.cmaps[n])
306 306 else:
307 307 if self.zlimits is not None:
308 308 self.zmin, self.zmax = self.zlimits[n]
309 309 ax.collections.remove(ax.collections[0])
310 310 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
311 311 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
312 312 vmin=self.zmin,
313 313 vmax=self.zmax,
314 314 cmap=self.cmaps[n])
315 315
316 316 if self.mode == 'A':
317 317 continue
318 318
319 319 # plot district names
320 320 f = open('/data/workspace/schain_scripts/distrito.csv')
321 321 for line in f:
322 322 label, lon, lat = [s.strip() for s in line.split(',') if s]
323 323 lat = float(lat)
324 324 lon = float(lon)
325 325 # ax.plot(lon, lat, '.b', ms=2)
326 326 ax.text(lon, lat, label.decode('utf8'), ha='center',
327 327 va='bottom', size='8', color='black')
328 328
329 329 # plot limites
330 330 limites = []
331 331 tmp = []
332 332 for line in open('/data/workspace/schain_scripts/lima.csv'):
333 333 if '#' in line:
334 334 if tmp:
335 335 limites.append(tmp)
336 336 tmp = []
337 337 continue
338 338 values = line.strip().split(',')
339 339 tmp.append((float(values[0]), float(values[1])))
340 340 for points in limites:
341 341 ax.add_patch(
342 342 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
343 343
344 344 # plot Cuencas
345 345 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
346 346 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
347 347 values = [line.strip().split(',') for line in f]
348 348 points = [(float(s[0]), float(s[1])) for s in values]
349 349 ax.add_patch(Polygon(points, ec='b', fc='none'))
350 350
351 351 # plot grid
352 352 for r in (15, 30, 45, 60):
353 353 ax.add_artist(plt.Circle((self.lon, self.lat),
354 354 km2deg(r), color='0.6', fill=False, lw=0.2))
355 355 ax.text(
356 356 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
357 357 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
358 358 '{}km'.format(r),
359 359 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
360 360
361 361 if self.mode == 'E':
362 362 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
363 363 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
364 364 else:
365 365 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
366 366 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
367 367
368 368 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
369 369 self.titles = ['{} {}'.format(
370 370 self.data.parameters[x], title) for x in self.channels]
371 371
372 372 class WeatherPlot(Plot):
373 373 CODE = 'weather'
374 374 plot_name = 'weather'
375 375 plot_type = 'ppistyle'
376 376 buffering = False
377 377
378 378 def setup(self):
379 379 self.ncols = 1
380 380 self.nrows = 1
381 381 self.width =8
382 382 self.height =8
383 383 self.nplots= 1
384 384 self.ylabel= 'Range [Km]'
385 385 self.titles= ['Weather']
386 386 self.colorbar=False
387 387 self.ini =0
388 388 self.len_azi =0
389 389 self.buffer_ini = None
390 390 self.buffer_azi = None
391 391 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
392 392 self.flag =0
393 393 self.indicador= 0
394 394 self.last_data_azi = None
395 395 self.val_mean = None
396 396
397 397 def update(self, dataOut):
398 398
399 399 data = {}
400 400 meta = {}
401 401 if hasattr(dataOut, 'dataPP_POWER'):
402 402 factor = 1
403 403 if hasattr(dataOut, 'nFFTPoints'):
404 404 factor = dataOut.normFactor
405 405 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
406 406 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
407 407 data['azi'] = dataOut.data_azi
408 408 data['ele'] = dataOut.data_ele
409 409 return data, meta
410 410
411 411 def get2List(self,angulos):
412 412 list1=[]
413 413 list2=[]
414 414 for i in reversed(range(len(angulos))):
415 415 diff_ = angulos[i]-angulos[i-1]
416 416 if diff_ >1.5:
417 417 list1.append(i-1)
418 418 list2.append(diff_)
419 419 return list(reversed(list1)),list(reversed(list2))
420 420
421 421 def fixData360(self,list_,ang_):
422 422 if list_[0]==-1:
423 423 vec = numpy.where(ang_<ang_[0])
424 424 ang_[vec] = ang_[vec]+360
425 425 return ang_
426 426 return ang_
427 427
428 428 def fixData360HL(self,angulos):
429 429 vec = numpy.where(angulos>=360)
430 430 angulos[vec]=angulos[vec]-360
431 431 return angulos
432 432
433 433 def search_pos(self,pos,list_):
434 434 for i in range(len(list_)):
435 435 if pos == list_[i]:
436 436 return True,i
437 437 i=None
438 438 return False,i
439 439
440 440 def fixDataComp(self,ang_,list1_,list2_):
441 441 size = len(ang_)
442 442 size2 = 0
443 443 for i in range(len(list2_)):
444 444 size2=size2+round(list2_[i])-1
445 445 new_size= size+size2
446 446 ang_new = numpy.zeros(new_size)
447 447 ang_new2 = numpy.zeros(new_size)
448 448
449 449 tmp = 0
450 450 c = 0
451 451 for i in range(len(ang_)):
452 452 ang_new[tmp +c] = ang_[i]
453 453 ang_new2[tmp+c] = ang_[i]
454 454 condition , value = self.search_pos(i,list1_)
455 455 if condition:
456 456 pos = tmp + c + 1
457 457 for k in range(round(list2_[value])-1):
458 458 ang_new[pos+k] = ang_new[pos+k-1]+1
459 459 ang_new2[pos+k] = numpy.nan
460 460 tmp = pos +k
461 461 c = 0
462 462 c=c+1
463 463 return ang_new,ang_new2
464 464
465 465 def globalCheckPED(self,angulos):
466 466 l1,l2 = self.get2List(angulos)
467 467 if len(l1)>0:
468 468 angulos2 = self.fixData360(list_=l1,ang_=angulos)
469 469 l1,l2 = self.get2List(angulos2)
470 470
471 471 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
472 472 ang1_ = self.fixData360HL(ang1_)
473 473 ang2_ = self.fixData360HL(ang2_)
474 474 else:
475 475 ang1_= angulos
476 476 ang2_= angulos
477 477 return ang1_,ang2_
478 478
479 479 def analizeDATA(self,data_azi):
480 480 list1 = []
481 481 list2 = []
482 482 dat = data_azi
483 483 for i in reversed(range(1,len(dat))):
484 484 if dat[i]>dat[i-1]:
485 485 diff = int(dat[i])-int(dat[i-1])
486 486 else:
487 487 diff = 360+int(dat[i])-int(dat[i-1])
488 488 if diff > 1:
489 489 list1.append(i-1)
490 490 list2.append(diff-1)
491 491 return list1,list2
492 492
493 493 def fixDATANEW(self,data_azi,data_weather):
494 494 list1,list2 = self.analizeDATA(data_azi)
495 495 if len(list1)== 0:
496 496 return data_azi,data_weather
497 497 else:
498 498 resize = 0
499 499 for i in range(len(list2)):
500 500 resize= resize + list2[i]
501 501 new_data_azi = numpy.resize(data_azi,resize)
502 502 new_data_weather= numpy.resize(date_weather,resize)
503 503
504 504 for i in range(len(list2)):
505 505 j=0
506 506 position=list1[i]+1
507 507 for j in range(list2[i]):
508 508 new_data_azi[position+j]=new_data_azi[position+j-1]+1
509 509 return new_data_azi
510 510
511 511 def fixDATA(self,data_azi):
512 512 data=data_azi
513 513 for i in range(len(data)):
514 514 if numpy.isnan(data[i]):
515 515 data[i]=data[i-1]+1
516 516 return data
517 517
518 518 def replaceNAN(self,data_weather,data_azi,val):
519 519 data= data_azi
520 520 data_T= data_weather
521 521 if data.shape[0]> data_T.shape[0]:
522 522 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
523 523 c = 0
524 524 for i in range(len(data)):
525 525 if numpy.isnan(data[i]):
526 526 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
527 527 else:
528 528 data_N[i,:]=data_T[c,:]
529 529 c=c+1
530 530 return data_N
531 531 else:
532 532 for i in range(len(data)):
533 533 if numpy.isnan(data[i]):
534 534 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
535 535 return data_T
536 536
537 537 def const_ploteo(self,data_weather,data_azi,step,res):
538 538 if self.ini==0:
539 539 #-------
540 540 n = (360/res)-len(data_azi)
541 541 #--------------------- new -------------------------
542 542 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
543 543 #------------------------
544 544 start = data_azi_new[-1] + res
545 545 end = data_azi_new[0] - res
546 546 #------ new
547 547 self.last_data_azi = end
548 548 if start>end:
549 549 end = end + 360
550 550 azi_vacia = numpy.linspace(start,end,int(n))
551 551 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
552 552 data_azi = numpy.hstack((data_azi_new,azi_vacia))
553 553 # RADAR
554 554 val_mean = numpy.mean(data_weather[:,-1])
555 555 self.val_mean = val_mean
556 556 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
557 557 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
558 558 data_weather = numpy.vstack((data_weather,data_weather_cmp))
559 559 else:
560 560 # azimuth
561 561 flag=0
562 562 start_azi = self.res_azi[0]
563 563 #-----------new------------
564 564 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
565 565 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
566 566 #--------------------------
567 567 start = data_azi[0]
568 568 end = data_azi[-1]
569 569 self.last_data_azi= end
570 570 if start< start_azi:
571 571 start = start +360
572 572 if end <start_azi:
573 573 end = end +360
574 574
575 575 pos_ini = int((start-start_azi)/res)
576 576 len_azi = len(data_azi)
577 577 if (360-pos_ini)<len_azi:
578 578 if pos_ini+1==360:
579 579 pos_ini=0
580 580 else:
581 581 flag=1
582 582 dif= 360-pos_ini
583 583 comp= len_azi-dif
584 584 #-----------------
585 585 if flag==0:
586 586 # AZIMUTH
587 587 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
588 588 # RADAR
589 589 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
590 590 else:
591 591 # AZIMUTH
592 592 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
593 593 self.res_azi[0:comp] = data_azi[dif:]
594 594 # RADAR
595 595 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
596 596 self.res_weather[0:comp,:] = data_weather[dif:,:]
597 597 flag=0
598 598 data_azi = self.res_azi
599 599 data_weather = self.res_weather
600 600
601 601 return data_weather,data_azi
602 602
603 603 def plot(self):
604 604 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
605 605 data = self.data[-1]
606 606 r = self.data.yrange
607 607 delta_height = r[1]-r[0]
608 608 r_mask = numpy.where(r>=0)[0]
609 609 r = numpy.arange(len(r_mask))*delta_height
610 610 self.y = 2*r
611 611 # RADAR
612 612 #data_weather = data['weather']
613 613 # PEDESTAL
614 614 #data_azi = data['azi']
615 615 res = 1
616 616 # STEP
617 617 step = (360/(res*data['weather'].shape[0]))
618 618
619 619 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
620 620 self.res_ele = numpy.mean(data['ele'])
621 621 ################# PLOTEO ###################
622 622 for i,ax in enumerate(self.axes):
623 self.zmin = self.zmin if self.zmin else 20
624 self.zmax = self.zmax if self.zmax else 80
623 625 if ax.firsttime:
624 626 plt.clf()
625 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
627 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=self.zmin, vmax=self.zmax)
626 628 else:
627 629 plt.clf()
628 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
630 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=self.zmin, vmax=self.zmax)
629 631 caax = cgax.parasites[0]
630 632 paax = cgax.parasites[1]
631 633 cbar = plt.gcf().colorbar(pm, pad=0.075)
632 634 caax.set_xlabel('x_range [km]')
633 635 caax.set_ylabel('y_range [km]')
634 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right')
636 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " EL: "+str(round(self.res_ele, 1)), transform=caax.transAxes, va='bottom',ha='right')
635 637
636 638 self.ini= self.ini+1
637 639
638 640
639 641 class WeatherRHIPlot(Plot):
640 642 CODE = 'weather'
641 643 plot_name = 'weather'
642 644 plot_type = 'rhistyle'
643 645 buffering = False
644 646 data_ele_tmp = None
645 647
646 648 def setup(self):
647 649 print("********************")
648 650 print("********************")
649 651 print("********************")
650 652 print("SETUP WEATHER PLOT")
651 653 self.ncols = 1
652 654 self.nrows = 1
653 655 self.nplots= 1
654 656 self.ylabel= 'Range [Km]'
655 657 self.titles= ['Weather']
656 658 if self.channels is not None:
657 659 self.nplots = len(self.channels)
658 660 self.nrows = len(self.channels)
659 661 else:
660 662 self.nplots = self.data.shape(self.CODE)[0]
661 663 self.nrows = self.nplots
662 664 self.channels = list(range(self.nplots))
663 665 print("channels",self.channels)
664 666 print("que saldra", self.data.shape(self.CODE)[0])
665 667 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
666 668 print("self.titles",self.titles)
667 669 self.colorbar=False
668 self.width =8
670 self.width =12
669 671 self.height =8
670 672 self.ini =0
671 673 self.len_azi =0
672 674 self.buffer_ini = None
673 675 self.buffer_ele = None
674 676 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
675 677 self.flag =0
676 678 self.indicador= 0
677 679 self.last_data_ele = None
678 680 self.val_mean = None
679 681
680 682 def update(self, dataOut):
681 683
682 684 data = {}
683 685 meta = {}
684 686 if hasattr(dataOut, 'dataPP_POWER'):
685 687 factor = 1
686 688 if hasattr(dataOut, 'nFFTPoints'):
687 689 factor = dataOut.normFactor
688 690 print("dataOut",dataOut.data_360.shape)
689 691 #
690 692 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
691 693 #
692 694 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
693 695 data['azi'] = dataOut.data_azi
694 696 data['ele'] = dataOut.data_ele
695 697 #print("UPDATE")
696 698 #print("data[weather]",data['weather'].shape)
697 699 #print("data[azi]",data['azi'])
698 700 return data, meta
699 701
700 702 def get2List(self,angulos):
701 703 list1=[]
702 704 list2=[]
703 705 for i in reversed(range(len(angulos))):
704 706 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
705 707 diff_ = angulos[i]-angulos[i-1]
706 708 if abs(diff_) >1.5:
707 709 list1.append(i-1)
708 710 list2.append(diff_)
709 711 return list(reversed(list1)),list(reversed(list2))
710 712
711 713 def fixData90(self,list_,ang_):
712 714 if list_[0]==-1:
713 715 vec = numpy.where(ang_<ang_[0])
714 716 ang_[vec] = ang_[vec]+90
715 717 return ang_
716 718 return ang_
717 719
718 720 def fixData90HL(self,angulos):
719 721 vec = numpy.where(angulos>=90)
720 722 angulos[vec]=angulos[vec]-90
721 723 return angulos
722 724
723 725
724 726 def search_pos(self,pos,list_):
725 727 for i in range(len(list_)):
726 728 if pos == list_[i]:
727 729 return True,i
728 730 i=None
729 731 return False,i
730 732
731 733 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
732 734 size = len(ang_)
733 735 size2 = 0
734 736 for i in range(len(list2_)):
735 737 size2=size2+round(abs(list2_[i]))-1
736 738 new_size= size+size2
737 739 ang_new = numpy.zeros(new_size)
738 740 ang_new2 = numpy.zeros(new_size)
739 741
740 742 tmp = 0
741 743 c = 0
742 744 for i in range(len(ang_)):
743 745 ang_new[tmp +c] = ang_[i]
744 746 ang_new2[tmp+c] = ang_[i]
745 747 condition , value = self.search_pos(i,list1_)
746 748 if condition:
747 749 pos = tmp + c + 1
748 750 for k in range(round(abs(list2_[value]))-1):
749 751 if tipo_case==0 or tipo_case==3:#subida
750 752 ang_new[pos+k] = ang_new[pos+k-1]+1
751 753 ang_new2[pos+k] = numpy.nan
752 754 elif tipo_case==1 or tipo_case==2:#bajada
753 755 ang_new[pos+k] = ang_new[pos+k-1]-1
754 756 ang_new2[pos+k] = numpy.nan
755 757
756 758 tmp = pos +k
757 759 c = 0
758 760 c=c+1
759 761 return ang_new,ang_new2
760 762
761 763 def globalCheckPED(self,angulos,tipo_case):
762 764 l1,l2 = self.get2List(angulos)
763 765 ##print("l1",l1)
764 766 ##print("l2",l2)
765 767 if len(l1)>0:
766 768 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
767 769 #l1,l2 = self.get2List(angulos2)
768 770 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
769 771 #ang1_ = self.fixData90HL(ang1_)
770 772 #ang2_ = self.fixData90HL(ang2_)
771 773 else:
772 774 ang1_= angulos
773 775 ang2_= angulos
774 776 return ang1_,ang2_
775 777
776 778
777 779 def replaceNAN(self,data_weather,data_ele,val):
778 780 data= data_ele
779 781 data_T= data_weather
780 782 if data.shape[0]> data_T.shape[0]:
781 783 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
782 784 c = 0
783 785 for i in range(len(data)):
784 786 if numpy.isnan(data[i]):
785 787 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
786 788 else:
787 789 data_N[i,:]=data_T[c,:]
788 790 c=c+1
789 791 return data_N
790 792 else:
791 793 for i in range(len(data)):
792 794 if numpy.isnan(data[i]):
793 795 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
794 796 return data_T
795 797
796 798 def check_case(self,data_ele,ang_max,ang_min):
797 799 start = data_ele[0]
798 800 end = data_ele[-1]
799 801 number = (end-start)
800 802 len_ang=len(data_ele)
801 803 print("start",start)
802 804 print("end",end)
803 805 print("number",number)
804 806
805 807 print("len_ang",len_ang)
806 808
807 809 #exit(1)
808 810
809 811 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
810 812 return 0
811 813 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
812 814 # return 1
813 815 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
814 816 return 1
815 817 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
816 818 return 2
817 819 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
818 820 return 3
819 821
820 822
821 823 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
822 824 ang_max= ang_max
823 825 ang_min= ang_min
824 826 data_weather=data_weather
825 827 val_ch=val_ch
826 828 ##print("*********************DATA WEATHER**************************************")
827 829 ##print(data_weather)
828 830 if self.ini==0:
829 831 '''
830 832 print("**********************************************")
831 833 print("**********************************************")
832 834 print("***************ini**************")
833 835 print("**********************************************")
834 836 print("**********************************************")
835 837 '''
836 838 #print("data_ele",data_ele)
837 839 #----------------------------------------------------------
838 840 tipo_case = self.check_case(data_ele,ang_max,ang_min)
839 841 print("check_case",tipo_case)
840 842 #exit(1)
841 843 #--------------------- new -------------------------
842 844 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
843 845
844 846 #-------------------------CAMBIOS RHI---------------------------------
845 847 start= ang_min
846 848 end = ang_max
847 849 n= (ang_max-ang_min)/res
848 850 #------ new
849 851 self.start_data_ele = data_ele_new[0]
850 852 self.end_data_ele = data_ele_new[-1]
851 853 if tipo_case==0 or tipo_case==3: # SUBIDA
852 854 n1= round(self.start_data_ele)- start
853 855 n2= end - round(self.end_data_ele)
854 856 print(self.start_data_ele)
855 857 print(self.end_data_ele)
856 858 if n1>0:
857 859 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
858 860 ele1_nan= numpy.ones(n1)*numpy.nan
859 861 data_ele = numpy.hstack((ele1,data_ele_new))
860 862 print("ele1_nan",ele1_nan.shape)
861 863 print("data_ele_old",data_ele_old.shape)
862 864 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
863 865 if n2>0:
864 866 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
865 867 ele2_nan= numpy.ones(n2)*numpy.nan
866 868 data_ele = numpy.hstack((data_ele,ele2))
867 869 print("ele2_nan",ele2_nan.shape)
868 870 print("data_ele_old",data_ele_old.shape)
869 871 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
870 872
871 873 if tipo_case==1 or tipo_case==2: # BAJADA
872 874 data_ele_new = data_ele_new[::-1] # reversa
873 875 data_ele_old = data_ele_old[::-1]# reversa
874 876 data_weather = data_weather[::-1,:]# reversa
875 877 vec= numpy.where(data_ele_new<ang_max)
876 878 data_ele_new = data_ele_new[vec]
877 879 data_ele_old = data_ele_old[vec]
878 880 data_weather = data_weather[vec[0]]
879 881 vec2= numpy.where(0<data_ele_new)
880 882 data_ele_new = data_ele_new[vec2]
881 883 data_ele_old = data_ele_old[vec2]
882 884 data_weather = data_weather[vec2[0]]
883 885 self.start_data_ele = data_ele_new[0]
884 886 self.end_data_ele = data_ele_new[-1]
885 887
886 888 n1= round(self.start_data_ele)- start
887 889 n2= end - round(self.end_data_ele)-1
888 890 print(self.start_data_ele)
889 891 print(self.end_data_ele)
890 892 if n1>0:
891 893 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
892 894 ele1_nan= numpy.ones(n1)*numpy.nan
893 895 data_ele = numpy.hstack((ele1,data_ele_new))
894 896 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
895 897 if n2>0:
896 898 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
897 899 ele2_nan= numpy.ones(n2)*numpy.nan
898 900 data_ele = numpy.hstack((data_ele,ele2))
899 901 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
900 902 # RADAR
901 903 # NOTA data_ele y data_weather es la variable que retorna
902 904 val_mean = numpy.mean(data_weather[:,-1])
903 905 self.val_mean = val_mean
904 906 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
905 907 self.data_ele_tmp[val_ch]= data_ele_old
906 908 else:
907 909 #print("**********************************************")
908 910 #print("****************VARIABLE**********************")
909 911 #-------------------------CAMBIOS RHI---------------------------------
910 912 #---------------------------------------------------------------------
911 913 ##print("INPUT data_ele",data_ele)
912 914 flag=0
913 915 start_ele = self.res_ele[0]
914 916 tipo_case = self.check_case(data_ele,ang_max,ang_min)
915 917 #print("TIPO DE DATA",tipo_case)
916 918 #-----------new------------
917 919 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
918 920 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
919 921
920 922 #-------------------------------NEW RHI ITERATIVO-------------------------
921 923
922 924 if tipo_case==0 : # SUBIDA
923 925 vec = numpy.where(data_ele<ang_max)
924 926 data_ele = data_ele[vec]
925 927 data_ele_old = data_ele_old[vec]
926 928 data_weather = data_weather[vec[0]]
927 929
928 930 vec2 = numpy.where(0<data_ele)
929 931 data_ele= data_ele[vec2]
930 932 data_ele_old= data_ele_old[vec2]
931 933 ##print(data_ele_new)
932 934 data_weather= data_weather[vec2[0]]
933 935
934 936 new_i_ele = int(round(data_ele[0]))
935 937 new_f_ele = int(round(data_ele[-1]))
936 938 #print(new_i_ele)
937 939 #print(new_f_ele)
938 940 #print(data_ele,len(data_ele))
939 941 #print(data_ele_old,len(data_ele_old))
940 942 if new_i_ele< 2:
941 943 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
942 944 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
943 945 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
944 946 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
945 947 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
946 948 data_ele = self.res_ele
947 949 data_weather = self.res_weather[val_ch]
948 950
949 951 elif tipo_case==1 : #BAJADA
950 952 data_ele = data_ele[::-1] # reversa
951 953 data_ele_old = data_ele_old[::-1]# reversa
952 954 data_weather = data_weather[::-1,:]# reversa
953 955 vec= numpy.where(data_ele<ang_max)
954 956 data_ele = data_ele[vec]
955 957 data_ele_old = data_ele_old[vec]
956 958 data_weather = data_weather[vec[0]]
957 959 vec2= numpy.where(0<data_ele)
958 960 data_ele = data_ele[vec2]
959 961 data_ele_old = data_ele_old[vec2]
960 962 data_weather = data_weather[vec2[0]]
961 963
962 964
963 965 new_i_ele = int(round(data_ele[0]))
964 966 new_f_ele = int(round(data_ele[-1]))
965 967 #print(data_ele)
966 968 #print(ang_max)
967 969 #print(data_ele_old)
968 970 if new_i_ele <= 1:
969 971 new_i_ele = 1
970 972 if round(data_ele[-1])>=ang_max-1:
971 973 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
972 974 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
973 975 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
974 976 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
975 977 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
976 978 data_ele = self.res_ele
977 979 data_weather = self.res_weather[val_ch]
978 980
979 981 elif tipo_case==2: #bajada
980 982 vec = numpy.where(data_ele<ang_max)
981 983 data_ele = data_ele[vec]
982 984 data_weather= data_weather[vec[0]]
983 985
984 986 len_vec = len(vec)
985 987 data_ele_new = data_ele[::-1] # reversa
986 988 data_weather = data_weather[::-1,:]
987 989 new_i_ele = int(data_ele_new[0])
988 990 new_f_ele = int(data_ele_new[-1])
989 991
990 992 n1= new_i_ele- ang_min
991 993 n2= ang_max - new_f_ele-1
992 994 if n1>0:
993 995 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
994 996 ele1_nan= numpy.ones(n1)*numpy.nan
995 997 data_ele = numpy.hstack((ele1,data_ele_new))
996 998 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
997 999 if n2>0:
998 1000 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
999 1001 ele2_nan= numpy.ones(n2)*numpy.nan
1000 1002 data_ele = numpy.hstack((data_ele,ele2))
1001 1003 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1002 1004
1003 1005 self.data_ele_tmp[val_ch] = data_ele_old
1004 1006 self.res_ele = data_ele
1005 1007 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1006 1008 data_ele = self.res_ele
1007 1009 data_weather = self.res_weather[val_ch]
1008 1010
1009 1011 elif tipo_case==3:#subida
1010 1012 vec = numpy.where(0<data_ele)
1011 1013 data_ele= data_ele[vec]
1012 1014 data_ele_new = data_ele
1013 1015 data_ele_old= data_ele_old[vec]
1014 1016 data_weather= data_weather[vec[0]]
1015 1017 pos_ini = numpy.argmin(data_ele)
1016 1018 if pos_ini>0:
1017 1019 len_vec= len(data_ele)
1018 1020 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1019 1021 #print(vec3)
1020 1022 data_ele= data_ele[vec3]
1021 1023 data_ele_new = data_ele
1022 1024 data_ele_old= data_ele_old[vec3]
1023 1025 data_weather= data_weather[vec3]
1024 1026
1025 1027 new_i_ele = int(data_ele_new[0])
1026 1028 new_f_ele = int(data_ele_new[-1])
1027 1029 n1= new_i_ele- ang_min
1028 1030 n2= ang_max - new_f_ele-1
1029 1031 if n1>0:
1030 1032 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1031 1033 ele1_nan= numpy.ones(n1)*numpy.nan
1032 1034 data_ele = numpy.hstack((ele1,data_ele_new))
1033 1035 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1034 1036 if n2>0:
1035 1037 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1036 1038 ele2_nan= numpy.ones(n2)*numpy.nan
1037 1039 data_ele = numpy.hstack((data_ele,ele2))
1038 1040 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1039 1041
1040 1042 self.data_ele_tmp[val_ch] = data_ele_old
1041 1043 self.res_ele = data_ele
1042 1044 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1043 1045 data_ele = self.res_ele
1044 1046 data_weather = self.res_weather[val_ch]
1045 1047 #print("self.data_ele_tmp",self.data_ele_tmp)
1046 1048 return data_weather,data_ele
1047 1049
1048 1050
1049 1051 def plot(self):
1050 1052 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1051 1053 data = self.data[-1]
1052 1054 r = self.data.yrange
1053 1055 delta_height = r[1]-r[0]
1054 1056 r_mask = numpy.where(r>=0)[0]
1055 1057 ##print("delta_height",delta_height)
1056 1058 #print("r_mask",r_mask,len(r_mask))
1057 1059 r = numpy.arange(len(r_mask))*delta_height
1058 1060 self.y = 2*r
1059 1061 res = 1
1060 1062 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1061 1063 ang_max = self.ang_max
1062 1064 ang_min = self.ang_min
1063 1065 var_ang =ang_max - ang_min
1064 1066 step = (int(var_ang)/(res*data['weather'].shape[0]))
1065 1067 ###print("step",step)
1066 1068 #--------------------------------------------------------
1067 1069 ##print('weather',data['weather'].shape)
1068 1070 ##print('ele',data['ele'].shape)
1069 1071
1070 1072 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1071 1073 ###self.res_azi = numpy.mean(data['azi'])
1072 1074 ###print("self.res_ele",self.res_ele)
1073 1075 plt.clf()
1074 1076 subplots = [121, 122]
1077 cg={'angular_spacing': 20.}
1075 1078 if self.ini==0:
1076 1079 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1077 1080 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1078 1081 print("SHAPE",self.data_ele_tmp.shape)
1079 1082
1080 1083 for i,ax in enumerate(self.axes):
1081 1084 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1082 1085 self.res_azi = numpy.mean(data['azi'])
1083 1086 if i==0:
1084 1087 print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
1088 self.zmin = self.zmin if self.zmin else 20
1089 self.zmax = self.zmax if self.zmax else 80
1085 1090 if ax.firsttime:
1086 1091 #plt.clf()
1087 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1092 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj=cg,vmin=self.zmin, vmax=self.zmax)
1088 1093 #fig=self.figures[0]
1089 1094 else:
1090 1095 #plt.clf()
1091 1096 if i==0:
1092 1097 print(self.res_weather[i])
1093 1098 print(self.res_ele)
1094 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1099 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj=cg,vmin=self.zmin, vmax=self.zmax)
1095 1100 caax = cgax.parasites[0]
1096 1101 paax = cgax.parasites[1]
1097 1102 cbar = plt.gcf().colorbar(pm, pad=0.075)
1098 1103 caax.set_xlabel('x_range [km]')
1099 1104 caax.set_ylabel('y_range [km]')
1100 1105 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1101 1106 print("***************************self.ini****************************",self.ini)
1102 1107 self.ini= self.ini+1
1103 1108
1104 1109 class WeatherRHI_vRF2_Plot(Plot):
1105 1110 CODE = 'weather'
1106 1111 plot_name = 'weather'
1107 1112 plot_type = 'rhistyle'
1108 1113 buffering = False
1109 1114 data_ele_tmp = None
1110 1115
1111 1116 def setup(self):
1112 1117 print("********************")
1113 1118 print("********************")
1114 1119 print("********************")
1115 1120 print("SETUP WEATHER PLOT")
1116 1121 self.ncols = 1
1117 1122 self.nrows = 1
1118 1123 self.nplots= 1
1119 1124 self.ylabel= 'Range [Km]'
1120 1125 self.titles= ['Weather']
1121 1126 if self.channels is not None:
1122 1127 self.nplots = len(self.channels)
1123 1128 self.nrows = len(self.channels)
1124 1129 else:
1125 1130 self.nplots = self.data.shape(self.CODE)[0]
1126 1131 self.nrows = self.nplots
1127 1132 self.channels = list(range(self.nplots))
1128 1133 print("channels",self.channels)
1129 1134 print("que saldra", self.data.shape(self.CODE)[0])
1130 1135 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1131 1136 print("self.titles",self.titles)
1132 1137 self.colorbar=False
1133 1138 self.width =8
1134 1139 self.height =8
1135 1140 self.ini =0
1136 1141 self.len_azi =0
1137 1142 self.buffer_ini = None
1138 1143 self.buffer_ele = None
1139 1144 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1140 1145 self.flag =0
1141 1146 self.indicador= 0
1142 1147 self.last_data_ele = None
1143 1148 self.val_mean = None
1144 1149
1145 1150 def update(self, dataOut):
1146 1151
1147 1152 data = {}
1148 1153 meta = {}
1149 1154 if hasattr(dataOut, 'dataPP_POWER'):
1150 1155 factor = 1
1151 1156 if hasattr(dataOut, 'nFFTPoints'):
1152 1157 factor = dataOut.normFactor
1153 1158 print("dataOut",dataOut.data_360.shape)
1154 1159 #
