@@ -1,836 +1,836 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: dsuarez $ |
|
4 | 4 | $Id: Processor.py 1 2012-11-12 18:56:07Z dsuarez $ |
|
5 | 5 | ''' |
|
6 | 6 | import os |
|
7 | 7 | import numpy |
|
8 | 8 | import datetime |
|
9 | 9 | import time |
|
10 | 10 | |
|
11 | 11 | from jrodata import * |
|
12 | 12 | from jrodataIO import * |
|
13 | 13 | from jroplot import * |
|
14 | 14 | |
|
15 | 15 | class ProcessingUnit: |
|
16 | 16 | |
|
17 | 17 | """ |
|
18 | 18 | Esta es la clase base para el procesamiento de datos. |
|
19 | 19 | |
|
20 | 20 | Contiene el metodo "call" para llamar operaciones. Las operaciones pueden ser: |
|
21 | 21 | - Metodos internos (callMethod) |
|
22 | 22 | - Objetos del tipo Operation (callObject). Antes de ser llamados, estos objetos |
|
23 | 23 | tienen que ser agreagados con el metodo "add". |
|
24 | 24 | |
|
25 | 25 | """ |
|
26 | 26 | # objeto de datos de entrada (Voltage, Spectra o Correlation) |
|
27 | 27 | dataIn = None |
|
28 | 28 | |
|
29 | 29 | # objeto de datos de entrada (Voltage, Spectra o Correlation) |
|
30 | 30 | dataOut = None |
|
31 | 31 | |
|
32 | 32 | |
|
33 | 33 | objectDict = None |
|
34 | 34 | |
|
35 | 35 | def __init__(self): |
|
36 | 36 | |
|
37 | 37 | self.objectDict = {} |
|
38 | 38 | |
|
39 | 39 | def init(self): |
|
40 | 40 | |
|
41 | 41 | raise ValueError, "Not implemented" |
|
42 | 42 | |
|
43 | 43 | def addOperation(self, object, objId): |
|
44 | 44 | |
|
45 | 45 | """ |
|
46 | 46 | Agrega el objeto "object" a la lista de objetos "self.objectList" y retorna el |
|
47 | 47 | identificador asociado a este objeto. |
|
48 | 48 | |
|
49 | 49 | Input: |
|
50 | 50 | |
|
51 | 51 | object : objeto de la clase "Operation" |
|
52 | 52 | |
|
53 | 53 | Return: |
|
54 | 54 | |
|
55 | 55 | objId : identificador del objeto, necesario para ejecutar la operacion |
|
56 | 56 | """ |
|
57 | 57 | |
|
58 | 58 | self.objectDict[objId] = object |
|
59 | 59 | |
|
60 | 60 | return objId |
|
61 | 61 | |
|
62 | 62 | def operation(self, **kwargs): |
|
63 | 63 | |
|
64 | 64 | """ |
|
65 | 65 | Operacion directa sobre la data (dataout.data). Es necesario actualizar los valores de los |
|
66 | 66 | atributos del objeto dataOut |
|
67 | 67 | |
|
68 | 68 | Input: |
|
69 | 69 | |
|
70 | 70 | **kwargs : Diccionario de argumentos de la funcion a ejecutar |
|
71 | 71 | """ |
|
72 | 72 | |
|
73 | 73 | raise ValueError, "ImplementedError" |
|
74 | 74 | |
|
75 | 75 | def callMethod(self, name, **kwargs): |
|
76 | 76 | |
|
77 | 77 | """ |
|
78 | 78 | Ejecuta el metodo con el nombre "name" y con argumentos **kwargs de la propia clase. |
|
79 | 79 | |
|
80 | 80 | Input: |
|
81 | 81 | name : nombre del metodo a ejecutar |
|
82 | 82 | |
|
83 | 83 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. |
|
84 | 84 | |
|
85 | 85 | """ |
|
86 | 86 | if name != 'run': |
|
87 | 87 | |
|
88 | 88 | if name == 'init' and self.dataIn.isEmpty(): |
|
89 | 89 | self.dataOut.flagNoData = True |
|
90 | 90 | return False |
|
91 | 91 | |
|
92 | 92 | if name != 'init' and self.dataOut.isEmpty(): |
|
93 | 93 | return False |
|
94 | 94 | |
|
95 | 95 | methodToCall = getattr(self, name) |
|
96 | 96 | |
|
97 | 97 | methodToCall(**kwargs) |
|
98 | 98 | |
|
99 | 99 | if name != 'run': |
|
100 | 100 | return True |
|
101 | 101 | |
|
102 | 102 | if self.dataOut.isEmpty(): |
|
103 | 103 | return False |
|
104 | 104 | |
|
105 | 105 | return True |
|
106 | 106 | |
|
107 | 107 | def callObject(self, objId, **kwargs): |
|
108 | 108 | |
|
109 | 109 | """ |
|
110 | 110 | Ejecuta la operacion asociada al identificador del objeto "objId" |
|
111 | 111 | |
|
112 | 112 | Input: |
|
113 | 113 | |
|
114 | 114 | objId : identificador del objeto a ejecutar |
