@@ -5,4 +5,4 try: | |||||
5 | except: |
|
5 | except: | |
6 | pass |
|
6 | pass | |
7 |
|
7 | |||
8 |
__version__ = '3.0.0b |
|
8 | __version__ = '3.0.0b6' |
@@ -907,12 +907,10 class PlotterData(object): | |||||
907 | MAXNUMX = 200 |
|
907 | MAXNUMX = 200 | |
908 | MAXNUMY = 200 |
|
908 | MAXNUMY = 200 | |
909 |
|
909 | |||
910 |
def __init__(self, code, |
|
910 | def __init__(self, code, exp_code, localtime=True): | |
911 |
|
911 | |||
912 | self.key = code |
|
912 | self.key = code | |
913 | self.throttle = throttle_value |
|
|||
914 | self.exp_code = exp_code |
|
913 | self.exp_code = exp_code | |
915 | self.buffering = buffering |
|
|||
916 | self.ready = False |
|
914 | self.ready = False | |
917 | self.flagNoData = False |
|
915 | self.flagNoData = False | |
918 | self.localtime = localtime |
|
916 | self.localtime = localtime | |
@@ -920,46 +918,24 class PlotterData(object): | |||||
920 | self.meta = {} |
|
918 | self.meta = {} | |
921 | self.__heights = [] |
|
919 | self.__heights = [] | |
922 |
|
920 | |||
923 | if 'snr' in code: |
|
|||
924 | self.plottypes = ['snr'] |
|
|||
925 | elif code == 'spc': |
|
|||
926 | self.plottypes = ['spc', 'noise', 'rti'] |
|
|||
927 | elif code == 'cspc': |
|
|||
928 | self.plottypes = ['cspc', 'spc', 'noise', 'rti'] |
|
|||
929 | elif code == 'rti': |
|
|||
930 | self.plottypes = ['noise', 'rti'] |
|
|||
931 | else: |
|
|||
932 | self.plottypes = [code] |
|
|||
933 |
|
||||
934 | if 'snr' not in self.plottypes and snr: |
|
|||
935 | self.plottypes.append('snr') |
|
|||
936 |
|
||||
937 | for plot in self.plottypes: |
|
|||
938 | self.data[plot] = {} |
|
|||
939 |
|
||||
940 | def __str__(self): |
|
921 | def __str__(self): | |
941 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
922 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] | |
942 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
923 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) | |
943 |
|
924 | |||
944 | def __len__(self): |
|
925 | def __len__(self): | |
945 |
return len(self.data |
|
926 | return len(self.data) | |
946 |
|
927 | |||
947 | def __getitem__(self, key): |
|
928 | def __getitem__(self, key): | |
948 |
|
929 | if isinstance(key, int): | ||
949 | if key not in self.data: |
|
930 | return self.data[self.times[key]] | |
950 | raise KeyError(log.error('Missing key: {}'.format(key))) |
|
931 | elif isinstance(key, str): | |
951 | if 'spc' in key or not self.buffering: |
|
932 | ret = numpy.array([self.data[x][key] for x in self.times]) | |
952 | ret = self.data[key][self.tm] |
|
|||
953 | elif 'scope' in key: |
|
|||
954 | ret = numpy.array(self.data[key][float(self.tm)]) |
|
|||
955 | else: |
|
|||
956 | ret = numpy.array([self.data[key][x] for x in self.times]) |
|
|||
957 | if ret.ndim > 1: |
|
933 | if ret.ndim > 1: | |
958 | ret = numpy.swapaxes(ret, 0, 1) |
|
934 | ret = numpy.swapaxes(ret, 0, 1) | |
959 | return ret |
|
935 | return ret | |
960 |
|
936 | |||
961 | def __contains__(self, key): |
|
937 | def __contains__(self, key): | |
962 | return key in self.data |
|
938 | return key in self.data[self.min_time] | |
963 |
|
939 | |||
964 | def setup(self): |
|
940 | def setup(self): | |
965 | ''' |
|
941 | ''' | |
@@ -971,125 +947,25 class PlotterData(object): | |||||
971 | self.data = {} |
|
947 | self.data = {} | |
972 | self.__heights = [] |
|
948 | self.__heights = [] | |
973 | self.__all_heights = set() |
|
949 | self.__all_heights = set() | |
974 | for plot in self.plottypes: |
|
|||
975 | if 'snr' in plot: |
|
|||
976 | plot = 'snr' |
|
|||
977 | elif 'spc_moments' == plot: |
|
|||
978 | plot = 'moments' |
|
|||
979 | self.data[plot] = {} |
|
|||
980 |
|
||||
981 | if 'spc' in self.data or 'rti' in self.data or 'cspc' in self.data or 'moments' in self.data: |
|
|||
982 | self.data['noise'] = {} |
|
|||
983 | self.data['rti'] = {} |
|
|||
984 | if 'noise' not in self.plottypes: |
|
|||
985 | self.plottypes.append('noise') |
|
|||
986 | if 'rti' not in self.plottypes: |
|
|||
987 | self.plottypes.append('rti') |
|
|||
988 |
|
950 | |||
989 | def shape(self, key): |
|
951 | def shape(self, key): | |
990 | ''' |
|
952 | ''' | |
991 | Get the shape of the one-element data for the given key |
|
953 | Get the shape of the one-element data for the given key | |
992 | ''' |
|
954 | ''' | |
993 |
|
955 | |||
994 | if len(self.data[key]): |
|
956 | if len(self.data[self.min_time][key]): | |
995 | if 'spc' in key or not self.buffering: |
|
957 | return self.data[self.min_time][key].shape | |
996 | return self.data[key].shape |
|
|||
997 | return self.data[key][self.times[0]].shape |
|
|||
998 | return (0,) |
|
958 | return (0,) | |
999 |
|
959 | |||
1000 |
def update(self, data |
|
960 | def update(self, data, tm, meta={}): | |
1001 | ''' |
|
961 | ''' | |
1002 | Update data object with new dataOut |
|
962 | Update data object with new dataOut | |
1003 | ''' |
|
963 | ''' | |
1004 |
|
964 | |||
1005 | self.profileIndex = dataOut.profileIndex |
|
965 | self.data[tm] = data | |
1006 | self.tm = tm |
|
966 | ||
1007 | self.type = dataOut.type |
|
967 | for key, value in meta.items(): | |
1008 | self.parameters = getattr(dataOut, 'parameters', []) |
|
968 | setattr(self, key, value) | |
1009 |
|
||||
1010 | if hasattr(dataOut, 'meta'): |
|
|||
1011 | self.meta.update(dataOut.meta) |
|
|||
1012 |
|
||||
1013 | if hasattr(dataOut, 'pairsList'): |
|
|||
1014 | self.pairs = dataOut.pairsList |
|
|||
1015 |
|
||||
1016 | self.interval = dataOut.timeInterval |
|
|||
1017 | if True in ['spc' in ptype for ptype in self.plottypes]: |
|
|||
1018 | self.xrange = (dataOut.getFreqRange(1)/1000., |
|
|||
1019 | dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
|||
1020 | self.__heights.append(dataOut.heightList) |
|
|||
1021 | self.__all_heights.update(dataOut.heightList) |
|
|||
1022 |
|
||||
1023 | for plot in self.plottypes: |
|
|||
1024 | if plot in ('spc', 'spc_moments', 'spc_cut'): |
|
|||
1025 | z = dataOut.data_spc/dataOut.normFactor |
|
|||
1026 | buffer = 10*numpy.log10(z) |
|
|||
1027 | if plot == 'cspc': |
|
|||
1028 | buffer = (dataOut.data_spc, dataOut.data_cspc) |
|
|||
1029 | if plot == 'noise': |
|
|||
1030 | buffer = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
|||
1031 | if plot in ('rti', 'spcprofile'): |
|
|||
1032 | buffer = dataOut.getPower() |
|
|||
1033 | if plot == 'snr_db': |
|
|||
1034 | buffer = dataOut.data_SNR |
|
|||
1035 | if plot == 'snr': |
|
|||
1036 | buffer = 10*numpy.log10(dataOut.data_SNR) |
|
|||
1037 | if plot == 'dop': |
|
|||
1038 | buffer = dataOut.data_DOP |
|
|||
1039 | if plot == 'pow': |
|
|||
1040 | buffer = 10*numpy.log10(dataOut.data_POW) |
|
|||
1041 | if plot == 'width': |
|
|||
1042 | buffer = dataOut.data_WIDTH |
|
|||
1043 | if plot == 'coh': |
|
|||
1044 | buffer = dataOut.getCoherence() |
|
|||
1045 | if plot == 'phase': |
|
|||
1046 | buffer = dataOut.getCoherence(phase=True) |
|
|||
1047 | if plot == 'output': |
|
|||
1048 | buffer = dataOut.data_output |
|
|||
1049 | if plot == 'param': |
|
|||
1050 | buffer = dataOut.data_param |
|
|||
1051 | if plot == 'scope': |
|
|||
1052 | buffer = dataOut.data |
|
|||
1053 | self.flagDataAsBlock = dataOut.flagDataAsBlock |
|
|||
1054 | self.nProfiles = dataOut.nProfiles |
|
|||
1055 | if plot == 'pp_power': |
|
|||
1056 | buffer = dataOut.dataPP_POWER |
|
|||
1057 | self.flagDataAsBlock = dataOut.flagDataAsBlock |
|
|||
1058 | self.nProfiles = dataOut.nProfiles |
|
|||
1059 | if plot == 'pp_signal': |
|
|||
1060 | buffer = dataOut.dataPP_POW |
|
|||
1061 | self.flagDataAsBlock = dataOut.flagDataAsBlock |
|
|||
1062 | self.nProfiles = dataOut.nProfiles |
|
|||
1063 | if plot == 'pp_velocity': |
|
|||
1064 | buffer = dataOut.dataPP_DOP |
|
|||
1065 | self.flagDataAsBlock = dataOut.flagDataAsBlock |
|
|||
1066 | self.nProfiles = dataOut.nProfiles |
|
|||
1067 | if plot == 'pp_specwidth': |
|
|||
1068 | buffer = dataOut.dataPP_WIDTH |
|
|||
1069 | self.flagDataAsBlock = dataOut.flagDataAsBlock |
|
|||
1070 | self.nProfiles = dataOut.nProfiles |
|
|||
1071 |
|
||||
1072 | if plot == 'spc': |
|
|||
1073 | self.data['spc'][tm] = buffer |
|
|||
1074 | elif plot == 'cspc': |
|
|||
1075 | self.data['cspc'][tm] = buffer |
|
|||
1076 | elif plot == 'spc_moments': |
|
|||
1077 | self.data['spc'][tm] = buffer |
|
|||
1078 | self.data['moments'][tm] = dataOut.moments |
|
|||
1079 | else: |
|
|||
1080 | if self.buffering: |
|
|||
1081 | self.data[plot][tm] = buffer |
|
|||
1082 | else: |
|
|||
1083 | self.data[plot][tm] = buffer |
|
|||
1084 |
|
||||
1085 | if dataOut.channelList is None: |
|
|||
1086 | self.channels = range(buffer.shape[0]) |
|
|||
1087 | else: |
|
|||
1088 | self.channels = dataOut.channelList |
|
|||
1089 |
|
||||
1090 | if buffer is None: |
|
|||
1091 | self.flagNoData = True |
|
|||
1092 | raise schainpy.admin.SchainWarning('Attribute data_{} is empty'.format(self.key)) |
|
|||
1093 |
|
969 | |||
1094 | def normalize_heights(self): |
|
970 | def normalize_heights(self): | |
1095 | ''' |
|
971 | ''' | |
@@ -1119,18 +995,21 class PlotterData(object): | |||||
1119 | Convert data to json |
|
995 | Convert data to json | |
1120 | ''' |
|
996 | ''' | |
1121 |
|
997 | |||
1122 | dy = int(self.heights.size/self.MAXNUMY) + 1 |
|
998 | meta = {} | |
1123 | if self.key in ('spc', 'cspc'): |
|
999 | meta['xrange'] = [] | |
1124 |
|
|
1000 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 | |
|
1001 | tmp = self.data[tm][self.key] | |||
|
1002 | shape = tmp.shape | |||
|
1003 | if len(shape) == 2: | |||
|
1004 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) | |||
|
1005 | elif len(shape) == 3: | |||
|
1006 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 | |||
1125 | data = self.roundFloats( |
|
1007 | data = self.roundFloats( | |
1126 |
self.data[self.key |
|
1008 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) | |
|
1009 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) | |||
1127 | else: |
|
1010 | else: | |
1128 | if self.key is 'noise': |
|
1011 | data = self.roundFloats(self.data[tm][self.key].tolist()) | |
1129 | data = [[x] for x in self.roundFloats(self.data[self.key][tm].tolist())] |
|
1012 | ||
1130 | else: |
|
|||
1131 | data = self.roundFloats(self.data[self.key][tm][::, ::dy].tolist()) |
|
|||
1132 |
|
||||
1133 | meta = {} |
|
|||
1134 | ret = { |
|
1013 | ret = { | |
1135 | 'plot': plot_name, |
|
1014 | 'plot': plot_name, | |
1136 | 'code': self.exp_code, |
|
1015 | 'code': self.exp_code, | |
@@ -1140,12 +1019,7 class PlotterData(object): | |||||
1140 | meta['type'] = plot_type |
|
1019 | meta['type'] = plot_type | |
1141 | meta['interval'] = float(self.interval) |
|
1020 | meta['interval'] = float(self.interval) | |
1142 | meta['localtime'] = self.localtime |
|
1021 | meta['localtime'] = self.localtime | |
1143 |
meta['yrange'] = self.roundFloats(self. |
|
1022 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) | |
