##// END OF EJS Templates
Merge branch 'isr' into v3.0-devel
jespinoza -
r1380:a03d3bbf5427 merge
parent child
Show More

The requested changes are too big and content was truncated. Show full diff

This diff has been collapsed as it changes many lines, (1156 lines changed) Show them Hide them
@@ -0,0 +1,1156
1
2 import os
3 import datetime
4 import numpy
5 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator #YONG
6
7 from .jroplot_spectra import RTIPlot, NoisePlot
8
9 from schainpy.utils import log
10 from .plotting_codes import *
11
12 from schainpy.model.graphics.jroplot_base import Plot, plt
13
14 import matplotlib.pyplot as plt
15 import matplotlib.colors as colors
16
17 import time
18 import math
19
20
21 from matplotlib.ticker import MultipleLocator
22
23
24
25 class RTIDPPlot(RTIPlot):
26
27 '''
28 Plot for RTI Double Pulse Experiment
29 '''
30
31 CODE = 'RTIDP'
32 colormap = 'jro'
33 plot_name = 'RTI'
34
35 #cb_label = 'Ne Electron Density (1/cm3)'
36
37 def setup(self):
38 self.xaxis = 'time'
39 self.ncols = 1
40 self.nrows = 3
41 self.nplots = self.nrows
42 #self.height=10
43 if self.showSNR:
44 self.nrows += 1
45 self.nplots += 1
46
47 self.ylabel = 'Height [km]'
48 self.xlabel = 'Time (LT)'
49
50 self.cb_label = 'Intensity (dB)'
51
52
53 #self.cb_label = cb_label
54
55 self.titles = ['{} Channel {}'.format(
56 self.plot_name.upper(), '0x1'),'{} Channel {}'.format(
57 self.plot_name.upper(), '0'),'{} Channel {}'.format(
58 self.plot_name.upper(), '1')]
59
60
61 def plot(self):
62
63 self.data.normalize_heights()
64 self.x = self.data.times
65 self.y = self.data.heights[0:self.data.NDP]
66
67 if self.showSNR:
68 self.z = numpy.concatenate(
69 (self.data[self.CODE], self.data['snr'])
70 )
71 else:
72
73 self.z = self.data[self.CODE]
74 #print(numpy.max(self.z[0,0:]))
75
76 self.z = numpy.ma.masked_invalid(self.z)
77
78 if self.decimation is None:
79 x, y, z = self.fill_gaps(self.x, self.y, self.z)
80 else:
81 x, y, z = self.fill_gaps(*self.decimate())
82
83 for n, ax in enumerate(self.axes):
84
85
86 self.zmax = self.zmax if self.zmax is not None else numpy.max(
87 self.z[1][0,12:40])
88 self.zmin = self.zmin if self.zmin is not None else numpy.min(
89 self.z[1][0,12:40])
90
91
92
93 if ax.firsttime:
94
95 if self.zlimits is not None:
96 self.zmin, self.zmax = self.zlimits[n]
97
98
99 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
100 vmin=self.zmin,
101 vmax=self.zmax,
102 cmap=self.cmaps[n]
103 )
104 #plt.tight_layout()
105 else:
106 if self.zlimits is not None:
107 self.zmin, self.zmax = self.zlimits[n]
108 ax.collections.remove(ax.collections[0])
109 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
110 vmin=self.zmin,
111 vmax=self.zmax,
112 cmap=self.cmaps[n]
113 )
114 #plt.tight_layout()
115
116
117 class RTILPPlot(RTIPlot):
118
119 '''
120 Plot for RTI Long Pulse
121 '''
122
123 CODE = 'RTILP'
124 colormap = 'jro'
125 plot_name = 'RTI LP'
126
127 #cb_label = 'Ne Electron Density (1/cm3)'
128
129 def setup(self):
130 self.xaxis = 'time'
131 self.ncols = 1
132 self.nrows = 4
133 self.nplots = self.nrows
134 if self.showSNR:
135 self.nrows += 1
136 self.nplots += 1
137
138 self.ylabel = 'Height [km]'
139 self.xlabel = 'Time (LT)'
140
141 self.cb_label = 'Intensity (dB)'
142
143
144
145 #self.cb_label = cb_label
146
147 self.titles = ['{} Channel {}'.format(
148 self.plot_name.upper(), '0'),'{} Channel {}'.format(
149 self.plot_name.upper(), '1'),'{} Channel {}'.format(
150 self.plot_name.upper(), '2'),'{} Channel {}'.format(
151 self.plot_name.upper(), '3')]
152
153
154 def plot(self):
155
156 self.data.normalize_heights()
157 self.x = self.data.times
158 self.y = self.data.heights[0:self.data.NRANGE]
159
160 if self.showSNR:
161 self.z = numpy.concatenate(
162 (self.data[self.CODE], self.data['snr'])
163 )
164 else:
165
166 self.z = self.data[self.CODE]
167 #print(numpy.max(self.z[0,0:]))
168
169 self.z = numpy.ma.masked_invalid(self.z)
170
171 if self.decimation is None:
172 x, y, z = self.fill_gaps(self.x, self.y, self.z)
173 else:
174 x, y, z = self.fill_gaps(*self.decimate())
175
176 for n, ax in enumerate(self.axes):
177
178
179 self.zmax = self.zmax if self.zmax is not None else numpy.max(
180 self.z[1][0,12:40])
181 self.zmin = self.zmin if self.zmin is not None else numpy.min(
182 self.z[1][0,12:40])
183
184 if ax.firsttime:
185
186 if self.zlimits is not None:
187 self.zmin, self.zmax = self.zlimits[n]
188
189
190 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
191 vmin=self.zmin,
192 vmax=self.zmax,
193 cmap=self.cmaps[n]
194 )
195 #plt.tight_layout()
196 else:
197 if self.zlimits is not None:
198 self.zmin, self.zmax = self.zlimits[n]
199 ax.collections.remove(ax.collections[0])
200 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
201 vmin=self.zmin,
202 vmax=self.zmax,
203 cmap=self.cmaps[n]
204 )
205 #plt.tight_layout()
206
207
208 class DenRTIPlot(RTIPlot):
209
210 '''
211 Plot for Den
212 '''
213
214 CODE = 'denrti'
215 colormap = 'jro'
216 plot_name = 'Electron Density'
217
218 #cb_label = 'Ne Electron Density (1/cm3)'
219
220 def setup(self):
221 self.xaxis = 'time'
222 self.ncols = 1
223 self.nrows = self.data.shape(self.CODE)[0]
224 self.nplots = self.nrows
225 if self.showSNR:
226 self.nrows += 1
227 self.nplots += 1
228
229 self.ylabel = 'Height [km]'
230 self.xlabel = 'Time (LT)'
231
232 self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18})
233
234 if self.CODE == 'denrti' or self.CODE=='denrtiLP':
235 self.cb_label = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)'
236
237 #self.cb_label = cb_label
238 if not self.titles:
239 self.titles = self.data.parameters \
240 if self.data.parameters else ['{}'.format(self.plot_name)]
241 if self.showSNR:
242 self.titles.append('SNR')
243
244 def plot(self):
245
246 self.data.normalize_heights()
247 self.x = self.data.times
248 self.y = self.data.heights
249
250
251
252 if self.showSNR:
253 self.z = numpy.concatenate(
254 (self.data[self.CODE], self.data['snr'])
255 )
256 else:
257 self.z = self.data[self.CODE]
258
259 self.z = numpy.ma.masked_invalid(self.z)
260
261 if self.decimation is None:
262 x, y, z = self.fill_gaps(self.x, self.y, self.z)
263 else:
264 x, y, z = self.fill_gaps(*self.decimate())
265
266 for n, ax in enumerate(self.axes):
267
268 self.zmax = self.zmax if self.zmax is not None else numpy.max(
269 self.z[n])
270 self.zmin = self.zmin if self.zmin is not None else numpy.min(
271 self.z[n])
272
273 if ax.firsttime:
274
275 if self.zlimits is not None:
276 self.zmin, self.zmax = self.zlimits[n]
277 if numpy.log10(self.zmin)<0:
278 self.zmin=1
279 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
280 vmin=self.zmin,
281 vmax=self.zmax,
282 cmap=self.cmaps[n],
283 norm=colors.LogNorm()
284 )
285 #plt.tight_layout()
286
287 else:
288 if self.zlimits is not None:
289 self.zmin, self.zmax = self.zlimits[n]
290 ax.collections.remove(ax.collections[0])
291 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
292 vmin=self.zmin,
293 vmax=self.zmax,
294 cmap=self.cmaps[n],
295 norm=colors.LogNorm()
296 )
297 #plt.tight_layout()
298
299
300
301 class DenRTILPPlot(DenRTIPlot):
302
303 '''
304 Plot for Electron Temperature
305 '''
306
307 CODE = 'denrtiLP'
308 colormap = 'jro'
309 plot_name = 'Electron Density'
310
311
312 class ETempRTIPlot(RTIPlot):
313
314 '''
315 Plot for Electron Temperature
316 '''
317
318 CODE = 'ETemp'
319 colormap = 'jet'
320 plot_name = 'Electron Temperature'
321
322 #cb_label = 'Ne Electron Density (1/cm3)'
323
324 def setup(self):
325 self.xaxis = 'time'
326 self.ncols = 1
327 self.nrows = self.data.shape(self.CODE)[0]
328 self.nplots = self.nrows
329 if self.showSNR:
330 self.nrows += 1
331 self.nplots += 1
332
333 self.ylabel = 'Height [km]'
334 self.xlabel = 'Time (LT)'
335 self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18})
336 if self.CODE == 'ETemp' or self.CODE == 'ETempLP':
337 self.cb_label = 'Electron Temperature (K)'
338 if self.CODE == 'ITemp' or self.CODE == 'ITempLP':
339 self.cb_label = 'Ion Temperature (K)'
340
341
342 if not self.titles:
343 self.titles = self.data.parameters \
344 if self.data.parameters else ['{}'.format(self.plot_name)]
345 if self.showSNR:
346 self.titles.append('SNR')
347
348 def plot(self):
349
350 self.data.normalize_heights()
351 self.x = self.data.times
352 self.y = self.data.heights
353
354 if self.showSNR:
355 self.z = numpy.concatenate(
356 (self.data[self.CODE], self.data['snr'])
357 )
358 else:
359 self.z = self.data[self.CODE]
360
361 self.z = numpy.ma.masked_invalid(self.z)
362
363 if self.decimation is None:
364 x, y, z = self.fill_gaps(self.x, self.y, self.z)
365 else:
366 x, y, z = self.fill_gaps(*self.decimate())
367
368 for n, ax in enumerate(self.axes):
369
370 self.zmax = self.zmax if self.zmax is not None else numpy.max(
371 self.z[n])
372 self.zmin = self.zmin if self.zmin is not None else numpy.min(
373 self.z[n])
374
375 if ax.firsttime:
376
377 if self.zlimits is not None:
378 self.zmin, self.zmax = self.zlimits[n]
379
380 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
381 vmin=self.zmin,
382 vmax=self.zmax,
383 cmap=self.cmaps[n]
384 )
385 #plt.tight_layout()
386
387 else:
388 if self.zlimits is not None:
389 self.zmin, self.zmax = self.zlimits[n]
390 ax.collections.remove(ax.collections[0])
391 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
392 vmin=self.zmin,
393 vmax=self.zmax,
394 cmap=self.cmaps[n]
395 )
396 #plt.tight_layout()
397
398
399
400 class ITempRTIPlot(ETempRTIPlot):
401
402 '''
403 Plot for Ion Temperature
404 '''
405
406 CODE = 'ITemp'
407 colormap = 'jet'
408 plot_name = 'Ion Temperature'
409
410
411 class ElectronTempLPPlot(ETempRTIPlot):
412
413 '''
414 Plot for Electron Temperature LP
415 '''
416
417 CODE = 'ETempLP'
418 colormap = 'jet'
419 plot_name = 'Electron Temperature'
420
421
422 class IonTempLPPlot(ETempRTIPlot):
423
424 '''
425 Plot for Ion Temperature LP
426 '''
427
428 CODE = 'ITempLP'
429 colormap = 'jet'
430 plot_name = 'Ion Temperature'
431
432
433 class HFracRTIPlot(ETempRTIPlot):
434
435 '''
436 Plot for H+ LP
437 '''
438
439 CODE = 'HFracLP'
440 colormap = 'jet'
441 plot_name = 'H+ Frac'
442
443
444 class HeFracRTIPlot(ETempRTIPlot):
445
446 '''
447 Plot for He+ LP
448 '''
449
450 CODE = 'HeFracLP'
451 colormap = 'jet'
452 plot_name = 'He+ Frac'
453
454
455 class TempsDPPlot(Plot):
456 '''
457 Plot for Electron - Ion Temperatures
458 '''
459
460 CODE = 'tempsDP'
461 plot_name = 'Temperatures'
462 plot_type = 'scatterbuffer'
463
464
465 def setup(self):
466
467 self.ncols = 1
468 self.nrows = 1
469 self.nplots = 1
470 self.ylabel = 'Range [km]'
471 self.xlabel = 'Temperature (K)'
472 self.width = 3.5
473 self.height = 5.5
474 self.colorbar = False
475 self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18})
476 if not self.titles:
477 self.titles = self.data.parameters \
478 if self.data.parameters else ['{}'.format(self.CODE.upper())]
479
480 def plot(self):
481
482 self.x = self.data['tempsDP'][:,-1]
483 self.y = self.data.heights[0:self.data.NSHTS]
484
485 self.xmin = -100
486 self.xmax = 5000
487 ax = self.axes[0]
488
489 if ax.firsttime:
490
491 ax.errorbar(self.x, self.y, xerr=self.data.ete2, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te')
492 ax.errorbar(self.data.ti2, self.y, fmt='k^', xerr=self.data.eti2,elinewidth=1.0,color='b',linewidth=2.0, label='Ti')
493 plt.legend(loc='lower right')
494 self.ystep_given = 50
495 ax.yaxis.set_minor_locator(MultipleLocator(15))
496 ax.grid(which='minor')
497 #plt.tight_layout()
498
499
500 else:
501 self.clear_figures()
502 ax.errorbar(self.x, self.y, xerr=self.data.ete2, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te')
503 ax.errorbar(self.data.ti2, self.y, fmt='k^', xerr=self.data.eti2,elinewidth=1.0,color='b',linewidth=2.0, label='Ti')
504 plt.legend(loc='lower right')
505 ax.yaxis.set_minor_locator(MultipleLocator(15))
506 #plt.tight_layout()
507
508
509 class TempsHPPlot(Plot):
510 '''
511 Plot for Temperatures Hybrid Experiment
512 '''
513
514 CODE = 'temps_LP'
515 plot_name = 'Temperatures'
516 plot_type = 'scatterbuffer'
517
518
519 def setup(self):
520
521 self.ncols = 1
522 self.nrows = 1
523 self.nplots = 1
524 self.ylabel = 'Range [km]'
525 self.xlabel = 'Temperature (K)'
526 self.width = 3.5
527 self.height = 6.5
528 self.colorbar = False
529 if not self.titles:
530 self.titles = self.data.parameters \
531 if self.data.parameters else ['{}'.format(self.CODE.upper())]
532
533 def plot(self):
534
535 self.x = self.data['temps_LP'][:,-1]
536 self.y = self.data.heights[0:self.data.NACF]
537 self.xmin = -100
538 self.xmax = 4500
539 ax = self.axes[0]
540
541 if ax.firsttime:
542
543 ax.errorbar(self.x, self.y, xerr=self.data.ete, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te')
544 ax.errorbar(self.data.ti, self.y, fmt='k^', xerr=self.data.eti,elinewidth=1.0,color='b',linewidth=2.0, label='Ti')
545 plt.legend(loc='lower right')
546 self.ystep_given = 200
547 ax.yaxis.set_minor_locator(MultipleLocator(15))
548 ax.grid(which='minor')
549 #plt.tight_layout()
550
551
552 else:
553 self.clear_figures()
554 ax.errorbar(self.x, self.y, xerr=self.data.ete, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te')
555 ax.errorbar(self.data.ti, self.y, fmt='k^', xerr=self.data.eti,elinewidth=1.0,color='b',linewidth=2.0, label='Ti')
556 plt.legend(loc='lower right')
557 ax.yaxis.set_minor_locator(MultipleLocator(15))
558 #plt.tight_layout()
559
560
561 class FracsHPPlot(Plot):
562 '''
563 Plot for Composition LP
564 '''
565
566 CODE = 'fracs_LP'
567 plot_name = 'Composition'
568 plot_type = 'scatterbuffer'
569
570
571 def setup(self):
572
573 self.ncols = 1
574 self.nrows = 1
575 self.nplots = 1
576 self.ylabel = 'Range [km]'
577 self.xlabel = 'Frac'
578 self.width = 3.5
579 self.height = 6.5
580 self.colorbar = False
581 if not self.titles:
582 self.titles = self.data.parameters \
583 if self.data.parameters else ['{}'.format(self.CODE.upper())]
584
585 def plot(self):
586
587 self.x = self.data['fracs_LP'][:,-1]
588 self.y = self.data.heights[0:self.data.NACF]
589
590 self.xmin = 0
591 self.xmax = 1
592 ax = self.axes[0]
593
594 if ax.firsttime:
595
596 ax.errorbar(self.x, self.y[self.data.cut:], xerr=self.data.eph, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='H+')
597 ax.errorbar(self.data.phe, self.y[self.data.cut:], fmt='k^', xerr=self.data.ephe,elinewidth=1.0,color='b',linewidth=2.0, label='He+')
598 plt.legend(loc='lower right')
599 self.xstep_given = 0.2
600 self.ystep_given = 200
601 ax.yaxis.set_minor_locator(MultipleLocator(15))
602 ax.grid(which='minor')
603 #plt.tight_layout()
604
605
606 else:
607 self.clear_figures()
608 ax.errorbar(self.x, self.y[self.data.cut:], xerr=self.data.eph, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='H+')
609 ax.errorbar(self.data.phe, self.y[self.data.cut:], fmt='k^', xerr=self.data.ephe,elinewidth=1.0,color='b',linewidth=2.0, label='He+')
610 plt.legend(loc='lower right')
611 ax.yaxis.set_minor_locator(MultipleLocator(15))
612 #plt.tight_layout()
613
614
615
616 class EDensityPlot(Plot):
617 '''
618 Plot for electron density
619 '''
620
621 CODE = 'den'
622 plot_name = 'Electron Density'
623 plot_type = 'scatterbuffer'
624
625
626 def setup(self):
627
628 self.ncols = 1
629 self.nrows = 1
630 self.nplots = 1
631 self.ylabel = 'Range [km]'
632 self.xlabel = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)'
633 self.width = 4
634 self.height = 6.5
635 self.colorbar = False
636 self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18})
637 if not self.titles:
638 self.titles = self.data.parameters \
639 if self.data.parameters else ['{}'.format(self.CODE.upper())]
640
641 def plot(self):
642
643
644 self.x = self.data[self.CODE]
645 self.y = self.data.heights
646 self.xmin = 1000
647 self.xmax = 10000000
648 ax = self.axes[0]
649
650 if ax.firsttime:
651 self.autoxticks=False
652 #if self.CODE=='den':
653 ax.errorbar(self.data.dphi, self.y[:self.data.NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2)
654 #ax.errorbar(self.data.dphi, self.y[:self.data.NSHTS], xerr=self.data.sdn1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2)
655
656 ax.errorbar(self.x[:,-1], self.y[:self.data.NSHTS], fmt='k^-', xerr=self.data.sdp2,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2)
657 #else:
658 #ax.errorbar(self.data.dphi[:self.data.cut], self.y[:self.data.cut], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2)
659 #ax.errorbar(self.x[:self.data.cut,-1], self.y[:self.data.cut], fmt='k^-', xerr=self.data.sdp2[:self.data.cut],elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2)
660
661 if self.CODE=='denLP':
662 ax.errorbar(self.data.ne[self.data.cut:], self.y[self.data.cut:], xerr=self.data.ene[self.data.cut:], fmt='r^-',elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2)
663
664 plt.legend(loc='upper right')
665 ax.set_xscale("log", nonposx='clip')
666 grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50)
667 self.ystep_given=100
668 if self.CODE=='denLP':
669 self.ystep_given=200
670 ax.set_yticks(grid_y_ticks,minor=True)
671 ax.grid(which='minor')
672 #plt.tight_layout()
673
674
675
676 else:
677
678 self.clear_figures()
679 #if self.CODE=='den':
680 ax.errorbar(self.data.dphi, self.y[:self.data.NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2)
681 #ax.errorbar(self.data.dphi, self.y[:self.data.NSHTS], xerr=self.data.sdn1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2)
682
683 ax.errorbar(self.x[:,-1], self.y[:self.data.NSHTS], fmt='k^-', xerr=self.data.sdp2,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2)
684 ax.errorbar(self.x[:,-2], self.y[:self.data.NSHTS], elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed")
685 #else:
686 #ax.errorbar(self.data.dphi[:self.data.cut], self.y[:self.data.cut], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2)
687 #ax.errorbar(self.x[:self.data.cut,-1], self.y[:self.data.cut], fmt='k^-', xerr=self.data.sdp2[:self.data.cut],elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2)
688 #ax.errorbar(self.x[:self.data.cut,-2], self.y[:self.data.cut], elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed")
689
690 if self.CODE=='denLP':
691 ax.errorbar(self.data.ne[self.data.cut:], self.y[self.data.cut:], fmt='r^-', xerr=self.data.ene[self.data.cut:],elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2)
692
693 ax.set_xscale("log", nonposx='clip')
694 grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50)
695 ax.set_yticks(grid_y_ticks,minor=True)
696 ax.grid(which='minor')
697 plt.legend(loc='upper right')
698 #plt.tight_layout()
699
700 class FaradayAnglePlot(Plot):
701 '''
702 Plot for electron density
703 '''
704
705 CODE = 'FaradayAngle'
706 plot_name = 'Faraday Angle'
707 plot_type = 'scatterbuffer'
708
709
710 def setup(self):
711
712 self.ncols = 1
713 self.nrows = 1
714 self.nplots = 1
715 self.ylabel = 'Range [km]'
716 self.xlabel = 'Faraday Angle (º)'
717 self.width = 4
718 self.height = 6.5
719 self.colorbar = False
720 if not self.titles:
721 self.titles = self.data.parameters \
722 if self.data.parameters else ['{}'.format(self.CODE.upper())]
723
724 def plot(self):
725
726
727 self.x = self.data[self.CODE]
728 self.y = self.data.heights
729 self.xmin = -180
730 self.xmax = 180
731 ax = self.axes[0]
732
733 if ax.firsttime:
734 self.autoxticks=False
735 #if self.CODE=='den':
736 ax.plot(self.x, self.y,marker='o',color='g',linewidth=1.0,markersize=2)
737
738 grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50)
739 self.ystep_given=100
740 if self.CODE=='denLP':
741 self.ystep_given=200
742 ax.set_yticks(grid_y_ticks,minor=True)
743 ax.grid(which='minor')
744 #plt.tight_layout()
745 else:
746
747 self.clear_figures()
748 #if self.CODE=='den':
749 #print(numpy.shape(self.x))
750 ax.plot(self.x[:,-1], self.y, marker='o',color='g',linewidth=1.0, markersize=2)
751
752 grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50)
753 ax.set_yticks(grid_y_ticks,minor=True)
754 ax.grid(which='minor')
755
756 class EDensityHPPlot(EDensityPlot):
757
758 '''
759 Plot for Electron Density Hybrid Experiment
760 '''
761
762 CODE = 'denLP'
763 plot_name = 'Electron Density'
764 plot_type = 'scatterbuffer'
765
766
767 class ACFsPlot(Plot):
768 '''
769 Plot for ACFs Double Pulse Experiment
770 '''
771
772 CODE = 'acfs'
773 plot_name = 'ACF'
774 plot_type = 'scatterbuffer'
775
776
777 def setup(self):
778 #self.xaxis = 'time'
779 self.ncols = 1
780 self.nrows = 1
781 self.nplots = 1
782 self.ylabel = 'Range [km]'
783 self.xlabel = 'lags (ms)'
784 self.width = 3.5
785 self.height = 6
786 self.colorbar = False
787 self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18})
788 if not self.titles:
789 self.titles = self.data.parameters \
790 if self.data.parameters else ['{}'.format(self.CODE.upper())]
791
792 def plot(self):
793
794 self.x = self.data.lags_to_plot
795 self.y = self.data['acfs'][:,-1]
796
797
798 self.xmin = 0.0
799 self.xmax = 2.0
800
801 ax = self.axes[0]
802
803 if ax.firsttime:
804
805 for i in range(self.data.NSHTS):
806 x_aux = numpy.isfinite(self.x[i,:])
807 y_aux = numpy.isfinite(self.y[i,:])
808 yerr_aux = numpy.isfinite(self.data.acfs_error_to_plot[i,:])
809 x_igcej_aux = numpy.isfinite(self.data.x_igcej_to_plot[i,:])
810 y_igcej_aux = numpy.isfinite(self.data.y_igcej_to_plot[i,:])
811 x_ibad_aux = numpy.isfinite(self.data.x_ibad_to_plot[i,:])
812 y_ibad_aux = numpy.isfinite(self.data.y_ibad_to_plot[i,:])
813 if self.x[i,:][~numpy.isnan(self.x[i,:])].shape[0]>2:
814 ax.errorbar(self.x[i,x_aux], self.y[i,y_aux], yerr=self.data.acfs_error_to_plot[i,x_aux],color='b',marker='o',linewidth=1.0,markersize=2)
815 ax.plot(self.data.x_igcej_to_plot[i,x_igcej_aux],self.data.y_igcej_to_plot[i,y_igcej_aux],'x',color='red',markersize=2)
816 ax.plot(self.data.x_ibad_to_plot[i,x_ibad_aux],self.data.y_ibad_to_plot[i,y_ibad_aux],'X',color='red',markersize=2)
817
818 self.xstep_given = (self.xmax-self.xmin)/(self.data.DPL-1)
819 self.ystep_given = 50
820 ax.yaxis.set_minor_locator(MultipleLocator(15))
821 ax.grid(which='minor')
822
823
824
825 else:
826 self.clear_figures()
827
828 for i in range(self.data.NSHTS):
829 x_aux = numpy.isfinite(self.x[i,:])
830 y_aux = numpy.isfinite(self.y[i,:])
831 yerr_aux = numpy.isfinite(self.data.acfs_error_to_plot[i,:])
832 x_igcej_aux = numpy.isfinite(self.data.x_igcej_to_plot[i,:])
833 y_igcej_aux = numpy.isfinite(self.data.y_igcej_to_plot[i,:])
834 x_ibad_aux = numpy.isfinite(self.data.x_ibad_to_plot[i,:])
835 y_ibad_aux = numpy.isfinite(self.data.y_ibad_to_plot[i,:])
836 if self.x[i,:][~numpy.isnan(self.x[i,:])].shape[0]>2:
837 ax.errorbar(self.x[i,x_aux], self.y[i,y_aux], yerr=self.data.acfs_error_to_plot[i,x_aux],linewidth=1.0,markersize=2,color='b',marker='o')
838 ax.plot(self.data.x_igcej_to_plot[i,x_igcej_aux],self.data.y_igcej_to_plot[i,y_igcej_aux],'x',color='red',markersize=2)
839 ax.plot(self.data.x_ibad_to_plot[i,x_ibad_aux],self.data.y_ibad_to_plot[i,y_ibad_aux],'X',color='red',markersize=2)
840 ax.yaxis.set_minor_locator(MultipleLocator(15))
841
842
843
844
845 class ACFsLPPlot(Plot):
846 '''
847 Plot for ACFs Double Pulse Experiment
848 '''
849
850 CODE = 'acfs_LP'
851 plot_name = 'ACF'
852 plot_type = 'scatterbuffer'
853
854
855 def setup(self):
856 #self.xaxis = 'time'
857 self.ncols = 1
858 self.nrows = 1
859 self.nplots = 1
860 self.ylabel = 'Range [km]'
861 self.xlabel = 'lags (ms)'
862 self.width = 3.5
863 self.height = 7
864 self.colorbar = False
865 if not self.titles:
866 self.titles = self.data.parameters \
867 if self.data.parameters else ['{}'.format(self.CODE.upper())]
868
869
870
871 def plot(self):
872
873 self.x = self.data.lags_LP_to_plot
874 self.y = self.data['acfs_LP'][:,-1]
875
876 self.xmin = 0.0
877 self.xmax = 1.5
878
879 ax = self.axes[0]
880
881 if ax.firsttime:
882
883 for i in range(self.data.NACF):
884 x_aux = numpy.isfinite(self.x[i,:])
885 y_aux = numpy.isfinite(self.y[i,:])
886 yerr_aux = numpy.isfinite(self.data.errors[i,:])
887
888 if self.x[i,:][~numpy.isnan(self.x[i,:])].shape[0]>2:
889 ax.errorbar(self.x[i,x_aux], self.y[i,y_aux], yerr=self.data.errors[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r')
890
891 #self.xstep_given = (self.xmax-self.xmin)/(self.data.NLAG-1)
892 self.xstep_given=0.3
893 self.ystep_given = 200
894 ax.yaxis.set_minor_locator(MultipleLocator(15))
895 ax.grid(which='minor')
896
897 else:
898 self.clear_figures()
899
900 for i in range(self.data.NACF):
901 x_aux = numpy.isfinite(self.x[i,:])
902 y_aux = numpy.isfinite(self.y[i,:])
903 yerr_aux = numpy.isfinite(self.data.errors[i,:])
904
905 if self.x[i,:][~numpy.isnan(self.x[i,:])].shape[0]>2:
906 ax.errorbar(self.x[i,x_aux], self.y[i,y_aux], yerr=self.data.errors[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r')
907
908 ax.yaxis.set_minor_locator(MultipleLocator(15))
909
910
911 class CrossProductsPlot(Plot):
912 '''
913 Plot for cross products
914 '''
915
916 CODE = 'crossprod'
917 plot_name = 'Cross Products'
918 plot_type = 'scatterbuffer'
919
920
921 def setup(self):
922
923 self.ncols = 3
924 self.nrows = 1
925 self.nplots = 3
926 self.ylabel = 'Range [km]'
927
928 self.width = 3.5*self.nplots
929 self.height = 5.5
930 self.colorbar = False
931 self.titles = []
932
933 def plot(self):
934
935 self.x = self.data['crossprod'][:,-1,:,:,:,:]
936
937
938
939
940 self.y = self.data.heights[0:self.data.NDP]
941
942
943
944 for n, ax in enumerate(self.axes):
945
946 self.xmin=numpy.min(numpy.concatenate((self.x[n][0,20:30,0,0],self.x[n][1,20:30,0,0],self.x[n][2,20:30,0,0],self.x[n][3,20:30,0,0])))
947 self.xmax=numpy.max(numpy.concatenate((self.x[n][0,20:30,0,0],self.x[n][1,20:30,0,0],self.x[n][2,20:30,0,0],self.x[n][3,20:30,0,0])))
948
949
950 if ax.firsttime:
951
952 self.autoxticks=False
953 if n==0:
954 label1='kax'
955 label2='kay'
956 label3='kbx'
957 label4='kby'
958 self.xlimits=[(self.xmin,self.xmax)]
959 elif n==1:
960 label1='kax2'
961 label2='kay2'
962 label3='kbx2'
963 label4='kby2'
964 self.xlimits.append((self.xmin,self.xmax))
965 elif n==2:
966 label1='kaxay'
967 label2='kbxby'
968 label3='kaxbx'
969 label4='kaxby'
970 self.xlimits.append((self.xmin,self.xmax))
971
972
973 ax.plotline1 = ax.plot(self.x[n][0,:,0,0], self.y, color='r',linewidth=2.0, label=label1)
974 ax.plotline2 = ax.plot(self.x[n][1,:,0,0], self.y, color='k',linewidth=2.0, label=label2)
975 ax.plotline3 = ax.plot(self.x[n][2,:,0,0], self.y, color='b',linewidth=2.0, label=label3)
976 ax.plotline4 = ax.plot(self.x[n][3,:,0,0], self.y, color='m',linewidth=2.0, label=label4)
977 ax.legend(loc='upper right')
978 ax.set_xlim(self.xmin, self.xmax)
979 self.titles.append('{}'.format(self.plot_name.upper()))
980 #plt.tight_layout()
981
982
983 else:
984
985 if n==0:
986 self.xlimits=[(self.xmin,self.xmax)]
