@@ -1,1350 +1,1351 | |||||
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Classes to plot Spectra data |
|
5 | """Classes to plot Spectra data | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import numpy |
|
10 | import numpy | |
11 | #import collections.abc |
|
11 | #import collections.abc | |
12 |
|
12 | |||
13 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
13 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
14 |
|
14 | |||
15 | class SpectraPlot(Plot): |
|
15 | class SpectraPlot(Plot): | |
16 | ''' |
|
16 | ''' | |
17 | Plot for Spectra data |
|
17 | Plot for Spectra data | |
18 | ''' |
|
18 | ''' | |
19 |
|
19 | |||
20 | CODE = 'spc' |
|
20 | CODE = 'spc' | |
21 | colormap = 'jet' |
|
21 | colormap = 'jet' | |
22 | plot_type = 'pcolor' |
|
22 | plot_type = 'pcolor' | |
23 | buffering = False |
|
23 | buffering = False | |
24 |
|
24 | |||
25 | def setup(self): |
|
25 | def setup(self): | |
26 |
|
26 | |||
27 | self.nplots = len(self.data.channels) |
|
27 | self.nplots = len(self.data.channels) | |
28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
30 | self.height = 2.6 * self.nrows |
|
30 | self.height = 2.6 * self.nrows | |
31 | self.cb_label = 'dB' |
|
31 | self.cb_label = 'dB' | |
32 | if self.showprofile: |
|
32 | if self.showprofile: | |
33 | self.width = 4 * self.ncols |
|
33 | self.width = 4 * self.ncols | |
34 | else: |
|
34 | else: | |
35 | self.width = 3.5 * self.ncols |
|
35 | self.width = 3.5 * self.ncols | |
36 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
36 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
37 | self.ylabel = 'Range [km]' |
|
37 | self.ylabel = 'Range [km]' | |
38 |
|
38 | |||
39 | def update(self, dataOut): |
|
39 | def update(self, dataOut): | |
40 |
|
40 | |||
41 | data = {} |
|
41 | data = {} | |
42 | meta = {} |
|
42 | meta = {} | |
43 |
|
43 | |||
44 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
44 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
45 | #print("dataOut.normFactor: ", dataOut.normFactor) |
|
45 | #print("dataOut.normFactor: ", dataOut.normFactor) | |
46 | #print("spc: ", dataOut.data_spc[0,0,0]) |
|
46 | #print("spc: ", dataOut.data_spc[0,0,0]) | |
47 | #spc = 10*numpy.log10(dataOut.data_spc) |
|
47 | #spc = 10*numpy.log10(dataOut.data_spc) | |
48 | #print("Spc: ",spc[0]) |
|
48 | #print("Spc: ",spc[0]) | |
49 | #exit(1) |
|
49 | #exit(1) | |
50 | data['spc'] = spc |
|
50 | data['spc'] = spc | |
51 | data['rti'] = dataOut.getPower() |
|
51 | data['rti'] = dataOut.getPower() | |
52 | #print(data['rti'][0]) |
|
52 | #print(data['rti'][0]) | |
53 | #exit(1) |
|
53 | #exit(1) | |
54 | #print("NormFactor: ",dataOut.normFactor) |
|
54 | #print("NormFactor: ",dataOut.normFactor) | |
55 | #data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
55 | #data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
56 | if hasattr(dataOut, 'LagPlot'): #Double Pulse |
|
56 | if hasattr(dataOut, 'LagPlot'): #Double Pulse | |
57 | max_hei_id = dataOut.nHeights - 2*dataOut.LagPlot |
|
57 | max_hei_id = dataOut.nHeights - 2*dataOut.LagPlot | |
58 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=46,ymax_index=max_hei_id)/dataOut.normFactor) |
|
58 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=46,ymax_index=max_hei_id)/dataOut.normFactor) | |
59 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=40,ymax_index=max_hei_id)/dataOut.normFactor) |
|
59 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=40,ymax_index=max_hei_id)/dataOut.normFactor) | |
60 | data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)/dataOut.normFactor) |
|
60 | data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)/dataOut.normFactor) | |
61 | data['noise'][0] = 10*numpy.log10(dataOut.getNoise(ymin_index=53)[0]/dataOut.normFactor) |
|
61 | data['noise'][0] = 10*numpy.log10(dataOut.getNoise(ymin_index=53)[0]/dataOut.normFactor) | |
62 | #data['noise'][1] = 22.035507 |
|
62 | #data['noise'][1] = 22.035507 | |
63 | else: |
|
63 | else: | |
64 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
64 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
65 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=26,ymax_index=44)/dataOut.normFactor) |
|
65 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=26,ymax_index=44)/dataOut.normFactor) | |
66 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
66 | extrapoints = spc.shape[1] % dataOut.nFFTPoints | |
|
67 | meta['xrange'] = (dataOut.getFreqRange(extrapoints))/1000., dataOut.getAcfRange(extrapoints)), dataOut.getVelRange(extrapoints))) | |||
67 |
|
68 | |||
68 | if self.CODE == 'spc_moments': |
|
69 | if self.CODE == 'spc_moments': | |
69 | data['moments'] = dataOut.moments |
|
70 | data['moments'] = dataOut.moments | |
70 | if self.CODE == 'gaussian_fit': |
|
71 | if self.CODE == 'gaussian_fit': | |
71 | data['gaussfit'] = dataOut.DGauFitParams |
|
72 | data['gaussfit'] = dataOut.DGauFitParams | |
72 |
|
73 | |||
73 | return data, meta |
|
74 | return data, meta | |
74 |
|
75 | |||
75 | def plot(self): |
|
76 | def plot(self): | |
76 |
|
77 | |||
77 | if self.xaxis == "frequency": |
|
78 | if self.xaxis == "frequency": | |
78 | x = self.data.xrange[0] |
|
79 | x = self.data.xrange[0] | |
79 | self.xlabel = "Frequency (kHz)" |
|
80 | self.xlabel = "Frequency (kHz)" | |
80 | elif self.xaxis == "time": |
|
81 | elif self.xaxis == "time": | |
81 | x = self.data.xrange[1] |
|
82 | x = self.data.xrange[1] | |
82 | self.xlabel = "Time (ms)" |
|
83 | self.xlabel = "Time (ms)" | |
83 | else: |
|
84 | else: | |
84 | x = self.data.xrange[2] |
|
85 | x = self.data.xrange[2] | |
85 | self.xlabel = "Velocity (m/s)" |
|
86 | self.xlabel = "Velocity (m/s)" | |
86 |
|
87 | |||
87 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): |
|
88 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): | |
88 | x = self.data.xrange[2] |
|
89 | x = self.data.xrange[2] | |
89 | self.xlabel = "Velocity (m/s)" |
|
90 | self.xlabel = "Velocity (m/s)" | |
90 |
|
91 | |||
91 | self.titles = [] |
|
92 | self.titles = [] | |
92 |
|
93 | |||
93 | y = self.data.yrange |
|
94 | y = self.data.yrange | |
94 | self.y = y |
|
95 | self.y = y | |
95 |
|
96 | |||
96 | data = self.data[-1] |
|
97 | data = self.data[-1] | |
97 | z = data['spc'] |
|
98 | z = data['spc'] | |
98 |
|
99 | |||
99 | self.CODE2 = 'spc_oblique' |
|
100 | self.CODE2 = 'spc_oblique' | |
100 |
|
101 | |||
101 | for n, ax in enumerate(self.axes): |
|
102 | for n, ax in enumerate(self.axes): | |
102 | noise = data['noise'][n] |
|
103 | noise = data['noise'][n] | |
103 | if self.CODE == 'spc_moments': |
|
104 | if self.CODE == 'spc_moments': | |
104 | mean = data['moments'][n, 1] |
|
105 | mean = data['moments'][n, 1] | |
105 | if self.CODE == 'gaussian_fit': |
|
106 | if self.CODE == 'gaussian_fit': | |
106 | gau0 = data['gaussfit'][n][2,:,0] |
|
107 | gau0 = data['gaussfit'][n][2,:,0] | |
107 | gau1 = data['gaussfit'][n][2,:,1] |
|
108 | gau1 = data['gaussfit'][n][2,:,1] | |
108 | if ax.firsttime: |
|
109 | if ax.firsttime: | |
109 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
110 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
110 | self.xmin = self.xmin if self.xmin else numpy.nanmin(x)#-self.xmax |
|
111 | self.xmin = self.xmin if self.xmin else numpy.nanmin(x)#-self.xmax | |
111 | #self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
112 | #self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
112 | #self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
113 | #self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
113 | if self.zlimits is not None: |
|
114 | if self.zlimits is not None: | |
114 | self.zmin, self.zmax = self.zlimits[n] |
|
115 | self.zmin, self.zmax = self.zlimits[n] | |
115 |
|
116 | |||
116 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
117 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
117 | vmin=self.zmin, |
|
118 | vmin=self.zmin, | |
118 | vmax=self.zmax, |
|
119 | vmax=self.zmax, | |
119 | cmap=plt.get_cmap(self.colormap), |
|
120 | cmap=plt.get_cmap(self.colormap), | |
120 | ) |
|
121 | ) | |
121 |
|
122 | |||
122 | if self.showprofile: |
|
123 | if self.showprofile: | |
123 | ax.plt_profile = self.pf_axes[n].plot( |
|
124 | ax.plt_profile = self.pf_axes[n].plot( | |
124 | data['rti'][n], y)[0] |
|
125 | data['rti'][n], y)[0] | |
125 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
126 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
126 | color="k", linestyle="dashed", lw=1)[0] |
|
127 | color="k", linestyle="dashed", lw=1)[0] | |
127 | if self.CODE == 'spc_moments': |
|
128 | if self.CODE == 'spc_moments': | |
128 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
129 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] | |
129 | if self.CODE == 'gaussian_fit': |
|
130 | if self.CODE == 'gaussian_fit': | |
130 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] |
|
131 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] | |
131 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] |
|
132 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] | |
132 | else: |
|
133 | else: | |
133 | if self.zlimits is not None: |
|
134 | if self.zlimits is not None: | |
134 | self.zmin, self.zmax = self.zlimits[n] |
|
135 | self.zmin, self.zmax = self.zlimits[n] | |
135 | ax.plt.set_array(z[n].T.ravel()) |
|
136 | ax.plt.set_array(z[n].T.ravel()) | |
136 | if self.showprofile: |
|
137 | if self.showprofile: | |
137 | ax.plt_profile.set_data(data['rti'][n], y) |
|
138 | ax.plt_profile.set_data(data['rti'][n], y) | |
138 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
139 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
139 | if self.CODE == 'spc_moments': |
|
140 | if self.CODE == 'spc_moments': | |
140 | ax.plt_mean.set_data(mean, y) |
|
141 | ax.plt_mean.set_data(mean, y) | |
141 | if self.CODE == 'gaussian_fit': |
|
142 | if self.CODE == 'gaussian_fit': | |
142 | ax.plt_gau0.set_data(gau0, y) |
|
143 | ax.plt_gau0.set_data(gau0, y) | |
143 | ax.plt_gau1.set_data(gau1, y) |
|
144 | ax.plt_gau1.set_data(gau1, y) | |
144 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
145 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
145 |
|
146 | |||
146 | class SpectraObliquePlot(Plot): |
|
147 | class SpectraObliquePlot(Plot): | |
147 | ''' |
|
148 | ''' | |
148 | Plot for Spectra data |
|
149 | Plot for Spectra data | |
149 | ''' |
|
150 | ''' | |
150 |
|
151 | |||
151 | CODE = 'spc_oblique' |
|
152 | CODE = 'spc_oblique' | |
152 | colormap = 'jet' |
|
153 | colormap = 'jet' | |
153 | plot_type = 'pcolor' |
|
154 | plot_type = 'pcolor' | |
154 |
|
155 | |||
155 | def setup(self): |
|
156 | def setup(self): | |
156 | self.xaxis = "oblique" |
|
157 | self.xaxis = "oblique" | |
157 | self.nplots = len(self.data.channels) |
|
158 | self.nplots = len(self.data.channels) | |
158 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
159 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
