This diff has been collapsed as it changes many lines, (1420 lines changed) Show them Hide them | |||
@@ -0,0 +1,1420 | |||
|
1 | """ | |
|
2 | The module ASTRO_COORDS.py gathers classes and functions for coordinates transformation. Additiona- | |
|
3 | lly a class EquatorialCorrections and celestial bodies are defined. The first of these is to correct | |
|
4 | any error in the location of the body and the second to know the location of certain celestial bo- | |
|
5 | dies in the sky. | |
|
6 | ||
|
7 | MODULES CALLED: | |
|
8 | OS, NUMPY, NUMERIC, SCIPY, TIME_CONVERSIONS | |
|
9 | ||
|
10 | MODIFICATION HISTORY: | |
|
11 | Created by Ing. Freddy Galindo (frederickgalindo@gmail.com). ROJ Sep 20, 2009. | |
|
12 | """ | |
|
13 | ||
|
14 | import numpy | |
|
15 | #import Numeric | |
|
16 | import scipy.interpolate | |
|
17 | import os | |
|
18 | import sys | |
|
19 | from schainpy.model.utils import TimeTools | |
|
20 | from schainpy.model.utils import Misc_Routines | |
|
21 | ||
|
22 | class EquatorialCorrections(): | |
|
23 | def __init__(self): | |
|
24 | """ | |
|
25 | EquatorialCorrections class creates an object to call methods to correct the loca- | |
|
26 | tion of the celestial bodies. | |
|
27 | ||
|
28 | Modification History | |
|
29 | -------------------- | |
|
30 | Converted to Object-oriented Programming by Freddy Galindo, ROJ, 27 September 2009. | |
|
31 | """ | |
|
32 | ||
|
33 | pass | |
|
34 | ||
|
35 | def co_nutate(self,jd,ra,dec): | |
|
36 | """ | |
|
37 | co_nutate calculates changes in RA and Dec due to nutation of the Earth's rotation | |
|
38 | Additionally it returns the obliquity of the ecliptic (eps), nutation in the longi- | |
|
39 | tude of the ecliptic (d_psi) and nutation in the pbliquity of the ecliptic (d_eps). | |
|
40 | ||
|
41 | Parameters | |
|
42 | ---------- | |
|
43 | jd = Julian Date (Scalar or array). | |
|
44 | RA = A scalar o array giving the Right Ascention of interest. | |
|
45 | Dec = A scalar o array giving the Right Ascention of interest. | |
|
46 | ||
|
47 | Return | |
|
48 | ------ | |
|
49 | d_ra = Correction to ra due to nutation. | |
|
50 | d_dec = Correction to dec due to nutation. | |
|
51 | ||
|
52 | Examples | |
|
53 | -------- | |
|
54 | >> Julian = 2462088.7 | |
|
55 | >> Ra = 41.547213 | |
|
56 | >> Dec = 49.348483 | |
|
57 | >> [d_ra,d_dec,eps,d_psi,d_eps] = co_nutate(julian,Ra,Dec) | |
|
58 | >> print d_ra, d_dec, eps, d_psi, d_eps | |
|
59 | [ 15.84276651] [ 6.21641029] [ 0.4090404] [ 14.85990198] [ 2.70408658] | |
|
60 | ||
|
61 | Modification history | |
|
62 | -------------------- | |
|
63 | Written by Chris O'Dell, 2002. | |
|
64 | Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | |
|
65 | """ | |
|
66 | ||
|
67 | jd = numpy.atleast_1d(jd) | |
|
68 | ra = numpy.atleast_1d(ra) | |
|
69 | dec = numpy.atleast_1d(dec) | |
|
70 | ||
|
71 | # Useful transformation constants | |
|
72 | d2as = numpy.pi/(180.*3600.) | |
|
73 | ||
|
74 | # Julian centuries from J2000 of jd | |
|
75 | T = (jd - 2451545.0)/36525.0 | |
|
76 | ||
|
77 | # Must calculate obliquity of ecliptic | |
|
78 | [d_psi, d_eps] = self.nutate(jd) | |
|
79 | d_psi = numpy.atleast_1d(d_psi) | |
|
80 | d_eps = numpy.atleast_1d(d_eps) | |
|
81 | ||
|
82 | eps0 = (23.4392911*3600.) - (46.8150*T) - (0.00059*T**2) + (0.001813*T**3) | |
|
83 | # True obliquity of the ecliptic in radians | |
|
84 | eps = (eps0 + d_eps)/3600.*Misc_Routines.CoFactors.d2r | |
|
85 | ||
|
86 | # Useful numbers | |
|
87 | ce = numpy.cos(eps) | |
|
88 | se = numpy.sin(eps) | |
|
89 | ||
|
90 | # Convert Ra-Dec to equatorial rectangular coordinates | |
|
91 | x = numpy.cos(ra*Misc_Routines.CoFactors.d2r)*numpy.cos(dec*Misc_Routines.CoFactors.d2r) | |
|
92 | y = numpy.sin(ra*Misc_Routines.CoFactors.d2r)*numpy.cos(dec*Misc_Routines.CoFactors.d2r) | |
|
93 | z = numpy.sin(dec*Misc_Routines.CoFactors.d2r) | |
|
94 | ||
|
95 | # Apply corrections to each rectangular coordinate | |
|
96 | x2 = x - (y*ce + z*se)*d_psi*Misc_Routines.CoFactors.s2r | |
|
97 | y2 = y + (x*ce*d_psi - z*d_eps)*Misc_Routines.CoFactors.s2r | |
|
98 | z2 = z + (x*se*d_psi + y*d_eps)*Misc_Routines.CoFactors.s2r | |
|
99 | ||
|
100 | # Convert bask to equatorial spherical coordinates | |
|
101 | r = numpy.sqrt(x2**2. + y2**2. + z2**2.) | |
|
102 | xyproj =numpy.sqrt(x2**2. + y2**2.) | |
|
103 | ||
|
104 | ra2 = x2*0.0 | |
|
105 | dec2 = x2*0.0 | |
|
106 | ||
|
107 | xyproj = numpy.atleast_1d(xyproj) | |
|
108 | z = numpy.atleast_1d(z) | |
|
109 | r = numpy.atleast_1d(r) | |
|
110 | x2 = numpy.atleast_1d(x2) | |
|
111 | y2 = numpy.atleast_1d(y2) | |
|
112 | z2 = numpy.atleast_1d(z2) | |
|
113 | ra2 = numpy.atleast_1d(ra2) | |
|
114 | dec2 = numpy.atleast_1d(dec2) | |
|
115 | ||
|
116 | w1 = numpy.where((xyproj==0) & (z!=0)) | |
|
117 | w2 = numpy.where(xyproj!=0) | |
|
118 | ||
|
119 | # Calculate Ra and Dec in radians (later convert to degrees) | |
|
120 | if w1[0].size>0: | |
|
121 | # Places where xyproj=0 (point at NCP or SCP) | |
|
122 | dec2[w1] = numpy.arcsin(z2[w1]/r[w1]) | |
|
123 | ra2[w1] = 0 | |
|
124 | ||
|
125 | if w2[0].size>0: | |
|
126 | # Places other than NCP or SCP | |
|
127 | ra2[w2] = numpy.arctan2(y2[w2],x2[w2]) | |
|
128 | dec2[w2] = numpy.arcsin(z2[w2]/r[w2]) | |
|
129 | ||
|
130 | # Converting to degree | |
|
131 | ra2 = ra2/Misc_Routines.CoFactors.d2r | |
|
132 | dec2 = dec2/Misc_Routines.CoFactors.d2r | |
|
133 | ||
|
134 | w = numpy.where(ra2<0.) | |
|
135 | if w[0].size>0: | |
|
136 | ra2[w] = ra2[w] + 360. | |
|
137 | ||
|
138 | # Return changes in Ra and Dec in arcseconds | |
|
139 | d_ra = (ra2 -ra)*3600. | |
|
140 | d_dec = (dec2 - dec)*3600. | |
|
141 | ||
|
142 | return d_ra, d_dec, eps, d_psi, d_eps | |
|
143 | ||
|
144 | def nutate(self,jd): | |
|
145 | """ | |
|
146 | nutate returns the nutation in longitude and obliquity for a given Julian date. | |
|
147 | ||
|
148 | Parameters | |
|
149 | ---------- | |
|
150 | jd = Julian ephemeris date, scalar or vector. | |
|
151 | ||
|
152 | Return | |
|
153 | ------ | |
|
154 | nut_long = The nutation in longitude. | |
|
155 | nut_obliq = The nutation in latitude. | |
|
156 | ||
|
157 | Example | |
|
158 | ------- | |
|
159 | >> julian = 2446895.5 | |
|
160 | >> [nut_long,nut_obliq] = nutate(julian) | |
|
161 | >> print nut_long, nut_obliq | |
|
162 | -3.78793107711 9.44252069864 | |
|
163 | ||
|
164 | >> julians = 2415020.5 + numpy.arange(50) | |
|
165 | >> [nut_long,nut_obliq] = nutate(julians) | |
|
166 | ||
|
167 | Modification History | |
|
168 | -------------------- | |
|
169 | Written by W.Landsman (Goddard/HSTX), June 1996. | |
|
170 | Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | |
|
171 | """ | |
|
172 | ||
|
173 | jd = numpy.atleast_1d(jd) | |
|
174 | ||
|
175 | # Form time in Julian centuries from 1900 | |
|
176 | t = (jd - 2451545.0)/36525.0 | |
|
177 | ||
|
178 | # Mean elongation of the moon | |
|
179 | coeff1 = numpy.array([1/189474.0,-0.0019142,445267.111480,297.85036]) | |
|
180 | d = numpy.poly1d(coeff1) | |
|
181 | d = d(t)*Misc_Routines.CoFactors.d2r | |
|
182 | d = self.cirrange(d,rad=1) | |
|
183 | ||
|
184 | # Sun's mean elongation | |
|
185 | coeff2 = numpy.array([-1./3e5,-0.0001603,35999.050340,357.52772]) | |
|
186 | m = numpy.poly1d(coeff2) | |
|
187 | m = m(t)*Misc_Routines.CoFactors.d2r | |
|
188 | m = self.cirrange(m,rad=1) | |
|
189 | ||
|
190 | # Moon's mean elongation | |
|
191 | coeff3 = numpy.array([1.0/5.625e4,0.0086972,477198.867398,134.96298]) | |
|
192 | mprime = numpy.poly1d(coeff3) | |
|
193 | mprime = mprime(t)*Misc_Routines.CoFactors.d2r | |
|
194 | mprime = self.cirrange(mprime,rad=1) | |
|
195 | ||
|
196 | # Moon's argument of latitude | |
|
197 | coeff4 = numpy.array([-1.0/3.27270e5,-0.0036825,483202.017538,93.27191]) | |
|
198 | f = numpy.poly1d(coeff4) | |
|
199 | f = f(t)*Misc_Routines.CoFactors.d2r | |
|
200 | f = self.cirrange(f,rad=1) | |
|
201 | ||
|
202 | # Longitude fo the ascending node of the Moon's mean orbit on the ecliptic, measu- | |
|
203 | # red from the mean equinox of the date. | |
|
204 | coeff5 = numpy.array([1.0/4.5e5,0.0020708,-1934.136261,125.04452]) | |
|
205 | omega = numpy.poly1d(coeff5) | |
|
206 | omega = omega(t)*Misc_Routines.CoFactors.d2r | |
|
207 | omega = self.cirrange(omega,rad=1) | |
|
208 | ||
|
209 | d_lng = numpy.array([0,-2,0,0,0,0,-2,0,0,-2,-2,-2,0,2,0,2,0,0,-2,0,2,0,0,-2,0,-2,0,0,\ | |
|
210 | 2,-2,0,-2,0,0,2,2,0,-2,0,2,2,-2,-2,2,2,0,-2,-2,0,-2,-2,0,-1,-2,1,0,0,-1,0,\ | |
|
211 | 0,2,0,2]) | |
|
212 | ||
|
213 | m_lng = numpy.array([0,0,0,0,1,0,1,0,0,-1]) | |
|
214 | m_lng = numpy.append(m_lng,numpy.zeros(17)) | |
|
215 | m_lng = numpy.append(m_lng,numpy.array([2,0,2,1,0,-1,0,0,0,1,1,-1,0,0,0,0,0,0,-1,-1,0,0,\ | |
|
216 | 0,1,0,0,1,0,0,0,-1,1,-1,-1,0,-1])) | |
|
217 | ||
|
218 | mp_lng = numpy.array([0,0,0,0,0,1,0,0,1,0,1,0,-1,0,1,-1,-1,1,2,-2,0,2,2,1,0,0, -1, 0,\ | |
|
219 | -1,0,0,1,0,2,-1,1,0,1,0,0,1,2,1,-2,0,1,0,0,2,2,0,1,1,0,0,1,-2,1,1,1,-1,3,0]) | |
|
220 | ||
|
221 | f_lng = numpy.array([0,2,2,0,0,0,2,2,2,2,0,2,2,0,0,2,0,2,0,2,2,2,0,2,2,2,2,0,0,2,0,0,\ | |
|
222 | 0,-2,2,2,2,0,2,2,0,2,2,0,0,0,2,0,2,0,2,-2,0,0,0,2,2,0,0,2,2,2,2]) | |
|
223 | ||
|
224 | om_lng = numpy.array([1,2,2,2,0,0,2,1,2,2,0,1,2,0,1,2,1,1,0,1,2,2,0,2,0,0,1,0,1,2,1, \ | |
|
225 | 1,1,0,1,2,2,0,2,1,0,2,1,1,1,0,1,1,1,1,1,0,0,0,0,0,2,0,0,2,2,2,2]) | |
|
226 | ||
|
227 | sin_lng = numpy.array([-171996,-13187,-2274,2062,1426,712,-517,-386,-301, 217, -158, \ | |
|
228 | 129,123,63,63,-59,-58,-51,48,46,-38,-31,29,29,26,-22,21,17,16,-16,-15,-13,\ | |
|
229 | -12,11,-10,-8,7,-7,-7,-7,6,6,6,-6,-6,5,-5,-5,-5,4,4,4,-4,-4,-4,3,-3,-3,-3,\ | |
|
230 | -3,-3,-3,-3]) | |
|
231 | ||
|
232 | sdelt = numpy.array([-174.2,-1.6,-0.2,0.2,-3.4,0.1,1.2,-0.4,0,-0.5,0, 0.1, 0, 0, 0.1,\ | |
|
233 | 0,-0.1]) | |
|
234 | sdelt = numpy.append(sdelt,numpy.zeros(10)) | |
|
235 | sdelt = numpy.append(sdelt,numpy.array([-0.1, 0, 0.1])) | |
|
236 | sdelt = numpy.append(sdelt,numpy.zeros(33)) | |
|
237 | ||
|
238 | cos_lng = numpy.array([92025,5736,977,-895,54,-7,224,200,129,-95,0,-70,-53,0,-33,26, \ | |
|
239 | 32,27,0,-24,16,13,0,-12,0,0,-10,0,-8,7,9,7,6,0,5,3,-3,0,3,3,0,-3,-3,3,3,0,\ | |
|
240 | 3,3,3]) | |
|
241 | cos_lng = numpy.append(cos_lng,numpy.zeros(14)) | |
|
242 | ||
|
243 | cdelt = numpy.array([8.9,-3.1,-0.5,0.5,-0.1,0.0,-0.6,0.0,-0.1,0.3]) | |
|
244 | cdelt = numpy.append(cdelt,numpy.zeros(53)) | |
|
245 | ||
|
246 | # Sum the periodic terms. | |
|
247 | n = numpy.size(jd) | |
|
248 | nut_long = numpy.zeros(n) | |
|
249 | nut_obliq = numpy.zeros(n) | |
|
250 | ||
|
251 | d_lng = d_lng.reshape(numpy.size(d_lng),1) | |
|
252 | d = d.reshape(numpy.size(d),1) | |
|
253 | matrix_d_lng = numpy.dot(d_lng,d.transpose()) | |
|
254 | ||
|
255 | m_lng = m_lng.reshape(numpy.size(m_lng),1) | |
|
256 | m = m.reshape(numpy.size(m),1) | |
|
257 | matrix_m_lng = numpy.dot(m_lng,m.transpose()) | |
|
258 | ||
|
259 | mp_lng = mp_lng.reshape(numpy.size(mp_lng),1) | |
|
260 | mprime = mprime.reshape(numpy.size(mprime),1) | |
|
261 | matrix_mp_lng = numpy.dot(mp_lng,mprime.transpose()) | |
|
262 | ||
|
263 | f_lng = f_lng.reshape(numpy.size(f_lng),1) | |
|
264 | f = f.reshape(numpy.size(f),1) | |
|
265 | matrix_f_lng = numpy.dot(f_lng,f.transpose()) | |
|
266 | ||
|
267 | om_lng = om_lng.reshape(numpy.size(om_lng),1) | |
|
268 | omega = omega.reshape(numpy.size(omega),1) | |
|
269 | matrix_om_lng = numpy.dot(om_lng,omega.transpose()) | |
|
270 | ||
|
271 | arg = matrix_d_lng + matrix_m_lng + matrix_mp_lng + matrix_f_lng + matrix_om_lng | |
|
272 | ||
|
273 | sarg = numpy.sin(arg) | |
|
274 | carg = numpy.cos(arg) | |
|
275 | ||
|
276 | for ii in numpy.arange(n): | |
|
277 | nut_long[ii] = 0.0001*numpy.sum((sdelt*t[ii] + sin_lng)*sarg[:,ii]) | |
|
278 | nut_obliq[ii] = 0.0001*numpy.sum((cdelt*t[ii] + cos_lng)*carg[:,ii]) | |
|
279 | ||
|
280 | if numpy.size(jd)==1: | |
|
281 | nut_long = nut_long[0] | |
|
282 | nut_obliq = nut_obliq[0] | |
|
283 | ||
|
284 | return nut_long, nut_obliq | |
|
285 | ||
|
286 | def co_aberration(self,jd,ra,dec): | |
|
287 | """ | |
|
288 | co_aberration calculates changes to Ra and Dec due to "the effect of aberration". | |
|
289 | ||
|
290 | Parameters | |
|
291 | ---------- | |
|
292 | jd = Julian Date (Scalar or vector). | |
|
293 | ra = A scalar o vector giving the Right Ascention of interest. | |
|
294 | dec = A scalar o vector giving the Declination of interest. | |
|
295 | ||
|
296 | Return | |
|
297 | ------ | |
|
298 | d_ra = The correction to right ascension due to aberration (must be added to ra to | |
|
299 | get the correct value). | |
|
300 | d_dec = The correction to declination due to aberration (must be added to the dec | |
|
301 | to get the correct value). | |
|
302 | eps = True obliquity of the ecliptic (in radians). | |
|
303 | ||
|
304 | Examples | |
|
305 | -------- | |
|
306 | >> Julian = 2462088.7 | |
|
307 | >> Ra = 41.547213 | |
|
308 | >> Dec = 49.348483 | |
|
309 | >> [d_ra,d_dec,eps] = co_aberration(julian,Ra,Dec) | |
|
310 | >> print d_ra, d_dec, eps | |
|
311 | [ 30.04441796] [ 6.69837858] [ 0.40904059] | |
|
312 | ||
|
313 | Modification history | |
|
314 | -------------------- | |
|
315 | Written by Chris O'Dell , Univ. of Wisconsin, June 2002. | |
|
316 | Converted to Python by Freddy R. Galindo, ROJ, 27 September 2009. | |
|
317 | """ | |
|
318 | ||
|
319 | # Julian centuries from J2000 of jd. | |
|
320 | T = (jd - 2451545.0)/36525.0 | |
|
321 | ||
|
322 | # Getting obliquity of ecliptic | |
|
323 | njd = numpy.size(jd) | |
|
324 | jd = numpy.atleast_1d(jd) | |
|
325 | ra = numpy.atleast_1d(ra) | |
|
326 | dec = numpy.atleast_1d(dec) | |
|
327 | ||
|
328 | d_psi = numpy.zeros(njd) | |
|
329 | d_epsilon = d_psi | |
|
330 | for ii in numpy.arange(njd): | |
|
331 | [dp,de] = self.nutate(jd[ii]) | |
|
332 | d_psi[ii] = dp | |
|
333 | d_epsilon[ii] = de | |
|
334 | ||
|
335 | coeff = 23 + 26/60. + 21.488/3600. | |
|
336 | eps0 = coeff*3600. - 46.8150*T - 0.00059*T**2. + 0.001813*T**3. | |
|
337 | # True obliquity of the ecliptic in radians | |
|
338 | eps = (eps0 + d_epsilon)/3600*Misc_Routines.CoFactors.d2r | |
|
339 | ||
|
340 | celestialbodies = CelestialBodies() | |
|
341 | [sunra,sundec,sunlon,sunobliq] = celestialbodies.sunpos(jd) | |
|
342 | ||
|
343 | # Earth's orbital eccentricity | |
|
344 | e = 0.016708634 - 0.000042037*T - 0.0000001267*T**2. | |
|
345 | ||
|
346 | # longitude of perihelion, in degrees | |
|
347 | pi = 102.93735 + 1.71946*T + 0.00046*T**2 | |
|
348 | ||
|
349 | # Constant of aberration, in arcseconds | |
|
350 | k = 20.49552 | |
|
351 | ||
|
352 | cd = numpy.cos(dec*Misc_Routines.CoFactors.d2r) ; sd = numpy.sin(dec*Misc_Routines.CoFactors.d2r) | |
|
353 | ce = numpy.cos(eps) ; te = numpy.tan(eps) | |
|
354 | cp = numpy.cos(pi*Misc_Routines.CoFactors.d2r) ; sp = numpy.sin(pi*Misc_Routines.CoFactors.d2r) | |
|
355 | cs = numpy.cos(sunlon*Misc_Routines.CoFactors.d2r) ; ss = numpy.sin(sunlon*Misc_Routines.CoFactors.d2r) | |
|
356 | ca = numpy.cos(ra*Misc_Routines.CoFactors.d2r) ; sa = numpy.sin(ra*Misc_Routines.CoFactors.d2r) | |
|
357 | ||
|
358 | term1 = (ca*cs*ce + sa*ss)/cd | |
|
359 | term2 = (ca*cp*ce + sa*sp)/cd | |
|
360 | term3 = (cs*ce*(te*cd - sa*sd) + ca*sd*ss) | |
|
361 | term4 = (cp*ce*(te*cd - sa*sd) + ca*sd*sp) | |
|
362 | ||
|
363 | d_ra = -k*term1 + e*k*term2 | |
|
364 | d_dec = -k*term3 + e*k*term4 | |
|
365 | ||
|
366 | return d_ra, d_dec, eps | |
|
367 | ||
|
368 | def precess(self,ra,dec,equinox1=None,equinox2=None,FK4=0,rad=0): | |
|
369 | """ | |
|
370 | precess coordinates from EQUINOX1 to EQUINOX2 | |
|
371 | ||
|
372 | Parameters | |
|
373 | ----------- | |
|
374 | ra = A scalar o vector giving the Right Ascention of interest. | |
|
375 | dec = A scalar o vector giving the Declination of interest. | |
|
376 | equinox1 = Original equinox of coordinates, numeric scalar. If omitted, the __Pre- | |
|
377 | cess will query for equinox1 and equinox2. | |
|
378 | equinox2 = Original equinox of coordinates. | |
|
379 | FK4 = If this keyword is set and non-zero, the FK4 (B1950) system will be used | |
|
380 | otherwise FK5 (J2000) will be used instead. | |
|
381 | rad = If this keyword is set and non-zero, then the input and output RAD and DEC | |
|
382 | vectors are in radian rather than degree. | |
|
383 | ||
|
384 | Return | |
|
385 | ------ | |
|
386 | ra = Right ascension after precession (scalar or vector) in degrees, unless the rad | |
|
387 | keyword is set. | |
|
388 | dec = Declination after precession (scalar or vector) in degrees, unless the rad | |
|
389 | keyword is set. | |
|
390 | ||
|
391 | Examples | |
|
392 | -------- | |
|
393 | >> Ra = 329.88772 | |
|
394 | >> Dec = -56.992515 | |
|
395 | >> [p_ra,p_dec] = precess(Ra,Dec,1950,1975,FK4=1) | |
|
396 | >> print p_ra, p_dec | |
|
397 | [ 330.31442971] [-56.87186154] | |
|
398 | ||
|
399 | Modification history | |
|
400 | -------------------- | |
|
401 | Written by Wayne Landsman, STI Corporation, August 1986. | |
|
402 | Converted to Python by Freddy R. Galindo, ROJ, 27 September 2009. | |
|
403 | """ | |
|
404 | ||
|
405 | npts = numpy.size(ra) | |
|
406 | ra = numpy.atleast_1d(ra) | |
|
407 | dec = numpy.atleast_1d(dec) | |
|
408 | ||
|
409 | if rad==0: | |
|
410 | ra_rad = ra*Misc_Routines.CoFactors.d2r | |
|
411 | dec_rad = dec*Misc_Routines.CoFactors.d2r | |
|
412 | else: | |
|
413 | ra_rad = ra | |
|
414 | dec_rad = dec | |
|
415 | ||
|
416 | x = numpy.zeros((npts,3)) | |
|
417 | x[:,0] = numpy.cos(dec_rad)*numpy.cos(ra_rad) | |
|
418 | x[:,1] = numpy.cos(dec_rad)*numpy.sin(ra_rad) | |
|
419 | x[:,2] = numpy.sin(dec_rad) | |
|
420 | ||
|
421 | # Use premat function to get precession matrix from equinox1 to equinox2 | |
|
422 | r = self.premat(equinox1,equinox2,FK4) | |
|
423 | ||
|
424 | x2 = numpy.dot(r,x.transpose()) | |
|
425 | ||
|
426 | ra_rad = numpy.arctan2(x2[1,:],x2[0,:]) | |
|
427 | dec_rad = numpy.arcsin(x2[2,:]) | |
|
428 | ||
|
429 | if rad==0: | |
|
430 | ra = ra_rad/Misc_Routines.CoFactors.d2r | |
|
431 | ra = ra + (ra<0)*360. | |
|
432 | dec = dec_rad/Misc_Routines.CoFactors.d2r | |
|
433 | else: | |
|
434 | ra = ra_rad | |
|
435 | ra = ra + (ra<0)*numpy.pi*2. | |
|
436 | dec = dec_rad | |
|
437 | ||
|
438 | return ra, dec | |
|
439 | ||
|
440 | def premat(self,equinox1,equinox2,FK4=0): | |
|
441 | """ | |
|
442 | premat returns the precession matrix needed to go from EQUINOX1 to EQUINOX2. | |
|
443 | ||
|
444 | Parameters | |
|
445 | ---------- | |
|
446 | equinox1 = Original equinox of coordinates, numeric scalar. | |
|
447 | equinox2 = Equinox of precessed coordinates. | |
|
448 | FK4 = If this keyword is set and non-zero, the FK4 (B1950) system precession angles | |
|
449 | are used to compute the precession matrix. The default is to use FK5 (J2000) pre- | |
|
450 | cession angles. | |
|
451 | ||
|
452 | Return | |
|
453 | ------ | |
|
454 | r = Precession matrix, used to precess equatorial rectangular coordinates. | |
|
455 | ||
|
456 | Examples | |
|
457 | -------- | |
|
458 | >> matrix = premat(1950.0,1975.0,FK4=1) | |
|
459 | >> print matrix | |
|
460 | [[ 9.99981438e-01 -5.58774959e-03 -2.42908517e-03] | |
|
461 | [ 5.58774959e-03 9.99984388e-01 -6.78691471e-06] | |
|
462 | [ 2.42908517e-03 -6.78633095e-06 9.99997050e-01]] | |
|
463 | ||
|
464 | Modification history | |
|
465 | -------------------- | |
|
466 | Written by Wayne Landsman, HSTX Corporation, June 1994. | |
|
467 | Converted to Python by Freddy R. Galindo, ROJ, 27 September 2009. | |
|
468 | """ | |
|
469 | ||
|
470 | t = 0.001*(equinox2 - equinox1) | |
|
471 | ||
|
472 | if FK4==0: | |
|
473 | st=0.001*(equinox1 - 2000.) | |
|
474 | # Computing 3 rotation angles. | |
|
475 | A=Misc_Routines.CoFactors.s2r*t*(23062.181+st*(139.656+0.0139*st)+t*(30.188-0.344*st+17.998*t)) | |
|
476 | B=Misc_Routines.CoFactors.s2r*t*t*(79.280+0.410*st+0.205*t)+A | |
|
477 | C=Misc_Routines.CoFactors.s2r*t*(20043.109-st*(85.33+0.217*st)+ t*(-42.665-0.217*st-41.833*t)) | |
|
478 | else: | |
|
479 | st=0.001*(equinox1 - 1900) | |
|
480 | # Computing 3 rotation angles | |
|
481 | A=Misc_Routines.CoFactors.s2r*t*(23042.53+st*(139.75+0.06*st)+t*(30.23-0.27*st+18.0*t)) | |
|
482 | B=Misc_Routines.CoFactors.s2r*t*t*(79.27+0.66*st+0.32*t)+A | |
|
483 | C=Misc_Routines.CoFactors.s2r*t*(20046.85-st*(85.33+0.37*st)+t*(-42.67-0.37*st-41.8*t)) | |
|
484 | ||
|
485 | sina = numpy.sin(A); sinb = numpy.sin(B); sinc = numpy.sin(C) | |
|
486 | cosa = numpy.cos(A); cosb = numpy.cos(B); cosc = numpy.cos(C) | |
|
487 | ||
|
488 | r = numpy.zeros((3,3)) | |
|
489 | r[:,0] = numpy.array([cosa*cosb*cosc-sina*sinb,sina*cosb+cosa*sinb*cosc,cosa*sinc]) | |
|
490 | r[:,1] = numpy.array([-cosa*sinb-sina*cosb*cosc,cosa*cosb-sina*sinb*cosc,-sina*sinc]) | |
|
491 | r[:,2] = numpy.array([-cosb*sinc,-sinb*sinc,cosc]) | |
|
492 | ||
|
493 | return r | |
|
494 | ||
|
495 | def cirrange(self,angle,rad=0): | |
|
496 | """ | |
|
497 | cirrange forces an angle into the range 0<= angle < 360. | |
|
498 | ||
|
499 | Parameters | |
|
500 | ---------- | |
|
501 | angle = The angle to modify, in degrees. Can be scalar or vector. | |
|
502 | rad = Set to 1 if the angle is specified in radians rather than degrees. It is for- | |
|
503 | ced into the range 0 <= angle < 2 PI | |
|
504 | ||
|
505 | Return | |
|
506 | ------ | |
|
507 | angle = The angle after the modification. | |
|
508 | ||
|
509 | Example | |
|
510 | ------- | |
|
511 | >> angle = cirrange(numpy.array([420,400,361])) | |
|
512 | >> print angle | |
|
513 | >> [60, 40, 1] | |
|
514 | ||
|
515 | Modification History | |
|
516 | -------------------- | |
|
517 | Written by Michael R. Greason, Hughes STX, 10 February 1994. | |
|
518 | Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | |
|
519 | """ | |
|
520 | ||
|
521 | angle = numpy.atleast_1d(angle) | |
|
522 | ||
|
523 | if rad==1: | |
|
524 | cnst = numpy.pi*2. | |
|
525 | elif rad==0: | |
|
526 | cnst = 360. | |
|
527 | ||
|
528 | # Deal with the lower limit. | |
|
529 | angle = angle % cnst | |
|
530 | ||
|
531 | # Deal with negative values, if way | |
|
532 | neg = numpy.where(angle<0.0) | |
|
533 | if neg[0].size>0: angle[neg] = angle[neg] + cnst | |
|
534 | ||
|
535 | return angle | |
|
536 | ||
|
537 | ||
|
538 | class CelestialBodies(EquatorialCorrections): | |
|
539 | def __init__(self): | |
|
540 | """ | |
|
541 | CelestialBodies class creates a object to call methods of celestial bodies location. | |
|
542 | ||
|
543 | Modification History | |
|
544 | -------------------- | |
|
545 | Converted to Object-oriented Programming by Freddy Galindo, ROJ, 27 September 2009. | |
|
546 | """ | |
|
547 | ||
|
548 | EquatorialCorrections.__init__(self) | |
|
549 | ||
|
550 | def sunpos(self,jd,rad=0): | |
|
551 | """ | |
|
552 | sunpos method computes the RA and Dec of the Sun at a given date. | |
|
553 | ||
|
554 | Parameters | |
|
555 | ---------- | |
|
556 | jd = The julian date of the day (and time), scalar or vector. | |
|
557 | rad = If this keyword is set and non-zero, then the input and output RAD and DEC | |
|
558 | vectors are in radian rather than degree. | |
|
559 | ||
|
560 | Return | |
|
561 | ------ | |
|
562 | ra = The right ascension of the sun at that date in degrees. | |
|
563 | dec = The declination of the sun at that date in degrees. | |
|
564 | elong = Ecliptic longitude of the sun at that date in degrees. | |
|
565 | obliquity = The declination of the sun at that date in degrees. | |
|
566 | ||
|
567 | Examples | |
|
568 | -------- | |
|
569 | >> jd = 2466880 | |
|
570 | >> [ra,dec,elong,obliquity] = sunpos(jd) | |
|
571 | >> print ra, dec, elong, obliquity | |
|
572 | [ 275.53499556] [-23.33840558] [ 275.08917968] [ 23.43596165] | |
|
573 | ||
|
574 | >> [ra,dec,elong,obliquity] = sunpos(jd,rad=1) | |
|
575 | >> print ra, dec, elong, obliquity | |
|
576 | [ 4.80899288] [-0.40733202] [ 4.80121192] [ 0.40903469] | |
|
577 | ||
|
578 | >> jd = 2450449.5 + numpy.arange(365) | |
|
579 | >> [ra,dec,elong,obliquity] = sunpos(jd) | |
|
580 | ||
|
581 | Modification history | |
|
582 | -------------------- | |
|
583 | Written by Micheal R. Greason, STX Corporation, 28 October 1988. | |
|
584 | Converted to Python by Freddy R. Galindo, ROJ, 27 September 2009. | |
|
585 | """ | |
|
586 | ||
|
587 | jd = numpy.atleast_1d(jd) | |
|
588 | ||
|
589 | # Form time in Julian centuries from 1900. | |
|
590 | t = (jd -2415020.0)/36525.0 | |
|
591 | ||
|
592 | # Form sun's mean longitude | |
|
593 | l = (279.696678+((36000.768925*t) % 360.0))*3600.0 | |
|
594 | ||
|
595 | # Allow for ellipticity of the orbit (equation of centre) using the Earth's mean | |
|
596 | # anomoly ME | |
|
597 | me = 358.475844 + ((35999.049750*t) % 360.0) | |
|
598 | ellcor = (6910.1 - 17.2*t)*numpy.sin(me*Misc_Routines.CoFactors.d2r) + 72.3*numpy.sin(2.0*me*Misc_Routines.CoFactors.d2r) | |
|
599 | l = l + ellcor | |
|
600 | ||
|
601 | # Allow for the Venus perturbations using the mean anomaly of Venus MV | |
|
602 | mv = 212.603219 + ((58517.803875*t) % 360.0) | |
|
603 | vencorr = 4.8*numpy.cos((299.1017 + mv - me)*Misc_Routines.CoFactors.d2r) + \ | |
|
604 | 5.5*numpy.cos((148.3133 + 2.0*mv - 2.0*me )*Misc_Routines.CoFactors.d2r) + \ | |
|
605 | 2.5*numpy.cos((315.9433 + 2.0*mv - 3.0*me )*Misc_Routines.CoFactors.d2r) + \ | |
|
606 | 1.6*numpy.cos((345.2533 + 3.0*mv - 4.0*me )*Misc_Routines.CoFactors.d2r) + \ | |
|
607 | 1.0*numpy.cos((318.15 + 3.0*mv - 5.0*me )*Misc_Routines.CoFactors.d2r) | |
|
608 | l = l + vencorr | |
|
609 | ||
|
610 | # Allow for the Mars perturbations using the mean anomaly of Mars MM | |
|
611 | mm = 319.529425 + ((19139.858500*t) % 360.0) | |
|
612 | marscorr = 2.0*numpy.cos((343.8883 - 2.0*mm + 2.0*me)*Misc_Routines.CoFactors.d2r ) + \ | |
|
613 | 1.8*numpy.cos((200.4017 - 2.0*mm + me)*Misc_Routines.CoFactors.d2r) | |
|
614 | l = l + marscorr | |
|
615 | ||
|
616 | # Allow for the Jupiter perturbations using the mean anomaly of Jupiter MJ | |
|
617 | mj = 225.328328 + ((3034.6920239*t) % 360.0) | |
|
618 | jupcorr = 7.2*numpy.cos((179.5317 - mj + me )*Misc_Routines.CoFactors.d2r) + \ | |
|
619 | 2.6*numpy.cos((263.2167 - mj)*Misc_Routines.CoFactors.d2r) + \ | |
|
620 | 2.7*numpy.cos((87.1450 - 2.0*mj + 2.0*me)*Misc_Routines.CoFactors.d2r) + \ | |
|
621 | 1.6*numpy.cos((109.4933 - 2.0*mj + me)*Misc_Routines.CoFactors.d2r) | |
|
622 | l = l + jupcorr | |
|
623 | ||
|
624 | # Allow for Moons perturbations using mean elongation of the Moon from the Sun D | |
|
625 | d = 350.7376814 + ((445267.11422*t) % 360.0) | |
|
626 | mooncorr = 6.5*numpy.sin(d*Misc_Routines.CoFactors.d2r) | |
|
627 | l = l + mooncorr | |
|
628 | ||
|
629 | # Allow for long period terms | |
|
630 | longterm = + 6.4*numpy.sin((231.19 + 20.20*t)*Misc_Routines.CoFactors.d2r) | |
|
631 | l = l + longterm | |
|
632 | l = (l + 2592000.0) % 1296000.0 | |
|
633 | longmed = l/3600.0 | |
|
634 | ||
|
635 | # Allow for Aberration | |
|
636 | l = l - 20.5 | |
|
637 | ||
|
638 | # Allow for Nutation using the longitude of the Moons mean node OMEGA | |
|
639 | omega = 259.183275 - ((1934.142008*t) % 360.0) | |
|
640 | l = l - 17.2*numpy.sin(omega*Misc_Routines.CoFactors.d2r) | |
|
641 | ||
|
642 | # Form the True Obliquity | |
|
643 | oblt = 23.452294 - 0.0130125*t + (9.2*numpy.cos(omega*Misc_Routines.CoFactors.d2r))/3600.0 | |
|
644 | ||
|
645 | # Form Right Ascension and Declination | |
|
646 | l = l/3600.0 | |
|
647 | ra = numpy.arctan2((numpy.sin(l*Misc_Routines.CoFactors.d2r)*numpy.cos(oblt*Misc_Routines.CoFactors.d2r)),numpy.cos(l*Misc_Routines.CoFactors.d2r)) | |
|
648 | ||
|
649 | neg = numpy.where(ra < 0.0) | |
|
650 | if neg[0].size > 0: ra[neg] = ra[neg] + 2.0*numpy.pi | |
|
651 | ||
|
652 | dec = numpy.arcsin(numpy.sin(l*Misc_Routines.CoFactors.d2r)*numpy.sin(oblt*Misc_Routines.CoFactors.d2r)) | |
|
653 | ||
|
654 | if rad==1: | |
|
655 | oblt = oblt*Misc_Routines.CoFactors.d2r | |
|
656 | longmed = longmed*Misc_Routines.CoFactors.d2r | |
|
657 | else: | |
|
658 | ra = ra/Misc_Routines.CoFactors.d2r | |
|
659 | dec = dec/Misc_Routines.CoFactors.d2r | |
|
660 | ||
|
661 | return ra, dec, longmed, oblt | |
|
662 | ||
|
663 | def moonpos(self,jd,rad=0): | |
|
664 | """ | |
|
665 | moonpos method computes the RA and Dec of the Moon at specified Julian date(s). | |
|
666 | ||
|
667 | Parameters | |
|
668 | ---------- | |
|
669 | jd = The julian date of the day (and time), scalar or vector. | |
|
670 | rad = If this keyword is set and non-zero, then the input and output RAD and DEC | |
|
671 | vectors are in radian rather than degree. | |
|
672 | ||
|
673 | Return | |
|
674 | ------ | |
|
675 | ra = The right ascension of the sun at that date in degrees. | |
|
676 | dec = The declination of the sun at that date in degrees. | |
|
677 | dist = The Earth-moon distance in kilometers (between the center of the Earth and | |
|
678 | the center of the moon). | |
|
679 | geolon = Apparent longitude of the moon in degrees, referred to the ecliptic of the | |
|
680 | specified date(s). | |
|
681 | geolat = Apparent latitude the moon in degrees, referred to the ecliptic of the | |
|
682 | specified date(s). | |
|
683 | ||
|
684 | Examples | |
|
685 | -------- | |
|
686 | >> jd = 2448724.5 | |
|
687 | >> [ra,dec,dist,geolon,geolat] = sunpos(jd) | |
|
688 | >> print ra, dec, dist, geolon, geolat | |
|
689 | [ 134.68846855] [ 13.76836663] [ 368409.68481613] [ 133.16726428] [-3.22912642] | |
|
690 | ||
|
691 | >> [ra,dec,dist,geolon, geolat] = sunpos(jd,rad=1) | |
|
692 | >> print ra, dec, dist, geolon, geolat | |
|
693 | [ 2.35075724] [ 0.24030333] [ 368409.68481613] [ 2.32420722] [-0.05635889] | |
|
694 | ||
|
695 | >> jd = 2450449.5 + numpy.arange(365) | |
|
696 | >> [ra,dec,dist,geolon, geolat] = sunpos(jd) | |
|
697 | ||
|
698 | Modification history | |
|
699 | -------------------- | |
|
700 | Written by Micheal R. Greason, STX Corporation, 31 October 1988. | |
|
701 | Converted to Python by Freddy R. Galindo, ROJ, 06 October 2009. | |
|
702 | """ | |
|
703 | ||
|
704 | jd = numpy.atleast_1d(jd) | |
|
705 | ||
|
706 | # Form time in Julian centuries from 1900. | |
|
707 | t = (jd - 2451545.0)/36525.0 | |
|
708 | ||
|
709 | d_lng = numpy.array([0,2,2,0,0,0,2,2,2,2,0,1,0,2,0,0,4,0,4,2,2,1,1,2,2,4,2,0,2,2,1,2,\ | |
|
710 | 0,0,2,2,2,4,0,3,2,4,0,2,2,2,4,0,4,1,2,0,1,3,4,2,0,1,2,2]) | |
|
711 | ||
|
712 | m_lng = numpy.array([0,0,0,0,1,0,0,-1,0,-1,1,0,1,0,0,0,0,0,0,1,1,0,1,-1,0,0,0,1,0,-1,\ | |
|
713 | 0,-2,1,2,-2,0,0,-1,0,0,1,-1,2,2,1,-1,0,0,-1,0,1,0,1,0,0,-1,2,1,0,0]) | |
|
714 | ||
|
715 | mp_lng = numpy.array([1,-1,0,2,0,0,-2,-1,1,0,-1,0,1,0,1,1,-1,3,-2,-1,0,-1,0,1,2,0,-3,\ | |
|
716 | -2,-1,-2,1,0,2,0,-1,1,0,-1,2,-1,1,-2,-1,-1,-2,0,1,4,0,-2,0,2,1,-2,-3,2,1,-1,3,-1]) | |