|
115 | 115 | |
|
116 | 116 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. |
|
117 | 117 | |
|
118 | 118 | Return: |
|
119 | 119 | |
|
120 | 120 | None |
|
121 | 121 | """ |
|
122 | 122 | |
|
123 | 123 | if self.dataOut.isEmpty(): |
|
124 | 124 | return False |
|
125 | 125 | |
|
126 | 126 | object = self.objectDict[objId] |
|
127 | 127 | |
|
128 | 128 | object.run(self.dataOut, **kwargs) |
|
129 | 129 | |
|
130 | 130 | return True |
|
131 | 131 | |
|
132 | 132 | def call(self, operationConf, **kwargs): |
|
133 | 133 | |
|
134 | 134 | """ |
|
135 | 135 | Return True si ejecuta la operacion "operationConf.name" con los |
|
136 | 136 | argumentos "**kwargs". False si la operacion no se ha ejecutado. |
|
137 | 137 | La operacion puede ser de dos tipos: |
|
138 | 138 | |
|
139 | 139 | 1. Un metodo propio de esta clase: |
|
140 | 140 | |
|
141 | 141 | operation.type = "self" |
|
142 | 142 | |
|
143 | 143 | 2. El metodo "run" de un objeto del tipo Operation o de un derivado de ella: |
|
144 | 144 | operation.type = "other". |
|
145 | 145 | |
|
146 | 146 | Este objeto de tipo Operation debe de haber sido agregado antes con el metodo: |
|
147 | 147 | "addOperation" e identificado con el operation.id |
|
148 | 148 | |
|
149 | 149 | |
|
150 | 150 | con el id de la operacion. |
|
151 | 151 | |
|
152 | 152 | Input: |
|
153 | 153 | |
|
154 | 154 | Operation : Objeto del tipo operacion con los atributos: name, type y id. |
|
155 | 155 | |
|
156 | 156 | """ |
|
157 | 157 | |
|
158 | 158 | if operationConf.type == 'self': |
|
159 | 159 | sts = self.callMethod(operationConf.name, **kwargs) |
|
160 | 160 | |
|
161 | 161 | if operationConf.type == 'other': |
|
162 | 162 | sts = self.callObject(operationConf.id, **kwargs) |
|
163 | 163 | |
|
164 | 164 | return sts |
|
165 | 165 | |
|
166 | 166 | def setInput(self, dataIn): |
|
167 | 167 | |
|
168 | 168 | self.dataIn = dataIn |
|
169 | 169 | |
|
170 | 170 | def getOutput(self): |
|
171 | 171 | |
|
172 | 172 | return self.dataOut |
|
173 | 173 | |
|
174 | 174 | class Operation(): |
|
175 | 175 | |
|
176 | 176 | """ |
|
177 | 177 | Clase base para definir las operaciones adicionales que se pueden agregar a la clase ProcessingUnit |
|
178 | 178 | y necesiten acumular informacion previa de los datos a procesar. De preferencia usar un buffer de |
|
179 | 179 | acumulacion dentro de esta clase |
|
180 | 180 | |
|
181 | 181 | Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer) |
|
182 | 182 | |
|
183 | 183 | """ |
|
184 | 184 | |
|
185 | 185 | __buffer = None |
|
186 | 186 | __isConfig = False |
|
187 | 187 | |
|
188 | 188 | def __init__(self): |
|
189 | 189 | |
|
190 | 190 | pass |
|
191 | 191 | |
|
192 | 192 | def run(self, dataIn, **kwargs): |
|
193 | 193 | |
|
194 | 194 | """ |
|
195 | 195 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los atributos del objeto dataIn. |
|
196 | 196 | |
|
197 | 197 | Input: |
|
198 | 198 | |
|
199 | 199 | dataIn : objeto del tipo JROData |
|
200 | 200 | |
|
201 | 201 | Return: |
|
202 | 202 | |
|
203 | 203 | None |
|
204 | 204 | |
|
205 | 205 | Affected: |
|
206 | 206 | __buffer : buffer de recepcion de datos. |
|
207 | 207 | |
|
208 | 208 | """ |
|
209 | 209 | |
|
210 | 210 | raise ValueError, "ImplementedError" |
|
211 | 211 | |
|
212 | 212 | class VoltageProc(ProcessingUnit): |
|
213 | 213 | |
|
214 | 214 | |
|
215 | 215 | def __init__(self): |
|
216 | 216 | |
|
217 | 217 | self.objectDict = {} |
|
218 | 218 | self.dataOut = Voltage() |
|
219 | 219 | |
|
220 | 220 | def init(self): |
|
221 | 221 | |
|
222 | 222 | self.dataOut.copy(self.dataIn) |
|
223 | 223 | # No necesita copiar en cada init() los atributos de dataIn |