159 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
160 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
160 | self.height = 2.6 * self.nrows |
|
161 | self.height = 2.6 * self.nrows | |
161 | self.cb_label = 'dB' |
|
162 | self.cb_label = 'dB' | |
162 | if self.showprofile: |
|
163 | if self.showprofile: | |
163 | self.width = 4 * self.ncols |
|
164 | self.width = 4 * self.ncols | |
164 | else: |
|
165 | else: | |
165 | self.width = 3.5 * self.ncols |
|
166 | self.width = 3.5 * self.ncols | |
166 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
167 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
167 | self.ylabel = 'Range [km]' |
|
168 | self.ylabel = 'Range [km]' | |
168 |
|
169 | |||
169 | def update(self, dataOut): |
|
170 | def update(self, dataOut): | |
170 |
|
171 | |||
171 | data = {} |
|
172 | data = {} | |
172 | meta = {} |
|
173 | meta = {} | |
173 |
|
174 | |||
174 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
175 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
175 | data['spc'] = spc |
|
176 | data['spc'] = spc | |
176 | data['rti'] = dataOut.getPower() |
|
177 | data['rti'] = dataOut.getPower() | |
177 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
178 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
178 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
179 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
179 | ''' |
|
180 | ''' | |
180 | data['shift1'] = dataOut.Oblique_params[0,-2,:] |
|
181 | data['shift1'] = dataOut.Oblique_params[0,-2,:] | |
181 | data['shift2'] = dataOut.Oblique_params[0,-1,:] |
|
182 | data['shift2'] = dataOut.Oblique_params[0,-1,:] | |
182 | data['shift1_error'] = dataOut.Oblique_param_errors[0,-2,:] |
|
183 | data['shift1_error'] = dataOut.Oblique_param_errors[0,-2,:] | |
183 | data['shift2_error'] = dataOut.Oblique_param_errors[0,-1,:] |
|
184 | data['shift2_error'] = dataOut.Oblique_param_errors[0,-1,:] | |
184 | ''' |
|
185 | ''' | |
185 | ''' |
|
186 | ''' | |
186 | data['shift1'] = dataOut.Oblique_params[0,1,:] |
|
187 | data['shift1'] = dataOut.Oblique_params[0,1,:] | |
187 | data['shift2'] = dataOut.Oblique_params[0,4,:] |
|
188 | data['shift2'] = dataOut.Oblique_params[0,4,:] | |
188 | data['shift1_error'] = dataOut.Oblique_param_errors[0,1,:] |
|
189 | data['shift1_error'] = dataOut.Oblique_param_errors[0,1,:] | |
189 | data['shift2_error'] = dataOut.Oblique_param_errors[0,4,:] |
|
190 | data['shift2_error'] = dataOut.Oblique_param_errors[0,4,:] | |
190 | ''' |
|
191 | ''' | |
191 | data['shift1'] = dataOut.Dop_EEJ_T1[0] |
|
192 | data['shift1'] = dataOut.Dop_EEJ_T1[0] | |
192 | data['shift2'] = dataOut.Dop_EEJ_T2[0] |
|
193 | data['shift2'] = dataOut.Dop_EEJ_T2[0] | |
193 | data['max_val_2'] = dataOut.Oblique_params[0,-1,:] |
|
194 | data['max_val_2'] = dataOut.Oblique_params[0,-1,:] | |
194 | data['shift1_error'] = dataOut.Err_Dop_EEJ_T1[0] |
|
195 | data['shift1_error'] = dataOut.Err_Dop_EEJ_T1[0] | |
195 | data['shift2_error'] = dataOut.Err_Dop_EEJ_T2[0] |
|
196 | data['shift2_error'] = dataOut.Err_Dop_EEJ_T2[0] | |
196 |
|
197 | |||
197 | return data, meta |
|
198 | return data, meta | |
198 |
|
199 | |||
199 | def plot(self): |
|
200 | def plot(self): | |
200 |
|
201 | |||
201 | if self.xaxis == "frequency": |
|
202 | if self.xaxis == "frequency": | |
202 | x = self.data.xrange[0] |
|
203 | x = self.data.xrange[0] | |
203 | self.xlabel = "Frequency (kHz)" |
|
204 | self.xlabel = "Frequency (kHz)" | |
204 | elif self.xaxis == "time": |
|
205 | elif self.xaxis == "time": | |
205 | x = self.data.xrange[1] |
|
206 | x = self.data.xrange[1] | |
206 | self.xlabel = "Time (ms)" |
|
207 | self.xlabel = "Time (ms)" | |
207 | else: |
|
208 | else: | |
208 | x = self.data.xrange[2] |
|
209 | x = self.data.xrange[2] | |
209 | self.xlabel = "Velocity (m/s)" |
|
210 | self.xlabel = "Velocity (m/s)" | |
210 |
|
211 | |||
211 | self.titles = [] |
|
212 | self.titles = [] | |
212 |
|
213 | |||
213 | y = self.data.yrange |
|
214 | y = self.data.yrange | |
214 | self.y = y |
|
215 | self.y = y | |
215 |
|
216 | |||
216 | data = self.data[-1] |
|
217 | data = self.data[-1] | |
217 | z = data['spc'] |
|
218 | z = data['spc'] | |
218 |
|
219 | |||
219 | for n, ax in enumerate(self.axes): |
|
220 | for n, ax in enumerate(self.axes): | |
220 | noise = self.data['noise'][n][-1] |
|
221 | noise = self.data['noise'][n][-1] | |
221 | shift1 = data['shift1'] |
|
222 | shift1 = data['shift1'] | |
222 | #print(shift1) |
|
223 | #print(shift1) | |
223 | shift2 = data['shift2'] |
|
224 | shift2 = data['shift2'] | |
224 | max_val_2 = data['max_val_2'] |
|
225 | max_val_2 = data['max_val_2'] | |
225 | err1 = data['shift1_error'] |
|
226 | err1 = data['shift1_error'] | |
226 | err2 = data['shift2_error'] |
|
227 | err2 = data['shift2_error'] | |
227 | if ax.firsttime: |
|
228 | if ax.firsttime: | |
228 |
|
229 | |||
229 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
230 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
230 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
231 | self.xmin = self.xmin if self.xmin else -self.xmax | |
231 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
232 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
232 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
233 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
233 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
234 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
234 | vmin=self.zmin, |
|
235 | vmin=self.zmin, | |
235 | vmax=self.zmax, |
|
236 | vmax=self.zmax, | |
236 | cmap=plt.get_cmap(self.colormap) |
|
237 | cmap=plt.get_cmap(self.colormap) | |
237 | ) |
|
238 | ) | |
238 |
|
239 | |||
239 | if self.showprofile: |
|
240 | if self.showprofile: | |
240 | ax.plt_profile = self.pf_axes[n].plot( |
|
241 | ax.plt_profile = self.pf_axes[n].plot( | |
241 | self.data['rti'][n][-1], y)[0] |
|
242 | self.data['rti'][n][-1], y)[0] | |
242 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
243 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
243 | color="k", linestyle="dashed", lw=1)[0] |
|
244 | color="k", linestyle="dashed", lw=1)[0] | |
244 |
|
245 | |||
245 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
246 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
246 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
247 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
247 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
248 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
248 |
|
249 | |||
249 | #print("plotter1: ", self.ploterr1,shift1) |
|
250 | #print("plotter1: ", self.ploterr1,shift1) | |
250 |
|
251 | |||
251 | else: |
|
252 | else: | |
252 | #print("else plotter1: ", self.ploterr1,shift1) |
|
253 | #print("else plotter1: ", self.ploterr1,shift1) | |
253 | self.ploterr1.remove() |
|
254 | self.ploterr1.remove() | |
254 | self.ploterr2.remove() |
|
255 | self.ploterr2.remove() | |
255 | self.ploterr3.remove() |
|
256 | self.ploterr3.remove() | |
256 | ax.plt.set_array(z[n].T.ravel()) |
|
257 | ax.plt.set_array(z[n].T.ravel()) | |
257 | if self.showprofile: |
|
258 | if self.showprofile: | |
258 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
259 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) | |
259 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
260 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
260 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
261 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
261 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
262 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
262 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) |
|
263 | self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2) | |
263 |
|
264 | |||
264 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
265 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
265 |
|
266 | |||
266 |
|
267 | |||
267 | class CrossSpectraPlot(Plot): |
|
268 | class CrossSpectraPlot(Plot): | |
268 |
|
269 | |||
269 | CODE = 'cspc' |
|
270 | CODE = 'cspc' | |
270 | colormap = 'jet' |
|
271 | colormap = 'jet' | |
271 | plot_type = 'pcolor' |
|
272 | plot_type = 'pcolor' | |
272 | zmin_coh = None |
|
273 | zmin_coh = None | |
273 | zmax_coh = None |
|
274 | zmax_coh = None | |
274 | zmin_phase = None |
|
275 | zmin_phase = None | |
275 | zmax_phase = None |
|
276 | zmax_phase = None | |
276 |
|
277 | |||
277 | def setup(self): |
|
278 | def setup(self): | |
278 |
|
279 | |||
279 | self.ncols = 4 |
|
280 | self.ncols = 4 | |
280 | self.nplots = len(self.data.pairs) * 2 |
|
281 | self.nplots = len(self.data.pairs) * 2 | |
281 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
282 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
282 | self.width = 3.1 * self.ncols |
|
283 | self.width = 3.1 * self.ncols | |
283 | self.height = 5 * self.nrows |
|
284 | self.height = 5 * self.nrows | |
284 | self.ylabel = 'Range [km]' |
|
285 | self.ylabel = 'Range [km]' | |
285 | self.showprofile = False |
|
286 | self.showprofile = False | |
286 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
287 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
287 |
|
288 | |||
288 | def update(self, dataOut): |
|
289 | def update(self, dataOut): | |
289 |
|
290 | |||
290 | data = {} |
|
291 | data = {} | |
291 | meta = {} |
|
292 | meta = {} | |
292 |
|
293 | |||
293 | spc = dataOut.data_spc |
|
294 | spc = dataOut.data_spc | |
294 | cspc = dataOut.data_cspc |
|
295 | cspc = dataOut.data_cspc | |
295 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
296 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
296 | meta['pairs'] = dataOut.pairsList |
|
297 | meta['pairs'] = dataOut.pairsList | |
297 |
|
298 | |||
298 | tmp = [] |
|
299 | tmp = [] | |
299 |
|
300 | |||
300 | for n, pair in enumerate(meta['pairs']): |
|
301 | for n, pair in enumerate(meta['pairs']): | |
301 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
302 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
302 | coh = numpy.abs(out) |
|
303 | coh = numpy.abs(out) | |
303 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
304 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
304 | tmp.append(coh) |
|
305 | tmp.append(coh) | |
305 | tmp.append(phase) |
|
306 | tmp.append(phase) | |
306 |
|
307 | |||
307 | data['cspc'] = numpy.array(tmp) |
|
308 | data['cspc'] = numpy.array(tmp) | |
308 |
|
309 | |||
309 | return data, meta |
|
310 | return data, meta | |
310 |
|
311 | |||
311 | def plot(self): |
|
312 | def plot(self): | |
312 |
|
313 | |||
313 | if self.xaxis == "frequency": |
|
314 | if self.xaxis == "frequency": | |
314 | x = self.data.xrange[0] |
|
315 | x = self.data.xrange[0] | |
315 | self.xlabel = "Frequency (kHz)" |
|
316 | self.xlabel = "Frequency (kHz)" | |
316 | elif self.xaxis == "time": |
|
317 | elif self.xaxis == "time": | |
317 | x = self.data.xrange[1] |
|
318 | x = self.data.xrange[1] | |
318 | self.xlabel = "Time (ms)" |
|