1155 1160 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1156 1161 #
1157 1162 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1158 1163 data['azi'] = dataOut.data_azi
1159 1164 data['ele'] = dataOut.data_ele
1160 1165 data['case_flag'] = dataOut.case_flag
1161 1166 #print("UPDATE")
1162 1167 #print("data[weather]",data['weather'].shape)
1163 1168 #print("data[azi]",data['azi'])
1164 1169 return data, meta
1165 1170
1166 1171 def get2List(self,angulos):
1167 1172 list1=[]
1168 1173 list2=[]
1169 1174 for i in reversed(range(len(angulos))):
1170 1175 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1171 1176 diff_ = angulos[i]-angulos[i-1]
1172 1177 if abs(diff_) >1.5:
1173 1178 list1.append(i-1)
1174 1179 list2.append(diff_)
1175 1180 return list(reversed(list1)),list(reversed(list2))
1176 1181
1177 1182 def fixData90(self,list_,ang_):
1178 1183 if list_[0]==-1:
1179 1184 vec = numpy.where(ang_<ang_[0])
1180 1185 ang_[vec] = ang_[vec]+90
1181 1186 return ang_
1182 1187 return ang_
1183 1188
1184 1189 def fixData90HL(self,angulos):
1185 1190 vec = numpy.where(angulos>=90)
1186 1191 angulos[vec]=angulos[vec]-90
1187 1192 return angulos
1188 1193
1189 1194
1190 1195 def search_pos(self,pos,list_):
1191 1196 for i in range(len(list_)):
1192 1197 if pos == list_[i]:
1193 1198 return True,i
1194 1199 i=None
1195 1200 return False,i
1196 1201
1197 1202 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1198 1203 size = len(ang_)
1199 1204 size2 = 0
1200 1205 for i in range(len(list2_)):
1201 1206 size2=size2+round(abs(list2_[i]))-1
1202 1207 new_size= size+size2
1203 1208 ang_new = numpy.zeros(new_size)
1204 1209 ang_new2 = numpy.zeros(new_size)
1205 1210
1206 1211 tmp = 0
1207 1212 c = 0
1208 1213 for i in range(len(ang_)):
1209 1214 ang_new[tmp +c] = ang_[i]
1210 1215 ang_new2[tmp+c] = ang_[i]
1211 1216 condition , value = self.search_pos(i,list1_)
1212 1217 if condition:
1213 1218 pos = tmp + c + 1
1214 1219 for k in range(round(abs(list2_[value]))-1):
1215 1220 if tipo_case==0 or tipo_case==3:#subida
1216 1221 ang_new[pos+k] = ang_new[pos+k-1]+1
1217 1222 ang_new2[pos+k] = numpy.nan
1218 1223 elif tipo_case==1 or tipo_case==2:#bajada
1219 1224 ang_new[pos+k] = ang_new[pos+k-1]-1
1220 1225 ang_new2[pos+k] = numpy.nan
1221 1226
1222 1227 tmp = pos +k
1223 1228 c = 0
1224 1229 c=c+1
1225 1230 return ang_new,ang_new2
1226 1231
1227 1232 def globalCheckPED(self,angulos,tipo_case):
1228 1233 l1,l2 = self.get2List(angulos)
1229 1234 ##print("l1",l1)
1230 1235 ##print("l2",l2)
1231 1236 if len(l1)>0:
1232 1237 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1233 1238 #l1,l2 = self.get2List(angulos2)
1234 1239 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1235 1240 #ang1_ = self.fixData90HL(ang1_)
1236 1241 #ang2_ = self.fixData90HL(ang2_)
1237 1242 else:
1238 1243 ang1_= angulos
1239 1244 ang2_= angulos
1240 1245 return ang1_,ang2_
1241 1246
1242 1247
1243 1248 def replaceNAN(self,data_weather,data_ele,val):
1244 1249 data= data_ele
1245 1250 data_T= data_weather
1246 1251 if data.shape[0]> data_T.shape[0]:
1247 1252 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1248 1253 c = 0
1249 1254 for i in range(len(data)):
1250 1255 if numpy.isnan(data[i]):
1251 1256 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1252 1257 else:
1253 1258 data_N[i,:]=data_T[c,:]
1254 1259 c=c+1
1255 1260 return data_N
1256 1261 else:
1257 1262 for i in range(len(data)):
1258 1263 if numpy.isnan(data[i]):
1259 1264 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1260 1265 return data_T
1261 1266
1262 1267 def check_case(self,data_ele,ang_max,ang_min):
1263 1268 start = data_ele[0]
1264 1269 end = data_ele[-1]
1265 1270 number = (end-start)
1266 1271 len_ang=len(data_ele)
1267 1272 print("start",start)
1268 1273 print("end",end)
1269 1274 print("number",number)
1270 1275
1271 1276 print("len_ang",len_ang)
1272 1277
1273 1278 #exit(1)
1274 1279
1275 1280 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
1276 1281 return 0
1277 1282 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
1278 1283 # return 1
1279 1284 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
1280 1285 return 1
1281 1286 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
1282 1287 return 2
1283 1288 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
1284 1289 return 3
1285 1290
1286 1291
1287 1292 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1288 1293 ang_max= ang_max
1289 1294 ang_min= ang_min
1290 1295 data_weather=data_weather
1291 1296 val_ch=val_ch
1292 1297 ##print("*********************DATA WEATHER**************************************")
1293 1298 ##print(data_weather)
1294 1299 if self.ini==0:
1295 1300 '''
1296 1301 print("**********************************************")
1297 1302 print("**********************************************")
1298 1303 print("***************ini**************")
1299 1304 print("**********************************************")
1300 1305 print("**********************************************")
1301 1306 '''
1302 1307 #print("data_ele",data_ele)
1303 1308 #----------------------------------------------------------
1304 1309 tipo_case = case_flag[-1]
1305 1310 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1306 1311 print("check_case",tipo_case)
1307 1312 #exit(1)
1308 1313 #--------------------- new -------------------------
1309 1314 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1310 1315
1311 1316 #-------------------------CAMBIOS RHI---------------------------------
1312 1317 start= ang_min
1313 1318 end = ang_max
1314 1319 n= (ang_max-ang_min)/res
1315 1320 #------ new
1316 1321 self.start_data_ele = data_ele_new[0]
1317 1322 self.end_data_ele = data_ele_new[-1]
1318 1323 if tipo_case==0 or tipo_case==3: # SUBIDA
1319 1324 n1= round(self.start_data_ele)- start
1320 1325 n2= end - round(self.end_data_ele)
1321 1326 print(self.start_data_ele)
1322 1327 print(self.end_data_ele)
1323 1328 if n1>0:
1324 1329 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1325 1330 ele1_nan= numpy.ones(n1)*numpy.nan
1326 1331 data_ele = numpy.hstack((ele1,data_ele_new))
1327 1332 print("ele1_nan",ele1_nan.shape)
1328 1333 print("data_ele_old",data_ele_old.shape)
1329 1334 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1330 1335 if n2>0:
1331 1336 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1332 1337 ele2_nan= numpy.ones(n2)*numpy.nan
1333 1338 data_ele = numpy.hstack((data_ele,ele2))
1334 1339 print("ele2_nan",ele2_nan.shape)
1335 1340 print("data_ele_old",data_ele_old.shape)
1336 1341 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1337 1342
1338 1343 if tipo_case==1 or tipo_case==2: # BAJADA
1339 1344 data_ele_new = data_ele_new[::-1] # reversa
1340 1345 data_ele_old = data_ele_old[::-1]# reversa
1341 1346 data_weather = data_weather[::-1,:]# reversa
1342 1347 vec= numpy.where(data_ele_new<ang_max)
1343 1348 data_ele_new = data_ele_new[vec]
1344 1349 data_ele_old = data_ele_old[vec]
1345 1350 data_weather = data_weather[vec[0]]
1346 1351 vec2= numpy.where(0<data_ele_new)
1347 1352 data_ele_new = data_ele_new[vec2]
1348 1353 data_ele_old = data_ele_old[vec2]
1349 1354 data_weather = data_weather[vec2[0]]
1350 1355 self.start_data_ele = data_ele_new[0]
1351 1356 self.end_data_ele = data_ele_new[-1]
1352 1357
1353 1358 n1= round(self.start_data_ele)- start
1354 1359 n2= end - round(self.end_data_ele)-1
1355 1360 print(self.start_data_ele)
1356 1361 print(self.end_data_ele)
1357 1362 if n1>0:
1358 1363 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1359 1364 ele1_nan= numpy.ones(n1)*numpy.nan
1360 1365 data_ele = numpy.hstack((ele1,data_ele_new))
1361 1366 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1362 1367 if n2>0:
1363 1368 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1364 1369 ele2_nan= numpy.ones(n2)*numpy.nan
1365 1370 data_ele = numpy.hstack((data_ele,ele2))
1366 1371 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1367 1372 # RADAR
1368 1373 # NOTA data_ele y data_weather es la variable que retorna
1369 1374 val_mean = numpy.mean(data_weather[:,-1])
1370 1375 self.val_mean = val_mean
1371 1376 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1372 1377 print("eleold",data_ele_old)
1373 1378 print(self.data_ele_tmp[val_ch])
1374 1379 print(data_ele_old.shape[0])
1375 1380 print(self.data_ele_tmp[val_ch].shape[0])
1376 1381 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
1377 1382 import sys
1378 1383 print("EXIT",self.ini)
1379 1384
1380 1385 sys.exit(1)
1381 1386 self.data_ele_tmp[val_ch]= data_ele_old
1382 1387 else:
1383 1388 #print("**********************************************")
1384 1389 #print("****************VARIABLE**********************")
1385 1390 #-------------------------CAMBIOS RHI---------------------------------
1386 1391 #---------------------------------------------------------------------
1387 1392 ##print("INPUT data_ele",data_ele)
1388 1393 flag=0
1389 1394 start_ele = self.res_ele[0]
1390 1395 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1391 1396 tipo_case = case_flag[-1]
1392 1397 #print("TIPO DE DATA",tipo_case)
1393 1398 #-----------new------------
1394 1399 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
1395 1400 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1396 1401
1397 1402 #-------------------------------NEW RHI ITERATIVO-------------------------
1398 1403
1399 1404 if tipo_case==0 : # SUBIDA
1400 1405 vec = numpy.where(data_ele<ang_max)
1401 1406 data_ele = data_ele[vec]
1402 1407 data_ele_old = data_ele_old[vec]
1403 1408 data_weather = data_weather[vec[0]]
1404 1409
1405 1410 vec2 = numpy.where(0<data_ele)
1406 1411 data_ele= data_ele[vec2]
1407 1412 data_ele_old= data_ele_old[vec2]
1408 1413 ##print(data_ele_new)
1409 1414 data_weather= data_weather[vec2[0]]
1410 1415
1411 1416 new_i_ele = int(round(data_ele[0]))
1412 1417 new_f_ele = int(round(data_ele[-1]))
1413 1418 #print(new_i_ele)
1414 1419 #print(new_f_ele)
1415 1420 #print(data_ele,len(data_ele))
1416 1421 #print(data_ele_old,len(data_ele_old))
1417 1422 if new_i_ele< 2:
1418 1423 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1419 1424 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1420 1425 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
1421 1426 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
1422 1427 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
1423 1428 data_ele = self.res_ele
1424 1429 data_weather = self.res_weather[val_ch]
1425 1430
1426 1431 elif tipo_case==1 : #BAJADA
1427 1432 data_ele = data_ele[::-1] # reversa
1428 1433 data_ele_old = data_ele_old[::-1]# reversa
1429 1434 data_weather = data_weather[::-1,:]# reversa
1430 1435 vec= numpy.where(data_ele<ang_max)
1431 1436 data_ele = data_ele[vec]
1432 1437 data_ele_old = data_ele_old[vec]
1433 1438 data_weather = data_weather[vec[0]]
1434 1439 vec2= numpy.where(0<data_ele)
1435 1440 data_ele = data_ele[vec2]
1436 1441 data_ele_old = data_ele_old[vec2]
1437 1442 data_weather = data_weather[vec2[0]]
1438 1443
1439 1444
1440 1445 new_i_ele = int(round(data_ele[0]))
1441 1446 new_f_ele = int(round(data_ele[-1]))
1442 1447 #print(data_ele)
1443 1448 #print(ang_max)
1444 1449 #print(data_ele_old)
1445 1450 if new_i_ele <= 1:
1446 1451 new_i_ele = 1
1447 1452 if round(data_ele[-1])>=ang_max-1:
1448 1453 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1449 1454 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1450 1455 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
1451 1456 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
1452 1457 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
1453 1458 data_ele = self.res_ele
1454 1459 data_weather = self.res_weather[val_ch]
1455 1460
1456 1461 elif tipo_case==2: #bajada
1457 1462 vec = numpy.where(data_ele<ang_max)
1458 1463 data_ele = data_ele[vec]
1459 1464 data_weather= data_weather[vec[0]]
1460 1465
1461 1466 len_vec = len(vec)
1462 1467 data_ele_new = data_ele[::-1] # reversa
1463 1468 data_weather = data_weather[::-1,:]
1464 1469 new_i_ele = int(data_ele_new[0])
1465 1470 new_f_ele = int(data_ele_new[-1])
1466 1471
1467 1472 n1= new_i_ele- ang_min
1468 1473 n2= ang_max - new_f_ele-1
1469 1474 if n1>0:
1470 1475 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1471 1476 ele1_nan= numpy.ones(n1)*numpy.nan
1472 1477 data_ele = numpy.hstack((ele1,data_ele_new))
1473 1478 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1474 1479 if n2>0:
1475 1480 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1476 1481 ele2_nan= numpy.ones(n2)*numpy.nan
1477 1482 data_ele = numpy.hstack((data_ele,ele2))
1478 1483 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1479 1484
1480 1485 self.data_ele_tmp[val_ch] = data_ele_old
1481 1486 self.res_ele = data_ele
1482 1487 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1483 1488 data_ele = self.res_ele
1484 1489 data_weather = self.res_weather[val_ch]
1485 1490
1486 1491 elif tipo_case==3:#subida
1487 1492 vec = numpy.where(0<data_ele)
1488 1493 data_ele= data_ele[vec]
1489 1494 data_ele_new = data_ele
1490 1495 data_ele_old= data_ele_old[vec]
1491 1496 data_weather= data_weather[vec[0]]
1492 1497 pos_ini = numpy.argmin(data_ele)
1493 1498 if pos_ini>0:
1494 1499 len_vec= len(data_ele)
1495 1500 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1496 1501 #print(vec3)
1497 1502 data_ele= data_ele[vec3]
1498 1503 data_ele_new = data_ele
1499 1504 data_ele_old= data_ele_old[vec3]
1500 1505 data_weather= data_weather[vec3]
1501 1506
1502 1507 new_i_ele = int(data_ele_new[0])
1503 1508 new_f_ele = int(data_ele_new[-1])
1504 1509 n1= new_i_ele- ang_min
1505 1510 n2= ang_max - new_f_ele-1
1506 1511 if n1>0:
1507 1512 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1508 1513 ele1_nan= numpy.ones(n1)*numpy.nan
1509 1514 data_ele = numpy.hstack((ele1,data_ele_new))
1510 1515 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1511 1516 if n2>0:
1512 1517 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1513 1518 ele2_nan= numpy.ones(n2)*numpy.nan
1514 1519 data_ele = numpy.hstack((data_ele,ele2))
1515 1520 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1516 1521
1517 1522 self.data_ele_tmp[val_ch] = data_ele_old
1518 1523 self.res_ele = data_ele
1519 1524 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1520 1525 data_ele = self.res_ele
1521 1526 data_weather = self.res_weather[val_ch]
1522 1527 #print("self.data_ele_tmp",self.data_ele_tmp)
1523 1528 return data_weather,data_ele
1524 1529
1525 1530
1526 1531 def plot(self):
1527 1532 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1528 1533 data = self.data[-1]
1529 1534 r = self.data.yrange
1530 1535 delta_height = r[1]-r[0]
1531 1536 r_mask = numpy.where(r>=0)[0]
1532 1537 ##print("delta_height",delta_height)
1533 1538 #print("r_mask",r_mask,len(r_mask))
1534 1539 r = numpy.arange(len(r_mask))*delta_height
1535 1540 self.y = 2*r
1536 1541 res = 1
1537 1542 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1538 1543 ang_max = self.ang_max
1539 1544 ang_min = self.ang_min
1540 1545 var_ang =ang_max - ang_min
1541 1546 step = (int(var_ang)/(res*data['weather'].shape[0]))
1542 1547 ###print("step",step)
1543 1548 #--------------------------------------------------------
1544 1549 ##print('weather',data['weather'].shape)
1545 1550 ##print('ele',data['ele'].shape)
1546 1551
1547 1552 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1548 1553 ###self.res_azi = numpy.mean(data['azi'])
1549 1554 ###print("self.res_ele",self.res_ele)
1550 1555 plt.clf()
1551 1556 subplots = [121, 122]
1552 1557 try:
1553 1558 if self.data[-2]['ele'].max()<data['ele'].max():
1554 1559 self.ini=0
1555 1560 except:
1556 1561 pass
1557 1562 if self.ini==0:
1558 1563 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1559 1564 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1560 1565 print("SHAPE",self.data_ele_tmp.shape)
1561 1566
1562 1567 for i,ax in enumerate(self.axes):
1563 1568 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1564 1569 self.res_azi = numpy.mean(data['azi'])
1565 1570
1566 1571 if ax.firsttime:
1567 1572 #plt.clf()
1568 1573 print("Frist Plot")
1569 1574 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1570 1575 #fig=self.figures[0]
1571 1576 else:
1572 1577 #plt.clf()
1573 1578 print("ELSE PLOT")
1574 1579 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1575 1580 caax = cgax.parasites[0]
1576 1581 paax = cgax.parasites[1]
1577 1582 cbar = plt.gcf().colorbar(pm, pad=0.075)
1578 1583 caax.set_xlabel('x_range [km]')
1579 1584 caax.set_ylabel('y_range [km]')
1580 1585 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1581 1586 print("***************************self.ini****************************",self.ini)
1582 1587 self.ini= self.ini+1
1583 1588
1584 1589 class WeatherRHI_vRF_Plot(Plot):
1585 1590 CODE = 'weather'
1586 1591 plot_name = 'weather'
1587 1592 plot_type = 'rhistyle'
1588 1593 buffering = False
1589 1594 data_ele_tmp = None
1590 1595
1591 1596 def setup(self):
1592 1597 print("********************")
1593 1598 print("********************")
1594 1599 print("********************")
1595 1600 print("SETUP WEATHER PLOT")
1596 1601 self.ncols = 1
1597 1602 self.nrows = 1
1598 1603 self.nplots= 1
1599 1604 self.ylabel= 'Range [Km]'
1600 1605 self.titles= ['Weather']
1601 1606 if self.channels is not None:
1602 1607 self.nplots = len(self.channels)
1603 1608 self.nrows = len(self.channels)
1604 1609 else:
1605 1610 self.nplots = self.data.shape(self.CODE)[0]
1606 1611 self.nrows = self.nplots
1607 1612 self.channels = list(range(self.nplots))
1608 1613 print("channels",self.channels)
1609 1614 print("que saldra", self.data.shape(self.CODE)[0])
1610 1615 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1611 1616 print("self.titles",self.titles)
1612 1617 self.colorbar=False
1613 1618 self.width =8
1614 1619 self.height =8
1615 1620 self.ini =0
1616 1621 self.len_azi =0
1617 1622 self.buffer_ini = None
1618 1623 self.buffer_ele = None
1619 1624 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1620 1625 self.flag =0
1621 1626 self.indicador= 0
1622 1627 self.last_data_ele = None
1623 1628 self.val_mean = None
1624 1629
1625 1630 def update(self, dataOut):
1626 1631
1627 1632 data = {}
1628 1633 meta = {}
1629 1634 if hasattr(dataOut, 'dataPP_POWER'):
1630 1635 factor = 1
1631 1636 if hasattr(dataOut, 'nFFTPoints'):
1632 1637 factor = dataOut.normFactor
1633 1638 print("dataOut",dataOut.data_360.shape)
1634 1639 #
1635 1640 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1636 1641 #
1637 1642 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1638 1643 data['azi'] = dataOut.data_azi
1639 1644 data['ele'] = dataOut.data_ele
1640 1645 data['case_flag'] = dataOut.case_flag
1641 1646 #print("UPDATE")
1642 1647 #print("data[weather]",data['weather'].shape)
1643 1648 #print("data[azi]",data['azi'])
1644 1649 return data, meta
1645 1650
1646 1651 def get2List(self,angulos):
1647 1652 list1=[]
1648 1653 list2=[]
1649 1654 #print(angulos)
1650 1655 #exit(1)
1651 1656 for i in reversed(range(len(angulos))):
1652 1657 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1653 1658 diff_ = angulos[i]-angulos[i-1]
1654 1659 if abs(diff_) >1.5:
1655 1660 list1.append(i-1)
1656 1661 list2.append(diff_)
1657 1662 return list(reversed(list1)),list(reversed(list2))
1658 1663
1659 1664 def fixData90(self,list_,ang_):
1660 1665 if list_[0]==-1:
1661 1666 vec = numpy.where(ang_<ang_[0])
1662 1667 ang_[vec] = ang_[vec]+90
1663 1668 return ang_
1664 1669 return ang_
1665 1670
1666 1671 def fixData90HL(self,angulos):
1667 1672 vec = numpy.where(angulos>=90)
1668 1673 angulos[vec]=angulos[vec]-90
1669 1674 return angulos
1670 1675
1671 1676
1672 1677 def search_pos(self,pos,list_):
1673 1678 for i in range(len(list_)):
1674 1679 if pos == list_[i]:
1675 1680 return True,i
1676 1681 i=None
1677 1682 return False,i
1678 1683
1679 1684 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1680 1685 size = len(ang_)
1681 1686 size2 = 0
1682 1687 for i in range(len(list2_)):
1683 1688 size2=size2+round(abs(list2_[i]))-1
1684 1689 new_size= size+size2
1685 1690 ang_new = numpy.zeros(new_size)
1686 1691 ang_new2 = numpy.zeros(new_size)
1687 1692
1688 1693 tmp = 0
1689 1694 c = 0
1690 1695 for i in range(len(ang_)):
1691 1696 ang_new[tmp +c] = ang_[i]
1692 1697 ang_new2[tmp+c] = ang_[i]
1693 1698 condition , value = self.search_pos(i,list1_)
1694 1699 if condition:
1695 1700 pos = tmp + c + 1
1696 1701 for k in range(round(abs(list2_[value]))-1):
1697 1702 if tipo_case==0 or tipo_case==3:#subida
1698 1703 ang_new[pos+k] = ang_new[pos+k-1]+1
1699 1704 ang_new2[pos+k] = numpy.nan
1700 1705 elif tipo_case==1 or tipo_case==2:#bajada
1701 1706 ang_new[pos+k] = ang_new[pos+k-1]-1
1702 1707 ang_new2[pos+k] = numpy.nan
1703 1708
1704 1709 tmp = pos +k
1705 1710 c = 0
1706 1711 c=c+1
1707 1712 return ang_new,ang_new2
1708 1713
1709 1714 def globalCheckPED(self,angulos,tipo_case):
1710 1715 l1,l2 = self.get2List(angulos)
1711 1716 print("l1",l1)
1712 1717 print("l2",l2)
1713 1718 if len(l1)>0:
1714 1719 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1715 1720 #l1,l2 = self.get2List(angulos2)
1716 1721 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1717 1722 #ang1_ = self.fixData90HL(ang1_)
1718 1723 #ang2_ = self.fixData90HL(ang2_)
1719 1724 else:
1720 1725 ang1_= angulos
1721 1726 ang2_= angulos
1722 1727 return ang1_,ang2_
1723 1728
1724 1729
1725 1730 def replaceNAN(self,data_weather,data_ele,val):
1726 1731 data= data_ele
1727 1732 data_T= data_weather
1728 1733 #print(data.shape[0])
1729 1734 #print(data_T.shape[0])
1730 1735 #exit(1)
1731 1736 if data.shape[0]> data_T.shape[0]:
1732 1737 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1733 1738 c = 0
1734 1739 for i in range(len(data)):
1735 1740 if numpy.isnan(data[i]):
1736 1741 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1737 1742 else:
1738 1743 data_N[i,:]=data_T[c,:]
1739 1744 c=c+1
1740 1745 return data_N
1741 1746 else:
1742 1747 for i in range(len(data)):
1743 1748 if numpy.isnan(data[i]):
1744 1749 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1745 1750 return data_T
1746 1751
1747 1752
1748 1753 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1749 1754 ang_max= ang_max
1750 1755 ang_min= ang_min
1751 1756 data_weather=data_weather
1752 1757 val_ch=val_ch
1753 1758 ##print("*********************DATA WEATHER**************************************")
1754 1759 ##print(data_weather)
1755 1760
1756 1761 '''
1757 1762 print("**********************************************")
1758 1763 print("**********************************************")
1759 1764 print("***************ini**************")
1760 1765 print("**********************************************")
1761 1766 print("**********************************************")
1762 1767 '''
1763 1768 #print("data_ele",data_ele)
1764 1769 #----------------------------------------------------------
1765 1770
1766 1771 #exit(1)
1767 1772 tipo_case = case_flag[-1]
1768 1773 print("tipo_case",tipo_case)
1769 1774 #--------------------- new -------------------------
1770 1775 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1771 1776
1772 1777 #-------------------------CAMBIOS RHI---------------------------------
1773 1778
1774 1779 vec = numpy.where(data_ele<ang_max)
1775 1780 data_ele = data_ele[vec]
1776 1781 data_weather= data_weather[vec[0]]
1777 1782
1778 1783 len_vec = len(vec)
1779 1784 data_ele_new = data_ele[::-1] # reversa
1780 1785 data_weather = data_weather[::-1,:]
1781 1786 new_i_ele = int(data_ele_new[0])
1782 1787 new_f_ele = int(data_ele_new[-1])
1783 1788
1784 1789 n1= new_i_ele- ang_min
1785 1790 n2= ang_max - new_f_ele-1
1786 1791 if n1>0:
1787 1792 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1788 1793 ele1_nan= numpy.ones(n1)*numpy.nan
1789 1794 data_ele = numpy.hstack((ele1,data_ele_new))
1790 1795 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1791 1796 if n2>0:
1792 1797 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1793 1798 ele2_nan= numpy.ones(n2)*numpy.nan
1794 1799 data_ele = numpy.hstack((data_ele,ele2))
1795 1800 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1796 1801
1797 1802
1798 1803 print("ele shape",data_ele.shape)
1799 1804 print(data_ele)
1800 1805
1801 1806 #print("self.data_ele_tmp",self.data_ele_tmp)
1802 1807 val_mean = numpy.mean(data_weather[:,-1])
1803 1808 self.val_mean = val_mean
1804 1809 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1805 1810 self.data_ele_tmp[val_ch]= data_ele_old
1806 1811
1807 1812
1808 1813 print("data_weather shape",data_weather.shape)
1809 1814 print(data_weather)
1810 1815 #exit(1)
1811 1816 return data_weather,data_ele
1812 1817
1813 1818
1814 1819 def plot(self):
1815 1820 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1816 1821 data = self.data[-1]
1817 1822 r = self.data.yrange
1818 1823 delta_height = r[1]-r[0]
1819 1824 r_mask = numpy.where(r>=0)[0]
1820 1825 ##print("delta_height",delta_height)
1821 1826 #print("r_mask",r_mask,len(r_mask))
1822 1827 r = numpy.arange(len(r_mask))*delta_height
1823 1828 self.y = 2*r
1824 1829 res = 1
1825 1830 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1826 1831 ang_max = self.ang_max
1827 1832 ang_min = self.ang_min
1828 1833 var_ang =ang_max - ang_min
1829 1834 step = (int(var_ang)/(res*data['weather'].shape[0]))
1830 1835 ###print("step",step)
1831 1836 #--------------------------------------------------------
1832 1837 ##print('weather',data['weather'].shape)
1833 1838 ##print('ele',data['ele'].shape)
1834 1839
1835 1840 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1836 1841 ###self.res_azi = numpy.mean(data['azi'])
1837 1842 ###print("self.res_ele",self.res_ele)
1838 1843 plt.clf()
1839 1844 subplots = [121, 122]
1840 1845 if self.ini==0:
1841 1846 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1842 1847 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1843 1848 print("SHAPE",self.data_ele_tmp.shape)
1844 1849
1845 1850 for i,ax in enumerate(self.axes):
1846 1851 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1847 1852 self.res_azi = numpy.mean(data['azi'])
1848 1853
1849 1854 print(self.res_ele)
1850 1855 #exit(1)
1851 1856 if ax.firsttime:
1852 1857 #plt.clf()
1853 1858 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1854 1859 #fig=self.figures[0]
1855 1860 else:
1856 1861
1857 1862 #plt.clf()
1858 1863 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1859 1864 caax = cgax.parasites[0]
1860 1865 paax = cgax.parasites[1]
1861 1866 cbar = plt.gcf().colorbar(pm, pad=0.075)
1862 1867 caax.set_xlabel('x_range [km]')
1863 1868 caax.set_ylabel('y_range [km]')
1864 1869 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1865 1870 print("***************************self.ini****************************",self.ini)
1866 1871 self.ini= self.ini+1
1867 1872
1868 1873 class WeatherRHI_vRF3_Plot(Plot):
1869 1874 CODE = 'weather'
1870 1875 plot_name = 'weather'
1871 1876 plot_type = 'rhistyle'
1872 1877 buffering = False
1873 1878 data_ele_tmp = None
1874 1879
1875 1880 def setup(self):
1876 1881 print("********************")
1877 1882 print("********************")
1878 1883 print("********************")
1879 1884 print("SETUP WEATHER PLOT")
1880 1885 self.ncols = 1
1881 1886 self.nrows = 1
1882 1887 self.nplots= 1
1883 1888 self.ylabel= 'Range [Km]'
1884 1889 self.titles= ['Weather']
1885 1890 if self.channels is not None:
1886 1891 self.nplots = len(self.channels)
1887 1892 self.nrows = len(self.channels)
1888 1893 else:
1889 1894 self.nplots = self.data.shape(self.CODE)[0]
1890 1895 self.nrows = self.nplots
1891 1896 self.channels = list(range(self.nplots))
1892 1897 print("channels",self.channels)
1893 1898 print("que saldra", self.data.shape(self.CODE)[0])
1894 1899 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1895 1900 print("self.titles",self.titles)
1896 1901 self.colorbar=False
1897 1902 self.width =8
1898 1903 self.height =8
1899 1904 self.ini =0
1900 1905 self.len_azi =0
1901 1906 self.buffer_ini = None
1902 1907 self.buffer_ele = None
1903 1908 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1904 1909 self.flag =0
1905 1910 self.indicador= 0
1906 1911 self.last_data_ele = None
1907 1912 self.val_mean = None
1908 1913
1909 1914 def update(self, dataOut):
1910 1915
1911 1916 data = {}
1912 1917 meta = {}
1913 1918 if hasattr(dataOut, 'dataPP_POWER'):
1914 1919 factor = 1
1915 1920 if hasattr(dataOut, 'nFFTPoints'):
1916 1921 factor = dataOut.normFactor
1917 1922 print("dataOut",dataOut.data_360.shape)
1918 1923 #
1919 1924 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1920 1925 #
1921 1926 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1922 1927 data['azi'] = dataOut.data_azi
1923 1928 data['ele'] = dataOut.data_ele
1924 1929 #data['case_flag'] = dataOut.case_flag
1925 1930 #print("UPDATE")
1926 1931 #print("data[weather]",data['weather'].shape)
1927 1932 #print("data[azi]",data['azi'])
1928 1933 return data, meta
1929 1934
1930 1935 def get2List(self,angulos):
1931 1936 list1=[]
1932 1937 list2=[]
1933 1938 for i in reversed(range(len(angulos))):
1934 1939 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1935 1940 diff_ = angulos[i]-angulos[i-1]
1936 1941 if abs(diff_) >1.5:
1937 1942 list1.append(i-1)
1938 1943 list2.append(diff_)
1939 1944 return list(reversed(list1)),list(reversed(list2))
1940 1945
1941 1946 def fixData90(self,list_,ang_):
1942 1947 if list_[0]==-1:
1943 1948 vec = numpy.where(ang_<ang_[0])
1944 1949 ang_[vec] = ang_[vec]+90
1945 1950 return ang_
1946 1951 return ang_
1947 1952
1948 1953 def fixData90HL(self,angulos):
1949 1954 vec = numpy.where(angulos>=90)
1950 1955 angulos[vec]=angulos[vec]-90
1951 1956 return angulos
1952 1957
1953 1958
1954 1959 def search_pos(self,pos,list_):
1955 1960 for i in range(len(list_)):
1956 1961 if pos == list_[i]:
1957 1962 return True,i
1958 1963 i=None
1959 1964 return False,i
1960 1965
1961 1966 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1962 1967 size = len(ang_)
1963 1968 size2 = 0
1964 1969 for i in range(len(list2_)):
1965 1970 size2=size2+round(abs(list2_[i]))-1
1966 1971 new_size= size+size2
1967 1972 ang_new = numpy.zeros(new_size)
1968 1973 ang_new2 = numpy.zeros(new_size)
1969 1974
1970 1975 tmp = 0
1971 1976 c = 0
1972 1977 for i in range(len(ang_)):
1973 1978 ang_new[tmp +c] = ang_[i]
1974 1979 ang_new2[tmp+c] = ang_[i]
1975 1980 condition , value = self.search_pos(i,list1_)
1976 1981 if condition:
1977 1982 pos = tmp + c + 1
1978 1983 for k in range(round(abs(list2_[value]))-1):
1979 1984 if tipo_case==0 or tipo_case==3:#subida