|
224 | 224 | # la copia deberia hacerse por cada nuevo bloque de datos |
|
225 | 225 | |
|
226 | 226 | def selectChannels(self, channelList): |
|
227 | 227 | |
|
228 | 228 | channelIndexList = [] |
|
229 | 229 | |
|
230 | 230 | for channel in channelList: |
|
231 | 231 | index = self.dataOut.channelList.index(channel) |
|
232 | 232 | channelIndexList.append(index) |
|
233 | 233 | |
|
234 | 234 | self.selectChannelsByIndex(channelIndexList) |
|
235 | 235 | |
|
236 | 236 | def selectChannelsByIndex(self, channelIndexList): |
|
237 | 237 | """ |
|
238 | 238 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
239 | 239 | |
|
240 | 240 | Input: |
|
241 | 241 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
242 | 242 | |
|
243 | 243 | Affected: |
|
244 | 244 | self.dataOut.data |
|
245 | 245 | self.dataOut.channelIndexList |
|
246 | 246 | self.dataOut.nChannels |
|
247 | 247 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
248 | 248 | self.dataOut.systemHeaderObj.numChannels |
|
249 | 249 | self.dataOut.m_ProcessingHeader.blockSize |
|
250 | 250 | |
|
251 | 251 | Return: |
|
252 | 252 | None |
|
253 | 253 | """ |
|
254 | 254 | |
|
255 | 255 | for channelIndex in channelIndexList: |
|
256 | 256 | if channelIndex not in self.dataOut.channelIndexList: |
|
257 | 257 | print channelIndexList |
|
258 | 258 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
259 | 259 | |
|
260 | 260 | nChannels = len(channelIndexList) |
|
261 | 261 | |
|
262 | 262 | data = self.dataOut.data[channelIndexList,:] |
|
263 | 263 | |
|
264 | 264 | self.dataOut.data = data |
|
265 | 265 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
266 | 266 | # self.dataOut.nChannels = nChannels |
|
267 | 267 | |
|
268 | 268 | return 1 |
|
269 | 269 | |
|
270 | 270 | class CohInt(Operation): |
|
271 | 271 | |
|
272 | 272 | __profIndex = 0 |
|
273 | 273 | __withOverapping = False |
|
274 | 274 | |
|
275 | 275 | __byTime = False |
|
276 | 276 | __initime = None |
|
277 | 277 | __lastdatatime = None |
|
278 | 278 | __integrationtime = None |
|
279 | 279 | |
|
280 | 280 | __buffer = None |
|
281 | 281 | |
|
282 | 282 | __dataReady = False |
|
283 | 283 | |
|
284 | 284 | n = None |
|
285 | 285 | |
|
286 | 286 | |
|
287 | 287 | def __init__(self): |
|
288 | 288 | |
|
289 | 289 | self.__isConfig = False |
|
290 | 290 | |
|
291 | 291 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
292 | 292 | """ |
|
293 | 293 | Set the parameters of the integration class. |
|
294 | 294 | |
|
295 | 295 | Inputs: |
|
296 | 296 | |
|
297 | 297 | n : Number of coherent integrations |
|
298 | 298 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
299 | 299 | overlapping : |
|
300 | 300 | |
|
301 | 301 | """ |
|
302 | 302 | |
|
303 | 303 | self.__initime = None |
|
304 | 304 | self.__lastdatatime = 0 |
|
305 | 305 | self.__buffer = None |
|
306 | 306 | self.__dataReady = False |
|
307 | 307 | |
|
308 | 308 | |
|
309 | 309 | if n == None and timeInterval == None: |
|
310 | 310 | raise ValueError, "n or timeInterval should be specified ..." |
|
311 | 311 | |
|
312 | 312 | if n != None: |
|
313 | 313 | self.n = n |
|
314 | 314 | self.__byTime = False |
|
315 | 315 | else: |
|
316 | 316 | self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line |
|
317 | 317 | self.n = 9999 |
|
318 | 318 | self.__byTime = True |
|
319 | 319 | |
|
320 | 320 | if overlapping: |
|
321 | 321 | self.__withOverapping = True |
|
322 | 322 | self.__buffer = None |
|
323 | 323 | else: |
|
324 | 324 | self.__withOverapping = False |
|
325 | 325 | self.__buffer = 0 |
|
326 | 326 | |
|
327 | 327 | self.__profIndex = 0 |
|
328 | 328 | |
|
329 | 329 | def putData(self, data): |
|
330 | 330 | |
|