319 | self.xlabel = "Time (ms)" | |
319 | else: |
|
320 | else: | |
320 | x = self.data.xrange[2] |
|
321 | x = self.data.xrange[2] | |
321 | self.xlabel = "Velocity (m/s)" |
|
322 | self.xlabel = "Velocity (m/s)" | |
322 |
|
323 | |||
323 | self.titles = [] |
|
324 | self.titles = [] | |
324 |
|
325 | |||
325 | y = self.data.yrange |
|
326 | y = self.data.yrange | |
326 | self.y = y |
|
327 | self.y = y | |
327 |
|
328 | |||
328 | data = self.data[-1] |
|
329 | data = self.data[-1] | |
329 | cspc = data['cspc'] |
|
330 | cspc = data['cspc'] | |
330 |
|
331 | |||
331 | for n in range(len(self.data.pairs)): |
|
332 | for n in range(len(self.data.pairs)): | |
332 | pair = self.data.pairs[n] |
|
333 | pair = self.data.pairs[n] | |
333 | coh = cspc[n*2] |
|
334 | coh = cspc[n*2] | |
334 | phase = cspc[n*2+1] |
|
335 | phase = cspc[n*2+1] | |
335 | ax = self.axes[2 * n] |
|
336 | ax = self.axes[2 * n] | |
336 | if ax.firsttime: |
|
337 | if ax.firsttime: | |
337 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
338 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
338 | vmin=0, |
|
339 | vmin=0, | |
339 | vmax=1, |
|
340 | vmax=1, | |
340 | cmap=plt.get_cmap(self.colormap_coh) |
|
341 | cmap=plt.get_cmap(self.colormap_coh) | |
341 | ) |
|
342 | ) | |
342 | else: |
|
343 | else: | |
343 | ax.plt.set_array(coh.T.ravel()) |
|
344 | ax.plt.set_array(coh.T.ravel()) | |
344 | self.titles.append( |
|
345 | self.titles.append( | |
345 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
346 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
346 |
|
347 | |||
347 | ax = self.axes[2 * n + 1] |
|
348 | ax = self.axes[2 * n + 1] | |
348 | if ax.firsttime: |
|
349 | if ax.firsttime: | |
349 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
350 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
350 | vmin=-180, |
|
351 | vmin=-180, | |
351 | vmax=180, |
|
352 | vmax=180, | |
352 | cmap=plt.get_cmap(self.colormap_phase) |
|
353 | cmap=plt.get_cmap(self.colormap_phase) | |
353 | ) |
|
354 | ) | |
354 | else: |
|
355 | else: | |
355 | ax.plt.set_array(phase.T.ravel()) |
|
356 | ax.plt.set_array(phase.T.ravel()) | |
356 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
357 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
357 |
|
358 | |||
358 |
|
359 | |||
359 | class CrossSpectra4Plot(Plot): |
|
360 | class CrossSpectra4Plot(Plot): | |
360 |
|
361 | |||
361 | CODE = 'cspc' |
|
362 | CODE = 'cspc' | |
362 | colormap = 'jet' |
|
363 | colormap = 'jet' | |
363 | plot_type = 'pcolor' |
|
364 | plot_type = 'pcolor' | |
364 | zmin_coh = None |
|
365 | zmin_coh = None | |
365 | zmax_coh = None |
|
366 | zmax_coh = None | |
366 | zmin_phase = None |
|
367 | zmin_phase = None | |
367 | zmax_phase = None |
|
368 | zmax_phase = None | |
368 |
|
369 | |||
369 | def setup(self): |
|
370 | def setup(self): | |
370 |
|
371 | |||
371 | self.ncols = 4 |
|
372 | self.ncols = 4 | |
372 | self.nrows = len(self.data.pairs) |
|
373 | self.nrows = len(self.data.pairs) | |
373 | self.nplots = self.nrows * 4 |
|
374 | self.nplots = self.nrows * 4 | |
374 | self.width = 3.1 * self.ncols |
|
375 | self.width = 3.1 * self.ncols | |
375 | self.height = 5 * self.nrows |
|
376 | self.height = 5 * self.nrows | |
376 | self.ylabel = 'Range [km]' |
|
377 | self.ylabel = 'Range [km]' | |
377 | self.showprofile = False |
|
378 | self.showprofile = False | |
378 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
379 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
379 |
|
380 | |||
380 | def plot(self): |
|
381 | def plot(self): | |
381 |
|
382 | |||
382 | if self.xaxis == "frequency": |
|
383 | if self.xaxis == "frequency": | |
383 | x = self.data.xrange[0] |
|
384 | x = self.data.xrange[0] | |
384 | self.xlabel = "Frequency (kHz)" |
|
385 | self.xlabel = "Frequency (kHz)" | |
385 | elif self.xaxis == "time": |
|
386 | elif self.xaxis == "time": | |
386 | x = self.data.xrange[1] |
|
387 | x = self.data.xrange[1] | |
387 | self.xlabel = "Time (ms)" |
|
388 | self.xlabel = "Time (ms)" | |
388 | else: |
|
389 | else: | |
389 | x = self.data.xrange[2] |
|
390 | x = self.data.xrange[2] | |
390 | self.xlabel = "Velocity (m/s)" |
|
391 | self.xlabel = "Velocity (m/s)" | |
391 |
|
392 | |||
392 | self.titles = [] |
|
393 | self.titles = [] | |
393 |
|
394 | |||
394 |
|
395 | |||
395 | y = self.data.heights |
|
396 | y = self.data.heights | |
396 | self.y = y |
|
397 | self.y = y | |
397 | nspc = self.data['spc'] |
|
398 | nspc = self.data['spc'] | |
398 | #print(numpy.shape(self.data['spc'])) |
|
399 | #print(numpy.shape(self.data['spc'])) | |
399 | spc = self.data['cspc'][0] |
|
400 | spc = self.data['cspc'][0] | |
400 | #print(numpy.shape(nspc)) |
|
401 | #print(numpy.shape(nspc)) | |
401 | #exit() |
|
402 | #exit() | |
402 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) |
|
403 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) | |
403 | #print(numpy.shape(spc)) |
|
404 | #print(numpy.shape(spc)) | |
404 | #exit() |
|
405 | #exit() | |
405 | cspc = self.data['cspc'][1] |
|
406 | cspc = self.data['cspc'][1] | |
406 |
|
407 | |||
407 | #xflip=numpy.flip(x) |
|
408 | #xflip=numpy.flip(x) | |
408 | #print(numpy.shape(cspc)) |
|
409 | #print(numpy.shape(cspc)) | |
409 | #exit() |
|
410 | #exit() | |
410 |
|
411 | |||
411 | for n in range(self.nrows): |
|
412 | for n in range(self.nrows): | |
412 | noise = self.data['noise'][:,-1] |
|
413 | noise = self.data['noise'][:,-1] | |
413 | pair = self.data.pairs[n] |
|
414 | pair = self.data.pairs[n] | |
414 | #print(pair) |
|
415 | #print(pair) | |
415 | #exit() |
|
416 | #exit() | |
416 | ax = self.axes[4 * n] |
|
417 | ax = self.axes[4 * n] | |
417 | if ax.firsttime: |
|
418 | if ax.firsttime: | |
418 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
419 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
419 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
420 | self.xmin = self.xmin if self.xmin else -self.xmax | |
420 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) |
|
421 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) | |
421 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) |
|
422 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) | |
422 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, |
|
423 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, | |
423 | vmin=self.zmin, |
|
424 | vmin=self.zmin, | |
424 | vmax=self.zmax, |
|
425 | vmax=self.zmax, | |
425 | cmap=plt.get_cmap(self.colormap) |
|
426 | cmap=plt.get_cmap(self.colormap) | |
426 | ) |
|
427 | ) | |
427 | else: |
|
428 | else: | |
428 | #print(numpy.shape(nspc[pair[0]].T)) |
|
429 | #print(numpy.shape(nspc[pair[0]].T)) | |
429 | #exit() |
|
430 | #exit() | |
430 | ax.plt.set_array(nspc[pair[0]].T.ravel()) |
|
431 | ax.plt.set_array(nspc[pair[0]].T.ravel()) | |
431 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) |
|
432 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) | |
432 |
|
433 | |||
433 | ax = self.axes[4 * n + 1] |
|
434 | ax = self.axes[4 * n + 1] | |
434 |
|
435 | |||
435 | if ax.firsttime: |
|
436 | if ax.firsttime: | |
436 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, |
|
437 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, | |
437 | vmin=self.zmin, |
|
438 | vmin=self.zmin, | |
438 | vmax=self.zmax, |
|
439 | vmax=self.zmax, | |
439 | cmap=plt.get_cmap(self.colormap) |
|
440 | cmap=plt.get_cmap(self.colormap) | |
440 | ) |
|
441 | ) | |
441 | else: |
|
442 | else: | |
442 |
|
443 | |||
443 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) |
|
444 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) | |
444 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) |
|
445 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) | |
445 |
|
446 | |||
446 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
447 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
447 | coh = numpy.abs(out) |
|
448 | coh = numpy.abs(out) | |
448 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
449 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
449 |
|
450 | |||
450 | ax = self.axes[4 * n + 2] |
|
451 | ax = self.axes[4 * n + 2] | |
451 | if ax.firsttime: |
|
452 | if ax.firsttime: | |
452 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, |
|
453 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, | |
453 | vmin=0, |
|
454 | vmin=0, | |
454 | vmax=1, |
|
455 | vmax=1, | |
455 | cmap=plt.get_cmap(self.colormap_coh) |
|
456 | cmap=plt.get_cmap(self.colormap_coh) | |
456 | ) |
|
457 | ) | |
457 | else: |
|
458 | else: | |
458 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) |
|
459 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) | |
459 | self.titles.append( |
|
460 | self.titles.append( | |
460 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
461 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
461 |
|
462 | |||
462 | ax = self.axes[4 * n + 3] |
|
463 | ax = self.axes[4 * n + 3] | |
463 | if ax.firsttime: |
|
464 | if ax.firsttime: | |
464 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, |
|
465 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, | |
465 | vmin=-180, |
|
466 | vmin=-180, | |
466 | vmax=180, |
|
467 | vmax=180, | |
467 | cmap=plt.get_cmap(self.colormap_phase) |
|
468 | cmap=plt.get_cmap(self.colormap_phase) | |
468 | ) |
|
469 | ) | |
469 | else: |
|
470 | else: | |
470 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) |
|
471 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) | |
471 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
472 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
472 |
|
473 | |||
473 |
|
474 | |||
474 | class CrossSpectra2Plot(Plot): |
|
475 | class CrossSpectra2Plot(Plot): | |
475 |
|
476 | |||
476 | CODE = 'cspc' |
|
477 | CODE = 'cspc' | |
477 | colormap = 'jet' |
|
478 | colormap = 'jet' | |
478 | plot_type = 'pcolor' |
|
479 | plot_type = 'pcolor' | |
479 | zmin_coh = None |
|
480 | zmin_coh = None | |
480 | zmax_coh = None |
|
481 | zmax_coh = None | |
481 | zmin_phase = None |
|
482 | zmin_phase = None | |
482 | zmax_phase = None |
|
483 | zmax_phase = None | |
483 |
|
484 | |||
484 | def setup(self): |
|
485 | def setup(self): | |
485 |
|
486 | |||
486 | self.ncols = 1 |
|
487 | self.ncols = 1 | |
487 | self.nrows = len(self.data.pairs) |
|
488 | self.nrows = len(self.data.pairs) | |
488 | self.nplots = self.nrows * 1 |
|
489 | self.nplots = self.nrows * 1 | |
489 | self.width = 3.1 * self.ncols |
|
490 | self.width = 3.1 * self.ncols | |
490 | self.height = 5 * self.nrows |
|
491 | self.height = 5 * self.nrows | |
491 | self.ylabel = 'Range [km]' |
|
492 | self.ylabel = 'Range [km]' | |
492 | self.showprofile = False |
|
493 | self.showprofile = False | |
493 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
494 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
494 |
|
495 | |||
495 | def plot(self): |
|
496 | def plot(self): | |
496 |
|
497 | |||
497 | if self.xaxis == "frequency": |
|