1144 | if 'spc' in self.data or 'cspc' in self.data: |
|
|||
1145 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
|||
1146 | else: |
|
|||
1147 | meta['xrange'] = [] |
|
|||
1148 |
|
||||
1149 | meta.update(self.meta) |
|
1023 | meta.update(self.meta) | |
1150 | ret['metadata'] = meta |
|
1024 | ret['metadata'] = meta | |
1151 | return json.dumps(ret) |
|
1025 | return json.dumps(ret) | |
@@ -1156,10 +1030,9 class PlotterData(object): | |||||
1156 | Return the list of times of the current data |
|
1030 | Return the list of times of the current data | |
1157 | ''' |
|
1031 | ''' | |
1158 |
|
1032 | |||
1159 |
ret = |
|
1033 | ret = [t for t in self.data] | |
1160 | if self: |
|
1034 | ret.sort() | |
1161 | ret.sort() |
|
1035 | return numpy.array(ret) | |
1162 | return ret |
|
|||
1163 |
|
1036 | |||
1164 | @property |
|
1037 | @property | |
1165 | def min_time(self): |
|
1038 | def min_time(self): | |
@@ -1177,13 +1050,13 class PlotterData(object): | |||||
1177 |
|
1050 | |||
1178 | return self.times[-1] |
|
1051 | return self.times[-1] | |
1179 |
|
1052 | |||
1180 | @property |
|
1053 | # @property | |
1181 | def heights(self): |
|
1054 | # def heights(self): | |
1182 | ''' |
|
1055 | # ''' | |
1183 | Return the list of heights of the current data |
|
1056 | # Return the list of heights of the current data | |
1184 |
|
|
1057 | # ''' | |
1185 |
|
1058 | |||
1186 | return numpy.array(self.__heights[-1]) |
|
1059 | # return numpy.array(self.__heights[-1]) | |
1187 |
|
1060 | |||
1188 | @staticmethod |
|
1061 | @staticmethod | |
1189 | def roundFloats(obj): |
|
1062 | def roundFloats(obj): |
@@ -302,7 +302,7 class RadarControllerHeader(Header): | |||||
302 | nWindows=None, nHeights=None, firstHeight=None, deltaHeight=None, |
|
302 | nWindows=None, nHeights=None, firstHeight=None, deltaHeight=None, | |
303 | numTaus=0, line6Function=0, line5Function=0, fClock=None, |
|
303 | numTaus=0, line6Function=0, line5Function=0, fClock=None, | |
304 | prePulseBefore=0, prePulseAfter=0, |
|
304 | prePulseBefore=0, prePulseAfter=0, | |
305 |
codeType=0, nCode=0, nBaud=0, code= |
|
305 | codeType=0, nCode=0, nBaud=0, code=[], | |
306 | flip1=0, flip2=0): |
|
306 | flip1=0, flip2=0): | |
307 |
|
307 | |||
308 | # self.size = 116 |
|
308 | # self.size = 116 |
@@ -12,7 +12,7 import zmq | |||||
12 | import time |
|
12 | import time | |
13 | import numpy |
|
13 | import numpy | |
14 | import datetime |
|
14 | import datetime | |
15 |
from |
|
15 | from collections import deque | |
16 | from functools import wraps |
|
16 | from functools import wraps | |
17 | from threading import Thread |
|
17 | from threading import Thread | |
18 | import matplotlib |
|
18 | import matplotlib | |
@@ -22,7 +22,7 if 'BACKEND' in os.environ: | |||||
22 | elif 'linux' in sys.platform: |
|
22 | elif 'linux' in sys.platform: | |
23 | matplotlib.use("TkAgg") |
|
23 | matplotlib.use("TkAgg") | |
24 | elif 'darwin' in sys.platform: |
|
24 | elif 'darwin' in sys.platform: | |
25 |
matplotlib.use(' |
|
25 | matplotlib.use('MacOSX') | |
26 | else: |
|
26 | else: | |
27 | from schainpy.utils import log |
|
27 | from schainpy.utils import log | |
28 | log.warning('Using default Backend="Agg"', 'INFO') |
|
28 | log.warning('Using default Backend="Agg"', 'INFO') | |
@@ -83,7 +83,6 def figpause(interval): | |||||
83 | pass |
|
83 | pass | |
84 | return |
|
84 | return | |
85 |
|
85 | |||
86 |
|
||||
87 | def popup(message): |
|
86 | def popup(message): | |
88 | ''' |
|
87 | ''' | |
89 | ''' |
|
88 | ''' | |
@@ -186,7 +185,7 class Plot(Operation): | |||||
186 | self.sender_time = 0 |
|
185 | self.sender_time = 0 | |
187 | self.data = None |
|
186 | self.data = None | |
188 | self.firsttime = True |
|
187 | self.firsttime = True | |
189 |
self.sender_queue = |
|
188 | self.sender_queue = deque(maxlen=10) | |
190 | self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2} |
|
189 | self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2} | |
191 |
|
190 | |||
192 | def __fmtTime(self, x, pos): |
|
191 | def __fmtTime(self, x, pos): | |
@@ -230,6 +229,7 class Plot(Operation): | |||||
230 | self.yscale = kwargs.get('yscale', None) |
|
229 | self.yscale = kwargs.get('yscale', None) | |
231 | self.xlabel = kwargs.get('xlabel', None) |
|
230 | self.xlabel = kwargs.get('xlabel', None) | |
232 | self.attr_time = kwargs.get('attr_time', 'utctime') |
|
231 | self.attr_time = kwargs.get('attr_time', 'utctime') | |
|
232 | self.attr_data = kwargs.get('attr_data', 'data_param') | |||
233 | self.decimation = kwargs.get('decimation', None) |
|
233 | self.decimation = kwargs.get('decimation', None) | |
234 | self.showSNR = kwargs.get('showSNR', False) |
|
234 | self.showSNR = kwargs.get('showSNR', False) | |
235 | self.oneFigure = kwargs.get('oneFigure', True) |
|
235 | self.oneFigure = kwargs.get('oneFigure', True) | |
@@ -251,8 +251,8 class Plot(Operation): | |||||
251 | self.tag = kwargs.get('tag', '') |
|
251 | self.tag = kwargs.get('tag', '') | |
252 | self.height_index = kwargs.get('height_index', None) |
|
252 | self.height_index = kwargs.get('height_index', None) | |
253 | self.__throttle_plot = apply_throttle(self.throttle) |
|
253 | self.__throttle_plot = apply_throttle(self.throttle) | |
254 | self.data = PlotterData( |
|
254 | code = self.attr_data if self.attr_data else self.CODE | |
255 | self.CODE, self.throttle, self.exp_code, self.localtime, self.buffering, snr=self.showSNR) |
|
255 | self.data = PlotterData(self.CODE, self.exp_code, self.localtime) | |
256 |
|
256 | |||
257 | if self.server: |
|
257 | if self.server: | |
258 | if not self.server.startswith('tcp://'): |
|
258 | if not self.server.startswith('tcp://'): | |
@@ -385,8 +385,8 class Plot(Operation): | |||||
385 | xmax = self.tmin + self.xrange*60*60 |
|
385 | xmax = self.tmin + self.xrange*60*60 | |
386 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) |
|
386 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) | |
387 | ax.xaxis.set_major_locator(LinearLocator(9)) |
|
387 | ax.xaxis.set_major_locator(LinearLocator(9)) | |
388 | ymin = self.ymin if self.ymin else numpy.nanmin(self.y) |
|
388 | ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)]) | |
389 | ymax = self.ymax if self.ymax else numpy.nanmax(self.y) |
|
389 | ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)]) | |
390 | ax.set_facecolor(self.bgcolor) |
|
390 | ax.set_facecolor(self.bgcolor) | |
391 | if self.xscale: |
|
391 | if self.xscale: | |
392 | ax.xaxis.set_major_formatter(FuncFormatter( |
|
392 | ax.xaxis.set_major_formatter(FuncFormatter( | |
@@ -478,14 +478,28 class Plot(Operation): | |||||
478 | if self.server: |
|
478 | if self.server: | |
479 | self.send_to_server() |
|
479 | self.send_to_server() | |
480 |
|
480 | |||
|
481 | def __update(self, dataOut, timestamp): | |||
|
482 | ''' | |||
|
483 | ''' | |||
|
484 | ||||
|
485 | metadata = { | |||
|
486 | 'yrange': dataOut.heightList, | |||
|
487 | 'interval': dataOut.timeInterval, | |||
|
488 | 'channels': dataOut.channelList | |||
|
489 | } | |||
|
490 | ||||
|
491 | data, meta = self.update(dataOut) | |||
|
492 | metadata.update(meta) | |||
|
493 | self.data.update(data, timestamp, metadata) | |||
|
494 | ||||
481 | def save_figure(self, n): |
|
495 | def save_figure(self, n): | |
482 | ''' |
|
496 | ''' | |
483 | ''' |
|
497 | ''' | |
484 |
|
498 | |||
485 | if (self.data.tm - self.save_time) <= self.save_period: |
|
499 | if (self.data.max_time - self.save_time) <= self.save_period: | |
486 | return |
|
500 | return | |
487 |
|
501 | |||
488 | self.save_time = self.data.tm |
|
502 | self.save_time = self.data.max_time | |
489 |
|
503 | |||
490 | fig = self.figures[n] |
|
504 | fig = self.figures[n] | |
491 |
|
505 | |||
@@ -520,11 +534,15 class Plot(Operation): | |||||
520 | ''' |
|
534 | ''' | |
521 | ''' |
|
535 | ''' | |
522 |
|
536 | |||
523 | interval = self.data.tm - self.sender_time |
|
537 | if self.exp_code == None: | |
|
538 | log.warning('Missing `exp_code` skipping sending to server...') | |||
|
539 | ||||
|
540 | last_time = self.data.max_time | |||
|
541 | interval = last_time - self.sender_time | |||
524 | if interval < self.sender_period: |
|
542 | if interval < self.sender_period: | |
525 | return |
|
543 | return | |
526 |
|
544 | |||
527 |
self.sender_time = |
|
545 | self.sender_time = last_time | |
528 |
|
546 | |||
529 | attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax'] |
|
547 | attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax'] | |
530 | for attr in attrs: |
|
548 | for attr in attrs: | |
@@ -541,27 +559,21 class Plot(Operation): | |||||
541 | self.data.meta['colormap'] = 'Viridis' |
|
559 | self.data.meta['colormap'] = 'Viridis' | |
542 | self.data.meta['interval'] = int(interval) |
|
560 | self.data.meta['interval'] = int(interval) | |
543 |
|
561 | |||
544 | try: |
|
562 | self.sender_queue.append(last_time) | |
545 | self.sender_queue.put(self.data.tm, block=False) |
|
|||
546 | except: |
|
|||
547 | tm = self.sender_queue.get() |
|
|||
548 | self.sender_queue.put(self.data.tm) |
|
|||
549 |
|
563 | |||
550 | while True: |
|
564 | while True: | |
551 | if self.sender_queue.empty(): |
|
|||
552 | break |
|
|||
553 | tm = self.sender_queue.get() |
|
|||
554 | try: |
|
565 | try: | |
555 | msg = self.data.jsonify(tm, self.save_code, self.plot_type) |
|
566 | tm = self.sender_queue.popleft() | |
556 | except: |
|
567 | except IndexError: | |
557 |
|
|
568 | break | |
|
569 | msg = self.data.jsonify(tm, self.save_code, self.plot_type) | |||
558 | self.socket.send_string(msg) |
|
570 | self.socket.send_string(msg) | |
559 |
socks = dict(self.poll.poll( |
|
571 | socks = dict(self.poll.poll(2000)) | |
560 | if socks.get(self.socket) == zmq.POLLIN: |
|
572 | if socks.get(self.socket) == zmq.POLLIN: | |
561 | reply = self.socket.recv_string() |
|
573 | reply = self.socket.recv_string() | |
562 | if reply == 'ok': |
|
574 | if reply == 'ok': | |
563 | log.log("Response from server ok", self.name) |
|
575 | log.log("Response from server ok", self.name) | |
564 |
time.sleep(0. |
|
576 | time.sleep(0.1) | |
565 | continue |
|
577 | continue | |
566 | else: |
|
578 | else: | |
567 | log.warning( |
|
579 | log.warning( | |
@@ -569,11 +581,10 class Plot(Operation): | |||||
569 | else: |
|
581 | else: | |
570 | log.warning( |
|
582 | log.warning( | |
571 | "No response from server, retrying...", self.name) |
|
583 | "No response from server, retrying...", self.name) | |
572 |
|
|
584 | self.sender_queue.appendleft(tm) | |
573 | self.socket.setsockopt(zmq.LINGER, 0) |
|
585 | self.socket.setsockopt(zmq.LINGER, 0) | |
574 | self.socket.close() |
|
586 | self.socket.close() | |
575 | self.poll.unregister(self.socket) |
|
587 | self.poll.unregister(self.socket) | |
576 | time.sleep(0.1) |
|
|||
577 | self.socket = self.context.socket(zmq.REQ) |
|