987 else:
988 self.xlimits.append((self.xmin,self.xmax))
989
990 ax.set_xlim(self.xmin, self.xmax)
991
992
993 ax.plotline1[0].set_data(self.x[n][0,:,0,0],self.y)
994 ax.plotline2[0].set_data(self.x[n][1,:,0,0],self.y)
995 ax.plotline3[0].set_data(self.x[n][2,:,0,0],self.y)
996 ax.plotline4[0].set_data(self.x[n][3,:,0,0],self.y)
997 self.titles.append('{}'.format(self.plot_name.upper()))
998 #plt.tight_layout()
999
1000
1001
1002 class CrossProductsLPPlot(Plot):
1003 '''
1004 Plot for cross products LP
1005 '''
1006
1007 CODE = 'crossprodlp'
1008 plot_name = 'Cross Products LP'
1009 plot_type = 'scatterbuffer'
1010
1011
1012 def setup(self):
1013
1014 self.ncols = 2
1015 self.nrows = 1
1016 self.nplots = 2
1017 self.ylabel = 'Range [km]'
1018 self.xlabel = 'dB'
1019 self.width = 3.5*self.nplots
1020 self.height = 5.5
1021 self.colorbar = False
1022 self.titles = []
1023 self.plotline_array=numpy.zeros((2,self.data.NLAG),dtype=object)
1024 def plot(self):
1025
1026
1027 self.x = self.data[self.CODE][:,-1,:,:]
1028
1029
1030 self.y = self.data.heights[0:self.data.NRANGE]
1031
1032
1033 label_array=numpy.array(['lag '+ str(x) for x in range(self.data.NLAG)])
1034 color_array=['r','k','g','b','c','m','y','orange','steelblue','purple','peru','darksalmon','grey','limegreen','olive','midnightblue']
1035
1036
1037 for n, ax in enumerate(self.axes):
1038
1039 self.xmin=30
1040 self.xmax=70
1041 #print(self.x[0,12:15,n])
1042 #input()
1043 #self.xmin=numpy.min(numpy.concatenate((self.x[0,:,n],self.x[1,:,n])))
1044 #self.xmax=numpy.max(numpy.concatenate((self.x[0,:,n],self.x[1,:,n])))
1045
1046 #print("before",self.plotline_array)
1047
1048 if ax.firsttime:
1049
1050 self.autoxticks=False
1051
1052
1053 for i in range(self.data.NLAG):
1054 #print(i)
1055 #print(numpy.shape(self.x))
1056 self.plotline_array[n,i], = ax.plot(self.x[i,:,n], self.y, color=color_array[i],linewidth=1.0, label=label_array[i])
1057 #ax.plotline1 = ax.plot(self.x[0,:,n], self.y, color='r',linewidth=2.0, label=label_array[0])
1058 #ax.plotline2 = ax.plot(self.x[n][1,:,0,0], self.y, color='k',linewidth=2.0, label=label2)
1059 #ax.plotline3 = ax.plot(self.x[n][2,:,0,0], self.y, color='b',linewidth=2.0, label=label3)
1060 #ax.plotline4 = ax.plot(self.x[n][3,:,0,0], self.y, color='m',linewidth=2.0, label=label4)
1061
1062
1063 #print(self.plotline_array)
1064
1065
1066
1067 ax.legend(loc='upper right')
1068 ax.set_xlim(self.xmin, self.xmax)
1069 if n==0:
1070 self.titles.append('{} CH0'.format(self.plot_name.upper()))
1071 if n==1:
1072 self.titles.append('{} CH1'.format(self.plot_name.upper()))
1073
1074 #plt.tight_layout()
1075
1076 else:
1077 #print(self.plotline_array)
1078 for i in range(self.data.NLAG):
1079
1080 self.plotline_array[n,i].set_data(self.x[i,:,n],self.y)
1081
1082
1083
1084 #ax.plotline1[0].set_data(self.x[n][0,:,0,0],self.y)
1085 #ax.plotline2[0].set_data(self.x[n][1,:,0,0],self.y)
1086 #ax.plotline3[0].set_data(self.x[n][2,:,0,0],self.y)
1087 #ax.plotline4[0].set_data(self.x[n][3,:,0,0],self.y)
1088
1089 if n==0:
1090 self.titles.append('{} CH0'.format(self.plot_name.upper()))
1091 if n==1:
1092 self.titles.append('{} CH1'.format(self.plot_name.upper()))
1093
1094 #plt.tight_layout()
1095
1096
1097 class NoiseDPPlot(NoisePlot):
1098 '''
1099 Plot for noise Double Pulse
1100 '''
1101
1102 CODE = 'noisedp'
1103 plot_name = 'Noise'
1104 plot_type = 'scatterbuffer'
1105
1106
1107 class XmitWaveformPlot(Plot):
1108 '''
1109 Plot for xmit waveform
1110 '''
1111
1112 CODE = 'xmit'
1113 plot_name = 'Xmit Waveform'
1114 plot_type = 'scatterbuffer'
1115
1116
1117 def setup(self):
1118
1119 self.ncols = 1
1120 self.nrows = 1
1121 self.nplots = 1
1122 self.ylabel = ''
1123 self.xlabel = 'Number of Lag'
1124 self.width = 5.5
1125 self.height = 3.5
1126 self.colorbar = False
1127 if not self.titles:
1128 self.titles = self.data.parameters \
1129 if self.data.parameters else ['{}'.format(self.plot_name.upper())]
1130
1131 def plot(self):
1132
1133 self.x = numpy.arange(0,self.data.NLAG,1,'float32')
1134 self.y = self.data['xmit'][:,-1,:]
1135
1136 self.xmin = 0
1137 self.xmax = self.data.NLAG-1
1138 self.ymin = -1.0
1139 self.ymax = 1.0
1140 ax = self.axes[0]
1141
1142 if ax.firsttime:
1143 ax.plotline0=ax.plot(self.x,self.y[0,:],color='blue')
1144 ax.plotline1=ax.plot(self.x,self.y[1,:],color='red')
1145 secax=ax.secondary_xaxis(location=0.5)
1146 secax.xaxis.tick_bottom()
1147 secax.tick_params( labelleft=False, labeltop=False,
1148 labelright=False, labelbottom=False)
1149
1150 self.xstep_given = 3
1151 self.ystep_given = .25
1152 secax.set_xticks(numpy.linspace(self.xmin, self.xmax, 6)) #only works on matplotlib.version>3.2
1153
1154 else:
1155 ax.plotline0[0].set_data(self.x,self.y[0,:])
1156 ax.plotline1[0].set_data(self.x,self.y[1,:])
This diff has been collapsed as it changes many lines, (683 lines changed) Show them Hide them
@@ -0,0 +1,683
1 '''
2 Created on Jun 9, 2020
3
4 @author: Roberto Flores
5 '''
6
7 import os
8 import sys
9 import time
10
11 import struct
12
13
14 import datetime
15
16 import numpy
17
18
19 import schainpy.admin
20 from schainpy.model.io.jroIO_base import LOCALTIME, Reader
21 from schainpy.model.data.jroheaderIO import BasicHeader, SystemHeader, RadarControllerHeader, ProcessingHeader
22 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
23 from schainpy.model.data.jrodata import Voltage, Parameters
24 from schainpy.utils import log
25
26
27 class DatReader(Reader, ProcessingUnit):
28
29 def __init__(self):
30
31 ProcessingUnit.__init__(self)
32 self.basicHeaderObj = BasicHeader(LOCALTIME)
33 self.systemHeaderObj = SystemHeader()
34 self.radarControllerHeaderObj = RadarControllerHeader()
35 self.processingHeaderObj = ProcessingHeader()
36 self.dataOut = Parameters()
37 #print(self.basicHeaderObj.timezone)
38 #self.counter_block=0
39 self.format='dat'
40 self.flagNoMoreFiles = 0
41 self.filename = None
42 self.intervals = set()
43 #self.datatime = datetime.datetime(1900,1,1)
44
45 self.filefmt = "***%Y%m%d*******"
46
47 self.padding=numpy.zeros(1,'int32')
48 self.hsize=numpy.zeros(1,'int32')
49 self.bufsize=numpy.zeros(1,'int32')
50 self.nr=numpy.zeros(1,'int32')
51 self.ngates=numpy.zeros(1,'int32') ### ### ### 2
52 self.time1=numpy.zeros(1,'uint64') # pos 3
53 self.time2=numpy.zeros(1,'uint64') # pos 4
54 self.lcounter=numpy.zeros(1,'int32')
55 self.groups=numpy.zeros(1,'int32')
56 self.system=numpy.zeros(4,'int8') # pos 7
57 self.h0=numpy.zeros(1,'float32')
58 self.dh=numpy.zeros(1,'float32')
59 self.ipp=numpy.zeros(1,'float32')
60 self.process=numpy.zeros(1,'int32')
61 self.tx=numpy.zeros(1,'int32')
62
63 self.ngates1=numpy.zeros(1,'int32') ### ### ### 13
64 self.time0=numpy.zeros(1,'uint64') # pos 14
65 self.nlags=numpy.zeros(1,'int32')
66 self.nlags1=numpy.zeros(1,'int32')
67 self.txb=numpy.zeros(1,'float32') ### ### ### 17
68 self.time3=numpy.zeros(1,'uint64') # pos 18
69 self.time4=numpy.zeros(1,'uint64') # pos 19
70 self.h0_=numpy.zeros(1,'float32')
71 self.dh_=numpy.zeros(1,'float32')
72 self.ipp_=numpy.zeros(1,'float32')
73 self.txa_=numpy.zeros(1,'float32')
74
75 self.pad=numpy.zeros(100,'int32')
76
77 self.nbytes=numpy.zeros(1,'int32')
78 self.limits=numpy.zeros(1,'int32')
79 self.ngroups=numpy.zeros(1,'int32') ### ### ### 27
80 #Make the header list
81 #header=[hsize,bufsize,nr,ngates,time1,time2,lcounter,groups,system,h0,dh,ipp,process,tx,padding,ngates1,time0,nlags,nlags1,padding,txb,time3,time4,h0_,dh_,ipp_,txa_,pad,nbytes,limits,padding,ngroups]
82 self.header=[self.hsize,self.bufsize,self.nr,self.ngates,self.time1,self.time2,self.lcounter,self.groups,self.system,self.h0,self.dh,self.ipp,self.process,self.tx,self.ngates1,self.padding,self.time0,self.nlags,self.nlags1,self.padding,self.txb,self.time3,self.time4,self.h0_,self.dh_,self.ipp_,self.txa_,self.pad,self.nbytes,self.limits,self.padding,self.ngroups]
83
84
85
86 def setup(self, **kwargs):
87
88 self.set_kwargs(**kwargs)
89
90
91 if self.path is None:
92 raise ValueError('The path is not valid')
93
94 self.open_file = open
95 self.open_mode = 'rb'
96
97
98
99 if self.format is None:
100 raise ValueError('The format is not valid')
101 elif self.format.lower() in ('dat'):
102 self.ext = '.dat'
103 elif self.format.lower() in ('out'):
104 self.ext = '.out'
105
106
107 log.log("Searching files in {}".format(self.path), self.name)
108 self.filenameList = self.searchFilesOffLine(self.path, self.startDate,
109 self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt)
110 #print(self.path)
111 #print(self.filenameList)
112 #input()
113
114
115 self.setNextFile()
116
117 def readFirstHeader(self):
118 '''Read header and data'''
119
120 #self.flag_same_file=1
121 self.counter_block=0
122 self.parseHeader()
123 self.parseData()
124 self.blockIndex = 0
125
126 return
127
128 def parseHeader(self):
129 '''
130 '''
131
132 for i in range(len(self.header)):
133 for j in range(len(self.header[i])):
134 #print("len(header[i]) ",len(header[i]))
135 #input()
136 temp=self.fp.read(int(self.header[i].itemsize))
137 if isinstance(self.header[i][0], numpy.int32):
138 #print(struct.unpack('i', temp)[0])
139 self.header[i][0]=struct.unpack('i', temp)[0]
140 if isinstance(self.header[i][0], numpy.uint64):
141 self.header[i][0]=struct.unpack('q', temp)[0]
142 if isinstance(self.header[i][0], numpy.int8):
143 self.header[i][0]=struct.unpack('B', temp)[0]
144 if isinstance(self.header[i][0], numpy.float32):
145 self.header[i][0]=struct.unpack('f', temp)[0]
146
147 self.fp.seek(0,0)
148 if int(self.header[1][0])==int(81864):
149 self.experiment='DP'
150
151 elif int(self.header[1][0])==int(185504):
152 self.experiment='HP'
153
154
155 self.total_blocks=os.stat(self.filename).st_size//self.header[1][0]
156
157
158 def parseData(self):
159 '''
160 '''
161 if self.experiment=='DP':
162 self.header[15][0]=66
163 self.header[18][0]=16
164 self.header[17][0]=11
165 self.header[2][0]=2
166
167
168 self.noise=numpy.zeros(self.header[2][0],'float32') #self.header[2][0]
169 #tmpx=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32')
170 self.kax=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32')
171 self.kay=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32')
172 self.kbx=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32')
173 self.kby=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32')
174 self.kax2=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32')
175 self.kay2=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32')
176 self.kbx2=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32')
177 self.kby2=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32')
178 self.kaxbx=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32')
179 self.kaxby=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32')
180 self.kaybx=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32')
181 self.kayby=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32')
182 self.kaxay=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32')
183 self.kbxby=numpy.zeros((self.header[15][0],self.header[17][0],2),'float32')
184 self.output_LP_real=numpy.zeros((self.header[18][0],200,self.header[2][0]),'float32')
185 self.output_LP_imag=numpy.zeros((self.header[18][0],200,self.header[2][0]),'float32')
186 self.final_cross_products=[self.kax,self.kay,self.kbx,self.kby,self.kax2,self.kay2,self.kbx2,self.kby2,self.kaxbx,self.kaxby,self.kaybx,self.kayby,self.kaxay,self.kbxby]
187 #self.final_cross_products=[tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx]
188
189 #print("pos: ",self.fp.tell())
190
191
192 def readNextBlock(self):
193
194 while True:
195 self.flagDiscontinuousBlock = 0
196 #print(os.stat(self.filename).st_size)
197 #print(os.stat(self.filename).st_size//self.header[1][0])
198 #os.stat(self.fp)
199 if self.counter_block == self.total_blocks:
200
201 self.setNextFile()
202
203 self.readBlock()
204 #self.counter_block+=1
205
206 if (self.datatime < datetime.datetime.combine(self.startDate, self.startTime)) or \
207 (self.datatime > datetime.datetime.combine(self.endDate, self.endTime)):
208
209 #print(self.datatime)
210 #print(datetime.datetime.combine(self.startDate, self.startTime))
211 #print(datetime.datetime.combine(self.endDate, self.endTime))
212 #print("warning")
213 log.warning(
214 'Reading Block No. {}/{} -> {} [Skipping]'.format(
215 self.counter_block,
216 self.total_blocks,
217 self.datatime.ctime()),
218 'DATReader')
219 continue
220 break
221
222 log.log(
223 'Reading Block No. {}/{} -> {}'.format(
224 self.counter_block,
225 self.total_blocks,
226 self.datatime.ctime()),
227 'DATReader')
228
229 return 1
230
231 def readBlock(self):
232 '''
233 '''
234
235 self.npos=self.counter_block*self.header[1][0]
236 #print(self.counter_block)
237 self.fp.seek(self.npos, 0)
238 self.counter_block+=1
239 #print("fpos1: ",self.fp.tell())
240
241 self.read_header()
242
243 #put by hand because old files didn't save it in the header
244 if self.experiment=='DP':
245 self.header[15][0]=66
246 self.header[18][0]=16
247 self.header[17][0]=11
248 self.header[2][0]=2
249 #########################################
250
251 if self.experiment=="HP":
252 self.long_pulse_products()
253
254 self.read_cross_products()
255
256
257 self.read_noise()
258
259
260 return
261
262
263
264 def read_header(self):
265
266
267 for i in range(len(self.header)):
268 for j in range(len(self.header[i])):
269 #print("len(header[i]) ",len(header[i]))
270 #input()
271 temp=self.fp.read(int(self.header[i].itemsize))
272 #if(b''==temp):
273 # self.setNextFile()
274 # self.flag_same_file=0
275 if isinstance(self.header[i][0], numpy.int32):
276 #print(struct.unpack('i', temp)[0])
277 self.header[i][0]=struct.unpack('i', temp)[0]
278 if isinstance(self.header[i][0], numpy.uint64):
279 self.header[i][0]=struct.unpack('q', temp)[0]
280 if isinstance(self.header[i][0], numpy.int8):
281 self.header[i][0]=struct.unpack('B', temp)[0]
282 if isinstance(self.header[i][0], numpy.float32):
283 self.header[i][0]=struct.unpack('f', temp)[0]
284 #else:
285 # continue
286 #self.fp.seek(self.npos_aux, 0)
287 # break
288
289 #print("fpos2: ",self.fp.tell())
290 #log.success('Parameters found: {}'.format(self.parameters),
291 # 'DATReader')
292 #print("Success")
293 #self.TimeBlockSeconds_for_dp_power = self.header[4][0]#-((self.dataOut.nint-1)*self.dataOut.NAVG*2)
294 #print(dataOut.TimeBlockSeconds_for_dp_power)
295
296 #self.datatime=datetime.datetime.fromtimestamp(self.header[4][0]).strftime("%Y-%m-%d %H:%M:%S")
297 #print(self.header[4][0])
298 self.datatime=datetime.datetime.fromtimestamp(self.header[4][0])
299 #print(self.header[1][0])
300
301 def long_pulse_products(self):
302 temp=self.fp.read(self.header[18][0]*self.header[2][0]*200*8)
303 ii=0
304
305 for l in range(self.header[18][0]): #lag
306 for r in range(self.header[2][0]): # channels
307 for k in range(200): #RANGE## generalizar
308 self.output_LP_real[l,k,r]=struct.unpack('f', temp[ii:ii+4])[0]
309 ii=ii+4
310 self.output_LP_imag[l,k,r]=struct.unpack('f', temp[ii:ii+4])[0]
311 ii=ii+4
312
313 #print(self.output_LP_real[1,1,1])
314 #print(self.output_LP_imag[1,1,1])
315 def read_cross_products(self):
316
317 for ind in range(len(self.final_cross_products)): #final cross products
318 temp=self.fp.read(self.header[17][0]*2*self.header[15][0]*4) #*4 bytes
319 #if(b''==temp):
320 # self.setNextFile()
321 # self.flag_same_file=0
322 ii=0
323 #print("kabxys.shape ",kabxys.shape)
324 #print(kabxys)
325 #print("fpos3: ",self.fp.tell())
326 for l in range(self.header[17][0]): #lag
327 #print("fpos3: ",self.fp.tell())
328 for fl in range(2): # unflip and flip
329 for k in range(self.header[15][0]): #RANGE
330 #print("fpos3: ",self.fp.tell())
331 self.final_cross_products[ind][k,l,fl]=struct.unpack('f', temp[ii:ii+4])[0]
332 ii=ii+4
333 #print("fpos2: ",self.fp.tell())
334
335
336
337 def read_noise(self):
338
339 temp=self.fp.read(self.header[2][0]*4) #*4 bytes self.header[2][0]
340 for ii in range(self.header[2][0]): #self.header[2][0]
341 self.noise[ii]=struct.unpack('f', temp[ii*4:(ii+1)*4])[0]
342
343 #print("fpos5: ",self.fp.tell())
344
345
346
347 def set_output(self):
348 '''
349 Storing data from buffer to dataOut object
350 '''
351 #print("fpos2: ",self.fp.tell())
352 ##self.dataOut.header = self.header
353 #this is put by hand because it isn't saved in the header
354 if self.experiment=='DP':
355 self.dataOut.NRANGE=0
356 self.dataOut.NSCAN=132
357 self.dataOut.heightList=self.header[10][0]*(numpy.arange(self.header[15][0]))
358 elif self.experiment=='HP':
359 self.dataOut.output_LP=self.output_LP_real+1.j*self.output_LP_imag
360 self.dataOut.NRANGE=200
361 self.dataOut.NSCAN=128
362 self.dataOut.heightList=self.header[10][0]*(numpy.arange(90)) #NEEEDS TO BE GENERALIZED
363 #########################################
364 #print(self.dataOut.output_LP[1,1,1])
365 self.dataOut.MAXNRANGENDT=self.header[3][0]
366 self.dataOut.NDP=self.header[15][0]
367 self.dataOut.DPL=self.header[17][0]
368 self.dataOut.DH=self.header[10][0]
369 self.dataOut.NAVG=self.header[7][0]
370 self.dataOut.H0=self.header[9][0]
371 self.dataOut.NR=self.header[2][0]
372 self.dataOut.NLAG=self.header[18][0]
373 #self.dataOut.tmpx=self.tmpx
374 #self.dataOut.timeZone = 5
375 #self.dataOut.final_cross_products=self.final_cross_products
376 self.dataOut.kax=self.kax
377 #print(self.dataOut.kax[1,1,1])
378 self.dataOut.kay=self.kay
379 self.dataOut.kbx=self.kbx
380 self.dataOut.kby=self.kby
381 self.dataOut.kax2=self.kax2
382 self.dataOut.kay2=self.kay2
383 self.dataOut.kbx2=self.kbx2
384 self.dataOut.kby2=self.kby2
385 self.dataOut.kaxbx=self.kaxbx
386 self.dataOut.kaxby=self.kaxby
387 self.dataOut.kaybx=self.kaybx
388 self.dataOut.kayby=self.kayby
389 self.dataOut.kaxay=self.kaxay
390 self.dataOut.kbxby=self.kbxby
391 self.dataOut.noise_final=self.noise
392 #print("NOISE",self.noise)
393
394
395 self.dataOut.useLocalTime=True
396
397 #self.dataOut.experiment=self.experiment
398 #print(self.datatime)
399 #print(self.dataOut.datatime)
400
401
402 #self.dataOut.utctime = (self.datatime - datetime.datetime(1970, 1, 1)).total_seconds()
403 #self.dataOut.utctimeInit = self.dataOut.utctime
404
405
406
407 self.dataOut.lt=self.datatime.hour
408
409
410 #print(RadarControllerHeader().ippSeconds)
411 #print(RadarControllerHeader().ipp)
412 #self.dataOut.utctime=time.gmtime(self.header[4][0])- datetime.datetime(1970, 1, 1)
413 #self.dataOut.utctime=self.dataOut.utctime.total_seconds()
414 #time1 = self.header[4][0] # header.time1
415 #print("time1: ",time1)
416 #print(self.header[4][0])
417 #date = time.ctime(time1)
418 #print("DADSADA",time.strptime(date))
419 #print("date_before: ",date)
420 #bd_time=time.gmtime(time1)
421 #print(time.mktime(bd_time))
422 #self.dataOut.utctime=time.mktime(bd_time)
423 self.dataOut.utctime = self.header[4][0]
424 #self.dataOut.datatime=a
425 #print(datetime.datetime.utcfromtimestamp(self.dataOut.utctime))
426 #self.dataOut.TimeBlockDate=self.datatime.ctime()
427 self.dataOut.TimeBlockSeconds=time.mktime(time.strptime(self.dataOut.datatime.ctime()))
428
429 #self.dataOut.heightList = self.ranges
430 #self.dataOut.utctime = (self.datatime - datetime.datetime(1970, 1, 1)).total_seconds()
431 #self.dataOut.utctimeInit = self.dataOut.utctime
432 #self.dataOut.paramInterval = min(self.intervals)
433 #self.dataOut.useLocalTime = False
434 self.dataOut.flagNoData = False
435 self.dataOut.flagDiscontinuousBlock = self.flagDiscontinuousBlock
436 #print(self.dataOut.channelIndexList)
437 self.dataOut.channelList=list(range(0,self.header[2][0]))
438 #print(self.dataOut.channelList)
439 #print(self.datatime)
440 #print(self.dataOut.final_cross_products[0])
441
442
443 #self.dataOut.heightList=self.header[10][0]*(numpy.arange(self.header[15][0]))
444
445 #print(numpy.shape(self.dataOut.heightList))
446
447
448 def getData(self):
449 '''
450 Storing data from databuffer to dataOut object
451 '''
452
453 if not self.readNextBlock():
454 self.dataOut.flagNoData = True
455 return 0
456
457 self.set_output()
458
459 return 1
460
461 def run(self, **kwargs):
462
463 if not(self.isConfig):
464 self.setup(**kwargs)
465 self.isConfig = True
466 #print("fpos1: ",self.fp.tell())
467 self.getData()
468
469 return
470
471 @MPDecorator
472 class DatWriter(Operation):
473
474
475 def __init__(self):
476
477 Operation.__init__(self)
478 #self.dataOut = Voltage()
479 self.counter = 0
480 self.path = None
481 self.fp = None
482 return
483 #self.ext= '.dat'
484
485 def run(self, dataOut, path, format='dat', experiment=None, **kwargs):
486 print(dataOut.flagNoData)
487 print(dataOut.datatime.ctime())
488 print(dataOut.TimeBlockDate)
489 input()
490 #if dataOut.flag_save:
491 self.experiment=experiment
492 self.path=path
493 if self.experiment=='DP':
494 dataOut.header[1][0]=81864
495 elif self.experiment=='HP':
496 dataOut.header[1][0]=185504#173216
497 #dataOut.header[1][0]=bufsize
498 self.dataOut = dataOut
499 #print(self.dataOut.nint)
500 #self.bufsize=bufsize
501 if format == 'dat':
502 self.ext = '.dat'
503 if format == 'out':
504 self.ext = '.out'
505 self.putData()
506
507 return
508
509
510
511 def setFile(self):
512 '''
513 Create new out file object
514 '''
515
516 #self.dataOut.TimeBlockSeconds=time.mktime(time.strptime(self.dataOut.TimeBlockDate))
517 date = datetime.datetime.fromtimestamp(self.dataOut.TimeBlockSeconds)
518
519 #print("date",date)
520
521 filename = '{}{}{}'.format('jro',
522 date.strftime('%Y%m%d_%H%M%S'),
523 self.ext)
524 #print(filename)
525 #print(self.path)
526
527 self.fullname = os.path.join(self.path, filename)
528
529 if os.path.isfile(self.fullname) :
530 log.warning(
531 'Destination file {} already exists, previous file deleted.'.format(
532 self.fullname),
533 'DatWriter')
534 os.remove(self.fullname)
535
536 try:
537 log.success(
538 'Creating file: {}'.format(self.fullname),
539 'DatWriter')
540 if not os.path.exists(self.path):
541 os.makedirs(self.path)
542 #self.fp = madrigal.cedar.MadrigalCedarFile(self.fullname, True)
543 self.fp = open(self.fullname,'wb')
544
545 except ValueError as e:
546 log.error(
547 'Impossible to create *.out file',
548 'DatWriter')
549 return
550
551 return 1
552
553 def writeBlock(self):
554
555 #self.dataOut.paramInterval=2
556 #startTime = datetime.datetime.utcfromtimestamp(self.dataOut.utctime)
557 #print(startTime)
558 #endTime = startTime + datetime.timedelta(seconds=self.dataOut.paramInterval)
559
560 self.dataOut.header[0].astype('int32').tofile(self.fp)
561 self.dataOut.header[1].astype('int32').tofile(self.fp)
562 self.dataOut.header[2].astype('int32').tofile(self.fp)
563 self.dataOut.header[3].astype('int32').tofile(self.fp)
564 self.dataOut.header[4].astype('uint64').tofile(self.fp)
565 self.dataOut.header[5].astype('uint64').tofile(self.fp)
566 self.dataOut.header[6].astype('int32').tofile(self.fp)
567 self.dataOut.header[7].astype('int32').tofile(self.fp)
568 #print(dataOut.header[7])
569 self.dataOut.header[8].astype('int8').tofile(self.fp)
570 self.dataOut.header[9].astype('float32').tofile(self.fp)
571 self.dataOut.header[10].astype('float32').tofile(self.fp)
572 self.dataOut.header[11].astype('float32').tofile(self.fp)
573 self.dataOut.header[12].astype('int32').tofile(self.fp)
574 self.dataOut.header[13].astype('int32').tofile(self.fp)
575 self.dataOut.header[14].astype('int32').tofile(self.fp)
576 self.dataOut.header[15].astype('int32').tofile(self.fp)
577 self.dataOut.header[16].astype('uint64').tofile(self.fp)
578 self.dataOut.header[17].astype('int32').tofile(self.fp)
579 self.dataOut.header[18].astype('int32').tofile(self.fp)
580 self.dataOut.header[19].astype('int32').tofile(self.fp)
581 self.dataOut.header[20].astype('float32').tofile(self.fp)
582 self.dataOut.header[21].astype('uint64').tofile(self.fp)
583 self.dataOut.header[22].astype('uint64').tofile(self.fp)
584 self.dataOut.header[23].astype('float32').tofile(self.fp)
585 self.dataOut.header[24].astype('float32').tofile(self.fp)
586 self.dataOut.header[25].astype('float32').tofile(self.fp)
587 self.dataOut.header[26].astype('float32').tofile(self.fp)
588 self.dataOut.header[27].astype('int32').tofile(self.fp)
589 self.dataOut.header[28].astype('int32').tofile(self.fp)
590 self.dataOut.header[29].astype('int32').tofile(self.fp)
591 self.dataOut.header[30].astype('int32').tofile(self.fp)
592 self.dataOut.header[31].astype('int32').tofile(self.fp)
593 #print("tell before 1 ",self.fp.tell())
594 #input()
595
596 if self.experiment=="HP":
597 #print("INSIDE")
598 #tmp=numpy.zeros(1,dtype='complex64')
599 #print("tmp ",tmp)
600 #input()
601 #print(dataOut.NLAG)
602 #print(dataOut.NR)
603 #print(dataOut.NRANGE)
604 for l in range(self.dataOut.NLAG): #lag
605 for r in range(self.dataOut.NR): # unflip and flip
606 for k in range(self.dataOut.NRANGE): #RANGE
607 self.dataOut.output_LP.real[l,k,r].astype('float32').tofile(self.fp)
608 self.dataOut.output_LP.imag[l,k,r].astype('float32').tofile(self.fp)
609
610
611 #print("tell before 2 ",self.outputfile.tell())
612
613
614
615
616
617 #print(self.dataOut.output_LP[1,1,1])
618
619 #print(self.dataOut.kax)
620 final_cross_products=[self.dataOut.kax,self.dataOut.kay,self.dataOut.kbx,self.dataOut.kby,
621 self.dataOut.kax2,self.dataOut.kay2,self.dataOut.kbx2,self.dataOut.kby2,
622 self.dataOut.kaxbx,self.dataOut.kaxby,self.dataOut.kaybx,self.dataOut.kayby,
623 self.dataOut.kaxay,self.dataOut.kbxby]
624
625 #print(self.dataOut.kax)
626 #print("tell before crossp saving ",self.outputfile.tell())
627 for kabxys in final_cross_products:
628
629 for l in range(self.dataOut.DPL): #lag
630 for fl in range(2): # unflip and flip
631 for k in range(self.dataOut.NDT): #RANGE
632 kabxys[k,l,fl].astype('float32').tofile(self.fp)
633
634
635 #print("tell before noise saving ",self.outputfile.tell())
636
637
638 for nch in range(self.dataOut.NR):
639 self.dataOut.noise_final[nch].astype('float32').tofile(self.fp)
640
641 #print("tell before noise saving ",self.fp.tell())
642 #input()
643
644
645
646
647 log.log(
648 'Writing {} blocks'.format(
649 self.counter+1),
650 'DatWriter')
651
652
653
654
655
656
657 def putData(self):
658 #print("flagNoData",self.dataOut.flagNoData)
659 #print("flagDiscontinuousBlock",self.dataOut.flagDiscontinuousBlock)
660 #print(self.dataOut.flagNoData)
661
662 if self.dataOut.flagNoData:
663 return 0
664
665 if self.dataOut.flagDiscontinuousBlock:
666
667 self.counter = 0
668
669 if self.counter == 0:
670 self.setFile()
671 #if self.experiment=="HP":
672 #if self.dataOut.debris_activated==0:
673 #self.writeBlock()
674 #self.counter += 1
675 #else:
676 self.writeBlock()
677 self.counter += 1
678
679 def close(self):
680
681 if self.counter > 0:
682 self.fp.close()
683 log.success('Closing file {}'.format(self.fullname), 'DatWriter')