|
717 | ||
|
718 | f_lng = numpy.array([0,0,0,0,0,2,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,\ | |
|
719 | 0,0,0,0,-2,2,0,2,0,0,0,0,0,0,-2,0,0,0,0,-2,-2,0,0,0,0,0,0,0,-2]) | |
|
720 | ||
|
721 | sin_lng = numpy.array([6288774,1274027,658314,213618,-185116,-114332,58793,57066,\ | |
|
722 | 53322,45758,-40923,-34720,-30383,15327,-12528,10980,10675,10034,8548,-7888,\ | |
|
723 | -6766,-5163,4987,4036,3994,3861,3665,-2689,-2602,2390,-2348,2236,-2120,-2069,\ | |
|
724 | 2048,-1773,-1595,1215,-1110,-892,-810,759,-713,-700,691,596,549,537,520,-487,\ | |
|
725 | -399,-381,351,-340,330,327,-323,299,294,0.0]) | |
|
726 | ||
|
727 | cos_lng = numpy.array([-20905355,-3699111,-2955968,-569925,48888,-3149,246158,-152138,\ | |
|
728 | -170733,-204586,-129620,108743,104755,10321,0,79661,-34782,-23210,-21636,24208,\ | |
|
729 | 30824,-8379,-16675,-12831,-10445,-11650,14403,-7003,0,10056,6322, -9884,5751,0,\ | |
|
730 | -4950,4130,0,-3958,0,3258,2616,-1897,-2117,2354,0,0,-1423,-1117,-1571,-1739,0, \ | |
|
731 | -4421,0,0,0,0,1165,0,0,8752.0]) | |
|
732 | ||
|
733 | d_lat = numpy.array([0,0,0,2,2,2,2,0,2,0,2,2,2,2,2,2,2,0,4,0,0,0,1,0,0,0,1,0,4,4,0,4,\ | |
|
734 | 2,2,2,2,0,2,2,2,2,4,2,2,0,2,1,1,0,2,1,2,0,4,4,1,4,1,4,2]) | |
|
735 | ||
|
736 | m_lat = numpy.array([0,0,0,0,0,0,0,0,0,0,-1,0,0,1,-1,-1,-1,1,0,1,0,1,0,1,1,1,0,0,0,0,\ | |
|
737 | 0,0,0,0,-1,0,0,0,0,1,1,0,-1,-2,0,1,1,1,1,1,0,-1,1,0,-1,0,0,0,-1,-2]) | |
|
738 | ||
|
739 | mp_lat = numpy.array([0,1,1,0,-1,-1,0,2,1,2,0,-2,1,0,-1,0,-1,-1,-1,0,0,-1,0,1,1,0,0,\ | |
|
740 | 3,0,-1,1,-2,0,2,1,-2,3,2,-3,-1,0,0,1,0,1,1,0,0,-2,-1,1,-2,2,-2,-1,1,1,-1,0,0]) | |
|
741 | ||
|
742 | f_lat = numpy.array([1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,1,-1,-1,-1,1,3,1,1,1,-1,\ | |
|
743 | -1,-1,1,-1,1,-3,1,-3,-1,-1,1,-1,1,-1,1,1,1,1,-1,3,-1,-1,1,-1,-1,1,-1,1,-1,-1, \ | |
|
744 | -1,-1,-1,-1,1]) | |
|
745 | ||
|
746 | sin_lat = numpy.array([5128122,280602,277693,173237,55413,46271, 32573, 17198, 9266, \ | |
|
747 | 8822,8216,4324,4200,-3359,2463,2211,2065,-1870,1828,-1794, -1749, -1565, -1491, \ | |
|
748 | -1475,-1410,-1344,-1335,1107,1021,833,777,671,607,596,491,-451,439,422,421,-366,\ | |
|
749 | -351,331,315,302,-283,-229,223,223,-220,-220,-185,181,-177,176, 166, -164, 132, \ | |
|
750 | -119,115,107.0]) | |
|
751 | ||
|
752 | # Mean longitude of the moon refered to mean equinox of the date. | |
|
753 | coeff0 = numpy.array([-1./6.5194e7,1./538841.,-0.0015786,481267.88123421,218.3164477]) | |
|
754 | lprimed = numpy.poly1d(coeff0) | |
|
755 | lprimed = lprimed(t) | |
|
756 | lprimed = self.cirrange(lprimed,rad=0) | |
|
757 | lprime = lprimed*Misc_Routines.CoFactors.d2r | |
|
758 | ||
|
759 | # Mean elongation of the moon | |
|
760 | coeff1 = numpy.array([-1./1.13065e8,1./545868.,-0.0018819,445267.1114034,297.8501921]) | |
|
761 | d = numpy.poly1d(coeff1) | |
|
762 | d = d(t)*Misc_Routines.CoFactors.d2r | |
|
763 | d = self.cirrange(d,rad=1) | |
|
764 | ||
|
765 | # Sun's mean anomaly | |
|
766 | coeff2 = numpy.array([1.0/2.449e7,-0.0001536,35999.0502909,357.5291092]) | |
|
767 | M = numpy.poly1d(coeff2) | |
|
768 | M = M(t)*Misc_Routines.CoFactors.d2r | |
|
769 | M = self.cirrange(M,rad=1) | |
|
770 | ||
|
771 | # Moon's mean anomaly | |
|
772 | coeff3 = numpy.array([-1.0/1.4712e7,1.0/6.9699e4,0.0087414,477198.8675055,134.9633964]) | |
|
773 | Mprime = numpy.poly1d(coeff3) | |
|
774 | Mprime = Mprime(t)*Misc_Routines.CoFactors.d2r | |
|
775 | Mprime = self.cirrange(Mprime,rad=1) | |
|
776 | ||
|
777 | # Moon's argument of latitude | |
|
778 | coeff4 = numpy.array([1.0/8.6331e8,-1.0/3.526e7,-0.0036539,483202.0175233,93.2720950]) | |
|
779 | F = numpy.poly1d(coeff4) | |
|
780 | F = F(t)*Misc_Routines.CoFactors.d2r | |
|
781 | F = self.cirrange(F,rad=1) | |
|
782 | ||
|
783 | # Eccentricity of Earth's orbit around the sun | |
|
784 | e = 1 - 0.002516*t - 7.4e-6*(t**2.) | |
|
785 | e2 = e**2. | |
|
786 | ||
|
787 | ecorr1 = numpy.where((numpy.abs(m_lng))==1) | |
|
788 | ecorr2 = numpy.where((numpy.abs(m_lat))==1) | |
|
789 | ecorr3 = numpy.where((numpy.abs(m_lng))==2) | |
|
790 | ecorr4 = numpy.where((numpy.abs(m_lat))==2) | |
|
791 | ||
|
792 | # Additional arguments. | |
|
793 | A1 = (119.75 + 131.849*t)*Misc_Routines.CoFactors.d2r | |
|
794 | A2 = (53.09 + 479264.290*t)*Misc_Routines.CoFactors.d2r | |
|
795 | A3 = (313.45 + 481266.484*t)*Misc_Routines.CoFactors.d2r | |
|
796 | suml_add = 3958.*numpy.sin(A1) + 1962.*numpy.sin(lprime - F) + 318*numpy.sin(A2) | |
|
797 | sumb_add = -2235.*numpy.sin(lprime) + 382.*numpy.sin(A3) + 175.*numpy.sin(A1-F) + \ | |
|
798 | 175.*numpy.sin(A1 + F) + 127.*numpy.sin(lprime - Mprime) - 115.*numpy.sin(lprime + Mprime) | |
|
799 | ||
|
800 | # Sum the periodic terms | |
|
801 | geolon = numpy.zeros(jd.size) | |
|
802 | geolat = numpy.zeros(jd.size) | |
|
803 | dist = numpy.zeros(jd.size) | |
|
804 | ||
|
805 | for i in numpy.arange(jd.size): | |
|
806 | sinlng = sin_lng | |
|
807 | coslng = cos_lng | |
|
808 | sinlat = sin_lat | |
|
809 | ||
|
810 | sinlng[ecorr1] = e[i]*sinlng[ecorr1] | |
|
811 | coslng[ecorr1] = e[i]*coslng[ecorr1] | |
|
812 | sinlat[ecorr2] = e[i]*sinlat[ecorr2] | |
|
813 | sinlng[ecorr3] = e2[i]*sinlng[ecorr3] | |
|
814 | coslng[ecorr3] = e2[i]*coslng[ecorr3] | |
|
815 | sinlat[ecorr4] = e2[i]*sinlat[ecorr4] | |
|
816 | ||
|
817 | arg = d_lng*d[i] + m_lng*M[i] + mp_lng*Mprime[i] + f_lng*F[i] | |
|
818 | geolon[i] = lprimed[i] + (numpy.sum(sinlng*numpy.sin(arg)) + suml_add[i] )/1.e6 | |
|
819 | dist[i] = 385000.56 + numpy.sum(coslng*numpy.cos(arg))/1.e3 | |
|
820 | arg = d_lat*d[i] + m_lat*M[i] + mp_lat*Mprime[i] + f_lat*F[i] | |
|
821 | geolat[i] = (numpy.sum(sinlat*numpy.sin(arg)) + sumb_add[i])/1.e6 | |
|
822 | ||
|
823 | [nlon, elon] = self.nutate(jd) | |
|
824 | geolon = geolon + nlon/3.6e3 | |
|
825 | geolon = self.cirrange(geolon,rad=0) | |
|
826 | lamb = geolon*Misc_Routines.CoFactors.d2r | |
|
827 | beta = geolat*Misc_Routines.CoFactors.d2r | |
|
828 | ||
|
829 | # Find mean obliquity and convert lamb, beta to RA, Dec | |
|
830 | c = numpy.array([2.45,5.79,27.87,7.12,-39.05,-249.67,-51.38,1999.25,-1.55,-4680.93, \ | |
|
831 | 21.448]) | |
|
832 | junk = numpy.poly1d(c); | |
|
833 | epsilon = 23. + (26./60.) + (junk(t/1.e2)/3600.) | |
|
834 | # True obliquity in radians | |
|
835 | eps = (epsilon + elon/3600. )*Misc_Routines.CoFactors.d2r | |
|
836 | ||
|
837 | ra = numpy.arctan2(numpy.sin(lamb)*numpy.cos(eps)-numpy.tan(beta)*numpy.sin(eps),numpy.cos(lamb)) | |
|
838 | ra = self.cirrange(ra,rad=1) | |
|
839 | ||
|
840 | dec = numpy.arcsin(numpy.sin(beta)*numpy.cos(eps) + numpy.cos(beta)*numpy.sin(eps)*numpy.sin(lamb)) | |
|
841 | ||
|
842 | if rad==1: | |
|
843 | geolon = lamb | |
|
844 | geolat = beta | |
|
845 | else: | |
|
846 | ra = ra/Misc_Routines.CoFactors.d2r | |
|
847 | dec = dec/Misc_Routines.CoFactors.d2r | |
|
848 | ||
|
849 | return ra, dec, dist, geolon, geolat | |
|
850 | ||
|
851 | def hydrapos(self): | |
|
852 | """ | |
|
853 | hydrapos method returns RA and Dec provided by Bill Coles (Oct 2003). | |
|
854 | ||
|
855 | Parameters | |
|
856 | ---------- | |
|
857 | None | |
|
858 | ||
|
859 | Return | |
|
860 | ------ | |
|
861 | ra = The right ascension of the sun at that date in degrees. | |
|
862 | dec = The declination of the sun at that date in degrees. | |
|
863 | Examples | |
|
864 | -------- | |
|
865 | >> [ra,dec] = hydrapos() | |
|
866 | >> print ra, dec | |
|
867 | 139.45 -12.0833333333 | |
|
868 | ||
|
869 | Modification history | |
|
870 | -------------------- | |
|
871 | Converted to Python by Freddy R. Galindo, ROJ, 06 October 2009. | |
|
872 | """ | |
|
873 | ||
|
874 | ra = (9. + 17.8/60.)*15. | |
|
875 | dec = -(12. + 5./60.) | |
|
876 | ||
|
877 | return ra, dec | |
|
878 | ||
|
879 | ||
|
880 | def skynoise_jro(self,dec_cut=-11.95,filename='skynoise_jro.dat',filepath=None): | |
|
881 | """ | |
|
882 | hydrapos returns RA and Dec provided by Bill Coles (Oct 2003). | |
|
883 | ||
|
884 | Parameters | |
|
885 | ---------- | |
|
886 | dec_cut = A scalar giving the declination to get a cut of the skynoise over Jica- | |
|
887 | marca. The default value is -11.95. | |
|
888 | filename = A string to specify name the skynoise file. The default value is skynoi- | |
|
889 | se_jro.dat | |
|
890 | ||
|
891 | Return | |
|
892 | ------ | |
|
893 | maxra = The maximum right ascension to the declination used to get a cut. | |
|
894 | ra = The right ascension. | |
|
895 | Examples | |
|
896 | -------- | |
|
897 | >> [maxra,ra] = skynoise_jro() | |
|
898 | >> print maxra, ra | |
|
899 | 139.45 -12.0833333333 | |
|
900 | ||
|
901 | Modification history | |
|
902 | -------------------- | |
|
903 | Converted to Python by Freddy R. Galindo, ROJ, 06 October 2009. | |
|
904 | """ | |
|
905 | ||
|
906 | if filepath==None: | |
|
907 | filepath = '/app/utils/' | |
|
908 | ||
|
909 | f = open(os.path.join(filepath,filename),'rb') | |
|
910 | ||
|
911 | # Reading SkyNoise Power (lineal scale) | |
|
912 | ha_sky = numpy.fromfile(f,numpy.dtype([('var','<f4')]),480*20) | |
|
913 | ha_sky = ha_sky['var'].reshape(20,480).transpose() | |
|
914 | ||
|
915 | dec_sky = numpy.fromfile(f,numpy.dtype([('var','<f4')]),480*20) | |
|
916 | dec_sky = dec_sky['var'].reshape((20,480)).transpose() | |
|
917 | ||
|
918 | tmp_sky = numpy.fromfile(f,numpy.dtype([('var','<f4')]),480*20) | |
|
919 | tmp_sky = tmp_sky['var'].reshape((20,480)).transpose() | |
|
920 | ||
|
921 | f.close() | |
|
922 | ||
|
923 | nha = 480 | |
|
924 | tmp_cut = numpy.zeros(nha) | |
|
925 | for iha in numpy.arange(nha): | |
|
926 | tck = scipy.interpolate.splrep(dec_sky[iha,:],tmp_sky[iha,:],s=0) | |
|
927 | tmp_cut[iha] = scipy.interpolate.splev(dec_cut,tck,der=0) | |
|
928 | ||
|
929 | ptr = numpy.nanargmax(tmp_cut) | |
|
930 | ||
|
931 | maxra = ha_sky[ptr,0] | |
|
932 | ra = ha_sky[:,0] | |
|
933 | ||
|
934 | return maxra, ra | |
|
935 | ||
|
936 | def skyNoise(self,jd,ut=-5.0,longitude=-76.87,filename='galaxy.txt',filepath=None): | |
|
937 | """ | |
|
938 | hydrapos returns RA and Dec provided by Bill Coles (Oct 2003). | |
|
939 | ||
|
940 | Parameters | |
|
941 | ---------- | |
|
942 | jd = The julian date of the day (and time), scalar or vector. | |
|
943 | ||
|
944 | dec_cut = A scalar giving the declination to get a cut of the skynoise over Jica- | |
|
945 | marca. The default value is -11.95. | |
|
946 | filename = A string to specify name the skynoise file. The default value is skynoi- | |
|
947 | se_jro.dat | |
|
948 | ||
|
949 | Return | |
|
950 | ------ | |
|
951 | maxra = The maximum right ascension to the declination used to get a cut. | |
|
952 | ra = The right ascension. | |
|
953 | ||
|
954 | Examples | |
|
955 | -------- | |
|
956 | >> [maxra,ra] = skynoise_jro() | |
|
957 | >> print maxra, ra | |
|
958 | 139.45 -12.0833333333 | |
|
959 | ||
|
960 | Modification history | |
|
961 | -------------------- | |
|
962 | Converted to Python by Freddy R. Galindo, ROJ, 06 October 2009. | |
|
963 | """ | |
|
964 | ||
|
965 | # Defining date to compute SkyNoise. | |
|
966 | [year, month, dom, hour, mis, secs] = TimeTools.Julian(jd).change2time() | |
|
967 | is_dom = (month==9) & (dom==21) | |
|
968 | if is_dom: | |
|
969 | tmp = jd | |
|
970 | jd = TimeTools.Time(year,9,22).change2julian() | |
|
971 | dom = 22 | |
|
972 | ||
|
973 | # Reading SkyNoise | |
|
974 | if filepath==None:filepath='./resource' | |
|
975 | f = open(os.path.join(filepath,filename)) | |
|
976 | ||
|
977 | lines = f.read() | |
|
978 | f.close() | |
|
979 | ||
|
980 | nlines = 99 | |
|
981 | lines = lines.split('\n') | |
|
982 | data = numpy.zeros((2,nlines))*numpy.float32(0.) | |
|
983 | for ii in numpy.arange(nlines): | |
|
984 | line = numpy.array([lines[ii][0:6],lines[ii][6:]]) | |
|
985 | data[:,ii] = numpy.float32(line) | |
|
986 | ||
|
987 | # Getting SkyNoise to the date desired. | |
|
988 | otime = data[0,:]*60.0 | |
|
989 | opowr = data[1,:] | |
|
990 | ||
|
991 | hour = numpy.array([0,23]); | |
|
992 | mins = numpy.array([0,59]); | |
|
993 | secs = numpy.array([0,59]); | |
|
994 | LTrange = TimeTools.Time(year,month,dom,hour,mins,secs).change2julday() | |
|
995 | LTtime = LTrange[0] + numpy.arange(1440)*((LTrange[1] - LTrange[0])/(1440.-1)) | |
|
996 | lst = TimeTools.Julian(LTtime + (-3600.*ut/86400.)).change2lst() | |
|
997 | ||
|
998 | ipowr = lst*0.0 | |
|
999 | # Interpolating using scipy (inside max and min "x") | |
|
1000 | otime = otime/3600. | |
|
1001 | val = numpy.where((lst>numpy.min(otime)) & (lst<numpy.max(otime))); val = val[0] | |
|
1002 | tck = scipy.interpolate.interp1d(otime,opowr) | |
|
1003 | ipowr[val] = tck(lst[val]) | |
|
1004 | ||
|
1005 | # Extrapolating above maximum time data (23.75). | |
|
1006 | uval = numpy.where(lst>numpy.max(otime)) | |
|
1007 | if uval[0].size>0: | |
|
1008 | ii = numpy.min(uval[0]) | |
|
1009 | m = (ipowr[ii-1] - ipowr[ii-2])/(lst[ii-1] - lst[ii-2]) | |
|
1010 | b = ipowr[ii-1] - m*lst[ii-1] | |
|
1011 | ipowr[uval] = m*lst[uval] + b | |
|
1012 | ||
|
1013 | if is_dom: | |
|
1014 | lst = numpy.roll(lst,4) | |
|
1015 | ipowr = numpy.roll(ipowr,4) | |
|
1016 | ||
|
1017 | new_lst = numpy.int32(lst*3600.) | |
|
1018 | new_pow = ipowr | |
|
1019 | ||
|
1020 | return ipowr, LTtime, lst | |
|
1021 | ||
|
1022 | ||
|
1023 | class AltAz(EquatorialCorrections): | |
|
1024 | def __init__(self,alt,az,jd,lat=-11.95,lon=-76.8667,WS=0,altitude=500,nutate_=0,precess_=0,\ | |
|
1025 | aberration_=0,B1950=0): | |
|
1026 | """ | |
|
1027 | The AltAz class creates an object which represents the target position in horizontal | |
|
1028 | coordinates (alt-az) and allows to convert (using the methods) from this coordinate | |
|
1029 | system to others (e.g. Equatorial). | |
|
1030 | ||
|
1031 | Parameters | |
|
1032 | ---------- | |
|
1033 | alt = Altitude in degrees. Scalar or vector. | |
|
1034 | az = Azimuth angle in degrees (measured EAST from NORTH, but see keyword WS). Sca- | |
|
1035 | lar or vector. | |
|
1036 | jd = Julian date. Scalar or vector. | |
|
1037 | lat = North geodetic latitude of location in degrees. The default value is -11.95. | |
|
1038 | lon = East longitude of location in degrees. The default value is -76.8667. | |
|
1039 | WS = Set this to 1 to get the azimuth measured westward from south. | |
|
1040 | altitude = The altitude of the observing location, in meters. The default 500. | |
|
1041 | nutate_ = Set this to 1 to force nutation, 0 for no nutation. | |
|
1042 | precess_ = Set this to 1 to force precession, 0 for no precession. | |
|
1043 | aberration_ = Set this to 1 to force aberration correction, 0 for no correction. | |
|
1044 | B1950 = Set this if your RA and DEC are specified in B1950, FK4 coordinates (ins- | |
|
1045 | tead of J2000, FK5) | |
|
1046 | ||
|
1047 | Modification History | |
|
1048 | -------------------- | |
|
1049 | Converted to Object-oriented Programming by Freddy Galindo, ROJ, 26 September 2009. | |
|
1050 | """ | |
|
1051 | ||
|
1052 | EquatorialCorrections.__init__(self) | |
|
1053 | ||
|
1054 | self.alt = numpy.atleast_1d(alt) | |
|
1055 | self.az = numpy.atleast_1d(az) | |
|
1056 | self.jd = numpy.atleast_1d(jd) | |
|
1057 | self.lat = lat | |
|
1058 | self.lon = lon | |
|
1059 | self.WS = WS | |
|
1060 | self.altitude = altitude | |
|
1061 | ||
|
1062 | self.nutate_ = nutate_ | |
|
1063 | self.aberration_ = aberration_ | |
|
1064 | self.precess_ = precess_ | |
|
1065 | self.B1950 = B1950 | |
|
1066 | ||
|
1067 | def change2equatorial(self): | |
|
1068 | """ | |
|
1069 | change2equatorial method converts horizon (Alt-Az) coordinates to equatorial coordi- | |
|
1070 | nates (ra-dec). | |
|
1071 | ||
|
1072 | Return | |
|
1073 | ------ | |
|
1074 | ra = Right ascension of object (J2000) in degrees (FK5). Scalar or vector. | |
|
1075 | dec = Declination of object (J2000), in degrees (FK5). Scalar or vector. | |
|
1076 | ha = Hour angle in degrees. | |
|
1077 | ||
|
1078 | Example | |
|
1079 | ------- | |
|
1080 | >> alt = 88.5401 | |
|
1081 | >> az = -128.990 | |
|
1082 | >> jd = 2452640.5 | |
|
1083 | >> ObjAltAz = AltAz(alt,az,jd) | |
|
1084 | >> [ra, dec, ha] = ObjAltAz.change2equatorial() | |
|
1085 | >> print ra, dec, ha | |
|
1086 | [ 22.20280632] [-12.86610025] [ 1.1638927] | |
|
1087 | ||
|
1088 | Modification History | |
|
1089 | -------------------- | |
|
1090 | Written Chris O'Dell Univ. of Wisconsin-Madison, May 2002. | |
|
1091 | Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | |
|
1092 | """ | |
|
1093 | ||
|
1094 | az = self.az | |
|
1095 | alt = self.alt | |
|
1096 | if self.WS>0:az = az -180. | |
|
1097 | ra_tmp = numpy.zeros(numpy.size(self.jd)) + 45. | |
|
1098 | dec_tmp = numpy.zeros(numpy.size(self.jd)) + 45. | |
|
1099 | [dra1,ddec1,eps,d_psi,d_eps] = self.co_nutate(self.jd,ra_tmp, dec_tmp) | |
|
1100 | ||
|
1101 | # Getting local mean sidereal time (lmst) | |
|
1102 | lmst = TimeTools.Julian(self.jd[0]).change2lst() | |
|
1103 | lmst = lmst*Misc_Routines.CoFactors.h2d | |
|
1104 | # Getting local apparent sidereal time (last) | |
|
1105 | last = lmst + d_psi*numpy.cos(eps)/3600. | |
|
1106 | ||
|
1107 | # Now do the spherical trig to get APPARENT hour angle and declination (Degrees). | |
|
1108 | [ha, dec] = self.change2HaDec() | |
|
1109 | ||
|
1110 | # Finding Right Ascension (in degrees, from 0 to 360.) | |
|
1111 | ra = (last - ha + 360.) % 360. | |
|
1112 | ||
|
1113 | # Calculate NUTATION and ABERRATION Correction to Ra-Dec | |
|
1114 | [dra1, ddec1,eps,d_psi,d_eps] = self.co_nutate(self.jd,ra,dec) | |
|
1115 | [dra2,ddec2,eps] = self.co_aberration(self.jd,ra,dec) | |
|
1116 | ||
|
1117 | # Make Nutation and Aberration correction (if wanted) | |
|
1118 | ra = ra - (dra1*self.nutate_ + dra2*self.aberration_)/3600. | |
|
1119 | dec = dec - (ddec1*self.nutate_ + ddec2*self.aberration_)/3600. | |
|
1120 | ||
|
1121 | # Computing current equinox | |
|
1122 | j_now = (self.jd - 2451545.)/365.25 + 2000 | |
|
1123 | ||
|
1124 | # Precess coordinates to current date | |
|
1125 | if self.precess_==1: | |
|
1126 | njd = numpy.size(self.jd) | |
|
1127 | for ii in numpy.arange(njd): | |
|
1128 | ra_i = ra[ii] | |
|
1129 | dec_i = dec[ii] | |
|
1130 | now = j_now[ii] | |
|
1131 | ||
|
1132 | if self.B1950==1: | |
|
1133 | [ra_i,dec_i] = self.precess(ra_i,dec_i,now,1950.,FK4=1) | |
|
1134 | elif self.B1950==0: | |
|
1135 | [ra_i,dec_i] = self.precess(ra_i,dec_i,now,2000.,FK4=0) | |
|
1136 | ||
|
1137 | ra[ii] = ra_i | |
|
1138 | dec[ii] = dec_i | |
|
1139 | ||
|
1140 | return ra, dec, ha | |
|
1141 | ||
|
1142 | def change2HaDec(self): | |
|
1143 | """ | |
|
1144 | change2HaDec method converts from horizon (Alt-Az) coordinates to hour angle and de- | |
|
1145 | clination. | |
|
1146 | ||
|
1147 | Return | |
|
1148 | ------ | |
|
1149 | ha = The local apparent hour angle, in degrees. The hour angle is the time that ri- | |
|
1150 | ght ascension of 0 hours crosses the local meridian. It is unambiguisoly defined. | |
|
1151 | dec = The local apparent declination, in degrees. | |
|
1152 | ||
|
1153 | Example | |
|
1154 | ------- | |
|
1155 | >> alt = 88.5401 | |
|
1156 | >> az = -128.990 | |
|
1157 | >> jd = 2452640.5 | |
|
1158 | >> ObjAltAz = AltAz(alt,az,jd) | |
|
1159 | >> [ha, dec] = ObjAltAz.change2HaDec() | |
|
1160 | >> print ha, dec | |
|
1161 | [ 1.1638927] [-12.86610025] | |
|
1162 | ||
|
1163 | Modification History | |
|
1164 | -------------------- | |
|
1165 | Written Chris O'Dell Univ. of Wisconsin-Madison, May 2002. | |
|
1166 | Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | |
|
1167 | """ | |
|
1168 | ||
|
1169 | alt_r = numpy.atleast_1d(self.alt*Misc_Routines.CoFactors.d2r) | |
|
1170 | az_r = numpy.atleast_1d(self.az*Misc_Routines.CoFactors.d2r) | |
|
1171 | lat_r = numpy.atleast_1d(self.lat*Misc_Routines.CoFactors.d2r) | |
|
1172 | ||
|
1173 | # Find local hour angle (in degrees, from 0 to 360.) | |
|
1174 | y_ha = -1*numpy.sin(az_r)*numpy.cos(alt_r) | |
|
1175 | x_ha = -1*numpy.cos(az_r)*numpy.sin(lat_r)*numpy.cos(alt_r) + numpy.sin(alt_r)*numpy.cos(lat_r) | |
|
1176 | ||
|
1177 | ha = numpy.arctan2(y_ha,x_ha) | |
|
1178 | ha = ha/Misc_Routines.CoFactors.d2r | |
|
1179 | ||
|
1180 | w = numpy.where(ha<0.) | |
|
1181 | if w[0].size>0:ha[w] = ha[w] + 360. | |
|
1182 | ha = ha % 360. | |
|
1183 | ||
|
1184 | # Find declination (positive if north of celestial equatorial, negative if south) | |
|
1185 | sindec = numpy.sin(lat_r)*numpy.sin(alt_r) + numpy.cos(lat_r)*numpy.cos(alt_r)*numpy.cos(az_r) | |
|
1186 | dec = numpy.arcsin(sindec)/Misc_Routines.CoFactors.d2r | |
|
1187 | ||
|
1188 | return ha, dec | |
|
1189 | ||
|
1190 | ||
|
1191 | class Equatorial(EquatorialCorrections): | |
|
1192 | def __init__(self,ra,dec,jd,lat=-11.95,lon=-76.8667,WS=0,altitude=500,nutate_=0,precess_=0,\ | |
|
1193 | aberration_=0,B1950=0): | |
|
1194 | """ | |
|
1195 | The Equatorial class creates an object which represents the target position in equa- | |
|
1196 | torial coordinates (ha-dec) and allows to convert (using the class methods) from | |
|
1197 | this coordinate system to others (e.g. AltAz). | |
|
1198 | ||
|
1199 | Parameters | |
|
1200 | ---------- | |
|
1201 | ra = Right ascension of object (J2000) in degrees (FK5). Scalar or vector. | |
|
1202 | dec = Declination of object (J2000), in degrees (FK5). Scalar or vector. | |
|
1203 | jd = Julian date. Scalar or vector. | |
|
1204 | lat = North geodetic latitude of location in degrees. The default value is -11.95. | |
|
1205 | lon = East longitude of location in degrees. The default value is -76.8667. | |
|
1206 | WS = Set this to 1 to get the azimuth measured westward from south. | |
|
1207 | altitude = The altitude of the observing location, in meters. The default 500. | |
|
1208 | nutate = Set this to 1 to force nutation, 0 for no nutation. | |
|
1209 | precess = Set this to 1 to force precession, 0 for no precession. | |
|
1210 | aberration = Set this to 1 to force aberration correction, 0 for no correction. | |
|
1211 | B1950 = Set this if your RA and DEC are specified in B1950, FK4 coordinates (ins- | |
|
1212 | tead of J2000, FK5) | |
|
1213 | ||
|
1214 | Modification History | |
|
1215 | -------------------- | |
|
1216 | Converted to Object-oriented Programming by Freddy Galindo, ROJ, 29 September 2009. | |
|
1217 | """ | |
|
1218 | ||
|
1219 | EquatorialCorrections.__init__(self) | |
|
1220 | ||
|
1221 | self.ra = numpy.atleast_1d(ra) | |
|
1222 | self.dec = numpy.atleast_1d(dec) | |
|
1223 | self.jd = numpy.atleast_1d(jd) | |
|
1224 | self.lat = lat | |
|
1225 | self.lon = lon | |
|
1226 | self.WS = WS | |
|
1227 | self.altitude = altitude | |
|
1228 | ||
|
1229 | self.nutate_ = nutate_ | |
|
1230 | self.aberration_ = aberration_ | |
|
1231 | self.precess_ = precess_ | |
|
1232 | self.B1950 = B1950 | |
|
1233 | ||
|
1234 | def change2AltAz(self): | |
|
1235 | """ | |
|
1236 | change2AltAz method converts from equatorial coordinates (ha-dec) to horizon coordi- | |
|
1237 | nates (alt-az). | |
|
1238 | ||
|
1239 | Return | |
|
1240 | ------ | |
|
1241 | alt = Altitude in degrees. Scalar or vector. | |
|
1242 | az = Azimuth angle in degrees (measured EAST from NORTH, but see keyword WS). Sca- | |
|
1243 | lar or vector. | |
|
1244 | ha = Hour angle in degrees. | |
|
1245 | ||
|
1246 | Example | |
|
1247 | ------- | |
|
1248 | >> ra = 43.370609 | |
|
1249 | >> dec = -28.0000 | |
|
1250 | >> jd = 2452640.5 | |
|
1251 | >> ObjEq = Equatorial(ra,dec,jd) | |
|
1252 | >> [alt, az, ha] = ObjEq.change2AltAz() | |
|
1253 | >> print alt, az, ha | |
|
1254 | [ 65.3546497] [ 133.58753124] [ 339.99609002] | |
|
1255 | ||
|
1256 | Modification History | |
|
1257 | -------------------- | |
|
1258 | Written Chris O'Dell Univ. of Wisconsin-Madison. May 2002 | |
|
1259 | Converted to Python by Freddy R. Galindo, ROJ, 29 September 2009. | |
|
1260 | """ | |
|
1261 | ||
|
1262 | ra = self.ra | |
|
1263 | dec = self.dec | |
|
1264 | ||
|
1265 | # Computing current equinox | |
|
1266 | j_now = (self.jd - 2451545.)/365.25 + 2000 | |
|
1267 | ||
|
1268 | # Precess coordinates to current date | |
|
1269 | if self.precess_==1: | |
|
1270 | njd = numpy.size(self.jd) | |
|
1271 | for ii in numpy.arange(njd): | |
|
1272 | ra_i = ra[ii] | |
|
1273 | dec_i = dec[ii] | |
|
1274 | now = j_now[ii] | |
|
1275 | ||
|
1276 | if self.B1950==1: | |
|
1277 | [ra_i,dec_i] = self.precess(ra_i,dec_i,now,1950.,FK4=1) | |
|
1278 | elif self.B1950==0: | |
|
1279 | [ra_i,dec_i] = self.precess(ra_i,dec_i,now,2000.,FK4=0) | |
|
1280 | ||
|
1281 | ra[ii] = ra_i | |
|
1282 | dec[ii] = dec_i | |
|
1283 | ||
|
1284 | # Calculate NUTATION and ABERRATION Correction to Ra-Dec | |
|
1285 | [dra1, ddec1,eps,d_psi,d_eps] = self.co_nutate(self.jd,ra,dec) | |
|
1286 | [dra2,ddec2,eps] = self.co_aberration(self.jd,ra,dec) | |
|
1287 | ||
|
1288 | # Make Nutation and Aberration correction (if wanted) | |
|
1289 | ra = ra + (dra1*self.nutate_ + dra2*self.aberration_)/3600. | |
|
1290 | dec = dec + (ddec1*self.nutate_ + ddec2*self.aberration_)/3600. | |
|
1291 | ||
|
1292 | # Getting local mean sidereal time (lmst) | |
|
1293 | lmst = TimeTools.Julian(self.jd).change2lst() | |
|
1294 | ||
|
1295 | lmst = lmst*Misc_Routines.CoFactors.h2d | |
|
1296 | # Getting local apparent sidereal time (last) | |
|
1297 | last = lmst + d_psi*numpy.cos(eps)/3600. | |
|
1298 | ||
|
1299 | # Finding Hour Angle (in degrees, from 0 to 360.) | |
|
1300 | ha = last - ra | |
|
1301 | w = numpy.where(ha<0.) | |
|
1302 | if w[0].size>0:ha[w] = ha[w] + 360. | |
|
1303 | ha = ha % 360. | |
|
1304 | ||
|
1305 | # Now do the spherical trig to get APPARENT hour angle and declination (Degrees). | |
|
1306 | [alt, az] = self.HaDec2AltAz(ha,dec) | |
|
1307 | ||
|
1308 | return alt, az, ha | |
|
1309 | ||
|
1310 | def HaDec2AltAz(self,ha,dec): | |
|
1311 | """ | |
|
1312 | HaDec2AltAz convert hour angle and declination (ha-dec) to horizon coords (alt-az). | |
|
1313 | ||
|
1314 | Parameters | |
|
1315 | ---------- | |
|
1316 | ha = The local apparent hour angle, in DEGREES, scalar or vector. | |
|
1317 | dec = The local apparent declination, in DEGREES, scalar or vector. | |
|
1318 | ||
|
1319 | Return | |
|
1320 | ------ | |
|
1321 | alt = Altitude in degrees. Scalar or vector. | |
|
1322 | az = Azimuth angle in degrees (measured EAST from NORTH, but see keyword WS). Sca- | |
|
1323 | lar or vector. | |
|
1324 | ||
|
1325 | Modification History | |
|
1326 | -------------------- | |
|
1327 | Written Chris O'Dell Univ. of Wisconsin-Madison, May 2002. | |
|
1328 | Converted to Python by Freddy R. Galindo, ROJ, 26 September 2009. | |
|
1329 | """ | |
|
1330 | ||
|
1331 | sh = numpy.sin(ha*Misc_Routines.CoFactors.d2r) ; ch = numpy.cos(ha*Misc_Routines.CoFactors.d2r) | |
|
1332 | sd = numpy.sin(dec*Misc_Routines.CoFactors.d2r) ; cd = numpy.cos(dec*Misc_Routines.CoFactors.d2r) | |
|
1333 | sl = numpy.sin(self.lat*Misc_Routines.CoFactors.d2r) ; cl = numpy.cos(self.lat*Misc_Routines.CoFactors.d2r) | |
|
1334 | ||
|
1335 | x = -1*ch*cd*sl + sd*cl | |
|
1336 | y = -1*sh*cd | |
|
1337 | z = ch*cd*cl + sd*sl | |
|
1338 | r = numpy.sqrt(x**2. + y**2.) | |
|
1339 | ||
|
1340 | az = numpy.arctan2(y,x)/Misc_Routines.CoFactors.d2r | |
|
1341 | alt = numpy.arctan2(z,r)/Misc_Routines.CoFactors.d2r | |
|
1342 | ||
|
1343 | # correct for negative az. | |
|
1344 | w = numpy.where(az<0.) | |
|
1345 | if w[0].size>0:az[w] = az[w] + 360. | |
|
1346 | ||
|
1347 | # Convert az to West from South, if desired | |
|
1348 | if self.WS==1: az = (az + 180.) % 360. | |
|
1349 | ||
|
1350 | return alt, az | |
|
1351 | ||
|
1352 | ||
|
1353 | class Geodetic(): | |
|
1354 | def __init__(self,lat=-11.95,alt=0): | |
|
1355 | """ | |
|
1356 | The Geodetic class creates an object which represents the real position on earth of | |
|
1357 | a target (Geodetic Coordinates: lat-alt) and allows to convert (using the class me- | |
|
1358 | thods) from this coordinate system to others (e.g. geocentric). | |
|
1359 | ||
|
1360 | Parameters | |
|
1361 | ---------- | |
|
1362 | lat = Geodetic latitude of location in degrees. The default value is -11.95. | |
|
1363 | ||
|
1364 | alt = Geodetic altitude (km). The default value is 0. | |
|
1365 | ||
|
1366 | Modification History | |
|
1367 | -------------------- | |
|
1368 | Converted to Object-oriented Programming by Freddy R. Galindo, ROJ, 02 October 2009. | |
|
1369 | """ | |
|
1370 | ||
|
1371 | self.lat = numpy.atleast_1d(lat) | |
|
1372 | self.alt = numpy.atleast_1d(alt) | |
|
1373 | ||
|
1374 | self.a = 6378.16 | |
|
1375 | self.ab2 = 1.0067397 | |
|
1376 | self.ep2 = 0.0067397 | |
|
1377 | ||
|
1378 | def change2geocentric(self): | |
|
1379 | """ | |
|
1380 | change2geocentric method converts from Geodetic to Geocentric coordinates. The re- | |
|
1381 | ference geoid is that adopted by the IAU in 1964. | |
|
1382 | ||
|
1383 | Return | |
|
1384 | ------ | |
|
1385 | gclat = Geocentric latitude (in degrees), scalar or vector. | |
|
1386 | gcalt = Geocentric radial distance (km), scalar or vector. | |
|
1387 | ||
|
1388 | Example | |
|
1389 | ------- | |
|
1390 | >> ObjGeoid = Geodetic(lat=-11.95,alt=0) | |
|
1391 | >> [gclat, gcalt] = ObjGeoid.change2geocentric() | |
|
1392 | >> print gclat, gcalt | |
|
1393 | [-11.87227742] [ 6377.25048195] | |
|
1394 | ||
|
1395 | Modification History | |
|
1396 | -------------------- | |
|
1397 | Converted to Python by Freddy R. Galindo, ROJ, 02 October 2009. | |
|
1398 | """ | |
|
1399 | ||
|
1400 | gdl = self.lat*Misc_Routines.CoFactors.d2r | |
|
1401 | slat = numpy.sin(gdl) | |
|
1402 | clat = numpy.cos(gdl) | |
|
1403 | slat2 = slat**2. | |
|
1404 | clat2 = (self.ab2*clat)**2. | |
|
1405 | ||
|
1406 | sbet = slat/numpy.sqrt(slat2 + clat2) | |
|
1407 | sbet2 = (sbet**2.) # < 1 | |
|
1408 | noval = numpy.where(sbet2>1) | |
|
1409 | if noval[0].size>0:sbet2[noval] = 1 | |
|
1410 | cbet = numpy.sqrt(1. - sbet2) | |
|
1411 | ||
|
1412 | rgeoid = self.a/numpy.sqrt(1. + self.ep2*sbet2) | |
|
1413 | ||
|
1414 | x = rgeoid*cbet + self.alt*clat | |
|
1415 | y = rgeoid*sbet + self.alt*slat | |
|
1416 | ||
|
1417 | gcalt = numpy.sqrt(x**2. + y**2.) | |
|
1418 | gclat = numpy.arctan2(y,x)/Misc_Routines.CoFactors.d2r | |
|
1419 | ||
|
1420 | return gclat, gcalt |
This diff has been collapsed as it changes many lines, (507 lines changed) Show them Hide them | |||
@@ -0,0 +1,507 | |||
|
1 | """ | |
|
2 | ||
|
3 | Converted to Object-oriented Programming by Freddy Galindo, ROJ, 07 October 2009. | |
|
4 | Added to signal Chain by Joab Apaza, ROJ, Jun 2023. | |
|
5 | """ | |
|
6 | ||
|
7 | import numpy | |
|
8 | import time | |
|
9 | import os | |
|
10 | from scipy.special import lpmn | |
|
11 | from schainpy.model.utils import Astro_Coords | |