498 | if self.xaxis == "frequency": | |
498 | x = self.data.xrange[0] |
|
499 | x = self.data.xrange[0] | |
499 | self.xlabel = "Frequency (kHz)" |
|
500 | self.xlabel = "Frequency (kHz)" | |
500 | elif self.xaxis == "time": |
|
501 | elif self.xaxis == "time": | |
501 | x = self.data.xrange[1] |
|
502 | x = self.data.xrange[1] | |
502 | self.xlabel = "Time (ms)" |
|
503 | self.xlabel = "Time (ms)" | |
503 | else: |
|
504 | else: | |
504 | x = self.data.xrange[2] |
|
505 | x = self.data.xrange[2] | |
505 | self.xlabel = "Velocity (m/s)" |
|
506 | self.xlabel = "Velocity (m/s)" | |
506 |
|
507 | |||
507 | self.titles = [] |
|
508 | self.titles = [] | |
508 |
|
509 | |||
509 |
|
510 | |||
510 | y = self.data.heights |
|
511 | y = self.data.heights | |
511 | self.y = y |
|
512 | self.y = y | |
512 | #nspc = self.data['spc'] |
|
513 | #nspc = self.data['spc'] | |
513 | #print(numpy.shape(self.data['spc'])) |
|
514 | #print(numpy.shape(self.data['spc'])) | |
514 | #spc = self.data['cspc'][0] |
|
515 | #spc = self.data['cspc'][0] | |
515 | #print(numpy.shape(spc)) |
|
516 | #print(numpy.shape(spc)) | |
516 | #exit() |
|
517 | #exit() | |
517 | cspc = self.data['cspc'][1] |
|
518 | cspc = self.data['cspc'][1] | |
518 | #print(numpy.shape(cspc)) |
|
519 | #print(numpy.shape(cspc)) | |
519 | #exit() |
|
520 | #exit() | |
520 |
|
521 | |||
521 | for n in range(self.nrows): |
|
522 | for n in range(self.nrows): | |
522 | noise = self.data['noise'][:,-1] |
|
523 | noise = self.data['noise'][:,-1] | |
523 | pair = self.data.pairs[n] |
|
524 | pair = self.data.pairs[n] | |
524 | #print(pair) #exit() |
|
525 | #print(pair) #exit() | |
525 |
|
526 | |||
526 |
|
527 | |||
527 |
|
528 | |||
528 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
529 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
529 |
|
530 | |||
530 | #print(out[:,53]) |
|
531 | #print(out[:,53]) | |
531 | #exit() |
|
532 | #exit() | |
532 | cross = numpy.abs(out) |
|
533 | cross = numpy.abs(out) | |
533 | z = cross/self.data.nFactor |
|
534 | z = cross/self.data.nFactor | |
534 | #print("here") |
|
535 | #print("here") | |
535 | #print(dataOut.data_spc[0,0,0]) |
|
536 | #print(dataOut.data_spc[0,0,0]) | |
536 | #exit() |
|
537 | #exit() | |
537 |
|
538 | |||
538 | cross = 10*numpy.log10(z) |
|
539 | cross = 10*numpy.log10(z) | |
539 | #print(numpy.shape(cross)) |
|
540 | #print(numpy.shape(cross)) | |
540 | #print(cross[0,:]) |
|
541 | #print(cross[0,:]) | |
541 | #print(self.data.nFactor) |
|
542 | #print(self.data.nFactor) | |
542 | #exit() |
|
543 | #exit() | |
543 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
544 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
544 |
|
545 | |||
545 | ax = self.axes[1 * n] |
|
546 | ax = self.axes[1 * n] | |
546 | if ax.firsttime: |
|
547 | if ax.firsttime: | |
547 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
548 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
548 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
549 | self.xmin = self.xmin if self.xmin else -self.xmax | |
549 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
550 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
550 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
551 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
551 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
552 | ax.plt = ax.pcolormesh(x, y, cross.T, | |
552 | vmin=self.zmin, |
|
553 | vmin=self.zmin, | |
553 | vmax=self.zmax, |
|
554 | vmax=self.zmax, | |
554 | cmap=plt.get_cmap(self.colormap) |
|
555 | cmap=plt.get_cmap(self.colormap) | |
555 | ) |
|
556 | ) | |
556 | else: |
|
557 | else: | |
557 | ax.plt.set_array(cross.T.ravel()) |
|
558 | ax.plt.set_array(cross.T.ravel()) | |
558 | self.titles.append( |
|
559 | self.titles.append( | |
559 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
560 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) | |
560 |
|
561 | |||
561 |
|
562 | |||
562 | class CrossSpectra3Plot(Plot): |
|
563 | class CrossSpectra3Plot(Plot): | |
563 |
|
564 | |||
564 | CODE = 'cspc' |
|
565 | CODE = 'cspc' | |
565 | colormap = 'jet' |
|
566 | colormap = 'jet' | |
566 | plot_type = 'pcolor' |
|
567 | plot_type = 'pcolor' | |
567 | zmin_coh = None |
|
568 | zmin_coh = None | |
568 | zmax_coh = None |
|
569 | zmax_coh = None | |
569 | zmin_phase = None |
|
570 | zmin_phase = None | |
570 | zmax_phase = None |
|
571 | zmax_phase = None | |
571 |
|
572 | |||
572 | def setup(self): |
|
573 | def setup(self): | |
573 |
|
574 | |||
574 | self.ncols = 3 |
|
575 | self.ncols = 3 | |
575 | self.nrows = len(self.data.pairs) |
|
576 | self.nrows = len(self.data.pairs) | |
576 | self.nplots = self.nrows * 3 |
|
577 | self.nplots = self.nrows * 3 | |
577 | self.width = 3.1 * self.ncols |
|
578 | self.width = 3.1 * self.ncols | |
578 | self.height = 5 * self.nrows |
|
579 | self.height = 5 * self.nrows | |
579 | self.ylabel = 'Range [km]' |
|
580 | self.ylabel = 'Range [km]' | |
580 | self.showprofile = False |
|
581 | self.showprofile = False | |
581 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
582 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
582 |
|
583 | |||
583 | def plot(self): |
|
584 | def plot(self): | |
584 |
|
585 | |||
585 | if self.xaxis == "frequency": |
|
586 | if self.xaxis == "frequency": | |
586 | x = self.data.xrange[0] |
|
587 | x = self.data.xrange[0] | |
587 | self.xlabel = "Frequency (kHz)" |
|
588 | self.xlabel = "Frequency (kHz)" | |
588 | elif self.xaxis == "time": |
|
589 | elif self.xaxis == "time": | |
589 | x = self.data.xrange[1] |
|
590 | x = self.data.xrange[1] | |
590 | self.xlabel = "Time (ms)" |
|
591 | self.xlabel = "Time (ms)" | |
591 | else: |
|
592 | else: | |
592 | x = self.data.xrange[2] |
|
593 | x = self.data.xrange[2] | |
593 | self.xlabel = "Velocity (m/s)" |
|
594 | self.xlabel = "Velocity (m/s)" | |
594 |
|
595 | |||
595 | self.titles = [] |
|
596 | self.titles = [] | |
596 |
|
597 | |||
597 |
|
598 | |||
598 | y = self.data.heights |
|
599 | y = self.data.heights | |
599 | self.y = y |
|
600 | self.y = y | |
600 | #nspc = self.data['spc'] |
|
601 | #nspc = self.data['spc'] | |
601 | #print(numpy.shape(self.data['spc'])) |
|
602 | #print(numpy.shape(self.data['spc'])) | |
602 | #spc = self.data['cspc'][0] |
|
603 | #spc = self.data['cspc'][0] | |
603 | #print(numpy.shape(spc)) |
|
604 | #print(numpy.shape(spc)) | |
604 | #exit() |
|
605 | #exit() | |
605 | cspc = self.data['cspc'][1] |
|
606 | cspc = self.data['cspc'][1] | |
606 | #print(numpy.shape(cspc)) |
|
607 | #print(numpy.shape(cspc)) | |
607 | #exit() |
|
608 | #exit() | |
608 |
|
609 | |||
609 | for n in range(self.nrows): |
|
610 | for n in range(self.nrows): | |
610 | noise = self.data['noise'][:,-1] |
|
611 | noise = self.data['noise'][:,-1] | |
611 | pair = self.data.pairs[n] |
|
612 | pair = self.data.pairs[n] | |
612 | #print(pair) #exit() |
|
613 | #print(pair) #exit() | |
613 |
|
614 | |||
614 |
|
615 | |||
615 |
|
616 | |||
616 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
617 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
617 |
|
618 | |||
618 | #print(out[:,53]) |
|
619 | #print(out[:,53]) | |
619 | #exit() |
|
620 | #exit() | |
620 | cross = numpy.abs(out) |
|
621 | cross = numpy.abs(out) | |
621 | z = cross/self.data.nFactor |
|
622 | z = cross/self.data.nFactor | |
622 | cross = 10*numpy.log10(z) |
|
623 | cross = 10*numpy.log10(z) | |
623 |
|
624 | |||
624 | out_r= out.real/self.data.nFactor |
|
625 | out_r= out.real/self.data.nFactor | |
625 | #out_r = 10*numpy.log10(out_r) |
|
626 | #out_r = 10*numpy.log10(out_r) | |
626 |
|
627 | |||
627 | out_i= out.imag/self.data.nFactor |
|
628 | out_i= out.imag/self.data.nFactor | |
628 | #out_i = 10*numpy.log10(out_i) |
|
629 | #out_i = 10*numpy.log10(out_i) | |
629 | #print(numpy.shape(cross)) |
|
630 | #print(numpy.shape(cross)) | |
630 | #print(cross[0,:]) |
|
631 | #print(cross[0,:]) | |
631 | #print(self.data.nFactor) |
|
632 | #print(self.data.nFactor) | |
632 | #exit() |
|
633 | #exit() | |
633 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
634 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
634 |
|
635 | |||
635 | ax = self.axes[3 * n] |
|
636 | ax = self.axes[3 * n] | |
636 | if ax.firsttime: |
|
637 | if ax.firsttime: | |
637 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
638 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
638 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
639 | self.xmin = self.xmin if self.xmin else -self.xmax | |
639 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
640 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
640 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
641 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
641 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
642 | ax.plt = ax.pcolormesh(x, y, cross.T, | |
642 | vmin=self.zmin, |
|
643 | vmin=self.zmin, | |
643 | vmax=self.zmax, |
|
644 | vmax=self.zmax, | |
644 | cmap=plt.get_cmap(self.colormap) |
|
645 | cmap=plt.get_cmap(self.colormap) | |
645 | ) |
|
646 | ) | |
646 | else: |
|
647 | else: | |
647 | ax.plt.set_array(cross.T.ravel()) |
|
648 | ax.plt.set_array(cross.T.ravel()) | |
648 | self.titles.append( |
|
649 | self.titles.append( | |
649 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
650 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) | |
650 |
|
651 | |||
651 | ax = self.axes[3 * n + 1] |
|
652 | ax = self.axes[3 * n + 1] | |
652 | if ax.firsttime: |
|
653 | if ax.firsttime: | |
653 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
654 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
654 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
655 | self.xmin = self.xmin if self.xmin else -self.xmax | |
655 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
656 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
656 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
657 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
657 | ax.plt = ax.pcolormesh(x, y, out_r.T, |
|
658 | ax.plt = ax.pcolormesh(x, y, out_r.T, | |
658 | vmin=-1.e6, |
|
659 | vmin=-1.e6, | |
659 | vmax=0, |
|
660 | vmax=0, | |
660 | cmap=plt.get_cmap(self.colormap) |
|
661 | cmap=plt.get_cmap(self.colormap) | |
661 | ) |
|
662 | ) | |
662 | else: |
|
663 | else: | |
663 | ax.plt.set_array(out_r.T.ravel()) |
|
664 | ax.plt.set_array(out_r.T.ravel()) | |
664 | self.titles.append( |
|
665 | self.titles.append( | |
665 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
666 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) | |
666 |
|
667 | |||
667 | ax = self.axes[3 * n + 2] |
|
668 | ax = self.axes[3 * n + 2] | |
668 |
|
669 | |||
669 |
|
670 | |||
670 | if ax.firsttime: |
|
671 | if ax.firsttime: | |
671 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
672 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
672 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
673 | self.xmin = self.xmin if self.xmin else -self.xmax | |
