@@ -1,1035 +1,1037 | |||
|
1 | 1 | import numpy |
|
2 | 2 | import time |
|
3 | 3 | import os |
|
4 | 4 | import h5py |
|
5 | 5 | import re |
|
6 | 6 | import datetime |
|
7 | 7 | |
|
8 | 8 | from schainpy.model.data.jrodata import * |
|
9 | 9 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
10 | 10 | # from .jroIO_base import * |
|
11 | 11 | from schainpy.model.io.jroIO_base import * |
|
12 | 12 | import schainpy |
|
13 | 13 | from schainpy.utils import log |
|
14 | 14 | |
|
15 | 15 | @MPDecorator |
|
16 | 16 | class ParamReader(JRODataReader,ProcessingUnit): |
|
17 | 17 | ''' |
|
18 | 18 | Reads HDF5 format files |
|
19 | 19 | |
|
20 | 20 | path |
|
21 | 21 | |
|
22 | 22 | startDate |
|
23 | 23 | |
|
24 | 24 | endDate |
|
25 | 25 | |
|
26 | 26 | startTime |
|
27 | 27 | |
|
28 | 28 | endTime |
|
29 | 29 | ''' |
|
30 | 30 | |
|
31 | 31 | ext = ".hdf5" |
|
32 | 32 | |
|
33 | 33 | optchar = "D" |
|
34 | 34 | |
|
35 | 35 | timezone = None |
|
36 | 36 | |
|
37 | 37 | startTime = None |
|
38 | 38 | |
|
39 | 39 | endTime = None |
|
40 | 40 | |
|
41 | 41 | fileIndex = None |
|
42 | 42 | |
|
43 | 43 | utcList = None #To select data in the utctime list |
|
44 | 44 | |
|
45 | 45 | blockList = None #List to blocks to be read from the file |
|
46 | 46 | |
|
47 | 47 | blocksPerFile = None #Number of blocks to be read |
|
48 | 48 | |
|
49 | 49 | blockIndex = None |
|
50 | 50 | |
|
51 | 51 | path = None |
|
52 | 52 | |
|
53 | 53 | #List of Files |
|
54 | 54 | |
|
55 | 55 | filenameList = None |
|
56 | 56 | |
|
57 | 57 | datetimeList = None |
|
58 | 58 | |
|
59 | 59 | #Hdf5 File |
|
60 | 60 | |
|
61 | 61 | listMetaname = None |
|
62 | 62 | |
|
63 | 63 | listMeta = None |
|
64 | 64 | |
|
65 | 65 | listDataname = None |
|
66 | 66 | |
|
67 | 67 | listData = None |
|
68 | 68 | |
|
69 | 69 | listShapes = None |
|
70 | 70 | |
|
71 | 71 | fp = None |
|
72 | 72 | |
|
73 | 73 | #dataOut reconstruction |
|
74 | 74 | |
|
75 | 75 | dataOut = None |
|
76 | 76 | |
|
77 | 77 | |
|
78 | 78 | def __init__(self):#, **kwargs): |
|
79 | 79 | ProcessingUnit.__init__(self) #, **kwargs) |
|
80 | 80 | self.dataOut = Parameters() |
|
81 | 81 | return |
|
82 | 82 | |
|
83 | 83 | def setup(self, **kwargs): |
|
84 | 84 | |
|
85 | 85 | path = kwargs['path'] |
|
86 | 86 | startDate = kwargs['startDate'] |
|
87 | 87 | endDate = kwargs['endDate'] |
|
88 | 88 | startTime = kwargs['startTime'] |
|
89 | 89 | endTime = kwargs['endTime'] |
|
90 | 90 | walk = kwargs['walk'] |
|
91 | 91 | if 'ext' in kwargs: |
|
92 | 92 | ext = kwargs['ext'] |
|
93 | 93 | else: |
|
94 | 94 | ext = '.hdf5' |
|
95 | 95 | if 'timezone' in kwargs: |
|
96 | 96 | self.timezone = kwargs['timezone'] |
|
97 | 97 | else: |
|
98 | 98 | self.timezone = 'lt' |
|
99 | 99 | |
|
100 | 100 | print("[Reading] Searching files in offline mode ...") |
|
101 | 101 | pathList, filenameList = self.searchFilesOffLine(path, startDate=startDate, endDate=endDate, |
|
102 | 102 | startTime=startTime, endTime=endTime, |
|
103 | 103 | ext=ext, walk=walk) |
|
104 | 104 | |
|
105 | 105 | if not(filenameList): |
|
106 | 106 | print("There is no files into the folder: %s"%(path)) |
|
107 | 107 | sys.exit(-1) |
|
108 | 108 | |
|
109 | 109 | self.fileIndex = -1 |
|
110 | 110 | self.startTime = startTime |
|
111 | 111 | self.endTime = endTime |
|
112 | 112 | |
|
113 | 113 | self.__readMetadata() |
|
114 | 114 | |
|
115 | 115 | self.__setNextFileOffline() |
|
116 | 116 | |
|
117 | 117 | return |
|
118 | 118 | |
|
119 | 119 | def searchFilesOffLine(self, |
|
120 | 120 | path, |
|
121 | 121 | startDate=None, |
|
122 | 122 | endDate=None, |
|
123 | 123 | startTime=datetime.time(0,0,0), |
|
124 | 124 | endTime=datetime.time(23,59,59), |
|
125 | 125 | ext='.hdf5', |
|
126 | 126 | walk=True): |
|
127 | 127 | |
|
128 | 128 | expLabel = '' |
|
129 | 129 | self.filenameList = [] |
|
130 | 130 | self.datetimeList = [] |
|
131 | 131 | |
|
132 | 132 | pathList = [] |
|
133 | 133 | |
|
134 | 134 | JRODataObj = JRODataReader() |
|
135 | 135 | dateList, pathList = JRODataObj.findDatafiles(path, startDate, endDate, expLabel, ext, walk, include_path=True) |
|
136 | 136 | |
|
137 | 137 | if dateList == []: |
|
138 | 138 | print("[Reading] No *%s files in %s from %s to %s)"%(ext, path, |
|
139 | 139 | datetime.datetime.combine(startDate,startTime).ctime(), |
|
140 | 140 | datetime.datetime.combine(endDate,endTime).ctime())) |
|
141 | 141 | |
|
142 | 142 | return None, None |
|
143 | 143 | |
|
144 | 144 | if len(dateList) > 1: |
|
145 | 145 | print("[Reading] %d days were found in date range: %s - %s" %(len(dateList), startDate, endDate)) |
|
146 | 146 | else: |
|
147 | 147 | print("[Reading] data was found for the date %s" %(dateList[0])) |
|
148 | 148 | |
|
149 | 149 | filenameList = [] |
|
150 | 150 | datetimeList = [] |
|
151 | 151 | |
|
152 | 152 | #---------------------------------------------------------------------------------- |
|
153 | 153 | |
|
154 | 154 | for thisPath in pathList: |
|
155 | 155 | # thisPath = pathList[pathDict[file]] |
|
156 | 156 | |
|
157 | 157 | fileList = glob.glob1(thisPath, "*%s" %ext) |
|
158 | 158 | fileList.sort() |
|
159 | 159 | |
|
160 | 160 | for file in fileList: |
|
161 | 161 | |
|
162 | 162 | filename = os.path.join(thisPath,file) |
|
163 | 163 | |
|
164 | 164 | if not isFileInDateRange(filename, startDate, endDate): |
|
165 | 165 | continue |
|
166 | 166 | |
|
167 | 167 | thisDatetime = self.__isFileInTimeRange(filename, startDate, endDate, startTime, endTime) |
|
168 | 168 | |
|
169 | 169 | if not(thisDatetime): |
|
170 | 170 | continue |
|
171 | 171 | |
|
172 | 172 | filenameList.append(filename) |
|
173 | 173 | datetimeList.append(thisDatetime) |
|
174 | 174 | |
|
175 | 175 | if not(filenameList): |
|
176 | 176 | print("[Reading] Any file was found int time range %s - %s" %(datetime.datetime.combine(startDate,startTime).ctime(), datetime.datetime.combine(endDate,endTime).ctime())) |
|
177 | 177 | return None, None |
|
178 | 178 | |
|
179 | 179 | print("[Reading] %d file(s) was(were) found in time range: %s - %s" %(len(filenameList), startTime, endTime)) |
|
180 | 180 | print() |
|
181 | 181 | |
|
182 | 182 | self.filenameList = filenameList |
|
183 | 183 | self.datetimeList = datetimeList |
|
184 | 184 | |
|
185 | 185 | return pathList, filenameList |
|
186 | 186 | |
|
187 | 187 | def __isFileInTimeRange(self,filename, startDate, endDate, startTime, endTime): |
|
188 | 188 | |
|
189 | 189 | """ |
|
190 | 190 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. |
|
191 | 191 | |
|
192 | 192 | Inputs: |
|
193 | 193 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) |
|
194 | 194 | |
|
195 | 195 | startDate : fecha inicial del rango seleccionado en formato datetime.date |
|
196 | 196 | |
|
197 | 197 | endDate : fecha final del rango seleccionado en formato datetime.date |
|
198 | 198 | |
|
199 | 199 | startTime : tiempo inicial del rango seleccionado en formato datetime.time |
|
200 | 200 | |
|
201 | 201 | endTime : tiempo final del rango seleccionado en formato datetime.time |
|
202 | 202 | |
|
203 | 203 | Return: |
|
204 | 204 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de |
|
205 | 205 | fecha especificado, de lo contrario retorna False. |
|
206 | 206 | |
|
207 | 207 | Excepciones: |
|
208 | 208 | Si el archivo no existe o no puede ser abierto |
|
209 | 209 | Si la cabecera no puede ser leida. |
|
210 | 210 | |
|
211 | 211 | """ |
|
212 | 212 | |
|
213 | 213 | try: |
|
214 | 214 | fp = h5py.File(filename,'r') |
|
215 | 215 | grp1 = fp['Data'] |
|
216 | 216 | |
|
217 | 217 | except IOError: |
|
218 | 218 | traceback.print_exc() |
|
219 | 219 | raise IOError("The file %s can't be opened" %(filename)) |
|
220 | 220 | #chino rata |
|
221 | 221 | #In case has utctime attribute |
|
222 | 222 | grp2 = grp1['utctime'] |
|
223 | 223 | # thisUtcTime = grp2.value[0] - 5*3600 #To convert to local time |
|
224 | 224 | thisUtcTime = grp2.value[0] |
|
225 | 225 | |
|
226 | 226 | fp.close() |
|
227 | 227 | |
|
228 | 228 | if self.timezone == 'lt': |
|
229 | 229 | thisUtcTime -= 5*3600 |
|
230 | 230 | |
|
231 | 231 | thisDatetime = datetime.datetime.fromtimestamp(thisUtcTime[0] + 5*3600) |
|
232 | 232 | # thisDatetime = datetime.datetime.fromtimestamp(thisUtcTime[0]) |
|
233 | 233 | thisDate = thisDatetime.date() |
|
234 | 234 | thisTime = thisDatetime.time() |
|
235 | 235 | |
|
236 | 236 | startUtcTime = (datetime.datetime.combine(thisDate,startTime)- datetime.datetime(1970, 1, 1)).total_seconds() |
|
237 | 237 | endUtcTime = (datetime.datetime.combine(thisDate,endTime)- datetime.datetime(1970, 1, 1)).total_seconds() |
|
238 | 238 | |
|
239 | 239 | #General case |
|
240 | 240 | # o>>>>>>>>>>>>>><<<<<<<<<<<<<<o |
|
241 | 241 | #-----------o----------------------------o----------- |
|
242 | 242 | # startTime endTime |
|
243 | 243 | |
|
244 | 244 | if endTime >= startTime: |
|
245 | 245 | thisUtcLog = numpy.logical_and(thisUtcTime > startUtcTime, thisUtcTime < endUtcTime) |
|
246 | 246 | if numpy.any(thisUtcLog): #If there is one block between the hours mentioned |
|
247 | 247 | return thisDatetime |
|
248 | 248 | return None |
|
249 | 249 | |
|
250 | 250 | #If endTime < startTime then endTime belongs to the next day |
|
251 | 251 | #<<<<<<<<<<<o o>>>>>>>>>>> |
|
252 | 252 | #-----------o----------------------------o----------- |
|
253 | 253 | # endTime startTime |
|
254 | 254 | |
|
255 | 255 | if (thisDate == startDate) and numpy.all(thisUtcTime < startUtcTime): |
|
256 | 256 | return None |
|
257 | 257 | |
|
258 | 258 | if (thisDate == endDate) and numpy.all(thisUtcTime > endUtcTime): |
|
259 | 259 | return None |
|
260 | 260 | |
|
261 | 261 | if numpy.all(thisUtcTime < startUtcTime) and numpy.all(thisUtcTime > endUtcTime): |
|
262 | 262 | return None |
|
263 | 263 | |
|
264 | 264 | return thisDatetime |
|
265 | 265 | |
|
266 | 266 | def __setNextFileOffline(self): |
|
267 | 267 | |
|
268 | 268 | self.fileIndex += 1 |
|
269 | 269 | idFile = self.fileIndex |
|
270 | 270 | |
|
271 | 271 | if not(idFile < len(self.filenameList)): |
|
272 | 272 | print("No more Files") |
|
273 | 273 | return 0 |
|
274 | 274 | |
|
275 | 275 | filename = self.filenameList[idFile] |
|
276 | 276 | |
|
277 | 277 | filePointer = h5py.File(filename,'r') |
|
278 | 278 | |
|
279 | 279 | self.filename = filename |
|
280 | 280 | |
|
281 | 281 | self.fp = filePointer |
|
282 | 282 | |
|
283 | 283 | print("Setting the file: %s"%self.filename) |
|
284 | 284 | |
|
285 | 285 | # self.__readMetadata() |
|
286 | 286 | self.__setBlockList() |
|
287 | 287 | self.__readData() |
|
288 | 288 | # self.nRecords = self.fp['Data'].attrs['blocksPerFile'] |
|
289 | 289 | # self.nRecords = self.fp['Data'].attrs['nRecords'] |
|
290 | 290 | self.blockIndex = 0 |
|
291 | 291 | return 1 |
|
292 | 292 | |
|
293 | 293 | def __setBlockList(self): |
|
294 | 294 | ''' |
|
295 | 295 | Selects the data within the times defined |
|
296 | 296 | |
|
297 | 297 | self.fp |
|
298 | 298 | self.startTime |
|
299 | 299 | self.endTime |
|
300 | 300 | |
|
301 | 301 | self.blockList |
|
302 | 302 | self.blocksPerFile |
|
303 | 303 | |
|
304 | 304 | ''' |
|
305 | 305 | fp = self.fp |
|
306 | 306 | startTime = self.startTime |
|
307 | 307 | endTime = self.endTime |
|
308 | 308 | |
|
309 | 309 | grp = fp['Data'] |
|
310 | 310 | thisUtcTime = grp['utctime'].value.astype(numpy.float)[0] |
|
311 | 311 | |
|
312 | 312 | #ERROOOOR |
|
313 | 313 | if self.timezone == 'lt': |
|
314 | 314 | thisUtcTime -= 5*3600 |
|
315 | 315 | |
|
316 | 316 | thisDatetime = datetime.datetime.fromtimestamp(thisUtcTime[0] + 5*3600) |
|
317 | 317 | |
|
318 | 318 | thisDate = thisDatetime.date() |
|
319 | 319 | thisTime = thisDatetime.time() |
|
320 | 320 | |
|
321 | 321 | startUtcTime = (datetime.datetime.combine(thisDate,startTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
322 | 322 | endUtcTime = (datetime.datetime.combine(thisDate,endTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
323 | 323 | |
|
324 | 324 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] |
|
325 | 325 | |
|
326 | 326 | self.blockList = ind |
|
327 | 327 | self.blocksPerFile = len(ind) |
|
328 | 328 | |
|
329 | 329 | return |
|
330 | 330 | |
|
331 | 331 | def __readMetadata(self): |
|
332 | 332 | ''' |
|
333 | 333 | Reads Metadata |
|
334 | 334 | |
|
335 | 335 | self.pathMeta |
|
336 | 336 | |
|
337 | 337 | self.listShapes |
|
338 | 338 | self.listMetaname |
|
339 | 339 | self.listMeta |
|
340 | 340 | |
|
341 | 341 | ''' |
|
342 | 342 | |
|
343 | 343 | # grp = self.fp['Data'] |
|
344 | 344 | # pathMeta = os.path.join(self.path, grp.attrs['metadata']) |
|
345 | 345 | # |
|
346 | 346 | # if pathMeta == self.pathMeta: |
|
347 | 347 | # return |
|
348 | 348 | # else: |
|
349 | 349 | # self.pathMeta = pathMeta |
|
350 | 350 | # |
|
351 | 351 | # filePointer = h5py.File(self.pathMeta,'r') |
|
352 | 352 | # groupPointer = filePointer['Metadata'] |
|
353 | 353 | |
|
354 | 354 | filename = self.filenameList[0] |
|
355 | 355 | |
|
356 | 356 | fp = h5py.File(filename,'r') |
|
357 | 357 | |
|
358 | 358 | gp = fp['Metadata'] |
|
359 | 359 | |
|
360 | 360 | listMetaname = [] |
|
361 | 361 | listMetadata = [] |
|
362 | 362 | for item in list(gp.items()): |
|
363 | 363 | name = item[0] |
|
364 | 364 | |
|
365 | 365 | if name=='array dimensions': |
|
366 | 366 | table = gp[name][:] |
|
367 | 367 | listShapes = {} |
|
368 | 368 | for shapes in table: |
|
369 | 369 | listShapes[shapes[0]] = numpy.array([shapes[1],shapes[2],shapes[3],shapes[4],shapes[5]]) |
|
370 | 370 | else: |
|
371 | 371 | data = gp[name].value |
|
372 | 372 | listMetaname.append(name) |
|
373 | 373 | listMetadata.append(data) |
|
374 | 374 | |
|
375 | 375 | # if name=='type': |
|
376 | 376 | # self.__initDataOut(data) |
|
377 | 377 | |
|
378 | 378 | self.listShapes = listShapes |
|
379 | 379 | self.listMetaname = listMetaname |
|
380 | 380 | self.listMeta = listMetadata |
|
381 | 381 | |
|
382 | 382 | fp.close() |
|
383 | 383 | return |
|
384 | 384 | |
|
385 | 385 | def __readData(self): |
|
386 | 386 | grp = self.fp['Data'] |
|
387 | 387 | listdataname = [] |
|
388 | 388 | listdata = [] |
|
389 | 389 | |
|
390 | 390 | for item in list(grp.items()): |
|
391 | 391 | name = item[0] |
|
392 | 392 | listdataname.append(name) |
|
393 | 393 | |
|
394 | 394 | array = self.__setDataArray(grp[name],self.listShapes[name]) |
|
395 | 395 | listdata.append(array) |
|
396 | 396 | |
|
397 | 397 | self.listDataname = listdataname |
|
398 | 398 | self.listData = listdata |
|
399 | 399 | return |
|
400 | 400 | |
|
401 | 401 | def __setDataArray(self, dataset, shapes): |
|
402 | 402 | |
|
403 | 403 | nDims = shapes[0] |
|
404 | 404 | |
|
405 | 405 | nDim2 = shapes[1] #Dimension 0 |
|
406 | 406 | |
|
407 | 407 | nDim1 = shapes[2] #Dimension 1, number of Points or Parameters |
|
408 | 408 | |
|
409 | 409 | nDim0 = shapes[3] #Dimension 2, number of samples or ranges |
|
410 | 410 | |
|
411 | 411 | mode = shapes[4] #Mode of storing |
|
412 | 412 | |
|
413 | 413 | blockList = self.blockList |
|
414 | 414 | |
|
415 | 415 | blocksPerFile = self.blocksPerFile |
|
416 | 416 | |
|
417 | 417 | #Depending on what mode the data was stored |
|
418 | 418 | if mode == 0: #Divided in channels |
|
419 | 419 | arrayData = dataset.value.astype(numpy.float)[0][blockList] |
|
420 | 420 | if mode == 1: #Divided in parameter |
|
421 | 421 | strds = 'table' |
|
422 | 422 | nDatas = nDim1 |
|
423 | 423 | newShapes = (blocksPerFile,nDim2,nDim0) |
|
424 | 424 | elif mode==2: #Concatenated in a table |
|
425 | 425 | strds = 'table0' |
|
426 | 426 | arrayData = dataset[strds].value |
|
427 | 427 | #Selecting part of the dataset |
|
428 | 428 | utctime = arrayData[:,0] |
|
429 | 429 | u, indices = numpy.unique(utctime, return_index=True) |
|
430 | 430 | |
|
431 | 431 | if blockList.size != indices.size: |
|
432 | 432 | indMin = indices[blockList[0]] |
|
433 | 433 | if blockList[1] + 1 >= indices.size: |
|
434 | 434 | arrayData = arrayData[indMin:,:] |
|
435 | 435 | else: |
|
436 | 436 | indMax = indices[blockList[1] + 1] |
|
437 | 437 | arrayData = arrayData[indMin:indMax,:] |
|
438 | 438 | return arrayData |
|
439 | 439 | |
|
440 | 440 | # One dimension |
|
441 | 441 | if nDims == 0: |
|
442 | 442 | arrayData = dataset.value.astype(numpy.float)[0][blockList] |
|
443 | 443 | |
|
444 | 444 | # Two dimensions |
|
445 | 445 | elif nDims == 2: |
|
446 | 446 | arrayData = numpy.zeros((blocksPerFile,nDim1,nDim0)) |
|
447 | 447 | newShapes = (blocksPerFile,nDim0) |
|
448 | 448 | nDatas = nDim1 |
|
449 | 449 | |
|
450 | 450 | for i in range(nDatas): |
|
451 | 451 | data = dataset[strds + str(i)].value |
|
452 | 452 | arrayData[:,i,:] = data[blockList,:] |
|
453 | 453 | |
|
454 | 454 | # Three dimensions |
|
455 | 455 | else: |
|
456 | 456 | arrayData = numpy.zeros((blocksPerFile,nDim2,nDim1,nDim0)) |
|
457 | 457 | for i in range(nDatas): |
|
458 | 458 | |
|
459 | 459 | data = dataset[strds + str(i)].value |
|
460 | 460 | |
|
461 | 461 | for b in range(blockList.size): |
|
462 | 462 | arrayData[b,:,i,:] = data[:,:,blockList[b]] |
|
463 | 463 | |
|
464 | 464 | return arrayData |
|
465 | 465 | |
|
466 | 466 | def __setDataOut(self): |
|
467 | 467 | listMeta = self.listMeta |
|
468 | 468 | listMetaname = self.listMetaname |
|
469 | 469 | listDataname = self.listDataname |
|
470 | 470 | listData = self.listData |
|
471 | 471 | listShapes = self.listShapes |
|
472 | 472 | |
|
473 | 473 | blockIndex = self.blockIndex |
|
474 | 474 | # blockList = self.blockList |
|
475 | 475 | |
|
476 | 476 | for i in range(len(listMeta)): |
|
477 | 477 | setattr(self.dataOut,listMetaname[i],listMeta[i]) |
|
478 | 478 | |
|
479 | 479 | for j in range(len(listData)): |
|
480 | 480 | nShapes = listShapes[listDataname[j]][0] |
|
481 | 481 | mode = listShapes[listDataname[j]][4] |
|
482 | 482 | if nShapes == 1: |
|
483 | 483 | setattr(self.dataOut,listDataname[j],listData[j][blockIndex]) |
|
484 | 484 | elif nShapes > 1: |
|
485 | 485 | setattr(self.dataOut,listDataname[j],listData[j][blockIndex,:]) |
|
486 | 486 | elif mode==0: |
|
487 | 487 | setattr(self.dataOut,listDataname[j],listData[j][blockIndex]) |
|
488 | 488 | #Mode Meteors |
|
489 | 489 | elif mode ==2: |
|
490 | 490 | selectedData = self.__selectDataMode2(listData[j], blockIndex) |
|
491 | 491 | setattr(self.dataOut, listDataname[j], selectedData) |
|
492 | 492 | return |
|
493 | 493 | |
|
494 | 494 | def __selectDataMode2(self, data, blockIndex): |
|
495 | 495 | utctime = data[:,0] |
|
496 | 496 | aux, indices = numpy.unique(utctime, return_inverse=True) |
|
497 | 497 | selInd = numpy.where(indices == blockIndex)[0] |
|
498 | 498 | selData = data[selInd,:] |
|
499 | 499 | |
|
500 | 500 | return selData |
|
501 | 501 | |
|
502 | 502 | def getData(self): |
|
503 | 503 | |
|
504 | 504 | if self.blockIndex==self.blocksPerFile: |
|
505 | 505 | if not( self.__setNextFileOffline() ): |
|
506 | 506 | self.dataOut.flagNoData = True |
|
507 | 507 | return 0 |
|
508 | 508 | |
|
509 | 509 | self.__setDataOut() |
|
510 | 510 | self.dataOut.flagNoData = False |
|
511 | 511 | |
|
512 | 512 | self.blockIndex += 1 |
|
513 | 513 | |
|
514 | 514 | return |
|
515 | 515 | |
|
516 | 516 | def run(self, **kwargs): |
|
517 | 517 | |
|
518 | 518 | if not(self.isConfig): |
|
519 | 519 | self.setup(**kwargs) |
|
520 | 520 | # self.setObjProperties() |
|
521 | 521 | self.isConfig = True |
|
522 | 522 | |
|
523 | 523 | self.getData() |
|
524 | 524 | |
|
525 | 525 | return |
|
526 | 526 | |
|
527 | 527 | @MPDecorator |
|
528 | 528 | class ParamWriter(Operation): |
|
529 | 529 | ''' |
|