1980 1985 ang_new[pos+k] = ang_new[pos+k-1]+1
1981 1986 ang_new2[pos+k] = numpy.nan
1982 1987 elif tipo_case==1 or tipo_case==2:#bajada
1983 1988 ang_new[pos+k] = ang_new[pos+k-1]-1
1984 1989 ang_new2[pos+k] = numpy.nan
1985 1990
1986 1991 tmp = pos +k
1987 1992 c = 0
1988 1993 c=c+1
1989 1994 return ang_new,ang_new2
1990 1995
1991 1996 def globalCheckPED(self,angulos,tipo_case):
1992 1997 l1,l2 = self.get2List(angulos)
1993 1998 ##print("l1",l1)
1994 1999 ##print("l2",l2)
1995 2000 if len(l1)>0:
1996 2001 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1997 2002 #l1,l2 = self.get2List(angulos2)
1998 2003 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1999 2004 #ang1_ = self.fixData90HL(ang1_)
2000 2005 #ang2_ = self.fixData90HL(ang2_)
2001 2006 else:
2002 2007 ang1_= angulos
2003 2008 ang2_= angulos
2004 2009 return ang1_,ang2_
2005 2010
2006 2011
2007 2012 def replaceNAN(self,data_weather,data_ele,val):
2008 2013 data= data_ele
2009 2014 data_T= data_weather
2010 2015
2011 2016 if data.shape[0]> data_T.shape[0]:
2012 2017 print("IF")
2013 2018 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
2014 2019 c = 0
2015 2020 for i in range(len(data)):
2016 2021 if numpy.isnan(data[i]):
2017 2022 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2018 2023 else:
2019 2024 data_N[i,:]=data_T[c,:]
2020 2025 c=c+1
2021 2026 return data_N
2022 2027 else:
2023 2028 print("else")
2024 2029 for i in range(len(data)):
2025 2030 if numpy.isnan(data[i]):
2026 2031 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2027 2032 return data_T
2028 2033
2029 2034 def check_case(self,data_ele,ang_max,ang_min):
2030 2035 start = data_ele[0]
2031 2036 end = data_ele[-1]
2032 2037 number = (end-start)
2033 2038 len_ang=len(data_ele)
2034 2039 print("start",start)
2035 2040 print("end",end)
2036 2041 print("number",number)
2037 2042
2038 2043 print("len_ang",len_ang)
2039 2044
2040 2045 #exit(1)
2041 2046
2042 2047 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
2043 2048 return 0
2044 2049 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
2045 2050 # return 1
2046 2051 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
2047 2052 return 1
2048 2053 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
2049 2054 return 2
2050 2055 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
2051 2056 return 3
2052 2057
2053 2058
2054 2059 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
2055 2060 ang_max= ang_max
2056 2061 ang_min= ang_min
2057 2062 data_weather=data_weather
2058 2063 val_ch=val_ch
2059 2064 ##print("*********************DATA WEATHER**************************************")
2060 2065 ##print(data_weather)
2061 2066 if self.ini==0:
2062 2067
2063 2068 #--------------------- new -------------------------
2064 2069 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
2065 2070
2066 2071 #-------------------------CAMBIOS RHI---------------------------------
2067 2072 start= ang_min
2068 2073 end = ang_max
2069 2074 n= (ang_max-ang_min)/res
2070 2075 #------ new
2071 2076 self.start_data_ele = data_ele_new[0]
2072 2077 self.end_data_ele = data_ele_new[-1]
2073 2078 if tipo_case==0 or tipo_case==3: # SUBIDA
2074 2079 n1= round(self.start_data_ele)- start
2075 2080 n2= end - round(self.end_data_ele)
2076 2081 print(self.start_data_ele)
2077 2082 print(self.end_data_ele)
2078 2083 if n1>0:
2079 2084 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2080 2085 ele1_nan= numpy.ones(n1)*numpy.nan
2081 2086 data_ele = numpy.hstack((ele1,data_ele_new))
2082 2087 print("ele1_nan",ele1_nan.shape)
2083 2088 print("data_ele_old",data_ele_old.shape)
2084 2089 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2085 2090 if n2>0:
2086 2091 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2087 2092 ele2_nan= numpy.ones(n2)*numpy.nan
2088 2093 data_ele = numpy.hstack((data_ele,ele2))
2089 2094 print("ele2_nan",ele2_nan.shape)
2090 2095 print("data_ele_old",data_ele_old.shape)
2091 2096 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2092 2097
2093 2098 if tipo_case==1 or tipo_case==2: # BAJADA
2094 2099 data_ele_new = data_ele_new[::-1] # reversa
2095 2100 data_ele_old = data_ele_old[::-1]# reversa
2096 2101 data_weather = data_weather[::-1,:]# reversa
2097 2102 vec= numpy.where(data_ele_new<ang_max)
2098 2103 data_ele_new = data_ele_new[vec]
2099 2104 data_ele_old = data_ele_old[vec]
2100 2105 data_weather = data_weather[vec[0]]
2101 2106 vec2= numpy.where(0<data_ele_new)
2102 2107 data_ele_new = data_ele_new[vec2]
2103 2108 data_ele_old = data_ele_old[vec2]
2104 2109 data_weather = data_weather[vec2[0]]
2105 2110 self.start_data_ele = data_ele_new[0]
2106 2111 self.end_data_ele = data_ele_new[-1]
2107 2112
2108 2113 n1= round(self.start_data_ele)- start
2109 2114 n2= end - round(self.end_data_ele)-1
2110 2115 print(self.start_data_ele)
2111 2116 print(self.end_data_ele)
2112 2117 if n1>0:
2113 2118 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2114 2119 ele1_nan= numpy.ones(n1)*numpy.nan
2115 2120 data_ele = numpy.hstack((ele1,data_ele_new))
2116 2121 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2117 2122 if n2>0:
2118 2123 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2119 2124 ele2_nan= numpy.ones(n2)*numpy.nan
2120 2125 data_ele = numpy.hstack((data_ele,ele2))
2121 2126 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2122 2127 # RADAR
2123 2128 # NOTA data_ele y data_weather es la variable que retorna
2124 2129 val_mean = numpy.mean(data_weather[:,-1])
2125 2130 self.val_mean = val_mean
2126 2131 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2127 2132 print("eleold",data_ele_old)
2128 2133 print(self.data_ele_tmp[val_ch])
2129 2134 print(data_ele_old.shape[0])
2130 2135 print(self.data_ele_tmp[val_ch].shape[0])
2131 2136 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
2132 2137 import sys
2133 2138 print("EXIT",self.ini)
2134 2139
2135 2140 sys.exit(1)
2136 2141 self.data_ele_tmp[val_ch]= data_ele_old
2137 2142 else:
2138 2143 #print("**********************************************")
2139 2144 #print("****************VARIABLE**********************")
2140 2145 #-------------------------CAMBIOS RHI---------------------------------
2141 2146 #---------------------------------------------------------------------
2142 2147 ##print("INPUT data_ele",data_ele)
2143 2148 flag=0
2144 2149 start_ele = self.res_ele[0]
2145 2150 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
2146 2151 tipo_case = case_flag[-1]
2147 2152 #print("TIPO DE DATA",tipo_case)
2148 2153 #-----------new------------
2149 2154 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
2150 2155 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2151 2156
2152 2157 #-------------------------------NEW RHI ITERATIVO-------------------------
2153 2158
2154 2159 if tipo_case==0 : # SUBIDA
2155 2160 vec = numpy.where(data_ele<ang_max)
2156 2161 data_ele = data_ele[vec]
2157 2162 data_ele_old = data_ele_old[vec]
2158 2163 data_weather = data_weather[vec[0]]
2159 2164
2160 2165 vec2 = numpy.where(0<data_ele)
2161 2166 data_ele= data_ele[vec2]
2162 2167 data_ele_old= data_ele_old[vec2]
2163 2168 ##print(data_ele_new)
2164 2169 data_weather= data_weather[vec2[0]]
2165 2170
2166 2171 new_i_ele = int(round(data_ele[0]))
2167 2172 new_f_ele = int(round(data_ele[-1]))
2168 2173 #print(new_i_ele)
2169 2174 #print(new_f_ele)
2170 2175 #print(data_ele,len(data_ele))
2171 2176 #print(data_ele_old,len(data_ele_old))
2172 2177 if new_i_ele< 2:
2173 2178 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2174 2179 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2175 2180 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
2176 2181 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
2177 2182 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
2178 2183 data_ele = self.res_ele
2179 2184 data_weather = self.res_weather[val_ch]
2180 2185
2181 2186 elif tipo_case==1 : #BAJADA
2182 2187 data_ele = data_ele[::-1] # reversa
2183 2188 data_ele_old = data_ele_old[::-1]# reversa
2184 2189 data_weather = data_weather[::-1,:]# reversa
2185 2190 vec= numpy.where(data_ele<ang_max)
2186 2191 data_ele = data_ele[vec]
2187 2192 data_ele_old = data_ele_old[vec]
2188 2193 data_weather = data_weather[vec[0]]
2189 2194 vec2= numpy.where(0<data_ele)
2190 2195 data_ele = data_ele[vec2]
2191 2196 data_ele_old = data_ele_old[vec2]
2192 2197 data_weather = data_weather[vec2[0]]
2193 2198
2194 2199
2195 2200 new_i_ele = int(round(data_ele[0]))
2196 2201 new_f_ele = int(round(data_ele[-1]))
2197 2202 #print(data_ele)
2198 2203 #print(ang_max)
2199 2204 #print(data_ele_old)
2200 2205 if new_i_ele <= 1:
2201 2206 new_i_ele = 1
2202 2207 if round(data_ele[-1])>=ang_max-1:
2203 2208 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2204 2209 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2205 2210 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
2206 2211 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
2207 2212 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
2208 2213 data_ele = self.res_ele
2209 2214 data_weather = self.res_weather[val_ch]
2210 2215
2211 2216 elif tipo_case==2: #bajada
2212 2217 vec = numpy.where(data_ele<ang_max)
2213 2218 data_ele = data_ele[vec]
2214 2219 data_weather= data_weather[vec[0]]
2215 2220
2216 2221 len_vec = len(vec)
2217 2222 data_ele_new = data_ele[::-1] # reversa
2218 2223 data_weather = data_weather[::-1,:]
2219 2224 new_i_ele = int(data_ele_new[0])
2220 2225 new_f_ele = int(data_ele_new[-1])
2221 2226
2222 2227 n1= new_i_ele- ang_min
2223 2228 n2= ang_max - new_f_ele-1
2224 2229 if n1>0:
2225 2230 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2226 2231 ele1_nan= numpy.ones(n1)*numpy.nan
2227 2232 data_ele = numpy.hstack((ele1,data_ele_new))
2228 2233 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2229 2234 if n2>0:
2230 2235 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2231 2236 ele2_nan= numpy.ones(n2)*numpy.nan
2232 2237 data_ele = numpy.hstack((data_ele,ele2))
2233 2238 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2234 2239
2235 2240 self.data_ele_tmp[val_ch] = data_ele_old
2236 2241 self.res_ele = data_ele
2237 2242 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2238 2243 data_ele = self.res_ele
2239 2244 data_weather = self.res_weather[val_ch]
2240 2245
2241 2246 elif tipo_case==3:#subida
2242 2247 vec = numpy.where(0<data_ele)
2243 2248 data_ele= data_ele[vec]
2244 2249 data_ele_new = data_ele
2245 2250 data_ele_old= data_ele_old[vec]
2246 2251 data_weather= data_weather[vec[0]]
2247 2252 pos_ini = numpy.argmin(data_ele)
2248 2253 if pos_ini>0:
2249 2254 len_vec= len(data_ele)
2250 2255 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
2251 2256 #print(vec3)
2252 2257 data_ele= data_ele[vec3]
2253 2258 data_ele_new = data_ele
2254 2259 data_ele_old= data_ele_old[vec3]
2255 2260 data_weather= data_weather[vec3]
2256 2261
2257 2262 new_i_ele = int(data_ele_new[0])
2258 2263 new_f_ele = int(data_ele_new[-1])
2259 2264 n1= new_i_ele- ang_min
2260 2265 n2= ang_max - new_f_ele-1
2261 2266 if n1>0:
2262 2267 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2263 2268 ele1_nan= numpy.ones(n1)*numpy.nan
2264 2269 data_ele = numpy.hstack((ele1,data_ele_new))
2265 2270 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2266 2271 if n2>0:
2267 2272 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2268 2273 ele2_nan= numpy.ones(n2)*numpy.nan
2269 2274 data_ele = numpy.hstack((data_ele,ele2))
2270 2275 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2271 2276
2272 2277 self.data_ele_tmp[val_ch] = data_ele_old
2273 2278 self.res_ele = data_ele
2274 2279 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2275 2280 data_ele = self.res_ele
2276 2281 data_weather = self.res_weather[val_ch]
2277 2282 #print("self.data_ele_tmp",self.data_ele_tmp)
2278 2283 return data_weather,data_ele
2279 2284
2280 2285 def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min):
2281 2286
2282 2287 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1)
2283 2288
2284 2289 data_ele = data_ele_old.copy()
2285 2290
2286 2291 diff_1 = ang_max - data_ele[0]
2287 2292 angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan
2288 2293
2289 2294 diff_2 = data_ele[-1]-ang_min
2290 2295 angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan
2291 2296
2292 2297 angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan))
2293 2298
2294 2299 print(angles_filled)
2295 2300
2296 2301 data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan
2297 2302 data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan
2298 2303
2299 2304 data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0)
2300 2305 #val_mean = numpy.mean(data_weather[:,-1])
2301 2306 #self.val_mean = val_mean
2302 2307 print(data_filled)
2303 2308 data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan)
2304 2309
2305 2310 print(data_filled)
2306 2311 print(data_filled.shape)
2307 2312 print(angles_filled.shape)
2308 2313
2309 2314 return data_filled,angles_filled
2310 2315
2311 2316 def plot(self):
2312 2317 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
2313 2318 data = self.data[-1]
2314 2319 r = self.data.yrange
2315 2320 delta_height = r[1]-r[0]
2316 2321 r_mask = numpy.where(r>=0)[0]
2317 2322 self.r_mask =r_mask
2318 2323 ##print("delta_height",delta_height)
2319 2324 #print("r_mask",r_mask,len(r_mask))
2320 2325 r = numpy.arange(len(r_mask))*delta_height
2321 2326 self.y = 2*r
2322 2327 res = 1
2323 2328 ###print("data['weather'].shape[0]",data['weather'].shape[0])
2324 2329 ang_max = self.ang_max
2325 2330 ang_min = self.ang_min
2326 2331 var_ang =ang_max - ang_min
2327 2332 step = (int(var_ang)/(res*data['weather'].shape[0]))
2328 2333 ###print("step",step)
2329 2334 #--------------------------------------------------------
2330 2335 ##print('weather',data['weather'].shape)
2331 2336 ##print('ele',data['ele'].shape)
2332 2337
2333 2338 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
2334 2339 ###self.res_azi = numpy.mean(data['azi'])
2335 2340 ###print("self.res_ele",self.res_ele)
2336 2341
2337 2342 plt.clf()
2338 2343 subplots = [121, 122]
2339 2344 #if self.ini==0:
2340 2345 #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
2341 2346 #print("SHAPE",self.data_ele_tmp.shape)
2342 2347
2343 2348 for i,ax in enumerate(self.axes):
2344 2349 res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min)
2345 2350 self.res_azi = numpy.mean(data['azi'])
2346 2351
2347 2352 if ax.firsttime:
2348 2353 #plt.clf()
2349 2354 print("Frist Plot")
2350 2355 print(data['weather'][i][:,r_mask].shape)
2351 2356 print(data['ele'].shape)
2352 2357 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2353 2358 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2354 2359 gh = cgax.get_grid_helper()
2355 2360 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2356 2361 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2357 2362 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2358 2363
2359 2364
2360 2365 #fig=self.figures[0]
2361 2366 else:
2362 2367 #plt.clf()
2363 2368 print("ELSE PLOT")
2364 2369 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2365 2370 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2366 2371 gh = cgax.get_grid_helper()
2367 2372 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2368 2373 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2369 2374 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2370 2375
2371 2376 caax = cgax.parasites[0]
2372 2377 paax = cgax.parasites[1]
2373 2378 cbar = plt.gcf().colorbar(pm, pad=0.075)
2374 2379 caax.set_xlabel('x_range [km]')
2375 2380 caax.set_ylabel('y_range [km]')
2376 2381 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
2377 2382 print("***************************self.ini****************************",self.ini)
2378 2383 self.ini= self.ini+1
@@ -1,4708 +1,4718
1 1
2 2 import os
3 3 import time
4 4 import math
5 5
6 6 import re
7 7 import datetime
8 8 import copy
9 9 import sys
10 10 import importlib
11 11 import itertools
12 12
13 13 from multiprocessing import Pool, TimeoutError
14 14 from multiprocessing.pool import ThreadPool
15 15 import numpy
16 16 import glob
17 17 import scipy
18 18 import h5py
19 19 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
20 20 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
21 21 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
22 22 from scipy import asarray as ar,exp
23 23 from scipy.optimize import curve_fit
24 24 from schainpy.utils import log
25 25 import schainpy.admin
26 26 import warnings
27 27 from scipy import optimize, interpolate, signal, stats, ndimage
28 28 from scipy.optimize.optimize import OptimizeWarning
29 29 warnings.filterwarnings('ignore')
30 30
31 31
32 32 SPEED_OF_LIGHT = 299792458
33 33
34 34 '''solving pickling issue'''
35 35
36 36 def _pickle_method(method):
37 37 func_name = method.__func__.__name__
38 38 obj = method.__self__
39 39 cls = method.__self__.__class__
40 40 return _unpickle_method, (func_name, obj, cls)
41 41
42 42 def _unpickle_method(func_name, obj, cls):
43 43 for cls in cls.mro():
44 44 try:
45 45 func = cls.__dict__[func_name]
46 46 except KeyError:
47 47 pass
48 48 else:
49 49 break
50 50 return func.__get__(obj, cls)
51 51
52 52 def isNumber(str):
53 53 try:
54 54 float(str)
55 55 return True
56 56 except:
57 57 return False
58 58
59 59 class ParametersProc(ProcessingUnit):
60 60
61 61 METHODS = {}
62 62 nSeconds = None
63 63
64 64 def __init__(self):
65 65 ProcessingUnit.__init__(self)
66 66
67 67 # self.objectDict = {}
68 68 self.buffer = None
69 69 self.firstdatatime = None
70 70 self.profIndex = 0
71 71 self.dataOut = Parameters()
72 72 self.setupReq = False #Agregar a todas las unidades de proc
73 73
74 74 def __updateObjFromInput(self):
75 75
76 76 self.dataOut.inputUnit = self.dataIn.type
77 77
78 78 self.dataOut.timeZone = self.dataIn.timeZone
79 79 self.dataOut.dstFlag = self.dataIn.dstFlag
80 80 self.dataOut.errorCount = self.dataIn.errorCount
81 81 self.dataOut.useLocalTime = self.dataIn.useLocalTime
82 82
83 83 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
84 84 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
85 85 self.dataOut.channelList = self.dataIn.channelList
86 86 self.dataOut.heightList = self.dataIn.heightList
87 87 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
88 88 # self.dataOut.nHeights = self.dataIn.nHeights
89 89 # self.dataOut.nChannels = self.dataIn.nChannels
90 90 # self.dataOut.nBaud = self.dataIn.nBaud
91 91 # self.dataOut.nCode = self.dataIn.nCode
92 92 # self.dataOut.code = self.dataIn.code
93 93 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
94 94 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
95 95 # self.dataOut.utctime = self.firstdatatime
96 96 self.dataOut.utctime = self.dataIn.utctime
97 97 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
98 98 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
99 99 self.dataOut.nCohInt = self.dataIn.nCohInt
100 100 # self.dataOut.nIncohInt = 1
101 101 # self.dataOut.ippSeconds = self.dataIn.ippSeconds
102 102 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
103 103 self.dataOut.timeInterval1 = self.dataIn.timeInterval
104 104 self.dataOut.heightList = self.dataIn.heightList
105 105 self.dataOut.frequency = self.dataIn.frequency
106 106 # self.dataOut.noise = self.dataIn.noise
107 107
108 108 def run(self):
109 109
110 110
111 111 #print("HOLA MUNDO SOY YO")
112 112 #---------------------- Voltage Data ---------------------------
113 113
114 114 if self.dataIn.type == "Voltage":
115 115
116 116 self.__updateObjFromInput()
117 117 self.dataOut.data_pre = self.dataIn.data.copy()
118 118 self.dataOut.flagNoData = False
119 119 self.dataOut.utctimeInit = self.dataIn.utctime
120 120 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
121 121
122 122 if hasattr(self.dataIn, 'flagDataAsBlock'):
123 123 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
124 124
125 125 if hasattr(self.dataIn, 'profileIndex'):
126 126 self.dataOut.profileIndex = self.dataIn.profileIndex
127 127
128 128 if hasattr(self.dataIn, 'dataPP_POW'):
129 129 self.dataOut.dataPP_POW = self.dataIn.dataPP_POW
130 130
131 131 if hasattr(self.dataIn, 'dataPP_POWER'):
132 132 self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER
133 133
134 134 if hasattr(self.dataIn, 'dataPP_DOP'):
135 135 self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP
136 136
137 137 if hasattr(self.dataIn, 'dataPP_SNR'):
138 138 self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR
139 139
140 140 if hasattr(self.dataIn, 'dataPP_WIDTH'):
141 141 self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH
142 142 return
143 143
144 144 #---------------------- Spectra Data ---------------------------
145 145
146 146 if self.dataIn.type == "Spectra":
147 147 #print("que paso en spectra")
148 148 self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc]
149 149 self.dataOut.data_spc = self.dataIn.data_spc
150 150 self.dataOut.data_cspc = self.dataIn.data_cspc
151 151 self.dataOut.nProfiles = self.dataIn.nProfiles
152 152 self.dataOut.nIncohInt = self.dataIn.nIncohInt
153 153 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
154 154 self.dataOut.ippFactor = self.dataIn.ippFactor
155 155 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
156 156 self.dataOut.spc_noise = self.dataIn.getNoise()
157 157 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
158 158 # self.dataOut.normFactor = self.dataIn.normFactor
159 159 self.dataOut.pairsList = self.dataIn.pairsList
160 160 self.dataOut.groupList = self.dataIn.pairsList
161 161 self.dataOut.flagNoData = False
162 162
163 163 if hasattr(self.dataIn, 'flagDataAsBlock'):
164 164 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
165 165
166 166 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
167 167 self.dataOut.ChanDist = self.dataIn.ChanDist
168 168 else: self.dataOut.ChanDist = None
169 169
170 170 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
171 171 # self.dataOut.VelRange = self.dataIn.VelRange
172 172 #else: self.dataOut.VelRange = None
173 173
174 174 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
175 175 self.dataOut.RadarConst = self.dataIn.RadarConst
176 176
177 177 if hasattr(self.dataIn, 'NPW'): #NPW
178 178 self.dataOut.NPW = self.dataIn.NPW
179 179
180 180 if hasattr(self.dataIn, 'COFA'): #COFA
181 181 self.dataOut.COFA = self.dataIn.COFA
182 182
183 183
184 184
185 185 #---------------------- Correlation Data ---------------------------
186 186
187 187 if self.dataIn.type == "Correlation":
188 188 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
189 189
190 190 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
191 191 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
192 192 self.dataOut.groupList = (acf_pairs, ccf_pairs)
193 193
194 194 self.dataOut.abscissaList = self.dataIn.lagRange
195 195 self.dataOut.noise = self.dataIn.noise
196 196 self.dataOut.data_snr = self.dataIn.SNR
197 197 self.dataOut.flagNoData = False
198 198 self.dataOut.nAvg = self.dataIn.nAvg
199 199
200 200 #---------------------- Parameters Data ---------------------------
201 201
202 202 if self.dataIn.type == "Parameters":
203 203 self.dataOut.copy(self.dataIn)
204 204 self.dataOut.flagNoData = False
205 205 #print("yo si entre")
206 206
207 207 return True
208 208
209 209 self.__updateObjFromInput()
210 210 #print("yo si entre2")
211 211
212 212 self.dataOut.utctimeInit = self.dataIn.utctime
213 213 self.dataOut.paramInterval = self.dataIn.timeInterval
214 214 #print("soy spectra ",self.dataOut.utctimeInit)
215 215 return
216 216
217 217
218 218 def target(tups):
219 219
220 220 obj, args = tups
221 221
222 222 return obj.FitGau(args)
223 223
224 224 class RemoveWideGC(Operation):
225 225 ''' This class remove the wide clutter and replace it with a simple interpolation points
226 226 This mainly applies to CLAIRE radar
227 227
228 228 ClutterWidth : Width to look for the clutter peak
229 229
230 230 Input:
231 231
232 232 self.dataOut.data_pre : SPC and CSPC
233 233 self.dataOut.spc_range : To select wind and rainfall velocities
234 234
235 235 Affected:
236 236
237 237 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
238 238
239 239 Written by D. ScipiΓ³n 25.02.2021
240 240 '''
241 241 def __init__(self):
242 242 Operation.__init__(self)
243 243 self.i = 0
244 244 self.ich = 0
245 245 self.ir = 0
246 246
247 247 def run(self, dataOut, ClutterWidth=2.5):
248 248 # print ('Entering RemoveWideGC ... ')
249 249
250 250 self.spc = dataOut.data_pre[0].copy()
251 251 self.spc_out = dataOut.data_pre[0].copy()
252 252 self.Num_Chn = self.spc.shape[0]
253 253 self.Num_Hei = self.spc.shape[2]
254 254 VelRange = dataOut.spc_range[2][:-1]
255 255 dv = VelRange[1]-VelRange[0]
256 256
257 257 # Find the velocities that corresponds to zero
258 258 gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth))
259 259
260 260 # Removing novalid data from the spectra
261 261 for ich in range(self.Num_Chn) :
262 262 for ir in range(self.Num_Hei) :
263 263 # Estimate the noise at each range
264 264 HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt)
265 265
266 266 # Removing the noise floor at each range
267 267 novalid = numpy.where(self.spc[ich,:,ir] < HSn)
268 268 self.spc[ich,novalid,ir] = HSn
269 269
270 270 junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn)
271 271 j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0))
272 272 j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0))
273 273 if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) :
274 274 continue
275 275 junk3 = numpy.squeeze(numpy.diff(j1index))
276 276 junk4 = numpy.squeeze(numpy.diff(j2index))
277 277
278 278 valleyindex = j2index[numpy.where(junk4>1)]
279 279 peakindex = j1index[numpy.where(junk3>1)]
280 280
281 281 isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv))
282 282 if numpy.size(isvalid) == 0 :
283 283 continue
284 284 if numpy.size(isvalid) >1 :
285 285 vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir])
286 286 isvalid = isvalid[vindex]
287 287
288 288 # clutter peak
289 289 gcpeak = peakindex[isvalid]
290 290 vl = numpy.where(valleyindex < gcpeak)
291 291 if numpy.size(vl) == 0:
292 292 continue
293 293 gcvl = valleyindex[vl[0][-1]]
294 294 vr = numpy.where(valleyindex > gcpeak)
295 295 if numpy.size(vr) == 0:
296 296 continue
297 297 gcvr = valleyindex[vr[0][0]]
298 298
299 299 # Removing the clutter
300 300 interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]])
301 301 gcindex = gc_values[gcvl+1:gcvr-1]
302 302 self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir])
303 303
304 304 dataOut.data_pre[0] = self.spc_out
305 305 #print ('Leaving RemoveWideGC ... ')
306 306 return dataOut
307 307
308 308 class SpectralFilters(Operation):
309 309 ''' This class allows to replace the novalid values with noise for each channel
310 310 This applies to CLAIRE RADAR
311 311
312 312 PositiveLimit : RightLimit of novalid data
313 313 NegativeLimit : LeftLimit of novalid data
314 314
315 315 Input:
316 316
317 317 self.dataOut.data_pre : SPC and CSPC
318 318 self.dataOut.spc_range : To select wind and rainfall velocities
319 319
320 320 Affected:
321 321
322 322 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
323 323
324 324 Written by D. ScipiΓ³n 29.01.2021
325 325 '''
326 326 def __init__(self):
327 327 Operation.__init__(self)
328 328 self.i = 0
329 329
330 330 def run(self, dataOut, ):
331 331
332 332 self.spc = dataOut.data_pre[0].copy()
333 333 self.Num_Chn = self.spc.shape[0]
334 334 VelRange = dataOut.spc_range[2]
335 335
336 336 # novalid corresponds to data within the Negative and PositiveLimit
337 337
338 338
339 339 # Removing novalid data from the spectra
340 340 for i in range(self.Num_Chn):
341 341 self.spc[i,novalid,:] = dataOut.noise[i]
342 342 dataOut.data_pre[0] = self.spc
343 343 return dataOut
344 344
345 345 class GaussianFit(Operation):
346 346
347 347 '''
348 348 Function that fit of one and two generalized gaussians (gg) based
349 349 on the PSD shape across an "power band" identified from a cumsum of
350 350 the measured spectrum - noise.
351 351
352 352 Input:
353 353 self.dataOut.data_pre : SelfSpectra
354 354
355 355 Output:
356 356 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
357 357
358 358 '''
359 359 def __init__(self):
360 360 Operation.__init__(self)
361 361 self.i=0
362 362
363 363
364 364 # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
365 365 def run(self, dataOut, SNRdBlimit=-9, method='generalized'):
366 366 """This routine will find a couple of generalized Gaussians to a power spectrum
367 367 methods: generalized, squared
368 368 input: spc
369 369 output:
370 370 noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1
371 371 """
372 372 print ('Entering ',method,' double Gaussian fit')
373 373 self.spc = dataOut.data_pre[0].copy()
374 374 self.Num_Hei = self.spc.shape[2]
375 375 self.Num_Bin = self.spc.shape[1]
376 376 self.Num_Chn = self.spc.shape[0]
377 377
378 378 start_time = time.time()
379 379
380 380 pool = Pool(processes=self.Num_Chn)
381 381 args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)]
382 382 objs = [self for __ in range(self.Num_Chn)]
383 383 attrs = list(zip(objs, args))
384 384 DGauFitParam = pool.map(target, attrs)
385 385 # Parameters:
386 386 # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power
387 387 dataOut.DGauFitParams = numpy.asarray(DGauFitParam)
388 388
389 389 # Double Gaussian Curves
390 390 gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
391 391 gau0[:] = numpy.NaN
392 392 gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
393 393 gau1[:] = numpy.NaN
394 394 x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1)))
395 395 for iCh in range(self.Num_Chn):
396 396 N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin))
397 397 N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin))
398 398 A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin))
399 399 A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin))
400 400 v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin))
401 401 v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin))
402 402 s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin))
403 403 s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin))
404 404 if method == 'genealized':
405 405 p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin))
406 406 p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin))
407 407 elif method == 'squared':
408 408 p0 = 2.
409 409 p1 = 2.
