##// END OF EJS Templates
bug in pedestal information
jespinoza -
r1441:a64d7f9c64c1
parent child
Show More
@@ -1,4708 +1,4708
1
1
2 import os
2 import os
3 import time
3 import time
4 import math
4 import math
5
5
6 import re
6 import re
7 import datetime
7 import datetime
8 import copy
8 import copy
9 import sys
9 import sys
10 import importlib
10 import importlib
11 import itertools
11 import itertools
12
12
13 from multiprocessing import Pool, TimeoutError
13 from multiprocessing import Pool, TimeoutError
14 from multiprocessing.pool import ThreadPool
14 from multiprocessing.pool import ThreadPool
15 import numpy
15 import numpy
16 import glob
16 import glob
17 import scipy
17 import scipy
18 import h5py
18 import h5py
19 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
19 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
20 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
20 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
21 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
21 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
22 from scipy import asarray as ar,exp
22 from scipy import asarray as ar,exp
23 from scipy.optimize import curve_fit
23 from scipy.optimize import curve_fit
24 from schainpy.utils import log
24 from schainpy.utils import log
25 import schainpy.admin
25 import schainpy.admin
26 import warnings
26 import warnings
27 from scipy import optimize, interpolate, signal, stats, ndimage
27 from scipy import optimize, interpolate, signal, stats, ndimage
28 from scipy.optimize.optimize import OptimizeWarning
28 from scipy.optimize.optimize import OptimizeWarning
29 warnings.filterwarnings('ignore')
29 warnings.filterwarnings('ignore')
30
30
31
31
32 SPEED_OF_LIGHT = 299792458
32 SPEED_OF_LIGHT = 299792458
33
33
34 '''solving pickling issue'''
34 '''solving pickling issue'''
35
35
36 def _pickle_method(method):
36 def _pickle_method(method):
37 func_name = method.__func__.__name__
37 func_name = method.__func__.__name__
38 obj = method.__self__
38 obj = method.__self__
39 cls = method.__self__.__class__
39 cls = method.__self__.__class__
40 return _unpickle_method, (func_name, obj, cls)
40 return _unpickle_method, (func_name, obj, cls)
41
41
42 def _unpickle_method(func_name, obj, cls):
42 def _unpickle_method(func_name, obj, cls):
43 for cls in cls.mro():
43 for cls in cls.mro():
44 try:
44 try:
45 func = cls.__dict__[func_name]
45 func = cls.__dict__[func_name]
46 except KeyError:
46 except KeyError:
47 pass
47 pass
48 else:
48 else:
49 break
49 break
50 return func.__get__(obj, cls)
50 return func.__get__(obj, cls)
51
51
52 def isNumber(str):
52 def isNumber(str):
53 try:
53 try:
54 float(str)
54 float(str)
55 return True
55 return True
56 except:
56 except:
57 return False
57 return False
58
58
59 class ParametersProc(ProcessingUnit):
59 class ParametersProc(ProcessingUnit):
60
60
61 METHODS = {}
61 METHODS = {}
62 nSeconds = None
62 nSeconds = None
63
63
64 def __init__(self):
64 def __init__(self):
65 ProcessingUnit.__init__(self)
65 ProcessingUnit.__init__(self)
66
66
67 # self.objectDict = {}
67 # self.objectDict = {}
68 self.buffer = None
68 self.buffer = None
69 self.firstdatatime = None
69 self.firstdatatime = None
70 self.profIndex = 0
70 self.profIndex = 0
71 self.dataOut = Parameters()
71 self.dataOut = Parameters()
72 self.setupReq = False #Agregar a todas las unidades de proc
72 self.setupReq = False #Agregar a todas las unidades de proc
73
73
74 def __updateObjFromInput(self):
74 def __updateObjFromInput(self):
75
75
76 self.dataOut.inputUnit = self.dataIn.type
76 self.dataOut.inputUnit = self.dataIn.type
77
77
78 self.dataOut.timeZone = self.dataIn.timeZone
78 self.dataOut.timeZone = self.dataIn.timeZone
79 self.dataOut.dstFlag = self.dataIn.dstFlag
79 self.dataOut.dstFlag = self.dataIn.dstFlag
80 self.dataOut.errorCount = self.dataIn.errorCount
80 self.dataOut.errorCount = self.dataIn.errorCount
81 self.dataOut.useLocalTime = self.dataIn.useLocalTime
81 self.dataOut.useLocalTime = self.dataIn.useLocalTime
82
82
83 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
83 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
84 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
84 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
85 self.dataOut.channelList = self.dataIn.channelList
85 self.dataOut.channelList = self.dataIn.channelList
86 self.dataOut.heightList = self.dataIn.heightList
86 self.dataOut.heightList = self.dataIn.heightList
87 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
87 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
88 # self.dataOut.nHeights = self.dataIn.nHeights
88 # self.dataOut.nHeights = self.dataIn.nHeights
89 # self.dataOut.nChannels = self.dataIn.nChannels
89 # self.dataOut.nChannels = self.dataIn.nChannels
90 # self.dataOut.nBaud = self.dataIn.nBaud
90 # self.dataOut.nBaud = self.dataIn.nBaud
91 # self.dataOut.nCode = self.dataIn.nCode
91 # self.dataOut.nCode = self.dataIn.nCode
92 # self.dataOut.code = self.dataIn.code
92 # self.dataOut.code = self.dataIn.code
93 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
93 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
94 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
94 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
95 # self.dataOut.utctime = self.firstdatatime
95 # self.dataOut.utctime = self.firstdatatime
96 self.dataOut.utctime = self.dataIn.utctime
96 self.dataOut.utctime = self.dataIn.utctime
97 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
97 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
98 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
98 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
99 self.dataOut.nCohInt = self.dataIn.nCohInt
99 self.dataOut.nCohInt = self.dataIn.nCohInt
100 # self.dataOut.nIncohInt = 1
100 # self.dataOut.nIncohInt = 1
101 # self.dataOut.ippSeconds = self.dataIn.ippSeconds
101 # self.dataOut.ippSeconds = self.dataIn.ippSeconds
102 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
102 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
103 self.dataOut.timeInterval1 = self.dataIn.timeInterval
103 self.dataOut.timeInterval1 = self.dataIn.timeInterval
104 self.dataOut.heightList = self.dataIn.heightList
104 self.dataOut.heightList = self.dataIn.heightList
105 self.dataOut.frequency = self.dataIn.frequency
105 self.dataOut.frequency = self.dataIn.frequency
106 # self.dataOut.noise = self.dataIn.noise
106 # self.dataOut.noise = self.dataIn.noise
107
107
108 def run(self):
108 def run(self):
109
109
110
110
111 #print("HOLA MUNDO SOY YO")
111 #print("HOLA MUNDO SOY YO")
112 #---------------------- Voltage Data ---------------------------
112 #---------------------- Voltage Data ---------------------------
113
113
114 if self.dataIn.type == "Voltage":
114 if self.dataIn.type == "Voltage":
115
115
116 self.__updateObjFromInput()
116 self.__updateObjFromInput()
117 self.dataOut.data_pre = self.dataIn.data.copy()
117 self.dataOut.data_pre = self.dataIn.data.copy()
118 self.dataOut.flagNoData = False
118 self.dataOut.flagNoData = False
119 self.dataOut.utctimeInit = self.dataIn.utctime
119 self.dataOut.utctimeInit = self.dataIn.utctime
120 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
120 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
121
121
122 if hasattr(self.dataIn, 'flagDataAsBlock'):
122 if hasattr(self.dataIn, 'flagDataAsBlock'):
123 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
123 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
124
124
125 if hasattr(self.dataIn, 'profileIndex'):
125 if hasattr(self.dataIn, 'profileIndex'):
126 self.dataOut.profileIndex = self.dataIn.profileIndex
126 self.dataOut.profileIndex = self.dataIn.profileIndex
127
127
128 if hasattr(self.dataIn, 'dataPP_POW'):
128 if hasattr(self.dataIn, 'dataPP_POW'):
129 self.dataOut.dataPP_POW = self.dataIn.dataPP_POW
129 self.dataOut.dataPP_POW = self.dataIn.dataPP_POW
130
130
131 if hasattr(self.dataIn, 'dataPP_POWER'):
131 if hasattr(self.dataIn, 'dataPP_POWER'):
132 self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER
132 self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER
133
133
134 if hasattr(self.dataIn, 'dataPP_DOP'):
134 if hasattr(self.dataIn, 'dataPP_DOP'):
135 self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP
135 self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP
136
136
137 if hasattr(self.dataIn, 'dataPP_SNR'):
137 if hasattr(self.dataIn, 'dataPP_SNR'):
138 self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR
138 self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR
139
139
140 if hasattr(self.dataIn, 'dataPP_WIDTH'):
140 if hasattr(self.dataIn, 'dataPP_WIDTH'):
141 self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH
141 self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH
142 return
142 return
143
143
144 #---------------------- Spectra Data ---------------------------
144 #---------------------- Spectra Data ---------------------------
145
145
146 if self.dataIn.type == "Spectra":
146 if self.dataIn.type == "Spectra":
147 #print("que paso en spectra")
147 #print("que paso en spectra")
148 self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc]
148 self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc]
149 self.dataOut.data_spc = self.dataIn.data_spc
149 self.dataOut.data_spc = self.dataIn.data_spc
150 self.dataOut.data_cspc = self.dataIn.data_cspc
150 self.dataOut.data_cspc = self.dataIn.data_cspc
151 self.dataOut.nProfiles = self.dataIn.nProfiles
151 self.dataOut.nProfiles = self.dataIn.nProfiles
152 self.dataOut.nIncohInt = self.dataIn.nIncohInt
152 self.dataOut.nIncohInt = self.dataIn.nIncohInt
153 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
153 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
154 self.dataOut.ippFactor = self.dataIn.ippFactor
154 self.dataOut.ippFactor = self.dataIn.ippFactor
155 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
155 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
156 self.dataOut.spc_noise = self.dataIn.getNoise()
156 self.dataOut.spc_noise = self.dataIn.getNoise()
157 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
157 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
158 # self.dataOut.normFactor = self.dataIn.normFactor
158 # self.dataOut.normFactor = self.dataIn.normFactor
159 self.dataOut.pairsList = self.dataIn.pairsList
159 self.dataOut.pairsList = self.dataIn.pairsList
160 self.dataOut.groupList = self.dataIn.pairsList
160 self.dataOut.groupList = self.dataIn.pairsList
161 self.dataOut.flagNoData = False
161 self.dataOut.flagNoData = False
162
162
163 if hasattr(self.dataIn, 'flagDataAsBlock'):
163 if hasattr(self.dataIn, 'flagDataAsBlock'):
164 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
164 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
165
165
166 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
166 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
167 self.dataOut.ChanDist = self.dataIn.ChanDist
167 self.dataOut.ChanDist = self.dataIn.ChanDist
168 else: self.dataOut.ChanDist = None
168 else: self.dataOut.ChanDist = None
169
169
170 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
170 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
171 # self.dataOut.VelRange = self.dataIn.VelRange
171 # self.dataOut.VelRange = self.dataIn.VelRange
172 #else: self.dataOut.VelRange = None
172 #else: self.dataOut.VelRange = None
173
173
174 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
174 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
175 self.dataOut.RadarConst = self.dataIn.RadarConst
175 self.dataOut.RadarConst = self.dataIn.RadarConst
176
176
177 if hasattr(self.dataIn, 'NPW'): #NPW
177 if hasattr(self.dataIn, 'NPW'): #NPW
178 self.dataOut.NPW = self.dataIn.NPW
178 self.dataOut.NPW = self.dataIn.NPW
179
179
180 if hasattr(self.dataIn, 'COFA'): #COFA
180 if hasattr(self.dataIn, 'COFA'): #COFA
181 self.dataOut.COFA = self.dataIn.COFA
181 self.dataOut.COFA = self.dataIn.COFA
182
182
183
183
184
184
185 #---------------------- Correlation Data ---------------------------
185 #---------------------- Correlation Data ---------------------------
186
186
187 if self.dataIn.type == "Correlation":
187 if self.dataIn.type == "Correlation":
188 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
188 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
189
189
190 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
190 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
191 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
191 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
192 self.dataOut.groupList = (acf_pairs, ccf_pairs)
192 self.dataOut.groupList = (acf_pairs, ccf_pairs)
193
193
194 self.dataOut.abscissaList = self.dataIn.lagRange
194 self.dataOut.abscissaList = self.dataIn.lagRange
195 self.dataOut.noise = self.dataIn.noise
195 self.dataOut.noise = self.dataIn.noise
196 self.dataOut.data_snr = self.dataIn.SNR
196 self.dataOut.data_snr = self.dataIn.SNR
197 self.dataOut.flagNoData = False
197 self.dataOut.flagNoData = False
198 self.dataOut.nAvg = self.dataIn.nAvg
198 self.dataOut.nAvg = self.dataIn.nAvg
199
199
200 #---------------------- Parameters Data ---------------------------
200 #---------------------- Parameters Data ---------------------------
201
201
202 if self.dataIn.type == "Parameters":
202 if self.dataIn.type == "Parameters":
203 self.dataOut.copy(self.dataIn)
203 self.dataOut.copy(self.dataIn)
204 self.dataOut.flagNoData = False
204 self.dataOut.flagNoData = False
205 #print("yo si entre")
205 #print("yo si entre")
206
206
207 return True
207 return True
208
208
209 self.__updateObjFromInput()
209 self.__updateObjFromInput()
210 #print("yo si entre2")
210 #print("yo si entre2")
211
211
212 self.dataOut.utctimeInit = self.dataIn.utctime
212 self.dataOut.utctimeInit = self.dataIn.utctime
213 self.dataOut.paramInterval = self.dataIn.timeInterval
213 self.dataOut.paramInterval = self.dataIn.timeInterval
214 #print("soy spectra ",self.dataOut.utctimeInit)
214 #print("soy spectra ",self.dataOut.utctimeInit)
215 return
215 return
216
216
217
217
218 def target(tups):
218 def target(tups):
219
219
220 obj, args = tups
220 obj, args = tups
221
221
222 return obj.FitGau(args)
222 return obj.FitGau(args)
223
223
224 class RemoveWideGC(Operation):
224 class RemoveWideGC(Operation):
225 ''' This class remove the wide clutter and replace it with a simple interpolation points
225 ''' This class remove the wide clutter and replace it with a simple interpolation points
226 This mainly applies to CLAIRE radar
226 This mainly applies to CLAIRE radar
227
227
228 ClutterWidth : Width to look for the clutter peak
228 ClutterWidth : Width to look for the clutter peak
229
229
230 Input:
230 Input:
231
231
232 self.dataOut.data_pre : SPC and CSPC
232 self.dataOut.data_pre : SPC and CSPC
233 self.dataOut.spc_range : To select wind and rainfall velocities
233 self.dataOut.spc_range : To select wind and rainfall velocities
234
234
235 Affected:
235 Affected:
236
236
237 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
237 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
238
238
239 Written by D. ScipiΓ³n 25.02.2021
239 Written by D. ScipiΓ³n 25.02.2021
240 '''
240 '''
241 def __init__(self):
241 def __init__(self):
242 Operation.__init__(self)
242 Operation.__init__(self)
243 self.i = 0
243 self.i = 0
244 self.ich = 0
244 self.ich = 0
245 self.ir = 0
245 self.ir = 0
246
246
247 def run(self, dataOut, ClutterWidth=2.5):
247 def run(self, dataOut, ClutterWidth=2.5):
248 # print ('Entering RemoveWideGC ... ')
248 # print ('Entering RemoveWideGC ... ')
249
249
250 self.spc = dataOut.data_pre[0].copy()
250 self.spc = dataOut.data_pre[0].copy()
251 self.spc_out = dataOut.data_pre[0].copy()
251 self.spc_out = dataOut.data_pre[0].copy()
252 self.Num_Chn = self.spc.shape[0]
252 self.Num_Chn = self.spc.shape[0]
253 self.Num_Hei = self.spc.shape[2]
253 self.Num_Hei = self.spc.shape[2]
254 VelRange = dataOut.spc_range[2][:-1]
254 VelRange = dataOut.spc_range[2][:-1]
255 dv = VelRange[1]-VelRange[0]
255 dv = VelRange[1]-VelRange[0]
256
256
257 # Find the velocities that corresponds to zero
257 # Find the velocities that corresponds to zero
258 gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth))
258 gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth))
259
259
260 # Removing novalid data from the spectra
260 # Removing novalid data from the spectra
261 for ich in range(self.Num_Chn) :
261 for ich in range(self.Num_Chn) :
262 for ir in range(self.Num_Hei) :
262 for ir in range(self.Num_Hei) :
263 # Estimate the noise at each range
263 # Estimate the noise at each range
264 HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt)
264 HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt)
265
265
266 # Removing the noise floor at each range
266 # Removing the noise floor at each range
267 novalid = numpy.where(self.spc[ich,:,ir] < HSn)
267 novalid = numpy.where(self.spc[ich,:,ir] < HSn)
268 self.spc[ich,novalid,ir] = HSn
268 self.spc[ich,novalid,ir] = HSn
269
269
270 junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn)
270 junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn)
271 j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0))
271 j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0))
272 j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0))
272 j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0))
273 if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) :
273 if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) :
274 continue
274 continue
275 junk3 = numpy.squeeze(numpy.diff(j1index))
275 junk3 = numpy.squeeze(numpy.diff(j1index))
276 junk4 = numpy.squeeze(numpy.diff(j2index))
276 junk4 = numpy.squeeze(numpy.diff(j2index))
277
277
278 valleyindex = j2index[numpy.where(junk4>1)]
278 valleyindex = j2index[numpy.where(junk4>1)]
279 peakindex = j1index[numpy.where(junk3>1)]
279 peakindex = j1index[numpy.where(junk3>1)]
280
280
281 isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv))
281 isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv))
282 if numpy.size(isvalid) == 0 :
282 if numpy.size(isvalid) == 0 :
283 continue
283 continue
284 if numpy.size(isvalid) >1 :
284 if numpy.size(isvalid) >1 :
285 vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir])
285 vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir])
286 isvalid = isvalid[vindex]
286 isvalid = isvalid[vindex]
287
287
288 # clutter peak
288 # clutter peak
289 gcpeak = peakindex[isvalid]
289 gcpeak = peakindex[isvalid]
290 vl = numpy.where(valleyindex < gcpeak)
290 vl = numpy.where(valleyindex < gcpeak)
291 if numpy.size(vl) == 0:
291 if numpy.size(vl) == 0:
292 continue
292 continue
293 gcvl = valleyindex[vl[0][-1]]
293 gcvl = valleyindex[vl[0][-1]]
294 vr = numpy.where(valleyindex > gcpeak)
294 vr = numpy.where(valleyindex > gcpeak)
295 if numpy.size(vr) == 0:
295 if numpy.size(vr) == 0:
296 continue
296 continue
297 gcvr = valleyindex[vr[0][0]]
297 gcvr = valleyindex[vr[0][0]]
298
298
299 # Removing the clutter
299 # Removing the clutter
300 interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]])
300 interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]])
301 gcindex = gc_values[gcvl+1:gcvr-1]
301 gcindex = gc_values[gcvl+1:gcvr-1]
302 self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir])
302 self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir])
303
303
304 dataOut.data_pre[0] = self.spc_out
304 dataOut.data_pre[0] = self.spc_out
305 #print ('Leaving RemoveWideGC ... ')
305 #print ('Leaving RemoveWideGC ... ')
306 return dataOut
306 return dataOut
307
307
308 class SpectralFilters(Operation):
308 class SpectralFilters(Operation):
309 ''' This class allows to replace the novalid values with noise for each channel
309 ''' This class allows to replace the novalid values with noise for each channel
310 This applies to CLAIRE RADAR
310 This applies to CLAIRE RADAR
311
311
312 PositiveLimit : RightLimit of novalid data
312 PositiveLimit : RightLimit of novalid data
313 NegativeLimit : LeftLimit of novalid data
313 NegativeLimit : LeftLimit of novalid data
314
314
315 Input:
315 Input:
316
316
317 self.dataOut.data_pre : SPC and CSPC
317 self.dataOut.data_pre : SPC and CSPC
318 self.dataOut.spc_range : To select wind and rainfall velocities
318 self.dataOut.spc_range : To select wind and rainfall velocities
319
319
320 Affected:
320 Affected:
321
321
322 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
322 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
323
323
324 Written by D. ScipiΓ³n 29.01.2021
324 Written by D. ScipiΓ³n 29.01.2021
325 '''
325 '''
326 def __init__(self):
326 def __init__(self):
327 Operation.__init__(self)
327 Operation.__init__(self)
328 self.i = 0
328 self.i = 0
329
329
330 def run(self, dataOut, ):
330 def run(self, dataOut, ):
331
331
332 self.spc = dataOut.data_pre[0].copy()
332 self.spc = dataOut.data_pre[0].copy()
333 self.Num_Chn = self.spc.shape[0]
333 self.Num_Chn = self.spc.shape[0]
334 VelRange = dataOut.spc_range[2]
334 VelRange = dataOut.spc_range[2]
335
335
336 # novalid corresponds to data within the Negative and PositiveLimit
336 # novalid corresponds to data within the Negative and PositiveLimit
337
337
338
338
339 # Removing novalid data from the spectra
339 # Removing novalid data from the spectra
340 for i in range(self.Num_Chn):
340 for i in range(self.Num_Chn):
341 self.spc[i,novalid,:] = dataOut.noise[i]
341 self.spc[i,novalid,:] = dataOut.noise[i]
342 dataOut.data_pre[0] = self.spc
342 dataOut.data_pre[0] = self.spc
343 return dataOut
343 return dataOut
344
344
345 class GaussianFit(Operation):
345 class GaussianFit(Operation):
346
346
347 '''
347 '''
348 Function that fit of one and two generalized gaussians (gg) based
348 Function that fit of one and two generalized gaussians (gg) based
349 on the PSD shape across an "power band" identified from a cumsum of
349 on the PSD shape across an "power band" identified from a cumsum of
350 the measured spectrum - noise.
350 the measured spectrum - noise.
351
351
352 Input:
352 Input:
353 self.dataOut.data_pre : SelfSpectra
353 self.dataOut.data_pre : SelfSpectra
354
354
355 Output:
355 Output:
356 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
356 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
357
357
358 '''
358 '''
359 def __init__(self):
359 def __init__(self):
360 Operation.__init__(self)
360 Operation.__init__(self)
361 self.i=0
361 self.i=0
362
362
363
363
364 # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
364 # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
365 def run(self, dataOut, SNRdBlimit=-9, method='generalized'):
365 def run(self, dataOut, SNRdBlimit=-9, method='generalized'):
366 """This routine will find a couple of generalized Gaussians to a power spectrum
366 """This routine will find a couple of generalized Gaussians to a power spectrum
367 methods: generalized, squared
367 methods: generalized, squared
368 input: spc
368 input: spc
369 output:
369 output:
370 noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1
370 noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1
371 """
371 """
372 print ('Entering ',method,' double Gaussian fit')
372 print ('Entering ',method,' double Gaussian fit')
373 self.spc = dataOut.data_pre[0].copy()
373 self.spc = dataOut.data_pre[0].copy()
374 self.Num_Hei = self.spc.shape[2]
374 self.Num_Hei = self.spc.shape[2]
375 self.Num_Bin = self.spc.shape[1]
375 self.Num_Bin = self.spc.shape[1]
376 self.Num_Chn = self.spc.shape[0]
376 self.Num_Chn = self.spc.shape[0]
377
377
378 start_time = time.time()
378 start_time = time.time()
379
379
380 pool = Pool(processes=self.Num_Chn)
380 pool = Pool(processes=self.Num_Chn)
381 args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)]
381 args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)]
382 objs = [self for __ in range(self.Num_Chn)]
382 objs = [self for __ in range(self.Num_Chn)]
383 attrs = list(zip(objs, args))
383 attrs = list(zip(objs, args))
384 DGauFitParam = pool.map(target, attrs)
384 DGauFitParam = pool.map(target, attrs)
385 # Parameters:
385 # Parameters:
386 # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power
386 # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power
387 dataOut.DGauFitParams = numpy.asarray(DGauFitParam)
387 dataOut.DGauFitParams = numpy.asarray(DGauFitParam)
388
388
389 # Double Gaussian Curves
389 # Double Gaussian Curves
390 gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
390 gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
391 gau0[:] = numpy.NaN
391 gau0[:] = numpy.NaN
392 gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
392 gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
393 gau1[:] = numpy.NaN
393 gau1[:] = numpy.NaN
394 x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1)))
394 x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1)))
395 for iCh in range(self.Num_Chn):
395 for iCh in range(self.Num_Chn):
396 N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin))
396 N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin))
397 N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin))
397 N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin))
398 A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin))
398 A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin))
399 A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin))
399 A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin))
400 v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin))
400 v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin))
401 v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin))
401 v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin))
402 s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin))
402 s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin))
403 s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin))
403 s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin))
404 if method == 'genealized':
404 if method == 'genealized':
405 p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin))
405 p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin))
406 p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin))
406 p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin))
407 elif method == 'squared':
407 elif method == 'squared':
408 p0 = 2.
408 p0 = 2.
409 p1 = 2.
409 p1 = 2.
410 gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0
410 gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0
411 gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1
411 gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1
412 dataOut.GaussFit0 = gau0
412 dataOut.GaussFit0 = gau0
413 dataOut.GaussFit1 = gau1
413 dataOut.GaussFit1 = gau1
414
414
415 print('Leaving ',method ,' double Gaussian fit')
415 print('Leaving ',method ,' double Gaussian fit')
416 return dataOut
416 return dataOut
417
417
418 def FitGau(self, X):
418 def FitGau(self, X):
419 # print('Entering FitGau')
419 # print('Entering FitGau')
420 # Assigning the variables
420 # Assigning the variables
421 Vrange, ch, wnoise, num_intg, SNRlimit = X
421 Vrange, ch, wnoise, num_intg, SNRlimit = X
422 # Noise Limits
422 # Noise Limits
423 noisebl = wnoise * 0.9
423 noisebl = wnoise * 0.9
424 noisebh = wnoise * 1.1
424 noisebh = wnoise * 1.1
425 # Radar Velocity
425 # Radar Velocity
426 Va = max(Vrange)
426 Va = max(Vrange)
427 deltav = Vrange[1] - Vrange[0]
427 deltav = Vrange[1] - Vrange[0]
428 x = numpy.arange(self.Num_Bin)
428 x = numpy.arange(self.Num_Bin)
429
429
430 # print ('stop 0')
430 # print ('stop 0')
431
431
432 # 5 parameters, 2 Gaussians
432 # 5 parameters, 2 Gaussians
433 DGauFitParam = numpy.zeros([5, self.Num_Hei,2])
433 DGauFitParam = numpy.zeros([5, self.Num_Hei,2])
434 DGauFitParam[:] = numpy.NaN
434 DGauFitParam[:] = numpy.NaN
435
435
436 # SPCparam = []
436 # SPCparam = []
437 # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei])
437 # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei])
438 # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei])
438 # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei])
439 # SPC_ch1[:] = 0 #numpy.NaN
439 # SPC_ch1[:] = 0 #numpy.NaN
440 # SPC_ch2[:] = 0 #numpy.NaN
440 # SPC_ch2[:] = 0 #numpy.NaN
441 # print ('stop 1')
441 # print ('stop 1')
442 for ht in range(self.Num_Hei):
442 for ht in range(self.Num_Hei):
443 # print (ht)
443 # print (ht)
444 # print ('stop 2')
444 # print ('stop 2')
445 # Spectra at each range
445 # Spectra at each range
446 spc = numpy.asarray(self.spc)[ch,:,ht]
446 spc = numpy.asarray(self.spc)[ch,:,ht]
447 snr = ( spc.mean() - wnoise ) / wnoise
447 snr = ( spc.mean() - wnoise ) / wnoise
448 snrdB = 10.*numpy.log10(snr)
448 snrdB = 10.*numpy.log10(snr)
449
449
450 #print ('stop 3')
450 #print ('stop 3')
451 if snrdB < SNRlimit :
451 if snrdB < SNRlimit :
452 # snr = numpy.NaN
452 # snr = numpy.NaN
453 # SPC_ch1[:,ht] = 0#numpy.NaN
453 # SPC_ch1[:,ht] = 0#numpy.NaN
454 # SPC_ch1[:,ht] = 0#numpy.NaN
454 # SPC_ch1[:,ht] = 0#numpy.NaN
455 # SPCparam = (SPC_ch1,SPC_ch2)
455 # SPCparam = (SPC_ch1,SPC_ch2)
456 # print ('SNR less than SNRth')
456 # print ('SNR less than SNRth')
457 continue
457 continue
458 # wnoise = hildebrand_sekhon(spc,num_intg)
458 # wnoise = hildebrand_sekhon(spc,num_intg)
459 # print ('stop 2.01')
459 # print ('stop 2.01')
460 #############################################
460 #############################################
461 # normalizing spc and noise
461 # normalizing spc and noise
462 # This part differs from gg1
462 # This part differs from gg1
463 # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021
463 # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021
464 #spc = spc / spc_norm_max
464 #spc = spc / spc_norm_max
465 # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
465 # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
466 #############################################
466 #############################################
467
467
468 # print ('stop 2.1')
468 # print ('stop 2.1')
469 fatspectra=1.0
469 fatspectra=1.0
470 # noise per channel.... we might want to use the noise at each range
470 # noise per channel.... we might want to use the noise at each range
471
471
472 # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
472 # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
473 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
473 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
474 #if wnoise>1.1*pnoise: # to be tested later
474 #if wnoise>1.1*pnoise: # to be tested later
475 # wnoise=pnoise
475 # wnoise=pnoise
476 # noisebl = wnoise*0.9
476 # noisebl = wnoise*0.9
477 # noisebh = wnoise*1.1
477 # noisebh = wnoise*1.1
478 spc = spc - wnoise # signal
478 spc = spc - wnoise # signal
479
479
480 # print ('stop 2.2')
480 # print ('stop 2.2')
481 minx = numpy.argmin(spc)
481 minx = numpy.argmin(spc)
482 #spcs=spc.copy()
482 #spcs=spc.copy()
483 spcs = numpy.roll(spc,-minx)
483 spcs = numpy.roll(spc,-minx)
484 cum = numpy.cumsum(spcs)
484 cum = numpy.cumsum(spcs)
485 # tot_noise = wnoise * self.Num_Bin #64;
485 # tot_noise = wnoise * self.Num_Bin #64;
486
486
487 # print ('stop 2.3')
487 # print ('stop 2.3')
488 # snr = sum(spcs) / tot_noise
488 # snr = sum(spcs) / tot_noise
489 # snrdB = 10.*numpy.log10(snr)
489 # snrdB = 10.*numpy.log10(snr)
490 #print ('stop 3')
490 #print ('stop 3')
491 # if snrdB < SNRlimit :
491 # if snrdB < SNRlimit :
492 # snr = numpy.NaN
492 # snr = numpy.NaN
493 # SPC_ch1[:,ht] = 0#numpy.NaN
493 # SPC_ch1[:,ht] = 0#numpy.NaN
494 # SPC_ch1[:,ht] = 0#numpy.NaN
494 # SPC_ch1[:,ht] = 0#numpy.NaN
495 # SPCparam = (SPC_ch1,SPC_ch2)
495 # SPCparam = (SPC_ch1,SPC_ch2)
496 # print ('SNR less than SNRth')
496 # print ('SNR less than SNRth')
497 # continue
497 # continue
498
498
499
499
500 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
500 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
501 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
501 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
502 # print ('stop 4')
502 # print ('stop 4')
503 cummax = max(cum)
503 cummax = max(cum)
504 epsi = 0.08 * fatspectra # cumsum to narrow down the energy region
504 epsi = 0.08 * fatspectra # cumsum to narrow down the energy region
505 cumlo = cummax * epsi
505 cumlo = cummax * epsi
506 cumhi = cummax * (1-epsi)
506 cumhi = cummax * (1-epsi)
507 powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
507 powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
508
508
509 # print ('stop 5')
509 # print ('stop 5')
510 if len(powerindex) < 1:# case for powerindex 0
510 if len(powerindex) < 1:# case for powerindex 0
511 # print ('powerindex < 1')
511 # print ('powerindex < 1')
512 continue
512 continue
513 powerlo = powerindex[0]
513 powerlo = powerindex[0]
514 powerhi = powerindex[-1]
514 powerhi = powerindex[-1]
515 powerwidth = powerhi-powerlo
515 powerwidth = powerhi-powerlo
516 if powerwidth <= 1:
516 if powerwidth <= 1:
517 # print('powerwidth <= 1')
517 # print('powerwidth <= 1')
518 continue
518 continue
519
519
520 # print ('stop 6')
520 # print ('stop 6')
521 firstpeak = powerlo + powerwidth/10.# first gaussian energy location
521 firstpeak = powerlo + powerwidth/10.# first gaussian energy location
522 secondpeak = powerhi - powerwidth/10. #second gaussian energy location
522 secondpeak = powerhi - powerwidth/10. #second gaussian energy location
523 midpeak = (firstpeak + secondpeak)/2.
523 midpeak = (firstpeak + secondpeak)/2.
524 firstamp = spcs[int(firstpeak)]
524 firstamp = spcs[int(firstpeak)]
525 secondamp = spcs[int(secondpeak)]
525 secondamp = spcs[int(secondpeak)]
526 midamp = spcs[int(midpeak)]
526 midamp = spcs[int(midpeak)]
527
527
528 y_data = spc + wnoise
528 y_data = spc + wnoise
529
529
530 ''' single Gaussian '''
530 ''' single Gaussian '''
531 shift0 = numpy.mod(midpeak+minx, self.Num_Bin )
531 shift0 = numpy.mod(midpeak+minx, self.Num_Bin )
532 width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4
532 width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4
533 power0 = 2.
533 power0 = 2.
534 amplitude0 = midamp
534 amplitude0 = midamp
535 state0 = [shift0,width0,amplitude0,power0,wnoise]
535 state0 = [shift0,width0,amplitude0,power0,wnoise]
536 bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
536 bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
537 lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True)
537 lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True)
538 # print ('stop 7.1')
538 # print ('stop 7.1')
539 # print (bnds)
539 # print (bnds)
540
540
541 chiSq1=lsq1[1]
541 chiSq1=lsq1[1]
542
542
543 # print ('stop 8')
543 # print ('stop 8')
544 if fatspectra<1.0 and powerwidth<4:
544 if fatspectra<1.0 and powerwidth<4:
545 choice=0
545 choice=0
546 Amplitude0=lsq1[0][2]
546 Amplitude0=lsq1[0][2]
547 shift0=lsq1[0][0]
547 shift0=lsq1[0][0]
548 width0=lsq1[0][1]
548 width0=lsq1[0][1]
549 p0=lsq1[0][3]
549 p0=lsq1[0][3]
550 Amplitude1=0.
550 Amplitude1=0.
551 shift1=0.
551 shift1=0.
552 width1=0.
552 width1=0.
553 p1=0.
553 p1=0.
554 noise=lsq1[0][4]
554 noise=lsq1[0][4]
555 #return (numpy.array([shift0,width0,Amplitude0,p0]),
555 #return (numpy.array([shift0,width0,Amplitude0,p0]),
556 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
556 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
557
557
558 # print ('stop 9')
558 # print ('stop 9')
559 ''' two Gaussians '''
559 ''' two Gaussians '''
560 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
560 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
561 shift0 = numpy.mod(firstpeak+minx, self.Num_Bin )
561 shift0 = numpy.mod(firstpeak+minx, self.Num_Bin )
562 shift1 = numpy.mod(secondpeak+minx, self.Num_Bin )
562 shift1 = numpy.mod(secondpeak+minx, self.Num_Bin )
563 width0 = powerwidth/6.
563 width0 = powerwidth/6.
564 width1 = width0
564 width1 = width0
565 power0 = 2.
565 power0 = 2.