588 | self.socket = self.context.socket(zmq.REQ) | |
578 | self.socket.connect(self.server) |
|
589 | self.socket.connect(self.server) | |
579 | self.poll.register(self.socket, zmq.POLLIN) |
|
590 | self.poll.register(self.socket, zmq.POLLIN) | |
@@ -595,9 +606,21 class Plot(Operation): | |||||
595 |
|
606 | |||
596 | def plot(self): |
|
607 | def plot(self): | |
597 | ''' |
|
608 | ''' | |
598 | Must be defined in the child class |
|
609 | Must be defined in the child class, the actual plotting method | |
599 | ''' |
|
610 | ''' | |
600 | raise NotImplementedError |
|
611 | raise NotImplementedError | |
|
612 | ||||
|
613 | def update(self, dataOut): | |||
|
614 | ''' | |||
|
615 | Must be defined in the child class, update self.data with new data | |||
|
616 | ''' | |||
|
617 | ||||
|
618 | data = { | |||
|
619 | self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE)) | |||
|
620 | } | |||
|
621 | meta = {} | |||
|
622 | ||||
|
623 | return data, meta | |||
601 |
|
624 | |||
602 | def run(self, dataOut, **kwargs): |
|
625 | def run(self, dataOut, **kwargs): | |
603 | ''' |
|
626 | ''' | |
@@ -623,14 +646,14 class Plot(Operation): | |||||
623 |
|
646 | |||
624 | tm = getattr(dataOut, self.attr_time) |
|
647 | tm = getattr(dataOut, self.attr_time) | |
625 |
|
648 | |||
626 |
if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60: |
|
649 | if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60: | |
627 | self.save_time = tm |
|
650 | self.save_time = tm | |
628 | self.__plot() |
|
651 | self.__plot() | |
629 | self.tmin += self.xrange*60*60 |
|
652 | self.tmin += self.xrange*60*60 | |
630 | self.data.setup() |
|
653 | self.data.setup() | |
631 | self.clear_figures() |
|
654 | self.clear_figures() | |
632 |
|
655 | |||
633 |
self. |
|
656 | self.__update(dataOut, tm) | |
634 |
|
657 | |||
635 | if self.isPlotConfig is False: |
|
658 | if self.isPlotConfig is False: | |
636 | self.__setup_plot() |
|
659 | self.__setup_plot() | |
@@ -658,7 +681,7 class Plot(Operation): | |||||
658 | def close(self): |
|
681 | def close(self): | |
659 |
|
682 | |||
660 | if self.data and not self.data.flagNoData: |
|
683 | if self.data and not self.data.flagNoData: | |
661 | self.save_time = self.data.tm |
|
684 | self.save_time = self.data.max_time | |
662 | self.__plot() |
|
685 | self.__plot() | |
663 | if self.data and not self.data.flagNoData and self.pause: |
|
686 | if self.data and not self.data.flagNoData and self.pause: | |
664 | figpause(10) |
|
687 | figpause(10) |
@@ -1,342 +1,101 | |||||
1 | ''' |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | Created on Jul 9, 2014 |
|
2 | # All rights reserved. | |
|
3 | # | |||
|
4 | # Distributed under the terms of the BSD 3-clause license. | |||
|
5 | """Classes to plo Specra Heis data | |||
3 |
|
6 | |||
4 | @author: roj-idl71 |
|
7 | """ | |
5 | ''' |
|
|||
6 | import os |
|
|||
7 | import datetime |
|
|||
8 | import numpy |
|
|||
9 |
|
||||
10 | from schainpy.model.graphics.jroplot_base import Plot |
|
|||
11 |
|
||||
12 |
|
||||
13 | class SpectraHeisScope(Plot): |
|
|||
14 |
|
||||
15 |
|
||||
16 | isConfig = None |
|
|||
17 | __nsubplots = None |
|
|||
18 |
|
||||
19 | WIDTHPROF = None |
|
|||
20 | HEIGHTPROF = None |
|
|||
21 | PREFIX = 'spc' |
|
|||
22 |
|
||||
23 | def __init__(self):#, **kwargs): |
|
|||
24 |
|
||||
25 | Plot.__init__(self)#, **kwargs) |
|
|||
26 | self.isConfig = False |
|
|||
27 | self.__nsubplots = 1 |
|
|||
28 |
|
||||
29 | self.WIDTH = 230 |
|
|||
30 | self.HEIGHT = 250 |
|
|||
31 | self.WIDTHPROF = 120 |
|
|||
32 | self.HEIGHTPROF = 0 |
|
|||
33 | self.counter_imagwr = 0 |
|
|||
34 |
|
||||
35 | self.PLOT_CODE = SPEC_CODE |
|
|||
36 |
|
||||
37 | def getSubplots(self): |
|
|||
38 |
|
||||
39 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
|||
40 | nrow = int(self.nplots*1./ncol + 0.9) |
|
|||
41 |
|
||||
42 | return nrow, ncol |
|
|||
43 |
|
||||
44 | def setup(self, id, nplots, wintitle, show): |
|
|||
45 |
|
||||
46 | showprofile = False |
|
|||
47 | self.__showprofile = showprofile |
|
|||
48 | self.nplots = nplots |
|
|||
49 |
|
||||
50 | ncolspan = 1 |
|
|||
51 | colspan = 1 |
|
|||
52 | if showprofile: |
|
|||
53 | ncolspan = 3 |
|
|||
54 | colspan = 2 |
|
|||
55 | self.__nsubplots = 2 |
|
|||
56 |
|
||||
57 | self.createFigure(id = id, |
|
|||
58 | wintitle = wintitle, |
|
|||
59 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
|||
60 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
|||
61 | show = show) |
|
|||
62 |
|
||||
63 | nrow, ncol = self.getSubplots() |
|
|||
64 |
|
||||
65 | counter = 0 |
|
|||
66 | for y in range(nrow): |
|
|||
67 | for x in range(ncol): |
|
|||
68 |
|
||||
69 | if counter >= self.nplots: |
|
|||
70 | break |
|
|||
71 |
|
||||
72 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
|||
73 |
|
||||
74 | if showprofile: |
|
|||
75 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
|||
76 |
|
||||
77 | counter += 1 |
|
|||
78 |
|
||||
79 |
|
||||
80 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
|||
81 | xmin=None, xmax=None, ymin=None, ymax=None, save=False, |
|
|||
82 | figpath='./', figfile=None, ftp=False, wr_period=1, show=True, |
|
|||
83 | server=None, folder=None, username=None, password=None, |
|
|||
84 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
|||
85 |
|
||||
86 | """ |
|
|||
87 |
|
||||
88 | Input: |
|
|||
89 | dataOut : |
|
|||
90 | id : |
|
|||
91 | wintitle : |
|
|||
92 | channelList : |
|
|||
93 | xmin : None, |
|
|||
94 | xmax : None, |
|
|||
95 | ymin : None, |
|
|||
96 | ymax : None, |
|
|||
97 | """ |
|
|||
98 |
|
||||
99 | if dataOut.flagNoData: |
|
|||
100 | return dataOut |
|
|||
101 |
|
||||
102 | if dataOut.realtime: |
|
|||
103 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
|||
104 | print('Skipping this plot function') |
|
|||
105 | return |
|
|||
106 |
|
||||
107 | if channelList == None: |
|
|||
108 | channelIndexList = dataOut.channelIndexList |
|
|||
109 | else: |
|
|||
110 | channelIndexList = [] |
|
|||
111 | for channel in channelList: |
|
|||
112 | if channel not in dataOut.channelList: |
|
|||
113 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
|||
114 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
|||
115 |
|
||||
116 | # x = dataOut.heightList |
|
|||
117 | c = 3E8 |
|
|||
118 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
|||
119 | #deberia cambiar para el caso de 1Mhz y 100KHz |
|
|||
120 | x = numpy.arange(-1*dataOut.nHeights/2.,dataOut.nHeights/2.)*(c/(2*deltaHeight*dataOut.nHeights*1000)) |
|
|||
121 | #para 1Mhz descomentar la siguiente linea |
|
|||
122 | #x= x/(10000.0) |
|
|||
123 | # y = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) |
|
|||
124 | # y = y.real |
|
|||
125 | factor = dataOut.normFactor |
|
|||
126 | data = dataOut.data_spc / factor |
|
|||
127 | datadB = 10.*numpy.log10(data) |
|
|||
128 | y = datadB |
|
|||
129 |
|
||||
130 | #thisDatetime = dataOut.datatime |
|
|||
131 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
|||
132 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
|||
133 | xlabel = "" |
|
|||
134 | #para 1Mhz descomentar la siguiente linea |
|
|||
135 | #xlabel = "Frequency x 10000" |
|
|||
136 | ylabel = "Intensity (dB)" |
|
|||
137 |
|
||||
138 | if not self.isConfig: |
|
|||
139 | nplots = len(channelIndexList) |
|
|||
140 |
|
||||
141 | self.setup(id=id, |
|
|||
142 | nplots=nplots, |
|
|||
143 | wintitle=wintitle, |
|
|||
144 | show=show) |
|
|||
145 |
|
||||
146 | if xmin == None: xmin = numpy.nanmin(x) |
|
|||
147 | if xmax == None: xmax = numpy.nanmax(x) |
|
|||
148 | if ymin == None: ymin = numpy.nanmin(y) |
|
|||
149 | if ymax == None: ymax = numpy.nanmax(y) |
|
|||
150 |
|
||||
151 | self.FTP_WEI = ftp_wei |
|
|||
152 | self.EXP_CODE = exp_code |
|
|||
153 | self.SUB_EXP_CODE = sub_exp_code |
|
|||
154 | self.PLOT_POS = plot_pos |
|
|||
155 |
|
||||
156 | self.isConfig = True |
|
|||
157 |
|
||||
158 | self.setWinTitle(title) |
|
|||
159 |
|
||||
160 | for i in range(len(self.axesList)): |
|
|||
161 | ychannel = y[i,:] |
|
|||
162 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
|||
163 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[channelIndexList[i]], numpy.max(ychannel), str_datetime) |
|
|||
164 | axes = self.axesList[i] |
|
|||
165 | axes.pline(x, ychannel, |
|
|||
166 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
|||
167 | xlabel=xlabel, ylabel=ylabel, title=title, grid='both') |
|
|||
168 |
|
||||
169 |
|
||||
170 | self.draw() |
|
|||
171 |
|
||||
172 | self.save(figpath=figpath, |
|
|||
173 | figfile=figfile, |
|
|||
174 | save=save, |
|
|||
175 | ftp=ftp, |
|
|||
176 | wr_period=wr_period, |
|
|||
177 | thisDatetime=thisDatetime) |
|
|||
178 |
|
||||
179 | return dataOut |
|
|||
180 |
|
||||
181 |
|
||||
182 | class RTIfromSpectraHeis(Plot): |
|
|||
183 |
|
||||
184 | isConfig = None |
|
|||
185 | __nsubplots = None |
|
|||
186 |
|
||||
187 | PREFIX = 'rtinoise' |
|
|||
188 |
|
||||
189 | def __init__(self):#, **kwargs): |
|
|||
190 | Plot.__init__(self)#, **kwargs) |
|
|||
191 | self.timerange = 24*60*60 |
|
|||
192 | self.isConfig = False |
|
|||
193 | self.__nsubplots = 1 |
|
|||
194 |
|
||||
195 | self.WIDTH = 820 |
|
|||
196 | self.HEIGHT = 200 |
|
|||
197 | self.WIDTHPROF = 120 |
|
|||
198 | self.HEIGHTPROF = 0 |
|
|||
199 | self.counter_imagwr = 0 |
|
|||
200 | self.xdata = None |
|
|||
201 | self.ydata = None |
|
|||
202 | self.figfile = None |
|
|||
203 |
|
||||
204 | self.PLOT_CODE = RTI_CODE |
|
|||
205 |
|
||||
206 | def getSubplots(self): |
|
|||
207 |
|
||||
208 | ncol = 1 |
|
|||
209 | nrow = 1 |
|
|||
210 |
|
||||
211 | return nrow, ncol |
|
|||
212 |
|
||||
213 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
|||
214 |
|
||||
215 | self.__showprofile = showprofile |
|
|||
216 | self.nplots = nplots |
|
|||
217 |
|
||||
218 | ncolspan = 7 |
|
|||
219 | colspan = 6 |
|
|||
220 | self.__nsubplots = 2 |
|
|||
221 |
|
||||
222 | self.createFigure(id = id, |
|
|||
223 | wintitle = wintitle, |
|
|||
224 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
|||
225 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
|||
226 | show = show) |
|
|||
227 |
|
||||
228 | nrow, ncol = self.getSubplots() |
|
|||
229 |
|
||||
230 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
|||
231 |
|
8 | |||
|
9 | import numpy | |||
232 |
|
10 | |||
233 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
11 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
234 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
|||
235 | timerange=None, |
|
|||
236 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, show=True, |
|
|||
237 | server=None, folder=None, username=None, password=None, |
|
|||
238 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
|||
239 |
|
12 | |||
240 | if dataOut.flagNoData: |
|
|||
241 | return dataOut |
|
|||
242 |
|
13 | |||