410 410 gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0
411 411 gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1
412 412 dataOut.GaussFit0 = gau0
413 413 dataOut.GaussFit1 = gau1
414 414
415 415 print('Leaving ',method ,' double Gaussian fit')
416 416 return dataOut
417 417
418 418 def FitGau(self, X):
419 419 # print('Entering FitGau')
420 420 # Assigning the variables
421 421 Vrange, ch, wnoise, num_intg, SNRlimit = X
422 422 # Noise Limits
423 423 noisebl = wnoise * 0.9
424 424 noisebh = wnoise * 1.1
425 425 # Radar Velocity
426 426 Va = max(Vrange)
427 427 deltav = Vrange[1] - Vrange[0]
428 428 x = numpy.arange(self.Num_Bin)
429 429
430 430 # print ('stop 0')
431 431
432 432 # 5 parameters, 2 Gaussians
433 433 DGauFitParam = numpy.zeros([5, self.Num_Hei,2])
434 434 DGauFitParam[:] = numpy.NaN
435 435
436 436 # SPCparam = []
437 437 # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei])
438 438 # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei])
439 439 # SPC_ch1[:] = 0 #numpy.NaN
440 440 # SPC_ch2[:] = 0 #numpy.NaN
441 441 # print ('stop 1')
442 442 for ht in range(self.Num_Hei):
443 443 # print (ht)
444 444 # print ('stop 2')
445 445 # Spectra at each range
446 446 spc = numpy.asarray(self.spc)[ch,:,ht]
447 447 snr = ( spc.mean() - wnoise ) / wnoise
448 448 snrdB = 10.*numpy.log10(snr)
449 449
450 450 #print ('stop 3')
451 451 if snrdB < SNRlimit :
452 452 # snr = numpy.NaN
453 453 # SPC_ch1[:,ht] = 0#numpy.NaN
454 454 # SPC_ch1[:,ht] = 0#numpy.NaN
455 455 # SPCparam = (SPC_ch1,SPC_ch2)
456 456 # print ('SNR less than SNRth')
457 457 continue
458 458 # wnoise = hildebrand_sekhon(spc,num_intg)
459 459 # print ('stop 2.01')
460 460 #############################################
461 461 # normalizing spc and noise
462 462 # This part differs from gg1
463 463 # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021
464 464 #spc = spc / spc_norm_max
465 465 # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
466 466 #############################################
467 467
468 468 # print ('stop 2.1')
469 469 fatspectra=1.0
470 470 # noise per channel.... we might want to use the noise at each range
471 471
472 472 # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
473 473 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
474 474 #if wnoise>1.1*pnoise: # to be tested later
475 475 # wnoise=pnoise
476 476 # noisebl = wnoise*0.9
477 477 # noisebh = wnoise*1.1
478 478 spc = spc - wnoise # signal
479 479
480 480 # print ('stop 2.2')
481 481 minx = numpy.argmin(spc)
482 482 #spcs=spc.copy()
483 483 spcs = numpy.roll(spc,-minx)
484 484 cum = numpy.cumsum(spcs)
485 485 # tot_noise = wnoise * self.Num_Bin #64;
486 486
487 487 # print ('stop 2.3')
488 488 # snr = sum(spcs) / tot_noise
489 489 # snrdB = 10.*numpy.log10(snr)
490 490 #print ('stop 3')
491 491 # if snrdB < SNRlimit :
492 492 # snr = numpy.NaN
493 493 # SPC_ch1[:,ht] = 0#numpy.NaN
494 494 # SPC_ch1[:,ht] = 0#numpy.NaN
495 495 # SPCparam = (SPC_ch1,SPC_ch2)
496 496 # print ('SNR less than SNRth')
497 497 # continue
498 498
499 499
500 500 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
501 501 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
502 502 # print ('stop 4')
503 503 cummax = max(cum)
504 504 epsi = 0.08 * fatspectra # cumsum to narrow down the energy region
505 505 cumlo = cummax * epsi
506 506 cumhi = cummax * (1-epsi)
507 507 powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
508 508
509 509 # print ('stop 5')
510 510 if len(powerindex) < 1:# case for powerindex 0
511 511 # print ('powerindex < 1')
512 512 continue
513 513 powerlo = powerindex[0]
514 514 powerhi = powerindex[-1]
515 515 powerwidth = powerhi-powerlo
516 516 if powerwidth <= 1:
517 517 # print('powerwidth <= 1')
518 518 continue
519 519
520 520 # print ('stop 6')
521 521 firstpeak = powerlo + powerwidth/10.# first gaussian energy location
522 522 secondpeak = powerhi - powerwidth/10. #second gaussian energy location
523 523 midpeak = (firstpeak + secondpeak)/2.
524 524 firstamp = spcs[int(firstpeak)]
525 525 secondamp = spcs[int(secondpeak)]
526 526 midamp = spcs[int(midpeak)]
527 527
528 528 y_data = spc + wnoise
529 529
530 530 ''' single Gaussian '''
531 531 shift0 = numpy.mod(midpeak+minx, self.Num_Bin )
532 532 width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4
533 533 power0 = 2.
534 534 amplitude0 = midamp
535 535 state0 = [shift0,width0,amplitude0,power0,wnoise]
536 536 bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
537 537 lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True)
538 538 # print ('stop 7.1')
539 539 # print (bnds)
540 540
541 541 chiSq1=lsq1[1]
542 542
543 543 # print ('stop 8')
544 544 if fatspectra<1.0 and powerwidth<4:
545 545 choice=0
546 546 Amplitude0=lsq1[0][2]
547 547 shift0=lsq1[0][0]
548 548 width0=lsq1[0][1]
549 549 p0=lsq1[0][3]
550 550 Amplitude1=0.
551 551 shift1=0.
552 552 width1=0.
553 553 p1=0.
554 554 noise=lsq1[0][4]
555 555 #return (numpy.array([shift0,width0,Amplitude0,p0]),
556 556 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
557 557
558 558 # print ('stop 9')
559 559 ''' two Gaussians '''
560 560 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
561 561 shift0 = numpy.mod(firstpeak+minx, self.Num_Bin )
562 562 shift1 = numpy.mod(secondpeak+minx, self.Num_Bin )
563 563 width0 = powerwidth/6.
564 564 width1 = width0
565 565 power0 = 2.
566 566 power1 = power0
567 567 amplitude0 = firstamp
568 568 amplitude1 = secondamp
569 569 state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
570 570 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
571 571 bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
572 572 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
573 573
574 574 # print ('stop 10')
575 575 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
576 576
577 577 # print ('stop 11')
578 578 chiSq2 = lsq2[1]
579 579
580 580 # print ('stop 12')
581 581
582 582 oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
583 583
584 584 # print ('stop 13')
585 585 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
586 586 if oneG:
587 587 choice = 0
588 588 else:
589 589 w1 = lsq2[0][1]; w2 = lsq2[0][5]
590 590 a1 = lsq2[0][2]; a2 = lsq2[0][6]
591 591 p1 = lsq2[0][3]; p2 = lsq2[0][7]
592 592 s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1
593 593 s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2
594 594 gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling
595 595
596 596 if gp1>gp2:
597 597 if a1>0.7*a2:
598 598 choice = 1
599 599 else:
600 600 choice = 2
601 601 elif gp2>gp1:
602 602 if a2>0.7*a1:
603 603 choice = 2
604 604 else:
605 605 choice = 1
606 606 else:
607 607 choice = numpy.argmax([a1,a2])+1
608 608 #else:
609 609 #choice=argmin([std2a,std2b])+1
610 610
611 611 else: # with low SNR go to the most energetic peak
612 612 choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
613 613
614 614 # print ('stop 14')
615 615 shift0 = lsq2[0][0]
616 616 vel0 = Vrange[0] + shift0 * deltav
617 617 shift1 = lsq2[0][4]
618 618 # vel1=Vrange[0] + shift1 * deltav
619 619
620 620 # max_vel = 1.0
621 621 # Va = max(Vrange)
622 622 # deltav = Vrange[1]-Vrange[0]
623 623 # print ('stop 15')
624 624 #first peak will be 0, second peak will be 1
625 625 # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021
626 626 if vel0 > -Va and vel0 < Va : #first peak is in the correct range
627 627 shift0 = lsq2[0][0]
628 628 width0 = lsq2[0][1]
629 629 Amplitude0 = lsq2[0][2]
630 630 p0 = lsq2[0][3]
631 631
632 632 shift1 = lsq2[0][4]
633 633 width1 = lsq2[0][5]
634 634 Amplitude1 = lsq2[0][6]
635 635 p1 = lsq2[0][7]
636 636 noise = lsq2[0][8]
637 637 else:
638 638 shift1 = lsq2[0][0]
639 639 width1 = lsq2[0][1]
640 640 Amplitude1 = lsq2[0][2]
641 641 p1 = lsq2[0][3]
642 642
643 643 shift0 = lsq2[0][4]
644 644 width0 = lsq2[0][5]
645 645 Amplitude0 = lsq2[0][6]
646 646 p0 = lsq2[0][7]
647 647 noise = lsq2[0][8]
648 648
649 649 if Amplitude0<0.05: # in case the peak is noise
650 650 shift0,width0,Amplitude0,p0 = 4*[numpy.NaN]
651 651 if Amplitude1<0.05:
652 652 shift1,width1,Amplitude1,p1 = 4*[numpy.NaN]
653 653
654 654 # print ('stop 16 ')
655 655 # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0)
656 656 # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1)
657 657 # SPCparam = (SPC_ch1,SPC_ch2)
658 658
659 659 DGauFitParam[0,ht,0] = noise
660 660 DGauFitParam[0,ht,1] = noise
661 661 DGauFitParam[1,ht,0] = Amplitude0
662 662 DGauFitParam[1,ht,1] = Amplitude1
663 663 DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav
664 664 DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav
665 665 DGauFitParam[3,ht,0] = width0 * deltav
666 666 DGauFitParam[3,ht,1] = width1 * deltav
667 667 DGauFitParam[4,ht,0] = p0
668 668 DGauFitParam[4,ht,1] = p1
669 669
670 670 # print (DGauFitParam.shape)
671 671 # print ('Leaving FitGau')
672 672 return DGauFitParam
673 673 # return SPCparam
674 674 # return GauSPC
675 675
676 676 def y_model1(self,x,state):
677 677 shift0, width0, amplitude0, power0, noise = state
678 678 model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0)
679 679 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
680 680 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
681 681 return model0 + model0u + model0d + noise
682 682
683 683 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
684 684 shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state
685 685 model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
686 686 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
687 687 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
688 688
689 689 model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1)
690 690 model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1)
691 691 model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1)
692 692 return model0 + model0u + model0d + model1 + model1u + model1d + noise
693 693
694 694 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
695 695
696 696 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
697 697
698 698 def misfit2(self,state,y_data,x,num_intg):
699 699 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
700 700
701 701
702 702
703 703 class PrecipitationProc(Operation):
704 704
705 705 '''
706 706 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
707 707
708 708 Input:
709 709 self.dataOut.data_pre : SelfSpectra
710 710
711 711 Output:
712 712
713 713 self.dataOut.data_output : Reflectivity factor, rainfall Rate
714 714
715 715
716 716 Parameters affected:
717 717 '''
718 718
719 719 def __init__(self):
720 720 Operation.__init__(self)
721 721 self.i=0
722 722
723 723 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
724 724 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30):
725 725
726 726 # print ('Entering PrecepitationProc ... ')
727 727
728 728 if radar == "MIRA35C" :
729 729
730 730 self.spc = dataOut.data_pre[0].copy()
731 731 self.Num_Hei = self.spc.shape[2]
732 732 self.Num_Bin = self.spc.shape[1]
733 733 self.Num_Chn = self.spc.shape[0]
734 734 Ze = self.dBZeMODE2(dataOut)
735 735
736 736 else:
737 737
738 738 self.spc = dataOut.data_pre[0].copy()
739 739
740 740 #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX
741 741 self.spc[:,:,0:7]= numpy.NaN
742 742
743 743 self.Num_Hei = self.spc.shape[2]
744 744 self.Num_Bin = self.spc.shape[1]
745 745 self.Num_Chn = self.spc.shape[0]
746 746
747 747 VelRange = dataOut.spc_range[2]
748 748
749 749 ''' Se obtiene la constante del RADAR '''
750 750
751 751 self.Pt = Pt
752 752 self.Gt = Gt
753 753 self.Gr = Gr
754 754 self.Lambda = Lambda
755 755 self.aL = aL
756 756 self.tauW = tauW
757 757 self.ThetaT = ThetaT
758 758 self.ThetaR = ThetaR
759 759 self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB
760 760 self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB
761 761 self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB
762 762
763 763 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
764 764 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
765 765 RadarConstant = 10e-26 * Numerator / Denominator #
766 766 ExpConstant = 10**(40/10) #Constante Experimental
767 767
768 768 SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
769 769 for i in range(self.Num_Chn):
770 770 SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i]
771 771 SignalPower[numpy.where(SignalPower < 0)] = 1e-20
772 772
773 773 SPCmean = numpy.mean(SignalPower, 0)
774 774 Pr = SPCmean[:,:]/dataOut.normFactor
775 775
776 776 # Declaring auxiliary variables
777 777 Range = dataOut.heightList*1000. #Range in m
778 778 # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei]
779 779 rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin))
780 780 zMtrx = rMtrx+Altitude
781 781 # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei]
782 782 VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1)))
783 783
784 784 # height dependence to air density Foote and Du Toit (1969)
785 785 delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2
786 786 VMtrx = VelMtrx / delv_z #Normalized velocity
787 787 VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN
788 788 # Diameter is related to the fall speed of falling drops
789 789 D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm]
790 790 # Only valid for D>= 0.16 mm
791 791 D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN
792 792
793 793 #Calculate Radar Reflectivity ETAn
794 794 ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA)
795 795 ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z
796 796 # Radar Cross Section
797 797 sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4
798 798 # Drop Size Distribution
799 799 DSD = ETAn / sigmaD
800 800 # Equivalente Reflectivy
801 801 Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0)
802 802 Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3]
803 803 # RainFall Rate
804 804 RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr
805 805
806 806 # Censoring the data
807 807 # Removing data with SNRth < 0dB se debe considerar el SNR por canal
808 808 SNRth = 10**(SNRdBlimit/10) #-30dB
809 809 novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better
810 810 W = numpy.nanmean(dataOut.data_dop,0)
811 811 W[novalid] = numpy.NaN
812 812 Ze_org[novalid] = numpy.NaN
813 813 RR[novalid] = numpy.NaN
814 814
815 815 dataOut.data_output = RR[8]
816 816 dataOut.data_param = numpy.ones([3,self.Num_Hei])
817 817 dataOut.channelList = [0,1,2]
818 818
819 819 dataOut.data_param[0]=10*numpy.log10(Ze_org)
820 820 dataOut.data_param[1]=-W
821 821 dataOut.data_param[2]=RR
822 822
823 823 # print ('Leaving PrecepitationProc ... ')
824 824 return dataOut
825 825
826 826 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
827 827
828 828 NPW = dataOut.NPW
829 829 COFA = dataOut.COFA
830 830
831 831 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
832 832 RadarConst = dataOut.RadarConst
833 833 #frequency = 34.85*10**9
834 834
835 835 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
836 836 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
837 837
838 838 ETA = numpy.sum(SNR,1)
839 839
840 840 ETA = numpy.where(ETA != 0. , ETA, numpy.NaN)
841 841
842 842 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
843 843
844 844 for r in range(self.Num_Hei):
845 845
846 846 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
847 847 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
848 848
849 849 return Ze
850 850
851 851 # def GetRadarConstant(self):
852 852 #
853 853 # """
854 854 # Constants:
855 855 #
856 856 # Pt: Transmission Power dB 5kW 5000
857 857 # Gt: Transmission Gain dB 24.7 dB 295.1209
858 858 # Gr: Reception Gain dB 18.5 dB 70.7945
859 859 # Lambda: Wavelenght m 0.6741 m 0.6741
860 860 # aL: Attenuation loses dB 4dB 2.5118
861 861 # tauW: Width of transmission pulse s 4us 4e-6
862 862 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
863 863 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
864 864 #
865 865 # """
866 866 #
867 867 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
868 868 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
869 869 # RadarConstant = Numerator / Denominator
870 870 #
871 871 # return RadarConstant
872 872
873 873
874 874
875 875 class FullSpectralAnalysis(Operation):
876 876
877 877 """
878 878 Function that implements Full Spectral Analysis technique.
879 879
880 880 Input:
881 881 self.dataOut.data_pre : SelfSpectra and CrossSpectra data
882 882 self.dataOut.groupList : Pairlist of channels
883 883 self.dataOut.ChanDist : Physical distance between receivers
884 884
885 885
886 886 Output:
887 887
888 888 self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind
889 889
890 890
891 891 Parameters affected: Winds, height range, SNR
892 892
893 893 """
894 894 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30,
895 895 minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None):
896 896
897 897 spc = dataOut.data_pre[0].copy()
898 898 cspc = dataOut.data_pre[1]
899 899 nHeights = spc.shape[2]
900 900
901 901 # first_height = 0.75 #km (ref: data header 20170822)
902 902 # resolution_height = 0.075 #km
903 903 '''
904 904 finding height range. check this when radar parameters are changed!
905 905 '''
906 906 if maxheight is not None:
907 907 # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical
908 908 range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better
909 909 else:
910 910 range_max = nHeights
911 911 if minheight is not None:
912 912 # range_min = int((minheight - first_height) / resolution_height) # theoretical
913 913 range_min = int(13.26 * minheight - 5) # empirical, works better
914 914 if range_min < 0:
915 915 range_min = 0
916 916 else:
917 917 range_min = 0
918 918
919 919 pairsList = dataOut.groupList
920 920 if dataOut.ChanDist is not None :
921 921 ChanDist = dataOut.ChanDist
922 922 else:
923 923 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
924 924
925 925 # 4 variables: zonal, meridional, vertical, and average SNR
926 926 data_param = numpy.zeros([4,nHeights]) * numpy.NaN
927 927 velocityX = numpy.zeros([nHeights]) * numpy.NaN
928 928 velocityY = numpy.zeros([nHeights]) * numpy.NaN
929 929 velocityZ = numpy.zeros([nHeights]) * numpy.NaN
930 930
931 931 dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0))
932 932
933 933 '''***********************************************WIND ESTIMATION**************************************'''
934 934 for Height in range(nHeights):
935 935
936 936 if Height >= range_min and Height < range_max:
937 937 # error_code will be useful in future analysis
938 938 [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList,
939 939 ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency)
940 940
941 941 if abs(Vzon) < 100. and abs(Vmer) < 100.:
942 942 velocityX[Height] = Vzon
943 943 velocityY[Height] = -Vmer
944 944 velocityZ[Height] = Vver
945 945
946 946 # Censoring data with SNR threshold
947 947 dbSNR [dbSNR < SNRdBlimit] = numpy.NaN
948 948
949 949 data_param[0] = velocityX
950 950 data_param[1] = velocityY
951 951 data_param[2] = velocityZ
952 952 data_param[3] = dbSNR
953 953 dataOut.data_param = data_param
954 954 return dataOut
955 955
956 956 def moving_average(self,x, N=2):
957 957 """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """
958 958 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
959 959
960 960 def gaus(self,xSamples,Amp,Mu,Sigma):
961 961 return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2)
962 962
963 963 def Moments(self, ySamples, xSamples):
964 964 Power = numpy.nanmean(ySamples) # Power, 0th Moment
965 965 yNorm = ySamples / numpy.nansum(ySamples)
966 966 RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment
967 967 Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment
968 968 StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral
969 969 return numpy.array([Power,RadVel,StdDev])
970 970
971 971 def StopWindEstimation(self, error_code):
972 972 Vzon = numpy.NaN
973 973 Vmer = numpy.NaN
974 974 Vver = numpy.NaN
975 975 return Vzon, Vmer, Vver, error_code
976 976
977 977 def AntiAliasing(self, interval, maxstep):
978 978 """
979 979 function to prevent errors from aliased values when computing phaseslope
980 980 """
981 981 antialiased = numpy.zeros(len(interval))
982 982 copyinterval = interval.copy()
983 983
984 984 antialiased[0] = copyinterval[0]
985 985
986 986 for i in range(1,len(antialiased)):
987 987 step = interval[i] - interval[i-1]
988 988 if step > maxstep:
989 989 copyinterval -= 2*numpy.pi
990 990 antialiased[i] = copyinterval[i]
991 991 elif step < maxstep*(-1):
992 992 copyinterval += 2*numpy.pi
993 993 antialiased[i] = copyinterval[i]
994 994 else:
995 995 antialiased[i] = copyinterval[i].copy()
996 996
997 997 return antialiased
998 998
999 999 def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq):
1000 1000 """
1001 1001 Function that Calculates Zonal, Meridional and Vertical wind velocities.
1002 1002 Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019.
1003 1003
1004 1004 Input:
1005 1005 spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively.
1006 1006 pairsList : Pairlist of channels
1007 1007 ChanDist : array of xi_ij and eta_ij
1008 1008 Height : height at which data is processed
1009 1009 noise : noise in [channels] format for specific height
1010 1010 Abbsisarange : range of the frequencies or velocities
1011 1011 dbSNR, SNRlimit : signal to noise ratio in db, lower limit
1012 1012
1013 1013 Output:
1014 1014 Vzon, Vmer, Vver : wind velocities
1015 1015 error_code : int that states where code is terminated
1016 1016
1017 1017 0 : no error detected
1018 1018 1 : Gaussian of mean spc exceeds widthlimit
1019 1019 2 : no Gaussian of mean spc found
1020 1020 3 : SNR to low or velocity to high -> prec. e.g.
1021 1021 4 : at least one Gaussian of cspc exceeds widthlimit
1022 1022 5 : zero out of three cspc Gaussian fits converged
1023 1023 6 : phase slope fit could not be found
1024 1024 7 : arrays used to fit phase have different length
1025 1025 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc)
1026 1026
1027 1027 """
1028 1028
1029 1029 error_code = 0
1030 1030
1031 1031 nChan = spc.shape[0]
1032 1032 nProf = spc.shape[1]
1033 1033 nPair = cspc.shape[0]
1034 1034
1035 1035 SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height
1036 1036 CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values
1037 1037 phase = numpy.zeros([nPair, nProf]) # phase between channels
1038 1038 PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise
1039 1039 PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise
1040 1040 xFrec = AbbsisaRange[0][:-1] # frequency range
1041 1041 xVel = AbbsisaRange[2][:-1] # velocity range
1042 1042 xSamples = xFrec # the frequency range is taken
1043 1043 delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x
1044 1044
1045 1045 # only consider velocities with in NegativeLimit and PositiveLimit
1046 1046 if (NegativeLimit is None):
1047 1047 NegativeLimit = numpy.min(xVel)
1048 1048 if (PositiveLimit is None):
1049 1049 PositiveLimit = numpy.max(xVel)
1050 1050 xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit))
1051 1051 xSamples_zoom = xSamples[xvalid]
1052 1052
1053 1053 '''Getting Eij and Nij'''
1054 1054 Xi01, Xi02, Xi12 = ChanDist[:,0]
1055 1055 Eta01, Eta02, Eta12 = ChanDist[:,1]
1056 1056
1057 1057 # spwd limit - updated by D. ScipiΓ³n 30.03.2021
1058 1058 widthlimit = 10
1059 1059 '''************************* SPC is normalized ********************************'''
1060 1060 spc_norm = spc.copy()
1061 1061 # For each channel
1062 1062 for i in range(nChan):
1063 1063 spc_sub = spc_norm[i,:] - noise[i] # only the signal power
1064 1064 SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x)
1065 1065
1066 1066 '''********************** FITTING MEAN SPC GAUSSIAN **********************'''
1067 1067
1068 1068 """ the gaussian of the mean: first subtract noise, then normalize. this is legal because
1069 1069 you only fit the curve and don't need the absolute value of height for calculation,
1070 1070 only for estimation of width. for normalization of cross spectra, you need initial,
1071 1071 unnormalized self-spectra With noise.
1072 1072
1073 1073 Technically, you don't even need to normalize the self-spectra, as you only need the
1074 1074 width of the peak. However, it was left this way. Note that the normalization has a flaw:
1075 1075 due to subtraction of the noise, some values are below zero. Raw "spc" values should be
1076 1076 >= 0, as it is the modulus squared of the signals (complex * it's conjugate)
1077 1077 """
1078 1078 # initial conditions
1079 1079 popt = [1e-10,0,1e-10]
1080 1080 # Spectra average
1081 1081 SPCMean = numpy.average(SPC_Samples,0)
1082 1082 # Moments in frequency
1083 1083 SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom)
1084 1084
1085 1085 # Gauss Fit SPC in frequency domain
1086 1086 if dbSNR > SNRlimit: # only if SNR > SNRth
1087 1087 try:
1088 1088 popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments)
1089 1089 if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION
1090 1090 return self.StopWindEstimation(error_code = 1)
1091 1091 FitGauss = self.gaus(xSamples_zoom,*popt)
1092 1092 except :#RuntimeError:
1093 1093 return self.StopWindEstimation(error_code = 2)
1094 1094 else:
1095 1095 return self.StopWindEstimation(error_code = 3)
1096 1096
1097 1097 '''***************************** CSPC Normalization *************************
1098 1098 The Spc spectra are used to normalize the crossspectra. Peaks from precipitation
1099 1099 influence the norm which is not desired. First, a range is identified where the
1100 1100 wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area
1101 1101 around it gets cut off and values replaced by mean determined by the boundary
1102 1102 data -> sum_noise (spc is not normalized here, thats why the noise is important)
1103 1103
1104 1104 The sums are then added and multiplied by range/datapoints, because you need
1105 1105 an integral and not a sum for normalization.
1106 1106
1107 1107 A norm is found according to Briggs 92.