530 | 530 | HDF5 Writer, stores parameters data in HDF5 format files |
|
531 | 531 | |
|
532 | 532 | path: path where the files will be stored |
|
533 | 533 | |
|
534 | 534 | blocksPerFile: number of blocks that will be saved in per HDF5 format file |
|
535 | 535 | |
|
536 | 536 | mode: selects the data stacking mode: '0' channels, '1' parameters, '3' table (for meteors) |
|
537 | 537 | |
|
538 | 538 | metadataList: list of attributes that will be stored as metadata |
|
539 | 539 | |
|
540 | 540 | dataList: list of attributes that will be stores as data |
|
541 | 541 | |
|
542 | 542 | ''' |
|
543 | 543 | |
|
544 | 544 | |
|
545 | 545 | ext = ".hdf5" |
|
546 | 546 | optchar = "D" |
|
547 | 547 | metaoptchar = "M" |
|
548 | 548 | metaFile = None |
|
549 | 549 | filename = None |
|
550 | 550 | path = None |
|
551 | 551 | setFile = None |
|
552 | 552 | fp = None |
|
553 | 553 | grp = None |
|
554 | 554 | ds = None |
|
555 | 555 | firsttime = True |
|
556 | 556 | #Configurations |
|
557 | 557 | blocksPerFile = None |
|
558 | 558 | blockIndex = None |
|
559 | 559 | dataOut = None |
|
560 | 560 | #Data Arrays |
|
561 | 561 | dataList = None |
|
562 | 562 | metadataList = None |
|
563 | 563 | dsList = None #List of dictionaries with dataset properties |
|
564 | 564 | tableDim = None |
|
565 | 565 | dtype = [('arrayName', 'S20'),('nDimensions', 'i'), ('dim2', 'i'), ('dim1', 'i'),('dim0', 'i'),('mode', 'b')] |
|
566 | 566 | currentDay = None |
|
567 | 567 | lastTime = None |
|
568 | setType = None | |
|
568 | 569 | |
|
569 | 570 | def __init__(self): |
|
570 | 571 | |
|
571 | 572 | Operation.__init__(self) |
|
572 | 573 | return |
|
573 | 574 | |
|
574 | 575 | def setup(self, dataOut, path=None, blocksPerFile=10, metadataList=None, dataList=None, mode=None, setType=None): |
|
575 | 576 | self.path = path |
|
576 | 577 | self.blocksPerFile = blocksPerFile |
|
577 | 578 | self.metadataList = metadataList |
|
578 | 579 | self.dataList = dataList |
|
579 | 580 | self.dataOut = dataOut |
|
580 | 581 | self.mode = mode |
|
581 | 582 | if self.mode is not None: |
|
582 | 583 | self.mode = numpy.zeros(len(self.dataList)) + mode |
|
583 | 584 | else: |
|
584 | 585 | self.mode = numpy.ones(len(self.dataList)) |
|
585 | 586 | |
|
586 | 587 | self.setType = setType |
|
587 | 588 | |
|
588 | 589 | arrayDim = numpy.zeros((len(self.dataList),5)) |
|
589 | 590 | |
|
590 | 591 | #Table dimensions |
|
591 | 592 | dtype0 = self.dtype |
|
592 | 593 | tableList = [] |
|
593 | 594 | |
|
594 | 595 | #Dictionary and list of tables |
|
595 | 596 | dsList = [] |
|
596 | 597 | |
|
597 | 598 | for i in range(len(self.dataList)): |
|
598 | 599 | dsDict = {} |
|
599 | 600 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
600 | 601 | dsDict['variable'] = self.dataList[i] |
|
601 | 602 | #--------------------- Conditionals ------------------------ |
|
602 | 603 | #There is no data |
|
603 | 604 | |
|
604 | 605 | if dataAux is None: |
|
605 | 606 | |
|
606 | 607 | return 0 |
|
607 | 608 | |
|
608 | 609 | if isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
|
609 | 610 | dsDict['mode'] = 0 |
|
610 | 611 | dsDict['nDim'] = 0 |
|
611 | 612 | arrayDim[i,0] = 0 |
|
612 | 613 | dsList.append(dsDict) |
|
613 | 614 | |
|
614 | 615 | #Mode 2: meteors |
|
615 | 616 | elif self.mode[i] == 2: |
|
616 | 617 | dsDict['dsName'] = 'table0' |
|
617 | 618 | dsDict['mode'] = 2 # Mode meteors |
|
618 | 619 | dsDict['shape'] = dataAux.shape[-1] |
|
619 | 620 | dsDict['nDim'] = 0 |
|
620 | 621 | dsDict['dsNumber'] = 1 |
|
621 | 622 | arrayDim[i,3] = dataAux.shape[-1] |
|
622 | 623 | arrayDim[i,4] = self.mode[i] #Mode the data was stored |
|
623 | 624 | dsList.append(dsDict) |
|
624 | 625 | |
|
625 | 626 | #Mode 1 |
|
626 | 627 | else: |
|
627 | 628 | arrayDim0 = dataAux.shape #Data dimensions |
|
628 | 629 | arrayDim[i,0] = len(arrayDim0) #Number of array dimensions |
|
629 | 630 | arrayDim[i,4] = self.mode[i] #Mode the data was stored |
|
630 | 631 | strtable = 'table' |
|
631 | 632 | dsDict['mode'] = 1 # Mode parameters |
|
632 | 633 | |
|
633 | 634 | # Three-dimension arrays |
|
634 | 635 | if len(arrayDim0) == 3: |
|
635 | 636 | arrayDim[i,1:-1] = numpy.array(arrayDim0) |
|
636 | 637 | nTables = int(arrayDim[i,2]) |
|
637 | 638 | dsDict['dsNumber'] = nTables |
|
638 | 639 | dsDict['shape'] = arrayDim[i,2:4] |
|
639 | 640 | dsDict['nDim'] = 3 |
|
640 | 641 | |
|
641 | 642 | for j in range(nTables): |
|
642 | 643 | dsDict = dsDict.copy() |
|
643 | 644 | dsDict['dsName'] = strtable + str(j) |
|
644 | 645 | dsList.append(dsDict) |
|
645 | 646 | |
|
646 | 647 | # Two-dimension arrays |
|
647 | 648 | elif len(arrayDim0) == 2: |
|
648 | 649 | arrayDim[i,2:-1] = numpy.array(arrayDim0) |
|
649 | 650 | nTables = int(arrayDim[i,2]) |
|
650 | 651 | dsDict['dsNumber'] = nTables |
|
651 | 652 | dsDict['shape'] = arrayDim[i,3] |
|
652 | 653 | dsDict['nDim'] = 2 |
|
653 | 654 | |
|
654 | 655 | for j in range(nTables): |
|
655 | 656 | dsDict = dsDict.copy() |
|
656 | 657 | dsDict['dsName'] = strtable + str(j) |
|
657 | 658 | dsList.append(dsDict) |
|
658 | 659 | |
|
659 | 660 | # One-dimension arrays |
|
660 | 661 | elif len(arrayDim0) == 1: |
|
661 | 662 | arrayDim[i,3] = arrayDim0[0] |
|
662 | 663 | dsDict['shape'] = arrayDim0[0] |
|
663 | 664 | dsDict['dsNumber'] = 1 |
|
664 | 665 | dsDict['dsName'] = strtable + str(0) |
|
665 | 666 | dsDict['nDim'] = 1 |
|
666 | 667 | dsList.append(dsDict) |
|
667 | 668 | |
|
668 | 669 | table = numpy.array((self.dataList[i],) + tuple(arrayDim[i,:]),dtype = dtype0) |
|
669 | 670 | tableList.append(table) |
|
670 | 671 | |
|
671 | 672 | self.dsList = dsList |
|
672 | 673 | self.tableDim = numpy.array(tableList, dtype = dtype0) |
|
673 | 674 | self.blockIndex = 0 |
|
674 | 675 | timeTuple = time.localtime(dataOut.utctime) |
|
675 | 676 | self.currentDay = timeTuple.tm_yday |
|
676 | 677 | |
|
677 | 678 | def putMetadata(self): |
|
678 | 679 | |
|
679 | 680 | fp = self.createMetadataFile() |
|
680 | 681 | self.writeMetadata(fp) |
|
681 | 682 | fp.close() |
|
682 | 683 | return |
|
683 | 684 | |
|
684 | 685 | def createMetadataFile(self): |
|
685 | 686 | ext = self.ext |
|
686 | 687 | path = self.path |
|
687 | 688 | setFile = self.setFile |
|
688 | 689 | |
|
689 | 690 | timeTuple = time.localtime(self.dataOut.utctime) |
|
690 | 691 | |
|
691 | 692 | subfolder = '' |
|
692 | 693 | fullpath = os.path.join( path, subfolder ) |
|
693 | 694 | |
|
694 | 695 | if not( os.path.exists(fullpath) ): |
|
695 | 696 | os.mkdir(fullpath) |
|
696 | 697 | setFile = -1 #inicializo mi contador de seteo |
|
697 | 698 | |
|
698 | 699 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
699 | 700 | fullpath = os.path.join( path, subfolder ) |
|
700 | 701 | |
|
701 | 702 | if not( os.path.exists(fullpath) ): |
|
702 | 703 | os.mkdir(fullpath) |
|
703 | 704 | setFile = -1 #inicializo mi contador de seteo |
|
704 | 705 | |
|
705 | 706 | else: |
|
706 | 707 | filesList = os.listdir( fullpath ) |
|
707 | 708 | filesList = sorted( filesList, key=str.lower ) |
|
708 | 709 | if len( filesList ) > 0: |
|
709 | 710 | filesList = [k for k in filesList if k.startswith(self.metaoptchar)] |
|
710 | 711 | filen = filesList[-1] |
|
711 | 712 | # el filename debera tener el siguiente formato |
|
712 | 713 | # 0 1234 567 89A BCDE (hex) |
|
713 | 714 | # x YYYY DDD SSS .ext |
|
714 | 715 | if isNumber( filen[8:11] ): |
|
715 | 716 | setFile = int( filen[8:11] ) #inicializo mi contador de seteo al seteo del ultimo file |
|
716 | 717 | else: |
|
717 | 718 | setFile = -1 |
|
718 | 719 | else: |
|
719 | 720 | setFile = -1 #inicializo mi contador de seteo |
|
720 | 721 | |
|
721 | 722 | if self.setType is None: |
|
722 | 723 | setFile += 1 |
|
723 | 724 | file = '%s%4.4d%3.3d%03d%s' % (self.metaoptchar, |
|
724 | 725 | timeTuple.tm_year, |
|
725 | 726 | timeTuple.tm_yday, |
|
726 | 727 | setFile, |
|
727 | 728 | ext ) |
|
728 | 729 | else: |
|
729 | 730 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min |
|
730 | 731 | file = '%s%4.4d%3.3d%04d%s' % (self.metaoptchar, |
|
731 | 732 | timeTuple.tm_year, |
|
732 | 733 | timeTuple.tm_yday, |
|
733 | 734 | setFile, |
|
734 | 735 | ext ) |
|
735 | 736 | |
|
736 | 737 | filename = os.path.join( path, subfolder, file ) |
|
737 | 738 | self.metaFile = file |
|
738 | 739 | #Setting HDF5 File |
|
739 | 740 | fp = h5py.File(filename,'w') |
|
740 | 741 | |
|
741 | 742 | return fp |
|
742 | 743 | |
|
743 | 744 | def writeMetadata(self, fp): |
|
744 | 745 | |
|
745 | 746 | grp = fp.create_group("Metadata") |
|
746 | 747 | grp.create_dataset('array dimensions', data = self.tableDim, dtype = self.dtype) |
|
747 | 748 | |
|
748 | 749 | for i in range(len(self.metadataList)): |
|
749 | 750 | grp.create_dataset(self.metadataList[i], data=getattr(self.dataOut, self.metadataList[i])) |
|
750 | 751 | return |
|
751 | 752 | |
|
752 | 753 | def timeFlag(self): |
|
753 | 754 | currentTime = self.dataOut.utctime |
|
754 | 755 | |
|
755 | 756 | if self.lastTime is None: |
|
756 | 757 | self.lastTime = currentTime |
|
757 | 758 | |
|
758 | 759 | #Day |
|
759 | 760 | timeTuple = time.localtime(currentTime) |
|
760 | 761 | dataDay = timeTuple.tm_yday |
|
761 | 762 | |
|
762 | 763 | #Time |
|
763 | 764 | timeDiff = currentTime - self.lastTime |
|
764 | 765 | |
|
765 | 766 | #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora |
|
766 | 767 | if dataDay != self.currentDay: |
|
767 | 768 | self.currentDay = dataDay |
|
768 | 769 | return True |
|
769 | 770 | elif timeDiff > 3*60*60: |
|
770 | 771 | self.lastTime = currentTime |
|
771 | 772 | return True |
|
772 | 773 | else: |
|
773 | 774 | self.lastTime = currentTime |
|
774 | 775 | return False |
|
775 | 776 | |
|
776 | 777 | def setNextFile(self): |
|
777 | 778 | |
|
778 | 779 | ext = self.ext |
|
779 | 780 | path = self.path |
|
780 | 781 | setFile = self.setFile |
|
781 | 782 | mode = self.mode |
|
782 | 783 | |
|
783 | 784 | timeTuple = time.localtime(self.dataOut.utctime) |
|
784 | 785 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
785 | 786 | |
|
786 | 787 | fullpath = os.path.join( path, subfolder ) |
|
787 | 788 | |
|
788 | 789 | if os.path.exists(fullpath): |
|
789 | 790 | filesList = os.listdir( fullpath ) |
|
790 |
filesList = [k for k in filesList if k |
|
|
791 | filesList = [k for k in filesList if 'M' in k] | |
|
791 | 792 | if len( filesList ) > 0: |
|
792 | 793 | filesList = sorted( filesList, key=str.lower ) |
|
793 | 794 | filen = filesList[-1] |
|
794 | 795 | # el filename debera tener el siguiente formato |
|
795 | 796 | # 0 1234 567 89A BCDE (hex) |
|
796 | 797 | # x YYYY DDD SSS .ext |
|
797 | 798 | if isNumber( filen[8:11] ): |
|
798 | 799 | setFile = int( filen[8:11] ) #inicializo mi contador de seteo al seteo del ultimo file |
|
799 | 800 | else: |
|
800 | 801 | setFile = -1 |
|
801 | 802 | else: |
|
802 | 803 | setFile = -1 #inicializo mi contador de seteo |
|
803 | 804 | else: |
|
804 | 805 | os.makedirs(fullpath) |
|
805 | 806 | setFile = -1 #inicializo mi contador de seteo |
|
806 | 807 | |
|
807 | 808 | if self.setType is None: |
|
808 | 809 | setFile += 1 |
|
809 | 810 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, |
|
810 | 811 | timeTuple.tm_year, |
|
811 | 812 | timeTuple.tm_yday, |
|
812 | 813 | setFile, |
|
813 | 814 | ext ) |
|
814 | 815 | else: |
|
815 | 816 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min |
|
816 | 817 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, |
|
817 | 818 | timeTuple.tm_year, |
|
818 | 819 | timeTuple.tm_yday, |
|
819 | 820 | setFile, |
|
820 | 821 | ext ) |
|
821 | 822 | |
|
822 | 823 | filename = os.path.join( path, subfolder, file ) |
|
823 | 824 | |
|
824 | 825 | #Setting HDF5 File |
|
825 | 826 | fp = h5py.File(filename,'w') |
|
826 | 827 | #write metadata |
|
827 | 828 | self.writeMetadata(fp) |
|
828 | 829 | #Write data |
|
829 | 830 | grp = fp.create_group("Data") |
|
830 | 831 | ds = [] |
|
831 | 832 | data = [] |
|
832 | 833 | dsList = self.dsList |
|
833 | 834 | i = 0 |
|
834 | 835 | while i < len(dsList): |
|
835 | 836 | dsInfo = dsList[i] |
|
836 | 837 | #One-dimension data |
|
837 | 838 | if dsInfo['mode'] == 0: |
|
838 | 839 | ds0 = grp.create_dataset(dsInfo['variable'], (1,1), maxshape=(1,self.blocksPerFile) , chunks = True, dtype=numpy.float64) |
|
839 | 840 | ds.append(ds0) |
|
840 | 841 | data.append([]) |
|
841 | 842 | i += 1 |
|
842 | 843 | continue |
|
843 | 844 | |
|
844 | 845 | elif dsInfo['mode'] == 2: |
|
845 | 846 | grp0 = grp.create_group(dsInfo['variable']) |
|
846 | 847 | ds0 = grp0.create_dataset(dsInfo['dsName'], (1,dsInfo['shape']), data = numpy.zeros((1,dsInfo['shape'])) , maxshape=(None,dsInfo['shape']), chunks=True) |
|
847 | 848 | ds.append(ds0) |
|
848 | 849 | data.append([]) |
|
849 | 850 | i += 1 |
|
850 | 851 | continue |
|
851 | 852 | |
|
852 | 853 | elif dsInfo['mode'] == 1: |
|
853 | 854 | grp0 = grp.create_group(dsInfo['variable']) |
|
854 | 855 | |
|
855 | 856 | for j in range(dsInfo['dsNumber']): |
|
856 | 857 | dsInfo = dsList[i] |
|
857 | 858 | tableName = dsInfo['dsName'] |
|
858 | 859 | |
|
859 | 860 | |
|
860 | 861 | if dsInfo['nDim'] == 3: |
|
861 | 862 | shape = dsInfo['shape'].astype(int) |
|
862 | 863 | ds0 = grp0.create_dataset(tableName, (shape[0],shape[1],1) , data = numpy.zeros((shape[0],shape[1],1)), maxshape = (None,shape[1],None), chunks=True) |
|
863 | 864 | else: |
|
864 | 865 | shape = int(dsInfo['shape']) |
|
865 | 866 | ds0 = grp0.create_dataset(tableName, (1,shape), data = numpy.zeros((1,shape)) , maxshape=(None,shape), chunks=True) |
|
866 | 867 | |
|
867 | 868 | ds.append(ds0) |
|
868 | 869 | data.append([]) |
|
869 | 870 | i += 1 |
|
870 | 871 | |
|
871 | 872 | fp.flush() |
|
872 | 873 | fp.close() |
|
873 | 874 | |
|
874 | 875 | log.log('creating file: {}'.format(filename), 'Writing') |
|
875 | 876 | self.filename = filename |
|
876 | 877 | self.ds = ds |
|
877 | 878 | self.data = data |
|
878 | 879 | self.firsttime = True |
|
879 | 880 | self.blockIndex = 0 |
|
880 | 881 | return |
|
881 | 882 | |
|
882 | 883 | def putData(self): |
|
883 | 884 | |
|
884 | 885 | if self.blockIndex == self.blocksPerFile or self.timeFlag(): |
|
885 | 886 | self.setNextFile() |
|
886 | 887 | |
|
887 | 888 | self.readBlock() |
|
888 | 889 | self.setBlock() #Prepare data to be written |
|
889 | 890 | self.writeBlock() #Write data |
|
890 | 891 | |
|
891 | 892 | return |
|
892 | 893 | |
|
893 | 894 | def readBlock(self): |
|
894 | 895 | |
|
895 | 896 | ''' |
|
896 | 897 | data Array configured |
|
897 | 898 | |
|
898 | 899 | |
|
899 | 900 | self.data |
|
900 | 901 | ''' |
|
901 | 902 | dsList = self.dsList |
|
902 | 903 | ds = self.ds |
|
903 | 904 | #Setting HDF5 File |
|
904 | 905 | fp = h5py.File(self.filename,'r+') |
|
905 | 906 | grp = fp["Data"] |
|
906 | 907 | ind = 0 |
|
907 | 908 | |
|
908 | 909 | while ind < len(dsList): |
|
909 | 910 | dsInfo = dsList[ind] |
|
910 | 911 | |
|
911 | 912 | if dsInfo['mode'] == 0: |
|
912 | 913 | ds0 = grp[dsInfo['variable']] |
|
913 | 914 | ds[ind] = ds0 |
|
914 | 915 | ind += 1 |
|
915 | 916 | else: |
|
916 | 917 | |
|
917 | 918 | grp0 = grp[dsInfo['variable']] |
|
918 | 919 | |
|
919 | 920 | for j in range(dsInfo['dsNumber']): |
|
920 | 921 | dsInfo = dsList[ind] |
|
921 | 922 | ds0 = grp0[dsInfo['dsName']] |
|
922 | 923 | ds[ind] = ds0 |
|
923 | 924 | ind += 1 |
|
924 | 925 | |
|
925 | 926 | self.fp = fp |
|
926 | 927 | self.grp = grp |
|
927 | 928 | self.ds = ds |
|
928 | 929 | |
|
929 | 930 | return |
|
930 | 931 | |
|
931 | 932 | def setBlock(self): |
|
932 | 933 | ''' |
|
933 | 934 | data Array configured |
|
934 | 935 | |
|
935 | 936 | |
|
936 | 937 | self.data |
|
937 | 938 | ''' |
|
938 | 939 | #Creating Arrays |
|
939 | 940 | dsList = self.dsList |
|
940 | 941 | data = self.data |
|
941 | 942 | ind = 0 |
|
942 | 943 | |
|
943 | 944 | while ind < len(dsList): |
|
944 | 945 | dsInfo = dsList[ind] |
|
945 | 946 | dataAux = getattr(self.dataOut, dsInfo['variable']) |
|
946 | 947 | |
|
947 | 948 | mode = dsInfo['mode'] |
|
948 | 949 | nDim = dsInfo['nDim'] |
|
949 | 950 | |
|
950 | 951 | if mode == 0 or mode == 2 or nDim == 1: |
|
951 | 952 | data[ind] = dataAux |
|
952 | 953 | ind += 1 |
|
953 | 954 | # elif nDim == 1: |
|
954 | 955 | # data[ind] = numpy.reshape(dataAux,(numpy.size(dataAux),1)) |
|
955 | 956 | # ind += 1 |
|
956 | 957 | elif nDim == 2: |
|
957 | 958 | for j in range(dsInfo['dsNumber']): |
|
958 | 959 | data[ind] = dataAux[j,:] |
|
959 | 960 | ind += 1 |
|
960 | 961 | elif nDim == 3: |
|
961 | 962 | for j in range(dsInfo['dsNumber']): |
|
962 | 963 | data[ind] = dataAux[:,j,:] |
|
963 | 964 | ind += 1 |
|
964 | 965 | |
|
965 | 966 | self.data = data |
|
966 | 967 | return |
|
967 | 968 | |
|
968 | 969 | def writeBlock(self): |
|
969 | 970 | ''' |
|
970 | 971 | Saves the block in the HDF5 file |
|
971 | 972 | ''' |
|
972 | 973 | dsList = self.dsList |
|
973 | 974 | |
|
974 | 975 | for i in range(len(self.ds)): |
|
975 | 976 | dsInfo = dsList[i] |
|
976 | 977 | nDim = dsInfo['nDim'] |
|
977 | 978 | mode = dsInfo['mode'] |
|
978 | 979 | |
|
979 | 980 | # First time |
|
980 | 981 | if self.firsttime: |
|
981 | 982 | if type(self.data[i]) == numpy.ndarray: |
|
982 | 983 | |
|
983 | 984 | if nDim == 3: |
|
984 | 985 | self.data[i] = self.data[i].reshape((self.data[i].shape[0],self.data[i].shape[1],1)) |
|
985 | 986 | self.ds[i].resize(self.data[i].shape) |
|
986 | 987 | if mode == 2: |
|
987 | 988 | self.ds[i].resize(self.data[i].shape) |
|
988 | 989 | self.ds[i][:] = self.data[i] |
|
989 | 990 | else: |
|
990 | 991 | |
|
991 | 992 | # From second time |
|
992 | 993 | # Meteors! |
|
993 | 994 | if mode == 2: |
|
994 | 995 | dataShape = self.data[i].shape |
|
995 | 996 | dsShape = self.ds[i].shape |
|
996 | 997 | self.ds[i].resize((self.ds[i].shape[0] + dataShape[0],self.ds[i].shape[1])) |
|
997 | 998 | self.ds[i][dsShape[0]:,:] = self.data[i] |
|
998 | 999 | # No dimension |
|
999 | 1000 | elif mode == 0: |
|
1000 | 1001 | self.ds[i].resize((self.ds[i].shape[0], self.ds[i].shape[1] + 1)) |
|
1001 | 1002 | self.ds[i][0,-1] = self.data[i] |
|
1002 | 1003 | # One dimension |
|
1003 | 1004 | elif nDim == 1: |
|
1004 | 1005 | self.ds[i].resize((self.ds[i].shape[0] + 1, self.ds[i].shape[1])) |
|
1005 | 1006 | self.ds[i][-1,:] = self.data[i] |
|
1006 | 1007 | # Two dimension |
|
1007 | 1008 | elif nDim == 2: |
|
1008 | 1009 | self.ds[i].resize((self.ds[i].shape[0] + 1,self.ds[i].shape[1])) |
|
1009 | 1010 | self.ds[i][self.blockIndex,:] = self.data[i] |
|
1010 | 1011 | # Three dimensions |
|
1011 | 1012 | elif nDim == 3: |
|
1012 | 1013 | self.ds[i].resize((self.ds[i].shape[0],self.ds[i].shape[1],self.ds[i].shape[2]+1)) |
|
1013 | 1014 | self.ds[i][:,:,-1] = self.data[i] |
|
1014 | 1015 | |
|
1015 | 1016 | self.firsttime = False |
|
1016 | 1017 | self.blockIndex += 1 |
|
1017 | 1018 | |
|
1018 | 1019 | #Close to save changes |
|
1019 | 1020 | self.fp.flush() |
|
1020 | 1021 | self.fp.close() |
|
1021 | 1022 | return |
|
1022 | 1023 | |
|
1023 | 1024 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, dataList=None, mode=None, setType=None): |
|
1024 | 1025 | |
|
1026 | self.dataOut = dataOut | |
|
1025 | 1027 | if not(self.isConfig): |
|
1026 | 1028 | self.setup(dataOut, path=path, blocksPerFile=blocksPerFile, |
|
1027 | 1029 | metadataList=metadataList, dataList=dataList, mode=mode, |
|
1028 | 1030 | setType=setType) |
|
1029 | 1031 | |
|
1030 | 1032 | self.isConfig = True |
|
1031 | 1033 | self.setNextFile() |
|
1032 | 1034 | |
|
1033 | 1035 | self.putData() |
|
1034 | 1036 | return |
|
1035 | 1037 | No newline at end of file |