This diff has been collapsed as it changes many lines, (2561 lines changed) Show them Hide them
@@ -0,0 +1,2561
1
2 import matplotlib.pyplot as plt
3
4
5
6 import numpy
7 import time
8 import math
9
10 from datetime import datetime
11
12 from schainpy.utils import log
13
14 import struct
15 import os
16
17 import sys
18
19 from ctypes import *
20
21 from schainpy.model.io.jroIO_voltage import VoltageReader,JRODataReader
22 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
23 from schainpy.model.data.jrodata import Voltage
24
25
26
27
28 @MPDecorator
29 class VoltageLagsProc(ProcessingUnit):
30
31 def __init__(self):
32
33 ProcessingUnit.__init__(self)
34
35 self.dataOut = Voltage()
36 self.bcounter=0
37 self.dataOut.kax=None
38 self.dataOut.kay=None
39 self.dataOut.kbx=None
40 self.dataOut.kby=None
41 self.dataOut.kax2=None
42 self.dataOut.kay2=None
43 self.dataOut.kbx2=None
44 self.dataOut.kby2=None
45 self.dataOut.kaxbx=None
46 self.dataOut.kaxby=None
47 self.dataOut.kaybx=None
48 self.dataOut.kayby=None
49 self.dataOut.kaxay=None
50 self.dataOut.kbxby=None
51 self.aux=1
52
53 self.LP_products_aux=0
54 self.lag_products_LP_median_estimates_aux=0
55
56 #self.dataOut.input_dat_type=0 #06/04/2020
57
58 def get_products_cabxys(self):
59
60
61 if self.aux==1:
62
63
64
65 self.dataOut.read_samples=int(self.dataOut.systemHeaderObj.nSamples/self.dataOut.OSAMP)
66 if self.dataOut.experiment=="DP":
67 self.dataOut.nptsfft1=132 #30/03/2020
68 self.dataOut.nptsfft2=140 #30/03/2020
69 if self.dataOut.experiment=="HP":
70 self.dataOut.nptsfft1=128 #30/03/2020
71 self.dataOut.nptsfft2=150 #30/03/2020
72
73
74 #self.dataOut.noise_final_list=[] #30/03/2020
75
76 padding=numpy.zeros(1,'int32')
77
78 hsize=numpy.zeros(1,'int32')
79 bufsize=numpy.zeros(1,'int32')
80 nr=numpy.zeros(1,'int32')
81 ngates=numpy.zeros(1,'int32') ### ### ### 2
82 time1=numpy.zeros(1,'uint64') # pos 3
83 time2=numpy.zeros(1,'uint64') # pos 4
84 lcounter=numpy.zeros(1,'int32')
85 groups=numpy.zeros(1,'int32')
86 system=numpy.zeros(4,'int8') # pos 7
87 h0=numpy.zeros(1,'float32')
88 dh=numpy.zeros(1,'float32')
89 ipp=numpy.zeros(1,'float32')
90 process=numpy.zeros(1,'int32')
91 tx=numpy.zeros(1,'int32')
92
93 ngates1=numpy.zeros(1,'int32') ### ### ### 13
94 time0=numpy.zeros(1,'uint64') # pos 14
95 nlags=numpy.zeros(1,'int32')
96 nlags1=numpy.zeros(1,'int32')
97 txb=numpy.zeros(1,'float32') ### ### ### 17
98 time3=numpy.zeros(1,'uint64') # pos 18
99 time4=numpy.zeros(1,'uint64') # pos 19
100 h0_=numpy.zeros(1,'float32')
101 dh_=numpy.zeros(1,'float32')
102 ipp_=numpy.zeros(1,'float32')
103 txa_=numpy.zeros(1,'float32')
104
105 pad=numpy.zeros(100,'int32')
106
107 nbytes=numpy.zeros(1,'int32')
108 limits=numpy.zeros(1,'int32')
109 ngroups=numpy.zeros(1,'int32') ### ### ### 27
110
111
112 self.dataOut.header=[hsize,bufsize,nr,ngates,time1,time2,
113 lcounter,groups,system,h0,dh,ipp,
114 process,tx,ngates1,padding,time0,nlags,
115 nlags1,padding,txb,time3,time4,h0_,dh_,
116 ipp_,txa_,pad,nbytes,limits,padding,ngroups]
117
118 if self.dataOut.experiment == "DP":
119 self.dataOut.header[1][0]=81864
120 if self.dataOut.experiment == "HP":
121 self.dataOut.header[1][0]=173216
122
123 self.dataOut.header[3][0]=max(self.dataOut.NRANGE,self.dataOut.NDT)
124 self.dataOut.header[7][0]=self.dataOut.NAVG
125 self.dataOut.header[9][0]=int(self.dataOut.heightList[0])
126 self.dataOut.header[10][0]=self.dataOut.DH
127 self.dataOut.header[17][0]=self.dataOut.DPL
128 self.dataOut.header[18][0]=self.dataOut.NLAG
129 #self.header[5][0]=0
130 self.dataOut.header[15][0]=self.dataOut.NDP
131 self.dataOut.header[2][0]=self.dataOut.NR
132 #time.mktime(time.strptime()
133
134
135
136
137 self.aux=0
138
139
140
141
142
143
144
145
146
147 if self.dataOut.experiment=="DP":
148
149
150 self.dataOut.lags_array=[x / self.dataOut.DH for x in self.dataOut.flags_array]
151 self.cax=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2))
152 self.cay=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2))
153 self.cbx=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2))
154 self.cby=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2))
155 self.cax2=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2))
156 self.cay2=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2))
157 self.cbx2=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2))
158 self.cby2=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2))
159 self.caxbx=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2))
160 self.caxby=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2))
161 self.caybx=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2))
162 self.cayby=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2))
163 self.caxay=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2))
164 self.cbxby=numpy.zeros((self.dataOut.NDP,self.dataOut.nlags_array,2))
165
166 for i in range(2):
167 for j in range(self.dataOut.NDP):
168 for k in range(int(self.dataOut.NSCAN/2)):
169 n=k%self.dataOut.nlags_array
170 ax=self.dataOut.data[0,2*k+i,j].real
171 ay=self.dataOut.data[0,2*k+i,j].imag
172 if j+self.dataOut.lags_array[n]<self.dataOut.NDP:
173 bx=self.dataOut.data[1,2*k+i,j+int(self.dataOut.lags_array[n])].real
174 by=self.dataOut.data[1,2*k+i,j+int(self.dataOut.lags_array[n])].imag
175 else:
176 if k+1<int(self.dataOut.NSCAN/2):
177 bx=self.dataOut.data[1,2*(k+1)+i,(self.dataOut.NRANGE+self.dataOut.NCAL+j+int(self.dataOut.lags_array[n]))%self.dataOut.NDP].real
178 by=self.dataOut.data[1,2*(k+1)+i,(self.dataOut.NRANGE+self.dataOut.NCAL+j+int(self.dataOut.lags_array[n]))%self.dataOut.NDP].imag
179
180 if k+1==int(self.dataOut.NSCAN/2):
181 bx=self.dataOut.data[1,2*k+i,(self.dataOut.NRANGE+self.dataOut.NCAL+j+int(self.dataOut.lags_array[n]))%self.dataOut.NDP].real
182 by=self.dataOut.data[1,2*k+i,(self.dataOut.NRANGE+self.dataOut.NCAL+j+int(self.dataOut.lags_array[n]))%self.dataOut.NDP].imag
183
184 if(k<self.dataOut.nlags_array):
185 self.cax[j][n][i]=ax
186 self.cay[j][n][i]=ay
187 self.cbx[j][n][i]=bx
188 self.cby[j][n][i]=by
189 self.cax2[j][n][i]=ax*ax
190 self.cay2[j][n][i]=ay*ay
191 self.cbx2[j][n][i]=bx*bx
192 self.cby2[j][n][i]=by*by
193 self.caxbx[j][n][i]=ax*bx
194 self.caxby[j][n][i]=ax*by
195 self.caybx[j][n][i]=ay*bx
196 self.cayby[j][n][i]=ay*by
197 self.caxay[j][n][i]=ax*ay
198 self.cbxby[j][n][i]=bx*by
199 else:
200 self.cax[j][n][i]+=ax
201 self.cay[j][n][i]+=ay
202 self.cbx[j][n][i]+=bx
203 self.cby[j][n][i]+=by
204 self.cax2[j][n][i]+=ax*ax
205 self.cay2[j][n][i]+=ay*ay
206 self.cbx2[j][n][i]+=bx*bx
207 self.cby2[j][n][i]+=by*by
208 self.caxbx[j][n][i]+=ax*bx
209 self.caxby[j][n][i]+=ax*by
210 self.caybx[j][n][i]+=ay*bx
211 self.cayby[j][n][i]+=ay*by
212 self.caxay[j][n][i]+=ax*ay
213 self.cbxby[j][n][i]+=bx*by
214
215
216
217 #return self.cax,self.cay,self.cbx,self.cby,self.cax2,self.cay2,self.cbx2,self.cby2,self.caxbx,self.caxby,self.caybx,self.cayby,self.caxay,self.cbxby
218
219 if self.dataOut.experiment=="HP":
220
221 #lagind=[0,1,2,3,4,5,6,7,0,3,4,5,6,8,9,10]
222 #lagfirst=[1,1,1,1,1,1,1,1,0,0,0,0,0,1,1,1]
223
224 self.cax=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2))# hp:67x11x2 dp: 66x11x2
225 self.cay=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2))
226 self.cbx=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2))
227 self.cby=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2))
228 self.cax2=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2))
229 self.cay2=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2))
230 self.cbx2=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2))
231 self.cby2=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2))
232 self.caxbx=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2))
233 self.caxby=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2))
234 self.caybx=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2))
235 self.cayby=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2))
236 self.caxay=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2))
237 self.cbxby=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2))
238 for i in range(2): # flipped and unflipped
239 for j in range(self.dataOut.NDP): # loop over true ranges # 67
240 for k in range(int(self.dataOut.NSCAN)): # 128
241 #print("flip ",i," NDP ",j, " NSCAN ",k)
242 #print("cdata ",cdata[i:NSCAN:2][k][:,0])
243 n=self.dataOut.lagind[k%self.dataOut.nlags_array] # 128=16x8
244 #print("n ",n)
245 #ind1=nrx*(j+ngates_2*i+ngates_2*2*k)# scan has flip or unflip
246 #ind2=ind1+(1)+nrx*lags_array[n]#jump each lagged
247 #ax=cdata[i:NSCAN:2][k][:,0][NRANGE+NCAL+j].real #cdata[ind1].r
248 #ay=cdata[i:NSCAN:2][k][:,0][NRANGE+NCAL+j].imag #cdata[ind1].i
249 #input()
250 ##ax=cdata[int(i*NSCAN):int((i+1)*NSCAN)][k][:,0][NRANGE+NCAL+j].real #cdata[ind1].r
251 ##ay=cdata[int(i*NSCAN):int((i+1)*NSCAN)][k][:,0][NRANGE+NCAL+j].imag #cdata[ind1].i
252
253 ax=self.dataOut.data[0,k,self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT].real
254 ay=self.dataOut.data[0,k,self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT].imag
255
256 #print("ax ",ax," ay",ay)
257 if self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT+2*n<self.dataOut.read_samples:
258 #bx=cdata[i:NSCAN:2][k][:,1][NRANGE+NCAL+j+n].real #cdata[ind2].r
259 #by=cdata[i:NSCAN:2][k][:,1][NRANGE+NCAL+j+n].imag #cdata[ind2].i
260 ##bx=cdata[int(i*NSCAN):int((i+1)*NSCAN)][k][:,1][NRANGE+NCAL+j+2*n].real #cdata[ind2].r
261 ##by=cdata[int(i*NSCAN):int((i+1)*NSCAN)][k][:,1][NRANGE+NCAL+j+2*n].imag #cdata[ind2].i
262
263 bx=self.dataOut.data[1,k,self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT+2*n].real
264 by=self.dataOut.data[1,k,self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT+2*n].imag
265
266 #bx=self.dataOut.data[0:NSCAN][k][:,1][NRANGE+NCAL+j+i*NDT+2*n].real #cdata[ind2].r
267 #by=self.dataOut.data[0:NSCAN][k][:,1][NRANGE+NCAL+j+i*NDT+2*n].imag #cdata[ind2].i
268 #print("bx ",bx, " by ",by)
269 #input()
270 else:
271 #print("n ",n," k ",k," j ",j," i ",i, " n ",n)
272 #input()
273 if k+1<int(self.dataOut.NSCAN):
274 #print("k+1 ",k+1)
275 #print("int(NSCAN/2) ",int(NSCAN/2))
276 #bx=cdata[i:NSCAN:2][k+1][:,1][(NRANGE+NCAL+j+n)%NDP].real#np.nan
277 #by=cdata[i:NSCAN:2][k+1][:,1][(NRANGE+NCAL+j+n)%NDP].imag#np.nan
278 ##bx=cdata[int(i*NSCAN):int((i+1)*NSCAN)][k+1][:,1][(NRANGE+NCAL+j+2*n)%NDP].real#np.nan
279 ##by=cdata[int(i*NSCAN):int((i+1)*NSCAN)][k+1][:,1][(NRANGE+NCAL+j+2*n)%NDP].imag#np.nan
280 #bx=self.dataOut.data[0:NSCAN][k+1][:,1][(NRANGE+NCAL+j+i*NDT+2*n)%NDP].real#np.nan
281 #by=self.dataOut.data[0:NSCAN][k+1][:,1][(NRANGE+NCAL+j+i*NDT+2*n)%NDP].imag#np.nan
282 bx=self.dataOut.data[1,k+1,(self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT+2*n)%self.dataOut.NDP].real
283 by=self.dataOut.data[1,k+1,(self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT+2*n)%self.dataOut.NDP].imag
284
285 #print("n ",n," k ",k," j ",j," i ",i, " lags_array[n] ",lags_array[n])
286 #print("bx ",bx, " by ",by)
287 #input()
288 if k+1==int(self.dataOut.NSCAN):## ESTO ES UN PARCHE PUES NO SE TIENE EL SIGUIENTE BLOQUE
289 #bx=cdata[i:NSCAN:2][k][:,1][(NRANGE+NCAL+j+n)%NDP].real#np.nan
290 #by=cdata[i:NSCAN:2][k][:,1][(NRANGE+NCAL+j+n)%NDP].imag#np.nan
291 ##bx=cdata[int(i*NSCAN):int((i+1)*NSCAN)][k][:,1][(NRANGE+NCAL+j+2*n)%NDP].real#np.nan
292 ##by=cdata[int(i*NSCAN):int((i+1)*NSCAN)][k][:,1][(NRANGE+NCAL+j+2*n)%NDP].imag#np.nan
293 #print("****n ",n," k ",k," j ",j," i ",i, " lags_array[n] ",lags_array[n])
294 #bx=self.dataOut.data[0:NSCAN][k][:,1][(NRANGE+NCAL+j+i*NDT+2*n)%NDP].real#np.nan
295 #by=self.dataOut.data[0:NSCAN][k][:,1][(NRANGE+NCAL+j+i*NDT+2*n)%NDP].imag#np.nan
296 bx=self.dataOut.data[1,k,(self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT+2*n)%self.dataOut.NDP].real
297 by=self.dataOut.data[1,k,(self.dataOut.NRANGE+self.dataOut.NCAL+j+i*self.dataOut.NDT+2*n)%self.dataOut.NDP].imag
298
299 #print("bx ",bx, " by ",by)
300 #input()
301
302 #print("i ",i," j ",j," k ",k," n ",n," ax ",ax)
303 #input()
304 #ip1=j+NDP*(i+2*n)
305 #ip2=ip1*navg+iavg
306 ##if(k<11): # PREVIOUS
307 if(k<self.dataOut.nlags_array and self.dataOut.lagfirst[k%self.dataOut.nlags_array]==1):# if(k<16 && lagfirst[k%16]==1)
308 self.cax[j][n][i]=ax#[int(k/nlags_array)*nlags_array+n]
309 self.cay[j][n][i]=ay#[int(k/nlags_array)*nlags_array+n]
310 self.cbx[j][n][i]=bx#[int(k/nlags_array)*nlags_array+n]
311 self.cby[j][n][i]=by#[int(k/nlags_array)*nlags_array+n]
312 self.cax2[j][n][i]=ax*ax#np.multiply(ax,ax)[int(k/nlags_array)*nlags_array+n]
313 self.cay2[j][n][i]=ay*ay#np.multiply(ay,ay)[int(k/nlags_array)*nlags_array+n]
314 self.cbx2[j][n][i]=bx*bx#np.multiply(bx,bx)[int(k/nlags_array)*nlags_array+n]
315 self.cby2[j][n][i]=by*by#np.multiply(by,by)[int(k/nlags_array)*nlags_array+n]
316 self.caxbx[j][n][i]=ax*bx#np.multiply(ax,bx)[int(k/nlags_array)*nlags_array+n]
317 self.caxby[j][n][i]=ax*by#np.multiply(ax,by)[int(k/nlags_array)*nlags_array+n]
318 self.caybx[j][n][i]=ay*bx#np.multiply(ay,bx)[int(k/nlags_array)*nlags_array+n]
319 self.cayby[j][n][i]=ay*by#np.multiply(ay,by)[int(k/nlags_array)*nlags_array+n]
320 self.caxay[j][n][i]=ax*ay#np.multiply(ax,ay)[int(k/nlags_array)*nlags_array+n]
321 self.cbxby[j][n][i]=bx*by#np.multiply(bx,by)[int(k/nlags_array)*nlags_array+n]
322 else:
323 self.cax[j][n][i]+=ax#[int(k/nlags_array)*nlags_array+n]
324 self.cay[j][n][i]+=ay#[int(k/nlags_array)*nlags_array+n]
325 self.cbx[j][n][i]+=bx#[int(k/nlags_array)*nlags_array+n]
326 self.cby[j][n][i]+=by#[int(k/nlags_array)*nlags_array+n]
327 self.cax2[j][n][i]+=ax*ax#np.multiply(ax,ax)[int(k/nlags_array)*nlags_array+n]
328 self.cay2[j][n][i]+=ay*ay#np.multiply(ay,ay)[int(k/nlags_array)*nlags_array+n]
329 self.cbx2[j][n][i]+=bx*bx#np.multiply(bx,bx)[int(k/nlags_array)*nlags_array+n]
330 self.cby2[j][n][i]+=by*by#np.multiply(by,by)[int(k/nlags_array)*nlags_array+n]
331 self.caxbx[j][n][i]+=ax*bx#np.multiply(ax,bx)[int(k/nlags_array)*nlags_array+n]
332 self.caxby[j][n][i]+=ax*by#np.multiply(ax,by)[int(k/nlags_array)*nlags_array+n]
333 self.caybx[j][n][i]+=ay*bx#np.multiply(ay,bx)[int(k/nlags_array)*nlags_array+n]
334 self.cayby[j][n][i]+=ay*by#np.multiply(ay,by)[int(k/nlags_array)*nlags_array+n]
335 self.caxay[j][n][i]+=ax*ay#np.multiply(ax,ay)[int(k/nlags_array)*nlags_array+n]
336 self.cbxby[j][n][i]+=bx*by#np.multiply(bx,by)[int(k/nlags_array)*nlags_array+n]
337
338
339
340
341
342
343
344
345
346 def medi(self,data_navg):
347 sorts=sorted(data_navg)
348 rsorts=numpy.arange(self.dataOut.NAVG)
349 result=0.0
350 for k in range(self.dataOut.NAVG):
351 if k>=self.dataOut.nkill/2 and k<self.dataOut.NAVG-self.dataOut.nkill/2:
352 result+=sorts[k]*float(self.dataOut.NAVG)/(float)(self.dataOut.NAVG-self.dataOut.nkill)
353 return result
354
355
356
357 '''
358 def range(self):
359 Range=numpy.arange(0,990,self.DH)
360 return Range
361 '''
362
363
364
365
366
367
368 def cabxys_navg(self):
369
370 #print("blocknow",self.dataOut.CurrentBlock)
371 #bcounter=0
372 #print("self.bcounter",self.bcounter)
373 self.get_products_cabxys()
374
375 self.dataOut.header[5][0]=time.mktime(time.strptime(self.dataOut.TimeBlockDate))
376
377 #if salf.dataOut.CurrentBlock<NAVG:
378 if self.bcounter==0:
379
380 self.dataOut.header[4][0]=self.dataOut.header[5][0]
381 if self.dataOut.CurrentBlock==1:
382 self.dataOut.header[16][0]=self.dataOut.header[5][0]
383
384 self.cax_navg=[]
385 self.cay_navg=[]
386 self.cbx_navg=[]
387 self.cby_navg=[]
388 self.cax2_navg=[]
389 self.cay2_navg=[]
390 self.cbx2_navg=[]
391 self.cby2_navg=[]
392 self.caxbx_navg=[]
393 self.caxby_navg=[]
394 self.caybx_navg=[]
395 self.cayby_navg=[]
396 self.caxay_navg=[]
397 self.cbxby_navg=[]
398 self.dataOut.kax=None
399 self.dataOut.kay=None
400 self.dataOut.kbx=None
401 self.dataOut.kby=None
402 self.dataOut.kax2=None
403 self.dataOut.kay2=None
404 self.dataOut.kbx2=None
405 self.dataOut.kby2=None
406 self.dataOut.kaxbx=None
407 self.dataOut.kaxby=None
408 self.dataOut.kaybx=None
409 self.dataOut.kayby=None
410 self.dataOut.kaxay=None
411 self.dataOut.kbxby=None
412
413 self.dataOut.noisevector=numpy.zeros((self.dataOut.read_samples,self.dataOut.NR,self.dataOut.NAVG),'float32') #30/03/2020
414 self.dataOut.noisevector_=numpy.zeros((self.dataOut.read_samples,self.dataOut.NR,self.dataOut.NAVG),'float32')
415 self.dataOut.dc=numpy.zeros(self.dataOut.NR,dtype=numpy.complex_) #30/03/2020
416 #self.dataOut.noisevector=numpy.zeros((self.dataOut.read_samples,2,self.dataOut.NAVG),'float32') #31/03/2020
417 #self.dataOut.noisevector_=numpy.zeros((self.dataOut.read_samples,2,self.dataOut.NAVG),'float32') #31/03/2020
418
419 #self.dataOut.dc=numpy.zeros(2,dtype=numpy.complex_) #31/03/2020
420 #self.dataOut.processingHeaderObj.profilesPerBlock
421 if self.dataOut.experiment=="DP":
422 self.noisevectorizer(self.dataOut.nptsfft1,self.dataOut.nptsfft2) #30/03/2020
423 if self.dataOut.experiment=="HP":
424 self.noisevectorizer(self.dataOut.nptsfft1,self.dataOut.nptsfftx1) #31/03/2020
425 #print(self.dataOut.noisevector[:,:,:])
426 #print("·················································")
427 #print("CAX: ",self.cax)
428 self.cax_navg.append(self.cax)
429 self.cay_navg.append(self.cay)
430 self.cbx_navg.append(self.cbx)
431 self.cby_navg.append(self.cby)
432 self.cax2_navg.append(self.cax2)
433 self.cay2_navg.append(self.cay2)
434 self.cbx2_navg.append(self.cbx2)
435 self.cby2_navg.append(self.cby2)
436 self.caxbx_navg.append(self.caxbx)
437 self.caxby_navg.append(self.caxby)
438 self.caybx_navg.append(self.caybx)
439 self.cayby_navg.append(self.cayby)
440 self.caxay_navg.append(self.caxay)
441 self.cbxby_navg.append(self.cbxby)
442 self.bcounter+=1
443
444 #self.dataOut.data=None
445 #print("bcounter",bcounter)
446 #/#/#/#if self.bcounter==NAVG:
447
448 #/#/#/#print("cax_navg: ",self.cax_navg)
449 #/#/#/#self.bcounter=0
450 #print("blocknow",self.dataOut.current)
451
452
453
454 def kabxys(self,NAVG,nkill):#,NRANGE,NCAL,NDT):
455
456 self.dataOut.NAVG=NAVG
457 self.dataOut.nkill=nkill
458 #print("bcounter_before: ",self.bcounter)
459 #print("kabxys")
460
461 #if self.dataOut.input_dat_type==0:
462 #self.dataOut.NDP=NDP
463 #self.dataOut.nlags_array=nlags_array
464 #self.dataOut.NSCAN=NSCAN
465 #self.dataOut.DH=float(DH)
466 #self.dataOut.flags_array=flags_array
467
468 #self.dataOut.DPL=DPL
469 #self.dataOut.NRANGE=NRANGE
470 #self.dataOut.NCAL=NCAL
471
472 #self.dataOut.NDT=NDT
473 #self.lag_products_LP()
474 ####self.cabxys_navg(NDP,nlags_array,NSCAN,flags_array)
475 self.cabxys_navg()
476 #self.dataOut.kshape=numpy.zeros((numpy.shape(self.cax_navg[0])[0],numpy.shape(self.cax_navg[0])[1],numpy.shape(self.cax_navg[0])[2]))
477 #print("Shape cavg",numpy.shape(self.cax_navg[0])[0])
478 self.dataOut.flag_save=0
479 #self.dataOut.flagNoData = True # new 1
480
481
482 if self.bcounter==self.dataOut.NAVG:
483
484 #self.dataOut.flagNoData = False # new 2
485 self.dataOut.flag_save=1
486 #self.dataOut.kax=None
487
488
489 self.dataOut.noise_final=numpy.zeros(self.dataOut.NR,'float32') #30/03/2020
490 #self.dataOut.noise_final=numpy.zeros(2,'float32') #31/03/2020
491
492 #print("self.dataOut.nChannels: ",self.dataOut.systemHeaderObj.nChannels)
493 self.kax=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32')
494 self.kay=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32')
495 self.kbx=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32')
496 self.kby=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32')
497 self.kax2=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32')
498 self.kay2=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32')
499 self.kbx2=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32')
500 self.kby2=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32')
501 self.kaxbx=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32')
502 self.kaxby=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32')
503 self.kaybx=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32')
504 self.kayby=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32')
505 self.kaxay=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32')
506 self.kbxby=numpy.zeros((self.dataOut.NDP,self.dataOut.DPL,2),'float32')
507 #print("Shape K",numpy.shape(self.kax))
508 for i in range(self.cax_navg[0].shape[0]):
509 for j in range(self.cax_navg[0].shape[1]):
510 for k in range(self.cax_navg[0].shape[2]):
511 data_navg=[item[i,j,k] for item in self.cax_navg]
512 self.kax[i,j,k]=self.medi(data_navg)
513 data_navg=[item[i,j,k] for item in self.cay_navg]
514 self.kay[i,j,k]=self.medi(data_navg)
515 data_navg=[item[i,j,k] for item in self.cbx_navg]
516 self.kbx[i,j,k]=self.medi(data_navg)
517 data_navg=[item[i,j,k] for item in self.cby_navg]
518 self.kby[i,j,k]=self.medi(data_navg)
519 data_navg=[item[i,j,k] for item in self.cax2_navg]
520 self.kax2[i,j,k]=self.medi(data_navg)
521 data_navg=[item[i,j,k] for item in self.cay2_navg]
522 self.kay2[i,j,k]=self.medi(data_navg)
523 data_navg=[item[i,j,k] for item in self.cbx2_navg]
524 self.kbx2[i,j,k]=self.medi(data_navg)
525 data_navg=[item[i,j,k] for item in self.cby2_navg]
526 self.kby2[i,j,k]=self.medi(data_navg)
527 data_navg=[item[i,j,k] for item in self.caxbx_navg]
528 self.kaxbx[i,j,k]=self.medi(data_navg)
529 data_navg=[item[i,j,k] for item in self.caxby_navg]
530 self.kaxby[i,j,k]=self.medi(data_navg)
531 data_navg=[item[i,j,k] for item in self.caybx_navg]
532 self.kaybx[i,j,k]=self.medi(data_navg)
533 data_navg=[item[i,j,k] for item in self.cayby_navg]
534 self.kayby[i,j,k]=self.medi(data_navg)
535 data_navg=[item[i,j,k] for item in self.caxay_navg]
536 self.kaxay[i,j,k]=self.medi(data_navg)
537 data_navg=[item[i,j,k] for item in self.cbxby_navg]
538 self.kbxby[i,j,k]=self.medi(data_navg)
539 #self.bcounter=0
540 #print("KAX",self.kax)
541 #self.__buffer=self.kax
542 #print("CurrentBlock: ", self.dataOut.CurrentBlock)
543
544 self.dataOut.kax=self.kax
545 self.dataOut.kay=self.kay
546 self.dataOut.kbx=self.kbx
547 self.dataOut.kby=self.kby
548 self.dataOut.kax2=self.kax2
549 self.dataOut.kay2=self.kay2
550 self.dataOut.kbx2=self.kbx2
551 self.dataOut.kby2=self.kby2
552 self.dataOut.kaxbx=self.kaxbx
553 self.dataOut.kaxby=self.kaxby
554 self.dataOut.kaybx=self.kaybx
555 self.dataOut.kayby=self.kayby
556 self.dataOut.kaxay=self.kaxay
557 self.dataOut.kbxby=self.kbxby
558 self.bcounter=0
559
560 #print("before: ",self.dataOut.noise_final)
561
562 self.noise_estimation4x() #30/03/2020
563
564 #print("after: ", self.dataOut.noise_final)
565 #print(numpy.shape(self.dataOut.data))
566 #input()
567 #self.dataOut.noise_final_list.append(self.dataOut.noise_final[0]) #30/03/2020
568
569
570 '''
571 print("hsize[0] ",self.dataOut.header[0])
572 print("bufsize[1] ",self.dataOut.header[1])
573 print("nr[2] ",self.dataOut.header[2])
574 print("ngates[3] ",self.dataOut.header[3])
575 print("time1[4] ",self.dataOut.header[4])
576 print("time2[5] ",self.dataOut.header[5])
577 print("lcounter[6] ",self.dataOut.header[6])
578 print("groups[7] ",self.dataOut.header[7])
579 print("system[8] ",self.dataOut.header[8])
580 print("h0[9] ",self.dataOut.header[9])
581 print("dh[10] ",self.dataOut.header[10])
582 print("ipp[11] ",self.dataOut.header[11])
583 print("process[12] ",self.dataOut.header[12])
584 print("tx[13] ",self.dataOut.header[13])
585 print("padding[14] ",self.dataOut.header[14])
586 print("ngates1[15] ",self.dataOut.header[15])
587 print("header[16] ",self.dataOut.header[16])
588 print("header[17] ",self.dataOut.header[17])
589 print("header[18] ",self.dataOut.header[18])
590 print("header[19] ",self.dataOut.header[19])
591 print("header[20] ",self.dataOut.header[20])
592 print("header[21] ",self.dataOut.header[21])
593 print("header[22] ",self.dataOut.header[22])
594 print("header[23] ",self.dataOut.header[23])
595 print("header[24] ",self.dataOut.header[24])
596 print("header[25] ",self.dataOut.header[25])
597 print("header[26] ",self.dataOut.header[26])
598 print("header[27] ",self.dataOut.header[27])
599 print("header[28] ",self.dataOut.header[28])
600 print("header[29] ",self.dataOut.header[29])
601 print("header[30] ",self.dataOut.header[30])
602 print("header[31] ",self.dataOut.header[31])
603 '''
604
605
606
607 #print("CurrentBlock: ",self.dataOut.CurrentBlock)
608 ##print("KAX: ",self.dataOut.kax)
609
610
611 '''
612 plt.plot(self.kaxby[:,0,0],self.range(),'m',linewidth=2.0)
613 plt.xlim(min(self.kaxby[12::,0,0]), max(self.kaxby[12::,0,0]))
614 plt.show()
615 '''
616
617
618
619
620
621 #/#/#/#print("CurrentBlock: ",self.dataOut.CurrentBlock)
622 ####self.newdataOut=self.kax
623 #print("shapedataout",numpy.shape(self.dataOut.data))
624 #print("kax",numpy.shape(self.kax))
625 ## return 1
626
627
628 ####def NewData(self):
629 ####print("NewData",self.dataOut.kaxby)
630 ####print("CurrentBlock: ",self.dataOut.CurrentBlock)
631
632
633 '''
634 def PlotVoltageLag(self):
635
636 plt.plot(self.dataOut.data[:,0,0],self.range(),'m',linewidth=2.0)
637 plt.xlim(min(self.dataOut.data[12::,0,0]), max(self.dataOut.data[12::,0,0]))
638 plt.show()
639
640
641 if self.bcounter==self.NAVG:
642 #print("shapedataout",self.dataOut.data)
643 print("CurrentBlock: ",self.dataOut.CurrentBlock)
644 self.bcounter=0
645 '''
646
647 #print("Newdataout",self.dataOut.data)
648 ##
649
650
651 #30/03/2020:
652 def noisevectorizer(self,nptsfft1,nptsfft2):
653
654 rnormalizer= 1./float(nptsfft2 - nptsfft1)
655 for i in range(self.dataOut.NR):
656 for j in range(self.dataOut.read_samples):
657 for k in range(nptsfft1,nptsfft2):
658 #TODO:integrate just 2nd quartile gates
659 if k==nptsfft1:
660 self.dataOut.noisevector[j][i][self.bcounter]=(abs(self.dataOut.data[i][k][j]-self.dataOut.dc[i])**2)*rnormalizer
661 ##noisevector[j][i][iavg]=(abs(cdata[k][j][i])**2)*rnormalizer
662 else:
663 self.dataOut.noisevector[j][i][self.bcounter]+=(abs(self.dataOut.data[i][k][j]-self.dataOut.dc[i])**2)*rnormalizer
664
665 #30/03/2020:
666 def noise_estimation4x(self):
667 snoise=numpy.zeros((self.dataOut.NR,self.dataOut.NAVG),'float32')
668 nvector1=numpy.zeros((self.dataOut.NR,self.dataOut.NAVG,self.dataOut.read_samples),'float32')
669 for i in range(self.dataOut.NR):
670 self.dataOut.noise_final[i]=0.0
671 for k in range(self.dataOut.NAVG):
672 snoise[i][k]=0.0
673 for j in range(self.dataOut.read_samples):
674 nvector1[i][k][j]= self.dataOut.noisevector[j][i][k];
675 snoise[i][k]=self.noise_hs4x(self.dataOut.read_samples, nvector1[i][k])
676 self.dataOut.noise_final[i]=self.noise_hs4x(self.dataOut.NAVG, snoise[i])
677
678
679 #30/03/2020:
680 def noise_hs4x(self, ndatax, datax):
681 #print("datax ",datax)
682 divider=10#divider was originally 10
683 noise=0.0
684 data=numpy.zeros(ndatax,'float32')
685 ndata1=int(ndatax/4)
686 ndata2=int(2.5*(ndatax/4.))
