@@ -0,0 +1,82 | |||
|
1 | #include <Python.h> | |
|
2 | #include <numpy/arrayobject.h> | |
|
3 | #include <math.h> | |
|
4 | ||
|
5 | ||
|
6 | static PyObject *hildebrand_sekhon(PyObject *self, PyObject *args) { | |
|
7 | double navg; | |
|
8 | PyObject *data_obj, *data_array; | |
|
9 | ||
|
10 | if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg)) { | |
|
11 | return NULL; | |
|
12 | } | |
|
13 | ||
|
14 | data_array = PyArray_FROM_OTF(data_obj, NPY_FLOAT64, NPY_IN_ARRAY); | |
|
15 | ||
|
16 | if (data_array == NULL) { | |
|
17 | Py_XDECREF(data_array); | |
|
18 | Py_XDECREF(data_obj); | |
|
19 | return NULL; | |
|
20 | } | |
|
21 | double *sortdata = (double*)PyArray_DATA(data_array); | |
|
22 | int lenOfData = (int)PyArray_SIZE(data_array) ; | |
|
23 | double nums_min = lenOfData*0.2; | |
|
24 | if (nums_min <= 5) nums_min = 5; | |
|
25 | double sump = 0; | |
|
26 | double sumq = 0; | |
|
27 | int j = 0; | |
|
28 | int cont = 1; | |
|
29 | double rtest = 0; | |
|
30 | while ((cont == 1) && (j < lenOfData)) { | |
|
31 | sump = sump + sortdata[j]; | |
|
32 | sumq = sumq + pow(sortdata[j], 2); | |
|
33 | if (j > nums_min) { | |
|
34 | rtest = (double)j/(j-1) + 1/navg; | |
|
35 | if ((sumq*j) > (rtest*pow(sump, 2))) { | |
|
36 | j = j - 1; | |
|
37 | sump = sump - sortdata[j]; | |
|
38 | sumq = sumq - pow(sortdata[j],2); | |
|
39 | cont = 0; | |
|
40 | } | |
|
41 | } | |
|
42 | j = j + 1; | |
|
43 | } | |
|
44 | ||
|
45 | double lnoise = sump / j; | |
|
46 | ||
|
47 | Py_DECREF(data_array); | |
|
48 | ||
|
49 | return PyLong_FromLong(lnoise); | |
|
50 | //return Py_BuildValue("d", lnoise); | |
|
51 | } | |
|
52 | ||
|
53 | ||
|
54 | static PyMethodDef noiseMethods[] = { | |
|
55 | { "hildebrand_sekhon", hildebrand_sekhon, METH_VARARGS, "Get noise with hildebrand_sekhon algorithm" }, | |
|
56 | { NULL, NULL, 0, NULL } | |
|
57 | }; | |
|
58 | ||
|
59 | #if PY_MAJOR_VERSION >= 3 | |
|
60 | ||
|
61 | static struct PyModuleDef noisemodule = { | |
|
62 | PyModuleDef_HEAD_INIT, | |
|
63 | "_noise", | |
|
64 | "Get noise with hildebrand_sekhon algorithm", | |
|
65 | -1, | |
|
66 | noiseMethods | |
|
67 | }; | |
|
68 | ||
|
69 | #endif | |
|
70 | ||
|
71 | #if PY_MAJOR_VERSION >= 3 | |
|
72 | PyMODINIT_FUNC PyInit__noise(void) { | |
|
73 | Py_Initialize(); | |
|
74 | import_array(); | |
|
75 | return PyModule_Create(&noisemodule); | |
|
76 | } | |
|
77 | #else | |
|
78 | PyMODINIT_FUNC init_noise() { | |
|
79 | Py_InitModule("_noise", noiseMethods); | |
|
80 | import_array(); | |
|
81 | } | |
|
82 | #endif |
@@ -1,1384 +1,1386 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import copy |
|
8 | 8 | import numpy |
|
9 | 9 | import datetime |
|
10 | 10 | import json |
|
11 | 11 | |
|
12 | 12 | import schainpy.admin |
|
13 | 13 | from schainpy.utils import log |
|
14 | 14 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
15 | from schainpy.model.data import _noise | |
|
15 | 16 | |
|
16 | 17 | |
|
17 | 18 | def getNumpyDtype(dataTypeCode): |
|
18 | 19 | |
|
19 | 20 | if dataTypeCode == 0: |
|
20 | 21 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
21 | 22 | elif dataTypeCode == 1: |
|
22 | 23 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
23 | 24 | elif dataTypeCode == 2: |
|
24 | 25 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
25 | 26 | elif dataTypeCode == 3: |
|
26 | 27 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
27 | 28 | elif dataTypeCode == 4: |
|
28 | 29 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
29 | 30 | elif dataTypeCode == 5: |
|
30 | 31 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
31 | 32 | else: |
|
32 | 33 | raise ValueError('dataTypeCode was not defined') |
|
33 | 34 | |
|
34 | 35 | return numpyDtype |
|
35 | 36 | |
|
36 | 37 | |
|
37 | 38 | def getDataTypeCode(numpyDtype): |
|
38 | 39 | |
|
39 | 40 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
40 | 41 | datatype = 0 |
|
41 | 42 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
42 | 43 | datatype = 1 |
|
43 | 44 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
44 | 45 | datatype = 2 |
|
45 | 46 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
46 | 47 | datatype = 3 |
|
47 | 48 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
48 | 49 | datatype = 4 |
|
49 | 50 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
50 | 51 | datatype = 5 |
|
51 | 52 | else: |
|
52 | 53 | datatype = None |
|
53 | 54 | |
|
54 | 55 | return datatype |
|
55 | 56 | |
|
56 | 57 | |
|
57 | 58 | def hildebrand_sekhon(data, navg): |
|
58 | 59 | """ |
|
59 | 60 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
60 | 61 | implementation technique is based on the fact that the standard deviation of the spectral |
|
61 | 62 | densities is equal to the mean spectral density for white Gaussian noise |
|
62 | 63 | |
|
63 | 64 | Inputs: |
|
64 | 65 | Data : heights |
|
65 | 66 | navg : numbers of averages |
|
66 | 67 | |
|
67 | 68 | Return: |
|
68 | 69 | mean : noise's level |
|
69 | 70 | """ |
|
70 | 71 | |
|
71 | 72 | sortdata = numpy.sort(data, axis=None) |
|
73 | ''' | |
|
72 | 74 | lenOfData = len(sortdata) |
|
73 | 75 | nums_min = lenOfData*0.2 |
|
74 | 76 |
|
|
75 | 77 | if nums_min <= 5: |
|
76 | 78 |
|
|
77 | 79 | nums_min = 5 |
|
78 | 80 |
|
|
79 | 81 | sump = 0. |
|
80 | 82 | sumq = 0. |
|
81 | 83 |
|
|
82 | 84 | j = 0 |
|
83 | 85 | cont = 1 |
|
84 | 86 |
|
|
85 | 87 | while((cont == 1)and(j < lenOfData)): |
|
86 | 88 |
|
|
87 | 89 | sump += sortdata[j] |
|
88 | 90 | sumq += sortdata[j]**2 |
|
89 | 91 |
|
|
90 | 92 | if j > nums_min: |
|
91 | 93 | rtest = float(j)/(j-1) + 1.0/navg |
|
92 | 94 | if ((sumq*j) > (rtest*sump**2)): |
|
93 | 95 | j = j - 1 |
|
94 | 96 | sump = sump - sortdata[j] |
|
95 | 97 | sumq = sumq - sortdata[j]**2 |
|
96 | 98 | cont = 0 |
|
97 | 99 |
|
|
98 | 100 | j += 1 |
|
99 | 101 |
|
|
100 | 102 | lnoise = sump / j |
|
101 | ||
|
102 | return lnoise | |
|
103 | ''' | |
|
104 | return _noise.hildebrand_sekhon(sortdata, navg) | |
|
103 | 105 | |
|
104 | 106 | |
|
105 | 107 | class Beam: |
|
106 | 108 | |
|
107 | 109 | def __init__(self): |
|
108 | 110 | self.codeList = [] |
|
109 | 111 | self.azimuthList = [] |
|
110 | 112 | self.zenithList = [] |
|
111 | 113 | |
|
112 | 114 | |
|
113 | 115 | class GenericData(object): |
|
114 | 116 | |
|
115 | 117 | flagNoData = True |
|
116 | 118 | |
|
117 | 119 | def copy(self, inputObj=None): |
|
118 | 120 | |
|
119 | 121 | if inputObj == None: |
|
120 | 122 | return copy.deepcopy(self) |
|
121 | 123 | |
|
122 | 124 | for key in list(inputObj.__dict__.keys()): |
|
123 | 125 | |
|
124 | 126 | attribute = inputObj.__dict__[key] |
|
125 | 127 | |
|
126 | 128 | # If this attribute is a tuple or list |
|
127 | 129 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
128 | 130 | self.__dict__[key] = attribute[:] |
|
129 | 131 | continue |
|
130 | 132 | |
|
131 | 133 | # If this attribute is another object or instance |
|
132 | 134 | if hasattr(attribute, '__dict__'): |
|
