The requested changes are too big and content was truncated. Show full diff
@@ -1,668 +1,669 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """API to create signal chain projects |
|
6 | 6 | |
|
7 | 7 | The API is provide through class: Project |
|
8 | 8 | """ |
|
9 | 9 | |
|
10 | 10 | import re |
|
11 | 11 | import sys |
|
12 | 12 | import ast |
|
13 | 13 | import datetime |
|
14 | 14 | import traceback |
|
15 | 15 | import time |
|
16 | 16 | import multiprocessing |
|
17 | 17 | from multiprocessing import Process, Queue |
|
18 | 18 | from threading import Thread |
|
19 | 19 | from xml.etree.ElementTree import ElementTree, Element, SubElement |
|
20 | 20 | |
|
21 | 21 | from schainpy.admin import Alarm, SchainWarning |
|
22 | 22 | from schainpy.model import * |
|
23 | 23 | from schainpy.utils import log |
|
24 | 24 | |
|
25 | 25 | if 'darwin' in sys.platform and sys.version_info[0] == 3 and sys.version_info[1] > 7: |
|
26 | 26 | multiprocessing.set_start_method('fork') |
|
27 | 27 | |
|
28 | 28 | class ConfBase(): |
|
29 | 29 | |
|
30 | 30 | def __init__(self): |
|
31 | 31 | |
|
32 | 32 | self.id = '0' |
|
33 | 33 | self.name = None |
|
34 | 34 | self.priority = None |
|
35 | 35 | self.parameters = {} |
|
36 | 36 | self.object = None |
|
37 | 37 | self.operations = [] |
|
38 | 38 | |
|
39 | 39 | def getId(self): |
|
40 | 40 | |
|
41 | 41 | return self.id |
|
42 | 42 | |
|
43 | 43 | def getNewId(self): |
|
44 | 44 | |
|
45 | 45 | return int(self.id) * 10 + len(self.operations) + 1 |
|
46 | 46 | |
|
47 | 47 | def updateId(self, new_id): |
|
48 | 48 | |
|
49 | 49 | self.id = str(new_id) |
|
50 | 50 | |
|
51 | 51 | n = 1 |
|
52 | 52 | for conf in self.operations: |
|
53 | 53 | conf_id = str(int(new_id) * 10 + n) |
|
54 | 54 | conf.updateId(conf_id) |
|
55 | 55 | n += 1 |
|
56 | 56 | |
|
57 | 57 | def getKwargs(self): |
|
58 | 58 | |
|
59 | 59 | params = {} |
|
60 | 60 | |
|
61 | 61 | for key, value in self.parameters.items(): |
|
62 | 62 | if value not in (None, '', ' '): |
|
63 | 63 | params[key] = value |
|
64 | 64 | |
|
65 | 65 | return params |
|
66 | 66 | |
|
67 | 67 | def update(self, **kwargs): |
|
68 | 68 | |
|
69 | 69 | for key, value in kwargs.items(): |
|
70 | 70 | self.addParameter(name=key, value=value) |
|
71 | 71 | |
|
72 | 72 | def addParameter(self, name, value, format=None): |
|
73 | 73 | ''' |
|
74 | 74 | ''' |
|
75 | 75 | |
|
76 | 76 | if isinstance(value, str) and re.search(r'(\d+/\d+/\d+)', value): |
|
77 | 77 | self.parameters[name] = datetime.date(*[int(x) for x in value.split('/')]) |
|
78 | 78 | elif isinstance(value, str) and re.search(r'(\d+:\d+:\d+)', value): |
|
79 | 79 | self.parameters[name] = datetime.time(*[int(x) for x in value.split(':')]) |
|
80 | 80 | else: |
|
81 | 81 | try: |
|
82 | 82 | self.parameters[name] = ast.literal_eval(value) |
|
83 | 83 | except: |
|
84 | 84 | if isinstance(value, str) and ',' in value: |
|
85 | 85 | self.parameters[name] = value.split(',') |
|
86 | 86 | else: |
|
87 | 87 | self.parameters[name] = value |
|
88 | 88 | |
|
89 | 89 | def getParameters(self): |
|
90 | 90 | |
|
91 | 91 | params = {} |
|
92 | 92 | for key, value in self.parameters.items(): |
|
93 | 93 | s = type(value).__name__ |
|
94 | 94 | if s == 'date': |
|
95 | 95 | params[key] = value.strftime('%Y/%m/%d') |
|
96 | 96 | elif s == 'time': |
|
97 | 97 | params[key] = value.strftime('%H:%M:%S') |
|
98 | 98 | else: |
|
99 | 99 | params[key] = str(value) |
|
100 | 100 | |
|
101 | 101 | return params |
|
102 | 102 | |
|
103 | 103 | def makeXml(self, element): |
|
104 | 104 | |
|
105 | 105 | xml = SubElement(element, self.ELEMENTNAME) |
|
106 | 106 | for label in self.xml_labels: |
|
107 | 107 | xml.set(label, str(getattr(self, label))) |
|
108 | 108 | |
|
109 | 109 | for key, value in self.getParameters().items(): |
|
110 | 110 | xml_param = SubElement(xml, 'Parameter') |
|
111 | 111 | xml_param.set('name', key) |
|
112 | 112 | xml_param.set('value', value) |
|
113 | 113 | |
|
114 | 114 | for conf in self.operations: |
|
115 | 115 | conf.makeXml(xml) |
|
116 | 116 | |
|
117 | 117 | def __str__(self): |
|
118 | 118 | |
|
119 | 119 | if self.ELEMENTNAME == 'Operation': |
|
120 | 120 | s = ' {}[id={}]\n'.format(self.name, self.id) |
|
121 | 121 | else: |
|
122 | 122 | s = '{}[id={}, inputId={}]\n'.format(self.name, self.id, self.inputId) |
|
123 | 123 | |
|
124 | 124 | for key, value in self.parameters.items(): |
|
125 | 125 | if self.ELEMENTNAME == 'Operation': |
|
126 | 126 | s += ' {}: {}\n'.format(key, value) |
|
127 | 127 | else: |
|
128 | 128 | s += ' {}: {}\n'.format(key, value) |
|
129 | 129 | |
|
130 | 130 | for conf in self.operations: |
|
131 | 131 | s += str(conf) |
|
132 | 132 | |
|
133 | 133 | return s |
|
134 | 134 | |
|
135 | 135 | class OperationConf(ConfBase): |
|
136 | 136 | |
|
137 | 137 | ELEMENTNAME = 'Operation' |
|
138 | 138 | xml_labels = ['id', 'name'] |
|
139 | 139 | |
|
140 | 140 | def setup(self, id, name, priority, project_id, err_queue): |
|
141 | 141 | |
|
142 | 142 | self.id = str(id) |
|
143 | 143 | self.project_id = project_id |
|
144 | 144 | self.name = name |
|
145 | 145 | self.type = 'other' |
|
146 | 146 | self.err_queue = err_queue |
|
147 | 147 | |
|
148 | 148 | def readXml(self, element, project_id, err_queue): |
|
149 | 149 | |
|
150 | 150 | self.id = element.get('id') |
|
151 | 151 | self.name = element.get('name') |
|
152 | 152 | self.type = 'other' |
|
153 | 153 | self.project_id = str(project_id) |
|
154 | 154 | self.err_queue = err_queue |
|
155 | 155 | |
|
156 | 156 | for elm in element.iter('Parameter'): |
|
157 | 157 | self.addParameter(elm.get('name'), elm.get('value')) |
|
158 | 158 | |
|
159 | 159 | def createObject(self): |
|
160 | 160 | |
|
161 | 161 | className = eval(self.name) |
|
162 | 162 | |
|
163 | 163 | if 'Plot' in self.name or 'Writer' in self.name or 'Send' in self.name or 'print' in self.name: |
|
164 | 164 | kwargs = self.getKwargs() |
|
165 | 165 | opObj = className(self.id, self.id, self.project_id, self.err_queue, **kwargs) |
|
166 | 166 | opObj.start() |
|
167 | 167 | self.type = 'external' |
|
168 | 168 | else: |
|
169 | 169 | opObj = className() |
|
170 | 170 | |
|
171 | 171 | self.object = opObj |
|
172 | 172 | return opObj |
|
173 | 173 | |
|
174 | 174 | class ProcUnitConf(ConfBase): |
|
175 | 175 | |
|
176 | 176 | ELEMENTNAME = 'ProcUnit' |
|
177 | 177 | xml_labels = ['id', 'inputId', 'name'] |
|
178 | 178 | |
|
179 | 179 | def setup(self, project_id, id, name, datatype, inputId, err_queue): |
|
180 | 180 | ''' |
|
181 | 181 | ''' |
|
182 | 182 | |
|
183 | 183 | if datatype == None and name == None: |
|
184 | 184 | raise ValueError('datatype or name should be defined') |
|
185 | 185 | |
|
186 | 186 | if name == None: |
|
187 | 187 | if 'Proc' in datatype: |
|
188 | 188 | name = datatype |
|
189 | 189 | else: |
|
190 | 190 | name = '%sProc' % (datatype) |
|
191 | 191 | |
|
192 | 192 | if datatype == None: |
|
193 | 193 | datatype = name.replace('Proc', '') |
|
194 | 194 | |
|
195 | 195 | self.id = str(id) |
|
196 | 196 | self.project_id = project_id |
|
197 | 197 | self.name = name |
|
198 | 198 | self.datatype = datatype |
|
199 | 199 | self.inputId = inputId |
|
200 | 200 | self.err_queue = err_queue |
|
201 | 201 | self.operations = [] |
|
202 | 202 | self.parameters = {} |
|
203 | 203 | |
|
204 | 204 | def removeOperation(self, id): |
|
205 | 205 | |
|
206 | 206 | i = [1 if x.id == id else 0 for x in self.operations] |
|
207 | 207 | self.operations.pop(i.index(1)) |
|
208 | 208 | |
|
209 | 209 | def getOperation(self, id): |
|
210 | 210 | |
|
211 | 211 | for conf in self.operations: |
|
212 | 212 | if conf.id == id: |
|
213 | 213 | return conf |
|
214 | 214 | |
|
215 | 215 | def addOperation(self, name, optype='self'): |
|
216 | 216 | ''' |
|
217 | 217 | ''' |
|
218 | 218 | |
|
219 | 219 | id = self.getNewId() |
|
220 | 220 | conf = OperationConf() |
|
221 | 221 | conf.setup(id, name=name, priority='0', project_id=self.project_id, err_queue=self.err_queue) |
|
222 | 222 | self.operations.append(conf) |
|
223 | 223 | |
|
224 | 224 | return conf |
|
225 | 225 | |
|
226 | 226 | def readXml(self, element, project_id, err_queue): |
|
227 | 227 | |
|
228 | 228 | self.id = element.get('id') |
|
229 | 229 | self.name = element.get('name') |
|
230 | 230 | self.inputId = None if element.get('inputId') == 'None' else element.get('inputId') |
|
231 | 231 | self.datatype = element.get('datatype', self.name.replace(self.ELEMENTNAME.replace('Unit', ''), '')) |
|
232 | 232 | self.project_id = str(project_id) |
|
233 | 233 | self.err_queue = err_queue |
|
234 | 234 | self.operations = [] |
|
235 | 235 | self.parameters = {} |
|
236 | 236 | |
|
237 | 237 | for elm in element: |
|
238 | 238 | if elm.tag == 'Parameter': |
|
239 | 239 | self.addParameter(elm.get('name'), elm.get('value')) |
|
240 | 240 | elif elm.tag == 'Operation': |
|
241 | 241 | conf = OperationConf() |
|