1108 1108 '''
1109 1109 # for each pair
1110 1110 for i in range(nPair):
1111 1111 cspc_norm = cspc[i,:].copy()
1112 1112 chan_index0 = pairsList[i][0]
1113 1113 chan_index1 = pairsList[i][1]
1114 1114 CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x)
1115 1115 phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real)
1116 1116
1117 1117 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom),
1118 1118 self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom),
1119 1119 self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)])
1120 1120
1121 1121 popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10]
1122 1122 FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples))
1123 1123
1124 1124 '''*******************************FIT GAUSS CSPC************************************'''
1125 1125 try:
1126 1126 popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0])
1127 1127 if popt01[2] > widthlimit: # CONDITION
1128 1128 return self.StopWindEstimation(error_code = 4)
1129 1129 popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1])
1130 1130 if popt02[2] > widthlimit: # CONDITION
1131 1131 return self.StopWindEstimation(error_code = 4)
1132 1132 popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2])
1133 1133 if popt12[2] > widthlimit: # CONDITION
1134 1134 return self.StopWindEstimation(error_code = 4)
1135 1135
1136 1136 FitGauss01 = self.gaus(xSamples_zoom, *popt01)
1137 1137 FitGauss02 = self.gaus(xSamples_zoom, *popt02)
1138 1138 FitGauss12 = self.gaus(xSamples_zoom, *popt12)
1139 1139 except:
1140 1140 return self.StopWindEstimation(error_code = 5)
1141 1141
1142 1142
1143 1143 '''************* Getting Fij ***************'''
1144 1144 # x-axis point of the gaussian where the center is located from GaussFit of spectra
1145 1145 GaussCenter = popt[1]
1146 1146 ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()]
1147 1147 PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0]
1148 1148
1149 1149 # Point where e^-1 is located in the gaussian
1150 1150 PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1)
1151 1151 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss"
1152 1152 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1153 1153 Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter])
1154 1154
1155 1155 '''********** Taking frequency ranges from mean SPCs **********'''
1156 1156 GauWidth = popt[2] * 3/2 # Bandwidth of Gau01
1157 1157 Range = numpy.empty(2)
1158 1158 Range[0] = GaussCenter - GauWidth
1159 1159 Range[1] = GaussCenter + GauWidth
1160 1160 # Point in x-axis where the bandwidth is located (min:max)
1161 1161 ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()]
1162 1162 ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()]
1163 1163 PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0]
1164 1164 PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0]
1165 1165 Range = numpy.array([ PointRangeMin, PointRangeMax ])
1166 1166 FrecRange = xSamples_zoom[ Range[0] : Range[1] ]
1167 1167
1168 1168 '''************************** Getting Phase Slope ***************************'''
1169 1169 for i in range(nPair):
1170 1170 if len(FrecRange) > 5:
1171 1171 PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy()
1172 1172 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1173 1173 if len(FrecRange) == len(PhaseRange):
1174 1174 try:
1175 1175 slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5))
1176 1176 PhaseSlope[i] = slope
1177 1177 PhaseInter[i] = intercept
1178 1178 except:
1179 1179 return self.StopWindEstimation(error_code = 6)
1180 1180 else:
1181 1181 return self.StopWindEstimation(error_code = 7)
1182 1182 else:
1183 1183 return self.StopWindEstimation(error_code = 8)
1184 1184
1185 1185 '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***'''
1186 1186
1187 1187 '''Getting constant C'''
1188 1188 cC=(Fij*numpy.pi)**2
1189 1189
1190 1190 '''****** Getting constants F and G ******'''
1191 1191 MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1192 1192 # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]])
1193 1193 # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi)
1194 1194 MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi)
1195 1195 MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi)
1196 1196 # MijResults = numpy.array([MijResult0, MijResult1, MijResult2])
1197 1197 MijResults = numpy.array([MijResult1, MijResult2])
1198 1198 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1199 1199
1200 1200 '''****** Getting constants A, B and H ******'''
1201 1201 W01 = numpy.nanmax( FitGauss01 )
1202 1202 W02 = numpy.nanmax( FitGauss02 )
1203 1203 W12 = numpy.nanmax( FitGauss12 )
1204 1204
1205 1205 WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC))
1206 1206 WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC))
1207 1207 WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC))
1208 1208 WijResults = numpy.array([WijResult01, WijResult02, WijResult12])
1209 1209
1210 1210 WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1211 1211 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1212 1212
1213 1213 VxVy = numpy.array([[cA,cH],[cH,cB]])
1214 1214 VxVyResults = numpy.array([-cF,-cG])
1215 1215 (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults)
1216 1216 Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq)
1217 1217 error_code = 0
1218 1218
1219 1219 return Vzon, Vmer, Vver, error_code
1220 1220
1221 1221 class SpectralMoments(Operation):
1222 1222
1223 1223 '''
1224 1224 Function SpectralMoments()
1225 1225
1226 1226 Calculates moments (power, mean, standard deviation) and SNR of the signal
1227 1227
1228 1228 Type of dataIn: Spectra
1229 1229
1230 1230 Configuration Parameters:
1231 1231
1232 1232 dirCosx : Cosine director in X axis
1233 1233 dirCosy : Cosine director in Y axis
1234 1234
1235 1235 elevation :
1236 1236 azimuth :
1237 1237
1238 1238 Input:
1239 1239 channelList : simple channel list to select e.g. [2,3,7]
1240 1240 self.dataOut.data_pre : Spectral data
1241 1241 self.dataOut.abscissaList : List of frequencies
1242 1242 self.dataOut.noise : Noise level per channel
1243 1243
1244 1244 Affected:
1245 1245 self.dataOut.moments : Parameters per channel
1246 1246 self.dataOut.data_snr : SNR per channel
1247 1247
1248 1248 '''
1249 1249
1250 1250 def run(self, dataOut):
1251 1251
1252 1252 data = dataOut.data_pre[0]
1253 1253 absc = dataOut.abscissaList[:-1]
1254 1254 noise = dataOut.noise
1255 1255 nChannel = data.shape[0]
1256 1256 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
1257 1257
1258 1258 for ind in range(nChannel):
1259 1259 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1260 1260
1261 1261 dataOut.moments = data_param[:,1:,:]
1262 1262 dataOut.data_snr = data_param[:,0]
1263 1263 dataOut.data_pow = data_param[:,1]
1264 1264 dataOut.data_dop = data_param[:,2]
1265 1265 dataOut.data_width = data_param[:,3]
1266 1266 return dataOut
1267 1267
1268 1268 def __calculateMoments(self, oldspec, oldfreq, n0,
1269 1269 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1270 1270
1271 1271 if (nicoh is None): nicoh = 1
1272 1272 if (graph is None): graph = 0
1273 1273 if (smooth is None): smooth = 0
1274 1274 elif (self.smooth < 3): smooth = 0
1275 1275
1276 1276 if (type1 is None): type1 = 0
1277 1277 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
1278 1278 if (snrth is None): snrth = -3
1279 1279 if (dc is None): dc = 0
1280 1280 if (aliasing is None): aliasing = 0
1281 1281 if (oldfd is None): oldfd = 0
1282 1282 if (wwauto is None): wwauto = 0
1283 1283
1284 1284 if (n0 < 1.e-20): n0 = 1.e-20
1285 1285
1286 1286 freq = oldfreq
1287 1287 vec_power = numpy.zeros(oldspec.shape[1])
1288 1288 vec_fd = numpy.zeros(oldspec.shape[1])
1289 1289 vec_w = numpy.zeros(oldspec.shape[1])
1290 1290 vec_snr = numpy.zeros(oldspec.shape[1])
1291 1291
1292 1292 # oldspec = numpy.ma.masked_invalid(oldspec)
1293 1293 for ind in range(oldspec.shape[1]):
1294 1294
1295 1295 spec = oldspec[:,ind]
1296 1296 aux = spec*fwindow
1297 1297 max_spec = aux.max()
1298 1298 m = aux.tolist().index(max_spec)
1299 1299
1300 1300 # Smooth
1301 1301 if (smooth == 0):
1302 1302 spec2 = spec
1303 1303 else:
1304 1304 spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1305 1305
1306 1306 # Moments Estimation
1307 1307 bb = spec2[numpy.arange(m,spec2.size)]
1308 1308 bb = (bb<n0).nonzero()
1309 1309 bb = bb[0]
1310 1310
1311 1311 ss = spec2[numpy.arange(0,m + 1)]
1312 1312 ss = (ss<n0).nonzero()
1313 1313 ss = ss[0]
1314 1314
1315 1315 if (bb.size == 0):
1316 1316 bb0 = spec.size - 1 - m
1317 1317 else:
1318 1318 bb0 = bb[0] - 1
1319 1319 if (bb0 < 0):
1320 1320 bb0 = 0
1321 1321
1322 1322 if (ss.size == 0):
1323 1323 ss1 = 1
1324 1324 else:
1325 1325 ss1 = max(ss) + 1
1326 1326
1327 1327 if (ss1 > m):
1328 1328 ss1 = m
1329 1329
1330 1330 #valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1
1331 1331 valid = numpy.arange(1,oldspec.shape[0])# valid perfil completo igual pulsepair
1332 1332 signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1333 1333 total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1334 1334 power = ((spec2[valid] - n0) * fwindow[valid]).sum()
1335 1335 fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power
1336 1336 w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power)
1337 1337 snr = (spec2.mean()-n0)/n0
1338 1338 if (snr < 1.e-20) :
1339 1339 snr = 1.e-20
1340 1340
1341 1341 # vec_power[ind] = power #D. ScipiΓ³n replaced with the line below
1342 1342 vec_power[ind] = total_power
1343 1343 vec_fd[ind] = fd
1344 1344 vec_w[ind] = w
1345 1345 vec_snr[ind] = snr
1346 1346
1347 1347 return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1348 1348
1349 1349 #------------------ Get SA Parameters --------------------------
1350 1350
1351 1351 def GetSAParameters(self):
1352 1352 #SA en frecuencia
1353 1353 pairslist = self.dataOut.groupList
1354 1354 num_pairs = len(pairslist)
1355 1355
1356 1356 vel = self.dataOut.abscissaList
1357 1357 spectra = self.dataOut.data_pre
1358 1358 cspectra = self.dataIn.data_cspc
1359 1359 delta_v = vel[1] - vel[0]
1360 1360
1361 1361 #Calculating the power spectrum
1362 1362 spc_pow = numpy.sum(spectra, 3)*delta_v
1363 1363 #Normalizing Spectra
1364 1364 norm_spectra = spectra/spc_pow
1365 1365 #Calculating the norm_spectra at peak
1366 1366 max_spectra = numpy.max(norm_spectra, 3)
1367 1367
1368 1368 #Normalizing Cross Spectra
1369 1369 norm_cspectra = numpy.zeros(cspectra.shape)
1370 1370
1371 1371 for i in range(num_chan):
1372 1372 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1373 1373
1374 1374 max_cspectra = numpy.max(norm_cspectra,2)
1375 1375 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1376 1376
1377 1377 for i in range(num_pairs):
1378 1378 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1379 1379 #------------------- Get Lags ----------------------------------
1380 1380
1381 1381 class SALags(Operation):
1382 1382 '''
1383 1383 Function GetMoments()
1384 1384
1385 1385 Input:
1386 1386 self.dataOut.data_pre
1387 1387 self.dataOut.abscissaList
1388 1388 self.dataOut.noise
1389 1389 self.dataOut.normFactor
1390 1390 self.dataOut.data_snr
1391 1391 self.dataOut.groupList
1392 1392 self.dataOut.nChannels
1393 1393
1394 1394 Affected:
1395 1395 self.dataOut.data_param
1396 1396
1397 1397 '''
1398 1398 def run(self, dataOut):
1399 1399 data_acf = dataOut.data_pre[0]
1400 1400 data_ccf = dataOut.data_pre[1]
1401 1401 normFactor_acf = dataOut.normFactor[0]
1402 1402 normFactor_ccf = dataOut.normFactor[1]
1403 1403 pairs_acf = dataOut.groupList[0]
1404 1404 pairs_ccf = dataOut.groupList[1]
1405 1405
1406 1406 nHeights = dataOut.nHeights
1407 1407 absc = dataOut.abscissaList
1408 1408 noise = dataOut.noise
1409 1409 SNR = dataOut.data_snr
1410 1410 nChannels = dataOut.nChannels
1411 1411 # pairsList = dataOut.groupList
1412 1412 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
1413 1413
1414 1414 for l in range(len(pairs_acf)):
1415 1415 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1416 1416
1417 1417 for l in range(len(pairs_ccf)):
1418 1418 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1419 1419
1420 1420 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1421 1421 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1422 1422 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1423 1423 return
1424 1424
1425 1425 # def __getPairsAutoCorr(self, pairsList, nChannels):
1426 1426 #
1427 1427 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1428 1428 #
1429 1429 # for l in range(len(pairsList)):
1430 1430 # firstChannel = pairsList[l][0]
1431 1431 # secondChannel = pairsList[l][1]
1432 1432 #
1433 1433 # #Obteniendo pares de Autocorrelacion
1434 1434 # if firstChannel == secondChannel:
1435 1435 # pairsAutoCorr[firstChannel] = int(l)
1436 1436 #
1437 1437 # pairsAutoCorr = pairsAutoCorr.astype(int)
1438 1438 #
1439 1439 # pairsCrossCorr = range(len(pairsList))
1440 1440 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1441 1441 #
1442 1442 # return pairsAutoCorr, pairsCrossCorr
1443 1443
1444 1444 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1445 1445
1446 1446 lag0 = data_acf.shape[1]/2
1447 1447 #Funcion de Autocorrelacion
1448 1448 mean_acf = stats.nanmean(data_acf, axis = 0)
1449 1449
1450 1450 #Obtencion Indice de TauCross
1451 1451 ind_ccf = data_ccf.argmax(axis = 1)
1452 1452 #Obtencion Indice de TauAuto
1453 1453 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1454 1454 ccf_lag0 = data_ccf[:,lag0,:]
1455 1455
1456 1456 for i in range(ccf_lag0.shape[0]):
1457 1457 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1458 1458
1459 1459 #Obtencion de TauCross y TauAuto
1460 1460 tau_ccf = lagRange[ind_ccf]
1461 1461 tau_acf = lagRange[ind_acf]
1462 1462
1463 1463 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1464 1464
1465 1465 tau_ccf[Nan1,Nan2] = numpy.nan
1466 1466 tau_acf[Nan1,Nan2] = numpy.nan
1467 1467 tau = numpy.vstack((tau_ccf,tau_acf))
1468 1468
1469 1469 return tau
1470 1470
1471 1471 def __calculateLag1Phase(self, data, lagTRange):
1472 1472 data1 = stats.nanmean(data, axis = 0)
1473 1473 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1474 1474
1475 1475 phase = numpy.angle(data1[lag1,:])
1476 1476
1477 1477 return phase
1478 1478
1479 1479 class SpectralFitting(Operation):
1480 1480 '''
1481 1481 Function GetMoments()
1482 1482
1483 1483 Input:
1484 1484 Output:
1485 1485 Variables modified:
1486 1486 '''
1487 1487
1488 1488 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1489 1489
1490 1490
1491 1491 if path != None:
1492 1492 sys.path.append(path)
1493 1493 self.dataOut.library = importlib.import_module(file)
1494 1494
1495 1495 #To be inserted as a parameter
1496 1496 groupArray = numpy.array(groupList)
1497 1497 # groupArray = numpy.array([[0,1],[2,3]])
1498 1498 self.dataOut.groupList = groupArray
1499 1499
1500 1500 nGroups = groupArray.shape[0]
1501 1501 nChannels = self.dataIn.nChannels
1502 1502 nHeights=self.dataIn.heightList.size
1503 1503
1504 1504 #Parameters Array
1505 1505 self.dataOut.data_param = None
1506 1506
1507 1507 #Set constants
1508 1508 constants = self.dataOut.library.setConstants(self.dataIn)
1509 1509 self.dataOut.constants = constants
1510 1510 M = self.dataIn.normFactor
1511 1511 N = self.dataIn.nFFTPoints
1512 1512 ippSeconds = self.dataIn.ippSeconds
1513 1513 K = self.dataIn.nIncohInt
1514 1514 pairsArray = numpy.array(self.dataIn.pairsList)
1515 1515
1516 1516 #List of possible combinations
1517 1517 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1518 1518 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1519 1519
1520 1520 if getSNR:
1521 1521 listChannels = groupArray.reshape((groupArray.size))
1522 1522 listChannels.sort()
1523 1523 noise = self.dataIn.getNoise()
1524 1524 self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1525 1525
1526 1526 for i in range(nGroups):
1527 1527 coord = groupArray[i,:]
1528 1528
1529 1529 #Input data array
1530 1530 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1531 1531 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1532 1532
1533 1533 #Cross Spectra data array for Covariance Matrixes
1534 1534 ind = 0
1535 1535 for pairs in listComb:
1536 1536 pairsSel = numpy.array([coord[x],coord[y]])
1537 1537 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
1538 1538 ind += 1
1539 1539 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1540 1540 dataCross = dataCross**2/K
1541 1541
1542 1542 for h in range(nHeights):
1543 1543
1544 1544 #Input
1545 1545 d = data[:,h]
1546 1546
1547 1547 #Covariance Matrix
1548 1548 D = numpy.diag(d**2/K)
1549 1549 ind = 0
1550 1550 for pairs in listComb:
1551 1551 #Coordinates in Covariance Matrix
1552 1552 x = pairs[0]
1553 1553 y = pairs[1]
1554 1554 #Channel Index
1555 1555 S12 = dataCross[ind,:,h]
1556 1556 D12 = numpy.diag(S12)
1557 1557 #Completing Covariance Matrix with Cross Spectras
1558 1558 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
1559 1559 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
1560 1560 ind += 1
1561 1561 Dinv=numpy.linalg.inv(D)
1562 1562 L=numpy.linalg.cholesky(Dinv)
1563 1563 LT=L.T
1564 1564
1565 1565 dp = numpy.dot(LT,d)
1566 1566
1567 1567 #Initial values
1568 1568 data_spc = self.dataIn.data_spc[coord,:,h]
1569 1569
1570 1570 if (h>0)and(error1[3]<5):
1571 1571 p0 = self.dataOut.data_param[i,:,h-1]
1572 1572 else:
1573 1573 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1574 1574
1575 1575 try:
1576 1576 #Least Squares
1577 1577 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
1578 1578 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
1579 1579 #Chi square error
1580 1580 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
1581 1581 #Error with Jacobian
1582 1582 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
1583 1583 except:
1584 1584 minp = p0*numpy.nan
1585 1585 error0 = numpy.nan
1586 1586 error1 = p0*numpy.nan
1587 1587
1588 1588 #Save
1589 1589 if self.dataOut.data_param is None:
1590 1590 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1591 1591 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1592 1592
1593 1593 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1594 1594 self.dataOut.data_param[i,:,h] = minp
1595 1595 return
1596 1596
1597 1597 def __residFunction(self, p, dp, LT, constants):
1598 1598
1599 1599 fm = self.dataOut.library.modelFunction(p, constants)
1600 1600 fmp=numpy.dot(LT,fm)
1601 1601
1602 1602 return dp-fmp
1603 1603
1604 1604 def __getSNR(self, z, noise):
1605 1605
1606 1606 avg = numpy.average(z, axis=1)
1607 1607 SNR = (avg.T-noise)/noise
1608 1608 SNR = SNR.T
1609 1609 return SNR
1610 1610
1611 1611 def __chisq(p,chindex,hindex):
1612 1612 #similar to Resid but calculates CHI**2
1613 1613 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
1614 1614 dp=numpy.dot(LT,d)
1615 1615 fmp=numpy.dot(LT,fm)
1616 1616 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1617 1617 return chisq
1618 1618
1619 1619 class WindProfiler(Operation):
1620 1620
1621 1621 __isConfig = False
1622 1622
1623 1623 __initime = None
1624 1624 __lastdatatime = None
1625 1625 __integrationtime = None
1626 1626
1627 1627 __buffer = None
1628 1628
1629 1629 __dataReady = False
1630 1630
1631 1631 __firstdata = None
1632 1632
1633 1633 n = None
1634 1634
1635 1635 def __init__(self):
1636 1636 Operation.__init__(self)
1637 1637
1638 1638 def __calculateCosDir(self, elev, azim):
1639 1639 zen = (90 - elev)*numpy.pi/180
1640 1640 azim = azim*numpy.pi/180
1641 1641 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1642 1642 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1643 1643
1644 1644 signX = numpy.sign(numpy.cos(azim))
1645 1645 signY = numpy.sign(numpy.sin(azim))
1646 1646
1647 1647 cosDirX = numpy.copysign(cosDirX, signX)
1648 1648 cosDirY = numpy.copysign(cosDirY, signY)
1649 1649 return cosDirX, cosDirY
1650 1650
1651 1651 def __calculateAngles(self, theta_x, theta_y, azimuth):
1652 1652
1653 1653 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1654 1654 zenith_arr = numpy.arccos(dir_cosw)
1655 1655 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1656 1656
1657 1657 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1658 1658 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1659 1659
1660 1660 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1661 1661
1662 1662 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1663 1663
1664 1664 #
1665 1665 if horOnly:
1666 1666 A = numpy.c_[dir_cosu,dir_cosv]
1667 1667 else:
1668 1668 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
1669 1669 A = numpy.asmatrix(A)
1670 1670 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
1671 1671
1672 1672 return A1
1673 1673
1674 1674 def __correctValues(self, heiRang, phi, velRadial, SNR):
1675 1675 listPhi = phi.tolist()
1676 1676 maxid = listPhi.index(max(listPhi))
1677 1677 minid = listPhi.index(min(listPhi))
1678 1678
1679 1679 rango = list(range(len(phi)))
1680 1680 # rango = numpy.delete(rango,maxid)
1681 1681
1682 1682 heiRang1 = heiRang*math.cos(phi[maxid])
1683 1683 heiRangAux = heiRang*math.cos(phi[minid])
1684 1684 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1685 1685 heiRang1 = numpy.delete(heiRang1,indOut)
1686 1686
1687 1687 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1688 1688 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1689 1689
1690 1690 for i in rango:
1691 1691 x = heiRang*math.cos(phi[i])
1692 1692 y1 = velRadial[i,:]
1693 1693 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1694 1694
1695 1695 x1 = heiRang1
1696 1696 y11 = f1(x1)
1697 1697
1698 1698 y2 = SNR[i,:]
1699 1699 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1700 1700 y21 = f2(x1)
1701 1701
1702 1702 velRadial1[i,:] = y11
1703 1703 SNR1[i,:] = y21
1704 1704
1705 1705 return heiRang1, velRadial1, SNR1
1706 1706
1707 1707 def __calculateVelUVW(self, A, velRadial):
1708 1708
1709 1709 #Operacion Matricial
1710 1710 # velUVW = numpy.zeros((velRadial.shape[1],3))
1711 1711 # for ind in range(velRadial.shape[1]):
1712 1712 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
1713 1713 # velUVW = velUVW.transpose()
1714 1714 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1715 1715 velUVW[:,:] = numpy.dot(A,velRadial)
1716 1716
1717 1717
1718 1718 return velUVW
1719 1719
1720 1720 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1721 1721
1722 1722 def techniqueDBS(self, kwargs):
1723 1723 """
1724 1724 Function that implements Doppler Beam Swinging (DBS) technique.
1725 1725
1726 1726 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1727 1727 Direction correction (if necessary), Ranges and SNR
1728 1728
1729 1729 Output: Winds estimation (Zonal, Meridional and Vertical)
1730 1730
1731 1731 Parameters affected: Winds, height range, SNR
1732 1732 """
1733 1733 velRadial0 = kwargs['velRadial']
1734 1734 heiRang = kwargs['heightList']
1735 1735 SNR0 = kwargs['SNR']
1736 1736
1737 1737 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1738 1738 theta_x = numpy.array(kwargs['dirCosx'])
1739 1739 theta_y = numpy.array(kwargs['dirCosy'])
1740 1740 else:
1741 1741 elev = numpy.array(kwargs['elevation'])
1742 1742 azim = numpy.array(kwargs['azimuth'])
1743 1743 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1744 1744 azimuth = kwargs['correctAzimuth']
1745 1745 if 'horizontalOnly' in kwargs:
1746 1746 horizontalOnly = kwargs['horizontalOnly']
1747 1747 else: horizontalOnly = False
1748 1748 if 'correctFactor' in kwargs:
1749 1749 correctFactor = kwargs['correctFactor']
1750 1750 else: correctFactor = 1
1751 1751 if 'channelList' in kwargs:
1752 1752 channelList = kwargs['channelList']
1753 1753 if len(channelList) == 2:
1754 1754 horizontalOnly = True
1755 1755 arrayChannel = numpy.array(channelList)
1756 1756 param = param[arrayChannel,:,:]
1757 1757 theta_x = theta_x[arrayChannel]
1758 1758 theta_y = theta_y[arrayChannel]
1759 1759
1760 1760 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1761 1761 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1762 1762 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1763 1763
1764 1764 #Calculo de Componentes de la velocidad con DBS
1765 1765 winds = self.__calculateVelUVW(A,velRadial1)
1766 1766
1767 1767 return winds, heiRang1, SNR1
1768 1768
1769 1769 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1770 1770
1771 1771 nPairs = len(pairs_ccf)
1772 1772 posx = numpy.asarray(posx)
1773 1773 posy = numpy.asarray(posy)
1774 1774
1775 1775 #Rotacion Inversa para alinear con el azimuth
1776 1776 if azimuth!= None:
1777 1777 azimuth = azimuth*math.pi/180
1778 1778 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
1779 1779 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
1780 1780 else:
1781 1781 posx1 = posx
1782 1782 posy1 = posy
1783 1783
1784 1784 #Calculo de Distancias
1785 1785 distx = numpy.zeros(nPairs)
1786 1786 disty = numpy.zeros(nPairs)
1787 1787 dist = numpy.zeros(nPairs)
1788 1788 ang = numpy.zeros(nPairs)
1789 1789
1790 1790 for i in range(nPairs):
1791 1791 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1792 1792 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1793 1793 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1794 1794 ang[i] = numpy.arctan2(disty[i],distx[i])
1795 1795
1796 1796 return distx, disty, dist, ang
1797 1797 #Calculo de Matrices
1798 1798 # nPairs = len(pairs)
1799 1799 # ang1 = numpy.zeros((nPairs, 2, 1))
1800 1800 # dist1 = numpy.zeros((nPairs, 2, 1))
1801 1801 #
1802 1802 # for j in range(nPairs):
1803 1803 # dist1[j,0,0] = dist[pairs[j][0]]
1804 1804 # dist1[j,1,0] = dist[pairs[j][1]]
1805 1805 # ang1[j,0,0] = ang[pairs[j][0]]
1806 1806 # ang1[j,1,0] = ang[pairs[j][1]]
1807 1807 #
1808 1808 # return distx,disty, dist1,ang1
1809 1809
1810 1810
1811 1811 def __calculateVelVer(self, phase, lagTRange, _lambda):
1812 1812
1813 1813 Ts = lagTRange[1] - lagTRange[0]
1814 1814 velW = -_lambda*phase/(4*math.pi*Ts)
1815 1815
1816 1816 return velW
1817 1817
1818 1818 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1819 1819 nPairs = tau1.shape[0]
1820 1820 nHeights = tau1.shape[1]
1821 1821 vel = numpy.zeros((nPairs,3,nHeights))
1822 1822 dist1 = numpy.reshape(dist, (dist.size,1))
1823 1823
1824 1824 angCos = numpy.cos(ang)
1825 1825 angSin = numpy.sin(ang)
1826 1826
1827 1827 vel0 = dist1*tau1/(2*tau2**2)
1828 1828 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1829 1829 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1830 1830
1831 1831 ind = numpy.where(numpy.isinf(vel))
1832 1832 vel[ind] = numpy.nan
1833 1833
1834 1834 return vel
1835 1835
1836 1836 # def __getPairsAutoCorr(self, pairsList, nChannels):
1837 1837 #
1838 1838 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1839 1839 #
1840 1840 # for l in range(len(pairsList)):
1841 1841 # firstChannel = pairsList[l][0]
1842 1842 # secondChannel = pairsList[l][1]
1843 1843 #
1844 1844 # #Obteniendo pares de Autocorrelacion
1845 1845 # if firstChannel == secondChannel:
1846 1846 # pairsAutoCorr[firstChannel] = int(l)
1847 1847 #
1848 1848 # pairsAutoCorr = pairsAutoCorr.astype(int)
1849 1849 #
1850 1850 # pairsCrossCorr = range(len(pairsList))
1851 1851 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1852 1852 #
1853 1853 # return pairsAutoCorr, pairsCrossCorr
1854 1854
1855 1855 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1856 1856 def techniqueSA(self, kwargs):
1857 1857
1858 1858 """
1859 1859 Function that implements Spaced Antenna (SA) technique.
1860 1860
1861 1861 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1862 1862 Direction correction (if necessary), Ranges and SNR
1863 1863
1864 1864 Output: Winds estimation (Zonal, Meridional and Vertical)
1865 1865
1866 1866 Parameters affected: Winds
1867 1867 """
1868 1868 position_x = kwargs['positionX']
1869 1869 position_y = kwargs['positionY']
1870 1870 azimuth = kwargs['azimuth']
1871 1871
1872 1872 if 'correctFactor' in kwargs:
1873 1873 correctFactor = kwargs['correctFactor']
1874 1874 else:
1875 1875 correctFactor = 1
1876 1876
1877 1877 groupList = kwargs['groupList']
1878 1878 pairs_ccf = groupList[1]
1879 1879 tau = kwargs['tau']
1880 1880 _lambda = kwargs['_lambda']
1881 1881
1882 1882 #Cross Correlation pairs obtained
1883 1883 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1884 1884 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1885 1885 # pairsSelArray = numpy.array(pairsSelected)
1886 1886 # pairs = []
1887 1887 #
1888 1888 # #Wind estimation pairs obtained
1889 1889 # for i in range(pairsSelArray.shape[0]/2):
1890 1890 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1891 1891 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1892 1892 # pairs.append((ind1,ind2))
1893 1893
1894 1894 indtau = tau.shape[0]/2
1895 1895 tau1 = tau[:indtau,:]
1896 1896 tau2 = tau[indtau:-1,:]
1897 1897 # tau1 = tau1[pairs,:]
1898 1898 # tau2 = tau2[pairs,:]
1899 1899 phase1 = tau[-1,:]
1900 1900
1901 1901 #---------------------------------------------------------------------
1902 1902 #Metodo Directo
1903 1903 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1904 1904 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1905 1905 winds = stats.nanmean(winds, axis=0)
1906 1906 #---------------------------------------------------------------------
1907 1907 #Metodo General
1908 1908 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
1909 1909 # #Calculo Coeficientes de Funcion de Correlacion
1910 1910 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
1911 1911 # #Calculo de Velocidades
1912 1912 # winds = self.calculateVelUV(F,G,A,B,H)
1913 1913
1914 1914 #---------------------------------------------------------------------
1915 1915 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
1916 1916 winds = correctFactor*winds
1917 1917 return winds
1918 1918
1919 1919 def __checkTime(self, currentTime, paramInterval, outputInterval):
1920 1920
1921 1921 dataTime = currentTime + paramInterval
1922 1922 deltaTime = dataTime - self.__initime
1923 1923
1924 1924 if deltaTime >= outputInterval or deltaTime < 0:
1925 1925 self.__dataReady = True
1926 1926 return
1927 1927
1928 1928 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
1929 1929 '''
1930 1930 Function that implements winds estimation technique with detected meteors.