133 | 135 | self.__dict__[key] = attribute.copy() |
|
134 | 136 | continue |
|
135 | 137 | |
|
136 | 138 | self.__dict__[key] = inputObj.__dict__[key] |
|
137 | 139 | |
|
138 | 140 | def deepcopy(self): |
|
139 | 141 | |
|
140 | 142 | return copy.deepcopy(self) |
|
141 | 143 | |
|
142 | 144 | def isEmpty(self): |
|
143 | 145 | |
|
144 | 146 | return self.flagNoData |
|
145 | 147 | |
|
146 | 148 | def isReady(self): |
|
147 | 149 | |
|
148 | 150 | return not self.flagNoData |
|
149 | 151 | |
|
150 | 152 | |
|
151 | 153 | class JROData(GenericData): |
|
152 | 154 | |
|
153 | 155 | # m_BasicHeader = BasicHeader() |
|
154 | 156 | # m_ProcessingHeader = ProcessingHeader() |
|
155 | 157 | |
|
156 | 158 | systemHeaderObj = SystemHeader() |
|
157 | 159 | radarControllerHeaderObj = RadarControllerHeader() |
|
158 | 160 | # data = None |
|
159 | 161 | type = None |
|
160 | 162 | datatype = None # dtype but in string |
|
161 | 163 | # dtype = None |
|
162 | 164 | # nChannels = None |
|
163 | 165 | # nHeights = None |
|
164 | 166 | nProfiles = None |
|
165 | 167 | heightList = None |
|
166 | 168 | channelList = None |
|
167 | 169 | flagDiscontinuousBlock = False |
|
168 | 170 | useLocalTime = False |
|
169 | 171 | utctime = None |
|
170 | 172 | timeZone = None |
|
171 | 173 | dstFlag = None |
|
172 | 174 | errorCount = None |
|
173 | 175 | blocksize = None |
|
174 | 176 | # nCode = None |
|
175 | 177 | # nBaud = None |
|
176 | 178 | # code = None |
|
177 | 179 | flagDecodeData = False # asumo q la data no esta decodificada |
|
178 | 180 | flagDeflipData = False # asumo q la data no esta sin flip |
|
179 | 181 | flagShiftFFT = False |
|
180 | 182 | # ippSeconds = None |
|
181 | 183 | # timeInterval = None |
|
182 | 184 | nCohInt = None |
|
183 | 185 | # noise = None |
|
184 | 186 | windowOfFilter = 1 |
|
185 | 187 | # Speed of ligth |
|
186 | 188 | C = 3e8 |
|
187 | 189 | frequency = 49.92e6 |
|
188 | 190 | realtime = False |
|
189 | 191 | beacon_heiIndexList = None |
|
190 | 192 | last_block = None |
|
191 | 193 | blocknow = None |
|
192 | 194 | azimuth = None |
|
193 | 195 | zenith = None |
|
194 | 196 | beam = Beam() |
|
195 | 197 | profileIndex = None |
|
196 | 198 | error = None |
|
197 | 199 | data = None |
|
198 | 200 | nmodes = None |
|
199 | 201 | |
|
200 | 202 | def __str__(self): |
|
201 | 203 | |
|
202 | 204 | return '{} - {}'.format(self.type, self.getDatatime()) |
|
203 | 205 | |
|
204 | 206 | def getNoise(self): |
|
205 | 207 | |
|
206 | 208 | raise NotImplementedError |
|
207 | 209 | |
|
208 | 210 | def getNChannels(self): |
|
209 | 211 | |
|
210 | 212 | return len(self.channelList) |
|
211 | 213 | |
|
212 | 214 | def getChannelIndexList(self): |
|
213 | 215 | |
|
214 | 216 | return list(range(self.nChannels)) |
|
215 | 217 | |
|
216 | 218 | def getNHeights(self): |
|
217 | 219 | |
|
218 | 220 | return len(self.heightList) |
|
219 | 221 | |
|
220 | 222 | def getHeiRange(self, extrapoints=0): |
|
221 | 223 | |
|
222 | 224 | heis = self.heightList |
|
223 | 225 | # deltah = self.heightList[1] - self.heightList[0] |
|
224 | 226 | # |
|
225 | 227 | # heis.append(self.heightList[-1]) |
|
226 | 228 | |
|
227 | 229 | return heis |
|
228 | 230 | |
|
229 | 231 | def getDeltaH(self): |
|
230 | 232 | |
|
231 | 233 | delta = self.heightList[1] - self.heightList[0] |
|
232 | 234 | |
|
233 | 235 | return delta |
|
234 | 236 | |
|
235 | 237 | def getltctime(self): |
|
236 | 238 | |
|
237 | 239 | if self.useLocalTime: |
|
238 | 240 | return self.utctime - self.timeZone * 60 |
|
239 | 241 | |
|
240 | 242 | return self.utctime |
|
241 | 243 | |
|
242 | 244 | def getDatatime(self): |
|
243 | 245 | |
|
244 | 246 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
245 | 247 | return datatimeValue |
|
246 | 248 | |
|
247 | 249 | def getTimeRange(self): |
|
248 | 250 | |
|
249 | 251 | datatime = [] |
|
250 | 252 | |
|
251 | 253 | datatime.append(self.ltctime) |
|
252 | 254 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
253 | 255 | |
|
254 | 256 | datatime = numpy.array(datatime) |
|
255 | 257 | |
|
256 | 258 | return datatime |
|
257 | 259 | |
|
258 | 260 | def getFmaxTimeResponse(self): |
|
259 | 261 | |
|
260 | 262 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
261 | 263 | |
|
262 | 264 | PRF = 1. / (period * self.nCohInt) |
|
263 | 265 | |
|
264 | 266 | fmax = PRF |
|
265 | 267 | |
|
266 | 268 | return fmax |
|
267 | 269 | |
|
268 | 270 | def getFmax(self): |
|
269 | 271 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
270 | 272 | |
|
271 | 273 | fmax = PRF |
|
272 | 274 | return fmax |
|
273 | 275 | |
|
274 | 276 | def getVmax(self): |
|
275 | 277 | |
|
276 | 278 | _lambda = self.C / self.frequency |
|
277 | 279 | |
|
278 | 280 | vmax = self.getFmax() * _lambda / 2 |
|
279 | 281 | |
|
280 | 282 | return vmax |
|
281 | 283 | |
|
282 | 284 | def get_ippSeconds(self): |
|
283 | 285 | ''' |
|
284 | 286 | ''' |
|
285 | 287 | return self.radarControllerHeaderObj.ippSeconds |
|
286 | 288 | |
|
287 | 289 | def set_ippSeconds(self, ippSeconds): |
|
288 | 290 | ''' |
|
289 | 291 | ''' |
|
290 | 292 | |
|
291 | 293 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
292 | 294 | |
|
293 | 295 | return |
|
294 | 296 | |
|
295 | 297 | def get_dtype(self): |
|
296 | 298 | ''' |
|
297 | 299 | ''' |
|
298 | 300 | return getNumpyDtype(self.datatype) |
|
299 | 301 | |
|
300 | 302 | def set_dtype(self, numpyDtype): |
|
301 | 303 | ''' |
|
302 | 304 | ''' |
|
303 | 305 | |
|
304 | 306 | self.datatype = getDataTypeCode(numpyDtype) |
|
305 | 307 | |
|
306 | 308 | def get_code(self): |
|
307 | 309 | ''' |
|
308 | 310 | ''' |
|
309 | 311 | return self.radarControllerHeaderObj.code |
|
310 | 312 | |
|
311 | 313 | def set_code(self, code): |
|
312 | 314 | ''' |
|
313 | 315 | ''' |
|
314 | 316 | self.radarControllerHeaderObj.code = code |
|
315 | 317 | |
|
316 | 318 | return |
|
317 | 319 | |
|
318 | 320 | def get_ncode(self): |
|
319 | 321 | ''' |
|
320 | 322 | ''' |
|
321 | 323 | return self.radarControllerHeaderObj.nCode |
|
322 | 324 | |
|
323 | 325 | def set_ncode(self, nCode): |
|
324 | 326 | ''' |
|
325 | 327 | ''' |
|
326 | 328 | self.radarControllerHeaderObj.nCode = nCode |
|
327 | 329 | |
|
328 | 330 | return |
|
329 | 331 | |
|
330 | 332 | def get_nbaud(self): |
|
331 | 333 | ''' |
|
332 | 334 | ''' |
|
333 | 335 | return self.radarControllerHeaderObj.nBaud |
|
334 | 336 | |
|
335 | 337 | def set_nbaud(self, nBaud): |
|
336 | 338 | ''' |
|
337 | 339 | ''' |
|
338 | 340 | self.radarControllerHeaderObj.nBaud = nBaud |
|
339 | 341 | |
|
340 | 342 | return |
|
341 | 343 | |
|
342 | 344 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
343 | 345 | channelIndexList = property( |
|
344 | 346 | getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
345 | 347 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
346 | 348 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
347 | 349 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
348 | 350 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