@@ -1,678 +1,678 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 2, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | ''' |
|
6 | 6 | import numpy |
|
7 | 7 | |
|
8 | 8 | from schainpy.model.io.jroIO_base import LOCALTIME, JRODataReader, JRODataWriter |
|
9 | 9 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
10 | 10 | from schainpy.model.data.jroheaderIO import PROCFLAG, BasicHeader, SystemHeader, RadarControllerHeader, ProcessingHeader |
|
11 | 11 | from schainpy.model.data.jrodata import Spectra |
|
12 | 12 | from schainpy.utils import log |
|
13 | 13 | |
|
14 | 14 | @MPDecorator |
|
15 | 15 | class SpectraReader(JRODataReader, ProcessingUnit): |
|
16 | 16 | """ |
|
17 | 17 | Esta clase permite leer datos de espectros desde archivos procesados (.pdata). La lectura |
|
18 | 18 | de los datos siempre se realiza por bloques. Los datos leidos (array de 3 dimensiones) |
|
19 | 19 | son almacenados en tres buffer's para el Self Spectra, el Cross Spectra y el DC Channel. |
|
20 | 20 | |
|
21 | 21 | paresCanalesIguales * alturas * perfiles (Self Spectra) |
|
22 | 22 | paresCanalesDiferentes * alturas * perfiles (Cross Spectra) |
|
23 | 23 | canales * alturas (DC Channels) |
|
24 | 24 | |
|
25 | 25 | Esta clase contiene instancias (objetos) de las clases BasicHeader, SystemHeader, |
|
26 | 26 | RadarControllerHeader y Spectra. Los tres primeros se usan para almacenar informacion de la |
|
27 | 27 | cabecera de datos (metadata), y el cuarto (Spectra) para obtener y almacenar un bloque de |
|
28 | 28 | datos desde el "buffer" cada vez que se ejecute el metodo "getData". |
|
29 | 29 | |
|
30 | 30 | Example: |
|
31 | 31 | dpath = "/home/myuser/data" |
|
32 | 32 | |
|
33 | 33 | startTime = datetime.datetime(2010,1,20,0,0,0,0,0,0) |
|
34 | 34 | |
|
35 | 35 | endTime = datetime.datetime(2010,1,21,23,59,59,0,0,0) |
|
36 | 36 | |
|
37 | 37 | readerObj = SpectraReader() |
|
38 | 38 | |
|
39 | 39 | readerObj.setup(dpath, startTime, endTime) |
|
40 | 40 | |
|
41 | 41 | while(True): |
|
42 | 42 | |
|
43 | 43 | readerObj.getData() |
|
44 | 44 | |
|
45 | 45 | print readerObj.data_spc |
|
46 | 46 | |
|
47 | 47 | print readerObj.data_cspc |
|
48 | 48 | |
|
49 | 49 | print readerObj.data_dc |
|
50 | 50 | |
|
51 | 51 | if readerObj.flagNoMoreFiles: |
|
52 | 52 | break |
|
53 | 53 | |
|
54 | 54 | """ |
|
55 | 55 | |
|
56 | 56 | pts2read_SelfSpectra = 0 |
|
57 | 57 | |
|
58 | 58 | pts2read_CrossSpectra = 0 |
|
59 | 59 | |
|
60 | 60 | pts2read_DCchannels = 0 |
|
61 | 61 | |
|
62 | 62 | ext = ".pdata" |
|
63 | 63 | |
|
64 | 64 | optchar = "P" |
|
65 | 65 | |
|
66 | 66 | dataOut = None |
|
67 | 67 | |
|
68 | 68 | nRdChannels = None |
|
69 | 69 | |
|
70 | 70 | nRdPairs = None |
|
71 | 71 | |
|
72 | 72 | rdPairList = [] |
|
73 | 73 | |
|
74 | 74 | def __init__(self):#, **kwargs): |
|
75 | 75 | """ |
|
76 | 76 | Inicializador de la clase SpectraReader para la lectura de datos de espectros. |
|
77 | 77 | |
|
78 | 78 | Inputs: |
|
79 | 79 | dataOut : Objeto de la clase Spectra. Este objeto sera utilizado para |
|
80 | 80 | almacenar un perfil de datos cada vez que se haga un requerimiento |
|
81 | 81 | (getData). El perfil sera obtenido a partir del buffer de datos, |
|
82 | 82 | si el buffer esta vacio se hara un nuevo proceso de lectura de un |
|
83 | 83 | bloque de datos. |
|
84 | 84 | Si este parametro no es pasado se creara uno internamente. |
|
85 | 85 | |
|
86 | 86 | Affected: |
|
87 | 87 | self.dataOut |
|
88 | 88 | |
|
89 | 89 | Return : None |
|
90 | 90 | """ |
|
91 | 91 | |
|
92 | 92 | #Eliminar de la base la herencia |
|
93 | 93 | ProcessingUnit.__init__(self)#, **kwargs) |
|
94 | 94 | |
|
95 | 95 | # self.isConfig = False |
|
96 | 96 | |
|
97 | 97 | self.pts2read_SelfSpectra = 0 |
|
98 | 98 | |
|
99 | 99 | self.pts2read_CrossSpectra = 0 |
|
100 | 100 | |
|
101 | 101 | self.pts2read_DCchannels = 0 |
|
102 | 102 | |
|
103 | 103 | self.datablock = None |
|
104 | 104 | |
|
105 | 105 | self.utc = None |
|
106 | 106 | |
|
107 | 107 | self.ext = ".pdata" |
|
108 | 108 | |
|
109 | 109 | self.optchar = "P" |
|
110 | 110 | |
|
111 | 111 | self.basicHeaderObj = BasicHeader(LOCALTIME) |
|
112 | 112 | |
|
113 | 113 | self.systemHeaderObj = SystemHeader() |
|
114 | 114 | |
|
115 | 115 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
116 | 116 | |
|
117 | 117 | self.processingHeaderObj = ProcessingHeader() |
|
118 | 118 | |
|
119 | 119 | self.online = 0 |
|
120 | 120 | |
|
121 | 121 | self.fp = None |
|
122 | 122 | |
|
123 | 123 | self.idFile = None |
|
124 | 124 | |
|
125 | 125 | self.dtype = None |
|
126 | 126 | |
|
127 | 127 | self.fileSizeByHeader = None |
|
128 | 128 | |
|
129 | 129 | self.filenameList = [] |
|
130 | 130 | |
|
131 | 131 | self.filename = None |
|
132 | 132 | |
|
133 | 133 | self.fileSize = None |
|
134 | 134 | |
|
135 | 135 | self.firstHeaderSize = 0 |
|
136 | 136 | |
|
137 | 137 | self.basicHeaderSize = 24 |
|
138 | 138 | |
|
139 | 139 | self.pathList = [] |
|
140 | 140 | |
|
141 | 141 | self.lastUTTime = 0 |
|
142 | 142 | |
|
143 | 143 | self.maxTimeStep = 30 |
|
144 | 144 | |
|
145 | 145 | self.flagNoMoreFiles = 0 |
|
146 | 146 | |
|
147 | 147 | self.set = 0 |
|
148 | 148 | |
|
149 | 149 | self.path = None |
|
150 | 150 | |
|
151 | 151 | self.delay = 60 #seconds |
|
152 | 152 | |
|
153 | 153 | self.nTries = 3 #quantity tries |
|
154 | 154 | |
|
155 | 155 | self.nFiles = 3 #number of files for searching |
|
156 | 156 | |
|
157 | 157 | self.nReadBlocks = 0 |
|
158 | 158 | |
|
159 | 159 | self.flagIsNewFile = 1 |
|
160 | 160 | |
|
161 | 161 | self.__isFirstTimeOnline = 1 |
|
162 | 162 | |
|
163 | 163 | # self.ippSeconds = 0 |
|
164 | 164 | |
|
165 | 165 | self.flagDiscontinuousBlock = 0 |
|
166 | 166 | |
|
167 | 167 | self.flagIsNewBlock = 0 |
|
168 | 168 | |
|
169 | 169 | self.nTotalBlocks = 0 |
|
170 | 170 | |
|
171 | 171 | self.blocksize = 0 |
|
172 | 172 | |
|
173 | 173 | self.dataOut = self.createObjByDefault() |
|
174 | 174 | |
|
175 | 175 | self.profileIndex = 1 #Always |
|
176 | 176 | |
|
177 | 177 | |
|
178 | 178 | def createObjByDefault(self): |
|
179 | 179 | |
|
180 | 180 | dataObj = Spectra() |
|
181 | 181 | |
|
182 | 182 | return dataObj |
|
183 | 183 | |
|
184 | 184 | def __hasNotDataInBuffer(self): |
|
185 | 185 | return 1 |
|
186 | 186 | |
|
187 | 187 | |
|
188 | 188 | def getBlockDimension(self): |
|
189 | 189 | """ |
|
190 | 190 | Obtiene la cantidad de puntos a leer por cada bloque de datos |
|
191 | 191 | |
|
192 | 192 | Affected: |
|
193 | 193 | self.nRdChannels |
|
194 | 194 | self.nRdPairs |
|
195 | 195 | self.pts2read_SelfSpectra |
|
196 | 196 | self.pts2read_CrossSpectra |
|
197 | 197 | self.pts2read_DCchannels |
|
198 | 198 | self.blocksize |
|
199 | 199 | self.dataOut.nChannels |
|
200 | 200 | self.dataOut.nPairs |
|
201 | 201 | |
|
202 | 202 | Return: |
|
203 | 203 | None |
|
204 | 204 | """ |
|
205 | 205 | self.nRdChannels = 0 |
|
206 | 206 | self.nRdPairs = 0 |
|
207 | 207 | self.rdPairList = [] |
|
208 | 208 | |
|
209 | 209 | for i in range(0, self.processingHeaderObj.totalSpectra*2, 2): |
|
210 | 210 | if self.processingHeaderObj.spectraComb[i] == self.processingHeaderObj.spectraComb[i+1]: |
|
211 | 211 | self.nRdChannels = self.nRdChannels + 1 #par de canales iguales |
|
212 | 212 | else: |
|
213 | 213 | self.nRdPairs = self.nRdPairs + 1 #par de canales diferentes |
|
214 | 214 | self.rdPairList.append((self.processingHeaderObj.spectraComb[i], self.processingHeaderObj.spectraComb[i+1])) |
|
215 | 215 | |
|
216 | 216 | pts2read = self.processingHeaderObj.nHeights * self.processingHeaderObj.profilesPerBlock |
|
217 | 217 | |
|
218 | 218 | self.pts2read_SelfSpectra = int(self.nRdChannels * pts2read) |
|
219 | 219 | self.blocksize = self.pts2read_SelfSpectra |
|
220 | 220 | |
|
221 | 221 | if self.processingHeaderObj.flag_cspc: |
|
222 | 222 | self.pts2read_CrossSpectra = int(self.nRdPairs * pts2read) |
|
223 | 223 | self.blocksize += self.pts2read_CrossSpectra |
|
224 | 224 | |
|
225 | 225 | if self.processingHeaderObj.flag_dc: |
|
226 | 226 | self.pts2read_DCchannels = int(self.systemHeaderObj.nChannels * self.processingHeaderObj.nHeights) |
|
227 | 227 | self.blocksize += self.pts2read_DCchannels |
|
228 | 228 | |
|
229 | 229 | # self.blocksize = self.pts2read_SelfSpectra + self.pts2read_CrossSpectra + self.pts2read_DCchannels |
|
230 | 230 | |
|
231 | 231 | |
|
232 | 232 | def readBlock(self): |
|
233 | 233 | """ |
|
234 | 234 | Lee el bloque de datos desde la posicion actual del puntero del archivo |
|
235 | 235 | (self.fp) y actualiza todos los parametros relacionados al bloque de datos |
|
236 | 236 | (metadata + data). La data leida es almacenada en el buffer y el contador del buffer |
|
237 | 237 | es seteado a 0 |
|
238 | 238 | |
|
239 | 239 | Return: None |
|
240 | 240 | |
|
241 | 241 | Variables afectadas: |
|
242 | 242 | |
|
243 | 243 | self.flagIsNewFile |
|
244 | 244 | self.flagIsNewBlock |
|
245 | 245 | self.nTotalBlocks |
|
246 | 246 | self.data_spc |
|
247 | 247 | self.data_cspc |
|
248 | 248 | self.data_dc |
|
249 | 249 | |
|
250 | 250 | Exceptions: |
|
251 | 251 | Si un bloque leido no es un bloque valido |
|
252 | 252 | """ |
|
253 | 253 | blockOk_flag = False |
|
254 | 254 | fpointer = self.fp.tell() |
|
255 | 255 | |
|
256 | 256 | spc = numpy.fromfile( self.fp, self.dtype[0], self.pts2read_SelfSpectra ) |
|
257 | 257 | spc = spc.reshape( (self.nRdChannels, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) ) #transforma a un arreglo 3D |
|
258 | 258 | |
|
259 | 259 | if self.processingHeaderObj.flag_cspc: |
|
260 | 260 | cspc = numpy.fromfile( self.fp, self.dtype, self.pts2read_CrossSpectra ) |
|
261 | 261 | cspc = cspc.reshape( (self.nRdPairs, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) ) #transforma a un arreglo 3D |
|
262 | 262 | |
|
263 | 263 | if self.processingHeaderObj.flag_dc: |
|
264 | 264 | dc = numpy.fromfile( self.fp, self.dtype, self.pts2read_DCchannels ) #int(self.processingHeaderObj.nHeights*self.systemHeaderObj.nChannels) ) |
|
265 | 265 | dc = dc.reshape( (self.systemHeaderObj.nChannels, self.processingHeaderObj.nHeights) ) #transforma a un arreglo 2D |
|
266 | 266 | |
|
267 | 267 | |
|
268 | 268 | if not self.processingHeaderObj.shif_fft: |
|
269 | 269 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
270 | 270 | shift = int(self.processingHeaderObj.profilesPerBlock/2) |
|
271 | 271 | spc = numpy.roll( spc, shift , axis=2 ) |
|
272 | 272 | |
|
273 | 273 | if self.processingHeaderObj.flag_cspc: |
|
274 | 274 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
275 | 275 | cspc = numpy.roll( cspc, shift, axis=2 ) |
|
276 | 276 | |
|
277 | 277 | #Dimensions : nChannels, nProfiles, nSamples |
|
278 | 278 | spc = numpy.transpose( spc, (0,2,1) ) |
|
279 | 279 | self.data_spc = spc |
|
280 | 280 | |
|
281 | 281 | if self.processingHeaderObj.flag_cspc: |
|
282 | 282 | cspc = numpy.transpose( cspc, (0,2,1) ) |
|
283 | 283 | self.data_cspc = cspc['real'] + cspc['imag']*1j |
|
284 | 284 | else: |
|
285 | 285 | self.data_cspc = None |
|
286 | 286 | |
|
287 | 287 | if self.processingHeaderObj.flag_dc: |
|
288 | 288 | self.data_dc = dc['real'] + dc['imag']*1j |
|
289 | 289 | else: |
|
290 | 290 | self.data_dc = None |
|
291 | 291 | |
|
292 | 292 | self.flagIsNewFile = 0 |
|
293 | 293 | self.flagIsNewBlock = 1 |
|
294 | 294 | |
|
295 | 295 | self.nTotalBlocks += 1 |
|
296 | 296 | self.nReadBlocks += 1 |
|
297 | 297 | |
|
298 | 298 | return 1 |
|
299 | 299 | |
|
300 | 300 | def getFirstHeader(self): |
|
301 | 301 | |
|
302 | 302 | self.getBasicHeader() |
|
303 | 303 | |
|
304 | 304 | self.dataOut.systemHeaderObj = self.systemHeaderObj.copy() |
|
305 | 305 | |
|
306 | 306 | self.dataOut.radarControllerHeaderObj = self.radarControllerHeaderObj.copy() |
|
307 | 307 | |
|
308 | 308 | # self.dataOut.ippSeconds = self.ippSeconds |
|
309 | 309 | |
|
310 | 310 | # self.dataOut.timeInterval = self.radarControllerHeaderObj.ippSeconds * self.processingHeaderObj.nCohInt * self.processingHeaderObj.nIncohInt * self.processingHeaderObj.profilesPerBlock |
|
311 | 311 | |
|
312 | 312 | self.dataOut.dtype = self.dtype |
|
313 | 313 | |
|
314 | 314 | # self.dataOut.nPairs = self.nPairs |
|
315 | 315 | |
|
316 | 316 | self.dataOut.pairsList = self.rdPairList |
|
317 | 317 | |
|
318 | 318 | self.dataOut.nProfiles = self.processingHeaderObj.profilesPerBlock |
|
319 | 319 | |
|
320 | 320 | self.dataOut.nFFTPoints = self.processingHeaderObj.profilesPerBlock |
|
321 | 321 | |
|
322 | 322 | self.dataOut.nCohInt = self.processingHeaderObj.nCohInt |
|
323 | 323 | |
|
324 | 324 | self.dataOut.nIncohInt = self.processingHeaderObj.nIncohInt |
|
325 | 325 | |
|
326 | 326 | xf = self.processingHeaderObj.firstHeight + self.processingHeaderObj.nHeights*self.processingHeaderObj.deltaHeight |
|
327 | 327 | |
|
328 | 328 | self.dataOut.heightList = numpy.arange(self.processingHeaderObj.firstHeight, xf, self.processingHeaderObj.deltaHeight) |
|
329 | 329 | |
|
330 | 330 | self.dataOut.channelList = list(range(self.systemHeaderObj.nChannels)) |
|
331 | 331 | |
|
332 | 332 | self.dataOut.flagShiftFFT = True #Data is always shifted |
|
333 | 333 | |
|
334 | 334 | self.dataOut.flagDecodeData = self.processingHeaderObj.flag_decode #asumo q la data no esta decodificada |
|
335 | 335 | |
|
336 | 336 | self.dataOut.flagDeflipData = self.processingHeaderObj.flag_deflip #asumo q la data esta sin flip |
|
337 | 337 | |
|
338 | 338 | def getData(self): |
|
339 | 339 | """ |
|
340 | 340 | First method to execute before "RUN" is called. |
|
341 | 341 | |
|
342 | 342 | Copia el buffer de lectura a la clase "Spectra", |
|
343 | 343 | con todos los parametros asociados a este (metadata). cuando no hay datos en el buffer de |
|
344 | 344 | lectura es necesario hacer una nueva lectura de los bloques de datos usando "readNextBlock" |
|
345 | 345 | |
|
346 | 346 | Return: |
|
347 | 347 | 0 : Si no hay mas archivos disponibles |
|
348 | 348 | 1 : Si hizo una buena copia del buffer |
|
349 | 349 | |
|
350 | 350 | Affected: |
|
351 | 351 | self.dataOut |
|
352 | 352 | |
|
353 | 353 | self.flagDiscontinuousBlock |
|
354 | 354 | self.flagIsNewBlock |
|
355 | 355 | """ |
|
356 | 356 | |
|
357 | 357 | if self.flagNoMoreFiles: |
|
358 | 358 | self.dataOut.flagNoData = True |
|
359 | 359 | print('Process finished') |
|
360 | 360 | return 0 |
|
361 | 361 | |
|
362 | 362 | self.flagDiscontinuousBlock = 0 |
|
363 | 363 | self.flagIsNewBlock = 0 |
|
364 | 364 | |
|
365 | 365 | if self.__hasNotDataInBuffer(): |
|
366 | 366 | |
|
367 | 367 | if not( self.readNextBlock() ): |
|
368 | 368 | self.dataOut.flagNoData = True |
|
369 | 369 | return 0 |
|
370 | 370 | |
|
371 | 371 | #data es un numpy array de 3 dmensiones (perfiles, alturas y canales) |
|
372 | 372 | |
|
373 | 373 | if self.data_spc is None: |
|
374 | 374 | self.dataOut.flagNoData = True |
|
375 | 375 | return 0 |
|
376 | 376 | |
|
377 | 377 | self.getBasicHeader() |
|
378 | 378 | |
|
379 | 379 | self.getFirstHeader() |
|
380 | 380 | |
|
381 | 381 | self.dataOut.data_spc = self.data_spc |
|
382 | 382 | |
|
383 | 383 | self.dataOut.data_cspc = self.data_cspc |
|
384 | 384 | |
|
385 | 385 | self.dataOut.data_dc = self.data_dc |
|
386 | 386 | |
|
387 | 387 | self.dataOut.flagNoData = False |
|
388 | 388 | |
|
389 | 389 | self.dataOut.realtime = self.online |
|
390 | 390 | |
|
391 | 391 | return self.dataOut.data_spc |
|
392 | 392 | @MPDecorator |
|
393 | 393 | class SpectraWriter(JRODataWriter, Operation): |
|
394 | 394 | |
|
395 | 395 | """ |
|
396 | 396 | Esta clase permite escribir datos de espectros a archivos procesados (.pdata). La escritura |
|
397 | 397 | de los datos siempre se realiza por bloques. |
|
398 | 398 | """ |
|
399 | 399 | |
|
400 | 400 | ext = ".pdata" |
|
401 | 401 | |
|
402 | 402 | optchar = "P" |
|
403 | 403 | |
|
404 | 404 | shape_spc_Buffer = None |
|
405 | 405 | |
|
406 | 406 | shape_cspc_Buffer = None |
|
407 | 407 | |
|
408 | 408 | shape_dc_Buffer = None |
|
409 | 409 | |
|
410 | 410 | data_spc = None |
|
411 | 411 | |
|
412 | 412 | data_cspc = None |
|
413 | 413 | |
|
414 | 414 | data_dc = None |
|
415 | 415 | |
|
416 | 416 | def __init__(self): |
|
417 | 417 | """ |
|
418 | 418 | Inicializador de la clase SpectraWriter para la escritura de datos de espectros. |
|
419 | 419 | |
|
420 | 420 | Affected: |
|
421 | 421 | self.dataOut |
|
422 | 422 | self.basicHeaderObj |
|
423 | 423 | self.systemHeaderObj |
|
424 | 424 | self.radarControllerHeaderObj |
|
425 | 425 | self.processingHeaderObj |
|
426 | 426 | |
|
427 | 427 | Return: None |
|
428 | 428 | """ |
|
429 | 429 | |
|
430 | 430 | Operation.__init__(self) |
|
431 | 431 | |
|
432 | 432 | self.nTotalBlocks = 0 |
|
433 | 433 | |
|
434 | 434 | self.data_spc = None |
|
435 | 435 | |
|
436 | 436 | self.data_cspc = None |
|
437 | 437 | |
|
438 | 438 | self.data_dc = None |
|
439 | 439 | |
|
440 | 440 | self.fp = None |
|
441 | 441 | |
|
442 | 442 | self.flagIsNewFile = 1 |
|
443 | 443 | |
|
444 | 444 | self.nTotalBlocks = 0 |
|
445 | 445 | |
|
446 | 446 | self.flagIsNewBlock = 0 |
|
447 | 447 | |
|
448 | 448 | self.setFile = None |
|
449 | 449 | |
|
450 | 450 | self.dtype = None |
|
451 | 451 | |
|
452 | 452 | self.path = None |
|
453 | 453 | |
|
454 | 454 | self.noMoreFiles = 0 |
|
455 | 455 | |
|
456 | 456 | self.filename = None |
|
457 | 457 | |
|
458 | 458 | self.basicHeaderObj = BasicHeader(LOCALTIME) |
|
459 | 459 | |
|
460 | 460 | self.systemHeaderObj = SystemHeader() |
|
461 | 461 | |
|
462 | 462 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
463 | 463 | |
|
464 | 464 | self.processingHeaderObj = ProcessingHeader() |
|
465 | 465 | |
|
466 | 466 | |
|
467 | 467 | def hasAllDataInBuffer(self): |
|
468 | 468 | return 1 |
|
469 | 469 | |
|
470 | 470 | |
|
471 | 471 | def setBlockDimension(self): |
|
472 | 472 | """ |
|
473 | 473 | Obtiene las formas dimensionales del los subbloques de datos que componen un bloque |
|
474 | 474 | |
|
475 | 475 | Affected: |
|
476 | 476 | self.shape_spc_Buffer |
|
477 | 477 | self.shape_cspc_Buffer |
|
478 | 478 | self.shape_dc_Buffer |
|
479 | 479 | |
|
480 | 480 | Return: None |
|
481 | 481 | """ |
|
482 | 482 | self.shape_spc_Buffer = (self.dataOut.nChannels, |
|
483 | 483 | self.processingHeaderObj.nHeights, |
|
484 | 484 | self.processingHeaderObj.profilesPerBlock) |
|
485 | 485 | |
|
486 | 486 | self.shape_cspc_Buffer = (self.dataOut.nPairs, |
|
487 | 487 | self.processingHeaderObj.nHeights, |
|
488 | 488 | self.processingHeaderObj.profilesPerBlock) |
|
489 | 489 | |
|
490 | 490 | self.shape_dc_Buffer = (self.dataOut.nChannels, |
|
491 | 491 | self.processingHeaderObj.nHeights) |
|
492 | 492 | |
|
493 | 493 | |
|
494 | 494 | def writeBlock(self): |
|
495 | 495 | """processingHeaderObj |
|
496 | 496 | Escribe el buffer en el file designado |
|
497 | 497 | |
|
498 | 498 | Affected: |
|
499 | 499 | self.data_spc |
|
500 | 500 | self.data_cspc |
|
501 | 501 | self.data_dc |
|
502 | 502 | self.flagIsNewFile |
|
503 | 503 | self.flagIsNewBlock |
|
504 | 504 | self.nTotalBlocks |
|
505 | 505 | self.nWriteBlocks |
|
506 | 506 | |
|
507 | 507 | Return: None |
|
508 | 508 | """ |
|
509 | 509 | |
|
510 | 510 | spc = numpy.transpose( self.data_spc, (0,2,1) ) |
|
511 | 511 | if not self.processingHeaderObj.shif_fft: |
|
512 | 512 | spc = numpy.roll( spc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones |
|
513 | 513 | data = spc.reshape((-1)) |
|
514 | 514 | data = data.astype(self.dtype[0]) |
|
515 | 515 | data.tofile(self.fp) |
|
516 | 516 | |
|
517 | 517 | if self.data_cspc is not None: |
|
518 | 518 | |
|