242 | 242 | conf.readXml(elm, project_id, err_queue) |
|
243 | 243 | self.operations.append(conf) |
|
244 | 244 | |
|
245 | 245 | def createObjects(self): |
|
246 | 246 | ''' |
|
247 | 247 | Instancia de unidades de procesamiento. |
|
248 | 248 | ''' |
|
249 | 249 | |
|
250 | 250 | className = eval(self.name) |
|
251 | 251 | kwargs = self.getKwargs() |
|
252 | 252 | procUnitObj = className() |
|
253 | 253 | procUnitObj.name = self.name |
|
254 | 254 | log.success('creating process...', self.name) |
|
255 | 255 | |
|
256 | 256 | for conf in self.operations: |
|
257 | 257 | |
|
258 | 258 | opObj = conf.createObject() |
|
259 | 259 | |
|
260 | 260 | log.success('adding operation: {}, type:{}'.format( |
|
261 | 261 | conf.name, |
|
262 | 262 | conf.type), self.name) |
|
263 | 263 | |
|
264 | 264 | procUnitObj.addOperation(conf, opObj) |
|
265 | 265 | |
|
266 | 266 | self.object = procUnitObj |
|
267 | 267 | |
|
268 | 268 | def run(self): |
|
269 | 269 | ''' |
|
270 | 270 | ''' |
|
271 | 271 | #self.object.call(**self.getKwargs()) |
|
272 | 272 | |
|
273 | 273 | return self.object.call(**self.getKwargs()) |
|
274 | 274 | |
|
275 | 275 | |
|
276 | 276 | class ReadUnitConf(ProcUnitConf): |
|
277 | 277 | |
|
278 | 278 | ELEMENTNAME = 'ReadUnit' |
|
279 | 279 | |
|
280 | 280 | def __init__(self): |
|
281 | 281 | |
|
282 | 282 | self.id = None |
|
283 | 283 | self.datatype = None |
|
284 | 284 | self.name = None |
|
285 | 285 | self.inputId = None |
|
286 | 286 | self.operations = [] |
|
287 | 287 | self.parameters = {} |
|
288 | 288 | |
|
289 | 289 | def setup(self, project_id, id, name, datatype, err_queue, path='', startDate='', endDate='', |
|
290 | 290 | startTime='', endTime='', server=None, **kwargs): |
|
291 | 291 | |
|
292 | 292 | if datatype == None and name == None: |
|
293 | 293 | raise ValueError('datatype or name should be defined') |
|
294 | 294 | if name == None: |
|
295 | 295 | if 'Reader' in datatype: |
|
296 | 296 | name = datatype |
|
297 | 297 | datatype = name.replace('Reader', '') |
|
298 | 298 | else: |
|
299 | 299 | name = '{}Reader'.format(datatype) |
|
300 | 300 | if datatype == None: |
|
301 | 301 | if 'Reader' in name: |
|
302 | 302 | datatype = name.replace('Reader', '') |
|
303 | 303 | else: |
|
304 | 304 | datatype = name |
|
305 | 305 | name = '{}Reader'.format(name) |
|
306 | 306 | |
|
307 | 307 | self.id = id |
|
308 | 308 | self.project_id = project_id |
|
309 | 309 | self.name = name |
|
310 | 310 | self.datatype = datatype |
|
311 | 311 | self.err_queue = err_queue |
|
312 | 312 | |
|
313 | 313 | self.addParameter(name='path', value=path) |
|
314 | 314 | self.addParameter(name='startDate', value=startDate) |
|
315 | 315 | self.addParameter(name='endDate', value=endDate) |
|
316 | 316 | self.addParameter(name='startTime', value=startTime) |
|
317 | 317 | self.addParameter(name='endTime', value=endTime) |
|
318 | 318 | |
|
319 | 319 | for key, value in kwargs.items(): |
|
320 | 320 | self.addParameter(name=key, value=value) |
|
321 | 321 | |
|
322 | 322 | |
|
323 | 323 | class Project(Process): |
|
324 | 324 | """API to create signal chain projects""" |
|
325 | 325 | |
|
326 | 326 | ELEMENTNAME = 'Project' |
|
327 | 327 | |
|
328 | 328 | def __init__(self, name=''): |
|
329 | 329 | |
|
330 | 330 | Process.__init__(self) |
|
331 | 331 | self.id = '1' |
|
332 | 332 | if name: |
|
333 | 333 | self.name = '{} ({})'.format(Process.__name__, name) |
|
334 | 334 | self.filename = None |
|
335 | 335 | self.description = None |
|
336 | 336 | self.email = None |
|
337 | 337 | self.alarm = [] |
|
338 | 338 | self.configurations = {} |
|
339 | 339 | # self.err_queue = Queue() |
|
340 | 340 | self.err_queue = None |
|
341 | 341 | self.started = False |
|
342 | 342 | |
|
343 | 343 | def getNewId(self): |
|
344 | 344 | |
|
345 | 345 | idList = list(self.configurations.keys()) |
|
346 | 346 | id = int(self.id) * 10 |
|
347 | 347 | |
|
348 | 348 | while True: |
|
349 | 349 | id += 1 |
|
350 | 350 | |
|
351 | 351 | if str(id) in idList: |
|
352 | 352 | continue |
|
353 | 353 | |
|
354 | 354 | break |
|
355 | 355 | |
|
356 | 356 | return str(id) |
|
357 | 357 | |
|
358 | 358 | def updateId(self, new_id): |
|
359 | 359 | |
|
360 | 360 | self.id = str(new_id) |
|
361 | 361 | |
|
362 | 362 | keyList = list(self.configurations.keys()) |
|
363 | 363 | keyList.sort() |
|
364 | 364 | |
|
365 | 365 | n = 1 |
|
366 | 366 | new_confs = {} |
|
367 | 367 | |
|
368 | 368 | for procKey in keyList: |
|
369 | 369 | |
|
370 | 370 | conf = self.configurations[procKey] |
|
371 | 371 | idProcUnit = str(int(self.id) * 10 + n) |
|
372 | 372 | conf.updateId(idProcUnit) |
|
373 | 373 | new_confs[idProcUnit] = conf |
|
374 | 374 | n += 1 |
|
375 | 375 | |
|
376 | 376 | self.configurations = new_confs |
|
377 | 377 | |
|
378 | 378 | def setup(self, id=1, name='', description='', email=None, alarm=[]): |
|
379 | 379 | |
|
380 | 380 | self.id = str(id) |
|
381 | 381 | self.description = description |
|
382 | 382 | self.email = email |
|
383 | 383 | self.alarm = alarm |
|
384 | 384 | if name: |
|
385 | 385 | self.name = '{} ({})'.format(Process.__name__, name) |
|
386 | 386 | |
|
387 | 387 | def update(self, **kwargs): |
|
388 | 388 | |
|
389 | 389 | for key, value in kwargs.items(): |
|
390 | 390 | setattr(self, key, value) |
|
391 | 391 | |
|
392 | 392 | def clone(self): |
|
393 | 393 | |
|
394 | 394 | p = Project() |
|
395 | 395 | p.id = self.id |
|
396 | 396 | p.name = self.name |
|
397 | 397 | p.description = self.description |
|
398 | 398 | p.configurations = self.configurations.copy() |
|
399 | 399 | |
|
400 | 400 | return p |
|
401 | 401 | |
|
402 | 402 | def addReadUnit(self, id=None, datatype=None, name=None, **kwargs): |
|
403 | 403 | |
|
404 | 404 | ''' |
|
405 | 405 | ''' |
|
406 | 406 | |
|
407 | 407 | if id is None: |
|
408 | 408 | idReadUnit = self.getNewId() |
|
409 | 409 | else: |
|
410 | 410 | idReadUnit = str(id) |
|
411 | 411 | |
|
412 | 412 | conf = ReadUnitConf() |
|
413 | 413 | conf.setup(self.id, idReadUnit, name, datatype, self.err_queue, **kwargs) |
|
414 | 414 | self.configurations[conf.id] = conf |
|
415 | 415 | |
|
416 | 416 | return conf |
|
417 | 417 | |
|
418 | 418 | def addProcUnit(self, id=None, inputId='0', datatype=None, name=None): |
|
419 | 419 | |
|
420 | 420 | ''' |
|
421 | 421 | ''' |
|
422 | 422 | |
|
423 | 423 | if id is None: |
|
424 | 424 | idProcUnit = self.getNewId() |
|
425 | 425 | else: |
|
426 | 426 | idProcUnit = id |
|
427 | 427 | |
|
428 | 428 | conf = ProcUnitConf() |
|
429 | 429 | conf.setup(self.id, idProcUnit, name, datatype, inputId, self.err_queue) |
|
430 | 430 | self.configurations[conf.id] = conf |
|
431 | 431 | |
|
432 | 432 | return conf |
|
433 | 433 | |
|
434 | 434 | def removeProcUnit(self, id): |
|
435 | 435 | |
|
436 | 436 | if id in self.configurations: |
|
437 | 437 | self.configurations.pop(id) |
|
438 | 438 | |
|
439 | 439 | def getReadUnit(self): |
|
440 | 440 | |
|
441 | 441 | for obj in list(self.configurations.values()): |
|
442 | 442 | if obj.ELEMENTNAME == 'ReadUnit': |
|
443 | 443 | return obj |
|
444 | 444 | |
|
445 | 445 | return None |
|
446 | 446 | |
|
447 | 447 | def getProcUnit(self, id): |
|
448 | 448 | |
|
449 | 449 | return self.configurations[id] |
|
450 | 450 | |
|
451 | 451 | def getUnits(self): |
|
452 | 452 | |
|
453 | 453 | keys = list(self.configurations) |
|
454 | 454 | keys.sort() |
|
455 | 455 | |
|
456 | 456 | for key in keys: |
|
457 | 457 | yield self.configurations[key] |
|
458 | 458 | |
|
459 | 459 | def updateUnit(self, id, **kwargs): |
|
460 | 460 | |
|
461 | 461 | conf = self.configurations[id].update(**kwargs) |
|
462 | 462 | |
|
463 | 463 | def makeXml(self): |
|
464 | 464 | |
|
465 | 465 | xml = Element('Project') |
|
466 | 466 | xml.set('id', str(self.id)) |
|
467 | 467 | xml.set('name', self.name) |
|
468 | 468 | xml.set('description', self.description) |
|
469 | 469 | |
|
470 | 470 | for conf in self.configurations.values(): |
|
471 | 471 | conf.makeXml(xml) |
|
472 | 472 | |
|
473 | 473 | self.xml = xml |
|
474 | 474 | |
|
475 | 475 | def writeXml(self, filename=None): |
|
476 | 476 | |
|
477 | 477 | if filename == None: |
|
478 | 478 | if self.filename: |
|
479 | 479 | filename = self.filename |
|
480 | 480 | else: |
|
481 | 481 | filename = 'schain.xml' |
|
482 | 482 | |
|
483 | 483 | if not filename: |
|
484 | 484 | print('filename has not been defined. Use setFilename(filename) for do it.') |
|
485 | 485 | return 0 |
|
486 | 486 | |
|
487 | 487 | abs_file = os.path.abspath(filename) |
|
488 | 488 | |
|
489 | 489 | if not os.access(os.path.dirname(abs_file), os.W_OK): |
|
490 | 490 | print('No write permission on %s' % os.path.dirname(abs_file)) |
|
491 | 491 | return 0 |
|
492 | 492 | |
|
493 | 493 | if os.path.isfile(abs_file) and not(os.access(abs_file, os.W_OK)): |
|
494 | 494 | print('File %s already exists and it could not be overwriten' % abs_file) |
|