349 | 351 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
350 | 352 | dtype = property(get_dtype, set_dtype) |
|
351 | 353 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
352 | 354 | code = property(get_code, set_code) |
|
353 | 355 | nCode = property(get_ncode, set_ncode) |
|
354 | 356 | nBaud = property(get_nbaud, set_nbaud) |
|
355 | 357 | |
|
356 | 358 | |
|
357 | 359 | class Voltage(JROData): |
|
358 | 360 | |
|
359 | 361 | # data es un numpy array de 2 dmensiones (canales, alturas) |
|
360 | 362 | data = None |
|
361 | 363 | |
|
362 | 364 | def __init__(self): |
|
363 | 365 | ''' |
|
364 | 366 | Constructor |
|
365 | 367 | ''' |
|
366 | 368 | |
|
367 | 369 | self.useLocalTime = True |
|
368 | 370 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
369 | 371 | self.systemHeaderObj = SystemHeader() |
|
370 | 372 | self.type = "Voltage" |
|
371 | 373 | self.data = None |
|
372 | 374 | # self.dtype = None |
|
373 | 375 | # self.nChannels = 0 |
|
374 | 376 | # self.nHeights = 0 |
|
375 | 377 | self.nProfiles = None |
|
376 | 378 | self.heightList = None |
|
377 | 379 | self.channelList = None |
|
378 | 380 | # self.channelIndexList = None |
|
379 | 381 | self.flagNoData = True |
|
380 | 382 | self.flagDiscontinuousBlock = False |
|
381 | 383 | self.utctime = None |
|
382 | 384 | self.timeZone = None |
|
383 | 385 | self.dstFlag = None |
|
384 | 386 | self.errorCount = None |
|
385 | 387 | self.nCohInt = None |
|
386 | 388 | self.blocksize = None |
|
387 | 389 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
388 | 390 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
389 | 391 | self.flagShiftFFT = False |
|
390 | 392 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
391 | 393 | self.profileIndex = 0 |
|
392 | 394 | |
|
393 | 395 | def getNoisebyHildebrand(self, channel=None): |
|
394 | 396 | """ |
|
395 | 397 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
396 | 398 | |
|
397 | 399 | Return: |
|
398 | 400 | noiselevel |
|
399 | 401 | """ |
|
400 | 402 | |
|
401 | 403 | if channel != None: |
|
402 | 404 | data = self.data[channel] |
|
403 | 405 | nChannels = 1 |
|
404 | 406 | else: |
|
405 | 407 | data = self.data |
|
406 | 408 | nChannels = self.nChannels |
|
407 | 409 | |
|
408 | 410 | noise = numpy.zeros(nChannels) |
|
409 | 411 | power = data * numpy.conjugate(data) |
|
410 | 412 | |
|
411 | 413 | for thisChannel in range(nChannels): |
|
412 | 414 | if nChannels == 1: |
|
413 | 415 | daux = power[:].real |
|
414 | 416 | else: |
|
415 | 417 | daux = power[thisChannel, :].real |
|
416 | 418 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
417 | 419 | |
|
418 | 420 | return noise |
|
419 | 421 | |
|
420 | 422 | def getNoise(self, type=1, channel=None): |
|
421 | 423 | |
|
422 | 424 | if type == 1: |
|
423 | 425 | noise = self.getNoisebyHildebrand(channel) |
|
424 | 426 | |
|
425 | 427 | return noise |
|
426 | 428 | |
|
427 | 429 | def getPower(self, channel=None): |
|
428 | 430 | |
|
429 | 431 | if channel != None: |
|
430 | 432 | data = self.data[channel] |
|
431 | 433 | else: |
|
432 | 434 | data = self.data |
|
433 | 435 | |
|
434 | 436 | power = data * numpy.conjugate(data) |
|
435 | 437 | powerdB = 10 * numpy.log10(power.real) |
|
436 | 438 | powerdB = numpy.squeeze(powerdB) |
|
437 | 439 | |
|
438 | 440 | return powerdB |
|
439 | 441 | |
|
440 | 442 | def getTimeInterval(self): |
|
441 | 443 | |
|
442 | 444 | timeInterval = self.ippSeconds * self.nCohInt |
|
443 | 445 | |
|
444 | 446 | return timeInterval |
|
445 | 447 | |
|
446 | 448 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
447 | 449 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
448 | 450 | |
|
449 | 451 | |
|
450 | 452 | class Spectra(JROData): |
|
451 | 453 | |
|
452 | 454 | # data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
453 | 455 | data_spc = None |
|
454 | 456 | # data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
455 | 457 | data_cspc = None |
|
456 | 458 | # data dc es un numpy array de 2 dmensiones (canales, alturas) |
|
457 | 459 | data_dc = None |
|
458 | 460 | # data power |
|
459 | 461 | data_pwr = None |
|
460 | 462 | nFFTPoints = None |
|
461 | 463 | # nPairs = None |
|
462 | 464 | pairsList = None |
|
463 | 465 | nIncohInt = None |
|
464 | 466 | wavelength = None # Necesario para cacular el rango de velocidad desde la frecuencia |
|
465 | 467 | nCohInt = None # se requiere para determinar el valor de timeInterval |
|
466 | 468 | ippFactor = None |
|
467 | 469 | profileIndex = 0 |
|
468 | 470 | plotting = "spectra" |
|
469 | 471 | |
|
470 | 472 | def __init__(self): |
|
471 | 473 | ''' |
|
472 | 474 | Constructor |
|
473 | 475 | ''' |
|
474 | 476 | |
|
475 | 477 | self.useLocalTime = True |
|
476 | 478 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
477 | 479 | self.systemHeaderObj = SystemHeader() |
|
478 | 480 | self.type = "Spectra" |
|
479 | 481 | # self.data = None |
|
480 | 482 | # self.dtype = None |
|
481 | 483 | # self.nChannels = 0 |
|
482 | 484 | # self.nHeights = 0 |
|
483 | 485 | self.nProfiles = None |
|
484 | 486 | self.heightList = None |
|
485 | 487 | self.channelList = None |
|
486 | 488 | # self.channelIndexList = None |
|
487 | 489 | self.pairsList = None |
|
488 | 490 | self.flagNoData = True |
|
489 | 491 | self.flagDiscontinuousBlock = False |
|
490 | 492 | self.utctime = None |
|
491 | 493 | self.nCohInt = None |
|
492 | 494 | self.nIncohInt = None |
|
493 | 495 | self.blocksize = None |
|
494 | 496 | self.nFFTPoints = None |
|
495 | 497 | self.wavelength = None |
|
496 | 498 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
497 | 499 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
498 | 500 | self.flagShiftFFT = False |
|
499 | 501 | self.ippFactor = 1 |
|
500 | 502 | #self.noise = None |
|
501 | 503 | self.beacon_heiIndexList = [] |
|
502 | 504 | self.noise_estimation = None |
|
503 | 505 | |
|
504 | 506 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
505 | 507 | """ |
|
506 | 508 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
507 | 509 | |
|
508 | 510 | Return: |
|
509 | 511 | noiselevel |
|
510 | 512 | """ |
|
511 | 513 | |
|
512 | 514 | noise = numpy.zeros(self.nChannels) |
|
513 | 515 | |
|
514 | 516 | for channel in range(self.nChannels): |
|
515 | 517 | daux = self.data_spc[channel, |
|
516 | 518 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
517 | 519 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
518 | 520 | |
|
519 | 521 | return noise |
|
520 | 522 | |
|
521 | 523 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
522 | 524 | |
|
523 | 525 | if self.noise_estimation is not None: |
|
524 | 526 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
525 | 527 | return self.noise_estimation |
|
526 | 528 | else: |
|
527 | 529 | noise = self.getNoisebyHildebrand( |
|
528 | 530 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
529 | 531 | return noise |
|
530 | 532 | |
|
531 | 533 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
532 | 534 | |
|