673 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
674 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
674 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
675 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
675 | ax.plt = ax.pcolormesh(x, y, out_i.T, |
|
676 | ax.plt = ax.pcolormesh(x, y, out_i.T, | |
676 | vmin=-1.e6, |
|
677 | vmin=-1.e6, | |
677 | vmax=1.e6, |
|
678 | vmax=1.e6, | |
678 | cmap=plt.get_cmap(self.colormap) |
|
679 | cmap=plt.get_cmap(self.colormap) | |
679 | ) |
|
680 | ) | |
680 | else: |
|
681 | else: | |
681 | ax.plt.set_array(out_i.T.ravel()) |
|
682 | ax.plt.set_array(out_i.T.ravel()) | |
682 | self.titles.append( |
|
683 | self.titles.append( | |
683 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
684 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) | |
684 |
|
685 | |||
685 | class RTIPlot(Plot): |
|
686 | class RTIPlot(Plot): | |
686 | ''' |
|
687 | ''' | |
687 | Plot for RTI data |
|
688 | Plot for RTI data | |
688 | ''' |
|
689 | ''' | |
689 |
|
690 | |||
690 | CODE = 'rti' |
|
691 | CODE = 'rti' | |
691 | colormap = 'jet' |
|
692 | colormap = 'jet' | |
692 | plot_type = 'pcolorbuffer' |
|
693 | plot_type = 'pcolorbuffer' | |
693 |
|
694 | |||
694 | def setup(self): |
|
695 | def setup(self): | |
695 | self.xaxis = 'time' |
|
696 | self.xaxis = 'time' | |
696 | self.ncols = 1 |
|
697 | self.ncols = 1 | |
697 | self.nrows = len(self.data.channels) |
|
698 | self.nrows = len(self.data.channels) | |
698 | self.nplots = len(self.data.channels) |
|
699 | self.nplots = len(self.data.channels) | |
699 | self.ylabel = 'Range [km]' |
|
700 | self.ylabel = 'Range [km]' | |
700 | self.xlabel = 'Time' |
|
701 | self.xlabel = 'Time' | |
701 | self.cb_label = 'dB' |
|
702 | self.cb_label = 'dB' | |
702 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
703 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) | |
703 | self.titles = ['{} Channel {}'.format( |
|
704 | self.titles = ['{} Channel {}'.format( | |
704 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
705 | self.CODE.upper(), x) for x in range(self.nrows)] | |
705 |
|
706 | |||
706 | def update(self, dataOut): |
|
707 | def update(self, dataOut): | |
707 |
|
708 | |||
708 | data = {} |
|
709 | data = {} | |
709 | meta = {} |
|
710 | meta = {} | |
710 | data['rti'] = dataOut.getPower() |
|
711 | data['rti'] = dataOut.getPower() | |
711 | #print(numpy.shape(data['rti'])) |
|
712 | #print(numpy.shape(data['rti'])) | |
712 |
|
713 | |||
713 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
714 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
714 |
|
715 | |||
715 | return data, meta |
|
716 | return data, meta | |
716 |
|
717 | |||
717 | def plot(self): |
|
718 | def plot(self): | |
718 |
|
719 | |||
719 | self.x = self.data.times |
|
720 | self.x = self.data.times | |
720 | self.y = self.data.yrange |
|
721 | self.y = self.data.yrange | |
721 | self.z = self.data[self.CODE] |
|
722 | self.z = self.data[self.CODE] | |
722 | #print("Inside RTI: ", self.z) |
|
723 | #print("Inside RTI: ", self.z) | |
723 | self.z = numpy.ma.masked_invalid(self.z) |
|
724 | self.z = numpy.ma.masked_invalid(self.z) | |
724 |
|
725 | |||
725 | if self.decimation is None: |
|
726 | if self.decimation is None: | |
726 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
727 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
727 | else: |
|
728 | else: | |
728 | x, y, z = self.fill_gaps(*self.decimate()) |
|
729 | x, y, z = self.fill_gaps(*self.decimate()) | |
729 | #print("self.z: ", self.z) |
|
730 | #print("self.z: ", self.z) | |
730 | #exit(1) |
|
731 | #exit(1) | |
731 | ''' |
|
732 | ''' | |
732 | if not isinstance(self.zmin, collections.abc.Sequence): |
|
733 | if not isinstance(self.zmin, collections.abc.Sequence): | |
733 | if not self.zmin: |
|
734 | if not self.zmin: | |
734 | self.zmin = [numpy.min(self.z)]*len(self.axes) |
|
735 | self.zmin = [numpy.min(self.z)]*len(self.axes) | |
735 | else: |
|
736 | else: | |
736 | self.zmin = [self.zmin]*len(self.axes) |
|
737 | self.zmin = [self.zmin]*len(self.axes) | |
737 |
|
738 | |||
738 | if not isinstance(self.zmax, collections.abc.Sequence): |
|
739 | if not isinstance(self.zmax, collections.abc.Sequence): | |
739 | if not self.zmax: |
|
740 | if not self.zmax: | |
740 | self.zmax = [numpy.max(self.z)]*len(self.axes) |
|
741 | self.zmax = [numpy.max(self.z)]*len(self.axes) | |
741 | else: |
|
742 | else: | |
742 | self.zmax = [self.zmax]*len(self.axes) |
|
743 | self.zmax = [self.zmax]*len(self.axes) | |
743 | ''' |
|
744 | ''' | |
744 | for n, ax in enumerate(self.axes): |
|
745 | for n, ax in enumerate(self.axes): | |
745 |
|
746 | |||
746 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
747 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
747 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
748 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
748 |
|
749 | |||
749 | if ax.firsttime: |
|
750 | if ax.firsttime: | |
750 | if self.zlimits is not None: |
|
751 | if self.zlimits is not None: | |
751 | self.zmin, self.zmax = self.zlimits[n] |
|
752 | self.zmin, self.zmax = self.zlimits[n] | |
752 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
753 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
753 | vmin=self.zmin, |
|
754 | vmin=self.zmin, | |
754 | vmax=self.zmax, |
|
755 | vmax=self.zmax, | |
755 | cmap=plt.get_cmap(self.colormap) |
|
756 | cmap=plt.get_cmap(self.colormap) | |
756 | ) |
|
757 | ) | |
757 | if self.showprofile: |
|
758 | if self.showprofile: | |
758 | ax.plot_profile = self.pf_axes[n].plot( |
|
759 | ax.plot_profile = self.pf_axes[n].plot( | |
759 | self.data['rti'][n][-1], self.y)[0] |
|
760 | self.data['rti'][n][-1], self.y)[0] | |
760 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
761 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, | |
761 | color="k", linestyle="dashed", lw=1)[0] |
|
762 | color="k", linestyle="dashed", lw=1)[0] | |
762 | else: |
|
763 | else: | |
763 | if self.zlimits is not None: |
|
764 | if self.zlimits is not None: | |
764 | self.zmin, self.zmax = self.zlimits[n] |
|
765 | self.zmin, self.zmax = self.zlimits[n] | |
765 | ax.plt.remove() |
|
766 | ax.plt.remove() | |
766 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
767 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
767 | vmin=self.zmin, |
|
768 | vmin=self.zmin, | |
768 | vmax=self.zmax, |
|
769 | vmax=self.zmax, | |
769 | cmap=plt.get_cmap(self.colormap) |
|
770 | cmap=plt.get_cmap(self.colormap) | |
770 | ) |
|
771 | ) | |
771 | if self.showprofile: |
|
772 | if self.showprofile: | |
772 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
773 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) | |
773 | ax.plot_noise.set_data(numpy.repeat( |
|
774 | ax.plot_noise.set_data(numpy.repeat( | |
774 | self.data['noise'][n][-1], len(self.y)), self.y) |
|
775 | self.data['noise'][n][-1], len(self.y)), self.y) | |
775 |
|
776 | |||
776 |
|
777 | |||
777 | class SpectrogramPlot(Plot): |
|
778 | class SpectrogramPlot(Plot): | |
778 | ''' |
|
779 | ''' | |
779 | Plot for Spectrogram data |
|
780 | Plot for Spectrogram data | |
780 | ''' |
|
781 | ''' | |
781 |
|
782 | |||
782 | CODE = 'Spectrogram_Profile' |
|
783 | CODE = 'Spectrogram_Profile' | |
783 | colormap = 'binary' |
|
784 | colormap = 'binary' | |
784 | plot_type = 'pcolorbuffer' |
|
785 | plot_type = 'pcolorbuffer' | |
785 |
|
786 | |||
786 | def setup(self): |
|
787 | def setup(self): | |
787 | self.xaxis = 'time' |
|
788 | self.xaxis = 'time' | |
788 | self.ncols = 1 |
|
789 | self.ncols = 1 | |
789 | self.nrows = len(self.data.channels) |
|
790 | self.nrows = len(self.data.channels) | |
790 | self.nplots = len(self.data.channels) |
|
791 | self.nplots = len(self.data.channels) | |
791 | self.xlabel = 'Time' |
|
792 | self.xlabel = 'Time' | |
792 | #self.cb_label = 'dB' |
|
793 | #self.cb_label = 'dB' | |
793 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) |
|
794 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) | |
794 | self.titles = [] |
|
795 | self.titles = [] | |
795 |
|
796 | |||
796 | #self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( |
|
797 | #self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( | |
797 | #self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] |
|
798 | #self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] | |
798 |
|
799 | |||
799 | self.titles = ['{} Channel {}'.format( |
|
800 | self.titles = ['{} Channel {}'.format( | |
800 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
801 | self.CODE.upper(), x) for x in range(self.nrows)] | |
801 |
|
802 | |||
802 |
|
803 | |||
803 | def update(self, dataOut): |
|
804 | def update(self, dataOut): | |
804 | data = {} |
|
805 | data = {} | |
805 | meta = {} |
|
806 | meta = {} | |
806 |
|
807 | |||
807 | maxHei = 1620#+12000 |
|
808 | maxHei = 1620#+12000 | |
808 | maxHei = 1180 |
|
809 | maxHei = 1180 | |
809 | maxHei = 500 |
|
810 | maxHei = 500 | |
810 | indb = numpy.where(dataOut.heightList <= maxHei) |
|
811 | indb = numpy.where(dataOut.heightList <= maxHei) | |
811 | hei = indb[0][-1] |
|
812 | hei = indb[0][-1] | |
812 | #print(dataOut.heightList) |
|
813 | #print(dataOut.heightList) | |
813 |
|
814 | |||
814 | factor = dataOut.nIncohInt |
|
815 | factor = dataOut.nIncohInt | |
815 | z = dataOut.data_spc[:,:,hei] / factor |
|
816 | z = dataOut.data_spc[:,:,hei] / factor | |
816 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
817 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
817 | #buffer = 10 * numpy.log10(z) |
|
818 | #buffer = 10 * numpy.log10(z) | |
818 |
|
819 | |||
819 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
820 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
820 |
|
821 | |||
821 |
|
822 | |||
822 | #self.hei = hei |
|
823 | #self.hei = hei | |
823 | #self.heightList = dataOut.heightList |
|
824 | #self.heightList = dataOut.heightList | |
824 | #self.DH = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
825 | #self.DH = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step | |
825 | #self.nProfiles = dataOut.nProfiles |
|
826 | #self.nProfiles = dataOut.nProfiles | |
826 |
|
827 | |||
827 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) |
|
828 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) | |
828 |
|
829 | |||
829 | data['hei'] = hei |
|
830 | data['hei'] = hei | |
830 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
831 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step | |
831 | data['nProfiles'] = dataOut.nProfiles |
|
832 | data['nProfiles'] = dataOut.nProfiles | |
832 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
833 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] | |
833 | ''' |
|
834 | ''' | |
834 | import matplotlib.pyplot as plt |
|
835 | import matplotlib.pyplot as plt | |
835 | plt.plot(10 * numpy.log10(z[0,:])) |
|
836 | plt.plot(10 * numpy.log10(z[0,:])) | |
836 | plt.show() |