495 | 495 | return 0 |
|
496 | 496 | |
|
497 | 497 | self.makeXml() |
|
498 | 498 | |
|
499 | 499 | ElementTree(self.xml).write(abs_file, method='xml') |
|
500 | 500 | |
|
501 | 501 | self.filename = abs_file |
|
502 | 502 | |
|
503 | 503 | return 1 |
|
504 | 504 | |
|
505 | 505 | def readXml(self, filename): |
|
506 | 506 | |
|
507 | 507 | abs_file = os.path.abspath(filename) |
|
508 | 508 | |
|
509 | 509 | self.configurations = {} |
|
510 | 510 | |
|
511 | 511 | try: |
|
512 | 512 | self.xml = ElementTree().parse(abs_file) |
|
513 | 513 | except: |
|
514 | 514 | log.error('Error reading %s, verify file format' % filename) |
|
515 | 515 | return 0 |
|
516 | 516 | |
|
517 | 517 | self.id = self.xml.get('id') |
|
518 | 518 | self.name = self.xml.get('name') |
|
519 | 519 | self.description = self.xml.get('description') |
|
520 | 520 | |
|
521 | 521 | for element in self.xml: |
|
522 | 522 | if element.tag == 'ReadUnit': |
|
523 | 523 | conf = ReadUnitConf() |
|
524 | 524 | conf.readXml(element, self.id, self.err_queue) |
|
525 | 525 | self.configurations[conf.id] = conf |
|
526 | 526 | elif element.tag == 'ProcUnit': |
|
527 | 527 | conf = ProcUnitConf() |
|
528 | 528 | input_proc = self.configurations[element.get('inputId')] |
|
529 | 529 | conf.readXml(element, self.id, self.err_queue) |
|
530 | 530 | self.configurations[conf.id] = conf |
|
531 | 531 | |
|
532 | 532 | self.filename = abs_file |
|
533 | 533 | |
|
534 | 534 | return 1 |
|
535 | 535 | |
|
536 | 536 | def __str__(self): |
|
537 | 537 | |
|
538 | 538 | text = '\nProject[id=%s, name=%s, description=%s]\n\n' % ( |
|
539 | 539 | self.id, |
|
540 | 540 | self.name, |
|
541 | 541 | self.description, |
|
542 | 542 | ) |
|
543 | 543 | |
|
544 | 544 | for conf in self.configurations.values(): |
|
545 | 545 | text += '{}'.format(conf) |
|
546 | 546 | |
|
547 | 547 | return text |
|
548 | 548 | |
|
549 | 549 | def createObjects(self): |
|
550 | 550 | |
|
551 | 551 | keys = list(self.configurations.keys()) |
|
552 | 552 | keys.sort() |
|
553 | 553 | for key in keys: |
|
554 | 554 | conf = self.configurations[key] |
|
555 | 555 | conf.createObjects() |
|
556 | 556 | if conf.inputId is not None: |
|
557 | 557 | if isinstance(conf.inputId, list): |
|
558 | 558 | conf.object.setInput([self.configurations[x].object for x in conf.inputId]) |
|
559 | 559 | else: |
|
560 | 560 | conf.object.setInput([self.configurations[conf.inputId].object]) |
|
561 | 561 | |
|
562 | 562 | def monitor(self): |
|
563 | 563 | |
|
564 | 564 | t = Thread(target=self._monitor, args=(self.err_queue, self.ctx)) |
|
565 | 565 | t.start() |
|
566 | 566 | |
|
567 | 567 | def _monitor(self, queue, ctx): |
|
568 | 568 | |
|
569 | 569 | import socket |
|
570 | 570 | |
|
571 | 571 | procs = 0 |
|
572 | 572 | err_msg = '' |
|
573 | 573 | |
|
574 | 574 | while True: |
|
575 | 575 | msg = queue.get() |
|
576 | 576 | if '#_start_#' in msg: |
|
577 | 577 | procs += 1 |
|
578 | 578 | elif '#_end_#' in msg: |
|
579 | 579 | procs -= 1 |
|
580 | 580 | else: |
|
581 | 581 | err_msg = msg |
|
582 | 582 | |
|
583 | 583 | if procs == 0 or 'Traceback' in err_msg: |
|
584 | 584 | break |
|
585 | 585 | time.sleep(0.1) |
|
586 | 586 | |
|
587 | 587 | if '|' in err_msg: |
|
588 | 588 | name, err = err_msg.split('|') |
|
589 | 589 | if 'SchainWarning' in err: |
|
590 | 590 | log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), name) |
|
591 | 591 | elif 'SchainError' in err: |
|
592 | 592 | log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), name) |
|
593 | 593 | else: |
|
594 | 594 | log.error(err, name) |
|
595 | 595 | else: |
|
596 | 596 | name, err = self.name, err_msg |
|
597 | 597 | |
|
598 | 598 | time.sleep(1) |
|
599 | 599 | |
|
600 | 600 | ctx.term() |
|
601 | 601 | |
|
602 | 602 | message = ''.join(err) |
|
603 | 603 | |
|
604 | 604 | if err_msg: |
|
605 | 605 | subject = 'SChain v%s: Error running %s\n' % ( |
|
606 | 606 | schainpy.__version__, self.name) |
|
607 | 607 | |
|
608 | 608 | subtitle = 'Hostname: %s\n' % socket.gethostbyname( |
|
609 | 609 | socket.gethostname()) |
|
610 | 610 | subtitle += 'Working directory: %s\n' % os.path.abspath('./') |
|
611 | 611 | subtitle += 'Configuration file: %s\n' % self.filename |
|
612 | 612 | subtitle += 'Time: %s\n' % str(datetime.datetime.now()) |
|
613 | 613 | |
|
614 | 614 | readUnitConfObj = self.getReadUnit() |
|
615 | 615 | if readUnitConfObj: |
|
616 | 616 | subtitle += '\nInput parameters:\n' |
|
617 | 617 | subtitle += '[Data path = %s]\n' % readUnitConfObj.parameters['path'] |
|
618 | 618 | subtitle += '[Start date = %s]\n' % readUnitConfObj.parameters['startDate'] |
|
619 | 619 | subtitle += '[End date = %s]\n' % readUnitConfObj.parameters['endDate'] |
|
620 | 620 | subtitle += '[Start time = %s]\n' % readUnitConfObj.parameters['startTime'] |
|
621 | 621 | subtitle += '[End time = %s]\n' % readUnitConfObj.parameters['endTime'] |
|
622 | 622 | |
|
623 | 623 | a = Alarm( |
|
624 | 624 | modes=self.alarm, |
|
625 | 625 | email=self.email, |
|
626 | 626 | message=message, |
|
627 | 627 | subject=subject, |
|
628 | 628 | subtitle=subtitle, |
|
629 | 629 | filename=self.filename |
|
630 | 630 | ) |
|
631 | 631 | |
|
632 | 632 | a.start() |
|
633 | 633 | |
|
634 | 634 | def setFilename(self, filename): |
|
635 | 635 | |
|
636 | 636 | self.filename = filename |
|
637 | 637 | |
|
638 | 638 | def runProcs(self): |
|
639 | 639 | |
|
640 | 640 | err = False |
|
641 | 641 | n = len(self.configurations) |
|
642 | 642 | #print(n) |
|
643 | 643 | |
|
644 | 644 | while not err: |
|
645 | 645 | #print(self.getUnits()) |
|
646 | 646 | for conf in self.getUnits(): |
|
647 | 647 | #print(conf) |
|
648 | 648 | ok = conf.run() |
|
649 | 649 | #print("ok", ok) |
|
650 | 650 | if ok == 'Error': |
|
651 | 651 | n -= 1 |
|
652 | 652 | continue |
|
653 | 653 | elif not ok: |
|
654 | 654 | break |
|
655 | 655 | #print("****************************************************end") |
|
656 | #exit(1) | |
|
656 | 657 | if n == 0: |
|
657 | 658 | err = True |
|
658 | 659 | |
|
659 | 660 | def run(self): |
|
660 | 661 | |
|
661 | 662 | log.success('\nStarting Project {} [id={}]'.format(self.name, self.id), tag='') |
|
662 | 663 | self.started = True |
|
663 | 664 | self.start_time = time.time() |
|
664 | 665 | self.createObjects() |
|
665 | 666 | self.runProcs() |
|
666 | 667 | log.success('{} Done (Time: {:4.2f}s)'.format( |
|
667 | 668 | self.name, |
|
668 | 669 | time.time() - self.start_time), '') |
@@ -1,1288 +1,1290 | |||
|
1 | 1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Classes to plot Spectra data |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import numpy |
|
11 | 11 | |
|
12 | 12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
13 | 13 | |
|
14 | 14 | class SpectraPlot(Plot): |
|
15 | 15 | ''' |
|
16 | 16 | Plot for Spectra data |
|
17 | 17 | ''' |
|
18 | 18 | |
|
19 | 19 | CODE = 'spc' |
|
20 | 20 | colormap = 'jet' |
|
21 | 21 | plot_type = 'pcolor' |
|
22 | 22 | buffering = False |
|
23 | 23 | |
|
24 | 24 | def setup(self): |
|
25 | 25 | |
|
26 | 26 | self.nplots = len(self.data.channels) |
|
27 | 27 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
28 | 28 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
29 | 29 | self.height = 2.6 * self.nrows |
|
30 | 30 | self.cb_label = 'dB' |
|
31 | 31 | if self.showprofile: |
|
32 | 32 | self.width = 4 * self.ncols |
|
33 | 33 | else: |
|
34 | 34 | self.width = 3.5 * self.ncols |
|
35 | 35 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
36 | 36 | self.ylabel = 'Range [km]' |
|
37 | 37 | |
|
38 | 38 | def update(self, dataOut): |
|
39 | 39 | |
|
40 | 40 | data = {} |
|
41 | 41 | meta = {} |
|
42 | 42 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
43 | 43 | data['spc'] = spc |
|
44 | 44 | data['rti'] = dataOut.getPower() |
|
45 | #print("NormFactor: ",dataOut.normFactor) | |
|
45 | 46 | #data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
46 | 47 | if hasattr(dataOut, 'LagPlot'): #Double Pulse |
|
47 | 48 | max_hei_id = dataOut.nHeights - 2*dataOut.LagPlot |
|
48 | 49 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=46,ymax_index=max_hei_id)/dataOut.normFactor) |
|
49 | 50 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=40,ymax_index=max_hei_id)/dataOut.normFactor) |
|
50 | 51 | data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)/dataOut.normFactor) |
|
51 | 52 | data['noise'][0] = 10*numpy.log10(dataOut.getNoise(ymin_index=53)[0]/dataOut.normFactor) |
|
52 | 53 | #data['noise'][1] = 22.035507 |
|
53 | 54 | else: |
|
54 | 55 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
55 | 56 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=26,ymax_index=44)/dataOut.normFactor) |
|
56 | 57 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
57 | 58 | |
|
58 | 59 | if self.CODE == 'spc_moments': |
|
59 | 60 | data['moments'] = dataOut.moments |
|
60 | 61 | if self.CODE == 'gaussian_fit': |
|