687 ndata=int(ndata2-ndata1)
688 sorts=sorted(datax)
689 for k in range(ndata2): # select just second quartile
690 data[k]=sorts[k+ndata1]
691 nums_min= int(ndata/divider)
692 if(int(ndata/divider)> 2):
693 nums_min= int(ndata/divider)
694 else:
695 nums_min=2
696 sump=0.0
697 sumq=0.0
698 j=0
699 cont=1
700 while ( (cont==1) and (j<ndata)):
701 sump+=data[j]
702 sumq+= data[j]*data[j]
703 j=j+1
704 if (j> nums_min):
705 rtest= float(j/(j-1)) +1.0/ndata
706 if( (sumq*j) > (rtest*sump*sump ) ):
707 j=j-1
708 sump-= data[j]
709 sumq-=data[j]*data[j]
710 cont= 0
711 noise= (sump/j)
712
713 return noise
714
715
716
717 def test(self):
718
719 #print("LP_init")
720 #self.dataOut.flagNoData=1
721 buffer=self.dataOut.data
722 #self.dataOut.flagNoData=0
723 if self.LP_products_aux==0:
724
725 #self.dataOut.nptsfft2=150
726 self.cnorm=float((self.dataOut.nptsfft2LP-self.dataOut.NSCAN)/self.dataOut.NSCAN)
727
728
729 #print("self.bcounter",self.bcounter)
730 self.lagp0=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64')
731 self.lagp1=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64')
732 self.lagp2=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64')
733 self.lagp3=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64')
734 self.lagp4=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64')
735 self.LP_products_aux=1
736
737 #print(self.dataOut.data[0,0,0])
738 #self.dataOut.flagNoData =False
739 for i in range(self.dataOut.NR-1):
740 #print("inside i",i)
741 buffer_dc=self.dataOut.dc[i]
742 for j in range(self.dataOut.NRANGE):
743 #print("inside j",j)
744 #print(self.dataOut.read_samples)
745 #input()
746 range_for_n=numpy.min((self.dataOut.NRANGE-j,self.dataOut.NLAG))
747 for k in range(self.dataOut.nptsfft2LP):
748 #print(self.dataOut.data[i][k][j])
749 #input()
750 #print(self.dataOut.dc)
751 #input()
752 #aux_ac=0
753 buffer_aux=numpy.conj(buffer[i][k][j]-buffer_dc)
754 #self.dataOut.flagNoData=0
755 for n in range(range_for_n):
756
757
758 #for n in range(numpy.min((self.dataOut.NRANGE-j,self.dataOut.NLAG))):
759 #print(numpy.shape(self.dataOut.data))
760 #input()
761 #pass
762 #self.dataOut.flagNoData=1
763 #c=2*buffer_aux
764 #c=(self.dataOut.data[i][k][j]-self.dataOut.dc[i])*(numpy.conj(self.dataOut.data[i][k][j+n]-self.dataOut.dc[i]))
765 #c=(buffer[i][k][j]-buffer_dc)*(numpy.conj(buffer[i][k][j+n])-buffer_dc)
766
767 c=(buffer_aux)*(buffer[i][k][j+n]-buffer_dc)
768 #c=(buffer[i][k][j])*(buffer[i][k][j+n])
769 #print("first: ",self.dataOut.data[i][k][j]-self.dataOut.dc[i])
770 #print("second: ",numpy.conj(self.dataOut.data[i][k][j+n]-self.dataOut.dc[i]))
771
772 #print("c: ",c)
773 #input()
774 #print("n: ",n)
775 #print("aux_ac",aux_ac)
776 #print("data1:",self.dataOut.data[i][k][j])
777 #print("data2:",self.dataOut.data[i][k][j+n])
778 #print("dc: ",self.dataOut.dc[i])
779 #if aux_ac==2:
780 #input()
781 #aux_ac+=1
782 #print("GG")
783 #print("inside n",n)
784 #pass
785
786 if k<self.dataOut.NSCAN:
787 if k==0:
788
789 while True:
790 if i==0:
791 self.lagp0[n][j][self.bcounter-1]=c
792 break
793 elif i==1:
794 self.lagp1[n][j][self.bcounter-1]=c
795 break
796 elif i==2:
797 self.lagp2[n][j][self.bcounter-1]=c
798 break
799 else:
800 break
801
802 else:
803
804 while True:
805 if i==0:
806 self.lagp0[n][j][self.bcounter-1]=c+self.lagp0[n][j][self.bcounter-1]
807 break
808 elif i==1:
809 self.lagp1[n][j][self.bcounter-1]=c+self.lagp1[n][j][self.bcounter-1]
810 break
811 elif i==2:
812 self.lagp2[n][j][self.bcounter-1]=c+self.lagp2[n][j][self.bcounter-1]
813 break
814 else:
815 break
816
817 else:
818 #c=c/self.cnorm
819 if i==0:
820 c=c/self.cnorm
821 if k==self.dataOut.NSCAN:
822 #if i==0:
823 self.lagp3[n][j][self.bcounter-1]=c
824 #print("n: ",n,"j: ",j,"iavg: ",self.bcounter-1)
825 #print("lagp3_inside: ",self.lagp3[n][j][self.bcounter-1])
826 else:
827 #if i==0:
828 self.lagp3[n][j][self.bcounter-1]=c+self.lagp3[n][j][self.bcounter-1]
829
830
831
832
833 #print("lagp2: ",self.lagp2[:,0,0])
834 self.lagp0[:,:,self.bcounter-1]=numpy.conj(self.lagp0[:,:,self.bcounter-1])
835 self.lagp1[:,:,self.bcounter-1]=numpy.conj(self.lagp1[:,:,self.bcounter-1])
836 self.lagp2[:,:,self.bcounter-1]=numpy.conj(self.lagp2[:,:,self.bcounter-1])
837 self.lagp3[:,:,self.bcounter-1]=numpy.conj(self.lagp3[:,:,self.bcounter-1])
838 #self.dataOut.flagNoData=0
839 #print(self.bcounter-1)
840 #print("lagp2_conj: ",self.lagp2[:,0,self.bcounter-1])
841 #input()
842 #self.dataOut.lagp3=self.lagp3
843 print("TEST")
844
845
846
847 def lag_products_LP(self):
848
849 #print("LP_init")
850 #self.dataOut.flagNoData=1
851 buffer=self.dataOut.data
852 #self.dataOut.flagNoData=0
853 if self.LP_products_aux==0:
854
855 #self.dataOut.nptsfft2=150
856 self.cnorm=float((self.dataOut.nptsfft2LP-self.dataOut.NSCAN)/self.dataOut.NSCAN)
857
858
859 #print("self.bcounter",self.bcounter)
860 self.lagp0=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64')
861 self.lagp1=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64')
862 self.lagp2=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64')
863 self.lagp3=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64')
864 self.lagp4=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64')
865 self.LP_products_aux=1
866
867 #print(self.dataOut.data[0,0,0])
868 #self.dataOut.flagNoData =False
869 for i in range(self.dataOut.NR):
870 #print("inside i",i)
871 buffer_dc=self.dataOut.dc[i]
872 for j in range(self.dataOut.NRANGE):
873 #print("inside j",j)
874 #print(self.dataOut.read_samples)
875 #input()
876 range_for_n=numpy.min((self.dataOut.NRANGE-j,self.dataOut.NLAG))
877 for k in range(self.dataOut.nptsfft2LP):
878 #print(self.dataOut.data[i][k][j])
879 #input()
880 #print(self.dataOut.dc)
881 #input()
882 #aux_ac=0
883 buffer_aux=numpy.conj(buffer[i][k][j]-buffer_dc)
884 #self.dataOut.flagNoData=0
885 for n in range(range_for_n):
886 #for n in range(numpy.min((self.dataOut.NRANGE-j,self.dataOut.NLAG))):
887 #print(numpy.shape(self.dataOut.data))
888 #input()
889 #pass
890 #self.dataOut.flagNoData=1
891 #c=2*buffer_aux
892 #c=(self.dataOut.data[i][k][j]-self.dataOut.dc[i])*(numpy.conj(self.dataOut.data[i][k][j+n]-self.dataOut.dc[i]))
893 #c=(buffer[i][k][j]-buffer_dc)*(numpy.conj(buffer[i][k][j+n])-buffer_dc)
894
895 c=(buffer_aux)*(buffer[i][k][j+n]-buffer_dc)
896 #c=(buffer[i][k][j])*(buffer[i][k][j+n])
897 #print("first: ",self.dataOut.data[i][k][j]-self.dataOut.dc[i])
898 #print("second: ",numpy.conj(self.dataOut.data[i][k][j+n]-self.dataOut.dc[i]))
899
900 #print("c: ",c)
901 #input()
902 #print("n: ",n)
903 #print("aux_ac",aux_ac)
904 #print("data1:",self.dataOut.data[i][k][j])
905 #print("data2:",self.dataOut.data[i][k][j+n])
906 #print("dc: ",self.dataOut.dc[i])
907 #if aux_ac==2:
908 #input()
909 #aux_ac+=1
910 #print("GG")
911 #print("inside n",n)
912 #pass
913
914 if k<self.dataOut.NSCAN:
915 if k==0:
916 if i==0:
917 self.lagp0[n][j][self.bcounter-1]=c
918 elif i==1:
919 self.lagp1[n][j][self.bcounter-1]=c
920 elif i==2:
921 self.lagp2[n][j][self.bcounter-1]=c
922 else:
923 if i==0:
924 self.lagp0[n][j][self.bcounter-1]=c+self.lagp0[n][j][self.bcounter-1]
925 elif i==1:
926 self.lagp1[n][j][self.bcounter-1]=c+self.lagp1[n][j][self.bcounter-1]
927 elif i==2:
928 self.lagp2[n][j][self.bcounter-1]=c+self.lagp2[n][j][self.bcounter-1]
929
930 else:
931 c=c/self.cnorm
932 if k==self.dataOut.NSCAN:
933 if i==0:
934 self.lagp3[n][j][self.bcounter-1]=c
935 #print("n: ",n,"j: ",j,"iavg: ",self.bcounter-1)
936 #print("lagp3_inside: ",self.lagp3[n][j][self.bcounter-1])
937 else:
938 if i==0:
939 self.lagp3[n][j][self.bcounter-1]=c+self.lagp3[n][j][self.bcounter-1]
940
941
942
943 #print("lagp2: ",self.lagp2[:,0,0])
944 self.lagp0[:,:,self.bcounter-1]=numpy.conj(self.lagp0[:,:,self.bcounter-1])
945 self.lagp1[:,:,self.bcounter-1]=numpy.conj(self.lagp1[:,:,self.bcounter-1])
946 self.lagp2[:,:,self.bcounter-1]=numpy.conj(self.lagp2[:,:,self.bcounter-1])
947 self.lagp3[:,:,self.bcounter-1]=numpy.conj(self.lagp3[:,:,self.bcounter-1])
948 #self.dataOut.flagNoData=0
949 #print(self.bcounter-1)
950 #print("lagp2_conj: ",self.lagp2[:,0,self.bcounter-1])
951 #input()
952 #self.dataOut.lagp3=self.lagp3
953 print("LP")
954
955
956 def test_2(self):
957
958 #print("LP_init")
959 #self.dataOut.flagNoData=1
960
961 #self.dataOut.flagNoData=0
962 if self.LP_products_aux==0:
963
964 #self.dataOut.nptsfft2=150
965 self.cnorm=float((self.dataOut.nptsfft2LP-self.dataOut.NSCAN)/self.dataOut.NSCAN)
966
967
968 #print("self.bcounter",self.bcounter)
969 self.lagp0=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64')
970 self.lagp1=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64')
971 self.lagp2=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64')
972 self.lagp3=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64')
973 self.lagp4=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NAVG),'complex64')
974 self.LP_products_aux=1
975
976 #print(self.dataOut.data[0,0,0])
977 #self.dataOut.flagNoData =False
978 for i in range(self.dataOut.NR):
979 #print("inside i",i)
980
981 for j in range(self.dataOut.NRANGE):
982 #print("inside j",j)
983 #print(self.dataOut.read_samples)
984 #input()
985
986 for k in range(self.dataOut.nptsfft2LP):
987 #print(self.dataOut.data[i][k][j])
988 #input()
989 #print(self.dataOut.dc)
990 #input()
991 #aux_ac=0
992
993 #self.dataOut.flagNoData=0
994
995 for n in range(numpy.min((self.dataOut.NRANGE-j,self.dataOut.NLAG))):
996 #print(numpy.shape(self.dataOut.data))
997 #input()
998 #pass
999 #self.dataOut.flagNoData=1
1000 #c=2*buffer_aux
1001 c=(self.dataOut.data[i][k][j]-self.dataOut.dc[i])*(numpy.conj(self.dataOut.data[i][k][j+n]-self.dataOut.dc[i]))
1002 #c=(buffer[i][k][j]-buffer_dc)*(numpy.conj(buffer[i][k][j+n])-buffer_dc)
1003
1004
1005 #c=(buffer[i][k][j])*(buffer[i][k][j+n])
1006 #print("first: ",self.dataOut.data[i][k][j]-self.dataOut.dc[i])
1007 #print("second: ",numpy.conj(self.dataOut.data[i][k][j+n]-self.dataOut.dc[i]))
1008
1009 #print("c: ",c)
1010 #input()
1011 #print("n: ",n)
1012 #print("aux_ac",aux_ac)
1013 #print("data1:",self.dataOut.data[i][k][j])
1014 #print("data2:",self.dataOut.data[i][k][j+n])
1015 #print("dc: ",self.dataOut.dc[i])
1016 #if aux_ac==2:
1017 #input()
1018 #aux_ac+=1
1019 #print("GG")
1020 #print("inside n",n)
1021 #pass
1022
1023 if k<self.dataOut.NSCAN:
1024 if k==0:
1025 if i==0:
1026 self.lagp0[n][j][self.bcounter-1]=c
1027 elif i==1:
1028 self.lagp1[n][j][self.bcounter-1]=c
1029 elif i==2:
1030 self.lagp2[n][j][self.bcounter-1]=c
1031 else:
1032 if i==0:
1033 self.lagp0[n][j][self.bcounter-1]=c+self.lagp0[n][j][self.bcounter-1]
1034 elif i==1:
1035 self.lagp1[n][j][self.bcounter-1]=c+self.lagp1[n][j][self.bcounter-1]
1036 elif i==2:
1037 self.lagp2[n][j][self.bcounter-1]=c+self.lagp2[n][j][self.bcounter-1]
1038
1039 else:
1040 c=c/self.cnorm
1041 if k==self.dataOut.NSCAN:
1042 if i==0:
1043 self.lagp3[n][j][self.bcounter-1]=c
1044 #print("n: ",n,"j: ",j,"iavg: ",self.bcounter-1)
1045 #print("lagp3_inside: ",self.lagp3[n][j][self.bcounter-1])
1046 else:
1047 if i==0:
1048 self.lagp3[n][j][self.bcounter-1]=c+self.lagp3[n][j][self.bcounter-1]
1049
1050
1051
1052 #print("lagp2: ",self.lagp2[:,0,0])
1053
1054 #self.dataOut.flagNoData=0
1055 #print(self.bcounter-1)
1056 #print("lagp2_conj: ",self.lagp2[:,0,self.bcounter-1])
1057 #input()
1058 #self.dataOut.lagp3=self.lagp3
1059 print("LP")
1060
1061
1062 def LP_median_estimates(self):
1063 #print("lagp3: ",self.lagp3[:,0,0])
1064 #print("self.bcounter: ",self.bcounter)
1065 if self.dataOut.flag_save==1:
1066
1067 #print("lagp1: ",self.lagp1[0,0,:])
1068 #input()
1069
1070 if self.lag_products_LP_median_estimates_aux==0:
1071 self.output=numpy.zeros((self.dataOut.NLAG,self.dataOut.NRANGE,self.dataOut.NR),'complex64')
1072 #sorts=numpy.zeros(128,'float32')
1073 #self.dataOut.output_LP=None
1074 self.lag_products_LP_median_estimates_aux=1
1075
1076
1077 for i in range(self.dataOut.NLAG):
1078 for j in range(self.dataOut.NRANGE):
1079 for l in range(4): #four outputs
1080 '''
1081 for k in range(self.dataOut.NAVG):
1082 #rsorts[k]=float(k)
1083 if l==0:
1084 #sorts[k]=self.lagp0[i,j,k].real
1085 self.lagp0[i,j,k].real=sorted(self.lagp0[i,j,k].real)
1086 if l==1:
1087 #sorts[k]=self.lagp1[i,j,k].real
1088 self.lagp1[i,j,k].real=sorted(self.lagp1[i,j,k].real)
1089 if l==2:
1090 #sorts[k]=self.lagp2[i,j,k].real
1091 self.lagp2[i,j,k].real=sorted(self.lagp2[i,j,k].real)
1092 if l==3:
1093 #sorts[k]=self.lagp3[i,j,k].real
1094 self.lagp3[i,j,k].real=sorted(self.lagp3[i,j,k].real)
1095 '''
1096
1097 #sorts=sorted(sorts)
1098 #self.lagp0[i,j,k].real=sorted(self.lagp0[i,j,k].real)
1099 #self.lagp1[i,j,k].real=sorted(self.lagp1[i,j,k].real)
1100 #self.lagp2[i,j,k].real=sorted(self.lagp2[i,j,k].real)
1101 #self.lagp3[i,j,k].real=sorted(self.lagp3[i,j,k].real)
1102
1103 for k in range(self.dataOut.NAVG):
1104
1105
1106
1107 if k==0:
1108 self.output[i,j,l]=0.0+0.j
1109
1110 if l==0:
1111 self.lagp0[i,j,:]=sorted(self.lagp0[i,j,:], key=lambda x: x.real) #sorted(self.lagp0[i,j,:].real)
1112
1113 if l==1:
1114 self.lagp1[i,j,:]=sorted(self.lagp1[i,j,:], key=lambda x: x.real) #sorted(self.lagp1[i,j,:].real)
1115 if l==2:
1116 self.lagp2[i,j,:]=sorted(self.lagp2[i,j,:], key=lambda x: x.real) #sorted(self.lagp2[i,j,:].real)
1117 if l==3:
1118 self.lagp3[i,j,:]=sorted(self.lagp3[i,j,:], key=lambda x: x.real) #sorted(self.lagp3[i,j,:].real)
1119
1120
1121 if k>=self.dataOut.nkill/2 and k<self.dataOut.NAVG-self.dataOut.nkill/2:
1122 if l==0:
1123
1124 self.output[i,j,l]=self.output[i,j,l]+((float(self.dataOut.NAVG)/(float)(self.dataOut.NAVG-self.dataOut.nkill))*self.lagp0[i,j,k])
1125 if l==1:
1126 #print("lagp1: ",self.lagp1[0,0,:])
1127 #input()
1128 self.output[i,j,l]=self.output[i,j,l]+((float(self.dataOut.NAVG)/(float)(self.dataOut.NAVG-self.dataOut.nkill))*self.lagp1[i,j,k])
1129 #print("self.lagp1[i,j,k]: ",self.lagp1[i,j,k])
1130 #input()
1131 if l==2:
1132 self.output[i,j,l]=self.output[i,j,l]+((float(self.dataOut.NAVG)/(float)(self.dataOut.NAVG-self.dataOut.nkill))*self.lagp2[i,j,k])
1133 if l==3:
1134 #print(numpy.shape(output))
1135 #print(numpy.shape(self.lagp3))
1136 #print("i: ",i,"j: ",j,"k: ",k)
1137
1138 #a=((float(self.dataOut.NAVG)/(float)(self.dataOut.NAVG-self.dataOut.nkill))*self.lagp3[i,j,k])
1139 #print("self.lagp3[i,j,k]: ",self.lagp3[i,j,k])
1140 #input()
1141 self.output[i,j,l]=self.output[i,j,l]+((float(self.dataOut.NAVG)/(float)(self.dataOut.NAVG-self.dataOut.nkill))*self.lagp3[i,j,k])
1142 #print(a)
1143 #print("output[i,j,l]: ",output[i,j,l])
1144 #input()
1145
1146
1147 self.dataOut.output_LP=self.output
1148 #print(numpy.shape(sefl.dataOut.output_LP))
1149 #input()
1150 #print("output: ",self.dataOut.output_LP[:,0,0])
1151 #input()
1152
1153
1154 def remove_debris_LP(self):
1155
1156 if self.dataOut.flag_save==1:
1157 debris=numpy.zeros(self.dataOut.NRANGE,'float32')
1158 #self.dataOut.debris_activated=0
1159 for j in range(0,3):
1160 for i in range(self.dataOut.NRANGE):
1161 if j==0:
1162 debris[i]=10*numpy.log10(numpy.abs(self.dataOut.output_LP[j,i,0]))
1163 else:
1164 debris[i]+=10*numpy.log10(numpy.abs(self.dataOut.output_LP[j,i,0]))
1165
1166 '''
1167 debris=10*numpy.log10(numpy.abs(self.dataOut.output_LP[0,:,0]))
1168
1169 for j in range(1,3):
1170 for i in range(self.dataOut.NRANGE):
1171 debris[i]+=debris[i]
1172 '''
1173
1174 thresh=8.0+4+4+4
1175 for i in range(47,100):
1176 if ((debris[i-2]+debris[i-1]+debris[i]+debris[i+1])>
1177 ((debris[i-12]+debris[i-11]+debris[i-10]+debris[i-9]+
1178 debris[i+12]+debris[i+11]+debris[i+10]+debris[i+9])/2.0+
1179 thresh)):
1180
1181 self.dataOut.debris_activated=1
1182 #print("LP debris",i)
1183
1184
1185 #print("self.debris",debris)
1186
1187
1188 def remove_debris_DP(self):
1189
1190 if self.dataOut.flag_save==1:
1191 debris=numpy.zeros(self.dataOut.NDP,dtype='float32')
1192 Range=numpy.arange(0,3000,15)
1193 for k in range(2): #flip
1194 for i in range(self.dataOut.NDP): #
1195 debris[i]+=numpy.sqrt((self.dataOut.kaxbx[i,0,k]+self.dataOut.kayby[i,0,k])**2+(self.dataOut.kaybx[i,0,k]-self.dataOut.kaxby[i,0,k])**2)
1196
1197 #print("debris: ",debris)
1198
1199 if time.gmtime(self.dataOut.utctime).tm_hour > 11:
1200 for i in range(2,self.dataOut.NDP-2):
1201 if (debris[i]>3.0*debris[i-2] and
1202 debris[i]>3.0*debris[i+2] and
1203 Range[i]>200.0 and Range[i]<=540.0):
1204
1205 self.dataOut.debris_activated=1
1206 #print("DP debris")
1207
1208
1209
1210
1211
1212
1213 def run(self, experiment="", nlags_array=None, NLAG=None, NR=None, NRANGE=None, NCAL=None, DPL=None,
1214 NDN=None, NDT=None, NDP=None, NLP=None, NSCAN=None, HDR_SIZE=None, DH=15, H0=None, LPMASK=None,
1215 flags_array=None,
1216 NPROFILE1=None, NPROFILE2=None, NPROFILES=None, NPROFILE=None,
1217 lagind=None, lagfirst=None,
1218 nptsfftx1=None):
1219
1220 #self.dataOut.input_dat_type=input_dat_type
1221
1222 self.dataOut.experiment=experiment
1223
1224 #print(self.dataOut.experiment)
1225 self.dataOut.nlags_array=nlags_array
1226 self.dataOut.NLAG=NLAG
1227 self.dataOut.NR=NR
1228 self.dataOut.NRANGE=NRANGE
1229 #print(self.dataOut.NRANGE)
1230 self.dataOut.NCAL=NCAL
1231 self.dataOut.DPL=DPL
1232 self.dataOut.NDN=NDN
1233 self.dataOut.NDT=NDT
1234 self.dataOut.NDP=NDP
1235 self.dataOut.NLP=NLP
1236 self.dataOut.NSCAN=NSCAN
1237 self.dataOut.HDR_SIZE=HDR_SIZE
1238 self.dataOut.DH=float(DH)
1239 self.dataOut.H0=H0
1240 self.dataOut.LPMASK=LPMASK
1241 self.dataOut.flags_array=flags_array
1242
1243 self.dataOut.NPROFILE1=NPROFILE1
1244 self.dataOut.NPROFILE2=NPROFILE2
1245 self.dataOut.NPROFILES=NPROFILES
1246 self.dataOut.NPROFILE=NPROFILE
1247 self.dataOut.lagind=lagind
1248 self.dataOut.lagfirst=lagfirst
1249 self.dataOut.nptsfftx1=nptsfftx1
1250
1251
1252 self.dataOut.copy(self.dataIn)
1253 #print(self.dataOut.datatime)
1254 #print(self.dataOut.ippSeconds_general)
1255 #print("Data: ",numpy.shape(self.dataOut.data))
1256 #print("Data_after: ",self.dataOut.data[0,0,1])
1257 ## (4, 150, 334)
1258 #print(self.dataOut.channelIndexList)
1259
1260 #print(self.dataOut.timeInterval)
1261
1262 ###NEWWWWWWW
1263 self.dataOut.lat=-11.95
1264 self.dataOut.lon=-7687
1265 self.dataOut.debris_activated=0
1266
1267 #print(time.gmtime(self.dataOut.utctime).tm_hour)
1268 #print(numpy.shape(self.dataOut.heightList))
1269
1270
1271
1272 class NewData(Operation):
1273 def __init__(self, **kwargs):
1274
1275 Operation.__init__(self, **kwargs)
1276
1277
1278
1279
1280
1281 def run(self,dataOut):
1282
1283 #print("SHAPE",numpy.shape(dataOut.kaxby))
1284 print("CurrentBlock",dataOut.CurrentBlock)
1285 #print("DATAOUT",dataOut.kaxby)
1286 #print("TRUE OR FALSE",numpy.shape(dataOut.kaxby)==())
1287 #print("SHAPE",numpy.shape(dataOut.kaxby))
1288 if numpy.shape(dataOutF.kax)!=(): ############VER SI SE PUEDE TRABAJAR CON dataOut.kaxby==None ##Puede ser cualquier k...
1289
1290 print("NEWDATA",dataOut.kaxby)
1291
1292
1293
1294
1295
1296 return dataOut
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308 '''
1309
1310 class PlotVoltageLag(Operation):
1311 def __init__(self, **kwargs):
1312
1313 Operation.__init__(self, **kwargs)
1314
1315
1316
1317 self.kax=numpy.zeros((self.NDP,self.nlags_array,2),'float32')
1318 def range(self,DH):
1319 Range=numpy.arange(0,990,DH)
1320 return Range
1321
1322
1323
1324 def run(self,dataOut):
1325
1326
1327
1328 #plt.subplot(1, 4, 1)
1329 plt.plot(kax[:,0,0],Range,'r',linewidth=2.0)
1330 plt.xlim(min(limit_min_plot1[12::,0,0]), max(limit_max_plot1[12::,0,0]))
1331 plt.show()
1332
1333 self.kax=numpy.zeros((self.NDP,self.nlags_array,2),'float32')
1334
1335 return dataOut
1336 '''
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366 class Integration(Operation):
1367 def __init__(self, **kwargs):
1368
1369 Operation.__init__(self, **kwargs)
1370
1371
1372
1373 self.counter=0
1374 self.aux=0
1375 self.aux2=1
1376
1377 def run(self,dataOut,nint=None):
1378
1379 dataOut.nint=nint
1380 dataOut.AUX=0
1381 dataOut.paramInterval=dataOut.nint*dataOut.header[7][0]*2 #GENERALIZAR EL 2
1382 #print("CurrentBlock: ",dataOut.CurrentBlock)
1383 #print("date: ",dataOut.datatime)
1384 #print("self.aux: ",self.aux)
1385 #print("CurrentBlockAAAAAA: ",dataOut.CurrentBlock)
1386 #print(dataOut.input_dat_type)
1387 #print(dataOut.heightList)
1388
1389 #print(dataOut.blocktime.ctime())
1390 '''
1391 if dataOut.input_dat_type: #when .dat data is read
1392 #print(dataOut.realtime)
1393 #print("OKODOKO")
1394 #dataOut.flagNoData = False
1395 #print(dataOut.flagNoData)
1396 if self.aux2:
1397
1398 self.noise=numpy.zeros(dataOut.NR,'float32')
1399
1400
1401 padding=numpy.zeros(1,'int32')
1402
1403 hsize=numpy.zeros(1,'int32')
1404 bufsize=numpy.zeros(1,'int32')
1405 nr=numpy.zeros(1,'int32')
1406 ngates=numpy.zeros(1,'int32') ### ### ### 2
1407 time1=numpy.zeros(1,'uint64') # pos 3
1408 time2=numpy.zeros(1,'uint64') # pos 4
1409 lcounter=numpy.zeros(1,'int32')
1410 groups=numpy.zeros(1,'int32')
1411 system=numpy.zeros(4,'int8') # pos 7
1412 h0=numpy.zeros(1,'float32')
1413 dh=numpy.zeros(1,'float32')
1414 ipp=numpy.zeros(1,'float32')
1415 process=numpy.zeros(1,'int32')
1416 tx=numpy.zeros(1,'int32')
1417
1418 ngates1=numpy.zeros(1,'int32') ### ### ### 13
1419 time0=numpy.zeros(1,'uint64') # pos 14
1420 nlags=numpy.zeros(1,'int32')
1421 nlags1=numpy.zeros(1,'int32')
1422 txb=numpy.zeros(1,'float32') ### ### ### 17
1423 time3=numpy.zeros(1,'uint64') # pos 18
1424 time4=numpy.zeros(1,'uint64') # pos 19
1425 h0_=numpy.zeros(1,'float32')
1426 dh_=numpy.zeros(1,'float32')
1427 ipp_=numpy.zeros(1,'float32')
1428 txa_=numpy.zeros(1,'float32')
1429
1430 pad=numpy.zeros(100,'int32')
1431
1432 nbytes=numpy.zeros(1,'int32')
1433 limits=numpy.zeros(1,'int32')
1434 ngroups=numpy.zeros(1,'int32') ### ### ### 27
1435 #Make the header list
1436 #header=[hsize,bufsize,nr,ngates,time1,time2,lcounter,groups,system,h0,dh,ipp,process,tx,padding,ngates1,time0,nlags,nlags1,padding,txb,time3,time4,h0_,dh_,ipp_,txa_,pad,nbytes,limits,padding,ngroups]
1437 dataOut.header=[hsize,bufsize,nr,ngates,time1,time2,lcounter,groups,system,h0,dh,ipp,process,tx,ngates1,padding,time0,nlags,nlags1,padding,txb,time3,time4,h0_,dh_,ipp_,txa_,pad,nbytes,limits,padding,ngroups]
1438
1439
1440
1441 dataOut.kax=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1442 dataOut.kay=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1443 dataOut.kbx=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1444 dataOut.kby=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1445 dataOut.kax2=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1446 dataOut.kay2=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1447 dataOut.kbx2=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1448 dataOut.kby2=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1449 dataOut.kaxbx=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1450 dataOut.kaxby=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1451 dataOut.kaybx=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1452 dataOut.kayby=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1453 dataOut.kaxay=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1454 dataOut.kbxby=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1455
1456 self.dataOut.final_cross_products=[dataOut.kax,dataOut.kay,dataOut.kbx,dataOut.kby,dataOut.kax2,dataOut.kay2,dataOut.kbx2,dataOut.kby2,dataOut.kaxbx,dataOut.kaxby,dataOut.kaybx,dataOut.kayby,dataOut.kaxay,dataOut.kbxby]
1457
1458 self.inputfile_DP = open(dataOut.fname,"rb")
1459
1460 ## read header the header first time
1461 for i in range(len(dataOut.header)):
1462 for j in range(len(dataOut.header[i])):
1463 #print("len(header[i]) ",len(header[i]))
1464 #input()
1465 temp=self.inputfile_DP.read(int(dataOut.header[i].itemsize))
1466 if isinstance(dataOut.header[i][0], numpy.int32):
1467 #print(struct.unpack('i', temp)[0])
1468 dataOut.header[i][0]=struct.unpack('i', temp)[0]
1469 if isinstance(dataOut.header[i][0], numpy.uint64):
1470 dataOut.header[i][0]=struct.unpack('q', temp)[0]
1471 if isinstance(dataOut.header[i][0], numpy.int8):
1472 dataOut.header[i][0]=struct.unpack('B', temp)[0]
1473 if isinstance(dataOut.header[i][0], numpy.float32):
1474 dataOut.header[i][0]=struct.unpack('f', temp)[0]
1475
1476
1477
1478
1479 self.activator_No_Data=1
1480
1481 self.inputfile_DP.seek(0,0)
1482
1483 #print("Repositioning to",self.npos," bytes, bufsize ", self.header[1][0])
1484 #self.inputfile.seek(self.npos, 0)
1485 #print("inputfile.tell() ",self.inputfile.tell() ," npos : ", self.npos)
1486
1487 self.npos=0
1488
1489 #if dataOut.nint < 0:
1490 # dataOut.nint=-dataOut.nint
1491 # sfile=os.stat(dataOut.fname)
1492 # if (os.path.exists(dataOut.fname)==0):
1493 # print("ERROR on STAT file: %s\n", dataOut.fname)
1494 # self.npos=sfile.st_size - dataOut.nint*dataOut.header[1][0]# sfile.st_size - nint*header.bufsize
1495
1496 self.start_another_day=False
1497 if dataOut.new_time_date!=" ":
1498 self.start_another_day=True
1499
1500
1501 if self.start_another_day:
1502 #print("Starting_at_another_day")
1503 #new_time_date = "16/08/2013 09:51:43"
1504 #new_time_seconds=time.mktime(time.strptime(new_time_date))
1505 #dataOut.new_time_date = "04/12/2019 09:21:21"
1506 d = datetime.strptime(dataOut.new_time_date, "%d/%m/%Y %H:%M:%S")
1507 new_time_seconds=time.mktime(d.timetuple())
1508
1509 d_2 = datetime.strptime(dataOut.new_ending_time, "%d/%m/%Y %H:%M:%S")
1510 self.new_ending_time_seconds=time.mktime(d_2.timetuple())
1511 #print("new_time_seconds: ",new_time_seconds)
1512 #input()
1513 jumper=0
1514
1515 #if jumper>0 and nint>0:
1516 while True:
1517 sfile=os.stat(dataOut.fname)
1518
1519 if (os.path.exists(dataOut.fname)==0):
1520 print("ERROR on STAT file: %s\n",dataOut.fname)
1521 self.npos=jumper*dataOut.nint*dataOut.header[1][0] #jump_blocks*header,bufsize
1522 self.npos_next=(jumper+1)*dataOut.nint*dataOut.header[1][0]
1523 self.inputfile_DP.seek(self.npos, 0)
1524 jumper+=1
1525 for i in range(len(dataOut.header)):
1526 for j in range(len(dataOut.header[i])):
1527 #print("len(header[i]) ",len(header[i]))
1528 #input()
1529 temp=self.inputfile_DP.read(int(dataOut.header[i].itemsize))
1530 if isinstance(dataOut.header[i][0], numpy.int32):
1531 #print(struct.unpack('i', temp)[0])
1532 dataOut.header[i][0]=struct.unpack('i', temp)[0]
1533 if isinstance(dataOut.header[i][0], numpy.uint64):
1534 dataOut.header[i][0]=struct.unpack('q', temp)[0]
1535 if isinstance(dataOut.header[i][0], numpy.int8):
1536 dataOut.header[i][0]=struct.unpack('B', temp)[0]
1537 if isinstance(dataOut.header[i][0], numpy.float32):
1538 dataOut.header[i][0]=struct.unpack('f', temp)[0]
1539
1540 if self.npos==0:
1541 if new_time_seconds<dataOut.header[4][0]:
1542 break
1543 #dataOut.flagNoData=1
1544 #return dataOut.flagNoData
1545
1546 self.npos_aux=sfile.st_size - dataOut.nint*dataOut.header[1][0]
1547 self.inputfile_DP.seek(self.npos_aux, 0)
1548
1549 for i in range(len(dataOut.header)):
1550 for j in range(len(dataOut.header[i])):
1551 #print("len(header[i]) ",len(header[i]))
1552 #input()
1553 temp=self.inputfile_DP.read(int(dataOut.header[i].itemsize))
1554 if isinstance(dataOut.header[i][0], numpy.int32):
1555 #print(struct.unpack('i', temp)[0])
1556 dataOut.header[i][0]=struct.unpack('i', temp)[0]
1557 if isinstance(dataOut.header[i][0], numpy.uint64):
1558 dataOut.header[i][0]=struct.unpack('q', temp)[0]
1559 if isinstance(dataOut.header[i][0], numpy.int8):
1560 dataOut.header[i][0]=struct.unpack('B', temp)[0]
1561 if isinstance(dataOut.header[i][0], numpy.float32):
1562 dataOut.header[i][0]=struct.unpack('f', temp)[0]
1563
1564 if new_time_seconds>dataOut.header[4][0]:
1565 print("No Data")
1566 self.inputfile_DP.close()
1567 sys.exit(1)
1568
1569 self.inputfile_DP.seek(self.npos, 0)
1570
1571
1572
1573
1574 if new_time_seconds==dataOut.header[4][0]:
1575 #print("EQUALS")
1576 break
1577
1578 self.inputfile_DP.seek(self.npos_next, 0)
1579
1580 for i in range(len(dataOut.header)):
1581 for j in range(len(dataOut.header[i])):
1582 #print("len(header[i]) ",len(header[i]))
1583 #input()
1584 temp=self.inputfile_DP.read(int(dataOut.header[i].itemsize))
1585 if isinstance(dataOut.header[i][0], numpy.int32):
1586 #print(struct.unpack('i', temp)[0])
1587 dataOut.header[i][0]=struct.unpack('i', temp)[0]
1588 if isinstance(dataOut.header[i][0], numpy.uint64):
1589 dataOut.header[i][0]=struct.unpack('q', temp)[0]
1590 if isinstance(dataOut.header[i][0], numpy.int8):
1591 dataOut.header[i][0]=struct.unpack('B', temp)[0]
1592 if isinstance(dataOut.header[i][0], numpy.float32):
1593 dataOut.header[i][0]=struct.unpack('f', temp)[0]
1594
1595
1596 if new_time_seconds<dataOut.header[4][0]:
1597 break
1598
1599
1600
1601
1602
1603
1604
1605
1606 #print("Repositioning to",self.npos," bytes, bufsize ", dataOut.header[1][0])
1607 self.inputfile_DP.seek(self.npos, 0)
1608 #print("inputfile.tell() ",self.inputfile_DP.tell() ," npos : ", self.npos)
1609
1610 self.aux2=0
1611
1612
1613 for ii in range(len(dataOut.header)):
1614 for j in range(len(dataOut.header[ii])):
1615 temp=self.inputfile_DP.read(int(dataOut.header[ii].itemsize))
1616
1617 if(b''==temp):# sizeof(header)
1618 dataOut.flagDiscontinuousBlock=1
1619 #print("EOF \n\n\n\n")
1620 #log.success("")
1621 #self.inputfile_DP.close()
1622 dataOut.error = True
1623 #dataOut.flagNoData = True
1624 #dataOut.stop=True
1625 #return dataOut
1626 #dataOut.