533 | 535 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
534 | 536 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
535 | 537 | |
|
536 | 538 | return freqrange |
|
537 | 539 | |
|
538 | 540 | def getAcfRange(self, extrapoints=0): |
|
539 | 541 | |
|
540 | 542 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
541 | 543 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
542 | 544 | |
|
543 | 545 | return freqrange |
|
544 | 546 | |
|
545 | 547 | def getFreqRange(self, extrapoints=0): |
|
546 | 548 | |
|
547 | 549 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
548 | 550 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
549 | 551 | |
|
550 | 552 | return freqrange |
|
551 | 553 | |
|
552 | 554 | def getVelRange(self, extrapoints=0): |
|
553 | 555 | |
|
554 | 556 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
555 | 557 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
556 | 558 | |
|
557 | 559 | if self.nmodes: |
|
558 | 560 | return velrange/self.nmodes |
|
559 | 561 | else: |
|
560 | 562 | return velrange |
|
561 | 563 | |
|
562 | 564 | def getNPairs(self): |
|
563 | 565 | |
|
564 | 566 | return len(self.pairsList) |
|
565 | 567 | |
|
566 | 568 | def getPairsIndexList(self): |
|
567 | 569 | |
|
568 | 570 | return list(range(self.nPairs)) |
|
569 | 571 | |
|
570 | 572 | def getNormFactor(self): |
|
571 | 573 | |
|
572 | 574 | pwcode = 1 |
|
573 | 575 | |
|
574 | 576 | if self.flagDecodeData: |
|
575 | 577 | pwcode = numpy.sum(self.code[0]**2) |
|
576 | 578 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
577 | 579 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
578 | 580 | |
|
579 | 581 | return normFactor |
|
580 | 582 | |
|
581 | 583 | def getFlagCspc(self): |
|
582 | 584 | |
|
583 | 585 | if self.data_cspc is None: |
|
584 | 586 | return True |
|
585 | 587 | |
|
586 | 588 | return False |
|
587 | 589 | |
|
588 | 590 | def getFlagDc(self): |
|
589 | 591 | |
|
590 | 592 | if self.data_dc is None: |
|
591 | 593 | return True |
|
592 | 594 | |
|
593 | 595 | return False |
|
594 | 596 | |
|
595 | 597 | def getTimeInterval(self): |
|
596 | 598 | |
|
597 | 599 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
598 | 600 | if self.nmodes: |
|
599 | 601 | return self.nmodes*timeInterval |
|
600 | 602 | else: |
|
601 | 603 | return timeInterval |
|
602 | 604 | |
|
603 | 605 | def getPower(self): |
|
604 | 606 | |
|
605 | 607 | factor = self.normFactor |
|
606 | 608 | z = self.data_spc / factor |
|
607 | 609 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
608 | 610 | avg = numpy.average(z, axis=1) |
|
609 | 611 | |
|
610 | 612 | return 10 * numpy.log10(avg) |
|
611 | 613 | |
|
612 | 614 | def getCoherence(self, pairsList=None, phase=False): |
|
613 | 615 | |
|
614 | 616 | z = [] |
|
615 | 617 | if pairsList is None: |
|
616 | 618 | pairsIndexList = self.pairsIndexList |
|
617 | 619 | else: |
|
618 | 620 | pairsIndexList = [] |
|
619 | 621 | for pair in pairsList: |
|
620 | 622 | if pair not in self.pairsList: |
|
621 | 623 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
622 | 624 | pair)) |
|
623 | 625 | pairsIndexList.append(self.pairsList.index(pair)) |
|
624 | 626 | for i in range(len(pairsIndexList)): |
|
625 | 627 | pair = self.pairsList[pairsIndexList[i]] |
|
626 | 628 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
627 | 629 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
628 | 630 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
629 | 631 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
630 | 632 | if phase: |
|
631 | 633 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
632 | 634 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
633 | 635 | else: |
|
634 | 636 | data = numpy.abs(avgcoherenceComplex) |
|
635 | 637 | |
|
636 | 638 | z.append(data) |
|
637 | 639 | |
|
638 | 640 | return numpy.array(z) |
|
639 | 641 | |
|
640 | 642 | def setValue(self, value): |
|
641 | 643 | |
|
642 | 644 | print("This property should not be initialized") |
|
643 | 645 | |
|
644 | 646 | return |
|
645 | 647 | |
|
646 | 648 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
647 | 649 | pairsIndexList = property( |
|
648 | 650 | getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") |
|
649 | 651 | normFactor = property(getNormFactor, setValue, |
|
650 | 652 | "I'm the 'getNormFactor' property.") |
|
651 | 653 | flag_cspc = property(getFlagCspc, setValue) |
|
652 | 654 | flag_dc = property(getFlagDc, setValue) |
|
653 | 655 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
654 | 656 | timeInterval = property(getTimeInterval, setValue, |
|
655 | 657 | "I'm the 'timeInterval' property") |
|
656 | 658 | |
|
657 | 659 | |
|
658 | 660 | class SpectraHeis(Spectra): |
|
659 | 661 | |
|
660 | 662 | data_spc = None |
|
661 | 663 | data_cspc = None |
|
662 | 664 | data_dc = None |
|
663 | 665 | nFFTPoints = None |
|
664 | 666 | # nPairs = None |
|
665 | 667 | pairsList = None |
|
666 | 668 | nCohInt = None |
|
667 | 669 | nIncohInt = None |
|
668 | 670 | |
|
669 | 671 | def __init__(self): |
|
670 | 672 | |
|
671 | 673 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
672 | 674 | |
|
673 | 675 | self.systemHeaderObj = SystemHeader() |
|
674 | 676 | |
|
675 | 677 | self.type = "SpectraHeis" |
|
676 | 678 | |
|
677 | 679 | # self.dtype = None |
|
678 | 680 | |
|
679 | 681 | # self.nChannels = 0 |
|
680 | 682 | |
|
681 | 683 | # self.nHeights = 0 |
|
682 | 684 | |
|
683 | 685 | self.nProfiles = None |
|
684 | 686 | |
|
685 | 687 | self.heightList = None |
|
686 | 688 | |
|
687 | 689 | self.channelList = None |
|
688 | 690 | |
|
689 | 691 | # self.channelIndexList = None |
|
690 | 692 | |
|
691 | 693 | self.flagNoData = True |
|
692 | 694 | |
|
693 | 695 | self.flagDiscontinuousBlock = False |
|
694 | 696 | |
|
695 | 697 | # self.nPairs = 0 |
|
696 | 698 | |
|
697 | 699 | self.utctime = None |
|
698 | 700 | |
|
699 | 701 | self.blocksize = None |
|
700 | 702 | |
|
701 | 703 | self.profileIndex = 0 |
|
702 | 704 | |
|
703 | 705 | self.nCohInt = 1 |
|
704 | 706 | |
|
705 | 707 | self.nIncohInt = 1 |
|
706 | 708 | |
|
707 | 709 | def getNormFactor(self): |
|
708 | 710 | pwcode = 1 |
|
709 | 711 | if self.flagDecodeData: |
|
710 | 712 | pwcode = numpy.sum(self.code[0]**2) |
|
711 | 713 | |
|
712 | 714 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
713 | 715 | |
|
714 | 716 | return normFactor |
|
715 | 717 | |
|
716 | 718 | def getTimeInterval(self): |
|
717 | 719 | |
|
718 | 720 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
719 | 721 | |
|
720 | 722 | return timeInterval |
|
721 | 723 | |
|
722 | 724 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
723 | 725 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
724 | 726 | |
|
725 | 727 | |
|
726 | 728 | class Fits(JROData): |
|
727 | 729 | |
|
728 | 730 | heightList = None |
|
729 | 731 | channelList = None |
|
730 | 732 | flagNoData = True |
|
731 | 733 | flagDiscontinuousBlock = False |
|
732 | 734 | useLocalTime = False |
|