61 | 62 | data['gaussfit'] = dataOut.DGauFitParams |
|
62 | 63 | |
|
63 | 64 | return data, meta |
|
64 | 65 | |
|
65 | 66 | def plot(self): |
|
66 | 67 | |
|
67 | 68 | if self.xaxis == "frequency": |
|
68 | 69 | x = self.data.xrange[0] |
|
69 | 70 | self.xlabel = "Frequency (kHz)" |
|
70 | 71 | elif self.xaxis == "time": |
|
71 | 72 | x = self.data.xrange[1] |
|
72 | 73 | self.xlabel = "Time (ms)" |
|
73 | 74 | else: |
|
74 | 75 | x = self.data.xrange[2] |
|
75 | 76 | self.xlabel = "Velocity (m/s)" |
|
76 | 77 | |
|
77 | 78 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): |
|
78 | 79 | x = self.data.xrange[2] |
|
79 | 80 | self.xlabel = "Velocity (m/s)" |
|
80 | 81 | |
|
81 | 82 | self.titles = [] |
|
82 | 83 | |
|
83 | 84 | y = self.data.yrange |
|
84 | 85 | self.y = y |
|
85 | 86 | |
|
86 | 87 | data = self.data[-1] |
|
87 | 88 | z = data['spc'] |
|
88 | 89 | |
|
89 | 90 | self.CODE2 = 'spc_oblique' |
|
90 | 91 | |
|
91 | 92 | |
|
92 | 93 | for n, ax in enumerate(self.axes): |
|
93 | 94 | noise = data['noise'][n] |
|
94 | 95 | if self.CODE == 'spc_moments': |
|
95 | 96 | mean = data['moments'][n, 1] |
|
96 | 97 | if self.CODE == 'gaussian_fit': |
|
97 | 98 | gau0 = data['gaussfit'][n][2,:,0] |
|
98 | 99 | gau1 = data['gaussfit'][n][2,:,1] |
|
99 | 100 | if ax.firsttime: |
|
100 | 101 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
101 | 102 | self.xmin = self.xmin if self.xmin else numpy.nanmin(x)#-self.xmax |
|
102 | 103 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
103 | 104 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
105 | ||
|
104 | 106 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
105 | 107 | vmin=self.zmin, |
|
106 | 108 | vmax=self.zmax, |
|
107 | cmap=plt.get_cmap(self.colormap) | |
|
109 | cmap=plt.get_cmap(self.colormap), | |
|
108 | 110 | ) |
|
109 | 111 | |
|
110 | 112 | if self.showprofile: |
|
111 | 113 | ax.plt_profile = self.pf_axes[n].plot( |
|
112 | 114 | data['rti'][n], y)[0] |
|
113 | 115 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
114 | 116 | color="k", linestyle="dashed", lw=1)[0] |
|
115 | 117 | if self.CODE == 'spc_moments': |
|
116 | 118 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
117 | 119 | if self.CODE == 'gaussian_fit': |
|
118 | 120 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] |
|
119 | 121 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] |
|
120 | 122 | else: |
|
121 | 123 | ax.plt.set_array(z[n].T.ravel()) |
|
122 | 124 | if self.showprofile: |
|
123 | 125 | ax.plt_profile.set_data(data['rti'][n], y) |
|
124 | 126 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
125 | 127 | if self.CODE == 'spc_moments': |
|
126 | 128 | ax.plt_mean.set_data(mean, y) |
|
127 | 129 | if self.CODE == 'gaussian_fit': |
|
128 | 130 | ax.plt_gau0.set_data(gau0, y) |
|
129 | 131 | ax.plt_gau1.set_data(gau1, y) |
|
130 | 132 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
131 | 133 | |
|
132 | 134 | class SpectraObliquePlot(Plot): |
|
133 | 135 | ''' |
|
134 | 136 | Plot for Spectra data |
|
135 | 137 | ''' |
|
136 | 138 | |
|
137 | 139 | CODE = 'spc_oblique' |
|
138 | 140 | colormap = 'jet' |
|
139 | 141 | plot_type = 'pcolor' |
|
140 | 142 | |
|
141 | 143 | def setup(self): |
|
142 | 144 | self.xaxis = "oblique" |
|
143 | 145 | self.nplots = len(self.data.channels) |
|
144 | 146 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
145 | 147 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
146 | 148 | self.height = 2.6 * self.nrows |
|
147 | 149 | self.cb_label = 'dB' |
|
148 | 150 | if self.showprofile: |
|
149 | 151 | self.width = 4 * self.ncols |
|
150 | 152 | else: |
|
151 | 153 | self.width = 3.5 * self.ncols |
|
152 | 154 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
153 | 155 | self.ylabel = 'Range [km]' |
|
154 | 156 | |
|
155 | 157 | def update(self, dataOut): |
|
156 | 158 | |
|
157 | 159 | data = {} |
|
158 | 160 | meta = {} |
|
159 | 161 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
160 | 162 | data['spc'] = spc |
|
161 | 163 | data['rti'] = dataOut.getPower() |
|
162 | 164 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
163 | 165 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
164 | 166 | |
|
165 | 167 | data['shift1'] = dataOut.Oblique_params[0][1] |
|
166 | 168 | data['shift2'] = dataOut.Oblique_params[0][4] |
|
167 | 169 | data['shift1_error'] = dataOut.Oblique_param_errors[0][1] |
|
168 | 170 | data['shift2_error'] = dataOut.Oblique_param_errors[0][4] |
|
169 | 171 | |
|
170 | 172 | return data, meta |
|
171 | 173 | |
|
172 | 174 | def plot(self): |
|
173 | 175 | |
|
174 | 176 | if self.xaxis == "frequency": |
|
175 | 177 | x = self.data.xrange[0] |
|
176 | 178 | self.xlabel = "Frequency (kHz)" |
|
177 | 179 | elif self.xaxis == "time": |
|
178 | 180 | x = self.data.xrange[1] |
|
179 | 181 | self.xlabel = "Time (ms)" |
|
180 | 182 | else: |
|
181 | 183 | x = self.data.xrange[2] |
|
182 | 184 | self.xlabel = "Velocity (m/s)" |
|
183 | 185 | |
|
184 | 186 | self.titles = [] |
|
185 | 187 | |
|
186 | 188 | y = self.data.yrange |
|
187 | 189 | self.y = y |
|
188 | 190 | z = self.data['spc'] |
|
189 | 191 | |
|
190 | 192 | for n, ax in enumerate(self.axes): |
|
191 | 193 | noise = self.data['noise'][n][-1] |
|
192 | 194 | shift1 = self.data['shift1'] |
|
193 | 195 | shift2 = self.data['shift2'] |
|
194 | 196 | err1 = self.data['shift1_error'] |
|
195 | 197 | err2 = self.data['shift2_error'] |
|
196 | 198 | if ax.firsttime: |
|
197 | 199 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
198 | 200 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
199 | 201 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
200 | 202 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
201 | 203 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
202 | 204 | vmin=self.zmin, |
|
203 | 205 | vmax=self.zmax, |
|
204 | 206 | cmap=plt.get_cmap(self.colormap) |
|
205 | 207 | ) |
|
206 | 208 | |
|
207 | 209 | if self.showprofile: |
|
208 | 210 | ax.plt_profile = self.pf_axes[n].plot( |
|
209 | 211 | self.data['rti'][n][-1], y)[0] |
|
210 | 212 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
211 | 213 | color="k", linestyle="dashed", lw=1)[0] |
|
212 | 214 | |
|
213 | 215 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=0.2, marker='x', linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) |
|
214 | 216 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) |
|
215 | 217 | else: |
|
216 | 218 | self.ploterr1.remove() |
|
217 | 219 | self.ploterr2.remove() |
|
218 | 220 | ax.plt.set_array(z[n].T.ravel()) |
|
219 | 221 | if self.showprofile: |
|
220 | 222 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
221 | 223 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
222 | 224 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) |
|
223 | 225 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) |
|
224 | 226 | |
|
225 | 227 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
226 | 228 | |
|
227 | 229 | |
|
228 | 230 | class CrossSpectraPlot(Plot): |
|
229 | 231 | |
|
230 | 232 | CODE = 'cspc' |
|
231 | 233 | colormap = 'jet' |
|
232 | 234 | plot_type = 'pcolor' |
|
233 | 235 | zmin_coh = None |
|
234 | 236 | zmax_coh = None |
|
235 | 237 | zmin_phase = None |
|
236 | 238 | zmax_phase = None |
|
237 | 239 | |
|
238 | 240 | def setup(self): |
|
239 | 241 | |
|
240 | 242 | self.ncols = 4 |
|
241 | 243 | self.nplots = len(self.data.pairs) * 2 |
|
242 | 244 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
243 | 245 | self.width = 3.1 * self.ncols |
|
244 | 246 | self.height = 5 * self.nrows |
|
245 | 247 | self.ylabel = 'Range [km]' |
|
246 | 248 | self.showprofile = False |
|
247 | 249 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
248 | 250 | |
|
249 | 251 | def update(self, dataOut): |
|
250 | 252 | |
|
251 | 253 | data = {} |
|
252 | 254 | meta = {} |
|
253 | 255 | |
|
254 | 256 | spc = dataOut.data_spc |
|
255 | 257 | cspc = dataOut.data_cspc |
|
256 | 258 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
257 | 259 | meta['pairs'] = dataOut.pairsList |
|
258 | 260 | |
|
259 | 261 | tmp = [] |
|
260 | 262 | |
|
261 | 263 | for n, pair in enumerate(meta['pairs']): |
|
262 | 264 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
263 | 265 | coh = numpy.abs(out) |
|
264 | 266 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
265 | 267 | tmp.append(coh) |
|
266 | 268 | tmp.append(phase) |
|
267 | 269 | |
|
268 | 270 | data['cspc'] = numpy.array(tmp) |
|
269 | 271 | |
|
270 | 272 | return data, meta |
|
271 | 273 | |
|
272 | 274 | def plot(self): |
|
273 | 275 | |
|
274 | 276 | if self.xaxis == "frequency": |
|
275 | 277 | x = self.data.xrange[0] |
|
276 | 278 | self.xlabel = "Frequency (kHz)" |
|
277 | 279 | elif self.xaxis == "time": |
|
278 | 280 | x = self.data.xrange[1] |
|
279 | 281 | self.xlabel = "Time (ms)" |
|
280 | 282 | else: |
|
281 | 283 | x = self.data.xrange[2] |
|
282 | 284 | self.xlabel = "Velocity (m/s)" |