|
12 | ||
|
13 | class BField(): | |
|
14 | def __init__(self,year=None,doy=None,site=1,heights=None,alpha_i=90): | |
|
15 | """ | |
|
16 | BField class creates an object to get the Magnetic field for a specific date and | |
|
17 | height(s). | |
|
18 | ||
|
19 | Parameters | |
|
20 | ---------- | |
|
21 | year = A scalar giving the desired year. If the value is None (default value) then | |
|
22 | the current year will be used. | |
|
23 | doy = A scalar giving the desired day of the year. If the value is None (default va- | |
|
24 | lue) then the current doy will be used. | |
|
25 | site = An integer to choose the geographic coordinates of the place where the magne- | |
|
26 | tic field will be computed. The default value is over Jicamarca (site=1) | |
|
27 | heights = An array giving the heights (km) where the magnetic field will be modeled By default the magnetic field will be computed at 100, 500 and 1000km. | |
|
28 | alpha_i = Angle to interpolate the magnetic field. | |
|
29 | ||
|
30 | Modification History | |
|
31 | -------------------- | |
|
32 | Converted to Object-oriented Programming by Freddy Galindo, ROJ, 07 October 2009. | |
|
33 | Added to signal Chain by Joab Apaza, ROJ, Jun 2023. | |
|
34 | """ | |
|
35 | ||
|
36 | tmp = time.localtime() | |
|
37 | if year==None: year = tmp[0] | |
|
38 | if doy==None: doy = tmp[7] | |
|
39 | self.year = year | |
|
40 | self.doy = doy | |
|
41 | self.site = site | |
|
42 | if heights is None: | |
|
43 | heights = numpy.array([100,500,1000]) | |
|
44 | else: | |
|
45 | heights = numpy.array(heights) | |
|
46 | self.heights = heights | |
|
47 | self.alpha_i = alpha_i | |
|
48 | ||
|
49 | def getBField(self,maglimits=numpy.array([-37,-37,37,37])): | |
|
50 | """ | |
|
51 | getBField models the magnetic field for a different heights in a specific date. | |
|
52 | ||
|
53 | Parameters | |
|
54 | ---------- | |
|
55 | maglimits = An 4-elements array giving ..... The default value is [-7,-7,7,7]. | |
|
56 | ||
|
57 | Return | |
|
58 | ------ | |
|
59 | dcos = An 4-dimensional array giving the directional cosines of the magnetic field | |
|
60 | over the desired place. | |
|
61 | alpha = An 3-dimensional array giving the angle of the magnetic field over the desi- | |
|
62 | red place. | |
|
63 | ||
|
64 | Modification History | |
|
65 | -------------------- | |
|
66 | Converted to Python by Freddy R. Galindo, ROJ, 07 October 2009. | |
|
67 | """ | |
|
68 | ||
|
69 | x_ant = numpy.array([1,0,0]) | |
|
70 | y_ant = numpy.array([0,1,0]) | |
|
71 | z_ant = numpy.array([0,0,1]) | |
|
72 | ||
|
73 | if self.site==0: | |
|
74 | title_site = "Magnetic equator" | |
|
75 | coord_site = numpy.array([-76+52./60.,-11+57/60.,0.5]) | |
|
76 | elif self.site==1: | |
|
77 | title_site = 'Jicamarca' | |
|
78 | coord_site = [-76-52./60.,-11-57/60.,0.5] | |
|
79 | heta = (45+5.35)*numpy.pi/180. # (50.35 and 1.46 from Fleish Thesis) | |
|
80 | delta = -1.46*numpy.pi/180 | |
|
81 | ||
|
82 | ||
|
83 | x_ant1 = numpy.roll(self.rotvector(self.rotvector(x_ant,1,delta),3,theta),1) | |
|
84 | y_ant1 = numpy.roll(self.rotvector(self.rotvector(y_ant,1,delta),3,theta),1) | |
|
85 | z_ant1 = numpy.roll(self.rotvector(self.rotvector(z_ant,1,delta),3,theta),1) | |
|
86 | ||
|
87 | ang0 = -1*coord_site[0]*numpy.pi/180. | |
|
88 | ang1 = coord_site[1]*numpy.pi/180. | |
|
89 | x_ant = self.rotvector(self.rotvector(x_ant1,2,ang1),3,ang0) | |
|
90 | y_ant = self.rotvector(self.rotvector(y_ant1,2,ang1),3,ang0) | |
|
91 | z_ant = self.rotvector(self.rotvector(z_ant1,2,ang1),3,ang0) | |
|
92 | ||
|
93 | elif self.site==2: #AMISR | |
|
94 | title_site = 'AMISR 14' | |
|
95 | ||
|
96 | coord_site = [-76.874913, -11.953371, 0.52984] | |
|
97 | ||
|
98 | theta = (0.0977)*numpy.pi/180. # 0.0977 | |
|
99 | delta = 0.110*numpy.pi/180 # 0.11 | |
|
100 | ||
|
101 | x_ant1 = numpy.roll(self.rotvector(self.rotvector(x_ant,1,delta),3,theta),1) | |
|
102 | y_ant1 = numpy.roll(self.rotvector(self.rotvector(y_ant,1,delta),3,theta),1) | |
|
103 | z_ant1 = numpy.roll(self.rotvector(self.rotvector(z_ant,1,delta),3,theta),1) | |
|
104 | ||
|
105 | ang0 = -1*coord_site[0]*numpy.pi/180. | |
|
106 | ang1 = coord_site[1]*numpy.pi/180. | |
|
107 | x_ant = self.rotvector(self.rotvector(x_ant1,2,ang1),3,ang0) | |
|
108 | y_ant = self.rotvector(self.rotvector(y_ant1,2,ang1),3,ang0) | |
|
109 | z_ant = self.rotvector(self.rotvector(z_ant1,2,ang1),3,ang0) | |
|
110 | else: | |
|
111 | # print "No defined Site. Skip..." | |
|
112 | return None | |
|
113 | ||
|
114 | nhei = self.heights.size | |
|
115 | pt_intercep = numpy.zeros((nhei,2)) | |
|
116 | nfields = 1 | |
|
117 | ||
|
118 | grid_res = 2.5 | |
|
119 | nlon = int(int(maglimits[2] - maglimits[0])/grid_res + 1) | |
|
120 | nlat = int(int(maglimits[3] - maglimits[1])/grid_res + 1) | |
|
121 | ||
|
122 | location = numpy.zeros((nlon,nlat,2)) | |
|
123 | mlon = numpy.atleast_2d(numpy.arange(nlon)*grid_res + maglimits[0]) | |
|
124 | mrep = numpy.atleast_2d(numpy.zeros(nlat) + 1) | |
|
125 | location0 = numpy.dot(mlon.transpose(),mrep) | |
|
126 | ||
|
127 | mlat = numpy.atleast_2d(numpy.arange(nlat)*grid_res + maglimits[1]) | |
|
128 | mrep = numpy.atleast_2d(numpy.zeros(nlon) + 1) | |
|
129 | location1 = numpy.dot(mrep.transpose(),mlat) | |
|
130 | ||
|
131 | location[:,:,0] = location0 | |
|
132 | location[:,:,1] = location1 | |
|
133 | ||
|
134 | alpha = numpy.zeros((nlon,nlat,nhei)) | |
|
135 | rr = numpy.zeros((nlon,nlat,nhei,3)) | |
|
136 | dcos = numpy.zeros((nlon,nlat,nhei,2)) | |
|
137 | ||
|
138 | global first_time | |
|
139 | ||
|
140 | first_time = None | |
|
141 | for ilon in numpy.arange(nlon): | |
|
142 | for ilat in numpy.arange(nlat): | |
|
143 | outs = self.__bdotk(self.heights, | |
|
144 | self.year + self.doy/366., | |
|
145 | coord_site[1], | |
|
146 | coord_site[0], | |
|
147 | coord_site[2], | |
|
148 | coord_site[1]+location[ilon,ilat,1], | |
|
149 | location[ilon,ilat,0]*720./180.) | |
|
150 | ||
|
151 | alpha[ilon, ilat,:] = outs[1] | |
|
152 | rr[ilon, ilat,:,:] = outs[3] | |
|
153 | ||
|
154 | mrep = numpy.atleast_2d((numpy.zeros(nhei)+1)).transpose() | |
|
155 | tmp = outs[3]*numpy.dot(mrep,numpy.atleast_2d(x_ant)) | |
|
156 | tmp = tmp.sum(axis=1) | |
|
157 | dcos[ilon,ilat,:,0] = tmp/numpy.sqrt((outs[3]**2).sum(axis=1)) | |
|
158 | ||
|
159 | mrep = numpy.atleast_2d((numpy.zeros(nhei)+1)).transpose() | |
|
160 | tmp = outs[3]*numpy.dot(mrep,numpy.atleast_2d(y_ant)) | |
|
161 | tmp = tmp.sum(axis=1) | |
|
162 | dcos[ilon,ilat,:,1] = tmp/numpy.sqrt((outs[3]**2).sum(axis=1)) | |
|
163 | ||
|
164 | return dcos, alpha, nlon, nlat | |
|
165 | ||
|
166 | ||
|
167 | def __bdotk(self,heights,tm,gdlat=-11.95,gdlon=-76.8667,gdalt=0.0,decd=-12.88, ham=-4.61666667): | |
|
168 | ||
|
169 | global first_time | |
|
170 | # Mean Earth radius in Km WGS 84 | |
|
171 | a_igrf = 6371.2 | |
|
172 | ||
|
173 | bk = numpy.zeros(heights.size) | |
|
174 | alpha = numpy.zeros(heights.size) | |
|
175 | bfm = numpy.zeros(heights.size) | |
|
176 | rr = numpy.zeros((heights.size,3)) | |
|
177 | rgc = numpy.zeros((heights.size,3)) | |
|
178 | ||
|
179 | ObjGeodetic = Astro_Coords.Geodetic(gdlat,gdalt) | |
|
180 | [gclat,gcalt] = ObjGeodetic.change2geocentric() | |
|
181 | ||
|
182 | gclat = gclat*numpy.pi/180. | |
|
183 | gclon = gdlon*numpy.pi/180. | |
|
184 | ||
|
185 | # Antenna position from center of Earth | |
|
186 | ca_vector = [numpy.cos(gclat)*numpy.cos(gclon),numpy.cos(gclat)*numpy.sin(gclon),numpy.sin(gclat)] | |
|
187 | ca_vector = gcalt*numpy.array(ca_vector) | |
|
188 | ||
|
189 | dec = decd*numpy.pi/180. | |
|
190 | ||
|
191 | # K vector respect to the center of earth. | |
|
192 | klon = gclon + ham*numpy.pi/720. | |
|
193 | k_vector = [numpy.cos(dec)*numpy.cos(klon),numpy.cos(dec)*numpy.sin(klon),numpy.sin(dec)] | |
|
194 | k_vector = numpy.array(k_vector) | |
|
195 | ||
|
196 | for ih in numpy.arange(heights.size): | |
|
197 | # Vector from Earth's center to volume of interest | |
|
198 | rr[ih,:] = k_vector*heights[ih] | |
|
199 | cv_vector = numpy.squeeze(ca_vector) + rr[ih,:] | |
|
200 | ||
|
201 | cv_gcalt = numpy.sqrt(numpy.sum(cv_vector**2.)) | |
|
202 | cvxy = numpy.sqrt(numpy.sum(cv_vector[0:2]**2.)) | |
|
203 | ||
|
204 | radial = cv_vector/cv_gcalt | |
|
205 | east = numpy.array([-1*cv_vector[1],cv_vector[0],0])/cvxy | |
|
206 | comp1 = east[1]*radial[2] - radial[1]*east[2] | |
|
207 | comp2 = east[2]*radial[0] - radial[2]*east[0] | |
|
208 | comp3 = east[0]*radial[1] - radial[0]*east[1] | |
|
209 | north = -1*numpy.array([comp1, comp2, comp3]) | |
|
210 | ||
|
211 | rr_k = cv_vector - numpy.squeeze(ca_vector) | |
|
212 | u_rr = rr_k/numpy.sqrt(numpy.sum(rr_k**2.)) | |
|
213 | ||
|
214 | cv_gclat = numpy.arctan2(cv_vector[2],cvxy) | |
|
215 | cv_gclon = numpy.arctan2(cv_vector[1],cv_vector[0]) | |
|
216 | ||
|
217 | bhei = cv_gcalt-a_igrf | |
|
218 | blat = cv_gclat*180./numpy.pi | |
|
219 | blon = cv_gclon*180./numpy.pi | |
|
220 | bfield = self.__igrfkudeki(bhei,tm,blat,blon) | |
|
221 | ||
|
222 | B = (bfield[0]*north + bfield[1]*east - bfield[2]*radial)*1.0e-5 | |
|
223 | ||
|
224 | bfm[ih] = numpy.sqrt(numpy.sum(B**2.)) #module | |
|
225 | bk[ih] = numpy.sum(u_rr*B) | |
|
226 | alpha[ih] = numpy.arccos(bk[ih]/bfm[ih])*180/numpy.pi | |
|
227 | rgc[ih,:] = numpy.array([cv_gclon, cv_gclat, cv_gcalt]) | |
|
228 | ||
|
229 | return bk, alpha, bfm, rr, rgc | |
|
230 | ||
|
231 | ||
|
232 | def __igrfkudeki(self,heights,time,latitude,longitude,ae=6371.2): | |
|
233 | """ | |
|
234 | __igrfkudeki calculates the International Geomagnetic Reference Field for given in- | |
|
235 | put conditions based on IGRF2005 coefficients. | |
|
236 | ||
|
237 | Parameters | |
|
238 | ---------- | |
|
239 | heights = Scalar or vector giving the height above the Earth of the point in ques- | |
|
240 | tion in kilometers. | |
|
241 | time = Scalar or vector giving the decimal year of time in question (e.g. 1991.2). | |
|
242 | latitude = Latitude of point in question in decimal degrees. Scalar or vector. | |
|
243 | longitude = Longitude of point in question in decimal degrees. Scalar or vector. | |
|
244 | ae = | |
|
245 | first_time = | |
|
246 | ||
|
247 | Return | |
|
248 | ------ | |
|
249 | bn = | |
|
250 | be = | |
|
251 | bd = | |
|
252 | bmod = | |
|
253 | balpha = | |
|
254 | first_time = | |
|
255 | ||
|
256 | Modification History | |
|
257 | -------------------- | |
|
258 | Converted to Python by Freddy R. Galindo, ROJ, 03 October 2009. | |
|
259 | """ | |
|
260 | ||
|
261 | global first_time | |
|
262 | global gs, hs, nvec, mvec, maxcoef | |
|
263 | ||
|
264 | heights = numpy.atleast_1d(heights) | |
|
265 | time = numpy.atleast_1d(time) | |
|
266 | latitude = numpy.atleast_1d(latitude) | |
|
267 | longitude = numpy.atleast_1d(longitude) | |
|
268 | ||
|
269 | if numpy.max(latitude)==90: | |
|
270 | # print "Field calculations are not supported at geographic poles" | |
|
271 | pass | |
|
272 | ||
|
273 | # output arrays | |
|
274 | bn = numpy.zeros(heights.size) | |
|
275 | be = numpy.zeros(heights.size) | |
|
276 | bd = numpy.zeros(heights.size) | |
|
277 | ||
|
278 | if first_time==None:first_time=0 | |
|
279 | ||
|
280 | time0 = time[0] | |
|
281 | if time!=first_time: | |
|
282 | #print "Getting coefficients for", time0 | |
|
283 | [periods,g,h ] = self.__readIGRFcoeff() | |
|
284 | top_year = numpy.max(periods) | |
|
285 | nperiod = (top_year - 1900)/5 + 1 | |
|
286 | ||
|
287 | maxcoef = 10 | |
|
288 | ||
|
289 | if time0>=2000:maxcoef = 12 | |
|
290 | ||
|
291 | ||
|
292 | # Normalization array for Schmidt fucntions | |
|
293 | multer = numpy.zeros((2+maxcoef,1+maxcoef)) + 1 | |
|
294 | for cn in (numpy.arange(maxcoef)+1): | |
|
295 | for rm in (numpy.arange(cn)+1): | |
|
296 | tmp = numpy.arange(2*rm) + cn - rm + 1. | |
|
297 | multer[rm+1,cn] = ((-1.)**rm)*numpy.sqrt(2./tmp.prod()) | |
|
298 | ||
|
299 | schmidt = multer[1:,1:].transpose() | |
|
300 | ||
|
301 | # n and m arrays | |
|
302 | nvec = numpy.atleast_2d(numpy.arange(maxcoef)+2) | |
|
303 | mvec = numpy.atleast_2d(numpy.arange(maxcoef+1)).transpose() | |
|
304 | ||
|
305 | # Time adjusted igrf g and h with Schmidt normalization | |
|
306 | # IGRF coefficient arrays: g0(n,m), n=1, maxcoeff,m=0, maxcoeff, ... | |
|
307 | if time0<top_year: | |
|
308 | dtime = (time0 - 1900) % 5 | |
|
309 | ntime = int((time0 - 1900 - dtime)/5) | |
|
310 | else: | |
|
311 | # Estimating coefficients for times > top_year | |
|
312 | dtime = (time0 - top_year) + 5 | |
|
313 | ntime = int(g[:,0,0].size - 2) | |
|
314 | ||
|
315 | ||
|
316 | g0 = g[ntime,1:maxcoef+1,:maxcoef+1] | |
|
317 | h0 = h[ntime,1:maxcoef+1,:maxcoef+1] | |
|
318 | gdot = g[ntime+1,1:maxcoef+1,:maxcoef+1]-g[ntime,1:maxcoef+1,:maxcoef+1] | |
|
319 | hdot = h[ntime+1,1:maxcoef+1,:maxcoef+1]-h[ntime,1:maxcoef+1,:maxcoef+1] | |
|
320 | gs = (g0 + dtime*(gdot/5.))*schmidt[:maxcoef,0:maxcoef+1] | |
|
321 | hs = (h0 + dtime*(hdot/5.))*schmidt[:maxcoef,0:maxcoef+1] | |
|
322 | ||
|
323 | first_time = time0 | |
|
324 | ||
|
325 | for ii in numpy.arange(heights.size): | |
|
326 | # Height dependence array rad = (ae/(ae+height))**(n+3) | |
|
327 | rad = numpy.atleast_2d((ae/(ae + heights[ii]))**(nvec+1)) | |
|
328 | ||
|
329 | # Sin and Cos of m times longitude phi arrays | |
|
330 | mphi = mvec*longitude[ii]*numpy.pi/180. | |
|
331 | cosmphi = numpy.atleast_2d(numpy.cos(mphi)) | |
|
332 | sinmphi = numpy.atleast_2d(numpy.sin(mphi)) | |
|
333 | ||
|
334 | # Cos of colatitude theta | |
|
335 | c = numpy.cos((90 - latitude[ii])*numpy.pi/180.) | |
|
336 | ||
|
337 | # Legendre functions p(n,m|c) | |
|
338 | [p,dp]= lpmn(maxcoef+1,maxcoef+1,c) | |
|
339 | p = p[:,:-1].transpose() | |
|
340 | s = numpy.sqrt((1. - c)*(1 + c)) | |
|
341 | ||
|
342 | # Generate derivative array dpdtheta = -s*dpdc | |
|
343 | dpdtheta = c*p/s | |
|
344 | for m in numpy.arange(maxcoef+2): dpdtheta[:,m] = m*dpdtheta[:,m] | |
|
345 | dpdtheta = dpdtheta + numpy.roll(p,-1,axis=1) | |
|
346 | ||
|
347 | # Extracting arrays required for field calculations | |
|
348 | p = p[1:maxcoef+1,:maxcoef+1] | |
|
349 | dpdtheta = dpdtheta[1:maxcoef+1,:maxcoef+1] | |
|
350 | ||
|
351 | # Weigh p and dpdtheta with gs and hs coefficients. | |
|
352 | gp = gs*p | |
|
353 | hp = hs*p | |
|
354 | gdpdtheta = gs*dpdtheta | |
|
355 | hdpdtheta = hs*dpdtheta | |
|
356 | # Calcultate field components | |
|
357 | matrix0 = numpy.dot(gdpdtheta,cosmphi) | |
|
358 | matrix1 = numpy.dot(hdpdtheta,sinmphi) | |
|
359 | bn[ii] = numpy.dot(rad,(matrix0 + matrix1)) | |
|
360 | matrix0 = numpy.dot(hp,(mvec*cosmphi)) | |
|
361 | matrix1 = numpy.dot(gp,(mvec*sinmphi)) | |
|
362 | be[ii] = numpy.dot((-1*rad),((matrix0 - matrix1)/s)) | |
|
363 | matrix0 = numpy.dot(gp,cosmphi) | |
|
364 | matrix1 = numpy.dot(hp,sinmphi) | |
|
365 | bd[ii] = numpy.dot((-1*nvec*rad),(matrix0 + matrix1)) | |
|
366 | ||
|
367 | bmod = numpy.sqrt(bn**2. + be**2. + bd**2.) | |
|
368 | btheta = numpy.arctan(bd/numpy.sqrt(be**2. + bn**2.))*180/numpy.pi | |
|
369 | balpha = numpy.arctan(be/bn)*180./numpy.pi | |
|
370 | ||
|
371 | #bn : north | |
|
372 | #be : east | |
|
373 | #bn : radial | |
|
374 | #bmod : module | |
|
375 | ||
|
376 | ||
|
377 | return bn, be, bd, bmod, btheta, balpha | |
|
378 | ||
|
379 | def str2num(self, datum): | |
|
380 | try: | |
|
381 | return int(datum) | |
|
382 | except: | |
|
383 | try: | |
|
384 | return float(datum) | |
|
385 | except: | |
|
386 | return datum | |
|
387 | ||
|
388 | def __readIGRFfile(self, filename): | |
|
389 | list_years=[] | |
|
390 | for i in range(1,26): | |
|
391 | list_years.append(1895.0 + i*5) | |
|
392 | ||
|
393 | epochs=list_years | |
|
394 | epochs.append(epochs[-1]+5) | |
|
395 | nepochs = numpy.shape(epochs) | |
|
396 | ||
|
397 | gg = numpy.zeros((13,14,nepochs[0]),dtype=float) | |
|
398 | hh = numpy.zeros((13,14,nepochs[0]),dtype=float) | |
|
399 | ||
|
400 | coeffs_file=open(filename) | |
|
401 | lines=coeffs_file.readlines() | |
|
402 | ||
|
403 | coeffs_file.close() | |
|
404 | ||
|
405 | for line in lines: | |
|
406 | items = line.split() | |
|
407 | g_h = items[0] | |
|
408 | n = self.str2num(items[1]) | |
|
409 | m = self.str2num(items[2]) | |
|
410 | ||
|
411 | coeffs = items[3:] | |
|
412 | ||
|
413 | for i in range(len(coeffs)-1): | |
|
414 | coeffs[i] = self.str2num(coeffs[i]) | |
|
415 | ||
|
416 | #coeffs = numpy.array(coeffs) | |
|
417 | ncoeffs = numpy.shape(coeffs)[0] | |
|
418 | ||
|
419 | if g_h == 'g': | |
|
420 | # print n," g ",m | |
|
421 | gg[n-1,m,:]=coeffs | |
|
422 | elif g_h=='h': | |
|
423 | # print n," h ",m | |
|
424 | hh[n-1,m,:]=coeffs | |
|
425 | # else : | |
|
426 | # continue | |
|
427 | ||
|
428 | # Ultimo Reordenamiento para almacenar . | |
|
429 | gg[:,:,nepochs[0]-1] = gg[:,:,nepochs[0]-2] + 5*gg[:,:,nepochs[0]-1] | |
|
430 | hh[:,:,nepochs[0]-1] = hh[:,:,nepochs[0]-2] + 5*hh[:,:,nepochs[0]-1] | |
|
431 | ||
|
432 | # return numpy.array([gg,hh]) | |
|
433 | periods = numpy.array(epochs) | |
|
434 | g = gg | |
|
435 | h = hh | |
|
436 | return periods, g, h | |
|
437 | ||
|
438 | ||
|
439 | def __readIGRFcoeff(self,filename="igrf10coeffs.dat"): | |
|
440 | """ | |
|
441 | __readIGRFcoeff reads the coefficients from a binary file which is located in the | |
|
442 | folder "resource." | |
|
443 | ||
|
444 | Parameter | |
|
445 | --------- | |
|
446 | filename = A string to specify the name of the file which contains thec coeffs. The | |
|
447 | default value is "igrf10coeffs.dat" | |
|
448 | ||
|
449 | Return | |
|
450 | ------ | |
|
451 | periods = A lineal array giving... | |
|
452 | g1 = | |
|
453 | h1 = | |
|
454 | ||
|
455 | Modification History | |
|
456 | -------------------- | |
|
457 | Converted to Python by Freddy R. Galindo, ROJ, 03 October 2009. | |
|
458 | """ | |
|
459 | ||
|
460 | base_path = os.path.dirname(os.path.abspath(__file__)) | |
|
461 | filename = os.path.join(base_path, "igrf13coeffs.txt") | |
|
462 | ||
|
463 | period_v, g_v, h_v = self.__readIGRFfile(filename) | |
|
464 | g2 = numpy.zeros((14,14,26)) | |
|
465 | h2 = numpy.zeros((14,14,26)) | |
|
466 | g2[1:14,:,:] = g_v | |
|
467 | h2[1:14,:,:] = h_v | |
|
468 | ||
|
469 | g = numpy.transpose(g2, (2,0,1)) | |
|
470 | h = numpy.transpose(h2, (2,0,1)) | |
|
471 | periods = period_v.copy() | |
|
472 | ||
|
473 | return periods, g, h | |
|
474 | ||
|
475 | def rotvector(self,vector,axis=1,ang=0): | |
|
476 | """ | |
|
477 | rotvector function returns the new vector generated rotating the rectagular coords. | |
|
478 | ||
|
479 | Parameters | |
|
480 | ---------- | |
|
481 | vector = A lineal 3-elements array (x,y,z). | |
|
482 | axis = A integer to specify the axis used to rotate the coord systems. The default | |
|
483 | value is 1. | |
|
484 | axis = 1 -> Around "x" | |
|
485 | axis = 2 -> Around "y" | |
|
486 | axis = 3 -> Around "z" | |
|
487 | ang = Angle of rotation (in radians). The default value is zero. | |
|
488 | ||
|
489 | Return | |
|
490 | ------ | |
|
491 | rotvector = A lineal array of 3 elements giving the new coordinates. | |
|
492 | ||
|
493 | Modification History | |
|
494 | -------------------- | |
|
495 | Converted to Python by Freddy R. Galindo, ROJ, 01 October 2009. | |
|
496 | """ | |
|
497 | ||
|
498 | if axis==1: | |
|
499 | t = [[1,0,0],[0,numpy.cos(ang),numpy.sin(ang)],[0,-numpy.sin(ang),numpy.cos(ang)]] | |
|
500 | elif axis==2: | |
|
501 | t = [[numpy.cos(ang),0,-numpy.sin(ang)],[0,1,0],[numpy.sin(ang),0,numpy.cos(ang)]] | |
|
502 | elif axis==3: | |
|
503 | t = [[numpy.cos(ang),numpy.sin(ang),0],[-numpy.sin(ang),numpy.cos(ang),0],[0,0,1]] | |
|
504 | ||
|
505 | rotvector = numpy.array(numpy.dot(numpy.array(t),numpy.array(vector))) | |
|
506 | ||
|
507 | return rotvector |
@@ -0,0 +1,61 | |||
|
1 | """ | |
|
2 | The module MISC_ROUTINES gathers classes and functions which are useful for daily processing. As an | |
|
3 | example we have conversion factor or universal constants. | |
|
4 | ||
|
5 | MODULES CALLED: | |
|
6 | NUMPY, SYS | |
|
7 | ||
|
8 | MODIFICATION HISTORY: | |
|
9 | Created by Ing. Freddy Galindo (frederickgalindo@gmail.com). ROJ, 21 October 2009. | |
|
10 | """ | |
|
11 | ||
|
12 | import numpy | |
|
13 | import sys | |
|
14 | ||
|
15 | class CoFactors(): | |
|
16 | """ | |
|
17 | CoFactor class used to call pre-defined conversion factor (e.g. degree to radian). The cu- | |
|
18 | The current available factor are: | |
|
19 | ||
|
20 | d2r = degree to radian. | |
|
21 | s2r = seconds to radian?, degree to arcsecond.? | |
|
22 | h2r = hour to radian. | |
|
23 | h2d = hour to degree | |
|
24 | """ | |
|
25 | ||
|
26 | d2r = numpy.pi/180. | |
|
27 | s2r = numpy.pi/(180.*3600.) | |
|
28 | h2r = numpy.pi/12. | |
|
29 | h2d = 15. | |
|
30 | ||
|
31 | ||
|
32 | class Vector: | |
|
33 | """ | |
|
34 | direction = 0 Polar to rectangular; direction=1 rectangular to polar | |
|
35 | """ | |
|
36 | def __init__(self,vect,direction=0): | |
|
37 | nsize = numpy.size(vect) | |
|
38 | if nsize <= 3: | |
|
39 | vect = vect.reshape(1,nsize) | |
|
40 | ||
|
41 | self.vect = vect | |
|
42 | self.dirc = direction | |
|
43 | ||
|
44 | ||
|
45 | ||
|
46 | def Polar2Rect(self): | |
|
47 | if self.dirc == 0: | |
|
48 | jvect = self.vect*numpy.pi/180. | |
|
49 | mmx = numpy.cos(jvect[:,1])*numpy.sin(jvect[:,0]) | |
|
50 | mmy = numpy.cos(jvect[:,1])*numpy.cos(jvect[:,0]) | |
|
51 | mmz = numpy.sin(jvect[:,1]) | |
|
52 | mm = numpy.array([mmx,mmy,mmz]).transpose() | |
|
53 | ||
|
54 | elif self.dirc == 1: | |
|
55 | mm = [numpy.arctan2(self.vect[:,0],self.vect[:,1]),numpy.arcsin(self.vect[:,2])] | |
|
56 | mm = numpy.array(mm)*180./numpy.pi | |
|
57 | ||
|
58 | return mm | |
|
59 | ||
|
60 | ||
|
61 | No newline at end of file |
@@ -0,0 +1,430 | |||
|
1 | """ | |
|
2 | The TIME_CONVERSIONS.py module gathers classes and functions for time system transformations | |
|
3 | (e.g. between seconds from 1970 to datetime format). | |
|
4 | ||
|
5 | MODULES CALLED: | |
|
6 | NUMPY, TIME, DATETIME, CALENDAR | |
|
7 | ||
|
8 | MODIFICATION HISTORY: | |
|
9 | Created by Ing. Freddy Galindo (frederickgalindo@gmail.com). ROJ Aug 13, 2009. | |
|
10 | """ | |
|
11 | ||
|
12 | import numpy | |
|
13 | import time | |
|
14 | from datetime import datetime as dt | |
|
15 | import calendar | |
|
16 | ||
|
17 | class Time: | |
|
18 | """ | |
|
19 | time(year,month,dom,hour,min,secs) | |
|
20 | ||
|
21 | An object represents a date and time of certain event.. | |
|
22 | ||
|
23 | Parameters | |
|
24 | ---------- | |
|
25 | YEAR = Number of the desired year. Year must be valid values from the civil calendar. | |
|
26 | Years B.C.E must be represented as negative integers. Years in the common era are repre- | |
|
27 | sented as positive integers. In particular, note that there is no year 0 in the civil | |
|
28 | calendar. 1 B.C.E. (-1) is followed by 1 C.E. (1). | |
|
29 | ||
|
30 | MONTH = Number of desired month (1=Jan, ..., 12=December). | |
|
31 | ||
|
32 | DOM = Number of day of the month. | |
|
33 | ||
|
34 | HOUR = Number of the hour of the day. By default hour=0 | |
|
35 | ||
|
36 | MINS = Number of the minute of the hour. By default min=0 | |
|
37 | ||
|
38 | SECS = Number of the second of the minute. By default secs=0. | |
|
39 | ||
|
40 | Examples | |
|
41 | -------- | |
|
42 | time_info = time(2008,9,30,12,30,00) | |
|
43 | ||
|
44 | time_info = time(2008,9,30) | |
|
45 | """ | |
|
46 | ||
|
47 | def __init__(self, year=None, month=None, dom=None, hour=0, mins=0, secs=0): | |
|
48 | # If one the first three inputs are not defined, it takes the current date. | |
|
49 | date = time.localtime() | |
|
50 | if year==None:year=date[0] | |
|
51 | if month==None:month=date[1] | |
|
52 | if dom==None:dom=date[2] | |
|
53 | ||
|
54 | # Converting to arrays | |
|
55 | year = numpy.array([year]); month = numpy.array([month]); dom = numpy.array([dom]) | |
|
56 | hour = numpy.array([hour]); mins = numpy.array([mins]); secs = numpy.array([secs]) | |
|
57 | ||
|
58 | # Defining time information object. | |
|
59 | self.year = numpy.atleast_1d(year) | |
|
60 | self.month = numpy.atleast_1d(month) | |
|
61 | self.dom = numpy.atleast_1d(dom) | |
|
62 | self.hour = numpy.atleast_1d(hour) | |
|
63 | self.mins = numpy.atleast_1d(mins) | |
|
64 | self.secs = numpy.atleast_1d(secs) | |
|
65 | ||
|
66 | def change2julday(self): | |
|
67 | """ | |
|
68 | Converts a datetime to Julian days. | |
|
69 | """ | |
|
70 | ||
|
71 | # Defining constants | |
|
72 | greg = 2299171 # incorrect Julian day for Oct, 25, 1582. | |
|
73 | min_calendar = -4716 | |
|
74 | max_calendar = 5000000 | |
|
75 | ||
|
76 | min_year = numpy.nanmin(self.year) | |
|
77 | max_year = numpy.nanmax(self.year) | |
|
78 | if (min_year<min_calendar) or (max_year>max_calendar): | |
|
79 | print ("Value of Julian date is out of allowed range") | |
|
80 | return -1 | |
|
81 | ||
|
82 | noyear = numpy.sum(self.year==0) | |
|
83 | if noyear>0: | |
|
84 | print ("There is no year zero in the civil calendar") | |
|
85 | return -1 | |
|
86 | ||
|
87 | # Knowing if the year is less than 0. | |
|
88 | bc = self.year<0 | |
|
89 | ||
|
90 | # Knowing if the month is less than March. | |
|
91 | inJanFeb = self.month<=2 | |
|
92 | ||
|
93 | jy = self.year + bc - inJanFeb | |
|
94 | jm = self.month + (1 + 12*inJanFeb) | |
|
95 | ||
|
96 | # Computing Julian days. | |
|
97 | jul= numpy.floor(365.25*jy) + numpy.floor(30.6001*jm) + (self.dom+1720995.0) | |
|
98 | ||
|
99 | # Test whether to change to Gregorian Calendar | |
|
100 | if numpy.min(jul) >= greg: | |
|
101 | ja = numpy.int32(0.01*jy) | |
|
102 | jul = jul + 2 - ja + numpy.int32(0.25*ja) | |
|
103 | else: | |
|
104 | gregchange = numpy.where(jul >= greg) | |
|
105 | if gregchange[0].size>0: | |
|
106 | ja = numpy.int32(0.01 + jy[gregchange]) | |
|
107 | jy[gregchange] = jy[gregchange] + 2 - ja + numpy.int32(0.25*ja) | |
|
108 | ||
|
109 | # Determining machine-specific parameters affecting floating-point. | |
|
110 | eps = 0.0 # Replace this line for a function to get precision. | |
|
111 | eps = abs(jul)*0.0 > eps | |
|
112 | ||
|
113 | jul = jul + (self.hour/24. -0.5) + (self.mins/1440.) + (self.secs/86400.) + eps | |
|
114 | ||
|
115 | return jul[0] | |
|
116 | ||
|
117 | def change2secs(self): | |
|
118 | """ | |
|
119 | Converts datetime to number of seconds respect to 1970. | |
|
120 | """ | |
|
121 | ||
|
122 | dtime = dt(self.year[0], self.month[0], self.dom[0]) | |
|
123 | return (dtime-dt(1970, 1, 1)).total_seconds() | |
|
124 | ||
|
125 | year = self.year | |
|
126 | if year.size>1: year = year[0] | |
|
127 | ||
|
128 | month = self.month | |
|
129 | if month.size>1: month = month[0] | |
|
130 | ||
|
131 | dom = self.dom | |
|
132 | if dom.size>1: dom = dom[0] | |
|
133 | ||
|
134 | # Resizing hour, mins and secs if it was necessary. | |
|
135 | hour = self.hour | |
|
136 | if hour.size>1:hour = hour[0] | |
|
137 | if hour.size==1:hour = numpy.resize(hour,year.size) | |
|
138 | ||
|
139 | mins = self.mins | |
|
140 | if mins.size>1:mins = mins[0] | |
|
141 | if mins.size==1:mins = numpy.resize(mins,year.size) | |
|
142 | ||
|
143 | secs = self.secs | |
|
144 | if secs.size>1:secs = secs[0] | |
|
145 | if secs.size==1:secs = numpy.resize(secs,year.size) | |
|
146 | ||
|
147 | # Using time.mktime to compute seconds respect to 1970. | |
|
148 | secs1970 = numpy.zeros(year.size) | |
|
149 | for ii in numpy.arange(year.size): | |
|
150 | secs1970[ii] = time.mktime((int(year[ii]),int(month[ii]),int(dom[ii]),\ | |
|
151 | int(hour[ii]),int(mins[ii]),int(secs[ii]),0,0,0)) | |
|
152 | ||
|
153 | secs1970 = numpy.int32(secs1970 - time.timezone) | |
|
154 | ||
|
155 | return secs1970 | |
|
156 | ||
|
157 | def change2strdate(self,mode=1): | |
|
158 | """ | |
|
159 | change2strdate method converts a date and time of certain event to date string. The | |
|
160 | string format is like localtime (e.g. Fri Oct 9 15:00:19 2009). | |
|
161 | ||
|
162 | Parameters | |
|
163 | ---------- | |
|
164 | None. | |
|
165 | ||
|
166 | Return | |
|
167 | ------ | |
|
168 | ||
|
169 | Modification History | |
|
170 | -------------------- | |
|
171 | Created by Freddy R. Galindo, ROJ, 09 October 2009. | |
|
172 | ||
|
173 | """ | |
|
174 | ||
|
175 | secs = numpy.atleast_1d(self.change2secs()) | |
|
176 | strdate = [] | |
|
177 | for ii in numpy.arange(numpy.size(secs)): | |
|
178 | secs_tmp = time.localtime(secs[ii] + time.timezone) | |
|
179 | if mode==1: | |
|
180 | strdate.append(time.strftime("%d-%b-%Y (%j) %H:%M:%S",secs_tmp)) | |
|
181 | elif mode==2: | |
|
182 | strdate.append(time.strftime("%d-%b-%Y (%j)",secs_tmp)) | |
|
183 | ||
|
184 | strdate = numpy.array(strdate) | |
|
185 | ||
|
186 | return strdate | |
|
187 | ||
|
188 | ||
|
189 | class Secs: | |
|
190 | """ | |
|
191 | secs(secs): | |
|
192 | ||
|
193 | An object represents the number of seconds respect to 1970. | |
|
194 | ||
|
195 | Parameters | |
|
196 | ---------- | |
|
197 | ||
|
198 | SECS = A scalar or array giving the number of seconds respect to 1970. | |
|
199 | ||
|
200 | Example: | |
|
201 | -------- | |
|
202 | secs_info = secs(1251241373) | |
|
203 | ||
|
204 | secs_info = secs([1251241373,1251241383,1251241393]) | |
|
205 | """ | |
|
206 | def __init__(self,secs): | |
|
207 | self.secs = secs | |
|
208 | ||
|
209 | def change2julday(self): | |
|
210 | """ | |
|
211 | Convert seconds from 1970 to Julian days. | |
|
212 | """ | |
|
213 | ||
|
214 | secs_1970 = time(1970,1,1,0,0,0).change2julday() | |
|
215 | ||
|
216 | julian = self.secs/86400.0 + secs_1970 | |
|
217 | ||
|
218 | return julian | |
|
219 | ||
|
220 | def change2time(self): | |
|
221 | """ | |
|
222 | Converts seconds from 1970 to datetime. | |
|
223 | """ | |
|
224 | ||
|
225 | secs1970 = numpy.atleast_1d(self.secs) | |
|
226 | ||
|
227 | datetime = numpy.zeros((9,secs1970.size)) | |
|
228 | for ii in numpy.arange(secs1970.size): | |
|
229 | tuple = time.gmtime(secs1970[ii]) | |
|
230 | datetime[0,ii] = tuple[0] | |
|
231 | datetime[1,ii] = tuple[1] | |
|
232 | datetime[2,ii] = tuple[2] | |
|
233 | datetime[3,ii] = tuple[3] | |
|
234 | datetime[4,ii] = tuple[4] | |
|
235 | datetime[5,ii] = tuple[5] | |
|
236 | datetime[6,ii] = tuple[6] | |
|
237 | datetime[7,ii] = tuple[7] | |
|
238 | datetime[8,ii] = tuple[8] | |
|
239 | ||
|
240 | datetime = numpy.int32(datetime) | |
|
241 | ||
|
242 | return datetime | |
|
243 | ||
|
244 | ||
|
245 | class Julian: | |
|
246 | """ | |
|
247 | julian(julian): | |
|
248 | ||
|
249 | An object represents julian days. | |
|
250 | ||
|
251 | Parameters | |
|
252 | ---------- | |
|
253 | ||
|
254 | JULIAN = A scalar or array giving the julina days. | |
|
255 | ||
|
256 | Example: | |
|
257 | -------- | |