566 power1 = power0
566 power1 = power0
567 amplitude0 = firstamp
567 amplitude0 = firstamp
568 amplitude1 = secondamp
568 amplitude1 = secondamp
569 state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
569 state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
570 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
570 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
571 bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
571 bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
572 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
572 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
573
573
574 # print ('stop 10')
574 # print ('stop 10')
575 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
575 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
576
576
577 # print ('stop 11')
577 # print ('stop 11')
578 chiSq2 = lsq2[1]
578 chiSq2 = lsq2[1]
579
579
580 # print ('stop 12')
580 # print ('stop 12')
581
581
582 oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
582 oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
583
583
584 # print ('stop 13')
584 # print ('stop 13')
585 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
585 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
586 if oneG:
586 if oneG:
587 choice = 0
587 choice = 0
588 else:
588 else:
589 w1 = lsq2[0][1]; w2 = lsq2[0][5]
589 w1 = lsq2[0][1]; w2 = lsq2[0][5]
590 a1 = lsq2[0][2]; a2 = lsq2[0][6]
590 a1 = lsq2[0][2]; a2 = lsq2[0][6]
591 p1 = lsq2[0][3]; p2 = lsq2[0][7]
591 p1 = lsq2[0][3]; p2 = lsq2[0][7]
592 s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1
592 s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1
593 s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2
593 s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2
594 gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling
594 gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling
595
595
596 if gp1>gp2:
596 if gp1>gp2:
597 if a1>0.7*a2:
597 if a1>0.7*a2:
598 choice = 1
598 choice = 1
599 else:
599 else:
600 choice = 2
600 choice = 2
601 elif gp2>gp1:
601 elif gp2>gp1:
602 if a2>0.7*a1:
602 if a2>0.7*a1:
603 choice = 2
603 choice = 2
604 else:
604 else:
605 choice = 1
605 choice = 1
606 else:
606 else:
607 choice = numpy.argmax([a1,a2])+1
607 choice = numpy.argmax([a1,a2])+1
608 #else:
608 #else:
609 #choice=argmin([std2a,std2b])+1
609 #choice=argmin([std2a,std2b])+1
610
610
611 else: # with low SNR go to the most energetic peak
611 else: # with low SNR go to the most energetic peak
612 choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
612 choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
613
613
614 # print ('stop 14')
614 # print ('stop 14')
615 shift0 = lsq2[0][0]
615 shift0 = lsq2[0][0]
616 vel0 = Vrange[0] + shift0 * deltav
616 vel0 = Vrange[0] + shift0 * deltav
617 shift1 = lsq2[0][4]
617 shift1 = lsq2[0][4]
618 # vel1=Vrange[0] + shift1 * deltav
618 # vel1=Vrange[0] + shift1 * deltav
619
619
620 # max_vel = 1.0
620 # max_vel = 1.0
621 # Va = max(Vrange)
621 # Va = max(Vrange)
622 # deltav = Vrange[1]-Vrange[0]
622 # deltav = Vrange[1]-Vrange[0]
623 # print ('stop 15')
623 # print ('stop 15')
624 #first peak will be 0, second peak will be 1
624 #first peak will be 0, second peak will be 1
625 # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021
625 # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021
626 if vel0 > -Va and vel0 < Va : #first peak is in the correct range
626 if vel0 > -Va and vel0 < Va : #first peak is in the correct range
627 shift0 = lsq2[0][0]
627 shift0 = lsq2[0][0]
628 width0 = lsq2[0][1]
628 width0 = lsq2[0][1]
629 Amplitude0 = lsq2[0][2]
629 Amplitude0 = lsq2[0][2]
630 p0 = lsq2[0][3]
630 p0 = lsq2[0][3]
631
631
632 shift1 = lsq2[0][4]
632 shift1 = lsq2[0][4]
633 width1 = lsq2[0][5]
633 width1 = lsq2[0][5]
634 Amplitude1 = lsq2[0][6]
634 Amplitude1 = lsq2[0][6]
635 p1 = lsq2[0][7]
635 p1 = lsq2[0][7]
636 noise = lsq2[0][8]
636 noise = lsq2[0][8]
637 else:
637 else:
638 shift1 = lsq2[0][0]
638 shift1 = lsq2[0][0]
639 width1 = lsq2[0][1]
639 width1 = lsq2[0][1]
640 Amplitude1 = lsq2[0][2]
640 Amplitude1 = lsq2[0][2]
641 p1 = lsq2[0][3]
641 p1 = lsq2[0][3]
642
642
643 shift0 = lsq2[0][4]
643 shift0 = lsq2[0][4]
644 width0 = lsq2[0][5]
644 width0 = lsq2[0][5]
645 Amplitude0 = lsq2[0][6]
645 Amplitude0 = lsq2[0][6]
646 p0 = lsq2[0][7]
646 p0 = lsq2[0][7]
647 noise = lsq2[0][8]
647 noise = lsq2[0][8]
648
648
649 if Amplitude0<0.05: # in case the peak is noise
649 if Amplitude0<0.05: # in case the peak is noise
650 shift0,width0,Amplitude0,p0 = 4*[numpy.NaN]
650 shift0,width0,Amplitude0,p0 = 4*[numpy.NaN]
651 if Amplitude1<0.05:
651 if Amplitude1<0.05:
652 shift1,width1,Amplitude1,p1 = 4*[numpy.NaN]
652 shift1,width1,Amplitude1,p1 = 4*[numpy.NaN]
653
653
654 # print ('stop 16 ')
654 # print ('stop 16 ')
655 # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0)
655 # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0)
656 # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1)
656 # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1)
657 # SPCparam = (SPC_ch1,SPC_ch2)
657 # SPCparam = (SPC_ch1,SPC_ch2)
658
658
659 DGauFitParam[0,ht,0] = noise
659 DGauFitParam[0,ht,0] = noise
660 DGauFitParam[0,ht,1] = noise
660 DGauFitParam[0,ht,1] = noise
661 DGauFitParam[1,ht,0] = Amplitude0
661 DGauFitParam[1,ht,0] = Amplitude0
662 DGauFitParam[1,ht,1] = Amplitude1
662 DGauFitParam[1,ht,1] = Amplitude1
663 DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav
663 DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav
664 DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav
664 DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav
665 DGauFitParam[3,ht,0] = width0 * deltav
665 DGauFitParam[3,ht,0] = width0 * deltav
666 DGauFitParam[3,ht,1] = width1 * deltav
666 DGauFitParam[3,ht,1] = width1 * deltav
667 DGauFitParam[4,ht,0] = p0
667 DGauFitParam[4,ht,0] = p0
668 DGauFitParam[4,ht,1] = p1
668 DGauFitParam[4,ht,1] = p1
669
669
670 # print (DGauFitParam.shape)
670 # print (DGauFitParam.shape)
671 # print ('Leaving FitGau')
671 # print ('Leaving FitGau')
672 return DGauFitParam
672 return DGauFitParam
673 # return SPCparam
673 # return SPCparam
674 # return GauSPC
674 # return GauSPC
675
675
676 def y_model1(self,x,state):
676 def y_model1(self,x,state):
677 shift0, width0, amplitude0, power0, noise = state
677 shift0, width0, amplitude0, power0, noise = state
678 model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0)
678 model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0)
679 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
679 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
680 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
680 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
681 return model0 + model0u + model0d + noise
681 return model0 + model0u + model0d + noise
682
682
683 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
683 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
684 shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state
684 shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state
685 model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
685 model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
686 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
686 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
687 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
687 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
688
688
689 model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1)
689 model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1)
690 model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1)
690 model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1)
691 model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1)
691 model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1)
692 return model0 + model0u + model0d + model1 + model1u + model1d + noise
692 return model0 + model0u + model0d + model1 + model1u + model1d + noise
693
693
694 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
694 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
695
695
696 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
696 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
697
697
698 def misfit2(self,state,y_data,x,num_intg):
698 def misfit2(self,state,y_data,x,num_intg):
699 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
699 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
700
700
701
701
702
702
703 class PrecipitationProc(Operation):
703 class PrecipitationProc(Operation):
704
704
705 '''
705 '''
706 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
706 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
707
707
708 Input:
708 Input:
709 self.dataOut.data_pre : SelfSpectra
709 self.dataOut.data_pre : SelfSpectra
710
710
711 Output:
711 Output:
712
712
713 self.dataOut.data_output : Reflectivity factor, rainfall Rate
713 self.dataOut.data_output : Reflectivity factor, rainfall Rate
714
714
715
715
716 Parameters affected:
716 Parameters affected:
717 '''
717 '''
718
718
719 def __init__(self):
719 def __init__(self):
720 Operation.__init__(self)
720 Operation.__init__(self)
721 self.i=0
721 self.i=0
722
722
723 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
723 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
724 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30):
724 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30):
725
725
726 # print ('Entering PrecepitationProc ... ')
726 # print ('Entering PrecepitationProc ... ')
727
727
728 if radar == "MIRA35C" :
728 if radar == "MIRA35C" :
729
729
730 self.spc = dataOut.data_pre[0].copy()
730 self.spc = dataOut.data_pre[0].copy()
731 self.Num_Hei = self.spc.shape[2]
731 self.Num_Hei = self.spc.shape[2]
732 self.Num_Bin = self.spc.shape[1]
732 self.Num_Bin = self.spc.shape[1]
733 self.Num_Chn = self.spc.shape[0]
733 self.Num_Chn = self.spc.shape[0]
734 Ze = self.dBZeMODE2(dataOut)
734 Ze = self.dBZeMODE2(dataOut)
735
735
736 else:
736 else:
737
737
738 self.spc = dataOut.data_pre[0].copy()
738 self.spc = dataOut.data_pre[0].copy()
739
739
740 #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX
740 #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX
741 self.spc[:,:,0:7]= numpy.NaN
741 self.spc[:,:,0:7]= numpy.NaN
742
742
743 self.Num_Hei = self.spc.shape[2]
743 self.Num_Hei = self.spc.shape[2]
744 self.Num_Bin = self.spc.shape[1]
744 self.Num_Bin = self.spc.shape[1]
745 self.Num_Chn = self.spc.shape[0]
745 self.Num_Chn = self.spc.shape[0]
746
746
747 VelRange = dataOut.spc_range[2]
747 VelRange = dataOut.spc_range[2]
748
748
749 ''' Se obtiene la constante del RADAR '''
749 ''' Se obtiene la constante del RADAR '''
750
750
751 self.Pt = Pt
751 self.Pt = Pt
752 self.Gt = Gt
752 self.Gt = Gt
753 self.Gr = Gr
753 self.Gr = Gr
754 self.Lambda = Lambda
754 self.Lambda = Lambda
755 self.aL = aL
755 self.aL = aL
756 self.tauW = tauW
756 self.tauW = tauW
757 self.ThetaT = ThetaT
757 self.ThetaT = ThetaT
758 self.ThetaR = ThetaR
758 self.ThetaR = ThetaR
759 self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB
759 self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB
760 self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB
760 self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB
761 self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB
761 self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB
762
762
763 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
763 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
764 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
764 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
765 RadarConstant = 10e-26 * Numerator / Denominator #
765 RadarConstant = 10e-26 * Numerator / Denominator #
766 ExpConstant = 10**(40/10) #Constante Experimental
766 ExpConstant = 10**(40/10) #Constante Experimental
767
767
768 SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
768 SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
769 for i in range(self.Num_Chn):
769 for i in range(self.Num_Chn):
770 SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i]
770 SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i]
771 SignalPower[numpy.where(SignalPower < 0)] = 1e-20
771 SignalPower[numpy.where(SignalPower < 0)] = 1e-20
772
772
773 SPCmean = numpy.mean(SignalPower, 0)
773 SPCmean = numpy.mean(SignalPower, 0)
774 Pr = SPCmean[:,:]/dataOut.normFactor
774 Pr = SPCmean[:,:]/dataOut.normFactor
775
775
776 # Declaring auxiliary variables
776 # Declaring auxiliary variables
777 Range = dataOut.heightList*1000. #Range in m
777 Range = dataOut.heightList*1000. #Range in m
778 # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei]
778 # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei]
779 rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin))
779 rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin))
780 zMtrx = rMtrx+Altitude
780 zMtrx = rMtrx+Altitude
781 # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei]
781 # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei]
782 VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1)))
782 VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1)))
783
783
784 # height dependence to air density Foote and Du Toit (1969)
784 # height dependence to air density Foote and Du Toit (1969)
785 delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2
785 delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2
786 VMtrx = VelMtrx / delv_z #Normalized velocity
786 VMtrx = VelMtrx / delv_z #Normalized velocity
787 VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN
787 VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN
788 # Diameter is related to the fall speed of falling drops
788 # Diameter is related to the fall speed of falling drops
789 D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm]
789 D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm]
790 # Only valid for D>= 0.16 mm
790 # Only valid for D>= 0.16 mm
791 D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN
791 D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN
792
792
793 #Calculate Radar Reflectivity ETAn
793 #Calculate Radar Reflectivity ETAn
794 ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA)
794 ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA)
795 ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z
795 ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z
796 # Radar Cross Section
796 # Radar Cross Section
797 sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4
797 sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4
798 # Drop Size Distribution
798 # Drop Size Distribution
799 DSD = ETAn / sigmaD
799 DSD = ETAn / sigmaD
800 # Equivalente Reflectivy
800 # Equivalente Reflectivy
801 Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0)
801 Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0)
802 Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3]
802 Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3]
803 # RainFall Rate
803 # RainFall Rate
804 RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr
804 RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr
805
805
806 # Censoring the data
806 # Censoring the data
807 # Removing data with SNRth < 0dB se debe considerar el SNR por canal
807 # Removing data with SNRth < 0dB se debe considerar el SNR por canal
808 SNRth = 10**(SNRdBlimit/10) #-30dB
808 SNRth = 10**(SNRdBlimit/10) #-30dB
809 novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better
809 novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better
810 W = numpy.nanmean(dataOut.data_dop,0)
810 W = numpy.nanmean(dataOut.data_dop,0)
811 W[novalid] = numpy.NaN
811 W[novalid] = numpy.NaN
812 Ze_org[novalid] = numpy.NaN
812 Ze_org[novalid] = numpy.NaN
813 RR[novalid] = numpy.NaN
813 RR[novalid] = numpy.NaN
814
814
815 dataOut.data_output = RR[8]
815 dataOut.data_output = RR[8]
816 dataOut.data_param = numpy.ones([3,self.Num_Hei])
816 dataOut.data_param = numpy.ones([3,self.Num_Hei])
817 dataOut.channelList = [0,1,2]
817 dataOut.channelList = [0,1,2]
818
818
819 dataOut.data_param[0]=10*numpy.log10(Ze_org)
819 dataOut.data_param[0]=10*numpy.log10(Ze_org)
820 dataOut.data_param[1]=-W
820 dataOut.data_param[1]=-W
821 dataOut.data_param[2]=RR
821 dataOut.data_param[2]=RR
822
822
823 # print ('Leaving PrecepitationProc ... ')
823 # print ('Leaving PrecepitationProc ... ')
824 return dataOut
824 return dataOut
825
825
826 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
826 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
827
827
828 NPW = dataOut.NPW
828 NPW = dataOut.NPW
829 COFA = dataOut.COFA
829 COFA = dataOut.COFA
830
830
831 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
831 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
832 RadarConst = dataOut.RadarConst
832 RadarConst = dataOut.RadarConst
833 #frequency = 34.85*10**9
833 #frequency = 34.85*10**9
834
834
835 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
835 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
836 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
836 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
837
837
838 ETA = numpy.sum(SNR,1)
838 ETA = numpy.sum(SNR,1)
839
839
840 ETA = numpy.where(ETA != 0. , ETA, numpy.NaN)
840 ETA = numpy.where(ETA != 0. , ETA, numpy.NaN)
841
841
842 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
842 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
843
843
844 for r in range(self.Num_Hei):
844 for r in range(self.Num_Hei):
845
845
846 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
846 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
847 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
847 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
848
848
849 return Ze
849 return Ze
850
850
851 # def GetRadarConstant(self):
851 # def GetRadarConstant(self):
852 #
852 #
853 # """
853 # """
854 # Constants:
854 # Constants:
855 #
855 #
856 # Pt: Transmission Power dB 5kW 5000
856 # Pt: Transmission Power dB 5kW 5000
857 # Gt: Transmission Gain dB 24.7 dB 295.1209
857 # Gt: Transmission Gain dB 24.7 dB 295.1209
858 # Gr: Reception Gain dB 18.5 dB 70.7945
858 # Gr: Reception Gain dB 18.5 dB 70.7945
859 # Lambda: Wavelenght m 0.6741 m 0.6741
859 # Lambda: Wavelenght m 0.6741 m 0.6741
860 # aL: Attenuation loses dB 4dB 2.5118
860 # aL: Attenuation loses dB 4dB 2.5118
861 # tauW: Width of transmission pulse s 4us 4e-6
861 # tauW: Width of transmission pulse s 4us 4e-6
862 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
862 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
863 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
863 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
864 #
864 #
865 # """
865 # """
866 #
866 #
867 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
867 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
868 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
868 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
869 # RadarConstant = Numerator / Denominator
869 # RadarConstant = Numerator / Denominator
870 #
870 #
871 # return RadarConstant
871 # return RadarConstant
872
872
873
873
874
874
875 class FullSpectralAnalysis(Operation):
875 class FullSpectralAnalysis(Operation):
876
876
877 """
877 """
878 Function that implements Full Spectral Analysis technique.
878 Function that implements Full Spectral Analysis technique.
879
879
880 Input:
880 Input:
881 self.dataOut.data_pre : SelfSpectra and CrossSpectra data
881 self.dataOut.data_pre : SelfSpectra and CrossSpectra data
882 self.dataOut.groupList : Pairlist of channels
882 self.dataOut.groupList : Pairlist of channels
883 self.dataOut.ChanDist : Physical distance between receivers
883 self.dataOut.ChanDist : Physical distance between receivers
884
884
885
885
886 Output:
886 Output:
887
887
888 self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind
888 self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind
889
889
890
890
891 Parameters affected: Winds, height range, SNR
891 Parameters affected: Winds, height range, SNR
892
892
893 """
893 """
894 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30,
894 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30,
895 minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None):
895 minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None):
896
896
897 spc = dataOut.data_pre[0].copy()
897 spc = dataOut.data_pre[0].copy()
898 cspc = dataOut.data_pre[1]
898 cspc = dataOut.data_pre[1]
899 nHeights = spc.shape[2]
899 nHeights = spc.shape[2]
900
900
901 # first_height = 0.75 #km (ref: data header 20170822)
901 # first_height = 0.75 #km (ref: data header 20170822)
902 # resolution_height = 0.075 #km
902 # resolution_height = 0.075 #km
903 '''
903 '''
904 finding height range. check this when radar parameters are changed!
904 finding height range. check this when radar parameters are changed!
905 '''
905 '''
906 if maxheight is not None:
906 if maxheight is not None:
907 # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical
907 # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical
908 range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better
908 range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better
909 else:
909 else:
910 range_max = nHeights
910 range_max = nHeights
911 if minheight is not None:
911 if minheight is not None:
912 # range_min = int((minheight - first_height) / resolution_height) # theoretical
912 # range_min = int((minheight - first_height) / resolution_height) # theoretical
913 range_min = int(13.26 * minheight - 5) # empirical, works better
913 range_min = int(13.26 * minheight - 5) # empirical, works better
914 if range_min < 0:
914 if range_min < 0:
915 range_min = 0
915 range_min = 0
916 else:
916 else:
917 range_min = 0
917 range_min = 0
918
918
919 pairsList = dataOut.groupList
919 pairsList = dataOut.groupList
920 if dataOut.ChanDist is not None :
920 if dataOut.ChanDist is not None :
921 ChanDist = dataOut.ChanDist
921 ChanDist = dataOut.ChanDist
922 else:
922 else:
923 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
923 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
924
924
925 # 4 variables: zonal, meridional, vertical, and average SNR
925 # 4 variables: zonal, meridional, vertical, and average SNR
926 data_param = numpy.zeros([4,nHeights]) * numpy.NaN
926 data_param = numpy.zeros([4,nHeights]) * numpy.NaN
927 velocityX = numpy.zeros([nHeights]) * numpy.NaN
927 velocityX = numpy.zeros([nHeights]) * numpy.NaN
928 velocityY = numpy.zeros([nHeights]) * numpy.NaN
928 velocityY = numpy.zeros([nHeights]) * numpy.NaN
929 velocityZ = numpy.zeros([nHeights]) * numpy.NaN
929 velocityZ = numpy.zeros([nHeights]) * numpy.NaN
930
930
931 dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0))
931 dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0))
932
932
933 '''***********************************************WIND ESTIMATION**************************************'''
933 '''***********************************************WIND ESTIMATION**************************************'''
934 for Height in range(nHeights):
934 for Height in range(nHeights):
935
935
936 if Height >= range_min and Height < range_max:
936 if Height >= range_min and Height < range_max:
937 # error_code will be useful in future analysis
937 # error_code will be useful in future analysis
938 [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList,
938 [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList,
939 ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency)
939 ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency)
940
940
941 if abs(Vzon) < 100. and abs(Vmer) < 100.:
941 if abs(Vzon) < 100. and abs(Vmer) < 100.:
942 velocityX[Height] = Vzon
942 velocityX[Height] = Vzon
943 velocityY[Height] = -Vmer
943 velocityY[Height] = -Vmer
944 velocityZ[Height] = Vver
944 velocityZ[Height] = Vver
945
945
946 # Censoring data with SNR threshold
946 # Censoring data with SNR threshold
947 dbSNR [dbSNR < SNRdBlimit] = numpy.NaN
947 dbSNR [dbSNR < SNRdBlimit] = numpy.NaN
948
948
949 data_param[0] = velocityX
949 data_param[0] = velocityX
950 data_param[1] = velocityY
950 data_param[1] = velocityY
951 data_param[2] = velocityZ
951 data_param[2] = velocityZ
952 data_param[3] = dbSNR
952 data_param[3] = dbSNR
953 dataOut.data_param = data_param
953 dataOut.data_param = data_param
954 return dataOut
954 return dataOut
955
955
956 def moving_average(self,x, N=2):
956 def moving_average(self,x, N=2):
957 """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """
957 """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """
958 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
958 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
959
959
960 def gaus(self,xSamples,Amp,Mu,Sigma):
960 def gaus(self,xSamples,Amp,Mu,Sigma):
961 return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2)
961 return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2)
962
962
963 def Moments(self, ySamples, xSamples):
963 def Moments(self, ySamples, xSamples):
964 Power = numpy.nanmean(ySamples) # Power, 0th Moment
964 Power = numpy.nanmean(ySamples) # Power, 0th Moment
965 yNorm = ySamples / numpy.nansum(ySamples)
965 yNorm = ySamples / numpy.nansum(ySamples)
966 RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment
966 RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment
967 Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment
967 Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment
968 StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral
968 StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral
969 return numpy.array([Power,RadVel,StdDev])
969 return numpy.array([Power,RadVel,StdDev])
970
970
971 def StopWindEstimation(self, error_code):
971 def StopWindEstimation(self, error_code):
972 Vzon = numpy.NaN
972 Vzon = numpy.NaN
973 Vmer = numpy.NaN
973 Vmer = numpy.NaN
974 Vver = numpy.NaN
974 Vver = numpy.NaN
975 return Vzon, Vmer, Vver, error_code
975 return Vzon, Vmer, Vver, error_code
976
976
977 def AntiAliasing(self, interval, maxstep):
977 def AntiAliasing(self, interval, maxstep):
978 """
978 """
979 function to prevent errors from aliased values when computing phaseslope
979 function to prevent errors from aliased values when computing phaseslope
980 """
980 """
981 antialiased = numpy.zeros(len(interval))
981 antialiased = numpy.zeros(len(interval))
982 copyinterval = interval.copy()
982 copyinterval = interval.copy()
983
983
984 antialiased[0] = copyinterval[0]
984 antialiased[0] = copyinterval[0]
985
985
986 for i in range(1,len(antialiased)):
986 for i in range(1,len(antialiased)):
987 step = interval[i] - interval[i-1]
987 step = interval[i] - interval[i-1]
988 if step > maxstep:
988 if step > maxstep:
989 copyinterval -= 2*numpy.pi
989 copyinterval -= 2*numpy.pi
990 antialiased[i] = copyinterval[i]
990 antialiased[i] = copyinterval[i]
991 elif step < maxstep*(-1):
991 elif step < maxstep*(-1):
992 copyinterval += 2*numpy.pi
992 copyinterval += 2*numpy.pi
993 antialiased[i] = copyinterval[i]
993 antialiased[i] = copyinterval[i]
994 else:
994 else:
995 antialiased[i] = copyinterval[i].copy()
995 antialiased[i] = copyinterval[i].copy()
996
996
997 return antialiased
997 return antialiased
998
998
999 def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq):
999 def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq):
1000 """
1000 """
1001 Function that Calculates Zonal, Meridional and Vertical wind velocities.
1001 Function that Calculates Zonal, Meridional and Vertical wind velocities.
1002 Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019.
1002 Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019.
1003
1003
1004 Input:
1004 Input:
1005 spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively.
1005 spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively.
1006 pairsList : Pairlist of channels
1006 pairsList : Pairlist of channels
1007 ChanDist : array of xi_ij and eta_ij
1007 ChanDist : array of xi_ij and eta_ij
1008 Height : height at which data is processed
1008 Height : height at which data is processed
1009 noise : noise in [channels] format for specific height
1009 noise : noise in [channels] format for specific height
1010 Abbsisarange : range of the frequencies or velocities
1010 Abbsisarange : range of the frequencies or velocities
1011 dbSNR, SNRlimit : signal to noise ratio in db, lower limit
1011 dbSNR, SNRlimit : signal to noise ratio in db, lower limit
1012
1012
1013 Output:
1013 Output:
1014 Vzon, Vmer, Vver : wind velocities
1014 Vzon, Vmer, Vver : wind velocities
1015 error_code : int that states where code is terminated
1015 error_code : int that states where code is terminated
1016
1016
1017 0 : no error detected
1017 0 : no error detected
1018 1 : Gaussian of mean spc exceeds widthlimit
1018 1 : Gaussian of mean spc exceeds widthlimit
1019 2 : no Gaussian of mean spc found
1019 2 : no Gaussian of mean spc found
1020 3 : SNR to low or velocity to high -> prec. e.g.
1020 3 : SNR to low or velocity to high -> prec. e.g.
1021 4 : at least one Gaussian of cspc exceeds widthlimit
1021 4 : at least one Gaussian of cspc exceeds widthlimit
1022 5 : zero out of three cspc Gaussian fits converged
1022 5 : zero out of three cspc Gaussian fits converged
1023 6 : phase slope fit could not be found
1023 6 : phase slope fit could not be found
1024 7 : arrays used to fit phase have different length
1024 7 : arrays used to fit phase have different length
1025 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc)
1025 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc)
1026
1026
1027 """
1027 """
1028
1028
1029 error_code = 0
1029 error_code = 0
1030
1030
1031 nChan = spc.shape[0]
1031 nChan = spc.shape[0]
1032 nProf = spc.shape[1]
1032 nProf = spc.shape[1]
1033 nPair = cspc.shape[0]
1033 nPair = cspc.shape[0]
1034
1034
1035 SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height
1035 SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height
1036 CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values
1036 CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values
1037 phase = numpy.zeros([nPair, nProf]) # phase between channels
1037 phase = numpy.zeros([nPair, nProf]) # phase between channels
1038 PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise
1038 PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise
1039 PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise
1039 PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise
1040 xFrec = AbbsisaRange[0][:-1] # frequency range
1040 xFrec = AbbsisaRange[0][:-1] # frequency range
1041 xVel = AbbsisaRange[2][:-1] # velocity range
1041 xVel = AbbsisaRange[2][:-1] # velocity range
1042 xSamples = xFrec # the frequency range is taken
1042 xSamples = xFrec # the frequency range is taken
1043 delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x
1043 delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x
1044
1044
1045 # only consider velocities with in NegativeLimit and PositiveLimit
1045 # only consider velocities with in NegativeLimit and PositiveLimit
1046 if (NegativeLimit is None):
1046 if (NegativeLimit is None):
1047 NegativeLimit = numpy.min(xVel)
1047 NegativeLimit = numpy.min(xVel)
1048 if (PositiveLimit is None):
1048 if (PositiveLimit is None):
1049 PositiveLimit = numpy.max(xVel)
1049 PositiveLimit = numpy.max(xVel)
1050 xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit))
1050 xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit))
1051 xSamples_zoom = xSamples[xvalid]
1051 xSamples_zoom = xSamples[xvalid]
1052
1052
1053 '''Getting Eij and Nij'''
1053 '''Getting Eij and Nij'''
1054 Xi01, Xi02, Xi12 = ChanDist[:,0]
1054 Xi01, Xi02, Xi12 = ChanDist[:,0]
1055 Eta01, Eta02, Eta12 = ChanDist[:,1]
1055 Eta01, Eta02, Eta12 = ChanDist[:,1]
1056
1056
1057 # spwd limit - updated by D. ScipiΓ³n 30.03.2021
1057 # spwd limit - updated by D. ScipiΓ³n 30.03.2021
1058 widthlimit = 10
1058 widthlimit = 10
1059 '''************************* SPC is normalized ********************************'''
1059 '''************************* SPC is normalized ********************************'''
1060 spc_norm = spc.copy()
1060 spc_norm = spc.copy()
1061 # For each channel
1061 # For each channel
1062 for i in range(nChan):
1062 for i in range(nChan):
1063 spc_sub = spc_norm[i,:] - noise[i] # only the signal power
1063 spc_sub = spc_norm[i,:] - noise[i] # only the signal power
1064 SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x)
1064 SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x)
1065
1065
1066 '''********************** FITTING MEAN SPC GAUSSIAN **********************'''
1066 '''********************** FITTING MEAN SPC GAUSSIAN **********************'''
1067
1067
1068 """ the gaussian of the mean: first subtract noise, then normalize. this is legal because
1068 """ the gaussian of the mean: first subtract noise, then normalize. this is legal because
1069 you only fit the curve and don't need the absolute value of height for calculation,
1069 you only fit the curve and don't need the absolute value of height for calculation,
1070 only for estimation of width. for normalization of cross spectra, you need initial,
1070 only for estimation of width. for normalization of cross spectra, you need initial,
1071 unnormalized self-spectra With noise.
1071 unnormalized self-spectra With noise.
1072
1072
1073 Technically, you don't even need to normalize the self-spectra, as you only need the
1073 Technically, you don't even need to normalize the self-spectra, as you only need the
1074 width of the peak. However, it was left this way. Note that the normalization has a flaw:
1074 width of the peak. However, it was left this way. Note that the normalization has a flaw:
1075 due to subtraction of the noise, some values are below zero. Raw "spc" values should be
1075 due to subtraction of the noise, some values are below zero. Raw "spc" values should be
1076 >= 0, as it is the modulus squared of the signals (complex * it's conjugate)
1076 >= 0, as it is the modulus squared of the signals (complex * it's conjugate)
1077 """
1077 """
1078 # initial conditions
1078 # initial conditions
1079 popt = [1e-10,0,1e-10]
1079 popt = [1e-10,0,1e-10]
1080 # Spectra average
1080 # Spectra average
1081 SPCMean = numpy.average(SPC_Samples,0)
1081 SPCMean = numpy.average(SPC_Samples,0)
1082 # Moments in frequency
1082 # Moments in frequency
1083 SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom)
1083 SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom)
1084
1084
1085 # Gauss Fit SPC in frequency domain
1085 # Gauss Fit SPC in frequency domain
1086 if dbSNR > SNRlimit: # only if SNR > SNRth
1086 if dbSNR > SNRlimit: # only if SNR > SNRth
1087 try:
1087 try:
1088 popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments)
1088 popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments)
1089 if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION
1089 if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION
1090 return self.StopWindEstimation(error_code = 1)
1090 return self.StopWindEstimation(error_code = 1)
1091 FitGauss = self.gaus(xSamples_zoom,*popt)
1091 FitGauss = self.gaus(xSamples_zoom,*popt)
1092 except :#RuntimeError:
1092 except :#RuntimeError:
1093 return self.StopWindEstimation(error_code = 2)
1093 return self.StopWindEstimation(error_code = 2)
1094 else:
1094 else:
1095 return self.StopWindEstimation(error_code = 3)
1095 return self.StopWindEstimation(error_code = 3)
1096
1096
1097 '''***************************** CSPC Normalization *************************
1097 '''***************************** CSPC Normalization *************************
1098 The Spc spectra are used to normalize the crossspectra. Peaks from precipitation
1098 The Spc spectra are used to normalize the crossspectra. Peaks from precipitation
1099 influence the norm which is not desired. First, a range is identified where the
1099 influence the norm which is not desired. First, a range is identified where the
1100 wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area
1100 wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area
1101 around it gets cut off and values replaced by mean determined by the boundary
1101 around it gets cut off and values replaced by mean determined by the boundary
1102 data -> sum_noise (spc is not normalized here, thats why the noise is important)
1102 data -> sum_noise (spc is not normalized here, thats why the noise is important)
1103
1103
1104 The sums are then added and multiplied by range/datapoints, because you need
1104 The sums are then added and multiplied by range/datapoints, because you need
1105 an integral and not a sum for normalization.
1105 an integral and not a sum for normalization.