|
283 | 285 | |
|
284 | 286 | self.titles = [] |
|
285 | 287 | |
|
286 | 288 | y = self.data.yrange |
|
287 | 289 | self.y = y |
|
288 | 290 | |
|
289 | 291 | data = self.data[-1] |
|
290 | 292 | cspc = data['cspc'] |
|
291 | 293 | |
|
292 | 294 | for n in range(len(self.data.pairs)): |
|
293 | 295 | pair = self.data.pairs[n] |
|
294 | 296 | coh = cspc[n*2] |
|
295 | 297 | phase = cspc[n*2+1] |
|
296 | 298 | ax = self.axes[2 * n] |
|
297 | 299 | if ax.firsttime: |
|
298 | 300 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
299 | 301 | vmin=0, |
|
300 | 302 | vmax=1, |
|
301 | 303 | cmap=plt.get_cmap(self.colormap_coh) |
|
302 | 304 | ) |
|
303 | 305 | else: |
|
304 | 306 | ax.plt.set_array(coh.T.ravel()) |
|
305 | 307 | self.titles.append( |
|
306 | 308 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
307 | 309 | |
|
308 | 310 | ax = self.axes[2 * n + 1] |
|
309 | 311 | if ax.firsttime: |
|
310 | 312 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
311 | 313 | vmin=-180, |
|
312 | 314 | vmax=180, |
|
313 | 315 | cmap=plt.get_cmap(self.colormap_phase) |
|
314 | 316 | ) |
|
315 | 317 | else: |
|
316 | 318 | ax.plt.set_array(phase.T.ravel()) |
|
317 | 319 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
318 | 320 | |
|
319 | 321 | |
|
320 | 322 | class CrossSpectra4Plot(Plot): |
|
321 | 323 | |
|
322 | 324 | CODE = 'cspc' |
|
323 | 325 | colormap = 'jet' |
|
324 | 326 | plot_type = 'pcolor' |
|
325 | 327 | zmin_coh = None |
|
326 | 328 | zmax_coh = None |
|
327 | 329 | zmin_phase = None |
|
328 | 330 | zmax_phase = None |
|
329 | 331 | |
|
330 | 332 | def setup(self): |
|
331 | 333 | |
|
332 | 334 | self.ncols = 4 |
|
333 | 335 | self.nrows = len(self.data.pairs) |
|
334 | 336 | self.nplots = self.nrows * 4 |
|
335 | 337 | self.width = 3.1 * self.ncols |
|
336 | 338 | self.height = 5 * self.nrows |
|
337 | 339 | self.ylabel = 'Range [km]' |
|
338 | 340 | self.showprofile = False |
|
339 | 341 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
340 | 342 | |
|
341 | 343 | def plot(self): |
|
342 | 344 | |
|
343 | 345 | if self.xaxis == "frequency": |
|
344 | 346 | x = self.data.xrange[0] |
|
345 | 347 | self.xlabel = "Frequency (kHz)" |
|
346 | 348 | elif self.xaxis == "time": |
|
347 | 349 | x = self.data.xrange[1] |
|
348 | 350 | self.xlabel = "Time (ms)" |
|
349 | 351 | else: |
|
350 | 352 | x = self.data.xrange[2] |
|
351 | 353 | self.xlabel = "Velocity (m/s)" |
|
352 | 354 | |
|
353 | 355 | self.titles = [] |
|
354 | 356 | |
|
355 | 357 | |
|
356 | 358 | y = self.data.heights |
|
357 | 359 | self.y = y |
|
358 | 360 | nspc = self.data['spc'] |
|
359 | 361 | #print(numpy.shape(self.data['spc'])) |
|
360 | 362 | spc = self.data['cspc'][0] |
|
361 | 363 | #print(numpy.shape(nspc)) |
|
362 | 364 | #exit() |
|
363 | 365 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) |
|
364 | 366 | #print(numpy.shape(spc)) |
|
365 | 367 | #exit() |
|
366 | 368 | cspc = self.data['cspc'][1] |
|
367 | 369 | |
|
368 | 370 | #xflip=numpy.flip(x) |
|
369 | 371 | #print(numpy.shape(cspc)) |
|
370 | 372 | #exit() |
|
371 | 373 | |
|
372 | 374 | for n in range(self.nrows): |
|
373 | 375 | noise = self.data['noise'][:,-1] |
|
374 | 376 | pair = self.data.pairs[n] |
|
375 | 377 | #print(pair) |
|
376 | 378 | #exit() |
|
377 | 379 | ax = self.axes[4 * n] |
|
378 | 380 | if ax.firsttime: |
|
379 | 381 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
380 | 382 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
381 | 383 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) |
|
382 | 384 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) |
|
383 | 385 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, |
|
384 | 386 | vmin=self.zmin, |
|
385 | 387 | vmax=self.zmax, |
|
386 | 388 | cmap=plt.get_cmap(self.colormap) |
|
387 | 389 | ) |
|
388 | 390 | else: |
|
389 | 391 | #print(numpy.shape(nspc[pair[0]].T)) |
|
390 | 392 | #exit() |
|
391 | 393 | ax.plt.set_array(nspc[pair[0]].T.ravel()) |
|
392 | 394 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) |
|
393 | 395 | |
|
394 | 396 | ax = self.axes[4 * n + 1] |
|
395 | 397 | |
|
396 | 398 | if ax.firsttime: |
|
397 | 399 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, |
|
398 | 400 | vmin=self.zmin, |
|
399 | 401 | vmax=self.zmax, |
|
400 | 402 | cmap=plt.get_cmap(self.colormap) |
|
401 | 403 | ) |
|
402 | 404 | else: |
|
403 | 405 | |
|
404 | 406 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) |
|
405 | 407 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) |
|
406 | 408 | |
|
407 | 409 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
408 | 410 | coh = numpy.abs(out) |
|
409 | 411 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
410 | 412 | |
|
411 | 413 | ax = self.axes[4 * n + 2] |
|
412 | 414 | if ax.firsttime: |
|
413 | 415 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, |
|
414 | 416 | vmin=0, |
|
415 | 417 | vmax=1, |
|
416 | 418 | cmap=plt.get_cmap(self.colormap_coh) |
|
417 | 419 | ) |
|
418 | 420 | else: |
|
419 | 421 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) |
|
420 | 422 | self.titles.append( |
|
421 | 423 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
422 | 424 | |
|
423 | 425 | ax = self.axes[4 * n + 3] |
|
424 | 426 | if ax.firsttime: |
|
425 | 427 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, |
|
426 | 428 | vmin=-180, |
|
427 | 429 | vmax=180, |
|
428 | 430 | cmap=plt.get_cmap(self.colormap_phase) |
|
429 | 431 | ) |
|
430 | 432 | else: |
|
431 | 433 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) |
|
432 | 434 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
433 | 435 | |
|
434 | 436 | |
|
435 | 437 | class CrossSpectra2Plot(Plot): |
|
436 | 438 | |
|
437 | 439 | CODE = 'cspc' |
|
438 | 440 | colormap = 'jet' |
|
439 | 441 | plot_type = 'pcolor' |
|
440 | 442 | zmin_coh = None |
|
441 | 443 | zmax_coh = None |
|
442 | 444 | zmin_phase = None |
|
443 | 445 | zmax_phase = None |
|
444 | 446 | |
|
445 | 447 | def setup(self): |
|
446 | 448 | |
|
447 | 449 | self.ncols = 1 |
|
448 | 450 | self.nrows = len(self.data.pairs) |
|
449 | 451 | self.nplots = self.nrows * 1 |
|
450 | 452 | self.width = 3.1 * self.ncols |
|
451 | 453 | self.height = 5 * self.nrows |
|
452 | 454 | self.ylabel = 'Range [km]' |
|
453 | 455 | self.showprofile = False |
|
454 | 456 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
455 | 457 | |
|
456 | 458 | def plot(self): |
|
457 | 459 | |
|
458 | 460 | if self.xaxis == "frequency": |
|
459 | 461 | x = self.data.xrange[0] |
|
460 | 462 | self.xlabel = "Frequency (kHz)" |
|
461 | 463 | elif self.xaxis == "time": |
|
462 | 464 | x = self.data.xrange[1] |
|
463 | 465 | self.xlabel = "Time (ms)" |
|
464 | 466 | else: |
|
465 | 467 | x = self.data.xrange[2] |
|
466 | 468 | self.xlabel = "Velocity (m/s)" |
|
467 | 469 | |
|
468 | 470 | self.titles = [] |
|
469 | 471 | |
|
470 | 472 | |
|
471 | 473 | y = self.data.heights |
|
472 | 474 | self.y = y |
|
473 | 475 | #nspc = self.data['spc'] |
|
474 | 476 | #print(numpy.shape(self.data['spc'])) |
|
475 | 477 | #spc = self.data['cspc'][0] |
|
476 | 478 | #print(numpy.shape(spc)) |
|
477 | 479 | #exit() |
|
478 | 480 | cspc = self.data['cspc'][1] |
|
479 | 481 | #print(numpy.shape(cspc)) |
|
480 | 482 | #exit() |
|
481 | 483 | |
|
482 | 484 | for n in range(self.nrows): |
|
483 | 485 | noise = self.data['noise'][:,-1] |
|
484 | 486 | pair = self.data.pairs[n] |
|
485 | 487 | #print(pair) #exit() |
|
486 | 488 | |
|
487 | 489 | |
|
488 | 490 | |
|
489 | 491 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
490 | 492 | |
|
491 | 493 | #print(out[:,53]) |
|
492 | 494 | #exit() |
|
493 | 495 | cross = numpy.abs(out) |
|
494 | 496 | z = cross/self.data.nFactor |
|
495 | 497 | #print("here") |
|
496 | 498 | #print(dataOut.data_spc[0,0,0]) |
|
497 | 499 | #exit() |
|
498 | 500 | |
|
499 | 501 | cross = 10*numpy.log10(z) |
|
500 | 502 | #print(numpy.shape(cross)) |
|
501 | 503 | #print(cross[0,:]) |
|
502 | 504 | #print(self.data.nFactor) |
|
503 | 505 | #exit() |
|
504 | 506 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
505 | 507 | |
|
506 | 508 | ax = self.axes[1 * n] |
|
507 | 509 | if ax.firsttime: |
|
508 | 510 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
509 | 511 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
510 | 512 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
511 | 513 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
512 | 514 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
513 | 515 | vmin=self.zmin, |
|
514 | 516 | vmax=self.zmax, |
|
515 | 517 | cmap=plt.get_cmap(self.colormap) |
|
516 | 518 | ) |
|
517 | 519 | else: |
|
518 | 520 | ax.plt.set_array(cross.T.ravel()) |
|
519 | 521 | self.titles.append( |
|
520 | 522 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
521 | 523 | |
|
522 | 524 | |
|
523 | 525 | class CrossSpectra3Plot(Plot): |
|
524 | 526 | |
|
525 | 527 | CODE = 'cspc' |