331 | 331 | """ |
|
332 | 332 | Add a profile to the __buffer and increase in one the __profileIndex |
|
333 | 333 | |
|
334 | 334 | """ |
|
335 | 335 | |
|
336 | 336 | if not self.__withOverapping: |
|
337 | 337 | self.__buffer += data.copy() |
|
338 | 338 | self.__profIndex += 1 |
|
339 | 339 | return |
|
340 | 340 | |
|
341 | 341 | #Overlapping data |
|
342 | 342 | nChannels, nHeis = data.shape |
|
343 | 343 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
344 | 344 | |
|
345 | 345 | #If the buffer is empty then it takes the data value |
|
346 | 346 | if self.__buffer == None: |
|
347 | 347 | self.__buffer = data |
|
348 | 348 | self.__profIndex += 1 |
|
349 | 349 | return |
|
350 | 350 | |
|
351 | 351 | #If the buffer length is lower than n then stakcing the data value |
|
352 | 352 | if self.__profIndex < self.n: |
|
353 | 353 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
354 | 354 | self.__profIndex += 1 |
|
355 | 355 | return |
|
356 | 356 | |
|
357 | 357 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
358 | 358 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
359 | 359 | self.__buffer[self.n-1] = data |
|
360 | 360 | self.__profIndex = self.n |
|
361 | 361 | return |
|
362 | 362 | |
|
363 | 363 | |
|
364 | 364 | def pushData(self): |
|
365 | 365 | """ |
|
366 | 366 | Return the sum of the last profiles and the profiles used in the sum. |
|
367 | 367 | |
|
368 | 368 | Affected: |
|
369 | 369 | |
|
370 | 370 | self.__profileIndex |
|
371 | 371 | |
|
372 | 372 | """ |
|
373 | 373 | |
|
374 | 374 | if not self.__withOverapping: |
|
375 | 375 | data = self.__buffer |
|
376 | 376 | n = self.__profIndex |
|
377 | 377 | |
|
378 | 378 | self.__buffer = 0 |
|
379 | 379 | self.__profIndex = 0 |
|
380 | 380 | |
|
381 | 381 | return data, n |
|
382 | 382 | |
|
383 | 383 | #Integration with Overlapping |
|
384 | 384 | data = numpy.sum(self.__buffer, axis=0) |
|
385 | 385 | n = self.__profIndex |
|
386 | 386 | |
|
387 | 387 | return data, n |
|
388 | 388 | |
|
389 | 389 | def byProfiles(self, data): |
|
390 | 390 | |
|
391 | 391 | self.__dataReady = False |
|
392 | 392 | avgdata = None |
|
393 | 393 | n = None |
|
394 | 394 | |
|
395 | 395 | self.putData(data) |
|
396 | 396 | |
|
397 | 397 | if self.__profIndex == self.n: |
|
398 | 398 | |
|
399 | 399 | avgdata, n = self.pushData() |
|
400 | 400 | self.__dataReady = True |
|
401 | 401 | |
|
402 | 402 | return avgdata |
|
403 | 403 | |
|
404 | 404 | def byTime(self, data, datatime): |
|
405 | 405 | |
|
406 | 406 | self.__dataReady = False |
|
407 | 407 | avgdata = None |
|
408 | 408 | n = None |
|
409 | 409 | |
|
410 | 410 | self.putData(data) |
|
411 | 411 | |
|
412 | 412 | if (datatime - self.__initime) >= self.__integrationtime: |
|
413 | 413 | avgdata, n = self.pushData() |
|
414 | 414 | self.n = n |
|
415 | 415 | self.__dataReady = True |
|
416 | 416 | |
|
417 | 417 | return avgdata |
|
418 | 418 | |
|
419 | 419 | def integrate(self, data, datatime=None): |
|
420 | 420 | |
|
421 | 421 | if self.__initime == None: |
|
422 | 422 | self.__initime = datatime |
|
423 | 423 | |
|
424 | 424 | if self.__byTime: |
|
425 | 425 | avgdata = self.byTime(data, datatime) |
|
426 | 426 | else: |
|
427 | 427 | avgdata = self.byProfiles(data) |
|
428 | 428 | |
|
429 | 429 | |
|
430 | 430 | self.__lastdatatime = datatime |
|
431 | 431 | |
|
432 | 432 | if avgdata == None: |
|
433 | 433 | return None, None |
|
434 | 434 | |
|
435 | 435 | avgdatatime = self.__initime |
|
436 | 436 | |
|
437 | 437 | deltatime = datatime -self.__lastdatatime |
|
438 | 438 | |
|
439 | 439 | if not self.__withOverapping: |
|
440 | 440 | self.__initime = datatime |
|
441 | 441 | else: |
|