1106
1106
1107 A norm is found according to Briggs 92.
1107 A norm is found according to Briggs 92.
1108 '''
1108 '''
1109 # for each pair
1109 # for each pair
1110 for i in range(nPair):
1110 for i in range(nPair):
1111 cspc_norm = cspc[i,:].copy()
1111 cspc_norm = cspc[i,:].copy()
1112 chan_index0 = pairsList[i][0]
1112 chan_index0 = pairsList[i][0]
1113 chan_index1 = pairsList[i][1]
1113 chan_index1 = pairsList[i][1]
1114 CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x)
1114 CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x)
1115 phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real)
1115 phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real)
1116
1116
1117 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom),
1117 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom),
1118 self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom),
1118 self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom),
1119 self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)])
1119 self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)])
1120
1120
1121 popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10]
1121 popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10]
1122 FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples))
1122 FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples))
1123
1123
1124 '''*******************************FIT GAUSS CSPC************************************'''
1124 '''*******************************FIT GAUSS CSPC************************************'''
1125 try:
1125 try:
1126 popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0])
1126 popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0])
1127 if popt01[2] > widthlimit: # CONDITION
1127 if popt01[2] > widthlimit: # CONDITION
1128 return self.StopWindEstimation(error_code = 4)
1128 return self.StopWindEstimation(error_code = 4)
1129 popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1])
1129 popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1])
1130 if popt02[2] > widthlimit: # CONDITION
1130 if popt02[2] > widthlimit: # CONDITION
1131 return self.StopWindEstimation(error_code = 4)
1131 return self.StopWindEstimation(error_code = 4)
1132 popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2])
1132 popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2])
1133 if popt12[2] > widthlimit: # CONDITION
1133 if popt12[2] > widthlimit: # CONDITION
1134 return self.StopWindEstimation(error_code = 4)
1134 return self.StopWindEstimation(error_code = 4)
1135
1135
1136 FitGauss01 = self.gaus(xSamples_zoom, *popt01)
1136 FitGauss01 = self.gaus(xSamples_zoom, *popt01)
1137 FitGauss02 = self.gaus(xSamples_zoom, *popt02)
1137 FitGauss02 = self.gaus(xSamples_zoom, *popt02)
1138 FitGauss12 = self.gaus(xSamples_zoom, *popt12)
1138 FitGauss12 = self.gaus(xSamples_zoom, *popt12)
1139 except:
1139 except:
1140 return self.StopWindEstimation(error_code = 5)
1140 return self.StopWindEstimation(error_code = 5)
1141
1141
1142
1142
1143 '''************* Getting Fij ***************'''
1143 '''************* Getting Fij ***************'''
1144 # x-axis point of the gaussian where the center is located from GaussFit of spectra
1144 # x-axis point of the gaussian where the center is located from GaussFit of spectra
1145 GaussCenter = popt[1]
1145 GaussCenter = popt[1]
1146 ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()]
1146 ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()]
1147 PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0]
1147 PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0]
1148
1148
1149 # Point where e^-1 is located in the gaussian
1149 # Point where e^-1 is located in the gaussian
1150 PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1)
1150 PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1)
1151 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss"
1151 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss"
1152 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1152 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1153 Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter])
1153 Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter])
1154
1154
1155 '''********** Taking frequency ranges from mean SPCs **********'''
1155 '''********** Taking frequency ranges from mean SPCs **********'''
1156 GauWidth = popt[2] * 3/2 # Bandwidth of Gau01
1156 GauWidth = popt[2] * 3/2 # Bandwidth of Gau01
1157 Range = numpy.empty(2)
1157 Range = numpy.empty(2)
1158 Range[0] = GaussCenter - GauWidth
1158 Range[0] = GaussCenter - GauWidth
1159 Range[1] = GaussCenter + GauWidth
1159 Range[1] = GaussCenter + GauWidth
1160 # Point in x-axis where the bandwidth is located (min:max)
1160 # Point in x-axis where the bandwidth is located (min:max)
1161 ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()]
1161 ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()]
1162 ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()]
1162 ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()]
1163 PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0]
1163 PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0]
1164 PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0]
1164 PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0]
1165 Range = numpy.array([ PointRangeMin, PointRangeMax ])
1165 Range = numpy.array([ PointRangeMin, PointRangeMax ])
1166 FrecRange = xSamples_zoom[ Range[0] : Range[1] ]
1166 FrecRange = xSamples_zoom[ Range[0] : Range[1] ]
1167
1167
1168 '''************************** Getting Phase Slope ***************************'''
1168 '''************************** Getting Phase Slope ***************************'''
1169 for i in range(nPair):
1169 for i in range(nPair):
1170 if len(FrecRange) > 5:
1170 if len(FrecRange) > 5:
1171 PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy()
1171 PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy()
1172 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1172 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1173 if len(FrecRange) == len(PhaseRange):
1173 if len(FrecRange) == len(PhaseRange):
1174 try:
1174 try:
1175 slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5))
1175 slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5))
1176 PhaseSlope[i] = slope
1176 PhaseSlope[i] = slope
1177 PhaseInter[i] = intercept
1177 PhaseInter[i] = intercept
1178 except:
1178 except:
1179 return self.StopWindEstimation(error_code = 6)
1179 return self.StopWindEstimation(error_code = 6)
1180 else:
1180 else:
1181 return self.StopWindEstimation(error_code = 7)
1181 return self.StopWindEstimation(error_code = 7)
1182 else:
1182 else:
1183 return self.StopWindEstimation(error_code = 8)
1183 return self.StopWindEstimation(error_code = 8)
1184
1184
1185 '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***'''
1185 '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***'''
1186
1186
1187 '''Getting constant C'''
1187 '''Getting constant C'''
1188 cC=(Fij*numpy.pi)**2
1188 cC=(Fij*numpy.pi)**2
1189
1189
1190 '''****** Getting constants F and G ******'''
1190 '''****** Getting constants F and G ******'''
1191 MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1191 MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1192 # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]])
1192 # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]])
1193 # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi)
1193 # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi)
1194 MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi)
1194 MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi)
1195 MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi)
1195 MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi)
1196 # MijResults = numpy.array([MijResult0, MijResult1, MijResult2])
1196 # MijResults = numpy.array([MijResult0, MijResult1, MijResult2])
1197 MijResults = numpy.array([MijResult1, MijResult2])
1197 MijResults = numpy.array([MijResult1, MijResult2])
1198 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1198 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1199
1199
1200 '''****** Getting constants A, B and H ******'''
1200 '''****** Getting constants A, B and H ******'''
1201 W01 = numpy.nanmax( FitGauss01 )
1201 W01 = numpy.nanmax( FitGauss01 )
1202 W02 = numpy.nanmax( FitGauss02 )
1202 W02 = numpy.nanmax( FitGauss02 )
1203 W12 = numpy.nanmax( FitGauss12 )
1203 W12 = numpy.nanmax( FitGauss12 )
1204
1204
1205 WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC))
1205 WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC))
1206 WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC))
1206 WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC))
1207 WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC))
1207 WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC))
1208 WijResults = numpy.array([WijResult01, WijResult02, WijResult12])
1208 WijResults = numpy.array([WijResult01, WijResult02, WijResult12])
1209
1209
1210 WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1210 WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1211 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1211 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1212
1212
1213 VxVy = numpy.array([[cA,cH],[cH,cB]])
1213 VxVy = numpy.array([[cA,cH],[cH,cB]])
1214 VxVyResults = numpy.array([-cF,-cG])
1214 VxVyResults = numpy.array([-cF,-cG])
1215 (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults)
1215 (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults)
1216 Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq)
1216 Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq)
1217 error_code = 0
1217 error_code = 0
1218
1218
1219 return Vzon, Vmer, Vver, error_code
1219 return Vzon, Vmer, Vver, error_code
1220
1220
1221 class SpectralMoments(Operation):
1221 class SpectralMoments(Operation):
1222
1222
1223 '''
1223 '''
1224 Function SpectralMoments()
1224 Function SpectralMoments()
1225
1225
1226 Calculates moments (power, mean, standard deviation) and SNR of the signal
1226 Calculates moments (power, mean, standard deviation) and SNR of the signal
1227
1227
1228 Type of dataIn: Spectra
1228 Type of dataIn: Spectra
1229
1229
1230 Configuration Parameters:
1230 Configuration Parameters:
1231
1231
1232 dirCosx : Cosine director in X axis
1232 dirCosx : Cosine director in X axis
1233 dirCosy : Cosine director in Y axis
1233 dirCosy : Cosine director in Y axis
1234
1234
1235 elevation :
1235 elevation :
1236 azimuth :
1236 azimuth :
1237
1237
1238 Input:
1238 Input:
1239 channelList : simple channel list to select e.g. [2,3,7]
1239 channelList : simple channel list to select e.g. [2,3,7]
1240 self.dataOut.data_pre : Spectral data
1240 self.dataOut.data_pre : Spectral data
1241 self.dataOut.abscissaList : List of frequencies
1241 self.dataOut.abscissaList : List of frequencies
1242 self.dataOut.noise : Noise level per channel
1242 self.dataOut.noise : Noise level per channel
1243
1243
1244 Affected:
1244 Affected:
1245 self.dataOut.moments : Parameters per channel
1245 self.dataOut.moments : Parameters per channel
1246 self.dataOut.data_snr : SNR per channel
1246 self.dataOut.data_snr : SNR per channel
1247
1247
1248 '''
1248 '''
1249
1249
1250 def run(self, dataOut):
1250 def run(self, dataOut):
1251
1251
1252 data = dataOut.data_pre[0]
1252 data = dataOut.data_pre[0]
1253 absc = dataOut.abscissaList[:-1]
1253 absc = dataOut.abscissaList[:-1]
1254 noise = dataOut.noise
1254 noise = dataOut.noise
1255 nChannel = data.shape[0]
1255 nChannel = data.shape[0]
1256 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
1256 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
1257
1257
1258 for ind in range(nChannel):
1258 for ind in range(nChannel):
1259 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1259 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1260
1260
1261 dataOut.moments = data_param[:,1:,:]
1261 dataOut.moments = data_param[:,1:,:]
1262 dataOut.data_snr = data_param[:,0]
1262 dataOut.data_snr = data_param[:,0]
1263 dataOut.data_pow = data_param[:,1]
1263 dataOut.data_pow = data_param[:,1]
1264 dataOut.data_dop = data_param[:,2]
1264 dataOut.data_dop = data_param[:,2]
1265 dataOut.data_width = data_param[:,3]
1265 dataOut.data_width = data_param[:,3]
1266 return dataOut
1266 return dataOut
1267
1267
1268 def __calculateMoments(self, oldspec, oldfreq, n0,
1268 def __calculateMoments(self, oldspec, oldfreq, n0,
1269 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1269 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1270
1270
1271 if (nicoh is None): nicoh = 1
1271 if (nicoh is None): nicoh = 1
1272 if (graph is None): graph = 0
1272 if (graph is None): graph = 0
1273 if (smooth is None): smooth = 0
1273 if (smooth is None): smooth = 0
1274 elif (self.smooth < 3): smooth = 0
1274 elif (self.smooth < 3): smooth = 0
1275
1275
1276 if (type1 is None): type1 = 0
1276 if (type1 is None): type1 = 0
1277 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
1277 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
1278 if (snrth is None): snrth = -3
1278 if (snrth is None): snrth = -3
1279 if (dc is None): dc = 0
1279 if (dc is None): dc = 0
1280 if (aliasing is None): aliasing = 0
1280 if (aliasing is None): aliasing = 0
1281 if (oldfd is None): oldfd = 0
1281 if (oldfd is None): oldfd = 0
1282 if (wwauto is None): wwauto = 0
1282 if (wwauto is None): wwauto = 0
1283
1283
1284 if (n0 < 1.e-20): n0 = 1.e-20
1284 if (n0 < 1.e-20): n0 = 1.e-20
1285
1285
1286 freq = oldfreq
1286 freq = oldfreq
1287 vec_power = numpy.zeros(oldspec.shape[1])
1287 vec_power = numpy.zeros(oldspec.shape[1])
1288 vec_fd = numpy.zeros(oldspec.shape[1])
1288 vec_fd = numpy.zeros(oldspec.shape[1])
1289 vec_w = numpy.zeros(oldspec.shape[1])
1289 vec_w = numpy.zeros(oldspec.shape[1])
1290 vec_snr = numpy.zeros(oldspec.shape[1])
1290 vec_snr = numpy.zeros(oldspec.shape[1])
1291
1291
1292 # oldspec = numpy.ma.masked_invalid(oldspec)
1292 # oldspec = numpy.ma.masked_invalid(oldspec)
1293 for ind in range(oldspec.shape[1]):
1293 for ind in range(oldspec.shape[1]):
1294
1294
1295 spec = oldspec[:,ind]
1295 spec = oldspec[:,ind]
1296 aux = spec*fwindow
1296 aux = spec*fwindow
1297 max_spec = aux.max()
1297 max_spec = aux.max()
1298 m = aux.tolist().index(max_spec)
1298 m = aux.tolist().index(max_spec)
1299
1299
1300 # Smooth
1300 # Smooth
1301 if (smooth == 0):
1301 if (smooth == 0):
1302 spec2 = spec
1302 spec2 = spec
1303 else:
1303 else:
1304 spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1304 spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1305
1305
1306 # Moments Estimation
1306 # Moments Estimation
1307 bb = spec2[numpy.arange(m,spec2.size)]
1307 bb = spec2[numpy.arange(m,spec2.size)]
1308 bb = (bb<n0).nonzero()
1308 bb = (bb<n0).nonzero()
1309 bb = bb[0]
1309 bb = bb[0]
1310
1310
1311 ss = spec2[numpy.arange(0,m + 1)]
1311 ss = spec2[numpy.arange(0,m + 1)]
1312 ss = (ss<n0).nonzero()
1312 ss = (ss<n0).nonzero()
1313 ss = ss[0]
1313 ss = ss[0]
1314
1314
1315 if (bb.size == 0):
1315 if (bb.size == 0):
1316 bb0 = spec.size - 1 - m
1316 bb0 = spec.size - 1 - m
1317 else:
1317 else:
1318 bb0 = bb[0] - 1
1318 bb0 = bb[0] - 1
1319 if (bb0 < 0):
1319 if (bb0 < 0):
1320 bb0 = 0
1320 bb0 = 0
1321
1321
1322 if (ss.size == 0):
1322 if (ss.size == 0):
1323 ss1 = 1
1323 ss1 = 1
1324 else:
1324 else:
1325 ss1 = max(ss) + 1
1325 ss1 = max(ss) + 1
1326
1326
1327 if (ss1 > m):
1327 if (ss1 > m):
1328 ss1 = m
1328 ss1 = m
1329
1329
1330 #valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1
1330 #valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1
1331 valid = numpy.arange(1,oldspec.shape[0])# valid perfil completo igual pulsepair
1331 valid = numpy.arange(1,oldspec.shape[0])# valid perfil completo igual pulsepair
1332 signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1332 signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1333 total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1333 total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1334 power = ((spec2[valid] - n0) * fwindow[valid]).sum()
1334 power = ((spec2[valid] - n0) * fwindow[valid]).sum()
1335 fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power
1335 fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power
1336 w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power)
1336 w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power)
1337 snr = (spec2.mean()-n0)/n0
1337 snr = (spec2.mean()-n0)/n0
1338 if (snr < 1.e-20) :
1338 if (snr < 1.e-20) :
1339 snr = 1.e-20
1339 snr = 1.e-20
1340
1340
1341 # vec_power[ind] = power #D. ScipiΓ³n replaced with the line below
1341 # vec_power[ind] = power #D. ScipiΓ³n replaced with the line below
1342 vec_power[ind] = total_power
1342 vec_power[ind] = total_power
1343 vec_fd[ind] = fd
1343 vec_fd[ind] = fd
1344 vec_w[ind] = w
1344 vec_w[ind] = w
1345 vec_snr[ind] = snr
1345 vec_snr[ind] = snr
1346
1346
1347 return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1347 return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1348
1348
1349 #------------------ Get SA Parameters --------------------------
1349 #------------------ Get SA Parameters --------------------------
1350
1350
1351 def GetSAParameters(self):
1351 def GetSAParameters(self):
1352 #SA en frecuencia
1352 #SA en frecuencia
1353 pairslist = self.dataOut.groupList
1353 pairslist = self.dataOut.groupList
1354 num_pairs = len(pairslist)
1354 num_pairs = len(pairslist)
1355
1355
1356 vel = self.dataOut.abscissaList
1356 vel = self.dataOut.abscissaList
1357 spectra = self.dataOut.data_pre
1357 spectra = self.dataOut.data_pre
1358 cspectra = self.dataIn.data_cspc
1358 cspectra = self.dataIn.data_cspc
1359 delta_v = vel[1] - vel[0]
1359 delta_v = vel[1] - vel[0]
1360
1360
1361 #Calculating the power spectrum
1361 #Calculating the power spectrum
1362 spc_pow = numpy.sum(spectra, 3)*delta_v
1362 spc_pow = numpy.sum(spectra, 3)*delta_v
1363 #Normalizing Spectra
1363 #Normalizing Spectra
1364 norm_spectra = spectra/spc_pow
1364 norm_spectra = spectra/spc_pow
1365 #Calculating the norm_spectra at peak
1365 #Calculating the norm_spectra at peak
1366 max_spectra = numpy.max(norm_spectra, 3)
1366 max_spectra = numpy.max(norm_spectra, 3)
1367
1367
1368 #Normalizing Cross Spectra
1368 #Normalizing Cross Spectra
1369 norm_cspectra = numpy.zeros(cspectra.shape)
1369 norm_cspectra = numpy.zeros(cspectra.shape)
1370
1370
1371 for i in range(num_chan):
1371 for i in range(num_chan):
1372 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1372 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1373
1373
1374 max_cspectra = numpy.max(norm_cspectra,2)
1374 max_cspectra = numpy.max(norm_cspectra,2)
1375 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1375 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1376
1376
1377 for i in range(num_pairs):
1377 for i in range(num_pairs):
1378 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1378 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1379 #------------------- Get Lags ----------------------------------
1379 #------------------- Get Lags ----------------------------------
1380
1380
1381 class SALags(Operation):
1381 class SALags(Operation):
1382 '''
1382 '''
1383 Function GetMoments()
1383 Function GetMoments()
1384
1384
1385 Input:
1385 Input:
1386 self.dataOut.data_pre
1386 self.dataOut.data_pre
1387 self.dataOut.abscissaList
1387 self.dataOut.abscissaList
1388 self.dataOut.noise
1388 self.dataOut.noise
1389 self.dataOut.normFactor
1389 self.dataOut.normFactor
1390 self.dataOut.data_snr
1390 self.dataOut.data_snr
1391 self.dataOut.groupList
1391 self.dataOut.groupList
1392 self.dataOut.nChannels
1392 self.dataOut.nChannels
1393
1393
1394 Affected:
1394 Affected:
1395 self.dataOut.data_param
1395 self.dataOut.data_param
1396
1396
1397 '''
1397 '''
1398 def run(self, dataOut):
1398 def run(self, dataOut):
1399 data_acf = dataOut.data_pre[0]
1399 data_acf = dataOut.data_pre[0]
1400 data_ccf = dataOut.data_pre[1]
1400 data_ccf = dataOut.data_pre[1]
1401 normFactor_acf = dataOut.normFactor[0]
1401 normFactor_acf = dataOut.normFactor[0]
1402 normFactor_ccf = dataOut.normFactor[1]
1402 normFactor_ccf = dataOut.normFactor[1]
1403 pairs_acf = dataOut.groupList[0]
1403 pairs_acf = dataOut.groupList[0]
1404 pairs_ccf = dataOut.groupList[1]
1404 pairs_ccf = dataOut.groupList[1]
1405
1405
1406 nHeights = dataOut.nHeights
1406 nHeights = dataOut.nHeights
1407 absc = dataOut.abscissaList
1407 absc = dataOut.abscissaList
1408 noise = dataOut.noise
1408 noise = dataOut.noise
1409 SNR = dataOut.data_snr
1409 SNR = dataOut.data_snr
1410 nChannels = dataOut.nChannels
1410 nChannels = dataOut.nChannels
1411 # pairsList = dataOut.groupList
1411 # pairsList = dataOut.groupList
1412 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
1412 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
1413
1413
1414 for l in range(len(pairs_acf)):
1414 for l in range(len(pairs_acf)):
1415 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1415 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1416
1416
1417 for l in range(len(pairs_ccf)):
1417 for l in range(len(pairs_ccf)):
1418 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1418 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1419
1419
1420 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1420 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1421 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1421 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1422 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1422 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1423 return
1423 return
1424
1424
1425 # def __getPairsAutoCorr(self, pairsList, nChannels):
1425 # def __getPairsAutoCorr(self, pairsList, nChannels):
1426 #
1426 #
1427 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1427 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1428 #
1428 #
1429 # for l in range(len(pairsList)):
1429 # for l in range(len(pairsList)):
1430 # firstChannel = pairsList[l][0]
1430 # firstChannel = pairsList[l][0]
1431 # secondChannel = pairsList[l][1]
1431 # secondChannel = pairsList[l][1]
1432 #
1432 #
1433 # #Obteniendo pares de Autocorrelacion
1433 # #Obteniendo pares de Autocorrelacion
1434 # if firstChannel == secondChannel:
1434 # if firstChannel == secondChannel:
1435 # pairsAutoCorr[firstChannel] = int(l)
1435 # pairsAutoCorr[firstChannel] = int(l)
1436 #
1436 #
1437 # pairsAutoCorr = pairsAutoCorr.astype(int)
1437 # pairsAutoCorr = pairsAutoCorr.astype(int)
1438 #
1438 #
1439 # pairsCrossCorr = range(len(pairsList))
1439 # pairsCrossCorr = range(len(pairsList))
1440 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1440 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1441 #
1441 #
1442 # return pairsAutoCorr, pairsCrossCorr
1442 # return pairsAutoCorr, pairsCrossCorr
1443
1443
1444 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1444 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1445
1445
1446 lag0 = data_acf.shape[1]/2
1446 lag0 = data_acf.shape[1]/2
1447 #Funcion de Autocorrelacion
1447 #Funcion de Autocorrelacion
1448 mean_acf = stats.nanmean(data_acf, axis = 0)
1448 mean_acf = stats.nanmean(data_acf, axis = 0)
1449
1449
1450 #Obtencion Indice de TauCross
1450 #Obtencion Indice de TauCross
1451 ind_ccf = data_ccf.argmax(axis = 1)
1451 ind_ccf = data_ccf.argmax(axis = 1)
1452 #Obtencion Indice de TauAuto
1452 #Obtencion Indice de TauAuto
1453 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1453 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1454 ccf_lag0 = data_ccf[:,lag0,:]
1454 ccf_lag0 = data_ccf[:,lag0,:]
1455
1455
1456 for i in range(ccf_lag0.shape[0]):
1456 for i in range(ccf_lag0.shape[0]):
1457 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1457 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1458
1458
1459 #Obtencion de TauCross y TauAuto
1459 #Obtencion de TauCross y TauAuto
1460 tau_ccf = lagRange[ind_ccf]
1460 tau_ccf = lagRange[ind_ccf]
1461 tau_acf = lagRange[ind_acf]
1461 tau_acf = lagRange[ind_acf]
1462
1462
1463 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1463 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1464
1464
1465 tau_ccf[Nan1,Nan2] = numpy.nan
1465 tau_ccf[Nan1,Nan2] = numpy.nan
1466 tau_acf[Nan1,Nan2] = numpy.nan
1466 tau_acf[Nan1,Nan2] = numpy.nan
1467 tau = numpy.vstack((tau_ccf,tau_acf))
1467 tau = numpy.vstack((tau_ccf,tau_acf))
1468
1468
1469 return tau
1469 return tau
1470
1470
1471 def __calculateLag1Phase(self, data, lagTRange):
1471 def __calculateLag1Phase(self, data, lagTRange):
1472 data1 = stats.nanmean(data, axis = 0)
1472 data1 = stats.nanmean(data, axis = 0)
1473 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1473 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1474
1474
1475 phase = numpy.angle(data1[lag1,:])
1475 phase = numpy.angle(data1[lag1,:])
1476
1476
1477 return phase
1477 return phase
1478
1478
1479 class SpectralFitting(Operation):
1479 class SpectralFitting(Operation):
1480 '''
1480 '''
1481 Function GetMoments()
1481 Function GetMoments()
1482
1482
1483 Input:
1483 Input:
1484 Output:
1484 Output:
1485 Variables modified:
1485 Variables modified:
1486 '''
1486 '''
1487
1487
1488 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1488 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1489
1489
1490
1490
1491 if path != None:
1491 if path != None:
1492 sys.path.append(path)
1492 sys.path.append(path)
1493 self.dataOut.library = importlib.import_module(file)
1493 self.dataOut.library = importlib.import_module(file)
1494
1494
1495 #To be inserted as a parameter
1495 #To be inserted as a parameter
1496 groupArray = numpy.array(groupList)
1496 groupArray = numpy.array(groupList)
1497 # groupArray = numpy.array([[0,1],[2,3]])
1497 # groupArray = numpy.array([[0,1],[2,3]])
1498 self.dataOut.groupList = groupArray
1498 self.dataOut.groupList = groupArray
1499
1499
1500 nGroups = groupArray.shape[0]
1500 nGroups = groupArray.shape[0]
1501 nChannels = self.dataIn.nChannels
1501 nChannels = self.dataIn.nChannels
1502 nHeights=self.dataIn.heightList.size
1502 nHeights=self.dataIn.heightList.size
1503
1503
1504 #Parameters Array
1504 #Parameters Array
1505 self.dataOut.data_param = None
1505 self.dataOut.data_param = None
1506
1506
1507 #Set constants
1507 #Set constants
1508 constants = self.dataOut.library.setConstants(self.dataIn)
1508 constants = self.dataOut.library.setConstants(self.dataIn)
1509 self.dataOut.constants = constants
1509 self.dataOut.constants = constants
1510 M = self.dataIn.normFactor
1510 M = self.dataIn.normFactor
1511 N = self.dataIn.nFFTPoints
1511 N = self.dataIn.nFFTPoints
1512 ippSeconds = self.dataIn.ippSeconds
1512 ippSeconds = self.dataIn.ippSeconds
1513 K = self.dataIn.nIncohInt
1513 K = self.dataIn.nIncohInt
1514 pairsArray = numpy.array(self.dataIn.pairsList)
1514 pairsArray = numpy.array(self.dataIn.pairsList)
1515
1515
1516 #List of possible combinations
1516 #List of possible combinations
1517 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1517 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1518 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1518 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1519
1519
1520 if getSNR:
1520 if getSNR:
1521 listChannels = groupArray.reshape((groupArray.size))
1521 listChannels = groupArray.reshape((groupArray.size))
1522 listChannels.sort()
1522 listChannels.sort()
1523 noise = self.dataIn.getNoise()
1523 noise = self.dataIn.getNoise()
1524 self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1524 self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1525
1525
1526 for i in range(nGroups):
1526 for i in range(nGroups):
1527 coord = groupArray[i,:]
1527 coord = groupArray[i,:]
1528
1528
1529 #Input data array
1529 #Input data array
1530 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1530 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1531 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1531 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1532
1532
1533 #Cross Spectra data array for Covariance Matrixes
1533 #Cross Spectra data array for Covariance Matrixes
1534 ind = 0
1534 ind = 0
1535 for pairs in listComb:
1535 for pairs in listComb:
1536 pairsSel = numpy.array([coord[x],coord[y]])
1536 pairsSel = numpy.array([coord[x],coord[y]])
1537 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
1537 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
1538 ind += 1
1538 ind += 1
1539 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1539 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1540 dataCross = dataCross**2/K
1540 dataCross = dataCross**2/K
1541
1541
1542 for h in range(nHeights):
1542 for h in range(nHeights):
1543
1543
1544 #Input
1544 #Input
1545 d = data[:,h]
1545 d = data[:,h]
1546
1546
1547 #Covariance Matrix
1547 #Covariance Matrix
1548 D = numpy.diag(d**2/K)
1548 D = numpy.diag(d**2/K)
1549 ind = 0
1549 ind = 0
1550 for pairs in listComb:
1550 for pairs in listComb:
1551 #Coordinates in Covariance Matrix
1551 #Coordinates in Covariance Matrix
1552 x = pairs[0]
1552 x = pairs[0]
1553 y = pairs[1]
1553 y = pairs[1]
1554 #Channel Index
1554 #Channel Index
1555 S12 = dataCross[ind,:,h]
1555 S12 = dataCross[ind,:,h]
1556 D12 = numpy.diag(S12)
1556 D12 = numpy.diag(S12)
1557 #Completing Covariance Matrix with Cross Spectras
1557 #Completing Covariance Matrix with Cross Spectras
1558 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
1558 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
1559 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
1559 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
1560 ind += 1
1560 ind += 1
1561 Dinv=numpy.linalg.inv(D)
1561 Dinv=numpy.linalg.inv(D)
1562 L=numpy.linalg.cholesky(Dinv)
1562 L=numpy.linalg.cholesky(Dinv)
1563 LT=L.T
1563 LT=L.T
1564
1564
1565 dp = numpy.dot(LT,d)
1565 dp = numpy.dot(LT,d)
1566
1566
1567 #Initial values
1567 #Initial values
1568 data_spc = self.dataIn.data_spc[coord,:,h]
1568 data_spc = self.dataIn.data_spc[coord,:,h]
1569
1569
1570 if (h>0)and(error1[3]<5):
1570 if (h>0)and(error1[3]<5):
1571 p0 = self.dataOut.data_param[i,:,h-1]
1571 p0 = self.dataOut.data_param[i,:,h-1]
1572 else:
1572 else:
1573 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1573 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1574
1574
1575 try:
1575 try:
1576 #Least Squares
1576 #Least Squares
1577 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
1577 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
1578 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
1578 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
1579 #Chi square error
1579 #Chi square error
1580 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
1580 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
1581 #Error with Jacobian
1581 #Error with Jacobian
1582 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
1582 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
1583 except:
1583 except:
1584 minp = p0*numpy.nan
1584 minp = p0*numpy.nan
1585 error0 = numpy.nan
1585 error0 = numpy.nan
1586 error1 = p0*numpy.nan
1586 error1 = p0*numpy.nan
1587
1587
1588 #Save
1588 #Save
1589 if self.dataOut.data_param is None:
1589 if self.dataOut.data_param is None:
1590 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1590 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1591 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1591 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1592
1592
1593 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1593 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1594 self.dataOut.data_param[i,:,h] = minp
1594 self.dataOut.data_param[i,:,h] = minp
1595 return
1595 return
1596
1596
1597 def __residFunction(self, p, dp, LT, constants):
1597 def __residFunction(self, p, dp, LT, constants):
1598
1598
1599 fm = self.dataOut.library.modelFunction(p, constants)
1599 fm = self.dataOut.library.modelFunction(p, constants)
1600 fmp=numpy.dot(LT,fm)
1600 fmp=numpy.dot(LT,fm)
1601
1601
1602 return dp-fmp
1602 return dp-fmp
1603
1603
1604 def __getSNR(self, z, noise):
1604 def __getSNR(self, z, noise):
1605
1605
1606 avg = numpy.average(z, axis=1)
1606 avg = numpy.average(z, axis=1)
1607 SNR = (avg.T-noise)/noise
1607 SNR = (avg.T-noise)/noise
1608 SNR = SNR.T
1608 SNR = SNR.T
1609 return SNR
1609 return SNR
1610
1610
1611 def __chisq(p,chindex,hindex):
1611 def __chisq(p,chindex,hindex):
1612 #similar to Resid but calculates CHI**2
1612 #similar to Resid but calculates CHI**2
1613 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
1613 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
1614 dp=numpy.dot(LT,d)
1614 dp=numpy.dot(LT,d)
1615 fmp=numpy.dot(LT,fm)
1615 fmp=numpy.dot(LT,fm)
1616 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1616 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1617 return chisq
1617 return chisq
1618
1618
1619 class WindProfiler(Operation):
1619 class WindProfiler(Operation):
1620
1620
1621 __isConfig = False
1621 __isConfig = False
1622
1622
1623 __initime = None
1623 __initime = None
1624 __lastdatatime = None
1624 __lastdatatime = None
1625 __integrationtime = None
1625 __integrationtime = None
1626
1626
1627 __buffer = None
1627 __buffer = None
1628
1628
1629 __dataReady = False
1629 __dataReady = False
1630
1630
1631 __firstdata = None
1631 __firstdata = None
1632
1632
1633 n = None
1633 n = None
1634
1634
1635 def __init__(self):
1635 def __init__(self):
1636 Operation.__init__(self)
1636 Operation.__init__(self)
1637
1637
1638 def __calculateCosDir(self, elev, azim):
1638 def __calculateCosDir(self, elev, azim):
1639 zen = (90 - elev)*numpy.pi/180
1639 zen = (90 - elev)*numpy.pi/180
1640 azim = azim*numpy.pi/180
1640 azim = azim*numpy.pi/180
1641 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1641 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1642 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1642 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1643
1643
1644 signX = numpy.sign(numpy.cos(azim))
1644 signX = numpy.sign(numpy.cos(azim))
1645 signY = numpy.sign(numpy.sin(azim))
1645 signY = numpy.sign(numpy.sin(azim))
1646
1646
1647 cosDirX = numpy.copysign(cosDirX, signX)
1647 cosDirX = numpy.copysign(cosDirX, signX)
1648 cosDirY = numpy.copysign(cosDirY, signY)
1648 cosDirY = numpy.copysign(cosDirY, signY)
1649 return cosDirX, cosDirY
1649 return cosDirX, cosDirY
1650
1650
1651 def __calculateAngles(self, theta_x, theta_y, azimuth):
1651 def __calculateAngles(self, theta_x, theta_y, azimuth):
1652
1652
1653 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1653 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1654 zenith_arr = numpy.arccos(dir_cosw)
1654 zenith_arr = numpy.arccos(dir_cosw)
1655 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1655 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1656
1656
1657 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1657 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1658 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1658 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1659
1659
1660 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1660 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1661
1661
1662 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1662 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1663
1663
1664 #
1664 #
1665 if horOnly:
1665 if horOnly:
1666 A = numpy.c_[dir_cosu,dir_cosv]
1666 A = numpy.c_[dir_cosu,dir_cosv]
1667 else:
1667 else:
1668 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
1668 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
1669 A = numpy.asmatrix(A)
1669 A = numpy.asmatrix(A)
1670 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
1670 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
1671
1671
1672 return A1
1672 return A1
1673
1673
1674 def __correctValues(self, heiRang, phi, velRadial, SNR):
1674 def __correctValues(self, heiRang, phi, velRadial, SNR):
1675 listPhi = phi.tolist()
1675 listPhi = phi.tolist()
1676 maxid = listPhi.index(max(listPhi))
1676 maxid = listPhi.index(max(listPhi))
1677 minid = listPhi.index(min(listPhi))
1677 minid = listPhi.index(min(listPhi))
1678
1678
1679 rango = list(range(len(phi)))
1679 rango = list(range(len(phi)))
1680 # rango = numpy.delete(rango,maxid)
1680 # rango = numpy.delete(rango,maxid)
1681
1681
1682 heiRang1 = heiRang*math.cos(phi[maxid])
1682 heiRang1 = heiRang*math.cos(phi[maxid])
1683 heiRangAux = heiRang*math.cos(phi[minid])
1683 heiRangAux = heiRang*math.cos(phi[minid])
1684 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1684 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1685 heiRang1 = numpy.delete(heiRang1,indOut)
1685 heiRang1 = numpy.delete(heiRang1,indOut)
1686
1686
1687 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1687 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1688 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1688 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1689
1689
1690 for i in rango:
1690 for i in rango:
1691 x = heiRang*math.cos(phi[i])
1691 x = heiRang*math.cos(phi[i])
1692 y1 = velRadial[i,:]
1692 y1 = velRadial[i,:]
1693 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1693 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1694
1694
1695 x1 = heiRang1
1695 x1 = heiRang1
1696 y11 = f1(x1)
1696 y11 = f1(x1)
1697
1697
1698 y2 = SNR[i,:]
1698 y2 = SNR[i,:]
1699 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1699 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1700 y21 = f2(x1)
1700 y21 = f2(x1)
1701
1701
1702 velRadial1[i,:] = y11
1702 velRadial1[i,:] = y11
1703 SNR1[i,:] = y21
1703 SNR1[i,:] = y21
1704
1704
1705 return heiRang1, velRadial1, SNR1
1705 return heiRang1, velRadial1, SNR1
1706
1706
1707 def __calculateVelUVW(self, A, velRadial):
1707 def __calculateVelUVW(self, A, velRadial):
1708
1708
1709 #Operacion Matricial
1709 #Operacion Matricial
1710 # velUVW = numpy.zeros((velRadial.shape[1],3))
1710 # velUVW = numpy.zeros((velRadial.shape[1],3))
1711 # for ind in range(velRadial.shape[1]):
1711 # for ind in range(velRadial.shape[1]):
1712 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
1712 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
1713 # velUVW = velUVW.transpose()
1713 # velUVW = velUVW.transpose()
1714 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1714 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1715 velUVW[:,:] = numpy.dot(A,velRadial)
1715 velUVW[:,:] = numpy.dot(A,velRadial)
1716
1716
1717
1717
1718 return velUVW
1718 return velUVW
1719
1719
1720 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1720 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1721
1721
1722 def techniqueDBS(self, kwargs):
1722 def techniqueDBS(self, kwargs):
1723 """
1723 """