519 | 519 | cspc = numpy.transpose( self.data_cspc, (0,2,1) ) |
|
520 |
|
|
|
520 | data = numpy.zeros( numpy.shape(cspc), self.dtype ) | |
|
521 | 521 | #print 'data.shape', self.shape_cspc_Buffer |
|
522 | 522 | if not self.processingHeaderObj.shif_fft: |
|
523 | 523 | cspc = numpy.roll( cspc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones |
|
524 | 524 | data['real'] = cspc.real |
|
525 | 525 | data['imag'] = cspc.imag |
|
526 | 526 | data = data.reshape((-1)) |
|
527 | 527 | data.tofile(self.fp) |
|
528 | 528 | |
|
529 | 529 | if self.data_dc is not None: |
|
530 | 530 | |
|
531 | 531 | dc = self.data_dc |
|
532 | 532 | data = numpy.zeros( numpy.shape(dc), self.dtype ) |
|
533 | 533 | data['real'] = dc.real |
|
534 | 534 | data['imag'] = dc.imag |
|
535 | 535 | data = data.reshape((-1)) |
|
536 | 536 | data.tofile(self.fp) |
|
537 | 537 | |
|
538 | 538 | # self.data_spc.fill(0) |
|
539 | 539 | # |
|
540 | 540 | # if self.data_dc is not None: |
|
541 | 541 | # self.data_dc.fill(0) |
|
542 | 542 | # |
|
543 | 543 | # if self.data_cspc is not None: |
|
544 | 544 | # self.data_cspc.fill(0) |
|
545 | 545 | |
|
546 | 546 | self.flagIsNewFile = 0 |
|
547 | 547 | self.flagIsNewBlock = 1 |
|
548 | 548 | self.nTotalBlocks += 1 |
|
549 | 549 | self.nWriteBlocks += 1 |
|
550 | 550 | self.blockIndex += 1 |
|
551 | 551 | |
|
552 | 552 | # print "[Writing] Block = %d04" %self.blockIndex |
|
553 | 553 | |
|
554 | 554 | def putData(self): |
|
555 | 555 | """ |
|
556 | 556 | Setea un bloque de datos y luego los escribe en un file |
|
557 | 557 | |
|
558 | 558 | Affected: |
|
559 | 559 | self.data_spc |
|
560 | 560 | self.data_cspc |
|
561 | 561 | self.data_dc |
|
562 | 562 | |
|
563 | 563 | Return: |
|
564 | 564 | 0 : Si no hay data o no hay mas files que puedan escribirse |
|
565 | 565 | 1 : Si se escribio la data de un bloque en un file |
|
566 | 566 | """ |
|
567 | 567 | |
|
568 | 568 | if self.dataOut.flagNoData: |
|
569 | 569 | return 0 |
|
570 | 570 | |
|
571 | 571 | self.flagIsNewBlock = 0 |
|
572 | 572 | |
|
573 | 573 | if self.dataOut.flagDiscontinuousBlock: |
|
574 | 574 | self.data_spc.fill(0) |
|
575 | 575 | if self.dataOut.data_cspc is not None: |
|
576 | 576 | self.data_cspc.fill(0) |
|
577 | 577 | if self.dataOut.data_dc is not None: |
|
578 | 578 | self.data_dc.fill(0) |
|
579 | 579 | self.setNextFile() |
|
580 | 580 | |
|
581 | 581 | if self.flagIsNewFile == 0: |
|
582 | 582 | self.setBasicHeader() |
|
583 | 583 | |
|
584 | 584 | self.data_spc = self.dataOut.data_spc.copy() |
|
585 | 585 | |
|
586 | 586 | if self.dataOut.data_cspc is not None: |
|
587 | 587 | self.data_cspc = self.dataOut.data_cspc.copy() |
|
588 | 588 | |
|
589 | 589 | if self.dataOut.data_dc is not None: |
|
590 | 590 | self.data_dc = self.dataOut.data_dc.copy() |
|
591 | 591 | |
|
592 | 592 | # #self.processingHeaderObj.dataBlocksPerFile) |
|
593 | 593 | if self.hasAllDataInBuffer(): |
|
594 | 594 | # self.setFirstHeader() |
|
595 | 595 | self.writeNextBlock() |
|
596 | 596 | |
|
597 | 597 | def __getBlockSize(self): |
|
598 | 598 | ''' |
|
599 | 599 | Este metodos determina el cantidad de bytes para un bloque de datos de tipo Spectra |
|
600 | 600 | ''' |
|
601 | 601 | |
|
602 | 602 | dtype_width = self.getDtypeWidth() |
|
603 | 603 | |
|
604 | 604 | pts2write = self.dataOut.nHeights * self.dataOut.nFFTPoints |
|
605 | 605 | |
|
606 | 606 | pts2write_SelfSpectra = int(self.dataOut.nChannels * pts2write) |
|
607 | 607 | blocksize = (pts2write_SelfSpectra*dtype_width) |
|
608 | 608 | |
|
609 | 609 | if self.dataOut.data_cspc is not None: |
|
610 | 610 | pts2write_CrossSpectra = int(self.dataOut.nPairs * pts2write) |
|
611 | 611 | blocksize += (pts2write_CrossSpectra*dtype_width*2) |
|
612 | 612 | |
|
613 | 613 | if self.dataOut.data_dc is not None: |
|
614 | 614 | pts2write_DCchannels = int(self.dataOut.nChannels * self.dataOut.nHeights) |
|
615 | 615 | blocksize += (pts2write_DCchannels*dtype_width*2) |
|
616 | 616 | |
|
617 | 617 | # blocksize = blocksize #* datatypeValue * 2 #CORREGIR ESTO |
|
618 | 618 | |
|
619 | 619 | return blocksize |
|
620 | 620 | |
|
621 | 621 | def setFirstHeader(self): |
|
622 | 622 | |
|
623 | 623 | """ |
|
624 | 624 | Obtiene una copia del First Header |
|
625 | 625 | |
|
626 | 626 | Affected: |
|
627 | 627 | self.systemHeaderObj |
|
628 | 628 | self.radarControllerHeaderObj |
|
629 | 629 | self.dtype |
|
630 | 630 | |
|
631 | 631 | Return: |
|
632 | 632 | None |
|
633 | 633 | """ |
|
634 | 634 | |
|
635 | 635 | self.systemHeaderObj = self.dataOut.systemHeaderObj.copy() |
|
636 | 636 | self.systemHeaderObj.nChannels = self.dataOut.nChannels |
|
637 | 637 | self.radarControllerHeaderObj = self.dataOut.radarControllerHeaderObj.copy() |
|
638 | 638 | |
|
639 | 639 | self.processingHeaderObj.dtype = 1 # Spectra |
|
640 | 640 | self.processingHeaderObj.blockSize = self.__getBlockSize() |
|
641 | 641 | self.processingHeaderObj.profilesPerBlock = self.dataOut.nFFTPoints |
|
642 | 642 | self.processingHeaderObj.dataBlocksPerFile = self.blocksPerFile |
|
643 | 643 | self.processingHeaderObj.nWindows = 1 #podria ser 1 o self.dataOut.processingHeaderObj.nWindows |
|
644 | 644 | self.processingHeaderObj.nCohInt = self.dataOut.nCohInt# Se requiere para determinar el valor de timeInterval |
|
645 | 645 | self.processingHeaderObj.nIncohInt = self.dataOut.nIncohInt |
|
646 | 646 | self.processingHeaderObj.totalSpectra = self.dataOut.nPairs + self.dataOut.nChannels |
|
647 | 647 | self.processingHeaderObj.shif_fft = self.dataOut.flagShiftFFT |
|
648 | 648 | |
|
649 | 649 | if self.processingHeaderObj.totalSpectra > 0: |
|
650 | 650 | channelList = [] |
|
651 | 651 | for channel in range(self.dataOut.nChannels): |
|
652 | 652 | channelList.append(channel) |
|
653 | 653 | channelList.append(channel) |
|
654 | 654 | |
|
655 | 655 | pairsList = [] |
|
656 | 656 | if self.dataOut.nPairs > 0: |
|
657 | 657 | for pair in self.dataOut.pairsList: |
|
658 | 658 | pairsList.append(pair[0]) |
|
659 | 659 | pairsList.append(pair[1]) |
|
660 | 660 | |
|
661 | 661 | spectraComb = channelList + pairsList |
|
662 | 662 | spectraComb = numpy.array(spectraComb, dtype="u1") |
|
663 | 663 | self.processingHeaderObj.spectraComb = spectraComb |
|
664 | 664 | |
|
665 | 665 | if self.dataOut.code is not None: |
|
666 | 666 | self.processingHeaderObj.code = self.dataOut.code |
|
667 | 667 | self.processingHeaderObj.nCode = self.dataOut.nCode |
|
668 | 668 | self.processingHeaderObj.nBaud = self.dataOut.nBaud |
|
669 | 669 | |
|
670 | 670 | if self.processingHeaderObj.nWindows != 0: |
|
671 | 671 | self.processingHeaderObj.firstHeight = self.dataOut.heightList[0] |
|
672 | 672 | self.processingHeaderObj.deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
673 | 673 | self.processingHeaderObj.nHeights = self.dataOut.nHeights |
|
674 | 674 | self.processingHeaderObj.samplesWin = self.dataOut.nHeights |
|
675 | 675 | |
|
676 | 676 | self.processingHeaderObj.processFlags = self.getProcessFlags() |
|
677 | 677 | |
|
678 | 678 | self.setBasicHeader() No newline at end of file |
@@ -1,1060 +1,1056 | |||
|
1 | 1 | import itertools |
|
2 | 2 | |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
6 | 6 | from schainpy.model.data.jrodata import Spectra |
|
7 | 7 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
8 | 8 | from schainpy.utils import log |
|
9 | 9 | |
|
10 | 10 | @MPDecorator |
|
11 | 11 | class SpectraProc(ProcessingUnit): |
|
12 | 12 | |
|
13 | 13 | |
|
14 | 14 | def __init__(self): |
|
15 | 15 | |
|
16 | 16 | ProcessingUnit.__init__(self) |
|
17 | 17 | |
|
18 | 18 | self.buffer = None |
|
19 | 19 | self.firstdatatime = None |
|
20 | 20 | self.profIndex = 0 |
|
21 | 21 | self.dataOut = Spectra() |
|
22 | 22 | self.id_min = None |
|
23 | 23 | self.id_max = None |
|
24 | 24 | self.setupReq = False #Agregar a todas las unidades de proc |
|
25 | 25 | |
|
26 | 26 | def __updateSpecFromVoltage(self): |
|
27 | 27 | |
|
28 | 28 | self.dataOut.timeZone = self.dataIn.timeZone |
|
29 | 29 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
30 | 30 | self.dataOut.errorCount = self.dataIn.errorCount |
|
31 | 31 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
32 | 32 | try: |
|
33 | 33 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
34 | 34 | except: |
|
35 | 35 | pass |
|
36 | 36 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
37 | 37 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
38 | 38 | self.dataOut.channelList = self.dataIn.channelList |
|
39 | 39 | self.dataOut.heightList = self.dataIn.heightList |
|
40 | 40 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
41 | 41 | |
|
42 | 42 | self.dataOut.nBaud = self.dataIn.nBaud |
|
43 | 43 | self.dataOut.nCode = self.dataIn.nCode |
|
44 | 44 | self.dataOut.code = self.dataIn.code |
|
45 | 45 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
46 | 46 | |
|
47 | 47 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
48 | 48 | self.dataOut.utctime = self.firstdatatime |
|
49 | 49 | # asumo q la data esta decodificada |
|
50 | 50 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
51 | 51 | # asumo q la data esta sin flip |
|
52 | 52 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
53 | 53 | self.dataOut.flagShiftFFT = False |
|
54 | 54 | |
|
55 | 55 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
56 | 56 | self.dataOut.nIncohInt = 1 |
|
57 | 57 | |
|
58 | 58 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
59 | 59 | |
|
60 | 60 | self.dataOut.frequency = self.dataIn.frequency |
|
61 | 61 | self.dataOut.realtime = self.dataIn.realtime |
|
62 | 62 | |
|
63 | 63 | self.dataOut.azimuth = self.dataIn.azimuth |
|
64 | 64 | self.dataOut.zenith = self.dataIn.zenith |
|
65 | 65 | |
|
66 | 66 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
67 | 67 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
68 | 68 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
69 | 69 | |
|
70 | 70 | def __getFft(self): |
|
71 | 71 | """ |
|
72 | 72 | Convierte valores de Voltaje a Spectra |
|
73 | 73 | |
|
74 | 74 | Affected: |
|
75 | 75 | self.dataOut.data_spc |
|
76 | 76 | self.dataOut.data_cspc |
|
77 | 77 | self.dataOut.data_dc |
|
78 | 78 | self.dataOut.heightList |
|
79 | 79 | self.profIndex |
|
80 | 80 | self.buffer |
|
81 | 81 | self.dataOut.flagNoData |
|
82 | 82 | """ |
|
83 | 83 | fft_volt = numpy.fft.fft( |
|
84 | 84 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
85 | 85 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
86 | 86 | dc = fft_volt[:, 0, :] |
|
87 | 87 | |
|
88 | 88 | # calculo de self-spectra |
|
89 | 89 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
90 | 90 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
91 | 91 | spc = spc.real |
|
92 | 92 | |
|
93 | 93 | blocksize = 0 |
|
94 | 94 | blocksize += dc.size |
|
95 | 95 | blocksize += spc.size |
|
96 | 96 | |
|
97 | 97 | cspc = None |
|
98 | 98 | pairIndex = 0 |
|
99 | 99 | if self.dataOut.pairsList != None: |
|
100 | 100 | # calculo de cross-spectra |
|
101 | 101 | cspc = numpy.zeros( |
|
102 | 102 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
103 | 103 | for pair in self.dataOut.pairsList: |
|
104 | 104 | if pair[0] not in self.dataOut.channelList: |
|
105 | 105 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
106 | 106 | str(pair), str(self.dataOut.channelList))) |
|
107 | 107 | if pair[1] not in self.dataOut.channelList: |
|
108 | 108 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
109 | 109 | str(pair), str(self.dataOut.channelList))) |
|
110 | 110 | |
|
111 | 111 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
112 | 112 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
113 | 113 | pairIndex += 1 |
|
114 | 114 | blocksize += cspc.size |
|
115 | 115 | |
|
116 | 116 | self.dataOut.data_spc = spc |
|
117 | 117 | self.dataOut.data_cspc = cspc |
|
118 | 118 | self.dataOut.data_dc = dc |
|
119 | 119 | self.dataOut.blockSize = blocksize |
|
120 | 120 | self.dataOut.flagShiftFFT = True |
|
121 | 121 | |
|
122 | 122 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None, shift_fft=False): |
|
123 | 123 | |
|
124 | 124 | if self.dataIn.type == "Spectra": |
|
125 | 125 | self.dataOut.copy(self.dataIn) |
|
126 | 126 | if shift_fft: |
|
127 | 127 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
128 | 128 | shift = int(self.dataOut.nFFTPoints/2) |
|
129 | 129 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
130 | 130 | |
|
131 | 131 | if self.dataOut.data_cspc is not None: |
|
132 | 132 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
133 | 133 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
134 | 134 | |
|
135 | 135 | return True |
|
136 | 136 | |
|
137 | 137 | if self.dataIn.type == "Voltage": |
|
138 | 138 | |
|
139 | 139 | self.dataOut.flagNoData = True |
|
140 | 140 | |
|
141 | 141 | if nFFTPoints == None: |
|
142 | 142 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
143 | 143 | |
|
144 | 144 | if nProfiles == None: |
|
145 | 145 | nProfiles = nFFTPoints |
|
146 | 146 | |
|
147 | 147 | if ippFactor == None: |
|
148 | 148 | ippFactor = 1 |
|
149 | 149 | |
|
150 | 150 | self.dataOut.ippFactor = ippFactor |
|
151 | 151 | |
|
152 | 152 | self.dataOut.nFFTPoints = nFFTPoints |
|
153 | 153 | self.dataOut.pairsList = pairsList |
|
154 | 154 | |
|
155 | 155 | if self.buffer is None: |
|
156 | 156 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
157 | 157 | nProfiles, |
|
158 | 158 | self.dataIn.nHeights), |
|
159 | 159 | dtype='complex') |
|
160 | 160 | |
|
161 | 161 | if self.dataIn.flagDataAsBlock: |
|
162 | 162 | nVoltProfiles = self.dataIn.data.shape[1] |
|
163 | 163 | |
|
164 | 164 | if nVoltProfiles == nProfiles: |
|
165 | 165 | self.buffer = self.dataIn.data.copy() |
|
166 | 166 | self.profIndex = nVoltProfiles |
|
167 | 167 | |
|
168 | 168 | elif nVoltProfiles < nProfiles: |
|
169 | 169 | |
|
170 | 170 | if self.profIndex == 0: |
|
171 | 171 | self.id_min = 0 |
|
172 | 172 | self.id_max = nVoltProfiles |
|
173 | 173 | |
|
174 | 174 | self.buffer[:, self.id_min:self.id_max, |
|
175 | 175 | :] = self.dataIn.data |
|
176 | 176 | self.profIndex += nVoltProfiles |
|
177 | 177 | self.id_min += nVoltProfiles |
|
178 | 178 | self.id_max += nVoltProfiles |
|
179 | 179 | else: |
|
180 | 180 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
181 | 181 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
182 | 182 | self.dataOut.flagNoData = True |
|
183 | 183 | return 0 |
|
184 | 184 | else: |
|
185 | 185 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
186 | 186 | self.profIndex += 1 |
|
187 | 187 | |
|
188 | 188 | if self.firstdatatime == None: |
|
189 | 189 | self.firstdatatime = self.dataIn.utctime |
|
190 | 190 | |
|
191 | 191 | if self.profIndex == nProfiles: |
|
192 | 192 | self.__updateSpecFromVoltage() |
|
193 | 193 | self.__getFft() |
|
194 | 194 | |
|
195 | 195 | self.dataOut.flagNoData = False |
|
196 | 196 | self.firstdatatime = None |
|
197 | 197 | self.profIndex = 0 |
|
198 | 198 | |
|
199 | 199 | return True |
|
200 | 200 | |
|
201 | 201 | raise ValueError("The type of input object '%s' is not valid" % ( |
|
202 | 202 | self.dataIn.type)) |
|
203 | 203 | |
|
204 | 204 | def __selectPairs(self, pairsList): |
|
205 | 205 | |
|
206 | 206 | if not pairsList: |
|
207 | 207 | return |
|
208 | 208 | |
|
209 | 209 | pairs = [] |
|
210 | 210 | pairsIndex = [] |
|
211 | 211 | |
|
212 | 212 | for pair in pairsList: |
|
213 | 213 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
214 | 214 | continue |
|
215 | 215 | pairs.append(pair) |
|
216 | 216 | pairsIndex.append(pairs.index(pair)) |
|
217 | 217 | |
|
218 | 218 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
219 | 219 | self.dataOut.pairsList = pairs |
|
220 | 220 | |
|
221 | 221 | return |
|
222 | 222 | |
|
223 | 223 | def __selectPairsByChannel(self, channelList=None): |
|
224 | 224 | |
|
225 | 225 | if channelList == None: |
|
226 | 226 | return |
|
227 | 227 | |
|
228 | 228 | pairsIndexListSelected = [] |
|
229 | 229 | for pairIndex in self.dataOut.pairsIndexList: |
|
230 | 230 | # First pair |
|
231 | 231 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
232 | 232 | continue |
|
233 | 233 | # Second pair |
|
234 | 234 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
235 | 235 | continue |
|
236 | 236 | |
|
237 | 237 | pairsIndexListSelected.append(pairIndex) |
|
238 | 238 | |
|
239 | 239 | if not pairsIndexListSelected: |
|
240 | 240 | self.dataOut.data_cspc = None |
|
241 | 241 | self.dataOut.pairsList = [] |
|
242 | 242 | return |
|
243 | 243 | |
|
244 | 244 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
245 | 245 | self.dataOut.pairsList = [self.dataOut.pairsList[i] |
|
246 | 246 | for i in pairsIndexListSelected] |
|
247 | 247 | |
|
248 | 248 | return |
|
249 | 249 | |
|
250 | 250 | def selectChannels(self, channelList): |
|
251 | 251 | |
|
252 | 252 | channelIndexList = [] |
|
253 | 253 | |
|
254 | 254 | for channel in channelList: |
|
255 | 255 | if channel not in self.dataOut.channelList: |
|
256 | 256 | raise ValueError("Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" % ( |
|
257 | 257 | channel, str(self.dataOut.channelList))) |
|
258 | 258 | |
|
259 | 259 | index = self.dataOut.channelList.index(channel) |
|
260 | 260 | channelIndexList.append(index) |
|
261 | 261 | |
|
262 | 262 | self.selectChannelsByIndex(channelIndexList) |
|
263 | 263 | |
|
264 | 264 | def selectChannelsByIndex(self, channelIndexList): |
|
265 | 265 | """ |
|
266 | 266 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
267 | 267 | |
|
268 | 268 | Input: |
|
269 | 269 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
270 | 270 | |
|
271 | 271 | Affected: |
|
272 | 272 | self.dataOut.data_spc |
|
273 | 273 | self.dataOut.channelIndexList |
|
274 | 274 | self.dataOut.nChannels |
|
275 | 275 | |
|
276 | 276 | Return: |
|
277 | 277 | None |
|
278 | 278 | """ |
|
279 | 279 | |
|
280 | 280 | for channelIndex in channelIndexList: |
|
281 | 281 | if channelIndex not in self.dataOut.channelIndexList: |
|
282 | 282 | raise ValueError("Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " % ( |
|
283 | 283 | channelIndex, self.dataOut.channelIndexList)) |
|
284 | 284 | |
|
285 | # nChannels = len(channelIndexList) | |
|
286 | ||
|
287 | 285 | data_spc = self.dataOut.data_spc[channelIndexList, :] |
|
288 | 286 | data_dc = self.dataOut.data_dc[channelIndexList, :] |
|
289 | 287 | |
|
290 | 288 | self.dataOut.data_spc = data_spc |
|
291 | 289 | self.dataOut.data_dc = data_dc |
|
292 | 290 | |
|
293 | self.dataOut.channelList = [ | |
|
294 |
|
|
|
295 | # self.dataOut.nChannels = nChannels | |
|
296 | ||
|
297 | self.__selectPairsByChannel(self.dataOut.channelList) | |
|
291 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
|
292 | self.dataOut.channelList = range(len(channelIndexList)) | |
|
293 | self.__selectPairsByChannel(channelIndexList) | |
|
298 | 294 | |
|
299 | 295 | return 1 |
|
300 | 296 | |
|
301 | 297 | |
|
302 | 298 | def selectFFTs(self, minFFT, maxFFT ): |
|
303 | 299 | """ |
|
304 | 300 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
305 | 301 | minFFT<= FFT <= maxFFT |
|
306 | 302 | """ |
|
307 | 303 | |
|
308 | 304 | if (minFFT > maxFFT): |
|
309 | 305 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
310 | 306 | |
|
311 | 307 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
312 | 308 | minFFT = self.dataOut.getFreqRange()[0] |
|
313 | 309 | |
|
314 | 310 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
315 | 311 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
316 | 312 | |
|
317 | 313 | minIndex = 0 |