442 | 442 | self.__initime += deltatime |
|
443 | 443 | |
|
444 | 444 | return avgdata, avgdatatime |
|
445 | 445 | |
|
446 | 446 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
447 | 447 | |
|
448 | 448 | if not self.__isConfig: |
|
449 | 449 | self.setup(n, timeInterval, overlapping) |
|
450 | 450 | self.__isConfig = True |
|
451 | 451 | |
|
452 | 452 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
453 | 453 | |
|
454 | 454 | # dataOut.timeInterval *= n |
|
455 | 455 | dataOut.flagNoData = True |
|
456 | 456 | |
|
457 | 457 | if self.__dataReady: |
|
458 | 458 | dataOut.data = avgdata |
|
459 | 459 | dataOut.nCohInt *= self.n |
|
460 | 460 | dataOut.utctime = avgdatatime |
|
461 | 461 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
462 | 462 | dataOut.flagNoData = False |
|
463 | 463 | |
|
464 | 464 | |
|
465 | 465 | class SpectraProc(ProcessingUnit): |
|
466 | 466 | |
|
467 | 467 | def __init__(self): |
|
468 | 468 | |
|
469 | 469 | self.objectDict = {} |
|
470 | 470 | self.buffer = None |
|
471 | 471 | self.firstdatatime = None |
|
472 | 472 | self.profIndex = 0 |
|
473 | 473 | self.dataOut = Spectra() |
|
474 | 474 | |
|
475 | 475 | def __updateObjFromInput(self): |
|
476 | 476 | |
|
477 | 477 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
478 | 478 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
479 | 479 | self.dataOut.channelList = self.dataIn.channelList |
|
480 | 480 | self.dataOut.heightList = self.dataIn.heightList |
|
481 | 481 | self.dataOut.dtype = self.dataIn.dtype |
|
482 | 482 | self.dataOut.nHeights = self.dataIn.nHeights |
|
483 | 483 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
484 | 484 | self.dataOut.nBaud = self.dataIn.nBaud |
|
485 | 485 | self.dataOut.nCode = self.dataIn.nCode |
|
486 | 486 | self.dataOut.code = self.dataIn.code |
|
487 | 487 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
488 | 488 | # self.dataOut.channelIndexList = self.dataIn.channelIndexList |
|
489 | 489 | self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock |
|
490 | 490 | self.dataOut.utctime = self.firstdatatime |
|
491 | 491 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
492 | 492 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
493 | 493 | self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT |
|
494 | 494 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
495 | 495 | self.dataOut.nIncohInt = 1 |
|
496 | 496 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
497 | 497 | self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nFFTPoints |
|
498 | 498 | |
|
499 | 499 | def __getFft(self): |
|
500 | 500 | """ |
|
501 | 501 | Convierte valores de Voltaje a Spectra |
|
502 | 502 | |
|
503 | 503 | Affected: |
|
504 | 504 | self.dataOut.data_spc |
|
505 | 505 | self.dataOut.data_cspc |
|
506 | 506 | self.dataOut.data_dc |
|
507 | 507 | self.dataOut.heightList |
|
508 | 508 | self.dataOut.m_BasicHeader |
|
509 | 509 | self.dataOut.m_ProcessingHeader |
|
510 | 510 | self.dataOut.radarControllerHeaderObj |
|
511 | 511 | self.dataOut.systemHeaderObj |
|
512 | 512 | self.profIndex |
|
513 | 513 | self.buffer |
|
514 | 514 | self.dataOut.flagNoData |
|
515 | 515 | self.dataOut.dtype |
|
516 | 516 | self.dataOut.nPairs |
|
517 | 517 | self.dataOut.nChannels |
|
518 | 518 | self.dataOut.nProfiles |
|
519 | 519 | self.dataOut.systemHeaderObj.numChannels |
|
520 | 520 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
521 | 521 | self.dataOut.m_ProcessingHeader.profilesPerBlock |
|
522 | 522 | self.dataOut.m_ProcessingHeader.numHeights |
|
523 | 523 | self.dataOut.m_ProcessingHeader.spectraComb |
|
524 | 524 | self.dataOut.m_ProcessingHeader.shif_fft |
|