733 | 735 | utctime = None |
|
734 | 736 | timeZone = None |
|
735 | 737 | # ippSeconds = None |
|
736 | 738 | # timeInterval = None |
|
737 | 739 | nCohInt = None |
|
738 | 740 | nIncohInt = None |
|
739 | 741 | noise = None |
|
740 | 742 | windowOfFilter = 1 |
|
741 | 743 | # Speed of ligth |
|
742 | 744 | C = 3e8 |
|
743 | 745 | frequency = 49.92e6 |
|
744 | 746 | realtime = False |
|
745 | 747 | |
|
746 | 748 | def __init__(self): |
|
747 | 749 | |
|
748 | 750 | self.type = "Fits" |
|
749 | 751 | |
|
750 | 752 | self.nProfiles = None |
|
751 | 753 | |
|
752 | 754 | self.heightList = None |
|
753 | 755 | |
|
754 | 756 | self.channelList = None |
|
755 | 757 | |
|
756 | 758 | # self.channelIndexList = None |
|
757 | 759 | |
|
758 | 760 | self.flagNoData = True |
|
759 | 761 | |
|
760 | 762 | self.utctime = None |
|
761 | 763 | |
|
762 | 764 | self.nCohInt = 1 |
|
763 | 765 | |
|
764 | 766 | self.nIncohInt = 1 |
|
765 | 767 | |
|
766 | 768 | self.useLocalTime = True |
|
767 | 769 | |
|
768 | 770 | self.profileIndex = 0 |
|
769 | 771 | |
|
770 | 772 | # self.utctime = None |
|
771 | 773 | # self.timeZone = None |
|
772 | 774 | # self.ltctime = None |
|
773 | 775 | # self.timeInterval = None |
|
774 | 776 | # self.header = None |
|
775 | 777 | # self.data_header = None |
|
776 | 778 | # self.data = None |
|
777 | 779 | # self.datatime = None |
|
778 | 780 | # self.flagNoData = False |
|
779 | 781 | # self.expName = '' |
|
780 | 782 | # self.nChannels = None |
|
781 | 783 | # self.nSamples = None |
|
782 | 784 | # self.dataBlocksPerFile = None |
|
783 | 785 | # self.comments = '' |
|
784 | 786 | # |
|
785 | 787 | |
|
786 | 788 | def getltctime(self): |
|
787 | 789 | |
|
788 | 790 | if self.useLocalTime: |
|
789 | 791 | return self.utctime - self.timeZone * 60 |
|
790 | 792 | |
|
791 | 793 | return self.utctime |
|
792 | 794 | |
|
793 | 795 | def getDatatime(self): |
|
794 | 796 | |
|
795 | 797 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
796 | 798 | return datatime |
|
797 | 799 | |
|
798 | 800 | def getTimeRange(self): |
|
799 | 801 | |
|
800 | 802 | datatime = [] |
|
801 | 803 | |
|
802 | 804 | datatime.append(self.ltctime) |
|
803 | 805 | datatime.append(self.ltctime + self.timeInterval) |
|
804 | 806 | |
|
805 | 807 | datatime = numpy.array(datatime) |
|
806 | 808 | |
|
807 | 809 | return datatime |
|
808 | 810 | |
|
809 | 811 | def getHeiRange(self): |
|
810 | 812 | |
|
811 | 813 | heis = self.heightList |
|
812 | 814 | |
|
813 | 815 | return heis |
|
814 | 816 | |
|
815 | 817 | def getNHeights(self): |
|
816 | 818 | |
|
817 | 819 | return len(self.heightList) |
|
818 | 820 | |
|
819 | 821 | def getNChannels(self): |
|
820 | 822 | |
|
821 | 823 | return len(self.channelList) |
|
822 | 824 | |
|
823 | 825 | def getChannelIndexList(self): |
|
824 | 826 | |
|
825 | 827 | return list(range(self.nChannels)) |
|
826 | 828 | |
|
827 | 829 | def getNoise(self, type=1): |
|
828 | 830 | |
|
829 | 831 | #noise = numpy.zeros(self.nChannels) |
|
830 | 832 | |
|
831 | 833 | if type == 1: |
|
832 | 834 | noise = self.getNoisebyHildebrand() |
|
833 | 835 | |
|
834 | 836 | if type == 2: |
|
835 | 837 | noise = self.getNoisebySort() |
|
836 | 838 | |
|
837 | 839 | if type == 3: |
|
838 | 840 | noise = self.getNoisebyWindow() |
|
839 | 841 | |
|
840 | 842 | return noise |
|
841 | 843 | |
|
842 | 844 | def getTimeInterval(self): |
|
843 | 845 | |
|
844 | 846 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
845 | 847 | |
|
846 | 848 | return timeInterval |
|
847 | 849 | |
|
848 | 850 | def get_ippSeconds(self): |
|
849 | 851 | ''' |
|
850 | 852 | ''' |
|
851 | 853 | return self.ipp_sec |
|
852 | 854 | |
|
853 | 855 | |
|
854 | 856 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
855 | 857 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
856 | 858 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
857 | 859 | channelIndexList = property( |
|
858 | 860 | getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
859 | 861 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
860 | 862 | |
|
861 | 863 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
862 | 864 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
863 | 865 | ippSeconds = property(get_ippSeconds, '') |
|
864 | 866 | |
|
865 | 867 | class Correlation(JROData): |
|
866 | 868 | |
|
867 | 869 | noise = None |
|
868 | 870 | SNR = None |
|
869 | 871 | #-------------------------------------------------- |
|
870 | 872 | mode = None |
|
871 | 873 | split = False |
|
872 | 874 | data_cf = None |
|
873 | 875 | lags = None |
|
874 | 876 | lagRange = None |
|
875 | 877 | pairsList = None |
|
876 | 878 | normFactor = None |
|
877 | 879 | #-------------------------------------------------- |
|
878 | 880 | # calculateVelocity = None |
|
879 | 881 | nLags = None |
|
880 | 882 | nPairs = None |
|
881 | 883 | nAvg = None |
|
882 | 884 | |
|
883 | 885 | def __init__(self): |
|
884 | 886 | ''' |
|
885 | 887 | Constructor |
|
886 | 888 | ''' |
|
887 | 889 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
888 | 890 | |
|
889 | 891 | self.systemHeaderObj = SystemHeader() |
|
890 | 892 | |
|
891 | 893 | self.type = "Correlation" |
|
892 | 894 | |
|
893 | 895 | self.data = None |
|
894 | 896 | |
|
895 | 897 | self.dtype = None |
|
896 | 898 | |
|
897 | 899 | self.nProfiles = None |
|
898 | 900 | |
|
899 | 901 | self.heightList = None |
|
900 | 902 | |
|
901 | 903 | self.channelList = None |
|
902 | 904 | |
|
903 | 905 | self.flagNoData = True |
|
904 | 906 | |
|
905 | 907 | self.flagDiscontinuousBlock = False |
|
906 | 908 | |
|
907 | 909 | self.utctime = None |
|
908 | 910 | |
|
909 | 911 | self.timeZone = None |
|
910 | 912 | |
|
911 | 913 | self.dstFlag = None |
|
912 | 914 | |
|
913 | 915 | self.errorCount = None |
|
914 | 916 | |
|
915 | 917 | self.blocksize = None |
|
916 | 918 | |
|
917 | 919 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
918 | 920 | |
|
919 | 921 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
920 | 922 | |
|
921 | 923 | self.pairsList = None |
|
922 | 924 | |
|
923 | 925 | self.nPoints = None |
|
924 | 926 | |
|
925 | 927 | def getPairsList(self): |
|
926 | 928 | |
|
927 | 929 | return self.pairsList |
|
928 | 930 | |
|
929 | 931 | def getNoise(self, mode=2): |
|
930 | 932 | |
|
931 | 933 | indR = numpy.where(self.lagR == 0)[0][0] |
|
932 | 934 | indT = numpy.where(self.lagT == 0)[0][0] |
|
933 | 935 | |
|
934 | 936 | jspectra0 = self.data_corr[:, :, indR, :] |
|
935 | 937 | jspectra = copy.copy(jspectra0) |
|
936 | 938 | |
|
937 | 939 | num_chan = jspectra.shape[0] |
|
938 | 940 | num_hei = jspectra.shape[2] |
|
939 | 941 | |
|
940 | 942 | freq_dc = jspectra.shape[1] / 2 |
|
941 | 943 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
942 | 944 | |
|
943 | 945 | if ind_vel[0] < 0: |
|
944 | 946 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
945 | 947 | range(0, 1))] + self.num_prof |
|
946 | 948 | |
|
947 | 949 | if mode == 1: |
|
948 | 950 | jspectra[:, freq_dc, :] = ( |
|