|
258 | julian_info = julian(2454740) | |
|
259 | ||
|
260 | julian_info = julian([2454740,2454760,2454780]) | |
|
261 | """ | |
|
262 | def __init__(self,julian): | |
|
263 | self.julian = numpy.atleast_1d(julian) | |
|
264 | ||
|
265 | def change2time(self): | |
|
266 | """ | |
|
267 | change2time method converts from julian day to calendar date and time. | |
|
268 | ||
|
269 | Return | |
|
270 | ------ | |
|
271 | year = An array giving the year of the desired julian day. | |
|
272 | month = An array giving the month of the desired julian day. | |
|
273 | dom = An array giving the day of the desired julian day. | |
|
274 | hour = An array giving the hour of the desired julian day. | |
|
275 | mins = An array giving the minute of the desired julian day. | |
|
276 | secs = An array giving the second of the desired julian day. | |
|
277 | ||
|
278 | Examples | |
|
279 | -------- | |
|
280 | >> jd = 2455119.0 | |
|
281 | >> [yy,mo,dd,hh,mi,ss] = TimeTools.julian(jd).change2time() | |
|
282 | >> print [yy,mo,dd,hh,mi,ss] | |
|
283 | [2009] [10] [ 14.] [ 12.] [ 0.] [ 0.] | |
|
284 | ||
|
285 | Modification history | |
|
286 | -------------------- | |
|
287 | Translated from "Numerical Recipies in C", by William H. Press, Brian P. Flannery, | |
|
288 | Saul A. Teukolsky, and William T. Vetterling. Cambridge University Press, 1988. | |
|
289 | Converted to Python by Freddy R. Galindo, ROJ, 06 October 2009. | |
|
290 | """ | |
|
291 | ||
|
292 | min_julian = -1095 | |
|
293 | max_julian = 1827933925 | |
|
294 | if (numpy.min(self.julian) < min_julian) or (numpy.max(self.julian) > max_julian): | |
|
295 | print ('Value of Julian date is out of allowed range.') | |
|
296 | return None | |
|
297 | ||
|
298 | # Beginning of Gregorian calendar | |
|
299 | igreg = 2299161 | |
|
300 | julLong = numpy.floor(self.julian + 0.5) | |
|
301 | minJul = numpy.min(julLong) | |
|
302 | ||
|
303 | if (minJul >= igreg): | |
|
304 | # All are Gregorian | |
|
305 | jalpha = numpy.int32(((julLong - 1867216) - 0.25)/36524.25) | |
|
306 | ja = julLong + 1 + jalpha - numpy.int32(0.25*jalpha) | |
|
307 | else: | |
|
308 | ja = julLong | |
|
309 | gregChange = numpy.where(julLong >= igreg) | |
|
310 | if gregChange[0].size>0: | |
|
311 | jalpha = numpy.int32(((julLong[gregChange]-1867216) - 0.25)/36524.25) | |
|
312 | ja[gregChange] = julLong[gregChange]+1+jalpha-numpy.int32(0.25*jalpha) | |
|
313 | ||
|
314 | # clear memory. | |
|
315 | jalpha = -1 | |
|
316 | ||
|
317 | jb = ja + 1524 | |
|
318 | jc = numpy.int32(6680. + ((jb-2439870)-122.1)/365.25) | |
|
319 | jd = numpy.int32(365.*jc + (0.25*jc)) | |
|
320 | je = numpy.int32((jb - jd)/30.6001) | |
|
321 | ||
|
322 | dom = jb - jd - numpy.int32(30.6001*je) | |
|
323 | month = je - 1 | |
|
324 | month = ((month - 1) % 12) + 1 | |
|
325 | month = numpy.atleast_1d(month) | |
|
326 | year = jc - 4715 | |
|
327 | year = year - (month > 2)*1 | |
|
328 | year = year - (year <= 0)*1 | |
|
329 | year = numpy.atleast_1d(year) | |
|
330 | ||
|
331 | # Getting hours, minutes, seconds | |
|
332 | fraction = self.julian + 0.5 - julLong | |
|
333 | eps_0 = dom*0.0 + 1.0e-12 | |
|
334 | eps_1 = 1.0e-12*numpy.abs(julLong) | |
|
335 | eps = (eps_0>eps_1)*eps_0 + (eps_0<=eps_1)*eps_1 | |
|
336 | ||
|
337 | hour_0 = dom*0 + 23 | |
|
338 | hour_2 = dom*0 + 0 | |
|
339 | hour_1 = numpy.floor(fraction*24.0 + eps) | |
|
340 | hour = ((hour_1>hour_0)*23) + ((hour_1<=hour_0)*hour_1) | |
|
341 | hour = ((hour_1<hour_2)*0) + ((hour_1>=hour_2)*hour_1) | |
|
342 | ||
|
343 | fraction = fraction - (hour/24.0) | |
|
344 | mins_0 = dom*0 + 59 | |
|
345 | mins_2 = dom*0 + 0 | |
|
346 | mins_1 = numpy.floor(fraction*1440.0 + eps) | |
|
347 | mins = ((mins_1>mins_0)*59) + ((mins_1<=mins_0)*mins_1) | |
|
348 | mins = ((mins_1<mins_2)*0) + ((mins_1>=mins_2)*mins_1) | |
|
349 | ||
|
350 | secs_2 = dom*0 + 0 | |
|
351 | secs_1 = (fraction - mins/1440.0)*86400.0 | |
|
352 | secs = ((secs_1<secs_2)*0) + ((secs_1>=secs_2)*secs_1) | |
|
353 | ||
|
354 | return year,month,dom,hour,mins,secs | |
|
355 | ||
|
356 | def change2secs(self): | |
|
357 | """ | |
|
358 | Converts from Julian days to seconds from 1970. | |
|
359 | """ | |
|
360 | ||
|
361 | jul_1970 = Time(1970,1,1,0,0,0).change2julday() | |
|
362 | ||
|
363 | secs = numpy.int32((self.julian - jul_1970)*86400) | |
|
364 | ||
|
365 | return secs | |
|
366 | ||
|
367 | def change2lst(self,longitude=-76.874369): | |
|
368 | """ | |
|
369 | CT2LST converts from local civil time to local mean sideral time | |
|
370 | ||
|
371 | longitude = The longitude in degrees (east of Greenwich) of the place for which | |
|
372 | the local sideral time is desired, scalar. The Greenwich mean sideral time (GMST) | |
|
373 | can be found by setting longitude=0. | |
|
374 | """ | |
|
375 | ||
|
376 | # Useful constants, see Meus, p. 84 | |
|
377 | c = numpy.array([280.46061837, 360.98564736629, 0.000387933, 38710000.0]) | |
|
378 | jd2000 = 2451545.0 | |
|
379 | t0 = self.julian - jd2000 | |
|
380 | t = t0/36525. | |
|
381 | ||
|
382 | # Computing GST in seconds | |
|
383 | theta = c[0] + (c[1]*t0) + (t**2)*(c[2]-t/c[3]) | |
|
384 | ||
|
385 | # Computing LST in hours | |
|
386 | lst = (theta + longitude)/15.0 | |
|
387 | neg = numpy.where(lst < 0.0) | |
|
388 | if neg[0].size>0:lst[neg] = 24.0 + (lst[neg] % 24) | |
|
389 | lst = lst % 24.0 | |
|
390 | ||
|
391 | return lst | |
|
392 | ||
|
393 | ||
|
394 | class date2doy: | |
|
395 | def __init__(self,year,month,day): | |
|
396 | self.year = year | |
|
397 | self.month = month | |
|
398 | self.day = day | |
|
399 | ||
|
400 | def change2doy(self): | |
|
401 | if calendar.isleap(self.year) == True: | |
|
402 | tfactor = 1 | |
|
403 | else: | |
|
404 | tfactor = 2 | |
|
405 | ||
|
406 | day = self.day | |
|
407 | month = self.month | |
|
408 | ||
|
409 | doy = numpy.floor((275*month)/9.0) - (tfactor*numpy.floor((month+9)/12.0)) + day - 30 | |
|
410 | ||
|
411 | return numpy.int32(doy) | |
|
412 | ||
|
413 | ||
|
414 | class Doy2Date: | |
|
415 | def __init__(self,year,doy): | |
|
416 | self.year = year | |
|
417 | self.doy = doy | |
|
418 | ||
|
419 | def change2date(self): | |
|
420 | months = numpy.arange(12) + 1 | |
|
421 | ||
|
422 | first_dem = date2doy(self.year,months,1) | |
|
423 | first_dem = first_dem.change2doy() | |
|
424 | ||
|
425 | imm = numpy.where((self.doy - first_dem) > 0) | |
|
426 | ||
|
427 | month = imm[0].size | |
|
428 | dom = self.doy -first_dem[month - 1] + 1 | |
|
429 | ||
|
430 | return month, dom |
@@ -1,709 +1,716 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Base class to create plot operations |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import sys |
|
11 | 11 | import zmq |
|
12 | 12 | import time |
|
13 | 13 | import numpy |
|
14 | 14 | import datetime |
|
15 | 15 | from collections import deque |
|
16 | 16 | from functools import wraps |
|
17 | 17 | from threading import Thread |
|
18 | 18 | import matplotlib |
|
19 | 19 | |
|
20 | 20 | if 'BACKEND' in os.environ: |
|
21 | 21 | matplotlib.use(os.environ['BACKEND']) |
|
22 | 22 | elif 'linux' in sys.platform: |
|
23 | 23 | matplotlib.use("TkAgg") |
|
24 | 24 | elif 'darwin' in sys.platform: |
|
25 | 25 | matplotlib.use('MacOSX') |
|
26 | 26 | else: |
|
27 | 27 | from schainpy.utils import log |
|
28 | 28 | log.warning('Using default Backend="Agg"', 'INFO') |
|
29 | 29 | matplotlib.use('Agg') |
|
30 | 30 | |
|
31 | 31 | import matplotlib.pyplot as plt |
|
32 | 32 | from matplotlib.patches import Polygon |
|
33 | 33 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
34 | 34 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator |
|
35 | 35 | |
|
36 | 36 | from schainpy.model.data.jrodata import PlotterData |
|
37 | 37 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
38 | 38 | from schainpy.utils import log |
|
39 | 39 | |
|
40 | 40 | jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90] |
|
41 | 41 | blu_values = matplotlib.pyplot.get_cmap( |
|
42 | 42 | 'seismic_r', 20)(numpy.arange(20))[10:15] |
|
43 | 43 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( |
|
44 | 44 | 'jro', numpy.vstack((blu_values, jet_values))) |
|
45 | 45 | matplotlib.pyplot.register_cmap(cmap=ncmap) |
|
46 | 46 | |
|
47 | 47 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis', |
|
48 | 48 | 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')] |
|
49 | 49 | |
|
50 | 50 | EARTH_RADIUS = 6.3710e3 |
|
51 | 51 | |
|
52 | 52 | def ll2xy(lat1, lon1, lat2, lon2): |
|
53 | 53 | |
|
54 | 54 | p = 0.017453292519943295 |
|
55 | 55 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
56 | 56 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
57 | 57 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
58 | 58 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
59 | 59 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
60 | 60 | theta = -theta + numpy.pi/2 |
|
61 | 61 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | def km2deg(km): |
|
65 | 65 | ''' |
|
66 | 66 | Convert distance in km to degrees |
|
67 | 67 | ''' |
|
68 | 68 | |
|
69 | 69 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
70 | 70 | |
|
71 | 71 | |
|
72 | 72 | def figpause(interval): |
|
73 | 73 | backend = plt.rcParams['backend'] |
|
74 | 74 | if backend in matplotlib.rcsetup.interactive_bk: |
|
75 | 75 | figManager = matplotlib._pylab_helpers.Gcf.get_active() |
|
76 | 76 | if figManager is not None: |
|
77 | 77 | canvas = figManager.canvas |
|
78 | 78 | if canvas.figure.stale: |
|
79 | 79 | canvas.draw() |
|
80 | 80 | try: |
|
81 | 81 | canvas.start_event_loop(interval) |
|
82 | 82 | except: |
|
83 | 83 | pass |
|
84 | 84 | return |
|
85 | 85 | |
|
86 | 86 | def popup(message): |
|
87 | 87 | ''' |
|
88 | 88 | ''' |
|
89 | 89 | |
|
90 | 90 | fig = plt.figure(figsize=(12, 8), facecolor='r') |
|
91 | 91 | text = '\n'.join([s.strip() for s in message.split(':')]) |
|
92 | 92 | fig.text(0.01, 0.5, text, ha='left', va='center', |
|
93 | 93 | size='20', weight='heavy', color='w') |
|
94 | 94 | fig.show() |
|
95 | 95 | figpause(1000) |
|
96 | 96 | |
|
97 | 97 | |
|
98 | 98 | class Throttle(object): |
|
99 | 99 | ''' |
|
100 | 100 | Decorator that prevents a function from being called more than once every |
|
101 | 101 | time period. |
|
102 | 102 | To create a function that cannot be called more than once a minute, but |
|
103 | 103 | will sleep until it can be called: |
|
104 | 104 | @Throttle(minutes=1) |
|
105 | 105 | def foo(): |
|
106 | 106 | pass |
|
107 | 107 | |
|
108 | 108 | for i in range(10): |
|
109 | 109 | foo() |
|
110 | 110 | print "This function has run %s times." % i |
|
111 | 111 | ''' |
|
112 | 112 | |
|
113 | 113 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
114 | 114 | self.throttle_period = datetime.timedelta( |
|
115 | 115 | seconds=seconds, minutes=minutes, hours=hours |
|
116 | 116 | ) |
|
117 | 117 | |
|
118 | 118 | self.time_of_last_call = datetime.datetime.min |
|
119 | 119 | |
|
120 | 120 | def __call__(self, fn): |
|
121 | 121 | @wraps(fn) |
|
122 | 122 | def wrapper(*args, **kwargs): |
|
123 | 123 | coerce = kwargs.pop('coerce', None) |
|
124 | 124 | if coerce: |
|
125 | 125 | self.time_of_last_call = datetime.datetime.now() |
|
126 | 126 | return fn(*args, **kwargs) |
|
127 | 127 | else: |
|
128 | 128 | now = datetime.datetime.now() |
|
129 | 129 | time_since_last_call = now - self.time_of_last_call |
|
130 | 130 | time_left = self.throttle_period - time_since_last_call |
|
131 | 131 | |
|
132 | 132 | if time_left > datetime.timedelta(seconds=0): |
|
133 | 133 | return |
|
134 | 134 | |
|
135 | 135 | self.time_of_last_call = datetime.datetime.now() |
|
136 | 136 | return fn(*args, **kwargs) |
|
137 | 137 | |
|
138 | 138 | return wrapper |
|
139 | 139 | |
|
140 | 140 | def apply_throttle(value): |
|
141 | 141 | |
|
142 | 142 | @Throttle(seconds=value) |
|
143 | 143 | def fnThrottled(fn): |
|
144 | 144 | fn() |
|
145 | 145 | |
|
146 | 146 | return fnThrottled |
|
147 | 147 | |
|
148 | 148 | |
|
149 | 149 | @MPDecorator |
|
150 | 150 | class Plot(Operation): |
|
151 | 151 | """Base class for Schain plotting operations |
|
152 | 152 | |
|
153 | 153 | This class should never be use directtly you must subclass a new operation, |
|
154 | 154 | children classes must be defined as follow: |
|
155 | 155 | |
|
156 | 156 | ExamplePlot(Plot): |
|
157 | 157 | |
|
158 | 158 | CODE = 'code' |
|
159 | 159 | colormap = 'jet' |
|
160 | 160 | plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer') |
|
161 | 161 | |
|
162 | 162 | def setup(self): |
|
163 | 163 | pass |
|
164 | 164 | |
|
165 | 165 | def plot(self): |
|
166 | 166 | pass |
|
167 | 167 | |
|
168 | 168 | """ |
|
169 | 169 | |
|
170 | 170 | CODE = 'Figure' |
|
171 | 171 | colormap = 'jet' |
|
172 | 172 | bgcolor = 'white' |
|
173 | 173 | buffering = True |
|
174 | 174 | __missing = 1E30 |
|
175 | 175 | |
|
176 | 176 | __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title', |
|
177 | 177 | 'showprofile'] |
|
178 | 178 | |
|
179 | 179 | def __init__(self): |
|
180 | 180 | |
|
181 | 181 | Operation.__init__(self) |
|
182 | 182 | self.isConfig = False |
|
183 | 183 | self.isPlotConfig = False |
|
184 | 184 | self.save_time = 0 |
|
185 | 185 | self.sender_time = 0 |
|
186 | 186 | self.data = None |
|
187 | 187 | self.firsttime = True |
|
188 | 188 | self.sender_queue = deque(maxlen=10) |
|
189 | 189 | self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2} |
|
190 | 190 | |
|
191 | 191 | def __fmtTime(self, x, pos): |
|
192 | 192 | ''' |
|
193 | 193 | ''' |
|
194 | 194 | if self.t_units == "h_m": |
|
195 | 195 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) |
|
196 | 196 | if self.t_units == "h": |
|
197 | 197 | return '{}'.format(self.getDateTime(x).strftime('%H')) |
|
198 | 198 | |
|
199 | 199 | def __setup(self, **kwargs): |
|
200 | 200 | ''' |
|
201 | 201 | Initialize variables |
|
202 | 202 | ''' |
|
203 | 203 | |
|
204 | 204 | self.figures = [] |
|
205 | 205 | self.axes = [] |
|
206 | 206 | self.cb_axes = [] |
|
207 | 207 | self.pf_axes = [] |
|
208 | 208 | self.localtime = kwargs.pop('localtime', True) |
|
209 | 209 | self.show = kwargs.get('show', True) |
|
210 | 210 | self.save = kwargs.get('save', False) |
|
211 | 211 | self.save_period = kwargs.get('save_period', 0) |
|
212 | 212 | self.colormap = kwargs.get('colormap', self.colormap) |
|
213 | 213 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
214 | 214 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
215 | 215 | self.colormaps = kwargs.get('colormaps', None) |
|
216 | 216 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) |
|
217 | 217 | self.showprofile = kwargs.get('showprofile', False) |
|
218 | 218 | self.title = kwargs.get('wintitle', self.CODE.upper()) |
|
219 | 219 | self.cb_label = kwargs.get('cb_label', None) |
|
220 | 220 | self.cb_labels = kwargs.get('cb_labels', None) |
|
221 | 221 | self.labels = kwargs.get('labels', None) |
|
222 | 222 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
223 | 223 | self.zmin = kwargs.get('zmin', None) |
|
224 | 224 | self.zmax = kwargs.get('zmax', None) |
|
225 | 225 | self.zlimits = kwargs.get('zlimits', None) |
|
226 | 226 | self.xmin = kwargs.get('xmin', None) |
|
227 | 227 | self.xmax = kwargs.get('xmax', None) |
|
228 | 228 | self.xrange = kwargs.get('xrange', 12) |
|
229 | 229 | self.xscale = kwargs.get('xscale', None) |
|
230 | 230 | self.ymin = kwargs.get('ymin', None) |
|
231 | 231 | self.ymax = kwargs.get('ymax', None) |
|
232 | 232 | self.yscale = kwargs.get('yscale', None) |
|
233 | 233 | self.xlabel = kwargs.get('xlabel', None) |
|
234 | 234 | self.attr_time = kwargs.get('attr_time', 'utctime') |
|
235 | 235 | self.attr_data = kwargs.get('attr_data', 'data_param') |
|
236 | 236 | self.decimation = kwargs.get('decimation', None) |
|
237 | 237 | self.oneFigure = kwargs.get('oneFigure', True) |
|
238 | 238 | self.width = kwargs.get('width', None) |
|
239 | 239 | self.height = kwargs.get('height', None) |
|
240 | 240 | self.colorbar = kwargs.get('colorbar', True) |
|
241 | 241 | self.factors = kwargs.get('factors', range(18)) |
|
242 | 242 | self.channels = kwargs.get('channels', None) |
|
243 | 243 | self.titles = kwargs.get('titles', []) |
|
244 | 244 | self.polar = False |
|
245 | 245 | self.type = kwargs.get('type', 'iq') |
|
246 | 246 | self.grid = kwargs.get('grid', False) |
|
247 | 247 | self.pause = kwargs.get('pause', False) |
|
248 | 248 | self.save_code = kwargs.get('save_code', self.CODE) |
|
249 | 249 | self.throttle = kwargs.get('throttle', 0) |
|
250 | 250 | self.exp_code = kwargs.get('exp_code', None) |
|
251 | 251 | self.server = kwargs.get('server', False) |
|
252 | 252 | self.sender_period = kwargs.get('sender_period', 60) |
|
253 | 253 | self.tag = kwargs.get('tag', '') |
|
254 | 254 | self.height_index = kwargs.get('height_index', []) |
|
255 | 255 | self.__throttle_plot = apply_throttle(self.throttle) |
|
256 | 256 | code = self.attr_data if self.attr_data else self.CODE |
|
257 | 257 | self.data = PlotterData(self.CODE, self.exp_code, self.localtime) |
|
258 | 258 | self.tmin = kwargs.get('tmin', None) |
|
259 | 259 | self.t_units = kwargs.get('t_units', "h_m") |
|
260 | 260 | self.selectedHeightsList = kwargs.get('selectedHeightsList', []) |
|
261 | self.extFile = kwargs.get('filename', None) | |
|
262 | self.bFieldList = kwargs.get('bField', []) | |
|
263 | self.celestialList = kwargs.get('celestial', []) | |
|
264 | ||
|
265 | if isinstance(self.bFieldList, int): | |
|
266 | self.bFieldList = [self.bFieldList] | |
|
267 | ||
|
261 | 268 | if isinstance(self.selectedHeightsList, int): |
|
262 | 269 | self.selectedHeightsList = [self.selectedHeightsList] |
|
263 | 270 | |
|
264 | 271 | if self.server: |
|
265 | 272 | if not self.server.startswith('tcp://'): |
|
266 | 273 | self.server = 'tcp://{}'.format(self.server) |
|
267 | 274 | log.success( |
|
268 | 275 | 'Sending to server: {}'.format(self.server), |
|
269 | 276 | self.name |
|
270 | 277 | ) |
|
271 | 278 | |
|
272 | 279 | if isinstance(self.attr_data, str): |
|
273 | 280 | self.attr_data = [self.attr_data] |
|
274 | 281 | |
|
275 | 282 | def __setup_plot(self): |
|
276 | 283 | ''' |
|
277 | 284 | Common setup for all figures, here figures and axes are created |
|
278 | 285 | ''' |
|
279 | 286 | |
|
280 | 287 | self.setup() |
|
281 | 288 | |
|
282 | 289 | self.time_label = 'LT' if self.localtime else 'UTC' |
|
283 | 290 | |
|
284 | 291 | if self.width is None: |
|
285 | 292 | self.width = 8 |
|
286 | 293 | |
|
287 | 294 | self.figures = [] |
|
288 | 295 | self.axes = [] |
|
289 | 296 | self.cb_axes = [] |
|
290 | 297 | self.pf_axes = [] |
|
291 | 298 | self.cmaps = [] |
|
292 | 299 | |
|
293 | 300 | size = '15%' if self.ncols == 1 else '30%' |
|
294 | 301 | pad = '4%' if self.ncols == 1 else '8%' |
|
295 | 302 | |
|
296 | 303 | if self.oneFigure: |
|
297 | 304 | if self.height is None: |
|
298 | 305 | self.height = 1.4 * self.nrows + 1 |
|
299 | 306 | fig = plt.figure(figsize=(self.width, self.height), |
|
300 | 307 | edgecolor='k', |
|
301 | 308 | facecolor='w') |
|
302 | 309 | self.figures.append(fig) |
|
303 | 310 | for n in range(self.nplots): |
|
304 | 311 | ax = fig.add_subplot(self.nrows, self.ncols, |
|
305 | 312 | n + 1, polar=self.polar) |
|
306 | 313 | ax.tick_params(labelsize=8) |
|
307 | 314 | ax.firsttime = True |
|
308 | 315 | ax.index = 0 |
|
309 | 316 | ax.press = None |
|
310 | 317 | self.axes.append(ax) |
|
311 | 318 | if self.showprofile: |
|
312 | 319 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
313 | 320 | cax.tick_params(labelsize=8) |
|
314 | 321 | self.pf_axes.append(cax) |
|
315 | 322 | else: |
|
316 | 323 | if self.height is None: |
|
317 | 324 | self.height = 3 |
|
318 | 325 | for n in range(self.nplots): |
|
319 | 326 | fig = plt.figure(figsize=(self.width, self.height), |
|
320 | 327 | edgecolor='k', |
|
321 | 328 | facecolor='w') |
|
322 | 329 | ax = fig.add_subplot(1, 1, 1, polar=self.polar) |
|
323 | 330 | ax.tick_params(labelsize=8) |
|
324 | 331 | ax.firsttime = True |
|
325 | 332 | ax.index = 0 |
|
326 | 333 | ax.press = None |
|
327 | 334 | self.figures.append(fig) |
|
328 | 335 | self.axes.append(ax) |
|
329 | 336 | if self.showprofile: |
|
330 | 337 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
331 | 338 | cax.tick_params(labelsize=8) |
|
332 | 339 | self.pf_axes.append(cax) |
|
333 | 340 | |
|
334 | 341 | for n in range(self.nrows): |
|
335 | 342 | if self.colormaps is not None: |
|
336 | 343 | cmap = plt.get_cmap(self.colormaps[n]) |
|
337 | 344 | else: |
|
338 | 345 | cmap = plt.get_cmap(self.colormap) |
|
339 | 346 | cmap.set_bad(self.bgcolor, 1.) |
|
340 | 347 | self.cmaps.append(cmap) |
|
341 | 348 | |
|
342 | 349 | def __add_axes(self, ax, size='30%', pad='8%'): |
|
343 | 350 | ''' |
|
344 | 351 | Add new axes to the given figure |
|
345 | 352 | ''' |
|
346 | 353 | divider = make_axes_locatable(ax) |
|
347 | 354 | nax = divider.new_horizontal(size=size, pad=pad) |
|
348 | 355 | ax.figure.add_axes(nax) |
|
349 | 356 | return nax |
|
350 | 357 | |
|
351 | 358 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
352 | 359 | ''' |
|
353 | 360 | Create a masked array for missing data |
|
354 | 361 | ''' |
|
355 | 362 | if x_buffer.shape[0] < 2: |
|
356 | 363 | return x_buffer, y_buffer, z_buffer |
|
357 | 364 | |
|
358 | 365 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
359 | 366 | x_median = numpy.median(deltas) |
|
360 | 367 | |
|
361 | 368 | index = numpy.where(deltas > 5 * x_median) |
|
362 | 369 | |
|
363 | 370 | if len(index[0]) != 0: |
|
364 | 371 | z_buffer[::, index[0], ::] = self.__missing |
|
365 | 372 | z_buffer = numpy.ma.masked_inside(z_buffer, |
|
366 | 373 | 0.99 * self.__missing, |
|
367 | 374 | 1.01 * self.__missing) |
|
368 | 375 | |
|
369 | 376 | return x_buffer, y_buffer, z_buffer |
|
370 | 377 | |
|
371 | 378 | def decimate(self): |
|
372 | 379 | |
|
373 | 380 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
374 | 381 | dy = int(len(self.y) / self.decimation) + 1 |
|
375 | 382 | |
|
376 | 383 | # x = self.x[::dx] |
|
377 | 384 | x = self.x |
|
378 | 385 | y = self.y[::dy] |
|
379 | 386 | z = self.z[::, ::, ::dy] |
|
380 | 387 | |
|
381 | 388 | return x, y, z |
|
382 | 389 | |
|
383 | 390 | def format(self): |
|
384 | 391 | ''' |
|
385 | 392 | Set min and max values, labels, ticks and titles |
|
386 | 393 | ''' |
|
387 | 394 | |
|
388 | 395 | for n, ax in enumerate(self.axes): |
|
389 | 396 | if ax.firsttime: |
|
390 | 397 | if self.xaxis != 'time': |
|
391 | 398 | xmin = self.xmin |
|
392 | 399 | xmax = self.xmax |
|
393 | 400 | else: |
|
394 | 401 | xmin = self.tmin |
|
395 | 402 | xmax = self.tmin + self.xrange*60*60 |
|
396 | 403 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) |
|
397 | 404 | if self.t_units == "h_m": |
|
398 | 405 | ax.xaxis.set_major_locator(LinearLocator(9)) |
|
399 | 406 | if self.t_units == "h": |
|
400 | 407 | ax.xaxis.set_major_locator(LinearLocator(int((xmax-xmin)/3600)+1)) |
|
401 | 408 | ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)]) |
|
402 | 409 | ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)]) |
|
403 | 410 | ax.set_facecolor(self.bgcolor) |
|
404 | 411 | if self.xscale: |
|
405 | 412 | ax.xaxis.set_major_formatter(FuncFormatter( |
|
406 | 413 | lambda x, pos: '{0:g}'.format(x*self.xscale))) |
|
407 | 414 | if self.yscale: |
|
408 | 415 | ax.yaxis.set_major_formatter(FuncFormatter( |
|
409 | 416 | lambda x, pos: '{0:g}'.format(x*self.yscale))) |
|
410 | 417 | if self.xlabel is not None: |
|
411 | 418 | ax.set_xlabel(self.xlabel) |
|
412 | 419 | if self.ylabel is not None: |
|
413 | 420 | ax.set_ylabel(self.ylabel) |
|
414 | 421 | if self.showprofile: |
|
415 | 422 | self.pf_axes[n].set_ylim(ymin, ymax) |
|
416 | 423 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) |
|
417 | 424 | self.pf_axes[n].set_xlabel('dB') |
|
418 | 425 | self.pf_axes[n].grid(b=True, axis='x') |
|
419 | 426 | [tick.set_visible(False) |
|
420 | 427 | for tick in self.pf_axes[n].get_yticklabels()] |
|
421 | 428 | |
|
422 | 429 | if self.colorbar and not(hasattr(ax, 'cbar')) : |
|
423 | 430 | ax.cbar = plt.colorbar( |
|
424 | 431 | ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10) |
|
425 | 432 | ax.cbar.ax.tick_params(labelsize=8) |
|
426 | 433 | ax.cbar.ax.press = None |
|
427 | 434 | if self.cb_label: |
|
428 | 435 | ax.cbar.set_label(self.cb_label, size=8) |
|
429 | 436 | elif self.cb_labels: |
|
430 | 437 | ax.cbar.set_label(self.cb_labels[n], size=8) |
|
431 | 438 | else: |
|
432 | 439 | ax.cbar = None |
|
433 | 440 | ax.set_xlim(xmin, xmax) |
|
434 | 441 | ax.set_ylim(ymin, ymax) |
|
435 | 442 | ax.firsttime = False |
|
436 | 443 | if self.grid: |
|
437 | 444 | ax.grid(True) |
|
438 | 445 | |
|
439 | 446 | if not self.polar: |
|
440 | 447 | ax.set_title('{} {} {}'.format( |
|
441 | 448 | self.titles[n], |
|
442 | 449 | self.getDateTime(self.data.max_time).strftime( |
|
443 | 450 | '%Y-%m-%d %H:%M:%S'), |
|
444 | 451 | self.time_label), |
|
445 | 452 | size=8) |
|
446 | 453 | else: |
|
447 | 454 | |
|
448 | 455 | ax.set_title('{}'.format(self.titles[n]), size=8) |
|
449 | 456 | ax.set_ylim(0, 90) |
|
450 | 457 | ax.set_yticks(numpy.arange(0, 90, 20)) |
|
451 | 458 | ax.yaxis.labelpad = 40 |
|
452 | 459 | |
|
453 | 460 | if self.firsttime: |
|
454 | 461 | for n, fig in enumerate(self.figures): |
|
455 | 462 | fig.subplots_adjust(**self.plots_adjust) |
|
456 | 463 | self.firsttime = False |
|
457 | 464 | |
|
458 | 465 | def clear_figures(self): |
|
459 | 466 | ''' |
|
460 | 467 | Reset axes for redraw plots |
|
461 | 468 | ''' |
|
462 | 469 | |
|
463 | 470 | for ax in self.axes+self.pf_axes+self.cb_axes: |
|
464 | 471 | ax.clear() |
|
465 | 472 | ax.firsttime = True |
|
466 | 473 | # #if hasattr(ax, 'cbar') and ax.cbar: |
|
467 | 474 | # # ax.cbar.remove() |
|
468 | 475 | |
|
469 | 476 | |
|
470 | 477 | def __plot(self): |
|
471 | 478 | ''' |
|
472 | 479 | Main function to plot, format and save figures |
|
473 | 480 | ''' |
|
474 | 481 | |
|
475 | 482 | self.plot() |
|
476 | 483 | self.format() |
|
477 | 484 | |
|
478 | 485 | for n, fig in enumerate(self.figures): |
|
479 | 486 | if self.nrows == 0 or self.nplots == 0: |
|
480 | 487 | log.warning('No data', self.name) |
|
481 | 488 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') |
|
482 | 489 | fig.canvas.manager.set_window_title(self.CODE) |
|
483 | 490 | continue |
|
484 | 491 | |
|
485 | 492 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, |
|
486 | 493 | self.getDateTime(self.data.max_time).strftime('%Y/%m/%d'))) |
|
487 | 494 | |
|
488 | 495 | fig.canvas.draw() |
|
489 | 496 | if self.show: |
|
490 | 497 | fig.show() |
|
491 | 498 | figpause(0.01) |
|
492 | 499 | |
|
493 | 500 | if self.save: |
|
494 | 501 | self.save_figure(n) |
|
495 | 502 | |
|
496 | 503 | if self.server: |
|
497 | 504 | self.send_to_server() |
|
498 | 505 | |
|
499 | 506 | def __update(self, dataOut, timestamp): |
|
500 | 507 | ''' |
|
501 | 508 | ''' |
|
502 | 509 | |
|
503 | 510 | metadata = { |
|
504 | 511 | 'yrange': dataOut.heightList, |
|
505 | 512 | 'interval': dataOut.timeInterval, |
|
506 | 513 | 'channels': dataOut.channelList |
|
507 | 514 | } |
|
508 | 515 | data, meta = self.update(dataOut) |
|
509 | 516 | metadata.update(meta) |
|
510 | 517 | self.data.update(data, timestamp, metadata) |
|
511 | 518 | |
|
512 | 519 | def save_figure(self, n): |
|
513 | 520 | ''' |
|
514 | 521 | ''' |
|
515 | 522 | |
|
516 | 523 | if (self.data.max_time - self.save_time) <= self.save_period: |
|
517 | 524 | return |
|
518 | 525 | |
|
519 | 526 | self.save_time = self.data.max_time |
|
520 | 527 | |
|
521 | 528 | fig = self.figures[n] |
|
522 | 529 | |
|
523 | 530 | if self.throttle == 0: |
|
524 | 531 | figname = os.path.join( |
|
525 | 532 | self.save, |
|
526 | 533 | self.save_code, |
|
527 | 534 | '{}_{}.png'.format( |
|
528 | 535 | self.save_code, |
|
529 | 536 | self.getDateTime(self.data.max_time).strftime( |
|
530 | 537 | '%Y%m%d_%H%M%S' |
|
531 | 538 | ), |
|
532 | 539 | ) |
|
533 | 540 | ) |
|
534 | 541 | log.log('Saving figure: {}'.format(figname), self.name) |
|
535 | 542 | if not os.path.isdir(os.path.dirname(figname)): |
|
536 | 543 | os.makedirs(os.path.dirname(figname)) |
|
537 | 544 | fig.savefig(figname) |
|
538 | 545 | |
|
539 | 546 | figname = os.path.join( |
|
540 | 547 | self.save, |
|
541 | 548 | '{}_{}.png'.format( |
|
542 | 549 | self.save_code, |
|
543 | 550 | self.getDateTime(self.data.min_time).strftime( |
|
544 | 551 | '%Y%m%d' |
|
545 | 552 | ), |
|
546 | 553 | ) |
|
547 | 554 | ) |
|
548 | 555 | |
|
549 | 556 | log.log('Saving figure: {}'.format(figname), self.name) |
|
550 | 557 | if not os.path.isdir(os.path.dirname(figname)): |
|
551 | 558 | os.makedirs(os.path.dirname(figname)) |
|
552 | 559 | fig.savefig(figname) |
|
553 | 560 | |
|
554 | 561 | def send_to_server(self): |
|
555 | 562 | ''' |
|
556 | 563 | ''' |
|
557 | 564 | |
|
558 | 565 | if self.exp_code == None: |
|
559 | 566 | log.warning('Missing `exp_code` skipping sending to server...') |
|
560 | 567 | |
|
561 | 568 | last_time = self.data.max_time |
|
562 | 569 | interval = last_time - self.sender_time |
|
563 | 570 | if interval < self.sender_period: |
|
564 | 571 | return |
|
565 | 572 | |
|
566 | 573 | self.sender_time = last_time |
|
567 | 574 | |
|
568 | 575 | attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax'] |
|
569 | 576 | for attr in attrs: |
|
570 | 577 | value = getattr(self, attr) |
|
571 | 578 | if value: |
|
572 | 579 | if isinstance(value, (numpy.float32, numpy.float64)): |
|
573 | 580 | value = round(float(value), 2) |
|
574 | 581 | self.data.meta[attr] = value |
|
575 | 582 | if self.colormap == 'jet': |
|
576 | 583 | self.data.meta['colormap'] = 'Jet' |
|
577 | 584 | elif 'RdBu' in self.colormap: |
|
578 | 585 | self.data.meta['colormap'] = 'RdBu' |
|
579 | 586 | else: |
|
580 | 587 | self.data.meta['colormap'] = 'Viridis' |
|
581 | 588 | self.data.meta['interval'] = int(interval) |
|
582 | 589 | |
|
583 | 590 | self.sender_queue.append(last_time) |
|
584 | 591 | |
|
585 | 592 | while 1: |
|
586 | 593 | try: |
|
587 | 594 | tm = self.sender_queue.popleft() |
|
588 | 595 | except IndexError: |
|
589 | 596 | break |
|
590 | 597 | msg = self.data.jsonify(tm, self.save_code, self.plot_type) |
|
591 | 598 | self.socket.send_string(msg) |
|
592 | 599 | socks = dict(self.poll.poll(2000)) |
|
593 | 600 | if socks.get(self.socket) == zmq.POLLIN: |
|
594 | 601 | reply = self.socket.recv_string() |
|
595 | 602 | if reply == 'ok': |
|
596 | 603 | log.log("Response from server ok", self.name) |
|
597 | 604 | time.sleep(0.1) |
|
598 | 605 | continue |
|
599 | 606 | else: |