525 | 525 | """ |
|
526 | 526 | fft_volt = numpy.fft.fft(self.buffer,axis=1) |
|
527 | 527 | dc = fft_volt[:,0,:] |
|
528 | 528 | |
|
529 | 529 | #calculo de self-spectra |
|
530 | 530 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) |
|
531 | 531 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
532 | 532 | spc = spc.real |
|
533 | 533 | |
|
534 | 534 | blocksize = 0 |
|
535 | 535 | blocksize += dc.size |
|
536 | 536 | blocksize += spc.size |
|
537 | 537 | |
|
538 | 538 | cspc = None |
|
539 | 539 | pairIndex = 0 |
|
540 | 540 | if self.dataOut.pairsList != None: |
|
541 | 541 | #calculo de cross-spectra |
|
542 | 542 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
543 | 543 | for pair in self.dataOut.pairsList: |
|
544 | 544 | cspc[pairIndex,:,:] = numpy.abs(fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:])) |
|
545 | 545 | pairIndex += 1 |
|
546 | 546 | blocksize += cspc.size |
|
547 | 547 | |
|
548 | 548 | self.dataOut.data_spc = spc |
|
549 | 549 | self.dataOut.data_cspc = cspc |
|
550 | 550 | self.dataOut.data_dc = dc |
|
551 | 551 | self.dataOut.blockSize = blocksize |
|
552 | 552 | |
|
553 | 553 | def init(self, nFFTPoints=None, pairsList=None): |
|
554 | 554 | |
|
555 | 555 | if self.dataIn.type == "Spectra": |
|
556 | 556 | self.dataOut.copy(self.dataIn) |
|
557 | 557 | return |
|
558 | 558 | |
|
559 | 559 | if self.dataIn.type == "Voltage": |
|
560 | 560 | |
|
561 | 561 | if nFFTPoints == None: |
|
562 | 562 | raise ValueError, "This SpectraProc.setup() need nFFTPoints input variable" |
|
563 | 563 | |
|
564 | 564 | if pairsList == None: |
|
565 | 565 | nPairs = 0 |
|
566 | 566 | else: |
|
567 | 567 | nPairs = len(pairsList) |
|
568 | 568 | |
|
569 | 569 | self.dataOut.nFFTPoints = nFFTPoints |
|
570 | 570 | self.dataOut.pairsList = pairsList |
|
571 | 571 | self.dataOut.nPairs = nPairs |
|
572 | 572 | |
|
573 | 573 | if self.buffer == None: |
|
574 | 574 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
575 | 575 | self.dataOut.nFFTPoints, |
|
576 | 576 | self.dataIn.nHeights), |
|
577 | 577 | dtype='complex') |
|
578 | 578 | |
|
579 | 579 | |
|
580 | 580 | self.buffer[:,self.profIndex,:] = self.dataIn.data |
|
581 | 581 | self.profIndex += 1 |
|
582 | 582 | |
|
583 | 583 | if self.firstdatatime == None: |
|
584 | 584 | self.firstdatatime = self.dataIn.utctime |
|
585 | 585 | |
|
586 | 586 | if self.profIndex == self.dataOut.nFFTPoints: |
|
587 | 587 | self.__updateObjFromInput() |
|
588 | 588 | self.__getFft() |
|
589 | 589 | |
|
590 | 590 | self.dataOut.flagNoData = False |
|
591 | 591 | |
|
592 | 592 | self.buffer = None |
|
593 | 593 | self.firstdatatime = None |
|
594 | 594 | self.profIndex = 0 |
|
595 | 595 | |
|
596 | 596 | return |
|
597 | 597 | |
|
598 | 598 | raise ValuError, "The type object %s is not valid"%(self.dataIn.type) |
|
599 | 599 | |
|
600 | 600 | def selectChannels(self, channelList): |
|
601 | 601 | |
|
602 | 602 | channelIndexList = [] |
|
603 | 603 | |
|
604 | 604 | for channel in channelList: |
|
605 | 605 | index = self.dataOut.channelList.index(channel) |
|
606 | 606 | channelIndexList.append(index) |
|
607 | 607 | |
|
608 | 608 | self.selectChannelsByIndex(channelIndexList) |
|
609 | 609 | |
|
610 | 610 | def selectChannelsByIndex(self, channelIndexList): |
|
611 | 611 | """ |
|
612 | 612 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
613 | 613 | |
|
614 | 614 | Input: |
|
615 | 615 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
616 | 616 | |
|
617 | 617 | Affected: |
|
618 | 618 | self.dataOut.data_spc |
|
619 | 619 | self.dataOut.channelIndexList |
|
620 | 620 | self.dataOut.nChannels |
|
621 | 621 | |
|
622 | 622 | Return: |
|