1931 1931
1932 1932 Input: Detected meteors, Minimum meteor quantity to wind estimation
1933 1933
1934 1934 Output: Winds estimation (Zonal and Meridional)
1935 1935
1936 1936 Parameters affected: Winds
1937 1937 '''
1938 1938 #Settings
1939 1939 nInt = (heightMax - heightMin)/2
1940 1940 nInt = int(nInt)
1941 1941 winds = numpy.zeros((2,nInt))*numpy.nan
1942 1942
1943 1943 #Filter errors
1944 1944 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
1945 1945 finalMeteor = arrayMeteor[error,:]
1946 1946
1947 1947 #Meteor Histogram
1948 1948 finalHeights = finalMeteor[:,2]
1949 1949 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
1950 1950 nMeteorsPerI = hist[0]
1951 1951 heightPerI = hist[1]
1952 1952
1953 1953 #Sort of meteors
1954 1954 indSort = finalHeights.argsort()
1955 1955 finalMeteor2 = finalMeteor[indSort,:]
1956 1956
1957 1957 # Calculating winds
1958 1958 ind1 = 0
1959 1959 ind2 = 0
1960 1960
1961 1961 for i in range(nInt):
1962 1962 nMet = nMeteorsPerI[i]
1963 1963 ind1 = ind2
1964 1964 ind2 = ind1 + nMet
1965 1965
1966 1966 meteorAux = finalMeteor2[ind1:ind2,:]
1967 1967
1968 1968 if meteorAux.shape[0] >= meteorThresh:
1969 1969 vel = meteorAux[:, 6]
1970 1970 zen = meteorAux[:, 4]*numpy.pi/180
1971 1971 azim = meteorAux[:, 3]*numpy.pi/180
1972 1972
1973 1973 n = numpy.cos(zen)
1974 1974 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
1975 1975 # l = m*numpy.tan(azim)
1976 1976 l = numpy.sin(zen)*numpy.sin(azim)
1977 1977 m = numpy.sin(zen)*numpy.cos(azim)
1978 1978
1979 1979 A = numpy.vstack((l, m)).transpose()
1980 1980 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
1981 1981 windsAux = numpy.dot(A1, vel)
1982 1982
1983 1983 winds[0,i] = windsAux[0]
1984 1984 winds[1,i] = windsAux[1]
1985 1985
1986 1986 return winds, heightPerI[:-1]
1987 1987
1988 1988 def techniqueNSM_SA(self, **kwargs):
1989 1989 metArray = kwargs['metArray']
1990 1990 heightList = kwargs['heightList']
1991 1991 timeList = kwargs['timeList']
1992 1992
1993 1993 rx_location = kwargs['rx_location']
1994 1994 groupList = kwargs['groupList']
1995 1995 azimuth = kwargs['azimuth']
1996 1996 dfactor = kwargs['dfactor']
1997 1997 k = kwargs['k']
1998 1998
1999 1999 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
2000 2000 d = dist*dfactor
2001 2001 #Phase calculation
2002 2002 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
2003 2003
2004 2004 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
2005 2005
2006 2006 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2007 2007 azimuth1 = azimuth1*numpy.pi/180
2008 2008
2009 2009 for i in range(heightList.size):
2010 2010 h = heightList[i]
2011 2011 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
2012 2012 metHeight = metArray1[indH,:]
2013 2013 if metHeight.shape[0] >= 2:
2014 2014 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
2015 2015 iazim = metHeight[:,1].astype(int)
2016 2016 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
2017 2017 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
2018 2018 A = numpy.asmatrix(A)
2019 2019 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
2020 2020 velHor = numpy.dot(A1,velAux)
2021 2021
2022 2022 velEst[i,:] = numpy.squeeze(velHor)
2023 2023 return velEst
2024 2024
2025 2025 def __getPhaseSlope(self, metArray, heightList, timeList):
2026 2026 meteorList = []
2027 2027 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
2028 2028 #Putting back together the meteor matrix
2029 2029 utctime = metArray[:,0]
2030 2030 uniqueTime = numpy.unique(utctime)
2031 2031
2032 2032 phaseDerThresh = 0.5
2033 2033 ippSeconds = timeList[1] - timeList[0]
2034 2034 sec = numpy.where(timeList>1)[0][0]
2035 2035 nPairs = metArray.shape[1] - 6
2036 2036 nHeights = len(heightList)
2037 2037
2038 2038 for t in uniqueTime:
2039 2039 metArray1 = metArray[utctime==t,:]
2040 2040 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
2041 2041 tmet = metArray1[:,1].astype(int)
2042 2042 hmet = metArray1[:,2].astype(int)
2043 2043
2044 2044 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
2045 2045 metPhase[:,:] = numpy.nan
2046 2046 metPhase[:,hmet,tmet] = metArray1[:,6:].T
2047 2047
2048 2048 #Delete short trails
2049 2049 metBool = ~numpy.isnan(metPhase[0,:,:])
2050 2050 heightVect = numpy.sum(metBool, axis = 1)
2051 2051 metBool[heightVect<sec,:] = False
2052 2052 metPhase[:,heightVect<sec,:] = numpy.nan
2053 2053
2054 2054 #Derivative
2055 2055 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2056 2056 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2057 2057 metPhase[phDerAux] = numpy.nan
2058 2058
2059 2059 #--------------------------METEOR DETECTION -----------------------------------------
2060 2060 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2061 2061
2062 2062 for p in numpy.arange(nPairs):
2063 2063 phase = metPhase[p,:,:]
2064 2064 phDer = metDer[p,:,:]
2065 2065
2066 2066 for h in indMet:
2067 2067 height = heightList[h]
2068 2068 phase1 = phase[h,:] #82
2069 2069 phDer1 = phDer[h,:]
2070 2070
2071 2071 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2072 2072
2073 2073 indValid = numpy.where(~numpy.isnan(phase1))[0]
2074 2074 initMet = indValid[0]
2075 2075 endMet = 0
2076 2076
2077 2077 for i in range(len(indValid)-1):
2078 2078
2079 2079 #Time difference
2080 2080 inow = indValid[i]
2081 2081 inext = indValid[i+1]
2082 2082 idiff = inext - inow
2083 2083 #Phase difference
2084 2084 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2085 2085
2086 2086 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2087 2087 sizeTrail = inow - initMet + 1
2088 2088 if sizeTrail>3*sec: #Too short meteors
2089 2089 x = numpy.arange(initMet,inow+1)*ippSeconds
2090 2090 y = phase1[initMet:inow+1]
2091 2091 ynnan = ~numpy.isnan(y)
2092 2092 x = x[ynnan]
2093 2093 y = y[ynnan]
2094 2094 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
2095 2095 ylin = x*slope + intercept
2096 2096 rsq = r_value**2
2097 2097 if rsq > 0.5:
2098 2098 vel = slope#*height*1000/(k*d)
2099 2099 estAux = numpy.array([utctime,p,height, vel, rsq])
2100 2100 meteorList.append(estAux)
2101 2101 initMet = inext
2102 2102 metArray2 = numpy.array(meteorList)
2103 2103
2104 2104 return metArray2
2105 2105
2106 2106 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2107 2107
2108 2108 azimuth1 = numpy.zeros(len(pairslist))
2109 2109 dist = numpy.zeros(len(pairslist))
2110 2110
2111 2111 for i in range(len(rx_location)):
2112 2112 ch0 = pairslist[i][0]
2113 2113 ch1 = pairslist[i][1]
2114 2114
2115 2115 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2116 2116 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2117 2117 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2118 2118 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2119 2119
2120 2120 azimuth1 -= azimuth0
2121 2121 return azimuth1, dist
2122 2122
2123 2123 def techniqueNSM_DBS(self, **kwargs):
2124 2124 metArray = kwargs['metArray']
2125 2125 heightList = kwargs['heightList']
2126 2126 timeList = kwargs['timeList']
2127 2127 azimuth = kwargs['azimuth']
2128 2128 theta_x = numpy.array(kwargs['theta_x'])
2129 2129 theta_y = numpy.array(kwargs['theta_y'])
2130 2130
2131 2131 utctime = metArray[:,0]
2132 2132 cmet = metArray[:,1].astype(int)
2133 2133 hmet = metArray[:,3].astype(int)
2134 2134 SNRmet = metArray[:,4]
2135 2135 vmet = metArray[:,5]
2136 2136 spcmet = metArray[:,6]
2137 2137
2138 2138 nChan = numpy.max(cmet) + 1
2139 2139 nHeights = len(heightList)
2140 2140
2141 2141 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
2142 2142 hmet = heightList[hmet]
2143 2143 h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights
2144 2144
2145 2145 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2146 2146
2147 2147 for i in range(nHeights - 1):
2148 2148 hmin = heightList[i]
2149 2149 hmax = heightList[i + 1]
2150 2150
2151 2151 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2152 2152 indthisH = numpy.where(thisH)
2153 2153
2154 2154 if numpy.size(indthisH) > 3:
2155 2155
2156 2156 vel_aux = vmet[thisH]
2157 2157 chan_aux = cmet[thisH]
2158 2158 cosu_aux = dir_cosu[chan_aux]
2159 2159 cosv_aux = dir_cosv[chan_aux]
2160 2160 cosw_aux = dir_cosw[chan_aux]
2161 2161
2162 2162 nch = numpy.size(numpy.unique(chan_aux))
2163 2163 if nch > 1:
2164 2164 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2165 2165 velEst[i,:] = numpy.dot(A,vel_aux)
2166 2166
2167 2167 return velEst
2168 2168
2169 2169 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
2170 2170
2171 2171 param = dataOut.data_param
2172 2172 if dataOut.abscissaList != None:
2173 2173 absc = dataOut.abscissaList[:-1]
2174 2174 # noise = dataOut.noise
2175 2175 heightList = dataOut.heightList
2176 2176 SNR = dataOut.data_snr
2177 2177
2178 2178 if technique == 'DBS':
2179 2179
2180 2180 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2181 2181 kwargs['heightList'] = heightList
2182 2182 kwargs['SNR'] = SNR
2183 2183
2184 2184 dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function
2185 2185 dataOut.utctimeInit = dataOut.utctime
2186 2186 dataOut.outputInterval = dataOut.paramInterval
2187 2187
2188 2188 elif technique == 'SA':
2189 2189
2190 2190 #Parameters
2191 2191 # position_x = kwargs['positionX']
2192 2192 # position_y = kwargs['positionY']
2193 2193 # azimuth = kwargs['azimuth']
2194 2194 #
2195 2195 # if kwargs.has_key('crosspairsList'):
2196 2196 # pairs = kwargs['crosspairsList']
2197 2197 # else:
2198 2198 # pairs = None
2199 2199 #
2200 2200 # if kwargs.has_key('correctFactor'):
2201 2201 # correctFactor = kwargs['correctFactor']
2202 2202 # else:
2203 2203 # correctFactor = 1
2204 2204
2205 2205 # tau = dataOut.data_param
2206 2206 # _lambda = dataOut.C/dataOut.frequency
2207 2207 # pairsList = dataOut.groupList
2208 2208 # nChannels = dataOut.nChannels
2209 2209
2210 2210 kwargs['groupList'] = dataOut.groupList
2211 2211 kwargs['tau'] = dataOut.data_param
2212 2212 kwargs['_lambda'] = dataOut.C/dataOut.frequency
2213 2213 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
2214 2214 dataOut.data_output = self.techniqueSA(kwargs)
2215 2215 dataOut.utctimeInit = dataOut.utctime
2216 2216 dataOut.outputInterval = dataOut.timeInterval
2217 2217
2218 2218 elif technique == 'Meteors':
2219 2219 dataOut.flagNoData = True
2220 2220 self.__dataReady = False
2221 2221
2222 2222 if 'nHours' in kwargs:
2223 2223 nHours = kwargs['nHours']
2224 2224 else:
2225 2225 nHours = 1
2226 2226
2227 2227 if 'meteorsPerBin' in kwargs:
2228 2228 meteorThresh = kwargs['meteorsPerBin']
2229 2229 else:
2230 2230 meteorThresh = 6
2231 2231
2232 2232 if 'hmin' in kwargs:
2233 2233 hmin = kwargs['hmin']
2234 2234 else: hmin = 70
2235 2235 if 'hmax' in kwargs:
2236 2236 hmax = kwargs['hmax']
2237 2237 else: hmax = 110
2238 2238
2239 2239 dataOut.outputInterval = nHours*3600
2240 2240
2241 2241 if self.__isConfig == False:
2242 2242 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2243 2243 #Get Initial LTC time
2244 2244 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2245 2245 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2246 2246
2247 2247 self.__isConfig = True
2248 2248
2249 2249 if self.__buffer is None:
2250 2250 self.__buffer = dataOut.data_param
2251 2251 self.__firstdata = copy.copy(dataOut)
2252 2252
2253 2253 else:
2254 2254 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2255 2255
2256 2256 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2257 2257
2258 2258 if self.__dataReady:
2259 2259 dataOut.utctimeInit = self.__initime
2260 2260
2261 2261 self.__initime += dataOut.outputInterval #to erase time offset
2262 2262
2263 2263 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2264 2264 dataOut.flagNoData = False
2265 2265 self.__buffer = None
2266 2266
2267 2267 elif technique == 'Meteors1':
2268 2268 dataOut.flagNoData = True
2269 2269 self.__dataReady = False
2270 2270
2271 2271 if 'nMins' in kwargs:
2272 2272 nMins = kwargs['nMins']
2273 2273 else: nMins = 20
2274 2274 if 'rx_location' in kwargs:
2275 2275 rx_location = kwargs['rx_location']
2276 2276 else: rx_location = [(0,1),(1,1),(1,0)]
2277 2277 if 'azimuth' in kwargs:
2278 2278 azimuth = kwargs['azimuth']
2279 2279 else: azimuth = 51.06
2280 2280 if 'dfactor' in kwargs:
2281 2281 dfactor = kwargs['dfactor']
2282 2282 if 'mode' in kwargs:
2283 2283 mode = kwargs['mode']
2284 2284 if 'theta_x' in kwargs:
2285 2285 theta_x = kwargs['theta_x']
2286 2286 if 'theta_y' in kwargs:
2287 2287 theta_y = kwargs['theta_y']
2288 2288 else: mode = 'SA'
2289 2289
2290 2290 #Borrar luego esto
2291 2291 if dataOut.groupList is None:
2292 2292 dataOut.groupList = [(0,1),(0,2),(1,2)]
2293 2293 groupList = dataOut.groupList
2294 2294 C = 3e8
2295 2295 freq = 50e6
2296 2296 lamb = C/freq
2297 2297 k = 2*numpy.pi/lamb
2298 2298
2299 2299 timeList = dataOut.abscissaList
2300 2300 heightList = dataOut.heightList
2301 2301
2302 2302 if self.__isConfig == False:
2303 2303 dataOut.outputInterval = nMins*60
2304 2304 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2305 2305 #Get Initial LTC time
2306 2306 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2307 2307 minuteAux = initime.minute
2308 2308 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
2309 2309 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2310 2310
2311 2311 self.__isConfig = True
2312 2312
2313 2313 if self.__buffer is None:
2314 2314 self.__buffer = dataOut.data_param
2315 2315 self.__firstdata = copy.copy(dataOut)
2316 2316
2317 2317 else:
2318 2318 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2319 2319
2320 2320 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2321 2321
2322 2322 if self.__dataReady:
2323 2323 dataOut.utctimeInit = self.__initime
2324 2324 self.__initime += dataOut.outputInterval #to erase time offset
2325 2325
2326 2326 metArray = self.__buffer
2327 2327 if mode == 'SA':
2328 2328 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
2329 2329 elif mode == 'DBS':
2330 2330 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y)
2331 2331 dataOut.data_output = dataOut.data_output.T
2332 2332 dataOut.flagNoData = False
2333 2333 self.__buffer = None
2334 2334
2335 2335 return
2336 2336
2337 2337 class EWDriftsEstimation(Operation):
2338 2338
2339 2339 def __init__(self):
2340 2340 Operation.__init__(self)
2341 2341
2342 2342 def __correctValues(self, heiRang, phi, velRadial, SNR):
2343 2343 listPhi = phi.tolist()
2344 2344 maxid = listPhi.index(max(listPhi))
2345 2345 minid = listPhi.index(min(listPhi))
2346 2346
2347 2347 rango = list(range(len(phi)))
2348 2348 # rango = numpy.delete(rango,maxid)
2349 2349
2350 2350 heiRang1 = heiRang*math.cos(phi[maxid])
2351 2351 heiRangAux = heiRang*math.cos(phi[minid])
2352 2352 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2353 2353 heiRang1 = numpy.delete(heiRang1,indOut)
2354 2354
2355 2355 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2356 2356 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2357 2357
2358 2358 for i in rango:
2359 2359 x = heiRang*math.cos(phi[i])
2360 2360 y1 = velRadial[i,:]
2361 2361 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2362 2362
2363 2363 x1 = heiRang1
2364 2364 y11 = f1(x1)
2365 2365
2366 2366 y2 = SNR[i,:]
2367 2367 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2368 2368 y21 = f2(x1)
2369 2369
2370 2370 velRadial1[i,:] = y11
2371 2371 SNR1[i,:] = y21
2372 2372
2373 2373 return heiRang1, velRadial1, SNR1
2374 2374
2375 2375 def run(self, dataOut, zenith, zenithCorrection):
2376 2376 heiRang = dataOut.heightList
2377 2377 velRadial = dataOut.data_param[:,3,:]
2378 2378 SNR = dataOut.data_snr
2379 2379
2380 2380 zenith = numpy.array(zenith)
2381 2381 zenith -= zenithCorrection
2382 2382 zenith *= numpy.pi/180
2383 2383
2384 2384 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2385 2385
2386 2386 alp = zenith[0]
2387 2387 bet = zenith[1]
2388 2388
2389 2389 w_w = velRadial1[0,:]
2390 2390 w_e = velRadial1[1,:]
2391 2391
2392 2392 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2393 2393 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2394 2394
2395 2395 winds = numpy.vstack((u,w))
2396 2396
2397 2397 dataOut.heightList = heiRang1
2398 2398 dataOut.data_output = winds
2399 2399 dataOut.data_snr = SNR1
2400 2400
2401 2401 dataOut.utctimeInit = dataOut.utctime
2402 2402 dataOut.outputInterval = dataOut.timeInterval
2403 2403 return
2404 2404
2405 2405 #--------------- Non Specular Meteor ----------------
2406 2406
2407 2407 class NonSpecularMeteorDetection(Operation):
2408 2408
2409 2409 def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
2410 2410 data_acf = dataOut.data_pre[0]
2411 2411 data_ccf = dataOut.data_pre[1]
2412 2412 pairsList = dataOut.groupList[1]
2413 2413
2414 2414 lamb = dataOut.C/dataOut.frequency
2415 2415 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2416 2416 paramInterval = dataOut.paramInterval
2417 2417
2418 2418 nChannels = data_acf.shape[0]
2419 2419 nLags = data_acf.shape[1]
2420 2420 nProfiles = data_acf.shape[2]
2421 2421 nHeights = dataOut.nHeights
2422 2422 nCohInt = dataOut.nCohInt
2423 2423 sec = numpy.round(nProfiles/dataOut.paramInterval)
2424 2424 heightList = dataOut.heightList
2425 2425 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2426 2426 utctime = dataOut.utctime
2427 2427
2428 2428 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2429 2429
2430 2430 #------------------------ SNR --------------------------------------
2431 2431 power = data_acf[:,0,:,:].real
2432 2432 noise = numpy.zeros(nChannels)
2433 2433 SNR = numpy.zeros(power.shape)
2434 2434 for i in range(nChannels):
2435 2435 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
2436 2436 SNR[i] = (power[i]-noise[i])/noise[i]
2437 2437 SNRm = numpy.nanmean(SNR, axis = 0)
2438 2438 SNRdB = 10*numpy.log10(SNR)
2439 2439
2440 2440 if mode == 'SA':
2441 2441 dataOut.groupList = dataOut.groupList[1]
2442 2442 nPairs = data_ccf.shape[0]
2443 2443 #---------------------- Coherence and Phase --------------------------
2444 2444 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2445 2445 # phase1 = numpy.copy(phase)
2446 2446 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2447 2447
2448 2448 for p in range(nPairs):
2449 2449 ch0 = pairsList[p][0]
2450 2450 ch1 = pairsList[p][1]
2451 2451 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2452 2452 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2453 2453 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2454 2454 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2455 2455 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2456 2456 coh = numpy.nanmax(coh1, axis = 0)
2457 2457 # struc = numpy.ones((5,1))
2458 2458 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2459 2459 #---------------------- Radial Velocity ----------------------------
2460 2460 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2461 2461 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2462 2462
2463 2463 if allData:
2464 2464 boolMetFin = ~numpy.isnan(SNRm)
2465 2465 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2466 2466 else:
2467 2467 #------------------------ Meteor mask ---------------------------------
2468 2468 # #SNR mask
2469 2469 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2470 2470 #
2471 2471 # #Erase small objects
2472 2472 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2473 2473 #
2474 2474 # auxEEJ = numpy.sum(boolMet1,axis=0)
2475 2475 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2476 2476 # indEEJ = numpy.where(indOver)[0]
2477 2477 # indNEEJ = numpy.where(~indOver)[0]
2478 2478 #
2479 2479 # boolMetFin = boolMet1
2480 2480 #
2481 2481 # if indEEJ.size > 0:
2482 2482 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2483 2483 #
2484 2484 # boolMet2 = coh > cohThresh
2485 2485 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2486 2486 #
2487 2487 # #Final Meteor mask
2488 2488 # boolMetFin = boolMet1|boolMet2
2489 2489
2490 2490 #Coherence mask
2491 2491 boolMet1 = coh > 0.75
2492 2492 struc = numpy.ones((30,1))
2493 2493 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2494 2494
2495 2495 #Derivative mask
2496 2496 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2497 2497 boolMet2 = derPhase < 0.2
2498 2498 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
2499 2499 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
2500 2500 boolMet2 = ndimage.median_filter(boolMet2,size=5)
2501 2501 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
2502 2502 # #Final mask
2503 2503 # boolMetFin = boolMet2
2504 2504 boolMetFin = boolMet1&boolMet2
2505 2505 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
2506 2506 #Creating data_param
2507 2507 coordMet = numpy.where(boolMetFin)
2508 2508
2509 2509 tmet = coordMet[0]
2510 2510 hmet = coordMet[1]
2511 2511
2512 2512 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2513 2513 data_param[:,0] = utctime
2514 2514 data_param[:,1] = tmet
2515 2515 data_param[:,2] = hmet
2516 2516 data_param[:,3] = SNRm[tmet,hmet]
2517 2517 data_param[:,4] = velRad[tmet,hmet]
2518 2518 data_param[:,5] = coh[tmet,hmet]
2519 2519 data_param[:,6:] = phase[:,tmet,hmet].T
2520 2520
2521 2521 elif mode == 'DBS':
2522 2522 dataOut.groupList = numpy.arange(nChannels)
2523 2523
2524 2524 #Radial Velocities
2525 2525 phase = numpy.angle(data_acf[:,1,:,:])
2526 2526 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2527 2527 velRad = phase*lamb/(4*numpy.pi*tSamp)
2528 2528
2529 2529 #Spectral width
2530 2530 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2531 2531 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
2532 2532 acf1 = data_acf[:,1,:,:]
2533 2533 acf2 = data_acf[:,2,:,:]
2534 2534
2535 2535 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
2536 2536 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
2537 2537 if allData:
2538 2538 boolMetFin = ~numpy.isnan(SNRdB)
2539 2539 else:
2540 2540 #SNR
2541 2541 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2542 2542 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2543 2543
2544 2544 #Radial velocity
2545 2545 boolMet2 = numpy.abs(velRad) < 20
2546 2546 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2547 2547
2548 2548 #Spectral Width
2549 2549 boolMet3 = spcWidth < 30
2550 2550 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2551 2551 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2552 2552 boolMetFin = boolMet1&boolMet2&boolMet3
2553 2553
2554 2554 #Creating data_param
2555 2555 coordMet = numpy.where(boolMetFin)
2556 2556
2557 2557 cmet = coordMet[0]
2558 2558 tmet = coordMet[1]
2559 2559 hmet = coordMet[2]
2560 2560
2561 2561 data_param = numpy.zeros((tmet.size, 7))
2562 2562 data_param[:,0] = utctime
2563 2563 data_param[:,1] = cmet
2564 2564 data_param[:,2] = tmet
2565 2565 data_param[:,3] = hmet
2566 2566 data_param[:,4] = SNR[cmet,tmet,hmet].T
2567 2567 data_param[:,5] = velRad[cmet,tmet,hmet].T
2568 2568 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2569 2569
2570 2570 # self.dataOut.data_param = data_int
2571 2571 if len(data_param) == 0:
2572 2572 dataOut.flagNoData = True
2573 2573 else:
2574 2574 dataOut.data_param = data_param
2575 2575
2576 2576 def __erase_small(self, binArray, threshX, threshY):
2577 2577 labarray, numfeat = ndimage.measurements.label(binArray)
2578 2578 binArray1 = numpy.copy(binArray)
2579 2579
2580 2580 for i in range(1,numfeat + 1):
2581 2581 auxBin = (labarray==i)
2582 2582 auxSize = auxBin.sum()
2583 2583
2584 2584 x,y = numpy.where(auxBin)
2585 2585 widthX = x.max() - x.min()
2586 2586 widthY = y.max() - y.min()
2587 2587
2588 2588 #width X: 3 seg -> 12.5*3
2589 2589 #width Y:
2590 2590
2591 2591 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2592 2592 binArray1[auxBin] = False
2593 2593
2594 2594 return binArray1
2595 2595
2596 2596 #--------------- Specular Meteor ----------------
2597 2597
2598 2598 class SMDetection(Operation):
2599 2599 '''
2600 2600 Function DetectMeteors()
2601 2601 Project developed with paper:
2602 2602 HOLDSWORTH ET AL. 2004
2603 2603
2604 2604 Input:
2605 2605 self.dataOut.data_pre
2606 2606
2607 2607 centerReceiverIndex: From the channels, which is the center receiver
2608 2608
2609 2609 hei_ref: Height reference for the Beacon signal extraction
2610 2610 tauindex:
2611 2611 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2612 2612
2613 2613 cohDetection: Whether to user Coherent detection or not
2614 2614 cohDet_timeStep: Coherent Detection calculation time step
2615 2615 cohDet_thresh: Coherent Detection phase threshold to correct phases
2616 2616
2617 2617 noise_timeStep: Noise calculation time step
2618 2618 noise_multiple: Noise multiple to define signal threshold
2619 2619
2620 2620 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2621 2621 multDet_rangeLimit: Multiple Detection Removal range limit in km
2622 2622
2623 2623 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2624 2624 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2625 2625
2626 2626 hmin: Minimum Height of the meteor to use it in the further wind estimations
2627 2627 hmax: Maximum Height of the meteor to use it in the further wind estimations
2628 2628 azimuth: Azimuth angle correction
2629 2629
2630 2630 Affected:
2631 2631 self.dataOut.data_param
2632 2632
2633 2633 Rejection Criteria (Errors):
2634 2634 0: No error; analysis OK
2635 2635 1: SNR < SNR threshold
2636 2636 2: angle of arrival (AOA) ambiguously determined
2637 2637 3: AOA estimate not feasible
2638 2638 4: Large difference in AOAs obtained from different antenna baselines
2639 2639 5: echo at start or end of time series
2640 2640 6: echo less than 5 examples long; too short for analysis
2641 2641 7: echo rise exceeds 0.3s
2642 2642 8: echo decay time less than twice rise time
2643 2643 9: large power level before echo
2644 2644 10: large power level after echo
2645 2645 11: poor fit to amplitude for estimation of decay time
2646 2646 12: poor fit to CCF phase variation for estimation of radial drift velocity
2647 2647 13: height unresolvable echo: not valid height within 70 to 110 km
2648 2648 14: height ambiguous echo: more then one possible height within 70 to 110 km
2649 2649 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2650 2650 16: oscilatory echo, indicating event most likely not an underdense echo
2651 2651
2652 2652 17: phase difference in meteor Reestimation
2653 2653
2654 2654 Data Storage:
2655 2655 Meteors for Wind Estimation (8):
2656 2656 Utc Time | Range Height
2657 2657 Azimuth Zenith errorCosDir
2658 2658 VelRad errorVelRad
2659 2659 Phase0 Phase1 Phase2 Phase3
2660 2660 TypeError
2661 2661
2662 2662 '''
2663 2663
2664 2664 def run(self, dataOut, hei_ref = None, tauindex = 0,
2665 2665 phaseOffsets = None,
2666 2666 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2667 2667 noise_timeStep = 4, noise_multiple = 4,
2668 2668 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2669 2669 phaseThresh = 20, SNRThresh = 5,
2670 2670 hmin = 50, hmax=150, azimuth = 0,
2671 2671 channelPositions = None) :
2672 2672
2673 2673
2674 2674 #Getting Pairslist
2675 2675 if channelPositions is None:
2676 2676 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2677 2677 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2678 2678 meteorOps = SMOperations()
2679 2679 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2680 2680 heiRang = dataOut.heightList
2681 2681 #Get Beacon signal - No Beacon signal anymore
2682 2682 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2683 2683 #
2684 2684 # if hei_ref != None:
2685 2685 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2686 2686 #
2687 2687
2688 2688
2689 2689 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2690 2690 # see if the user put in pre defined phase shifts
2691 2691 voltsPShift = dataOut.data_pre.copy()
2692 2692
2693 2693 # if predefinedPhaseShifts != None:
2694 2694 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2695 2695 #
2696 2696 # # elif beaconPhaseShifts:
2697 2697 # # #get hardware phase shifts using beacon signal
2698 2698 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2699 2699 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2700 2700 #
2701 2701 # else:
2702 2702 # hardwarePhaseShifts = numpy.zeros(5)
2703 2703 #
2704 2704 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2705 2705 # for i in range(self.dataOut.data_pre.shape[0]):
2706 2706 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2707 2707
2708 2708 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2709 2709
2710 2710 #Remove DC
2711 2711 voltsDC = numpy.mean(voltsPShift,1)
2712 2712 voltsDC = numpy.mean(voltsDC,1)
2713 2713 for i in range(voltsDC.shape[0]):
2714 2714 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2715 2715
2716 2716 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2717 2717 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2718 2718
2719 2719 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2720 2720 #Coherent Detection
2721 2721 if cohDetection:
2722 2722 #use coherent detection to get the net power
2723 2723 cohDet_thresh = cohDet_thresh*numpy.pi/180
2724 2724 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2725 2725
2726 2726 #Non-coherent detection!
2727 2727 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2728 2728 #********** END OF COH/NON-COH POWER CALCULATION**********************
2729 2729
2730 2730 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2731 2731 #Get noise
2732 2732 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
2733 2733 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
2734 2734 #Get signal threshold
2735 2735 signalThresh = noise_multiple*noise
2736 2736 #Meteor echoes detection
2737 2737 listMeteors = self.__findMeteors(powerNet, signalThresh)
2738 2738 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2739 2739
2740 2740 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2741 2741 #Parameters
2742 2742 heiRange = dataOut.heightList
2743 2743 rangeInterval = heiRange[1] - heiRange[0]
2744 2744 rangeLimit = multDet_rangeLimit/rangeInterval
2745 2745 timeLimit = multDet_timeLimit/dataOut.timeInterval
2746 2746 #Multiple detection removals
2747 2747 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2748 2748 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2749 2749
2750 2750 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2751 2751 #Parameters
2752 2752 phaseThresh = phaseThresh*numpy.pi/180
2753 2753 thresh = [phaseThresh, noise_multiple, SNRThresh]
2754 2754 #Meteor reestimation (Errors N 1, 6, 12, 17)
2755 2755 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
2756 2756 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
2757 2757 #Estimation of decay times (Errors N 7, 8, 11)
2758 2758 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2759 2759 #******************* END OF METEOR REESTIMATION *******************
2760 2760
2761 2761 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2762 2762 #Calculating Radial Velocity (Error N 15)
2763 2763 radialStdThresh = 10
2764 2764 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2765 2765
2766 2766 if len(listMeteors4) > 0:
2767 2767 #Setting New Array
2768 2768 date = dataOut.utctime
2769 2769 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2770 2770
2771 2771 #Correcting phase offset
2772 2772 if phaseOffsets != None:
2773 2773 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2774 2774 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2775 2775
2776 2776 #Second Pairslist
2777 2777 pairsList = []
2778 2778 pairx = (0,1)
2779 2779 pairy = (2,3)
2780 2780 pairsList.append(pairx)
2781 2781 pairsList.append(pairy)
2782 2782
2783 2783 jph = numpy.array([0,0,0,0])
2784 2784 h = (hmin,hmax)
2785 2785 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2786 2786
2787 2787 # #Calculate AOA (Error N 3, 4)
2788 2788 # #JONES ET AL. 1998
2789 2789 # error = arrayParameters[:,-1]
2790 2790 # AOAthresh = numpy.pi/8
2791 2791 # phases = -arrayParameters[:,9:13]
2792 2792 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2793 2793 #
2794 2794 # #Calculate Heights (Error N 13 and 14)
2795 2795 # error = arrayParameters[:,-1]
2796 2796 # Ranges = arrayParameters[:,2]
2797 2797 # zenith = arrayParameters[:,5]
2798 2798 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2799 2799 # error = arrayParameters[:,-1]
2800 2800 #********************* END OF PARAMETERS CALCULATION **************************
2801 2801
2802 2802 #***************************+ PASS DATA TO NEXT STEP **********************
2803 2803 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2804 2804 dataOut.data_param = arrayParameters
2805 2805
2806 2806 if arrayParameters is None:
2807 2807 dataOut.flagNoData = True
2808 2808 else:
2809 2809 dataOut.flagNoData = True
2810 2810
2811 2811 return
2812 2812
2813 2813 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2814 2814
2815 2815 minIndex = min(newheis[0])
2816 2816 maxIndex = max(newheis[0])
2817 2817
2818 2818 voltage = voltage0[:,:,minIndex:maxIndex+1]
2819 2819 nLength = voltage.shape[1]/n
2820 2820 nMin = 0
2821 2821 nMax = 0
2822 2822 phaseOffset = numpy.zeros((len(pairslist),n))
2823 2823
2824 2824 for i in range(n):
2825 2825 nMax += nLength
2826 2826 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2827 2827 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2828 2828 phaseOffset[:,i] = phaseCCF.transpose()
2829 2829 nMin = nMax
2830 2830 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2831 2831
2832 2832 #Remove Outliers
2833 2833 factor = 2
2834 2834 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2835 2835 dw = numpy.std(wt,axis = 1)
2836 2836 dw = dw.reshape((dw.size,1))
2837 2837 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2838 2838 phaseOffset[ind] = numpy.nan
2839 2839 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2840 2840
2841 2841 return phaseOffset
2842 2842
2843 2843 def __shiftPhase(self, data, phaseShift):
2844 2844 #this will shift the phase of a complex number
2845 2845 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2846 2846 return dataShifted
2847 2847