|
14 | class SpectraHeisPlot(Plot): | |||
243 |
|
15 | |||
244 | if channelList == None: |
|
16 | CODE = 'spc_heis' | |
245 | channelIndexList = dataOut.channelIndexList |
|
|||
246 | channelList = dataOut.channelList |
|
|||
247 | else: |
|
|||
248 | channelIndexList = [] |
|
|||
249 | for channel in channelList: |
|
|||
250 | if channel not in dataOut.channelList: |
|
|||
251 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
|||
252 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
|||
253 |
|
17 | |||
254 | if timerange != None: |
|
18 | def setup(self): | |
255 | self.timerange = timerange |
|
|||
256 |
|
19 | |||
257 | x = dataOut.getTimeRange() |
|
20 | self.nplots = len(self.data.channels) | |
258 | y = dataOut.heightList |
|
21 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
|
22 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |||
|
23 | self.height = 2.6 * self.nrows | |||
|
24 | self.width = 3.5 * self.ncols | |||
|
25 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.95, 'bottom': 0.08}) | |||
|
26 | self.ylabel = 'Intensity [dB]' | |||
|
27 | self.xlabel = 'Frequency [KHz]' | |||
|
28 | self.colorbar = False | |||
259 |
|
29 | |||
260 | factor = dataOut.normFactor |
|
30 | def update(self, dataOut): | |
261 | data = dataOut.data_spc / factor |
|
|||
262 | data = numpy.average(data,axis=1) |
|
|||
263 | datadB = 10*numpy.log10(data) |
|
|||
264 |
|
31 | |||
265 | # factor = dataOut.normFactor |
|
32 | data = {} | |
266 | # noise = dataOut.getNoise()/factor |
|
33 | meta = {} | |
267 | # noisedB = 10*numpy.log10(noise) |
|
34 | spc = 10*numpy.log10(dataOut.data_spc / dataOut.normFactor) | |
|
35 | data['spc_heis'] = spc | |||
|
36 | ||||
|
37 | return data, meta | |||
268 |
|
38 | |||
269 | #thisDatetime = dataOut.datatime |
|
39 | def plot(self): | |
270 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
|||
271 | title = wintitle + " RTI: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
|||
272 | xlabel = "Local Time" |
|
|||
273 | ylabel = "Intensity (dB)" |
|
|||
274 |
|
40 | |||
275 | if not self.isConfig: |
|
41 | c = 3E8 | |
|
42 | deltaHeight = self.data.yrange[1] - self.data.yrange[0] | |||
|
43 | x = numpy.arange(-1*len(self.data.yrange)/2., len(self.data.yrange)/2.)*(c/(2*deltaHeight*len(self.data.yrange)*1000)) | |||
|
44 | self.y = self.data[-1]['spc_heis'] | |||
|
45 | self.titles = [] | |||
276 |
|
46 | |||
277 | nplots = 1 |
|
47 | for n, ax in enumerate(self.axes): | |
|
48 | ychannel = self.y[n,:] | |||
|
49 | if ax.firsttime: | |||
|
50 | self.xmin = min(x) if self.xmin is None else self.xmin | |||
|
51 | self.xmax = max(x) if self.xmax is None else self.xmax | |||
|
52 | ax.plt = ax.plot(x, ychannel, lw=1, color='b')[0] | |||
|
53 | else: | |||
|
54 | ax.plt.set_data(x, ychannel) | |||
278 |
|
55 | |||
279 | self.setup(id=id, |
|
56 | self.titles.append("Channel {}: {:4.2f}dB".format(n, numpy.max(ychannel))) | |
280 | nplots=nplots, |
|
|||
281 | wintitle=wintitle, |
|
|||
282 | showprofile=showprofile, |
|
|||
283 | show=show) |
|
|||
284 |
|
57 | |||
285 | self.tmin, self.tmax = self.getTimeLim(x, xmin, xmax) |
|
|||
286 |
|
58 | |||
287 | if ymin == None: ymin = numpy.nanmin(datadB) |
|
59 | class RTIHeisPlot(Plot): | |
288 | if ymax == None: ymax = numpy.nanmax(datadB) |
|
|||
289 |
|
60 | |||
290 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
61 | CODE = 'rti_heis' | |
291 | self.isConfig = True |
|
|||
292 | self.figfile = figfile |
|
|||
293 | self.xdata = numpy.array([]) |
|
|||
294 | self.ydata = numpy.array([]) |
|
|||
295 |
|
62 | |||
296 | self.FTP_WEI = ftp_wei |
|
63 | def setup(self): | |
297 | self.EXP_CODE = exp_code |
|
|||
298 | self.SUB_EXP_CODE = sub_exp_code |
|
|||
299 | self.PLOT_POS = plot_pos |
|
|||
300 |
|
64 | |||
301 | self.setWinTitle(title) |
|
65 | self.xaxis = 'time' | |
|
66 | self.ncols = 1 | |||
|
67 | self.nrows = 1 | |||
|
68 | self.nplots = 1 | |||
|
69 | self.ylabel = 'Intensity [dB]' | |||
|
70 | self.xlabel = 'Time' | |||
|
71 | self.titles = ['RTI'] | |||
|
72 | self.colorbar = False | |||
|
73 | self.height = 4 | |||
|
74 | self.plots_adjust.update({'right': 0.85 }) | |||
302 |
|
75 | |||
|
76 | def update(self, dataOut): | |||
303 |
|
77 | |||
304 | # title = "RTI %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
78 | data = {} | |
305 | title = "RTI - %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
79 | meta = {} | |
|
80 | spc = dataOut.data_spc / dataOut.normFactor | |||
|
81 | spc = 10*numpy.log10(numpy.average(spc, axis=1)) | |||
|
82 | data['rti_heis'] = spc | |||
|
83 | ||||
|
84 | return data, meta | |||
306 |
|
85 | |||
307 | legendlabels = ["channel %d"%idchannel for idchannel in channelList] |
|
86 | def plot(self): | |
308 | axes = self.axesList[0] |
|
|||
309 |
|
87 | |||
310 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
88 | x = self.data.times | |
|
89 | Y = self.data['rti_heis'] | |||
311 |
|
90 | |||
312 | if len(self.ydata)==0: |
|
91 | if self.axes[0].firsttime: | |
313 | self.ydata = datadB[channelIndexList].reshape(-1,1) |
|
92 | self.ymin = numpy.nanmin(Y) - 5 if self.ymin == None else self.ymin | |
|
93 | self.ymax = numpy.nanmax(Y) + 5 if self.ymax == None else self.ymax | |||
|
94 | for ch in self.data.channels: | |||
|
95 | y = Y[ch] | |||
|
96 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |||
|
97 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |||
314 | else: |
|
98 | else: | |
315 | self.ydata = numpy.hstack((self.ydata, datadB[channelIndexList].reshape(-1,1))) |
|
99 | for ch in self.data.channels: | |
316 |
|
100 | y = Y[ch] | ||
317 |
|
101 | self.axes[0].lines[ch].set_data(x, y) | ||
318 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
|||
319 | xmin=self.tmin, xmax=self.tmax, ymin=ymin, ymax=ymax, |
|
|||
320 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='.', markersize=8, linestyle="solid", grid='both', |
|
|||
321 | XAxisAsTime=True |
|
|||
322 | ) |
|
|||
323 |
|
||||
324 | self.draw() |
|
|||
325 |
|
||||
326 | update_figfile = False |
|
|||
327 |
|
||||
328 | if dataOut.ltctime >= self.tmax: |
|
|||
329 | self.counter_imagwr = wr_period |
|
|||
330 | self.isConfig = False |
|
|||
331 | update_figfile = True |
|
|||
332 |
|
||||
333 | self.save(figpath=figpath, |
|
|||
334 | figfile=figfile, |
|
|||
335 | save=save, |
|
|||
336 | ftp=ftp, |
|
|||
337 | wr_period=wr_period, |
|
|||
338 | thisDatetime=thisDatetime, |
|
|||
339 | update_figfile=update_figfile) |
|
|||
340 |
|
||||
341 |
|
||||
342 | return dataOut No newline at end of file |
|
@@ -47,6 +47,13 class SnrPlot(RTIPlot): | |||||
47 | CODE = 'snr' |
|
47 | CODE = 'snr' | |
48 | colormap = 'jet' |
|
48 | colormap = 'jet' | |
49 |
|
49 | |||
|
50 | def update(self, dataOut): | |||
|
51 | ||||
|
52 | data = { | |||
|
53 | 'snr': 10*numpy.log10(dataOut.data_snr) | |||
|
54 | } | |||
|
55 | ||||
|
56 | return data, {} | |||
50 |
|
57 | |||
51 | class DopplerPlot(RTIPlot): |
|
58 | class DopplerPlot(RTIPlot): | |
52 | ''' |
|
59 | ''' | |
@@ -56,6 +63,13 class DopplerPlot(RTIPlot): | |||||
56 | CODE = 'dop' |
|
63 | CODE = 'dop' | |
57 | colormap = 'jet' |
|
64 | colormap = 'jet' | |
58 |
|
65 | |||
|
66 | def update(self, dataOut): | |||
|
67 | ||||
|
68 | data = { | |||
|
69 | 'dop': 10*numpy.log10(dataOut.data_dop) | |||
|
70 | } | |||
|
71 | ||||
|
72 | return data, {} | |||
59 |
|
73 | |||
60 | class PowerPlot(RTIPlot): |
|
74 | class PowerPlot(RTIPlot): | |
61 | ''' |
|
75 | ''' | |
@@ -65,6 +79,13 class PowerPlot(RTIPlot): | |||||
65 | CODE = 'pow' |
|
79 | CODE = 'pow' | |
66 | colormap = 'jet' |
|
80 | colormap = 'jet' | |
67 |
|
81 | |||
|
82 | def update(self, dataOut): | |||
|
83 | ||||
|
84 | data = { | |||
|
85 | 'pow': 10*numpy.log10(dataOut.data_pow) | |||
|
86 | } | |||
|
87 | ||||
|
88 | return data, {} | |||
68 |
|
89 | |||
69 | class SpectralWidthPlot(RTIPlot): |
|
90 | class SpectralWidthPlot(RTIPlot): | |
70 | ''' |
|
91 | ''' | |
@@ -74,6 +95,13 class SpectralWidthPlot(RTIPlot): | |||||
74 | CODE = 'width' |
|
95 | CODE = 'width' | |
75 | colormap = 'jet' |
|
96 | colormap = 'jet' | |
76 |
|
97 | |||
|
98 | def update(self, dataOut): | |||
|
99 | ||||
|
100 | data = { | |||
|
101 | 'width': dataOut.data_width | |||
|
102 | } | |||
|
103 | ||||
|
104 | return data, {} | |||
77 |
|
105 | |||
78 | class SkyMapPlot(Plot): |
|
106 | class SkyMapPlot(Plot): | |
79 | ''' |
|
107 | ''' | |
@@ -123,45 +151,45 class SkyMapPlot(Plot): | |||||
123 | self.titles[0] = title |
|
151 | self.titles[0] = title | |
124 |
|
152 | |||
125 |
|
153 | |||
126 |
class |
|
154 | class GenericRTIPlot(Plot): | |
127 | ''' |
|
155 | ''' | |
128 |
Plot for data_ |
|
156 | Plot for data_xxxx object | |
129 | ''' |
|
157 | ''' | |
130 |
|
158 | |||
131 | CODE = 'param' |
|
159 | CODE = 'param' | |
132 |
colormap = ' |
|
160 | colormap = 'viridis' | |
|
161 | plot_type = 'pcolorbuffer' | |||
133 |
|
162 | |||
134 | def setup(self): |
|
163 | def setup(self): | |
135 | self.xaxis = 'time' |
|
164 | self.xaxis = 'time' | |
136 | self.ncols = 1 |
|
165 | self.ncols = 1 | |
137 |
self.nrows = self.data.shape(self. |
|
166 | self.nrows = self.data.shape(self.attr_data)[0] | |
138 | self.nplots = self.nrows |
|
167 | self.nplots = self.nrows | |
139 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
168 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) | |
140 |
|
169 | |||
141 | if not self.xlabel: |
|
170 | if not self.xlabel: | |
142 | self.xlabel = 'Time' |
|
171 | self.xlabel = 'Time' | |
143 |
|
||||
144 | if self.showSNR: |
|
|||
145 | self.nrows += 1 |
|
|||
146 | self.nplots += 1 |
|
|||
147 |
|
172 | |||
148 | self.ylabel = 'Height [km]' |
|
173 | self.ylabel = 'Height [km]' | |
149 | if not self.titles: |
|
174 | if not self.titles: | |
150 | self.titles = self.data.parameters \ |
|
175 | self.titles = self.data.parameters \ | |
151 | if self.data.parameters else ['Param {}'.format(x) for x in range(self.nrows)] |
|
176 | if self.data.parameters else ['Param {}'.format(x) for x in range(self.nrows)] | |
152 | if self.showSNR: |
|
|||
153 | self.titles.append('SNR') |
|
|||
154 |
|
177 | |||
|
178 | def update(self, dataOut): | |||
|
179 | ||||
|
180 | data = { | |||
|
181 | self.attr_data : getattr(dataOut, self.attr_data) | |||
|
182 | } | |||
|
183 | ||||
|
184 | meta = {} | |||
|
185 | ||||
|
186 | return data, meta | |||
|
187 | ||||
155 | def plot(self): |
|
188 | def plot(self): | |
156 | self.data.normalize_heights() |
|
189 | # self.data.normalize_heights() | |
157 | self.x = self.data.times |
|
190 | self.x = self.data.times | |
158 |
self.y = self.data. |
|
191 | self.y = self.data.yrange | |
159 | if self.showSNR: |
|
192 | self.z = self.data[self.attr_data] | |
160 | self.z = numpy.concatenate( |
|
|||
161 | (self.data[self.CODE], self.data['snr']) |
|
|||
162 | ) |
|
|||
163 | else: |
|
|||