|
526 | 528 | colormap = 'jet' |
|
527 | 529 | plot_type = 'pcolor' |
|
528 | 530 | zmin_coh = None |
|
529 | 531 | zmax_coh = None |
|
530 | 532 | zmin_phase = None |
|
531 | 533 | zmax_phase = None |
|
532 | 534 | |
|
533 | 535 | def setup(self): |
|
534 | 536 | |
|
535 | 537 | self.ncols = 3 |
|
536 | 538 | self.nrows = len(self.data.pairs) |
|
537 | 539 | self.nplots = self.nrows * 3 |
|
538 | 540 | self.width = 3.1 * self.ncols |
|
539 | 541 | self.height = 5 * self.nrows |
|
540 | 542 | self.ylabel = 'Range [km]' |
|
541 | 543 | self.showprofile = False |
|
542 | 544 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
543 | 545 | |
|
544 | 546 | def plot(self): |
|
545 | 547 | |
|
546 | 548 | if self.xaxis == "frequency": |
|
547 | 549 | x = self.data.xrange[0] |
|
548 | 550 | self.xlabel = "Frequency (kHz)" |
|
549 | 551 | elif self.xaxis == "time": |
|
550 | 552 | x = self.data.xrange[1] |
|
551 | 553 | self.xlabel = "Time (ms)" |
|
552 | 554 | else: |
|
553 | 555 | x = self.data.xrange[2] |
|
554 | 556 | self.xlabel = "Velocity (m/s)" |
|
555 | 557 | |
|
556 | 558 | self.titles = [] |
|
557 | 559 | |
|
558 | 560 | |
|
559 | 561 | y = self.data.heights |
|
560 | 562 | self.y = y |
|
561 | 563 | #nspc = self.data['spc'] |
|
562 | 564 | #print(numpy.shape(self.data['spc'])) |
|
563 | 565 | #spc = self.data['cspc'][0] |
|
564 | 566 | #print(numpy.shape(spc)) |
|
565 | 567 | #exit() |
|
566 | 568 | cspc = self.data['cspc'][1] |
|
567 | 569 | #print(numpy.shape(cspc)) |
|
568 | 570 | #exit() |
|
569 | 571 | |
|
570 | 572 | for n in range(self.nrows): |
|
571 | 573 | noise = self.data['noise'][:,-1] |
|
572 | 574 | pair = self.data.pairs[n] |
|
573 | 575 | #print(pair) #exit() |
|
574 | 576 | |
|
575 | 577 | |
|
576 | 578 | |
|
577 | 579 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
578 | 580 | |
|
579 | 581 | #print(out[:,53]) |
|
580 | 582 | #exit() |
|
581 | 583 | cross = numpy.abs(out) |
|
582 | 584 | z = cross/self.data.nFactor |
|
583 | 585 | cross = 10*numpy.log10(z) |
|
584 | 586 | |
|
585 | 587 | out_r= out.real/self.data.nFactor |
|
586 | 588 | #out_r = 10*numpy.log10(out_r) |
|
587 | 589 | |
|
588 | 590 | out_i= out.imag/self.data.nFactor |
|
589 | 591 | #out_i = 10*numpy.log10(out_i) |
|
590 | 592 | #print(numpy.shape(cross)) |
|
591 | 593 | #print(cross[0,:]) |
|
592 | 594 | #print(self.data.nFactor) |
|
593 | 595 | #exit() |
|
594 | 596 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
595 | 597 | |
|
596 | 598 | ax = self.axes[3 * n] |
|
597 | 599 | if ax.firsttime: |
|
598 | 600 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
599 | 601 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
600 | 602 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
601 | 603 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
602 | 604 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
603 | 605 | vmin=self.zmin, |
|
604 | 606 | vmax=self.zmax, |
|
605 | 607 | cmap=plt.get_cmap(self.colormap) |
|
606 | 608 | ) |
|
607 | 609 | else: |
|
608 | 610 | ax.plt.set_array(cross.T.ravel()) |
|
609 | 611 | self.titles.append( |
|
610 | 612 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
611 | 613 | |
|
612 | 614 | ax = self.axes[3 * n + 1] |
|
613 | 615 | if ax.firsttime: |
|
614 | 616 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
615 | 617 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
616 | 618 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
617 | 619 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
618 | 620 | ax.plt = ax.pcolormesh(x, y, out_r.T, |
|
619 | 621 | vmin=-1.e6, |
|
620 | 622 | vmax=0, |
|
621 | 623 | cmap=plt.get_cmap(self.colormap) |
|
622 | 624 | ) |
|
623 | 625 | else: |
|
624 | 626 | ax.plt.set_array(out_r.T.ravel()) |
|
625 | 627 | self.titles.append( |
|
626 | 628 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
627 | 629 | |
|
628 | 630 | ax = self.axes[3 * n + 2] |
|
629 | 631 | |
|
630 | 632 | |
|
631 | 633 | if ax.firsttime: |
|
632 | 634 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
633 | 635 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
634 | 636 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
635 | 637 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
636 | 638 | ax.plt = ax.pcolormesh(x, y, out_i.T, |
|
637 | 639 | vmin=-1.e6, |
|
638 | 640 | vmax=1.e6, |
|
639 | 641 | cmap=plt.get_cmap(self.colormap) |
|
640 | 642 | ) |
|
641 | 643 | else: |
|
642 | 644 | ax.plt.set_array(out_i.T.ravel()) |
|
643 | 645 | self.titles.append( |
|
644 | 646 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
645 | 647 | |
|
646 | 648 | class RTIPlot(Plot): |
|
647 | 649 | ''' |
|
648 | 650 | Plot for RTI data |
|
649 | 651 | ''' |
|
650 | 652 | |
|
651 | 653 | CODE = 'rti' |
|
652 | 654 | colormap = 'jet' |
|
653 | 655 | plot_type = 'pcolorbuffer' |
|
654 | 656 | |
|
655 | 657 | def setup(self): |
|
656 | 658 | self.xaxis = 'time' |
|
657 | 659 | self.ncols = 1 |
|
658 | 660 | self.nrows = len(self.data.channels) |
|
659 | 661 | self.nplots = len(self.data.channels) |
|
660 | 662 | self.ylabel = 'Range [km]' |
|
661 | 663 | self.xlabel = 'Time' |
|
662 | 664 | self.cb_label = 'dB' |
|
663 | 665 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
664 | 666 | self.titles = ['{} Channel {}'.format( |
|
665 | 667 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
666 | 668 | |
|
667 | 669 | def update(self, dataOut): |
|
668 | 670 | |
|
669 | 671 | data = {} |
|
670 | 672 | meta = {} |
|
671 | 673 | data['rti'] = dataOut.getPower() |
|
672 | 674 | |
|
673 | 675 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
674 | 676 | |
|
675 | 677 | return data, meta |
|
676 | 678 | |
|
677 | 679 | def plot(self): |
|
678 | 680 | |
|
679 | 681 | self.x = self.data.times |
|
680 | 682 | self.y = self.data.yrange |
|
681 | 683 | self.z = self.data[self.CODE] |
|
682 | 684 | |
|
683 | 685 | self.z = numpy.ma.masked_invalid(self.z) |
|
684 | 686 | |
|
685 | 687 | if self.decimation is None: |
|
686 | 688 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
687 | 689 | else: |
|
688 | 690 | x, y, z = self.fill_gaps(*self.decimate()) |
|
689 | 691 | |
|
690 | 692 | for n, ax in enumerate(self.axes): |
|
691 | 693 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
692 | 694 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
693 | 695 | if ax.firsttime: |
|
694 | 696 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
695 | 697 | vmin=self.zmin, |
|
696 | 698 | vmax=self.zmax, |
|
697 | 699 | cmap=plt.get_cmap(self.colormap) |
|
698 | 700 | ) |
|
699 | 701 | if self.showprofile: |
|
700 | 702 | ax.plot_profile = self.pf_axes[n].plot( |
|
701 | 703 | self.data['rti'][n][-1], self.y)[0] |
|
702 | 704 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
703 | 705 | color="k", linestyle="dashed", lw=1)[0] |
|
704 | 706 | else: |
|
705 | 707 | ax.collections.remove(ax.collections[0]) |
|
706 | 708 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
707 | 709 | vmin=self.zmin, |
|
708 | 710 | vmax=self.zmax, |
|
709 | 711 | cmap=plt.get_cmap(self.colormap) |
|
710 | 712 | ) |
|
711 | 713 | if self.showprofile: |
|
712 | 714 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
713 | 715 | ax.plot_noise.set_data(numpy.repeat( |
|
714 | 716 | self.data['noise'][n][-1], len(self.y)), self.y) |
|
715 | 717 | |
|
716 | 718 | |
|
717 | 719 | class SpectrogramPlot(Plot): |
|
718 | 720 | ''' |
|
719 | 721 | Plot for Spectrogram data |
|
720 | 722 | ''' |
|
721 | 723 | |
|
722 | 724 | CODE = 'Spectrogram_Profile' |
|
723 | 725 | colormap = 'binary' |
|
724 | 726 | plot_type = 'pcolorbuffer' |
|
725 | 727 | |
|
726 | 728 | def setup(self): |
|
727 | 729 | self.xaxis = 'time' |
|
728 | 730 | self.ncols = 1 |
|
729 | 731 | self.nrows = len(self.data.channels) |
|
730 | 732 | self.nplots = len(self.data.channels) |
|
731 | 733 | self.xlabel = 'Time' |
|
732 | 734 | #self.cb_label = 'dB' |
|
733 | 735 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) |
|
734 | 736 | self.titles = [] |
|
735 | 737 | |
|
736 | 738 | #self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( |
|
737 | 739 | #self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] |
|
738 | 740 | |
|
739 | 741 | self.titles = ['{} Channel {}'.format( |
|
740 | 742 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
741 | 743 | |
|
742 | 744 | |
|
743 | 745 | def update(self, dataOut): |
|
744 | 746 | data = {} |
|
745 | 747 | meta = {} |
|
746 | 748 | |
|
747 | 749 | maxHei = 1620#+12000 |
|
748 | 750 | indb = numpy.where(dataOut.heightList <= maxHei) |
|
749 | 751 | hei = indb[0][-1] |
|
750 | 752 | #print(dataOut.heightList) |
|
751 | 753 | |
|
752 | 754 | factor = dataOut.nIncohInt |
|
753 | 755 | z = dataOut.data_spc[:,:,hei] / factor |
|
754 | 756 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
755 | 757 | #buffer = 10 * numpy.log10(z) |
|
756 | 758 | |
|
757 | 759 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