949 | 951 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
950 | 952 | |
|
951 | 953 | if mode == 2: |
|
952 | 954 | |
|
953 | 955 | vel = numpy.array([-2, -1, 1, 2]) |
|
954 | 956 | xx = numpy.zeros([4, 4]) |
|
955 | 957 | |
|
956 | 958 | for fil in range(4): |
|
957 | 959 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
958 | 960 | |
|
959 | 961 | xx_inv = numpy.linalg.inv(xx) |
|
960 | 962 | xx_aux = xx_inv[0, :] |
|
961 | 963 | |
|
962 | 964 | for ich in range(num_chan): |
|
963 | 965 | yy = jspectra[ich, ind_vel, :] |
|
964 | 966 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
965 | 967 | |
|
966 | 968 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
967 | 969 | cjunkid = sum(junkid) |
|
968 | 970 | |
|
969 | 971 | if cjunkid.any(): |
|
970 | 972 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
971 | 973 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
972 | 974 | |
|
973 | 975 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
974 | 976 | |
|
975 | 977 | return noise |
|
976 | 978 | |
|
977 | 979 | def getTimeInterval(self): |
|
978 | 980 | |
|
979 | 981 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles |
|
980 | 982 | |
|
981 | 983 | return timeInterval |
|
982 | 984 | |
|
983 | 985 | def splitFunctions(self): |
|
984 | 986 | |
|
985 | 987 | pairsList = self.pairsList |
|
986 | 988 | ccf_pairs = [] |
|
987 | 989 | acf_pairs = [] |
|
988 | 990 | ccf_ind = [] |
|
989 | 991 | acf_ind = [] |
|
990 | 992 | for l in range(len(pairsList)): |
|
991 | 993 | chan0 = pairsList[l][0] |
|
992 | 994 | chan1 = pairsList[l][1] |
|
993 | 995 | |
|
994 | 996 | # Obteniendo pares de Autocorrelacion |
|
995 | 997 | if chan0 == chan1: |
|
996 | 998 | acf_pairs.append(chan0) |
|
997 | 999 | acf_ind.append(l) |
|
998 | 1000 | else: |
|
999 | 1001 | ccf_pairs.append(pairsList[l]) |
|
1000 | 1002 | ccf_ind.append(l) |
|
1001 | 1003 | |
|
1002 | 1004 | data_acf = self.data_cf[acf_ind] |
|
1003 | 1005 | data_ccf = self.data_cf[ccf_ind] |
|
1004 | 1006 | |
|
1005 | 1007 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
1006 | 1008 | |
|
1007 | 1009 | def getNormFactor(self): |
|
1008 | 1010 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
1009 | 1011 | acf_pairs = numpy.array(acf_pairs) |
|
1010 | 1012 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
1011 | 1013 | |
|
1012 | 1014 | for p in range(self.nPairs): |
|
1013 | 1015 | pair = self.pairsList[p] |
|
1014 | 1016 | |
|
1015 | 1017 | ch0 = pair[0] |
|
1016 | 1018 | ch1 = pair[1] |
|
1017 | 1019 | |
|
1018 | 1020 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
1019 | 1021 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
1020 | 1022 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
1021 | 1023 | |
|
1022 | 1024 | return normFactor |
|
1023 | 1025 | |
|
1024 | 1026 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1025 | 1027 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") |
|
1026 | 1028 | |
|
1027 | 1029 | |
|
1028 | 1030 | class Parameters(Spectra): |
|
1029 | 1031 | |
|
1030 | 1032 | experimentInfo = None # Information about the experiment |
|
1031 | 1033 | # Information from previous data |
|
1032 | 1034 | inputUnit = None # Type of data to be processed |
|
1033 | 1035 | operation = None # Type of operation to parametrize |
|
1034 | 1036 | # normFactor = None #Normalization Factor |
|
1035 | 1037 | groupList = None # List of Pairs, Groups, etc |
|
1036 | 1038 | # Parameters |
|
1037 | 1039 | data_param = None # Parameters obtained |
|
1038 | 1040 | data_pre = None # Data Pre Parametrization |
|
1039 | 1041 | data_SNR = None # Signal to Noise Ratio |
|
1040 | 1042 | # heightRange = None #Heights |
|
1041 | 1043 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
1042 | 1044 | # noise = None #Noise Potency |
|
1043 | 1045 | utctimeInit = None # Initial UTC time |
|
1044 | 1046 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
1045 | 1047 | useLocalTime = True |
|
1046 | 1048 | # Fitting |
|
1047 | 1049 | data_error = None # Error of the estimation |
|
1048 | 1050 | constants = None |
|
1049 | 1051 | library = None |
|
1050 | 1052 | # Output signal |
|
1051 | 1053 | outputInterval = None # Time interval to calculate output signal in seconds |
|
1052 | 1054 | data_output = None # Out signal |
|
1053 | 1055 | nAvg = None |
|
1054 | 1056 | noise_estimation = None |
|
1055 | 1057 | GauSPC = None # Fit gaussian SPC |
|
1056 | 1058 | |
|
1057 | 1059 | def __init__(self): |
|
1058 | 1060 | ''' |
|
1059 | 1061 | Constructor |
|
1060 | 1062 | ''' |
|
1061 | 1063 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1062 | 1064 | |
|
1063 | 1065 | self.systemHeaderObj = SystemHeader() |
|
1064 | 1066 | |
|
1065 | 1067 | self.type = "Parameters" |
|
1066 | 1068 | |
|
1067 | 1069 | def getTimeRange1(self, interval): |
|
1068 | 1070 | |
|
1069 | 1071 | datatime = [] |
|
1070 | 1072 | |
|
1071 | 1073 | if self.useLocalTime: |
|
1072 | 1074 | time1 = self.utctimeInit - self.timeZone * 60 |
|
1073 | 1075 | else: |
|
1074 | 1076 | time1 = self.utctimeInit |
|
1075 | 1077 | |
|
1076 | 1078 | datatime.append(time1) |
|
1077 | 1079 | datatime.append(time1 + interval) |
|
1078 | 1080 | datatime = numpy.array(datatime) |
|
1079 | 1081 | |
|
1080 | 1082 | return datatime |
|
1081 | 1083 | |
|
1082 | 1084 | def getTimeInterval(self): |
|
1083 | 1085 | |
|
1084 | 1086 | if hasattr(self, 'timeInterval1'): |
|
1085 | 1087 | return self.timeInterval1 |
|
1086 | 1088 | else: |
|
1087 | 1089 | return self.paramInterval |
|
1088 | 1090 | |
|
1089 | 1091 | def setValue(self, value): |
|
1090 | 1092 | |
|
1091 | 1093 | print("This property should not be initialized") |
|
1092 | 1094 | |
|
1093 | 1095 | return |
|
1094 | 1096 | |
|
1095 | 1097 | def getNoise(self): |
|
1096 | 1098 | |
|
1097 | 1099 | return self.spc_noise |
|
1098 | 1100 | |
|
1099 | 1101 | timeInterval = property(getTimeInterval) |
|
1100 | 1102 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
1101 | 1103 | |
|
1102 | 1104 | |
|
1103 | 1105 | class PlotterData(object): |
|
1104 | 1106 | ''' |
|
1105 | 1107 | Object to hold data to be plotted |
|
1106 | 1108 | ''' |
|
1107 | 1109 | |
|
1108 | 1110 | MAXNUMX = 100 |
|
1109 | 1111 | MAXNUMY = 100 |
|
1110 | 1112 | |
|
1111 | 1113 | def __init__(self, code, throttle_value, exp_code, buffering=True, snr=False): |
|
1112 | 1114 | |
|
1113 | 1115 | self.key = code |
|
1114 | 1116 | self.throttle = throttle_value |
|
1115 | 1117 | self.exp_code = exp_code |
|
1116 | 1118 | self.buffering = buffering |
|
1117 | 1119 | self.ready = False |
|
1118 | 1120 | self.flagNoData = False |
|
1119 | 1121 | self.localtime = False |
|
1120 | 1122 | self.data = {} |
|
1121 | 1123 | self.meta = {} |
|
1122 | 1124 | self.__times = [] |
|
1123 | 1125 | self.__heights = [] |
|
1124 | 1126 | |
|
1125 | 1127 | if 'snr' in code: |
|
1126 | 1128 | self.plottypes = ['snr'] |
|
1127 | 1129 | elif code == 'spc': |
|
1128 | 1130 | self.plottypes = ['spc', 'noise', 'rti'] |
|
1129 | 1131 | elif code == 'rti': |