1627 return dataOut
1628
1629 #return dataOut.flagNoData
1630 #writedb_head()
1631 #outputfile.close()
1632 #sys.exit(0)
1633 #THE PROGRAM SHOULD END HERE
1634
1635 if isinstance(dataOut.header[ii][0], numpy.int32):
1636 #print(struct.unpack('i', temp)[0])
1637 dataOut.header[ii][0]=struct.unpack('i', temp)[0]
1638 if isinstance(dataOut.header[ii][0], numpy.uint64):
1639 dataOut.header[ii][0]=struct.unpack('q', temp)[0]
1640 if isinstance(dataOut.header[ii][0], numpy.int8):
1641 dataOut.header[ii][0]=struct.unpack('B', temp)[0]
1642 if isinstance(dataOut.header[ii][0], numpy.float32):
1643 dataOut.header[ii][0]=struct.unpack('f', temp)[0]
1644
1645
1646 if self.start_another_day:
1647
1648 if dataOut.header[4][0]>self.new_ending_time_seconds:
1649 print("EOF \n")
1650 if self.activator_No_Data:
1651 print("No Data")
1652 self.inputfile_DP.close()
1653 #sys.exit(0)
1654 dataOut.error = True
1655 return dataOut
1656 #print(self.activator_No_Data)
1657 self.activator_No_Data=0
1658 #dataOut.TimeBlockDate_for_dp_power=dataOut.TimeBlockDate
1659 #dataOut.TimeBlockSeconds_for_dp_power=time.mktime(time.strptime(dataOut.TimeBlockDate_for_dp_power))
1660 dataOut.TimeBlockSeconds_for_dp_power = dataOut.header[4][0]-((dataOut.nint-1)*dataOut.NAVG*2)
1661 #print(dataOut.TimeBlockSeconds_for_dp_power)
1662 dataOut.TimeBlockDate_for_dp_power=datetime.fromtimestamp(dataOut.TimeBlockSeconds_for_dp_power).strftime("%a %b %-d %H:%M:%S %Y")
1663 #print("Date: ",dataOut.TimeBlockDate_for_dp_power)
1664 #print("Seconds: ",dataOut.TimeBlockSeconds_for_dp_power)
1665 dataOut.bd_time=time.gmtime(dataOut.TimeBlockSeconds_for_dp_power)
1666 dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0
1667 dataOut.ut=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0
1668
1669
1670 if dataOut.experiment=="HP": # NRANGE*NLAG*NR # np.zeros([total_samples*nprofiles],dtype='complex64')
1671 temp=self.inputfile_DP.read(dataOut.NLAG*dataOut.NR*176*8)
1672 ii=0
1673 for l in range(dataOut.NLAG): #lag
1674 for r in range(dataOut.NR): # unflip and flip
1675 for k in range(176): #RANGE## generalizar
1676 struct.unpack('q', temp[ii:ii+8])[0]
1677 ii=ii+8
1678
1679
1680
1681 #print("A: ",dataOut.kax)
1682 for ind in range(len(self.dataOut.final_cross_products)): #final cross products
1683 temp=self.inputfile_DP.read(dataOut.DPL*2*dataOut.NDT*4) #*4 bytes
1684 ii=0
1685 #print("kabxys.shape ",kabxys.shape)
1686 #print(kabxys)
1687 for l in range(dataOut.DPL): #lag
1688 for fl in range(2): # unflip and flip
1689 for k in range(dataOut.NDT): #RANGE
1690 self.dataOut.final_cross_products[ind][k,l,fl]=struct.unpack('f', temp[ii:ii+4])[0]
1691 ii=ii+4
1692 #print("DPL*2*NDT*4 es: ", DPL*2*NDT*4)
1693 #print("B: ",dataOut.kax)
1694 ## read noise
1695 temp=self.inputfile_DP.read(dataOut.NR*4) #*4 bytes
1696 for ii in range(dataOut.NR):
1697 self.noise[ii]=struct.unpack('f', temp[ii*4:(ii+1)*4])[0]
1698 #print("NR*4 es: ", NR*4)
1699
1700
1701 ################################END input_dat_type################################
1702 '''
1703
1704 #if dataOut.input_dat_type==0:
1705
1706 if self.aux==1:
1707 #print("CurrentBlockBBBBB: ",dataOut.CurrentBlock)
1708 #print(dataOut.datatime)
1709 dataOut.TimeBlockDate_for_dp_power=dataOut.TimeBlockDate
1710
1711 #print("Date: ",dataOut.TimeBlockDate_for_dp_power)
1712 dataOut.TimeBlockSeconds_for_dp_power=time.mktime(time.strptime(dataOut.TimeBlockDate_for_dp_power))
1713 #print("Seconds: ",dataOut.TimeBlockSeconds_for_dp_power)
1714 dataOut.bd_time=time.gmtime(dataOut.TimeBlockSeconds_for_dp_power)
1715 dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0
1716 dataOut.ut=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0
1717 #print("date: ", dataOut.TimeBlockDate)
1718 self.aux=0
1719
1720 if numpy.shape(dataOut.kax)!=():
1721 #print("SELFCOUNTER",self.counter)
1722 #dataOut.flagNoData =True
1723 if self.counter==0:
1724 '''
1725 dataOut.kax_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1726 dataOut.kay_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1727 dataOut.kax2_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1728 dataOut.kay2_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1729 dataOut.kbx_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1730 dataOut.kby_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1731 dataOut.kbx2_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1732 dataOut.kby2_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1733 dataOut.kaxbx_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1734 dataOut.kaxby_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1735 dataOut.kaybx_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1736 dataOut.kayby_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1737 dataOut.kaxay_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1738 dataOut.kbxby_integrated=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
1739 '''
1740
1741 tmpx=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0],2),'float32')
1742 dataOut.kabxys_integrated=[tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx,tmpx]
1743 #self.final_cross_products=[dataOut.kax,dataOut.kay,dataOut.kbx,dataOut.kby,dataOut.kax2,dataOut.kay2,dataOut.kbx2,dataOut.kby2,dataOut.kaxbx,dataOut.kaxby,dataOut.kaybx,dataOut.kayby,dataOut.kaxay,dataOut.kbxby]
1744
1745 #print(numpy.shape(tmpx))
1746 if self.counter < dataOut.nint:
1747 #if dataOut.input_dat_type==0:
1748 dataOut.final_cross_products=[dataOut.kax,dataOut.kay,dataOut.kbx,dataOut.kby,dataOut.kax2,dataOut.kay2,dataOut.kbx2,dataOut.kby2,dataOut.kaxbx,dataOut.kaxby,dataOut.kaybx,dataOut.kayby,dataOut.kaxay,dataOut.kbxby]
1749
1750 '''
1751 dataOut.kax_integrated=dataOut.kax_integrated+dataOut.kax
1752 dataOut.kay_integrated=dataOut.kay_integrated+dataOut.kay
1753 dataOut.kax2_integrated=dataOut.kax2_integrated+dataOut.kax2
1754 dataOut.kay2_integrated=dataOut.kay2_integrated+dataOut.kay2
1755 dataOut.kbx_integrated=dataOut.kbx_integrated+dataOut.kbx
1756 dataOut.kby_integrated=dataOut.kby_integrated+dataOut.kby
1757 dataOut.kbx2_integrated=dataOut.kbx2_integrated+dataOut.kbx2
1758 dataOut.kby2_integrated=dataOut.kby2_integrated+dataOut.kby2
1759 dataOut.kaxbx_integrated=dataOut.kaxbx_integrated+dataOut.kaxbx
1760 dataOut.kaxby_integrated=dataOut.kaxby_integrated+dataOut.kaxby
1761 dataOut.kaybx_integrated=dataOut.kaybx_integrated+dataOut.kaybx
1762 dataOut.kayby_integrated=dataOut.kayby_integrated+dataOut.kayby
1763 dataOut.kaxay_integrated=dataOut.kaxay_integrated+dataOut.kaxbx
1764 dataOut.kbxby_integrated=dataOut.kbxby_integrated+dataOut.kbxby
1765 #print("KAX_BEFORE: ",self.kax_integrated)
1766 '''
1767 #print("self.final_cross_products[0]: ",self.final_cross_products[0])
1768
1769 for ind in range(len(dataOut.kabxys_integrated)): #final cross products
1770 dataOut.kabxys_integrated[ind]=dataOut.kabxys_integrated[ind]+dataOut.final_cross_products[ind]
1771 #print("ataOut.kabxys_integrated[0]: ",dataOut.kabxys_integrated[0])
1772
1773 self.counter+=1
1774 if self.counter==dataOut.nint-1:
1775 self.aux=1
1776 #dataOut.TimeBlockDate_for_dp_power=dataOut.TimeBlockDate
1777 if self.counter==dataOut.nint:
1778
1779 #dataOut.flagNoData =False
1780
1781 self.counter=0
1782 dataOut.AUX=1
1783 #self.aux=1
1784 #print("KAXBY_INTEGRATED: ",dataOut.kaxby_integrated)
1785
1786 '''
1787 else :
1788 #dataOut.kax_integrated=self.kax_integrated
1789 self.counter=0
1790
1791
1792 #print("CurrentBlock: ", dataOut.CurrentBlock)
1793 print("KAX_INTEGRATED: ",self.kax_integrated)
1794 #print("nint: ",nint)
1795 '''
1796
1797 ##print("CurrentBlock: ", dataOut.CurrentBlock)
1798 ##print("KAX_INTEGRATED: ",dataOut.kax_integrated)
1799
1800
1801 return dataOut
1802
1803
1804
1805
1806
1807
1808
1809
1810 class SumLagProducts_Old(Operation):
1811 def __init__(self, **kwargs):
1812
1813 Operation.__init__(self, **kwargs)
1814 #dataOut.rnint2=numpy.zeros(dataOut.nlags_array,'float32')
1815
1816
1817 def run(self,dataOut):
1818
1819 if dataOut.AUX: #Solo cuando ya hizo la intregacion se ejecuta
1820
1821
1822 dataOut.rnint2=numpy.zeros(dataOut.header[17][0],'float32')
1823 #print(dataOut.experiment)
1824 if dataOut.experiment=="DP":
1825 for l in range(dataOut.header[17][0]):
1826 dataOut.rnint2[l]=1.0/(dataOut.nint*dataOut.header[7][0]*12.0)
1827
1828
1829 if dataOut.experiment=="HP":
1830 for l in range(dataOut.header[17][0]):
1831 if(l==0 or (l>=3 and l <=6)):
1832 dataOut.rnint2[l]=0.5/float(dataOut.nint*dataOut.header[7][0]*16.0)
1833 else:
1834 dataOut.rnint2[l]=0.5/float(dataOut.nint*dataOut.header[7][0]*8.0)
1835 #print(dataOut.rnint2)
1836 for l in range(dataOut.header[17][0]):
1837
1838 dataOut.kabxys_integrated[4][:,l,0]=(dataOut.kabxys_integrated[4][:,l,0]+dataOut.kabxys_integrated[4][:,l,1])*dataOut.rnint2[l]
1839 dataOut.kabxys_integrated[5][:,l,0]=(dataOut.kabxys_integrated[5][:,l,0]+dataOut.kabxys_integrated[5][:,l,1])*dataOut.rnint2[l]
1840 dataOut.kabxys_integrated[6][:,l,0]=(dataOut.kabxys_integrated[6][:,l,0]+dataOut.kabxys_integrated[6][:,l,1])*dataOut.rnint2[l]
1841 dataOut.kabxys_integrated[7][:,l,0]=(dataOut.kabxys_integrated[7][:,l,0]+dataOut.kabxys_integrated[7][:,l,1])*dataOut.rnint2[l]
1842
1843 dataOut.kabxys_integrated[8][:,l,0]=(dataOut.kabxys_integrated[8][:,l,0]-dataOut.kabxys_integrated[8][:,l,1])*dataOut.rnint2[l]
1844 dataOut.kabxys_integrated[9][:,l,0]=(dataOut.kabxys_integrated[9][:,l,0]-dataOut.kabxys_integrated[9][:,l,1])*dataOut.rnint2[l]
1845 dataOut.kabxys_integrated[10][:,l,0]=(dataOut.kabxys_integrated[10][:,l,0]-dataOut.kabxys_integrated[10][:,l,1])*dataOut.rnint2[l]
1846 dataOut.kabxys_integrated[11][:,l,0]=(dataOut.kabxys_integrated[11][:,l,0]-dataOut.kabxys_integrated[11][:,l,1])*dataOut.rnint2[l]
1847
1848
1849 #print("Final Integration: ",dataOut.kabxys_integrated[4][:,l,0])
1850
1851
1852
1853
1854
1855
1856 return dataOut
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866 class BadHeights_Old(Operation):
1867 def __init__(self, **kwargs):
1868
1869 Operation.__init__(self, **kwargs)
1870
1871
1872
1873 def run(self,dataOut):
1874
1875
1876 if dataOut.AUX==1:
1877 dataOut.ibad=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0]),'int32')
1878
1879 for j in range(dataOut.header[15][0]):
1880 for l in range(dataOut.header[17][0]):
1881 ip1=j+dataOut.header[15][0]*(0+2*l)
1882 if( (dataOut.kabxys_integrated[5][j,l,0] <= 0.) or (dataOut.kabxys_integrated[4][j,l,0] <= 0.) or (dataOut.kabxys_integrated[7][j,l,0] <= 0.) or (dataOut.kabxys_integrated[6][j,l,0] <= 0.)):
1883 dataOut.ibad[j][l]=1
1884 else:
1885 dataOut.ibad[j][l]=0
1886 #print("ibad: ",dataOut.ibad)
1887
1888
1889
1890 return dataOut
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907 class NoisePower_old(Operation):
1908 def __init__(self, **kwargs):
1909
1910 Operation.__init__(self, **kwargs)
1911
1912 def hildebrand(self,dataOut,data):
1913 #print("data ",data )
1914 divider=10 # divider was originally 10
1915 noise=0.0
1916 n1=0
1917 n2=int(dataOut.header[15][0]/2)
1918 sorts= sorted(data)
1919
1920 nums_min= dataOut.header[15][0]/divider
1921 if((dataOut.header[15][0]/divider)> 2):
1922 nums_min= int(dataOut.header[15][0]/divider)
1923 else:
1924 nums_min=2
1925 sump=0.0
1926 sumq=0.0
1927 j=0
1928 cont=1
1929 while( (cont==1) and (j<n2)):
1930 sump+=sorts[j+n1]
1931 sumq+= sorts[j+n1]*sorts[j+n1]
1932 t3= sump/(j+1)
1933 j=j+1
1934 if(j> nums_min):
1935 rtest= float(j/(j-1)) +1.0/dataOut.header[7][0]
1936 t1= (sumq*j)
1937 t2=(rtest*sump*sump)
1938 if( (t1/t2) > 0.990):
1939 j=j-1
1940 sump-= sorts[j+n1]
1941 sumq-=sorts[j+n1]*sorts[j+n1]
1942 cont= 0
1943
1944 noise= sump/j
1945 stdv=numpy.sqrt((sumq- noise*noise)/(j-1))
1946 return noise
1947
1948 def run(self,dataOut):
1949
1950 if dataOut.AUX==1:
1951
1952 #print("ax2 shape ",ax2.shape)
1953 p=numpy.zeros((dataOut.header[2][0],dataOut.header[15][0],dataOut.header[17][0]),'float32')
1954 av=numpy.zeros(dataOut.header[15][0],'float32')
1955 dataOut.pnoise=numpy.zeros(dataOut.header[2][0],'float32')
1956
1957 p[0,:,:]=dataOut.kabxys_integrated[4][:,:,0]+dataOut.kabxys_integrated[5][:,:,0] #total power for channel 0, just pulse with non-flip
1958 p[1,:,:]=dataOut.kabxys_integrated[6][:,:,0]+dataOut.kabxys_integrated[7][:,:,0] #total power for channel 1
1959
1960 #print("p[0,:,:] ",p[0,:,:])
1961 #print("p[1,:,:] ",p[1,:,:])
1962
1963 for i in range(dataOut.header[2][0]):
1964 dataOut.pnoise[i]=0.0
1965 for k in range(dataOut.header[17][0]):
1966 dataOut.pnoise[i]+= self.hildebrand(dataOut,p[i,:,k])
1967 #print("dpl ",k, "pnoise[",i,"] ",pnoise[i] )
1968 dataOut.pnoise[i]=dataOut.pnoise[i]/dataOut.header[17][0]
1969
1970
1971 #print("POWERNOISE: ",dataOut.pnoise)
1972 dataOut.pan=1.0*dataOut.pnoise[0] # weights could change
1973 dataOut.pbn=1.0*dataOut.pnoise[1] # weights could change
1974 #print("dataOut.pan ",dataOut.pan, " dataOut.pbn ",dataOut.pbn)
1975 #print("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa")
1976
1977 #print("POWERNOISE: ",dataOut.pnoise)
1978
1979
1980 return dataOut
1981
1982
1983
1984
1985
1986
1987
1988
1989 class double_pulse_ACFs(Operation):
1990 def __init__(self, **kwargs):
1991
1992 Operation.__init__(self, **kwargs)
1993 self.aux=1
1994
1995 def run(self,dataOut):
1996 dataOut.pairsList=None
1997 if dataOut.AUX==1:
1998 dataOut.igcej=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0]),'int32')
1999
2000 if self.aux==1:
2001 dataOut.rhor=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0]), dtype=float)
2002 dataOut.rhoi=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0]), dtype=float)
2003 dataOut.sdp=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0]), dtype=float)
2004 dataOut.sd=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0]), dtype=float)
2005 #dataOut.igcej=numpy.zeros((dataOut.NDP,dataOut.nlags_array),'int32')
2006 dataOut.p=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0]), dtype=float)
2007 dataOut.alag=numpy.zeros(dataOut.header[15][0],'float32')
2008 for l in range(dataOut.header[17][0]):
2009 dataOut.alag[l]=l*dataOut.header[10][0]*2.0/150.0
2010 self.aux=0
2011 sn4=dataOut.pan*dataOut.pbn
2012 rhorn=0
2013 rhoin=0
2014 #p=np.zeros((ndt,dpl), dtype=float)
2015 panrm=numpy.zeros((dataOut.header[15][0],dataOut.header[17][0]), dtype=float)
2016
2017
2018 for i in range(dataOut.header[15][0]):
2019 for j in range(dataOut.header[17][0]):
2020 ################# Total power
2021 pa=numpy.abs(dataOut.kabxys_integrated[4][i,j,0]+dataOut.kabxys_integrated[5][i,j,0])
2022 pb=numpy.abs(dataOut.kabxys_integrated[6][i,j,0]+dataOut.kabxys_integrated[7][i,j,0])
2023 #print("PA",pb)
2024 st4=pa*pb
2025 dataOut.p[i,j]=pa+pb-(dataOut.pan+dataOut.pbn)
2026 dataOut.sdp[i,j]=2*dataOut.rnint2[j]*((pa+pb)*(pa+pb))
2027 ## ACF
2028 rhorp=dataOut.kabxys_integrated[8][i,j,0]+dataOut.kabxys_integrated[11][i,j,0]
2029 rhoip=dataOut.kabxys_integrated[10][i,j,0]-dataOut.kabxys_integrated[9][i,j,0]
2030 if ((pa>dataOut.pan)&(pb>dataOut.pbn)):
2031 #print("dataOut.pnoise[0]: ",dataOut.pnoise[0])
2032 #print("dataOut.pnoise[1]: ",dataOut.pnoise[1])
2033 #print("OKKKKKKKKKKKKKKK")
2034 ss4=numpy.abs((pa-dataOut.pan)*(pb-dataOut.pbn))
2035 #print("ss4: ",ss4)
2036 #print("OKKKKKKKKKKKKKKK")
2037 panrm[i,j]=math.sqrt(ss4)
2038 rnorm=1/panrm[i,j]
2039 #print("rnorm: ",rnorm)get_number_density
2040 #print("OKKKKKKKKKKKKKKK")
2041
2042 ## ACF
2043 dataOut.rhor[i,j]=rhorp*rnorm
2044 dataOut.rhoi[i,j]=rhoip*rnorm
2045 #print("rhoi: ",dataOut.rhoi)
2046 #print("OKKKKKKKKKKKKKKK")
2047 ############# Compute standard error for ACF
2048 stoss4=st4/ss4
2049 snoss4=sn4/ss4
2050 rp2=((rhorp*rhorp)+(rhoip*rhoip))/st4
2051 rn2=((rhorn*rhorn)+(rhoin*rhoin))/sn4
2052 rs2=(dataOut.rhor[i,j]*dataOut.rhor[i,j])+(dataOut.rhoi[i,j]*dataOut.rhoi[i,j])
2053 st=1.0+rs2*(stoss4-(2*math.sqrt(stoss4*snoss4)))
2054 stn=1.0+rs2*(snoss4-(2*math.sqrt(stoss4*snoss4)))
2055 dataOut.sd[i,j]=((stoss4*((1.0+rp2)*st+(2.0*rp2*rs2*snoss4)-4.0*math.sqrt(rs2*rp2)))+(0.25*snoss4*((1.0+rn2)*stn+(2.0*rn2*rs2*stoss4)-4.0*math.sqrt(rs2*rn2))))*dataOut.rnint2[j]
2056 dataOut.sd[i,j]=numpy.abs(dataOut.sd[i,j])
2057 #print("sd: ",dataOut.sd)
2058 #print("OKKKKKKKKKKKKKKK")
2059 else: #default values for bad points
2060 rnorm=1/math.sqrt(st4)
2061 dataOut.sd[i,j]=1.e30
2062 dataOut.ibad[i,j]=4
2063 dataOut.rhor[i,j]=rhorp*rnorm
2064 dataOut.rhoi[i,j]=rhoip*rnorm
2065 if ((pa/dataOut.pan-1.0)>2.25*(pb/dataOut.pbn-1.0)):
2066 dataOut.igcej[i,j]=1
2067
2068 #print("sdp",dataOut.sdp)
2069
2070 return dataOut
2071
2072
2073
2074
2075
2076
2077
2078 class faraday_angle_and_power_double_pulse(Operation):
2079 def __init__(self, **kwargs):
2080
2081 Operation.__init__(self, **kwargs)
2082 self.aux=1
2083
2084 def run(self,dataOut):
2085 #dataOut.NRANGE=NRANGE
2086 #dataOut.H0=H0
2087 ######### H0 Y NRANGE SON PARAMETROS?
2088
2089 if dataOut.AUX==1:
2090 if self.aux==1:
2091 dataOut.h2=numpy.zeros(dataOut.header[15][0],'float32')
2092 dataOut.range1=numpy.zeros(dataOut.header[15][0],order='F',dtype='float32')
2093 dataOut.sdn2=numpy.zeros(dataOut.header[15][0],'float32')
2094 dataOut.ph2=numpy.zeros(dataOut.header[15][0],'float32')
2095 dataOut.sdp2=numpy.zeros(dataOut.header[15][0],'float32')
2096 dataOut.ibd=numpy.zeros(dataOut.header[15][0],'float32')
2097 dataOut.phi=numpy.zeros(dataOut.header[15][0],'float32')
2098 self.aux=0
2099 #print("p: ",dataOut.p)
2100
2101
2102 for i in range(dataOut.header[15][0]):
2103 dataOut.range1[i]=dataOut.header[9][0] + i*dataOut.header[10][0] # (float) header.h0 + (float)i * header.dh
2104 dataOut.h2[i]=dataOut.range1[i]**2
2105
2106 #print("sd: ",dataOut.sd)
2107 #print("OIKKKKKKKKKKKKKKK")
2108 #print("ibad: ",dataOut.ibad)
2109 #print("igcej: ",dataOut.igcej)
2110 for j in range(dataOut.header[15][0]):
2111 dataOut.ph2[j]=0.
2112 dataOut.sdp2[j]=0.
2113 ri=dataOut.rhoi[j][0]/dataOut.sd[j][0]
2114 rr=dataOut.rhor[j][0]/dataOut.sd[j][0]
2115 dataOut.sdn2[j]=1./dataOut.sd[j][0]
2116 #print("sdn2: ",dataOut.sdn2)
2117 #print("OIKKKKKKKKKKKKKKK")
2118 pt=0.# // total power
2119 st=0.# // total signal
2120 ibt=0# // bad lags
2121 ns=0# // no. good lags
2122 for l in range(dataOut.header[17][0]):
2123 #add in other lags if outside of e-jet contamination
2124 if( (dataOut.igcej[j][l] == 0) and (dataOut.ibad[j][l] == 0) ):
2125 #print("dataOut.p[j][l]: ",dataOut.p[j][l])
2126 dataOut.ph2[j]+=dataOut.p[j][l]/dataOut.sdp[j][l]
2127 dataOut.sdp2[j]=dataOut.sdp2[j]+1./dataOut.sdp[j][l]
2128 ns+=1
2129
2130 pt+=dataOut.p[j][l]/dataOut.sdp[j][l]
2131 st+=1./dataOut.sdp[j][l]
2132 ibt|=dataOut.ibad[j][l];
2133 #print("pt: ",pt)
2134 #print("st: ",st)
2135 if(ns!= 0):
2136 dataOut.ibd[j]=0
2137 dataOut.ph2[j]=dataOut.ph2[j]/dataOut.sdp2[j]
2138 dataOut.sdp2[j]=1./dataOut.sdp2[j]
2139 else:
2140 dataOut.ibd[j]=ibt
2141 dataOut.ph2[j]=pt/st
2142 #print("ph2: ",dataOut.ph2)
2143 dataOut.sdp2[j]=1./st
2144 #print("ph2: ",dataOut.ph2)
2145 dataOut.ph2[j]=dataOut.ph2[j]*dataOut.h2[j]
2146 dataOut.sdp2[j]=numpy.sqrt(dataOut.sdp2[j])*dataOut.h2[j]
2147 rr=rr/dataOut.sdn2[j]
2148 ri=ri/dataOut.sdn2[j]
2149 #rm[j]=np.sqrt(rr*rr + ri*ri) it is not used in c program
2150 dataOut.sdn2[j]=1./(dataOut.sdn2[j]*(rr*rr + ri*ri))
2151 if( (ri == 0.) and (rr == 0.) ):
2152 dataOut.phi[j]=0.