|
318 | 314 | maxIndex = 0 |
|
319 | 315 | FFTs = self.dataOut.getFreqRange() |
|
320 | 316 | |
|
321 | 317 | inda = numpy.where(FFTs >= minFFT) |
|
322 | 318 | indb = numpy.where(FFTs <= maxFFT) |
|
323 | 319 | |
|
324 | 320 | try: |
|
325 | 321 | minIndex = inda[0][0] |
|
326 | 322 | except: |
|
327 | 323 | minIndex = 0 |
|
328 | 324 | |
|
329 | 325 | try: |
|
330 | 326 | maxIndex = indb[0][-1] |
|
331 | 327 | except: |
|
332 | 328 | maxIndex = len(FFTs) |
|
333 | 329 | |
|
334 | 330 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
335 | 331 | |
|
336 | 332 | return 1 |
|
337 | 333 | |
|
338 | 334 | |
|
339 | 335 | def setH0(self, h0, deltaHeight = None): |
|
340 | 336 | |
|
341 | 337 | if not deltaHeight: |
|
342 | 338 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
343 | 339 | |
|
344 | 340 | nHeights = self.dataOut.nHeights |
|
345 | 341 | |
|
346 | 342 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
347 | 343 | |
|
348 | 344 | self.dataOut.heightList = newHeiRange |
|
349 | 345 | |
|
350 | 346 | |
|
351 | 347 | def selectHeights(self, minHei, maxHei): |
|
352 | 348 | """ |
|
353 | 349 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
354 | 350 | minHei <= height <= maxHei |
|
355 | 351 | |
|
356 | 352 | Input: |
|
357 | 353 | minHei : valor minimo de altura a considerar |
|
358 | 354 | maxHei : valor maximo de altura a considerar |
|
359 | 355 | |
|
360 | 356 | Affected: |
|
361 | 357 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
362 | 358 | |
|
363 | 359 | Return: |
|
364 | 360 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
365 | 361 | """ |
|
366 | 362 | |
|
367 | 363 | |
|
368 | 364 | if (minHei > maxHei): |
|
369 | 365 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei)) |
|
370 | 366 | |
|
371 | 367 | if (minHei < self.dataOut.heightList[0]): |
|
372 | 368 | minHei = self.dataOut.heightList[0] |
|
373 | 369 | |
|
374 | 370 | if (maxHei > self.dataOut.heightList[-1]): |
|
375 | 371 | maxHei = self.dataOut.heightList[-1] |
|
376 | 372 | |
|
377 | 373 | minIndex = 0 |
|
378 | 374 | maxIndex = 0 |
|
379 | 375 | heights = self.dataOut.heightList |
|
380 | 376 | |
|
381 | 377 | inda = numpy.where(heights >= minHei) |
|
382 | 378 | indb = numpy.where(heights <= maxHei) |
|
383 | 379 | |
|
384 | 380 | try: |
|
385 | 381 | minIndex = inda[0][0] |
|
386 | 382 | except: |
|
387 | 383 | minIndex = 0 |
|
388 | 384 | |
|
389 | 385 | try: |
|
390 | 386 | maxIndex = indb[0][-1] |
|
391 | 387 | except: |
|
392 | 388 | maxIndex = len(heights) |
|
393 | 389 | |
|
394 | 390 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
395 | 391 | |
|
396 | 392 | |
|
397 | 393 | return 1 |
|
398 | 394 | |
|
399 | 395 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
400 | 396 | newheis = numpy.where( |
|
401 | 397 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
402 | 398 | |
|
403 | 399 | if hei_ref != None: |
|
404 | 400 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
405 | 401 | |
|
406 | 402 | minIndex = min(newheis[0]) |
|
407 | 403 | maxIndex = max(newheis[0]) |
|
408 | 404 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
409 | 405 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
410 | 406 | |
|
411 | 407 | # determina indices |
|
412 | 408 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
413 | 409 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
414 | 410 | avg_dB = 10 * \ |
|
415 | 411 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
416 | 412 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
417 | 413 | beacon_heiIndexList = [] |
|
418 | 414 | for val in avg_dB.tolist(): |
|
419 | 415 | if val >= beacon_dB[0]: |
|
420 | 416 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
421 | 417 | |
|
422 | 418 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
423 | 419 | data_cspc = None |
|
424 | 420 | if self.dataOut.data_cspc is not None: |
|
425 | 421 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
426 | 422 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
427 | 423 | |
|
428 | 424 | data_dc = None |
|
429 | 425 | if self.dataOut.data_dc is not None: |
|
430 | 426 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
431 | 427 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
432 | 428 | |
|
433 | 429 | self.dataOut.data_spc = data_spc |
|
434 | 430 | self.dataOut.data_cspc = data_cspc |
|
435 | 431 | self.dataOut.data_dc = data_dc |
|
436 | 432 | self.dataOut.heightList = heightList |
|
437 | 433 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
438 | 434 | |
|
439 | 435 | return 1 |
|
440 | 436 | |
|
441 | 437 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
442 | 438 | """ |
|
443 | 439 | |
|
444 | 440 | """ |
|
445 | 441 | |
|
446 | 442 | if (minIndex < 0) or (minIndex > maxIndex): |
|
447 | 443 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
448 | 444 | |
|
449 | 445 | if (maxIndex >= self.dataOut.nProfiles): |
|
450 | 446 | maxIndex = self.dataOut.nProfiles-1 |
|
451 | 447 | |
|
452 | 448 | #Spectra |
|
453 | 449 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
454 | 450 | |
|
455 | 451 | data_cspc = None |
|
456 | 452 | if self.dataOut.data_cspc is not None: |
|
457 | 453 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
458 | 454 | |
|
459 | 455 | data_dc = None |
|
460 | 456 | if self.dataOut.data_dc is not None: |
|
461 | 457 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
462 | 458 | |
|
463 | 459 | self.dataOut.data_spc = data_spc |
|
464 | 460 | self.dataOut.data_cspc = data_cspc |
|
465 | 461 | self.dataOut.data_dc = data_dc |
|
466 | 462 | |
|
467 | 463 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
468 | 464 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
469 | 465 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
470 | 466 | |
|
471 | 467 | return 1 |
|
472 | 468 | |
|
473 | 469 | |
|
474 | 470 | |
|
475 | 471 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
476 | 472 | """ |
|
477 | 473 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
478 | 474 | minIndex <= index <= maxIndex |
|
479 | 475 | |
|
480 | 476 | Input: |
|
481 | 477 | minIndex : valor de indice minimo de altura a considerar |
|
482 | 478 | maxIndex : valor de indice maximo de altura a considerar |
|
483 | 479 | |
|
484 | 480 | Affected: |
|
485 | 481 | self.dataOut.data_spc |
|
486 | 482 | self.dataOut.data_cspc |
|
487 | 483 | self.dataOut.data_dc |
|
488 | 484 | self.dataOut.heightList |
|
489 | 485 | |
|
490 | 486 | Return: |
|
491 | 487 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
492 | 488 | """ |
|
493 | 489 | |
|
494 | 490 | if (minIndex < 0) or (minIndex > maxIndex): |
|
495 | 491 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( |
|
496 | 492 | minIndex, maxIndex)) |
|
497 | 493 | |
|
498 | 494 | if (maxIndex >= self.dataOut.nHeights): |
|
499 | 495 | maxIndex = self.dataOut.nHeights - 1 |
|
500 | 496 | |
|
501 | 497 | # Spectra |
|
502 | 498 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
503 | 499 | |
|
504 | 500 | data_cspc = None |
|
505 | 501 | if self.dataOut.data_cspc is not None: |
|
506 | 502 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
507 | 503 | |
|
508 | 504 | data_dc = None |
|
509 | 505 | if self.dataOut.data_dc is not None: |
|
510 | 506 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
511 | 507 | |
|
512 | 508 | self.dataOut.data_spc = data_spc |
|
513 | 509 | self.dataOut.data_cspc = data_cspc |
|
514 | 510 | self.dataOut.data_dc = data_dc |
|
515 | 511 | |
|
516 | 512 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
517 | 513 | |
|
518 | 514 | return 1 |
|
519 | 515 | |
|
520 | 516 | def removeDC(self, mode=2): |
|
521 | 517 | jspectra = self.dataOut.data_spc |
|
522 | 518 | jcspectra = self.dataOut.data_cspc |
|
523 | 519 | |
|
524 | 520 | num_chan = jspectra.shape[0] |
|
525 | 521 | num_hei = jspectra.shape[2] |
|
526 | 522 | |
|
527 | 523 | if jcspectra is not None: |
|
528 | 524 | jcspectraExist = True |
|
529 | 525 | num_pairs = jcspectra.shape[0] |
|
530 | 526 | else: |
|
531 | 527 | jcspectraExist = False |
|
532 | 528 | |
|
533 | 529 | freq_dc = int(jspectra.shape[1] / 2) |
|
534 | 530 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
535 | 531 | ind_vel = ind_vel.astype(int) |
|
536 | 532 | |
|
537 | 533 | if ind_vel[0] < 0: |
|
538 | 534 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
539 | 535 | |
|
540 | 536 | if mode == 1: |
|
541 | 537 | jspectra[:, freq_dc, :] = ( |
|
542 | 538 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
543 | 539 | |
|
544 | 540 | if jcspectraExist: |
|
545 | 541 | jcspectra[:, freq_dc, :] = ( |
|
546 | 542 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
547 | 543 | |
|
548 | 544 | if mode == 2: |
|
549 | 545 | |
|
550 | 546 | vel = numpy.array([-2, -1, 1, 2]) |
|
551 | 547 | xx = numpy.zeros([4, 4]) |
|
552 | 548 | |
|
553 | 549 | for fil in range(4): |
|
554 | 550 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
555 | 551 | |
|
556 | 552 | xx_inv = numpy.linalg.inv(xx) |
|
557 | 553 | xx_aux = xx_inv[0, :] |
|
558 | 554 | |
|
559 | 555 | for ich in range(num_chan): |
|
560 | 556 | yy = jspectra[ich, ind_vel, :] |
|
561 | 557 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
562 | 558 | |
|
563 | 559 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
564 | 560 | cjunkid = sum(junkid) |
|
565 | 561 | |
|
566 | 562 | if cjunkid.any(): |
|
567 | 563 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
568 | 564 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
569 | 565 | |
|
570 | 566 | if jcspectraExist: |
|
571 | 567 | for ip in range(num_pairs): |
|
572 | 568 | yy = jcspectra[ip, ind_vel, :] |
|
573 | 569 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
574 | 570 | |
|
575 | 571 | self.dataOut.data_spc = jspectra |
|
576 | 572 | self.dataOut.data_cspc = jcspectra |
|
577 | 573 | |
|
578 | 574 | return 1 |
|
579 | 575 | |
|
580 | 576 | def removeInterference2(self): |
|
581 | 577 | |
|
582 | 578 | cspc = self.dataOut.data_cspc |
|
583 | 579 | spc = self.dataOut.data_spc |
|
584 | 580 | Heights = numpy.arange(cspc.shape[2]) |
|
585 | 581 | realCspc = numpy.abs(cspc) |
|
586 | 582 | |
|
587 | 583 | for i in range(cspc.shape[0]): |
|
588 | 584 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
589 | 585 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
590 | 586 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
591 | 587 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
592 | 588 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
593 | 589 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
594 | 590 | |
|
595 | 591 | |
|
596 | 592 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
597 | 593 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
598 | 594 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
599 | 595 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
600 | 596 | |
|
601 | 597 | |
|
602 | 598 | |
|
603 | 599 | self.dataOut.data_cspc = cspc |
|
604 | 600 | |
|
605 | 601 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
606 | 602 | |
|
607 | 603 | jspectra = self.dataOut.data_spc |
|
608 | 604 | jcspectra = self.dataOut.data_cspc |
|
609 | 605 | jnoise = self.dataOut.getNoise() |
|
610 | 606 | num_incoh = self.dataOut.nIncohInt |
|
611 | 607 | |
|
612 | 608 | num_channel = jspectra.shape[0] |
|
613 | 609 | num_prof = jspectra.shape[1] |
|
614 | 610 | num_hei = jspectra.shape[2] |
|
615 | 611 | |
|
616 | 612 | # hei_interf |
|
617 | 613 | if hei_interf is None: |
|
618 | 614 | count_hei = int(num_hei / 2) |
|
619 | 615 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
620 | 616 | hei_interf = numpy.asarray(hei_interf)[0] |
|
621 | 617 | # nhei_interf |
|
622 | 618 | if (nhei_interf == None): |
|
623 | 619 | nhei_interf = 5 |
|
624 | 620 | if (nhei_interf < 1): |
|
625 | 621 | nhei_interf = 1 |
|
626 | 622 | if (nhei_interf > count_hei): |
|
627 | 623 | nhei_interf = count_hei |
|
628 | 624 | if (offhei_interf == None): |
|
629 | 625 | offhei_interf = 0 |
|
630 | 626 | |
|
631 | 627 | ind_hei = list(range(num_hei)) |
|
632 | 628 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
633 | 629 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
634 | 630 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
635 | 631 | num_mask_prof = mask_prof.size |
|
636 | 632 | comp_mask_prof = [0, num_prof / 2] |
|
637 | 633 | |
|
638 | 634 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
639 | 635 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
640 | 636 | jnoise = numpy.nan |
|
641 | 637 | noise_exist = jnoise[0] < numpy.Inf |
|
642 | 638 | |
|
643 | 639 | # Subrutina de Remocion de la Interferencia |
|
644 | 640 | for ich in range(num_channel): |
|
645 | 641 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
646 | 642 | power = jspectra[ich, mask_prof, :] |
|
647 | 643 | power = power[:, hei_interf] |
|
648 | 644 | power = power.sum(axis=0) |
|
649 | 645 | psort = power.ravel().argsort() |
|
650 | 646 | |
|
651 | 647 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
652 | 648 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
653 | 649 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
654 | 650 | |
|
655 | 651 | if noise_exist: |
|
656 | 652 | # tmp_noise = jnoise[ich] / num_prof |
|
657 | 653 | tmp_noise = jnoise[ich] |
|
658 | 654 | junkspc_interf = junkspc_interf - tmp_noise |
|
659 | 655 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
660 | 656 | |
|
661 | 657 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
662 | 658 | jspc_interf = jspc_interf.transpose() |
|
663 | 659 | # Calculando el espectro de interferencia promedio |
|
664 | 660 | noiseid = numpy.where( |
|
665 | 661 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
666 | 662 | noiseid = noiseid[0] |
|
667 | 663 | cnoiseid = noiseid.size |
|
668 | 664 | interfid = numpy.where( |
|
669 | 665 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
670 | 666 | interfid = interfid[0] |
|
671 | 667 | cinterfid = interfid.size |
|
672 | 668 | |
|
673 | 669 | if (cnoiseid > 0): |
|
674 | 670 | jspc_interf[noiseid] = 0 |
|
675 | 671 | |
|
676 | 672 | # Expandiendo los perfiles a limpiar |
|
677 | 673 | if (cinterfid > 0): |
|
678 | 674 | new_interfid = ( |
|
679 | 675 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
680 | 676 | new_interfid = numpy.asarray(new_interfid) |
|
681 | 677 | new_interfid = {x for x in new_interfid} |
|
682 | 678 | new_interfid = numpy.array(list(new_interfid)) |
|
683 | 679 | new_cinterfid = new_interfid.size |
|
684 | 680 | else: |
|
685 | 681 | new_cinterfid = 0 |
|
686 | 682 | |
|
687 | 683 | for ip in range(new_cinterfid): |
|
688 | 684 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
689 | 685 | jspc_interf[new_interfid[ip] |
|
690 | 686 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
691 | 687 | |
|
692 | 688 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
693 | 689 | ind_hei] - jspc_interf # Corregir indices |
|
694 | 690 | |
|
695 | 691 | # Removiendo la interferencia del punto de mayor interferencia |
|
696 | 692 | ListAux = jspc_interf[mask_prof].tolist() |
|
697 | 693 | maxid = ListAux.index(max(ListAux)) |
|
698 | 694 | |
|
699 | 695 | if cinterfid > 0: |
|
700 | 696 | for ip in range(cinterfid * (interf == 2) - 1): |
|
701 | 697 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
702 | 698 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
703 | 699 | cind = len(ind) |
|
704 | 700 | |
|
705 | 701 | if (cind > 0): |
|
706 | 702 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
707 | 703 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
708 | 704 | numpy.sqrt(num_incoh)) |
|
709 | 705 | |
|
710 | 706 | ind = numpy.array([-2, -1, 1, 2]) |
|
711 | 707 | xx = numpy.zeros([4, 4]) |
|
712 | 708 | |
|
713 | 709 | for id1 in range(4): |
|
714 | 710 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
715 | 711 | |
|
716 | 712 | xx_inv = numpy.linalg.inv(xx) |
|
717 | 713 | xx = xx_inv[:, 0] |
|
718 | 714 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
719 | 715 | yy = jspectra[ich, mask_prof[ind], :] |
|
720 | 716 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
721 | 717 | yy.transpose(), xx) |
|
722 | 718 | |
|
723 | 719 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
724 | 720 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
725 | 721 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
726 | 722 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
727 | 723 | |
|
728 | 724 | # Remocion de Interferencia en el Cross Spectra |
|
729 | 725 | if jcspectra is None: |
|
730 | 726 | return jspectra, jcspectra |
|
731 | 727 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
732 | 728 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
733 | 729 | |
|
734 | 730 | for ip in range(num_pairs): |
|
735 | 731 | |
|
736 | 732 | #------------------------------------------- |
|
737 | 733 | |
|
738 | 734 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
739 | 735 | cspower = cspower[:, hei_interf] |
|
740 | 736 | cspower = cspower.sum(axis=0) |
|
741 | 737 | |
|
742 | 738 | cspsort = cspower.ravel().argsort() |
|
743 | 739 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
744 | 740 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
745 | 741 | junkcspc_interf = junkcspc_interf.transpose() |
|
746 | 742 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
747 | 743 | |
|
748 | 744 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
749 | 745 | |
|
750 | 746 | median_real = int(numpy.median(numpy.real( |
|
751 | 747 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
752 | 748 | median_imag = int(numpy.median(numpy.imag( |
|
753 | 749 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
754 | 750 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
755 | 751 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
756 | 752 | median_real, median_imag) |
|
757 | 753 | |
|
758 | 754 | for iprof in range(num_prof): |
|
759 | 755 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
760 | 756 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
761 | 757 | |
|
762 | 758 | # Removiendo la Interferencia |
|
763 | 759 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
764 | 760 | :, ind_hei] - jcspc_interf |
|
765 | 761 | |
|
766 | 762 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
767 | 763 | maxid = ListAux.index(max(ListAux)) |
|
768 | 764 | |
|
769 | 765 | ind = numpy.array([-2, -1, 1, 2]) |
|
770 | 766 | xx = numpy.zeros([4, 4]) |
|
771 | 767 | |
|
772 | 768 | for id1 in range(4): |
|
773 | 769 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
774 | 770 | |
|
775 | 771 | xx_inv = numpy.linalg.inv(xx) |
|
776 | 772 | xx = xx_inv[:, 0] |
|
777 | 773 | |
|
778 | 774 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
779 | 775 | yy = jcspectra[ip, mask_prof[ind], :] |
|
780 | 776 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
781 | 777 | |
|
782 | 778 | # Guardar Resultados |
|
783 | 779 | self.dataOut.data_spc = jspectra |
|
784 | 780 | self.dataOut.data_cspc = jcspectra |
|
785 | 781 | |
|
786 | 782 | return 1 |
|
787 | 783 | |
|
788 | 784 | def setRadarFrequency(self, frequency=None): |
|
789 | 785 | |
|
790 | 786 | if frequency != None: |
|
791 | 787 | self.dataOut.frequency = frequency |
|
792 | 788 | |
|
793 | 789 | return 1 |
|
794 | 790 | |
|
795 | 791 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
796 | 792 | # validacion de rango |
|
797 | 793 | if minHei == None: |
|
798 | 794 | minHei = self.dataOut.heightList[0] |
|
799 | 795 | |
|
800 | 796 | if maxHei == None: |
|