|
1130 | 1132 | self.plottypes = ['noise', 'rti'] |
|
1131 | 1133 | else: |
|
1132 | 1134 | self.plottypes = [code] |
|
1133 | 1135 | |
|
1134 | 1136 | if 'snr' not in self.plottypes and snr: |
|
1135 | 1137 | self.plottypes.append('snr') |
|
1136 | 1138 | |
|
1137 | 1139 | for plot in self.plottypes: |
|
1138 | 1140 | self.data[plot] = {} |
|
1139 | 1141 | |
|
1140 | 1142 | def __str__(self): |
|
1141 | 1143 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
1142 | 1144 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.__times)) |
|
1143 | 1145 | |
|
1144 | 1146 | def __len__(self): |
|
1145 | 1147 | return len(self.__times) |
|
1146 | 1148 | |
|
1147 | 1149 | def __getitem__(self, key): |
|
1148 | 1150 | |
|
1149 | 1151 | if key not in self.data: |
|
1150 | 1152 | raise KeyError(log.error('Missing key: {}'.format(key))) |
|
1151 | 1153 | if 'spc' in key or not self.buffering: |
|
1152 | 1154 | ret = self.data[key] |
|
1153 | 1155 | elif 'scope' in key: |
|
1154 | 1156 | ret = numpy.array(self.data[key][float(self.tm)]) |
|
1155 | 1157 | else: |
|
1156 | 1158 | ret = numpy.array([self.data[key][x] for x in self.times]) |
|
1157 | 1159 | if ret.ndim > 1: |
|
1158 | 1160 | ret = numpy.swapaxes(ret, 0, 1) |
|
1159 | 1161 | return ret |
|
1160 | 1162 | |
|
1161 | 1163 | def __contains__(self, key): |
|
1162 | 1164 | return key in self.data |
|
1163 | 1165 | |
|
1164 | 1166 | def setup(self): |
|
1165 | 1167 | ''' |
|
1166 | 1168 | Configure object |
|
1167 | 1169 | ''' |
|
1168 | 1170 | |
|
1169 | 1171 | self.type = '' |
|
1170 | 1172 | self.ready = False |
|
1171 | 1173 | self.data = {} |
|
1172 | 1174 | self.__times = [] |
|
1173 | 1175 | self.__heights = [] |
|
1174 | 1176 | self.__all_heights = set() |
|
1175 | 1177 | for plot in self.plottypes: |
|
1176 | 1178 | if 'snr' in plot: |
|
1177 | 1179 | plot = 'snr' |
|
1178 | 1180 | elif 'spc_moments' == plot: |
|
1179 | 1181 | plot = 'moments' |
|
1180 | 1182 | self.data[plot] = {} |
|
1181 | 1183 | |
|
1182 | 1184 | if 'spc' in self.data or 'rti' in self.data or 'cspc' in self.data or 'moments' in self.data: |
|
1183 | 1185 | self.data['noise'] = {} |
|
1184 | 1186 | self.data['rti'] = {} |
|
1185 | 1187 | if 'noise' not in self.plottypes: |
|
1186 | 1188 | self.plottypes.append('noise') |
|
1187 | 1189 | if 'rti' not in self.plottypes: |
|
1188 | 1190 | self.plottypes.append('rti') |
|
1189 | 1191 | |
|
1190 | 1192 | def shape(self, key): |
|
1191 | 1193 | ''' |
|
1192 | 1194 | Get the shape of the one-element data for the given key |
|
1193 | 1195 | ''' |
|
1194 | 1196 | |
|
1195 | 1197 | if len(self.data[key]): |
|
1196 | 1198 | if 'spc' in key or not self.buffering: |
|
1197 | 1199 | return self.data[key].shape |
|
1198 | 1200 | return self.data[key][self.__times[0]].shape |
|
1199 | 1201 | return (0,) |
|
1200 | 1202 | |
|
1201 | 1203 | def update(self, dataOut, tm): |
|
1202 | 1204 | ''' |
|
1203 | 1205 | Update data object with new dataOut |
|
1204 | 1206 | ''' |
|
1205 | 1207 | |
|
1206 | 1208 | if tm in self.__times: |
|
1207 | 1209 | return |
|
1208 | 1210 | self.profileIndex = dataOut.profileIndex |
|
1209 | 1211 | self.tm = tm |
|
1210 | 1212 | self.type = dataOut.type |
|
1211 | 1213 | self.parameters = getattr(dataOut, 'parameters', []) |
|
1212 | 1214 | |
|
1213 | 1215 | if hasattr(dataOut, 'meta'): |
|
1214 | 1216 | self.meta.update(dataOut.meta) |
|
1215 | 1217 | |
|
1216 | 1218 | if hasattr(dataOut, 'pairsList'): |
|
1217 | 1219 | self.pairs = dataOut.pairsList |
|
1218 | 1220 | |
|
1219 | 1221 | self.interval = dataOut.getTimeInterval() |
|
1220 | 1222 | self.localtime = dataOut.useLocalTime |
|
1221 | 1223 | if True in ['spc' in ptype for ptype in self.plottypes]: |
|
1222 | 1224 | self.xrange = (dataOut.getFreqRange(1)/1000., |
|
1223 | 1225 | dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
1224 | 1226 | self.factor = dataOut.normFactor |
|
1225 | 1227 | self.__heights.append(dataOut.heightList) |
|
1226 | 1228 | self.__all_heights.update(dataOut.heightList) |
|
1227 | 1229 | self.__times.append(tm) |
|
1228 | 1230 | |
|
1229 | 1231 | for plot in self.plottypes: |
|
1230 | 1232 | if plot in ('spc', 'spc_moments', 'spc_cut'): |
|
1231 | 1233 | z = dataOut.data_spc/dataOut.normFactor |
|
1232 | 1234 | buffer = 10*numpy.log10(z) |
|
1233 | 1235 | if plot == 'cspc': |
|
1234 | 1236 | z = dataOut.data_spc/dataOut.normFactor |
|
1235 | 1237 | buffer = (dataOut.data_spc, dataOut.data_cspc) |
|
1236 | 1238 | if plot == 'noise': |
|
1237 | 1239 | buffer = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
1238 | 1240 | if plot in ('rti', 'spcprofile'): |
|
1239 | 1241 | buffer = dataOut.getPower() |
|
1240 | 1242 | if plot == 'snr_db': |
|
1241 | 1243 | buffer = dataOut.data_SNR |
|
1242 | 1244 | if plot == 'snr': |
|
1243 | 1245 | buffer = 10*numpy.log10(dataOut.data_SNR) |
|
1244 | 1246 | if plot == 'dop': |
|
1245 | 1247 | buffer = dataOut.data_DOP |
|
1246 | 1248 | if plot == 'pow': |
|
1247 | 1249 | buffer = 10*numpy.log10(dataOut.data_POW) |
|
1248 | 1250 | if plot == 'width': |
|
1249 | 1251 | buffer = dataOut.data_WIDTH |
|
1250 | 1252 | if plot == 'coh': |
|
1251 | 1253 | buffer = dataOut.getCoherence() |
|
1252 | 1254 | if plot == 'phase': |
|
1253 | 1255 | buffer = dataOut.getCoherence(phase=True) |
|
1254 | 1256 | if plot == 'output': |
|
1255 | 1257 | buffer = dataOut.data_output |
|
1256 | 1258 | if plot == 'param': |
|
1257 | 1259 | buffer = dataOut.data_param |
|
1258 | 1260 | if plot == 'scope': |
|
1259 | 1261 | buffer = dataOut.data |
|
1260 | 1262 | self.flagDataAsBlock = dataOut.flagDataAsBlock |
|
1261 | 1263 | self.nProfiles = dataOut.nProfiles |
|
1262 | 1264 | |
|
1263 | 1265 | if plot == 'spc': |
|
1264 | 1266 | self.data['spc'] = buffer |
|
1265 | 1267 | elif plot == 'cspc': |
|
1266 | 1268 | self.data['spc'] = buffer[0] |
|
1267 | 1269 | self.data['cspc'] = buffer[1] |
|
1268 | 1270 | elif plot == 'spc_moments': |
|
1269 | 1271 | self.data['spc'] = buffer |
|
1270 | 1272 | self.data['moments'][tm] = dataOut.moments |
|
1271 | 1273 | else: |
|
1272 | 1274 | if self.buffering: |
|
1273 | 1275 | self.data[plot][tm] = buffer |
|
1274 | 1276 | else: |
|
1275 | 1277 | self.data[plot] = buffer |
|
1276 | 1278 | |
|
1277 | 1279 | if dataOut.channelList is None: |
|
1278 | 1280 | self.channels = range(buffer.shape[0]) |
|
1279 | 1281 | else: |
|
1280 | 1282 | self.channels = dataOut.channelList |
|
1281 | 1283 | |
|
1282 | 1284 | if buffer is None: |
|
1283 | 1285 | self.flagNoData = True |
|
1284 | 1286 | raise schainpy.admin.SchainWarning('Attribute data_{} is empty'.format(self.key)) |
|
1285 | 1287 | |
|
1286 | 1288 | def normalize_heights(self): |
|
1287 | 1289 | ''' |
|
1288 | 1290 | Ensure same-dimension of the data for different heighList |
|
1289 | 1291 | ''' |
|
1290 | 1292 | |
|
1291 | 1293 | H = numpy.array(list(self.__all_heights)) |
|
1292 | 1294 | H.sort() |
|
1293 | 1295 | for key in self.data: |
|
1294 | 1296 | shape = self.shape(key)[:-1] + H.shape |