|
600 | 607 | log.warning( |
|
601 | 608 | "Malformed reply from server: {}".format(reply), self.name) |
|
602 | 609 | else: |
|
603 | 610 | log.warning( |
|
604 | 611 | "No response from server, retrying...", self.name) |
|
605 | 612 | self.sender_queue.appendleft(tm) |
|
606 | 613 | self.socket.setsockopt(zmq.LINGER, 0) |
|
607 | 614 | self.socket.close() |
|
608 | 615 | self.poll.unregister(self.socket) |
|
609 | 616 | self.socket = self.context.socket(zmq.REQ) |
|
610 | 617 | self.socket.connect(self.server) |
|
611 | 618 | self.poll.register(self.socket, zmq.POLLIN) |
|
612 | 619 | break |
|
613 | 620 | |
|
614 | 621 | def setup(self): |
|
615 | 622 | ''' |
|
616 | 623 | This method should be implemented in the child class, the following |
|
617 | 624 | attributes should be set: |
|
618 | 625 | |
|
619 | 626 | self.nrows: number of rows |
|
620 | 627 | self.ncols: number of cols |
|
621 | 628 | self.nplots: number of plots (channels or pairs) |
|
622 | 629 | self.ylabel: label for Y axes |
|
623 | 630 | self.titles: list of axes title |
|
624 | 631 | |
|
625 | 632 | ''' |
|
626 | 633 | raise NotImplementedError |
|
627 | 634 | |
|
628 | 635 | def plot(self): |
|
629 | 636 | ''' |
|
630 | 637 | Must be defined in the child class, the actual plotting method |
|
631 | 638 | ''' |
|
632 | 639 | raise NotImplementedError |
|
633 | 640 | |
|
634 | 641 | def update(self, dataOut): |
|
635 | 642 | ''' |
|
636 | 643 | Must be defined in the child class, update self.data with new data |
|
637 | 644 | ''' |
|
638 | 645 | |
|
639 | 646 | data = { |
|
640 | 647 | self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE)) |
|
641 | 648 | } |
|
642 | 649 | meta = {} |
|
643 | 650 | |
|
644 | 651 | return data, meta |
|
645 | 652 | |
|
646 | 653 | def run(self, dataOut, **kwargs): |
|
647 | 654 | ''' |
|
648 | 655 | Main plotting routine |
|
649 | 656 | ''' |
|
650 | 657 | if self.isConfig is False: |
|
651 | 658 | self.__setup(**kwargs) |
|
652 | 659 | |
|
653 | 660 | if self.localtime: |
|
654 | 661 | self.getDateTime = datetime.datetime.fromtimestamp |
|
655 | 662 | else: |
|
656 | 663 | self.getDateTime = datetime.datetime.utcfromtimestamp |
|
657 | 664 | |
|
658 | 665 | self.data.setup() |
|
659 | 666 | self.isConfig = True |
|
660 | 667 | if self.server: |
|
661 | 668 | self.context = zmq.Context() |
|
662 | 669 | self.socket = self.context.socket(zmq.REQ) |
|
663 | 670 | self.socket.connect(self.server) |
|
664 | 671 | self.poll = zmq.Poller() |
|
665 | 672 | self.poll.register(self.socket, zmq.POLLIN) |
|
666 | 673 | |
|
667 | 674 | tm = getattr(dataOut, self.attr_time) |
|
668 | 675 | |
|
669 | 676 | if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60: |
|
670 | 677 | self.clear_figures() |
|
671 | 678 | self.save_time = tm |
|
672 | 679 | self.tmin += self.xrange*60*60 |
|
673 | 680 | self.__plot() |
|
674 | 681 | self.data.setup() |
|
675 | 682 | |
|
676 | 683 | |
|
677 | 684 | |
|
678 | 685 | self.__update(dataOut, tm) |
|
679 | 686 | |
|
680 | 687 | if self.isPlotConfig is False: |
|
681 | 688 | self.__setup_plot() |
|
682 | 689 | self.isPlotConfig = True |
|
683 | 690 | if self.xaxis == 'time': |
|
684 | 691 | dt = self.getDateTime(tm) |
|
685 | 692 | if self.xmin is None: |
|
686 | 693 | self.tmin = tm |
|
687 | 694 | self.xmin = dt.hour |
|
688 | 695 | minutes = (self.xmin-int(self.xmin)) * 60 |
|
689 | 696 | seconds = (minutes - int(minutes)) * 60 |
|
690 | 697 | self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) - |
|
691 | 698 | datetime.datetime(1970, 1, 1)).total_seconds() |
|
692 | 699 | if self.localtime: |
|
693 | 700 | self.tmin += time.timezone |
|
694 | 701 | |
|
695 | 702 | if self.xmin is not None and self.xmax is not None: |
|
696 | 703 | self.xrange = self.xmax - self.xmin |
|
697 | 704 | |
|
698 | 705 | if self.throttle == 0: |
|
699 | 706 | self.__plot() |
|
700 | 707 | else: |
|
701 | 708 | self.__throttle_plot(self.__plot)#, coerce=coerce) |
|
702 | 709 | |
|
703 | 710 | def close(self): |
|
704 | 711 | |
|
705 | 712 | if self.data and not self.data.flagNoData: |
|
706 | 713 | self.save_time = 0 |
|
707 | 714 | self.__plot() |
|
708 | 715 | if self.data and not self.data.flagNoData and self.pause: |
|
709 | 716 | figpause(10) |
@@ -1,1469 +1,1725 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Classes to plot Spectra data |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import numpy |
|
11 | 11 | |
|
12 | 12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
13 | 13 | from itertools import combinations |
|
14 | 14 | from matplotlib.ticker import LinearLocator |
|
15 | 15 | |
|
16 | from schainpy.model.utils.BField import BField | |
|
17 | from scipy.interpolate import splrep | |
|
18 | from scipy.interpolate import splev | |
|
19 | ||
|
16 | 20 | from matplotlib import __version__ as plt_version |
|
17 | 21 | |
|
18 | 22 | if plt_version >='3.3.4': |
|
19 | 23 | EXTRA_POINTS = 0 |
|
20 | 24 | else: |
|
21 | 25 | EXTRA_POINTS = 1 |
|
22 | 26 | |
|
23 | 27 | class SpectraPlot(Plot): |
|
24 | 28 | ''' |
|
25 | 29 | Plot for Spectra data |
|
26 | 30 | ''' |
|
27 | 31 | |
|
28 | 32 | CODE = 'spc' |
|
29 | 33 | colormap = 'jet' |
|
30 | 34 | plot_type = 'pcolor' |
|
31 | 35 | buffering = False |
|
32 | 36 | channelList = [] |
|
33 | 37 | elevationList = [] |
|
34 | 38 | azimuthList = [] |
|
35 | 39 | |
|
36 | 40 | def setup(self): |
|
37 | 41 | |
|
38 | 42 | self.nplots = len(self.data.channels) |
|
39 | 43 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
40 | 44 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
41 | 45 | self.height = 3.4 * self.nrows |
|
42 | 46 | |
|
43 | 47 | self.cb_label = 'dB' |
|
44 | 48 | if self.showprofile: |
|
45 | 49 | self.width = 5.2 * self.ncols |
|
46 | 50 | else: |
|
47 | 51 | self.width = 4.2* self.ncols |
|
48 | 52 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.12}) |
|
49 | 53 | self.ylabel = 'Range [km]' |
|
50 | 54 | |
|
51 | 55 | |
|
52 | 56 | def update_list(self,dataOut): |
|
53 | 57 | if len(self.channelList) == 0: |
|
54 | 58 | self.channelList = dataOut.channelList |
|
55 | 59 | if len(self.elevationList) == 0: |
|
56 | 60 | self.elevationList = dataOut.elevationList |
|
57 | 61 | if len(self.azimuthList) == 0: |
|
58 | 62 | self.azimuthList = dataOut.azimuthList |
|
59 | 63 | |
|
60 | 64 | def update(self, dataOut): |
|
61 | 65 | |
|
62 | 66 | self.update_list(dataOut) |
|
63 | 67 | data = {} |
|
64 | 68 | meta = {} |
|
65 | 69 | |
|
66 | 70 | #data['rti'] = dataOut.getPower() |
|
67 | 71 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
68 | 72 | noise = 10*numpy.log10(dataOut.getNoise()/norm) |
|
69 | 73 | |
|
74 | <<<<<<< HEAD | |
|
75 | ======= | |
|
76 | ||
|
77 | ||
|
78 | >>>>>>> 37cccf17c7b80521b59b978cb30e4ab2e6f37fce | |
|
70 | 79 | z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights)) |
|
71 | 80 | for ch in range(dataOut.nChannels): |
|
72 | 81 | if hasattr(dataOut.normFactor,'ndim'): |
|
73 | 82 | if dataOut.normFactor.ndim > 1: |
|
74 | 83 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) |
|
75 | 84 | |
|
76 | 85 | else: |
|
77 | 86 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
78 | 87 | else: |
|
79 | 88 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
80 | 89 | |
|
81 | 90 | |
|
82 | 91 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
83 | 92 | spc = 10*numpy.log10(z) |
|
84 | 93 | |
|
85 | 94 | data['spc'] = spc |
|
86 | 95 | #print(spc[0].shape) |
|
87 | 96 | data['rti'] = spc.mean(axis=1) |
|
88 | 97 | data['noise'] = noise |
|
89 | 98 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) |
|
90 | 99 | if self.CODE == 'spc_moments': |
|
91 | 100 | data['moments'] = dataOut.moments |
|
92 | 101 | |
|
93 | 102 | return data, meta |
|
94 | 103 | |
|
95 | 104 | def plot(self): |
|
96 | 105 | if self.xaxis == "frequency": |
|
97 | 106 | x = self.data.xrange[0] |
|
98 | 107 | self.xlabel = "Frequency (kHz)" |
|
99 | 108 | elif self.xaxis == "time": |
|
100 | 109 | x = self.data.xrange[1] |
|
101 | 110 | self.xlabel = "Time (ms)" |
|
102 | 111 | else: |
|
103 | 112 | x = self.data.xrange[2] |
|
104 | 113 | self.xlabel = "Velocity (m/s)" |
|
105 | 114 | |
|
106 | 115 | if self.CODE == 'spc_moments': |
|
107 | 116 | x = self.data.xrange[2] |
|
108 | 117 | self.xlabel = "Velocity (m/s)" |
|
109 | 118 | |
|
110 | 119 | self.titles = [] |
|
111 | 120 | y = self.data.yrange |
|
112 | 121 | self.y = y |
|
113 | 122 | |
|
114 | 123 | data = self.data[-1] |
|
115 | 124 | z = data['spc'] |
|
116 | 125 | #print(z.shape, x.shape, y.shape) |
|
117 | 126 | for n, ax in enumerate(self.axes): |
|
118 | 127 | noise = self.data['noise'][n][0] |
|
119 | 128 | #print(noise) |
|
120 | 129 | if self.CODE == 'spc_moments': |
|
121 | 130 | mean = data['moments'][n, 1] |
|
122 | 131 | if ax.firsttime: |
|
123 | 132 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
124 | 133 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
125 | 134 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
126 | 135 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
127 | 136 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
128 | 137 | vmin=self.zmin, |
|
129 | 138 | vmax=self.zmax, |
|
130 | 139 | cmap=plt.get_cmap(self.colormap) |
|
131 | 140 | ) |
|
132 | 141 | |
|
133 | 142 | if self.showprofile: |
|
134 | 143 | ax.plt_profile = self.pf_axes[n].plot( |
|
135 | 144 | data['rti'][n], y)[0] |
|
136 | 145 | # ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
137 | 146 | # color="k", linestyle="dashed", lw=1)[0] |
|
138 | 147 | if self.CODE == 'spc_moments': |
|
139 | 148 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
140 | 149 | else: |
|
141 | 150 | ax.plt.set_array(z[n].T.ravel()) |
|
142 | 151 | if self.showprofile: |
|
143 | 152 | ax.plt_profile.set_data(data['rti'][n], y) |
|
144 | 153 | #ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
145 | 154 | if self.CODE == 'spc_moments': |
|
146 | 155 | ax.plt_mean.set_data(mean, y) |
|
147 | 156 | if len(self.azimuthList) > 0 and len(self.elevationList) > 0: |
|
148 | 157 | self.titles.append('CH {}: {:2.1f}elv {:2.1f}az {:3.2f}dB'.format(self.channelList[n], noise, self.elevationList[n], self.azimuthList[n])) |
|
149 | 158 | else: |
|
150 | 159 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
151 | 160 | |
|
152 | 161 | |
|
153 | 162 | class CrossSpectraPlot(Plot): |
|
154 | 163 | |
|
155 | 164 | CODE = 'cspc' |
|
156 | 165 | colormap = 'jet' |
|
157 | 166 | plot_type = 'pcolor' |
|
158 | 167 | zmin_coh = None |
|
159 | 168 | zmax_coh = None |
|
160 | 169 | zmin_phase = None |
|
161 | 170 | zmax_phase = None |
|
162 | 171 | realChannels = None |
|
163 | 172 | crossPairs = None |
|
164 | 173 | |
|
165 | 174 | def setup(self): |
|
166 | 175 | |
|
167 | 176 | self.ncols = 4 |
|
168 | 177 | self.nplots = len(self.data.pairs) * 2 |
|
169 | 178 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
170 | 179 | self.width = 3.1 * self.ncols |
|
171 | 180 | self.height = 2.6 * self.nrows |
|
172 | 181 | self.ylabel = 'Range [km]' |
|
173 | 182 | self.showprofile = False |
|
174 | 183 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
175 | 184 | |
|
176 | 185 | def update(self, dataOut): |
|
177 | 186 | |
|
178 | 187 | data = {} |
|
179 | 188 | meta = {} |
|
180 | 189 | |
|
181 | 190 | spc = dataOut.data_spc |
|
182 | 191 | cspc = dataOut.data_cspc |
|
183 | 192 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) |
|
184 | 193 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) |
|
185 | 194 | meta['pairs'] = rawPairs |
|
186 | 195 | |
|
187 | 196 | if self.crossPairs == None: |
|
188 | 197 | self.crossPairs = dataOut.pairsList |
|
189 | 198 | |
|
190 | 199 | tmp = [] |
|
191 | 200 | |
|
192 | 201 | for n, pair in enumerate(meta['pairs']): |
|
193 | 202 | |
|
194 | 203 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
195 | 204 | coh = numpy.abs(out) |
|
196 | 205 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
197 | 206 | tmp.append(coh) |
|
198 | 207 | tmp.append(phase) |
|
199 | 208 | |
|
200 | 209 | data['cspc'] = numpy.array(tmp) |
|
201 | 210 | |
|
202 | 211 | return data, meta |
|
203 | 212 | |
|
204 | 213 | def plot(self): |
|
205 | 214 | |
|
206 | 215 | if self.xaxis == "frequency": |
|
207 | 216 | x = self.data.xrange[0] |
|
208 | 217 | self.xlabel = "Frequency (kHz)" |
|
209 | 218 | elif self.xaxis == "time": |
|
210 | 219 | x = self.data.xrange[1] |
|
211 | 220 | self.xlabel = "Time (ms)" |
|
212 | 221 | else: |
|
213 | 222 | x = self.data.xrange[2] |
|
214 | 223 | self.xlabel = "Velocity (m/s)" |
|
215 | 224 | |
|
216 | 225 | self.titles = [] |
|
217 | 226 | |
|
218 | 227 | y = self.data.yrange |
|
219 | 228 | self.y = y |
|
220 | 229 | |
|
221 | 230 | data = self.data[-1] |
|
222 | 231 | cspc = data['cspc'] |
|
223 | 232 | |
|
224 | 233 | for n in range(len(self.data.pairs)): |
|
225 | 234 | |
|
226 | 235 | pair = self.crossPairs[n] |
|
227 | 236 | |
|
228 | 237 | coh = cspc[n*2] |
|
229 | 238 | phase = cspc[n*2+1] |
|
230 | 239 | ax = self.axes[2 * n] |
|
231 | 240 | |
|
232 | 241 | if ax.firsttime: |
|
233 | 242 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
234 | 243 | vmin=self.zmin_coh, |
|
235 | 244 | vmax=self.zmax_coh, |
|
236 | 245 | cmap=plt.get_cmap(self.colormap_coh) |
|
237 | 246 | ) |
|
238 | 247 | else: |
|
239 | 248 | ax.plt.set_array(coh.T.ravel()) |
|
240 | 249 | self.titles.append( |
|
241 | 250 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
242 | 251 | |
|
243 | 252 | ax = self.axes[2 * n + 1] |
|
244 | 253 | if ax.firsttime: |
|
245 | 254 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
246 | 255 | vmin=-180, |
|
247 | 256 | vmax=180, |
|
248 | 257 | cmap=plt.get_cmap(self.colormap_phase) |
|
249 | 258 | ) |
|
250 | 259 | else: |
|
251 | 260 | ax.plt.set_array(phase.T.ravel()) |
|
252 | 261 | |
|
253 | 262 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
254 | 263 | |
|
255 | 264 | |
|
256 | 265 | class RTIPlot(Plot): |
|
257 | 266 | ''' |
|
258 | 267 | Plot for RTI data |
|
259 | 268 | ''' |
|
260 | 269 | |
|
261 | 270 | CODE = 'rti' |
|
262 | 271 | colormap = 'jet' |
|
263 | 272 | plot_type = 'pcolorbuffer' |
|
264 | 273 | titles = None |
|
265 | 274 | channelList = [] |
|
266 | 275 | elevationList = [] |
|
267 | 276 | azimuthList = [] |
|
268 | 277 | |
|
269 | 278 | def setup(self): |
|
270 | 279 | self.xaxis = 'time' |
|
271 | 280 | self.ncols = 1 |
|
272 | 281 | #print("dataChannels ",self.data.channels) |
|
273 | 282 | self.nrows = len(self.data.channels) |
|
274 | 283 | self.nplots = len(self.data.channels) |
|
275 | 284 | self.ylabel = 'Range [km]' |
|
276 | 285 | #self.xlabel = 'Time' |
|
277 | 286 | self.cb_label = 'dB' |
|
278 | 287 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
279 | 288 | self.titles = ['{} Channel {}'.format( |
|
280 | 289 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
281 | 290 | |
|
282 | 291 | def update_list(self,dataOut): |
|
283 | 292 | |
|
284 | 293 | if len(self.channelList) == 0: |
|
285 | 294 | self.channelList = dataOut.channelList |
|
286 | 295 | if len(self.elevationList) == 0: |
|
287 | 296 | self.elevationList = dataOut.elevationList |
|
288 | 297 | if len(self.azimuthList) == 0: |
|
289 | 298 | self.azimuthList = dataOut.azimuthList |
|
290 | 299 | |
|
291 | 300 | |
|
292 | 301 | def update(self, dataOut): |
|
293 | 302 | if len(self.channelList) == 0: |
|
294 | 303 | self.update_list(dataOut) |
|
295 | 304 | data = {} |
|
296 | 305 | meta = {} |
|
297 | 306 | |
|
298 | 307 | data['rti'] = dataOut.getPower() |
|
299 | 308 | |
|
300 | 309 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
301 | 310 | noise = 10*numpy.log10(dataOut.getNoise()/norm) |
|
302 | 311 | data['noise'] = noise |
|
303 | 312 | |
|
304 | 313 | return data, meta |
|
305 | 314 | |
|
306 | 315 | def plot(self): |
|
307 | 316 | |
|
308 | 317 | self.x = self.data.times |
|
309 | 318 | self.y = self.data.yrange |
|
310 | 319 | #print(" x, y: ",self.x, self.y) |
|
311 | 320 | self.z = self.data[self.CODE] |
|
312 | 321 | self.z = numpy.array(self.z, dtype=float) |
|
313 | 322 | self.z = numpy.ma.masked_invalid(self.z) |
|
314 | 323 | |
|
315 | 324 | try: |
|
316 | 325 | if self.channelList != None: |
|
317 | 326 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
318 | 327 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
319 | 328 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
320 | 329 | else: |
|
321 | 330 | self.titles = ['{} Channel {}'.format( |
|
322 | 331 | self.CODE.upper(), x) for x in self.channelList] |
|
323 | 332 | except: |
|
324 | 333 | if self.channelList.any() != None: |
|
325 | 334 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
326 | 335 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
327 | 336 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
328 | 337 | else: |
|
329 | 338 | self.titles = ['{} Channel {}'.format( |
|
330 | 339 | self.CODE.upper(), x) for x in self.channelList] |
|
331 | 340 | |
|
332 | 341 | if self.decimation is None: |
|
333 | 342 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
334 | 343 | else: |
|
335 | 344 | x, y, z = self.fill_gaps(*self.decimate()) |
|
336 | 345 | |
|
337 | 346 | #dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes |
|
338 | 347 | for n, ax in enumerate(self.axes): |
|
339 | 348 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
340 | 349 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
341 | 350 | data = self.data[-1] |
|
342 | 351 | |
|
343 | 352 | if ax.firsttime: |
|
344 | 353 | if (n+1) == len(self.channelList): |
|
345 | 354 | ax.set_xlabel('Time') |
|
346 | 355 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
347 | 356 | vmin=self.zmin, |
|
348 | 357 | vmax=self.zmax, |
|
349 | 358 | cmap=plt.get_cmap(self.colormap) |
|
350 | 359 | ) |
|
351 | 360 | if self.showprofile: |
|
352 | 361 | ax.plot_profile = self.pf_axes[n].plot(data[self.CODE][n], self.y)[0] |
|
353 | 362 | if "noise" in self.data: |
|
354 | 363 | |
|
355 | 364 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
356 | 365 | color="k", linestyle="dashed", lw=1)[0] |
|
357 | 366 | else: |
|
358 | 367 | ax.collections.remove(ax.collections[0]) |
|
359 | 368 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
360 | 369 | vmin=self.zmin, |
|
361 | 370 | vmax=self.zmax, |
|
362 | 371 | cmap=plt.get_cmap(self.colormap) |
|
363 | 372 | ) |
|
364 | 373 | if self.showprofile: |
|
365 | 374 | ax.plot_profile.set_data(data[self.CODE][n], self.y) |
|
366 | 375 | if "noise" in self.data: |
|
367 | 376 | ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y) |
|
368 | 377 | |
|
369 | 378 | |
|
370 | 379 | class CoherencePlot(RTIPlot): |
|
371 | 380 | ''' |
|
372 | 381 | Plot for Coherence data |
|
373 | 382 | ''' |
|
374 | 383 | |
|
375 | 384 | CODE = 'coh' |
|
376 | 385 | titles = None |
|
377 | 386 | |
|
378 | 387 | def setup(self): |
|
379 | 388 | self.xaxis = 'time' |
|
380 | 389 | self.ncols = 1 |
|
381 | 390 | self.nrows = len(self.data.pairs) |
|
382 | 391 | self.nplots = len(self.data.pairs) |
|
383 | 392 | self.ylabel = 'Range [km]' |
|
384 | 393 | #self.xlabel = 'Time' |
|
385 | 394 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
386 | 395 | if self.CODE == 'coh': |
|
387 | 396 | self.cb_label = '' |
|
388 | 397 | self.titles = [ |
|
389 | 398 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
390 | 399 | else: |
|
391 | 400 | self.cb_label = 'Degrees' |
|
392 | 401 | self.titles = [ |
|
393 | 402 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
394 | 403 | |
|
395 | 404 | |
|
396 | 405 | def update(self, dataOut): |
|
397 | 406 | |
|
398 | 407 | data = {} |
|
399 | 408 | meta = {} |
|
400 | 409 | data['coh'] = dataOut.getCoherence() |
|
401 | 410 | meta['pairs'] = dataOut.pairsList |
|
402 | 411 | |
|
403 | 412 | |
|
404 | 413 | return data, meta |
|
405 | 414 | |
|
406 | 415 | def plot(self): |
|
407 | 416 | |
|
408 | 417 | self.x = self.data.times |
|
409 | 418 | self.y = self.data.yrange |
|
410 | 419 | self.z = self.data[self.CODE] |
|
411 | 420 | |
|
412 | 421 | self.z = numpy.ma.masked_invalid(self.z) |
|
413 | 422 | |
|
414 | 423 | if self.decimation is None: |
|
415 | 424 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
416 | 425 | else: |
|
417 | 426 | x, y, z = self.fill_gaps(*self.decimate()) |
|
418 | 427 | |
|
419 | 428 | for n, ax in enumerate(self.axes): |
|
420 | 429 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
421 | 430 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
422 | 431 | if ax.firsttime: |
|
423 | 432 | if (n+1) == len(self.channelList): |
|
424 | 433 | ax.set_xlabel('Time') |
|
425 | 434 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
426 | 435 | vmin=self.zmin, |
|
427 | 436 | vmax=self.zmax, |
|
428 | 437 | cmap=plt.get_cmap(self.colormap) |
|
429 | 438 | ) |
|
430 | 439 | if self.showprofile: |
|
431 | 440 | ax.plot_profile = self.pf_axes[n].plot( |
|
432 | 441 | self.data[self.CODE][n][-1], self.y)[0] |
|
433 | 442 | # ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
434 | 443 | # color="k", linestyle="dashed", lw=1)[0] |
|
435 | 444 | else: |
|
436 | 445 | ax.collections.remove(ax.collections[0]) |
|
437 | 446 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
438 | 447 | vmin=self.zmin, |
|
439 | 448 | vmax=self.zmax, |
|
440 | 449 | cmap=plt.get_cmap(self.colormap) |
|
441 | 450 | ) |
|
442 | 451 | if self.showprofile: |
|
443 | 452 | ax.plot_profile.set_data(self.data[self.CODE][n][-1], self.y) |
|
444 | 453 | # ax.plot_noise.set_data(numpy.repeat( |
|
445 | 454 | # self.data['noise'][n][-1], len(self.y)), self.y) |
|
446 | 455 | |
|
447 | 456 | |
|
448 | 457 | |
|
449 | 458 | class PhasePlot(CoherencePlot): |
|
450 | 459 | ''' |
|
451 | 460 | Plot for Phase map data |
|
452 | 461 | ''' |
|
453 | 462 | |
|
454 | 463 | CODE = 'phase' |
|
455 | 464 | colormap = 'seismic' |
|
456 | 465 | |
|
457 | 466 | def update(self, dataOut): |
|
458 | 467 | |
|
459 | 468 | data = {} |
|
460 | 469 | meta = {} |
|
461 | 470 | data['phase'] = dataOut.getCoherence(phase=True) |
|
462 | 471 | meta['pairs'] = dataOut.pairsList |
|
463 | 472 | |
|
464 | 473 | return data, meta |
|
465 | 474 | |
|
466 | 475 | class NoisePlot(Plot): |
|
467 | 476 | ''' |
|
468 | 477 | Plot for noise |
|
469 | 478 | ''' |
|
470 | 479 | |
|
471 | 480 | CODE = 'noise' |
|
472 | 481 | plot_type = 'scatterbuffer' |
|
473 | 482 | |
|
474 | 483 | def setup(self): |
|
475 | 484 | self.xaxis = 'time' |
|
476 | 485 | self.ncols = 1 |
|
477 | 486 | self.nrows = 1 |
|
478 | 487 | self.nplots = 1 |
|
479 | 488 | self.ylabel = 'Intensity [dB]' |
|
480 | 489 | self.xlabel = 'Time' |
|
481 | 490 | self.titles = ['Noise'] |
|
482 | 491 | self.colorbar = False |
|
483 | 492 | self.plots_adjust.update({'right': 0.85 }) |
|
484 | 493 | #if not self.titles: |
|
485 | 494 | self.titles = ['Noise Plot'] |
|
486 | 495 | |
|
487 | 496 | def update(self, dataOut): |
|
488 | 497 | |
|
489 | 498 | data = {} |
|
490 | 499 | meta = {} |
|
491 | 500 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
492 | 501 | noise = 10*numpy.log10(dataOut.getNoise()) |
|
493 | 502 | noise = noise.reshape(dataOut.nChannels, 1) |
|
494 | 503 | data['noise'] = noise |
|
495 | 504 | meta['yrange'] = numpy.array([]) |
|
496 | 505 | |
|
497 | 506 | return data, meta |
|
498 | 507 | |
|
499 | 508 | def plot(self): |
|
500 | 509 | |
|
501 | 510 | x = self.data.times |
|
502 | 511 | xmin = self.data.min_time |
|
503 | 512 | xmax = xmin + self.xrange * 60 * 60 |
|
504 | 513 | Y = self.data['noise'] |
|
505 | 514 | |
|
506 | 515 | if self.axes[0].firsttime: |
|
507 | 516 | if self.ymin is None: self.ymin = numpy.nanmin(Y) - 5 |
|
508 | 517 | if self.ymax is None: self.ymax = numpy.nanmax(Y) + 5 |
|
509 | 518 | for ch in self.data.channels: |
|
510 | 519 | y = Y[ch] |
|
511 | 520 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
512 | 521 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
513 | 522 | else: |
|
514 | 523 | for ch in self.data.channels: |
|
515 | 524 | y = Y[ch] |
|
516 | 525 | self.axes[0].lines[ch].set_data(x, y) |
|
517 | 526 | |
|
518 | 527 | |
|
519 | 528 | class PowerProfilePlot(Plot): |
|
520 | 529 | |
|
521 | 530 | CODE = 'pow_profile' |
|
522 | 531 | plot_type = 'scatter' |
|
523 | 532 | |
|
524 | 533 | def setup(self): |
|
525 | 534 | |
|
526 | 535 | self.ncols = 1 |
|
527 | 536 | self.nrows = 1 |
|
528 | 537 | self.nplots = 1 |
|
529 | 538 | self.height = 4 |
|
530 | 539 | self.width = 3 |
|
531 | 540 | self.ylabel = 'Range [km]' |
|
532 | 541 | self.xlabel = 'Intensity [dB]' |
|
533 | 542 | self.titles = ['Power Profile'] |
|
534 | 543 | self.colorbar = False |
|
535 | 544 | |
|
536 | 545 | def update(self, dataOut): |
|
537 | 546 | |
|
538 | 547 | data = {} |
|
539 | 548 | meta = {} |
|
540 | 549 | data[self.CODE] = dataOut.getPower() |
|
541 | 550 | |
|
542 | 551 | return data, meta |
|
543 | 552 | |
|
544 | 553 | def plot(self): |
|
545 | 554 | |
|
546 | 555 | y = self.data.yrange |
|
547 | 556 | self.y = y |
|
548 | 557 | |
|
549 | 558 | x = self.data[-1][self.CODE] |
|
550 | 559 | |
|
551 | 560 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
552 | 561 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
553 | 562 | |
|
554 | 563 | if self.axes[0].firsttime: |
|
555 | 564 | for ch in self.data.channels: |
|
556 | 565 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
557 | 566 | plt.legend() |
|
558 | 567 | else: |
|
559 | 568 | for ch in self.data.channels: |
|
560 | 569 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
561 | 570 | |
|
562 | 571 | |
|
563 | 572 | class SpectraCutPlot(Plot): |
|
564 | 573 | |
|
565 | 574 | CODE = 'spc_cut' |
|
566 | 575 | plot_type = 'scatter' |
|
567 | 576 | buffering = False |
|
568 | 577 | heights = [] |
|
569 | 578 | channelList = [] |
|
570 | 579 | maintitle = "Spectra Cuts" |
|
571 | 580 | flag_setIndex = False |
|
572 | 581 | |
|
573 | 582 | def setup(self): |
|
574 | 583 | |
|
575 | 584 | self.nplots = len(self.data.channels) |
|
576 | 585 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
577 | 586 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
578 | 587 | self.width = 4.5 * self.ncols + 2.5 |
|
579 | 588 | self.height = 4.8 * self.nrows |
|
580 | 589 | self.ylabel = 'Power [dB]' |
|
581 | 590 | self.colorbar = False |
|
582 | 591 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.9, 'bottom':0.08}) |
|
583 | 592 | |
|
584 | 593 | if len(self.selectedHeightsList) > 0: |
|
585 | 594 | self.maintitle = "Spectra Cut"# for %d km " %(int(self.selectedHeight)) |
|
586 | 595 | |
|
587 | 596 | |
|
588 | 597 | |
|
589 | 598 | def update(self, dataOut): |
|
590 | 599 | if len(self.channelList) == 0: |
|
591 | 600 | self.channelList = dataOut.channelList |
|
592 | 601 | |
|
593 | 602 | self.heights = dataOut.heightList |
|
594 | 603 | #print("sels: ",self.selectedHeightsList) |
|
595 | 604 | if len(self.selectedHeightsList)>0 and not self.flag_setIndex: |
|
596 | 605 | |
|
597 | 606 | for sel_height in self.selectedHeightsList: |
|
598 | 607 | index_list = numpy.where(self.heights >= sel_height) |
|
599 | 608 | index_list = index_list[0] |
|
600 | 609 | self.height_index.append(index_list[0]) |
|
601 | 610 | #print("sels i:"", self.height_index) |
|
602 | 611 | self.flag_setIndex = True |
|
603 | 612 | #print(self.height_index) |
|
604 | 613 | data = {} |
|
605 | 614 | meta = {} |
|
606 | 615 | |
|
607 | 616 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter#*dataOut.nFFTPoints |
|
608 | 617 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) |
|
609 | 618 | noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights) |
|
610 | 619 | |
|
611 | 620 | |
|
612 | 621 | z = [] |
|
613 | 622 | for ch in range(dataOut.nChannels): |
|
614 | 623 | if hasattr(dataOut.normFactor,'shape'): |
|
615 | 624 | z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) |
|
616 | 625 | else: |
|
617 | 626 | z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
618 | 627 | |
|
619 | 628 | z = numpy.asarray(z) |
|
620 | 629 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
621 | 630 | spc = 10*numpy.log10(z) |
|
622 | 631 | |
|
623 | 632 | |
|
624 | 633 | data['spc'] = spc - noise |
|
625 | 634 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) |
|
626 | 635 | |
|
627 | 636 | return data, meta |
|
628 | 637 | |
|
629 | 638 | def plot(self): |
|
630 | 639 | if self.xaxis == "frequency": |
|
631 | 640 | x = self.data.xrange[0][0:] |
|
632 | 641 | self.xlabel = "Frequency (kHz)" |
|
633 | 642 | elif self.xaxis == "time": |
|
634 | 643 | x = self.data.xrange[1] |
|
635 | 644 | self.xlabel = "Time (ms)" |
|
636 | 645 | else: |
|
637 | 646 | x = self.data.xrange[2] |
|
638 | 647 | self.xlabel = "Velocity (m/s)" |
|
639 | 648 | |
|
640 | 649 | self.titles = [] |
|
641 | 650 | |
|
642 | 651 | y = self.data.yrange |
|
643 | 652 | z = self.data[-1]['spc'] |
|
644 | 653 | #print(z.shape) |
|
645 | 654 | if len(self.height_index) > 0: |
|
646 | 655 | index = self.height_index |
|
647 | 656 | else: |
|
648 | 657 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
649 | 658 | #print("inde x ", index, self.axes) |
|
650 | 659 | |
|
651 | 660 | for n, ax in enumerate(self.axes): |
|
652 | 661 | |
|
653 | 662 | if ax.firsttime: |
|
654 | 663 | |
|
655 | 664 | |
|
656 | 665 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
657 | 666 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
658 | 667 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
659 | 668 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
660 | 669 | |
|
661 | 670 | |
|
662 | 671 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
663 | 672 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
664 | 673 | self.figures[0].legend(ax.plt, labels, loc='center right', prop={'size': 8}) |
|
665 | 674 | ax.minorticks_on() |
|
666 | 675 | ax.grid(which='major', axis='both') |
|
667 | 676 | ax.grid(which='minor', axis='x') |
|
668 | 677 | else: |
|
669 | 678 | for i, line in enumerate(ax.plt): |
|
670 | 679 | line.set_data(x, z[n, :, index[i]]) |
|
671 | 680 | |
|
672 | 681 | |
|
673 | 682 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
674 | 683 | plt.suptitle(self.maintitle, fontsize=10) |
|
675 | 684 | |
|
676 | 685 | |
|
677 | 686 | class BeaconPhase(Plot): |
|
678 | 687 | |
|
679 | 688 | __isConfig = None |
|
680 | 689 | __nsubplots = None |
|
681 | 690 | |
|
682 | 691 | PREFIX = 'beacon_phase' |
|
683 | 692 | |
|
684 | 693 | def __init__(self): |
|
685 | 694 | Plot.__init__(self) |
|
686 | 695 | self.timerange = 24*60*60 |
|
687 | 696 | self.isConfig = False |
|
688 | 697 | self.__nsubplots = 1 |
|
689 | 698 | self.counter_imagwr = 0 |
|
690 | 699 | self.WIDTH = 800 |