2153 else:
2154 dataOut.phi[j]=math.atan2( ri , rr )
2155
2156 #print("ph2: ",dataOut.ph2)
2157 #print("sdp2: ",dataOut.sdp2)
2158 #print("sdn2",dataOut.sdn2)
2159
2160
2161 return dataOut
2162
2163
2164
2165
2166
2167
2168 class get_number_density(Operation):
2169 def __init__(self, **kwargs):
2170
2171 Operation.__init__(self, **kwargs)
2172 self.aux=1
2173
2174 def run(self,dataOut,NSHTS=None,RATE=None):
2175 dataOut.NSHTS=NSHTS
2176 dataOut.RATE=RATE
2177 if dataOut.AUX==1:
2178 #dataOut.TimeBlockSeconds=time.mktime(time.strptime(dataOut.TimeBlockDate))
2179 #dataOut.bd_time=time.gmtime(dataOut.TimeBlockSeconds)
2180 #dataOut.ut=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0
2181 if self.aux==1:
2182 dataOut.dphi=numpy.zeros(dataOut.header[15][0],'float32')
2183 dataOut.sdn1=numpy.zeros(dataOut.header[15][0],'float32')
2184 self.aux=0
2185 theta=numpy.zeros(dataOut.header[15][0],dtype=numpy.complex_)
2186 thetai=numpy.zeros(dataOut.header[15][0],dtype=numpy.complex_)
2187 # use complex numbers for phase
2188 for i in range(dataOut.NSHTS):
2189 theta[i]=math.cos(dataOut.phi[i])+math.sin(dataOut.phi[i])*1j
2190 thetai[i]=-math.sin(dataOut.phi[i])+math.cos(dataOut.phi[i])*1j
2191
2192 # differentiate and convert to number density
2193 ndphi=dataOut.NSHTS-4
2194 #print("dataOut.dphiBEFORE: ",dataOut.dphi)
2195 for i in range(2,dataOut.NSHTS-2):
2196 fact=(-0.5/(dataOut.RATE*dataOut.header[10][0]))*dataOut.bki[i]
2197 #four-point derivative, no phase unwrapping necessary
2198 dataOut.dphi[i]=((((theta[i+1]-theta[i-1])+(2.0*(theta[i+2]-theta[i-2])))/thetai[i])).real/10.0
2199 #print("dataOut.dphi[i]AFTER: ",dataOut.dphi[i])
2200 dataOut.dphi[i]=abs(dataOut.dphi[i]*fact)
2201 dataOut.sdn1[i]=(4.*(dataOut.sdn2[i-2]+dataOut.sdn2[i+2])+dataOut.sdn2[i-1]+dataOut.sdn2[i+1])
2202 dataOut.sdn1[i]=numpy.sqrt(dataOut.sdn1[i])*fact
2203 '''
2204 #print("date: ",dataOut.TimeBlockDate)
2205 #print("CurrentBlock: ", dataOut.CurrentBlock)
2206 #print("NSHTS: ",dataOut.NSHTS)
2207 print("phi: ",dataOut.phi)
2208 #print("header[10][0]: ",dataOut.DH)
2209 print("bkibki: ",dataOut.bki)
2210 #print("RATE: ",dataOut.RATE)
2211 print("sdn2: ",dataOut.sdn2)
2212 print("dphi: ",dataOut.dphi)
2213 print("sdn1: ",dataOut.sdn1)
2214 print("ph2: ",dataOut.ph2)
2215 print("sdp2: ",dataOut.sdp2)
2216 print("sdn1: ",dataOut.sdn1)
2217 '''
2218
2219 '''
2220 Al finallllllllllllllllllllllllllllllllllllllllllllllllllllllllll
2221 for i in range(dataOut.NSHTS):
2222 dataOut.ph2[i]=(max(1.0, dataOut.ph2[i]))
2223 dataOut.dphi[i]=(max(1.0, dataOut.dphi[i]))
2224 #print("dphi ",dphi)
2225 # threshold - values less than 10⁴
2226 for i in range(dataOut.NSHTS):
2227 if dataOut.ph2[i]<10000:
2228 dataOut.ph2[i]=10000
2229
2230 # threshold values more than 10⁷
2231 for i in range(dataOut.NSHTS):
2232 if dataOut.ph2[i]>10000000:#
2233 dataOut.ph2[i]=10000000
2234
2235 ## filter for errors
2236 for i in range(dataOut.NSHTS):
2237 if dataOut.sdp2[i]>100000:#
2238 dataOut.ph2[i]=10000
2239 '''
2240
2241
2242
2243
2244 return dataOut
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256 class normalize_dp_power2(Operation):
2257 def __init__(self, **kwargs):
2258
2259 Operation.__init__(self, **kwargs)
2260 self.aux=1
2261
2262 def normal(self,a,b,n,m):
2263 chmin=1.0e30
2264 chisq=numpy.zeros(150,'float32')
2265 temp=numpy.zeros(150,'float32')
2266
2267 for i in range(2*m-1):
2268 an=al=be=chisq[i]=0.0
2269 for j in range(int(n/m)):
2270 k=int(j+i*n/(2*m))
2271 if(a[k]>0.0 and b[k]>0.0):
2272 al+=a[k]*b[k]
2273 be+=b[k]*b[k]
2274
2275 if(be>0.0):
2276 temp[i]=al/be
2277 else:
2278 temp[i]=1.0
2279
2280 for j in range(int(n/m)):
2281 k=int(j+i*n/(2*m))
2282 if(a[k]>0.0 and b[k]>0.0):
2283 chisq[i]+=(numpy.log10(b[k]*temp[i]/a[k]))**2
2284 an=an+1
2285
2286 if(chisq[i]>0.0):
2287 chisq[i]/=an
2288
2289
2290 for i in range(int(2*m-1)):
2291 if(chisq[i]<chmin and chisq[i]>1.0e-6):
2292 chmin=chisq[i]
2293 cf=temp[i]
2294 return cf
2295
2296
2297
2298 def run(self,dataOut,cut0=None,cut1=None):
2299 dataOut.cut0=float(cut0)
2300 dataOut.cut1=float(cut1)
2301 if dataOut.AUX==1:
2302 #print("dateBefore: ",dataOut.TimeBlockDate_for_dp_power)
2303 #print("dateNow: ",dataOut.TimeBlockDate)
2304 if self.aux==1:
2305 dataOut.cf=numpy.zeros(1,'float32')
2306 dataOut.cflast=numpy.zeros(1,'float32')
2307 self.aux=0
2308
2309 night_first=300.0
2310 night_first1= 310.0
2311 night_end= 450.0
2312 day_first=250.0
2313 day_end=400.0
2314 day_first_sunrise=190.0
2315 day_end_sunrise=280.0
2316
2317 if(dataOut.ut>4.0 and dataOut.ut<11.0): #early
2318 i2=(night_end-dataOut.range1[0])/dataOut.header[10][0]
2319 i1=(night_first -dataOut.range1[0])/dataOut.header[10][0]
2320 elif (dataOut.ut>0.0 and dataOut.ut<4.0): #night
2321 i2=(night_end-dataOut.range1[0])/dataOut.header[10][0]
2322 i1=(night_first1 -dataOut.range1[0])/dataOut.header[10][0]
2323 elif (dataOut.ut>=11.0 and dataOut.ut<13.5): #sunrise
2324 i2=( day_end_sunrise-dataOut.range1[0])/dataOut.header[10][0]
2325 i1=(day_first_sunrise - dataOut.range1[0])/dataOut.header[10][0]
2326 else:
2327 i2=(day_end-dataOut.range1[0])/dataOut.header[10][0]
2328 i1=(day_first -dataOut.range1[0])/dataOut.header[10][0]
2329
2330 i1=int(i1)
2331 i2=int(i2)
2332 #print("ph2: ",dataOut.ph2)
2333 dataOut.cf=self.normal(dataOut.dphi[i1::], dataOut.ph2[i1::], i2-i1, 1)
2334
2335 #print("n in:",i1,"(",dataOut.range1[i1],"), i2=",i2,"(",dataOut.range1[i2],"), ut=",dataOut.ut,", cf=",dataOut.cf,", cf_last=",
2336 #dataOut.cflast)
2337 # in case of spread F, normalize much higher
2338 if(dataOut.cf<dataOut.cflast[0]/10.0):
2339 i1=(night_first1+100.-dataOut.range1[0])/dataOut.header[10][0]
2340 i2=(night_end+100.0-dataOut.range1[0])/dataOut.header[10][0]
2341 i1=int(i1)
2342 i2=int(i2)
2343 #print("normal over: ",i1,"(",dataOut.range1[i1],") ",i2,"(",dataOut.range1[i2],") => cf: ",dataOut.cf," cflast: ", dataOut.cflast)
2344 dataOut.cf=self.normal(dataOut.dphi[int(i1)::], dataOut.ph2[int(i1)::], int(i2-i1), 1)
2345 dataOut.cf=dataOut.cflast[0]
2346
2347 #print(">>>i1=",i1,"(",dataOut.range1[i1],"), i2=",i2,"(",dataOut.range1[i2],"), ut=",dataOut.ut,", cf=",dataOut.cf,", cf_last=",
2348 # dataOut.cflast," (",dataOut.cf/dataOut.cflast,"), cut=",dataOut.cut0," ",dataOut.cut1)
2349 dataOut.cflast[0]=dataOut.cf
2350
2351 ## normalize double pulse power and error bars to Faraday
2352 for i in range(dataOut.NSHTS):
2353 dataOut.ph2[i]*=dataOut.cf
2354 dataOut.sdp2[i]*=dataOut.cf
2355 #print("******* correction factor: ",dataOut.cf)
2356
2357 #print(dataOut.ph2)
2358
2359 for i in range(dataOut.NSHTS):
2360 dataOut.ph2[i]=(max(1.0, dataOut.ph2[i]))
2361 dataOut.dphi[i]=(max(1.0, dataOut.dphi[i]))
2362 #print("dphi ",dphi)
2363 # threshold - values less than 10⁴
2364
2365 '''
2366 for i in range(dataOut.NSHTS):
2367 if dataOut.ph2[i]<10000:
2368 dataOut.ph2[i]=10000
2369
2370 # threshold values more than 10⁷
2371 for i in range(dataOut.NSHTS):
2372 if dataOut.ph2[i]>10000000:#
2373 dataOut.ph2[i]=10000000
2374
2375 ## filter for errors
2376 for i in range(dataOut.NSHTS):
2377 if dataOut.sdp2[i]>100000:#
2378 dataOut.ph2[i]=10000
2379 '''
2380
2381
2382
2383
2384
2385 '''
2386 #print("date: ",dataOut.TimeBlockDate)
2387 #print("CurrentBlock: ", dataOut.CurrentBlock)
2388 #print("NSHTS: ",dataOut.NSHTS)
2389 print("phi: ",dataOut.phi)
2390 #print("header[10][0]: ",dataOut.DH)
2391 print("bkibki: ",dataOut.bki)
2392 #print("RATE: ",dataOut.RATE)
2393 print("sdn2: ",dataOut.sdn2)
2394 print("dphi: ",dataOut.dphi)
2395 print("sdn1: ",dataOut.sdn1)
2396 print("ph2: ",dataOut.ph2)
2397 print("sdp2: ",dataOut.sdp2)
2398 print("sdn1: ",dataOut.sdn1)
2399 '''
2400
2401
2402
2403
2404
2405
2406
2407 return dataOut
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423 '''
2424 from ctypes import *
2425 class IDATE(Structure):
2426 _fields_ = [
2427 ("year", c_int),
2428 ("moda", c_int),
2429 ("hrmn", c_int),
2430 ("sec", c_int),
2431 ("secs", c_int),
2432 ]
2433 #typedef struct IDATE {int year,moda,hrmn,sec,secs;} idate;
2434 '''
2435
2436
2437
2438
2439 '''
2440 class get_number_density(Operation):
2441 def __init__(self, **kwargs):
2442
2443 Operation.__init__(self, **kwargs)
2444
2445 #self.aux=1
2446 '''
2447
2448 '''
2449 def IDATE(Structure):
2450
2451 _fields_ = [
2452 ("year", c_int),
2453 ("moda", c_int),
2454 ("hrmn", c_int),
2455 ("sec", c_int),
2456 ("secs", c_int),
2457 ]
2458
2459 '''
2460
2461
2462
2463
2464 '''
2465 def run(self,dataOut):
2466 '''
2467 '''
2468 if dataOut.CurrentBlock==1 and self.aux==1:
2469
2470 #print("CurrentBlock: ",dataOut.CurrentBlock)
2471
2472 dataOut.TimeBlockSeconds=time.mktime(time.strptime(dataOut.TimeBlockDate))
2473 #print("time1: ",dataOut.TimeBlockSeconds)
2474
2475 #print("date: ",dataOut.TimeBlockDate)
2476 dataOut.bd_time=time.gmtime(dataOut.TimeBlockSeconds)
2477 #print("bd_time: ",dataOut.bd_time)
2478 dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0
2479 #print("year: ",dataOut.year)
2480 dataOut.ut=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0
2481 #print("ut: ",dataOut.ut)
2482 self.aux=0
2483
2484
2485
2486
2487 '''
2488 #print("CurrentBlock: ",dataOut.CurrentBlock)
2489 #print("date: ",dataOut.firsttime)
2490 #print("bd_time: ",time.strptime(dataOut.datatime.ctime()))
2491 #mkfact_short.mkfact(year,h,bfm,thb,bki,dataOut.NDP)
2492 #print("CurrentBlock: ",dataOut.CurrentBlock)
2493 '''
2494 if dataOut.AUX==1:
2495 '''
2496 '''
2497 #begin=IDATE()
2498 #begin.year=dataOut.bd_time.tm_year
2499 #begin.moda=100*(dataOut.bd_time.tm_mon)+dataOut.bd_time.tm_mday
2500 #begin.hrmn=100*dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min
2501 #begin.sec=dataOut.bd_time.tm_sec
2502 #begin.secs=dataOut.bd_time.tm_sec+60*(dataOut.bd_time.tm_min+60*(dataOut.bd_time.tm_hour+24*(dataOut.bd_time.tm_yday-1)))
2503 h=numpy.arange(0.0,15.0*dataOut.NDP,15.0,dtype='float32')
2504 bfm=numpy.zeros(dataOut.NDP,dtype='float32')
2505 bfm=numpy.array(bfm,order='F')
2506 thb=numpy.zeros(dataOut.NDP,dtype='float32')
2507 thb=numpy.array(thb,order='F')
2508 bki=numpy.zeros(dataOut.NDP,dtype='float32')
2509 bki=numpy.array(thb,order='F')
2510 #yearmanually=2019.9285714285713
2511 #print("year manually: ",yearmanually)
2512 #print("year: ",dataOut.year)
2513 mkfact_short.mkfact(dataOut.year,h,bfm,thb,bki,dataOut.NDP)
2514 #print("tm ",tm)
2515 '''
2516 '''
2517 print("year ",dataOut.year)
2518 print("h ", dataOut.h)
2519 print("bfm ", dataOut.bfm)
2520 print("thb ", dataOut.thb)
2521 print("bki ", dataOut.bki)
2522 '''
2523
2524
2525
2526
2527 '''
2528 print("CurrentBlock: ",dataOut.CurrentBlock)
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539 return dataOut
2540 '''
2541
2542
2543
2544
2545
2546
2547 class test(Operation):
2548 def __init__(self, **kwargs):
2549
2550 Operation.__init__(self, **kwargs)
2551
2552
2553
2554
2555 def run(self,dataOut,tt=10):
2556
2557 print("tt: ",tt)
2558
2559
2560
2561 return dataOut
@@ -76,6 +76,8 def hildebrand_sekhon(data, navg):
76 76 """
77 77
78 78 sortdata = numpy.sort(data, axis=None)
79 #print(numpy.shape(data))
80 #exit()
79 81 '''
80 82 lenOfData = len(sortdata)
81 83 nums_min = lenOfData*0.2
@@ -273,13 +275,13 class JROData(GenericData):
273 275 '''
274 276 '''
275 277 return self.radarControllerHeaderObj.ippSeconds
276
278
277 279 @ippSeconds.setter
278 280 def ippSeconds(self, ippSeconds):
279 281 '''
280 282 '''
281 283 self.radarControllerHeaderObj.ippSeconds = ippSeconds
282
284
283 285 @property
284 286 def code(self):
285 287 '''
@@ -370,7 +372,7 class Voltage(JROData):
370 372 self.flagShiftFFT = False
371 373 self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil
372 374 self.profileIndex = 0
373 self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt',
375 self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt',
374 376 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp']
375 377
376 378 def getNoisebyHildebrand(self, channel=None):
@@ -428,6 +430,103 class Voltage(JROData):
428 430 noise = property(getNoise, "I'm the 'nHeights' property.")
429 431
430 432
433 class CrossProds(JROData):
434
435 # data es un numpy array de 2 dmensiones (canales, alturas)
436 data = None
437
438 def __init__(self):
439 '''
440 Constructor
441 '''
442
443 self.useLocalTime = True
444 '''
445 self.radarControllerHeaderObj = RadarControllerHeader()
446 self.systemHeaderObj = SystemHeader()
447 self.type = "Voltage"
448 self.data = None
449 # self.dtype = None
450 # self.nChannels = 0
451 # self.nHeights = 0
452 self.nProfiles = None
453 self.heightList = None
454 self.channelList = None
455 # self.channelIndexList = None
456 self.flagNoData = True
457 self.flagDiscontinuousBlock = False
458 self.utctime = None
459 self.timeZone = None
460 self.dstFlag = None
461 self.errorCount = None
462 self.nCohInt = None
463 self.blocksize = None
464 self.flagDecodeData = False # asumo q la data no esta decodificada
465 self.flagDeflipData = False # asumo q la data no esta sin flip
466 self.flagShiftFFT = False
467 self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil
468 self.profileIndex = 0
469
470
471 def getNoisebyHildebrand(self, channel=None):
472
473
474 if channel != None:
475 data = self.data[channel]
476 nChannels = 1
477 else:
478 data = self.data
479 nChannels = self.nChannels
480
481 noise = numpy.zeros(nChannels)
482 power = data * numpy.conjugate(data)
483
484 for thisChannel in range(nChannels):
485 if nChannels == 1:
486 daux = power[:].real
487 else:
488 daux = power[thisChannel, :].real
489 noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt)
490
491 return noise
492
493 def getNoise(self, type=1, channel=None):
494
495 if type == 1:
496 noise = self.getNoisebyHildebrand(channel)
497
498 return noise
499
500 def getPower(self, channel=None):
501
502 if channel != None:
503 data = self.data[channel]
504 else:
505 data = self.data
506
507 power = data * numpy.conjugate(data)
508 powerdB = 10 * numpy.log10(power.real)
509 powerdB = numpy.squeeze(powerdB)
510
511 return powerdB
512
513 def getTimeInterval(self):
514
515 timeInterval = self.ippSeconds * self.nCohInt
516
517 return timeInterval
518
519 noise = property(getNoise, "I'm the 'nHeights' property.")
520 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
521 '''
522 def getTimeInterval(self):
523
524 timeInterval = self.ippSeconds * self.nCohInt
525
526 return timeInterval
527
528
529
431 530 class Spectra(JROData):
432 531
433 532 def __init__(self):
@@ -461,7 +560,7 class Spectra(JROData):
461 560 self.ippFactor = 1
462 561 self.beacon_heiIndexList = []
463 562 self.noise_estimation = None
464 self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt',
563 self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt',
465 564 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles']
466 565
467 566 def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None):
@@ -611,7 +710,7 class Spectra(JROData):
611 710 print("This property should not be initialized")
612 711
613 712 return
614
713
615 714 noise = property(getNoise, setValue, "I'm the 'nHeights' property.")
616 715
617 716
@@ -708,7 +807,7 class Fits(JROData):
708 807 return self.ipp_sec
709 808
710 809 noise = property(getNoise, "I'm the 'nHeights' property.")
711
810
712 811
713 812 class Correlation(JROData):
714 813
@@ -889,6 +988,7 class Parameters(Spectra):
889 988 else:
890 989 return self.paramInterval
891 990
991
892 992 def setValue(self, value):
893 993
894 994 print("This property should not be initialized")
@@ -137,7 +137,7 class BasicHeader(Header):
137 137 timeZone = None
138 138 dstFlag = None
139 139 errorCount = None
140 datatime = None
140 F = None
141 141 structure = BASIC_STRUCTURE
142 142 __LOCALTIME = None
143 143
@@ -363,6 +363,7 class RadarControllerHeader(Header):
363 363 self.expType = int(header['nExpType'][0])
364 364 self.nTx = int(header['nNTx'][0])
365 365 self.ipp = float(header['fIpp'][0])
366 #print(self.ipp)
366 367 self.txA = float(header['fTxA'][0])
367 368 self.txB = float(header['fTxB'][0])
368 369 self.nWindows = int(header['nNumWindows'][0])
@@ -534,6 +535,7 class RadarControllerHeader(Header):
534 535 def get_ippSeconds(self):
535 536 '''
536 537 '''
538
537 539 ippSeconds = 2.0 * 1000 * self.ipp / SPEED_OF_LIGHT
538 540
539 541 return ippSeconds
@@ -640,6 +642,7 class ProcessingHeader(Header):
640 642 self.nWindows = int(header['nNumWindows'][0])
641 643 self.processFlags = header['nProcessFlags']
642 644 self.nCohInt = int(header['nCoherentIntegrations'][0])
645
643 646 self.nIncohInt = int(header['nIncoherentIntegrations'][0])
644 647 self.totalSpectra = int(header['nTotalSpectra'][0])
645 648
@@ -903,4 +906,4 def get_procflag_dtype(index):
903 906
904 907 def get_dtype_width(index):
905 908
906 return DTYPE_WIDTH[index] No newline at end of file
909 return DTYPE_WIDTH[index]
@@ -3,3 +3,4 from .jroplot_spectra import *
3 3 from .jroplot_heispectra import *
4 4 from .jroplot_correlation import *
5 5 from .jroplot_parameters import *
6 from .jroplot_voltage_lags import *
@@ -220,6 +220,10 class Plot(Operation):
220 220 self.zmin = kwargs.get('zmin', None)
221 221 self.zmax = kwargs.get('zmax', None)
222 222 self.zlimits = kwargs.get('zlimits', None)
223 self.xlimits = kwargs.get('xlimits', None)
224 self.xstep_given = kwargs.get('xstep_given', None)
225 self.ystep_given = kwargs.get('ystep_given', None)
226 self.autoxticks = kwargs.get('autoxticks', True)
223 227 self.xmin = kwargs.get('xmin', None)
224 228 self.xmax = kwargs.get('xmax', None)
225 229 self.xrange = kwargs.get('xrange', 12)
@@ -271,7 +275,7 class Plot(Operation):
271 275
272 276 self.setup()
273 277
274 self.time_label = 'LT' if self.localtime else 'UTC'
278 self.time_label = 'LT' if self.localtime else 'UTC'
275 279
276 280 if self.width is None:
277 281 self.width = 8
@@ -376,7 +380,7 class Plot(Operation):
376 380 '''
377 381 Set min and max values, labels, ticks and titles
378 382 '''
379
383
380 384 for n, ax in enumerate(self.axes):
381 385 if ax.firsttime:
382 386 if self.xaxis != 'time':
@@ -459,14 +463,14 class Plot(Operation):
459 463
460 464 self.plot()
461 465 self.format()
462
466
463 467 for n, fig in enumerate(self.figures):
464 468 if self.nrows == 0 or self.nplots == 0:
465 469 log.warning('No data', self.name)
466 470 fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center')
467 471 fig.canvas.manager.set_window_title(self.CODE)
468 472 continue
469
473
470 474 fig.canvas.manager.set_window_title('{} - {}'.format(self.title,
471 475 self.getDateTime(self.data.max_time).strftime('%Y/%m/%d')))
472 476 fig.canvas.draw()
@@ -476,7 +480,7 class Plot(Operation):
476 480
477 481 if self.save:
478 482 self.save_figure(n)
479
483
480 484 if self.server:
481 485 self.send_to_server()
482 486
@@ -523,6 +527,7 class Plot(Operation):
523 527
524 528 figname = os.path.join(
525 529 self.save,
530 self.save_code,
526 531 '{}_{}.png'.format(
527 532 self.save_code,
528 533 self.getDateTime(self.data.min_time).strftime(
@@ -604,7 +609,7 class Plot(Operation):
604 609 self.ncols: number of cols
605 610 self.nplots: number of plots (channels or pairs)
606 611 self.ylabel: label for Y axes
607 self.titles: list of axes title
612 self.titles: list of axes title
608 613
609 614 '''
610 615 raise NotImplementedError
@@ -631,7 +636,7 class Plot(Operation):
631 636 '''
632 637 Main plotting routine
633 638 '''
634
639
635 640 if self.isConfig is False:
636 641 self.__setup(**kwargs)
637 642
@@ -667,7 +672,7 class Plot(Operation):
667 672 dt = self.getDateTime(tm)
668 673 if self.xmin is None:
669 674 self.tmin = tm
670 self.xmin = dt.hour
675 self.xmin = dt.hour
671 676 minutes = (self.xmin-int(self.xmin)) * 60
672 677 seconds = (minutes - int(minutes)) * 60
673 678 self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) -
@@ -690,4 +695,3 class Plot(Operation):
690 695 self.__plot()
691 696 if self.data and not self.data.flagNoData and self.pause:
692 697 figpause(10)
693
@@ -46,12 +46,24 class DobleGaussianPlot(SpectraPlot):
46 46 # colormap = 'jet'
47 47 # plot_type = 'pcolor'
48 48
49
49 50 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
50 51 '''
51 52 Plot SpectraCut with Double Gaussian Fit
52 53 '''
53 54 CODE = 'cut_gaussian_fit'
54 55
56
57 class SpectralFitObliquePlot(SpectraPlot):
58 '''
59 Plot for Spectral Oblique
60 '''
61 CODE = 'spc_moments'
62 colormap = 'jet'
63 plot_type = 'pcolor'
64
65
66
55 67 class SnrPlot(RTIPlot):
56 68 '''
57 69 Plot for SNR Data
@@ -179,7 +191,7 class GenericRTIPlot(Plot):
179 191 self.nrows = self.data.shape('param')[0]
180 192 self.nplots = self.nrows
181 193 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
182
194
183 195 if not self.xlabel:
184 196 self.xlabel = 'Time'
185 197
@@ -367,4 +379,3 class PolarMapPlot(Plot):
367 379 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
368 380 self.titles = ['{} {}'.format(
369 381 self.data.parameters[x], title) for x in self.channels]
370
This diff has been collapsed as it changes many lines, (535 lines changed) Show them Hide them
@@ -23,6 +23,7 class SpectraPlot(Plot):
23 23 buffering = False
24 24
25 25 def setup(self):
26
26 27 self.nplots = len(self.data.channels)
27 28 self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
28 29 self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
@@ -32,7 +33,7 class SpectraPlot(Plot):
32 33 self.width = 4 * self.ncols
33 34 else:
34 35 self.width = 3.5 * self.ncols
35 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
36 self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18})
36 37 self.ylabel = 'Range [km]'
37 38
38 39 def update(self, dataOut):
@@ -56,6 +57,9 class SpectraPlot(Plot):
56 57 return data, meta
57 58
58 59 def plot(self):
60
61 #print(self.xaxis)
62 #exit(1)
59 63 if self.xaxis == "frequency":
60 64 x = self.data.xrange[0]
61 65 self.xlabel = "Frequency (kHz)"
@@ -78,6 +82,9 class SpectraPlot(Plot):
78 82 data = self.data[-1]
79 83 z = data['spc']
80 84
85 self.CODE2 = 'spc_oblique'
86
87
81 88 for n, ax in enumerate(self.axes):
82 89 noise = data['noise'][n]
83 90 if self.CODE == 'spc_moments':
@@ -91,6 +98,7 class SpectraPlot(Plot):
91 98 self.xmin = self.xmin if self.xmin else -self.xmax
92 99 self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
93 100 self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
101 #print(numpy.shape(x))
94 102 ax.plt = ax.pcolormesh(x, y, z[n].T,
95 103 vmin=self.zmin,
96 104 vmax=self.zmax,
@@ -105,7 +113,6 class SpectraPlot(Plot):
105 113 if self.CODE == 'spc_moments':
106 114 ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0]
107 115 if self.CODE == 'gaussian_fit':
108 # ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0]
109 116 ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0]
110 117 ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0]
111 118 else:
@@ -116,11 +123,114 class SpectraPlot(Plot):
116 123 if self.CODE == 'spc_moments':
117 124 ax.plt_mean.set_data(mean, y)
118 125 if self.CODE == 'gaussian_fit':
119 # ax.plt_mean.set_data(mean, y)
120 126 ax.plt_gau0.set_data(gau0, y)
121 127 ax.plt_gau1.set_data(gau1, y)
122 128 self.titles.append('CH {}: {:3.2f}dB'.format(n, noise))
123 129
130 class SpectraObliquePlot(Plot):
131 '''
132 Plot for Spectra data
133 '''
134
135 CODE = 'spc'
136 colormap = 'jet'
137 plot_type = 'pcolor'
138
139 def setup(self):
140 self.xaxis = "oblique"
141 self.nplots = len(self.data.channels)
142 self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
143 self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
144 self.height = 2.6 * self.nrows
145 self.cb_label = 'dB'
146 if self.showprofile:
147 self.width = 4 * self.ncols
148 else:
149 self.width = 3.5 * self.ncols
150 self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18})
151 self.ylabel = 'Range [km]'
152
153 def plot(self):
154
155 #print(self.xaxis)
156 #exit(1)
157 if self.xaxis == "frequency":
158 x = self.data.xrange[0]
159 self.xlabel = "Frequency (kHz)"
160 elif self.xaxis == "time":
161 x = self.data.xrange[1]
162 self.xlabel = "Time (ms)"
163 else:
164 x = self.data.xrange[2]
165 self.xlabel = "Velocity (m/s)"
166
167 if self.CODE == 'spc_moments':
168 x = self.data.xrange[2]
169 self.xlabel = "Velocity (m/s)"
170
171 self.titles = []
172 #self.xlabel = "Velocidad (m/s)"
173 #self.ylabel = 'Rango (km)'
174
175
176 y = self.data.heights
177 self.y = y
178 z = self.data['spc']
179
180 self.CODE2 = 'spc_oblique'
181
182
183 for n, ax in enumerate(self.axes):
184 noise = self.data['noise'][n][-1]
185 if self.CODE == 'spc_moments':
186 mean = self.data['moments'][n, :, 1, :][-1]
187 if self.CODE2 == 'spc_oblique':
188 shift1 = self.data.shift1
189 shift2 = self.data.shift2
190 if ax.firsttime:
191 self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
192 self.xmin = self.xmin if self.xmin else -self.xmax
193 self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
194 self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
195 #print(numpy.shape(x))
196 ax.plt = ax.pcolormesh(x, y, z[n].T,
197 vmin=self.zmin,
198 vmax=self.zmax,
199 cmap=plt.get_cmap(self.colormap)
200 )
201
202 if self.showprofile:
203 ax.plt_profile = self.pf_axes[n].plot(
204 self.data['rti'][n][-1], y)[0]
205 ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y,
206 color="k", linestyle="dashed", lw=1)[0]
207 if self.CODE == 'spc_moments':
208 ax.plt_mean = ax.plot(mean, y, color='k')[0]
209
210 if self.CODE2 == 'spc_oblique':
211 #ax.plt_shift1 = ax.plot(shift1, y, color='k', marker='x', linestyle='None', markersize=0.5)[0]
212 #ax.plt_shift2 = ax.plot(shift2, y, color='m', marker='x', linestyle='None', markersize=0.5)[0]
213 self.ploterr1 = ax.errorbar(shift1, y, xerr=self.data.shift1_error,fmt='k^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2)
214 self.ploterr2 = ax.errorbar(shift2, y, xerr=self.data.shift2_error,fmt='m^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2)
215
216 else:
217 self.ploterr1.remove()
218 self.ploterr2.remove()
219 ax.plt.set_array(z[n].T.ravel())
220 if self.showprofile:
221 ax.plt_profile.set_data(self.data['rti'][n][-1], y)
222 ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y)
223 if self.CODE == 'spc_moments':
224 ax.plt_mean.set_data(mean, y)
225 if self.CODE2 == 'spc_oblique':
226 #ax.plt_shift1.set_data(shift1, y)
227 #ax.plt_shift2.set_data(shift2, y)
228 #ax.clf()
229 self.ploterr1 = ax.errorbar(shift1, y, xerr=self.data.shift1_error,fmt='k^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2)
230 self.ploterr2 = ax.errorbar(shift2, y, xerr=self.data.shift2_error,fmt='m^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2)
231
232 self.titles.append('CH {}: {:3.2f}dB'.format(n, noise))
233 #self.titles.append('{}'.format('Velocidad Doppler'))
124 234
125 235 class CrossSpectraPlot(Plot):
126 236
@@ -138,7 +248,7 class CrossSpectraPlot(Plot):
138 248 self.nplots = len(self.data.pairs) * 2
139 249 self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
140 250 self.width = 3.1 * self.ncols
141 self.height = 2.6 * self.nrows
251 self.height = 5 * self.nrows
142 252 self.ylabel = 'Range [km]'
143 253 self.showprofile = False
144 254 self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08})
@@ -177,7 +287,7 class CrossSpectraPlot(Plot):
177 287 else:
178 288 x = self.data.xrange[2]
179 289 self.xlabel = "Velocity (m/s)"
180
290
181 291 self.titles = []
182 292
183 293 y = self.data.yrange
@@ -207,13 +317,339 class CrossSpectraPlot(Plot):
207 317 ax.plt = ax.pcolormesh(x, y, phase.T,
208 318 vmin=-180,
209 319 vmax=180,
210 cmap=plt.get_cmap(self.colormap_phase)
320 cmap=plt.get_cmap(self.colormap_phase)
211 321 )
212 322 else:
213 323 ax.plt.set_array(phase.T.ravel())
214 324 self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1]))
215 325
216 326
327 class CrossSpectra4Plot(Plot):
328
329 CODE = 'cspc'
330 colormap = 'jet'
331 plot_type = 'pcolor'
332 zmin_coh = None
333 zmax_coh = None
334 zmin_phase = None
335 zmax_phase = None
336
337 def setup(self):
338
339 self.ncols = 4
340 self.nrows = len(self.data.pairs)
341 self.nplots = self.nrows * 4
342 self.width = 3.1 * self.ncols
343 self.height = 5 * self.nrows
344 self.ylabel = 'Range [km]'
345 self.showprofile = False
346 self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08})
347
348 def plot(self):
349
350 if self.xaxis == "frequency":
351 x = self.data.xrange[0]
352 self.xlabel = "Frequency (kHz)"
353 elif self.xaxis == "time":
354 x = self.data.xrange[1]
355 self.xlabel = "Time (ms)"
356 else:
357 x = self.data.xrange[2]
358 self.xlabel = "Velocity (m/s)"
359
360 self.titles = []
361
362
363 y = self.data.heights
364 self.y = y
365 nspc = self.data['spc']
366 #print(numpy.shape(self.data['spc']))
367 spc = self.data['cspc'][0]
368 #print(numpy.shape(nspc))
369 #exit()
370 #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0)
371 #print(numpy.shape(spc))
372 #exit()
373 cspc = self.data['cspc'][1]
374
375 #xflip=numpy.flip(x)
376 #print(numpy.shape(cspc))
377 #exit()
378
379 for n in range(self.nrows):
380 noise = self.data['noise'][:,-1]
381 pair = self.data.pairs[n]
382 #print(pair)
383 #exit()
384 ax = self.axes[4 * n]
385 if ax.firsttime:
386 self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
387 self.xmin = self.xmin if self.xmin else -self.xmax
388 self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc)
389 self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc)
390 ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T,
391 vmin=self.zmin,
392 vmax=self.zmax,
393 cmap=plt.get_cmap(self.colormap)
394 )
395 else:
396 #print(numpy.shape(nspc[pair[0]].T))
397 #exit()
398 ax.plt.set_array(nspc[pair[0]].T.ravel())
399 self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]]))
400
401 ax = self.axes[4 * n + 1]
402
403 if ax.firsttime:
404 ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T,
405 vmin=self.zmin,
406 vmax=self.zmax,
407 cmap=plt.get_cmap(self.colormap)
408 )
409 else:
410
411 ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel())
412 self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]]))
413
414 out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]])
415 coh = numpy.abs(out)
416 phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi
417
418 ax = self.axes[4 * n + 2]
419 if ax.firsttime:
420 ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T,
421 vmin=0,
422 vmax=1,
423 cmap=plt.get_cmap(self.colormap_coh)
424 )
425 else:
426 ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel())
427 self.titles.append(
428 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1]))
429
430 ax = self.axes[4 * n + 3]
431 if ax.firsttime:
432 ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T,
433 vmin=-180,
434 vmax=180,
435 cmap=plt.get_cmap(self.colormap_phase)
436 )
437 else:
438 ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel())
439 self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1]))
440
441
442 class CrossSpectra2Plot(Plot):
443
444 CODE = 'cspc'
445 colormap = 'jet'
446 plot_type = 'pcolor'
447 zmin_coh = None
448 zmax_coh = None
449 zmin_phase = None
450 zmax_phase = None
451
452 def setup(self):
453
454 self.ncols = 1
455 self.nrows = len(self.data.pairs)
456 self.nplots = self.nrows * 1
457 self.width = 3.1 * self.ncols
458 self.height = 5 * self.nrows
459 self.ylabel = 'Range [km]'
460 self.showprofile = False
461 self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08})
462
463 def plot(self):
464
465 if self.xaxis == "frequency":
466 x = self.data.xrange[0]
467 self.xlabel = "Frequency (kHz)"
468 elif self.xaxis == "time":
469 x = self.data.xrange[1]
470 self.xlabel = "Time (ms)"
471 else:
472 x = self.data.xrange[2]
473 self.xlabel = "Velocity (m/s)"
474
475 self.titles = []
476
477
478 y = self.data.heights
479 self.y = y
480 #nspc = self.data['spc']
481 #print(numpy.shape(self.data['spc']))
482 #spc = self.data['cspc'][0]
483 #print(numpy.shape(spc))
484 #exit()
485 cspc = self.data['cspc'][1]
486 #print(numpy.shape(cspc))
487 #exit()
488
489 for n in range(self.nrows):
490 noise = self.data['noise'][:,-1]
491 pair = self.data.pairs[n]
492 #print(pair) #exit()
493
494
495
496 out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]])
497
498 #print(out[:,53])
499 #exit()
500 cross = numpy.abs(out)
501 z = cross/self.data.nFactor
502 #print("here")
503 #print(dataOut.data_spc[0,0,0])
504 #exit()
505
506 cross = 10*numpy.log10(z)
507 #print(numpy.shape(cross))
508 #print(cross[0,:])
509 #print(self.data.nFactor)
510 #exit()
511 #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi
512
513 ax = self.axes[1 * n]
514 if ax.firsttime:
515 self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
516 self.xmin = self.xmin if self.xmin else -self.xmax
517 self.zmin = self.zmin if self.zmin else numpy.nanmin(cross)
518 self.zmax = self.zmax if self.zmax else numpy.nanmax(cross)
519 ax.plt = ax.pcolormesh(x, y, cross.T,
520 vmin=self.zmin,
521 vmax=self.zmax,
522 cmap=plt.get_cmap(self.colormap)
523 )
524 else:
525 ax.plt.set_array(cross.T.ravel())
526 self.titles.append(
527 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1]))
528
529
530 class CrossSpectra3Plot(Plot):