801 | 797 | maxHei = self.dataOut.heightList[-1] |
|
802 | 798 | |
|
803 | 799 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
804 | 800 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
805 | 801 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
806 | 802 | minHei = self.dataOut.heightList[0] |
|
807 | 803 | |
|
808 | 804 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
809 | 805 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
810 | 806 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
811 | 807 | maxHei = self.dataOut.heightList[-1] |
|
812 | 808 | |
|
813 | 809 | # validacion de velocidades |
|
814 | 810 | velrange = self.dataOut.getVelRange(1) |
|
815 | 811 | |
|
816 | 812 | if minVel == None: |
|
817 | 813 | minVel = velrange[0] |
|
818 | 814 | |
|
819 | 815 | if maxVel == None: |
|
820 | 816 | maxVel = velrange[-1] |
|
821 | 817 | |
|
822 | 818 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
823 | 819 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
824 | 820 | print('minVel is setting to %.2f' % (velrange[0])) |
|
825 | 821 | minVel = velrange[0] |
|
826 | 822 | |
|
827 | 823 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
828 | 824 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
829 | 825 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
830 | 826 | maxVel = velrange[-1] |
|
831 | 827 | |
|
832 | 828 | # seleccion de indices para rango |
|
833 | 829 | minIndex = 0 |
|
834 | 830 | maxIndex = 0 |
|
835 | 831 | heights = self.dataOut.heightList |
|
836 | 832 | |
|
837 | 833 | inda = numpy.where(heights >= minHei) |
|
838 | 834 | indb = numpy.where(heights <= maxHei) |
|
839 | 835 | |
|
840 | 836 | try: |
|
841 | 837 | minIndex = inda[0][0] |
|
842 | 838 | except: |
|
843 | 839 | minIndex = 0 |
|
844 | 840 | |
|
845 | 841 | try: |
|
846 | 842 | maxIndex = indb[0][-1] |
|
847 | 843 | except: |
|
848 | 844 | maxIndex = len(heights) |
|
849 | 845 | |
|
850 | 846 | if (minIndex < 0) or (minIndex > maxIndex): |
|
851 | 847 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
852 | 848 | minIndex, maxIndex)) |
|
853 | 849 | |
|
854 | 850 | if (maxIndex >= self.dataOut.nHeights): |
|
855 | 851 | maxIndex = self.dataOut.nHeights - 1 |
|
856 | 852 | |
|
857 | 853 | # seleccion de indices para velocidades |
|
858 | 854 | indminvel = numpy.where(velrange >= minVel) |
|
859 | 855 | indmaxvel = numpy.where(velrange <= maxVel) |
|
860 | 856 | try: |
|
861 | 857 | minIndexVel = indminvel[0][0] |
|
862 | 858 | except: |
|
863 | 859 | minIndexVel = 0 |
|
864 | 860 | |
|
865 | 861 | try: |
|
866 | 862 | maxIndexVel = indmaxvel[0][-1] |
|
867 | 863 | except: |
|
868 | 864 | maxIndexVel = len(velrange) |
|
869 | 865 | |
|
870 | 866 | # seleccion del espectro |
|
871 | 867 | data_spc = self.dataOut.data_spc[:, |
|
872 | 868 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
873 | 869 | # estimacion de ruido |
|
874 | 870 | noise = numpy.zeros(self.dataOut.nChannels) |
|
875 | 871 | |
|
876 | 872 | for channel in range(self.dataOut.nChannels): |
|
877 | 873 | daux = data_spc[channel, :, :] |
|
878 | 874 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) |
|
879 | 875 | |
|
880 | 876 | self.dataOut.noise_estimation = noise.copy() |
|
881 | 877 | |
|
882 | 878 | return 1 |
|
883 | 879 | |
|
884 | 880 | |
|
885 | 881 | class IncohInt(Operation): |
|
886 | 882 | |
|
887 | 883 | __profIndex = 0 |
|
888 | 884 | __withOverapping = False |
|
889 | 885 | |
|
890 | 886 | __byTime = False |
|
891 | 887 | __initime = None |
|
892 | 888 | __lastdatatime = None |
|
893 | 889 | __integrationtime = None |
|
894 | 890 | |
|
895 | 891 | __buffer_spc = None |
|
896 | 892 | __buffer_cspc = None |
|
897 | 893 | __buffer_dc = None |
|
898 | 894 | |
|
899 | 895 | __dataReady = False |
|
900 | 896 | |
|
901 | 897 | __timeInterval = None |
|
902 | 898 | |
|
903 | 899 | n = None |
|
904 | 900 | |
|
905 | 901 | def __init__(self): |
|
906 | 902 | |
|
907 | 903 | Operation.__init__(self) |
|
908 | 904 | |
|
909 | 905 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
910 | 906 | """ |
|
911 | 907 | Set the parameters of the integration class. |
|
912 | 908 | |
|
913 | 909 | Inputs: |
|
914 | 910 | |
|
915 | 911 | n : Number of coherent integrations |
|
916 | 912 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
917 | 913 | overlapping : |
|
918 | 914 | |
|
919 | 915 | """ |
|
920 | 916 | |
|
921 | 917 | self.__initime = None |
|
922 | 918 | self.__lastdatatime = 0 |
|
923 | 919 | |
|
924 | 920 | self.__buffer_spc = 0 |
|
925 | 921 | self.__buffer_cspc = 0 |
|
926 | 922 | self.__buffer_dc = 0 |
|
927 | 923 | |
|
928 | 924 | self.__profIndex = 0 |
|
929 | 925 | self.__dataReady = False |
|
930 | 926 | self.__byTime = False |
|
931 | 927 | |
|
932 | 928 | if n is None and timeInterval is None: |
|
933 | 929 | raise ValueError("n or timeInterval should be specified ...") |
|
934 | 930 | |
|
935 | 931 | if n is not None: |
|
936 | 932 | self.n = int(n) |
|
937 | 933 | else: |
|
938 | 934 | |
|
939 | 935 | self.__integrationtime = int(timeInterval) |
|
940 | 936 | self.n = None |
|
941 | 937 | self.__byTime = True |
|
942 | 938 | |
|
943 | 939 | def putData(self, data_spc, data_cspc, data_dc): |
|
944 | 940 | """ |
|
945 | 941 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
946 | 942 | |
|
947 | 943 | """ |
|
948 | 944 | |
|
949 | 945 | self.__buffer_spc += data_spc |
|
950 | 946 | |
|
951 | 947 | if data_cspc is None: |
|
952 | 948 | self.__buffer_cspc = None |
|
953 | 949 | else: |
|
954 | 950 | self.__buffer_cspc += data_cspc |
|
955 | 951 | |
|
956 | 952 | if data_dc is None: |
|
957 | 953 | self.__buffer_dc = None |
|
958 | 954 | else: |
|
959 | 955 | self.__buffer_dc += data_dc |
|
960 | 956 | |
|
961 | 957 | self.__profIndex += 1 |
|
962 | 958 | |
|
963 | 959 | return |
|
964 | 960 | |
|
965 | 961 | def pushData(self): |
|
966 | 962 | """ |
|
967 | 963 | Return the sum of the last profiles and the profiles used in the sum. |
|
968 | 964 | |
|
969 | 965 | Affected: |
|
970 | 966 | |
|
971 | 967 | self.__profileIndex |
|
972 | 968 | |
|
973 | 969 | """ |
|
974 | 970 | |
|
975 | 971 | data_spc = self.__buffer_spc |
|
976 | 972 | data_cspc = self.__buffer_cspc |
|
977 | 973 | data_dc = self.__buffer_dc |
|
978 | 974 | n = self.__profIndex |
|
979 | 975 | |
|
980 | 976 | self.__buffer_spc = 0 |
|
981 | 977 | self.__buffer_cspc = 0 |
|
982 | 978 | self.__buffer_dc = 0 |
|
983 | 979 | self.__profIndex = 0 |
|
984 | 980 | |
|
985 | 981 | return data_spc, data_cspc, data_dc, n |
|
986 | 982 | |
|
987 | 983 | def byProfiles(self, *args): |
|
988 | 984 | |
|
989 | 985 | self.__dataReady = False |
|
990 | 986 | avgdata_spc = None |
|
991 | 987 | avgdata_cspc = None |
|
992 | 988 | avgdata_dc = None |
|
993 | 989 | |
|
994 | 990 | self.putData(*args) |
|
995 | 991 | |
|
996 | 992 | if self.__profIndex == self.n: |
|
997 | 993 | |
|
998 | 994 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
999 | 995 | self.n = n |
|
1000 | 996 | self.__dataReady = True |
|
1001 | 997 | |
|
1002 | 998 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1003 | 999 | |
|
1004 | 1000 | def byTime(self, datatime, *args): |
|
1005 | 1001 | |
|
1006 | 1002 | self.__dataReady = False |
|
1007 | 1003 | avgdata_spc = None |
|
1008 | 1004 | avgdata_cspc = None |
|
1009 | 1005 | avgdata_dc = None |
|
1010 | 1006 | |
|
1011 | 1007 | self.putData(*args) |
|
1012 | 1008 | |
|
1013 | 1009 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1014 | 1010 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1015 | 1011 | self.n = n |
|
1016 | 1012 | self.__dataReady = True |
|
1017 | 1013 | |
|
1018 | 1014 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1019 | 1015 | |
|
1020 | 1016 | def integrate(self, datatime, *args): |
|
1021 | 1017 | |
|
1022 | 1018 | if self.__profIndex == 0: |
|
1023 | 1019 | self.__initime = datatime |
|
1024 | 1020 | |
|
1025 | 1021 | if self.__byTime: |
|
1026 | 1022 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1027 | 1023 | datatime, *args) |
|
1028 | 1024 | else: |
|
1029 | 1025 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1030 | 1026 | |
|
1031 | 1027 | if not self.__dataReady: |
|
1032 | 1028 | return None, None, None, None |
|
1033 | 1029 | |
|
1034 | 1030 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1035 | 1031 | |
|
1036 | 1032 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1037 | 1033 | if n == 1: |
|
1038 | 1034 | return |
|
1039 | 1035 | |
|
1040 | 1036 | dataOut.flagNoData = True |
|
1041 | 1037 | |
|
1042 | 1038 | if not self.isConfig: |
|
1043 | 1039 | self.setup(n, timeInterval, overlapping) |
|
1044 | 1040 | self.isConfig = True |
|
1045 | 1041 | |
|
1046 | 1042 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1047 | 1043 | dataOut.data_spc, |
|
1048 | 1044 | dataOut.data_cspc, |
|
1049 | 1045 | dataOut.data_dc) |
|
1050 | 1046 | |
|
1051 | 1047 | if self.__dataReady: |
|
1052 | 1048 | |
|
1053 | 1049 | dataOut.data_spc = avgdata_spc |
|
1054 | 1050 | dataOut.data_cspc = avgdata_cspc |
|
1055 | 1051 | dataOut.data_dc = avgdata_dc |
|
1056 | 1052 | dataOut.nIncohInt *= self.n |
|
1057 | 1053 | dataOut.utctime = avgdatatime |
|
1058 | 1054 | dataOut.flagNoData = False |
|
1059 | 1055 | |
|
1060 | 1056 | return dataOut No newline at end of file |
@@ -1,1329 +1,1329 | |||
|
1 | 1 | import sys |
|
2 | 2 | import numpy |
|
3 | 3 | from scipy import interpolate |
|
4 | 4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
5 | 5 | from schainpy.model.data.jrodata import Voltage |
|
6 | 6 | from schainpy.utils import log |
|
7 | 7 | from time import time |
|
8 | 8 | |
|
9 | 9 | |
|
10 | 10 | @MPDecorator |
|
11 | 11 | class VoltageProc(ProcessingUnit): |
|
12 | 12 | |
|
13 | 13 | def __init__(self): |
|
14 | 14 | |
|
15 | 15 | ProcessingUnit.__init__(self) |
|
16 | 16 | |
|
17 | 17 | self.dataOut = Voltage() |
|
18 | 18 | self.flip = 1 |
|
19 | 19 | self.setupReq = False |
|
20 | 20 | |
|
21 | 21 | def run(self): |
|
22 | 22 | |
|
23 | 23 | if self.dataIn.type == 'AMISR': |
|
24 | 24 | self.__updateObjFromAmisrInput() |
|
25 | 25 | |
|
26 | 26 | if self.dataIn.type == 'Voltage': |
|
27 | 27 | self.dataOut.copy(self.dataIn) |
|
28 | 28 | |
|
29 | 29 | # self.dataOut.copy(self.dataIn) |
|
30 | 30 | |
|
31 | 31 | def __updateObjFromAmisrInput(self): |
|
32 | 32 | |
|
33 | 33 | self.dataOut.timeZone = self.dataIn.timeZone |
|
34 | 34 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
35 | 35 | self.dataOut.errorCount = self.dataIn.errorCount |
|
36 | 36 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
37 | 37 | |
|
38 | 38 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
39 | 39 | self.dataOut.data = self.dataIn.data |
|
40 | 40 | self.dataOut.utctime = self.dataIn.utctime |
|
41 | 41 | self.dataOut.channelList = self.dataIn.channelList |
|
42 | 42 | #self.dataOut.timeInterval = self.dataIn.timeInterval |
|
43 | 43 | self.dataOut.heightList = self.dataIn.heightList |
|
44 | 44 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
45 | 45 | |
|
46 | 46 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
47 | 47 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
48 | 48 | self.dataOut.frequency = self.dataIn.frequency |
|
49 | 49 | |
|
50 | 50 | self.dataOut.azimuth = self.dataIn.azimuth |
|
51 | 51 | self.dataOut.zenith = self.dataIn.zenith |
|
52 | 52 | |
|
53 | 53 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
54 | 54 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
55 | 55 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
56 | 56 | # |
|
57 | 57 | # pass# |
|
58 | 58 | # |
|
59 | 59 | # def init(self): |
|
60 | 60 | # |
|
61 | 61 | # |
|
62 | 62 | # if self.dataIn.type == 'AMISR': |
|
63 | 63 | # self.__updateObjFromAmisrInput() |
|
64 | 64 | # |
|
65 | 65 | # if self.dataIn.type == 'Voltage': |
|
66 | 66 | # self.dataOut.copy(self.dataIn) |
|
67 | 67 | # # No necesita copiar en cada init() los atributos de dataIn |
|
68 | 68 | # # la copia deberia hacerse por cada nuevo bloque de datos |
|
69 | 69 | |
|
70 | 70 | def selectChannels(self, channelList): |
|
71 | 71 | |
|
72 | 72 | channelIndexList = [] |
|
73 | 73 | |
|
74 | 74 | for channel in channelList: |
|
75 | 75 | if channel not in self.dataOut.channelList: |
|
76 | 76 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) |
|
77 | 77 | |
|
78 | 78 | index = self.dataOut.channelList.index(channel) |
|
79 | 79 | channelIndexList.append(index) |
|
80 | 80 | |
|
81 | 81 | self.selectChannelsByIndex(channelIndexList) |
|
82 | 82 | |
|
83 | 83 | def selectChannelsByIndex(self, channelIndexList): |
|
84 | 84 | """ |
|
85 | 85 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
86 | 86 | |
|
87 | 87 | Input: |
|
88 | 88 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
89 | 89 | |
|
90 | 90 | Affected: |
|
91 | 91 | self.dataOut.data |
|
92 | 92 | self.dataOut.channelIndexList |
|
93 | 93 | self.dataOut.nChannels |
|
94 | 94 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
95 | 95 | self.dataOut.systemHeaderObj.numChannels |
|
96 | 96 | self.dataOut.m_ProcessingHeader.blockSize |
|
97 | 97 | |
|
98 | 98 | Return: |
|
99 | 99 | None |
|
100 | 100 | """ |
|
101 | 101 | |
|
102 | 102 | for channelIndex in channelIndexList: |
|
103 | 103 | if channelIndex not in self.dataOut.channelIndexList: |
|
104 | 104 | print(channelIndexList) |
|
105 | 105 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) |
|
106 | 106 | |
|
107 | 107 | if self.dataOut.flagDataAsBlock: |
|
108 | 108 | """ |
|
109 | 109 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
110 | 110 | """ |
|
111 | 111 | data = self.dataOut.data[channelIndexList,:,:] |
|
112 | 112 | else: |
|
113 | 113 | data = self.dataOut.data[channelIndexList,:] |
|
114 | 114 | |
|
115 | 115 | self.dataOut.data = data |
|
116 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
|
117 |
|
|
|
116 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
|
117 | self.dataOut.channelList = range(len(channelIndexList)) | |
|
118 | 118 | |
|
119 | 119 | return 1 |
|
120 | 120 | |
|
121 | 121 | def selectHeights(self, minHei=None, maxHei=None): |
|
122 | 122 | """ |
|
123 | 123 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
124 | 124 | minHei <= height <= maxHei |
|
125 | 125 | |
|
126 | 126 | Input: |
|
127 | 127 | minHei : valor minimo de altura a considerar |
|
128 | 128 | maxHei : valor maximo de altura a considerar |
|
129 | 129 | |
|
130 | 130 | Affected: |
|
131 | 131 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
132 | 132 | |
|
133 | 133 | Return: |
|
134 | 134 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
135 | 135 | """ |
|
136 | 136 | |
|
137 | 137 | if minHei == None: |
|
138 | 138 | minHei = self.dataOut.heightList[0] |
|
139 | 139 | |
|
140 | 140 | if maxHei == None: |
|
141 | 141 | maxHei = self.dataOut.heightList[-1] |
|
142 | 142 | |
|
143 | 143 | if (minHei < self.dataOut.heightList[0]): |
|
144 | 144 | minHei = self.dataOut.heightList[0] |
|
145 | 145 | |
|
146 | 146 | if (maxHei > self.dataOut.heightList[-1]): |
|
147 | 147 | maxHei = self.dataOut.heightList[-1] |
|
148 | 148 | |
|
149 | 149 | minIndex = 0 |
|
150 | 150 | maxIndex = 0 |
|
151 | 151 | heights = self.dataOut.heightList |
|
152 | 152 | |
|
153 | 153 | inda = numpy.where(heights >= minHei) |
|
154 | 154 | indb = numpy.where(heights <= maxHei) |
|
155 | 155 | |
|
156 | 156 | try: |
|
157 | 157 | minIndex = inda[0][0] |
|
158 | 158 | except: |
|
159 | 159 | minIndex = 0 |
|
160 | 160 | |
|
161 | 161 | try: |
|
162 | 162 | maxIndex = indb[0][-1] |
|
163 | 163 | except: |
|
164 | 164 | maxIndex = len(heights) |
|
165 | 165 | |
|
166 | 166 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
167 | 167 | |
|
168 | 168 | return 1 |
|
169 | 169 | |
|
170 | 170 | |
|
171 | 171 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
172 | 172 | """ |
|
173 | 173 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
174 | 174 | minIndex <= index <= maxIndex |
|
175 | 175 | |
|
176 | 176 | Input: |
|
177 | 177 | minIndex : valor de indice minimo de altura a considerar |
|
178 | 178 | maxIndex : valor de indice maximo de altura a considerar |
|
179 | 179 | |
|
180 | 180 | Affected: |
|
181 | 181 | self.dataOut.data |
|
182 | 182 | self.dataOut.heightList |
|
183 | 183 | |
|
184 | 184 | Return: |
|
185 | 185 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
186 | 186 | """ |
|
187 | 187 | |
|
188 | 188 | if (minIndex < 0) or (minIndex > maxIndex): |
|
189 | 189 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
190 | 190 | |
|
191 | 191 | if (maxIndex >= self.dataOut.nHeights): |
|
192 | 192 | maxIndex = self.dataOut.nHeights |
|
193 | 193 | |
|
194 | 194 | #voltage |
|
195 | 195 | if self.dataOut.flagDataAsBlock: |
|
196 | 196 | """ |
|
197 | 197 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
198 | 198 | """ |
|
199 | 199 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
200 | 200 | else: |
|
201 | 201 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
202 | 202 | |
|
203 | 203 | # firstHeight = self.dataOut.heightList[minIndex] |
|
204 | 204 | |
|
205 | 205 | self.dataOut.data = data |
|
206 | 206 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
207 | 207 | |
|
208 | 208 | if self.dataOut.nHeights <= 1: |
|
209 | 209 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) |
|
210 | 210 | |
|
211 | 211 | return 1 |
|
212 | 212 | |
|
213 | 213 | |
|
214 | 214 | def filterByHeights(self, window): |
|
215 | 215 | |
|
216 | 216 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
217 | 217 | |
|
218 | 218 | if window == None: |
|
219 | 219 | window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
220 | 220 | |
|
221 | 221 | newdelta = deltaHeight * window |
|
222 | 222 | r = self.dataOut.nHeights % window |
|
223 | 223 | newheights = (self.dataOut.nHeights-r)/window |
|
224 | 224 | |
|
225 | 225 | if newheights <= 1: |
|
226 | 226 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(self.dataOut.nHeights, window)) |
|
227 | 227 | |
|
228 | 228 | if self.dataOut.flagDataAsBlock: |
|
229 | 229 | """ |
|
230 | 230 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
231 | 231 | """ |
|
232 | 232 | buffer = self.dataOut.data[:, :, 0:int(self.dataOut.nHeights-r)] |
|
233 | 233 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nProfiles,self.dataOut.nHeights/window,window) |
|
234 | 234 | buffer = numpy.sum(buffer,3) |
|
235 | 235 | |
|
236 | 236 | else: |
|
237 | 237 | buffer = self.dataOut.data[:,0:int(self.dataOut.nHeights-r)] |
|
238 | 238 | buffer = buffer.reshape(self.dataOut.nChannels,int(self.dataOut.nHeights/window),int(window)) |
|
239 | 239 | buffer = numpy.sum(buffer,2) |
|
240 | 240 | |
|
241 | 241 | self.dataOut.data = buffer |
|
242 | 242 | self.dataOut.heightList = self.dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
243 | 243 | self.dataOut.windowOfFilter = window |
|
244 | 244 | |
|
245 | 245 | def setH0(self, h0, deltaHeight = None): |
|
246 | 246 | |
|
247 | 247 | if not deltaHeight: |
|
248 | 248 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
249 | 249 | |
|
250 | 250 | nHeights = self.dataOut.nHeights |
|
251 | 251 | |
|
252 | 252 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
253 | 253 | |
|
254 | 254 | self.dataOut.heightList = newHeiRange |
|
255 | 255 | |
|
256 | 256 | def deFlip(self, channelList = []): |
|
257 | 257 | |
|
258 | 258 | data = self.dataOut.data.copy() |
|
259 | 259 | |
|
260 | 260 | if self.dataOut.flagDataAsBlock: |
|
261 | 261 | flip = self.flip |
|
262 | 262 | profileList = list(range(self.dataOut.nProfiles)) |
|
263 | 263 | |
|