|
837 | plt.show() | |
837 |
|
838 | |||
838 | from time import sleep |
|
839 | from time import sleep | |
839 | sleep(10) |
|
840 | sleep(10) | |
840 | ''' |
|
841 | ''' | |
841 | return data, meta |
|
842 | return data, meta | |
842 |
|
843 | |||
843 | def plot(self): |
|
844 | def plot(self): | |
844 |
|
845 | |||
845 | self.x = self.data.times |
|
846 | self.x = self.data.times | |
846 | self.z = self.data[self.CODE] |
|
847 | self.z = self.data[self.CODE] | |
847 | self.y = self.data.xrange[0] |
|
848 | self.y = self.data.xrange[0] | |
848 |
|
849 | |||
849 | hei = self.data['hei'][-1] |
|
850 | hei = self.data['hei'][-1] | |
850 | DH = self.data['DH'][-1] |
|
851 | DH = self.data['DH'][-1] | |
851 | nProfiles = self.data['nProfiles'][-1] |
|
852 | nProfiles = self.data['nProfiles'][-1] | |
852 |
|
853 | |||
853 | self.ylabel = "Frequency (kHz)" |
|
854 | self.ylabel = "Frequency (kHz)" | |
854 |
|
855 | |||
855 | self.z = numpy.ma.masked_invalid(self.z) |
|
856 | self.z = numpy.ma.masked_invalid(self.z) | |
856 |
|
857 | |||
857 | if self.decimation is None: |
|
858 | if self.decimation is None: | |
858 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
859 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
859 | else: |
|
860 | else: | |
860 | x, y, z = self.fill_gaps(*self.decimate()) |
|
861 | x, y, z = self.fill_gaps(*self.decimate()) | |
861 |
|
862 | |||
862 | for n, ax in enumerate(self.axes): |
|
863 | for n, ax in enumerate(self.axes): | |
863 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
864 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
864 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
865 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
865 | data = self.data[-1] |
|
866 | data = self.data[-1] | |
866 | if ax.firsttime: |
|
867 | if ax.firsttime: | |
867 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
868 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
868 | vmin=self.zmin, |
|
869 | vmin=self.zmin, | |
869 | vmax=self.zmax, |
|
870 | vmax=self.zmax, | |
870 | cmap=plt.get_cmap(self.colormap) |
|
871 | cmap=plt.get_cmap(self.colormap) | |
871 | ) |
|
872 | ) | |
872 | else: |
|
873 | else: | |
873 | ax.plt.remove() |
|
874 | ax.plt.remove() | |
874 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
875 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
875 | vmin=self.zmin, |
|
876 | vmin=self.zmin, | |
876 | vmax=self.zmax, |
|
877 | vmax=self.zmax, | |
877 | cmap=plt.get_cmap(self.colormap) |
|
878 | cmap=plt.get_cmap(self.colormap) | |
878 | ) |
|
879 | ) | |
879 |
|
880 | |||
880 | #self.titles.append('Spectrogram') |
|
881 | #self.titles.append('Spectrogram') | |
881 |
|
882 | |||
882 | #self.titles.append('{} Channel {} \n H = {} km ({} - {})'.format( |
|
883 | #self.titles.append('{} Channel {} \n H = {} km ({} - {})'.format( | |
883 | #self.CODE.upper(), x, y[hei], y[hei],y[hei]+(DH*nProfiles))) |
|
884 | #self.CODE.upper(), x, y[hei], y[hei],y[hei]+(DH*nProfiles))) | |
884 |
|
885 | |||
885 |
|
886 | |||
886 |
|
887 | |||
887 |
|
888 | |||
888 | class CoherencePlot(RTIPlot): |
|
889 | class CoherencePlot(RTIPlot): | |
889 | ''' |
|
890 | ''' | |
890 | Plot for Coherence data |
|
891 | Plot for Coherence data | |
891 | ''' |
|
892 | ''' | |
892 |
|
893 | |||
893 | CODE = 'coh' |
|
894 | CODE = 'coh' | |
894 |
|
895 | |||
895 | def setup(self): |
|
896 | def setup(self): | |
896 | self.xaxis = 'time' |
|
897 | self.xaxis = 'time' | |
897 | self.ncols = 1 |
|
898 | self.ncols = 1 | |
898 | self.nrows = len(self.data.pairs) |
|
899 | self.nrows = len(self.data.pairs) | |
899 | self.nplots = len(self.data.pairs) |
|
900 | self.nplots = len(self.data.pairs) | |
900 | self.ylabel = 'Range [km]' |
|
901 | self.ylabel = 'Range [km]' | |
901 | self.xlabel = 'Time' |
|
902 | self.xlabel = 'Time' | |
902 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
903 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) | |
903 | if self.CODE == 'coh': |
|
904 | if self.CODE == 'coh': | |
904 | self.cb_label = '' |
|
905 | self.cb_label = '' | |
905 | self.titles = [ |
|
906 | self.titles = [ | |
906 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
907 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
907 | else: |
|
908 | else: | |
908 | self.cb_label = 'Degrees' |
|
909 | self.cb_label = 'Degrees' | |
909 | self.titles = [ |
|
910 | self.titles = [ | |
910 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
911 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
911 |
|
912 | |||
912 | def update(self, dataOut): |
|
913 | def update(self, dataOut): | |
913 |
|
914 | |||
914 | data = {} |
|
915 | data = {} | |
915 | meta = {} |
|
916 | meta = {} | |
916 | data['coh'] = dataOut.getCoherence() |
|
917 | data['coh'] = dataOut.getCoherence() | |
917 | meta['pairs'] = dataOut.pairsList |
|
918 | meta['pairs'] = dataOut.pairsList | |
918 |
|
919 | |||
919 | return data, meta |
|
920 | return data, meta | |
920 |
|
921 | |||
921 | class PhasePlot(CoherencePlot): |
|
922 | class PhasePlot(CoherencePlot): | |
922 | ''' |
|
923 | ''' | |
923 | Plot for Phase map data |
|
924 | Plot for Phase map data | |
924 | ''' |
|
925 | ''' | |
925 |
|
926 | |||
926 | CODE = 'phase' |
|
927 | CODE = 'phase' | |
927 | colormap = 'seismic' |
|
928 | colormap = 'seismic' | |
928 |
|
929 | |||
929 | def update(self, dataOut): |
|
930 | def update(self, dataOut): | |
930 |
|
931 | |||
931 | data = {} |
|
932 | data = {} | |
932 | meta = {} |
|
933 | meta = {} | |
933 | data['phase'] = dataOut.getCoherence(phase=True) |
|
934 | data['phase'] = dataOut.getCoherence(phase=True) | |
934 | meta['pairs'] = dataOut.pairsList |
|
935 | meta['pairs'] = dataOut.pairsList | |
935 |
|
936 | |||
936 | return data, meta |
|
937 | return data, meta | |
937 |
|
938 | |||
938 | class NoisePlot(Plot): |
|
939 | class NoisePlot(Plot): | |
939 | ''' |
|
940 | ''' | |
940 | Plot for noise |
|
941 | Plot for noise | |
941 | ''' |
|
942 | ''' | |
942 |
|
943 | |||
943 | CODE = 'noise' |
|
944 | CODE = 'noise' | |
944 | plot_type = 'scatterbuffer' |
|
945 | plot_type = 'scatterbuffer' | |
945 |
|
946 | |||
946 | def setup(self): |
|
947 | def setup(self): | |
947 | self.xaxis = 'time' |
|
948 | self.xaxis = 'time' | |
948 | self.ncols = 1 |
|
949 | self.ncols = 1 | |
949 | self.nrows = 1 |
|
950 | self.nrows = 1 | |
950 | self.nplots = 1 |
|
951 | self.nplots = 1 | |
951 | self.ylabel = 'Intensity [dB]' |
|
952 | self.ylabel = 'Intensity [dB]' | |
952 | self.xlabel = 'Time' |
|
953 | self.xlabel = 'Time' | |
953 | self.titles = ['Noise'] |
|
954 | self.titles = ['Noise'] | |
954 | self.colorbar = False |
|
955 | self.colorbar = False | |
955 | self.plots_adjust.update({'right': 0.85 }) |
|
956 | self.plots_adjust.update({'right': 0.85 }) | |
956 |
|
957 | |||
957 | def update(self, dataOut): |
|
958 | def update(self, dataOut): | |
958 |
|
959 | |||
959 | data = {} |
|
960 | data = {} | |
960 | meta = {} |
|
961 | meta = {} | |
961 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
962 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) | |
962 | meta['yrange'] = numpy.array([]) |
|
963 | meta['yrange'] = numpy.array([]) | |
963 |
|
964 | |||
964 | return data, meta |
|
965 | return data, meta | |
965 |
|
966 | |||
966 | def plot(self): |
|
967 | def plot(self): | |
967 |
|
968 | |||
968 | x = self.data.times |
|
969 | x = self.data.times | |
969 | xmin = self.data.min_time |
|
970 | xmin = self.data.min_time | |
970 | xmax = xmin + self.xrange * 60 * 60 |
|
971 | xmax = xmin + self.xrange * 60 * 60 | |
971 | Y = self.data['noise'] |
|
972 | Y = self.data['noise'] | |
972 |
|
973 | |||
973 | if self.axes[0].firsttime: |
|
974 | if self.axes[0].firsttime: | |
974 | self.ymin = numpy.nanmin(Y) - 5 |
|
975 | self.ymin = numpy.nanmin(Y) - 5 | |
975 | self.ymax = numpy.nanmax(Y) + 5 |
|
976 | self.ymax = numpy.nanmax(Y) + 5 | |
976 | for ch in self.data.channels: |
|
977 | for ch in self.data.channels: | |
977 | y = Y[ch] |
|
978 | y = Y[ch] | |
978 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
979 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
979 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
980 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
980 | else: |
|
981 | else: | |
981 | for ch in self.data.channels: |
|
982 | for ch in self.data.channels: | |
982 | y = Y[ch] |
|
983 | y = Y[ch] | |
983 | self.axes[0].lines[ch].set_data(x, y) |
|
984 | self.axes[0].lines[ch].set_data(x, y) | |
984 |
|
985 | |||
985 | self.ymin = numpy.nanmin(Y) - 5 |
|
986 | self.ymin = numpy.nanmin(Y) - 5 | |
986 | self.ymax = numpy.nanmax(Y) + 10 |
|
987 | self.ymax = numpy.nanmax(Y) + 10 | |
987 |
|
988 | |||
988 |
|
989 | |||
989 | class PowerProfilePlot(Plot): |
|
990 | class PowerProfilePlot(Plot): | |
990 |
|
991 | |||
991 | CODE = 'pow_profile' |
|
992 | CODE = 'pow_profile' | |
992 | plot_type = 'scatter' |
|
993 | plot_type = 'scatter' | |
993 |
|
994 | |||
994 | def setup(self): |
|
995 | def setup(self): | |
995 |
|
996 | |||
996 | self.ncols = 1 |
|
997 | self.ncols = 1 | |
997 | self.nrows = 1 |
|
998 | self.nrows = 1 | |
998 | self.nplots = 1 |
|
999 | self.nplots = 1 | |
999 | self.height = 4 |
|
1000 | self.height = 4 | |
1000 | self.width = 3 |
|
1001 | self.width = 3 | |
1001 | self.ylabel = 'Range [km]' |
|
1002 | self.ylabel = 'Range [km]' | |
1002 | self.xlabel = 'Intensity [dB]' |
|
1003 | self.xlabel = 'Intensity [dB]' | |
1003 | self.titles = ['Power Profile'] |
|
1004 | self.titles = ['Power Profile'] | |
1004 | self.colorbar = False |
|
1005 | self.colorbar = False | |
1005 |
|
1006 | |||
1006 | def update(self, dataOut): |
|
1007 | def update(self, dataOut): | |
1007 |
|
1008 | |||
1008 | data = {} |
|
1009 | data = {} | |
1009 | meta = {} |
|
1010 | meta = {} | |
1010 | data[self.CODE] = dataOut.getPower() |
|
1011 | data[self.CODE] = dataOut.getPower() | |
1011 |
|
1012 | |||
1012 | return data, meta |
|
1013 | return data, meta | |
1013 |
|
1014 | |||
1014 | def plot(self): |
|
1015 | def plot(self): | |
1015 |
|
1016 | |||
1016 | y = self.data.yrange |
|
1017 | y = self.data.yrange | |
1017 | self.y = y |
|
1018 | self.y = y | |
1018 |
|
1019 | |||
1019 | x = self.data[-1][self.CODE] |
|
1020 | x = self.data[-1][self.CODE] | |
1020 |
|
1021 | |||
1021 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
1022 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 | |
1022 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
1023 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 | |
1023 |
|
1024 | |||
1024 | if self.axes[0].firsttime: |
|
1025 | if self.axes[0].firsttime: | |
1025 | for ch in self.data.channels: |
|
1026 | for ch in self.data.channels: | |
1026 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
1027 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) | |
1027 | plt.legend() |
|
1028 | plt.legend() | |
1028 | else: |
|
1029 | else: | |
1029 | for ch in self.data.channels: |