758 | 760 | |
|
759 | 761 | |
|
760 | 762 | #self.hei = hei |
|
761 | 763 | #self.heightList = dataOut.heightList |
|
762 | 764 | #self.DH = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
763 | 765 | #self.nProfiles = dataOut.nProfiles |
|
764 | 766 | |
|
765 | 767 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) |
|
766 | 768 | |
|
767 | 769 | data['hei'] = hei |
|
768 | 770 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
769 | 771 | data['nProfiles'] = dataOut.nProfiles |
|
770 | 772 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
771 | 773 | ''' |
|
772 | 774 | import matplotlib.pyplot as plt |
|
773 | 775 | plt.plot(10 * numpy.log10(z[0,:])) |
|
774 | 776 | plt.show() |
|
775 | 777 | |
|
776 | 778 | from time import sleep |
|
777 | 779 | sleep(10) |
|
778 | 780 | ''' |
|
779 | 781 | return data, meta |
|
780 | 782 | |
|
781 | 783 | def plot(self): |
|
782 | 784 | |
|
783 | 785 | self.x = self.data.times |
|
784 | 786 | self.z = self.data[self.CODE] |
|
785 | 787 | self.y = self.data.xrange[0] |
|
786 | 788 | |
|
787 | 789 | hei = self.data['hei'][-1] |
|
788 | 790 | DH = self.data['DH'][-1] |
|
789 | 791 | nProfiles = self.data['nProfiles'][-1] |
|
790 | 792 | |
|
791 | 793 | self.ylabel = "Frequency (kHz)" |
|
792 | 794 | |
|
793 | 795 | self.z = numpy.ma.masked_invalid(self.z) |
|
794 | 796 | |
|
795 | 797 | if self.decimation is None: |
|
796 | 798 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
797 | 799 | else: |
|
798 | 800 | x, y, z = self.fill_gaps(*self.decimate()) |
|
799 | 801 | |
|
800 | 802 | for n, ax in enumerate(self.axes): |
|
801 | 803 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
802 | 804 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
803 | 805 | data = self.data[-1] |
|
804 | 806 | if ax.firsttime: |
|
805 | 807 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
806 | 808 | vmin=self.zmin, |
|
807 | 809 | vmax=self.zmax, |
|
808 | 810 | cmap=plt.get_cmap(self.colormap) |
|
809 | 811 | ) |
|
810 | 812 | else: |
|
811 | 813 | ax.collections.remove(ax.collections[0]) |
|
812 | 814 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
813 | 815 | vmin=self.zmin, |
|
814 | 816 | vmax=self.zmax, |
|
815 | 817 | cmap=plt.get_cmap(self.colormap) |
|
816 | 818 | ) |
|
817 | 819 | |
|
818 | 820 | #self.titles.append('Spectrogram') |
|
819 | 821 | |
|
820 | 822 | #self.titles.append('{} Channel {} \n H = {} km ({} - {})'.format( |
|
821 | 823 | #self.CODE.upper(), x, y[hei], y[hei],y[hei]+(DH*nProfiles))) |
|
822 | 824 | |
|
823 | 825 | |
|
824 | 826 | |
|
825 | 827 | |
|
826 | 828 | class CoherencePlot(RTIPlot): |
|
827 | 829 | ''' |
|
828 | 830 | Plot for Coherence data |
|
829 | 831 | ''' |
|
830 | 832 | |
|
831 | 833 | CODE = 'coh' |
|
832 | 834 | |
|
833 | 835 | def setup(self): |
|
834 | 836 | self.xaxis = 'time' |
|
835 | 837 | self.ncols = 1 |
|
836 | 838 | self.nrows = len(self.data.pairs) |
|
837 | 839 | self.nplots = len(self.data.pairs) |
|
838 | 840 | self.ylabel = 'Range [km]' |
|
839 | 841 | self.xlabel = 'Time' |
|
840 | 842 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
841 | 843 | if self.CODE == 'coh': |
|
842 | 844 | self.cb_label = '' |
|
843 | 845 | self.titles = [ |
|
844 | 846 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
845 | 847 | else: |
|
846 | 848 | self.cb_label = 'Degrees' |
|
847 | 849 | self.titles = [ |
|
848 | 850 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
849 | 851 | |
|
850 | 852 | def update(self, dataOut): |
|
851 | 853 | |
|
852 | 854 | data = {} |
|
853 | 855 | meta = {} |
|
854 | 856 | data['coh'] = dataOut.getCoherence() |
|
855 | 857 | meta['pairs'] = dataOut.pairsList |
|
856 | 858 | |
|
857 | 859 | return data, meta |
|
858 | 860 | |
|
859 | 861 | class PhasePlot(CoherencePlot): |
|
860 | 862 | ''' |
|
861 | 863 | Plot for Phase map data |
|
862 | 864 | ''' |
|
863 | 865 | |
|
864 | 866 | CODE = 'phase' |
|
865 | 867 | colormap = 'seismic' |
|
866 | 868 | |
|
867 | 869 | def update(self, dataOut): |
|
868 | 870 | |
|
869 | 871 | data = {} |
|
870 | 872 | meta = {} |
|
871 | 873 | data['phase'] = dataOut.getCoherence(phase=True) |
|
872 | 874 | meta['pairs'] = dataOut.pairsList |
|
873 | 875 | |
|
874 | 876 | return data, meta |
|
875 | 877 | |
|
876 | 878 | class NoisePlot(Plot): |
|
877 | 879 | ''' |
|
878 | 880 | Plot for noise |
|
879 | 881 | ''' |
|
880 | 882 | |
|
881 | 883 | CODE = 'noise' |
|
882 | 884 | plot_type = 'scatterbuffer' |
|
883 | 885 | |
|
884 | 886 | def setup(self): |
|
885 | 887 | self.xaxis = 'time' |
|
886 | 888 | self.ncols = 1 |
|
887 | 889 | self.nrows = 1 |
|
888 | 890 | self.nplots = 1 |
|
889 | 891 | self.ylabel = 'Intensity [dB]' |
|
890 | 892 | self.xlabel = 'Time' |
|
891 | 893 | self.titles = ['Noise'] |
|
892 | 894 | self.colorbar = False |
|
893 | 895 | self.plots_adjust.update({'right': 0.85 }) |
|
894 | 896 | |
|
895 | 897 | def update(self, dataOut): |
|
896 | 898 | |
|
897 | 899 | data = {} |
|
898 | 900 | meta = {} |
|
899 | 901 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
900 | 902 | meta['yrange'] = numpy.array([]) |
|
901 | 903 | |
|
902 | 904 | return data, meta |
|
903 | 905 | |
|
904 | 906 | def plot(self): |
|
905 | 907 | |
|
906 | 908 | x = self.data.times |
|
907 | 909 | xmin = self.data.min_time |
|
908 | 910 | xmax = xmin + self.xrange * 60 * 60 |
|
909 | 911 | Y = self.data['noise'] |
|
910 | 912 | |
|
911 | 913 | if self.axes[0].firsttime: |
|
912 | 914 | self.ymin = numpy.nanmin(Y) - 5 |
|
913 | 915 | self.ymax = numpy.nanmax(Y) + 5 |
|
914 | 916 | for ch in self.data.channels: |
|
915 | 917 | y = Y[ch] |
|
916 | 918 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
917 | 919 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
918 | 920 | else: |
|
919 | 921 | for ch in self.data.channels: |
|
920 | 922 | y = Y[ch] |
|
921 | 923 | self.axes[0].lines[ch].set_data(x, y) |
|
922 | 924 | |
|
923 | 925 | self.ymin = numpy.nanmin(Y) - 5 |
|
924 | 926 | self.ymax = numpy.nanmax(Y) + 10 |
|
925 | 927 | |
|
926 | 928 | |
|
927 | 929 | class PowerProfilePlot(Plot): |
|
928 | 930 | |
|
929 | 931 | CODE = 'pow_profile' |
|
930 | 932 | plot_type = 'scatter' |
|
931 | 933 | |
|
932 | 934 | def setup(self): |
|
933 | 935 | |
|
934 | 936 | self.ncols = 1 |
|
935 | 937 | self.nrows = 1 |
|
936 | 938 | self.nplots = 1 |
|
937 | 939 | self.height = 4 |
|
938 | 940 | self.width = 3 |
|
939 | 941 | self.ylabel = 'Range [km]' |
|
940 | 942 | self.xlabel = 'Intensity [dB]' |
|
941 | 943 | self.titles = ['Power Profile'] |
|
942 | 944 | self.colorbar = False |
|
943 | 945 | |
|
944 | 946 | def update(self, dataOut): |
|
945 | 947 | |
|
946 | 948 | data = {} |
|
947 | 949 | meta = {} |
|
948 | 950 | data[self.CODE] = dataOut.getPower() |
|
949 | 951 | |
|
950 | 952 | return data, meta |
|
951 | 953 | |
|
952 | 954 | def plot(self): |
|
953 | 955 | |
|
954 | 956 | y = self.data.yrange |
|
955 | 957 | self.y = y |
|
956 | 958 | |
|
957 | 959 | x = self.data[-1][self.CODE] |
|
958 | 960 | |
|
959 | 961 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
960 | 962 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
961 | 963 | |
|
962 | 964 | if self.axes[0].firsttime: |
|
963 | 965 | for ch in self.data.channels: |
|
964 | 966 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
965 | 967 | plt.legend() |
|
966 | 968 | else: |
|
967 | 969 | for ch in self.data.channels: |
|
968 | 970 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
969 | 971 | |
|
970 | 972 | |
|
971 | 973 | class SpectraCutPlot(Plot): |
|
972 | 974 | |
|
973 | 975 | CODE = 'spc_cut' |
|
974 | 976 | plot_type = 'scatter' |
|
975 | 977 | buffering = False |
|
976 | 978 | |
|
977 | 979 | def setup(self): |
|
978 | 980 | |
|
979 | 981 | self.nplots = len(self.data.channels) |
|
980 | 982 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
981 | 983 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
982 | 984 | self.width = 3.4 * self.ncols + 1.5 |
|
983 | 985 | self.height = 3 * self.nrows |
|
984 | 986 | self.ylabel = 'Power [dB]' |
|
985 | 987 | self.colorbar = False |
|
986 | 988 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
987 | 989 | |
|
988 | 990 | def update(self, dataOut): |
|
989 | 991 | |
|
990 | 992 | data = {} |
|
991 | 993 | meta = {} |
|
992 | 994 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
993 | 995 | data['spc'] = spc |
|
994 | 996 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
995 | 997 | if self.CODE == 'cut_gaussian_fit': |
|
996 | 998 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) |
|
997 | 999 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) |
|
998 | 1000 | return data, meta |
|
999 | 1001 | |
|
1000 | 1002 | def plot(self): |
|
1001 | 1003 | if self.xaxis == "frequency": |
|
1002 | 1004 | x = self.data.xrange[0][1:] |
|
1003 | 1005 | self.xlabel = "Frequency (kHz)" |
|
1004 | 1006 | elif self.xaxis == "time": |
|