264 | 264 | if not channelList: |
|
265 | 265 | for thisProfile in profileList: |
|
266 | 266 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
267 | 267 | flip *= -1.0 |
|
268 | 268 | else: |
|
269 | 269 | for thisChannel in channelList: |
|
270 | 270 | if thisChannel not in self.dataOut.channelList: |
|
271 | 271 | continue |
|
272 | 272 | |
|
273 | 273 | for thisProfile in profileList: |
|
274 | 274 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
275 | 275 | flip *= -1.0 |
|
276 | 276 | |
|
277 | 277 | self.flip = flip |
|
278 | 278 | |
|
279 | 279 | else: |
|
280 | 280 | if not channelList: |
|
281 | 281 | data[:,:] = data[:,:]*self.flip |
|
282 | 282 | else: |
|
283 | 283 | for thisChannel in channelList: |
|
284 | 284 | if thisChannel not in self.dataOut.channelList: |
|
285 | 285 | continue |
|
286 | 286 | |
|
287 | 287 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
288 | 288 | |
|
289 | 289 | self.flip *= -1. |
|
290 | 290 | |
|
291 | 291 | self.dataOut.data = data |
|
292 | 292 | |
|
293 | 293 | def setRadarFrequency(self, frequency=None): |
|
294 | 294 | |
|
295 | 295 | if frequency != None: |
|
296 | 296 | self.dataOut.frequency = frequency |
|
297 | 297 | |
|
298 | 298 | return 1 |
|
299 | 299 | |
|
300 | 300 | def interpolateHeights(self, topLim, botLim): |
|
301 | 301 | #69 al 72 para julia |
|
302 | 302 | #82-84 para meteoros |
|
303 | 303 | if len(numpy.shape(self.dataOut.data))==2: |
|
304 | 304 | sampInterp = (self.dataOut.data[:,botLim-1] + self.dataOut.data[:,topLim+1])/2 |
|
305 | 305 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
306 | 306 | #self.dataOut.data[:,botLim:limSup+1] = sampInterp |
|
307 | 307 | self.dataOut.data[:,botLim:topLim+1] = sampInterp |
|
308 | 308 | else: |
|
309 | 309 | nHeights = self.dataOut.data.shape[2] |
|
310 | 310 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
311 | 311 | y = self.dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] |
|
312 | 312 | f = interpolate.interp1d(x, y, axis = 2) |
|
313 | 313 | xnew = numpy.arange(botLim,topLim+1) |
|
314 | 314 | ynew = f(xnew) |
|
315 | 315 | |
|
316 | 316 | self.dataOut.data[:,:,botLim:topLim+1] = ynew |
|
317 | 317 | |
|
318 | 318 | # import collections |
|
319 | 319 | |
|
320 | 320 | class CohInt(Operation): |
|
321 | 321 | |
|
322 | 322 | isConfig = False |
|
323 | 323 | __profIndex = 0 |
|
324 | 324 | __byTime = False |
|
325 | 325 | __initime = None |
|
326 | 326 | __lastdatatime = None |
|
327 | 327 | __integrationtime = None |
|
328 | 328 | __buffer = None |
|
329 | 329 | __bufferStride = [] |
|
330 | 330 | __dataReady = False |
|
331 | 331 | __profIndexStride = 0 |
|
332 | 332 | __dataToPutStride = False |
|
333 | 333 | n = None |
|
334 | 334 | |
|
335 | 335 | def __init__(self, **kwargs): |
|
336 | 336 | |
|
337 | 337 | Operation.__init__(self, **kwargs) |
|
338 | 338 | |
|
339 | 339 | # self.isConfig = False |
|
340 | 340 | |
|
341 | 341 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
342 | 342 | """ |
|
343 | 343 | Set the parameters of the integration class. |
|
344 | 344 | |
|
345 | 345 | Inputs: |
|
346 | 346 | |
|
347 | 347 | n : Number of coherent integrations |
|
348 | 348 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
349 | 349 | overlapping : |
|
350 | 350 | """ |
|
351 | 351 | |
|
352 | 352 | self.__initime = None |
|
353 | 353 | self.__lastdatatime = 0 |
|
354 | 354 | self.__buffer = None |
|
355 | 355 | self.__dataReady = False |
|
356 | 356 | self.byblock = byblock |
|
357 | 357 | self.stride = stride |
|
358 | 358 | |
|
359 | 359 | if n == None and timeInterval == None: |
|
360 | 360 | raise ValueError("n or timeInterval should be specified ...") |
|
361 | 361 | |
|
362 | 362 | if n != None: |
|
363 | 363 | self.n = n |
|
364 | 364 | self.__byTime = False |
|
365 | 365 | else: |
|
366 | 366 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
367 | 367 | self.n = 9999 |
|
368 | 368 | self.__byTime = True |
|
369 | 369 | |
|
370 | 370 | if overlapping: |
|
371 | 371 | self.__withOverlapping = True |
|
372 | 372 | self.__buffer = None |
|
373 | 373 | else: |
|
374 | 374 | self.__withOverlapping = False |
|
375 | 375 | self.__buffer = 0 |
|
376 | 376 | |
|
377 | 377 | self.__profIndex = 0 |
|
378 | 378 | |
|
379 | 379 | def putData(self, data): |
|
380 | 380 | |
|
381 | 381 | """ |
|
382 | 382 | Add a profile to the __buffer and increase in one the __profileIndex |
|
383 | 383 | |
|
384 | 384 | """ |
|
385 | 385 | |
|
386 | 386 | if not self.__withOverlapping: |
|
387 | 387 | self.__buffer += data.copy() |
|
388 | 388 | self.__profIndex += 1 |
|
389 | 389 | return |
|
390 | 390 | |
|
391 | 391 | #Overlapping data |
|
392 | 392 | nChannels, nHeis = data.shape |
|
393 | 393 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
394 | 394 | |
|
395 | 395 | #If the buffer is empty then it takes the data value |
|
396 | 396 | if self.__buffer is None: |
|
397 | 397 | self.__buffer = data |
|
398 | 398 | self.__profIndex += 1 |
|
399 | 399 | return |
|
400 | 400 | |
|
401 | 401 | #If the buffer length is lower than n then stakcing the data value |
|
402 | 402 | if self.__profIndex < self.n: |
|
403 | 403 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
404 | 404 | self.__profIndex += 1 |
|
405 | 405 | return |
|
406 | 406 | |
|
407 | 407 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
408 | 408 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
409 | 409 | self.__buffer[self.n-1] = data |
|
410 | 410 | self.__profIndex = self.n |
|
411 | 411 | return |
|
412 | 412 | |
|
413 | 413 | |
|
414 | 414 | def pushData(self): |
|
415 | 415 | """ |
|
416 | 416 | Return the sum of the last profiles and the profiles used in the sum. |
|
417 | 417 | |
|
418 | 418 | Affected: |
|
419 | 419 | |
|
420 | 420 | self.__profileIndex |
|
421 | 421 | |
|
422 | 422 | """ |
|
423 | 423 | |
|
424 | 424 | if not self.__withOverlapping: |
|
425 | 425 | data = self.__buffer |
|
426 | 426 | n = self.__profIndex |
|
427 | 427 | |
|
428 | 428 | self.__buffer = 0 |
|
429 | 429 | self.__profIndex = 0 |
|
430 | 430 | |
|
431 | 431 | return data, n |
|
432 | 432 | |
|
433 | 433 | #Integration with Overlapping |
|
434 | 434 | data = numpy.sum(self.__buffer, axis=0) |
|
435 | 435 | # print data |
|
436 | 436 | # raise |
|
437 | 437 | n = self.__profIndex |
|
438 | 438 | |
|
439 | 439 | return data, n |
|
440 | 440 | |
|
441 | 441 | def byProfiles(self, data): |
|
442 | 442 | |
|
443 | 443 | self.__dataReady = False |
|
444 | 444 | avgdata = None |
|
445 | 445 | # n = None |
|
446 | 446 | # print data |
|
447 | 447 | # raise |
|
448 | 448 | self.putData(data) |
|
449 | 449 | |
|
450 | 450 | if self.__profIndex == self.n: |
|
451 | 451 | avgdata, n = self.pushData() |
|
452 | 452 | self.__dataReady = True |
|
453 | 453 | |
|
454 | 454 | return avgdata |
|
455 | 455 | |
|
456 | 456 | def byTime(self, data, datatime): |
|
457 | 457 | |
|
458 | 458 | self.__dataReady = False |
|
459 | 459 | avgdata = None |
|
460 | 460 | n = None |
|
461 | 461 | |
|
462 | 462 | self.putData(data) |
|
463 | 463 | |
|
464 | 464 | if (datatime - self.__initime) >= self.__integrationtime: |
|
465 | 465 | avgdata, n = self.pushData() |
|
466 | 466 | self.n = n |
|
467 | 467 | self.__dataReady = True |
|
468 | 468 | |
|
469 | 469 | return avgdata |
|
470 | 470 | |
|
471 | 471 | def integrateByStride(self, data, datatime): |
|
472 | 472 | # print data |
|
473 | 473 | if self.__profIndex == 0: |
|
474 | 474 | self.__buffer = [[data.copy(), datatime]] |
|
475 | 475 | else: |
|
476 | 476 | self.__buffer.append([data.copy(),datatime]) |
|
477 | 477 | self.__profIndex += 1 |
|
478 | 478 | self.__dataReady = False |
|
479 | 479 | |
|
480 | 480 | if self.__profIndex == self.n * self.stride : |
|
481 | 481 | self.__dataToPutStride = True |
|
482 | 482 | self.__profIndexStride = 0 |
|
483 | 483 | self.__profIndex = 0 |
|
484 | 484 | self.__bufferStride = [] |
|
485 | 485 | for i in range(self.stride): |
|
486 | 486 | current = self.__buffer[i::self.stride] |
|
487 | 487 | data = numpy.sum([t[0] for t in current], axis=0) |
|
488 | 488 | avgdatatime = numpy.average([t[1] for t in current]) |
|
489 | 489 | # print data |
|
490 | 490 | self.__bufferStride.append((data, avgdatatime)) |
|
491 | 491 | |
|
492 | 492 | if self.__dataToPutStride: |
|
493 | 493 | self.__dataReady = True |
|
494 | 494 | self.__profIndexStride += 1 |
|
495 | 495 | if self.__profIndexStride == self.stride: |
|
496 | 496 | self.__dataToPutStride = False |
|
497 | 497 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
498 | 498 | # raise |
|
499 | 499 | return self.__bufferStride[self.__profIndexStride - 1] |
|
500 | 500 | |
|
501 | 501 | |
|
502 | 502 | return None, None |
|
503 | 503 | |
|
504 | 504 | def integrate(self, data, datatime=None): |
|
505 | 505 | |
|
506 | 506 | if self.__initime == None: |
|
507 | 507 | self.__initime = datatime |
|
508 | 508 | |
|
509 | 509 | if self.__byTime: |
|
510 | 510 | avgdata = self.byTime(data, datatime) |
|
511 | 511 | else: |
|
512 | 512 | avgdata = self.byProfiles(data) |
|
513 | 513 | |
|
514 | 514 | |
|
515 | 515 | self.__lastdatatime = datatime |
|
516 | 516 | |
|
517 | 517 | if avgdata is None: |
|
518 | 518 | return None, None |
|
519 | 519 | |
|
520 | 520 | avgdatatime = self.__initime |
|
521 | 521 | |
|
522 | 522 | deltatime = datatime - self.__lastdatatime |
|
523 | 523 | |
|
524 | 524 | if not self.__withOverlapping: |
|
525 | 525 | self.__initime = datatime |
|
526 | 526 | else: |
|
527 | 527 | self.__initime += deltatime |
|
528 | 528 | |
|
529 | 529 | return avgdata, avgdatatime |
|
530 | 530 | |
|
531 | 531 | def integrateByBlock(self, dataOut): |
|
532 | 532 | |
|
533 | 533 | times = int(dataOut.data.shape[1]/self.n) |
|
534 | 534 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
535 | 535 | |
|
536 | 536 | id_min = 0 |
|
537 | 537 | id_max = self.n |
|
538 | 538 | |
|
539 | 539 | for i in range(times): |
|
540 | 540 | junk = dataOut.data[:,id_min:id_max,:] |
|
541 | 541 | avgdata[:,i,:] = junk.sum(axis=1) |
|
542 | 542 | id_min += self.n |
|
543 | 543 | id_max += self.n |
|
544 | 544 | |
|
545 | 545 | timeInterval = dataOut.ippSeconds*self.n |
|
546 | 546 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
547 | 547 | self.__dataReady = True |
|
548 | 548 | return avgdata, avgdatatime |
|
549 | 549 | |
|
550 | 550 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
551 | 551 | |
|
552 | 552 | if not self.isConfig: |
|
553 | 553 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
554 | 554 | self.isConfig = True |
|
555 | 555 | |
|
556 | 556 | if dataOut.flagDataAsBlock: |
|
557 | 557 | """ |
|
558 | 558 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
559 | 559 | """ |
|
560 | 560 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
561 | 561 | dataOut.nProfiles /= self.n |
|
562 | 562 | else: |
|
563 | 563 | if stride is None: |
|
564 | 564 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
565 | 565 | else: |
|
566 | 566 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
567 | 567 | |
|
568 | 568 | |
|
569 | 569 | # dataOut.timeInterval *= n |
|
570 | 570 | dataOut.flagNoData = True |
|
571 | 571 | |
|
572 | 572 | if self.__dataReady: |
|
573 | 573 | dataOut.data = avgdata |
|
574 | 574 | dataOut.nCohInt *= self.n |
|
575 | 575 | dataOut.utctime = avgdatatime |
|
576 | 576 | # print avgdata, avgdatatime |
|
577 | 577 | # raise |
|
578 | 578 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
579 | 579 | dataOut.flagNoData = False |
|
580 | 580 | return dataOut |
|
581 | 581 | |
|
582 | 582 | class Decoder(Operation): |
|
583 | 583 | |
|
584 | 584 | isConfig = False |
|
585 | 585 | __profIndex = 0 |
|
586 | 586 | |
|
587 | 587 | code = None |
|
588 | 588 | |
|
589 | 589 | nCode = None |
|
590 | 590 | nBaud = None |
|
591 | 591 | |
|
592 | 592 | def __init__(self, **kwargs): |
|
593 | 593 | |
|
594 | 594 | Operation.__init__(self, **kwargs) |
|
595 | 595 | |
|
596 | 596 | self.times = None |
|
597 | 597 | self.osamp = None |
|
598 | 598 | # self.__setValues = False |
|
599 | 599 | self.isConfig = False |
|
600 | 600 | self.setupReq = False |
|
601 | 601 | def setup(self, code, osamp, dataOut): |
|
602 | 602 | |
|
603 | 603 | self.__profIndex = 0 |
|
604 | 604 | |
|
605 | 605 | self.code = code |
|
606 | 606 | |
|
607 | 607 | self.nCode = len(code) |
|
608 | 608 | self.nBaud = len(code[0]) |
|
609 | 609 | |
|
610 | 610 | if (osamp != None) and (osamp >1): |
|
611 | 611 | self.osamp = osamp |
|
612 | 612 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
613 | 613 | self.nBaud = self.nBaud*self.osamp |
|
614 | 614 | |
|
615 | 615 | self.__nChannels = dataOut.nChannels |
|
616 | 616 | self.__nProfiles = dataOut.nProfiles |
|
617 | 617 | self.__nHeis = dataOut.nHeights |
|
618 | 618 | |
|
619 | 619 | if self.__nHeis < self.nBaud: |
|
620 | 620 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) |
|
621 | 621 | |
|
622 | 622 | #Frequency |
|
623 | 623 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
624 | 624 | |
|
625 | 625 | __codeBuffer[:,0:self.nBaud] = self.code |
|
626 | 626 | |
|
627 | 627 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
628 | 628 | |
|
629 | 629 | if dataOut.flagDataAsBlock: |
|
630 | 630 | |
|
631 | 631 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
632 | 632 | |
|
633 | 633 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
634 | 634 | |
|
635 | 635 | else: |
|
636 | 636 | |
|
637 | 637 | #Time |
|
638 | 638 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
639 | 639 | |
|
640 | 640 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
641 | 641 | |
|
642 | 642 | def __convolutionInFreq(self, data): |
|
643 | 643 | |
|
644 | 644 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
645 | 645 | |
|
646 | 646 | fft_data = numpy.fft.fft(data, axis=1) |
|
647 | 647 | |
|
648 | 648 | conv = fft_data*fft_code |
|
649 | 649 | |
|
650 | 650 | data = numpy.fft.ifft(conv,axis=1) |
|
651 | 651 | |
|
652 | 652 | return data |
|
653 | 653 | |
|
654 | 654 | def __convolutionInFreqOpt(self, data): |
|
655 | 655 | |
|
656 | 656 | raise NotImplementedError |
|
657 | 657 | |
|
658 | 658 | def __convolutionInTime(self, data): |
|
659 | 659 | |
|
660 | 660 | code = self.code[self.__profIndex] |
|
661 | 661 | for i in range(self.__nChannels): |
|
662 | 662 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
663 | 663 | |
|
664 | 664 | return self.datadecTime |
|
665 | 665 | |
|
666 | 666 | def __convolutionByBlockInTime(self, data): |
|
667 | 667 | |
|
668 | 668 | repetitions = self.__nProfiles / self.nCode |
|
669 | 669 | |
|
670 | 670 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
671 | 671 | junk = junk.flatten() |
|
672 | 672 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
673 | 673 | profilesList = range(self.__nProfiles) |
|
674 | 674 | |
|
675 | 675 | for i in range(self.__nChannels): |
|
676 | 676 | for j in profilesList: |
|
677 | 677 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
678 | 678 | return self.datadecTime |
|
679 | 679 | |
|
680 | 680 | def __convolutionByBlockInFreq(self, data): |
|
681 | 681 | |
|
682 | 682 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") |
|
683 | 683 | |
|
684 | 684 | |
|
685 | 685 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
686 | 686 | |
|
687 | 687 | fft_data = numpy.fft.fft(data, axis=2) |
|
688 | 688 | |
|
689 | 689 | conv = fft_data*fft_code |
|
690 | 690 | |
|
691 | 691 | data = numpy.fft.ifft(conv,axis=2) |
|
692 | 692 | |
|
693 | 693 | return data |
|
694 | 694 | |
|
695 | 695 | |
|
696 | 696 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
697 | 697 | |
|
698 | 698 | if dataOut.flagDecodeData: |
|
699 | 699 | print("This data is already decoded, recoding again ...") |
|
700 | 700 | |
|
701 | 701 | if not self.isConfig: |
|
702 | 702 | |
|
703 | 703 | if code is None: |
|
704 | 704 | if dataOut.code is None: |
|
705 | 705 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) |
|
706 | 706 | |
|
707 | 707 | code = dataOut.code |
|
708 | 708 | else: |
|
709 | 709 | code = numpy.array(code).reshape(nCode,nBaud) |
|
710 | 710 | self.setup(code, osamp, dataOut) |
|
711 | 711 | |
|
712 | 712 | self.isConfig = True |
|
713 | 713 | |
|
714 | 714 | if mode == 3: |
|
715 | 715 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
716 | 716 | |
|
717 | 717 | if times != None: |
|
718 | 718 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
719 | 719 | |
|
720 | 720 | if self.code is None: |
|
721 | 721 | print("Fail decoding: Code is not defined.") |
|
722 | 722 | return |
|
723 | 723 | |
|
724 | 724 | self.__nProfiles = dataOut.nProfiles |
|
725 | 725 | datadec = None |
|
726 | 726 | |
|
727 | 727 | if mode == 3: |
|
728 | 728 | mode = 0 |
|
729 | 729 | |
|
730 | 730 | if dataOut.flagDataAsBlock: |
|
731 | 731 | """ |
|
732 | 732 | Decoding when data have been read as block, |
|
733 | 733 | """ |
|
734 | 734 | |
|
735 | 735 | if mode == 0: |
|
736 | 736 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
737 | 737 | if mode == 1: |
|
738 | 738 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
739 | 739 | else: |
|
740 | 740 | """ |
|
741 | 741 | Decoding when data have been read profile by profile |
|
742 | 742 | """ |
|
743 | 743 | if mode == 0: |
|
744 | 744 | datadec = self.__convolutionInTime(dataOut.data) |
|
745 | 745 | |
|
746 | 746 | if mode == 1: |
|
747 | 747 | datadec = self.__convolutionInFreq(dataOut.data) |
|
748 | 748 | |
|
749 | 749 | if mode == 2: |
|
750 | 750 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
751 | 751 | |
|
752 | 752 | if datadec is None: |
|
753 | 753 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) |
|
754 | 754 | |
|
755 | 755 | dataOut.code = self.code |
|
756 | 756 | dataOut.nCode = self.nCode |
|
757 | 757 | dataOut.nBaud = self.nBaud |
|
758 | 758 | |
|
759 | 759 | dataOut.data = datadec |
|
760 | 760 | |
|
761 | 761 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
762 | 762 | |
|
763 | 763 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
764 | 764 | |
|
765 | 765 | if self.__profIndex == self.nCode-1: |
|
766 | 766 | self.__profIndex = 0 |
|
767 | 767 | return dataOut |
|
768 | 768 | |
|
769 | 769 | self.__profIndex += 1 |
|
770 | 770 | |
|
771 | 771 | return dataOut |
|
772 | 772 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
773 | 773 | |
|
774 | 774 | |
|
775 | 775 | class ProfileConcat(Operation): |
|
776 | 776 | |
|
777 | 777 | isConfig = False |
|
778 | 778 | buffer = None |
|
779 | 779 | |
|
780 | 780 | def __init__(self, **kwargs): |
|
781 | 781 | |
|
782 | 782 | Operation.__init__(self, **kwargs) |
|
783 | 783 | self.profileIndex = 0 |
|
784 | 784 | |
|
785 | 785 | def reset(self): |
|
786 | 786 | self.buffer = numpy.zeros_like(self.buffer) |
|
787 | 787 | self.start_index = 0 |
|
788 | 788 | self.times = 1 |
|
789 | 789 | |
|
790 | 790 | def setup(self, data, m, n=1): |
|
791 | 791 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
792 | 792 | self.nHeights = data.shape[1]#.nHeights |
|
793 | 793 | self.start_index = 0 |
|
794 | 794 | self.times = 1 |
|
795 | 795 | |
|
796 | 796 | def concat(self, data): |
|
797 | 797 | |
|
798 | 798 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
799 | 799 | self.start_index = self.start_index + self.nHeights |
|
800 | 800 | |
|
801 | 801 | def run(self, dataOut, m): |
|
802 | 802 | dataOut.flagNoData = True |
|
803 | 803 | |
|
804 | 804 | if not self.isConfig: |
|
805 | 805 | self.setup(dataOut.data, m, 1) |
|
806 | 806 | self.isConfig = True |
|
807 | 807 | |
|
808 | 808 | if dataOut.flagDataAsBlock: |
|