|
1030 | for ch in self.data.channels: | |
1030 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
1031 | self.axes[0].lines[ch].set_data(x[ch], y) | |
1031 |
|
1032 | |||
1032 |
|
1033 | |||
1033 | class SpectraCutPlot(Plot): |
|
1034 | class SpectraCutPlot(Plot): | |
1034 |
|
1035 | |||
1035 | CODE = 'spc_cut' |
|
1036 | CODE = 'spc_cut' | |
1036 | plot_type = 'scatter' |
|
1037 | plot_type = 'scatter' | |
1037 | buffering = False |
|
1038 | buffering = False | |
1038 |
|
1039 | |||
1039 | def setup(self): |
|
1040 | def setup(self): | |
1040 |
|
1041 | |||
1041 | self.nplots = len(self.data.channels) |
|
1042 | self.nplots = len(self.data.channels) | |
1042 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
1043 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
1043 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
1044 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
1044 | self.width = 3.4 * self.ncols + 1.5 |
|
1045 | self.width = 3.4 * self.ncols + 1.5 | |
1045 | self.height = 3 * self.nrows |
|
1046 | self.height = 3 * self.nrows | |
1046 | self.ylabel = 'Power [dB]' |
|
1047 | self.ylabel = 'Power [dB]' | |
1047 | self.colorbar = False |
|
1048 | self.colorbar = False | |
1048 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
1049 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) | |
1049 |
|
1050 | |||
1050 | def update(self, dataOut): |
|
1051 | def update(self, dataOut): | |
1051 |
|
1052 | |||
1052 | data = {} |
|
1053 | data = {} | |
1053 | meta = {} |
|
1054 | meta = {} | |
1054 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
1055 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
1055 | data['spc'] = spc |
|
1056 | data['spc'] = spc | |
1056 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
1057 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
1057 | if self.CODE == 'cut_gaussian_fit': |
|
1058 | if self.CODE == 'cut_gaussian_fit': | |
1058 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) |
|
1059 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) | |
1059 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) |
|
1060 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) | |
1060 | return data, meta |
|
1061 | return data, meta | |
1061 |
|
1062 | |||
1062 | def plot(self): |
|
1063 | def plot(self): | |
1063 | if self.xaxis == "frequency": |
|
1064 | if self.xaxis == "frequency": | |
1064 | x = self.data.xrange[0][1:] |
|
1065 | x = self.data.xrange[0][1:] | |
1065 | self.xlabel = "Frequency (kHz)" |
|
1066 | self.xlabel = "Frequency (kHz)" | |
1066 | elif self.xaxis == "time": |
|
1067 | elif self.xaxis == "time": | |
1067 | x = self.data.xrange[1] |
|
1068 | x = self.data.xrange[1] | |
1068 | self.xlabel = "Time (ms)" |
|
1069 | self.xlabel = "Time (ms)" | |
1069 | else: |
|
1070 | else: | |
1070 | x = self.data.xrange[2][:-1] |
|
1071 | x = self.data.xrange[2][:-1] | |
1071 | self.xlabel = "Velocity (m/s)" |
|
1072 | self.xlabel = "Velocity (m/s)" | |
1072 |
|
1073 | |||
1073 | if self.CODE == 'cut_gaussian_fit': |
|
1074 | if self.CODE == 'cut_gaussian_fit': | |
1074 | x = self.data.xrange[2][:-1] |
|
1075 | x = self.data.xrange[2][:-1] | |
1075 | self.xlabel = "Velocity (m/s)" |
|
1076 | self.xlabel = "Velocity (m/s)" | |
1076 |
|
1077 | |||
1077 | self.titles = [] |
|
1078 | self.titles = [] | |
1078 |
|
1079 | |||
1079 | y = self.data.yrange |
|
1080 | y = self.data.yrange | |
1080 | data = self.data[-1] |
|
1081 | data = self.data[-1] | |
1081 | z = data['spc'] |
|
1082 | z = data['spc'] | |
1082 |
|
1083 | |||
1083 | if self.height_index: |
|
1084 | if self.height_index: | |
1084 | index = numpy.array(self.height_index) |
|
1085 | index = numpy.array(self.height_index) | |
1085 | else: |
|
1086 | else: | |
1086 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
1087 | index = numpy.arange(0, len(y), int((len(y))/9)) | |
1087 |
|
1088 | |||
1088 | for n, ax in enumerate(self.axes): |
|
1089 | for n, ax in enumerate(self.axes): | |
1089 | if self.CODE == 'cut_gaussian_fit': |
|
1090 | if self.CODE == 'cut_gaussian_fit': | |
1090 | gau0 = data['gauss_fit0'] |
|
1091 | gau0 = data['gauss_fit0'] | |
1091 | gau1 = data['gauss_fit1'] |
|
1092 | gau1 = data['gauss_fit1'] | |
1092 | if ax.firsttime: |
|
1093 | if ax.firsttime: | |
1093 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
1094 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
1094 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
1095 | self.xmin = self.xmin if self.xmin else -self.xmax | |
1095 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z[:,:,index]) |
|
1096 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z[:,:,index]) | |
1096 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z[:,:,index]) |
|
1097 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z[:,:,index]) | |
1097 | #print(self.ymax) |
|
1098 | #print(self.ymax) | |
1098 | #print(z[n, :, index]) |
|
1099 | #print(z[n, :, index]) | |
1099 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) |
|
1100 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) | |
1100 | if self.CODE == 'cut_gaussian_fit': |
|
1101 | if self.CODE == 'cut_gaussian_fit': | |
1101 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') |
|
1102 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') | |
1102 | for i, line in enumerate(ax.plt_gau0): |
|
1103 | for i, line in enumerate(ax.plt_gau0): | |
1103 | line.set_color(ax.plt[i].get_color()) |
|
1104 | line.set_color(ax.plt[i].get_color()) | |
1104 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') |
|
1105 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') | |
1105 | for i, line in enumerate(ax.plt_gau1): |
|
1106 | for i, line in enumerate(ax.plt_gau1): | |
1106 | line.set_color(ax.plt[i].get_color()) |
|
1107 | line.set_color(ax.plt[i].get_color()) | |
1107 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
1108 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] | |
1108 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
1109 | self.figures[0].legend(ax.plt, labels, loc='center right') | |
1109 | else: |
|
1110 | else: | |
1110 | for i, line in enumerate(ax.plt): |
|
1111 | for i, line in enumerate(ax.plt): | |
1111 | line.set_data(x, z[n, :, index[i]].T) |
|
1112 | line.set_data(x, z[n, :, index[i]].T) | |
1112 | for i, line in enumerate(ax.plt_gau0): |
|
1113 | for i, line in enumerate(ax.plt_gau0): | |
1113 | line.set_data(x, gau0[n, :, index[i]].T) |
|
1114 | line.set_data(x, gau0[n, :, index[i]].T) | |
1114 | line.set_color(ax.plt[i].get_color()) |
|
1115 | line.set_color(ax.plt[i].get_color()) | |
1115 | for i, line in enumerate(ax.plt_gau1): |
|
1116 | for i, line in enumerate(ax.plt_gau1): | |
1116 | line.set_data(x, gau1[n, :, index[i]].T) |
|
1117 | line.set_data(x, gau1[n, :, index[i]].T) | |
1117 | line.set_color(ax.plt[i].get_color()) |
|
1118 | line.set_color(ax.plt[i].get_color()) | |
1118 | self.titles.append('CH {}'.format(n)) |
|
1119 | self.titles.append('CH {}'.format(n)) | |
1119 |
|
1120 | |||
1120 |
|
1121 | |||
1121 | class BeaconPhase(Plot): |
|
1122 | class BeaconPhase(Plot): | |
1122 |
|
1123 | |||
1123 | __isConfig = None |
|
1124 | __isConfig = None | |
1124 | __nsubplots = None |
|
1125 | __nsubplots = None | |
1125 |
|
1126 | |||
1126 | PREFIX = 'beacon_phase' |
|
1127 | PREFIX = 'beacon_phase' | |
1127 |
|
1128 | |||
1128 | def __init__(self): |
|
1129 | def __init__(self): | |
1129 | Plot.__init__(self) |
|
1130 | Plot.__init__(self) | |
1130 | self.timerange = 24*60*60 |
|
1131 | self.timerange = 24*60*60 | |
1131 | self.isConfig = False |
|
1132 | self.isConfig = False | |
1132 | self.__nsubplots = 1 |
|
1133 | self.__nsubplots = 1 | |
1133 | self.counter_imagwr = 0 |
|
1134 | self.counter_imagwr = 0 | |
1134 | self.WIDTH = 800 |
|
1135 | self.WIDTH = 800 | |
1135 | self.HEIGHT = 400 |
|
1136 | self.HEIGHT = 400 | |
1136 | self.WIDTHPROF = 120 |
|
1137 | self.WIDTHPROF = 120 | |
1137 | self.HEIGHTPROF = 0 |
|
1138 | self.HEIGHTPROF = 0 | |
1138 | self.xdata = None |
|
1139 | self.xdata = None | |
1139 | self.ydata = None |
|
1140 | self.ydata = None | |
1140 |
|
1141 | |||
1141 | self.PLOT_CODE = BEACON_CODE |
|
1142 | self.PLOT_CODE = BEACON_CODE | |
1142 |
|
1143 | |||
1143 | self.FTP_WEI = None |
|
1144 | self.FTP_WEI = None | |
1144 | self.EXP_CODE = None |
|
1145 | self.EXP_CODE = None | |
1145 | self.SUB_EXP_CODE = None |
|
1146 | self.SUB_EXP_CODE = None | |
1146 | self.PLOT_POS = None |
|
1147 | self.PLOT_POS = None | |
1147 |
|
1148 | |||
1148 | self.filename_phase = None |
|
1149 | self.filename_phase = None | |
1149 |
|
1150 | |||
1150 | self.figfile = None |
|
1151 | self.figfile = None | |
1151 |
|
1152 | |||
1152 | self.xmin = None |
|
1153 | self.xmin = None | |
1153 | self.xmax = None |
|
1154 | self.xmax = None | |
1154 |
|
1155 | |||
1155 | def getSubplots(self): |
|
1156 | def getSubplots(self): | |
1156 |
|
1157 | |||
1157 | ncol = 1 |
|
1158 | ncol = 1 | |
1158 | nrow = 1 |
|
1159 | nrow = 1 | |
1159 |
|
1160 | |||
1160 | return nrow, ncol |
|
1161 | return nrow, ncol | |
1161 |
|
1162 | |||
1162 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1163 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
1163 |
|
1164 | |||
1164 | self.__showprofile = showprofile |
|
1165 | self.__showprofile = showprofile | |
1165 | self.nplots = nplots |
|
1166 | self.nplots = nplots | |
1166 |
|
1167 | |||
1167 | ncolspan = 7 |
|
1168 | ncolspan = 7 | |
1168 | colspan = 6 |
|
1169 | colspan = 6 | |
1169 | self.__nsubplots = 2 |
|
1170 | self.__nsubplots = 2 | |
1170 |
|
1171 | |||
1171 | self.createFigure(id = id, |
|
1172 | self.createFigure(id = id, | |
1172 | wintitle = wintitle, |
|
1173 | wintitle = wintitle, | |
1173 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1174 | widthplot = self.WIDTH+self.WIDTHPROF, | |
1174 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1175 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
1175 | show=show) |
|
1176 | show=show) | |
1176 |
|
1177 | |||
1177 | nrow, ncol = self.getSubplots() |
|
1178 | nrow, ncol = self.getSubplots() | |
1178 |
|
1179 | |||
1179 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1180 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
1180 |
|
1181 | |||
1181 | def save_phase(self, filename_phase): |
|
1182 | def save_phase(self, filename_phase): | |
1182 | f = open(filename_phase,'w+') |
|
1183 | f = open(filename_phase,'w+') | |
1183 | f.write('\n\n') |
|
1184 | f.write('\n\n') | |
1184 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1185 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
1185 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1186 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
1186 | f.close() |
|
1187 | f.close() | |
1187 |
|
1188 | |||
1188 | def save_data(self, filename_phase, data, data_datetime): |
|
1189 | def save_data(self, filename_phase, data, data_datetime): | |
1189 | f=open(filename_phase,'a') |