164 | self.z = self.data[self.CODE] |
|
|||
165 |
|
193 | |||
166 | self.z = numpy.ma.masked_invalid(self.z) |
|
194 | self.z = numpy.ma.masked_invalid(self.z) | |
167 |
|
195 | |||
@@ -197,15 +225,6 class ParametersPlot(RTIPlot): | |||||
197 | ) |
|
225 | ) | |
198 |
|
226 | |||
199 |
|
227 | |||
200 | class OutputPlot(ParametersPlot): |
|
|||
201 | ''' |
|
|||
202 | Plot data_output object |
|
|||
203 | ''' |
|
|||
204 |
|
||||
205 | CODE = 'output' |
|
|||
206 | colormap = 'seismic' |
|
|||
207 |
|
||||
208 |
|
||||
209 | class PolarMapPlot(Plot): |
|
228 | class PolarMapPlot(Plot): | |
210 | ''' |
|
229 | ''' | |
211 | Plot for weather radar |
|
230 | Plot for weather radar | |
@@ -251,14 +270,14 class PolarMapPlot(Plot): | |||||
251 | zeniths = numpy.linspace( |
|
270 | zeniths = numpy.linspace( | |
252 | 0, self.data.meta['max_range'], data.shape[1]) |
|
271 | 0, self.data.meta['max_range'], data.shape[1]) | |
253 | if self.mode == 'E': |
|
272 | if self.mode == 'E': | |
254 |
azimuths = -numpy.radians(self.data. |
|
273 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 | |
255 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
274 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
256 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
275 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | |
257 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
276 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | |
258 | x = km2deg(x) + self.lon |
|
277 | x = km2deg(x) + self.lon | |
259 | y = km2deg(y) + self.lat |
|
278 | y = km2deg(y) + self.lat | |
260 | else: |
|
279 | else: | |
261 |
azimuths = numpy.radians(self.data. |
|
280 | azimuths = numpy.radians(self.data.yrange) | |
262 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
281 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
263 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
282 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
264 | self.y = zeniths |
|
283 | self.y = zeniths |
@@ -1,15 +1,15 | |||||
1 | ''' |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | Created on Jul 9, 2014 |
|
2 | # All rights reserved. | |
3 | Modified on May 10, 2020 |
|
3 | # | |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |||
|
5 | """Classes to plot Spectra data | |||
4 |
|
6 | |||
5 | @author: Juan C. Espinoza |
|
7 | """ | |
6 | ''' |
|
|||
7 |
|
8 | |||
8 | import os |
|
9 | import os | |
9 | import datetime |
|
|||
10 | import numpy |
|
10 | import numpy | |
11 |
|
11 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | class SpectraPlot(Plot): |
|
15 | class SpectraPlot(Plot): | |
@@ -20,6 +20,7 class SpectraPlot(Plot): | |||||
20 | CODE = 'spc' |
|
20 | CODE = 'spc' | |
21 | colormap = 'jet' |
|
21 | colormap = 'jet' | |
22 | plot_type = 'pcolor' |
|
22 | plot_type = 'pcolor' | |
|
23 | buffering = False | |||
23 |
|
24 | |||
24 | def setup(self): |
|
25 | def setup(self): | |
25 | self.nplots = len(self.data.channels) |
|
26 | self.nplots = len(self.data.channels) | |
@@ -34,6 +35,20 class SpectraPlot(Plot): | |||||
34 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
35 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
35 | self.ylabel = 'Range [km]' |
|
36 | self.ylabel = 'Range [km]' | |
36 |
|
37 | |||
|
38 | def update(self, dataOut): | |||
|
39 | ||||
|
40 | data = {} | |||
|
41 | meta = {} | |||
|
42 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |||
|
43 | data['spc'] = spc | |||
|
44 | data['rti'] = dataOut.getPower() | |||
|
45 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |||
|
46 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |||
|
47 | if self.CODE == 'spc_moments': | |||
|
48 | data['moments'] = dataOut.moments | |||
|
49 | ||||
|
50 | return data, meta | |||
|
51 | ||||
37 | def plot(self): |
|
52 | def plot(self): | |
38 | if self.xaxis == "frequency": |
|
53 | if self.xaxis == "frequency": | |
39 | x = self.data.xrange[0] |
|
54 | x = self.data.xrange[0] | |
@@ -51,14 +66,16 class SpectraPlot(Plot): | |||||
51 |
|
66 | |||
52 | self.titles = [] |
|
67 | self.titles = [] | |
53 |
|
68 | |||
54 |
y = self.data. |
|
69 | y = self.data.yrange | |
55 | self.y = y |
|
70 | self.y = y | |
56 | z = self.data['spc'] |
|
71 | ||
|
72 | data = self.data[-1] | |||
|
73 | z = data['spc'] | |||
57 |
|
74 | |||
58 | for n, ax in enumerate(self.axes): |
|
75 | for n, ax in enumerate(self.axes): | |
59 |
noise = |
|
76 | noise = data['noise'][n] | |
60 | if self.CODE == 'spc_moments': |
|
77 | if self.CODE == 'spc_moments': | |
61 |
mean = |
|
78 | mean = data['moments'][n, 2] | |
62 | if ax.firsttime: |
|
79 | if ax.firsttime: | |
63 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
80 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
64 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
81 | self.xmin = self.xmin if self.xmin else -self.xmax | |
@@ -72,7 +89,7 class SpectraPlot(Plot): | |||||
72 |
|
89 | |||
73 | if self.showprofile: |
|
90 | if self.showprofile: | |
74 | ax.plt_profile = self.pf_axes[n].plot( |
|
91 | ax.plt_profile = self.pf_axes[n].plot( | |
75 |
|
|
92 | data['rti'][n], y)[0] | |
76 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
93 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
77 | color="k", linestyle="dashed", lw=1)[0] |
|
94 | color="k", linestyle="dashed", lw=1)[0] | |
78 | if self.CODE == 'spc_moments': |
|
95 | if self.CODE == 'spc_moments': | |
@@ -80,7 +97,7 class SpectraPlot(Plot): | |||||
80 | else: |
|
97 | else: | |
81 | ax.plt.set_array(z[n].T.ravel()) |
|
98 | ax.plt.set_array(z[n].T.ravel()) | |
82 | if self.showprofile: |
|
99 | if self.showprofile: | |
83 |
ax.plt_profile.set_data( |
|
100 | ax.plt_profile.set_data(data['rti'][n], y) | |
84 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
101 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
85 | if self.CODE == 'spc_moments': |
|
102 | if self.CODE == 'spc_moments': | |
86 | ax.plt_mean.set_data(mean, y) |
|
103 | ax.plt_mean.set_data(mean, y) | |
@@ -100,14 +117,37 class CrossSpectraPlot(Plot): | |||||
100 | def setup(self): |
|
117 | def setup(self): | |
101 |
|
118 | |||
102 | self.ncols = 4 |
|
119 | self.ncols = 4 | |
103 |
self.n |
|
120 | self.nplots = len(self.data.pairs) * 2 | |
104 | self.nplots = self.nrows * 4 |
|
121 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
105 | self.width = 3.1 * self.ncols |
|
122 | self.width = 3.1 * self.ncols | |
106 | self.height = 2.6 * self.nrows |
|
123 | self.height = 2.6 * self.nrows | |
107 | self.ylabel = 'Range [km]' |
|
124 | self.ylabel = 'Range [km]' | |
108 | self.showprofile = False |
|
125 | self.showprofile = False | |
109 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
126 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
110 |
|
127 | |||
|
128 | def update(self, dataOut): | |||
|
129 | ||||
|
130 | data = {} | |||
|
131 | meta = {} | |||
|
132 | ||||
|
133 | spc = dataOut.data_spc | |||
|
134 | cspc = dataOut.data_cspc | |||
|
135 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |||
|
136 | meta['pairs'] = dataOut.pairsList | |||
|
137 | ||||
|
138 | tmp = [] | |||
|
139 | ||||
|
140 | for n, pair in enumerate(meta['pairs']): | |||
|
141 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |||
|
142 | coh = numpy.abs(out) | |||
|
143 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |||
|
144 | tmp.append(coh) | |||
|
145 | tmp.append(phase) | |||
|
146 | ||||
|
147 | data['cspc'] = numpy.array(tmp) | |||
|
148 | ||||
|
149 | return data, meta | |||
|
150 | ||||
111 | def plot(self): |
|
151 | def plot(self): | |
112 |
|
152 | |||
113 | if self.xaxis == "frequency": |
|
153 | if self.xaxis == "frequency": | |
@@ -122,46 +162,17 class CrossSpectraPlot(Plot): | |||||
122 |
|
162 | |||
123 | self.titles = [] |
|
163 | self.titles = [] | |
124 |
|
164 | |||
125 |
y = self.data. |
|
165 | y = self.data.yrange | |
126 | self.y = y |
|
166 | self.y = y | |
127 | nspc = self.data['spc'] |
|
|||
128 | spc = self.data['cspc'][0] |
|
|||
129 | cspc = self.data['cspc'][1] |
|
|||
130 |
|
167 | |||
131 | for n in range(self.nrows): |
|
168 | data = self.data[-1] | |
132 | noise = self.data['noise'][:,-1] |
|
169 | cspc = data['cspc'] | |
133 | pair = self.data.pairs[n] |
|
|||
134 | ax = self.axes[4 * n] |
|
|||
135 | if ax.firsttime: |
|
|||
136 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
|||
137 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
|||
138 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) |
|
|||
139 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) |
|
|||
140 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, |
|
|||
141 | vmin=self.zmin, |
|
|||
142 | vmax=self.zmax, |
|
|||
143 | cmap=plt.get_cmap(self.colormap) |
|
|||
144 | ) |
|
|||
145 | else: |
|
|||
146 | ax.plt.set_array(nspc[pair[0]].T.ravel()) |
|
|||
147 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) |
|
|||
148 |
|
||||
149 | ax = self.axes[4 * n + 1] |
|
|||
150 | if ax.firsttime: |
|
|||
151 | ax.plt = ax.pcolormesh(x , y, nspc[pair[1]].T, |
|
|||
152 | vmin=self.zmin, |
|
|||
153 | vmax=self.zmax, |
|
|||
154 | cmap=plt.get_cmap(self.colormap) |
|
|||
155 | ) |
|
|||
156 | else: |
|
|||
157 | ax.plt.set_array(nspc[pair[1]].T.ravel()) |
|
|||
158 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) |
|
|||
159 |
|
||||
160 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
|||
161 | coh = numpy.abs(out) |
|
|||
162 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
|||
163 |
|
170 | |||
164 | ax = self.axes[4 * n + 2] |
|
171 | for n in range(len(self.data.pairs)): | |
|
172 | pair = self.data.pairs[n] | |||
|
173 | coh = cspc[n*2] | |||
|
174 | phase = cspc[n*2+1] | |||
|
175 | ax = self.axes[2 * n] | |||
165 | if ax.firsttime: |
|
176 | if ax.firsttime: | |
166 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
177 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
167 | vmin=0, |
|
178 | vmin=0, | |
@@ -173,7 +184,7 class CrossSpectraPlot(Plot): | |||||
173 | self.titles.append( |
|
184 | self.titles.append( | |
174 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
185 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
175 |
|
186 | |||
176 |
ax = self.axes[ |
|
187 | ax = self.axes[2 * n + 1] | |
177 | if ax.firsttime: |
|
188 | if ax.firsttime: | |
178 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
189 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
179 | vmin=-180, |
|
190 | vmin=-180, | |
@@ -206,9 +217,18 class RTIPlot(Plot): | |||||
206 | self.titles = ['{} Channel {}'.format( |
|
217 | self.titles = ['{} Channel {}'.format( | |
207 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
218 | self.CODE.upper(), x) for x in range(self.nrows)] | |
208 |
|
219 | |||
|
220 | def update(self, dataOut): | |||
|
221 | ||||
|
222 | data = {} | |||
|
223 | meta = {} | |||
|
224 | data['rti'] = dataOut.getPower() | |||