|
691 | 700 | self.HEIGHT = 400 |
|
692 | 701 | self.WIDTHPROF = 120 |
|
693 | 702 | self.HEIGHTPROF = 0 |
|
694 | 703 | self.xdata = None |
|
695 | 704 | self.ydata = None |
|
696 | 705 | |
|
697 | 706 | self.PLOT_CODE = BEACON_CODE |
|
698 | 707 | |
|
699 | 708 | self.FTP_WEI = None |
|
700 | 709 | self.EXP_CODE = None |
|
701 | 710 | self.SUB_EXP_CODE = None |
|
702 | 711 | self.PLOT_POS = None |
|
703 | 712 | |
|
704 | 713 | self.filename_phase = None |
|
705 | 714 | |
|
706 | 715 | self.figfile = None |
|
707 | 716 | |
|
708 | 717 | self.xmin = None |
|
709 | 718 | self.xmax = None |
|
710 | 719 | |
|
711 | 720 | def getSubplots(self): |
|
712 | 721 | |
|
713 | 722 | ncol = 1 |
|
714 | 723 | nrow = 1 |
|
715 | 724 | |
|
716 | 725 | return nrow, ncol |
|
717 | 726 | |
|
718 | 727 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
719 | 728 | |
|
720 | 729 | self.__showprofile = showprofile |
|
721 | 730 | self.nplots = nplots |
|
722 | 731 | |
|
723 | 732 | ncolspan = 7 |
|
724 | 733 | colspan = 6 |
|
725 | 734 | self.__nsubplots = 2 |
|
726 | 735 | |
|
727 | 736 | self.createFigure(id = id, |
|
728 | 737 | wintitle = wintitle, |
|
729 | 738 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
730 | 739 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
731 | 740 | show=show) |
|
732 | 741 | |
|
733 | 742 | nrow, ncol = self.getSubplots() |
|
734 | 743 | |
|
735 | 744 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
736 | 745 | |
|
737 | 746 | def save_phase(self, filename_phase): |
|
738 | 747 | f = open(filename_phase,'w+') |
|
739 | 748 | f.write('\n\n') |
|
740 | 749 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
741 | 750 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
742 | 751 | f.close() |
|
743 | 752 | |
|
744 | 753 | def save_data(self, filename_phase, data, data_datetime): |
|
745 | 754 | f=open(filename_phase,'a') |
|
746 | 755 | timetuple_data = data_datetime.timetuple() |
|
747 | 756 | day = str(timetuple_data.tm_mday) |
|
748 | 757 | month = str(timetuple_data.tm_mon) |
|
749 | 758 | year = str(timetuple_data.tm_year) |
|
750 | 759 | hour = str(timetuple_data.tm_hour) |
|
751 | 760 | minute = str(timetuple_data.tm_min) |
|
752 | 761 | second = str(timetuple_data.tm_sec) |
|
753 | 762 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
754 | 763 | f.close() |
|
755 | 764 | |
|
756 | 765 | def plot(self): |
|
757 | 766 | log.warning('TODO: Not yet implemented...') |
|
758 | 767 | |
|
759 | 768 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
760 | 769 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
761 | 770 | timerange=None, |
|
762 | 771 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
763 | 772 | server=None, folder=None, username=None, password=None, |
|
764 | 773 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
765 | 774 | |
|
766 | 775 | if dataOut.flagNoData: |
|
767 | 776 | return dataOut |
|
768 | 777 | |
|
769 | 778 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
770 | 779 | return |
|
771 | 780 | |
|
772 | 781 | if pairsList == None: |
|
773 | 782 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
774 | 783 | else: |
|
775 | 784 | pairsIndexList = [] |
|
776 | 785 | for pair in pairsList: |
|
777 | 786 | if pair not in dataOut.pairsList: |
|
778 | 787 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
779 | 788 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
780 | 789 | |
|
781 | 790 | if pairsIndexList == []: |
|
782 | 791 | return |
|
783 | 792 | |
|
784 | 793 | # if len(pairsIndexList) > 4: |
|
785 | 794 | # pairsIndexList = pairsIndexList[0:4] |
|
786 | 795 | |
|
787 | 796 | hmin_index = None |
|
788 | 797 | hmax_index = None |
|
789 | 798 | |
|
790 | 799 | if hmin != None and hmax != None: |
|
791 | 800 | indexes = numpy.arange(dataOut.nHeights) |
|
792 | 801 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
793 | 802 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
794 | 803 | |
|
795 | 804 | if hmin_list.any(): |
|
796 | 805 | hmin_index = hmin_list[0] |
|
797 | 806 | |
|
798 | 807 | if hmax_list.any(): |
|
799 | 808 | hmax_index = hmax_list[-1]+1 |
|
800 | 809 | |
|
801 | 810 | x = dataOut.getTimeRange() |
|
802 | 811 | |
|
803 | 812 | thisDatetime = dataOut.datatime |
|
804 | 813 | |
|
805 | 814 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
806 | 815 | xlabel = "Local Time" |
|
807 | 816 | ylabel = "Phase (degrees)" |
|
808 | 817 | |
|
809 | 818 | update_figfile = False |
|
810 | 819 | |
|
811 | 820 | nplots = len(pairsIndexList) |
|
812 | 821 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
813 | 822 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
814 | 823 | for i in range(nplots): |
|
815 | 824 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
816 | 825 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
817 | 826 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
818 | 827 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
819 | 828 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
820 | 829 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
821 | 830 | |
|
822 | 831 | if dataOut.beacon_heiIndexList: |
|
823 | 832 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
824 | 833 | else: |
|
825 | 834 | phase_beacon[i] = numpy.average(phase) |
|
826 | 835 | |
|
827 | 836 | if not self.isConfig: |
|
828 | 837 | |
|
829 | 838 | nplots = len(pairsIndexList) |
|
830 | 839 | |
|
831 | 840 | self.setup(id=id, |
|
832 | 841 | nplots=nplots, |
|
833 | 842 | wintitle=wintitle, |
|
834 | 843 | showprofile=showprofile, |
|
835 | 844 | show=show) |
|
836 | 845 | |
|
837 | 846 | if timerange != None: |
|
838 | 847 | self.timerange = timerange |
|
839 | 848 | |
|
840 | 849 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
841 | 850 | |
|
842 | 851 | if ymin == None: ymin = 0 |
|
843 | 852 | if ymax == None: ymax = 360 |
|
844 | 853 | |
|
845 | 854 | self.FTP_WEI = ftp_wei |
|
846 | 855 | self.EXP_CODE = exp_code |
|
847 | 856 | self.SUB_EXP_CODE = sub_exp_code |
|
848 | 857 | self.PLOT_POS = plot_pos |
|
849 | 858 | |
|
850 | 859 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
851 | 860 | self.isConfig = True |
|
852 | 861 | self.figfile = figfile |
|
853 | 862 | self.xdata = numpy.array([]) |
|
854 | 863 | self.ydata = numpy.array([]) |
|
855 | 864 | |
|
856 | 865 | update_figfile = True |
|
857 | 866 | |
|
858 | 867 | #open file beacon phase |
|
859 | 868 | path = '%s%03d' %(self.PREFIX, self.id) |
|
860 | 869 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
861 | 870 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
862 | 871 | #self.save_phase(self.filename_phase) |
|
863 | 872 | |
|
864 | 873 | |
|
865 | 874 | #store data beacon phase |
|
866 | 875 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
867 | 876 | |
|
868 | 877 | self.setWinTitle(title) |
|
869 | 878 | |
|
870 | 879 | |
|
871 | 880 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
872 | 881 | |
|
873 | 882 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
874 | 883 | |
|
875 | 884 | axes = self.axesList[0] |
|
876 | 885 | |
|
877 | 886 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
878 | 887 | |
|
879 | 888 | if len(self.ydata)==0: |
|
880 | 889 | self.ydata = phase_beacon.reshape(-1,1) |
|
881 | 890 | else: |
|
882 | 891 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
883 | 892 | |
|
884 | 893 | |
|
885 | 894 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
886 | 895 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
887 | 896 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
888 | 897 | XAxisAsTime=True, grid='both' |
|
889 | 898 | ) |
|
890 | 899 | |
|
891 | 900 | self.draw() |
|
892 | 901 | |
|
893 | 902 | if dataOut.ltctime >= self.xmax: |
|
894 | 903 | self.counter_imagwr = wr_period |
|
895 | 904 | self.isConfig = False |
|
896 | 905 | update_figfile = True |
|
897 | 906 | |
|
898 | 907 | self.save(figpath=figpath, |
|
899 | 908 | figfile=figfile, |
|
900 | 909 | save=save, |
|
901 | 910 | ftp=ftp, |
|
902 | 911 | wr_period=wr_period, |
|
903 | 912 | thisDatetime=thisDatetime, |
|
904 | 913 | update_figfile=update_figfile) |
|
905 | 914 | |
|
906 | 915 | return dataOut |
|
907 | 916 | |
|
908 | 917 | class NoiselessSpectraPlot(Plot): |
|
909 | 918 | ''' |
|
910 | 919 | Plot for Spectra data, subtracting |
|
911 | 920 | the noise in all channels, using for |
|
912 | 921 | amisr-14 data |
|
913 | 922 | ''' |
|
914 | 923 | |
|
915 | 924 | CODE = 'noiseless_spc' |
|
916 | 925 | colormap = 'jet' |
|
917 | 926 | plot_type = 'pcolor' |
|
918 | 927 | buffering = False |
|
919 | 928 | channelList = [] |
|
920 | 929 | last_noise = None |
|
921 | 930 | |
|
922 | 931 | def setup(self): |
|
923 | 932 | |
|
924 | 933 | self.nplots = len(self.data.channels) |
|
925 | 934 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
926 | 935 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
927 | 936 | self.height = 3.5 * self.nrows |
|
928 | 937 | |
|
929 | 938 | self.cb_label = 'dB' |
|
930 | 939 | if self.showprofile: |
|
931 | 940 | self.width = 5.8 * self.ncols |
|
932 | 941 | else: |
|
933 | 942 | self.width = 4.8* self.ncols |
|
934 | 943 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.92, 'bottom': 0.12}) |
|
935 | 944 | |
|
936 | 945 | self.ylabel = 'Range [km]' |
|
937 | 946 | |
|
938 | 947 | |
|
939 | 948 | def update_list(self,dataOut): |
|
940 | 949 | if len(self.channelList) == 0: |
|
941 | 950 | self.channelList = dataOut.channelList |
|
942 | 951 | |
|
943 | 952 | def update(self, dataOut): |
|
944 | 953 | |
|
945 | 954 | self.update_list(dataOut) |
|
946 | 955 | data = {} |
|
947 | 956 | meta = {} |
|
948 | 957 | |
|
949 | 958 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
950 | 959 | n0 = (dataOut.getNoise()/norm) |
|
951 | 960 | noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights) |
|
952 | 961 | noise = 10*numpy.log10(noise) |
|
953 | 962 | |
|
954 | 963 | z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights)) |
|
955 | 964 | for ch in range(dataOut.nChannels): |
|
956 | 965 | if hasattr(dataOut.normFactor,'ndim'): |
|
957 | 966 | if dataOut.normFactor.ndim > 1: |
|
958 | 967 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) |
|
959 | 968 | else: |
|
960 | 969 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
961 | 970 | else: |
|
962 | 971 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
963 | 972 | |
|
964 | 973 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
965 | 974 | spc = 10*numpy.log10(z) |
|
966 | 975 | |
|
967 | 976 | |
|
968 | 977 | data['spc'] = spc - noise |
|
969 | 978 | #print(spc.shape) |
|
970 | 979 | data['rti'] = spc.mean(axis=1) |
|
971 | 980 | data['noise'] = noise |
|
972 | 981 | |
|
973 | 982 | |
|
974 | 983 | |
|
975 | 984 | # data['noise'] = noise |
|
976 | 985 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) |
|
977 | 986 | |
|
978 | 987 | return data, meta |
|
979 | 988 | |
|
980 | 989 | def plot(self): |
|
981 | 990 | if self.xaxis == "frequency": |
|
982 | 991 | x = self.data.xrange[0] |
|
983 | 992 | self.xlabel = "Frequency (kHz)" |
|
984 | 993 | elif self.xaxis == "time": |
|
985 | 994 | x = self.data.xrange[1] |
|
986 | 995 | self.xlabel = "Time (ms)" |
|
987 | 996 | else: |
|
988 | 997 | x = self.data.xrange[2] |
|
989 | 998 | self.xlabel = "Velocity (m/s)" |
|
990 | 999 | |
|
991 | 1000 | self.titles = [] |
|
992 | 1001 | y = self.data.yrange |
|
993 | 1002 | self.y = y |
|
994 | 1003 | |
|
995 | 1004 | data = self.data[-1] |
|
996 | 1005 | z = data['spc'] |
|
997 | 1006 | |
|
998 | 1007 | for n, ax in enumerate(self.axes): |
|
999 | 1008 | #noise = data['noise'][n] |
|
1000 | 1009 | |
|
1001 | 1010 | if ax.firsttime: |
|
1002 | 1011 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
1003 | 1012 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
1004 | 1013 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
1005 | 1014 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
1006 | 1015 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1007 | 1016 | vmin=self.zmin, |
|
1008 | 1017 | vmax=self.zmax, |
|
1009 | 1018 | cmap=plt.get_cmap(self.colormap) |
|
1010 | 1019 | ) |
|
1011 | 1020 | |
|
1012 | 1021 | if self.showprofile: |
|
1013 | 1022 | ax.plt_profile = self.pf_axes[n].plot( |
|
1014 | 1023 | data['rti'][n], y)[0] |
|
1015 | 1024 | |
|
1016 | 1025 | |
|
1017 | 1026 | else: |
|
1018 | 1027 | ax.plt.set_array(z[n].T.ravel()) |
|
1019 | 1028 | if self.showprofile: |
|
1020 | 1029 | ax.plt_profile.set_data(data['rti'][n], y) |
|
1021 | 1030 | |
|
1022 | 1031 | |
|
1023 | 1032 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
1024 | 1033 | |
|
1025 | 1034 | |
|
1026 | 1035 | class NoiselessRTIPlot(RTIPlot): |
|
1027 | 1036 | ''' |
|
1028 | 1037 | Plot for RTI data |
|
1029 | 1038 | ''' |
|
1030 | 1039 | |
|
1031 | 1040 | CODE = 'noiseless_rti' |
|
1032 | 1041 | colormap = 'jet' |
|
1033 | 1042 | plot_type = 'pcolorbuffer' |
|
1034 | 1043 | titles = None |
|
1035 | 1044 | channelList = [] |
|
1036 | 1045 | elevationList = [] |
|
1037 | 1046 | azimuthList = [] |
|
1038 | 1047 | last_noise = None |
|
1039 | 1048 | |
|
1040 | 1049 | def setup(self): |
|
1041 | 1050 | self.xaxis = 'time' |
|
1042 | 1051 | self.ncols = 1 |
|
1043 | 1052 | #print("dataChannels ",self.data.channels) |
|
1044 | 1053 | self.nrows = len(self.data.channels) |
|
1045 | 1054 | self.nplots = len(self.data.channels) |
|
1046 | 1055 | self.ylabel = 'Range [km]' |
|
1047 | 1056 | #self.xlabel = 'Time' |
|
1048 | 1057 | self.cb_label = 'dB' |
|
1049 | 1058 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
1050 | 1059 | self.titles = ['{} Channel {}'.format( |
|
1051 | 1060 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
1052 | 1061 | |
|
1053 | 1062 | def update_list(self,dataOut): |
|
1054 | 1063 | if len(self.channelList) == 0: |
|
1055 | 1064 | self.channelList = dataOut.channelList |
|
1056 | 1065 | if len(self.elevationList) == 0: |
|
1057 | 1066 | self.elevationList = dataOut.elevationList |
|
1058 | 1067 | if len(self.azimuthList) == 0: |
|
1059 | 1068 | self.azimuthList = dataOut.azimuthList |
|
1060 | 1069 | |
|
1061 | 1070 | def update(self, dataOut): |
|
1062 | 1071 | if len(self.channelList) == 0: |
|
1063 | 1072 | self.update_list(dataOut) |
|
1064 | 1073 | |
|
1065 | 1074 | data = {} |
|
1066 | 1075 | meta = {} |
|
1067 | 1076 | #print(dataOut.max_nIncohInt, dataOut.nIncohInt) |
|
1068 | 1077 | #print(dataOut.windowOfFilter,dataOut.nCohInt,dataOut.nProfiles,dataOut.max_nIncohInt,dataOut.nIncohInt |
|
1069 | 1078 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
1070 | 1079 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) |
|
1071 | 1080 | data['noise'] = n0 |
|
1072 | 1081 | noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights) |
|
1073 | 1082 | noiseless_data = dataOut.getPower() - noise |
|
1074 | 1083 | |
|
1075 | 1084 | #print("power, noise:", dataOut.getPower(), n0) |
|
1076 | 1085 | #print(noise) |
|
1077 | 1086 | #print(noiseless_data) |
|
1078 | 1087 | |
|
1079 | 1088 | data['noiseless_rti'] = noiseless_data |
|
1080 | 1089 | |
|
1081 | 1090 | return data, meta |
|
1082 | 1091 | |
|
1083 | 1092 | def plot(self): |
|
1084 | 1093 | from matplotlib import pyplot as plt |
|
1085 | 1094 | self.x = self.data.times |
|
1086 | 1095 | self.y = self.data.yrange |
|
1087 | 1096 | self.z = self.data['noiseless_rti'] |
|
1088 | 1097 | self.z = numpy.array(self.z, dtype=float) |
|
1089 | 1098 | self.z = numpy.ma.masked_invalid(self.z) |
|
1090 | 1099 | |
|
1091 | 1100 | |
|
1092 | 1101 | try: |
|
1093 | 1102 | if self.channelList != None: |
|
1094 | 1103 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
1095 | 1104 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
1096 | 1105 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
1097 | 1106 | else: |
|
1098 | 1107 | self.titles = ['{} Channel {}'.format( |
|
1099 | 1108 | self.CODE.upper(), x) for x in self.channelList] |
|
1100 | 1109 | except: |
|
1101 | 1110 | if self.channelList.any() != None: |
|
1102 | 1111 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
1103 | 1112 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
1104 | 1113 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
1105 | 1114 | else: |
|
1106 | 1115 | self.titles = ['{} Channel {}'.format( |
|
1107 | 1116 | self.CODE.upper(), x) for x in self.channelList] |
|
1108 | 1117 | |
|
1109 | 1118 | |
|
1110 | 1119 | if self.decimation is None: |
|
1111 | 1120 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1112 | 1121 | else: |
|
1113 | 1122 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1114 | 1123 | |
|
1115 | 1124 | dummy_var = self.axes #ExtraΓ±amente esto actualiza el valor axes |
|
1116 | 1125 | #print("plot shapes ", z.shape, x.shape, y.shape) |
|
1117 | 1126 | #print(self.axes) |
|
1118 | 1127 | for n, ax in enumerate(self.axes): |
|
1119 | 1128 | |
|
1120 | 1129 | |
|
1121 | 1130 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
1122 | 1131 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
1123 | 1132 | data = self.data[-1] |
|
1124 | 1133 | if ax.firsttime: |
|
1125 | 1134 | if (n+1) == len(self.channelList): |
|
1126 | 1135 | ax.set_xlabel('Time') |
|
1127 | 1136 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1128 | 1137 | vmin=self.zmin, |
|
1129 | 1138 | vmax=self.zmax, |
|
1130 | 1139 | cmap=plt.get_cmap(self.colormap) |
|
1131 | 1140 | ) |
|
1132 | 1141 | if self.showprofile: |
|
1133 | 1142 | ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0] |
|
1134 | 1143 | |
|
1135 | 1144 | else: |
|
1136 | 1145 | ax.collections.remove(ax.collections[0]) |
|
1137 | 1146 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1138 | 1147 | vmin=self.zmin, |
|
1139 | 1148 | vmax=self.zmax, |
|
1140 | 1149 | cmap=plt.get_cmap(self.colormap) |
|
1141 | 1150 | ) |
|
1142 | 1151 | if self.showprofile: |
|
1143 | 1152 | ax.plot_profile.set_data(data['noiseless_rti'][n], self.y) |
|
1144 | 1153 | # if "noise" in self.data: |
|
1145 | 1154 | # #ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y) |
|
1146 | 1155 | # ax.plot_noise.set_data(data['noise'][n], self.y) |
|
1147 | 1156 | |
|
1148 | 1157 | |
|
1149 | 1158 | class OutliersRTIPlot(Plot): |
|
1150 | 1159 | ''' |
|
1151 | 1160 | Plot for data_xxxx object |
|
1152 | 1161 | ''' |
|
1153 | 1162 | |
|
1154 | 1163 | CODE = 'outlier_rtc' # Range Time Counts |
|
1155 | 1164 | colormap = 'cool' |
|
1156 | 1165 | plot_type = 'pcolorbuffer' |
|
1157 | 1166 | |
|
1158 | 1167 | def setup(self): |
|
1159 | 1168 | self.xaxis = 'time' |
|
1160 | 1169 | self.ncols = 1 |
|
1161 | 1170 | self.nrows = self.data.shape('outlier_rtc')[0] |
|
1162 | 1171 | self.nplots = self.nrows |
|
1163 | 1172 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
1164 | 1173 | |
|
1165 | 1174 | |
|
1166 | 1175 | if not self.xlabel: |
|
1167 | 1176 | self.xlabel = 'Time' |
|
1168 | 1177 | |
|
1169 | 1178 | self.ylabel = 'Height [km]' |
|
1170 | 1179 | if not self.titles: |
|
1171 | 1180 | self.titles = ['Outliers Ch:{}'.format(x) for x in range(self.nrows)] |
|
1172 | 1181 | |
|
1173 | 1182 | def update(self, dataOut): |
|
1174 | 1183 | |
|
1175 | 1184 | data = {} |
|
1176 | 1185 | data['outlier_rtc'] = dataOut.data_outlier |
|
1177 | 1186 | |
|
1178 | 1187 | meta = {} |
|
1179 | 1188 | |
|
1180 | 1189 | return data, meta |
|
1181 | 1190 | |
|
1182 | 1191 | def plot(self): |
|
1183 | 1192 | # self.data.normalize_heights() |
|
1184 | 1193 | self.x = self.data.times |
|
1185 | 1194 | self.y = self.data.yrange |
|
1186 | 1195 | self.z = self.data['outlier_rtc'] |
|
1187 | 1196 | |
|
1188 | 1197 | #self.z = numpy.ma.masked_invalid(self.z) |
|
1189 | 1198 | |
|
1190 | 1199 | if self.decimation is None: |
|
1191 | 1200 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1192 | 1201 | else: |
|
1193 | 1202 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1194 | 1203 | |
|
1195 | 1204 | for n, ax in enumerate(self.axes): |
|
1196 | 1205 | |
|
1197 | 1206 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
1198 | 1207 | self.z[n]) |
|
1199 | 1208 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
1200 | 1209 | self.z[n]) |
|
1201 | 1210 | data = self.data[-1] |
|
1202 | 1211 | if ax.firsttime: |
|
1203 | 1212 | if self.zlimits is not None: |
|
1204 | 1213 | self.zmin, self.zmax = self.zlimits[n] |
|
1205 | 1214 | |
|
1206 | 1215 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1207 | 1216 | vmin=self.zmin, |
|
1208 | 1217 | vmax=self.zmax, |
|
1209 | 1218 | cmap=self.cmaps[n] |
|
1210 | 1219 | ) |
|
1211 | 1220 | if self.showprofile: |
|
1212 | 1221 | ax.plot_profile = self.pf_axes[n].plot(data['outlier_rtc'][n], self.y)[0] |
|
1213 | 1222 | self.pf_axes[n].set_xlabel('') |
|
1214 | 1223 | else: |
|
1215 | 1224 | if self.zlimits is not None: |
|
1216 | 1225 | self.zmin, self.zmax = self.zlimits[n] |
|
1217 | 1226 | ax.collections.remove(ax.collections[0]) |
|
1218 | 1227 | ax.plt = ax.pcolormesh(x, y, z[n].T , |
|
1219 | 1228 | vmin=self.zmin, |
|
1220 | 1229 | vmax=self.zmax, |
|
1221 | 1230 | cmap=self.cmaps[n] |
|
1222 | 1231 | ) |
|
1223 | 1232 | if self.showprofile: |
|
1224 | 1233 | ax.plot_profile.set_data(data['outlier_rtc'][n], self.y) |
|
1225 | 1234 | self.pf_axes[n].set_xlabel('') |
|
1226 | 1235 | |
|
1227 | 1236 | class NIncohIntRTIPlot(Plot): |
|
1228 | 1237 | ''' |
|
1229 | 1238 | Plot for data_xxxx object |
|
1230 | 1239 | ''' |
|
1231 | 1240 | |
|
1232 | 1241 | CODE = 'integrations_rtc' # Range Time Counts |
|
1233 | 1242 | colormap = 'BuGn' |
|
1234 | 1243 | plot_type = 'pcolorbuffer' |
|
1235 | 1244 | |
|
1236 | 1245 | def setup(self): |
|
1237 | 1246 | self.xaxis = 'time' |
|
1238 | 1247 | self.ncols = 1 |
|
1239 | 1248 | self.nrows = self.data.shape('integrations_rtc')[0] |
|
1240 | 1249 | self.nplots = self.nrows |
|
1241 | 1250 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
1242 | 1251 | |
|
1243 | 1252 | |
|
1244 | 1253 | if not self.xlabel: |
|
1245 | 1254 | self.xlabel = 'Time' |
|
1246 | 1255 | |
|
1247 | 1256 | self.ylabel = 'Height [km]' |
|
1248 | 1257 | if not self.titles: |
|
1249 | 1258 | self.titles = ['Integration Ch:{}'.format(x) for x in range(self.nrows)] |
|
1250 | 1259 | |
|
1251 | 1260 | def update(self, dataOut): |
|
1252 | 1261 | |
|
1253 | 1262 | data = {} |
|
1254 | 1263 | data['integrations_rtc'] = dataOut.nIncohInt |
|
1255 | 1264 | |
|
1256 | 1265 | meta = {} |
|
1257 | 1266 | |
|
1258 | 1267 | return data, meta |
|
1259 | 1268 | |
|
1260 | 1269 | def plot(self): |
|
1261 | 1270 | # self.data.normalize_heights() |
|
1262 | 1271 | self.x = self.data.times |
|
1263 | 1272 | self.y = self.data.yrange |
|
1264 | 1273 | self.z = self.data['integrations_rtc'] |
|
1265 | 1274 | |
|
1266 | 1275 | #self.z = numpy.ma.masked_invalid(self.z) |
|
1267 | 1276 | |
|
1268 | 1277 | if self.decimation is None: |
|
1269 | 1278 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1270 | 1279 | else: |
|
1271 | 1280 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1272 | 1281 | |
|
1273 | 1282 | for n, ax in enumerate(self.axes): |
|
1274 | 1283 | |
|
1275 | 1284 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
1276 | 1285 | self.z[n]) |
|
1277 | 1286 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
1278 | 1287 | self.z[n]) |
|
1279 | 1288 | data = self.data[-1] |
|
1280 | 1289 | if ax.firsttime: |
|
1281 | 1290 | if self.zlimits is not None: |
|
1282 | 1291 | self.zmin, self.zmax = self.zlimits[n] |
|
1283 | 1292 | |
|
1284 | 1293 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1285 | 1294 | vmin=self.zmin, |
|
1286 | 1295 | vmax=self.zmax, |
|
1287 | 1296 | cmap=self.cmaps[n] |
|
1288 | 1297 | ) |
|
1289 | 1298 | if self.showprofile: |
|
1290 | 1299 | ax.plot_profile = self.pf_axes[n].plot(data['integrations_rtc'][n], self.y)[0] |
|
1291 | 1300 | self.pf_axes[n].set_xlabel('') |
|
1292 | 1301 | else: |
|
1293 | 1302 | if self.zlimits is not None: |
|
1294 | 1303 | self.zmin, self.zmax = self.zlimits[n] |
|
1295 | 1304 | ax.collections.remove(ax.collections[0]) |
|
1296 | 1305 | ax.plt = ax.pcolormesh(x, y, z[n].T , |
|
1297 | 1306 | vmin=self.zmin, |
|
1298 | 1307 | vmax=self.zmax, |
|
1299 | 1308 | cmap=self.cmaps[n] |
|
1300 | 1309 | ) |
|
1301 | 1310 | if self.showprofile: |
|
1302 | 1311 | ax.plot_profile.set_data(data['integrations_rtc'][n], self.y) |
|
1303 | 1312 | self.pf_axes[n].set_xlabel('') |
|
1304 | 1313 | |
|
1305 | 1314 | |
|
1306 | 1315 | import datetime |
|
1307 | 1316 | class NoiselessRTILinePlot(Plot): |
|
1308 | 1317 | ''' |
|
1309 | 1318 | Plot for RTI data |
|
1310 | 1319 | ''' |
|
1311 | 1320 | |
|
1312 | 1321 | CODE = 'noiseless_rtiLine' |
|
1313 | 1322 | |
|
1314 | 1323 | plot_type = 'scatter' |
|
1315 | 1324 | titles = None |
|
1316 | 1325 | channelList = [] |
|
1317 | 1326 | elevationList = [] |
|
1318 | 1327 | azimuthList = [] |
|
1319 | 1328 | last_noise = None |
|
1320 | 1329 | |
|
1321 | 1330 | def setup(self): |
|
1322 | 1331 | self.xaxis = 'Range (Km)' |
|
1323 | 1332 | self.nplots = len(self.data.channels) |
|
1324 | 1333 | self.nrows = int(numpy.ceil(self.nplots/2)) |
|
1325 | 1334 | self.ncols = int(numpy.ceil(self.nplots/self.nrows)) |
|
1326 | 1335 | self.ylabel = 'Intensity [dB]' |
|
1327 | 1336 | self.titles = ['Channel '+str(self.data.channels[i])+" " for i in self.data.channels] |
|
1328 | 1337 | self.colorbar = False |
|
1329 | 1338 | self.width = 6 |
|
1330 | 1339 | self.height = 4 |
|
1331 | 1340 | |
|
1332 | 1341 | def update_list(self,dataOut): |
|
1333 | 1342 | if len(self.channelList) == 0: |
|
1334 | 1343 | self.channelList = dataOut.channelList |
|
1335 | 1344 | if len(self.elevationList) == 0: |
|
1336 | 1345 | self.elevationList = dataOut.elevationList |
|
1337 | 1346 | if len(self.azimuthList) == 0: |
|
1338 | 1347 | self.azimuthList = dataOut.azimuthList |
|
1339 | 1348 | |
|
1340 | 1349 | def update(self, dataOut): |
|
1341 | 1350 | if len(self.channelList) == 0: |
|
1342 | 1351 | self.update_list(dataOut) |
|
1343 | 1352 | |
|
1344 | 1353 | data = {} |
|
1345 | 1354 | meta = {} |
|
1346 | 1355 | #print(dataOut.max_nIncohInt, dataOut.nIncohInt) |
|
1347 | 1356 | #print(dataOut.windowOfFilter,dataOut.nCohInt,dataOut.nProfiles,dataOut.max_nIncohInt,dataOut.nIncohInt) |
|
1348 | 1357 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
1349 | 1358 | |
|
1350 | 1359 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) |
|
1351 | 1360 | data['noise'] = n0 |
|
1352 | 1361 | |
|
1353 | 1362 | noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights) |
|
1354 | 1363 | noiseless_data = dataOut.getPower() - noise |
|
1355 | 1364 | |
|
1356 | 1365 | #print("power, noise:", dataOut.getPower(), n0) |
|
1357 | 1366 | #print(noise) |
|
1358 | 1367 | #print(noiseless_data) |
|
1359 | 1368 | |
|
1360 | 1369 | data['noiseless_rtiLine'] = noiseless_data |
|
1361 | 1370 | |
|
1362 | 1371 | #print(noiseless_data.shape, self.name) |
|
1363 | 1372 | data['time'] = dataOut.utctime |
|
1364 | 1373 | |
|
1365 | 1374 | return data, meta |
|
1366 | 1375 | |
|
1367 | 1376 | def plot(self): |
|
1368 | 1377 | |
|
1369 | 1378 | self.x = self.data.times |
|
1370 | 1379 | self.y = self.data.yrange |
|
1371 | 1380 | #print(self.data['noiseless_rtiLine'].shape, self.y.shape, self.name) |
|
1372 | 1381 | #ts = self.data['time'][0].squeeze() |
|
1373 | 1382 | if len(self.data['noiseless_rtiLine'])>2 : |
|
1374 | 1383 | self.z = self.data['noiseless_rtiLine'][:, -1,:] |
|
1375 | 1384 | else: |
|
1376 | 1385 | self.z = self.data['noiseless_rtiLine'] |
|
1377 | 1386 | #print(self.z.shape, self.y.shape, ts) |
|
1378 | 1387 | #thisDatetime = datetime.datetime.utcfromtimestamp(ts) |
|
1379 | 1388 | |
|
1380 | 1389 | for i,ax in enumerate(self.axes): |
|
1381 | 1390 | #self.titles[i] = "Channel {} {}".format(i, thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1382 | 1391 | |
|
1383 | 1392 | |
|
1384 | 1393 | if ax.firsttime: |
|
1385 | 1394 | #self.xmin = min(self.z) |
|
1386 | 1395 | #self.xmax = max(self.z) |
|
1387 | 1396 | ax.plt_r = ax.plot(self.z[i], self.y)[0] |
|
1388 | 1397 | else: |
|
1389 | 1398 | ax.plt_r.set_data(self.z[i], self.y) |
|
1390 | 1399 | |
|
1391 | 1400 | |
|
1392 | 1401 | |
|
1393 | 1402 | class GeneralProfilePlot(Plot): |
|
1394 | 1403 | ''' |
|
1395 | 1404 | Plot for RTI data |
|
1396 | 1405 | ''' |
|
1397 | 1406 | |
|
1398 | 1407 | CODE = 'general_profilePlot' |
|
1399 | 1408 | |
|
1400 | 1409 | plot_type = 'scatter' |
|
1401 | 1410 | titles = None |
|
1402 | 1411 | channelList = [] |
|
1403 | 1412 | elevationList = [] |
|
1404 | 1413 | azimuthList = [] |
|
1405 | 1414 | last_noise = None |
|
1406 | 1415 | |
|
1407 | 1416 | def setup(self): |
|
1408 | 1417 | self.xaxis = 'Range (Km)' |
|
1409 | 1418 | self.nplots = len(self.data.channels) |
|
1410 | 1419 | self.nrows = int(numpy.ceil(self.nplots/2)) |
|
1411 | 1420 | self.ncols = int(numpy.ceil(self.nplots/self.nrows)) |
|
1412 | 1421 | self.ylabel = 'Intensity [dB]' |
|
1413 | 1422 | self.titles = ['Channel '+str(self.data.channels[i])+" " for i in self.data.channels] |
|
1414 | 1423 | self.colorbar = False |
|
1415 | 1424 | self.width = 6 |
|
1416 | 1425 | self.height = 4 |
|
1417 | 1426 | |
|
1418 | 1427 | def update_list(self,dataOut): |
|
1419 | 1428 | if len(self.channelList) == 0: |
|
1420 | 1429 | self.channelList = dataOut.channelList |
|
1421 | 1430 | if len(self.elevationList) == 0: |
|
1422 | 1431 | self.elevationList = dataOut.elevationList |
|
1423 | 1432 | if len(self.azimuthList) == 0: |
|
1424 | 1433 | self.azimuthList = dataOut.azimuthList |
|
1425 | 1434 | |
|
1426 | 1435 | def update(self, dataOut): |
|
1427 | 1436 | if len(self.channelList) == 0: |
|
1428 | 1437 | self.update_list(dataOut) |
|
1429 | 1438 | |
|
1430 | 1439 | data = {} |
|
1431 | 1440 | meta = {} |
|
1432 | 1441 | |
|
1433 | 1442 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
1434 | 1443 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) |
|
1435 | 1444 | data['noise'] = n0 |
|
1436 | 1445 | |
|
1437 | 1446 | noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights) |
|
1438 | 1447 | noiseless_data = dataOut.getPower() - noise |
|
1439 | 1448 | |
|
1440 | 1449 | data['noiseless_rtiLine'] = noiseless_data |
|
1441 | 1450 | |
|
1442 | 1451 | #print(noiseless_data.shape, self.name) |
|
1443 | 1452 | data['time'] = dataOut.utctime |
|
1444 | 1453 | |
|
1445 | 1454 | return data, meta |
|
1446 | 1455 | |
|
1447 | 1456 | def plot(self): |
|
1448 | 1457 | |
|
1449 | 1458 | self.x = self.data.times |
|
1450 | 1459 | self.y = self.data.yrange |
|
1451 | 1460 | #print(self.data['noiseless_rtiLine'].shape, self.y.shape, self.name) |
|
1452 | 1461 | #ts = self.data['time'][0].squeeze() |
|