1724 Function that implements Doppler Beam Swinging (DBS) technique.
1724 Function that implements Doppler Beam Swinging (DBS) technique.
1725
1725
1726 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1726 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1727 Direction correction (if necessary), Ranges and SNR
1727 Direction correction (if necessary), Ranges and SNR
1728
1728
1729 Output: Winds estimation (Zonal, Meridional and Vertical)
1729 Output: Winds estimation (Zonal, Meridional and Vertical)
1730
1730
1731 Parameters affected: Winds, height range, SNR
1731 Parameters affected: Winds, height range, SNR
1732 """
1732 """
1733 velRadial0 = kwargs['velRadial']
1733 velRadial0 = kwargs['velRadial']
1734 heiRang = kwargs['heightList']
1734 heiRang = kwargs['heightList']
1735 SNR0 = kwargs['SNR']
1735 SNR0 = kwargs['SNR']
1736
1736
1737 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1737 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1738 theta_x = numpy.array(kwargs['dirCosx'])
1738 theta_x = numpy.array(kwargs['dirCosx'])
1739 theta_y = numpy.array(kwargs['dirCosy'])
1739 theta_y = numpy.array(kwargs['dirCosy'])
1740 else:
1740 else:
1741 elev = numpy.array(kwargs['elevation'])
1741 elev = numpy.array(kwargs['elevation'])
1742 azim = numpy.array(kwargs['azimuth'])
1742 azim = numpy.array(kwargs['azimuth'])
1743 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1743 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1744 azimuth = kwargs['correctAzimuth']
1744 azimuth = kwargs['correctAzimuth']
1745 if 'horizontalOnly' in kwargs:
1745 if 'horizontalOnly' in kwargs:
1746 horizontalOnly = kwargs['horizontalOnly']
1746 horizontalOnly = kwargs['horizontalOnly']
1747 else: horizontalOnly = False
1747 else: horizontalOnly = False
1748 if 'correctFactor' in kwargs:
1748 if 'correctFactor' in kwargs:
1749 correctFactor = kwargs['correctFactor']
1749 correctFactor = kwargs['correctFactor']
1750 else: correctFactor = 1
1750 else: correctFactor = 1
1751 if 'channelList' in kwargs:
1751 if 'channelList' in kwargs:
1752 channelList = kwargs['channelList']
1752 channelList = kwargs['channelList']
1753 if len(channelList) == 2:
1753 if len(channelList) == 2:
1754 horizontalOnly = True
1754 horizontalOnly = True
1755 arrayChannel = numpy.array(channelList)
1755 arrayChannel = numpy.array(channelList)
1756 param = param[arrayChannel,:,:]
1756 param = param[arrayChannel,:,:]
1757 theta_x = theta_x[arrayChannel]
1757 theta_x = theta_x[arrayChannel]
1758 theta_y = theta_y[arrayChannel]
1758 theta_y = theta_y[arrayChannel]
1759
1759
1760 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1760 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1761 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1761 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1762 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1762 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1763
1763
1764 #Calculo de Componentes de la velocidad con DBS
1764 #Calculo de Componentes de la velocidad con DBS
1765 winds = self.__calculateVelUVW(A,velRadial1)
1765 winds = self.__calculateVelUVW(A,velRadial1)
1766
1766
1767 return winds, heiRang1, SNR1
1767 return winds, heiRang1, SNR1
1768
1768
1769 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1769 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1770
1770
1771 nPairs = len(pairs_ccf)
1771 nPairs = len(pairs_ccf)
1772 posx = numpy.asarray(posx)
1772 posx = numpy.asarray(posx)
1773 posy = numpy.asarray(posy)
1773 posy = numpy.asarray(posy)
1774
1774
1775 #Rotacion Inversa para alinear con el azimuth
1775 #Rotacion Inversa para alinear con el azimuth
1776 if azimuth!= None:
1776 if azimuth!= None:
1777 azimuth = azimuth*math.pi/180
1777 azimuth = azimuth*math.pi/180
1778 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
1778 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
1779 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
1779 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
1780 else:
1780 else:
1781 posx1 = posx
1781 posx1 = posx
1782 posy1 = posy
1782 posy1 = posy
1783
1783
1784 #Calculo de Distancias
1784 #Calculo de Distancias
1785 distx = numpy.zeros(nPairs)
1785 distx = numpy.zeros(nPairs)
1786 disty = numpy.zeros(nPairs)
1786 disty = numpy.zeros(nPairs)
1787 dist = numpy.zeros(nPairs)
1787 dist = numpy.zeros(nPairs)
1788 ang = numpy.zeros(nPairs)
1788 ang = numpy.zeros(nPairs)
1789
1789
1790 for i in range(nPairs):
1790 for i in range(nPairs):
1791 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1791 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1792 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1792 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1793 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1793 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1794 ang[i] = numpy.arctan2(disty[i],distx[i])
1794 ang[i] = numpy.arctan2(disty[i],distx[i])
1795
1795
1796 return distx, disty, dist, ang
1796 return distx, disty, dist, ang
1797 #Calculo de Matrices
1797 #Calculo de Matrices
1798 # nPairs = len(pairs)
1798 # nPairs = len(pairs)
1799 # ang1 = numpy.zeros((nPairs, 2, 1))
1799 # ang1 = numpy.zeros((nPairs, 2, 1))
1800 # dist1 = numpy.zeros((nPairs, 2, 1))
1800 # dist1 = numpy.zeros((nPairs, 2, 1))
1801 #
1801 #
1802 # for j in range(nPairs):
1802 # for j in range(nPairs):
1803 # dist1[j,0,0] = dist[pairs[j][0]]
1803 # dist1[j,0,0] = dist[pairs[j][0]]
1804 # dist1[j,1,0] = dist[pairs[j][1]]
1804 # dist1[j,1,0] = dist[pairs[j][1]]
1805 # ang1[j,0,0] = ang[pairs[j][0]]
1805 # ang1[j,0,0] = ang[pairs[j][0]]
1806 # ang1[j,1,0] = ang[pairs[j][1]]
1806 # ang1[j,1,0] = ang[pairs[j][1]]
1807 #
1807 #
1808 # return distx,disty, dist1,ang1
1808 # return distx,disty, dist1,ang1
1809
1809
1810
1810
1811 def __calculateVelVer(self, phase, lagTRange, _lambda):
1811 def __calculateVelVer(self, phase, lagTRange, _lambda):
1812
1812
1813 Ts = lagTRange[1] - lagTRange[0]
1813 Ts = lagTRange[1] - lagTRange[0]
1814 velW = -_lambda*phase/(4*math.pi*Ts)
1814 velW = -_lambda*phase/(4*math.pi*Ts)
1815
1815
1816 return velW
1816 return velW
1817
1817
1818 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1818 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1819 nPairs = tau1.shape[0]
1819 nPairs = tau1.shape[0]
1820 nHeights = tau1.shape[1]
1820 nHeights = tau1.shape[1]
1821 vel = numpy.zeros((nPairs,3,nHeights))
1821 vel = numpy.zeros((nPairs,3,nHeights))
1822 dist1 = numpy.reshape(dist, (dist.size,1))
1822 dist1 = numpy.reshape(dist, (dist.size,1))
1823
1823
1824 angCos = numpy.cos(ang)
1824 angCos = numpy.cos(ang)
1825 angSin = numpy.sin(ang)
1825 angSin = numpy.sin(ang)
1826
1826
1827 vel0 = dist1*tau1/(2*tau2**2)
1827 vel0 = dist1*tau1/(2*tau2**2)
1828 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1828 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1829 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1829 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1830
1830
1831 ind = numpy.where(numpy.isinf(vel))
1831 ind = numpy.where(numpy.isinf(vel))
1832 vel[ind] = numpy.nan
1832 vel[ind] = numpy.nan
1833
1833
1834 return vel
1834 return vel
1835
1835
1836 # def __getPairsAutoCorr(self, pairsList, nChannels):
1836 # def __getPairsAutoCorr(self, pairsList, nChannels):
1837 #
1837 #
1838 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1838 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1839 #
1839 #
1840 # for l in range(len(pairsList)):
1840 # for l in range(len(pairsList)):
1841 # firstChannel = pairsList[l][0]
1841 # firstChannel = pairsList[l][0]
1842 # secondChannel = pairsList[l][1]
1842 # secondChannel = pairsList[l][1]
1843 #
1843 #
1844 # #Obteniendo pares de Autocorrelacion
1844 # #Obteniendo pares de Autocorrelacion
1845 # if firstChannel == secondChannel:
1845 # if firstChannel == secondChannel:
1846 # pairsAutoCorr[firstChannel] = int(l)
1846 # pairsAutoCorr[firstChannel] = int(l)
1847 #
1847 #
1848 # pairsAutoCorr = pairsAutoCorr.astype(int)
1848 # pairsAutoCorr = pairsAutoCorr.astype(int)
1849 #
1849 #
1850 # pairsCrossCorr = range(len(pairsList))
1850 # pairsCrossCorr = range(len(pairsList))
1851 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1851 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1852 #
1852 #
1853 # return pairsAutoCorr, pairsCrossCorr
1853 # return pairsAutoCorr, pairsCrossCorr
1854
1854
1855 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1855 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1856 def techniqueSA(self, kwargs):
1856 def techniqueSA(self, kwargs):
1857
1857
1858 """
1858 """
1859 Function that implements Spaced Antenna (SA) technique.
1859 Function that implements Spaced Antenna (SA) technique.
1860
1860
1861 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1861 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1862 Direction correction (if necessary), Ranges and SNR
1862 Direction correction (if necessary), Ranges and SNR
1863
1863
1864 Output: Winds estimation (Zonal, Meridional and Vertical)
1864 Output: Winds estimation (Zonal, Meridional and Vertical)
1865
1865
1866 Parameters affected: Winds
1866 Parameters affected: Winds
1867 """
1867 """
1868 position_x = kwargs['positionX']
1868 position_x = kwargs['positionX']
1869 position_y = kwargs['positionY']
1869 position_y = kwargs['positionY']
1870 azimuth = kwargs['azimuth']
1870 azimuth = kwargs['azimuth']
1871
1871
1872 if 'correctFactor' in kwargs:
1872 if 'correctFactor' in kwargs:
1873 correctFactor = kwargs['correctFactor']
1873 correctFactor = kwargs['correctFactor']
1874 else:
1874 else:
1875 correctFactor = 1
1875 correctFactor = 1
1876
1876
1877 groupList = kwargs['groupList']
1877 groupList = kwargs['groupList']
1878 pairs_ccf = groupList[1]
1878 pairs_ccf = groupList[1]
1879 tau = kwargs['tau']
1879 tau = kwargs['tau']
1880 _lambda = kwargs['_lambda']
1880 _lambda = kwargs['_lambda']
1881
1881
1882 #Cross Correlation pairs obtained
1882 #Cross Correlation pairs obtained
1883 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1883 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1884 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1884 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1885 # pairsSelArray = numpy.array(pairsSelected)
1885 # pairsSelArray = numpy.array(pairsSelected)
1886 # pairs = []
1886 # pairs = []
1887 #
1887 #
1888 # #Wind estimation pairs obtained
1888 # #Wind estimation pairs obtained
1889 # for i in range(pairsSelArray.shape[0]/2):
1889 # for i in range(pairsSelArray.shape[0]/2):
1890 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1890 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1891 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1891 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1892 # pairs.append((ind1,ind2))
1892 # pairs.append((ind1,ind2))
1893
1893
1894 indtau = tau.shape[0]/2
1894 indtau = tau.shape[0]/2
1895 tau1 = tau[:indtau,:]
1895 tau1 = tau[:indtau,:]
1896 tau2 = tau[indtau:-1,:]
1896 tau2 = tau[indtau:-1,:]
1897 # tau1 = tau1[pairs,:]
1897 # tau1 = tau1[pairs,:]
1898 # tau2 = tau2[pairs,:]
1898 # tau2 = tau2[pairs,:]
1899 phase1 = tau[-1,:]
1899 phase1 = tau[-1,:]
1900
1900
1901 #---------------------------------------------------------------------
1901 #---------------------------------------------------------------------
1902 #Metodo Directo
1902 #Metodo Directo
1903 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1903 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1904 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1904 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1905 winds = stats.nanmean(winds, axis=0)
1905 winds = stats.nanmean(winds, axis=0)
1906 #---------------------------------------------------------------------
1906 #---------------------------------------------------------------------
1907 #Metodo General
1907 #Metodo General
1908 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
1908 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
1909 # #Calculo Coeficientes de Funcion de Correlacion
1909 # #Calculo Coeficientes de Funcion de Correlacion
1910 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
1910 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
1911 # #Calculo de Velocidades
1911 # #Calculo de Velocidades
1912 # winds = self.calculateVelUV(F,G,A,B,H)
1912 # winds = self.calculateVelUV(F,G,A,B,H)
1913
1913
1914 #---------------------------------------------------------------------
1914 #---------------------------------------------------------------------
1915 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
1915 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
1916 winds = correctFactor*winds
1916 winds = correctFactor*winds
1917 return winds
1917 return winds
1918
1918
1919 def __checkTime(self, currentTime, paramInterval, outputInterval):
1919 def __checkTime(self, currentTime, paramInterval, outputInterval):
1920
1920
1921 dataTime = currentTime + paramInterval
1921 dataTime = currentTime + paramInterval
1922 deltaTime = dataTime - self.__initime
1922 deltaTime = dataTime - self.__initime
1923
1923
1924 if deltaTime >= outputInterval or deltaTime < 0:
1924 if deltaTime >= outputInterval or deltaTime < 0:
1925 self.__dataReady = True
1925 self.__dataReady = True
1926 return
1926 return
1927
1927
1928 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
1928 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
1929 '''
1929 '''
1930 Function that implements winds estimation technique with detected meteors.
1930 Function that implements winds estimation technique with detected meteors.
1931
1931
1932 Input: Detected meteors, Minimum meteor quantity to wind estimation
1932 Input: Detected meteors, Minimum meteor quantity to wind estimation
1933
1933
1934 Output: Winds estimation (Zonal and Meridional)
1934 Output: Winds estimation (Zonal and Meridional)
1935
1935
1936 Parameters affected: Winds
1936 Parameters affected: Winds
1937 '''
1937 '''
1938 #Settings
1938 #Settings
1939 nInt = (heightMax - heightMin)/2
1939 nInt = (heightMax - heightMin)/2
1940 nInt = int(nInt)
1940 nInt = int(nInt)
1941 winds = numpy.zeros((2,nInt))*numpy.nan
1941 winds = numpy.zeros((2,nInt))*numpy.nan
1942
1942
1943 #Filter errors
1943 #Filter errors
1944 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
1944 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
1945 finalMeteor = arrayMeteor[error,:]
1945 finalMeteor = arrayMeteor[error,:]
1946
1946
1947 #Meteor Histogram
1947 #Meteor Histogram
1948 finalHeights = finalMeteor[:,2]
1948 finalHeights = finalMeteor[:,2]
1949 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
1949 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
1950 nMeteorsPerI = hist[0]
1950 nMeteorsPerI = hist[0]
1951 heightPerI = hist[1]
1951 heightPerI = hist[1]
1952
1952
1953 #Sort of meteors
1953 #Sort of meteors
1954 indSort = finalHeights.argsort()
1954 indSort = finalHeights.argsort()
1955 finalMeteor2 = finalMeteor[indSort,:]
1955 finalMeteor2 = finalMeteor[indSort,:]
1956
1956
1957 # Calculating winds
1957 # Calculating winds
1958 ind1 = 0
1958 ind1 = 0
1959 ind2 = 0
1959 ind2 = 0
1960
1960
1961 for i in range(nInt):
1961 for i in range(nInt):
1962 nMet = nMeteorsPerI[i]
1962 nMet = nMeteorsPerI[i]
1963 ind1 = ind2
1963 ind1 = ind2
1964 ind2 = ind1 + nMet
1964 ind2 = ind1 + nMet
1965
1965
1966 meteorAux = finalMeteor2[ind1:ind2,:]
1966 meteorAux = finalMeteor2[ind1:ind2,:]
1967
1967
1968 if meteorAux.shape[0] >= meteorThresh:
1968 if meteorAux.shape[0] >= meteorThresh:
1969 vel = meteorAux[:, 6]
1969 vel = meteorAux[:, 6]
1970 zen = meteorAux[:, 4]*numpy.pi/180
1970 zen = meteorAux[:, 4]*numpy.pi/180
1971 azim = meteorAux[:, 3]*numpy.pi/180
1971 azim = meteorAux[:, 3]*numpy.pi/180
1972
1972
1973 n = numpy.cos(zen)
1973 n = numpy.cos(zen)
1974 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
1974 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
1975 # l = m*numpy.tan(azim)
1975 # l = m*numpy.tan(azim)
1976 l = numpy.sin(zen)*numpy.sin(azim)
1976 l = numpy.sin(zen)*numpy.sin(azim)
1977 m = numpy.sin(zen)*numpy.cos(azim)
1977 m = numpy.sin(zen)*numpy.cos(azim)
1978
1978
1979 A = numpy.vstack((l, m)).transpose()
1979 A = numpy.vstack((l, m)).transpose()
1980 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
1980 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
1981 windsAux = numpy.dot(A1, vel)
1981 windsAux = numpy.dot(A1, vel)
1982
1982
1983 winds[0,i] = windsAux[0]
1983 winds[0,i] = windsAux[0]
1984 winds[1,i] = windsAux[1]
1984 winds[1,i] = windsAux[1]
1985
1985
1986 return winds, heightPerI[:-1]
1986 return winds, heightPerI[:-1]
1987
1987
1988 def techniqueNSM_SA(self, **kwargs):
1988 def techniqueNSM_SA(self, **kwargs):
1989 metArray = kwargs['metArray']
1989 metArray = kwargs['metArray']
1990 heightList = kwargs['heightList']
1990 heightList = kwargs['heightList']
1991 timeList = kwargs['timeList']
1991 timeList = kwargs['timeList']
1992
1992
1993 rx_location = kwargs['rx_location']
1993 rx_location = kwargs['rx_location']
1994 groupList = kwargs['groupList']
1994 groupList = kwargs['groupList']
1995 azimuth = kwargs['azimuth']
1995 azimuth = kwargs['azimuth']
1996 dfactor = kwargs['dfactor']
1996 dfactor = kwargs['dfactor']
1997 k = kwargs['k']
1997 k = kwargs['k']
1998
1998
1999 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
1999 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
2000 d = dist*dfactor
2000 d = dist*dfactor
2001 #Phase calculation
2001 #Phase calculation
2002 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
2002 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
2003
2003
2004 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
2004 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
2005
2005
2006 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2006 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2007 azimuth1 = azimuth1*numpy.pi/180
2007 azimuth1 = azimuth1*numpy.pi/180
2008
2008
2009 for i in range(heightList.size):
2009 for i in range(heightList.size):
2010 h = heightList[i]
2010 h = heightList[i]
2011 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
2011 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
2012 metHeight = metArray1[indH,:]
2012 metHeight = metArray1[indH,:]
2013 if metHeight.shape[0] >= 2:
2013 if metHeight.shape[0] >= 2:
2014 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
2014 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
2015 iazim = metHeight[:,1].astype(int)
2015 iazim = metHeight[:,1].astype(int)
2016 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
2016 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
2017 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
2017 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
2018 A = numpy.asmatrix(A)
2018 A = numpy.asmatrix(A)
2019 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
2019 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
2020 velHor = numpy.dot(A1,velAux)
2020 velHor = numpy.dot(A1,velAux)
2021
2021
2022 velEst[i,:] = numpy.squeeze(velHor)
2022 velEst[i,:] = numpy.squeeze(velHor)
2023 return velEst
2023 return velEst
2024
2024
2025 def __getPhaseSlope(self, metArray, heightList, timeList):
2025 def __getPhaseSlope(self, metArray, heightList, timeList):
2026 meteorList = []
2026 meteorList = []
2027 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
2027 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
2028 #Putting back together the meteor matrix
2028 #Putting back together the meteor matrix
2029 utctime = metArray[:,0]
2029 utctime = metArray[:,0]
2030 uniqueTime = numpy.unique(utctime)
2030 uniqueTime = numpy.unique(utctime)
2031
2031
2032 phaseDerThresh = 0.5
2032 phaseDerThresh = 0.5
2033 ippSeconds = timeList[1] - timeList[0]
2033 ippSeconds = timeList[1] - timeList[0]
2034 sec = numpy.where(timeList>1)[0][0]
2034 sec = numpy.where(timeList>1)[0][0]
2035 nPairs = metArray.shape[1] - 6
2035 nPairs = metArray.shape[1] - 6
2036 nHeights = len(heightList)
2036 nHeights = len(heightList)
2037
2037
2038 for t in uniqueTime:
2038 for t in uniqueTime:
2039 metArray1 = metArray[utctime==t,:]
2039 metArray1 = metArray[utctime==t,:]
2040 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
2040 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
2041 tmet = metArray1[:,1].astype(int)
2041 tmet = metArray1[:,1].astype(int)
2042 hmet = metArray1[:,2].astype(int)
2042 hmet = metArray1[:,2].astype(int)
2043
2043
2044 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
2044 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
2045 metPhase[:,:] = numpy.nan
2045 metPhase[:,:] = numpy.nan
2046 metPhase[:,hmet,tmet] = metArray1[:,6:].T
2046 metPhase[:,hmet,tmet] = metArray1[:,6:].T
2047
2047
2048 #Delete short trails
2048 #Delete short trails
2049 metBool = ~numpy.isnan(metPhase[0,:,:])
2049 metBool = ~numpy.isnan(metPhase[0,:,:])
2050 heightVect = numpy.sum(metBool, axis = 1)
2050 heightVect = numpy.sum(metBool, axis = 1)
2051 metBool[heightVect<sec,:] = False
2051 metBool[heightVect<sec,:] = False
2052 metPhase[:,heightVect<sec,:] = numpy.nan
2052 metPhase[:,heightVect<sec,:] = numpy.nan
2053
2053
2054 #Derivative
2054 #Derivative
2055 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2055 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2056 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2056 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2057 metPhase[phDerAux] = numpy.nan
2057 metPhase[phDerAux] = numpy.nan
2058
2058
2059 #--------------------------METEOR DETECTION -----------------------------------------
2059 #--------------------------METEOR DETECTION -----------------------------------------
2060 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2060 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2061
2061
2062 for p in numpy.arange(nPairs):
2062 for p in numpy.arange(nPairs):
2063 phase = metPhase[p,:,:]
2063 phase = metPhase[p,:,:]
2064 phDer = metDer[p,:,:]
2064 phDer = metDer[p,:,:]
2065
2065
2066 for h in indMet:
2066 for h in indMet:
2067 height = heightList[h]
2067 height = heightList[h]
2068 phase1 = phase[h,:] #82
2068 phase1 = phase[h,:] #82
2069 phDer1 = phDer[h,:]
2069 phDer1 = phDer[h,:]
2070
2070
2071 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2071 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2072
2072
2073 indValid = numpy.where(~numpy.isnan(phase1))[0]
2073 indValid = numpy.where(~numpy.isnan(phase1))[0]
2074 initMet = indValid[0]
2074 initMet = indValid[0]
2075 endMet = 0
2075 endMet = 0
2076
2076
2077 for i in range(len(indValid)-1):
2077 for i in range(len(indValid)-1):
2078
2078
2079 #Time difference
2079 #Time difference
2080 inow = indValid[i]
2080 inow = indValid[i]
2081 inext = indValid[i+1]
2081 inext = indValid[i+1]
2082 idiff = inext - inow
2082 idiff = inext - inow
2083 #Phase difference
2083 #Phase difference
2084 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2084 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2085
2085
2086 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2086 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2087 sizeTrail = inow - initMet + 1
2087 sizeTrail = inow - initMet + 1
2088 if sizeTrail>3*sec: #Too short meteors
2088 if sizeTrail>3*sec: #Too short meteors
2089 x = numpy.arange(initMet,inow+1)*ippSeconds
2089 x = numpy.arange(initMet,inow+1)*ippSeconds
2090 y = phase1[initMet:inow+1]
2090 y = phase1[initMet:inow+1]
2091 ynnan = ~numpy.isnan(y)
2091 ynnan = ~numpy.isnan(y)
2092 x = x[ynnan]
2092 x = x[ynnan]
2093 y = y[ynnan]
2093 y = y[ynnan]
2094 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
2094 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
2095 ylin = x*slope + intercept
2095 ylin = x*slope + intercept
2096 rsq = r_value**2
2096 rsq = r_value**2
2097 if rsq > 0.5:
2097 if rsq > 0.5:
2098 vel = slope#*height*1000/(k*d)
2098 vel = slope#*height*1000/(k*d)
2099 estAux = numpy.array([utctime,p,height, vel, rsq])
2099 estAux = numpy.array([utctime,p,height, vel, rsq])
2100 meteorList.append(estAux)
2100 meteorList.append(estAux)
2101 initMet = inext
2101 initMet = inext
2102 metArray2 = numpy.array(meteorList)
2102 metArray2 = numpy.array(meteorList)
2103
2103
2104 return metArray2
2104 return metArray2
2105
2105
2106 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2106 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2107
2107
2108 azimuth1 = numpy.zeros(len(pairslist))
2108 azimuth1 = numpy.zeros(len(pairslist))
2109 dist = numpy.zeros(len(pairslist))
2109 dist = numpy.zeros(len(pairslist))
2110
2110
2111 for i in range(len(rx_location)):
2111 for i in range(len(rx_location)):
2112 ch0 = pairslist[i][0]
2112 ch0 = pairslist[i][0]
2113 ch1 = pairslist[i][1]
2113 ch1 = pairslist[i][1]
2114
2114
2115 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2115 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2116 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2116 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2117 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2117 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2118 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2118 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2119
2119
2120 azimuth1 -= azimuth0
2120 azimuth1 -= azimuth0
2121 return azimuth1, dist
2121 return azimuth1, dist
2122
2122
2123 def techniqueNSM_DBS(self, **kwargs):
2123 def techniqueNSM_DBS(self, **kwargs):
2124 metArray = kwargs['metArray']
2124 metArray = kwargs['metArray']
2125 heightList = kwargs['heightList']
2125 heightList = kwargs['heightList']
2126 timeList = kwargs['timeList']
2126 timeList = kwargs['timeList']
2127 azimuth = kwargs['azimuth']
2127 azimuth = kwargs['azimuth']
2128 theta_x = numpy.array(kwargs['theta_x'])
2128 theta_x = numpy.array(kwargs['theta_x'])
2129 theta_y = numpy.array(kwargs['theta_y'])
2129 theta_y = numpy.array(kwargs['theta_y'])
2130
2130
2131 utctime = metArray[:,0]
2131 utctime = metArray[:,0]
2132 cmet = metArray[:,1].astype(int)
2132 cmet = metArray[:,1].astype(int)
2133 hmet = metArray[:,3].astype(int)
2133 hmet = metArray[:,3].astype(int)
2134 SNRmet = metArray[:,4]
2134 SNRmet = metArray[:,4]
2135 vmet = metArray[:,5]
2135 vmet = metArray[:,5]
2136 spcmet = metArray[:,6]
2136 spcmet = metArray[:,6]
2137
2137
2138 nChan = numpy.max(cmet) + 1
2138 nChan = numpy.max(cmet) + 1
2139 nHeights = len(heightList)
2139 nHeights = len(heightList)
2140
2140
2141 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
2141 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
2142 hmet = heightList[hmet]
2142 hmet = heightList[hmet]
2143 h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights
2143 h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights
2144
2144
2145 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2145 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2146
2146
2147 for i in range(nHeights - 1):
2147 for i in range(nHeights - 1):
2148 hmin = heightList[i]
2148 hmin = heightList[i]
2149 hmax = heightList[i + 1]
2149 hmax = heightList[i + 1]
2150
2150
2151 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2151 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2152 indthisH = numpy.where(thisH)
2152 indthisH = numpy.where(thisH)
2153
2153
2154 if numpy.size(indthisH) > 3:
2154 if numpy.size(indthisH) > 3:
2155
2155
2156 vel_aux = vmet[thisH]
2156 vel_aux = vmet[thisH]
2157 chan_aux = cmet[thisH]
2157 chan_aux = cmet[thisH]
2158 cosu_aux = dir_cosu[chan_aux]
2158 cosu_aux = dir_cosu[chan_aux]
2159 cosv_aux = dir_cosv[chan_aux]
2159 cosv_aux = dir_cosv[chan_aux]
2160 cosw_aux = dir_cosw[chan_aux]
2160 cosw_aux = dir_cosw[chan_aux]
2161
2161
2162 nch = numpy.size(numpy.unique(chan_aux))
2162 nch = numpy.size(numpy.unique(chan_aux))
2163 if nch > 1:
2163 if nch > 1:
2164 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2164 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2165 velEst[i,:] = numpy.dot(A,vel_aux)
2165 velEst[i,:] = numpy.dot(A,vel_aux)
2166
2166
2167 return velEst
2167 return velEst
2168
2168
2169 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
2169 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
2170
2170
2171 param = dataOut.data_param
2171 param = dataOut.data_param
2172 if dataOut.abscissaList != None:
2172 if dataOut.abscissaList != None:
2173 absc = dataOut.abscissaList[:-1]
2173 absc = dataOut.abscissaList[:-1]
2174 # noise = dataOut.noise
2174 # noise = dataOut.noise
2175 heightList = dataOut.heightList
2175 heightList = dataOut.heightList
2176 SNR = dataOut.data_snr
2176 SNR = dataOut.data_snr
2177
2177
2178 if technique == 'DBS':
2178 if technique == 'DBS':
2179
2179
2180 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2180 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2181 kwargs['heightList'] = heightList
2181 kwargs['heightList'] = heightList
2182 kwargs['SNR'] = SNR
2182 kwargs['SNR'] = SNR
2183
2183
2184 dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function
2184 dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function
2185 dataOut.utctimeInit = dataOut.utctime
2185 dataOut.utctimeInit = dataOut.utctime
2186 dataOut.outputInterval = dataOut.paramInterval
2186 dataOut.outputInterval = dataOut.paramInterval
2187
2187
2188 elif technique == 'SA':
2188 elif technique == 'SA':
2189
2189
2190 #Parameters
2190 #Parameters
2191 # position_x = kwargs['positionX']
2191 # position_x = kwargs['positionX']
2192 # position_y = kwargs['positionY']
2192 # position_y = kwargs['positionY']
2193 # azimuth = kwargs['azimuth']
2193 # azimuth = kwargs['azimuth']
2194 #
2194 #
2195 # if kwargs.has_key('crosspairsList'):
2195 # if kwargs.has_key('crosspairsList'):
2196 # pairs = kwargs['crosspairsList']
2196 # pairs = kwargs['crosspairsList']
2197 # else:
2197 # else:
2198 # pairs = None
2198 # pairs = None
2199 #
2199 #
2200 # if kwargs.has_key('correctFactor'):
2200 # if kwargs.has_key('correctFactor'):
2201 # correctFactor = kwargs['correctFactor']
2201 # correctFactor = kwargs['correctFactor']
2202 # else:
2202 # else:
2203 # correctFactor = 1
2203 # correctFactor = 1
2204
2204
2205 # tau = dataOut.data_param
2205 # tau = dataOut.data_param
2206 # _lambda = dataOut.C/dataOut.frequency
2206 # _lambda = dataOut.C/dataOut.frequency
2207 # pairsList = dataOut.groupList
2207 # pairsList = dataOut.groupList
2208 # nChannels = dataOut.nChannels
2208 # nChannels = dataOut.nChannels
2209
2209
2210 kwargs['groupList'] = dataOut.groupList
2210 kwargs['groupList'] = dataOut.groupList
2211 kwargs['tau'] = dataOut.data_param
2211 kwargs['tau'] = dataOut.data_param
2212 kwargs['_lambda'] = dataOut.C/dataOut.frequency
2212 kwargs['_lambda'] = dataOut.C/dataOut.frequency
2213 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
2213 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
2214 dataOut.data_output = self.techniqueSA(kwargs)
2214 dataOut.data_output = self.techniqueSA(kwargs)
2215 dataOut.utctimeInit = dataOut.utctime
2215 dataOut.utctimeInit = dataOut.utctime
2216 dataOut.outputInterval = dataOut.timeInterval
2216 dataOut.outputInterval = dataOut.timeInterval
2217
2217
2218 elif technique == 'Meteors':
2218 elif technique == 'Meteors':
2219 dataOut.flagNoData = True
2219 dataOut.flagNoData = True
2220 self.__dataReady = False
2220 self.__dataReady = False
2221
2221
2222 if 'nHours' in kwargs:
2222 if 'nHours' in kwargs:
2223 nHours = kwargs['nHours']
2223 nHours = kwargs['nHours']
2224 else:
2224 else:
2225 nHours = 1
2225 nHours = 1
2226
2226
2227 if 'meteorsPerBin' in kwargs:
2227 if 'meteorsPerBin' in kwargs:
2228 meteorThresh = kwargs['meteorsPerBin']
2228 meteorThresh = kwargs['meteorsPerBin']
2229 else:
2229 else:
2230 meteorThresh = 6
2230 meteorThresh = 6
2231
2231
2232 if 'hmin' in kwargs:
2232 if 'hmin' in kwargs:
2233 hmin = kwargs['hmin']
2233 hmin = kwargs['hmin']
2234 else: hmin = 70
2234 else: hmin = 70
2235 if 'hmax' in kwargs:
2235 if 'hmax' in kwargs:
2236 hmax = kwargs['hmax']
2236 hmax = kwargs['hmax']
2237 else: hmax = 110
2237 else: hmax = 110
2238
2238
2239 dataOut.outputInterval = nHours*3600
2239 dataOut.outputInterval = nHours*3600
2240
2240
2241 if self.__isConfig == False:
2241 if self.__isConfig == False:
2242 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2242 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2243 #Get Initial LTC time
2243 #Get Initial LTC time
2244 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2244 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2245 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2245 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2246
2246
2247 self.__isConfig = True
2247 self.__isConfig = True
2248
2248
2249 if self.__buffer is None:
2249 if self.__buffer is None:
2250 self.__buffer = dataOut.data_param
2250 self.__buffer = dataOut.data_param
2251 self.__firstdata = copy.copy(dataOut)
2251 self.__firstdata = copy.copy(dataOut)
2252
2252
2253 else:
2253 else:
2254 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2254 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2255
2255
2256 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2256 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2257
2257
2258 if self.__dataReady:
2258 if self.__dataReady:
2259 dataOut.utctimeInit = self.__initime
2259 dataOut.utctimeInit = self.__initime
2260
2260
2261 self.__initime += dataOut.outputInterval #to erase time offset
2261 self.__initime += dataOut.outputInterval #to erase time offset
2262
2262
2263 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2263 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2264 dataOut.flagNoData = False
2264 dataOut.flagNoData = False
2265 self.__buffer = None
2265 self.__buffer = None
2266
2266
2267 elif technique == 'Meteors1':
2267 elif technique == 'Meteors1':
2268 dataOut.flagNoData = True
2268 dataOut.flagNoData = True
2269 self.__dataReady = False
2269 self.__dataReady = False
2270
2270
2271 if 'nMins' in kwargs:
2271 if 'nMins' in kwargs:
2272 nMins = kwargs['nMins']
2272 nMins = kwargs['nMins']
2273 else: nMins = 20
2273 else: nMins = 20
2274 if 'rx_location' in kwargs:
2274 if 'rx_location' in kwargs:
2275 rx_location = kwargs['rx_location']
2275 rx_location = kwargs['rx_location']
2276 else: rx_location = [(0,1),(1,1),(1,0)]
2276 else: rx_location = [(0,1),(1,1),(1,0)]
2277 if 'azimuth' in kwargs:
2277 if 'azimuth' in kwargs:
2278 azimuth = kwargs['azimuth']
2278 azimuth = kwargs['azimuth']
2279 else: azimuth = 51.06
2279 else: azimuth = 51.06
2280 if 'dfactor' in kwargs:
2280 if 'dfactor' in kwargs:
2281 dfactor = kwargs['dfactor']
2281 dfactor = kwargs['dfactor']
2282 if 'mode' in kwargs:
2282 if 'mode' in kwargs:
2283 mode = kwargs['mode']
2283 mode = kwargs['mode']
2284 if 'theta_x' in kwargs:
2284 if 'theta_x' in kwargs:
2285 theta_x = kwargs['theta_x']
2285 theta_x = kwargs['theta_x']
2286 if 'theta_y' in kwargs:
2286 if 'theta_y' in kwargs:
2287 theta_y = kwargs['theta_y']
2287 theta_y = kwargs['theta_y']
2288 else: mode = 'SA'
2288 else: mode = 'SA'
2289
2289
2290 #Borrar luego esto
2290 #Borrar luego esto
2291 if dataOut.groupList is None:
2291 if dataOut.groupList is None:
2292 dataOut.groupList = [(0,1),(0,2),(1,2)]
2292 dataOut.groupList = [(0,1),(0,2),(1,2)]
2293 groupList = dataOut.groupList
2293 groupList = dataOut.groupList
2294 C = 3e8
2294 C = 3e8
2295 freq = 50e6
2295 freq = 50e6
2296 lamb = C/freq
2296 lamb = C/freq
2297 k = 2*numpy.pi/lamb
2297 k = 2*numpy.pi/lamb
2298
2298
2299 timeList = dataOut.abscissaList
2299 timeList = dataOut.abscissaList
2300 heightList = dataOut.heightList
2300 heightList = dataOut.heightList
2301
2301
2302 if self.__isConfig == False:
2302 if self.__isConfig == False:
2303 dataOut.outputInterval = nMins*60
2303 dataOut.outputInterval = nMins*60
2304 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2304 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2305 #Get Initial LTC time
2305 #Get Initial LTC time
2306 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2306 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2307 minuteAux = initime.minute
2307 minuteAux = initime.minute
2308 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
2308 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
2309 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2309 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2310
2310
2311 self.__isConfig = True
2311 self.__isConfig = True
2312
2312
2313 if self.__buffer is None:
2313 if self.__buffer is None:
2314 self.__buffer = dataOut.data_param
2314 self.__buffer = dataOut.data_param
2315 self.__firstdata = copy.copy(dataOut)
2315 self.__firstdata = copy.copy(dataOut)
2316
2316
2317 else:
2317 else:
2318 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2318 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2319
2319
2320 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2320 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2321
2321
2322 if self.__dataReady:
2322 if self.__dataReady:
2323 dataOut.utctimeInit = self.__initime
2323 dataOut.utctimeInit = self.__initime
2324 self.__initime += dataOut.outputInterval #to erase time offset
2324 self.__initime += dataOut.outputInterval #to erase time offset
2325
2325
2326 metArray = self.__buffer
2326 metArray = self.__buffer
2327 if mode == 'SA':
2327 if mode == 'SA':
2328 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
2328 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
2329 elif mode == 'DBS':
2329 elif mode == 'DBS':
2330 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y)
2330 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y)
2331 dataOut.data_output = dataOut.data_output.T
2331 dataOut.data_output = dataOut.data_output.T
2332 dataOut.flagNoData = False
2332 dataOut.flagNoData = False
2333 self.__buffer = None
2333 self.__buffer = None
2334
2334
2335 return
2335 return
2336
2336
2337 class EWDriftsEstimation(Operation):
2337 class EWDriftsEstimation(Operation):
2338
2338
2339 def __init__(self):
2339 def __init__(self):
2340 Operation.__init__(self)
2340 Operation.__init__(self)
2341
2341
2342 def __correctValues(self, heiRang, phi, velRadial, SNR):
2342 def __correctValues(self, heiRang, phi, velRadial, SNR):
2343 listPhi = phi.tolist()
2343 listPhi = phi.tolist()
2344 maxid = listPhi.index(max(listPhi))
2344 maxid = listPhi.index(max(listPhi))
2345 minid = listPhi.index(min(listPhi))
2345 minid = listPhi.index(min(listPhi))
2346
2346
2347 rango = list(range(len(phi)))
2347 rango = list(range(len(phi)))
2348 # rango = numpy.delete(rango,maxid)
2348 # rango = numpy.delete(rango,maxid)
2349
2349
2350 heiRang1 = heiRang*math.cos(phi[maxid])
2350 heiRang1 = heiRang*math.cos(phi[maxid])
2351 heiRangAux = heiRang*math.cos(phi[minid])
2351 heiRangAux = heiRang*math.cos(phi[minid])
2352 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2352 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2353 heiRang1 = numpy.delete(heiRang1,indOut)
2353 heiRang1 = numpy.delete(heiRang1,indOut)
2354
2354