|
225 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |||
|
226 | ||||
|
227 | return data, meta | |||
|
228 | ||||
209 | def plot(self): |
|
229 | def plot(self): | |
210 | self.x = self.data.times |
|
230 | self.x = self.data.times | |
211 |
self.y = self.data. |
|
231 | self.y = self.data.yrange | |
212 | self.z = self.data[self.CODE] |
|
232 | self.z = self.data[self.CODE] | |
213 | self.z = numpy.ma.masked_invalid(self.z) |
|
233 | self.z = numpy.ma.masked_invalid(self.z) | |
214 |
|
234 | |||
@@ -220,6 +240,7 class RTIPlot(Plot): | |||||
220 | for n, ax in enumerate(self.axes): |
|
240 | for n, ax in enumerate(self.axes): | |
221 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
241 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
222 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
242 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
|
243 | data = self.data[-1] | |||
223 | if ax.firsttime: |
|
244 | if ax.firsttime: | |
224 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
245 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
225 | vmin=self.zmin, |
|
246 | vmin=self.zmin, | |
@@ -228,8 +249,8 class RTIPlot(Plot): | |||||
228 | ) |
|
249 | ) | |
229 | if self.showprofile: |
|
250 | if self.showprofile: | |
230 | ax.plot_profile = self.pf_axes[n].plot( |
|
251 | ax.plot_profile = self.pf_axes[n].plot( | |
231 |
|
|
252 | data['rti'][n], self.y)[0] | |
232 |
ax.plot_noise = self.pf_axes[n].plot(numpy.repeat( |
|
253 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, | |
233 | color="k", linestyle="dashed", lw=1)[0] |
|
254 | color="k", linestyle="dashed", lw=1)[0] | |
234 | else: |
|
255 | else: | |
235 | ax.collections.remove(ax.collections[0]) |
|
256 | ax.collections.remove(ax.collections[0]) | |
@@ -239,9 +260,9 class RTIPlot(Plot): | |||||
239 | cmap=plt.get_cmap(self.colormap) |
|
260 | cmap=plt.get_cmap(self.colormap) | |
240 | ) |
|
261 | ) | |
241 | if self.showprofile: |
|
262 | if self.showprofile: | |
242 |
ax.plot_profile.set_data( |
|
263 | ax.plot_profile.set_data(data['rti'][n], self.y) | |
243 | ax.plot_noise.set_data(numpy.repeat( |
|
264 | ax.plot_noise.set_data(numpy.repeat( | |
244 |
|
|
265 | data['noise'][n], len(self.y)), self.y) | |
245 |
|
266 | |||
246 |
|
267 | |||
247 | class CoherencePlot(RTIPlot): |
|
268 | class CoherencePlot(RTIPlot): | |
@@ -268,6 +289,14 class CoherencePlot(RTIPlot): | |||||
268 | self.titles = [ |
|
289 | self.titles = [ | |
269 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
290 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
270 |
|
291 | |||
|
292 | def update(self, dataOut): | |||
|
293 | ||||
|
294 | data = {} | |||
|
295 | meta = {} | |||
|
296 | data['coh'] = dataOut.getCoherence() | |||
|
297 | meta['pairs'] = dataOut.pairsList | |||
|
298 | ||||
|
299 | return data, meta | |||
271 |
|
300 | |||
272 | class PhasePlot(CoherencePlot): |
|
301 | class PhasePlot(CoherencePlot): | |
273 | ''' |
|
302 | ''' | |
@@ -277,6 +306,14 class PhasePlot(CoherencePlot): | |||||
277 | CODE = 'phase' |
|
306 | CODE = 'phase' | |
278 | colormap = 'seismic' |
|
307 | colormap = 'seismic' | |
279 |
|
308 | |||
|
309 | def update(self, dataOut): | |||
|
310 | ||||
|
311 | data = {} | |||
|
312 | meta = {} | |||
|
313 | data['phase'] = dataOut.getCoherence(phase=True) | |||
|
314 | meta['pairs'] = dataOut.pairsList | |||
|
315 | ||||
|
316 | return data, meta | |||
280 |
|
317 | |||
281 | class NoisePlot(Plot): |
|
318 | class NoisePlot(Plot): | |
282 | ''' |
|
319 | ''' | |
@@ -286,7 +323,6 class NoisePlot(Plot): | |||||
286 | CODE = 'noise' |
|
323 | CODE = 'noise' | |
287 | plot_type = 'scatterbuffer' |
|
324 | plot_type = 'scatterbuffer' | |
288 |
|
325 | |||
289 |
|
||||
290 | def setup(self): |
|
326 | def setup(self): | |
291 | self.xaxis = 'time' |
|
327 | self.xaxis = 'time' | |
292 | self.ncols = 1 |
|
328 | self.ncols = 1 | |
@@ -296,33 +332,41 class NoisePlot(Plot): | |||||
296 | self.xlabel = 'Time' |
|
332 | self.xlabel = 'Time' | |
297 | self.titles = ['Noise'] |
|
333 | self.titles = ['Noise'] | |
298 | self.colorbar = False |
|
334 | self.colorbar = False | |
|
335 | self.plots_adjust.update({'right': 0.85 }) | |||
|
336 | ||||
|
337 | def update(self, dataOut): | |||
|
338 | ||||
|
339 | data = {} | |||
|
340 | meta = {} | |||
|
341 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) | |||
|
342 | meta['yrange'] = numpy.array([]) | |||
|
343 | ||||
|
344 | return data, meta | |||
299 |
|
345 | |||
300 | def plot(self): |
|
346 | def plot(self): | |
301 |
|
347 | |||
302 | x = self.data.times |
|
348 | x = self.data.times | |
303 | xmin = self.data.min_time |
|
349 | xmin = self.data.min_time | |
304 | xmax = xmin + self.xrange * 60 * 60 |
|
350 | xmax = xmin + self.xrange * 60 * 60 | |
305 |
Y = self.data[ |
|
351 | Y = self.data['noise'] | |
306 |
|
352 | |||
307 | if self.axes[0].firsttime: |
|
353 | if self.axes[0].firsttime: | |
|
354 | self.ymin = numpy.nanmin(Y) - 5 | |||
|
355 | self.ymax = numpy.nanmax(Y) + 5 | |||
308 | for ch in self.data.channels: |
|
356 | for ch in self.data.channels: | |
309 | y = Y[ch] |
|
357 | y = Y[ch] | |
310 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
358 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
311 | plt.legend() |
|
359 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
312 | else: |
|
360 | else: | |
313 | for ch in self.data.channels: |
|
361 | for ch in self.data.channels: | |
314 | y = Y[ch] |
|
362 | y = Y[ch] | |
315 | self.axes[0].lines[ch].set_data(x, y) |
|
363 | self.axes[0].lines[ch].set_data(x, y) | |
316 |
|
364 | |||
317 | self.ymin = numpy.nanmin(Y) - 5 |
|
365 | ||
318 | self.ymax = numpy.nanmax(Y) + 5 |
|
|||
319 |
|
||||
320 |
|
||||
321 | class PowerProfilePlot(Plot): |
|
366 | class PowerProfilePlot(Plot): | |
322 |
|
367 | |||
323 |
CODE = ' |
|
368 | CODE = 'pow_profile' | |
324 | plot_type = 'scatter' |
|
369 | plot_type = 'scatter' | |
325 | buffering = False |
|
|||
326 |
|
370 | |||
327 | def setup(self): |
|
371 | def setup(self): | |
328 |
|
372 | |||
@@ -336,12 +380,20 class PowerProfilePlot(Plot): | |||||
336 | self.titles = ['Power Profile'] |
|
380 | self.titles = ['Power Profile'] | |
337 | self.colorbar = False |
|
381 | self.colorbar = False | |
338 |
|
382 | |||
|
383 | def update(self, dataOut): | |||
|
384 | ||||
|
385 | data = {} | |||
|
386 | meta = {} | |||
|
387 | data[self.CODE] = dataOut.getPower() | |||
|
388 | ||||
|
389 | return data, meta | |||
|
390 | ||||
339 | def plot(self): |
|
391 | def plot(self): | |
340 |
|
392 | |||
341 |
y = self.data. |
|
393 | y = self.data.yrange | |
342 | self.y = y |
|
394 | self.y = y | |
343 |
|
395 | |||
344 |
x = self.data[ |
|
396 | x = self.data[-1][self.CODE] | |
345 |
|
397 | |||
346 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
398 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 | |
347 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
399 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 | |
@@ -372,6 +424,16 class SpectraCutPlot(Plot): | |||||
372 | self.colorbar = False |
|
424 | self.colorbar = False | |
373 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
425 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) | |
374 |
|
426 | |||
|
427 | def update(self, dataOut): | |||
|
428 | ||||
|
429 | data = {} | |||
|
430 | meta = {} | |||
|
431 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |||
|
432 | data['spc'] = spc | |||
|
433 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |||
|
434 | ||||
|
435 | return data, meta | |||
|
436 | ||||
375 | def plot(self): |
|
437 | def plot(self): | |
376 | if self.xaxis == "frequency": |
|
438 | if self.xaxis == "frequency": | |
377 | x = self.data.xrange[0][1:] |
|
439 | x = self.data.xrange[0][1:] | |
@@ -385,9 +447,8 class SpectraCutPlot(Plot): | |||||
385 |
|
447 | |||
386 | self.titles = [] |
|
448 | self.titles = [] | |
387 |
|
449 | |||
388 |
y = self.data. |
|
450 | y = self.data.yrange | |
389 | #self.y = y |
|
451 | z = self.data[-1]['spc'] | |
390 | z = self.data['spc_cut'] |
|
|||
391 |
|
452 | |||
392 | if self.height_index: |
|
453 | if self.height_index: | |
393 | index = numpy.array(self.height_index) |
|
454 | index = numpy.array(self.height_index) |
@@ -31,6 +31,27 class ScopePlot(Plot): | |||||
31 | self.width = 6 |
|
31 | self.width = 6 | |
32 | self.height = 4 |
|
32 | self.height = 4 | |
33 |
|
33 | |||
|
34 | def update(self, dataOut): | |||
|
35 | ||||
|
36 | data = {} | |||
|
37 | meta = { | |||
|
38 | 'nProfiles': dataOut.nProfiles, | |||
|
39 | 'flagDataAsBlock': dataOut.flagDataAsBlock, | |||
|
40 | 'profileIndex': dataOut.profileIndex, | |||
|
41 | } | |||
|
42 | if self.CODE == 'scope': | |||
|
43 | data[self.CODE] = dataOut.data | |||
|
44 | elif self.CODE == 'pp_power': | |||
|
45 | data[self.CODE] = dataOut.dataPP_POWER | |||
|
46 | elif self.CODE == 'pp_signal': | |||
|
47 | data[self.CODE] = dataOut.dataPP_POW | |||
|
48 | elif self.CODE == 'pp_velocity': | |||
|
49 | data[self.CODE] = dataOut.dataPP_DOP | |||
|
50 | elif self.CODE == 'pp_specwidth': | |||
|
51 | data[self.CODE] = dataOut.dataPP_WIDTH | |||
|
52 | ||||
|
53 | return data, meta | |||
|
54 | ||||
34 | def plot_iq(self, x, y, channelIndexList, thisDatetime, wintitle): |
|
55 | def plot_iq(self, x, y, channelIndexList, thisDatetime, wintitle): | |
35 |
|
56 | |||
36 | yreal = y[channelIndexList,:].real |
|
57 | yreal = y[channelIndexList,:].real | |
@@ -41,15 +62,14 class ScopePlot(Plot): | |||||
41 |
|
62 | |||
42 | self.y = yreal |
|
63 | self.y = yreal | |
43 | self.x = x |
|
64 | self.x = x | |
44 | self.xmin = min(x) |
|
|||
45 | self.xmax = max(x) |
|
|||
46 |
|
||||
47 |
|
65 | |||
48 | self.titles[0] = title |
|
66 | self.titles[0] = title | |
49 |
|
67 | |||
50 | for i,ax in enumerate(self.axes): |
|
68 | for i,ax in enumerate(self.axes): | |
51 | title = "Channel %d" %(i) |
|
69 | title = "Channel %d" %(i) | |
52 | if ax.firsttime: |
|
70 | if ax.firsttime: | |
|
71 | self.xmin = min(x) | |||
|
72 | self.xmax = max(x) | |||
53 | ax.plt_r = ax.plot(x, yreal[i,:], color='b')[0] |
|
73 | ax.plt_r = ax.plot(x, yreal[i,:], color='b')[0] | |
54 | ax.plt_i = ax.plot(x, yimag[i,:], color='r')[0] |
|
74 | ax.plt_i = ax.plot(x, yimag[i,:], color='r')[0] | |
55 | else: |
|
75 | else: | |
@@ -61,24 +81,22 class ScopePlot(Plot): | |||||
61 | yreal = y.real |
|
81 | yreal = y.real | |
62 | yreal = 10*numpy.log10(yreal) |
|
82 | yreal = 10*numpy.log10(yreal) | |
63 | self.y = yreal |
|
83 | self.y = yreal | |
64 |
title = wintitle + " |
|
84 | title = wintitle + " Power: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
65 | self.xlabel = "Range (Km)" |
|
85 | self.xlabel = "Range (Km)" | |
66 | self.ylabel = "Intensity" |
|
86 | self.ylabel = "Intensity [dB]" | |
67 | self.xmin = min(x) |
|
|||
68 | self.xmax = max(x) |