531
532 CODE = 'cspc'
533 colormap = 'jet'
534 plot_type = 'pcolor'
535 zmin_coh = None
536 zmax_coh = None
537 zmin_phase = None
538 zmax_phase = None
539
540 def setup(self):
541
542 self.ncols = 3
543 self.nrows = len(self.data.pairs)
544 self.nplots = self.nrows * 3
545 self.width = 3.1 * self.ncols
546 self.height = 5 * self.nrows
547 self.ylabel = 'Range [km]'
548 self.showprofile = False
549 self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08})
550
551 def plot(self):
552
553 if self.xaxis == "frequency":
554 x = self.data.xrange[0]
555 self.xlabel = "Frequency (kHz)"
556 elif self.xaxis == "time":
557 x = self.data.xrange[1]
558 self.xlabel = "Time (ms)"
559 else:
560 x = self.data.xrange[2]
561 self.xlabel = "Velocity (m/s)"
562
563 self.titles = []
564
565
566 y = self.data.heights
567 self.y = y
568 #nspc = self.data['spc']
569 #print(numpy.shape(self.data['spc']))
570 #spc = self.data['cspc'][0]
571 #print(numpy.shape(spc))
572 #exit()
573 cspc = self.data['cspc'][1]
574 #print(numpy.shape(cspc))
575 #exit()
576
577 for n in range(self.nrows):
578 noise = self.data['noise'][:,-1]
579 pair = self.data.pairs[n]
580 #print(pair) #exit()
581
582
583
584 out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]])
585
586 #print(out[:,53])
587 #exit()
588 cross = numpy.abs(out)
589 z = cross/self.data.nFactor
590 cross = 10*numpy.log10(z)
591
592 out_r= out.real/self.data.nFactor
593 #out_r = 10*numpy.log10(out_r)
594
595 out_i= out.imag/self.data.nFactor
596 #out_i = 10*numpy.log10(out_i)
597 #print(numpy.shape(cross))
598 #print(cross[0,:])
599 #print(self.data.nFactor)
600 #exit()
601 #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi
602
603 ax = self.axes[3 * n]
604 if ax.firsttime:
605 self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
606 self.xmin = self.xmin if self.xmin else -self.xmax
607 self.zmin = self.zmin if self.zmin else numpy.nanmin(cross)
608 self.zmax = self.zmax if self.zmax else numpy.nanmax(cross)
609 ax.plt = ax.pcolormesh(x, y, cross.T,
610 vmin=self.zmin,
611 vmax=self.zmax,
612 cmap=plt.get_cmap(self.colormap)
613 )
614 else:
615 ax.plt.set_array(cross.T.ravel())
616 self.titles.append(
617 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1]))
618
619 ax = self.axes[3 * n + 1]
620 if ax.firsttime:
621 self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
622 self.xmin = self.xmin if self.xmin else -self.xmax
623 self.zmin = self.zmin if self.zmin else numpy.nanmin(cross)
624 self.zmax = self.zmax if self.zmax else numpy.nanmax(cross)
625 ax.plt = ax.pcolormesh(x, y, out_r.T,
626 vmin=-1.e6,
627 vmax=0,
628 cmap=plt.get_cmap(self.colormap)
629 )
630 else:
631 ax.plt.set_array(out_r.T.ravel())
632 self.titles.append(
633 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1]))
634
635 ax = self.axes[3 * n + 2]
636
637
638 if ax.firsttime:
639 self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
640 self.xmin = self.xmin if self.xmin else -self.xmax
641 self.zmin = self.zmin if self.zmin else numpy.nanmin(cross)
642 self.zmax = self.zmax if self.zmax else numpy.nanmax(cross)
643 ax.plt = ax.pcolormesh(x, y, out_i.T,
644 vmin=-1.e6,
645 vmax=1.e6,
646 cmap=plt.get_cmap(self.colormap)
647 )
648 else:
649 ax.plt.set_array(out_i.T.ravel())
650 self.titles.append(
651 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1]))
652
217 653 class RTIPlot(Plot):
218 654 '''
219 655 Plot for RTI data
@@ -231,7 +667,7 class RTIPlot(Plot):
231 667 self.ylabel = 'Range [km]'
232 668 self.xlabel = 'Time'
233 669 self.cb_label = 'dB'
234 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95})
670 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95})
235 671 self.titles = ['{} Channel {}'.format(
236 672 self.CODE.upper(), x) for x in range(self.nrows)]
237 673
@@ -248,6 +684,78 class RTIPlot(Plot):
248 684 self.x = self.data.times
249 685 self.y = self.data.yrange
250 686 self.z = self.data[self.CODE]
687
688 self.z = numpy.ma.masked_invalid(self.z)
689
690 if self.decimation is None:
691 x, y, z = self.fill_gaps(self.x, self.y, self.z)
692 else:
693 x, y, z = self.fill_gaps(*self.decimate())
694
695 for n, ax in enumerate(self.axes):
696 self.zmin = self.zmin if self.zmin else numpy.min(self.z)
697 self.zmax = self.zmax if self.zmax else numpy.max(self.z)
698 if ax.firsttime:
699 ax.plt = ax.pcolormesh(x, y, z[n].T,
700 vmin=self.zmin,
701 vmax=self.zmax,
702 cmap=plt.get_cmap(self.colormap)
703 )
704 if self.showprofile:
705 ax.plot_profile = self.pf_axes[n].plot(
706 self.data['rti'][n][-1], self.y)[0]
707 ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y,
708 color="k", linestyle="dashed", lw=1)[0]
709 else:
710 ax.collections.remove(ax.collections[0])
711 ax.plt = ax.pcolormesh(x, y, z[n].T,
712 vmin=self.zmin,
713 vmax=self.zmax,
714 cmap=plt.get_cmap(self.colormap)
715 )
716 if self.showprofile:
717 ax.plot_profile.set_data(self.data['rti'][n][-1], self.y)
718 ax.plot_noise.set_data(numpy.repeat(
719 self.data['noise'][n][-1], len(self.y)), self.y)
720
721
722 class SpectrogramPlot(Plot):
723 '''
724 Plot for Spectrogram data
725 '''
726
727 CODE = 'spectrogram'
728 colormap = 'binary'
729 plot_type = 'pcolorbuffer'
730
731 def setup(self):
732 self.xaxis = 'time'
733 self.ncols = 1
734 self.nrows = len(self.data.channels)
735 self.nplots = len(self.data.channels)
736 #print(self.dataOut.heightList)
737 #self.ylabel = 'Range [km]'
738 self.xlabel = 'Time'
739 self.cb_label = 'dB'
740 self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95})
741 self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format(
742 self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)]
743
744 def plot(self):
745 self.x = self.data.times
746 #self.y = self.data.heights
747 self.z = self.data[self.CODE]
748 self.y = self.data.xrange[0]
749 #import time
750 #print(time.ctime(self.x))
751
752 '''
753 print(numpy.shape(self.x))
754 print(numpy.shape(self.y))
755 print(numpy.shape(self.z))
756 '''
757 self.ylabel = "Frequency (kHz)"
758
251 759 self.z = numpy.ma.masked_invalid(self.z)
252 760
253 761 if self.decimation is None:
@@ -335,7 +843,7 class PhasePlot(CoherencePlot):
335 843
336 844 class NoisePlot(Plot):
337 845 '''
338 Plot for noise
846 Plot for noise
339 847 '''
340 848
341 849 CODE = 'noise'
@@ -380,7 +888,10 class NoisePlot(Plot):
380 888 y = Y[ch]
381 889 self.axes[0].lines[ch].set_data(x, y)
382 890
383
891 self.ymin = numpy.nanmin(Y) - 5
892 self.ymax = numpy.nanmax(Y) + 10
893
894
384 895 class PowerProfilePlot(Plot):
385 896
386 897 CODE = 'pow_profile'
@@ -415,7 +926,7 class PowerProfilePlot(Plot):
415 926
416 927 if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9
417 928 if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1
418
929
419 930 if self.axes[0].firsttime:
420 931 for ch in self.data.channels:
421 932 self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch))
@@ -600,7 +1111,7 class BeaconPhase(Plot):
600 1111 server=None, folder=None, username=None, password=None,
601 1112 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
602 1113
603 if dataOut.flagNoData:
1114 if dataOut.flagNoData:
604 1115 return dataOut
605 1116
606 1117 if not isTimeInHourRange(dataOut.datatime, xmin, xmax):
@@ -740,4 +1251,4 class BeaconPhase(Plot):
740 1251 thisDatetime=thisDatetime,
741 1252 update_figfile=update_figfile)
742 1253
743 return dataOut No newline at end of file
1254 return dataOut
@@ -21,4 +21,9 from .jroIO_mira35c import *
21 21 from .julIO_param import *
22 22
23 23 from .pxIO_param import *
24 from .jroIO_simulator import * No newline at end of file
24 from .jroIO_simulator import *
25
26 ############DP############
27 from .jroIO_dat import *
28
29 ############DP############
@@ -78,6 +78,7 def isFileInEpoch(filename, startUTSeconds, endUTSeconds):
78 78 basicHeaderObj = BasicHeader(LOCALTIME)
79 79
80 80 try:
81
81 82 fp = open(filename, 'rb')
82 83 except IOError:
83 84 print("The file %s can't be opened" % (filename))
@@ -140,6 +141,7 def isFileInTimeRange(filename, startDate, endDate, startTime, endTime):
140 141
141 142 firstBasicHeaderObj = BasicHeader(LOCALTIME)
142 143 systemHeaderObj = SystemHeader()
144
143 145 radarControllerHeaderObj = RadarControllerHeader()
144 146 processingHeaderObj = ProcessingHeader()
145 147
@@ -384,7 +386,7 def isRadarFolder(folder):
384 386
385 387
386 388 def isRadarFile(file):
387 try:
389 try:
388 390 year = int(file[1:5])
389 391 doy = int(file[5:8])
390 392 set = int(file[8:11])
@@ -395,10 +397,10 def isRadarFile(file):
395 397
396 398
397 399 def getDateFromRadarFile(file):
398 try:
400 try:
399 401 year = int(file[1:5])
400 402 doy = int(file[5:8])
401 set = int(file[8:11])
403 set = int(file[8:11])
402 404 except:
403 405 return None
404 406
@@ -417,7 +419,7 def getDateFromRadarFolder(folder):
417 419 return thisDate
418 420
419 421 def parse_format(s, fmt):
420
422
421 423 for i in range(fmt.count('%')):
422 424 x = fmt.index('%')
423 425 d = DT_DIRECTIVES[fmt[x:x+2]]
@@ -484,7 +486,7 class Reader(object):
484 486
485 487 def run(self):
486 488
487 raise NotImplementedError
489 raise NotImplementedError
488 490
489 491 def getAllowedArgs(self):
490 492 if hasattr(self, '__attrs__'):
@@ -496,19 +498,19 class Reader(object):
496 498
497 499 for key, value in kwargs.items():
498 500 setattr(self, key, value)
499
501
500 502 def find_folders(self, path, startDate, endDate, folderfmt, last=False):
501 503
502 folders = [x for f in path.split(',')
504 folders = [x for f in path.split(',')
503 505 for x in os.listdir(f) if os.path.isdir(os.path.join(f, x))]
504 506 folders.sort()
505 507
506 508 if last:
507 509 folders = [folders[-1]]
508 510
509 for folder in folders:
510 try:
511 dt = datetime.datetime.strptime(parse_format(folder, folderfmt), folderfmt).date()
511 for folder in folders:
512 try:
513 dt = datetime.datetime.strptime(parse_format(folder, folderfmt), folderfmt).date()
512 514 if dt >= startDate and dt <= endDate:
513 515 yield os.path.join(path, folder)
514 516 else:
@@ -517,38 +519,44 class Reader(object):
517 519 log.log('Skiping folder {}'.format(folder), self.name)
518 520 continue
519 521 return
520
521 def find_files(self, folders, ext, filefmt, startDate=None, endDate=None,
522
523 def find_files(self, folders, ext, filefmt, startDate=None, endDate=None,
522 524 expLabel='', last=False):
523
524 for path in folders:
525
526 for path in folders:
525 527 files = glob.glob1(path, '*{}'.format(ext))
526 528 files.sort()
527 529 if last:
528 if files:
530 if files:
529 531 fo = files[-1]
530 try:
532 try:
531 533 dt = datetime.datetime.strptime(parse_format(fo, filefmt), filefmt).date()
532 yield os.path.join(path, expLabel, fo)
533 except Exception as e:
534 yield os.path.join(path, expLabel, fo)
535 except Exception as e:
534 536 pass
535 537 return
536 538 else:
537 539 return
538 540
539 541 for fo in files:
540 try:
541 dt = datetime.datetime.strptime(parse_format(fo, filefmt), filefmt).date()
542 try:
543 dt = datetime.datetime.strptime(parse_format(fo, filefmt), filefmt).date()
544 #print(dt)
545 #print(startDate)
546 #print(endDate)
542 547 if dt >= startDate and dt <= endDate:
548
543 549 yield os.path.join(path, expLabel, fo)
550
544 551 else:
552
545 553 log.log('Skiping file {}'.format(fo), self.name)
546 554 except Exception as e:
547 555 log.log('Skiping file {}'.format(fo), self.name)
548 continue
556 continue
549 557
550 558 def searchFilesOffLine(self, path, startDate, endDate,
551 expLabel, ext, walk,
559 expLabel, ext, walk,
552 560 filefmt, folderfmt):
553 561 """Search files in offline mode for the given arguments
554 562
@@ -561,12 +569,12 class Reader(object):
561 569 path, startDate, endDate, folderfmt)
562 570 else:
563 571 folders = path.split(',')
564
572
565 573 return self.find_files(
566 folders, ext, filefmt, startDate, endDate, expLabel)
574 folders, ext, filefmt, startDate, endDate, expLabel)
567 575
568 576 def searchFilesOnLine(self, path, startDate, endDate,
569 expLabel, ext, walk,
577 expLabel, ext, walk,
570 578 filefmt, folderfmt):
571 579 """Search for the last file of the last folder
572 580
@@ -579,40 +587,54 class Reader(object):
579 587 Return:
580 588 generator with the full path of last filename
581 589 """
582
590
583 591 if walk:
584 592 folders = self.find_folders(
585 593 path, startDate, endDate, folderfmt, last=True)
586 594 else:
587 595 folders = path.split(',')
588
596
589 597 return self.find_files(
590 598 folders, ext, filefmt, startDate, endDate, expLabel, last=True)
591 599
592 600 def setNextFile(self):
593 601 """Set the next file to be readed open it and parse de file header"""
594 602
603 #print("fp: ",self.fp)
595 604 while True:
605
606 #print(self.fp)
596 607 if self.fp != None:
597 self.fp.close()
608 self.fp.close()
598 609
610 #print("setNextFile")
611 #print("BEFORE OPENING",self.filename)
599 612 if self.online:
600 613 newFile = self.setNextFileOnline()
614
601 615 else:
616
602 617 newFile = self.setNextFileOffline()
603
618
619 #print("newFile: ",newFile)
604 620 if not(newFile):
621
605 622 if self.online:
606 623 raise schainpy.admin.SchainError('Time to wait for new files reach')
607 624 else:
608 625 if self.fileIndex == -1:
626 #print("OKK")
609 627 raise schainpy.admin.SchainWarning('No files found in the given path')
610 628 else:
629
611 630 raise schainpy.admin.SchainWarning('No more files to read')
612
631
613 632 if self.verifyFile(self.filename):
633
614 634 break
615
635
636 ##print("BEFORE OPENING",self.filename)
637
616 638 log.log('Opening file: %s' % self.filename, self.name)
617 639
618 640 self.readFirstHeader()
@@ -625,15 +647,16 class Reader(object):
625 647 self.filename
626 648 self.fp
627 649 self.filesize
628
650
629 651 Return:
630 652 boolean
631 653
632 654 """
655
633 656 nextFile = True
634 657 nextDay = False
635 658
636 for nFiles in range(self.nFiles+1):
659 for nFiles in range(self.nFiles+1):
637 660 for nTries in range(self.nTries):
638 661 fullfilename, filename = self.checkForRealPath(nextFile, nextDay)
639 662 if fullfilename is not None:
@@ -643,18 +666,18 class Reader(object):
643 666 self.name)
644 667 time.sleep(self.delay)
645 668 nextFile = False
646 continue
647
669 continue
670
648 671 if fullfilename is not None:
649 672 break
650
651 self.nTries = 1
652 nextFile = True
673
674 #self.nTries = 1
675 nextFile = True
653 676
654 677 if nFiles == (self.nFiles - 1):
655 678 log.log('Trying with next day...', self.name)
656 679 nextDay = True
657 self.nTries = 3
680 self.nTries = 3
658 681
659 682 if fullfilename:
660 683 self.fileSize = os.path.getsize(fullfilename)
@@ -662,45 +685,48 class Reader(object):
662 685 self.flagIsNewFile = 1
663 686 if self.fp != None:
664 687 self.fp.close()
688 #print(fullfilename)
665 689 self.fp = self.open_file(fullfilename, self.open_mode)
690
666 691 self.flagNoMoreFiles = 0
667 692 self.fileIndex += 1
668 693 return 1
669 else:
694 else:
670 695 return 0
671
696
672 697 def setNextFileOffline(self):
673 698 """Open the next file to be readed in offline mode"""
674
699
675 700 try:
676 701 filename = next(self.filenameList)
677 702 self.fileIndex +=1
678 703 except StopIteration:
679 704 self.flagNoMoreFiles = 1
680 return 0
681
705 return 0
706 #print(self.fileIndex)
707 #print(filename)
682 708 self.filename = filename
683 709 self.fileSize = os.path.getsize(filename)
684 710 self.fp = self.open_file(filename, self.open_mode)
685 711 self.flagIsNewFile = 1
686 712
687 713 return 1
688
714
689 715 @staticmethod
690 716 def isDateTimeInRange(dt, startDate, endDate, startTime, endTime):
691 717 """Check if the given datetime is in range"""
692
718
693 719 if startDate <= dt.date() <= endDate:
694 720 if startTime <= dt.time() <= endTime:
695 721 return True
696 722 return False
697
723
698 724 def verifyFile(self, filename):
699 725 """Check for a valid file
700
726
701 727 Arguments:
702 728 filename -- full path filename
703
729
704 730 Return:
705 731 boolean
706 732 """
@@ -711,10 +737,11 class Reader(object):
711 737 """Check if the next file to be readed exists"""
712 738
713 739 raise NotImplementedError
714
740
715 741 def readFirstHeader(self):
716 742 """Parse the file header"""
717 743
744
718 745 pass
719 746
720 747 def waitDataBlock(self, pointer_location, blocksize=None):
@@ -783,8 +810,8 class JRODataReader(Reader):
783 810 Return:
784 811 str -- fullpath of the file
785 812 """
786
787
813
814
788 815 if nextFile:
789 816 self.set += 1
790 817 if nextDay:
@@ -796,7 +823,15 class JRODataReader(Reader):
796 823 prefixFileList = ['d', 'D']
797 824 elif self.ext.lower() == ".pdata": # spectra
798 825 prefixFileList = ['p', 'P']
799
826
827 ##############DP##############
828
829 elif self.ext.lower() == ".dat": # dat
830 prefixFileList = ['z', 'Z']
831
832
833
834 ##############DP##############
800 835 # barrido por las combinaciones posibles
801 836 for prefixDir in prefixDirList:
802 837 thispath = self.path
@@ -816,9 +851,9 class JRODataReader(Reader):
816 851
817 852 if os.path.exists(fullfilename):
818 853 return fullfilename, filename
819
820 return None, filename
821
854
855 return None, filename
856
822 857 def __waitNewBlock(self):
823 858 """
824 859 Return 1 si se encontro un nuevo bloque de datos, 0 de otra forma.
@@ -853,6 +888,7 class JRODataReader(Reader):
853 888 return 0
854 889
855 890 print("[Reading] Waiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries + 1))
891 #print(self.filename)
856 892 time.sleep(self.delay)
857 893
858 894 return 0
@@ -860,9 +896,9 class JRODataReader(Reader):
860 896 def __setNewBlock(self):
861 897
862 898 if self.fp == None:
863 return 0
864
865 if self.flagIsNewFile:
899 return 0
900
901 if self.flagIsNewFile:
866 902 self.lastUTTime = self.basicHeaderObj.utc
867 903 return 1
868 904
@@ -875,12 +911,12 class JRODataReader(Reader):
875 911
876 912 currentSize = self.fileSize - self.fp.tell()
877 913 neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize
878
914
879 915 if (currentSize >= neededSize):
880 916 self.basicHeaderObj.read(self.fp)
881 917 self.lastUTTime = self.basicHeaderObj.utc
882 918 return 1
883
919
884 920 if self.__waitNewBlock():
885 921 self.lastUTTime = self.basicHeaderObj.utc
886 922 return 1
@@ -921,6 +957,10 class JRODataReader(Reader):
921 957 print("[Reading] Block No. %d/%d -> %s" % (self.nReadBlocks,
922 958 self.processingHeaderObj.dataBlocksPerFile,
923 959 self.dataOut.datatime.ctime()))
960 #################DP#################
961 self.dataOut.TimeBlockDate=self.dataOut.datatime.ctime()
962 self.dataOut.TimeBlockSeconds=time.mktime(time.strptime(self.dataOut.datatime.ctime()))
963 #################DP#################
924 964 return 1
925 965
926 966 def readFirstHeader(self):
@@ -966,10 +1006,10 class JRODataReader(Reader):
966 1006 except IOError:
967 1007 log.error("File {} can't be opened".format(filename), self.name)
968 1008 return False
969
1009
970 1010 if self.online and self.waitDataBlock(0):
971 1011 pass
972
1012
973 1013 basicHeaderObj = BasicHeader(LOCALTIME)
974 1014 systemHeaderObj = SystemHeader()
975 1015 radarControllerHeaderObj = RadarControllerHeader()
@@ -996,7 +1036,7 class JRODataReader(Reader):
996 1036 dt2 = basicHeaderObj.datatime
997 1037 if not self.isDateTimeInRange(dt1, self.startDate, self.endDate, self.startTime, self.endTime) and not \
998 1038 self.isDateTimeInRange(dt2, self.startDate, self.endDate, self.startTime, self.endTime):
999 flag = False
1039 flag = False
1000 1040
1001 1041 fp.close()
1002 1042 return flag
@@ -1105,11 +1145,11 class JRODataReader(Reader):
1105 1145 return dateList
1106 1146
1107 1147 def setup(self, **kwargs):
1108
1148
1109 1149 self.set_kwargs(**kwargs)
1110 1150 if not self.ext.startswith('.'):
1111 1151 self.ext = '.{}'.format(self.ext)
1112
1152
1113 1153 if self.server is not None:
1114 1154 if 'tcp://' in self.server:
1115 1155 address = server
@@ -1131,36 +1171,36 class JRODataReader(Reader):
1131 1171
1132 1172 for nTries in range(self.nTries):
1133 1173 fullpath = self.searchFilesOnLine(self.path, self.startDate,
1134 self.endDate, self.expLabel, self.ext, self.walk,
1174 self.endDate, self.expLabel, self.ext, self.walk,
1135 1175 self.filefmt, self.folderfmt)
1136 1176
1137 1177 try:
1138 1178 fullpath = next(fullpath)
1139 1179 except:
1140 1180 fullpath = None
1141
1181
1142 1182 if fullpath:
1143 1183 break
1144 1184
1145 1185 log.warning(
1146 1186 'Waiting {} sec for a valid file in {}: try {} ...'.format(
1147 self.delay, self.path, nTries + 1),
1187 self.delay, self.path, nTries + 1),
1148 1188 self.name)
1149 1189 time.sleep(self.delay)
1150 1190
1151 1191 if not(fullpath):
1152 1192 raise schainpy.admin.SchainError(
1153 'There isn\'t any valid file in {}'.format(self.path))
1193 'There isn\'t any valid file in {}'.format(self.path))
1154 1194
1155 1195 pathname, filename = os.path.split(fullpath)
1156 1196 self.year = int(filename[1:5])
1157 1197 self.doy = int(filename[5:8])
1158 self.set = int(filename[8:11]) - 1
1198 self.set = int(filename[8:11]) - 1
1159 1199 else:
1160 1200 log.log("Searching files in {}".format(self.path), self.name)
1161 self.filenameList = self.searchFilesOffLine(self.path, self.startDate,
1201 self.filenameList = self.searchFilesOffLine(self.path, self.startDate,
1162 1202 self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt)
1163
1203
1164 1204 self.setNextFile()
1165 1205
1166 1206 return
@@ -1181,7 +1221,7 class JRODataReader(Reader):
1181 1221 self.dataOut.useLocalTime = self.basicHeaderObj.useLocalTime
1182 1222
1183 1223 self.dataOut.ippSeconds = self.radarControllerHeaderObj.ippSeconds / self.nTxs
1184
1224
1185 1225 def getFirstHeader(self):
1186 1226
1187 1227 raise NotImplementedError
@@ -1214,8 +1254,8 class JRODataReader(Reader):
1214 1254 """
1215 1255
1216 1256 Arguments:
1217 path :
1218 startDate :
1257 path :
1258 startDate :
1219 1259 endDate :
1220 1260 startTime :
1221 1261 endTime :
@@ -1284,7 +1324,7 class JRODataWriter(Reader):
1284 1324 dtype_width = get_dtype_width(dtype_index)
1285 1325
1286 1326 return dtype_width
1287
1327
1288 1328 def getProcessFlags(self):
1289 1329
1290 1330 processFlags = 0
@@ -1322,9 +1362,9 class JRODataWriter(Reader):
1322 1362
1323 1363 self.basicHeaderObj.size = self.basicHeaderSize # bytes
1324 1364 self.basicHeaderObj.version = self.versionFile
1325 self.basicHeaderObj.dataBlock = self.nTotalBlocks
1365 self.basicHeaderObj.dataBlock = self.nTotalBlocks
1326 1366 utc = numpy.floor(self.dataOut.utctime)
1327 milisecond = (self.dataOut.utctime - utc) * 1000.0
1367 milisecond = (self.dataOut.utctime - utc) * 1000.0
1328 1368 self.basicHeaderObj.utc = utc
1329 1369 self.basicHeaderObj.miliSecond = milisecond
1330 1370 self.basicHeaderObj.timeZone = self.dataOut.timeZone
@@ -1465,9 +1505,9 class JRODataWriter(Reader):
1465 1505 if self.dataOut.datatime.date() > self.fileDate:
1466 1506 setFile = 0
1467 1507 self.nTotalBlocks = 0
1468
1508
1469 1509 filen = '{}{:04d}{:03d}{:03d}{}'.format(
1470 self.optchar, timeTuple.tm_year, timeTuple.tm_yday, setFile, ext)
1510 self.optchar, timeTuple.tm_year, timeTuple.tm_yday, setFile, ext)
1471 1511
1472 1512 filename = os.path.join(path, subfolder, filen)
1473 1513
@@ -1515,11 +1555,11 class JRODataWriter(Reader):
1515 1555 self.ext = ext.lower()
1516 1556
1517 1557 self.path = path
1518
1558
1519 1559 if set is None:
1520 1560 self.setFile = -1
1521 1561 else:
1522 self.setFile = set - 1
1562 self.setFile = set - 1
1523 1563
1524 1564 self.blocksPerFile = blocksPerFile
1525 1565 self.profilesPerBlock = profilesPerBlock
@@ -38,7 +38,7 DEF_CATALOG = {
38 38 'sciRemarks': '',
39 39 'instRemarks': ''
40 40 }
41
41
42 42 DEF_HEADER = {
43 43 'kindatDesc': '',
44 44 'analyst': 'Jicamarca User',
@@ -75,7 +75,7 def load_json(obj):
75 75 for k, v in list(iterable.items())}
76 76 elif isinstance(iterable, (list, tuple)):
77 77 return [str(v) if isinstance(v, basestring) else v for v in iterable]
78
78
79 79 return iterable
80 80
81 81
@@ -85,18 +85,18 class MADReader(Reader, ProcessingUnit):
85 85
86 86 ProcessingUnit.__init__(self)
87 87
88 self.dataOut = Parameters()
88 self.dataOut = Parameters()
89 89 self.counter_records = 0
90 90 self.nrecords = None
91 91 self.flagNoMoreFiles = 0
92 self.filename = None
92 self.filename = None
93 93 self.intervals = set()
94 94 self.datatime = datetime.datetime(1900,1,1)
95 95 self.format = None
96 96 self.filefmt = "***%Y%m%d*******"
97
97
98 98 def setup(self, **kwargs):
99
99
100 100 self.set_kwargs(**kwargs)
101 101 self.oneDDict = load_json(self.oneDDict)
102 102 self.twoDDict = load_json(self.twoDDict)
@@ -125,32 +125,32 class MADReader(Reader, ProcessingUnit):
125 125
126 126 for nTries in range(self.nTries):
127 127 fullpath = self.searchFilesOnLine(self.path, self.startDate,
128 self.endDate, self.expLabel, self.ext, self.walk,
128 self.endDate, self.expLabel, self.ext, self.walk,
129 129 self.filefmt, self.folderfmt)
130 130
131 131 try:
132 132 fullpath = next(fullpath)
133 133 except:
134 134 fullpath = None
135
135
136 136 if fullpath:
137 137 break
138 138
139 139 log.warning(
140 140 'Waiting {} sec for a valid file in {}: try {} ...'.format(
141 self.delay, self.path, nTries + 1),
141 self.delay, self.path, nTries + 1),
142 142 self.name)
143 143 time.sleep(self.delay)
144 144
145 145 if not(fullpath):
146 146 raise schainpy.admin.SchainError(
147 'There isn\'t any valid file in {}'.format(self.path))
148
147 'There isn\'t any valid file in {}'.format(self.path))
148
149 149 else:
150 150 log.log("Searching files in {}".format(self.path), self.name)
151 self.filenameList = self.searchFilesOffLine(self.path, self.startDate,
151 self.filenameList = self.searchFilesOffLine(self.path, self.startDate,
152 152 self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt)
153
153
154 154 self.setNextFile()
155 155
156 156 def readFirstHeader(self):
@@ -159,8 +159,8 class MADReader(Reader, ProcessingUnit):
159 159 self.parseHeader()
160 160 self.parseData()
161 161 self.blockIndex = 0
162
163 return
162
163 return
164 164
165 165 def parseHeader(self):
166 166 '''
@@ -183,7 +183,7 class MADReader(Reader, ProcessingUnit):
183 183 if s_parameters:
184 184 log.success('Spatial parameters found: {}'.format(s_parameters),
185 185 'MADReader')
186
186
187 187 for param in list(self.oneDDict.keys()):
188 188 if param.lower() not in self.parameters:
189 189 log.warning(
@@ -191,7 +191,7 class MADReader(Reader, ProcessingUnit):
191 191 param),
192 192 'MADReader')
193 193 self.oneDDict.pop(param, None)
194
194
195 195 for param, value in list(self.twoDDict.items()):
196 196 if param.lower() not in self.parameters:
197 197 log.warning(
@@ -226,10 +226,10 class MADReader(Reader, ProcessingUnit):
226 226 while True:
227 227 self.flagDiscontinuousBlock = 0
228 228 if self.counter_records == self.nrecords:
229 self.setNextFile()
229 self.setNextFile()
230 230
231 231 self.readBlock()
232
232
233 233 if (self.datatime < datetime.datetime.combine(self.startDate, self.startTime)) or \
234 234 (self.datatime > datetime.datetime.combine(self.endDate, self.endTime)):
235 235 log.warning(
@@ -268,7 +268,7 class MADReader(Reader, ProcessingUnit):
268 268 if self.counter_records == self.nrecords:
269 269 break
270 270 continue
271 self.intervals.add((datatime-self.datatime).seconds)
271 self.intervals.add((datatime-self.datatime).seconds)
272 272 break
273 273 elif self.ext == '.hdf5':
274 274 datatime = datetime.datetime.utcfromtimestamp(
@@ -278,27 +278,27 class MADReader(Reader, ProcessingUnit):
278 278 if datatime.date()>self.datatime.date():
279 279 self.flagDiscontinuousBlock = 1
280 280 self.datatime = datatime
281 self.counter_records += 1
282
281 self.counter_records += 1
282
283 283 self.buffer = numpy.array(dum)
284 284 return
285 285
286 286 def set_output(self):
287 287 '''
288 288 Storing data from buffer to dataOut object
289 '''
289 '''
290 290
291 291 parameters = [None for __ in self.parameters]
292 292
293 for param, attr in list(self.oneDDict.items()):
293 for param, attr in list(self.oneDDict.items()):
294 294 x = self.parameters.index(param.lower())
295 295 setattr(self.dataOut, attr, self.buffer[0][x])
296 296
297 297 for param, value in list(self.twoDDict.items()):
298 dummy = numpy.zeros(self.ranges.shape) + numpy.nan
298 dummy = numpy.zeros(self.ranges.shape) + numpy.nan
299 299 if self.ext == '.txt':
300 300 x = self.parameters.index(param.lower())
301 y = self.parameters.index(self.independentParam.lower())
301 y = self.parameters.index(self.independentParam.lower())
302 302 ranges = self.buffer[:,y]
303 303 #if self.ranges.size == ranges.size:
304 304 # continue
@@ -308,23 +308,23 class MADReader(Reader, ProcessingUnit):
308 308 ranges = self.buffer[self.independentParam.lower()]
309 309 index = numpy.where(numpy.in1d(self.ranges, ranges))[0]
310 310 dummy[index] = self.buffer[param.lower()]
311
311
312 312 if isinstance(value, str):
313 if value not in self.independentParam:
313 if value not in self.independentParam:
314 314 setattr(self.dataOut, value, dummy.reshape(1,-1))
315 elif isinstance(value, list):
315 elif isinstance(value, list):
316 316 self.output[value[0]][value[1]] = dummy
317 317 parameters[value[1]] = param
318 318 for key, value in list(self.output.items()):
319 319 setattr(self.dataOut, key, numpy.array(value))
320
320
321 321 self.dataOut.parameters = [s for s in parameters if s]
322 322 self.dataOut.heightList = self.ranges
323 323 self.dataOut.utctime = (self.datatime - datetime.datetime(1970, 1, 1)).total_seconds()
324 self.dataOut.utctimeInit = self.dataOut.utctime
324 self.dataOut.utctimeInit = self.dataOut.utctime
325 325 self.dataOut.paramInterval = min(self.intervals)
326 self.dataOut.useLocalTime = False
327 self.dataOut.flagNoData = False
326 self.dataOut.useLocalTime = False
327 self.dataOut.flagNoData = False
328 328 self.dataOut.nrecords = self.nrecords
329 329 self.dataOut.flagDiscontinuousBlock = self.flagDiscontinuousBlock
330 330
@@ -354,7 +354,7 class MADReader(Reader, ProcessingUnit):
354 354 @MPDecorator
355 355 class MADWriter(Operation):
356 356 '''Writing module for Madrigal files
357
357
358 358 type: external
359 359
360 360 Inputs:
@@ -384,7 +384,7 Inputs:
384 384
385 385 __attrs__ = ['path', 'oneDDict', 'ind2DList', 'twoDDict','metadata', 'format', 'blocks']
386 386 missing = -32767
387
387
388 388 def __init__(self):
389 389
390 390 Operation.__init__(self)
@@ -395,27 +395,31 Inputs:
395 395
396 396 def run(self, dataOut, path, oneDDict, ind2DList='[]', twoDDict='{}',
397 397 metadata='{}', format='cedar', **kwargs):
398
398
399
400 #if dataOut.AUX==1: #Modified
401
399 402 if not self.isConfig:
400 403 self.setup(path, oneDDict, ind2DList, twoDDict, metadata, format, **kwargs)
401 404 self.isConfig = True
402
403 self.dataOut = dataOut
404 self.putData()
405
406 self.dataOut = dataOut
407 self.putData()
408
405 409 return 1
406
410
407 411 def setup(self, path, oneDDict, ind2DList, twoDDict, metadata, format, **kwargs):
408 412 '''
409 Configure Operation
413 Configure Operation
410 414 '''
411
415
412 416 self.path = path
413 417 self.blocks = kwargs.get('blocks', None)
414 418 self.counter = 0
415 419 self.oneDDict = load_json(oneDDict)
416 420 self.twoDDict = load_json(twoDDict)
417 421 self.ind2DList = load_json(ind2DList)
418 meta = load_json(metadata)
422 meta = load_json(metadata)
419 423 self.kinst = meta.get('kinst')
420 424 self.kindat = meta.get('kindat')
421 425 self.catalog = meta.get('catalog', DEF_CATALOG)
@@ -426,8 +430,8 Inputs:
426 430 elif format == 'hdf5':
427 431 self.ext = '.hdf5'
428 432 self.extra_args = {'ind2DList': self.ind2DList}
429
430 self.keys = [k.lower() for k in self.twoDDict]
433
434 self.keys = [k.lower() for k in self.twoDDict]
431 435 if 'range' in self.keys:
432 436 self.keys.remove('range')
433 437 if 'gdalt' in self.keys:
@@ -440,20 +444,23 Inputs:
440 444
441 445 self.mnemonic = MNEMONICS[self.kinst] #TODO get mnemonic from madrigal
442 446 date = datetime.datetime.utcfromtimestamp(self.dataOut.utctime)
447 #if self.dataOut.input_dat_type:
448 #date=datetime.datetime.fromtimestamp(self.dataOut.TimeBlockSeconds_for_dp_power)
449 #print("date",date)
443 450
444 451 filename = '{}{}{}'.format(self.mnemonic,
445 452 date.strftime('%Y%m%d_%H%M%S'),
446 453 self.ext)
447
454
448 455 self.fullname = os.path.join(self.path, filename)
449
450 if os.path.isfile(self.fullname) :
456
457 if os.path.isfile(self.fullname) :
451 458 log.warning(
452 459 'Destination file {} already exists, previous file deleted.'.format(
453 460 self.fullname),
454 461 'MADWriter')
455 462 os.remove(self.fullname)
456
463
457 464 try:
458 465 log.success(
459 466 'Creating file: {}'.format(self.fullname),
@@ -461,6 +468,8 Inputs:
461 468 if not os.path.exists(self.path):
462 469 os.makedirs(self.path)
463 470 self.fp = madrigal.cedar.MadrigalCedarFile(self.fullname, True)
471
472
464 473 except ValueError as e:
465 474 log.error(
466 475 'Impossible to create a cedar object with "madrigal.cedar.MadrigalCedarFile"',
@@ -475,11 +484,26 Inputs:
475 484 attributes.