2355 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2355 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2356 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2356 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2357
2357
2358 for i in rango:
2358 for i in rango:
2359 x = heiRang*math.cos(phi[i])
2359 x = heiRang*math.cos(phi[i])
2360 y1 = velRadial[i,:]
2360 y1 = velRadial[i,:]
2361 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2361 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2362
2362
2363 x1 = heiRang1
2363 x1 = heiRang1
2364 y11 = f1(x1)
2364 y11 = f1(x1)
2365
2365
2366 y2 = SNR[i,:]
2366 y2 = SNR[i,:]
2367 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2367 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2368 y21 = f2(x1)
2368 y21 = f2(x1)
2369
2369
2370 velRadial1[i,:] = y11
2370 velRadial1[i,:] = y11
2371 SNR1[i,:] = y21
2371 SNR1[i,:] = y21
2372
2372
2373 return heiRang1, velRadial1, SNR1
2373 return heiRang1, velRadial1, SNR1
2374
2374
2375 def run(self, dataOut, zenith, zenithCorrection):
2375 def run(self, dataOut, zenith, zenithCorrection):
2376 heiRang = dataOut.heightList
2376 heiRang = dataOut.heightList
2377 velRadial = dataOut.data_param[:,3,:]
2377 velRadial = dataOut.data_param[:,3,:]
2378 SNR = dataOut.data_snr
2378 SNR = dataOut.data_snr
2379
2379
2380 zenith = numpy.array(zenith)
2380 zenith = numpy.array(zenith)
2381 zenith -= zenithCorrection
2381 zenith -= zenithCorrection
2382 zenith *= numpy.pi/180
2382 zenith *= numpy.pi/180
2383
2383
2384 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2384 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2385
2385
2386 alp = zenith[0]
2386 alp = zenith[0]
2387 bet = zenith[1]
2387 bet = zenith[1]
2388
2388
2389 w_w = velRadial1[0,:]
2389 w_w = velRadial1[0,:]
2390 w_e = velRadial1[1,:]
2390 w_e = velRadial1[1,:]
2391
2391
2392 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2392 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2393 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2393 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2394
2394
2395 winds = numpy.vstack((u,w))
2395 winds = numpy.vstack((u,w))
2396
2396
2397 dataOut.heightList = heiRang1
2397 dataOut.heightList = heiRang1
2398 dataOut.data_output = winds
2398 dataOut.data_output = winds
2399 dataOut.data_snr = SNR1
2399 dataOut.data_snr = SNR1
2400
2400
2401 dataOut.utctimeInit = dataOut.utctime
2401 dataOut.utctimeInit = dataOut.utctime
2402 dataOut.outputInterval = dataOut.timeInterval
2402 dataOut.outputInterval = dataOut.timeInterval
2403 return
2403 return
2404
2404
2405 #--------------- Non Specular Meteor ----------------
2405 #--------------- Non Specular Meteor ----------------
2406
2406
2407 class NonSpecularMeteorDetection(Operation):
2407 class NonSpecularMeteorDetection(Operation):
2408
2408
2409 def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
2409 def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
2410 data_acf = dataOut.data_pre[0]
2410 data_acf = dataOut.data_pre[0]
2411 data_ccf = dataOut.data_pre[1]
2411 data_ccf = dataOut.data_pre[1]
2412 pairsList = dataOut.groupList[1]
2412 pairsList = dataOut.groupList[1]
2413
2413
2414 lamb = dataOut.C/dataOut.frequency
2414 lamb = dataOut.C/dataOut.frequency
2415 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2415 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2416 paramInterval = dataOut.paramInterval
2416 paramInterval = dataOut.paramInterval
2417
2417
2418 nChannels = data_acf.shape[0]
2418 nChannels = data_acf.shape[0]
2419 nLags = data_acf.shape[1]
2419 nLags = data_acf.shape[1]
2420 nProfiles = data_acf.shape[2]
2420 nProfiles = data_acf.shape[2]
2421 nHeights = dataOut.nHeights
2421 nHeights = dataOut.nHeights
2422 nCohInt = dataOut.nCohInt
2422 nCohInt = dataOut.nCohInt
2423 sec = numpy.round(nProfiles/dataOut.paramInterval)
2423 sec = numpy.round(nProfiles/dataOut.paramInterval)
2424 heightList = dataOut.heightList
2424 heightList = dataOut.heightList
2425 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2425 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2426 utctime = dataOut.utctime
2426 utctime = dataOut.utctime
2427
2427
2428 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2428 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2429
2429
2430 #------------------------ SNR --------------------------------------
2430 #------------------------ SNR --------------------------------------
2431 power = data_acf[:,0,:,:].real
2431 power = data_acf[:,0,:,:].real
2432 noise = numpy.zeros(nChannels)
2432 noise = numpy.zeros(nChannels)
2433 SNR = numpy.zeros(power.shape)
2433 SNR = numpy.zeros(power.shape)
2434 for i in range(nChannels):
2434 for i in range(nChannels):
2435 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
2435 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
2436 SNR[i] = (power[i]-noise[i])/noise[i]
2436 SNR[i] = (power[i]-noise[i])/noise[i]
2437 SNRm = numpy.nanmean(SNR, axis = 0)
2437 SNRm = numpy.nanmean(SNR, axis = 0)
2438 SNRdB = 10*numpy.log10(SNR)
2438 SNRdB = 10*numpy.log10(SNR)
2439
2439
2440 if mode == 'SA':
2440 if mode == 'SA':
2441 dataOut.groupList = dataOut.groupList[1]
2441 dataOut.groupList = dataOut.groupList[1]
2442 nPairs = data_ccf.shape[0]
2442 nPairs = data_ccf.shape[0]
2443 #---------------------- Coherence and Phase --------------------------
2443 #---------------------- Coherence and Phase --------------------------
2444 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2444 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2445 # phase1 = numpy.copy(phase)
2445 # phase1 = numpy.copy(phase)
2446 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2446 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2447
2447
2448 for p in range(nPairs):
2448 for p in range(nPairs):
2449 ch0 = pairsList[p][0]
2449 ch0 = pairsList[p][0]
2450 ch1 = pairsList[p][1]
2450 ch1 = pairsList[p][1]
2451 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2451 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2452 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2452 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2453 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2453 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2454 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2454 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2455 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2455 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2456 coh = numpy.nanmax(coh1, axis = 0)
2456 coh = numpy.nanmax(coh1, axis = 0)
2457 # struc = numpy.ones((5,1))
2457 # struc = numpy.ones((5,1))
2458 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2458 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2459 #---------------------- Radial Velocity ----------------------------
2459 #---------------------- Radial Velocity ----------------------------
2460 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2460 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2461 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2461 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2462
2462
2463 if allData:
2463 if allData:
2464 boolMetFin = ~numpy.isnan(SNRm)
2464 boolMetFin = ~numpy.isnan(SNRm)
2465 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2465 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2466 else:
2466 else:
2467 #------------------------ Meteor mask ---------------------------------
2467 #------------------------ Meteor mask ---------------------------------
2468 # #SNR mask
2468 # #SNR mask
2469 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2469 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2470 #
2470 #
2471 # #Erase small objects
2471 # #Erase small objects
2472 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2472 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2473 #
2473 #
2474 # auxEEJ = numpy.sum(boolMet1,axis=0)
2474 # auxEEJ = numpy.sum(boolMet1,axis=0)
2475 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2475 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2476 # indEEJ = numpy.where(indOver)[0]
2476 # indEEJ = numpy.where(indOver)[0]
2477 # indNEEJ = numpy.where(~indOver)[0]
2477 # indNEEJ = numpy.where(~indOver)[0]
2478 #
2478 #
2479 # boolMetFin = boolMet1
2479 # boolMetFin = boolMet1
2480 #
2480 #
2481 # if indEEJ.size > 0:
2481 # if indEEJ.size > 0:
2482 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2482 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2483 #
2483 #
2484 # boolMet2 = coh > cohThresh
2484 # boolMet2 = coh > cohThresh
2485 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2485 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2486 #
2486 #
2487 # #Final Meteor mask
2487 # #Final Meteor mask
2488 # boolMetFin = boolMet1|boolMet2
2488 # boolMetFin = boolMet1|boolMet2
2489
2489
2490 #Coherence mask
2490 #Coherence mask
2491 boolMet1 = coh > 0.75
2491 boolMet1 = coh > 0.75
2492 struc = numpy.ones((30,1))
2492 struc = numpy.ones((30,1))
2493 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2493 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2494
2494
2495 #Derivative mask
2495 #Derivative mask
2496 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2496 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2497 boolMet2 = derPhase < 0.2
2497 boolMet2 = derPhase < 0.2
2498 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
2498 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
2499 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
2499 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
2500 boolMet2 = ndimage.median_filter(boolMet2,size=5)
2500 boolMet2 = ndimage.median_filter(boolMet2,size=5)
2501 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
2501 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
2502 # #Final mask
2502 # #Final mask
2503 # boolMetFin = boolMet2
2503 # boolMetFin = boolMet2
2504 boolMetFin = boolMet1&boolMet2
2504 boolMetFin = boolMet1&boolMet2
2505 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
2505 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
2506 #Creating data_param
2506 #Creating data_param
2507 coordMet = numpy.where(boolMetFin)
2507 coordMet = numpy.where(boolMetFin)
2508
2508
2509 tmet = coordMet[0]
2509 tmet = coordMet[0]
2510 hmet = coordMet[1]
2510 hmet = coordMet[1]
2511
2511
2512 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2512 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2513 data_param[:,0] = utctime
2513 data_param[:,0] = utctime
2514 data_param[:,1] = tmet
2514 data_param[:,1] = tmet
2515 data_param[:,2] = hmet
2515 data_param[:,2] = hmet
2516 data_param[:,3] = SNRm[tmet,hmet]
2516 data_param[:,3] = SNRm[tmet,hmet]
2517 data_param[:,4] = velRad[tmet,hmet]
2517 data_param[:,4] = velRad[tmet,hmet]
2518 data_param[:,5] = coh[tmet,hmet]
2518 data_param[:,5] = coh[tmet,hmet]
2519 data_param[:,6:] = phase[:,tmet,hmet].T
2519 data_param[:,6:] = phase[:,tmet,hmet].T
2520
2520
2521 elif mode == 'DBS':
2521 elif mode == 'DBS':
2522 dataOut.groupList = numpy.arange(nChannels)
2522 dataOut.groupList = numpy.arange(nChannels)
2523
2523
2524 #Radial Velocities
2524 #Radial Velocities
2525 phase = numpy.angle(data_acf[:,1,:,:])
2525 phase = numpy.angle(data_acf[:,1,:,:])
2526 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2526 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2527 velRad = phase*lamb/(4*numpy.pi*tSamp)
2527 velRad = phase*lamb/(4*numpy.pi*tSamp)
2528
2528
2529 #Spectral width
2529 #Spectral width
2530 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2530 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2531 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
2531 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
2532 acf1 = data_acf[:,1,:,:]
2532 acf1 = data_acf[:,1,:,:]
2533 acf2 = data_acf[:,2,:,:]
2533 acf2 = data_acf[:,2,:,:]
2534
2534
2535 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
2535 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
2536 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
2536 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
2537 if allData:
2537 if allData:
2538 boolMetFin = ~numpy.isnan(SNRdB)
2538 boolMetFin = ~numpy.isnan(SNRdB)
2539 else:
2539 else:
2540 #SNR
2540 #SNR
2541 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2541 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2542 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2542 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2543
2543
2544 #Radial velocity
2544 #Radial velocity
2545 boolMet2 = numpy.abs(velRad) < 20
2545 boolMet2 = numpy.abs(velRad) < 20
2546 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2546 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2547
2547
2548 #Spectral Width
2548 #Spectral Width
2549 boolMet3 = spcWidth < 30
2549 boolMet3 = spcWidth < 30
2550 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2550 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2551 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2551 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2552 boolMetFin = boolMet1&boolMet2&boolMet3
2552 boolMetFin = boolMet1&boolMet2&boolMet3
2553
2553
2554 #Creating data_param
2554 #Creating data_param
2555 coordMet = numpy.where(boolMetFin)
2555 coordMet = numpy.where(boolMetFin)
2556
2556
2557 cmet = coordMet[0]
2557 cmet = coordMet[0]
2558 tmet = coordMet[1]
2558 tmet = coordMet[1]
2559 hmet = coordMet[2]
2559 hmet = coordMet[2]
2560
2560
2561 data_param = numpy.zeros((tmet.size, 7))
2561 data_param = numpy.zeros((tmet.size, 7))
2562 data_param[:,0] = utctime
2562 data_param[:,0] = utctime
2563 data_param[:,1] = cmet
2563 data_param[:,1] = cmet
2564 data_param[:,2] = tmet
2564 data_param[:,2] = tmet
2565 data_param[:,3] = hmet
2565 data_param[:,3] = hmet
2566 data_param[:,4] = SNR[cmet,tmet,hmet].T
2566 data_param[:,4] = SNR[cmet,tmet,hmet].T
2567 data_param[:,5] = velRad[cmet,tmet,hmet].T
2567 data_param[:,5] = velRad[cmet,tmet,hmet].T
2568 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2568 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2569
2569
2570 # self.dataOut.data_param = data_int
2570 # self.dataOut.data_param = data_int
2571 if len(data_param) == 0:
2571 if len(data_param) == 0:
2572 dataOut.flagNoData = True
2572 dataOut.flagNoData = True
2573 else:
2573 else:
2574 dataOut.data_param = data_param
2574 dataOut.data_param = data_param
2575
2575
2576 def __erase_small(self, binArray, threshX, threshY):
2576 def __erase_small(self, binArray, threshX, threshY):
2577 labarray, numfeat = ndimage.measurements.label(binArray)
2577 labarray, numfeat = ndimage.measurements.label(binArray)
2578 binArray1 = numpy.copy(binArray)
2578 binArray1 = numpy.copy(binArray)
2579
2579
2580 for i in range(1,numfeat + 1):
2580 for i in range(1,numfeat + 1):
2581 auxBin = (labarray==i)
2581 auxBin = (labarray==i)
2582 auxSize = auxBin.sum()
2582 auxSize = auxBin.sum()
2583
2583
2584 x,y = numpy.where(auxBin)
2584 x,y = numpy.where(auxBin)
2585 widthX = x.max() - x.min()
2585 widthX = x.max() - x.min()
2586 widthY = y.max() - y.min()
2586 widthY = y.max() - y.min()
2587
2587
2588 #width X: 3 seg -> 12.5*3
2588 #width X: 3 seg -> 12.5*3
2589 #width Y:
2589 #width Y:
2590
2590
2591 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2591 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2592 binArray1[auxBin] = False
2592 binArray1[auxBin] = False
2593
2593
2594 return binArray1
2594 return binArray1
2595
2595
2596 #--------------- Specular Meteor ----------------
2596 #--------------- Specular Meteor ----------------
2597
2597
2598 class SMDetection(Operation):
2598 class SMDetection(Operation):
2599 '''
2599 '''
2600 Function DetectMeteors()
2600 Function DetectMeteors()
2601 Project developed with paper:
2601 Project developed with paper:
2602 HOLDSWORTH ET AL. 2004
2602 HOLDSWORTH ET AL. 2004
2603
2603
2604 Input:
2604 Input:
2605 self.dataOut.data_pre
2605 self.dataOut.data_pre
2606
2606
2607 centerReceiverIndex: From the channels, which is the center receiver
2607 centerReceiverIndex: From the channels, which is the center receiver
2608
2608
2609 hei_ref: Height reference for the Beacon signal extraction
2609 hei_ref: Height reference for the Beacon signal extraction
2610 tauindex:
2610 tauindex:
2611 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2611 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2612
2612
2613 cohDetection: Whether to user Coherent detection or not
2613 cohDetection: Whether to user Coherent detection or not
2614 cohDet_timeStep: Coherent Detection calculation time step
2614 cohDet_timeStep: Coherent Detection calculation time step
2615 cohDet_thresh: Coherent Detection phase threshold to correct phases
2615 cohDet_thresh: Coherent Detection phase threshold to correct phases
2616
2616
2617 noise_timeStep: Noise calculation time step
2617 noise_timeStep: Noise calculation time step
2618 noise_multiple: Noise multiple to define signal threshold
2618 noise_multiple: Noise multiple to define signal threshold
2619
2619
2620 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2620 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2621 multDet_rangeLimit: Multiple Detection Removal range limit in km
2621 multDet_rangeLimit: Multiple Detection Removal range limit in km
2622
2622
2623 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2623 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2624 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2624 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2625
2625
2626 hmin: Minimum Height of the meteor to use it in the further wind estimations
2626 hmin: Minimum Height of the meteor to use it in the further wind estimations
2627 hmax: Maximum Height of the meteor to use it in the further wind estimations
2627 hmax: Maximum Height of the meteor to use it in the further wind estimations
2628 azimuth: Azimuth angle correction
2628 azimuth: Azimuth angle correction
2629
2629
2630 Affected:
2630 Affected:
2631 self.dataOut.data_param
2631 self.dataOut.data_param
2632
2632
2633 Rejection Criteria (Errors):
2633 Rejection Criteria (Errors):
2634 0: No error; analysis OK
2634 0: No error; analysis OK
2635 1: SNR < SNR threshold
2635 1: SNR < SNR threshold
2636 2: angle of arrival (AOA) ambiguously determined
2636 2: angle of arrival (AOA) ambiguously determined
2637 3: AOA estimate not feasible
2637 3: AOA estimate not feasible
2638 4: Large difference in AOAs obtained from different antenna baselines
2638 4: Large difference in AOAs obtained from different antenna baselines
2639 5: echo at start or end of time series
2639 5: echo at start or end of time series
2640 6: echo less than 5 examples long; too short for analysis
2640 6: echo less than 5 examples long; too short for analysis
2641 7: echo rise exceeds 0.3s
2641 7: echo rise exceeds 0.3s
2642 8: echo decay time less than twice rise time
2642 8: echo decay time less than twice rise time
2643 9: large power level before echo
2643 9: large power level before echo
2644 10: large power level after echo
2644 10: large power level after echo
2645 11: poor fit to amplitude for estimation of decay time
2645 11: poor fit to amplitude for estimation of decay time
2646 12: poor fit to CCF phase variation for estimation of radial drift velocity
2646 12: poor fit to CCF phase variation for estimation of radial drift velocity
2647 13: height unresolvable echo: not valid height within 70 to 110 km
2647 13: height unresolvable echo: not valid height within 70 to 110 km
2648 14: height ambiguous echo: more then one possible height within 70 to 110 km
2648 14: height ambiguous echo: more then one possible height within 70 to 110 km
2649 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2649 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2650 16: oscilatory echo, indicating event most likely not an underdense echo
2650 16: oscilatory echo, indicating event most likely not an underdense echo
2651
2651
2652 17: phase difference in meteor Reestimation
2652 17: phase difference in meteor Reestimation
2653
2653
2654 Data Storage:
2654 Data Storage:
2655 Meteors for Wind Estimation (8):
2655 Meteors for Wind Estimation (8):
2656 Utc Time | Range Height
2656 Utc Time | Range Height
2657 Azimuth Zenith errorCosDir
2657 Azimuth Zenith errorCosDir
2658 VelRad errorVelRad
2658 VelRad errorVelRad
2659 Phase0 Phase1 Phase2 Phase3
2659 Phase0 Phase1 Phase2 Phase3
2660 TypeError
2660 TypeError
2661
2661
2662 '''
2662 '''
2663
2663
2664 def run(self, dataOut, hei_ref = None, tauindex = 0,
2664 def run(self, dataOut, hei_ref = None, tauindex = 0,
2665 phaseOffsets = None,
2665 phaseOffsets = None,
2666 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2666 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2667 noise_timeStep = 4, noise_multiple = 4,
2667 noise_timeStep = 4, noise_multiple = 4,
2668 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2668 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2669 phaseThresh = 20, SNRThresh = 5,
2669 phaseThresh = 20, SNRThresh = 5,
2670 hmin = 50, hmax=150, azimuth = 0,
2670 hmin = 50, hmax=150, azimuth = 0,
2671 channelPositions = None) :
2671 channelPositions = None) :
2672
2672
2673
2673
2674 #Getting Pairslist
2674 #Getting Pairslist
2675 if channelPositions is None:
2675 if channelPositions is None:
2676 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2676 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2677 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2677 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2678 meteorOps = SMOperations()
2678 meteorOps = SMOperations()
2679 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2679 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2680 heiRang = dataOut.heightList
2680 heiRang = dataOut.heightList
2681 #Get Beacon signal - No Beacon signal anymore
2681 #Get Beacon signal - No Beacon signal anymore
2682 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2682 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2683 #
2683 #
2684 # if hei_ref != None:
2684 # if hei_ref != None:
2685 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2685 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2686 #
2686 #
2687
2687
2688
2688
2689 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2689 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2690 # see if the user put in pre defined phase shifts
2690 # see if the user put in pre defined phase shifts
2691 voltsPShift = dataOut.data_pre.copy()
2691 voltsPShift = dataOut.data_pre.copy()
2692
2692
2693 # if predefinedPhaseShifts != None:
2693 # if predefinedPhaseShifts != None:
2694 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2694 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2695 #
2695 #
2696 # # elif beaconPhaseShifts:
2696 # # elif beaconPhaseShifts:
2697 # # #get hardware phase shifts using beacon signal
2697 # # #get hardware phase shifts using beacon signal
2698 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2698 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2699 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2699 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2700 #
2700 #
2701 # else:
2701 # else:
2702 # hardwarePhaseShifts = numpy.zeros(5)
2702 # hardwarePhaseShifts = numpy.zeros(5)
2703 #
2703 #
2704 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2704 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2705 # for i in range(self.dataOut.data_pre.shape[0]):
2705 # for i in range(self.dataOut.data_pre.shape[0]):
2706 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2706 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2707
2707
2708 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2708 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2709
2709
2710 #Remove DC
2710 #Remove DC
2711 voltsDC = numpy.mean(voltsPShift,1)
2711 voltsDC = numpy.mean(voltsPShift,1)
2712 voltsDC = numpy.mean(voltsDC,1)
2712 voltsDC = numpy.mean(voltsDC,1)
2713 for i in range(voltsDC.shape[0]):
2713 for i in range(voltsDC.shape[0]):
2714 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2714 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2715
2715
2716 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2716 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2717 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2717 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2718
2718
2719 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2719 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2720 #Coherent Detection
2720 #Coherent Detection
2721 if cohDetection:
2721 if cohDetection:
2722 #use coherent detection to get the net power
2722 #use coherent detection to get the net power
2723 cohDet_thresh = cohDet_thresh*numpy.pi/180
2723 cohDet_thresh = cohDet_thresh*numpy.pi/180
2724 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2724 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2725
2725
2726 #Non-coherent detection!
2726 #Non-coherent detection!
2727 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2727 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2728 #********** END OF COH/NON-COH POWER CALCULATION**********************
2728 #********** END OF COH/NON-COH POWER CALCULATION**********************
2729
2729
2730 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2730 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2731 #Get noise
2731 #Get noise
2732 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
2732 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
2733 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
2733 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
2734 #Get signal threshold
2734 #Get signal threshold
2735 signalThresh = noise_multiple*noise
2735 signalThresh = noise_multiple*noise
2736 #Meteor echoes detection
2736 #Meteor echoes detection
2737 listMeteors = self.__findMeteors(powerNet, signalThresh)
2737 listMeteors = self.__findMeteors(powerNet, signalThresh)
2738 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2738 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2739
2739
2740 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2740 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2741 #Parameters
2741 #Parameters
2742 heiRange = dataOut.heightList
2742 heiRange = dataOut.heightList
2743 rangeInterval = heiRange[1] - heiRange[0]
2743 rangeInterval = heiRange[1] - heiRange[0]
2744 rangeLimit = multDet_rangeLimit/rangeInterval
2744 rangeLimit = multDet_rangeLimit/rangeInterval
2745 timeLimit = multDet_timeLimit/dataOut.timeInterval
2745 timeLimit = multDet_timeLimit/dataOut.timeInterval
2746 #Multiple detection removals
2746 #Multiple detection removals
2747 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2747 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2748 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2748 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2749
2749
2750 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2750 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2751 #Parameters
2751 #Parameters
2752 phaseThresh = phaseThresh*numpy.pi/180
2752 phaseThresh = phaseThresh*numpy.pi/180
2753 thresh = [phaseThresh, noise_multiple, SNRThresh]
2753 thresh = [phaseThresh, noise_multiple, SNRThresh]
2754 #Meteor reestimation (Errors N 1, 6, 12, 17)
2754 #Meteor reestimation (Errors N 1, 6, 12, 17)
2755 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
2755 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
2756 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
2756 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
2757 #Estimation of decay times (Errors N 7, 8, 11)
2757 #Estimation of decay times (Errors N 7, 8, 11)
2758 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2758 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2759 #******************* END OF METEOR REESTIMATION *******************
2759 #******************* END OF METEOR REESTIMATION *******************
2760
2760
2761 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2761 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2762 #Calculating Radial Velocity (Error N 15)
2762 #Calculating Radial Velocity (Error N 15)
2763 radialStdThresh = 10
2763 radialStdThresh = 10
2764 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2764 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2765
2765
2766 if len(listMeteors4) > 0:
2766 if len(listMeteors4) > 0:
2767 #Setting New Array
2767 #Setting New Array
2768 date = dataOut.utctime
2768 date = dataOut.utctime
2769 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2769 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2770
2770
2771 #Correcting phase offset
2771 #Correcting phase offset
2772 if phaseOffsets != None:
2772 if phaseOffsets != None:
2773 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2773 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2774 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2774 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2775
2775
2776 #Second Pairslist
2776 #Second Pairslist
2777 pairsList = []
2777 pairsList = []
2778 pairx = (0,1)
2778 pairx = (0,1)
2779 pairy = (2,3)
2779 pairy = (2,3)
2780 pairsList.append(pairx)
2780 pairsList.append(pairx)
2781 pairsList.append(pairy)
2781 pairsList.append(pairy)
2782
2782
2783 jph = numpy.array([0,0,0,0])
2783 jph = numpy.array([0,0,0,0])
2784 h = (hmin,hmax)
2784 h = (hmin,hmax)
2785 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2785 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2786
2786
2787 # #Calculate AOA (Error N 3, 4)
2787 # #Calculate AOA (Error N 3, 4)
2788 # #JONES ET AL. 1998
2788 # #JONES ET AL. 1998
2789 # error = arrayParameters[:,-1]
2789 # error = arrayParameters[:,-1]
2790 # AOAthresh = numpy.pi/8
2790 # AOAthresh = numpy.pi/8
2791 # phases = -arrayParameters[:,9:13]
2791 # phases = -arrayParameters[:,9:13]
2792 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2792 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2793 #
2793 #
2794 # #Calculate Heights (Error N 13 and 14)
2794 # #Calculate Heights (Error N 13 and 14)
2795 # error = arrayParameters[:,-1]
2795 # error = arrayParameters[:,-1]
2796 # Ranges = arrayParameters[:,2]
2796 # Ranges = arrayParameters[:,2]
2797 # zenith = arrayParameters[:,5]
2797 # zenith = arrayParameters[:,5]
2798 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2798 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2799 # error = arrayParameters[:,-1]
2799 # error = arrayParameters[:,-1]
2800 #********************* END OF PARAMETERS CALCULATION **************************
2800 #********************* END OF PARAMETERS CALCULATION **************************
2801
2801
2802 #***************************+ PASS DATA TO NEXT STEP **********************
2802 #***************************+ PASS DATA TO NEXT STEP **********************
2803 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2803 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2804 dataOut.data_param = arrayParameters
2804 dataOut.data_param = arrayParameters
2805
2805
2806 if arrayParameters is None:
2806 if arrayParameters is None:
2807 dataOut.flagNoData = True
2807 dataOut.flagNoData = True
2808 else:
2808 else:
2809 dataOut.flagNoData = True
2809 dataOut.flagNoData = True
2810
2810
2811 return
2811 return
2812
2812
2813 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2813 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2814
2814
2815 minIndex = min(newheis[0])
2815 minIndex = min(newheis[0])
2816 maxIndex = max(newheis[0])
2816 maxIndex = max(newheis[0])
2817
2817
2818 voltage = voltage0[:,:,minIndex:maxIndex+1]
2818 voltage = voltage0[:,:,minIndex:maxIndex+1]
2819 nLength = voltage.shape[1]/n
2819 nLength = voltage.shape[1]/n
2820 nMin = 0
2820 nMin = 0
2821 nMax = 0
2821 nMax = 0
2822 phaseOffset = numpy.zeros((len(pairslist),n))
2822 phaseOffset = numpy.zeros((len(pairslist),n))
2823
2823
2824 for i in range(n):
2824 for i in range(n):
2825 nMax += nLength
2825 nMax += nLength
2826 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2826 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2827 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2827 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2828 phaseOffset[:,i] = phaseCCF.transpose()
2828 phaseOffset[:,i] = phaseCCF.transpose()
2829 nMin = nMax
2829 nMin = nMax
2830 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2830 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2831
2831
2832 #Remove Outliers
2832 #Remove Outliers
2833 factor = 2
2833 factor = 2
2834 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2834 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2835 dw = numpy.std(wt,axis = 1)
2835 dw = numpy.std(wt,axis = 1)
2836 dw = dw.reshape((dw.size,1))
2836 dw = dw.reshape((dw.size,1))
2837 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2837 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2838 phaseOffset[ind] = numpy.nan
2838 phaseOffset[ind] = numpy.nan
2839 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2839 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2840
2840
2841 return phaseOffset
2841 return phaseOffset
2842
2842
2843 def __shiftPhase(self, data, phaseShift):
2843 def __shiftPhase(self, data, phaseShift):
2844 #this will shift the phase of a complex number
2844 #this will shift the phase of a complex number
2845 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2845 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2846 return dataShifted
2846 return dataShifted
2847
2847
2848 def __estimatePhaseDifference(self, array, pairslist):
2848 def __estimatePhaseDifference(self, array, pairslist):
2849 nChannel = array.shape[0]
2849 nChannel = array.shape[0]
2850 nHeights = array.shape[2]
2850 nHeights = array.shape[2]
2851 numPairs = len(pairslist)
2851 numPairs = len(pairslist)
2852 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2852 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2853 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2853 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2854
2854
2855 #Correct phases
2855 #Correct phases
2856 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2856 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2857 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2857 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2858
2858
2859 if indDer[0].shape[0] > 0:
2859 if indDer[0].shape[0] > 0:
2860 for i in range(indDer[0].shape[0]):
2860 for i in range(indDer[0].shape[0]):
2861 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2861 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2862 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2862 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2863
2863
2864 # for j in range(numSides):
2864 # for j in range(numSides):
2865 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2865 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2866 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2866 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2867 #
2867 #
2868 #Linear
2868 #Linear
2869 phaseInt = numpy.zeros((numPairs,1))
2869 phaseInt = numpy.zeros((numPairs,1))
2870 angAllCCF = phaseCCF[:,[0,1,3,4],0]
2870 angAllCCF = phaseCCF[:,[0,1,3,4],0]
2871 for j in range(numPairs):
2871 for j in range(numPairs):
2872 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
2872 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
2873 phaseInt[j] = fit[1]
2873 phaseInt[j] = fit[1]
2874 #Phase Differences
2874 #Phase Differences
2875 phaseDiff = phaseInt - phaseCCF[:,2,:]
2875 phaseDiff = phaseInt - phaseCCF[:,2,:]
2876 phaseArrival = phaseInt.reshape(phaseInt.size)
2876 phaseArrival = phaseInt.reshape(phaseInt.size)
2877
2877
2878 #Dealias
2878 #Dealias
2879 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2879 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2880 # indAlias = numpy.where(phaseArrival > numpy.pi)
2880 # indAlias = numpy.where(phaseArrival > numpy.pi)
2881 # phaseArrival[indAlias] -= 2*numpy.pi
2881 # phaseArrival[indAlias] -= 2*numpy.pi
2882 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2882 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2883 # phaseArrival[indAlias] += 2*numpy.pi
2883 # phaseArrival[indAlias] += 2*numpy.pi
2884
2884
2885 return phaseDiff, phaseArrival
2885 return phaseDiff, phaseArrival
2886
2886
2887 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2887 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2888 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2888 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2889 #find the phase shifts of each channel over 1 second intervals
2889 #find the phase shifts of each channel over 1 second intervals
2890 #only look at ranges below the beacon signal
2890 #only look at ranges below the beacon signal
2891 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2891 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2892 numBlocks = int(volts.shape[1]/numProfPerBlock)
2892 numBlocks = int(volts.shape[1]/numProfPerBlock)
2893 numHeights = volts.shape[2]
2893 numHeights = volts.shape[2]
2894 nChannel = volts.shape[0]
2894 nChannel = volts.shape[0]
2895 voltsCohDet = volts.copy()
2895 voltsCohDet = volts.copy()
2896
2896
2897 pairsarray = numpy.array(pairslist)
2897 pairsarray = numpy.array(pairslist)
2898 indSides = pairsarray[:,1]
2898 indSides = pairsarray[:,1]
2899 # indSides = numpy.array(range(nChannel))
2899 # indSides = numpy.array(range(nChannel))
2900 # indSides = numpy.delete(indSides, indCenter)
2900 # indSides = numpy.delete(indSides, indCenter)
2901 #
2901 #
2902 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2902 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2903 listBlocks = numpy.array_split(volts, numBlocks, 1)
2903 listBlocks = numpy.array_split(volts, numBlocks, 1)
2904
2904
2905 startInd = 0
2905 startInd = 0
2906 endInd = 0
2906 endInd = 0
2907
2907
2908 for i in range(numBlocks):
2908 for i in range(numBlocks):
2909 startInd = endInd
2909 startInd = endInd
2910 endInd = endInd + listBlocks[i].shape[1]
2910 endInd = endInd + listBlocks[i].shape[1]
2911
2911
2912 arrayBlock = listBlocks[i]
2912 arrayBlock = listBlocks[i]
2913 # arrayBlockCenter = listCenter[i]
2913 # arrayBlockCenter = listCenter[i]
2914
2914
2915 #Estimate the Phase Difference
2915 #Estimate the Phase Difference
2916 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
2916 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
2917 #Phase Difference RMS
2917 #Phase Difference RMS
2918 arrayPhaseRMS = numpy.abs(phaseDiff)
2918 arrayPhaseRMS = numpy.abs(phaseDiff)
2919 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
2919 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
2920 indPhase = numpy.where(phaseRMSaux==4)
2920 indPhase = numpy.where(phaseRMSaux==4)
2921 #Shifting
2921 #Shifting
2922 if indPhase[0].shape[0] > 0:
2922 if indPhase[0].shape[0] > 0:
2923 for j in range(indSides.size):
2923 for j in range(indSides.size):
2924 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
2924 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
2925 voltsCohDet[:,startInd:endInd,:] = arrayBlock
2925 voltsCohDet[:,startInd:endInd,:] = arrayBlock
2926
2926
2927 return voltsCohDet
2927 return voltsCohDet
2928
2928
2929 def __calculateCCF(self, volts, pairslist ,laglist):
2929 def __calculateCCF(self, volts, pairslist ,laglist):
2930
2930
2931 nHeights = volts.shape[2]
2931 nHeights = volts.shape[2]
2932 nPoints = volts.shape[1]
2932 nPoints = volts.shape[1]
2933 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
2933 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
2934
2934
2935 for i in range(len(pairslist)):
2935 for i in range(len(pairslist)):
2936 volts1 = volts[pairslist[i][0]]
2936 volts1 = volts[pairslist[i][0]]
2937 volts2 = volts[pairslist[i][1]]
2937 volts2 = volts[pairslist[i][1]]
2938
2938
2939 for t in range(len(laglist)):
2939 for t in range(len(laglist)):
2940 idxT = laglist[t]
2940 idxT = laglist[t]
2941 if idxT >= 0:
2941 if idxT >= 0:
2942 vStacked = numpy.vstack((volts2[idxT:,:],
2942 vStacked = numpy.vstack((volts2[idxT:,:],
2943 numpy.zeros((idxT, nHeights),dtype='complex')))
2943 numpy.zeros((idxT, nHeights),dtype='complex')))
2944 else:
2944 else:
2945 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
2945 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
2946 volts2[:(nPoints + idxT),:]))
2946 volts2[:(nPoints + idxT),:]))
2947 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
2947 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
2948
2948
2949 vStacked = None
2949 vStacked = None
2950 return voltsCCF
2950 return voltsCCF
2951
2951
2952 def __getNoise(self, power, timeSegment, timeInterval):
2952 def __getNoise(self, power, timeSegment, timeInterval):
2953 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2953 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2954 numBlocks = int(power.shape[0]/numProfPerBlock)
2954 numBlocks = int(power.shape[0]/numProfPerBlock)
2955 numHeights = power.shape[1]
2955 numHeights = power.shape[1]
2956
2956
2957 listPower = numpy.array_split(power, numBlocks, 0)
2957 listPower = numpy.array_split(power, numBlocks, 0)
2958 noise = numpy.zeros((power.shape[0], power.shape[1]))
2958 noise = numpy.zeros((power.shape[0], power.shape[1]))
2959 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
2959 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
2960
2960
2961 startInd = 0
2961 startInd = 0
2962 endInd = 0
2962 endInd = 0
2963
2963
2964 for i in range(numBlocks): #split por canal
2964 for i in range(numBlocks): #split por canal
2965 startInd = endInd
2965 startInd = endInd
2966 endInd = endInd + listPower[i].shape[0]
2966 endInd = endInd + listPower[i].shape[0]
2967
2967
2968 arrayBlock = listPower[i]
2968 arrayBlock = listPower[i]
2969 noiseAux = numpy.mean(arrayBlock, 0)
2969 noiseAux = numpy.mean(arrayBlock, 0)
2970 # noiseAux = numpy.median(noiseAux)
2970 # noiseAux = numpy.median(noiseAux)
2971 # noiseAux = numpy.mean(arrayBlock)
2971 # noiseAux = numpy.mean(arrayBlock)
2972 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
2972 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
2973
2973
2974 noiseAux1 = numpy.mean(arrayBlock)
2974 noiseAux1 = numpy.mean(arrayBlock)
2975 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
2975 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
2976
2976
2977 return noise, noise1
2977 return noise, noise1
2978
2978
2979 def __findMeteors(self, power, thresh):
2979 def __findMeteors(self, power, thresh):
2980 nProf = power.shape[0]
2980 nProf = power.shape[0]
2981 nHeights = power.shape[1]
2981 nHeights = power.shape[1]
2982 listMeteors = []
2982 listMeteors = []
2983
2983
2984 for i in range(nHeights):
2984 for i in range(nHeights):
2985 powerAux = power[:,i]
2985 powerAux = power[:,i]
2986 threshAux = thresh[:,i]
2986 threshAux = thresh[:,i]
2987
2987
2988 indUPthresh = numpy.where(powerAux > threshAux)[0]
2988 indUPthresh = numpy.where(powerAux > threshAux)[0]
2989 indDNthresh = numpy.where(powerAux <= threshAux)[0]
2989 indDNthresh = numpy.where(powerAux <= threshAux)[0]
2990
2990
2991 j = 0
2991 j = 0
2992
2992
2993 while (j < indUPthresh.size - 2):
2993 while (j < indUPthresh.size - 2):
2994 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
2994 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
2995 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
2995 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
2996 indDNthresh = indDNthresh[indDNAux]
2996 indDNthresh = indDNthresh[indDNAux]
2997
2997
2998 if (indDNthresh.size > 0):
2998 if (indDNthresh.size > 0):
2999 indEnd = indDNthresh[0] - 1
2999 indEnd = indDNthresh[0] - 1
3000 indInit = indUPthresh[j]
3000 indInit = indUPthresh[j]
3001
3001
3002 meteor = powerAux[indInit:indEnd + 1]
3002 meteor = powerAux[indInit:indEnd + 1]
3003 indPeak = meteor.argmax() + indInit
3003 indPeak = meteor.argmax() + indInit
3004 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
3004 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
3005
3005
3006 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
3006 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
3007 j = numpy.where(indUPthresh == indEnd)[0] + 1
3007 j = numpy.where(indUPthresh == indEnd)[0] + 1
3008 else: j+=1
3008 else: j+=1
3009 else: j+=1
3009 else: j+=1
3010
3010
3011 return listMeteors
3011 return listMeteors
3012
3012
3013 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
3013 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
3014
3014
3015 arrayMeteors = numpy.asarray(listMeteors)
3015 arrayMeteors = numpy.asarray(listMeteors)
3016 listMeteors1 = []
3016 listMeteors1 = []
3017
3017
3018 while arrayMeteors.shape[0] > 0:
3018 while arrayMeteors.shape[0] > 0:
3019 FLAs = arrayMeteors[:,4]
3019 FLAs = arrayMeteors[:,4]
3020 maxFLA = FLAs.argmax()
3020 maxFLA = FLAs.argmax()
3021 listMeteors1.append(arrayMeteors[maxFLA,:])
3021 listMeteors1.append(arrayMeteors[maxFLA,:])
3022
3022
3023 MeteorInitTime = arrayMeteors[maxFLA,1]
3023 MeteorInitTime = arrayMeteors[maxFLA,1]
3024 MeteorEndTime = arrayMeteors[maxFLA,3]
3024 MeteorEndTime = arrayMeteors[maxFLA,3]
3025 MeteorHeight = arrayMeteors[maxFLA,0]
3025 MeteorHeight = arrayMeteors[maxFLA,0]
3026
3026
3027 #Check neighborhood
3027 #Check neighborhood
3028 maxHeightIndex = MeteorHeight + rangeLimit
3028 maxHeightIndex = MeteorHeight + rangeLimit
3029 minHeightIndex = MeteorHeight - rangeLimit
3029 minHeightIndex = MeteorHeight - rangeLimit
3030 minTimeIndex = MeteorInitTime - timeLimit
3030 minTimeIndex = MeteorInitTime - timeLimit
3031 maxTimeIndex = MeteorEndTime + timeLimit
3031 maxTimeIndex = MeteorEndTime + timeLimit
3032
3032
3033 #Check Heights
3033 #Check Heights
3034 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
3034 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
3035 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
3035 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
3036 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
3036 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
3037
3037
3038 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
3038 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
3039
3039
3040 return listMeteors1
3040 return listMeteors1
3041
3041
3042 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
3042 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
3043 numHeights = volts.shape[2]
3043 numHeights = volts.shape[2]
3044 nChannel = volts.shape[0]
3044 nChannel = volts.shape[0]
3045
3045
3046 thresholdPhase = thresh[0]
3046 thresholdPhase = thresh[0]
3047 thresholdNoise = thresh[1]
3047 thresholdNoise = thresh[1]
3048 thresholdDB = float(thresh[2])
3048 thresholdDB = float(thresh[2])
3049
3049
3050 thresholdDB1 = 10**(thresholdDB/10)
3050 thresholdDB1 = 10**(thresholdDB/10)
3051 pairsarray = numpy.array(pairslist)
3051 pairsarray = numpy.array(pairslist)
3052 indSides = pairsarray[:,1]
3052 indSides = pairsarray[:,1]
3053
3053
3054 pairslist1 = list(pairslist)
3054 pairslist1 = list(pairslist)
3055 pairslist1.append((0,1))
3055 pairslist1.append((0,1))
3056 pairslist1.append((3,4))
3056 pairslist1.append((3,4))
3057
3057
3058 listMeteors1 = []
3058 listMeteors1 = []
3059 listPowerSeries = []
3059 listPowerSeries = []
3060 listVoltageSeries = []
3060 listVoltageSeries = []
3061 #volts has the war data
3061 #volts has the war data
3062
3062
3063 if frequency == 30e6:
3063 if frequency == 30e6:
3064 timeLag = 45*10**-3
3064 timeLag = 45*10**-3
3065 else:
3065 else:
3066 timeLag = 15*10**-3
3066 timeLag = 15*10**-3
3067 lag = numpy.ceil(timeLag/timeInterval)
3067 lag = numpy.ceil(timeLag/timeInterval)
3068
3068
3069 for i in range(len(listMeteors)):
3069 for i in range(len(listMeteors)):
3070
3070
3071 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3071 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3072 meteorAux = numpy.zeros(16)
3072 meteorAux = numpy.zeros(16)
3073
3073
3074 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3074 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3075 mHeight = listMeteors[i][0]
3075 mHeight = listMeteors[i][0]
3076 mStart = listMeteors[i][1]
3076 mStart = listMeteors[i][1]
3077 mPeak = listMeteors[i][2]
3077 mPeak = listMeteors[i][2]
3078 mEnd = listMeteors[i][3]
3078 mEnd = listMeteors[i][3]
3079
3079
3080 #get the volt data between the start and end times of the meteor
3080 #get the volt data between the start and end times of the meteor
3081 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3081 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3082 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3082 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3083
3083
3084 #3.6. Phase Difference estimation
3084 #3.6. Phase Difference estimation
3085 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3085 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3086
3086
3087 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3087 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3088 #meteorVolts0.- all Channels, all Profiles
3088 #meteorVolts0.- all Channels, all Profiles
3089 meteorVolts0 = volts[:,:,mHeight]
3089 meteorVolts0 = volts[:,:,mHeight]
3090 meteorThresh = noise[:,mHeight]*thresholdNoise
3090 meteorThresh = noise[:,mHeight]*thresholdNoise
3091 meteorNoise = noise[:,mHeight]
3091 meteorNoise = noise[:,mHeight]
3092 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3092 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3093 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3093 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3094
3094
3095 #Times reestimation
3095 #Times reestimation
3096 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3096 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3097 if mStart1.size > 0:
3097 if mStart1.size > 0:
3098 mStart1 = mStart1[-1] + 1
3098 mStart1 = mStart1[-1] + 1
3099
3099
3100 else:
3100 else:
3101 mStart1 = mPeak
3101 mStart1 = mPeak
3102
3102
3103 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3103 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3104 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3104 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3105 if mEndDecayTime1.size == 0:
3105 if mEndDecayTime1.size == 0:
3106 mEndDecayTime1 = powerNet0.size
3106 mEndDecayTime1 = powerNet0.size
3107 else:
3107 else:
3108 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3108 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3109 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3109 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3110
3110
3111 #meteorVolts1.- all Channels, from start to end
3111 #meteorVolts1.- all Channels, from start to end
3112 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3112 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3113 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
3113 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
3114 if meteorVolts2.shape[1] == 0:
3114 if meteorVolts2.shape[1] == 0:
3115 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
3115 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
3116 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3116 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3117 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3117 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3118 ##################### END PARAMETERS REESTIMATION #########################
3118 ##################### END PARAMETERS REESTIMATION #########################
3119
3119
3120 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3120 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3121 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3121 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3122 if meteorVolts2.shape[1] > 0:
3122 if meteorVolts2.shape[1] > 0:
3123 #Phase Difference re-estimation
3123 #Phase Difference re-estimation
3124 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3124 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3125 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3125 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3126 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3126 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3127 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3127 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3128 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3128 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3129
3129
3130 #Phase Difference RMS
3130 #Phase Difference RMS
3131 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3131 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3132 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
3132 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
3133 #Data from Meteor
3133 #Data from Meteor
3134 mPeak1 = powerNet1.argmax() + mStart1
3134 mPeak1 = powerNet1.argmax() + mStart1
3135 mPeakPower1 = powerNet1.max()
3135 mPeakPower1 = powerNet1.max()
3136 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
3136 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
3137 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
3137 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
3138 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
3138 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
3139 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
3139 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
3140 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
3140 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
3141 #Vectorize
3141 #Vectorize
3142 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3142 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3143 meteorAux[7:11] = phaseDiffint[0:4]
3143 meteorAux[7:11] = phaseDiffint[0:4]
3144
3144
3145 #Rejection Criterions
3145 #Rejection Criterions
3146 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3146 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3147 meteorAux[-1] = 17
3147 meteorAux[-1] = 17
3148 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3148 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3149 meteorAux[-1] = 1
3149 meteorAux[-1] = 1
3150
3150
3151
3151
3152 else:
3152 else:
3153 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3153 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3154 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3154 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3155 PowerSeries = 0
3155 PowerSeries = 0
3156
3156
3157 listMeteors1.append(meteorAux)
3157 listMeteors1.append(meteorAux)
3158 listPowerSeries.append(PowerSeries)
3158 listPowerSeries.append(PowerSeries)
3159 listVoltageSeries.append(meteorVolts1)
3159 listVoltageSeries.append(meteorVolts1)
3160
3160
3161 return listMeteors1, listPowerSeries, listVoltageSeries
3161 return listMeteors1, listPowerSeries, listVoltageSeries
3162
3162
3163 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3163 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3164
3164
3165 threshError = 10
3165 threshError = 10
3166 #Depending if it is 30 or 50 MHz
3166 #Depending if it is 30 or 50 MHz
3167 if frequency == 30e6:
3167 if frequency == 30e6:
3168 timeLag = 45*10**-3
3168 timeLag = 45*10**-3
3169 else:
3169 else:
3170 timeLag = 15*10**-3
3170 timeLag = 15*10**-3
3171 lag = numpy.ceil(timeLag/timeInterval)
3171 lag = numpy.ceil(timeLag/timeInterval)
3172
3172
3173 listMeteors1 = []
3173 listMeteors1 = []
3174
3174
3175 for i in range(len(listMeteors)):
3175 for i in range(len(listMeteors)):
3176 meteorPower = listPower[i]
3176 meteorPower = listPower[i]
3177 meteorAux = listMeteors[i]
3177 meteorAux = listMeteors[i]
3178
3178
3179 if meteorAux[-1] == 0:
3179 if meteorAux[-1] == 0:
3180
3180
3181 try:
3181 try:
3182 indmax = meteorPower.argmax()
3182 indmax = meteorPower.argmax()
3183 indlag = indmax + lag
3183 indlag = indmax + lag
3184
3184
3185 y = meteorPower[indlag:]
3185 y = meteorPower[indlag:]
3186 x = numpy.arange(0, y.size)*timeLag
3186 x = numpy.arange(0, y.size)*timeLag
3187
3187
3188 #first guess
3188 #first guess
3189 a = y[0]
3189 a = y[0]
3190 tau = timeLag
3190 tau = timeLag
3191 #exponential fit
3191 #exponential fit
3192 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
3192 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
3193 y1 = self.__exponential_function(x, *popt)
3193 y1 = self.__exponential_function(x, *popt)
3194 #error estimation
3194 #error estimation
3195 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3195 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3196
3196
3197 decayTime = popt[1]
3197 decayTime = popt[1]
3198 riseTime = indmax*timeInterval
3198 riseTime = indmax*timeInterval
3199 meteorAux[11:13] = [decayTime, error]
3199 meteorAux[11:13] = [decayTime, error]
3200
3200
3201 #Table items 7, 8 and 11
3201 #Table items 7, 8 and 11
3202 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3202 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3203 meteorAux[-1] = 7
3203 meteorAux[-1] = 7
3204 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3204 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3205 meteorAux[-1] = 8
3205 meteorAux[-1] = 8
3206 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3206 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3207 meteorAux[-1] = 11
3207 meteorAux[-1] = 11
3208
3208
3209
3209
3210 except:
3210 except:
3211 meteorAux[-1] = 11
3211 meteorAux[-1] = 11
3212
3212
3213
3213
3214 listMeteors1.append(meteorAux)
3214 listMeteors1.append(meteorAux)
3215
3215
3216 return listMeteors1
3216 return listMeteors1
3217
3217
3218 #Exponential Function
3218 #Exponential Function
3219
3219
3220 def __exponential_function(self, x, a, tau):
3220 def __exponential_function(self, x, a, tau):
3221 y = a*numpy.exp(-x/tau)
3221 y = a*numpy.exp(-x/tau)
3222 return y
3222 return y
3223
3223
3224 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3224 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3225
3225
3226 pairslist1 = list(pairslist)
3226 pairslist1 = list(pairslist)
3227 pairslist1.append((0,1))
3227 pairslist1.append((0,1))
3228 pairslist1.append((3,4))
3228 pairslist1.append((3,4))
3229 numPairs = len(pairslist1)
3229 numPairs = len(pairslist1)
3230 #Time Lag
3230 #Time Lag
3231 timeLag = 45*10**-3
3231 timeLag = 45*10**-3
3232 c = 3e8
3232 c = 3e8
3233 lag = numpy.ceil(timeLag/timeInterval)
3233 lag = numpy.ceil(timeLag/timeInterval)
3234 freq = 30e6
3234 freq = 30e6
3235
3235
3236 listMeteors1 = []
3236 listMeteors1 = []
3237
3237
3238 for i in range(len(listMeteors)):
3238 for i in range(len(listMeteors)):
3239 meteorAux = listMeteors[i]
3239 meteorAux = listMeteors[i]
3240 if meteorAux[-1] == 0:
3240 if meteorAux[-1] == 0:
3241 mStart = listMeteors[i][1]
3241 mStart = listMeteors[i][1]
3242 mPeak = listMeteors[i][2]
3242 mPeak = listMeteors[i][2]
3243 mLag = mPeak - mStart + lag
3243 mLag = mPeak - mStart + lag
3244
3244
3245 #get the volt data between the start and end times of the meteor
3245 #get the volt data between the start and end times of the meteor
3246 meteorVolts = listVolts[i]
3246 meteorVolts = listVolts[i]
3247 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3247 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3248
3248
3249 #Get CCF
3249 #Get CCF
3250 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3250 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3251
3251
3252 #Method 2
3252 #Method 2
3253 slopes = numpy.zeros(numPairs)
3253 slopes = numpy.zeros(numPairs)
3254 time = numpy.array([-2,-1,1,2])*timeInterval
3254 time = numpy.array([-2,-1,1,2])*timeInterval
3255 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3255 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3256
3256
3257 #Correct phases
3257 #Correct phases
3258 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3258 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3259 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3259 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3260
3260
3261 if indDer[0].shape[0] > 0:
3261 if indDer[0].shape[0] > 0:
3262 for i in range(indDer[0].shape[0]):
3262 for i in range(indDer[0].shape[0]):
3263 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3263 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3264 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
3264 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
3265
3265
3266 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
3266 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
3267 for j in range(numPairs):
3267 for j in range(numPairs):
3268 fit = stats.linregress(time, angAllCCF[j,:])
3268 fit = stats.linregress(time, angAllCCF[j,:])
3269 slopes[j] = fit[0]
3269 slopes[j] = fit[0]
3270
3270
3271 #Remove Outlier
3271 #Remove Outlier
3272 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3272 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3273 # slopes = numpy.delete(slopes,indOut)
3273 # slopes = numpy.delete(slopes,indOut)
3274 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3274 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3275 # slopes = numpy.delete(slopes,indOut)
3275 # slopes = numpy.delete(slopes,indOut)
3276
3276
3277 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3277 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3278 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3278 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3279 meteorAux[-2] = radialError
3279 meteorAux[-2] = radialError
3280 meteorAux[-3] = radialVelocity
3280 meteorAux[-3] = radialVelocity
3281
3281
3282 #Setting Error
3282 #Setting Error
3283 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3283 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3284 if numpy.abs(radialVelocity) > 200:
3284 if numpy.abs(radialVelocity) > 200:
3285 meteorAux[-1] = 15
3285 meteorAux[-1] = 15
3286 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3286 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3287 elif radialError > radialStdThresh:
3287 elif radialError > radialStdThresh:
3288 meteorAux[-1] = 12
3288 meteorAux[-1] = 12
3289
3289
3290 listMeteors1.append(meteorAux)
3290 listMeteors1.append(meteorAux)
3291 return listMeteors1
3291 return listMeteors1
3292
3292
3293 def __setNewArrays(self, listMeteors, date, heiRang):
3293 def __setNewArrays(self, listMeteors, date, heiRang):
3294
3294
3295 #New arrays
3295 #New arrays
3296 arrayMeteors = numpy.array(listMeteors)
3296 arrayMeteors = numpy.array(listMeteors)
3297 arrayParameters = numpy.zeros((len(listMeteors), 13))
3297 arrayParameters = numpy.zeros((len(listMeteors), 13))
3298
3298
3299 #Date inclusion
3299 #Date inclusion
3300 # date = re.findall(r'\((.*?)\)', date)
3300 # date = re.findall(r'\((.*?)\)', date)
3301 # date = date[0].split(',')
3301 # date = date[0].split(',')
3302 # date = map(int, date)
3302 # date = map(int, date)
3303 #
3303 #
3304 # if len(date)<6:
3304 # if len(date)<6:
3305 # date.append(0)
3305 # date.append(0)
3306 #
3306 #
3307 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3307 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3308 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3308 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3309 arrayDate = numpy.tile(date, (len(listMeteors)))
3309 arrayDate = numpy.tile(date, (len(listMeteors)))
3310
3310
3311 #Meteor array
3311 #Meteor array
3312 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3312 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3313 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3313 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3314
3314
3315 #Parameters Array
3315 #Parameters Array
3316 arrayParameters[:,0] = arrayDate #Date
3316 arrayParameters[:,0] = arrayDate #Date
3317 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
3317 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
3318 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
3318 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
3319 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3319 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3320 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3320 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3321
3321
3322
3322
3323 return arrayParameters
3323 return arrayParameters
3324
3324
3325 class CorrectSMPhases(Operation):
3325 class CorrectSMPhases(Operation):
3326
3326
3327 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3327 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3328
3328
3329 arrayParameters = dataOut.data_param
3329 arrayParameters = dataOut.data_param
3330 pairsList = []
3330 pairsList = []
3331 pairx = (0,1)
3331 pairx = (0,1)
3332 pairy = (2,3)
3332 pairy = (2,3)
3333 pairsList.append(pairx)
3333 pairsList.append(pairx)
3334 pairsList.append(pairy)
3334 pairsList.append(pairy)
3335 jph = numpy.zeros(4)
3335 jph = numpy.zeros(4)
3336
3336
3337 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3337 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3338 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3338 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3339 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3339 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3340
3340
3341 meteorOps = SMOperations()
3341 meteorOps = SMOperations()
3342 if channelPositions is None:
3342 if channelPositions is None:
3343 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3343 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3344 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3344 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3345
3345
3346 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3346 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3347 h = (hmin,hmax)
3347 h = (hmin,hmax)
3348
3348
3349 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3349 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3350
3350
3351 dataOut.data_param = arrayParameters
3351 dataOut.data_param = arrayParameters
3352 return
3352 return
3353
3353
3354 class SMPhaseCalibration(Operation):
3354 class SMPhaseCalibration(Operation):
3355
3355
3356 __buffer = None
3356 __buffer = None
3357
3357
3358 __initime = None
3358 __initime = None
3359
3359
3360 __dataReady = False
3360 __dataReady = False
3361
3361
3362 __isConfig = False
3362 __isConfig = False
3363
3363
3364 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3364 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3365
3365
3366 dataTime = currentTime + paramInterval
3366 dataTime = currentTime + paramInterval
3367 deltaTime = dataTime - initTime
3367 deltaTime = dataTime - initTime
3368
3368
3369 if deltaTime >= outputInterval or deltaTime < 0:
3369 if deltaTime >= outputInterval or deltaTime < 0:
3370 return True
3370 return True
3371
3371
3372 return False
3372 return False
3373
3373
3374 def __getGammas(self, pairs, d, phases):
3374 def __getGammas(self, pairs, d, phases):
3375 gammas = numpy.zeros(2)
3375 gammas = numpy.zeros(2)
3376
3376
3377 for i in range(len(pairs)):
3377 for i in range(len(pairs)):
3378
3378
3379 pairi = pairs[i]
3379 pairi = pairs[i]
3380
3380
3381 phip3 = phases[:,pairi[0]]
3381 phip3 = phases[:,pairi[0]]
3382 d3 = d[pairi[0]]
3382 d3 = d[pairi[0]]
3383 phip2 = phases[:,pairi[1]]
3383 phip2 = phases[:,pairi[1]]
3384 d2 = d[pairi[1]]
3384 d2 = d[pairi[1]]
3385 #Calculating gamma
3385 #Calculating gamma
3386 # jdcos = alp1/(k*d1)
3386 # jdcos = alp1/(k*d1)
3387 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
3387 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
3388 jgamma = -phip2*d3/d2 - phip3
3388 jgamma = -phip2*d3/d2 - phip3
3389 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3389 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3390 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3390 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3391 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3391 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3392
3392
3393 #Revised distribution
3393 #Revised distribution
3394 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3394 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3395
3395
3396 #Histogram
3396 #Histogram
3397 nBins = 64
3397 nBins = 64
3398 rmin = -0.5*numpy.pi
3398 rmin = -0.5*numpy.pi
3399 rmax = 0.5*numpy.pi
3399 rmax = 0.5*numpy.pi
3400 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3400 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3401
3401
3402 meteorsY = phaseHisto[0]
3402 meteorsY = phaseHisto[0]
3403 phasesX = phaseHisto[1][:-1]
3403 phasesX = phaseHisto[1][:-1]
3404 width = phasesX[1] - phasesX[0]
3404 width = phasesX[1] - phasesX[0]
3405 phasesX += width/2
3405 phasesX += width/2
3406
3406
3407 #Gaussian aproximation
3407 #Gaussian aproximation
3408 bpeak = meteorsY.argmax()
3408 bpeak = meteorsY.argmax()
3409 peak = meteorsY.max()
3409 peak = meteorsY.max()
3410 jmin = bpeak - 5
3410 jmin = bpeak - 5
3411 jmax = bpeak + 5 + 1
3411 jmax = bpeak + 5 + 1
3412
3412
3413 if jmin<0:
3413 if jmin<0:
3414 jmin = 0
3414 jmin = 0
3415 jmax = 6
3415 jmax = 6
3416 elif jmax > meteorsY.size:
3416 elif jmax > meteorsY.size:
3417 jmin = meteorsY.size - 6
3417 jmin = meteorsY.size - 6
3418 jmax = meteorsY.size
3418 jmax = meteorsY.size
3419
3419
3420 x0 = numpy.array([peak,bpeak,50])
3420 x0 = numpy.array([peak,bpeak,50])
3421 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3421 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3422
3422
3423 #Gammas
3423 #Gammas
3424 gammas[i] = coeff[0][1]
3424 gammas[i] = coeff[0][1]
3425
3425
3426 return gammas
3426 return gammas
3427
3427
3428 def __residualFunction(self, coeffs, y, t):
3428 def __residualFunction(self, coeffs, y, t):
3429
3429
3430 return y - self.__gauss_function(t, coeffs)
3430 return y - self.__gauss_function(t, coeffs)
3431
3431
3432 def __gauss_function(self, t, coeffs):
3432 def __gauss_function(self, t, coeffs):
3433
3433
3434 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3434 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3435
3435
3436 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
3436 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
3437 meteorOps = SMOperations()
3437 meteorOps = SMOperations()
3438 nchan = 4
3438 nchan = 4
3439 pairx = pairsList[0] #x es 0
3439 pairx = pairsList[0] #x es 0
3440 pairy = pairsList[1] #y es 1
3440 pairy = pairsList[1] #y es 1
3441 center_xangle = 0
3441 center_xangle = 0
3442 center_yangle = 0
3442 center_yangle = 0
3443 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
3443 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
3444 ntimes = len(range_angle)
3444 ntimes = len(range_angle)
3445
3445
3446 nstepsx = 20
3446 nstepsx = 20
3447 nstepsy = 20
3447 nstepsy = 20
3448
3448
3449 for iz in range(ntimes):
3449 for iz in range(ntimes):
3450 min_xangle = -range_angle[iz]/2 + center_xangle
3450 min_xangle = -range_angle[iz]/2 + center_xangle
3451 max_xangle = range_angle[iz]/2 + center_xangle
3451 max_xangle = range_angle[iz]/2 + center_xangle
3452 min_yangle = -range_angle[iz]/2 + center_yangle
3452 min_yangle = -range_angle[iz]/2 + center_yangle
3453 max_yangle = range_angle[iz]/2 + center_yangle
3453 max_yangle = range_angle[iz]/2 + center_yangle
3454
3454
3455 inc_x = (max_xangle-min_xangle)/nstepsx
3455 inc_x = (max_xangle-min_xangle)/nstepsx
3456 inc_y = (max_yangle-min_yangle)/nstepsy
3456 inc_y = (max_yangle-min_yangle)/nstepsy
3457
3457
3458 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3458 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3459 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3459 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3460 penalty = numpy.zeros((nstepsx,nstepsy))
3460 penalty = numpy.zeros((nstepsx,nstepsy))
3461 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3461 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3462 jph = numpy.zeros(nchan)
3462 jph = numpy.zeros(nchan)
3463
3463
3464 # Iterations looking for the offset
3464 # Iterations looking for the offset
3465 for iy in range(int(nstepsy)):
3465 for iy in range(int(nstepsy)):
3466 for ix in range(int(nstepsx)):
3466 for ix in range(int(nstepsx)):
3467 d3 = d[pairsList[1][0]]
3467 d3 = d[pairsList[1][0]]
3468 d2 = d[pairsList[1][1]]
3468 d2 = d[pairsList[1][1]]
3469 d5 = d[pairsList[0][0]]
3469 d5 = d[pairsList[0][0]]
3470 d4 = d[pairsList[0][1]]
3470 d4 = d[pairsList[0][1]]
3471
3471
3472 alp2 = alpha_y[iy] #gamma 1
3472 alp2 = alpha_y[iy] #gamma 1
3473 alp4 = alpha_x[ix] #gamma 0
3473 alp4 = alpha_x[ix] #gamma 0
3474
3474
3475 alp3 = -alp2*d3/d2 - gammas[1]
3475 alp3 = -alp2*d3/d2 - gammas[1]
3476 alp5 = -alp4*d5/d4 - gammas[0]
3476 alp5 = -alp4*d5/d4 - gammas[0]
3477 # jph[pairy[1]] = alpha_y[iy]
3477 # jph[pairy[1]] = alpha_y[iy]
3478 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3478 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3479
3479
3480 # jph[pairx[1]] = alpha_x[ix]
3480 # jph[pairx[1]] = alpha_x[ix]
3481 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3481 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3482 jph[pairsList[0][1]] = alp4
3482 jph[pairsList[0][1]] = alp4
3483 jph[pairsList[0][0]] = alp5
3483 jph[pairsList[0][0]] = alp5
3484 jph[pairsList[1][0]] = alp3
3484 jph[pairsList[1][0]] = alp3
3485 jph[pairsList[1][1]] = alp2
3485 jph[pairsList[1][1]] = alp2
3486 jph_array[:,ix,iy] = jph
3486 jph_array[:,ix,iy] = jph
3487 # d = [2.0,2.5,2.5,2.0]
3487 # d = [2.0,2.5,2.5,2.0]
3488 #falta chequear si va a leer bien los meteoros
3488 #falta chequear si va a leer bien los meteoros
3489 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3489 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3490 error = meteorsArray1[:,-1]
3490 error = meteorsArray1[:,-1]
3491 ind1 = numpy.where(error==0)[0]
3491 ind1 = numpy.where(error==0)[0]
3492 penalty[ix,iy] = ind1.size
3492 penalty[ix,iy] = ind1.size
3493
3493
3494 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3494 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3495 phOffset = jph_array[:,i,j]
3495 phOffset = jph_array[:,i,j]
3496
3496
3497 center_xangle = phOffset[pairx[1]]
3497 center_xangle = phOffset[pairx[1]]
3498 center_yangle = phOffset[pairy[1]]
3498 center_yangle = phOffset[pairy[1]]
3499
3499
3500 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3500 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3501 phOffset = phOffset*180/numpy.pi
3501 phOffset = phOffset*180/numpy.pi
3502 return phOffset
3502 return phOffset
3503
3503
3504
3504
3505 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3505 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3506
3506
3507 dataOut.flagNoData = True
3507 dataOut.flagNoData = True
3508 self.__dataReady = False
3508 self.__dataReady = False
3509 dataOut.outputInterval = nHours*3600
3509 dataOut.outputInterval = nHours*3600
3510
3510
3511 if self.__isConfig == False:
3511 if self.__isConfig == False:
3512 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3512 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3513 #Get Initial LTC time
3513 #Get Initial LTC time
3514 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
3514 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
3515 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3515 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3516
3516
3517 self.__isConfig = True
3517 self.__isConfig = True
3518
3518
3519 if self.__buffer is None:
3519 if self.__buffer is None:
3520 self.__buffer = dataOut.data_param.copy()
3520 self.__buffer = dataOut.data_param.copy()
3521
3521
3522 else:
3522 else:
3523 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3523 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3524
3524
3525 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3525 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3526
3526
3527 if self.__dataReady:
3527 if self.__dataReady:
3528 dataOut.utctimeInit = self.__initime
3528 dataOut.utctimeInit = self.__initime
3529 self.__initime += dataOut.outputInterval #to erase time offset
3529 self.__initime += dataOut.outputInterval #to erase time offset
3530
3530
3531 freq = dataOut.frequency
3531 freq = dataOut.frequency
3532 c = dataOut.C #m/s
3532 c = dataOut.C #m/s
3533 lamb = c/freq
3533 lamb = c/freq
3534 k = 2*numpy.pi/lamb
3534 k = 2*numpy.pi/lamb
3535 azimuth = 0
3535 azimuth = 0
3536 h = (hmin, hmax)
3536 h = (hmin, hmax)
3537 # pairs = ((0,1),(2,3)) #Estrella
3537 # pairs = ((0,1),(2,3)) #Estrella
3538 # pairs = ((1,0),(2,3)) #T
3538 # pairs = ((1,0),(2,3)) #T
3539
3539
3540 if channelPositions is None:
3540 if channelPositions is None:
3541 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3541 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3542 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3542 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3543 meteorOps = SMOperations()
3543 meteorOps = SMOperations()
3544 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3544 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3545
3545
3546 #Checking correct order of pairs
3546 #Checking correct order of pairs
3547 pairs = []
3547 pairs = []
3548 if distances[1] > distances[0]:
3548 if distances[1] > distances[0]:
3549 pairs.append((1,0))
3549 pairs.append((1,0))
3550 else:
3550 else:
3551 pairs.append((0,1))
3551 pairs.append((0,1))
3552
3552
3553 if distances[3] > distances[2]:
3553 if distances[3] > distances[2]:
3554 pairs.append((3,2))
3554 pairs.append((3,2))
3555 else:
3555 else:
3556 pairs.append((2,3))
3556 pairs.append((2,3))
3557 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3557 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3558
3558
3559 meteorsArray = self.__buffer
3559 meteorsArray = self.__buffer
3560 error = meteorsArray[:,-1]
3560 error = meteorsArray[:,-1]
3561 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