623 | 623 | None |
|
624 | 624 | """ |
|
625 | 625 | |
|
626 | 626 | for channelIndex in channelIndexList: |
|
627 | 627 | if channelIndex not in self.dataOut.channelIndexList: |
|
628 | 628 | print channelIndexList |
|
629 | 629 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
630 | 630 | |
|
631 | 631 | nChannels = len(channelIndexList) |
|
632 | 632 | |
|
633 | 633 | data_spc = self.dataOut.data_spc[channelIndexList,:] |
|
634 | 634 | |
|
635 | 635 | self.dataOut.data_spc = data_spc |
|
636 | 636 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
637 | 637 | # self.dataOut.nChannels = nChannels |
|
638 | 638 | |
|
639 | 639 | return 1 |
|
640 | 640 | |
|
641 | 641 | |
|
642 | 642 | class IncohInt(Operation): |
|
643 | 643 | |
|
644 | 644 | |
|
645 | 645 | __profIndex = 0 |
|
646 | 646 | __withOverapping = False |
|
647 | 647 | |
|
648 | 648 | __byTime = False |
|
649 | 649 | __initime = None |
|
650 | 650 | __lastdatatime = None |
|
651 | 651 | __integrationtime = None |
|
652 | 652 | |
|
653 | 653 | __buffer = None |
|
654 | 654 | |
|
655 | 655 | __dataReady = False |
|
656 | 656 | |
|
657 | 657 | n = None |
|
658 | 658 | |
|
659 | 659 | |
|
660 | 660 | def __init__(self): |
|
661 | 661 | |
|
662 | 662 | self.__isConfig = False |
|
663 | 663 | |
|
664 | 664 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
665 | 665 | """ |
|
666 | 666 | Set the parameters of the integration class. |
|
667 | 667 | |
|
668 | 668 | Inputs: |
|
669 | 669 | |
|
670 | 670 | n : Number of coherent integrations |
|
671 | 671 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
672 | 672 | overlapping : |
|
673 | 673 | |
|
674 | 674 | """ |
|
675 | 675 | |
|
676 | 676 | self.__initime = None |
|
677 | 677 | self.__lastdatatime = 0 |
|
678 | 678 | self.__buffer = None |
|
679 | 679 | self.__dataReady = False |
|
680 | 680 | |
|
681 | 681 | |
|
682 | 682 | if n == None and timeInterval == None: |
|
683 | 683 | raise ValueError, "n or timeInterval should be specified ..." |
|
684 | 684 | |
|
685 | 685 | if n != None: |
|
686 | 686 | self.n = n |
|
687 | 687 | self.__byTime = False |
|
688 | 688 | else: |
|
689 | 689 | self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line |
|
690 | 690 | self.n = 9999 |
|
691 | 691 | self.__byTime = True |
|
692 | 692 | |
|
693 | 693 | if overlapping: |
|
694 | 694 | self.__withOverapping = True |
|
695 | 695 | self.__buffer = None |
|
696 | 696 | else: |
|
697 | 697 | self.__withOverapping = False |
|
698 | 698 | self.__buffer = 0 |
|
699 | 699 | |
|
700 | 700 | self.__profIndex = 0 |
|
701 | 701 | |
|
702 | 702 | def putData(self, data): |
|
703 | 703 | |
|
704 | 704 | """ |
|
705 | 705 | Add a profile to the __buffer and increase in one the __profileIndex |
|
706 | 706 | |
|
707 | 707 | """ |
|
708 | 708 | |
|
709 | 709 | if not self.__withOverapping: |
|
710 | 710 | self.__buffer += data.copy() |
|
711 | 711 | self.__profIndex += 1 |
|
712 | 712 | return |
|
713 | 713 | |
|
714 | 714 | #Overlapping data |
|
715 | 715 | nChannels, nFFTPoints, nHeis = data.shape |
|
716 | 716 | data = numpy.reshape(data, (1, nChannels, nFFTPoints, nHeis)) |
|
717 | 717 | |
|
718 | 718 | #If the buffer is empty then it takes the data value |
|
719 | 719 | if self.__buffer == None: |
|
720 | 720 | self.__buffer = data |
|
721 | 721 | self.__profIndex += 1 |
|
722 | 722 | return |
|
723 | 723 | |
|
724 | 724 | #If the buffer length is lower than n then stakcing the data value |
|
725 | 725 | if self.__profIndex < self.n: |
|
726 | 726 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
727 | 727 | self.__profIndex += 1 |
|
728 | 728 | return |
|
729 | 729 | |
|
730 | 730 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