|
1190 | f=open(filename_phase,'a') | |
1190 | timetuple_data = data_datetime.timetuple() |
|
1191 | timetuple_data = data_datetime.timetuple() | |
1191 | day = str(timetuple_data.tm_mday) |
|
1192 | day = str(timetuple_data.tm_mday) | |
1192 | month = str(timetuple_data.tm_mon) |
|
1193 | month = str(timetuple_data.tm_mon) | |
1193 | year = str(timetuple_data.tm_year) |
|
1194 | year = str(timetuple_data.tm_year) | |
1194 | hour = str(timetuple_data.tm_hour) |
|
1195 | hour = str(timetuple_data.tm_hour) | |
1195 | minute = str(timetuple_data.tm_min) |
|
1196 | minute = str(timetuple_data.tm_min) | |
1196 | second = str(timetuple_data.tm_sec) |
|
1197 | second = str(timetuple_data.tm_sec) | |
1197 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1198 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
1198 | f.close() |
|
1199 | f.close() | |
1199 |
|
1200 | |||
1200 | def plot(self): |
|
1201 | def plot(self): | |
1201 | log.warning('TODO: Not yet implemented...') |
|
1202 | log.warning('TODO: Not yet implemented...') | |
1202 |
|
1203 | |||
1203 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1204 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
1204 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1205 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
1205 | timerange=None, |
|
1206 | timerange=None, | |
1206 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1207 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
1207 | server=None, folder=None, username=None, password=None, |
|
1208 | server=None, folder=None, username=None, password=None, | |
1208 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1209 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1209 |
|
1210 | |||
1210 | if dataOut.flagNoData: |
|
1211 | if dataOut.flagNoData: | |
1211 | return dataOut |
|
1212 | return dataOut | |
1212 |
|
1213 | |||
1213 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1214 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
1214 | return |
|
1215 | return | |
1215 |
|
1216 | |||
1216 | if pairsList == None: |
|
1217 | if pairsList == None: | |
1217 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1218 | pairsIndexList = dataOut.pairsIndexList[:10] | |
1218 | else: |
|
1219 | else: | |
1219 | pairsIndexList = [] |
|
1220 | pairsIndexList = [] | |
1220 | for pair in pairsList: |
|
1221 | for pair in pairsList: | |
1221 | if pair not in dataOut.pairsList: |
|
1222 | if pair not in dataOut.pairsList: | |
1222 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
1223 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) | |
1223 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1224 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
1224 |
|
1225 | |||
1225 | if pairsIndexList == []: |
|
1226 | if pairsIndexList == []: | |
1226 | return |
|
1227 | return | |
1227 |
|
1228 | |||
1228 | # if len(pairsIndexList) > 4: |
|
1229 | # if len(pairsIndexList) > 4: | |
1229 | # pairsIndexList = pairsIndexList[0:4] |
|
1230 | # pairsIndexList = pairsIndexList[0:4] | |
1230 |
|
1231 | |||
1231 | hmin_index = None |
|
1232 | hmin_index = None | |
1232 | hmax_index = None |
|
1233 | hmax_index = None | |
1233 |
|
1234 | |||
1234 | if hmin != None and hmax != None: |
|
1235 | if hmin != None and hmax != None: | |
1235 | indexes = numpy.arange(dataOut.nHeights) |
|
1236 | indexes = numpy.arange(dataOut.nHeights) | |
1236 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1237 | hmin_list = indexes[dataOut.heightList >= hmin] | |
1237 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1238 | hmax_list = indexes[dataOut.heightList <= hmax] | |
1238 |
|
1239 | |||
1239 | if hmin_list.any(): |
|
1240 | if hmin_list.any(): | |
1240 | hmin_index = hmin_list[0] |
|
1241 | hmin_index = hmin_list[0] | |
1241 |
|
1242 | |||
1242 | if hmax_list.any(): |
|
1243 | if hmax_list.any(): | |
1243 | hmax_index = hmax_list[-1]+1 |
|
1244 | hmax_index = hmax_list[-1]+1 | |
1244 |
|
1245 | |||
1245 | x = dataOut.getTimeRange() |
|
1246 | x = dataOut.getTimeRange() | |
1246 |
|
1247 | |||
1247 | thisDatetime = dataOut.datatime |
|
1248 | thisDatetime = dataOut.datatime | |
1248 |
|
1249 | |||
1249 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1250 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1250 | xlabel = "Local Time" |
|
1251 | xlabel = "Local Time" | |
1251 | ylabel = "Phase (degrees)" |
|
1252 | ylabel = "Phase (degrees)" | |
1252 |
|
1253 | |||
1253 | update_figfile = False |
|
1254 | update_figfile = False | |
1254 |
|
1255 | |||
1255 | nplots = len(pairsIndexList) |
|
1256 | nplots = len(pairsIndexList) | |
1256 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1257 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
1257 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1258 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
1258 | for i in range(nplots): |
|
1259 | for i in range(nplots): | |
1259 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1260 | pair = dataOut.pairsList[pairsIndexList[i]] | |
1260 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1261 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
1261 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1262 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
1262 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1263 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
1263 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1264 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
1264 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1265 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
1265 |
|
1266 | |||
1266 | if dataOut.beacon_heiIndexList: |
|
1267 | if dataOut.beacon_heiIndexList: | |
1267 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1268 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
1268 | else: |
|
1269 | else: | |
1269 | phase_beacon[i] = numpy.average(phase) |
|
1270 | phase_beacon[i] = numpy.average(phase) | |
1270 |
|
1271 | |||
1271 | if not self.isConfig: |
|
1272 | if not self.isConfig: | |
1272 |
|
1273 | |||
1273 | nplots = len(pairsIndexList) |
|
1274 | nplots = len(pairsIndexList) | |
1274 |
|
1275 | |||
1275 | self.setup(id=id, |
|
1276 | self.setup(id=id, | |
1276 | nplots=nplots, |
|
1277 | nplots=nplots, | |
1277 | wintitle=wintitle, |
|
1278 | wintitle=wintitle, | |
1278 | showprofile=showprofile, |
|
1279 | showprofile=showprofile, | |
1279 | show=show) |
|
1280 | show=show) | |
1280 |
|
1281 | |||
1281 | if timerange != None: |
|
1282 | if timerange != None: | |
1282 | self.timerange = timerange |
|
1283 | self.timerange = timerange | |
1283 |
|
1284 | |||
1284 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1285 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1285 |
|
1286 | |||
1286 | if ymin == None: ymin = 0 |
|
1287 | if ymin == None: ymin = 0 | |
1287 | if ymax == None: ymax = 360 |
|
1288 | if ymax == None: ymax = 360 | |
1288 |
|
1289 | |||
1289 | self.FTP_WEI = ftp_wei |
|
1290 | self.FTP_WEI = ftp_wei | |
1290 | self.EXP_CODE = exp_code |
|
1291 | self.EXP_CODE = exp_code | |
1291 | self.SUB_EXP_CODE = sub_exp_code |
|
1292 | self.SUB_EXP_CODE = sub_exp_code | |
1292 | self.PLOT_POS = plot_pos |
|
1293 | self.PLOT_POS = plot_pos | |
1293 |
|
1294 | |||
1294 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1295 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1295 | self.isConfig = True |
|
1296 | self.isConfig = True | |
1296 | self.figfile = figfile |
|
1297 | self.figfile = figfile | |
1297 | self.xdata = numpy.array([]) |
|
1298 | self.xdata = numpy.array([]) | |
1298 | self.ydata = numpy.array([]) |
|
1299 | self.ydata = numpy.array([]) | |
1299 |
|
1300 | |||
1300 | update_figfile = True |
|
1301 | update_figfile = True | |
1301 |
|
1302 | |||
1302 | #open file beacon phase |
|
1303 | #open file beacon phase | |
1303 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1304 | path = '%s%03d' %(self.PREFIX, self.id) | |
1304 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1305 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
1305 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1306 | self.filename_phase = os.path.join(figpath,beacon_file) | |
1306 | #self.save_phase(self.filename_phase) |
|
1307 | #self.save_phase(self.filename_phase) | |
1307 |
|
1308 | |||
1308 |
|
1309 | |||
1309 | #store data beacon phase |
|
1310 | #store data beacon phase | |
1310 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1311 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
1311 |
|
1312 | |||
1312 | self.setWinTitle(title) |
|
1313 | self.setWinTitle(title) | |
1313 |
|
1314 | |||
1314 |
|
1315 | |||
1315 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1316 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1316 |
|
1317 | |||
1317 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1318 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
1318 |
|
1319 | |||
1319 | axes = self.axesList[0] |
|
1320 | axes = self.axesList[0] | |
1320 |
|
1321 | |||
1321 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1322 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
1322 |
|
1323 | |||
1323 | if len(self.ydata)==0: |
|
1324 | if len(self.ydata)==0: | |
1324 | self.ydata = phase_beacon.reshape(-1,1) |
|
1325 | self.ydata = phase_beacon.reshape(-1,1) | |
1325 | else: |
|
1326 | else: | |
1326 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1327 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
1327 |
|
1328 | |||
1328 |
|
1329 | |||
1329 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1330 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
1330 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1331 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
1331 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1332 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
1332 | XAxisAsTime=True, grid='both' |
|
1333 | XAxisAsTime=True, grid='both' | |
1333 | ) |
|
1334 | ) | |
1334 |
|
1335 | |||
1335 | self.draw() |
|
1336 | self.draw() | |
1336 |
|
1337 | |||
1337 | if dataOut.ltctime >= self.xmax: |
|
1338 | if dataOut.ltctime >= self.xmax: | |
1338 | self.counter_imagwr = wr_period |
|
1339 | self.counter_imagwr = wr_period | |
1339 | self.isConfig = False |
|
1340 | self.isConfig = False | |
1340 | update_figfile = True |
|
1341 | update_figfile = True | |
1341 |
|
1342 | |||
1342 | self.save(figpath=figpath, |
|
1343 | self.save(figpath=figpath, | |
1343 | figfile=figfile, |
|
1344 | figfile=figfile, | |
1344 | save=save, |
|
1345 | save=save, | |
1345 | ftp=ftp, |
|
1346 | ftp=ftp, | |
1346 | wr_period=wr_period, |
|
1347 | wr_period=wr_period, | |
1347 | thisDatetime=thisDatetime, |
|
1348 | thisDatetime=thisDatetime, | |
1348 | update_figfile=update_figfile) |
|
1349 | update_figfile=update_figfile) | |
1349 |
|
1350 | |||
1350 | return dataOut |
|
1351 | return dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now