|
1295 | 1297 | for tm, obj in list(self.data[key].items()): |
|
1296 | 1298 | h = self.__heights[self.__times.index(tm)] |
|
1297 | 1299 | if H.size == h.size: |
|
1298 | 1300 | continue |
|
1299 | 1301 | index = numpy.where(numpy.in1d(H, h))[0] |
|
1300 | 1302 | dummy = numpy.zeros(shape) + numpy.nan |
|
1301 | 1303 | if len(shape) == 2: |
|
1302 | 1304 | dummy[:, index] = obj |
|
1303 | 1305 | else: |
|
1304 | 1306 | dummy[index] = obj |
|
1305 | 1307 | self.data[key][tm] = dummy |
|
1306 | 1308 | |
|
1307 | 1309 | self.__heights = [H for tm in self.__times] |
|
1308 | 1310 | |
|
1309 | 1311 | def jsonify(self, plot_name, plot_type, decimate=False): |
|
1310 | 1312 | ''' |
|
1311 | 1313 | Convert data to json |
|
1312 | 1314 | ''' |
|
1313 | 1315 | |
|
1314 | 1316 | tm = self.times[-1] |
|
1315 | 1317 | dy = int(self.heights.size/self.MAXNUMY) + 1 |
|
1316 | 1318 | if self.key in ('spc', 'cspc') or not self.buffering: |
|
1317 | 1319 | dx = int(self.data[self.key].shape[1]/self.MAXNUMX) + 1 |
|
1318 | 1320 | data = self.roundFloats( |
|
1319 | 1321 | self.data[self.key][::, ::dx, ::dy].tolist()) |
|
1320 | 1322 | else: |
|
1321 | 1323 | data = self.roundFloats(self.data[self.key][tm].tolist()) |
|
1322 | 1324 | if self.key is 'noise': |
|
1323 | 1325 | data = [[x] for x in data] |
|
1324 | 1326 | |
|
1325 | 1327 | meta = {} |
|
1326 | 1328 | ret = { |
|
1327 | 1329 | 'plot': plot_name, |
|
1328 | 1330 | 'code': self.exp_code, |
|
1329 | 1331 | 'time': float(tm), |
|
1330 | 1332 | 'data': data, |
|
1331 | 1333 | } |
|
1332 | 1334 | meta['type'] = plot_type |
|
1333 | 1335 | meta['interval'] = float(self.interval) |
|
1334 | 1336 | meta['localtime'] = self.localtime |
|
1335 | 1337 | meta['yrange'] = self.roundFloats(self.heights[::dy].tolist()) |
|
1336 | 1338 | if 'spc' in self.data or 'cspc' in self.data: |
|
1337 | 1339 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1338 | 1340 | else: |
|
1339 | 1341 | meta['xrange'] = [] |
|
1340 | 1342 | |
|
1341 | 1343 | meta.update(self.meta) |
|
1342 | 1344 | ret['metadata'] = meta |
|
1343 | 1345 | return json.dumps(ret) |
|
1344 | 1346 | |
|
1345 | 1347 | @property |
|
1346 | 1348 | def times(self): |
|
1347 | 1349 | ''' |
|
1348 | 1350 | Return the list of times of the current data |
|
1349 | 1351 | ''' |
|
1350 | 1352 | |
|
1351 | 1353 | ret = numpy.array(self.__times) |
|
1352 | 1354 | ret.sort() |
|
1353 | 1355 | return ret |
|
1354 | 1356 | |
|
1355 | 1357 | @property |
|
1356 | 1358 | def min_time(self): |
|
1357 | 1359 | ''' |
|
1358 | 1360 | Return the minimun time value |
|
1359 | 1361 | ''' |
|
1360 | 1362 | |
|
1361 | 1363 | return self.times[0] |
|
1362 | 1364 | |
|
1363 | 1365 | @property |
|
1364 | 1366 | def max_time(self): |
|
1365 | 1367 | ''' |
|
1366 | 1368 | Return the maximun time value |
|
1367 | 1369 | ''' |
|
1368 | 1370 | |
|
1369 | 1371 | return self.times[-1] |
|
1370 | 1372 | |
|
1371 | 1373 | @property |
|
1372 | 1374 | def heights(self): |
|
1373 | 1375 | ''' |
|
1374 | 1376 | Return the list of heights of the current data |
|
1375 | 1377 | ''' |
|
1376 | 1378 | |
|
1377 | 1379 | return numpy.array(self.__heights[-1]) |
|
1378 | 1380 | |
|
1379 | 1381 | @staticmethod |
|
1380 | 1382 | def roundFloats(obj): |
|
1381 | 1383 | if isinstance(obj, list): |
|
1382 | 1384 | return list(map(PlotterData.roundFloats, obj)) |
|
1383 | 1385 | elif isinstance(obj, float): |
|
1384 | 1386 | return round(obj, 2) |
@@ -1,63 +1,68 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 16, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: Miguel Urco |
|
5 | @author: Juan C. Espinoza | |
|
5 | 6 | ''' |
|
6 | 7 | |
|
7 | 8 | import os |
|
8 | 9 | from setuptools import setup, Extension |
|
9 | 10 | from setuptools.command.build_ext import build_ext as _build_ext |
|
10 | 11 | from schainpy import __version__ |
|
11 | 12 | |
|
12 | 13 | class build_ext(_build_ext): |
|
13 | 14 | def finalize_options(self): |
|
14 | 15 | _build_ext.finalize_options(self) |
|
15 | 16 | # Prevent numpy from thinking it is still in its setup process: |
|
16 | 17 | __builtins__.__NUMPY_SETUP__ = False |
|
17 | 18 | import numpy |
|
18 | 19 | self.include_dirs.append(numpy.get_include()) |
|
19 | 20 | |
|
20 | setup(name = "schainpy", | |
|
21 | version = __version__, | |
|
22 | description = "Python tools to read, write and process Jicamarca data", | |
|
23 | author = "Miguel Urco", | |
|
24 | author_email = "miguel.urco@jro.igp.gob.pe", | |
|
25 |
|
|
|
26 | packages = {'schainpy', | |
|
27 | 'schainpy.model', | |
|
28 |
|
|
|
29 |
|
|
|
30 |
|
|
|
31 |
|
|
|
32 |
|
|
|
33 |
|
|
|
34 |
|
|
|
35 |
|
|
|
36 |
|
|
|
37 |
|
|
|
38 |
|
|
|
39 |
|
|
|
40 | 'schainpy.cli'}, | |
|
41 |
|
|
|
42 | package_data = {'': ['schain.conf.template'], | |
|
43 | 'schainpy.gui.figures': ['*.png', '*.jpg'], | |
|
44 |
|
|
|
45 |
|
|
|
46 | include_package_data = False, | |
|
47 | scripts = ['schainpy/gui/schainGUI'], | |
|
48 | entry_points = { | |
|
49 | 'console_scripts': [ | |
|
50 | 'schain = schainpy.cli.cli:main', | |
|
51 | ], | |
|
52 |
|
|
|
53 | cmdclass = {'build_ext': build_ext}, | |
|
54 | setup_requires = ["numpy >= 1.11.2"], | |
|
55 | install_requires = [ | |
|
56 | "scipy", | |
|
57 |
|
|
|
58 | "matplotlib", | |
|
59 | "pyzmq", | |
|
60 |
|
|
|
61 |
|
|
|
62 | ], | |
|
21 | setup( | |
|
22 | name = "schainpy", | |
|
23 | version = __version__, | |
|
24 | description = "Python tools to read, write and process Jicamarca data", | |
|
25 | author = "Miguel Urco, Juan C. Espinoza", | |
|
26 | author_email = "juan.espinoza@jro.igp.gob.pe", | |
|
27 | url = "http://jro-dev.igp.gob.pe/rhodecode/schain", | |
|
28 | packages = { | |
|
29 | 'schainpy', | |
|
30 | 'schainpy.model', | |
|
31 | 'schainpy.model.data', | |
|
32 | 'schainpy.model.graphics', | |
|
33 | 'schainpy.model.io', | |
|
34 | 'schainpy.model.proc', | |
|
35 | 'schainpy.model.utils', | |
|
36 | 'schainpy.utils', | |
|
37 | 'schainpy.gui', | |
|
38 | 'schainpy.gui.figures', | |
|
39 | 'schainpy.gui.viewcontroller', | |
|
40 | 'schainpy.gui.viewer', | |
|
41 | 'schainpy.gui.viewer.windows', | |
|
42 | 'schainpy.cli', | |
|
43 | }, | |
|
44 | package_data = {'': ['schain.conf.template'], | |
|
45 | 'schainpy.gui.figures': ['*.png', '*.jpg'], | |
|
46 | 'schainpy.files': ['*.oga'] | |
|
47 | }, | |
|
48 | include_package_data = False, | |
|
49 | scripts = ['schainpy/gui/schainGUI'], | |
|
50 | entry_points = { | |
|
51 | 'console_scripts': [ | |
|
52 | 'schain = schainpy.cli.cli:main', | |
|
53 | ], | |
|
54 | }, | |
|
55 | cmdclass = {'build_ext': build_ext}, | |
|
56 | ext_modules=[ | |
|
57 | Extension("schainpy.model.data._noise", ["schainc/_noise.c"]), | |
|
58 | ], | |
|
59 | setup_requires = ["numpy"], | |
|
60 | install_requires = [ | |
|
61 | "scipy", | |
|
62 | "h5py", | |
|
63 | "matplotlib", | |
|
64 | "pyzmq", | |
|
65 | "fuzzywuzzy", | |
|
66 | "click", | |
|
67 | ], | |
|
63 | 68 | ) |
General Comments 0
You need to be logged in to leave comments.
Login now