|
|||
69 |
|
87 | |||
70 |
|
88 | |||
71 | self.titles[0] = title |
|
89 | self.titles[0] = title | |
72 |
|
90 | |||
73 | for i,ax in enumerate(self.axes): |
|
91 | for i,ax in enumerate(self.axes): | |
74 | title = "Channel %d" %(i) |
|
92 | title = "Channel %d" %(i) | |
75 |
|
||||
76 | ychannel = yreal[i,:] |
|
93 | ychannel = yreal[i,:] | |
77 |
|
94 | |||
78 | if ax.firsttime: |
|
95 | if ax.firsttime: | |
|
96 | self.xmin = min(x) | |||
|
97 | self.xmax = max(x) | |||
79 | ax.plt_r = ax.plot(x, ychannel)[0] |
|
98 | ax.plt_r = ax.plot(x, ychannel)[0] | |
80 | else: |
|
99 | else: | |
81 | #pass |
|
|||
82 | ax.plt_r.set_data(x, ychannel) |
|
100 | ax.plt_r.set_data(x, ychannel) | |
83 |
|
101 | |||
84 | def plot_weatherpower(self, x, y, channelIndexList, thisDatetime, wintitle): |
|
102 | def plot_weatherpower(self, x, y, channelIndexList, thisDatetime, wintitle): | |
@@ -153,16 +171,8 class ScopePlot(Plot): | |||||
153 | channels = self.data.channels |
|
171 | channels = self.data.channels | |
154 |
|
172 | |||
155 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]) |
|
173 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]) | |
156 | if self.CODE == "pp_power": |
|
174 | ||
157 |
|
|
175 | scope = self.data[-1][self.CODE] | |
158 | elif self.CODE == "pp_signal": |
|
|||
159 | scope = self.data["pp_signal"] |
|
|||
160 | elif self.CODE == "pp_velocity": |
|
|||
161 | scope = self.data["pp_velocity"] |
|
|||
162 | elif self.CODE == "pp_specwidth": |
|
|||
163 | scope = self.data["pp_specwidth"] |
|
|||
164 | else: |
|
|||
165 | scope =self.data["scope"] |
|
|||
166 |
|
176 | |||
167 | if self.data.flagDataAsBlock: |
|
177 | if self.data.flagDataAsBlock: | |
168 |
|
178 | |||
@@ -171,7 +181,7 class ScopePlot(Plot): | |||||
171 | wintitle1 = " [Profile = %d] " %i |
|
181 | wintitle1 = " [Profile = %d] " %i | |
172 | if self.CODE =="scope": |
|
182 | if self.CODE =="scope": | |
173 | if self.type == "power": |
|
183 | if self.type == "power": | |
174 |
self.plot_power(self.data. |
|
184 | self.plot_power(self.data.yrange, | |
175 | scope[:,i,:], |
|
185 | scope[:,i,:], | |
176 | channels, |
|
186 | channels, | |
177 | thisDatetime, |
|
187 | thisDatetime, | |
@@ -179,21 +189,21 class ScopePlot(Plot): | |||||
179 | ) |
|
189 | ) | |
180 |
|
190 | |||
181 | if self.type == "iq": |
|
191 | if self.type == "iq": | |
182 |
self.plot_iq(self.data. |
|
192 | self.plot_iq(self.data.yrange, | |
183 | scope[:,i,:], |
|
193 | scope[:,i,:], | |
184 | channels, |
|
194 | channels, | |
185 | thisDatetime, |
|
195 | thisDatetime, | |
186 | wintitle1 |
|
196 | wintitle1 | |
187 | ) |
|
197 | ) | |
188 | if self.CODE=="pp_power": |
|
198 | if self.CODE=="pp_power": | |
189 |
self.plot_weatherpower(self.data. |
|
199 | self.plot_weatherpower(self.data.yrange, | |
190 | scope[:,i,:], |
|
200 | scope[:,i,:], | |
191 | channels, |
|
201 | channels, | |
192 | thisDatetime, |
|
202 | thisDatetime, | |
193 | wintitle |
|
203 | wintitle | |
194 | ) |
|
204 | ) | |
195 | if self.CODE=="pp_signal": |
|
205 | if self.CODE=="pp_signal": | |
196 |
self.plot_weatherpower(self.data. |
|
206 | self.plot_weatherpower(self.data.yrange, | |
197 | scope[:,i,:], |
|
207 | scope[:,i,:], | |
198 | channels, |
|
208 | channels, | |
199 | thisDatetime, |
|
209 | thisDatetime, | |
@@ -201,14 +211,14 class ScopePlot(Plot): | |||||
201 | ) |
|
211 | ) | |
202 | if self.CODE=="pp_velocity": |
|
212 | if self.CODE=="pp_velocity": | |
203 | self.plot_weathervelocity(scope[:,i,:], |
|
213 | self.plot_weathervelocity(scope[:,i,:], | |
204 |
self.data. |
|
214 | self.data.yrange, | |
205 | channels, |
|
215 | channels, | |
206 | thisDatetime, |
|
216 | thisDatetime, | |
207 | wintitle |
|
217 | wintitle | |
208 | ) |
|
218 | ) | |
209 | if self.CODE=="pp_spcwidth": |
|
219 | if self.CODE=="pp_spcwidth": | |
210 | self.plot_weatherspecwidth(scope[:,i,:], |
|
220 | self.plot_weatherspecwidth(scope[:,i,:], | |
211 |
self.data. |
|
221 | self.data.yrange, | |
212 | channels, |
|
222 | channels, | |
213 | thisDatetime, |
|
223 | thisDatetime, | |
214 | wintitle |
|
224 | wintitle | |
@@ -217,7 +227,7 class ScopePlot(Plot): | |||||
217 | wintitle = " [Profile = %d] " %self.data.profileIndex |
|
227 | wintitle = " [Profile = %d] " %self.data.profileIndex | |
218 | if self.CODE== "scope": |
|
228 | if self.CODE== "scope": | |
219 | if self.type == "power": |
|
229 | if self.type == "power": | |
220 |
self.plot_power(self.data. |
|
230 | self.plot_power(self.data.yrange, | |
221 | scope, |
|
231 | scope, | |
222 | channels, |
|
232 | channels, | |
223 | thisDatetime, |
|
233 | thisDatetime, | |
@@ -225,21 +235,21 class ScopePlot(Plot): | |||||
225 | ) |
|
235 | ) | |
226 |
|
236 | |||
227 | if self.type == "iq": |
|
237 | if self.type == "iq": | |
228 |
self.plot_iq(self.data. |
|
238 | self.plot_iq(self.data.yrange, | |
229 | scope, |
|
239 | scope, | |
230 | channels, |
|
240 | channels, | |
231 | thisDatetime, |
|
241 | thisDatetime, | |
232 | wintitle |
|
242 | wintitle | |
233 | ) |
|
243 | ) | |
234 | if self.CODE=="pp_power": |
|
244 | if self.CODE=="pp_power": | |
235 |
self.plot_weatherpower(self.data. |
|
245 | self.plot_weatherpower(self.data.yrange, | |
236 | scope, |
|
246 | scope, | |
237 | channels, |
|
247 | channels, | |
238 | thisDatetime, |
|
248 | thisDatetime, | |
239 | wintitle |
|
249 | wintitle | |
240 | ) |
|
250 | ) | |
241 | if self.CODE=="pp_signal": |
|
251 | if self.CODE=="pp_signal": | |
242 |
self.plot_weatherpower(self.data. |
|
252 | self.plot_weatherpower(self.data.yrange, | |
243 | scope, |
|
253 | scope, | |
244 | channels, |
|
254 | channels, | |
245 | thisDatetime, |
|
255 | thisDatetime, | |
@@ -247,21 +257,20 class ScopePlot(Plot): | |||||
247 | ) |
|
257 | ) | |
248 | if self.CODE=="pp_velocity": |
|
258 | if self.CODE=="pp_velocity": | |
249 | self.plot_weathervelocity(scope, |
|
259 | self.plot_weathervelocity(scope, | |
250 |
self.data. |
|
260 | self.data.yrange, | |
251 | channels, |
|
261 | channels, | |
252 | thisDatetime, |
|
262 | thisDatetime, | |
253 | wintitle |
|
263 | wintitle | |
254 | ) |
|
264 | ) | |
255 | if self.CODE=="pp_specwidth": |
|
265 | if self.CODE=="pp_specwidth": | |
256 | self.plot_weatherspecwidth(scope, |
|
266 | self.plot_weatherspecwidth(scope, | |
257 |
self.data. |
|
267 | self.data.yrange, | |
258 | channels, |
|
268 | channels, | |
259 | thisDatetime, |
|
269 | thisDatetime, | |
260 | wintitle |
|
270 | wintitle | |
261 | ) |
|
271 | ) | |
262 |
|
272 | |||
263 |
|
273 | |||
264 |
|
||||
265 | class PulsepairPowerPlot(ScopePlot): |
|
274 | class PulsepairPowerPlot(ScopePlot): | |
266 | ''' |
|
275 | ''' | |
267 | Plot for P= S+N |
|
276 | Plot for P= S+N | |
@@ -269,7 +278,6 class PulsepairPowerPlot(ScopePlot): | |||||
269 |
|
278 | |||
270 | CODE = 'pp_power' |
|
279 | CODE = 'pp_power' | |
271 | plot_type = 'scatter' |
|
280 | plot_type = 'scatter' | |
272 | buffering = False |
|
|||
273 |
|
281 | |||
274 | class PulsepairVelocityPlot(ScopePlot): |
|
282 | class PulsepairVelocityPlot(ScopePlot): | |
275 | ''' |
|
283 | ''' | |
@@ -277,7 +285,6 class PulsepairVelocityPlot(ScopePlot): | |||||
277 | ''' |
|
285 | ''' | |
278 | CODE = 'pp_velocity' |
|
286 | CODE = 'pp_velocity' | |
279 | plot_type = 'scatter' |
|
287 | plot_type = 'scatter' | |
280 | buffering = False |
|
|||
281 |
|
288 | |||
282 | class PulsepairSpecwidthPlot(ScopePlot): |
|
289 | class PulsepairSpecwidthPlot(ScopePlot): | |
283 | ''' |
|
290 | ''' | |
@@ -285,7 +292,6 class PulsepairSpecwidthPlot(ScopePlot): | |||||
285 | ''' |
|
292 | ''' | |
286 | CODE = 'pp_specwidth' |
|
293 | CODE = 'pp_specwidth' | |
287 | plot_type = 'scatter' |
|
294 | plot_type = 'scatter' | |
288 | buffering = False |
|
|||
289 |
|
295 | |||
290 | class PulsepairSignalPlot(ScopePlot): |
|
296 | class PulsepairSignalPlot(ScopePlot): | |
291 | ''' |
|
297 | ''' | |
@@ -294,4 +300,3 class PulsepairSignalPlot(ScopePlot): | |||||
294 |
|
300 | |||
295 | CODE = 'pp_signal' |
|
301 | CODE = 'pp_signal' | |
296 | plot_type = 'scatter' |
|
302 | plot_type = 'scatter' | |
297 | buffering = False |
|
@@ -304,7 +304,7 class BLTRParamReader(Reader, ProcessingUnit): | |||||
304 | Storing data from databuffer to dataOut object |
|
304 | Storing data from databuffer to dataOut object | |
305 | ''' |
|
305 | ''' | |
306 |
|
306 | |||
307 |
self.dataOut.data_ |
|
307 | self.dataOut.data_snr = self.snr | |
308 | self.dataOut.height = self.height |
|
308 | self.dataOut.height = self.height | |
309 | self.dataOut.data = self.buffer |
|
309 | self.dataOut.data = self.buffer | |
310 | self.dataOut.utctimeInit = self.time |
|
310 | self.dataOut.utctimeInit = self.time |
@@ -618,8 +618,9 class HDFWriter(Operation): | |||||
618 | for ds in self.ds: |
|
618 | for ds in self.ds: | |
619 | ds.resize(self.blockIndex, axis=0) |
|
619 | ds.resize(self.blockIndex, axis=0) | |
620 |
|
620 | |||
621 |
self.fp |
|
621 | if self.fp: | |
622 |
self.fp. |
|
622 | self.fp.flush() | |
|
623 | self.fp.close() | |||
623 |
|
624 | |||
624 | def close(self): |
|
625 | def close(self): | |
625 |
|
626 |
@@ -313,7 +313,7 class JULIAParamReader(JRODataReader, ProcessingUnit): | |||||
313 | Storing data from databuffer to dataOut object |
|
313 | Storing data from databuffer to dataOut object | |
314 | ''' |
|
314 | ''' | |
315 |
|
315 | |||
316 |
self.dataOut.data_ |
|
316 | self.dataOut.data_snr = self.buffer[4].reshape(1, -1) | |
317 | self.dataOut.heightList = self.heights |
|
317 | self.dataOut.heightList = self.heights | |
318 | self.dataOut.data_param = self.buffer[0:4,] |
|
318 | self.dataOut.data_param = self.buffer[0:4,] | |
319 | self.dataOut.utctimeInit = self.time |
|
319 | self.dataOut.utctimeInit = self.time |
@@ -25,7 +25,7 class BLTRParametersProc(ProcessingUnit): | |||||
25 | self.dataOut.nchannels - Number of channels |
|
25 | self.dataOut.nchannels - Number of channels | |
26 | self.dataOut.nranges - Number of ranges |
|
26 | self.dataOut.nranges - Number of ranges | |
27 |
|
27 | |||
28 |
self.dataOut.data_ |
|
28 | self.dataOut.data_snr - SNR array | |
29 | self.dataOut.data_output - Zonal, Vertical and Meridional velocity array |
|
29 | self.dataOut.data_output - Zonal, Vertical and Meridional velocity array | |
30 | self.dataOut.height - Height array (km) |
|
30 | self.dataOut.height - Height array (km) | |
31 | self.dataOut.time - Time array (seconds) |
|
31 | self.dataOut.time - Time array (seconds) | |
@@ -67,10 +67,10 class BLTRParametersProc(ProcessingUnit): | |||||
67 |
|
67 | |||
68 | self.dataOut.data_param = self.dataOut.data[mode] |
|
68 | self.dataOut.data_param = self.dataOut.data[mode] | |
69 | self.dataOut.heightList = self.dataOut.height[0] |
|
69 | self.dataOut.heightList = self.dataOut.height[0] | |
70 |
self.dataOut.data_ |
|
70 | self.dataOut.data_snr = self.dataOut.data_snr[mode] | |