3561 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
3562 ind1 = numpy.where(boolError)[0]
3562 ind1 = numpy.where(boolError)[0]
3563 meteorsArray = meteorsArray[ind1,:]
3563 meteorsArray = meteorsArray[ind1,:]
3564 meteorsArray[:,-1] = 0
3564 meteorsArray[:,-1] = 0
3565 phases = meteorsArray[:,8:12]
3565 phases = meteorsArray[:,8:12]
3566
3566
3567 #Calculate Gammas
3567 #Calculate Gammas
3568 gammas = self.__getGammas(pairs, distances, phases)
3568 gammas = self.__getGammas(pairs, distances, phases)
3569 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
3569 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
3570 #Calculate Phases
3570 #Calculate Phases
3571 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
3571 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
3572 phasesOff = phasesOff.reshape((1,phasesOff.size))
3572 phasesOff = phasesOff.reshape((1,phasesOff.size))
3573 dataOut.data_output = -phasesOff
3573 dataOut.data_output = -phasesOff
3574 dataOut.flagNoData = False
3574 dataOut.flagNoData = False
3575 self.__buffer = None
3575 self.__buffer = None
3576
3576
3577
3577
3578 return
3578 return
3579
3579
3580 class SMOperations():
3580 class SMOperations():
3581
3581
3582 def __init__(self):
3582 def __init__(self):
3583
3583
3584 return
3584 return
3585
3585
3586 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3586 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3587
3587
3588 arrayParameters = arrayParameters0.copy()
3588 arrayParameters = arrayParameters0.copy()
3589 hmin = h[0]
3589 hmin = h[0]
3590 hmax = h[1]
3590 hmax = h[1]
3591
3591
3592 #Calculate AOA (Error N 3, 4)
3592 #Calculate AOA (Error N 3, 4)
3593 #JONES ET AL. 1998
3593 #JONES ET AL. 1998
3594 AOAthresh = numpy.pi/8
3594 AOAthresh = numpy.pi/8
3595 error = arrayParameters[:,-1]
3595 error = arrayParameters[:,-1]
3596 phases = -arrayParameters[:,8:12] + jph
3596 phases = -arrayParameters[:,8:12] + jph
3597 # phases = numpy.unwrap(phases)
3597 # phases = numpy.unwrap(phases)
3598 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3598 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3599
3599
3600 #Calculate Heights (Error N 13 and 14)
3600 #Calculate Heights (Error N 13 and 14)
3601 error = arrayParameters[:,-1]
3601 error = arrayParameters[:,-1]
3602 Ranges = arrayParameters[:,1]
3602 Ranges = arrayParameters[:,1]
3603 zenith = arrayParameters[:,4]
3603 zenith = arrayParameters[:,4]
3604 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3604 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3605
3605
3606 #----------------------- Get Final data ------------------------------------
3606 #----------------------- Get Final data ------------------------------------
3607 # error = arrayParameters[:,-1]
3607 # error = arrayParameters[:,-1]
3608 # ind1 = numpy.where(error==0)[0]
3608 # ind1 = numpy.where(error==0)[0]
3609 # arrayParameters = arrayParameters[ind1,:]
3609 # arrayParameters = arrayParameters[ind1,:]
3610
3610
3611 return arrayParameters
3611 return arrayParameters
3612
3612
3613 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3613 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3614
3614
3615 arrayAOA = numpy.zeros((phases.shape[0],3))
3615 arrayAOA = numpy.zeros((phases.shape[0],3))
3616 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3616 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3617
3617
3618 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3618 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3619 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3619 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3620 arrayAOA[:,2] = cosDirError
3620 arrayAOA[:,2] = cosDirError
3621
3621
3622 azimuthAngle = arrayAOA[:,0]
3622 azimuthAngle = arrayAOA[:,0]
3623 zenithAngle = arrayAOA[:,1]
3623 zenithAngle = arrayAOA[:,1]
3624
3624
3625 #Setting Error
3625 #Setting Error
3626 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3626 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3627 error[indError] = 0
3627 error[indError] = 0
3628 #Number 3: AOA not fesible
3628 #Number 3: AOA not fesible
3629 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3629 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3630 error[indInvalid] = 3
3630 error[indInvalid] = 3
3631 #Number 4: Large difference in AOAs obtained from different antenna baselines
3631 #Number 4: Large difference in AOAs obtained from different antenna baselines
3632 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3632 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3633 error[indInvalid] = 4
3633 error[indInvalid] = 4
3634 return arrayAOA, error
3634 return arrayAOA, error
3635
3635
3636 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3636 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3637
3637
3638 #Initializing some variables
3638 #Initializing some variables
3639 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3639 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3640 ang_aux = ang_aux.reshape(1,ang_aux.size)
3640 ang_aux = ang_aux.reshape(1,ang_aux.size)
3641
3641
3642 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3642 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3643 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3643 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3644
3644
3645
3645
3646 for i in range(2):
3646 for i in range(2):
3647 ph0 = arrayPhase[:,pairsList[i][0]]
3647 ph0 = arrayPhase[:,pairsList[i][0]]
3648 ph1 = arrayPhase[:,pairsList[i][1]]
3648 ph1 = arrayPhase[:,pairsList[i][1]]
3649 d0 = distances[pairsList[i][0]]
3649 d0 = distances[pairsList[i][0]]
3650 d1 = distances[pairsList[i][1]]
3650 d1 = distances[pairsList[i][1]]
3651
3651
3652 ph0_aux = ph0 + ph1
3652 ph0_aux = ph0 + ph1
3653 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3653 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3654 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3654 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3655 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3655 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3656 #First Estimation
3656 #First Estimation
3657 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3657 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3658
3658
3659 #Most-Accurate Second Estimation
3659 #Most-Accurate Second Estimation
3660 phi1_aux = ph0 - ph1
3660 phi1_aux = ph0 - ph1
3661 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3661 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3662 #Direction Cosine 1
3662 #Direction Cosine 1
3663 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3663 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3664
3664
3665 #Searching the correct Direction Cosine
3665 #Searching the correct Direction Cosine
3666 cosdir0_aux = cosdir0[:,i]
3666 cosdir0_aux = cosdir0[:,i]
3667 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3667 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3668 #Minimum Distance
3668 #Minimum Distance
3669 cosDiff = (cosdir1 - cosdir0_aux)**2
3669 cosDiff = (cosdir1 - cosdir0_aux)**2
3670 indcos = cosDiff.argmin(axis = 1)
3670 indcos = cosDiff.argmin(axis = 1)
3671 #Saving Value obtained
3671 #Saving Value obtained
3672 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3672 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3673
3673
3674 return cosdir0, cosdir
3674 return cosdir0, cosdir
3675
3675
3676 def __calculateAOA(self, cosdir, azimuth):
3676 def __calculateAOA(self, cosdir, azimuth):
3677 cosdirX = cosdir[:,0]
3677 cosdirX = cosdir[:,0]
3678 cosdirY = cosdir[:,1]
3678 cosdirY = cosdir[:,1]
3679
3679
3680 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3680 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3681 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3681 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3682 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3682 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3683
3683
3684 return angles
3684 return angles
3685
3685
3686 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3686 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3687
3687
3688 Ramb = 375 #Ramb = c/(2*PRF)
3688 Ramb = 375 #Ramb = c/(2*PRF)
3689 Re = 6371 #Earth Radius
3689 Re = 6371 #Earth Radius
3690 heights = numpy.zeros(Ranges.shape)
3690 heights = numpy.zeros(Ranges.shape)
3691
3691
3692 R_aux = numpy.array([0,1,2])*Ramb
3692 R_aux = numpy.array([0,1,2])*Ramb
3693 R_aux = R_aux.reshape(1,R_aux.size)
3693 R_aux = R_aux.reshape(1,R_aux.size)
3694
3694
3695 Ranges = Ranges.reshape(Ranges.size,1)
3695 Ranges = Ranges.reshape(Ranges.size,1)
3696
3696
3697 Ri = Ranges + R_aux
3697 Ri = Ranges + R_aux
3698 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3698 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3699
3699
3700 #Check if there is a height between 70 and 110 km
3700 #Check if there is a height between 70 and 110 km
3701 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3701 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3702 ind_h = numpy.where(h_bool == 1)[0]
3702 ind_h = numpy.where(h_bool == 1)[0]
3703
3703
3704 hCorr = hi[ind_h, :]
3704 hCorr = hi[ind_h, :]
3705 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3705 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3706
3706
3707 hCorr = hi[ind_hCorr][:len(ind_h)]
3707 hCorr = hi[ind_hCorr][:len(ind_h)]
3708 heights[ind_h] = hCorr
3708 heights[ind_h] = hCorr
3709
3709
3710 #Setting Error
3710 #Setting Error
3711 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3711 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3712 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3712 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3713 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3713 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3714 error[indError] = 0
3714 error[indError] = 0
3715 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3715 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3716 error[indInvalid2] = 14
3716 error[indInvalid2] = 14
3717 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3717 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3718 error[indInvalid1] = 13
3718 error[indInvalid1] = 13
3719
3719
3720 return heights, error
3720 return heights, error
3721
3721
3722 def getPhasePairs(self, channelPositions):
3722 def getPhasePairs(self, channelPositions):
3723 chanPos = numpy.array(channelPositions)
3723 chanPos = numpy.array(channelPositions)
3724 listOper = list(itertools.combinations(list(range(5)),2))
3724 listOper = list(itertools.combinations(list(range(5)),2))
3725
3725
3726 distances = numpy.zeros(4)
3726 distances = numpy.zeros(4)
3727 axisX = []
3727 axisX = []
3728 axisY = []
3728 axisY = []
3729 distX = numpy.zeros(3)
3729 distX = numpy.zeros(3)
3730 distY = numpy.zeros(3)
3730 distY = numpy.zeros(3)
3731 ix = 0
3731 ix = 0
3732 iy = 0
3732 iy = 0
3733
3733
3734 pairX = numpy.zeros((2,2))
3734 pairX = numpy.zeros((2,2))
3735 pairY = numpy.zeros((2,2))
3735 pairY = numpy.zeros((2,2))
3736
3736
3737 for i in range(len(listOper)):
3737 for i in range(len(listOper)):
3738 pairi = listOper[i]
3738 pairi = listOper[i]
3739
3739
3740 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3740 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3741
3741
3742 if posDif[0] == 0:
3742 if posDif[0] == 0:
3743 axisY.append(pairi)
3743 axisY.append(pairi)
3744 distY[iy] = posDif[1]
3744 distY[iy] = posDif[1]
3745 iy += 1
3745 iy += 1
3746 elif posDif[1] == 0:
3746 elif posDif[1] == 0:
3747 axisX.append(pairi)
3747 axisX.append(pairi)
3748 distX[ix] = posDif[0]
3748 distX[ix] = posDif[0]
3749 ix += 1
3749 ix += 1
3750
3750
3751 for i in range(2):
3751 for i in range(2):
3752 if i==0:
3752 if i==0:
3753 dist0 = distX
3753 dist0 = distX
3754 axis0 = axisX
3754 axis0 = axisX
3755 else:
3755 else:
3756 dist0 = distY
3756 dist0 = distY
3757 axis0 = axisY
3757 axis0 = axisY
3758
3758
3759 side = numpy.argsort(dist0)[:-1]
3759 side = numpy.argsort(dist0)[:-1]
3760 axis0 = numpy.array(axis0)[side,:]
3760 axis0 = numpy.array(axis0)[side,:]
3761 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
3761 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
3762 axis1 = numpy.unique(numpy.reshape(axis0,4))
3762 axis1 = numpy.unique(numpy.reshape(axis0,4))
3763 side = axis1[axis1 != chanC]
3763 side = axis1[axis1 != chanC]
3764 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3764 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3765 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3765 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3766 if diff1<0:
3766 if diff1<0:
3767 chan2 = side[0]
3767 chan2 = side[0]
3768 d2 = numpy.abs(diff1)
3768 d2 = numpy.abs(diff1)
3769 chan1 = side[1]
3769 chan1 = side[1]
3770 d1 = numpy.abs(diff2)
3770 d1 = numpy.abs(diff2)
3771 else:
3771 else:
3772 chan2 = side[1]
3772 chan2 = side[1]
3773 d2 = numpy.abs(diff2)
3773 d2 = numpy.abs(diff2)
3774 chan1 = side[0]
3774 chan1 = side[0]
3775 d1 = numpy.abs(diff1)
3775 d1 = numpy.abs(diff1)
3776
3776
3777 if i==0:
3777 if i==0:
3778 chanCX = chanC
3778 chanCX = chanC
3779 chan1X = chan1
3779 chan1X = chan1
3780 chan2X = chan2
3780 chan2X = chan2
3781 distances[0:2] = numpy.array([d1,d2])
3781 distances[0:2] = numpy.array([d1,d2])
3782 else:
3782 else:
3783 chanCY = chanC
3783 chanCY = chanC
3784 chan1Y = chan1
3784 chan1Y = chan1
3785 chan2Y = chan2
3785 chan2Y = chan2
3786 distances[2:4] = numpy.array([d1,d2])
3786 distances[2:4] = numpy.array([d1,d2])
3787 # axisXsides = numpy.reshape(axisX[ix,:],4)
3787 # axisXsides = numpy.reshape(axisX[ix,:],4)
3788 #
3788 #
3789 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3789 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3790 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3790 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3791 #
3791 #
3792 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3792 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3793 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3793 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3794 # channel25X = int(pairX[0,ind25X])
3794 # channel25X = int(pairX[0,ind25X])
3795 # channel20X = int(pairX[1,ind20X])
3795 # channel20X = int(pairX[1,ind20X])
3796 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
3796 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
3797 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3797 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3798 # channel25Y = int(pairY[0,ind25Y])
3798 # channel25Y = int(pairY[0,ind25Y])
3799 # channel20Y = int(pairY[1,ind20Y])
3799 # channel20Y = int(pairY[1,ind20Y])
3800
3800
3801 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3801 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3802 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3802 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3803
3803
3804 return pairslist, distances
3804 return pairslist, distances
3805 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3805 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3806 #
3806 #
3807 # arrayAOA = numpy.zeros((phases.shape[0],3))
3807 # arrayAOA = numpy.zeros((phases.shape[0],3))
3808 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3808 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3809 #
3809 #
3810 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3810 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3811 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3811 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3812 # arrayAOA[:,2] = cosDirError
3812 # arrayAOA[:,2] = cosDirError
3813 #
3813 #
3814 # azimuthAngle = arrayAOA[:,0]
3814 # azimuthAngle = arrayAOA[:,0]
3815 # zenithAngle = arrayAOA[:,1]
3815 # zenithAngle = arrayAOA[:,1]
3816 #
3816 #
3817 # #Setting Error
3817 # #Setting Error
3818 # #Number 3: AOA not fesible
3818 # #Number 3: AOA not fesible
3819 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3819 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3820 # error[indInvalid] = 3
3820 # error[indInvalid] = 3
3821 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3821 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3822 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3822 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3823 # error[indInvalid] = 4
3823 # error[indInvalid] = 4
3824 # return arrayAOA, error
3824 # return arrayAOA, error
3825 #
3825 #
3826 # def __getDirectionCosines(self, arrayPhase, pairsList):
3826 # def __getDirectionCosines(self, arrayPhase, pairsList):
3827 #
3827 #
3828 # #Initializing some variables
3828 # #Initializing some variables
3829 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3829 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3830 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3830 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3831 #
3831 #
3832 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3832 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3833 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3833 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3834 #
3834 #
3835 #
3835 #
3836 # for i in range(2):
3836 # for i in range(2):
3837 # #First Estimation
3837 # #First Estimation
3838 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3838 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3839 # #Dealias
3839 # #Dealias
3840 # indcsi = numpy.where(phi0_aux > numpy.pi)
3840 # indcsi = numpy.where(phi0_aux > numpy.pi)
3841 # phi0_aux[indcsi] -= 2*numpy.pi
3841 # phi0_aux[indcsi] -= 2*numpy.pi
3842 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3842 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3843 # phi0_aux[indcsi] += 2*numpy.pi
3843 # phi0_aux[indcsi] += 2*numpy.pi
3844 # #Direction Cosine 0
3844 # #Direction Cosine 0
3845 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3845 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3846 #
3846 #
3847 # #Most-Accurate Second Estimation
3847 # #Most-Accurate Second Estimation
3848 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3848 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3849 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3849 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3850 # #Direction Cosine 1
3850 # #Direction Cosine 1
3851 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3851 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3852 #
3852 #
3853 # #Searching the correct Direction Cosine
3853 # #Searching the correct Direction Cosine
3854 # cosdir0_aux = cosdir0[:,i]
3854 # cosdir0_aux = cosdir0[:,i]
3855 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3855 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3856 # #Minimum Distance
3856 # #Minimum Distance
3857 # cosDiff = (cosdir1 - cosdir0_aux)**2
3857 # cosDiff = (cosdir1 - cosdir0_aux)**2
3858 # indcos = cosDiff.argmin(axis = 1)
3858 # indcos = cosDiff.argmin(axis = 1)
3859 # #Saving Value obtained
3859 # #Saving Value obtained
3860 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3860 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3861 #
3861 #
3862 # return cosdir0, cosdir
3862 # return cosdir0, cosdir
3863 #
3863 #
3864 # def __calculateAOA(self, cosdir, azimuth):
3864 # def __calculateAOA(self, cosdir, azimuth):
3865 # cosdirX = cosdir[:,0]
3865 # cosdirX = cosdir[:,0]
3866 # cosdirY = cosdir[:,1]
3866 # cosdirY = cosdir[:,1]
3867 #
3867 #
3868 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3868 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3869 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3869 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3870 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3870 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3871 #
3871 #
3872 # return angles
3872 # return angles
3873 #
3873 #
3874 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3874 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3875 #
3875 #
3876 # Ramb = 375 #Ramb = c/(2*PRF)
3876 # Ramb = 375 #Ramb = c/(2*PRF)
3877 # Re = 6371 #Earth Radius
3877 # Re = 6371 #Earth Radius
3878 # heights = numpy.zeros(Ranges.shape)
3878 # heights = numpy.zeros(Ranges.shape)
3879 #
3879 #
3880 # R_aux = numpy.array([0,1,2])*Ramb
3880 # R_aux = numpy.array([0,1,2])*Ramb
3881 # R_aux = R_aux.reshape(1,R_aux.size)
3881 # R_aux = R_aux.reshape(1,R_aux.size)
3882 #
3882 #
3883 # Ranges = Ranges.reshape(Ranges.size,1)
3883 # Ranges = Ranges.reshape(Ranges.size,1)
3884 #
3884 #
3885 # Ri = Ranges + R_aux
3885 # Ri = Ranges + R_aux
3886 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3886 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3887 #
3887 #
3888 # #Check if there is a height between 70 and 110 km
3888 # #Check if there is a height between 70 and 110 km
3889 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3889 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3890 # ind_h = numpy.where(h_bool == 1)[0]
3890 # ind_h = numpy.where(h_bool == 1)[0]
3891 #
3891 #
3892 # hCorr = hi[ind_h, :]
3892 # hCorr = hi[ind_h, :]
3893 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3893 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3894 #
3894 #
3895 # hCorr = hi[ind_hCorr]
3895 # hCorr = hi[ind_hCorr]
3896 # heights[ind_h] = hCorr
3896 # heights[ind_h] = hCorr
3897 #
3897 #
3898 # #Setting Error
3898 # #Setting Error
3899 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3899 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3900 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3900 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3901 #
3901 #
3902 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3902 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3903 # error[indInvalid2] = 14
3903 # error[indInvalid2] = 14
3904 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3904 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3905 # error[indInvalid1] = 13
3905 # error[indInvalid1] = 13
3906 #
3906 #
3907 # return heights, error
3907 # return heights, error
3908
3908
3909
3909
3910 class WeatherRadar(Operation):
3910 class WeatherRadar(Operation):
3911 '''
3911 '''
3912 Function tat implements Weather Radar operations-
3912 Function tat implements Weather Radar operations-
3913 Input:
3913 Input:
3914 Output:
3914 Output:
3915 Parameters affected:
3915 Parameters affected:
3916 '''
3916 '''
3917 isConfig = False
3917 isConfig = False
3918 variableList = None
3918 variableList = None
3919
3919
3920 def __init__(self):
3920 def __init__(self):
3921 Operation.__init__(self)
3921 Operation.__init__(self)
3922
3922
3923 def setup(self,dataOut,variableList= None,Pt=0,Gt=0,Gr=0,lambda_=0, aL=0,
3923 def setup(self,dataOut,variableList= None,Pt=0,Gt=0,Gr=0,lambda_=0, aL=0,
3924 tauW= 0,thetaT=0,thetaR=0,Km =0):
3924 tauW= 0,thetaT=0,thetaR=0,Km =0):
3925 self.nCh = dataOut.nChannels
3925 self.nCh = dataOut.nChannels
3926 self.nHeis = dataOut.nHeights
3926 self.nHeis = dataOut.nHeights
3927 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
3927 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
3928 self.Range = numpy.arange(dataOut.nHeights)*deltaHeight + dataOut.heightList[0]
3928 self.Range = numpy.arange(dataOut.nHeights)*deltaHeight + dataOut.heightList[0]
3929 self.Range = self.Range.reshape(1,self.nHeis)
3929 self.Range = self.Range.reshape(1,self.nHeis)
3930 self.Range = numpy.tile(self.Range,[self.nCh,1])
3930 self.Range = numpy.tile(self.Range,[self.nCh,1])
3931 '''-----------1 Constante del Radar----------'''
3931 '''-----------1 Constante del Radar----------'''
3932 self.Pt = Pt
3932 self.Pt = Pt
3933 self.Gt = Gt
3933 self.Gt = Gt
3934 self.Gr = Gr
3934 self.Gr = Gr
3935 self.lambda_ = lambda_
3935 self.lambda_ = lambda_
3936 self.aL = aL
3936 self.aL = aL
3937 self.tauW = tauW
3937 self.tauW = tauW
3938 self.thetaT = thetaT
3938 self.thetaT = thetaT
3939 self.thetaR = thetaR
3939 self.thetaR = thetaR
3940 self.Km = Km
3940 self.Km = Km
3941 Numerator = ((4*numpy.pi)**3 * aL**2 * 16 *numpy.log(2))
3941 Numerator = ((4*numpy.pi)**3 * aL**2 * 16 *numpy.log(2))
3942 Denominator = (Pt * Gt * Gr * lambda_**2 * SPEED_OF_LIGHT * tauW * numpy.pi*thetaT*thetaR)
3942 Denominator = (Pt * Gt * Gr * lambda_**2 * SPEED_OF_LIGHT * tauW * numpy.pi*thetaT*thetaR)
3943 self.RadarConstant = Numerator/Denominator
3943 self.RadarConstant = Numerator/Denominator
3944 self.variableList= variableList
3944 self.variableList= variableList
3945
3945
3946 def setMoments(self,dataOut,i):
3946 def setMoments(self,dataOut,i):
3947
3947
3948 type = dataOut.inputUnit
3948 type = dataOut.inputUnit
3949 nCh = dataOut.nChannels
3949 nCh = dataOut.nChannels
3950 nHeis = dataOut.nHeights
3950 nHeis = dataOut.nHeights
3951 data_param = numpy.zeros((nCh,4,nHeis))
3951 data_param = numpy.zeros((nCh,4,nHeis))
3952 if type == "Voltage":
3952 if type == "Voltage":
3953 factor = dataOut.normFactor
3953 factor = dataOut.normFactor
3954 data_param[:,0,:] = dataOut.dataPP_POW/(factor)
3954 data_param[:,0,:] = dataOut.dataPP_POW/(factor)
3955 data_param[:,1,:] = dataOut.dataPP_DOP
3955 data_param[:,1,:] = dataOut.dataPP_DOP
3956 data_param[:,2,:] = dataOut.dataPP_WIDTH
3956 data_param[:,2,:] = dataOut.dataPP_WIDTH
3957 data_param[:,3,:] = dataOut.dataPP_SNR
3957 data_param[:,3,:] = dataOut.dataPP_SNR
3958 if type == "Spectra":
3958 if type == "Spectra":
3959 data_param[:,0,:] = dataOut.data_POW
3959 data_param[:,0,:] = dataOut.data_POW
3960 data_param[:,1,:] = dataOut.data_DOP
3960 data_param[:,1,:] = dataOut.data_DOP
3961 data_param[:,2,:] = dataOut.data_WIDTH
3961 data_param[:,2,:] = dataOut.data_WIDTH
3962 data_param[:,3,:] = dataOut.data_SNR
3962 data_param[:,3,:] = dataOut.data_SNR
3963
3963
3964 return data_param[:,i,:]
3964 return data_param[:,i,:]
3965
3965
3966 def getCoeficienteCorrelacionROhv_R(self,dataOut):
3966 def getCoeficienteCorrelacionROhv_R(self,dataOut):
3967 type = dataOut.inputUnit
3967 type = dataOut.inputUnit
3968 nHeis = dataOut.nHeights
3968 nHeis = dataOut.nHeights
3969 data_RhoHV_R = numpy.zeros((nHeis))
3969 data_RhoHV_R = numpy.zeros((nHeis))
3970 if type == "Voltage":
3970 if type == "Voltage":
3971 powa = dataOut.dataPP_POWER[0]
3971 powa = dataOut.dataPP_POWER[0]
3972 powb = dataOut.dataPP_POWER[1]
3972 powb = dataOut.dataPP_POWER[1]
3973 ccf = dataOut.dataPP_CCF
3973 ccf = dataOut.dataPP_CCF
3974 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3974 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3975 data_RhoHV_R = numpy.abs(avgcoherenceComplex)
3975 data_RhoHV_R = numpy.abs(avgcoherenceComplex)
3976 if type == "Spectra":
3976 if type == "Spectra":
3977 data_RhoHV_R = dataOut.getCoherence()
3977 data_RhoHV_R = dataOut.getCoherence()
3978
3978
3979 return data_RhoHV_R
3979 return data_RhoHV_R
3980
3980
3981 def getFasediferencialPhiD_P(self,dataOut,phase= True):
3981 def getFasediferencialPhiD_P(self,dataOut,phase= True):
3982 type = dataOut.inputUnit
3982 type = dataOut.inputUnit
3983 nHeis = dataOut.nHeights
3983 nHeis = dataOut.nHeights
3984 data_PhiD_P = numpy.zeros((nHeis))
3984 data_PhiD_P = numpy.zeros((nHeis))
3985 if type == "Voltage":
3985 if type == "Voltage":
3986 powa = dataOut.dataPP_POWER[0]
3986 powa = dataOut.dataPP_POWER[0]
3987 powb = dataOut.dataPP_POWER[1]
3987 powb = dataOut.dataPP_POWER[1]
3988 ccf = dataOut.dataPP_CCF
3988 ccf = dataOut.dataPP_CCF
3989 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3989 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3990 if phase:
3990 if phase:
3991 data_PhiD_P = numpy.arctan2(avgcoherenceComplex.imag,
3991 data_PhiD_P = numpy.arctan2(avgcoherenceComplex.imag,
3992 avgcoherenceComplex.real) * 180 / numpy.pi
3992 avgcoherenceComplex.real) * 180 / numpy.pi
3993 if type == "Spectra":
3993 if type == "Spectra":
3994 data_PhiD_P = dataOut.getCoherence(phase = phase)
3994 data_PhiD_P = dataOut.getCoherence(phase = phase)
3995
3995
3996 return data_PhiD_P
3996 return data_PhiD_P
3997
3997
3998 def getReflectividad_D(self,dataOut):
3998 def getReflectividad_D(self,dataOut):
3999 '''-----------------------------Potencia de Radar -Signal S-----------------------------'''
3999 '''-----------------------------Potencia de Radar -Signal S-----------------------------'''
4000
4000
4001 Pr = self.setMoments(dataOut,0)
4001 Pr = self.setMoments(dataOut,0)
4002
4002
4003 '''-----------2 Reflectividad del Radar y Factor de Reflectividad------'''
4003 '''-----------2 Reflectividad del Radar y Factor de Reflectividad------'''
4004 self.n_radar = numpy.zeros((self.nCh,self.nHeis))
4004 self.n_radar = numpy.zeros((self.nCh,self.nHeis))
4005 self.Z_radar = numpy.zeros((self.nCh,self.nHeis))
4005 self.Z_radar = numpy.zeros((self.nCh,self.nHeis))
4006 for R in range(self.nHeis):
4006 for R in range(self.nHeis):
4007 self.n_radar[:,R] = self.RadarConstant*Pr[:,R]* (self.Range[:,R])**2
4007 self.n_radar[:,R] = self.RadarConstant*Pr[:,R]* (self.Range[:,R])**2
4008
4008
4009 self.Z_radar[:,R] = self.n_radar[:,R]* self.lambda_**4/( numpy.pi**5 * self.Km**2)
4009 self.Z_radar[:,R] = self.n_radar[:,R]* self.lambda_**4/( numpy.pi**5 * self.Km**2)
4010
4010
4011 '''----------- Factor de Reflectividad Equivalente lamda_ < 10 cm , lamda_= 3.2cm-------'''
4011 '''----------- Factor de Reflectividad Equivalente lamda_ < 10 cm , lamda_= 3.2cm-------'''
4012 Zeh = self.Z_radar
4012 Zeh = self.Z_radar
4013 dBZeh = 10*numpy.log10(Zeh)
4013 dBZeh = 10*numpy.log10(Zeh)
4014 Zdb_D = dBZeh[0] - dBZeh[1]
4014 Zdb_D = dBZeh[0] - dBZeh[1]
4015 return Zdb_D
4015 return Zdb_D
4016
4016
4017 def getRadialVelocity_V(self,dataOut):
4017 def getRadialVelocity_V(self,dataOut):
4018 velRadial_V = self.setMoments(dataOut,1)
4018 velRadial_V = self.setMoments(dataOut,1)
4019 return velRadial_V
4019 return velRadial_V
4020
4020
4021 def getAnchoEspectral_W(self,dataOut):
4021 def getAnchoEspectral_W(self,dataOut):
4022 Sigmav_W = self.setMoments(dataOut,2)
4022 Sigmav_W = self.setMoments(dataOut,2)
4023 return Sigmav_W
4023 return Sigmav_W
4024
4024
4025
4025
4026 def run(self,dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4026 def run(self,dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4027 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93):
4027 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93):
4028
4028
4029 if not self.isConfig:
4029 if not self.isConfig:
4030 self.setup(dataOut= dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4030 self.setup(dataOut= dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4031 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93)
4031 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93)
4032 self.isConfig = True
4032 self.isConfig = True
4033
4033
4034 for i in range(len(self.variableList)):
4034 for i in range(len(self.variableList)):
4035 if self.variableList[i]=='ReflectividadDiferencial':
4035 if self.variableList[i]=='ReflectividadDiferencial':
4036 dataOut.Zdb_D =self.getReflectividad_D(dataOut=dataOut)
4036 dataOut.Zdb_D =self.getReflectividad_D(dataOut=dataOut)
4037 if self.variableList[i]=='FaseDiferencial':
4037 if self.variableList[i]=='FaseDiferencial':
4038 dataOut.PhiD_P =self.getFasediferencialPhiD_P(dataOut=dataOut, phase=True)
4038 dataOut.PhiD_P =self.getFasediferencialPhiD_P(dataOut=dataOut, phase=True)
4039 if self.variableList[i] == "CoeficienteCorrelacion":
4039 if self.variableList[i] == "CoeficienteCorrelacion":
4040 dataOut.RhoHV_R = self.getCoeficienteCorrelacionROhv_R(dataOut)
4040 dataOut.RhoHV_R = self.getCoeficienteCorrelacionROhv_R(dataOut)
4041 if self.variableList[i] =="VelocidadRadial":
4041 if self.variableList[i] =="VelocidadRadial":
4042 dataOut.velRadial_V = self.getRadialVelocity_V(dataOut)
4042 dataOut.velRadial_V = self.getRadialVelocity_V(dataOut)
4043 if self.variableList[i] =="AnchoEspectral":
4043 if self.variableList[i] =="AnchoEspectral":
4044 dataOut.Sigmav_W = self.getAnchoEspectral_W(dataOut)
4044 dataOut.Sigmav_W = self.getAnchoEspectral_W(dataOut)
4045 return dataOut
4045 return dataOut
4046
4046
4047 class PedestalInformation(Operation):
4047 class PedestalInformation(Operation):
4048
4048
4049 def __init__(self):
4049 def __init__(self):
4050 Operation.__init__(self)
4050 Operation.__init__(self)
4051 self.filename = False
4051 self.filename = False
4052
4052
4053 def find_file(self, timestamp):
4053 def find_file(self, timestamp):
4054
4054
4055 dt = datetime.datetime.utcfromtimestamp(timestamp)
4055 dt = datetime.datetime.utcfromtimestamp(timestamp)
4056 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4056 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4057
4057
4058 if not os.path.exists(path):
4058 if not os.path.exists(path):
4059 return False, False
4059 return False, False
4060 fileList = glob.glob(os.path.join(path, '*.h5'))
4060 fileList = glob.glob(os.path.join(path, '*.h5'))
4061 fileList.sort()
4061 fileList.sort()
4062 for fullname in fileList:
4062 for fullname in fileList:
4063 filename = fullname.split('/')[-1]
4063 filename = fullname.split('/')[-1]
4064 number = int(filename[4:14])
4064 number = int(filename[4:14])
4065 if number <= timestamp:
4065 if number <= timestamp:
4066 return number, fullname
4066 return number, fullname
4067 return False, False
4067 return False, False
4068
4068
4069 def find_next_file(self):
4069 def find_next_file(self):
4070
4070
4071 while True:
4071 while True:
4072 file_size = len(self.fp['Data']['utc'])
4072 file_size = len(self.fp['Data']['utc'])
4073 if self.utctime < self.utcfile+file_size*self.interval:
4073 if self.utctime < self.utcfile+file_size*self.interval:
4074 break
4074 break
4075 self.utcfile += file_size*self.interval
4075 self.utcfile += file_size*self.interval
4076 dt = datetime.datetime.utcfromtimestamp(self.utctime)
4076 dt = datetime.datetime.utcfromtimestamp(self.utctime)
4077 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4077 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4078 self.filename = os.path.join(path, 'pos@{}.000.h5'.format(self.utcfile))
4078 self.filename = os.path.join(path, 'pos@{}.000.h5'.format(int(self.utcfile)))
4079 if not os.path.exists(self.filename):
4079 if not os.path.exists(self.filename):
4080 log.warning('Waiting for position files...', self.name)
4080 log.warning('Waiting for position files...', self.name)
4081
4081
4082 if not os.path.exists(self.filename):
4082 if not os.path.exists(self.filename):
4083
4083
4084 raise IOError('No new position files found in {}'.format(path))
4084 raise IOError('No new position files found in {}'.format(path))
4085 self.fp.close()
4085 self.fp.close()
4086 self.fp = h5py.File(self.filename, 'r')
4086 self.fp = h5py.File(self.filename, 'r')
4087 log.log('Opening file: {}'.format(self.filename), self.name)
4087 log.log('Opening file: {}'.format(self.filename), self.name)
4088
4088
4089 def get_values(self):
4089 def get_values(self):
4090
4090
4091 index = int((self.utctime-self.utcfile)/self.interval)
4091 index = int((self.utctime-self.utcfile)/self.interval)
4092 return self.fp['Data']['azi_pos'][index], self.fp['Data']['ele_pos'][index]
4092 return self.fp['Data']['azi_pos'][index], self.fp['Data']['ele_pos'][index]
4093
4093
4094 def setup(self, dataOut, path, conf, samples, interval, wr_exp):
4094 def setup(self, dataOut, path, conf, samples, interval, wr_exp):
4095
4095
4096 self.path = path
4096 self.path = path
4097 self.conf = conf
4097 self.conf = conf
4098 self.samples = samples
4098 self.samples = samples
4099 self.interval = interval
4099 self.interval = interval
4100 self.utcfile, self.filename = self.find_file(dataOut.utctime)
4100 self.utcfile, self.filename = self.find_file(dataOut.utctime)
4101
4101
4102 if not self.filename:
4102 if not self.filename:
4103 log.error('No position files found in {}'.format(path), self.name)
4103 log.error('No position files found in {}'.format(path), self.name)
4104 raise IOError('No position files found in {}'.format(path))
4104 raise IOError('No position files found in {}'.format(path))
4105 else:
4105 else:
4106 log.log('Opening file: {}'.format(self.filename), self.name)
4106 log.log('Opening file: {}'.format(self.filename), self.name)
4107 self.fp = h5py.File(self.filename, 'r')
4107 self.fp = h5py.File(self.filename, 'r')
4108
4108
4109 def run(self, dataOut, path, conf=None, samples=1500, interval=0.04, wr_exp=None):
4109 def run(self, dataOut, path, conf=None, samples=1500, interval=0.04, wr_exp=None):
4110
4110
4111 if not self.isConfig:
4111 if not self.isConfig:
4112 self.setup(dataOut, path, conf, samples, interval, wr_exp)
4112 self.setup(dataOut, path, conf, samples, interval, wr_exp)
4113 self.isConfig = True
4113 self.isConfig = True
4114
4114
4115 self.utctime = dataOut.utctime
4115 self.utctime = dataOut.utctime
4116
4116
4117 self.find_next_file()
4117 self.find_next_file()
4118
4118
4119 az, el = self.get_values()
4119 az, el = self.get_values()
4120 dataOut.flagNoData = False
4120 dataOut.flagNoData = False
4121
4121
4122 if numpy.isnan(az) or numpy.isnan(el) :
4122 if numpy.isnan(az) or numpy.isnan(el) :
4123 dataOut.flagNoData = True
4123 dataOut.flagNoData = True
4124 return dataOut
4124 return dataOut
4125
4125
4126 dataOut.azimuth = az
4126 dataOut.azimuth = az
4127 dataOut.elevation = el
4127 dataOut.elevation = el
4128 # print('AZ: ', az, ' EL: ', el)
4128 # print('AZ: ', az, ' EL: ', el)
4129 return dataOut
4129 return dataOut
4130
4130
4131 class Block360(Operation):
4131 class Block360(Operation):
4132 '''
4132 '''
4133 '''
4133 '''
4134 isConfig = False
4134 isConfig = False
4135 __profIndex = 0
4135 __profIndex = 0
4136 __initime = None
4136 __initime = None
4137 __lastdatatime = None
4137 __lastdatatime = None
4138 __buffer = None
4138 __buffer = None
4139 __dataReady = False
4139 __dataReady = False
4140 n = None
4140 n = None
4141 __nch = 0
4141 __nch = 0
4142 __nHeis = 0
4142 __nHeis = 0
4143 index = 0
4143 index = 0
4144 mode = 0
4144 mode = 0
4145
4145
4146 def __init__(self,**kwargs):
4146 def __init__(self,**kwargs):
4147 Operation.__init__(self,**kwargs)
4147 Operation.__init__(self,**kwargs)
4148
4148
4149 def setup(self, dataOut, n = None, mode = None):
4149 def setup(self, dataOut, n = None, mode = None):
4150 '''
4150 '''
4151 n= Numero de PRF's de entrada
4151 n= Numero de PRF's de entrada
4152 '''
4152 '''
4153 self.__initime = None
4153 self.__initime = None
4154 self.__lastdatatime = 0
4154 self.__lastdatatime = 0
4155 self.__dataReady = False
4155 self.__dataReady = False
4156 self.__buffer = 0
4156 self.__buffer = 0
4157 self.__buffer_1D = 0
4157 self.__buffer_1D = 0
4158 self.__profIndex = 0
4158 self.__profIndex = 0
4159 self.index = 0
4159 self.index = 0
4160 self.__nch = dataOut.nChannels
4160 self.__nch = dataOut.nChannels
4161 self.__nHeis = dataOut.nHeights
4161 self.__nHeis = dataOut.nHeights
4162 ##print("ELVALOR DE n es:", n)
4162 ##print("ELVALOR DE n es:", n)
4163 if n == None:
4163 if n == None:
4164 raise ValueError("n should be specified.")