2848 2848 def __estimatePhaseDifference(self, array, pairslist):
2849 2849 nChannel = array.shape[0]
2850 2850 nHeights = array.shape[2]
2851 2851 numPairs = len(pairslist)
2852 2852 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2853 2853 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2854 2854
2855 2855 #Correct phases
2856 2856 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2857 2857 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2858 2858
2859 2859 if indDer[0].shape[0] > 0:
2860 2860 for i in range(indDer[0].shape[0]):
2861 2861 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2862 2862 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2863 2863
2864 2864 # for j in range(numSides):
2865 2865 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2866 2866 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2867 2867 #
2868 2868 #Linear
2869 2869 phaseInt = numpy.zeros((numPairs,1))
2870 2870 angAllCCF = phaseCCF[:,[0,1,3,4],0]
2871 2871 for j in range(numPairs):
2872 2872 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
2873 2873 phaseInt[j] = fit[1]
2874 2874 #Phase Differences
2875 2875 phaseDiff = phaseInt - phaseCCF[:,2,:]
2876 2876 phaseArrival = phaseInt.reshape(phaseInt.size)
2877 2877
2878 2878 #Dealias
2879 2879 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2880 2880 # indAlias = numpy.where(phaseArrival > numpy.pi)
2881 2881 # phaseArrival[indAlias] -= 2*numpy.pi
2882 2882 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2883 2883 # phaseArrival[indAlias] += 2*numpy.pi
2884 2884
2885 2885 return phaseDiff, phaseArrival
2886 2886
2887 2887 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2888 2888 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2889 2889 #find the phase shifts of each channel over 1 second intervals
2890 2890 #only look at ranges below the beacon signal
2891 2891 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2892 2892 numBlocks = int(volts.shape[1]/numProfPerBlock)
2893 2893 numHeights = volts.shape[2]
2894 2894 nChannel = volts.shape[0]
2895 2895 voltsCohDet = volts.copy()
2896 2896
2897 2897 pairsarray = numpy.array(pairslist)
2898 2898 indSides = pairsarray[:,1]
2899 2899 # indSides = numpy.array(range(nChannel))
2900 2900 # indSides = numpy.delete(indSides, indCenter)
2901 2901 #
2902 2902 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2903 2903 listBlocks = numpy.array_split(volts, numBlocks, 1)
2904 2904
2905 2905 startInd = 0
2906 2906 endInd = 0
2907 2907
2908 2908 for i in range(numBlocks):
2909 2909 startInd = endInd
2910 2910 endInd = endInd + listBlocks[i].shape[1]
2911 2911
2912 2912 arrayBlock = listBlocks[i]
2913 2913 # arrayBlockCenter = listCenter[i]
2914 2914
2915 2915 #Estimate the Phase Difference
2916 2916 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
2917 2917 #Phase Difference RMS
2918 2918 arrayPhaseRMS = numpy.abs(phaseDiff)
2919 2919 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
2920 2920 indPhase = numpy.where(phaseRMSaux==4)
2921 2921 #Shifting
2922 2922 if indPhase[0].shape[0] > 0:
2923 2923 for j in range(indSides.size):
2924 2924 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
2925 2925 voltsCohDet[:,startInd:endInd,:] = arrayBlock
2926 2926
2927 2927 return voltsCohDet
2928 2928
2929 2929 def __calculateCCF(self, volts, pairslist ,laglist):
2930 2930
2931 2931 nHeights = volts.shape[2]
2932 2932 nPoints = volts.shape[1]
2933 2933 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
2934 2934
2935 2935 for i in range(len(pairslist)):
2936 2936 volts1 = volts[pairslist[i][0]]
2937 2937 volts2 = volts[pairslist[i][1]]
2938 2938
2939 2939 for t in range(len(laglist)):
2940 2940 idxT = laglist[t]
2941 2941 if idxT >= 0:
2942 2942 vStacked = numpy.vstack((volts2[idxT:,:],
2943 2943 numpy.zeros((idxT, nHeights),dtype='complex')))
2944 2944 else:
2945 2945 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
2946 2946 volts2[:(nPoints + idxT),:]))
2947 2947 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
2948 2948
2949 2949 vStacked = None
2950 2950 return voltsCCF
2951 2951
2952 2952 def __getNoise(self, power, timeSegment, timeInterval):
2953 2953 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2954 2954 numBlocks = int(power.shape[0]/numProfPerBlock)
2955 2955 numHeights = power.shape[1]
2956 2956
2957 2957 listPower = numpy.array_split(power, numBlocks, 0)
2958 2958 noise = numpy.zeros((power.shape[0], power.shape[1]))
2959 2959 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
2960 2960
2961 2961 startInd = 0
2962 2962 endInd = 0
2963 2963
2964 2964 for i in range(numBlocks): #split por canal
2965 2965 startInd = endInd
2966 2966 endInd = endInd + listPower[i].shape[0]
2967 2967
2968 2968 arrayBlock = listPower[i]
2969 2969 noiseAux = numpy.mean(arrayBlock, 0)
2970 2970 # noiseAux = numpy.median(noiseAux)
2971 2971 # noiseAux = numpy.mean(arrayBlock)
2972 2972 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
2973 2973
2974 2974 noiseAux1 = numpy.mean(arrayBlock)
2975 2975 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
2976 2976
2977 2977 return noise, noise1
2978 2978
2979 2979 def __findMeteors(self, power, thresh):
2980 2980 nProf = power.shape[0]
2981 2981 nHeights = power.shape[1]
2982 2982 listMeteors = []
2983 2983
2984 2984 for i in range(nHeights):
2985 2985 powerAux = power[:,i]
2986 2986 threshAux = thresh[:,i]
2987 2987
2988 2988 indUPthresh = numpy.where(powerAux > threshAux)[0]
2989 2989 indDNthresh = numpy.where(powerAux <= threshAux)[0]
2990 2990
2991 2991 j = 0
2992 2992
2993 2993 while (j < indUPthresh.size - 2):
2994 2994 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
2995 2995 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
2996 2996 indDNthresh = indDNthresh[indDNAux]
2997 2997
2998 2998 if (indDNthresh.size > 0):
2999 2999 indEnd = indDNthresh[0] - 1
3000 3000 indInit = indUPthresh[j]
3001 3001
3002 3002 meteor = powerAux[indInit:indEnd + 1]
3003 3003 indPeak = meteor.argmax() + indInit
3004 3004 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
3005 3005
3006 3006 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
3007 3007 j = numpy.where(indUPthresh == indEnd)[0] + 1
3008 3008 else: j+=1
3009 3009 else: j+=1
3010 3010
3011 3011 return listMeteors
3012 3012
3013 3013 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
3014 3014
3015 3015 arrayMeteors = numpy.asarray(listMeteors)
3016 3016 listMeteors1 = []
3017 3017
3018 3018 while arrayMeteors.shape[0] > 0:
3019 3019 FLAs = arrayMeteors[:,4]
3020 3020 maxFLA = FLAs.argmax()
3021 3021 listMeteors1.append(arrayMeteors[maxFLA,:])
3022 3022
3023 3023 MeteorInitTime = arrayMeteors[maxFLA,1]
3024 3024 MeteorEndTime = arrayMeteors[maxFLA,3]
3025 3025 MeteorHeight = arrayMeteors[maxFLA,0]
3026 3026
3027 3027 #Check neighborhood
3028 3028 maxHeightIndex = MeteorHeight + rangeLimit
3029 3029 minHeightIndex = MeteorHeight - rangeLimit
3030 3030 minTimeIndex = MeteorInitTime - timeLimit
3031 3031 maxTimeIndex = MeteorEndTime + timeLimit
3032 3032
3033 3033 #Check Heights
3034 3034 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
3035 3035 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
3036 3036 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
3037 3037
3038 3038 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
3039 3039
3040 3040 return listMeteors1
3041 3041
3042 3042 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
3043 3043 numHeights = volts.shape[2]
3044 3044 nChannel = volts.shape[0]
3045 3045
3046 3046 thresholdPhase = thresh[0]
3047 3047 thresholdNoise = thresh[1]
3048 3048 thresholdDB = float(thresh[2])
3049 3049
3050 3050 thresholdDB1 = 10**(thresholdDB/10)
3051 3051 pairsarray = numpy.array(pairslist)
3052 3052 indSides = pairsarray[:,1]
3053 3053
3054 3054 pairslist1 = list(pairslist)
3055 3055 pairslist1.append((0,1))
3056 3056 pairslist1.append((3,4))
3057 3057
3058 3058 listMeteors1 = []
3059 3059 listPowerSeries = []
3060 3060 listVoltageSeries = []
3061 3061 #volts has the war data
3062 3062
3063 3063 if frequency == 30e6:
3064 3064 timeLag = 45*10**-3
3065 3065 else:
3066 3066 timeLag = 15*10**-3
3067 3067 lag = numpy.ceil(timeLag/timeInterval)
3068 3068
3069 3069 for i in range(len(listMeteors)):
3070 3070
3071 3071 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3072 3072 meteorAux = numpy.zeros(16)
3073 3073
3074 3074 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3075 3075 mHeight = listMeteors[i][0]
3076 3076 mStart = listMeteors[i][1]
3077 3077 mPeak = listMeteors[i][2]
3078 3078 mEnd = listMeteors[i][3]
3079 3079
3080 3080 #get the volt data between the start and end times of the meteor
3081 3081 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3082 3082 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3083 3083
3084 3084 #3.6. Phase Difference estimation
3085 3085 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3086 3086
3087 3087 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3088 3088 #meteorVolts0.- all Channels, all Profiles
3089 3089 meteorVolts0 = volts[:,:,mHeight]
3090 3090 meteorThresh = noise[:,mHeight]*thresholdNoise
3091 3091 meteorNoise = noise[:,mHeight]
3092 3092 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3093 3093 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3094 3094
3095 3095 #Times reestimation
3096 3096 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3097 3097 if mStart1.size > 0:
3098 3098 mStart1 = mStart1[-1] + 1
3099 3099
3100 3100 else:
3101 3101 mStart1 = mPeak
3102 3102
3103 3103 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3104 3104 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3105 3105 if mEndDecayTime1.size == 0:
3106 3106 mEndDecayTime1 = powerNet0.size
3107 3107 else:
3108 3108 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3109 3109 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3110 3110
3111 3111 #meteorVolts1.- all Channels, from start to end
3112 3112 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3113 3113 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
3114 3114 if meteorVolts2.shape[1] == 0:
3115 3115 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
3116 3116 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3117 3117 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3118 3118 ##################### END PARAMETERS REESTIMATION #########################
3119 3119
3120 3120 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3121 3121 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3122 3122 if meteorVolts2.shape[1] > 0:
3123 3123 #Phase Difference re-estimation
3124 3124 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3125 3125 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3126 3126 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3127 3127 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3128 3128 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3129 3129
3130 3130 #Phase Difference RMS
3131 3131 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3132 3132 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
3133 3133 #Data from Meteor
3134 3134 mPeak1 = powerNet1.argmax() + mStart1
3135 3135 mPeakPower1 = powerNet1.max()
3136 3136 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
3137 3137 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
3138 3138 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
3139 3139 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
3140 3140 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
3141 3141 #Vectorize
3142 3142 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3143 3143 meteorAux[7:11] = phaseDiffint[0:4]
3144 3144
3145 3145 #Rejection Criterions
3146 3146 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3147 3147 meteorAux[-1] = 17
3148 3148 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3149 3149 meteorAux[-1] = 1
3150 3150
3151 3151
3152 3152 else:
3153 3153 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3154 3154 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3155 3155 PowerSeries = 0
3156 3156
3157 3157 listMeteors1.append(meteorAux)
3158 3158 listPowerSeries.append(PowerSeries)
3159 3159 listVoltageSeries.append(meteorVolts1)
3160 3160
3161 3161 return listMeteors1, listPowerSeries, listVoltageSeries
3162 3162
3163 3163 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3164 3164
3165 3165 threshError = 10
3166 3166 #Depending if it is 30 or 50 MHz
3167 3167 if frequency == 30e6:
3168 3168 timeLag = 45*10**-3
3169 3169 else:
3170 3170 timeLag = 15*10**-3
3171 3171 lag = numpy.ceil(timeLag/timeInterval)
3172 3172
3173 3173 listMeteors1 = []
3174 3174
3175 3175 for i in range(len(listMeteors)):
3176 3176 meteorPower = listPower[i]
3177 3177 meteorAux = listMeteors[i]
3178 3178
3179 3179 if meteorAux[-1] == 0:
3180 3180
3181 3181 try:
3182 3182 indmax = meteorPower.argmax()
3183 3183 indlag = indmax + lag
3184 3184
3185 3185 y = meteorPower[indlag:]
3186 3186 x = numpy.arange(0, y.size)*timeLag
3187 3187
3188 3188 #first guess
3189 3189 a = y[0]
3190 3190 tau = timeLag
3191 3191 #exponential fit
3192 3192 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
3193 3193 y1 = self.__exponential_function(x, *popt)
3194 3194 #error estimation
3195 3195 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3196 3196
3197 3197 decayTime = popt[1]
3198 3198 riseTime = indmax*timeInterval
3199 3199 meteorAux[11:13] = [decayTime, error]
3200 3200
3201 3201 #Table items 7, 8 and 11
3202 3202 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3203 3203 meteorAux[-1] = 7
3204 3204 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3205 3205 meteorAux[-1] = 8
3206 3206 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3207 3207 meteorAux[-1] = 11
3208 3208
3209 3209
3210 3210 except:
3211 3211 meteorAux[-1] = 11
3212 3212
3213 3213
3214 3214 listMeteors1.append(meteorAux)
3215 3215
3216 3216 return listMeteors1
3217 3217
3218 3218 #Exponential Function
3219 3219
3220 3220 def __exponential_function(self, x, a, tau):
3221 3221 y = a*numpy.exp(-x/tau)
3222 3222 return y
3223 3223
3224 3224 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3225 3225
3226 3226 pairslist1 = list(pairslist)
3227 3227 pairslist1.append((0,1))
3228 3228 pairslist1.append((3,4))
3229 3229 numPairs = len(pairslist1)
3230 3230 #Time Lag
3231 3231 timeLag = 45*10**-3
3232 3232 c = 3e8
3233 3233 lag = numpy.ceil(timeLag/timeInterval)
3234 3234 freq = 30e6
3235 3235
3236 3236 listMeteors1 = []
3237 3237
3238 3238 for i in range(len(listMeteors)):
3239 3239 meteorAux = listMeteors[i]
3240 3240 if meteorAux[-1] == 0:
3241 3241 mStart = listMeteors[i][1]
3242 3242 mPeak = listMeteors[i][2]
3243 3243 mLag = mPeak - mStart + lag
3244 3244
3245 3245 #get the volt data between the start and end times of the meteor
3246 3246 meteorVolts = listVolts[i]
3247 3247 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3248 3248
3249 3249 #Get CCF
3250 3250 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3251 3251
3252 3252 #Method 2
3253 3253 slopes = numpy.zeros(numPairs)
3254 3254 time = numpy.array([-2,-1,1,2])*timeInterval
3255 3255 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3256 3256
3257 3257 #Correct phases
3258 3258 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3259 3259 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3260 3260
3261 3261 if indDer[0].shape[0] > 0:
3262 3262 for i in range(indDer[0].shape[0]):
3263 3263 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3264 3264 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
3265 3265
3266 3266 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
3267 3267 for j in range(numPairs):
3268 3268 fit = stats.linregress(time, angAllCCF[j,:])
3269 3269 slopes[j] = fit[0]
3270 3270
3271 3271 #Remove Outlier
3272 3272 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3273 3273 # slopes = numpy.delete(slopes,indOut)
3274 3274 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3275 3275 # slopes = numpy.delete(slopes,indOut)
3276 3276
3277 3277 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3278 3278 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3279 3279 meteorAux[-2] = radialError
3280 3280 meteorAux[-3] = radialVelocity
3281 3281
3282 3282 #Setting Error
3283 3283 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3284 3284 if numpy.abs(radialVelocity) > 200:
3285 3285 meteorAux[-1] = 15
3286 3286 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3287 3287 elif radialError > radialStdThresh:
3288 3288 meteorAux[-1] = 12
3289 3289
3290 3290 listMeteors1.append(meteorAux)
3291 3291 return listMeteors1
3292 3292
3293 3293 def __setNewArrays(self, listMeteors, date, heiRang):
3294 3294
3295 3295 #New arrays
3296 3296 arrayMeteors = numpy.array(listMeteors)
3297 3297 arrayParameters = numpy.zeros((len(listMeteors), 13))
3298 3298
3299 3299 #Date inclusion
3300 3300 # date = re.findall(r'\((.*?)\)', date)
3301 3301 # date = date[0].split(',')
3302 3302 # date = map(int, date)
3303 3303 #
3304 3304 # if len(date)<6:
3305 3305 # date.append(0)
3306 3306 #
3307 3307 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3308 3308 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3309 3309 arrayDate = numpy.tile(date, (len(listMeteors)))
3310 3310
3311 3311 #Meteor array
3312 3312 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3313 3313 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3314 3314
3315 3315 #Parameters Array
3316 3316 arrayParameters[:,0] = arrayDate #Date
3317 3317 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
3318 3318 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
3319 3319 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3320 3320 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3321 3321
3322 3322
3323 3323 return arrayParameters
3324 3324
3325 3325 class CorrectSMPhases(Operation):
3326 3326
3327 3327 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3328 3328
3329 3329 arrayParameters = dataOut.data_param
3330 3330 pairsList = []
3331 3331 pairx = (0,1)
3332 3332 pairy = (2,3)
3333 3333 pairsList.append(pairx)
3334 3334 pairsList.append(pairy)
3335 3335 jph = numpy.zeros(4)
3336 3336
3337 3337 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3338 3338 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3339 3339 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3340 3340
3341 3341 meteorOps = SMOperations()
3342 3342 if channelPositions is None:
3343 3343 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3344 3344 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3345 3345
3346 3346 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3347 3347 h = (hmin,hmax)
3348 3348
3349 3349 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3350 3350
3351 3351 dataOut.data_param = arrayParameters
3352 3352 return
3353 3353
3354 3354 class SMPhaseCalibration(Operation):
3355 3355
3356 3356 __buffer = None
3357 3357
3358 3358 __initime = None
3359 3359
3360 3360 __dataReady = False
3361 3361
3362 3362 __isConfig = False
3363 3363
3364 3364 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3365 3365
3366 3366 dataTime = currentTime + paramInterval
3367 3367 deltaTime = dataTime - initTime
3368 3368
3369 3369 if deltaTime >= outputInterval or deltaTime < 0:
3370 3370 return True
3371 3371
3372 3372 return False
3373 3373
3374 3374 def __getGammas(self, pairs, d, phases):
3375 3375 gammas = numpy.zeros(2)
3376 3376
3377 3377 for i in range(len(pairs)):
3378 3378
3379 3379 pairi = pairs[i]
3380 3380
3381 3381 phip3 = phases[:,pairi[0]]
3382 3382 d3 = d[pairi[0]]
3383 3383 phip2 = phases[:,pairi[1]]
3384 3384 d2 = d[pairi[1]]
3385 3385 #Calculating gamma
3386 3386 # jdcos = alp1/(k*d1)
3387 3387 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
3388 3388 jgamma = -phip2*d3/d2 - phip3
3389 3389 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3390 3390 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3391 3391 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3392 3392
3393 3393 #Revised distribution
3394 3394 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3395 3395
3396 3396 #Histogram
3397 3397 nBins = 64
3398 3398 rmin = -0.5*numpy.pi
3399 3399 rmax = 0.5*numpy.pi
3400 3400 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3401 3401
3402 3402 meteorsY = phaseHisto[0]
3403 3403 phasesX = phaseHisto[1][:-1]
3404 3404 width = phasesX[1] - phasesX[0]
3405 3405 phasesX += width/2
3406 3406
3407 3407 #Gaussian aproximation
3408 3408 bpeak = meteorsY.argmax()
3409 3409 peak = meteorsY.max()
3410 3410 jmin = bpeak - 5
3411 3411 jmax = bpeak + 5 + 1
3412 3412
3413 3413 if jmin<0:
3414 3414 jmin = 0
3415 3415 jmax = 6
3416 3416 elif jmax > meteorsY.size:
3417 3417 jmin = meteorsY.size - 6
3418 3418 jmax = meteorsY.size
3419 3419
3420 3420 x0 = numpy.array([peak,bpeak,50])
3421 3421 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3422 3422
3423 3423 #Gammas
3424 3424 gammas[i] = coeff[0][1]
3425 3425
3426 3426 return gammas
3427 3427
3428 3428 def __residualFunction(self, coeffs, y, t):
3429 3429
3430 3430 return y - self.__gauss_function(t, coeffs)
3431 3431
3432 3432 def __gauss_function(self, t, coeffs):
3433 3433
3434 3434 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3435 3435
3436 3436 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
3437 3437 meteorOps = SMOperations()
3438 3438 nchan = 4
3439 3439 pairx = pairsList[0] #x es 0
3440 3440 pairy = pairsList[1] #y es 1
3441 3441 center_xangle = 0
3442 3442 center_yangle = 0
3443 3443 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
3444 3444 ntimes = len(range_angle)
3445 3445
3446 3446 nstepsx = 20
3447 3447 nstepsy = 20
3448 3448
3449 3449 for iz in range(ntimes):
3450 3450 min_xangle = -range_angle[iz]/2 + center_xangle
3451 3451 max_xangle = range_angle[iz]/2 + center_xangle
3452 3452 min_yangle = -range_angle[iz]/2 + center_yangle
3453 3453 max_yangle = range_angle[iz]/2 + center_yangle
3454 3454
3455 3455 inc_x = (max_xangle-min_xangle)/nstepsx
3456 3456 inc_y = (max_yangle-min_yangle)/nstepsy
3457 3457
3458 3458 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3459 3459 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3460 3460 penalty = numpy.zeros((nstepsx,nstepsy))
3461 3461 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3462 3462 jph = numpy.zeros(nchan)
3463 3463
3464 3464 # Iterations looking for the offset
3465 3465 for iy in range(int(nstepsy)):
3466 3466 for ix in range(int(nstepsx)):
3467 3467 d3 = d[pairsList[1][0]]
3468 3468 d2 = d[pairsList[1][1]]
3469 3469 d5 = d[pairsList[0][0]]
3470 3470 d4 = d[pairsList[0][1]]
3471 3471
3472 3472 alp2 = alpha_y[iy] #gamma 1
3473 3473 alp4 = alpha_x[ix] #gamma 0
3474 3474
3475 3475 alp3 = -alp2*d3/d2 - gammas[1]
3476 3476 alp5 = -alp4*d5/d4 - gammas[0]
3477 3477 # jph[pairy[1]] = alpha_y[iy]
3478 3478 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3479 3479
3480 3480 # jph[pairx[1]] = alpha_x[ix]
3481 3481 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3482 3482 jph[pairsList[0][1]] = alp4
3483 3483 jph[pairsList[0][0]] = alp5
3484 3484 jph[pairsList[1][0]] = alp3
3485 3485 jph[pairsList[1][1]] = alp2
3486 3486 jph_array[:,ix,iy] = jph
3487 3487 # d = [2.0,2.5,2.5,2.0]
3488 3488 #falta chequear si va a leer bien los meteoros
3489 3489 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3490 3490 error = meteorsArray1[:,-1]
3491 3491 ind1 = numpy.where(error==0)[0]
3492 3492 penalty[ix,iy] = ind1.size
3493 3493
3494 3494 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3495 3495 phOffset = jph_array[:,i,j]
3496 3496
3497 3497 center_xangle = phOffset[pairx[1]]
3498 3498 center_yangle = phOffset[pairy[1]]
3499 3499
3500 3500 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3501 3501 phOffset = phOffset*180/numpy.pi
3502 3502 return phOffset
3503 3503
3504 3504
3505 3505 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3506 3506
3507 3507 dataOut.flagNoData = True
3508 3508 self.__dataReady = False
3509 3509 dataOut.outputInterval = nHours*3600
3510 3510
3511 3511 if self.__isConfig == False:
3512 3512 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3513 3513 #Get Initial LTC time
3514 3514 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
3515 3515 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3516 3516
3517 3517 self.__isConfig = True
3518 3518
3519 3519 if self.__buffer is None:
3520 3520 self.__buffer = dataOut.data_param.copy()
3521 3521
3522 3522 else:
3523 3523 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3524 3524
3525 3525 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3526 3526
3527 3527 if self.__dataReady:
3528 3528 dataOut.utctimeInit = self.__initime
3529 3529 self.__initime += dataOut.outputInterval #to erase time offset
3530 3530
3531 3531 freq = dataOut.frequency
3532 3532 c = dataOut.C #m/s
3533 3533 lamb = c/freq
3534 3534 k = 2*numpy.pi/lamb
3535 3535 azimuth = 0
3536 3536 h = (hmin, hmax)
3537 3537 # pairs = ((0,1),(2,3)) #Estrella
3538 3538 # pairs = ((1,0),(2,3)) #T
3539 3539
3540 3540 if channelPositions is None:
3541 3541 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3542 3542 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3543 3543 meteorOps = SMOperations()
3544 3544 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3545 3545
3546 3546 #Checking correct order of pairs
3547 3547 pairs = []
3548 3548 if distances[1] > distances[0]:
3549 3549 pairs.append((1,0))
3550 3550 else:
3551 3551 pairs.append((0,1))
3552 3552
3553 3553 if distances[3] > distances[2]:
3554 3554 pairs.append((3,2))
3555 3555 else:
3556 3556 pairs.append((2,3))
3557 3557 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3558 3558
3559 3559 meteorsArray = self.__buffer
3560 3560 error = meteorsArray[:,-1]
3561 3561 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
3562 3562 ind1 = numpy.where(boolError)[0]
3563 3563 meteorsArray = meteorsArray[ind1,:]
3564 3564 meteorsArray[:,-1] = 0
3565 3565 phases = meteorsArray[:,8:12]
3566 3566
3567 3567 #Calculate Gammas
3568 3568 gammas = self.__getGammas(pairs, distances, phases)
3569 3569 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
3570 3570 #Calculate Phases
3571 3571 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
3572 3572 phasesOff = phasesOff.reshape((1,phasesOff.size))
3573 3573 dataOut.data_output = -phasesOff
3574 3574 dataOut.flagNoData = False
3575 3575 self.__buffer = None
3576 3576
3577 3577
3578 3578 return
3579 3579
3580 3580 class SMOperations():
3581 3581
3582 3582 def __init__(self):
3583 3583
3584 3584 return
3585 3585
3586 3586 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3587 3587
3588 3588 arrayParameters = arrayParameters0.copy()
3589 3589 hmin = h[0]
3590 3590 hmax = h[1]
3591 3591
3592 3592 #Calculate AOA (Error N 3, 4)
3593 3593 #JONES ET AL. 1998
3594 3594 AOAthresh = numpy.pi/8
3595 3595 error = arrayParameters[:,-1]
3596 3596 phases = -arrayParameters[:,8:12] + jph
3597 3597 # phases = numpy.unwrap(phases)
3598 3598 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3599 3599
3600 3600 #Calculate Heights (Error N 13 and 14)
3601 3601 error = arrayParameters[:,-1]
3602 3602 Ranges = arrayParameters[:,1]
3603 3603 zenith = arrayParameters[:,4]
3604 3604 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3605 3605
3606 3606 #----------------------- Get Final data ------------------------------------
3607 3607 # error = arrayParameters[:,-1]
3608 3608 # ind1 = numpy.where(error==0)[0]
3609 3609 # arrayParameters = arrayParameters[ind1,:]
3610 3610
3611 3611 return arrayParameters
3612 3612
3613 3613 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3614 3614
3615 3615 arrayAOA = numpy.zeros((phases.shape[0],3))
3616 3616 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3617 3617
3618 3618 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3619 3619 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3620 3620 arrayAOA[:,2] = cosDirError
3621 3621
3622 3622 azimuthAngle = arrayAOA[:,0]
3623 3623 zenithAngle = arrayAOA[:,1]
3624 3624
3625 3625 #Setting Error
3626 3626 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3627 3627 error[indError] = 0
3628 3628 #Number 3: AOA not fesible
3629 3629 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3630 3630 error[indInvalid] = 3
3631 3631 #Number 4: Large difference in AOAs obtained from different antenna baselines
3632 3632 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3633 3633 error[indInvalid] = 4
3634 3634 return arrayAOA, error
3635 3635
3636 3636 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3637 3637
3638 3638 #Initializing some variables
3639 3639 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3640 3640 ang_aux = ang_aux.reshape(1,ang_aux.size)
3641 3641
3642 3642 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3643 3643 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3644 3644
3645 3645
3646 3646 for i in range(2):
3647 3647 ph0 = arrayPhase[:,pairsList[i][0]]
3648 3648 ph1 = arrayPhase[:,pairsList[i][1]]
3649 3649 d0 = distances[pairsList[i][0]]
3650 3650 d1 = distances[pairsList[i][1]]
3651 3651
3652 3652 ph0_aux = ph0 + ph1
3653 3653 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3654 3654 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3655 3655 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3656 3656 #First Estimation
3657 3657 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3658 3658
3659 3659 #Most-Accurate Second Estimation
3660 3660 phi1_aux = ph0 - ph1
3661 3661 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3662 3662 #Direction Cosine 1
3663 3663 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3664 3664
3665 3665 #Searching the correct Direction Cosine
3666 3666 cosdir0_aux = cosdir0[:,i]
3667 3667 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3668 3668 #Minimum Distance
3669 3669 cosDiff = (cosdir1 - cosdir0_aux)**2
3670 3670 indcos = cosDiff.argmin(axis = 1)
3671 3671 #Saving Value obtained
3672 3672 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3673 3673
3674 3674 return cosdir0, cosdir
3675 3675
3676 3676 def __calculateAOA(self, cosdir, azimuth):
3677 3677 cosdirX = cosdir[:,0]
3678 3678 cosdirY = cosdir[:,1]
3679 3679
3680 3680 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3681 3681 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3682 3682 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3683 3683
3684 3684 return angles
3685 3685
3686 3686 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3687 3687
3688 3688 Ramb = 375 #Ramb = c/(2*PRF)
3689 3689 Re = 6371 #Earth Radius
3690 3690 heights = numpy.zeros(Ranges.shape)
3691 3691
3692 3692 R_aux = numpy.array([0,1,2])*Ramb
3693 3693 R_aux = R_aux.reshape(1,R_aux.size)
3694 3694
3695 3695 Ranges = Ranges.reshape(Ranges.size,1)
3696 3696
3697 3697 Ri = Ranges + R_aux
3698 3698 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3699 3699
3700 3700 #Check if there is a height between 70 and 110 km
3701 3701 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3702 3702 ind_h = numpy.where(h_bool == 1)[0]
3703 3703
3704 3704 hCorr = hi[ind_h, :]
3705 3705 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3706 3706
3707 3707 hCorr = hi[ind_hCorr][:len(ind_h)]
3708 3708 heights[ind_h] = hCorr
3709 3709
3710 3710 #Setting Error
3711 3711 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3712 3712 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3713 3713 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3714 3714 error[indError] = 0
3715 3715 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3716 3716 error[indInvalid2] = 14
3717 3717 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3718 3718 error[indInvalid1] = 13
3719 3719
3720 3720 return heights, error
3721 3721
3722 3722 def getPhasePairs(self, channelPositions):
3723 3723 chanPos = numpy.array(channelPositions)
3724 3724 listOper = list(itertools.combinations(list(range(5)),2))
3725 3725
3726 3726 distances = numpy.zeros(4)
3727 3727 axisX = []
3728 3728 axisY = []
3729 3729 distX = numpy.zeros(3)
3730 3730 distY = numpy.zeros(3)
3731 3731 ix = 0
3732 3732 iy = 0
3733 3733
3734 3734 pairX = numpy.zeros((2,2))
3735 3735 pairY = numpy.zeros((2,2))
3736 3736
3737 3737 for i in range(len(listOper)):
3738 3738 pairi = listOper[i]
3739 3739
3740 3740 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3741 3741
3742 3742 if posDif[0] == 0:
3743 3743 axisY.append(pairi)
3744 3744 distY[iy] = posDif[1]
3745 3745 iy += 1
3746 3746 elif posDif[1] == 0:
3747 3747 axisX.append(pairi)
3748 3748 distX[ix] = posDif[0]
3749 3749 ix += 1
3750 3750
3751 3751 for i in range(2):
3752 3752 if i==0:
3753 3753 dist0 = distX
3754 3754 axis0 = axisX
3755 3755 else:
3756 3756 dist0 = distY
3757 3757 axis0 = axisY
3758 3758
3759 3759 side = numpy.argsort(dist0)[:-1]
3760 3760 axis0 = numpy.array(axis0)[side,:]
3761 3761 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
3762 3762 axis1 = numpy.unique(numpy.reshape(axis0,4))
3763 3763 side = axis1[axis1 != chanC]
3764 3764 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3765 3765 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3766 3766 if diff1<0:
3767 3767 chan2 = side[0]
3768 3768 d2 = numpy.abs(diff1)
3769 3769 chan1 = side[1]
3770 3770 d1 = numpy.abs(diff2)
3771 3771 else:
3772 3772 chan2 = side[1]
3773 3773 d2 = numpy.abs(diff2)
3774 3774 chan1 = side[0]
3775 3775 d1 = numpy.abs(diff1)
3776 3776
3777 3777 if i==0:
3778 3778 chanCX = chanC
3779 3779 chan1X = chan1
3780 3780 chan2X = chan2
3781 3781 distances[0:2] = numpy.array([d1,d2])
3782 3782 else:
3783 3783 chanCY = chanC
3784 3784 chan1Y = chan1
3785 3785 chan2Y = chan2
3786 3786 distances[2:4] = numpy.array([d1,d2])
3787 3787 # axisXsides = numpy.reshape(axisX[ix,:],4)
3788 3788 #
3789 3789 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3790 3790 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3791 3791 #
3792 3792 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3793 3793 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3794 3794 # channel25X = int(pairX[0,ind25X])
3795 3795 # channel20X = int(pairX[1,ind20X])
3796 3796 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