71 |
|
71 | |||
72 | if snr_threshold is not None: |
|
72 | if snr_threshold is not None: | |
73 |
SNRavg = numpy.average(self.dataOut.data_ |
|
73 | SNRavg = numpy.average(self.dataOut.data_snr, axis=0) | |
74 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
74 | SNRavgdB = 10*numpy.log10(SNRavg) | |
75 | for i in range(3): |
|
75 | for i in range(3): | |
76 | self.dataOut.data_param[i][SNRavgdB <= snr_threshold] = numpy.nan |
|
76 | self.dataOut.data_param[i][SNRavgdB <= snr_threshold] = numpy.nan |
@@ -174,7 +174,7 class ParametersProc(ProcessingUnit): | |||||
174 |
|
174 | |||
175 | self.dataOut.abscissaList = self.dataIn.lagRange |
|
175 | self.dataOut.abscissaList = self.dataIn.lagRange | |
176 | self.dataOut.noise = self.dataIn.noise |
|
176 | self.dataOut.noise = self.dataIn.noise | |
177 |
self.dataOut.data_ |
|
177 | self.dataOut.data_snr = self.dataIn.SNR | |
178 | self.dataOut.flagNoData = False |
|
178 | self.dataOut.flagNoData = False | |
179 | self.dataOut.nAvg = self.dataIn.nAvg |
|
179 | self.dataOut.nAvg = self.dataIn.nAvg | |
180 |
|
180 | |||
@@ -840,9 +840,9 class FullSpectralAnalysis(Operation): | |||||
840 | data_SNR=numpy.zeros([nProfiles]) |
|
840 | data_SNR=numpy.zeros([nProfiles]) | |
841 | noise = dataOut.noise |
|
841 | noise = dataOut.noise | |
842 |
|
842 | |||
843 |
dataOut.data_ |
|
843 | dataOut.data_snr = (numpy.mean(SNRspc,axis=1)- noise[0]) / noise[0] | |
844 |
|
844 | |||
845 |
dataOut.data_ |
|
845 | dataOut.data_snr[numpy.where( dataOut.data_snr <0 )] = 1e-20 | |
846 |
|
846 | |||
847 |
|
847 | |||
848 | data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN |
|
848 | data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN | |
@@ -851,7 +851,7 class FullSpectralAnalysis(Operation): | |||||
851 | velocityY=[] |
|
851 | velocityY=[] | |
852 | velocityV=[] |
|
852 | velocityV=[] | |
853 |
|
853 | |||
854 |
dbSNR = 10*numpy.log10(dataOut.data_ |
|
854 | dbSNR = 10*numpy.log10(dataOut.data_snr) | |
855 | dbSNR = numpy.average(dbSNR,0) |
|
855 | dbSNR = numpy.average(dbSNR,0) | |
856 |
|
856 | |||
857 | '''***********************************************WIND ESTIMATION**************************************''' |
|
857 | '''***********************************************WIND ESTIMATION**************************************''' | |
@@ -1290,7 +1290,7 class SpectralMoments(Operation): | |||||
1290 |
|
1290 | |||
1291 | Affected: |
|
1291 | Affected: | |
1292 | self.dataOut.moments : Parameters per channel |
|
1292 | self.dataOut.moments : Parameters per channel | |
1293 |
self.dataOut.data_ |
|
1293 | self.dataOut.data_snr : SNR per channel | |
1294 |
|
1294 | |||
1295 | ''' |
|
1295 | ''' | |
1296 |
|
1296 | |||
@@ -1306,10 +1306,10 class SpectralMoments(Operation): | |||||
1306 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) |
|
1306 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) | |
1307 |
|
1307 | |||
1308 | dataOut.moments = data_param[:,1:,:] |
|
1308 | dataOut.moments = data_param[:,1:,:] | |
1309 |
dataOut.data_ |
|
1309 | dataOut.data_snr = data_param[:,0] | |
1310 |
dataOut.data_ |
|
1310 | dataOut.data_pow = data_param[:,1] | |
1311 |
dataOut.data_ |
|
1311 | dataOut.data_dop = data_param[:,2] | |
1312 |
dataOut.data_ |
|
1312 | dataOut.data_width = data_param[:,3] | |
1313 |
|
1313 | |||
1314 | return dataOut |
|
1314 | return dataOut | |
1315 |
|
1315 | |||
@@ -1436,7 +1436,7 class SALags(Operation): | |||||
1436 | self.dataOut.abscissaList |
|
1436 | self.dataOut.abscissaList | |
1437 | self.dataOut.noise |
|
1437 | self.dataOut.noise | |
1438 | self.dataOut.normFactor |
|
1438 | self.dataOut.normFactor | |
1439 |
self.dataOut.data_ |
|
1439 | self.dataOut.data_snr | |
1440 | self.dataOut.groupList |
|
1440 | self.dataOut.groupList | |
1441 | self.dataOut.nChannels |
|
1441 | self.dataOut.nChannels | |
1442 |
|
1442 | |||
@@ -1455,7 +1455,7 class SALags(Operation): | |||||
1455 | nHeights = dataOut.nHeights |
|
1455 | nHeights = dataOut.nHeights | |
1456 | absc = dataOut.abscissaList |
|
1456 | absc = dataOut.abscissaList | |
1457 | noise = dataOut.noise |
|
1457 | noise = dataOut.noise | |
1458 |
SNR = dataOut.data_ |
|
1458 | SNR = dataOut.data_snr | |
1459 | nChannels = dataOut.nChannels |
|
1459 | nChannels = dataOut.nChannels | |
1460 | # pairsList = dataOut.groupList |
|
1460 | # pairsList = dataOut.groupList | |
1461 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
1461 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
@@ -1570,7 +1570,7 class SpectralFitting(Operation): | |||||
1570 | listChannels = groupArray.reshape((groupArray.size)) |
|
1570 | listChannels = groupArray.reshape((groupArray.size)) | |
1571 | listChannels.sort() |
|
1571 | listChannels.sort() | |
1572 | noise = self.dataIn.getNoise() |
|
1572 | noise = self.dataIn.getNoise() | |
1573 |
self.dataOut.data_ |
|
1573 | self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) | |
1574 |
|
1574 | |||
1575 | for i in range(nGroups): |
|
1575 | for i in range(nGroups): | |
1576 | coord = groupArray[i,:] |
|
1576 | coord = groupArray[i,:] | |
@@ -2222,7 +2222,7 class WindProfiler(Operation): | |||||
2222 | absc = dataOut.abscissaList[:-1] |
|
2222 | absc = dataOut.abscissaList[:-1] | |
2223 | # noise = dataOut.noise |
|
2223 | # noise = dataOut.noise | |
2224 | heightList = dataOut.heightList |
|
2224 | heightList = dataOut.heightList | |
2225 |
SNR = dataOut.data_ |
|
2225 | SNR = dataOut.data_snr | |
2226 |
|
2226 | |||
2227 | if technique == 'DBS': |
|
2227 | if technique == 'DBS': | |
2228 |
|
2228 | |||
@@ -2230,7 +2230,7 class WindProfiler(Operation): | |||||
2230 | kwargs['heightList'] = heightList |
|
2230 | kwargs['heightList'] = heightList | |
2231 | kwargs['SNR'] = SNR |
|
2231 | kwargs['SNR'] = SNR | |
2232 |
|
2232 | |||
2233 |
dataOut.data_output, dataOut.heightList, dataOut.data_ |
|
2233 | dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function | |
2234 | dataOut.utctimeInit = dataOut.utctime |
|
2234 | dataOut.utctimeInit = dataOut.utctime | |
2235 | dataOut.outputInterval = dataOut.paramInterval |
|
2235 | dataOut.outputInterval = dataOut.paramInterval | |
2236 |
|
2236 | |||
@@ -2424,7 +2424,7 class EWDriftsEstimation(Operation): | |||||
2424 | def run(self, dataOut, zenith, zenithCorrection): |
|
2424 | def run(self, dataOut, zenith, zenithCorrection): | |
2425 | heiRang = dataOut.heightList |
|
2425 | heiRang = dataOut.heightList | |
2426 | velRadial = dataOut.data_param[:,3,:] |
|
2426 | velRadial = dataOut.data_param[:,3,:] | |
2427 |
SNR = dataOut.data_ |
|
2427 | SNR = dataOut.data_snr | |
2428 |
|
2428 | |||
2429 | zenith = numpy.array(zenith) |
|
2429 | zenith = numpy.array(zenith) | |
2430 | zenith -= zenithCorrection |
|
2430 | zenith -= zenithCorrection | |
@@ -2445,7 +2445,7 class EWDriftsEstimation(Operation): | |||||
2445 |
|
2445 | |||
2446 | dataOut.heightList = heiRang1 |
|
2446 | dataOut.heightList = heiRang1 | |
2447 | dataOut.data_output = winds |
|
2447 | dataOut.data_output = winds | |
2448 |
dataOut.data_ |
|
2448 | dataOut.data_snr = SNR1 | |
2449 |
|
2449 | |||
2450 | dataOut.utctimeInit = dataOut.utctime |
|
2450 | dataOut.utctimeInit = dataOut.utctime | |
2451 | dataOut.outputInterval = dataOut.timeInterval |
|
2451 | dataOut.outputInterval = dataOut.timeInterval |
@@ -873,4 +873,26 class IncohInt(Operation): | |||||
873 | dataOut.utctime = avgdatatime |
|
873 | dataOut.utctime = avgdatatime | |
874 | dataOut.flagNoData = False |
|
874 | dataOut.flagNoData = False | |
875 |
|
875 | |||
876 | return dataOut No newline at end of file |
|
876 | return dataOut | |
|
877 | ||||
|
878 | class dopplerFlip(Operation): | |||
|
879 | ||||
|
880 | def run(self, dataOut): | |||
|
881 | # arreglo 1: (num_chan, num_profiles, num_heights) | |||
|
882 | self.dataOut = dataOut | |||
|
883 | # JULIA-oblicua, indice 2 | |||
|
884 | # arreglo 2: (num_profiles, num_heights) | |||
|
885 | jspectra = self.dataOut.data_spc[2] | |||
|
886 | jspectra_tmp = numpy.zeros(jspectra.shape) | |||
|
887 | num_profiles = jspectra.shape[0] | |||
|
888 | freq_dc = int(num_profiles / 2) | |||
|
889 | # Flip con for | |||
|
890 | for j in range(num_profiles): | |||
|
891 | jspectra_tmp[num_profiles-j-1]= jspectra[j] | |||
|
892 | # Intercambio perfil de DC con perfil inmediato anterior | |||
|
893 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] | |||
|
894 | jspectra_tmp[freq_dc]= jspectra[freq_dc] | |||
|
895 | # canal modificado es re-escrito en el arreglo de canales | |||
|
896 | self.dataOut.data_spc[2] = jspectra_tmp | |||
|
897 | ||||
|
898 | return self.dataOut No newline at end of file |
@@ -146,7 +146,7 class selectChannels(Operation): | |||||
146 |
|
146 | |||
147 | class selectHeights(Operation): |
|
147 | class selectHeights(Operation): | |
148 |
|
148 | |||
149 | def run(self, dataOut, minHei=None, maxHei=None): |
|
149 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): | |
150 | """ |
|
150 | """ | |
151 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
151 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
152 | minHei <= height <= maxHei |
|
152 | minHei <= height <= maxHei | |
@@ -164,34 +164,30 class selectHeights(Operation): | |||||
164 |
|
164 | |||
165 | self.dataOut = dataOut |
|
165 | self.dataOut = dataOut | |
166 |
|
166 | |||
167 |
if minHei |
|
167 | if minHei and maxHei: | |
168 | minHei = self.dataOut.heightList[0] |
|
|||
169 |
|
168 | |||
170 | if maxHei == None: |
|
169 | if (minHei < self.dataOut.heightList[0]): | |
171 |
|
|
170 | minHei = self.dataOut.heightList[0] | |
172 |
|
171 | |||
173 |
if (m |
|
172 | if (maxHei > self.dataOut.heightList[-1]): | |
174 |
|
|
173 | maxHei = self.dataOut.heightList[-1] | |
175 |
|
174 | |||
176 | if (maxHei > self.dataOut.heightList[-1]): |
|
175 | minIndex = 0 | |
177 | maxHei = self.dataOut.heightList[-1] |
|
176 | maxIndex = 0 | |
178 |
|
177 | heights = self.dataOut.heightList | ||
179 | minIndex = 0 |
|
|||
180 | maxIndex = 0 |
|
|||
181 | heights = self.dataOut.heightList |
|
|||
182 |
|
178 | |||
183 | inda = numpy.where(heights >= minHei) |
|
179 | inda = numpy.where(heights >= minHei) | |
184 | indb = numpy.where(heights <= maxHei) |
|
180 | indb = numpy.where(heights <= maxHei) | |
185 |
|
181 | |||
186 | try: |
|
182 | try: | |
187 | minIndex = inda[0][0] |
|
183 | minIndex = inda[0][0] | |
188 | except: |
|
184 | except: | |
189 | minIndex = 0 |
|
185 | minIndex = 0 | |
190 |
|
186 | |||
191 | try: |
|
187 | try: | |
192 | maxIndex = indb[0][-1] |
|
188 | maxIndex = indb[0][-1] | |
193 | except: |
|
189 | except: | |
194 | maxIndex = len(heights) |
|
190 | maxIndex = len(heights) | |
195 |
|
191 | |||
196 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
192 | self.selectHeightsByIndex(minIndex, maxIndex) | |
197 |
|
193 |
General Comments 0
You need to be logged in to leave comments.
Login now