731 | 731 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
732 | 732 | self.__buffer[self.n-1] = data |
|
733 | 733 | self.__profIndex = self.n |
|
734 | 734 | return |
|
735 | 735 | |
|
736 | 736 | |
|
737 | 737 | def pushData(self): |
|
738 | 738 | """ |
|
739 | 739 | Return the sum of the last profiles and the profiles used in the sum. |
|
740 | 740 | |
|
741 | 741 | Affected: |
|
742 | 742 | |
|
743 | 743 | self.__profileIndex |
|
744 | 744 | |
|
745 | 745 | """ |
|
746 | 746 | |
|
747 | 747 | if not self.__withOverapping: |
|
748 | 748 | data = self.__buffer |
|
749 | 749 | n = self.__profIndex |
|
750 | 750 | |
|
751 | 751 | self.__buffer = 0 |
|
752 | 752 | self.__profIndex = 0 |
|
753 | 753 | |
|
754 | 754 | return data, n |
|
755 | 755 | |
|
756 | 756 | #Integration with Overlapping |
|
757 | 757 | data = numpy.sum(self.__buffer, axis=0) |
|
758 | 758 | n = self.__profIndex |
|
759 | 759 | |
|
760 | 760 | return data, n |
|
761 | 761 | |
|
762 | 762 | def byProfiles(self, data): |
|
763 | 763 | |
|
764 | 764 | self.__dataReady = False |
|
765 | 765 | avgdata = None |
|
766 | 766 | n = None |
|
767 | 767 | |
|
768 | 768 | self.putData(data) |
|
769 | 769 | |
|
770 | 770 | if self.__profIndex == self.n: |
|
771 | 771 | |
|
772 | 772 | avgdata, n = self.pushData() |
|
773 | 773 | self.__dataReady = True |
|
774 | 774 | |
|
775 | 775 | return avgdata |
|
776 | 776 | |
|
777 | 777 | def byTime(self, data, datatime): |
|
778 | 778 | |
|
779 | 779 | self.__dataReady = False |
|
780 | 780 | avgdata = None |
|
781 | 781 | n = None |
|
782 | 782 | |
|
783 | 783 | self.putData(data) |
|
784 | 784 | |
|
785 | 785 | if (datatime - self.__initime) >= self.__integrationtime: |
|
786 | 786 | avgdata, n = self.pushData() |
|
787 | 787 | self.n = n |
|
788 | 788 | self.__dataReady = True |
|
789 | 789 | |
|
790 | 790 | return avgdata |
|
791 | 791 | |
|
792 | 792 | def integrate(self, data, datatime=None): |
|
793 | 793 | |
|
794 | 794 | if self.__initime == None: |
|
795 | 795 | self.__initime = datatime |
|
796 | 796 | |
|
797 | 797 | if self.__byTime: |
|
798 | 798 | avgdata = self.byTime(data, datatime) |
|
799 | 799 | else: |
|
800 | 800 | avgdata = self.byProfiles(data) |
|
801 | 801 | |
|
802 | 802 | |
|
803 | 803 | self.__lastdatatime = datatime |
|
804 | 804 | |
|
805 | 805 | if avgdata == None: |
|
806 | 806 | return None, None |
|
807 | 807 | |
|
808 | 808 | avgdatatime = self.__initime |
|
809 | 809 | |
|
810 | 810 | deltatime = datatime -self.__lastdatatime |
|
811 | 811 | |
|
812 | 812 | if not self.__withOverapping: |
|
813 | 813 | self.__initime = datatime |
|
814 | 814 | else: |
|
815 | 815 | self.__initime += deltatime |
|
816 | 816 | |
|
817 | 817 | return avgdata, avgdatatime |
|
818 | 818 | |
|
819 | 819 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
820 | 820 | |
|
821 | 821 | if not self.__isConfig: |
|
822 | 822 | self.setup(n, timeInterval, overlapping) |
|
823 | 823 | self.__isConfig = True |
|
824 | 824 | |
|
825 | 825 | avgdata, avgdatatime = self.integrate(dataOut.data_spc, dataOut.utctime) |
|
826 | 826 | |
|
827 | 827 | # dataOut.timeInterval *= n |
|
828 | 828 | dataOut.flagNoData = True |
|
829 | 829 | |
|
830 | 830 | if self.__dataReady: |
|
831 | 831 | dataOut.data_spc = avgdata |
|
832 | 832 | dataOut.nIncohInt *= self.n |
|
833 | 833 | dataOut.utctime = avgdatatime |
|
834 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt * dataOut.nIncohInt | |
|
834 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt * dataOut.nIncohInt * dataOut.nFFTPoints | |
|
835 | 835 | dataOut.flagNoData = False |
|
836 | 836 | No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now