809 | 809 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") |
|
810 | 810 | |
|
811 | 811 | else: |
|
812 | 812 | self.concat(dataOut.data) |
|
813 | 813 | self.times += 1 |
|
814 | 814 | if self.times > m: |
|
815 | 815 | dataOut.data = self.buffer |
|
816 | 816 | self.reset() |
|
817 | 817 | dataOut.flagNoData = False |
|
818 | 818 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
819 | 819 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
820 | 820 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
821 | 821 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
822 | 822 | dataOut.ippSeconds *= m |
|
823 | 823 | return dataOut |
|
824 | 824 | |
|
825 | 825 | class ProfileSelector(Operation): |
|
826 | 826 | |
|
827 | 827 | profileIndex = None |
|
828 | 828 | # Tamanho total de los perfiles |
|
829 | 829 | nProfiles = None |
|
830 | 830 | |
|
831 | 831 | def __init__(self, **kwargs): |
|
832 | 832 | |
|
833 | 833 | Operation.__init__(self, **kwargs) |
|
834 | 834 | self.profileIndex = 0 |
|
835 | 835 | |
|
836 | 836 | def incProfileIndex(self): |
|
837 | 837 | |
|
838 | 838 | self.profileIndex += 1 |
|
839 | 839 | |
|
840 | 840 | if self.profileIndex >= self.nProfiles: |
|
841 | 841 | self.profileIndex = 0 |
|
842 | 842 | |
|
843 | 843 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
844 | 844 | |
|
845 | 845 | if profileIndex < minIndex: |
|
846 | 846 | return False |
|
847 | 847 | |
|
848 | 848 | if profileIndex > maxIndex: |
|
849 | 849 | return False |
|
850 | 850 | |
|
851 | 851 | return True |
|
852 | 852 | |
|
853 | 853 | def isThisProfileInList(self, profileIndex, profileList): |
|
854 | 854 | |
|
855 | 855 | if profileIndex not in profileList: |
|
856 | 856 | return False |
|
857 | 857 | |
|
858 | 858 | return True |
|
859 | 859 | |
|
860 | 860 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
861 | 861 | |
|
862 | 862 | """ |
|
863 | 863 | ProfileSelector: |
|
864 | 864 | |
|
865 | 865 | Inputs: |
|
866 | 866 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
867 | 867 | |
|
868 | 868 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
869 | 869 | |
|
870 | 870 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
871 | 871 | |
|
872 | 872 | """ |
|
873 | 873 | |
|
874 | 874 | if rangeList is not None: |
|
875 | 875 | if type(rangeList[0]) not in (tuple, list): |
|
876 | 876 | rangeList = [rangeList] |
|
877 | 877 | |
|
878 | 878 | dataOut.flagNoData = True |
|
879 | 879 | |
|
880 | 880 | if dataOut.flagDataAsBlock: |
|
881 | 881 | """ |
|
882 | 882 | data dimension = [nChannels, nProfiles, nHeis] |
|
883 | 883 | """ |
|
884 | 884 | if profileList != None: |
|
885 | 885 | dataOut.data = dataOut.data[:,profileList,:] |
|
886 | 886 | |
|
887 | 887 | if profileRangeList != None: |
|
888 | 888 | minIndex = profileRangeList[0] |
|
889 | 889 | maxIndex = profileRangeList[1] |
|
890 | 890 | profileList = list(range(minIndex, maxIndex+1)) |
|
891 | 891 | |
|
892 | 892 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
893 | 893 | |
|
894 | 894 | if rangeList != None: |
|
895 | 895 | |
|
896 | 896 | profileList = [] |
|
897 | 897 | |
|
898 | 898 | for thisRange in rangeList: |
|
899 | 899 | minIndex = thisRange[0] |
|
900 | 900 | maxIndex = thisRange[1] |
|
901 | 901 | |
|
902 | 902 | profileList.extend(list(range(minIndex, maxIndex+1))) |
|
903 | 903 | |
|
904 | 904 | dataOut.data = dataOut.data[:,profileList,:] |
|
905 | 905 | |
|
906 | 906 | dataOut.nProfiles = len(profileList) |
|
907 | 907 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
908 | 908 | dataOut.flagNoData = False |
|
909 | 909 | |
|
910 | 910 | return dataOut |
|
911 | 911 | |
|
912 | 912 | """ |
|
913 | 913 | data dimension = [nChannels, nHeis] |
|
914 | 914 | """ |
|
915 | 915 | |
|
916 | 916 | if profileList != None: |
|
917 | 917 | |
|
918 | 918 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
919 | 919 | |
|
920 | 920 | self.nProfiles = len(profileList) |
|
921 | 921 | dataOut.nProfiles = self.nProfiles |
|
922 | 922 | dataOut.profileIndex = self.profileIndex |
|
923 | 923 | dataOut.flagNoData = False |
|
924 | 924 | |
|
925 | 925 | self.incProfileIndex() |
|
926 | 926 | return dataOut |
|
927 | 927 | |
|
928 | 928 | if profileRangeList != None: |
|
929 | 929 | |
|
930 | 930 | minIndex = profileRangeList[0] |
|
931 | 931 | maxIndex = profileRangeList[1] |
|
932 | 932 | |
|
933 | 933 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
934 | 934 | |
|
935 | 935 | self.nProfiles = maxIndex - minIndex + 1 |
|
936 | 936 | dataOut.nProfiles = self.nProfiles |
|
937 | 937 | dataOut.profileIndex = self.profileIndex |
|
938 | 938 | dataOut.flagNoData = False |
|
939 | 939 | |
|
940 | 940 | self.incProfileIndex() |
|
941 | 941 | return dataOut |
|
942 | 942 | |
|
943 | 943 | if rangeList != None: |
|
944 | 944 | |
|
945 | 945 | nProfiles = 0 |
|
946 | 946 | |
|
947 | 947 | for thisRange in rangeList: |
|
948 | 948 | minIndex = thisRange[0] |
|
949 | 949 | maxIndex = thisRange[1] |
|
950 | 950 | |
|
951 | 951 | nProfiles += maxIndex - minIndex + 1 |
|
952 | 952 | |
|
953 | 953 | for thisRange in rangeList: |
|
954 | 954 | |
|
955 | 955 | minIndex = thisRange[0] |
|
956 | 956 | maxIndex = thisRange[1] |
|
957 | 957 | |
|
958 | 958 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
959 | 959 | |
|
960 | 960 | self.nProfiles = nProfiles |
|
961 | 961 | dataOut.nProfiles = self.nProfiles |
|
962 | 962 | dataOut.profileIndex = self.profileIndex |
|
963 | 963 | dataOut.flagNoData = False |
|
964 | 964 | |
|
965 | 965 | self.incProfileIndex() |
|
966 | 966 | |
|
967 | 967 | break |
|
968 | 968 | |
|
969 | 969 | return dataOut |
|
970 | 970 | |
|
971 | 971 | |
|
972 | 972 | if beam != None: #beam is only for AMISR data |
|
973 | 973 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
974 | 974 | dataOut.flagNoData = False |
|
975 | 975 | dataOut.profileIndex = self.profileIndex |
|
976 | 976 | |
|
977 | 977 | self.incProfileIndex() |
|
978 | 978 | |
|
979 | 979 | return dataOut |
|
980 | 980 | |
|
981 | 981 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") |
|
982 | 982 | |
|
983 | 983 | #return False |
|
984 | 984 | return dataOut |
|
985 | 985 | |
|
986 | 986 | class Reshaper(Operation): |
|
987 | 987 | |
|
988 | 988 | def __init__(self, **kwargs): |
|
989 | 989 | |
|
990 | 990 | Operation.__init__(self, **kwargs) |
|
991 | 991 | |
|
992 | 992 | self.__buffer = None |
|
993 | 993 | self.__nitems = 0 |
|
994 | 994 | |
|
995 | 995 | def __appendProfile(self, dataOut, nTxs): |
|
996 | 996 | |
|
997 | 997 | if self.__buffer is None: |
|
998 | 998 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
999 | 999 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
1000 | 1000 | |
|
1001 | 1001 | ini = dataOut.nHeights * self.__nitems |
|
1002 | 1002 | end = ini + dataOut.nHeights |
|
1003 | 1003 | |
|
1004 | 1004 | self.__buffer[:, ini:end] = dataOut.data |
|
1005 | 1005 | |
|
1006 | 1006 | self.__nitems += 1 |
|
1007 | 1007 | |
|
1008 | 1008 | return int(self.__nitems*nTxs) |
|
1009 | 1009 | |
|
1010 | 1010 | def __getBuffer(self): |
|
1011 | 1011 | |
|
1012 | 1012 | if self.__nitems == int(1./self.__nTxs): |
|
1013 | 1013 | |
|
1014 | 1014 | self.__nitems = 0 |
|
1015 | 1015 | |
|
1016 | 1016 | return self.__buffer.copy() |
|
1017 | 1017 | |
|
1018 | 1018 | return None |
|
1019 | 1019 | |
|
1020 | 1020 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1021 | 1021 | |
|
1022 | 1022 | if shape is None and nTxs is None: |
|
1023 | 1023 | raise ValueError("Reshaper: shape of factor should be defined") |
|
1024 | 1024 | |
|
1025 | 1025 | if nTxs: |
|
1026 | 1026 | if nTxs < 0: |
|
1027 | 1027 | raise ValueError("nTxs should be greater than 0") |
|
1028 | 1028 | |
|
1029 | 1029 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1030 | 1030 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) |
|
1031 | 1031 | |
|
1032 | 1032 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1033 | 1033 | |
|
1034 | 1034 | return shape, nTxs |
|
1035 | 1035 | |
|
1036 | 1036 | if len(shape) != 2 and len(shape) != 3: |
|
1037 | 1037 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) |
|
1038 | 1038 | |
|
1039 | 1039 | if len(shape) == 2: |
|
1040 | 1040 | shape_tuple = [dataOut.nChannels] |
|
1041 | 1041 | shape_tuple.extend(shape) |
|
1042 | 1042 | else: |
|
1043 | 1043 | shape_tuple = list(shape) |
|
1044 | 1044 | |
|
1045 | 1045 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1046 | 1046 | |
|
1047 | 1047 | return shape_tuple, nTxs |
|
1048 | 1048 | |
|
1049 | 1049 | def run(self, dataOut, shape=None, nTxs=None): |
|
1050 | 1050 | |
|
1051 | 1051 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1052 | 1052 | |
|
1053 | 1053 | dataOut.flagNoData = True |
|
1054 | 1054 | profileIndex = None |
|
1055 | 1055 | |
|
1056 | 1056 | if dataOut.flagDataAsBlock: |
|
1057 | 1057 | |
|
1058 | 1058 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1059 | 1059 | dataOut.flagNoData = False |
|
1060 | 1060 | |
|
1061 | 1061 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1062 | 1062 | |
|
1063 | 1063 | else: |
|
1064 | 1064 | |
|
1065 | 1065 | if self.__nTxs < 1: |
|
1066 | 1066 | |
|
1067 | 1067 | self.__appendProfile(dataOut, self.__nTxs) |
|
1068 | 1068 | new_data = self.__getBuffer() |
|
1069 | 1069 | |
|
1070 | 1070 | if new_data is not None: |
|
1071 | 1071 | dataOut.data = new_data |
|
1072 | 1072 | dataOut.flagNoData = False |
|
1073 | 1073 | |
|
1074 | 1074 | profileIndex = dataOut.profileIndex*nTxs |
|
1075 | 1075 | |
|
1076 | 1076 | else: |
|
1077 | 1077 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") |
|
1078 | 1078 | |
|
1079 | 1079 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1080 | 1080 | |
|
1081 | 1081 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1082 | 1082 | |
|
1083 | 1083 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1084 | 1084 | |
|
1085 | 1085 | dataOut.profileIndex = profileIndex |
|
1086 | 1086 | |
|
1087 | 1087 | dataOut.ippSeconds /= self.__nTxs |
|
1088 | 1088 | |
|
1089 | 1089 | return dataOut |
|
1090 | 1090 | |
|
1091 | 1091 | class SplitProfiles(Operation): |
|
1092 | 1092 | |
|
1093 | 1093 | def __init__(self, **kwargs): |
|
1094 | 1094 | |
|
1095 | 1095 | Operation.__init__(self, **kwargs) |
|
1096 | 1096 | |
|
1097 | 1097 | def run(self, dataOut, n): |
|
1098 | 1098 | |
|
1099 | 1099 | dataOut.flagNoData = True |
|
1100 | 1100 | profileIndex = None |
|
1101 | 1101 | |
|
1102 | 1102 | if dataOut.flagDataAsBlock: |
|
1103 | 1103 | |
|
1104 | 1104 | #nchannels, nprofiles, nsamples |
|
1105 | 1105 | shape = dataOut.data.shape |
|
1106 | 1106 | |
|
1107 | 1107 | if shape[2] % n != 0: |
|
1108 | 1108 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) |
|
1109 | 1109 | |
|
1110 | 1110 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) |
|
1111 | 1111 | |
|
1112 | 1112 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1113 | 1113 | dataOut.flagNoData = False |
|
1114 | 1114 | |
|
1115 | 1115 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1116 | 1116 | |
|
1117 | 1117 | else: |
|
1118 | 1118 | |
|
1119 | 1119 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") |
|
1120 | 1120 | |
|
1121 | 1121 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1122 | 1122 | |
|
1123 | 1123 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1124 | 1124 | |
|
1125 | 1125 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1126 | 1126 | |
|
1127 | 1127 | dataOut.profileIndex = profileIndex |
|
1128 | 1128 | |
|
1129 | 1129 | dataOut.ippSeconds /= n |
|
1130 | 1130 | |
|
1131 | 1131 | return dataOut |
|
1132 | 1132 | |
|
1133 | 1133 | class CombineProfiles(Operation): |
|
1134 | 1134 | def __init__(self, **kwargs): |
|
1135 | 1135 | |
|
1136 | 1136 | Operation.__init__(self, **kwargs) |
|
1137 | 1137 | |
|
1138 | 1138 | self.__remData = None |
|
1139 | 1139 | self.__profileIndex = 0 |
|
1140 | 1140 | |
|
1141 | 1141 | def run(self, dataOut, n): |
|
1142 | 1142 | |
|
1143 | 1143 | dataOut.flagNoData = True |
|
1144 | 1144 | profileIndex = None |
|
1145 | 1145 | |
|
1146 | 1146 | if dataOut.flagDataAsBlock: |
|
1147 | 1147 | |
|
1148 | 1148 | #nchannels, nprofiles, nsamples |
|
1149 | 1149 | shape = dataOut.data.shape |
|
1150 | 1150 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1151 | 1151 | |
|
1152 | 1152 | if shape[1] % n != 0: |
|
1153 | 1153 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) |
|
1154 | 1154 | |
|
1155 | 1155 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1156 | 1156 | dataOut.flagNoData = False |
|
1157 | 1157 | |
|
1158 | 1158 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1159 | 1159 | |
|
1160 | 1160 | else: |
|
1161 | 1161 | |
|
1162 | 1162 | #nchannels, nsamples |
|
1163 | 1163 | if self.__remData is None: |
|
1164 | 1164 | newData = dataOut.data |
|
1165 | 1165 | else: |
|
1166 | 1166 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1167 | 1167 | |
|
1168 | 1168 | self.__profileIndex += 1 |
|
1169 | 1169 | |
|
1170 | 1170 | if self.__profileIndex < n: |
|
1171 | 1171 | self.__remData = newData |
|
1172 | 1172 | #continue |
|
1173 | 1173 | return |
|
1174 | 1174 | |
|
1175 | 1175 | self.__profileIndex = 0 |
|
1176 | 1176 | self.__remData = None |
|
1177 | 1177 | |
|
1178 | 1178 | dataOut.data = newData |
|
1179 | 1179 | dataOut.flagNoData = False |
|
1180 | 1180 | |
|
1181 | 1181 | profileIndex = dataOut.profileIndex/n |
|
1182 | 1182 | |
|
1183 | 1183 | |
|
1184 | 1184 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1185 | 1185 | |
|
1186 | 1186 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1187 | 1187 | |
|
1188 | 1188 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1189 | 1189 | |
|
1190 | 1190 | dataOut.profileIndex = profileIndex |
|
1191 | 1191 | |
|
1192 | 1192 | dataOut.ippSeconds *= n |
|
1193 | 1193 | |
|
1194 | 1194 | return dataOut |
|
1195 | 1195 | # import collections |
|
1196 | 1196 | # from scipy.stats import mode |
|
1197 | 1197 | # |
|
1198 | 1198 | # class Synchronize(Operation): |
|
1199 | 1199 | # |
|
1200 | 1200 | # isConfig = False |
|
1201 | 1201 | # __profIndex = 0 |
|
1202 | 1202 | # |
|
1203 | 1203 | # def __init__(self, **kwargs): |
|
1204 | 1204 | # |
|
1205 | 1205 | # Operation.__init__(self, **kwargs) |
|
1206 | 1206 | # # self.isConfig = False |
|
1207 | 1207 | # self.__powBuffer = None |
|
1208 | 1208 | # self.__startIndex = 0 |
|
1209 | 1209 | # self.__pulseFound = False |
|
1210 | 1210 | # |
|
1211 | 1211 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1212 | 1212 | # |
|
1213 | 1213 | # #Read data |
|
1214 | 1214 | # |
|
1215 | 1215 | # powerdB = dataOut.getPower(channel = channel) |
|
1216 | 1216 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1217 | 1217 | # |
|
1218 | 1218 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1219 | 1219 | # |
|
1220 | 1220 | # dataArray = numpy.array(self.__powBuffer) |
|
1221 | 1221 | # |
|
1222 | 1222 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1223 | 1223 | # |
|
1224 | 1224 | # maxValue = numpy.nanmax(filteredPower) |
|
1225 | 1225 | # |
|
1226 | 1226 | # if maxValue < noisedB + 10: |
|
1227 | 1227 | # #No se encuentra ningun pulso de transmision |
|
1228 | 1228 | # return None |
|
1229 | 1229 | # |
|
1230 | 1230 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1231 | 1231 | # |
|
1232 | 1232 | # if len(maxValuesIndex) < 2: |
|
1233 | 1233 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1234 | 1234 | # return None |
|
1235 | 1235 | # |
|
1236 | 1236 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1237 | 1237 | # |
|
1238 | 1238 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1239 | 1239 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1240 | 1240 | # |
|
1241 | 1241 | # if len(pulseIndex) < 2: |
|
1242 | 1242 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1243 | 1243 | # return None |
|
1244 | 1244 | # |
|
1245 | 1245 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1246 | 1246 | # |
|
1247 | 1247 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1248 | 1248 | # #(No deberian existir IPP menor a 10 unidades) |
|
1249 | 1249 | # |
|
1250 | 1250 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1251 | 1251 | # |
|
1252 | 1252 | # if len(realIndex) < 2: |
|
1253 | 1253 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1254 | 1254 | # return None |
|
1255 | 1255 | # |
|
1256 | 1256 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1257 | 1257 | # realPulseIndex = pulseIndex[realIndex] |
|
1258 | 1258 | # |
|
1259 | 1259 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1260 | 1260 | # |
|
1261 | 1261 | # print "IPP = %d samples" %period |
|
1262 | 1262 | # |
|
1263 | 1263 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1264 | 1264 | # self.__startIndex = int(realPulseIndex[0]) |
|
1265 | 1265 | # |
|
1266 | 1266 | # return 1 |
|
1267 | 1267 | # |
|
1268 | 1268 | # |
|
1269 | 1269 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1270 | 1270 | # |
|
1271 | 1271 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1272 | 1272 | # maxlen = buffer_size*nSamples) |
|
1273 | 1273 | # |
|
1274 | 1274 | # bufferList = [] |
|
1275 | 1275 | # |
|
1276 | 1276 | # for i in range(nChannels): |
|
1277 | 1277 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1278 | 1278 | # maxlen = buffer_size*nSamples) |
|
1279 | 1279 | # |
|
1280 | 1280 | # bufferList.append(bufferByChannel) |
|
1281 | 1281 | # |
|
1282 | 1282 | # self.__nSamples = nSamples |
|
1283 | 1283 | # self.__nChannels = nChannels |
|
1284 | 1284 | # self.__bufferList = bufferList |
|
1285 | 1285 | # |
|
1286 | 1286 | # def run(self, dataOut, channel = 0): |
|
1287 | 1287 | # |
|
1288 | 1288 | # if not self.isConfig: |
|
1289 | 1289 | # nSamples = dataOut.nHeights |
|
1290 | 1290 | # nChannels = dataOut.nChannels |
|
1291 | 1291 | # self.setup(nSamples, nChannels) |
|
1292 | 1292 | # self.isConfig = True |
|
1293 | 1293 | # |
|
1294 | 1294 | # #Append new data to internal buffer |
|
1295 | 1295 | # for thisChannel in range(self.__nChannels): |
|
1296 | 1296 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1297 | 1297 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1298 | 1298 | # |
|
1299 | 1299 | # if self.__pulseFound: |
|
1300 | 1300 | # self.__startIndex -= self.__nSamples |
|
1301 | 1301 | # |
|
1302 | 1302 | # #Finding Tx Pulse |
|
1303 | 1303 | # if not self.__pulseFound: |
|
1304 | 1304 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1305 | 1305 | # |
|
1306 | 1306 | # if indexFound == None: |
|
1307 | 1307 | # dataOut.flagNoData = True |
|
1308 | 1308 | # return |
|
1309 | 1309 | # |
|
1310 | 1310 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1311 | 1311 | # self.__pulseFound = True |
|
1312 | 1312 | # self.__startIndex = indexFound |
|
1313 | 1313 | # |
|
1314 | 1314 | # #If pulse was found ... |
|
1315 | 1315 | # for thisChannel in range(self.__nChannels): |
|
1316 | 1316 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1317 | 1317 | # #print self.__startIndex |
|
1318 | 1318 | # x = numpy.array(bufferByChannel) |
|
1319 | 1319 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1320 | 1320 | # |
|
1321 | 1321 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1322 | 1322 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1323 | 1323 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1324 | 1324 | # |
|
1325 | 1325 | # dataOut.data = self.__arrayBuffer |
|
1326 | 1326 | # |
|
1327 | 1327 | # self.__startIndex += self.__newNSamples |
|
1328 | 1328 | # |
|
1329 | 1329 | # return |
General Comments 0
You need to be logged in to leave comments.
Login now