4164 raise ValueError("n should be specified.")
4165
4165
4166 if mode == None:
4166 if mode == None:
4167 raise ValueError("mode should be specified.")
4167 raise ValueError("mode should be specified.")
4168
4168
4169 if n != None:
4169 if n != None:
4170 if n<1:
4170 if n<1:
4171 print("n should be greater than 2")
4171 print("n should be greater than 2")
4172 raise ValueError("n should be greater than 2")
4172 raise ValueError("n should be greater than 2")
4173
4173
4174 self.n = n
4174 self.n = n
4175 self.mode = mode
4175 self.mode = mode
4176 #print("self.mode",self.mode)
4176 #print("self.mode",self.mode)
4177 #print("nHeights")
4177 #print("nHeights")
4178 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4178 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4179 self.__buffer2 = numpy.zeros(n)
4179 self.__buffer2 = numpy.zeros(n)
4180 self.__buffer3 = numpy.zeros(n)
4180 self.__buffer3 = numpy.zeros(n)
4181
4181
4182
4182
4183
4183
4184
4184
4185 def putData(self,data,mode):
4185 def putData(self,data,mode):
4186 '''
4186 '''
4187 Add a profile to he __buffer and increase in one the __profiel Index
4187 Add a profile to he __buffer and increase in one the __profiel Index
4188 '''
4188 '''
4189 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4189 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4190 #print("line 4049",data.azimuth.shape,data.azimuth)
4190 #print("line 4049",data.azimuth.shape,data.azimuth)
4191 if self.mode==0:
4191 if self.mode==0:
4192 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4192 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4193 if self.mode==1:
4193 if self.mode==1:
4194 self.__buffer[:,self.__profIndex,:]= data.data_pow
4194 self.__buffer[:,self.__profIndex,:]= data.data_pow
4195 #print("me casi",self.index,data.azimuth[self.index])
4195 #print("me casi",self.index,data.azimuth[self.index])
4196 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4196 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4197 #print("magic",data.profileIndex)
4197 #print("magic",data.profileIndex)
4198 #print(data.azimuth[self.index])
4198 #print(data.azimuth[self.index])
4199 #print("index",self.index)
4199 #print("index",self.index)
4200
4200
4201 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4201 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4202 self.__buffer2[self.__profIndex] = data.azimuth
4202 self.__buffer2[self.__profIndex] = data.azimuth
4203 self.__buffer3[self.__profIndex] = data.elevation
4203 self.__buffer3[self.__profIndex] = data.elevation
4204 #print("q pasa")
4204 #print("q pasa")
4205 #####self.index+=1
4205 #####self.index+=1
4206 #print("index",self.index,data.azimuth[:10])
4206 #print("index",self.index,data.azimuth[:10])
4207 self.__profIndex += 1
4207 self.__profIndex += 1
4208 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4208 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4209
4209
4210 def pushData(self,data):
4210 def pushData(self,data):
4211 '''
4211 '''
4212 Return the PULSEPAIR and the profiles used in the operation
4212 Return the PULSEPAIR and the profiles used in the operation
4213 Affected : self.__profileIndex
4213 Affected : self.__profileIndex
4214 '''
4214 '''
4215 #print("pushData")
4215 #print("pushData")
4216
4216
4217 data_360 = self.__buffer
4217 data_360 = self.__buffer
4218 data_p = self.__buffer2
4218 data_p = self.__buffer2
4219 data_e = self.__buffer3
4219 data_e = self.__buffer3
4220 n = self.__profIndex
4220 n = self.__profIndex
4221
4221
4222 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4222 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4223 self.__buffer2 = numpy.zeros(self.n)
4223 self.__buffer2 = numpy.zeros(self.n)
4224 self.__buffer3 = numpy.zeros(self.n)
4224 self.__buffer3 = numpy.zeros(self.n)
4225 self.__profIndex = 0
4225 self.__profIndex = 0
4226 #print("pushData")
4226 #print("pushData")
4227 return data_360,n,data_p,data_e
4227 return data_360,n,data_p,data_e
4228
4228
4229
4229
4230 def byProfiles(self,dataOut):
4230 def byProfiles(self,dataOut):
4231
4231
4232 self.__dataReady = False
4232 self.__dataReady = False
4233 data_360 = None
4233 data_360 = None
4234 data_p = None
4234 data_p = None
4235 data_e = None
4235 data_e = None
4236 #print("dataOu",dataOut.dataPP_POW)
4236 #print("dataOu",dataOut.dataPP_POW)
4237 self.putData(data=dataOut,mode = self.mode)
4237 self.putData(data=dataOut,mode = self.mode)
4238 ##### print("profIndex",self.__profIndex)
4238 ##### print("profIndex",self.__profIndex)
4239 if self.__profIndex == self.n:
4239 if self.__profIndex == self.n:
4240 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4240 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4241 self.__dataReady = True
4241 self.__dataReady = True
4242
4242
4243 return data_360,data_p,data_e
4243 return data_360,data_p,data_e
4244
4244
4245
4245
4246 def blockOp(self, dataOut, datatime= None):
4246 def blockOp(self, dataOut, datatime= None):
4247 if self.__initime == None:
4247 if self.__initime == None:
4248 self.__initime = datatime
4248 self.__initime = datatime
4249 data_360,data_p,data_e = self.byProfiles(dataOut)
4249 data_360,data_p,data_e = self.byProfiles(dataOut)
4250 self.__lastdatatime = datatime
4250 self.__lastdatatime = datatime
4251
4251
4252 if data_360 is None:
4252 if data_360 is None:
4253 return None, None,None,None
4253 return None, None,None,None
4254
4254
4255
4255
4256 avgdatatime = self.__initime
4256 avgdatatime = self.__initime
4257 if self.n==1:
4257 if self.n==1:
4258 avgdatatime = datatime
4258 avgdatatime = datatime
4259 deltatime = datatime - self.__lastdatatime
4259 deltatime = datatime - self.__lastdatatime
4260 self.__initime = datatime
4260 self.__initime = datatime
4261 #print(data_360.shape,avgdatatime,data_p.shape)
4261 #print(data_360.shape,avgdatatime,data_p.shape)
4262 return data_360,avgdatatime,data_p,data_e
4262 return data_360,avgdatatime,data_p,data_e
4263
4263
4264 def run(self, dataOut,n = None,mode=None,**kwargs):
4264 def run(self, dataOut,n = None,mode=None,**kwargs):
4265 #print("BLOCK 360 HERE WE GO MOMENTOS")
4265 #print("BLOCK 360 HERE WE GO MOMENTOS")
4266 print("Block 360")
4266 print("Block 360")
4267 #exit(1)
4267 #exit(1)
4268 if not self.isConfig:
4268 if not self.isConfig:
4269 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4269 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4270 ####self.index = 0
4270 ####self.index = 0
4271 #print("comova",self.isConfig)
4271 #print("comova",self.isConfig)
4272 self.isConfig = True
4272 self.isConfig = True
4273 ####if self.index==dataOut.azimuth.shape[0]:
4273 ####if self.index==dataOut.azimuth.shape[0]:
4274 #### self.index=0
4274 #### self.index=0
4275 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4275 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4276 dataOut.flagNoData = True
4276 dataOut.flagNoData = True
4277
4277
4278 if self.__dataReady:
4278 if self.__dataReady:
4279 dataOut.data_360 = data_360 # S
4279 dataOut.data_360 = data_360 # S
4280 #print("DATA 360")
4280 #print("DATA 360")
4281 #print(dataOut.data_360)
4281 #print(dataOut.data_360)
4282 #print("---------------------------------------------------------------------------------")
4282 #print("---------------------------------------------------------------------------------")
4283 print("---------------------------DATAREADY---------------------------------------------")
4283 print("---------------------------DATAREADY---------------------------------------------")
4284 #print("---------------------------------------------------------------------------------")
4284 #print("---------------------------------------------------------------------------------")
4285 #print("data_360",dataOut.data_360.shape)
4285 #print("data_360",dataOut.data_360.shape)
4286 dataOut.data_azi = data_p
4286 dataOut.data_azi = data_p
4287 dataOut.data_ele = data_e
4287 dataOut.data_ele = data_e
4288 ###print("azi: ",dataOut.data_azi)
4288 ###print("azi: ",dataOut.data_azi)
4289 #print("ele: ",dataOut.data_ele)
4289 #print("ele: ",dataOut.data_ele)
4290 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4290 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4291 dataOut.utctime = avgdatatime
4291 dataOut.utctime = avgdatatime
4292 dataOut.flagNoData = False
4292 dataOut.flagNoData = False
4293 return dataOut
4293 return dataOut
4294
4294
4295 class Block360_vRF(Operation):
4295 class Block360_vRF(Operation):
4296 '''
4296 '''
4297 '''
4297 '''
4298 isConfig = False
4298 isConfig = False
4299 __profIndex = 0
4299 __profIndex = 0
4300 __initime = None
4300 __initime = None
4301 __lastdatatime = None
4301 __lastdatatime = None
4302 __buffer = None
4302 __buffer = None
4303 __dataReady = False
4303 __dataReady = False
4304 n = None
4304 n = None
4305 __nch = 0
4305 __nch = 0
4306 __nHeis = 0
4306 __nHeis = 0
4307 index = 0
4307 index = 0
4308 mode = 0
4308 mode = 0
4309
4309
4310 def __init__(self,**kwargs):
4310 def __init__(self,**kwargs):
4311 Operation.__init__(self,**kwargs)
4311 Operation.__init__(self,**kwargs)
4312
4312
4313 def setup(self, dataOut, n = None, mode = None):
4313 def setup(self, dataOut, n = None, mode = None):
4314 '''
4314 '''
4315 n= Numero de PRF's de entrada
4315 n= Numero de PRF's de entrada
4316 '''
4316 '''
4317 self.__initime = None
4317 self.__initime = None
4318 self.__lastdatatime = 0
4318 self.__lastdatatime = 0
4319 self.__dataReady = False
4319 self.__dataReady = False
4320 self.__buffer = 0
4320 self.__buffer = 0
4321 self.__buffer_1D = 0
4321 self.__buffer_1D = 0
4322 self.__profIndex = 0
4322 self.__profIndex = 0
4323 self.index = 0
4323 self.index = 0
4324 self.__nch = dataOut.nChannels
4324 self.__nch = dataOut.nChannels
4325 self.__nHeis = dataOut.nHeights
4325 self.__nHeis = dataOut.nHeights
4326 ##print("ELVALOR DE n es:", n)
4326 ##print("ELVALOR DE n es:", n)
4327 if n == None:
4327 if n == None:
4328 raise ValueError("n should be specified.")
4328 raise ValueError("n should be specified.")
4329
4329
4330 if mode == None:
4330 if mode == None:
4331 raise ValueError("mode should be specified.")
4331 raise ValueError("mode should be specified.")
4332
4332
4333 if n != None:
4333 if n != None:
4334 if n<1:
4334 if n<1:
4335 print("n should be greater than 2")
4335 print("n should be greater than 2")
4336 raise ValueError("n should be greater than 2")
4336 raise ValueError("n should be greater than 2")
4337
4337
4338 self.n = n
4338 self.n = n
4339 self.mode = mode
4339 self.mode = mode
4340 #print("self.mode",self.mode)
4340 #print("self.mode",self.mode)
4341 #print("nHeights")
4341 #print("nHeights")
4342 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4342 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4343 self.__buffer2 = numpy.zeros(n)
4343 self.__buffer2 = numpy.zeros(n)
4344 self.__buffer3 = numpy.zeros(n)
4344 self.__buffer3 = numpy.zeros(n)
4345
4345
4346
4346
4347
4347
4348
4348
4349 def putData(self,data,mode):
4349 def putData(self,data,mode):
4350 '''
4350 '''
4351 Add a profile to he __buffer and increase in one the __profiel Index
4351 Add a profile to he __buffer and increase in one the __profiel Index
4352 '''
4352 '''
4353 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4353 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4354 #print("line 4049",data.azimuth.shape,data.azimuth)
4354 #print("line 4049",data.azimuth.shape,data.azimuth)
4355 if self.mode==0:
4355 if self.mode==0:
4356 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4356 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4357 if self.mode==1:
4357 if self.mode==1:
4358 self.__buffer[:,self.__profIndex,:]= data.data_pow
4358 self.__buffer[:,self.__profIndex,:]= data.data_pow
4359 #print("me casi",self.index,data.azimuth[self.index])
4359 #print("me casi",self.index,data.azimuth[self.index])
4360 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4360 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4361 #print("magic",data.profileIndex)
4361 #print("magic",data.profileIndex)
4362 #print(data.azimuth[self.index])
4362 #print(data.azimuth[self.index])
4363 #print("index",self.index)
4363 #print("index",self.index)
4364
4364
4365 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4365 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4366 self.__buffer2[self.__profIndex] = data.azimuth
4366 self.__buffer2[self.__profIndex] = data.azimuth
4367 self.__buffer3[self.__profIndex] = data.elevation
4367 self.__buffer3[self.__profIndex] = data.elevation
4368 #print("q pasa")
4368 #print("q pasa")
4369 #####self.index+=1
4369 #####self.index+=1
4370 #print("index",self.index,data.azimuth[:10])
4370 #print("index",self.index,data.azimuth[:10])
4371 self.__profIndex += 1
4371 self.__profIndex += 1
4372 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4372 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4373
4373
4374 def pushData(self,data):
4374 def pushData(self,data):
4375 '''
4375 '''
4376 Return the PULSEPAIR and the profiles used in the operation
4376 Return the PULSEPAIR and the profiles used in the operation
4377 Affected : self.__profileIndex
4377 Affected : self.__profileIndex
4378 '''
4378 '''
4379 #print("pushData")
4379 #print("pushData")
4380
4380
4381 data_360 = self.__buffer
4381 data_360 = self.__buffer
4382 data_p = self.__buffer2
4382 data_p = self.__buffer2
4383 data_e = self.__buffer3
4383 data_e = self.__buffer3
4384 n = self.__profIndex
4384 n = self.__profIndex
4385
4385
4386 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4386 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4387 self.__buffer2 = numpy.zeros(self.n)
4387 self.__buffer2 = numpy.zeros(self.n)
4388 self.__buffer3 = numpy.zeros(self.n)
4388 self.__buffer3 = numpy.zeros(self.n)
4389 self.__profIndex = 0
4389 self.__profIndex = 0
4390 #print("pushData")
4390 #print("pushData")
4391 return data_360,n,data_p,data_e
4391 return data_360,n,data_p,data_e
4392
4392
4393
4393
4394 def byProfiles(self,dataOut):
4394 def byProfiles(self,dataOut):
4395
4395
4396 self.__dataReady = False
4396 self.__dataReady = False
4397 data_360 = None
4397 data_360 = None
4398 data_p = None
4398 data_p = None
4399 data_e = None
4399 data_e = None
4400 #print("dataOu",dataOut.dataPP_POW)
4400 #print("dataOu",dataOut.dataPP_POW)
4401 self.putData(data=dataOut,mode = self.mode)
4401 self.putData(data=dataOut,mode = self.mode)
4402 ##### print("profIndex",self.__profIndex)
4402 ##### print("profIndex",self.__profIndex)
4403 if self.__profIndex == self.n:
4403 if self.__profIndex == self.n:
4404 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4404 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4405 self.__dataReady = True
4405 self.__dataReady = True
4406
4406
4407 return data_360,data_p,data_e
4407 return data_360,data_p,data_e
4408
4408
4409
4409
4410 def blockOp(self, dataOut, datatime= None):
4410 def blockOp(self, dataOut, datatime= None):
4411 if self.__initime == None:
4411 if self.__initime == None:
4412 self.__initime = datatime
4412 self.__initime = datatime
4413 data_360,data_p,data_e = self.byProfiles(dataOut)
4413 data_360,data_p,data_e = self.byProfiles(dataOut)
4414 self.__lastdatatime = datatime
4414 self.__lastdatatime = datatime
4415
4415
4416 if data_360 is None:
4416 if data_360 is None:
4417 return None, None,None,None
4417 return None, None,None,None
4418
4418
4419
4419
4420 avgdatatime = self.__initime
4420 avgdatatime = self.__initime
4421 if self.n==1:
4421 if self.n==1:
4422 avgdatatime = datatime
4422 avgdatatime = datatime
4423 deltatime = datatime - self.__lastdatatime
4423 deltatime = datatime - self.__lastdatatime
4424 self.__initime = datatime
4424 self.__initime = datatime
4425 #print(data_360.shape,avgdatatime,data_p.shape)
4425 #print(data_360.shape,avgdatatime,data_p.shape)
4426 return data_360,avgdatatime,data_p,data_e
4426 return data_360,avgdatatime,data_p,data_e
4427
4427
4428 def checkcase(self,data_ele):
4428 def checkcase(self,data_ele):
4429 start = data_ele[0]
4429 start = data_ele[0]
4430 end = data_ele[-1]
4430 end = data_ele[-1]
4431 diff_angle = (end-start)
4431 diff_angle = (end-start)
4432 len_ang=len(data_ele)
4432 len_ang=len(data_ele)
4433 print("start",start)
4433 print("start",start)
4434 print("end",end)
4434 print("end",end)
4435 print("number",diff_angle)
4435 print("number",diff_angle)
4436
4436
4437 print("len_ang",len_ang)
4437 print("len_ang",len_ang)
4438
4438
4439 aux = (data_ele<0).any(axis=0)
4439 aux = (data_ele<0).any(axis=0)
4440
4440
4441 #exit(1)
4441 #exit(1)
4442 if diff_angle<0 and aux!=1: #Bajada
4442 if diff_angle<0 and aux!=1: #Bajada
4443 return 1
4443 return 1
4444 elif diff_angle<0 and aux==1: #Bajada con angulos negativos
4444 elif diff_angle<0 and aux==1: #Bajada con angulos negativos
4445 return 0
4445 return 0
4446 elif diff_angle == 0: # This case happens when the angle reaches the max_angle if n = 2
4446 elif diff_angle == 0: # This case happens when the angle reaches the max_angle if n = 2
4447 self.flagEraseFirstData = 1
4447 self.flagEraseFirstData = 1
4448 print("ToDO this case")
4448 print("ToDO this case")
4449 exit(1)
4449 exit(1)
4450 elif diff_angle>0: #Subida
4450 elif diff_angle>0: #Subida
4451 return 0
4451 return 0
4452
4452
4453 def run(self, dataOut,n = None,mode=None,**kwargs):
4453 def run(self, dataOut,n = None,mode=None,**kwargs):
4454 #print("BLOCK 360 HERE WE GO MOMENTOS")
4454 #print("BLOCK 360 HERE WE GO MOMENTOS")
4455 print("Block 360")
4455 print("Block 360")
4456
4456
4457 #exit(1)
4457 #exit(1)
4458 if not self.isConfig:
4458 if not self.isConfig:
4459 if n == 1:
4459 if n == 1:
4460 print("*******************Min Value is 2. Setting n = 2*******************")
4460 print("*******************Min Value is 2. Setting n = 2*******************")
4461 n = 2
4461 n = 2
4462 #exit(1)
4462 #exit(1)
4463 print(n)
4463 print(n)
4464 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4464 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4465 ####self.index = 0
4465 ####self.index = 0
4466 #print("comova",self.isConfig)
4466 #print("comova",self.isConfig)
4467 self.isConfig = True
4467 self.isConfig = True
4468 ####if self.index==dataOut.azimuth.shape[0]:
4468 ####if self.index==dataOut.azimuth.shape[0]:
4469 #### self.index=0
4469 #### self.index=0
4470 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4470 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4471 dataOut.flagNoData = True
4471 dataOut.flagNoData = True
4472
4472
4473 if self.__dataReady:
4473 if self.__dataReady:
4474 dataOut.data_360 = data_360 # S
4474 dataOut.data_360 = data_360 # S
4475 #print("DATA 360")
4475 #print("DATA 360")
4476 #print(dataOut.data_360)
4476 #print(dataOut.data_360)
4477 #print("---------------------------------------------------------------------------------")
4477 #print("---------------------------------------------------------------------------------")
4478 print("---------------------------DATAREADY---------------------------------------------")
4478 print("---------------------------DATAREADY---------------------------------------------")
4479 #print("---------------------------------------------------------------------------------")
4479 #print("---------------------------------------------------------------------------------")
4480 #print("data_360",dataOut.data_360.shape)
4480 #print("data_360",dataOut.data_360.shape)
4481 dataOut.data_azi = data_p
4481 dataOut.data_azi = data_p
4482 dataOut.data_ele = data_e
4482 dataOut.data_ele = data_e
4483 ###print("azi: ",dataOut.data_azi)
4483 ###print("azi: ",dataOut.data_azi)
4484 #print("ele: ",dataOut.data_ele)
4484 #print("ele: ",dataOut.data_ele)
4485 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4485 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4486 dataOut.utctime = avgdatatime
4486 dataOut.utctime = avgdatatime
4487
4487
4488 dataOut.case_flag = self.checkcase(dataOut.data_ele)
4488 dataOut.case_flag = self.checkcase(dataOut.data_ele)
4489 if dataOut.case_flag: #Si estΓ‘ de bajada empieza a plotear
4489 if dataOut.case_flag: #Si estΓ‘ de bajada empieza a plotear
4490 print("INSIDE CASE FLAG BAJADA")
4490 print("INSIDE CASE FLAG BAJADA")
4491 dataOut.flagNoData = False
4491 dataOut.flagNoData = False
4492 else:
4492 else:
4493 print("CASE SUBIDA")
4493 print("CASE SUBIDA")
4494 dataOut.flagNoData = True
4494 dataOut.flagNoData = True
4495
4495
4496 #dataOut.flagNoData = False
4496 #dataOut.flagNoData = False
4497 return dataOut
4497 return dataOut
4498
4498
4499 class Block360_vRF2(Operation):
4499 class Block360_vRF2(Operation):
4500 '''
4500 '''
4501 '''
4501 '''
4502 isConfig = False
4502 isConfig = False
4503 __profIndex = 0
4503 __profIndex = 0
4504 __initime = None
4504 __initime = None
4505 __lastdatatime = None
4505 __lastdatatime = None
4506 __buffer = None
4506 __buffer = None
4507 __dataReady = False
4507 __dataReady = False
4508 n = None
4508 n = None
4509 __nch = 0
4509 __nch = 0
4510 __nHeis = 0
4510 __nHeis = 0
4511 index = 0
4511 index = 0
4512 mode = 0
4512 mode = 0
4513
4513
4514 def __init__(self,**kwargs):
4514 def __init__(self,**kwargs):
4515 Operation.__init__(self,**kwargs)
4515 Operation.__init__(self,**kwargs)
4516
4516
4517 def setup(self, dataOut, n = None, mode = None):
4517 def setup(self, dataOut, n = None, mode = None):
4518 '''
4518 '''
4519 n= Numero de PRF's de entrada
4519 n= Numero de PRF's de entrada
4520 '''
4520 '''
4521 self.__initime = None
4521 self.__initime = None
4522 self.__lastdatatime = 0
4522 self.__lastdatatime = 0
4523 self.__dataReady = False
4523 self.__dataReady = False
4524 self.__buffer = 0
4524 self.__buffer = 0
4525 self.__buffer_1D = 0
4525 self.__buffer_1D = 0
4526 #self.__profIndex = 0
4526 #self.__profIndex = 0
4527 self.index = 0
4527 self.index = 0
4528 self.__nch = dataOut.nChannels
4528 self.__nch = dataOut.nChannels
4529 self.__nHeis = dataOut.nHeights
4529 self.__nHeis = dataOut.nHeights
4530
4530
4531 self.mode = mode
4531 self.mode = mode
4532 #print("self.mode",self.mode)
4532 #print("self.mode",self.mode)
4533 #print("nHeights")
4533 #print("nHeights")
4534 self.__buffer = []
4534 self.__buffer = []
4535 self.__buffer2 = []
4535 self.__buffer2 = []
4536 self.__buffer3 = []
4536 self.__buffer3 = []
4537
4537
4538 def putData(self,data,mode):
4538 def putData(self,data,mode):
4539 '''
4539 '''
4540 Add a profile to he __buffer and increase in one the __profiel Index
4540 Add a profile to he __buffer and increase in one the __profiel Index
4541 '''
4541 '''
4542 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4542 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4543 #print("line 4049",data.azimuth.shape,data.azimuth)
4543 #print("line 4049",data.azimuth.shape,data.azimuth)
4544 if self.mode==0:
4544 if self.mode==0:
4545 self.__buffer.append(data.dataPP_POWER)# PRIMER MOMENTO
4545 self.__buffer.append(data.dataPP_POWER)# PRIMER MOMENTO
4546 if self.mode==1:
4546 if self.mode==1:
4547 self.__buffer.append(data.data_pow)
4547 self.__buffer.append(data.data_pow)
4548 #print("me casi",self.index,data.azimuth[self.index])
4548 #print("me casi",self.index,data.azimuth[self.index])
4549 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4549 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4550 #print("magic",data.profileIndex)
4550 #print("magic",data.profileIndex)
4551 #print(data.azimuth[self.index])
4551 #print(data.azimuth[self.index])
4552 #print("index",self.index)
4552 #print("index",self.index)
4553
4553
4554 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4554 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4555 self.__buffer2.append(data.azimuth)
4555 self.__buffer2.append(data.azimuth)
4556 self.__buffer3.append(data.elevation)
4556 self.__buffer3.append(data.elevation)
4557 self.__profIndex += 1
4557 self.__profIndex += 1
4558 #print("q pasa")
4558 #print("q pasa")
4559 return numpy.array(self.__buffer3) #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4559 return numpy.array(self.__buffer3) #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4560
4560
4561 def pushData(self,data):
4561 def pushData(self,data):
4562 '''
4562 '''
4563 Return the PULSEPAIR and the profiles used in the operation
4563 Return the PULSEPAIR and the profiles used in the operation
4564 Affected : self.__profileIndex
4564 Affected : self.__profileIndex
4565 '''
4565 '''
4566 #print("pushData")
4566 #print("pushData")
4567
4567
4568 data_360 = numpy.array(self.__buffer).transpose(1,0,2)
4568 data_360 = numpy.array(self.__buffer).transpose(1,0,2)
4569 data_p = numpy.array(self.__buffer2)
4569 data_p = numpy.array(self.__buffer2)
4570 data_e = numpy.array(self.__buffer3)
4570 data_e = numpy.array(self.__buffer3)
4571 n = self.__profIndex
4571 n = self.__profIndex
4572
4572
4573 self.__buffer = []
4573 self.__buffer = []
4574 self.__buffer2 = []
4574 self.__buffer2 = []
4575 self.__buffer3 = []
4575 self.__buffer3 = []
4576 self.__profIndex = 0
4576 self.__profIndex = 0
4577 #print("pushData")
4577 #print("pushData")
4578 return data_360,n,data_p,data_e
4578 return data_360,n,data_p,data_e
4579
4579
4580
4580
4581 def byProfiles(self,dataOut):
4581 def byProfiles(self,dataOut):
4582
4582
4583 self.__dataReady = False
4583 self.__dataReady = False
4584 data_360 = None
4584 data_360 = None
4585 data_p = None
4585 data_p = None
4586 data_e = None
4586 data_e = None
4587 #print("dataOu",dataOut.dataPP_POW)
4587 #print("dataOu",dataOut.dataPP_POW)
4588
4588
4589 elevations = self.putData(data=dataOut,mode = self.mode)
4589 elevations = self.putData(data=dataOut,mode = self.mode)
4590 ##### print("profIndex",self.__profIndex)
4590 ##### print("profIndex",self.__profIndex)
4591
4591
4592
4592
4593 if self.__profIndex > 1:
4593 if self.__profIndex > 1:
4594 case_flag = self.checkcase(elevations)
4594 case_flag = self.checkcase(elevations)
4595
4595
4596 if case_flag == 0: #Subida
4596 if case_flag == 0: #Subida
4597 #Se borra el dato anterior para liberar buffer y comparar el dato actual con el siguiente
4597 #Se borra el dato anterior para liberar buffer y comparar el dato actual con el siguiente
4598 if len(self.__buffer) == 2: #Cuando estΓ‘ de subida
4598 if len(self.__buffer) == 2: #Cuando estΓ‘ de subida
4599 self.__buffer.pop(0) #Erase first data
4599 self.__buffer.pop(0) #Erase first data
4600 self.__buffer2.pop(0)
4600 self.__buffer2.pop(0)
4601 self.__buffer3.pop(0)
4601 self.__buffer3.pop(0)
4602 self.__profIndex -= 1
4602 self.__profIndex -= 1
4603 else: #Cuando ha estado de bajada y ha vuelto a subir
4603 else: #Cuando ha estado de bajada y ha vuelto a subir
4604 #print("else",self.__buffer3)
4604 #print("else",self.__buffer3)
4605 self.__buffer.pop() #Erase last data
4605 self.__buffer.pop() #Erase last data
4606 self.__buffer2.pop()
4606 self.__buffer2.pop()
4607 self.__buffer3.pop()
4607 self.__buffer3.pop()
4608 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4608 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4609 #print(data_360.shape)
4609 #print(data_360.shape)
4610 #print(data_e.shape)
4610 #print(data_e.shape)
4611 #exit(1)
4611 #exit(1)
4612 self.__dataReady = True
4612 self.__dataReady = True
4613 '''
4613 '''
4614 elif elevations[-1]<0.:
4614 elif elevations[-1]<0.:
4615 if len(self.__buffer) == 2:
4615 if len(self.__buffer) == 2:
4616 self.__buffer.pop(0) #Erase first data
4616 self.__buffer.pop(0) #Erase first data
4617 self.__buffer2.pop(0)
4617 self.__buffer2.pop(0)
4618 self.__buffer3.pop(0)
4618 self.__buffer3.pop(0)
4619 self.__profIndex -= 1
4619 self.__profIndex -= 1
4620 else:
4620 else:
4621 self.__buffer.pop() #Erase last data
4621 self.__buffer.pop() #Erase last data
4622 self.__buffer2.pop()
4622 self.__buffer2.pop()
4623 self.__buffer3.pop()
4623 self.__buffer3.pop()
4624 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4624 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4625 self.__dataReady = True
4625 self.__dataReady = True
4626 '''
4626 '''
4627
4627
4628
4628
4629 '''
4629 '''
4630 if self.__profIndex == self.n:
4630 if self.__profIndex == self.n:
4631 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4631 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4632 self.__dataReady = True
4632 self.__dataReady = True
4633 '''
4633 '''
4634
4634
4635 return data_360,data_p,data_e
4635 return data_360,data_p,data_e
4636
4636
4637
4637
4638 def blockOp(self, dataOut, datatime= None):
4638 def blockOp(self, dataOut, datatime= None):
4639 if self.__initime == None:
4639 if self.__initime == None:
4640 self.__initime = datatime
4640 self.__initime = datatime
4641 data_360,data_p,data_e = self.byProfiles(dataOut)
4641 data_360,data_p,data_e = self.byProfiles(dataOut)
4642 self.__lastdatatime = datatime
4642 self.__lastdatatime = datatime
4643
4643
4644 if data_360 is None:
4644 if data_360 is None:
4645 return None, None,None,None
4645 return None, None,None,None
4646
4646
4647
4647
4648 avgdatatime = self.__initime
4648 avgdatatime = self.__initime
4649 if self.n==1:
4649 if self.n==1:
4650 avgdatatime = datatime
4650 avgdatatime = datatime
4651 deltatime = datatime - self.__lastdatatime
4651 deltatime = datatime - self.__lastdatatime
4652 self.__initime = datatime
4652 self.__initime = datatime
4653 #print(data_360.shape,avgdatatime,data_p.shape)
4653 #print(data_360.shape,avgdatatime,data_p.shape)
4654 return data_360,avgdatatime,data_p,data_e
4654 return data_360,avgdatatime,data_p,data_e
4655
4655
4656 def checkcase(self,data_ele):
4656 def checkcase(self,data_ele):
4657 print(data_ele)
4657 print(data_ele)
4658 start = data_ele[-2]
4658 start = data_ele[-2]
4659 end = data_ele[-1]
4659 end = data_ele[-1]
4660 diff_angle = (end-start)
4660 diff_angle = (end-start)
4661 len_ang=len(data_ele)
4661 len_ang=len(data_ele)
4662
4662
4663 if diff_angle > 0: #Subida
4663 if diff_angle > 0: #Subida
4664 return 0
4664 return 0
4665
4665
4666 def run(self, dataOut,n = None,mode=None,**kwargs):
4666 def run(self, dataOut,n = None,mode=None,**kwargs):
4667 #print("BLOCK 360 HERE WE GO MOMENTOS")
4667 #print("BLOCK 360 HERE WE GO MOMENTOS")
4668 print("Block 360")
4668 print("Block 360")
4669
4669
4670 #exit(1)
4670 #exit(1)
4671 if not self.isConfig:
4671 if not self.isConfig:
4672
4672
4673 print(n)
4673 print(n)
4674 self.setup(dataOut = dataOut ,mode= mode ,**kwargs)
4674 self.setup(dataOut = dataOut ,mode= mode ,**kwargs)
4675 ####self.index = 0
4675 ####self.index = 0
4676 #print("comova",self.isConfig)
4676 #print("comova",self.isConfig)
4677 self.isConfig = True
4677 self.isConfig = True
4678 ####if self.index==dataOut.azimuth.shape[0]:
4678 ####if self.index==dataOut.azimuth.shape[0]:
4679 #### self.index=0
4679 #### self.index=0
4680
4680
4681 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4681 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4682
4682
4683
4683
4684
4684
4685
4685
4686 dataOut.flagNoData = True
4686 dataOut.flagNoData = True
4687
4687
4688 if self.__dataReady:
4688 if self.__dataReady:
4689 dataOut.data_360 = data_360 # S
4689 dataOut.data_360 = data_360 # S
4690 #print("DATA 360")
4690 #print("DATA 360")
4691 #print(dataOut.data_360)
4691 #print(dataOut.data_360)
4692 #print("---------------------------------------------------------------------------------")
4692 #print("---------------------------------------------------------------------------------")
4693 print("---------------------------DATAREADY---------------------------------------------")
4693 print("---------------------------DATAREADY---------------------------------------------")
4694 #print("---------------------------------------------------------------------------------")
4694 #print("---------------------------------------------------------------------------------")
4695 #print("data_360",dataOut.data_360.shape)
4695 #print("data_360",dataOut.data_360.shape)
4696 print(data_e)
4696 print(data_e)
4697 #exit(1)
4697 #exit(1)
4698 dataOut.data_azi = data_p
4698 dataOut.data_azi = data_p
4699 dataOut.data_ele = data_e
4699 dataOut.data_ele = data_e
4700 ###print("azi: ",dataOut.data_azi)
4700 ###print("azi: ",dataOut.data_azi)
4701 #print("ele: ",dataOut.data_ele)
4701 #print("ele: ",dataOut.data_ele)
4702 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4702 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4703 dataOut.utctime = avgdatatime
4703 dataOut.utctime = avgdatatime
4704
4704
4705
4705
4706
4706
4707 dataOut.flagNoData = False
4707 dataOut.flagNoData = False
4708 return dataOut
4708 return dataOut
General Comments 0
You need to be logged in to leave comments. Login now