1453 | 1462 | if len(self.data['noiseless_rtiLine'])>2 : |
|
1454 | 1463 | self.z = self.data['noiseless_rtiLine'][:, -1,:] |
|
1455 | 1464 | else: |
|
1456 | 1465 | self.z = self.data['noiseless_rtiLine'] |
|
1457 | 1466 | #print(self.z.shape, self.y.shape, ts) |
|
1458 | 1467 | #thisDatetime = datetime.datetime.utcfromtimestamp(ts) |
|
1459 | 1468 | |
|
1460 | 1469 | for i,ax in enumerate(self.axes): |
|
1461 | 1470 | #self.titles[i] = "Channel {} {}".format(i, thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1462 | 1471 | |
|
1463 | 1472 | |
|
1464 | 1473 | if ax.firsttime: |
|
1465 | 1474 | #self.xmin = min(self.z) |
|
1466 | 1475 | #self.xmax = max(self.z) |
|
1467 | 1476 | ax.plt_r = ax.plot(self.z[i], self.y)[0] |
|
1468 | 1477 | else: |
|
1469 | ax.plt_r.set_data(self.z[i], self.y) No newline at end of file | |
|
1478 | ax.plt_r.set_data(self.z[i], self.y) | |
|
1479 | ||
|
1480 | ||
|
1481 | ########################################################################################################## | |
|
1482 | ########################################## AMISR_V4 ###################################################### | |
|
1483 | ||
|
1484 | class RTIMapPlot(Plot): | |
|
1485 | ''' | |
|
1486 | Plot for RTI data | |
|
1487 | ||
|
1488 | Example: | |
|
1489 | ||
|
1490 | controllerObj = Project() | |
|
1491 | controllerObj.setup(id = '11', name='eej_proc', description=desc) | |
|
1492 | ##....................................................................................... | |
|
1493 | ##....................................................................................... | |
|
1494 | readUnitConfObj = controllerObj.addReadUnit(datatype='AMISRReader', path=inPath, startDate='2023/05/24',endDate='2023/05/24', | |
|
1495 | startTime='12:00:00',endTime='12:45:59',walk=1,timezone='lt',margin_days=1,code = code,nCode = nCode, | |
|
1496 | nBaud = nBaud,nOsamp = nosamp,nChannels=nChannels,nFFT=NFFT, | |
|
1497 | syncronization=False,shiftChannels=0) | |
|
1498 | ||
|
1499 | volts_proc = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) | |
|
1500 | ||
|
1501 | opObj01 = volts_proc.addOperation(name='Decoder', optype='other') | |
|
1502 | opObj01.addParameter(name='code', value=code, format='floatlist') | |
|
1503 | opObj01.addParameter(name='nCode', value=1, format='int') | |
|
1504 | opObj01.addParameter(name='nBaud', value=nBaud, format='int') | |
|
1505 | opObj01.addParameter(name='osamp', value=nosamp, format='int') | |
|
1506 | ||
|
1507 | opObj12 = volts_proc.addOperation(name='selectHeights', optype='self') | |
|
1508 | opObj12.addParameter(name='minHei', value='90', format='float') | |
|
1509 | opObj12.addParameter(name='maxHei', value='150', format='float') | |
|
1510 | ||
|
1511 | proc_spc = controllerObj.addProcUnit(datatype='SpectraProc', inputId=volts_proc.getId()) | |
|
1512 | proc_spc.addParameter(name='nFFTPoints', value='8', format='int') | |
|
1513 | ||
|
1514 | opObj11 = proc_spc.addOperation(name='IncohInt', optype='other') | |
|
1515 | opObj11.addParameter(name='n', value='1', format='int') | |
|
1516 | ||
|
1517 | beamMapFile = "/home/japaza/Documents/AMISR_sky_mapper/UMET_beamcodes.csv" | |
|
1518 | ||
|
1519 | opObj12 = proc_spc.addOperation(name='RTIMapPlot', optype='external') | |
|
1520 | opObj12.addParameter(name='selectedHeightsList', value='95, 100, 105, 110 ', format='int') | |
|
1521 | opObj12.addParameter(name='bField', value='100', format='int') | |
|
1522 | opObj12.addParameter(name='filename', value=beamMapFile, format='str') | |
|
1523 | ||
|
1524 | ''' | |
|
1525 | ||
|
1526 | CODE = 'rti_skymap' | |
|
1527 | ||
|
1528 | plot_type = 'scatter' | |
|
1529 | titles = None | |
|
1530 | colormap = 'jet' | |
|
1531 | channelList = [] | |
|
1532 | elevationList = [] | |
|
1533 | azimuthList = [] | |
|
1534 | last_noise = None | |
|
1535 | flag_setIndex = False | |
|
1536 | heights = [] | |
|
1537 | dcosx = [] | |
|
1538 | dcosy = [] | |
|
1539 | fullDcosy = None | |
|
1540 | fullDcosy = None | |
|
1541 | hindex = [] | |
|
1542 | mapFile = False | |
|
1543 | ##### BField #### | |
|
1544 | flagBField = False | |
|
1545 | dcosxB = [] | |
|
1546 | dcosyB = [] | |
|
1547 | Bmarker = ['+','*','D','x','s','>','o','^'] | |
|
1548 | ||
|
1549 | ||
|
1550 | ||
|
1551 | def setup(self): | |
|
1552 | ||
|
1553 | self.xaxis = 'Range (Km)' | |
|
1554 | if len(self.selectedHeightsList) > 0: | |
|
1555 | self.nplots = len(self.selectedHeightsList) | |
|
1556 | else: | |
|
1557 | self.nplots = 4 | |
|
1558 | self.ncols = int(numpy.ceil(self.nplots/2)) | |
|
1559 | self.nrows = int(numpy.ceil(self.nplots/self.ncols)) | |
|
1560 | self.ylabel = 'dcosy' | |
|
1561 | self.xlabel = 'dcosx' | |
|
1562 | self.colorbar = True | |
|
1563 | self.width = 6 + 4.1*self.nrows | |
|
1564 | self.height = 3 + 3.5*self.ncols | |
|
1565 | ||
|
1566 | ||
|
1567 | if self.extFile!=None: | |
|
1568 | try: | |
|
1569 | pointings = numpy.genfromtxt(self.extFile, delimiter=',') | |
|
1570 | full_azi = pointings[:,1] | |
|
1571 | full_elev = pointings[:,2] | |
|
1572 | self.fullDcosx = numpy.cos(numpy.radians(full_elev))*numpy.sin(numpy.radians(full_azi)) | |
|
1573 | self.fullDcosy = numpy.cos(numpy.radians(full_elev))*numpy.cos(numpy.radians(full_azi)) | |
|
1574 | mapFile = True | |
|
1575 | except Exception as e: | |
|
1576 | self.extFile = None | |
|
1577 | print(e) | |
|
1578 | ||
|
1579 | ||
|
1580 | ||
|
1581 | ||
|
1582 | def update_list(self,dataOut): | |
|
1583 | if len(self.channelList) == 0: | |
|
1584 | self.channelList = dataOut.channelList | |
|
1585 | if len(self.elevationList) == 0: | |
|
1586 | self.elevationList = dataOut.elevationList | |
|
1587 | if len(self.azimuthList) == 0: | |
|
1588 | self.azimuthList = dataOut.azimuthList | |
|
1589 | a = numpy.radians(numpy.asarray(self.azimuthList)) | |
|
1590 | e = numpy.radians(numpy.asarray(self.elevationList)) | |
|
1591 | self.heights = dataOut.heightList | |
|
1592 | self.dcosx = numpy.cos(e)*numpy.sin(a) | |
|
1593 | self.dcosy = numpy.cos(e)*numpy.cos(a) | |
|
1594 | ||
|
1595 | if len(self.bFieldList)>0: | |
|
1596 | datetObj = datetime.datetime.fromtimestamp(dataOut.utctime) | |
|
1597 | doy = datetObj.timetuple().tm_yday | |
|
1598 | year = datetObj.year | |
|
1599 | # self.dcosxB, self.dcosyB | |
|
1600 | ObjB = BField(year=year,doy=doy,site=2,heights=self.bFieldList) | |
|
1601 | [dcos, alpha, nlon, nlat] = ObjB.getBField() | |
|
1602 | ||
|
1603 | alpha_location = numpy.zeros((nlon,2,len(self.bFieldList))) | |
|
1604 | for ih in range(len(self.bFieldList)): | |
|
1605 | alpha_location[:,0,ih] = dcos[:,0,ih,0] | |
|
1606 | for ilon in numpy.arange(nlon): | |
|
1607 | myx = (alpha[ilon,:,ih])[::-1] | |
|
1608 | myy = (dcos[ilon,:,ih,0])[::-1] | |
|
1609 | tck = splrep(myx,myy,s=0) | |
|
1610 | mydcosx = splev(ObjB.alpha_i,tck,der=0) | |
|
1611 | ||
|
1612 | myx = (alpha[ilon,:,ih])[::-1] | |
|
1613 | myy = (dcos[ilon,:,ih,1])[::-1] | |
|
1614 | tck = splrep(myx,myy,s=0) | |
|
1615 | mydcosy = splev(ObjB.alpha_i,tck,der=0) | |
|
1616 | alpha_location[ilon,:,ih] = numpy.array([mydcosx, mydcosy]) | |
|
1617 | self.dcosxB.append(alpha_location[:,0,ih]) | |
|
1618 | self.dcosyB.append(alpha_location[:,1,ih]) | |
|
1619 | self.flagBField = True | |
|
1620 | ||
|
1621 | if len(self.celestialList)>0: | |
|
1622 | #getBField(self.bFieldList, date) | |
|
1623 | #pass = kwargs.get('celestial', []) | |
|
1624 | pass | |
|
1625 | ||
|
1626 | ||
|
1627 | ||
|
1628 | def update(self, dataOut): | |
|
1629 | ||
|
1630 | if len(self.channelList) == 0: | |
|
1631 | self.update_list(dataOut) | |
|
1632 | ||
|
1633 | if not self.flag_setIndex: | |
|
1634 | if len(self.selectedHeightsList)>0: | |
|
1635 | for sel_height in self.selectedHeightsList: | |
|
1636 | index_list = numpy.where(self.heights >= sel_height) | |
|
1637 | index_list = index_list[0] | |
|
1638 | self.hindex.append(index_list[0]) | |
|
1639 | # else: | |
|
1640 | # k = len(self.heights) | |
|
1641 | # self.hindex.append(int(k/2)) | |
|
1642 | self.flag_setIndex = True | |
|
1643 | ||
|
1644 | data = {} | |
|
1645 | meta = {} | |
|
1646 | ||
|
1647 | data['rti_skymap'] = dataOut.getPower() | |
|
1648 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter | |
|
1649 | noise = 10*numpy.log10(dataOut.getNoise()/norm) | |
|
1650 | data['noise'] = noise | |
|
1651 | ||
|
1652 | return data, meta | |
|
1653 | ||
|
1654 | def plot(self): | |
|
1655 | ||
|
1656 | ###### | |
|
1657 | self.x = self.dcosx | |
|
1658 | self.y = self.dcosy | |
|
1659 | self.z = self.data[-1]['rti_skymap'] | |
|
1660 | self.z = numpy.array(self.z, dtype=float) | |
|
1661 | ||
|
1662 | #print("inde x1 ", self.height_index) | |
|
1663 | if len(self.hindex) > 0: | |
|
1664 | index = self.hindex | |
|
1665 | else: | |
|
1666 | index = numpy.arange(0, len(self.heights), int((len(self.heights))/4.2)) | |
|
1667 | ||
|
1668 | #print(index) | |
|
1669 | self.titles = ['Height {:.2f} km '.format(self.heights[i])+" " for i in index] | |
|
1670 | for n, ax in enumerate(self.axes): | |
|
1671 | ||
|
1672 | if ax.firsttime: | |
|
1673 | ||
|
1674 | ||
|
1675 | self.xmax = self.xmax if self.xmax else numpy.nanmax(self.x) | |
|
1676 | self.xmin = self.xmin if self.xmin else numpy.nanmin(self.x) | |
|
1677 | ||
|
1678 | self.ymax = self.ymax if self.ymax else numpy.nanmax(self.y) | |
|
1679 | self.ymin = self.ymin if self.ymin else numpy.nanmin(self.y) | |
|
1680 | ||
|
1681 | self.zmax = self.zmax if self.zmax else numpy.nanmax(self.z) | |
|
1682 | self.zmin = self.zmin if self.zmin else numpy.nanmin(self.z) | |
|
1683 | ||
|
1684 | ||
|
1685 | if self.extFile!=None: | |
|
1686 | ax.scatter(self.fullDcosx, self.fullDcosy, marker="+", s=20) | |
|
1687 | #print(self.fullDcosx) | |
|
1688 | pass | |
|
1689 | ||
|
1690 | ||
|
1691 | ax.plt = ax.scatter(self.x, self.y, c=self.z[:,index[n]], cmap = 'jet',vmin = self.zmin, | |
|
1692 | s=60, marker="s", vmax = self.zmax) | |
|
1693 | ||
|
1694 | ||
|
1695 | ax.minorticks_on() | |
|
1696 | ax.grid(which='major', axis='both') | |
|
1697 | ax.grid(which='minor', axis='x') | |
|
1698 | ||
|
1699 | if self.flagBField : | |
|
1700 | ||
|
1701 | for ih in range(len(self.bFieldList)): | |
|
1702 | label = str(self.bFieldList[ih]) + ' km' | |
|
1703 | ax.plot(self.dcosxB[ih], self.dcosyB[ih], color='k', marker=self.Bmarker[ih % 8], | |
|
1704 | label=label, linestyle='--', ms=4.0,lw=0.5) | |
|
1705 | handles, labels = ax.get_legend_handles_labels() | |
|
1706 | a = -0.05 | |
|
1707 | b = 1.15 - 1.19*(self.nrows) | |
|
1708 | self.axes[0].legend(handles,labels, bbox_to_anchor=(a,b), prop={'size': (5.8+ 1.1*self.nplots)}, title='B Field β₯') | |
|
1709 | ||
|
1710 | else: | |
|
1711 | ||
|
1712 | ax.plt = ax.scatter(self.x, self.y, c=self.z[:,index[n]], cmap = 'jet',vmin = self.zmin, | |
|
1713 | s=80, marker="s", vmax = self.zmax) | |
|
1714 | ||
|
1715 | if self.flagBField : | |
|
1716 | for ih in range(len(self.bFieldList)): | |
|
1717 | ax.plot (self.dcosxB[ih], self.dcosyB[ih], color='k', marker=self.Bmarker[ih % 8], | |
|
1718 | linestyle='--', ms=4.0,lw=0.5) | |
|
1719 | ||
|
1720 | # handles, labels = ax.get_legend_handles_labels() | |
|
1721 | # a = -0.05 | |
|
1722 | # b = 1.15 - 1.19*(self.nrows) | |
|
1723 | # self.axes[0].legend(handles,labels, bbox_to_anchor=(a,b), prop={'size': (5.8+ 1.1*self.nplots)}, title='B Field β₯') | |
|
1724 | ||
|
1725 |
@@ -1,409 +1,418 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 9, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | ''' |
|
6 | 6 | import os |
|
7 | 7 | import datetime |
|
8 | 8 | import numpy |
|
9 | 9 | |
|
10 | 10 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
11 | 11 | |
|
12 | 12 | |
|
13 | 13 | class ScopePlot(Plot): |
|
14 | 14 | |
|
15 | 15 | ''' |
|
16 | 16 | Plot for Scope |
|
17 | 17 | ''' |
|
18 | 18 | |
|
19 | 19 | CODE = 'scope' |
|
20 | 20 | plot_type = 'scatter' |
|
21 | 21 | |
|
22 | 22 | def setup(self): |
|
23 | 23 | |
|
24 | 24 | self.xaxis = 'Range (Km)' |
|
25 | 25 | self.nplots = len(self.data.channels) |
|
26 | 26 | self.nrows = int(numpy.ceil(self.nplots/2)) |
|
27 | 27 | self.ncols = int(numpy.ceil(self.nplots/self.nrows)) |
|
28 | 28 | self.ylabel = 'Intensity [dB]' |
|
29 | 29 | self.titles = ['Channel '+str(self.data.channels[i])+" " for i in self.data.channels] |
|
30 | 30 | self.colorbar = False |
|
31 | 31 | self.width = 6 |
|
32 | 32 | self.height = 4 |
|
33 | 33 | |
|
34 | 34 | def update(self, dataOut): |
|
35 | 35 | |
|
36 | 36 | data = {} |
|
37 | 37 | meta = { |
|
38 | 38 | 'nProfiles': dataOut.nProfiles, |
|
39 | 39 | 'flagDataAsBlock': dataOut.flagDataAsBlock, |
|
40 | 40 | 'profileIndex': dataOut.profileIndex, |
|
41 | 41 | } |
|
42 | 42 | if self.CODE == 'scope': |
|
43 | 43 | data[self.CODE] = dataOut.data |
|
44 | 44 | elif self.CODE == 'pp_power': |
|
45 | 45 | data[self.CODE] = dataOut.dataPP_POWER |
|
46 | 46 | elif self.CODE == 'pp_signal': |
|
47 | 47 | data[self.CODE] = dataOut.dataPP_POW |
|
48 | 48 | elif self.CODE == 'pp_velocity': |
|
49 | 49 | data[self.CODE] = dataOut.dataPP_DOP |
|
50 | 50 | elif self.CODE == 'pp_specwidth': |
|
51 | 51 | data[self.CODE] = dataOut.dataPP_WIDTH |
|
52 | 52 | |
|
53 | 53 | return data, meta |
|
54 | 54 | |
|
55 | 55 | def plot_iq(self, x, y, channelIndexList, thisDatetime, wintitle): |
|
56 | 56 | |
|
57 | 57 | yreal = y[channelIndexList,:].real |
|
58 | 58 | yimag = y[channelIndexList,:].imag |
|
59 | 59 | Maintitle = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
60 | 60 | self.xlabel = "Range (Km)" |
|
61 | 61 | self.ylabel = "Intensity - IQ" |
|
62 | 62 | |
|
63 | 63 | self.y = yreal |
|
64 | 64 | self.x = x |
|
65 | 65 | |
|
66 | 66 | for i,ax in enumerate(self.axes): |
|
67 | 67 | title = "Channel %d" %(i) |
|
68 | 68 | if ax.firsttime: |
|
69 | 69 | self.xmin = min(x) |
|
70 | 70 | self.xmax = max(x) |
|
71 | 71 | ax.plt_r = ax.plot(x, yreal[i,:], color='b')[0] |
|
72 | 72 | ax.plt_i = ax.plot(x, yimag[i,:], color='r')[0] |
|
73 | 73 | else: |
|
74 | 74 | ax.plt_r.set_data(x, yreal[i,:]) |
|
75 | 75 | ax.plt_i.set_data(x, yimag[i,:]) |
|
76 | 76 | plt.suptitle(Maintitle) |
|
77 | 77 | |
|
78 | 78 | def plot_power(self, x, y, channelIndexList, thisDatetime, wintitle): |
|
79 | 79 | y = y[channelIndexList,:] * numpy.conjugate(y[channelIndexList,:]) |
|
80 | 80 | yreal = y.real |
|
81 | 81 | yreal = 10*numpy.log10(yreal) |
|
82 | 82 | self.y = yreal |
|
83 | 83 | title = wintitle + " Power: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
84 | 84 | self.xlabel = "Range (Km)" |
|
85 | 85 | self.ylabel = "Intensity [dB]" |
|
86 | 86 | |
|
87 | 87 | |
|
88 | 88 | self.titles[0] = title |
|
89 | 89 | |
|
90 | 90 | for i,ax in enumerate(self.axes): |
|
91 | 91 | title = "Channel %d" %(i) |
|
92 | 92 | ychannel = yreal[i,:] |
|
93 | 93 | |
|
94 | 94 | if ax.firsttime: |
|
95 | 95 | self.xmin = min(x) |
|
96 | 96 | self.xmax = max(x) |
|
97 | 97 | ax.plt_r = ax.plot(x, ychannel)[0] |
|
98 | 98 | else: |
|
99 | 99 | ax.plt_r.set_data(x, ychannel) |
|
100 | 100 | |
|
101 | 101 | |
|
102 | 102 | def plot_weatherpower(self, x, y, channelIndexList, thisDatetime, wintitle): |
|
103 | 103 | |
|
104 | 104 | |
|
105 | 105 | y = y[channelIndexList,:] |
|
106 | 106 | yreal = y.real |
|
107 | 107 | yreal = 10*numpy.log10(yreal) |
|
108 | 108 | self.y = yreal |
|
109 | 109 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
110 | 110 | self.xlabel = "Range (Km)" |
|
111 | 111 | self.ylabel = "Intensity" |
|
112 | 112 | self.xmin = min(x) |
|
113 | 113 | self.xmax = max(x) |
|
114 | 114 | |
|
115 | 115 | self.titles[0] =title |
|
116 | 116 | for i,ax in enumerate(self.axes): |
|
117 | 117 | title = "Channel %d" %(i) |
|
118 | 118 | |
|
119 | 119 | ychannel = yreal[i,:] |
|
120 | 120 | |
|
121 | 121 | if ax.firsttime: |
|
122 | 122 | ax.plt_r = ax.plot(x, ychannel)[0] |
|
123 | 123 | else: |
|
124 | 124 | #pass |
|
125 | 125 | ax.plt_r.set_data(x, ychannel) |
|
126 | 126 | |
|
127 | 127 | def plot_weathervelocity(self, x, y, channelIndexList, thisDatetime, wintitle): |
|
128 | 128 | |
|
129 | 129 | x = x[channelIndexList,:] |
|
130 | 130 | yreal = y |
|
131 | 131 | self.y = yreal |
|
132 | 132 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
133 | 133 | self.xlabel = "Velocity (m/s)" |
|
134 | 134 | self.ylabel = "Range (Km)" |
|
135 | 135 | self.xmin = numpy.min(x) |
|
136 | 136 | self.xmax = numpy.max(x) |
|
137 | 137 | self.titles[0] =title |
|
138 | 138 | for i,ax in enumerate(self.axes): |
|
139 | 139 | title = "Channel %d" %(i) |
|
140 | 140 | xchannel = x[i,:] |
|
141 | 141 | if ax.firsttime: |
|
142 | 142 | ax.plt_r = ax.plot(xchannel, yreal)[0] |
|
143 | 143 | else: |
|
144 | 144 | #pass |
|
145 | 145 | ax.plt_r.set_data(xchannel, yreal) |
|
146 | 146 | |
|
147 | 147 | def plot_weatherspecwidth(self, x, y, channelIndexList, thisDatetime, wintitle): |
|
148 | 148 | |
|
149 | 149 | x = x[channelIndexList,:] |
|
150 | 150 | yreal = y |
|
151 | 151 | self.y = yreal |
|
152 | 152 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
153 | 153 | self.xlabel = "width " |
|
154 | 154 | self.ylabel = "Range (Km)" |
|
155 | 155 | self.xmin = numpy.min(x) |
|
156 | 156 | self.xmax = numpy.max(x) |
|
157 | 157 | self.titles[0] =title |
|
158 | 158 | for i,ax in enumerate(self.axes): |
|
159 | 159 | title = "Channel %d" %(i) |
|
160 | 160 | xchannel = x[i,:] |
|
161 | 161 | if ax.firsttime: |
|
162 | 162 | ax.plt_r = ax.plot(xchannel, yreal)[0] |
|
163 | 163 | else: |
|
164 | 164 | #pass |
|
165 | 165 | ax.plt_r.set_data(xchannel, yreal) |
|
166 | 166 | |
|
167 | 167 | def plot(self): |
|
168 | 168 | if self.channels: |
|
169 | 169 | channels = self.channels |
|
170 | 170 | else: |
|
171 | 171 | channels = self.data.channels |
|
172 | 172 | |
|
173 | 173 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]) |
|
174 | 174 | |
|
175 | 175 | scope = self.data[-1][self.CODE] |
|
176 | 176 | |
|
177 | 177 | if self.data.flagDataAsBlock: |
|
178 | 178 | |
|
179 | 179 | for i in range(self.data.nProfiles): |
|
180 | 180 | |
|
181 | 181 | wintitle1 = " [Profile = %d] " %i |
|
182 | 182 | if self.CODE =="scope": |
|
183 | 183 | if self.type == "power": |
|
184 | 184 | self.plot_power(self.data.yrange, |
|
185 | 185 | scope[:,i,:], |
|
186 | 186 | channels, |
|
187 | 187 | thisDatetime, |
|
188 | 188 | wintitle1 |
|
189 | 189 | ) |
|
190 | 190 | |
|
191 | 191 | if self.type == "iq": |
|
192 | 192 | self.plot_iq(self.data.yrange, |
|
193 | 193 | scope[:,i,:], |
|
194 | 194 | channels, |
|
195 | 195 | thisDatetime, |
|
196 | 196 | wintitle1 |
|
197 | 197 | ) |
|
198 | 198 | if self.CODE=="pp_power": |
|
199 | 199 | self.plot_weatherpower(self.data.yrange, |
|
200 | 200 | scope[:,i,:], |
|
201 | 201 | channels, |
|
202 | 202 | thisDatetime, |
|
203 | 203 | wintitle |
|
204 | 204 | ) |
|
205 | 205 | if self.CODE=="pp_signal": |
|
206 | 206 | self.plot_weatherpower(self.data.yrange, |
|
207 | 207 | scope[:,i,:], |
|
208 | 208 | channels, |
|
209 | 209 | thisDatetime, |
|
210 | 210 | wintitle |
|
211 | 211 | ) |
|
212 | 212 | if self.CODE=="pp_velocity": |
|
213 | 213 | self.plot_weathervelocity(scope[:,i,:], |
|
214 | 214 | self.data.yrange, |
|
215 | 215 | channels, |
|
216 | 216 | thisDatetime, |
|
217 | 217 | wintitle |
|
218 | 218 | ) |
|
219 | 219 | if self.CODE=="pp_spcwidth": |
|
220 | 220 | self.plot_weatherspecwidth(scope[:,i,:], |
|
221 | 221 | self.data.yrange, |
|
222 | 222 | channels, |
|
223 | 223 | thisDatetime, |
|
224 | 224 | wintitle |
|
225 | 225 | ) |
|
226 | 226 | else: |
|
227 | 227 | wintitle = " [Profile = %d] " %self.data.profileIndex |
|
228 | 228 | if self.CODE== "scope": |
|
229 | 229 | if self.type == "power": |
|
230 | 230 | self.plot_power(self.data.yrange, |
|
231 | 231 | scope, |
|
232 | 232 | channels, |
|
233 | 233 | thisDatetime, |
|
234 | 234 | wintitle |
|
235 | 235 | ) |
|
236 | 236 | |
|
237 | 237 | if self.type == "iq": |
|
238 | 238 | self.plot_iq(self.data.yrange, |
|
239 | 239 | scope, |
|
240 | 240 | channels, |
|
241 | 241 | thisDatetime, |
|
242 | 242 | wintitle |
|
243 | 243 | ) |
|
244 | 244 | if self.CODE=="pp_power": |
|
245 | 245 | self.plot_weatherpower(self.data.yrange, |
|
246 | 246 | scope, |
|
247 | 247 | channels, |
|
248 | 248 | thisDatetime, |
|
249 | 249 | wintitle |
|
250 | 250 | ) |
|
251 | 251 | if self.CODE=="pp_signal": |
|
252 | 252 | self.plot_weatherpower(self.data.yrange, |
|
253 | 253 | scope, |
|
254 | 254 | channels, |
|
255 | 255 | thisDatetime, |
|
256 | 256 | wintitle |
|
257 | 257 | ) |
|
258 | 258 | if self.CODE=="pp_velocity": |
|
259 | 259 | self.plot_weathervelocity(scope, |
|
260 | 260 | self.data.yrange, |
|
261 | 261 | channels, |
|
262 | 262 | thisDatetime, |
|
263 | 263 | wintitle |
|
264 | 264 | ) |
|
265 | 265 | if self.CODE=="pp_specwidth": |
|
266 | 266 | self.plot_weatherspecwidth(scope, |
|
267 | 267 | self.data.yrange, |
|
268 | 268 | channels, |
|
269 | 269 | thisDatetime, |
|
270 | 270 | wintitle |
|
271 | 271 | ) |
|
272 | 272 | |
|
273 | 273 | |
|
274 | 274 | class PulsepairPowerPlot(ScopePlot): |
|
275 | 275 | ''' |
|
276 | 276 | Plot for P= S+N |
|
277 | 277 | ''' |
|
278 | 278 | |
|
279 | 279 | CODE = 'pp_power' |
|
280 | 280 | plot_type = 'scatter' |
|
281 | 281 | |
|
282 | 282 | class PulsepairVelocityPlot(ScopePlot): |
|
283 | 283 | ''' |
|
284 | 284 | Plot for VELOCITY |
|
285 | 285 | ''' |
|
286 | 286 | CODE = 'pp_velocity' |
|
287 | 287 | plot_type = 'scatter' |
|
288 | 288 | |
|
289 | 289 | class PulsepairSpecwidthPlot(ScopePlot): |
|
290 | 290 | ''' |
|
291 | 291 | Plot for WIDTH |
|
292 | 292 | ''' |
|
293 | 293 | CODE = 'pp_specwidth' |
|
294 | 294 | plot_type = 'scatter' |
|
295 | 295 | |
|
296 | 296 | class PulsepairSignalPlot(ScopePlot): |
|
297 | 297 | ''' |
|
298 | 298 | Plot for S |
|
299 | 299 | ''' |
|
300 | 300 | |
|
301 | 301 | CODE = 'pp_signal' |
|
302 | 302 | plot_type = 'scatter' |
|
303 | 303 | |
|
304 | 304 | |
|
305 | 305 | class Spectra2DPlot(Plot): |
|
306 | 306 | ''' |
|
307 | 307 | Plot for 2D Spectra data |
|
308 | Necessary data as Block | |
|
309 | you could use profiles2Block Operation | |
|
310 | ||
|
311 | Example: | |
|
312 | # opObj11 = volts_proc.addOperation(name='profiles2Block', optype='other') | |
|
313 | # # opObj11.addParameter(name='n', value=10, format='int') | |
|
314 | # opObj11.addParameter(name='timeInterval', value='2', format='int') | |
|
315 | ||
|
316 | # opObj12 = volts_proc.addOperation(name='Spectra2DPlot', optype='external') | |
|
308 | 317 | ''' |
|
309 | 318 | |
|
310 | 319 | CODE = 'spc' |
|
311 | 320 | colormap = 'jet' |
|
312 | 321 | plot_type = 'pcolor' |
|
313 | 322 | buffering = False |
|
314 | 323 | channelList = [] |
|
315 | 324 | elevationList = [] |
|
316 | 325 | azimuthList = [] |
|
317 | 326 | |
|
318 | 327 | def setup(self): |
|
319 | 328 | |
|
320 | 329 | self.nplots = len(self.data.channels) |
|
321 | 330 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
322 | 331 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
323 | 332 | self.height = 3.4 * self.nrows |
|
324 | 333 | |
|
325 | 334 | self.cb_label = 'dB' |
|
326 | 335 | if self.showprofile: |
|
327 | 336 | self.width = 5.2 * self.ncols |
|
328 | 337 | else: |
|
329 | 338 | self.width = 4.2* self.ncols |
|
330 | 339 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.12}) |
|
331 | 340 | self.ylabel = 'Range [km]' |
|
332 | 341 | |
|
333 | 342 | |
|
334 | 343 | def update_list(self,dataOut): |
|
335 | 344 | if len(self.channelList) == 0: |
|
336 | 345 | self.channelList = dataOut.channelList |
|
337 | 346 | if len(self.elevationList) == 0: |
|
338 | 347 | self.elevationList = dataOut.elevationList |
|
339 | 348 | if len(self.azimuthList) == 0: |
|
340 | 349 | self.azimuthList = dataOut.azimuthList |
|
341 | 350 | |
|
342 | 351 | def update(self, dataOut): |
|
343 | 352 | |
|
344 | 353 | self.update_list(dataOut) |
|
345 | 354 | data = {} |
|
346 | 355 | meta = {} |
|
347 | 356 | |
|
348 | 357 | |
|
349 | 358 | spectrum = numpy.fft.fftshift(numpy.fft.fft2(dataOut.data, axes=(1,2))) |
|
350 | 359 | z = numpy.abs(spectrum) |
|
351 | 360 | phase = numpy.angle(spectrum) |
|
352 | 361 | |
|
353 | 362 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
354 | 363 | spc = 10*numpy.log10(z) |
|
355 | 364 | dt1 = dataOut.ippSeconds |
|
356 | 365 | dt2 = dataOut.radarControllerHeaderObj.heightResolution/150000 |
|
357 | 366 | data['spc'] = spc |
|
358 | 367 | #print(spc[0].shape) |
|
359 | 368 | data['phase'] = phase |
|
360 | 369 | f1 = numpy.fft.fftshift(numpy.fft.fftfreq(spectrum.shape[1],d=dt1)/1000) |
|
361 | 370 | f2 = numpy.fft.fftshift(numpy.fft.fftfreq(spectrum.shape[2],d=dt2)/1000) |
|
362 | 371 | meta['range'] = (f1, f2) |
|
363 | 372 | |
|
364 | 373 | return data, meta |
|
365 | 374 | |
|
366 | 375 | def plot(self): |
|
367 | 376 | x = self.data.range[0] |
|
368 | 377 | y = self.data.range[1] |
|
369 | 378 | self.xlabel = "Frequency (kHz)" |
|
370 | 379 | self.ylabel = "Frequency (kHz)" |
|
371 | 380 | |
|
372 | 381 | # if self.xaxis == "frequency": |
|
373 | 382 | # x = self.data.range[1] |
|
374 | 383 | # y = self.data.range[2] |
|
375 | 384 | # self.xlabel = "Frequency (kHz)" |
|
376 | 385 | # self.ylabel = "Frequency (kHz)" |
|
377 | 386 | # else: |
|
378 | 387 | # x = self.data.xrange[2] |
|
379 | 388 | # self.xlabel = "Velocity (m/s)" |
|
380 | 389 | |
|
381 | 390 | |
|
382 | 391 | self.titles = [] |
|
383 | 392 | self.y = y |
|
384 | 393 | |
|
385 | 394 | data = self.data[-1] |
|
386 | 395 | z = data['spc'] |
|
387 | 396 | #print(z.shape, x.shape, y.shape) |
|
388 | 397 | for n, ax in enumerate(self.axes): |
|
389 | 398 | # noise = self.data['noise'][n][0] |
|
390 | 399 | #print(noise) |
|
391 | 400 | |
|
392 | 401 | if ax.firsttime: |
|
393 | 402 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
394 | 403 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
395 | 404 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
396 | 405 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
397 | 406 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
398 | 407 | vmin=self.zmin, |
|
399 | 408 | vmax=self.zmax, |
|
400 | 409 | cmap=plt.get_cmap(self.colormap) |
|
401 | 410 | ) |
|
402 | 411 | |
|
403 | 412 | else: |
|
404 | 413 | ax.plt.set_array(z[n].T.ravel()) |
|
405 | 414 | |
|
406 | 415 | if len(self.azimuthList) > 0 and len(self.elevationList) > 0: |
|
407 | 416 | self.titles.append('CH {}: {:2.1f}elv {:2.1f} az '.format(self.channelList[n], self.elevationList[n], self.azimuthList[n])) |
|
408 | 417 | else: |
|
409 | 418 | self.titles.append('CH {}: '.format(self.channelList[n])) No newline at end of file |
@@ -1,755 +1,783 | |||
|
1 | 1 | '''' |
|
2 | 2 | Created on Set 9, 2015 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 Karim Kuyeng |
|
5 | 5 | |
|
6 | 6 | @upgrade: 2021, Joab Apaza |
|
7 | 7 | |
|
8 | 8 | ''' |
|
9 | 9 | |
|
10 | 10 | import os |
|
11 | 11 | import sys |
|
12 | 12 | import glob |
|
13 | 13 | import fnmatch |
|
14 | 14 | import datetime |
|
15 | 15 | import time |
|
16 | 16 | import re |
|
17 | 17 | import h5py |
|
18 | 18 | import numpy |
|
19 | 19 | |
|
20 | 20 | try: |
|
21 | 21 | from gevent import sleep |
|
22 | 22 | except: |
|
23 | 23 | from time import sleep |
|
24 | 24 | |
|
25 | 25 | from schainpy.model.data.jroheaderIO import RadarControllerHeader, SystemHeader,ProcessingHeader |
|
26 | 26 | from schainpy.model.data.jrodata import Voltage |
|
27 | 27 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
28 | 28 | from numpy import imag |
|
29 | 29 | from schainpy.utils import log |
|
30 | 30 | |
|
31 | 31 | |
|
32 | 32 | class AMISRReader(ProcessingUnit): |
|
33 | 33 | ''' |
|
34 | 34 | classdocs |
|
35 | 35 | ''' |
|
36 | 36 | |
|
37 | 37 | def __init__(self): |
|
38 | 38 | ''' |
|
39 | 39 | Constructor |
|
40 | 40 | ''' |
|
41 | 41 | |
|
42 | 42 | ProcessingUnit.__init__(self) |
|
43 | 43 | |
|
44 | 44 | self.set = None |
|
45 | 45 | self.subset = None |
|
46 | 46 | self.extension_file = '.h5' |
|
47 | 47 | self.dtc_str = 'dtc' |
|
48 | 48 | self.dtc_id = 0 |
|
49 | 49 | self.status = True |
|
50 | 50 | self.isConfig = False |
|
51 | 51 | self.dirnameList = [] |
|
52 | 52 | self.filenameList = [] |
|
53 | 53 | self.fileIndex = None |
|
54 | 54 | self.flagNoMoreFiles = False |
|
55 | 55 | self.flagIsNewFile = 0 |
|
56 | 56 | self.filename = '' |
|
57 | 57 | self.amisrFilePointer = None |
|
58 | 58 | |
|
59 | 59 | self.beamCodeMap = None |
|
60 | 60 | self.azimuthList = [] |
|
61 | 61 | self.elevationList = [] |
|
62 | 62 | self.dataShape = None |
|
63 | 63 | self.flag_old_beams = False |
|
64 | ||
|
65 | ||
|
64 | ||
|
65 | self.flagAsync = False #Use when the experiment has no syncronization | |
|
66 | self.shiftChannels = 0 | |
|
66 | 67 | self.profileIndex = 0 |
|
67 | 68 | |
|
68 | 69 | |
|
69 | 70 | self.beamCodeByFrame = None |
|
70 | 71 | self.radacTimeByFrame = None |
|
71 | 72 | |
|
72 | 73 | self.dataset = None |
|
73 | 74 | |
|
74 | 75 | self.__firstFile = True |
|
75 | 76 | |
|
76 | 77 | self.buffer = None |
|
77 | 78 | |
|
78 | 79 | self.timezone = 'ut' |
|
79 | 80 | |
|
80 | 81 | self.__waitForNewFile = 20 |
|
81 | 82 | self.__filename_online = None |
|
82 | 83 | #Is really necessary create the output object in the initializer |
|
83 | 84 | self.dataOut = Voltage() |
|
84 | 85 | self.dataOut.error=False |
|
85 | 86 | self.margin_days = 1 |
|
86 | 87 | self.flag_ignoreFiles = False #to activate the ignoring Files flag |
|
87 | 88 | self.flag_standby = False # just keep waiting, use when ignoring files |
|
88 | 89 | self.ignStartDateTime=None |
|
89 | 90 | self.ignEndDateTime=None |
|
90 | 91 | |
|
91 | 92 | def setup(self,path=None, |
|
92 | 93 | startDate=None, |
|
93 | 94 | endDate=None, |
|
94 | 95 | startTime=None, |
|
95 | 96 | endTime=None, |
|
96 | 97 | walk=True, |
|
97 | 98 | timezone='ut', |
|
98 | 99 | all=0, |
|
99 | 100 | code = 1, |
|
100 | 101 | nCode = 1, |
|
101 | 102 | nBaud = 0, |
|
102 | 103 | nOsamp = 0, |
|
103 | 104 | online=False, |
|
104 | 105 | old_beams=False, |
|
105 | 106 | margin_days=1, |
|
106 | 107 | nFFT = None, |
|
107 | 108 | nChannels = None, |
|
108 | 109 | ignStartDate=None, |
|
109 | 110 | ignEndDate=None, |
|
110 | 111 | ignStartTime=None, |
|
111 | 112 | ignEndTime=None, |
|
113 | syncronization=True, | |
|
114 | shiftChannels=0 | |
|
112 | 115 | ): |
|
113 | 116 | |
|
114 | 117 | |
|
115 | 118 | |
|
116 | 119 | self.timezone = timezone |
|
117 | 120 | self.all = all |
|
118 | 121 | self.online = online |
|
119 | 122 | self.flag_old_beams = old_beams |
|
120 | 123 | self.code = code |
|
121 | 124 | self.nCode = int(nCode) |
|
122 | 125 | self.nBaud = int(nBaud) |
|
123 | 126 | self.nOsamp = int(nOsamp) |