476 485 Allowed parameters in: parcodes.tab
477 486 '''
478
487 #self.dataOut.paramInterval=2
479 488 startTime = datetime.datetime.utcfromtimestamp(self.dataOut.utctime)
489
480 490 endTime = startTime + datetime.timedelta(seconds=self.dataOut.paramInterval)
491
492 #if self.dataOut.input_dat_type:
493 #if self.dataOut.experiment=="DP":
494 #startTime=datetime.datetime.fromtimestamp(self.dataOut.TimeBlockSeconds_for_dp_power)
495 #endTime = startTime + datetime.timedelta(seconds=self.dataOut.paramInterval)
496
497
498 #print("2: ",startTime)
499 #print(endTime)
481 500 heights = self.dataOut.heightList
482 501
502 #print(self.blocks)
503 #print(startTime)
504 #print(endTime)
505 #print(heights)
506 #input()
483 507 if self.ext == '.dat':
484 508 for key, value in list(self.twoDDict.items()):
485 509 if isinstance(value, str):
@@ -505,13 +529,21 Inputs:
505 529 out[key] = tmp.flatten()[:len(heights)]
506 530 elif isinstance(value, (tuple, list)):
507 531 attr, x = value
508 data = getattr(self.dataOut, attr)
532 data = getattr(self.dataOut, attr)
533 #print(x)
534 #print(len(heights))
535 #print(data[int(x)][:len(heights)])
536 #print(numpy.shape(out))
537 #print(numpy.shape(data))
538
509 539 out[key] = data[int(x)][:len(heights)]
510
540
511 541 a = numpy.array([out[k] for k in self.keys])
542 #print(a)
512 543 nrows = numpy.array([numpy.isnan(a[:, x]).all() for x in range(len(heights))])
513 544 index = numpy.where(nrows == False)[0]
514 545
546 #print(startTime.minute)
515 547 rec = madrigal.cedar.MadrigalDataRecord(
516 548 self.kinst,
517 549 self.kindat,
@@ -534,22 +566,24 Inputs:
534 566 len(index),
535 567 **self.extra_args
536 568 )
537
538 # Setting 1d values
569 #print("rec",rec)
570 # Setting 1d values
539 571 for key in self.oneDDict:
540 572 rec.set1D(key, getattr(self.dataOut, self.oneDDict[key]))
541 573
542 574 # Setting 2d values
543 575 nrec = 0
544 for n in index:
576 for n in index:
545 577 for key in out:
546 578 rec.set2D(key, nrec, out[key][n])
547 nrec += 1
579 nrec += 1
548 580
549 581 self.fp.append(rec)
550 if self.ext == '.hdf5' and self.counter % 500 == 0 and self.counter > 0:
582 if self.ext == '.hdf5' and self.counter %2 == 0 and self.counter > 0:
583 #print("here")
551 584 self.fp.dump()
552 585 if self.counter % 20 == 0 and self.counter > 0:
586 #self.fp.write()
553 587 log.log(
554 588 'Writing {} records'.format(
555 589 self.counter),
@@ -558,8 +592,8 Inputs:
558 592 def setHeader(self):
559 593 '''
560 594 Create an add catalog and header to cedar file
561 '''
562
595 '''
596
563 597 log.success('Closing file {}'.format(self.fullname), 'MADWriter')
564 598
565 599 if self.ext == '.dat':
@@ -567,17 +601,17 Inputs:
567 601 else:
568 602 self.fp.dump()
569 603 self.fp.close()
570
571 header = madrigal.cedar.CatalogHeaderCreator(self.fullname)
604
605 header = madrigal.cedar.CatalogHeaderCreator(self.fullname)
572 606 header.createCatalog(**self.catalog)
573 607 header.createHeader(**self.header)
574 608 header.write()
575
609
576 610 def putData(self):
577 611
578 612 if self.dataOut.flagNoData:
579 return 0
580
613 return 0
614
581 615 if self.dataOut.flagDiscontinuousBlock or self.counter == self.blocks:
582 616 if self.counter > 0:
583 617 self.setHeader()
@@ -585,11 +619,11 Inputs:
585 619
586 620 if self.counter == 0:
587 621 self.setFile()
588
622
589 623 self.writeBlock()
590 self.counter += 1
591
624 self.counter += 1
625
592 626 def close(self):
593
594 if self.counter > 0:
595 self.setHeader() No newline at end of file
627
628 if self.counter > 0:
629 self.setHeader()
@@ -17,7 +17,7 class HDFReader(Reader, ProcessingUnit):
17 17
18 18 This unit reads HDF5 files created with `HDFWriter` operation contains
19 19 by default two groups Data and Metadata all variables would be saved as `dataOut`
20 attributes.
20 attributes.
21 21 It is possible to read any HDF5 file by given the structure in the `description`
22 22 parameter, also you can add extra values to metadata with the parameter `extras`.
23 23
@@ -37,10 +37,10 class HDFReader(Reader, ProcessingUnit):
37 37 Dictionary with the description of the HDF5 file
38 38 extras : dict, optional
39 39 Dictionary with extra metadata to be be added to `dataOut`
40
40
41 41 Examples
42 42 --------
43
43
44 44 desc = {
45 45 'Data': {
46 46 'data_output': ['u', 'v', 'w'],
@@ -64,7 +64,7 class HDFReader(Reader, ProcessingUnit):
64 64 extras = {
65 65 'timeZone': 300
66 66 }
67
67
68 68 reader = project.addReadUnit(
69 69 name='HDFReader',
70 70 path='/path/to/files',
@@ -99,42 +99,42 class HDFReader(Reader, ProcessingUnit):
99 99
100 100 self.set_kwargs(**kwargs)
101 101 if not self.ext.startswith('.'):
102 self.ext = '.{}'.format(self.ext)
102 self.ext = '.{}'.format(self.ext)
103 103
104 104 if self.online:
105 105 log.log("Searching files in online mode...", self.name)
106 106
107 107 for nTries in range(self.nTries):
108 108 fullpath = self.searchFilesOnLine(self.path, self.startDate,
109 self.endDate, self.expLabel, self.ext, self.walk,
109 self.endDate, self.expLabel, self.ext, self.walk,
110 110 self.filefmt, self.folderfmt)
111 111 try:
112 112 fullpath = next(fullpath)
113 113 except:
114 114 fullpath = None
115
115
116 116 if fullpath:
117 117 break
118 118
119 119 log.warning(
120 120 'Waiting {} sec for a valid file in {}: try {} ...'.format(
121 self.delay, self.path, nTries + 1),
121 self.delay, self.path, nTries + 1),
122 122 self.name)
123 123 time.sleep(self.delay)
124 124
125 125 if not(fullpath):
126 126 raise schainpy.admin.SchainError(
127 'There isn\'t any valid file in {}'.format(self.path))
127 'There isn\'t any valid file in {}'.format(self.path))
128 128
129 129 pathname, filename = os.path.split(fullpath)
130 130 self.year = int(filename[1:5])
131 131 self.doy = int(filename[5:8])
132 self.set = int(filename[8:11]) - 1
132 self.set = int(filename[8:11]) - 1
133 133 else:
134 134 log.log("Searching files in {}".format(self.path), self.name)
135 self.filenameList = self.searchFilesOffLine(self.path, self.startDate,
135 self.filenameList = self.searchFilesOffLine(self.path, self.startDate,
136 136 self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt)
137
137
138 138 self.setNextFile()
139 139
140 140 return
@@ -142,18 +142,18 class HDFReader(Reader, ProcessingUnit):
142 142 def readFirstHeader(self):
143 143 '''Read metadata and data'''
144 144
145 self.__readMetadata()
145 self.__readMetadata()
146 146 self.__readData()
147 147 self.__setBlockList()
148
148
149 149 if 'type' in self.meta:
150 150 self.dataOut = eval(self.meta['type'])()
151
151
152 152 for attr in self.meta:
153 153 setattr(self.dataOut, attr, self.meta[attr])
154
154
155 155 self.blockIndex = 0
156
156
157 157 return
158 158
159 159 def __setBlockList(self):
@@ -211,7 +211,7 class HDFReader(Reader, ProcessingUnit):
211 211 def __readData(self):
212 212
213 213 data = {}
214
214
215 215 if self.description:
216 216 for key, value in self.description['Data'].items():
217 217 if isinstance(value, str):
@@ -239,7 +239,7 class HDFReader(Reader, ProcessingUnit):
239 239 array = numpy.array(array)
240 240 else:
241 241 log.warning('Unknown type: {}'.format(name))
242
242
243 243 if name in self.description:
244 244 key = self.description[name]
245 245 else:
@@ -248,7 +248,7 class HDFReader(Reader, ProcessingUnit):
248 248
249 249 self.data = data
250 250 return
251
251
252 252 def getData(self):
253 253
254 254 for attr in self.data:
@@ -287,8 +287,8 class HDFWriter(Operation):
287 287 The HDF5 file contains by default two groups Data and Metadata where
288 288 you can save any `dataOut` attribute specified by `dataList` and `metadataList`
289 289 parameters, data attributes are normaly time dependent where the metadata
290 are not.
291 It is possible to customize the structure of the HDF5 file with the
290 are not.
291 It is possible to customize the structure of the HDF5 file with the
292 292 optional description parameter see the examples.
293 293
294 294 Parameters:
@@ -305,10 +305,10 class HDFWriter(Operation):
305 305 If True the name of the files corresponds to the timestamp of the data
306 306 description : dict, optional
307 307 Dictionary with the desired description of the HDF5 file
308
308
309 309 Examples
310 310 --------
311
311
312 312 desc = {
313 313 'data_output': {'winds': ['z', 'w', 'v']},
314 314 'utctime': 'timestamps',
@@ -328,7 +328,7 class HDFWriter(Operation):
328 328 'heightList': 'heights'
329 329 }
330 330 }
331
331
332 332 writer = proc_unit.addOperation(name='HDFWriter')
333 333 writer.addParameter(name='path', value='/path/to/file')
334 334 writer.addParameter(name='blocksPerFile', value='32')
@@ -356,7 +356,7 class HDFWriter(Operation):
356 356 lastTime = None
357 357
358 358 def __init__(self):
359
359
360 360 Operation.__init__(self)
361 361 return
362 362
@@ -392,7 +392,7 class HDFWriter(Operation):
392 392 dsDict['shape'] = dataAux.shape
393 393 dsDict['dsNumber'] = dataAux.shape[0]
394 394 dsDict['dtype'] = dataAux.dtype
395
395
396 396 dsList.append(dsDict)
397 397
398 398 self.dsList = dsList
@@ -407,7 +407,7 class HDFWriter(Operation):
407 407 self.lastTime = currentTime
408 408 self.currentDay = dataDay
409 409 return False
410
410
411 411 timeDiff = currentTime - self.lastTime
412 412
413 413 #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora
@@ -426,7 +426,7 class HDFWriter(Operation):
426 426
427 427 self.dataOut = dataOut
428 428 if not(self.isConfig):
429 self.setup(path=path, blocksPerFile=blocksPerFile,
429 self.setup(path=path, blocksPerFile=blocksPerFile,
430 430 metadataList=metadataList, dataList=dataList,
431 431 setType=setType, description=description)
432 432
@@ -435,9 +435,9 class HDFWriter(Operation):
435 435
436 436 self.putData()
437 437 return
438
438
439 439 def setNextFile(self):
440
440
441 441 ext = self.ext
442 442 path = self.path
443 443 setFile = self.setFile
@@ -522,7 +522,7 class HDFWriter(Operation):
522 522 return 'pair{:02d}'.format(x)
523 523 else:
524 524 return 'channel{:02d}'.format(x)
525
525
526 526 def writeMetadata(self, fp):
527 527
528 528 if self.description:
@@ -547,7 +547,7 class HDFWriter(Operation):
547 547 return
548 548
549 549 def writeData(self, fp):
550
550
551 551 if self.description:
552 552 if 'Data' in self.description:
553 553 grp = fp.create_group('Data')
@@ -558,13 +558,13 class HDFWriter(Operation):
558 558
559 559 dtsets = []
560 560 data = []
561
561
562 562 for dsInfo in self.dsList:
563 563 if dsInfo['nDim'] == 0:
564 564 ds = grp.create_dataset(
565 self.getLabel(dsInfo['variable']),
565 self.getLabel(dsInfo['variable']),
566 566 (self.blocksPerFile, ),
567 chunks=True,
567 chunks=True,
568 568 dtype=numpy.float64)
569 569 dtsets.append(ds)
570 570 data.append((dsInfo['variable'], -1))
@@ -576,7 +576,7 class HDFWriter(Operation):
576 576 sgrp = grp
577 577 for i in range(dsInfo['dsNumber']):
578 578 ds = sgrp.create_dataset(
579 self.getLabel(dsInfo['variable'], i),
579 self.getLabel(dsInfo['variable'], i),
580 580 (self.blocksPerFile, ) + dsInfo['shape'][1:],
581 581 chunks=True,
582 582 dtype=dsInfo['dtype'])
@@ -585,7 +585,7 class HDFWriter(Operation):
585 585 fp.flush()
586 586
587 587 log.log('Creating file: {}'.format(fp.filename), self.name)
588
588
589 589 self.ds = dtsets
590 590 self.data = data
591 591 self.firsttime = True
@@ -73,27 +73,28 class VoltageReader(JRODataReader, ProcessingUnit):
73 73 """
74 74
75 75 ProcessingUnit.__init__(self)
76
76
77 77 self.ext = ".r"
78 78 self.optchar = "D"
79 79 self.basicHeaderObj = BasicHeader(LOCALTIME)
80 80 self.systemHeaderObj = SystemHeader()
81 81 self.radarControllerHeaderObj = RadarControllerHeader()
82
82 83 self.processingHeaderObj = ProcessingHeader()
83 84 self.lastUTTime = 0
84 self.profileIndex = 2**32 - 1
85 self.profileIndex = 2**32 - 1
85 86 self.dataOut = Voltage()
86 87 self.selBlocksize = None
87 88 self.selBlocktime = None
88
89 ##print("1--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK")
89 90 def createObjByDefault(self):
90
91 ##print("2--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK")
91 92 dataObj = Voltage()
92 93
93 94 return dataObj
94 95
95 96 def __hasNotDataInBuffer(self):
96
97 ##print("3--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK")
97 98 if self.profileIndex >= self.processingHeaderObj.profilesPerBlock * self.nTxs:
98 99 return 1
99 100
@@ -109,11 +110,13 class VoltageReader(JRODataReader, ProcessingUnit):
109 110 Return:
110 111 None
111 112 """
113 ##print("4--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK")
112 114 pts2read = self.processingHeaderObj.profilesPerBlock * \
113 115 self.processingHeaderObj.nHeights * self.systemHeaderObj.nChannels
114 116 self.blocksize = pts2read
115 117
116 118 def readBlock(self):
119
117 120 """
118 121 readBlock lee el bloque de datos desde la posicion actual del puntero del archivo
119 122 (self.fp) y actualiza todos los parametros relacionados al bloque de datos
@@ -133,10 +136,10 class VoltageReader(JRODataReader, ProcessingUnit):
133 136 self.flagIsNewBlock
134 137 self.nTotalBlocks
135 138
136 Exceptions:
139 Exceptions:
137 140 Si un bloque leido no es un bloque valido
138 141 """
139
142 ##print("5--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK")
140 143 # if self.server is not None:
141 144 # self.zBlock = self.receiver.recv()
142 145 # self.zHeader = self.zBlock[:24]
@@ -177,6 +180,7 class VoltageReader(JRODataReader, ProcessingUnit):
177 180 return 1
178 181
179 182 def getFirstHeader(self):
183 ##print("6--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK")
180 184
181 185 self.getBasicHeader()
182 186
@@ -186,8 +190,12 class VoltageReader(JRODataReader, ProcessingUnit):
186 190
187 191 self.dataOut.radarControllerHeaderObj = self.radarControllerHeaderObj.copy()
188 192
193 #self.dataOut.ippSeconds_general=self.radarControllerHeaderObj.ippSeconds
194 #print(self.nTxs)
189 195 if self.nTxs > 1:
196 #print(self.radarControllerHeaderObj.ippSeconds)
190 197 self.dataOut.radarControllerHeaderObj.ippSeconds = self.radarControllerHeaderObj.ippSeconds / self.nTxs
198 #print(self.radarControllerHeaderObj.ippSeconds)
191 199 # Time interval and code are propierties of dataOut. Its value depends of radarControllerHeaderObj.
192 200
193 201 # self.dataOut.timeInterval = self.radarControllerHeaderObj.ippSeconds * self.processingHeaderObj.nCohInt
@@ -220,7 +228,7 class VoltageReader(JRODataReader, ProcessingUnit):
220 228 self.dataOut.flagShiftFFT = self.processingHeaderObj.shif_fft
221 229
222 230 def reshapeData(self):
223
231 ##print("7--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK")
224 232 if self.nTxs < 0:
225 233 return
226 234
@@ -247,6 +255,7 class VoltageReader(JRODataReader, ProcessingUnit):
247 255
248 256 def readFirstHeaderFromServer(self):
249 257
258 ##print("8--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK")
250 259 self.getFirstHeader()
251 260
252 261 self.firstHeaderSize = self.basicHeaderObj.size
@@ -278,6 +287,7 class VoltageReader(JRODataReader, ProcessingUnit):
278 287 self.getBlockDimension()
279 288
280 289 def getFromServer(self):
290 ##print("9--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK")
281 291 self.flagDiscontinuousBlock = 0
282 292 self.profileIndex = 0
283 293 self.flagIsNewBlock = 1
@@ -382,6 +392,8 class VoltageReader(JRODataReader, ProcessingUnit):
382 392 self.flagDiscontinuousBlock
383 393 self.flagIsNewBlock
384 394 """
395
396 ##print("10--OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK")
385 397 if self.flagNoMoreFiles:
386 398 self.dataOut.flagNoData = True
387 399 return 0
@@ -410,6 +422,7 class VoltageReader(JRODataReader, ProcessingUnit):
410 422 self.dataOut.data = self.datablock[:, self.profileIndex, :]
411 423 self.dataOut.profileIndex = self.profileIndex
412 424
425
413 426 self.profileIndex += 1
414 427
415 428 else:
@@ -458,9 +471,13 class VoltageReader(JRODataReader, ProcessingUnit):
458 471 self.dataOut.flagDataAsBlock = True
459 472 self.dataOut.nProfiles = self.dataOut.data.shape[1]
460 473
474 #######################DP#######################
475 self.dataOut.CurrentBlock=self.nReadBlocks
476 self.dataOut.LastBlock=self.processingHeaderObj.dataBlocksPerFile
477 #######################DP#######################
461 478 self.dataOut.flagNoData = False
462 479
463 self.getBasicHeader()
480 #self.getBasicHeader()
464 481
465 482 self.dataOut.realtime = self.online
466 483
@@ -673,4 +690,3 class VoltageWriter(JRODataWriter, Operation):
673 690 self.processingHeaderObj.processFlags = self.getProcessFlags()
674 691
675 692 self.setBasicHeader()
676 No newline at end of file
@@ -14,3 +14,9 from .jroproc_spectra_lags import *
14 14 from .jroproc_spectra_acf import *
15 15 from .bltrproc_parameters import *
16 16 from .pxproc_parameters import *
17
18
19 ###########DP###########
20 from .jroproc_voltage_lags import *
21 ###########DP###########
22 from .jroproc_spectra_lags_faraday import *
@@ -172,7 +172,7 def MPDecorator(BaseClass):
172 172 self.op_type = 'external'
173 173 self.name = BaseClass.__name__
174 174 self.__doc__ = BaseClass.__doc__
175
175
176 176 if 'plot' in self.name.lower() and not self.name.endswith('_'):
177 177 self.name = '{}{}'.format(self.CODE.upper(), 'Plot')
178 178
@@ -319,6 +319,12 class SpectralFilters(Operation):
319 319 dataOut.data_pre[0] = self.spc
320 320 return dataOut
321 321
322
323 from scipy.optimize import fmin
324 import itertools
325 from scipy.optimize import curve_fit
326
327
322 328 class GaussianFit(Operation):
323 329
324 330 '''
@@ -378,18 +384,17 class GaussianFit(Operation):
378 384 v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin))
379 385 s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin))
380 386 s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin))
381 if method == 'genealized':
387 if method == 'generalized':
382 388 p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin))
383 389 p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin))
384 390 elif method == 'squared':
385 391 p0 = 2.
386 p1 = 2.
392 p1 = 2.
387 393 gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0
388 394 gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1
389 395 dataOut.GaussFit0 = gau0
390 396 dataOut.GaussFit1 = gau1
391
392 print('Leaving ',method ,' double Gaussian fit')
397
393 398 return dataOut
394 399
395 400 def FitGau(self, X):
@@ -493,7 +498,7 class GaussianFit(Operation):
493 498 if powerwidth <= 1:
494 499 # print('powerwidth <= 1')
495 500 continue
496
501
497 502 # print ('stop 6')
498 503 firstpeak = powerlo + powerwidth/10.# first gaussian energy location
499 504 secondpeak = powerhi - powerwidth/10. #second gaussian energy location
@@ -531,7 +536,6 class GaussianFit(Operation):
531 536 noise=lsq1[0][4]
532 537 #return (numpy.array([shift0,width0,Amplitude0,p0]),
533 538 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
534
535 539 # print ('stop 9')
536 540 ''' two Gaussians '''
537 541 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
@@ -628,7 +632,7 class GaussianFit(Operation):
628 632 if Amplitude1<0.05:
629 633 shift1,width1,Amplitude1,p1 = 4*[numpy.NaN]
630 634
631 # print ('stop 16 ')
635 # print ('stop 16 ')
632 636 # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0)
633 637 # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1)
634 638 # SPCparam = (SPC_ch1,SPC_ch2)
@@ -644,8 +648,6 class GaussianFit(Operation):
644 648 DGauFitParam[4,ht,0] = p0
645 649 DGauFitParam[4,ht,1] = p1
646 650
647 # print (DGauFitParam.shape)
648 # print ('Leaving FitGau')
649 651 return DGauFitParam
650 652 # return SPCparam
651 653 # return GauSPC
@@ -662,7 +664,7 class GaussianFit(Operation):
662 664 model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
663 665 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
664 666 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
665
667
666 668 model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1)
667 669 model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1)
668 670 model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1)
@@ -676,6 +678,206 class GaussianFit(Operation):
676 678 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
677 679
678 680
681 class Oblique_Gauss_Fit(Operation):
682
683 def __init__(self):
684 Operation.__init__(self)
685
686 def Gauss_fit(self,spc,x,nGauss):
687
688
689 def gaussian(x, a, b, c, d):
690 val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d
691 return val
692
693 if nGauss == 'first':
694 spc_1_aux = numpy.copy(spc[:numpy.argmax(spc)+1])
695 spc_2_aux = numpy.flip(spc_1_aux)
696 spc_3_aux = numpy.concatenate((spc_1_aux,spc_2_aux[1:]))
697
698 len_dif = len(x)-len(spc_3_aux)
699
700 spc_zeros = numpy.ones(len_dif)*spc_1_aux[0]
701
702 spc_new = numpy.concatenate((spc_3_aux,spc_zeros))
703
704 y = spc_new
705
706 elif nGauss == 'second':
707 y = spc
708
709
710 # estimate starting values from the data
711 a = y.max()
712 b = x[numpy.argmax(y)]
713 if nGauss == 'first':
714 c = 1.#b#b#numpy.std(spc)
715 elif nGauss == 'second':
716 c = b
717 else:
718 print("ERROR")
719
720 d = numpy.mean(y[-100:])
721
722 # define a least squares function to optimize
723 def minfunc(params):
724 return sum((y-gaussian(x,params[0],params[1],params[2],params[3]))**2)
725
726 # fit
727 popt = fmin(minfunc,[a,b,c,d],disp=False)
728 #popt,fopt,niter,funcalls = fmin(minfunc,[a,b,c,d])
729
730
731 return gaussian(x, popt[0], popt[1], popt[2], popt[3]), popt[0], popt[1], popt[2], popt[3]
732
733
734 def Gauss_fit_2(self,spc,x,nGauss):
735
736
737 def gaussian(x, a, b, c, d):
738 val = a * numpy.exp(-(x - b)**2 / (2*c**2)) + d
739 return val
740
741 if nGauss == 'first':
742 spc_1_aux = numpy.copy(spc[:numpy.argmax(spc)+1])
743 spc_2_aux = numpy.flip(spc_1_aux)
744 spc_3_aux = numpy.concatenate((spc_1_aux,spc_2_aux[1:]))
745
746 len_dif = len(x)-len(spc_3_aux)
747
748 spc_zeros = numpy.ones(len_dif)*spc_1_aux[0]
749
750 spc_new = numpy.concatenate((spc_3_aux,spc_zeros))
751
752 y = spc_new
753
754 elif nGauss == 'second':
755 y = spc
756
757
758 # estimate starting values from the data
759 a = y.max()
760 b = x[numpy.argmax(y)]
761 if nGauss == 'first':
762 c = 1.#b#b#numpy.std(spc)
763 elif nGauss == 'second':
764 c = b
765 else:
766 print("ERROR")
767
768 d = numpy.mean(y[-100:])
769
770 # define a least squares function to optimize
771 popt,pcov = curve_fit(gaussian,x,y,p0=[a,b,c,d])
772 #popt,fopt,niter,funcalls = fmin(minfunc,[a,b,c,d])
773
774
775 #return gaussian(x, popt[0], popt[1], popt[2], popt[3]), popt[0], popt[1], popt[2], popt[3]
776 return gaussian(x, popt[0], popt[1], popt[2], popt[3]),popt[0], popt[1], popt[2], popt[3]
777
778 def Double_Gauss_fit(self,spc,x,A1,B1,C1,A2,B2,C2,D):
779
780 def double_gaussian(x, a1, b1, c1, a2, b2, c2, d):
781 val = a1 * numpy.exp(-(x - b1)**2 / (2*c1**2)) + a2 * numpy.exp(-(x - b2)**2 / (2*c2**2)) + d
782 return val
783
784
785 y = spc
786
787 # estimate starting values from the data
788 a1 = A1
789 b1 = B1
790 c1 = C1#numpy.std(spc)
791
792 a2 = A2#y.max()
793 b2 = B2#x[numpy.argmax(y)]
794 c2 = C2#numpy.std(spc)
795 d = D
796
797 # define a least squares function to optimize
798 def minfunc(params):
799 return sum((y-double_gaussian(x,params[0],params[1],params[2],params[3],params[4],params[5],params[6]))**2)
800
801 # fit
802 popt = fmin(minfunc,[a1,b1,c1,a2,b2,c2,d],disp=False)
803
804 return double_gaussian(x, popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6]), popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6]
805
806 def Double_Gauss_fit_2(self,spc,x,A1,B1,C1,A2,B2,C2,D):
807
808 def double_gaussian(x, a1, b1, c1, a2, b2, c2, d):
809 val = a1 * numpy.exp(-(x - b1)**2 / (2*c1**2)) + a2 * numpy.exp(-(x - b2)**2 / (2*c2**2)) + d
810 return val
811
812
813 y = spc
814
815 # estimate starting values from the data
816 a1 = A1
817 b1 = B1
818 c1 = C1#numpy.std(spc)
819
820 a2 = A2#y.max()
821 b2 = B2#x[numpy.argmax(y)]
822 c2 = C2#numpy.std(spc)
823 d = D
824
825 # fit
826
827 popt,pcov = curve_fit(double_gaussian,x,y,p0=[a1,b1,c1,a2,b2,c2,d])
828
829 error = numpy.sqrt(numpy.diag(pcov))
830
831 return popt[0], popt[1], popt[2], popt[3], popt[4], popt[5], popt[6], error[0], error[1], error[2], error[3], error[4], error[5], error[6]
832
833 def run(self, dataOut):
834
835 pwcode = 1
836
837 if dataOut.flagDecodeData:
838 pwcode = numpy.sum(dataOut.code[0]**2)
839 #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter
840 normFactor = dataOut.nProfiles * dataOut.nIncohInt * dataOut.nCohInt * pwcode * dataOut.windowOfFilter
841 factor = normFactor
842 z = dataOut.data_spc / factor
843 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
844 dataOut.power = numpy.average(z, axis=1)
845 dataOut.powerdB = 10 * numpy.log10(dataOut.power)
846
847
848 x = dataOut.getVelRange(0)
849
850 dataOut.Oblique_params = numpy.ones((1,7,dataOut.nHeights))*numpy.NAN
851 dataOut.Oblique_param_errors = numpy.ones((1,7,dataOut.nHeights))*numpy.NAN
852
853 dataOut.VelRange = x
854
855
856 l1=range(22,36)
857 l2=range(58,99)
858
859 for hei in itertools.chain(l1, l2):
860
861 try:
862 spc = dataOut.data_spc[0,:,hei]
863
864 spc_fit, A1, B1, C1, D1 = self.Gauss_fit_2(spc,x,'first')
865
866 spc_diff = spc - spc_fit
867 spc_diff[spc_diff < 0] = 0
868
869 spc_fit_diff, A2, B2, C2, D2 = self.Gauss_fit_2(spc_diff,x,'second')
870
871 D = (D1+D2)
872
873 dataOut.Oblique_params[0,0,hei],dataOut.Oblique_params[0,1,hei],dataOut.Oblique_params[0,2,hei],dataOut.Oblique_params[0,3,hei],dataOut.Oblique_params[0,4,hei],dataOut.Oblique_params[0,5,hei],dataOut.Oblique_params[0,6,hei],dataOut.Oblique_param_errors[0,0,hei],dataOut.Oblique_param_errors[0,1,hei],dataOut.Oblique_param_errors[0,2,hei],dataOut.Oblique_param_errors[0,3,hei],dataOut.Oblique_param_errors[0,4,hei],dataOut.Oblique_param_errors[0,5,hei],dataOut.Oblique_param_errors[0,6,hei] = self.Double_Gauss_fit_2(spc,x,A1,B1,C1,A2,B2,C2,D)
874 #spc_double_fit,dataOut.Oblique_params = self.Double_Gauss_fit(spc,x,A1,B1,C1,A2,B2,C2,D)
875
876 except:
877 ###dataOut.Oblique_params[0,:,hei] = dataOut.Oblique_params[0,:,hei]*numpy.NAN
878 pass
879
880 return dataOut
679 881
680 882 class PrecipitationProc(Operation):
681 883
@@ -3884,3 +4086,55 class SMOperations():
3884 4086 # error[indInvalid1] = 13
3885 4087 #
3886 4088 # return heights, error
4089
4090
4091
4092 class IGRFModel(Operation):
4093 """Operation to calculate Geomagnetic parameters.
4094
4095 Parameters:
4096 -----------
4097 None
4098
4099 Example
4100 --------
4101
4102 op = proc_unit.addOperation(name='IGRFModel', optype='other')
4103
4104 """
4105
4106 def __init__(self, **kwargs):
4107
4108 Operation.__init__(self, **kwargs)
4109
4110 self.aux=1
4111
4112 def run(self,dataOut):
4113
4114 try:
4115 from schainpy.model.proc import mkfact_short_2020
4116 except:
4117 log.warning('You should install "mkfact_short_2020" module to process IGRF Model')
4118
4119 if self.aux==1:
4120
4121 #dataOut.TimeBlockSeconds_First_Time=time.mktime(time.strptime(dataOut.TimeBlockDate))
4122 #### we do not use dataOut.datatime.ctime() because it's the time of the second (next) block
4123 dataOut.TimeBlockSeconds_First_Time=dataOut.TimeBlockSeconds
4124 dataOut.bd_time=time.gmtime(dataOut.TimeBlockSeconds_First_Time)
4125 dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0
4126 dataOut.ut=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0
4127
4128 self.aux=0
4129
4130 dataOut.h=numpy.arange(0.0,15.0*dataOut.MAXNRANGENDT,15.0,dtype='float32')
4131 dataOut.bfm=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32')
4132 dataOut.bfm=numpy.array(dataOut.bfm,order='F')
4133 dataOut.thb=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32')
4134 dataOut.thb=numpy.array(dataOut.thb,order='F')
4135 dataOut.bki=numpy.zeros(dataOut.MAXNRANGENDT,dtype='float32')
4136 dataOut.bki=numpy.array(dataOut.bki,order='F')
4137
4138 mkfact_short_2020.mkfact(dataOut.year,dataOut.h,dataOut.bfm,dataOut.thb,dataOut.bki,dataOut.MAXNRANGENDT)
4139
4140 return dataOut
@@ -895,4 +895,4 class dopplerFlip(Operation):
895 895 # canal modificado es re-escrito en el arreglo de canales
896 896 self.dataOut.data_spc[2] = jspectra_tmp
897 897
898 return self.dataOut No newline at end of file
898 return self.dataOut
@@ -736,4 +736,4 class SpectraLagsProc(ProcessingUnit):
736 736
737 737 self.dataOut.noise_estimation = noise.copy()
738 738
739 return 1 No newline at end of file
739 return 1
1 NO CONTENT: modified file
The requested commit or file is too big and content was truncated. Show full diff
@@ -61,4 +61,4 class PXParametersProc(ProcessingUnit):
61 61 meta[attr] = getattr(self.dataOut, attr)
62 62
63 63 meta['mode'] = mode
64 self.dataOut.meta = meta No newline at end of file
64 self.dataOut.meta = meta
@@ -1,6 +1,6
1 1 import argparse
2 2
3 from schainpy.controller import Project, multiSchain
3 from schainpy.controller import Project#, multiSchain
4 4
5 5 desc = "HF_EXAMPLE"
6 6
General Comments 0
You need to be logged in to leave comments. Login now