3797 3797 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3798 3798 # channel25Y = int(pairY[0,ind25Y])
3799 3799 # channel20Y = int(pairY[1,ind20Y])
3800 3800
3801 3801 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3802 3802 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3803 3803
3804 3804 return pairslist, distances
3805 3805 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3806 3806 #
3807 3807 # arrayAOA = numpy.zeros((phases.shape[0],3))
3808 3808 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3809 3809 #
3810 3810 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3811 3811 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3812 3812 # arrayAOA[:,2] = cosDirError
3813 3813 #
3814 3814 # azimuthAngle = arrayAOA[:,0]
3815 3815 # zenithAngle = arrayAOA[:,1]
3816 3816 #
3817 3817 # #Setting Error
3818 3818 # #Number 3: AOA not fesible
3819 3819 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3820 3820 # error[indInvalid] = 3
3821 3821 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3822 3822 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3823 3823 # error[indInvalid] = 4
3824 3824 # return arrayAOA, error
3825 3825 #
3826 3826 # def __getDirectionCosines(self, arrayPhase, pairsList):
3827 3827 #
3828 3828 # #Initializing some variables
3829 3829 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3830 3830 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3831 3831 #
3832 3832 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3833 3833 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3834 3834 #
3835 3835 #
3836 3836 # for i in range(2):
3837 3837 # #First Estimation
3838 3838 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3839 3839 # #Dealias
3840 3840 # indcsi = numpy.where(phi0_aux > numpy.pi)
3841 3841 # phi0_aux[indcsi] -= 2*numpy.pi
3842 3842 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3843 3843 # phi0_aux[indcsi] += 2*numpy.pi
3844 3844 # #Direction Cosine 0
3845 3845 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3846 3846 #
3847 3847 # #Most-Accurate Second Estimation
3848 3848 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3849 3849 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3850 3850 # #Direction Cosine 1
3851 3851 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3852 3852 #
3853 3853 # #Searching the correct Direction Cosine
3854 3854 # cosdir0_aux = cosdir0[:,i]
3855 3855 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3856 3856 # #Minimum Distance
3857 3857 # cosDiff = (cosdir1 - cosdir0_aux)**2
3858 3858 # indcos = cosDiff.argmin(axis = 1)
3859 3859 # #Saving Value obtained
3860 3860 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3861 3861 #
3862 3862 # return cosdir0, cosdir
3863 3863 #
3864 3864 # def __calculateAOA(self, cosdir, azimuth):
3865 3865 # cosdirX = cosdir[:,0]
3866 3866 # cosdirY = cosdir[:,1]
3867 3867 #
3868 3868 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3869 3869 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3870 3870 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3871 3871 #
3872 3872 # return angles
3873 3873 #
3874 3874 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3875 3875 #
3876 3876 # Ramb = 375 #Ramb = c/(2*PRF)
3877 3877 # Re = 6371 #Earth Radius
3878 3878 # heights = numpy.zeros(Ranges.shape)
3879 3879 #
3880 3880 # R_aux = numpy.array([0,1,2])*Ramb
3881 3881 # R_aux = R_aux.reshape(1,R_aux.size)
3882 3882 #
3883 3883 # Ranges = Ranges.reshape(Ranges.size,1)
3884 3884 #
3885 3885 # Ri = Ranges + R_aux
3886 3886 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3887 3887 #
3888 3888 # #Check if there is a height between 70 and 110 km
3889 3889 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3890 3890 # ind_h = numpy.where(h_bool == 1)[0]
3891 3891 #
3892 3892 # hCorr = hi[ind_h, :]
3893 3893 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3894 3894 #
3895 3895 # hCorr = hi[ind_hCorr]
3896 3896 # heights[ind_h] = hCorr
3897 3897 #
3898 3898 # #Setting Error
3899 3899 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3900 3900 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3901 3901 #
3902 3902 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3903 3903 # error[indInvalid2] = 14
3904 3904 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3905 3905 # error[indInvalid1] = 13
3906 3906 #
3907 3907 # return heights, error
3908 3908
3909 3909
3910 3910 class WeatherRadar(Operation):
3911 3911 '''
3912 3912 Function tat implements Weather Radar operations-
3913 3913 Input:
3914 3914 Output:
3915 3915 Parameters affected:
3916 3916 '''
3917 3917 isConfig = False
3918 3918 variableList = None
3919 3919
3920 3920 def __init__(self):
3921 3921 Operation.__init__(self)
3922 3922
3923 3923 def setup(self,dataOut,variableList= None,Pt=0,Gt=0,Gr=0,lambda_=0, aL=0,
3924 3924 tauW= 0,thetaT=0,thetaR=0,Km =0):
3925 3925 self.nCh = dataOut.nChannels
3926 3926 self.nHeis = dataOut.nHeights
3927 3927 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
3928 3928 self.Range = numpy.arange(dataOut.nHeights)*deltaHeight + dataOut.heightList[0]
3929 3929 self.Range = self.Range.reshape(1,self.nHeis)
3930 3930 self.Range = numpy.tile(self.Range,[self.nCh,1])
3931 3931 '''-----------1 Constante del Radar----------'''
3932 3932 self.Pt = Pt
3933 3933 self.Gt = Gt
3934 3934 self.Gr = Gr
3935 3935 self.lambda_ = lambda_
3936 3936 self.aL = aL
3937 3937 self.tauW = tauW
3938 3938 self.thetaT = thetaT
3939 3939 self.thetaR = thetaR
3940 3940 self.Km = Km
3941 3941 Numerator = ((4*numpy.pi)**3 * aL**2 * 16 *numpy.log(2))
3942 3942 Denominator = (Pt * Gt * Gr * lambda_**2 * SPEED_OF_LIGHT * tauW * numpy.pi*thetaT*thetaR)
3943 3943 self.RadarConstant = Numerator/Denominator
3944 3944 self.variableList= variableList
3945 3945
3946 3946 def setMoments(self,dataOut,i):
3947 3947
3948 3948 type = dataOut.inputUnit
3949 3949 nCh = dataOut.nChannels
3950 3950 nHeis = dataOut.nHeights
3951 3951 data_param = numpy.zeros((nCh,4,nHeis))
3952 3952 if type == "Voltage":
3953 3953 factor = dataOut.normFactor
3954 3954 data_param[:,0,:] = dataOut.dataPP_POW/(factor)
3955 3955 data_param[:,1,:] = dataOut.dataPP_DOP
3956 3956 data_param[:,2,:] = dataOut.dataPP_WIDTH
3957 3957 data_param[:,3,:] = dataOut.dataPP_SNR
3958 3958 if type == "Spectra":
3959 3959 data_param[:,0,:] = dataOut.data_POW
3960 3960 data_param[:,1,:] = dataOut.data_DOP
3961 3961 data_param[:,2,:] = dataOut.data_WIDTH
3962 3962 data_param[:,3,:] = dataOut.data_SNR
3963 3963
3964 3964 return data_param[:,i,:]
3965 3965
3966 3966 def getCoeficienteCorrelacionROhv_R(self,dataOut):
3967 3967 type = dataOut.inputUnit
3968 3968 nHeis = dataOut.nHeights
3969 3969 data_RhoHV_R = numpy.zeros((nHeis))
3970 3970 if type == "Voltage":
3971 3971 powa = dataOut.dataPP_POWER[0]
3972 3972 powb = dataOut.dataPP_POWER[1]
3973 3973 ccf = dataOut.dataPP_CCF
3974 3974 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3975 3975 data_RhoHV_R = numpy.abs(avgcoherenceComplex)
3976 3976 if type == "Spectra":
3977 3977 data_RhoHV_R = dataOut.getCoherence()
3978 3978
3979 3979 return data_RhoHV_R
3980 3980
3981 3981 def getFasediferencialPhiD_P(self,dataOut,phase= True):
3982 3982 type = dataOut.inputUnit
3983 3983 nHeis = dataOut.nHeights
3984 3984 data_PhiD_P = numpy.zeros((nHeis))
3985 3985 if type == "Voltage":
3986 3986 powa = dataOut.dataPP_POWER[0]
3987 3987 powb = dataOut.dataPP_POWER[1]
3988 3988 ccf = dataOut.dataPP_CCF
3989 3989 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3990 3990 if phase:
3991 3991 data_PhiD_P = numpy.arctan2(avgcoherenceComplex.imag,
3992 3992 avgcoherenceComplex.real) * 180 / numpy.pi
3993 3993 if type == "Spectra":
3994 3994 data_PhiD_P = dataOut.getCoherence(phase = phase)
3995 3995
3996 3996 return data_PhiD_P
3997 3997
3998 3998 def getReflectividad_D(self,dataOut):
3999 3999 '''-----------------------------Potencia de Radar -Signal S-----------------------------'''
4000 4000
4001 4001 Pr = self.setMoments(dataOut,0)
4002 4002
4003 4003 '''-----------2 Reflectividad del Radar y Factor de Reflectividad------'''
4004 4004 self.n_radar = numpy.zeros((self.nCh,self.nHeis))
4005 4005 self.Z_radar = numpy.zeros((self.nCh,self.nHeis))
4006 4006 for R in range(self.nHeis):
4007 4007 self.n_radar[:,R] = self.RadarConstant*Pr[:,R]* (self.Range[:,R])**2
4008 4008
4009 4009 self.Z_radar[:,R] = self.n_radar[:,R]* self.lambda_**4/( numpy.pi**5 * self.Km**2)
4010 4010
4011 4011 '''----------- Factor de Reflectividad Equivalente lamda_ < 10 cm , lamda_= 3.2cm-------'''
4012 4012 Zeh = self.Z_radar
4013 4013 dBZeh = 10*numpy.log10(Zeh)
4014 4014 Zdb_D = dBZeh[0] - dBZeh[1]
4015 4015 return Zdb_D
4016 4016
4017 4017 def getRadialVelocity_V(self,dataOut):
4018 4018 velRadial_V = self.setMoments(dataOut,1)
4019 4019 return velRadial_V
4020 4020
4021 4021 def getAnchoEspectral_W(self,dataOut):
4022 4022 Sigmav_W = self.setMoments(dataOut,2)
4023 4023 return Sigmav_W
4024 4024
4025 4025
4026 4026 def run(self,dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4027 4027 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93):
4028 4028
4029 4029 if not self.isConfig:
4030 4030 self.setup(dataOut= dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4031 4031 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93)
4032 4032 self.isConfig = True
4033 4033
4034 4034 for i in range(len(self.variableList)):
4035 4035 if self.variableList[i]=='ReflectividadDiferencial':
4036 4036 dataOut.Zdb_D =self.getReflectividad_D(dataOut=dataOut)
4037 4037 if self.variableList[i]=='FaseDiferencial':
4038 4038 dataOut.PhiD_P =self.getFasediferencialPhiD_P(dataOut=dataOut, phase=True)
4039 4039 if self.variableList[i] == "CoeficienteCorrelacion":
4040 4040 dataOut.RhoHV_R = self.getCoeficienteCorrelacionROhv_R(dataOut)
4041 4041 if self.variableList[i] =="VelocidadRadial":
4042 4042 dataOut.velRadial_V = self.getRadialVelocity_V(dataOut)
4043 4043 if self.variableList[i] =="AnchoEspectral":
4044 4044 dataOut.Sigmav_W = self.getAnchoEspectral_W(dataOut)
4045 4045 return dataOut
4046 4046
4047 4047 class PedestalInformation(Operation):
4048 4048
4049 4049 def __init__(self):
4050 4050 Operation.__init__(self)
4051 4051 self.filename = False
4052 4052
4053 4053 def find_file(self, timestamp):
4054 4054
4055 4055 dt = datetime.datetime.utcfromtimestamp(timestamp)
4056 4056 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4057 4057
4058 4058 if not os.path.exists(path):
4059 4059 return False, False
4060 4060 fileList = glob.glob(os.path.join(path, '*.h5'))
4061 4061 fileList.sort()
4062 for fullname in fileList:
4063 filename = fullname.split('/')[-1]
4064 number = int(filename[4:14])
4065 if number <= timestamp:
4066 return number, fullname
4067 return False, False
4062 print(fileList)
4063 return fileList
4068 4064
4069 4065 def find_next_file(self):
4070 4066
4071 4067 while True:
4068 if self.utctime < self.utcfile:
4069 self.flagNoData = True
4070 break
4071 self.flagNoData = False
4072 4072 file_size = len(self.fp['Data']['utc'])
4073 4073 if self.utctime < self.utcfile+file_size*self.interval:
4074 4074 break
4075 self.utcfile += file_size*self.interval
4075 dt = datetime.datetime.utcfromtimestamp(self.utcfile)
4076 if dt.second > 0:
4077 self.utcfile -= dt.second
4078 self.utcfile += self.samples*self.interval
4076 4079 dt = datetime.datetime.utcfromtimestamp(self.utctime)
4077 4080 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4078 self.filename = os.path.join(path, 'pos@{}.000.h5'.format(self.utcfile))
4081 self.filename = os.path.join(path, 'pos@{}.000.h5'.format(int(self.utcfile)))
4082 print('ACQ time: ', self.utctime, 'POS time: ', self.utcfile)
4083 print('Next file: ', self.filename)
4079 4084 if not os.path.exists(self.filename):
4080 4085 log.warning('Waiting for position files...', self.name)
4081 4086
4082 4087 if not os.path.exists(self.filename):
4083 4088
4084 4089 raise IOError('No new position files found in {}'.format(path))
4085 4090 self.fp.close()
4086 4091 self.fp = h5py.File(self.filename, 'r')
4087 4092 log.log('Opening file: {}'.format(self.filename), self.name)
4088 4093
4089 4094 def get_values(self):
4090 4095
4091 index = int((self.utctime-self.utcfile)/self.interval)
4092 return self.fp['Data']['azi_pos'][index], self.fp['Data']['ele_pos'][index]
4096 if self.flagNoData:
4097 return numpy.nan, numpy.nan
4098 else:
4099 index = int((self.utctime-self.utcfile)/self.interval)
4100 return self.fp['Data']['azi_pos'][index], self.fp['Data']['ele_pos'][index]
4093 4101
4094 4102 def setup(self, dataOut, path, conf, samples, interval, wr_exp):
4095 4103
4096 4104 self.path = path
4097 4105 self.conf = conf
4098 4106 self.samples = samples
4099 4107 self.interval = interval
4100 self.utcfile, self.filename = self.find_file(dataOut.utctime)
4108 filelist = self.find_file(dataOut.utctime)
4101 4109
4102 if not self.filename:
4110 if not filelist:
4103 4111 log.error('No position files found in {}'.format(path), self.name)
4104 4112 raise IOError('No position files found in {}'.format(path))
4105 4113 else:
4114 self.filename = filelist[0]
4115 self.utcfile = int(self.filename.split('/')[-1][4:14])
4106 4116 log.log('Opening file: {}'.format(self.filename), self.name)
4107 4117 self.fp = h5py.File(self.filename, 'r')
4108 4118
4109 def run(self, dataOut, path, conf=None, samples=1500, interval=0.04, wr_exp=None):
4119 def run(self, dataOut, path, conf=None, samples=1500, interval=0.04, wr_exp=None, offset=0):
4110 4120
4111 4121 if not self.isConfig:
4112 4122 self.setup(dataOut, path, conf, samples, interval, wr_exp)
4113 4123 self.isConfig = True
4114 4124
4115 self.utctime = dataOut.utctime
4125 self.utctime = dataOut.utctime + offset
4116 4126
4117 4127 self.find_next_file()
4118 4128
4119 4129 az, el = self.get_values()
4120 4130 dataOut.flagNoData = False
4121 4131
4122 4132 if numpy.isnan(az) or numpy.isnan(el) :
4123 4133 dataOut.flagNoData = True
4124 4134 return dataOut
4125 4135
4126 4136 dataOut.azimuth = az
4127 4137 dataOut.elevation = el
4128 4138 # print('AZ: ', az, ' EL: ', el)
4129 4139 return dataOut
4130 4140
4131 4141 class Block360(Operation):
4132 4142 '''
4133 4143 '''
4134 4144 isConfig = False
4135 4145 __profIndex = 0
4136 4146 __initime = None
4137 4147 __lastdatatime = None
4138 4148 __buffer = None
4139 4149 __dataReady = False
4140 4150 n = None
4141 4151 __nch = 0
4142 4152 __nHeis = 0
4143 4153 index = 0
4144 4154 mode = 0
4145 4155
4146 4156 def __init__(self,**kwargs):
4147 4157 Operation.__init__(self,**kwargs)
4148 4158
4149 4159 def setup(self, dataOut, n = None, mode = None):
4150 4160 '''
4151 4161 n= Numero de PRF's de entrada
4152 4162 '''
4153 4163 self.__initime = None
4154 4164 self.__lastdatatime = 0
4155 4165 self.__dataReady = False
4156 4166 self.__buffer = 0
4157 4167 self.__buffer_1D = 0
4158 4168 self.__profIndex = 0
4159 4169 self.index = 0
4160 4170 self.__nch = dataOut.nChannels
4161 4171 self.__nHeis = dataOut.nHeights
4162 4172 ##print("ELVALOR DE n es:", n)
4163 4173 if n == None:
4164 4174 raise ValueError("n should be specified.")
4165 4175
4166 4176 if mode == None:
4167 4177 raise ValueError("mode should be specified.")
4168 4178
4169 4179 if n != None:
4170 4180 if n<1:
4171 4181 print("n should be greater than 2")
4172 4182 raise ValueError("n should be greater than 2")
4173 4183
4174 4184 self.n = n
4175 4185 self.mode = mode
4176 4186 #print("self.mode",self.mode)
4177 4187 #print("nHeights")
4178 4188 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4179 4189 self.__buffer2 = numpy.zeros(n)
4180 4190 self.__buffer3 = numpy.zeros(n)
4181 4191
4182 4192
4183 4193
4184 4194
4185 4195 def putData(self,data,mode):
4186 4196 '''
4187 4197 Add a profile to he __buffer and increase in one the __profiel Index
4188 4198 '''
4189 4199 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4190 4200 #print("line 4049",data.azimuth.shape,data.azimuth)
4191 4201 if self.mode==0:
4192 4202 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4193 4203 if self.mode==1:
4194 4204 self.__buffer[:,self.__profIndex,:]= data.data_pow
4195 4205 #print("me casi",self.index,data.azimuth[self.index])
4196 4206 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4197 4207 #print("magic",data.profileIndex)
4198 4208 #print(data.azimuth[self.index])
4199 4209 #print("index",self.index)
4200 4210
4201 4211 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4202 4212 self.__buffer2[self.__profIndex] = data.azimuth
4203 4213 self.__buffer3[self.__profIndex] = data.elevation
4204 4214 #print("q pasa")
4205 4215 #####self.index+=1
4206 4216 #print("index",self.index,data.azimuth[:10])
4207 4217 self.__profIndex += 1
4208 4218 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4209 4219
4210 4220 def pushData(self,data):
4211 4221 '''
4212 4222 Return the PULSEPAIR and the profiles used in the operation
4213 4223 Affected : self.__profileIndex
4214 4224 '''
4215 4225 #print("pushData")
4216 4226
4217 4227 data_360 = self.__buffer
4218 4228 data_p = self.__buffer2
4219 4229 data_e = self.__buffer3
4220 4230 n = self.__profIndex
4221 4231
4222 4232 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4223 4233 self.__buffer2 = numpy.zeros(self.n)
4224 4234 self.__buffer3 = numpy.zeros(self.n)
4225 4235 self.__profIndex = 0
4226 4236 #print("pushData")
4227 4237 return data_360,n,data_p,data_e
4228 4238
4229 4239
4230 4240 def byProfiles(self,dataOut):
4231 4241
4232 4242 self.__dataReady = False
4233 4243 data_360 = None
4234 4244 data_p = None
4235 4245 data_e = None
4236 4246 #print("dataOu",dataOut.dataPP_POW)
4237 4247 self.putData(data=dataOut,mode = self.mode)
4238 4248 ##### print("profIndex",self.__profIndex)
4239 4249 if self.__profIndex == self.n:
4240 4250 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4241 4251 self.__dataReady = True
4242 4252
4243 4253 return data_360,data_p,data_e
4244 4254
4245 4255
4246 4256 def blockOp(self, dataOut, datatime= None):
4247 4257 if self.__initime == None:
4248 4258 self.__initime = datatime
4249 4259 data_360,data_p,data_e = self.byProfiles(dataOut)
4250 4260 self.__lastdatatime = datatime
4251 4261
4252 4262 if data_360 is None:
4253 4263 return None, None,None,None
4254 4264
4255 4265
4256 4266 avgdatatime = self.__initime
4257 4267 if self.n==1:
4258 4268 avgdatatime = datatime
4259 4269 deltatime = datatime - self.__lastdatatime
4260 4270 self.__initime = datatime
4261 4271 #print(data_360.shape,avgdatatime,data_p.shape)
4262 4272 return data_360,avgdatatime,data_p,data_e
4263 4273
4264 4274 def run(self, dataOut,n = None,mode=None,**kwargs):
4265 4275 #print("BLOCK 360 HERE WE GO MOMENTOS")
4266 4276 print("Block 360")
4267 4277 #exit(1)
4268 4278 if not self.isConfig:
4269 4279 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4270 4280 ####self.index = 0
4271 4281 #print("comova",self.isConfig)
4272 4282 self.isConfig = True
4273 4283 ####if self.index==dataOut.azimuth.shape[0]:
4274 4284 #### self.index=0
4275 4285 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4276 4286 dataOut.flagNoData = True
4277 4287
4278 4288 if self.__dataReady:
4279 4289 dataOut.data_360 = data_360 # S
4280 4290 #print("DATA 360")
4281 4291 #print(dataOut.data_360)
4282 4292 #print("---------------------------------------------------------------------------------")
4283 4293 print("---------------------------DATAREADY---------------------------------------------")
4284 4294 #print("---------------------------------------------------------------------------------")
4285 4295 #print("data_360",dataOut.data_360.shape)
4286 4296 dataOut.data_azi = data_p
4287 4297 dataOut.data_ele = data_e
4288 4298 ###print("azi: ",dataOut.data_azi)
4289 4299 #print("ele: ",dataOut.data_ele)
4290 4300 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4291 4301 dataOut.utctime = avgdatatime
4292 4302 dataOut.flagNoData = False
4293 4303 return dataOut
4294 4304
4295 4305 class Block360_vRF(Operation):
4296 4306 '''
4297 4307 '''
4298 4308 isConfig = False
4299 4309 __profIndex = 0
4300 4310 __initime = None
4301 4311 __lastdatatime = None
4302 4312 __buffer = None
4303 4313 __dataReady = False
4304 4314 n = None
4305 4315 __nch = 0
4306 4316 __nHeis = 0
4307 4317 index = 0
4308 4318 mode = 0
4309 4319
4310 4320 def __init__(self,**kwargs):
4311 4321 Operation.__init__(self,**kwargs)
4312 4322
4313 4323 def setup(self, dataOut, n = None, mode = None):
4314 4324 '''
4315 4325 n= Numero de PRF's de entrada
4316 4326 '''
4317 4327 self.__initime = None
4318 4328 self.__lastdatatime = 0
4319 4329 self.__dataReady = False
4320 4330 self.__buffer = 0
4321 4331 self.__buffer_1D = 0
4322 4332 self.__profIndex = 0
4323 4333 self.index = 0
4324 4334 self.__nch = dataOut.nChannels
4325 4335 self.__nHeis = dataOut.nHeights
4326 4336 ##print("ELVALOR DE n es:", n)
4327 4337 if n == None:
4328 4338 raise ValueError("n should be specified.")
4329 4339
4330 4340 if mode == None:
4331 4341 raise ValueError("mode should be specified.")
4332 4342
4333 4343 if n != None:
4334 4344 if n<1:
4335 4345 print("n should be greater than 2")
4336 4346 raise ValueError("n should be greater than 2")
4337 4347
4338 4348 self.n = n
4339 4349 self.mode = mode
4340 4350 #print("self.mode",self.mode)
4341 4351 #print("nHeights")
4342 4352 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4343 4353 self.__buffer2 = numpy.zeros(n)
4344 4354 self.__buffer3 = numpy.zeros(n)
4345 4355
4346 4356
4347 4357
4348 4358
4349 4359 def putData(self,data,mode):
4350 4360 '''
4351 4361 Add a profile to he __buffer and increase in one the __profiel Index
4352 4362 '''
4353 4363 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4354 4364 #print("line 4049",data.azimuth.shape,data.azimuth)
4355 4365 if self.mode==0:
4356 4366 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4357 4367 if self.mode==1:
4358 4368 self.__buffer[:,self.__profIndex,:]= data.data_pow
4359 4369 #print("me casi",self.index,data.azimuth[self.index])
4360 4370 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4361 4371 #print("magic",data.profileIndex)
4362 4372 #print(data.azimuth[self.index])
4363 4373 #print("index",self.index)
4364 4374
4365 4375 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4366 4376 self.__buffer2[self.__profIndex] = data.azimuth
4367 4377 self.__buffer3[self.__profIndex] = data.elevation
4368 4378 #print("q pasa")
4369 4379 #####self.index+=1
4370 4380 #print("index",self.index,data.azimuth[:10])
4371 4381 self.__profIndex += 1
4372 4382 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4373 4383
4374 4384 def pushData(self,data):
4375 4385 '''
4376 4386 Return the PULSEPAIR and the profiles used in the operation
4377 4387 Affected : self.__profileIndex
4378 4388 '''
4379 4389 #print("pushData")
4380 4390
4381 4391 data_360 = self.__buffer
4382 4392 data_p = self.__buffer2
4383 4393 data_e = self.__buffer3
4384 4394 n = self.__profIndex
4385 4395
4386 4396 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4387 4397 self.__buffer2 = numpy.zeros(self.n)
4388 4398 self.__buffer3 = numpy.zeros(self.n)
4389 4399 self.__profIndex = 0
4390 4400 #print("pushData")
4391 4401 return data_360,n,data_p,data_e
4392 4402
4393 4403
4394 4404 def byProfiles(self,dataOut):
4395 4405
4396 4406 self.__dataReady = False
4397 4407 data_360 = None
4398 4408 data_p = None
4399 4409 data_e = None
4400 4410 #print("dataOu",dataOut.dataPP_POW)
4401 4411 self.putData(data=dataOut,mode = self.mode)
4402 4412 ##### print("profIndex",self.__profIndex)
4403 4413 if self.__profIndex == self.n:
4404 4414 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4405 4415 self.__dataReady = True
4406 4416
4407 4417 return data_360,data_p,data_e
4408 4418
4409 4419
4410 4420 def blockOp(self, dataOut, datatime= None):
4411 4421 if self.__initime == None:
4412 4422 self.__initime = datatime
4413 4423 data_360,data_p,data_e = self.byProfiles(dataOut)
4414 4424 self.__lastdatatime = datatime
4415 4425
4416 4426 if data_360 is None:
4417 4427 return None, None,None,None
4418 4428
4419 4429
4420 4430 avgdatatime = self.__initime
4421 4431 if self.n==1:
4422 4432 avgdatatime = datatime
4423 4433 deltatime = datatime - self.__lastdatatime
4424 4434 self.__initime = datatime
4425 4435 #print(data_360.shape,avgdatatime,data_p.shape)
4426 4436 return data_360,avgdatatime,data_p,data_e
4427 4437
4428 4438 def checkcase(self,data_ele):
4429 4439 start = data_ele[0]
4430 4440 end = data_ele[-1]
4431 4441 diff_angle = (end-start)
4432 4442 len_ang=len(data_ele)
4433 4443 print("start",start)
4434 4444 print("end",end)
4435 4445 print("number",diff_angle)
4436 4446
4437 4447 print("len_ang",len_ang)
4438 4448
4439 4449 aux = (data_ele<0).any(axis=0)
4440 4450
4441 4451 #exit(1)
4442 4452 if diff_angle<0 and aux!=1: #Bajada
4443 4453 return 1
4444 4454 elif diff_angle<0 and aux==1: #Bajada con angulos negativos
4445 4455 return 0
4446 4456 elif diff_angle == 0: # This case happens when the angle reaches the max_angle if n = 2
4447 4457 self.flagEraseFirstData = 1
4448 4458 print("ToDO this case")
4449 4459 exit(1)
4450 4460 elif diff_angle>0: #Subida
4451 4461 return 0
4452 4462
4453 4463 def run(self, dataOut,n = None,mode=None,**kwargs):
4454 4464 #print("BLOCK 360 HERE WE GO MOMENTOS")
4455 4465 print("Block 360")
4456 4466
4457 4467 #exit(1)
4458 4468 if not self.isConfig:
4459 4469 if n == 1:
4460 4470 print("*******************Min Value is 2. Setting n = 2*******************")
4461 4471 n = 2
4462 4472 #exit(1)
4463 4473 print(n)
4464 4474 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4465 4475 ####self.index = 0
4466 4476 #print("comova",self.isConfig)
4467 4477 self.isConfig = True
4468 4478 ####if self.index==dataOut.azimuth.shape[0]:
4469 4479 #### self.index=0
4470 4480 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4471 4481 dataOut.flagNoData = True
4472 4482
4473 4483 if self.__dataReady:
4474 4484 dataOut.data_360 = data_360 # S
4475 4485 #print("DATA 360")
4476 4486 #print(dataOut.data_360)
4477 4487 #print("---------------------------------------------------------------------------------")
4478 4488 print("---------------------------DATAREADY---------------------------------------------")
4479 4489 #print("---------------------------------------------------------------------------------")
4480 4490 #print("data_360",dataOut.data_360.shape)
4481 4491 dataOut.data_azi = data_p
4482 4492 dataOut.data_ele = data_e
4483 4493 ###print("azi: ",dataOut.data_azi)
4484 4494 #print("ele: ",dataOut.data_ele)
4485 4495 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4486 4496 dataOut.utctime = avgdatatime
4487 4497
4488 4498 dataOut.case_flag = self.checkcase(dataOut.data_ele)
4489 4499 if dataOut.case_flag: #Si estΓ‘ de bajada empieza a plotear
4490 4500 print("INSIDE CASE FLAG BAJADA")
4491 4501 dataOut.flagNoData = False
4492 4502 else:
4493 4503 print("CASE SUBIDA")
4494 4504 dataOut.flagNoData = True
4495 4505
4496 4506 #dataOut.flagNoData = False
4497 4507 return dataOut
4498 4508
4499 4509 class Block360_vRF2(Operation):
4500 4510 '''
4501 4511 '''
4502 4512 isConfig = False
4503 4513 __profIndex = 0
4504 4514 __initime = None
4505 4515 __lastdatatime = None
4506 4516 __buffer = None
4507 4517 __dataReady = False
4508 4518 n = None
4509 4519 __nch = 0
4510 4520 __nHeis = 0
4511 4521 index = 0
4512 4522 mode = 0
4513 4523
4514 4524 def __init__(self,**kwargs):
4515 4525 Operation.__init__(self,**kwargs)
4516 4526
4517 4527 def setup(self, dataOut, n = None, mode = None):
4518 4528 '''
4519 4529 n= Numero de PRF's de entrada
4520 4530 '''
4521 4531 self.__initime = None
4522 4532 self.__lastdatatime = 0
4523 4533 self.__dataReady = False
4524 4534 self.__buffer = 0
4525 4535 self.__buffer_1D = 0
4526 4536 #self.__profIndex = 0
4527 4537 self.index = 0
4528 4538 self.__nch = dataOut.nChannels
4529 4539 self.__nHeis = dataOut.nHeights
4530 4540
4531 4541 self.mode = mode
4532 4542 #print("self.mode",self.mode)
4533 4543 #print("nHeights")
4534 4544 self.__buffer = []
4535 4545 self.__buffer2 = []
4536 4546 self.__buffer3 = []
4537 4547
4538 4548 def putData(self,data,mode):
4539 4549 '''
4540 4550 Add a profile to he __buffer and increase in one the __profiel Index
4541 4551 '''
4542 4552 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4543 4553 #print("line 4049",data.azimuth.shape,data.azimuth)
4544 4554 if self.mode==0:
4545 4555 self.__buffer.append(data.dataPP_POWER)# PRIMER MOMENTO
4546 4556 if self.mode==1:
4547 4557 self.__buffer.append(data.data_pow)
4548 4558 #print("me casi",self.index,data.azimuth[self.index])
4549 4559 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4550 4560 #print("magic",data.profileIndex)
4551 4561 #print(data.azimuth[self.index])
4552 4562 #print("index",self.index)
4553 4563
4554 4564 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4555 4565 self.__buffer2.append(data.azimuth)
4556 4566 self.__buffer3.append(data.elevation)
4557 4567 self.__profIndex += 1
4558 4568 #print("q pasa")
4559 4569 return numpy.array(self.__buffer3) #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4560 4570
4561 4571 def pushData(self,data):
4562 4572 '''
4563 4573 Return the PULSEPAIR and the profiles used in the operation
4564 4574 Affected : self.__profileIndex
4565 4575 '''
4566 4576 #print("pushData")
4567 4577
4568 4578 data_360 = numpy.array(self.__buffer).transpose(1,0,2)
4569 4579 data_p = numpy.array(self.__buffer2)
4570 4580 data_e = numpy.array(self.__buffer3)
4571 4581 n = self.__profIndex
4572 4582
4573 4583 self.__buffer = []
4574 4584 self.__buffer2 = []
4575 4585 self.__buffer3 = []
4576 4586 self.__profIndex = 0
4577 4587 #print("pushData")
4578 4588 return data_360,n,data_p,data_e
4579 4589
4580 4590
4581 4591 def byProfiles(self,dataOut):
4582 4592
4583 4593 self.__dataReady = False
4584 4594 data_360 = None
4585 4595 data_p = None
4586 4596 data_e = None
4587 4597 #print("dataOu",dataOut.dataPP_POW)
4588 4598
4589 4599 elevations = self.putData(data=dataOut,mode = self.mode)
4590 4600 ##### print("profIndex",self.__profIndex)
4591 4601
4592 4602
4593 4603 if self.__profIndex > 1:
4594 4604 case_flag = self.checkcase(elevations)
4595 4605
4596 4606 if case_flag == 0: #Subida
4597 4607 #Se borra el dato anterior para liberar buffer y comparar el dato actual con el siguiente
4598 4608 if len(self.__buffer) == 2: #Cuando estΓ‘ de subida
4599 4609 self.__buffer.pop(0) #Erase first data
4600 4610 self.__buffer2.pop(0)
4601 4611 self.__buffer3.pop(0)
4602 4612 self.__profIndex -= 1
4603 4613 else: #Cuando ha estado de bajada y ha vuelto a subir
4604 4614 #print("else",self.__buffer3)
4605 4615 self.__buffer.pop() #Erase last data
4606 4616 self.__buffer2.pop()
4607 4617 self.__buffer3.pop()
4608 4618 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4609 4619 #print(data_360.shape)
4610 4620 #print(data_e.shape)
4611 4621 #exit(1)
4612 4622 self.__dataReady = True
4613 4623 '''
4614 4624 elif elevations[-1]<0.:
4615 4625 if len(self.__buffer) == 2:
4616 4626 self.__buffer.pop(0) #Erase first data
4617 4627 self.__buffer2.pop(0)
4618 4628 self.__buffer3.pop(0)
4619 4629 self.__profIndex -= 1
4620 4630 else:
4621 4631 self.__buffer.pop() #Erase last data
4622 4632 self.__buffer2.pop()
4623 4633 self.__buffer3.pop()
4624 4634 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4625 4635 self.__dataReady = True
4626 4636 '''
4627 4637
4628 4638
4629 4639 '''
4630 4640 if self.__profIndex == self.n:
4631 4641 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4632 4642 self.__dataReady = True
4633 4643 '''
4634 4644
4635 4645 return data_360,data_p,data_e
4636 4646
4637 4647
4638 4648 def blockOp(self, dataOut, datatime= None):
4639 4649 if self.__initime == None:
4640 4650 self.__initime = datatime
4641 4651 data_360,data_p,data_e = self.byProfiles(dataOut)
4642 4652 self.__lastdatatime = datatime
4643 4653
4644 4654 if data_360 is None:
4645 4655 return None, None,None,None
4646 4656
4647 4657
4648 4658 avgdatatime = self.__initime
4649 4659 if self.n==1:
4650 4660 avgdatatime = datatime
4651 4661 deltatime = datatime - self.__lastdatatime
4652 4662 self.__initime = datatime
4653 4663 #print(data_360.shape,avgdatatime,data_p.shape)
4654 4664 return data_360,avgdatatime,data_p,data_e
4655 4665
4656 4666 def checkcase(self,data_ele):
4657 4667 print(data_ele)
4658 4668 start = data_ele[-2]
4659 4669 end = data_ele[-1]
4660 4670 diff_angle = (end-start)
4661 4671 len_ang=len(data_ele)
4662 4672
4663 4673 if diff_angle > 0: #Subida
4664 4674 return 0
4665 4675
4666 4676 def run(self, dataOut,n = None,mode=None,**kwargs):
4667 4677 #print("BLOCK 360 HERE WE GO MOMENTOS")
4668 4678 print("Block 360")
4669 4679
4670 4680 #exit(1)
4671 4681 if not self.isConfig:
4672 4682
4673 4683 print(n)
4674 4684 self.setup(dataOut = dataOut ,mode= mode ,**kwargs)
4675 4685 ####self.index = 0
4676 4686 #print("comova",self.isConfig)
4677 4687 self.isConfig = True
4678 4688 ####if self.index==dataOut.azimuth.shape[0]:
4679 4689 #### self.index=0
4680 4690
4681 4691 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4682 4692
4683 4693
4684 4694
4685 4695
4686 4696 dataOut.flagNoData = True
4687 4697
4688 4698 if self.__dataReady:
4689 4699 dataOut.data_360 = data_360 # S
4690 4700 #print("DATA 360")
4691 4701 #print(dataOut.data_360)
4692 4702 #print("---------------------------------------------------------------------------------")
4693 4703 print("---------------------------DATAREADY---------------------------------------------")
4694 4704 #print("---------------------------------------------------------------------------------")
4695 4705 #print("data_360",dataOut.data_360.shape)
4696 4706 print(data_e)
4697 4707 #exit(1)
4698 4708 dataOut.data_azi = data_p
4699 4709 dataOut.data_ele = data_e
4700 4710 ###print("azi: ",dataOut.data_azi)
4701 4711 #print("ele: ",dataOut.data_ele)
4702 4712 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4703 4713 dataOut.utctime = avgdatatime
4704 4714
4705 4715
4706 4716
4707 4717 dataOut.flagNoData = False
4708 4718 return dataOut
General Comments 0
You need to be logged in to leave comments. Login now