|
124 | 127 | self.margin_days = margin_days |
|
125 | 128 | self.__sampleRate = None |
|
126 | ||
|
129 | self.flagAsync = not syncronization | |
|
130 | self.shiftChannels = shiftChannels | |
|
127 | 131 | self.nFFT = nFFT |
|
128 | 132 | self.nChannels = nChannels |
|
129 | 133 | if ignStartTime!=None and ignEndTime!=None: |
|
130 | 134 | if ignStartDate!=None and ignEndDate!=None: |
|
131 | 135 | self.ignStartDateTime=datetime.datetime.combine(ignStartDate,ignStartTime) |
|
132 | 136 | self.ignEndDateTime=datetime.datetime.combine(ignEndDate,ignEndTime) |
|
133 | 137 | else: |
|
134 | 138 | self.ignStartDateTime=datetime.datetime.combine(startDate,ignStartTime) |
|
135 | 139 | self.ignEndDateTime=datetime.datetime.combine(endDate,ignEndTime) |
|
136 | 140 | self.flag_ignoreFiles = True |
|
137 | 141 | |
|
138 | 142 | #self.findFiles() |
|
139 | 143 | if not(online): |
|
140 | 144 | #Busqueda de archivos offline |
|
141 | 145 | self.searchFilesOffLine(path, startDate, endDate, startTime, endTime, walk,) |
|
142 | 146 | else: |
|
143 | 147 | self.searchFilesOnLine(path, startDate, endDate, startTime,endTime,walk) |
|
144 | 148 | |
|
145 | 149 | if not(self.filenameList): |
|
146 | 150 | raise schainpy.admin.SchainWarning("There is no files into the folder: %s"%(path)) |
|
147 | 151 | #sys.exit(0) |
|
148 | 152 | self.dataOut.error = True |
|
149 | 153 | |
|
150 | 154 | self.fileIndex = 0 |
|
151 | 155 | |
|
152 | 156 | self.readNextFile(online) |
|
153 | 157 | |
|
154 | 158 | ''' |
|
155 | 159 | Add code |
|
156 | 160 | ''' |
|
157 | 161 | self.isConfig = True |
|
158 | 162 | # print("Setup Done") |
|
159 | 163 | pass |
|
160 | 164 | |
|
161 | 165 | |
|
162 | 166 | def readAMISRHeader(self,fp): |
|
163 | 167 | |
|
164 | 168 | if self.isConfig and (not self.flagNoMoreFiles): |
|
165 | 169 | newShape = fp.get('Raw11/Data/Samples/Data').shape[1:] |
|
166 | 170 | if self.dataShape != newShape and newShape != None and not self.flag_standby: |
|
167 | 171 | raise schainpy.admin.SchainError("NEW FILE HAS A DIFFERENT SHAPE: ") |
|
168 | 172 | print(self.dataShape,newShape,"\n") |
|
169 | 173 | return 0 |
|
170 | 174 | else: |
|
171 | 175 | self.dataShape = fp.get('Raw11/Data/Samples/Data').shape[1:] |
|
172 | 176 | |
|
173 | 177 | |
|
174 | 178 | header = 'Raw11/Data/RadacHeader' |
|
175 | 179 | if self.nChannels == None: |
|
176 | 180 | expFile = fp['Setup/Experimentfile'][()].decode() |
|
177 | 181 | linesExp = expFile.split("\n") |
|
178 | 182 | a = [line for line in linesExp if "nbeamcodes" in line] |
|
179 | 183 | self.nChannels = int(a[0][11:]) |
|
180 | 184 | |
|
185 | if not self.flagAsync: #for experiments with no syncronization | |
|
186 | self.shiftChannels = 0 | |
|
187 | ||
|
188 | ||
|
189 | ||
|
181 | 190 | self.beamCodeByPulse = fp.get(header+'/BeamCode') # LIST OF BEAMS PER PROFILE, TO BE USED ON REARRANGE |
|
191 | ||
|
192 | ||
|
182 | 193 | if (self.startDate > datetime.date(2021, 7, 15)) or self.flag_old_beams: #Se cambiΓ³ la forma de extracciΓ³n de Apuntes el 17 o forzar con flag de reorganizaciΓ³n |
|
183 | 194 | self.beamcodeFile = fp['Setup/Beamcodefile'][()].decode() |
|
184 | 195 | self.trueBeams = self.beamcodeFile.split("\n") |
|
185 | 196 | self.trueBeams.pop()#remove last |
|
186 | 197 | if self.nFFT == None: |
|
187 | 198 | log.error("FFT or number of repetitions per channels is needed",self.name) |
|
188 | 199 | beams_idx = [k*self.nFFT for k in range(self.nChannels)] |
|
189 | 200 | beams = [self.trueBeams[b] for b in beams_idx] |
|
190 | 201 | self.beamCode = [int(x, 16) for x in beams] |
|
191 | 202 | |
|
203 | if(self.flagAsync and self.shiftChannels == 0): | |
|
204 | initBeam = self.beamCodeByPulse[0, 0] | |
|
205 | self.shiftChannels = numpy.argwhere(self.beamCode ==initBeam)[0,0] | |
|
206 | ||
|
192 | 207 | else: |
|
193 | 208 | _beamCode= fp.get('Raw11/Data/Beamcodes') #se usa la manera previa al cambio de apuntes |
|
194 | 209 | self.beamCode = _beamCode[0,:] |
|
195 | 210 | |
|
211 | ||
|
212 | ||
|
213 | ||
|
196 | 214 | if self.beamCodeMap == None: |
|
197 | 215 | self.beamCodeMap = fp['Setup/BeamcodeMap'] |
|
198 | 216 | for beam in self.beamCode: |
|
199 | 217 | beamAziElev = numpy.where(self.beamCodeMap[:,0]==beam) |
|
200 | 218 | beamAziElev = beamAziElev[0].squeeze() |
|
201 | 219 | self.azimuthList.append(self.beamCodeMap[beamAziElev,1]) |
|
202 | 220 | self.elevationList.append(self.beamCodeMap[beamAziElev,2]) |
|
203 | 221 | #print("Beamssss: ",self.beamCodeMap[beamAziElev,1],self.beamCodeMap[beamAziElev,2]) |
|
204 | 222 | #print(self.beamCode) |
|
205 | 223 | #self.code = fp.get(header+'/Code') # NOT USE FOR THIS |
|
206 | 224 | self.frameCount = fp.get(header+'/FrameCount')# NOT USE FOR THIS |
|
207 | 225 | self.modeGroup = fp.get(header+'/ModeGroup')# NOT USE FOR THIS |
|
208 | 226 | self.nsamplesPulse = fp.get(header+'/NSamplesPulse')# TO GET NSA OR USING DATA FOR THAT |
|
209 | 227 | self.pulseCount = fp.get(header+'/PulseCount')# NOT USE FOR THIS |
|
210 | 228 | self.radacTime = fp.get(header+'/RadacTime')# 1st TIME ON FILE ANDE CALCULATE THE REST WITH IPP*nindexprofile |
|
211 | 229 | self.timeCount = fp.get(header+'/TimeCount')# NOT USE FOR THIS |
|
212 | 230 | self.timeStatus = fp.get(header+'/TimeStatus')# NOT USE FOR THIS |
|
213 | 231 | self.rangeFromFile = fp.get('Raw11/Data/Samples/Range') |
|
214 | 232 | self.frequency = fp.get('Rx/Frequency') |
|
215 | 233 | txAus = fp.get('Raw11/Data/Pulsewidth') #seconds |
|
216 | 234 | self.baud = fp.get('Raw11/Data/TxBaud') |
|
217 | 235 | sampleRate = fp.get('Rx/SampleRate') |
|
218 | 236 | self.__sampleRate = sampleRate[()] |
|
219 | 237 | self.nblocks = self.pulseCount.shape[0] #nblocks |
|
220 | 238 | self.profPerBlockRAW = self.pulseCount.shape[1] #profiles per block in raw data |
|
221 | 239 | self.nprofiles = self.pulseCount.shape[1] #nprofile |
|
222 | self.nsa = self.nsamplesPulse[0,0] #ngates | |
|
240 | #self.nsa = self.nsamplesPulse[0,0] #ngates | |
|
241 | self.nsa = len(self.rangeFromFile[0]) | |
|
223 | 242 | self.nchannels = len(self.beamCode) |
|
224 | 243 | self.ippSeconds = (self.radacTime[0][1] -self.radacTime[0][0]) #Ipp in seconds |
|
225 | 244 | #print("IPPS secs: ",self.ippSeconds) |
|
226 | 245 | #self.__waitForNewFile = self.nblocks # wait depending on the number of blocks since each block is 1 sec |
|
227 | 246 | self.__waitForNewFile = self.nblocks * self.nprofiles * self.ippSeconds # wait until new file is created |
|
228 | 247 | |
|
229 | 248 | #filling radar controller header parameters |
|
230 | 249 | self.__ippKm = self.ippSeconds *.15*1e6 # in km |
|
231 | 250 | #self.__txA = txAus[()]*.15 #(ipp[us]*.15km/1us) in km |
|
232 | 251 | self.__txA = txAus[()] #seconds |
|
233 | 252 | self.__txAKm = self.__txA*1e6*.15 |
|
234 | 253 | self.__txB = 0 |
|
235 | 254 | nWindows=1 |
|
236 | 255 | self.__nSamples = self.nsa |
|
237 | 256 | self.__firstHeight = self.rangeFromFile[0][0]/1000 #in km |
|
238 | 257 | self.__deltaHeight = (self.rangeFromFile[0][1] - self.rangeFromFile[0][0])/1000 |
|
239 | 258 | #print("amisr-ipp:",self.ippSeconds, self.__ippKm) |
|
240 | 259 | #for now until understand why the code saved is different (code included even though code not in tuf file) |
|
241 | 260 | #self.__codeType = 0 |
|
242 | 261 | # self.__nCode = None |
|
243 | 262 | # self.__nBaud = None |
|
244 | 263 | self.__code = self.code |
|
245 | 264 | self.__codeType = 0 |
|
246 | 265 | if self.code != None: |
|
247 | 266 | self.__codeType = 1 |
|
248 | 267 | self.__nCode = self.nCode |
|
249 | 268 | self.__nBaud = self.nBaud |
|
250 | 269 | self.__baudTX = self.__txA/(self.nBaud) |
|
251 | 270 | #self.__code = 0 |
|
252 | 271 | |
|
253 | 272 | #filling system header parameters |
|
254 | 273 | self.__nSamples = self.nsa |
|
255 | 274 | self.newProfiles = self.nprofiles/self.nchannels |
|
256 | 275 | self.__channelList = [n for n in range(self.nchannels)] |
|
257 | 276 | |
|
258 | 277 | self.__frequency = self.frequency[0][0] |
|
259 | 278 | |
|
260 | 279 | |
|
261 | 280 | return 1 |
|
262 | 281 | |
|
263 | 282 | |
|
264 | 283 | def createBuffers(self): |
|
265 | 284 | |
|
266 | 285 | pass |
|
267 | 286 | |
|
268 | 287 | def __setParameters(self,path='', startDate='',endDate='',startTime='', endTime='', walk=''): |
|
269 | 288 | self.path = path |
|
270 | 289 | self.startDate = startDate |
|
271 | 290 | self.endDate = endDate |
|
272 | 291 | self.startTime = startTime |
|
273 | 292 | self.endTime = endTime |
|
274 | 293 | self.walk = walk |
|
275 | 294 | |
|
276 | 295 | |
|
277 | 296 | def __checkPath(self): |
|
278 | 297 | if os.path.exists(self.path): |
|
279 | 298 | self.status = 1 |
|
280 | 299 | else: |
|
281 | 300 | self.status = 0 |
|
282 | 301 | print('Path:%s does not exists'%self.path) |
|
283 | 302 | |
|
284 | 303 | return |
|
285 | 304 | |
|
286 | 305 | |
|
287 | 306 | def __selDates(self, amisr_dirname_format): |
|
288 | 307 | try: |
|
289 | 308 | year = int(amisr_dirname_format[0:4]) |
|
290 | 309 | month = int(amisr_dirname_format[4:6]) |
|
291 | 310 | dom = int(amisr_dirname_format[6:8]) |
|
292 | 311 | thisDate = datetime.date(year,month,dom) |
|
293 | 312 | #margen de un dΓa extra, igual luego se filtra for fecha y hora |
|
294 | 313 | if (thisDate>=(self.startDate - datetime.timedelta(days=self.margin_days)) and thisDate <= (self.endDate)+ datetime.timedelta(days=1)): |
|
295 | 314 | return amisr_dirname_format |
|
296 | 315 | except: |
|
297 | 316 | return None |
|
298 | 317 | |
|
299 | 318 | |
|
300 | 319 | def __findDataForDates(self,online=False): |
|
301 | 320 | |
|
302 | 321 | if not(self.status): |
|
303 | 322 | return None |
|
304 | 323 | |
|
305 | 324 | pat = '\d+.\d+' |
|
306 | 325 | dirnameList = [re.search(pat,x) for x in os.listdir(self.path)] |
|
307 | 326 | dirnameList = [x for x in dirnameList if x!=None] |
|
308 | 327 | dirnameList = [x.string for x in dirnameList] |
|
309 | 328 | if not(online): |
|
310 | 329 | dirnameList = [self.__selDates(x) for x in dirnameList] |
|
311 | 330 | dirnameList = [x for x in dirnameList if x!=None] |
|
312 | 331 | if len(dirnameList)>0: |
|
313 | 332 | self.status = 1 |
|
314 | 333 | self.dirnameList = dirnameList |
|
315 | 334 | self.dirnameList.sort() |
|
316 | 335 | else: |
|
317 | 336 | self.status = 0 |
|
318 | 337 | return None |
|
319 | 338 | |
|
320 | 339 | def __getTimeFromData(self): |
|
321 | 340 | startDateTime_Reader = datetime.datetime.combine(self.startDate,self.startTime) |
|
322 | 341 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) |
|
323 | 342 | |
|
324 | 343 | print('Filtering Files from %s to %s'%(startDateTime_Reader, endDateTime_Reader)) |
|
325 | 344 | print('........................................') |
|
326 | 345 | filter_filenameList = [] |
|
327 | 346 | self.filenameList.sort() |
|
328 | 347 | total_files = len(self.filenameList) |
|
329 | 348 | #for i in range(len(self.filenameList)-1): |
|
330 | 349 | for i in range(total_files): |
|
331 | 350 | filename = self.filenameList[i] |
|
332 | 351 | #print("file-> ",filename) |
|
333 | 352 | try: |
|
334 | 353 | fp = h5py.File(filename,'r') |
|
335 | 354 | time_str = fp.get('Time/RadacTimeString') |
|
336 | 355 | |
|
337 | 356 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] |
|
338 | 357 | #startDateTimeStr_File = "2019-12-16 09:21:11" |
|
339 | 358 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
340 | 359 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
341 | 360 | |
|
342 | 361 | #endDateTimeStr_File = "2019-12-16 11:10:11" |
|
343 | 362 | endDateTimeStr_File = time_str[-1][-1].decode('UTF-8').split('.')[0] |
|
344 | 363 | junk = time.strptime(endDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
345 | 364 | endDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
346 | 365 | |
|
347 | 366 | fp.close() |
|
348 | 367 | |
|
349 | 368 | #print("check time", startDateTime_File) |
|
350 | 369 | if self.timezone == 'lt': |
|
351 | 370 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) |
|
352 | 371 | endDateTime_File = endDateTime_File - datetime.timedelta(minutes = 300) |
|
353 | 372 | if (startDateTime_File >=startDateTime_Reader and endDateTime_File<=endDateTime_Reader): |
|
354 | 373 | filter_filenameList.append(filename) |
|
355 | 374 | |
|
356 | 375 | if (startDateTime_File>endDateTime_Reader): |
|
357 | 376 | break |
|
358 | 377 | except Exception as e: |
|
359 | 378 | log.warning("Error opening file {} -> {}".format(os.path.split(filename)[1],e)) |
|
360 | 379 | |
|
361 | 380 | filter_filenameList.sort() |
|
362 | 381 | self.filenameList = filter_filenameList |
|
363 | 382 | |
|
364 | 383 | return 1 |
|
365 | 384 | |
|
366 | 385 | def __filterByGlob1(self, dirName): |
|
367 | 386 | filter_files = glob.glob1(dirName, '*.*%s'%self.extension_file) |
|
368 | 387 | filter_files.sort() |
|
369 | 388 | filterDict = {} |
|
370 | 389 | filterDict.setdefault(dirName) |
|
371 | 390 | filterDict[dirName] = filter_files |
|
372 | 391 | return filterDict |
|
373 | 392 | |
|
374 | 393 | def __getFilenameList(self, fileListInKeys, dirList): |
|
375 | 394 | for value in fileListInKeys: |
|
376 | 395 | dirName = list(value.keys())[0] |
|
377 | 396 | for file in value[dirName]: |
|
378 | 397 | filename = os.path.join(dirName, file) |
|
379 | 398 | self.filenameList.append(filename) |
|
380 | 399 | |
|
381 | 400 | |
|
382 | 401 | def __selectDataForTimes(self, online=False): |
|
383 | 402 | #aun no esta implementado el filtro for tiempo-> implementado en readNextFile |
|
384 | 403 | if not(self.status): |
|
385 | 404 | return None |
|
386 | 405 | |
|
387 | 406 | dirList = [os.path.join(self.path,x) for x in self.dirnameList] |
|
388 | 407 | fileListInKeys = [self.__filterByGlob1(x) for x in dirList] |
|
389 | 408 | self.__getFilenameList(fileListInKeys, dirList) |
|
390 | 409 | if not(online): |
|
391 | 410 | #filtro por tiempo |
|
392 | 411 | if not(self.all): |
|
393 | 412 | self.__getTimeFromData() |
|
394 | 413 | |
|
395 | 414 | if len(self.filenameList)>0: |
|
396 | 415 | self.status = 1 |
|
397 | 416 | self.filenameList.sort() |
|
398 | 417 | else: |
|
399 | 418 | self.status = 0 |
|
400 | 419 | return None |
|
401 | 420 | |
|
402 | 421 | else: |
|
403 | 422 | #get the last file - 1 |
|
404 | 423 | self.filenameList = [self.filenameList[-2]] |
|
405 | 424 | new_dirnameList = [] |
|
406 | 425 | for dirname in self.dirnameList: |
|
407 | 426 | junk = numpy.array([dirname in x for x in self.filenameList]) |
|
408 | 427 | junk_sum = junk.sum() |
|
409 | 428 | if junk_sum > 0: |
|
410 | 429 | new_dirnameList.append(dirname) |
|
411 | 430 | self.dirnameList = new_dirnameList |
|
412 | 431 | return 1 |
|
413 | 432 | |
|
414 | 433 | def searchFilesOnLine(self, path, startDate, endDate, startTime=datetime.time(0,0,0), |
|
415 | 434 | endTime=datetime.time(23,59,59),walk=True): |
|
416 | 435 | |
|
417 | 436 | if endDate ==None: |
|
418 | 437 | startDate = datetime.datetime.utcnow().date() |
|
419 | 438 | endDate = datetime.datetime.utcnow().date() |
|
420 | 439 | |
|
421 | 440 | self.__setParameters(path=path, startDate=startDate, endDate=endDate,startTime = startTime,endTime=endTime, walk=walk) |
|
422 | 441 | |
|
423 | 442 | self.__checkPath() |
|
424 | 443 | |
|
425 | 444 | self.__findDataForDates(online=True) |
|
426 | 445 | |
|
427 | 446 | self.dirnameList = [self.dirnameList[-1]] |
|
428 | 447 | |
|
429 | 448 | self.__selectDataForTimes(online=True) |
|
430 | 449 | |
|
431 | 450 | return |
|
432 | 451 | |
|
433 | 452 | |
|
434 | 453 | def searchFilesOffLine(self, |
|
435 | 454 | path, |
|
436 | 455 | startDate, |
|
437 | 456 | endDate, |
|
438 | 457 | startTime=datetime.time(0,0,0), |
|
439 | 458 | endTime=datetime.time(23,59,59), |
|
440 | 459 | walk=True): |
|
441 | 460 | |
|
442 | 461 | self.__setParameters(path, startDate, endDate, startTime, endTime, walk) |
|
443 | 462 | |
|
444 | 463 | self.__checkPath() |
|
445 | 464 | |
|
446 | 465 | self.__findDataForDates() |
|
447 | 466 | |
|
448 | 467 | self.__selectDataForTimes() |
|
449 | 468 | |
|
450 | 469 | for i in range(len(self.filenameList)): |
|
451 | 470 | print("%s" %(self.filenameList[i])) |
|
452 | 471 | |
|
453 | 472 | return |
|
454 | 473 | |
|
455 | 474 | def __setNextFileOffline(self): |
|
456 | 475 | |
|
457 | 476 | try: |
|
458 | 477 | self.filename = self.filenameList[self.fileIndex] |
|
459 | 478 | self.amisrFilePointer = h5py.File(self.filename,'r') |
|
460 | 479 | self.fileIndex += 1 |
|
461 | 480 | except: |
|
462 | 481 | self.flagNoMoreFiles = 1 |
|
463 | 482 | raise schainpy.admin.SchainError('No more files to read') |
|
464 | 483 | return 0 |
|
465 | 484 | |
|
466 | 485 | self.flagIsNewFile = 1 |
|
467 | 486 | print("Setting the file: %s"%self.filename) |
|
468 | 487 | |
|
469 | 488 | return 1 |
|
470 | 489 | |
|
471 | 490 | |
|
472 | 491 | def __setNextFileOnline(self): |
|
473 | 492 | filename = self.filenameList[0] |
|
474 | 493 | if self.__filename_online != None: |
|
475 | 494 | self.__selectDataForTimes(online=True) |
|
476 | 495 | filename = self.filenameList[0] |
|
477 | 496 | wait = 0 |
|
478 | 497 | self.__waitForNewFile=300 ## DEBUG: |
|
479 | 498 | while self.__filename_online == filename: |
|
480 | 499 | print('waiting %d seconds to get a new file...'%(self.__waitForNewFile)) |
|
481 | 500 | if wait == 5: |
|
482 | 501 | self.flagNoMoreFiles = 1 |
|
483 | 502 | return 0 |
|
484 | 503 | sleep(self.__waitForNewFile) |
|
485 | 504 | self.__selectDataForTimes(online=True) |
|
486 | 505 | filename = self.filenameList[0] |
|
487 | 506 | wait += 1 |
|
488 | 507 | |
|
489 | 508 | self.__filename_online = filename |
|
490 | 509 | |
|
491 | 510 | self.amisrFilePointer = h5py.File(filename,'r') |
|
492 | 511 | self.flagIsNewFile = 1 |
|
493 | 512 | self.filename = filename |
|
494 | 513 | print("Setting the file: %s"%self.filename) |
|
495 | 514 | return 1 |
|
496 | 515 | |
|
497 | 516 | |
|
498 | 517 | def readData(self): |
|
499 | 518 | buffer = self.amisrFilePointer.get('Raw11/Data/Samples/Data') |
|
500 | 519 | re = buffer[:,:,:,0] |
|
501 | 520 | im = buffer[:,:,:,1] |
|
502 | 521 | dataset = re + im*1j |
|
503 | 522 | |
|
504 | 523 | self.radacTime = self.amisrFilePointer.get('Raw11/Data/RadacHeader/RadacTime') |
|
505 | 524 | timeset = self.radacTime[:,0] |
|
506 | 525 | |
|
507 | 526 | return dataset,timeset |
|
508 | 527 | |
|
509 | 528 | def reshapeData(self): |
|
510 | 529 | #print(self.beamCodeByPulse, self.beamCode, self.nblocks, self.nprofiles, self.nsa) |
|
511 | 530 | channels = self.beamCodeByPulse[0,:] |
|
512 | 531 | nchan = self.nchannels |
|
513 | 532 | #self.newProfiles = self.nprofiles/nchan #must be defined on filljroheader |
|
514 | 533 | nblocks = self.nblocks |
|
515 | 534 | nsamples = self.nsa |
|
516 | 535 | #print("Channels: ",self.nChannels) |
|
517 | 536 | #Dimensions : nChannels, nProfiles, nSamples |
|
518 | 537 | new_block = numpy.empty((nblocks, nchan, numpy.int_(self.newProfiles), nsamples), dtype="complex64") |
|
519 | 538 | ############################################ |
|
520 | 539 | profPerCH = int(self.profPerBlockRAW / (self.nFFT* self.nChannels)) |
|
521 | 540 | #profPerCH = int(self.profPerBlockRAW / self.nChannels) |
|
522 | 541 | for thisChannel in range(nchan): |
|
523 | 542 | |
|
543 | ich = thisChannel | |
|
524 | 544 | |
|
525 |
idx_ch = [self.nFFT*( |
|
|
545 | idx_ch = [self.nFFT*(ich + nchan*k) for k in range(profPerCH)] | |
|
526 | 546 | #print(idx_ch) |
|
527 | 547 | if self.nFFT > 1: |
|
528 | 548 | aux = [numpy.arange(i, i+self.nFFT) for i in idx_ch] |
|
529 | 549 | idx_ch = None |
|
530 | 550 | idx_ch =aux |
|
531 | 551 | idx_ch = numpy.array(idx_ch, dtype=int).flatten() |
|
532 | 552 | else: |
|
533 | 553 | idx_ch = numpy.array(idx_ch, dtype=int) |
|
534 | 554 | |
|
535 |
#print( |
|
|
536 |
#print(numpy.where(channels==self.beamCode[ |
|
|
537 |
#new_block[:, |
|
|
538 |
new_block[:, |
|
|
555 | #print(ich,profPerCH,idx_ch) | |
|
556 | #print(numpy.where(channels==self.beamCode[ich])[0]) | |
|
557 | #new_block[:,ich,:,:] = self.dataset[:,numpy.where(channels==self.beamCode[ich])[0],:] | |
|
558 | new_block[:,ich,:,:] = self.dataset[:,idx_ch,:] | |
|
539 | 559 | |
|
540 | 560 | new_block = numpy.transpose(new_block, (1,0,2,3)) |
|
541 | 561 | new_block = numpy.reshape(new_block, (nchan,-1, nsamples)) |
|
542 | ||
|
562 | if self.flagAsync: | |
|
563 | new_block = numpy.roll(new_block, self.shiftChannels, axis=0) | |
|
543 | 564 | return new_block |
|
544 | 565 | |
|
545 | 566 | def updateIndexes(self): |
|
546 | 567 | |
|
547 | 568 | pass |
|
548 | 569 | |
|
549 | 570 | def fillJROHeader(self): |
|
550 | 571 | |
|
551 | 572 | #fill radar controller header |
|
552 | 573 | |
|
553 | 574 | #fill system header |
|
554 | 575 | self.dataOut.systemHeaderObj = SystemHeader(nSamples=self.__nSamples, |
|
555 | 576 | nProfiles=self.newProfiles, |
|
556 | 577 | nChannels=len(self.__channelList), |
|
557 | 578 | adcResolution=14, |
|
558 | 579 | pciDioBusWidth=32) |
|
559 | 580 | |
|
560 | 581 | self.dataOut.type = "Voltage" |
|
561 | 582 | self.dataOut.data = None |
|
562 | 583 | self.dataOut.dtype = numpy.dtype([('real','<i8'),('imag','<i8')]) |
|
563 | 584 | # self.dataOut.nChannels = 0 |
|
564 | 585 | |
|
565 | 586 | # self.dataOut.nHeights = 0 |
|
566 | 587 | |
|
567 | 588 | self.dataOut.nProfiles = self.newProfiles*self.nblocks |
|
568 | 589 | #self.dataOut.heightList = self.__firstHeigth + numpy.arange(self.__nSamples, dtype = numpy.float)*self.__deltaHeigth |
|
569 | 590 | ranges = numpy.reshape(self.rangeFromFile[()],(-1)) |
|
570 | 591 | self.dataOut.heightList = ranges/1000.0 #km |
|
571 | 592 | self.dataOut.channelList = self.__channelList |
|
572 | 593 | |
|
573 | 594 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights |
|
574 | 595 | |
|
575 | 596 | # self.dataOut.channelIndexList = None |
|
576 | 597 | |
|
577 | 598 | |
|
578 | self.dataOut.azimuthList = numpy.array(self.azimuthList) | |
|
579 | self.dataOut.elevationList = numpy.array(self.elevationList) | |
|
580 | self.dataOut.codeList = numpy.array(self.beamCode) | |
|
581 | ||
|
599 | #self.dataOut.azimuthList = numpy.roll( numpy.array(self.azimuthList) ,self.shiftChannels) | |
|
600 | #self.dataOut.elevationList = numpy.roll(numpy.array(self.elevationList) ,self.shiftChannels) | |
|
601 | #self.dataOut.codeList = numpy.roll(numpy.array(self.beamCode), self.shiftChannels) | |
|
602 | ||
|
603 | self.dataOut.azimuthList = self.azimuthList | |
|
604 | self.dataOut.elevationList = self.elevationList | |
|
605 | self.dataOut.codeList = self.beamCode | |
|
582 | 606 | |
|
583 | 607 | |
|
584 | 608 | |
|
585 | 609 | #print(self.dataOut.elevationList) |
|
586 | 610 | self.dataOut.flagNoData = True |
|
587 | 611 | |
|
588 | 612 | #Set to TRUE if the data is discontinuous |
|
589 | 613 | self.dataOut.flagDiscontinuousBlock = False |
|
590 | 614 | |
|
591 | 615 | self.dataOut.utctime = None |
|
592 | 616 | |
|
593 | 617 | #self.dataOut.timeZone = -5 #self.__timezone/60 #timezone like jroheader, difference in minutes between UTC and localtime |
|
594 | 618 | if self.timezone == 'lt': |
|
595 | 619 | self.dataOut.timeZone = time.timezone / 60. #get the timezone in minutes |
|
596 | 620 | else: |
|
597 | 621 | self.dataOut.timeZone = 0 #by default time is UTC |
|
598 | 622 | |
|
599 | 623 | self.dataOut.dstFlag = 0 |
|
600 | 624 | self.dataOut.errorCount = 0 |
|
601 | 625 | self.dataOut.nCohInt = 1 |
|
602 | 626 | self.dataOut.flagDecodeData = False #asumo que la data esta decodificada |
|
603 | 627 | self.dataOut.flagDeflipData = False #asumo que la data esta sin flip |
|
604 | 628 | self.dataOut.flagShiftFFT = False |
|
605 | 629 | self.dataOut.ippSeconds = self.ippSeconds |
|
606 | 630 | self.dataOut.ipp = self.__ippKm |
|
607 | 631 | self.dataOut.nCode = self.__nCode |
|
608 | 632 | self.dataOut.code = self.__code |
|
609 | 633 | self.dataOut.nBaud = self.__nBaud |
|
610 | 634 | |
|
611 | 635 | |
|
612 | 636 | self.dataOut.frequency = self.__frequency |
|
613 | 637 | self.dataOut.realtime = self.online |
|
614 | 638 | |
|
615 | 639 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader(ipp=self.__ippKm, |
|
616 | 640 | txA=self.__txAKm, |
|
617 | 641 | txB=0, |
|
618 | 642 | nWindows=1, |
|
619 | 643 | nHeights=self.__nSamples, |
|
620 | 644 | firstHeight=self.__firstHeight, |
|
621 | 645 | codeType=self.__codeType, |
|
622 | 646 | nCode=self.__nCode, nBaud=self.__nBaud, |
|
623 | 647 | code = self.__code, |
|
624 | 648 | nOsamp=self.nOsamp, |
|
625 | 649 | frequency = self.__frequency, |
|
626 | 650 | sampleRate= self.__sampleRate, |
|
627 | 651 | fClock=self.__sampleRate) |
|
628 | 652 | |
|
629 | 653 | |
|
630 | 654 | self.dataOut.radarControllerHeaderObj.heightList = ranges/1000.0 #km |
|
631 | 655 | self.dataOut.radarControllerHeaderObj.heightResolution = self.__deltaHeight |
|
632 | 656 | self.dataOut.radarControllerHeaderObj.rangeIpp = self.__ippKm #km |
|
633 | 657 | self.dataOut.radarControllerHeaderObj.rangeTxA = self.__txA*1e6*.15 #km |
|
634 | 658 | self.dataOut.radarControllerHeaderObj.nChannels = self.nchannels |
|
635 | 659 | self.dataOut.radarControllerHeaderObj.channelList = self.__channelList |
|
636 | 660 | self.dataOut.radarControllerHeaderObj.azimuthList = self.azimuthList |
|
637 | 661 | self.dataOut.radarControllerHeaderObj.elevationList = self.elevationList |
|
638 | 662 | self.dataOut.radarControllerHeaderObj.dtype = "Voltage" |
|
639 | 663 | self.dataOut.ippSeconds = self.ippSeconds |
|
664 | <<<<<<< HEAD | |
|
640 | 665 | self.dataOut.ippFactor = self.nchannels*self.nFFT |
|
666 | ======= | |
|
667 | self.dataOut.ippFactor = self.nFFT | |
|
668 | >>>>>>> 37cccf17c7b80521b59b978cb30e4ab2e6f37fce | |
|
641 | 669 | pass |
|
642 | 670 | |
|
643 | 671 | def readNextFile(self,online=False): |
|
644 | 672 | |
|
645 | 673 | if not(online): |
|
646 | 674 | newFile = self.__setNextFileOffline() |
|
647 | 675 | else: |
|
648 | 676 | newFile = self.__setNextFileOnline() |
|
649 | 677 | |
|
650 | 678 | if not(newFile): |
|
651 | 679 | self.dataOut.error = True |
|
652 | 680 | return 0 |
|
653 | 681 | |
|
654 | 682 | if not self.readAMISRHeader(self.amisrFilePointer): |
|
655 | 683 | self.dataOut.error = True |
|
656 | 684 | return 0 |
|
657 | 685 | |
|
658 | 686 | #self.createBuffers() |
|
659 | 687 | self.fillJROHeader() |
|
660 | 688 | |
|
661 | 689 | #self.__firstFile = False |
|
662 | 690 | |
|
663 | 691 | self.dataset,self.timeset = self.readData() |
|
664 | 692 | |
|
665 | 693 | if self.endDate!=None: |
|
666 | 694 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) |
|
667 | 695 | time_str = self.amisrFilePointer.get('Time/RadacTimeString') |
|
668 | 696 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] |
|
669 | 697 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
670 | 698 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
671 | 699 | if self.timezone == 'lt': |
|
672 | 700 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) |
|
673 | 701 | if (startDateTime_File>endDateTime_Reader): |
|
674 | 702 | self.flag_standby = False |
|
675 | 703 | return 0 |
|
676 | 704 | if self.flag_ignoreFiles and (startDateTime_File >= self.ignStartDateTime and startDateTime_File <= self.ignEndDateTime): |
|
677 | 705 | print("Ignoring...") |
|
678 | 706 | self.flag_standby = True |
|
679 | 707 | return 1 |
|
680 | 708 | self.flag_standby = False |
|
681 | 709 | |
|
682 | 710 | self.jrodataset = self.reshapeData() |
|
683 | 711 | #----self.updateIndexes() |
|
684 | 712 | self.profileIndex = 0 |
|
685 | 713 | |
|
686 | 714 | return 1 |
|
687 | 715 | |
|
688 | 716 | |
|
689 | 717 | def __hasNotDataInBuffer(self): |
|
690 | 718 | if self.profileIndex >= (self.newProfiles*self.nblocks): |
|
691 | 719 | return 1 |
|
692 | 720 | return 0 |
|
693 | 721 | |
|
694 | 722 | |
|
695 | 723 | def getData(self): |
|
696 | 724 | |
|
697 | 725 | if self.flagNoMoreFiles: |
|
698 | 726 | self.dataOut.flagNoData = True |
|
699 | 727 | return 0 |
|
700 | 728 | |
|
701 | 729 | if self.profileIndex >= (self.newProfiles*self.nblocks): # |
|
702 | 730 | #if self.__hasNotDataInBuffer(): |
|
703 | 731 | if not (self.readNextFile(self.online)): |
|
704 | 732 | print("Profile Index break...") |
|
705 | 733 | return 0 |
|
706 | 734 | |
|
707 | 735 | if self.flag_standby: #Standby mode, if files are being ignoring, just return with no error flag |
|
708 | 736 | return 0 |
|
709 | 737 | |
|
710 | 738 | if self.dataset is None: # setear esta condicion cuando no hayan datos por leer |
|
711 | 739 | self.dataOut.flagNoData = True |
|
712 | 740 | print("No more data break...") |
|
713 | 741 | return 0 |
|
714 | 742 | |
|
715 | 743 | #self.dataOut.data = numpy.reshape(self.jrodataset[self.profileIndex,:],(1,-1)) |
|
716 | 744 | |
|
717 | 745 | self.dataOut.data = self.jrodataset[:,self.profileIndex,:] |
|
718 | 746 | |
|
719 | 747 | #print("R_t",self.timeset) |
|
720 | 748 | |
|
721 | 749 | #self.dataOut.utctime = self.jrotimeset[self.profileIndex] |
|
722 | 750 | #verificar basic header de jro data y ver si es compatible con este valor |
|
723 | 751 | #self.dataOut.utctime = self.timeset + (self.profileIndex * self.ippSeconds * self.nchannels) |
|
724 | 752 | indexprof = numpy.mod(self.profileIndex, self.newProfiles) |
|
725 | 753 | indexblock = self.profileIndex/self.newProfiles |
|
726 | 754 | #print (indexblock, indexprof) |
|
727 | 755 | diffUTC = 0 |
|
728 | 756 | t_comp = (indexprof * self.ippSeconds * self.nchannels) + diffUTC # |
|
729 | 757 | |
|
730 | 758 | #print("utc :",indexblock," __ ",t_comp) |
|
731 | 759 | #print(numpy.shape(self.timeset)) |
|
732 | 760 | self.dataOut.utctime = self.timeset[numpy.int_(indexblock)] + t_comp |
|
733 | 761 | #self.dataOut.utctime = self.timeset[self.profileIndex] + t_comp |
|
734 | 762 | |
|
735 | 763 | self.dataOut.profileIndex = self.profileIndex |
|
736 | 764 | #print("N profile:",self.profileIndex,self.newProfiles,self.nblocks,self.dataOut.utctime) |
|
737 | 765 | self.dataOut.flagNoData = False |
|
738 | 766 | # if indexprof == 0: |
|
739 | 767 | # print("kamisr: ",self.dataOut.utctime) |
|
740 | 768 | |
|
741 | 769 | self.profileIndex += 1 |
|
742 | 770 | |
|
743 | 771 | return self.dataOut.data #retorno necesario?? |
|
744 | 772 | |
|
745 | 773 | |
|
746 | 774 | def run(self, **kwargs): |
|
747 | 775 | ''' |
|
748 | 776 | This method will be called many times so here you should put all your code |
|
749 | 777 | ''' |
|
750 | 778 | #print("running kamisr") |
|
751 | 779 | if not self.isConfig: |
|
752 | 780 | self.setup(**kwargs) |
|
753 | 781 | self.isConfig = True |
|
754 | 782 | |
|
755 | 783 | self.getData() |
General Comments 0
You need to be logged in to leave comments.
Login now