1005 | 1007 | x = self.data.xrange[1] |
|
1006 | 1008 | self.xlabel = "Time (ms)" |
|
1007 | 1009 | else: |
|
1008 | 1010 | x = self.data.xrange[2][:-1] |
|
1009 | 1011 | self.xlabel = "Velocity (m/s)" |
|
1010 | 1012 | |
|
1011 | 1013 | if self.CODE == 'cut_gaussian_fit': |
|
1012 | 1014 | x = self.data.xrange[2][:-1] |
|
1013 | 1015 | self.xlabel = "Velocity (m/s)" |
|
1014 | 1016 | |
|
1015 | 1017 | self.titles = [] |
|
1016 | 1018 | |
|
1017 | 1019 | y = self.data.yrange |
|
1018 | 1020 | data = self.data[-1] |
|
1019 | 1021 | z = data['spc'] |
|
1020 | 1022 | |
|
1021 | 1023 | if self.height_index: |
|
1022 | 1024 | index = numpy.array(self.height_index) |
|
1023 | 1025 | else: |
|
1024 | 1026 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
1025 | 1027 | |
|
1026 | 1028 | for n, ax in enumerate(self.axes): |
|
1027 | 1029 | if self.CODE == 'cut_gaussian_fit': |
|
1028 | 1030 | gau0 = data['gauss_fit0'] |
|
1029 | 1031 | gau1 = data['gauss_fit1'] |
|
1030 | 1032 | if ax.firsttime: |
|
1031 | 1033 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
1032 | 1034 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
1033 | 1035 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z[:,:,index]) |
|
1034 | 1036 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z[:,:,index]) |
|
1035 | 1037 | #print(self.ymax) |
|
1036 | 1038 | #print(z[n, :, index]) |
|
1037 | 1039 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) |
|
1038 | 1040 | if self.CODE == 'cut_gaussian_fit': |
|
1039 | 1041 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') |
|
1040 | 1042 | for i, line in enumerate(ax.plt_gau0): |
|
1041 | 1043 | line.set_color(ax.plt[i].get_color()) |
|
1042 | 1044 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') |
|
1043 | 1045 | for i, line in enumerate(ax.plt_gau1): |
|
1044 | 1046 | line.set_color(ax.plt[i].get_color()) |
|
1045 | 1047 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
1046 | 1048 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
1047 | 1049 | else: |
|
1048 | 1050 | for i, line in enumerate(ax.plt): |
|
1049 | 1051 | line.set_data(x, z[n, :, index[i]].T) |
|
1050 | 1052 | for i, line in enumerate(ax.plt_gau0): |
|
1051 | 1053 | line.set_data(x, gau0[n, :, index[i]].T) |
|
1052 | 1054 | line.set_color(ax.plt[i].get_color()) |
|
1053 | 1055 | for i, line in enumerate(ax.plt_gau1): |
|
1054 | 1056 | line.set_data(x, gau1[n, :, index[i]].T) |
|
1055 | 1057 | line.set_color(ax.plt[i].get_color()) |
|
1056 | 1058 | self.titles.append('CH {}'.format(n)) |
|
1057 | 1059 | |
|
1058 | 1060 | |
|
1059 | 1061 | class BeaconPhase(Plot): |
|
1060 | 1062 | |
|
1061 | 1063 | __isConfig = None |
|
1062 | 1064 | __nsubplots = None |
|
1063 | 1065 | |
|
1064 | 1066 | PREFIX = 'beacon_phase' |
|
1065 | 1067 | |
|
1066 | 1068 | def __init__(self): |
|
1067 | 1069 | Plot.__init__(self) |
|
1068 | 1070 | self.timerange = 24*60*60 |
|
1069 | 1071 | self.isConfig = False |
|
1070 | 1072 | self.__nsubplots = 1 |
|
1071 | 1073 | self.counter_imagwr = 0 |
|
1072 | 1074 | self.WIDTH = 800 |
|
1073 | 1075 | self.HEIGHT = 400 |
|
1074 | 1076 | self.WIDTHPROF = 120 |
|
1075 | 1077 | self.HEIGHTPROF = 0 |
|
1076 | 1078 | self.xdata = None |
|
1077 | 1079 | self.ydata = None |
|
1078 | 1080 | |
|
1079 | 1081 | self.PLOT_CODE = BEACON_CODE |
|
1080 | 1082 | |
|
1081 | 1083 | self.FTP_WEI = None |
|
1082 | 1084 | self.EXP_CODE = None |
|
1083 | 1085 | self.SUB_EXP_CODE = None |
|
1084 | 1086 | self.PLOT_POS = None |
|
1085 | 1087 | |
|
1086 | 1088 | self.filename_phase = None |
|
1087 | 1089 | |
|
1088 | 1090 | self.figfile = None |
|
1089 | 1091 | |
|
1090 | 1092 | self.xmin = None |
|
1091 | 1093 | self.xmax = None |
|
1092 | 1094 | |
|
1093 | 1095 | def getSubplots(self): |
|
1094 | 1096 | |
|
1095 | 1097 | ncol = 1 |
|
1096 | 1098 | nrow = 1 |
|
1097 | 1099 | |
|
1098 | 1100 | return nrow, ncol |
|
1099 | 1101 | |
|
1100 | 1102 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1101 | 1103 | |
|
1102 | 1104 | self.__showprofile = showprofile |
|
1103 | 1105 | self.nplots = nplots |
|
1104 | 1106 | |
|
1105 | 1107 | ncolspan = 7 |
|
1106 | 1108 | colspan = 6 |
|
1107 | 1109 | self.__nsubplots = 2 |
|
1108 | 1110 | |
|
1109 | 1111 | self.createFigure(id = id, |
|
1110 | 1112 | wintitle = wintitle, |
|
1111 | 1113 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1112 | 1114 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1113 | 1115 | show=show) |
|
1114 | 1116 | |
|
1115 | 1117 | nrow, ncol = self.getSubplots() |
|
1116 | 1118 | |
|
1117 | 1119 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1118 | 1120 | |
|
1119 | 1121 | def save_phase(self, filename_phase): |
|
1120 | 1122 | f = open(filename_phase,'w+') |
|
1121 | 1123 | f.write('\n\n') |
|
1122 | 1124 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1123 | 1125 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1124 | 1126 | f.close() |
|
1125 | 1127 | |
|
1126 | 1128 | def save_data(self, filename_phase, data, data_datetime): |
|
1127 | 1129 | f=open(filename_phase,'a') |
|
1128 | 1130 | timetuple_data = data_datetime.timetuple() |
|
1129 | 1131 | day = str(timetuple_data.tm_mday) |
|
1130 | 1132 | month = str(timetuple_data.tm_mon) |
|
1131 | 1133 | year = str(timetuple_data.tm_year) |
|
1132 | 1134 | hour = str(timetuple_data.tm_hour) |
|
1133 | 1135 | minute = str(timetuple_data.tm_min) |
|
1134 | 1136 | second = str(timetuple_data.tm_sec) |
|
1135 | 1137 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1136 | 1138 | f.close() |
|
1137 | 1139 | |
|
1138 | 1140 | def plot(self): |
|
1139 | 1141 | log.warning('TODO: Not yet implemented...') |
|
1140 | 1142 | |
|
1141 | 1143 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1142 | 1144 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1143 | 1145 | timerange=None, |
|
1144 | 1146 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1145 | 1147 | server=None, folder=None, username=None, password=None, |
|
1146 | 1148 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1147 | 1149 | |
|
1148 | 1150 | if dataOut.flagNoData: |
|
1149 | 1151 | return dataOut |
|
1150 | 1152 | |
|
1151 | 1153 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1152 | 1154 | return |
|
1153 | 1155 | |
|
1154 | 1156 | if pairsList == None: |
|
1155 | 1157 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1156 | 1158 | else: |
|
1157 | 1159 | pairsIndexList = [] |
|
1158 | 1160 | for pair in pairsList: |
|
1159 | 1161 | if pair not in dataOut.pairsList: |
|
1160 | 1162 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
1161 | 1163 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1162 | 1164 | |
|
1163 | 1165 | if pairsIndexList == []: |
|
1164 | 1166 | return |
|
1165 | 1167 | |
|
1166 | 1168 | # if len(pairsIndexList) > 4: |
|
1167 | 1169 | # pairsIndexList = pairsIndexList[0:4] |
|
1168 | 1170 | |
|
1169 | 1171 | hmin_index = None |
|
1170 | 1172 | hmax_index = None |
|
1171 | 1173 | |
|
1172 | 1174 | if hmin != None and hmax != None: |
|
1173 | 1175 | indexes = numpy.arange(dataOut.nHeights) |
|
1174 | 1176 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1175 | 1177 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1176 | 1178 | |
|
1177 | 1179 | if hmin_list.any(): |
|
1178 | 1180 | hmin_index = hmin_list[0] |
|
1179 | 1181 | |
|
1180 | 1182 | if hmax_list.any(): |
|
1181 | 1183 | hmax_index = hmax_list[-1]+1 |
|
1182 | 1184 | |
|
1183 | 1185 | x = dataOut.getTimeRange() |
|
1184 | 1186 | |
|
1185 | 1187 | thisDatetime = dataOut.datatime |
|
1186 | 1188 | |
|
1187 | 1189 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1188 | 1190 | xlabel = "Local Time" |
|
1189 | 1191 | ylabel = "Phase (degrees)" |
|
1190 | 1192 | |
|
1191 | 1193 | update_figfile = False |
|
1192 | 1194 | |
|
1193 | 1195 | nplots = len(pairsIndexList) |
|
1194 | 1196 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1195 | 1197 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1196 | 1198 | for i in range(nplots): |
|
1197 | 1199 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1198 | 1200 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1199 | 1201 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1200 | 1202 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1201 | 1203 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1202 | 1204 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1203 | 1205 | |
|
1204 | 1206 | if dataOut.beacon_heiIndexList: |
|
1205 | 1207 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1206 | 1208 | else: |
|
1207 | 1209 | phase_beacon[i] = numpy.average(phase) |
|
1208 | 1210 | |
|
1209 | 1211 | if not self.isConfig: |
|
1210 | 1212 | |
|
1211 | 1213 | nplots = len(pairsIndexList) |
|
1212 | 1214 | |
|
1213 | 1215 | self.setup(id=id, |
|
1214 | 1216 | nplots=nplots, |
|
1215 | 1217 | wintitle=wintitle, |
|
1216 | 1218 | showprofile=showprofile, |
|
1217 | 1219 | show=show) |
|
1218 | 1220 | |
|
1219 | 1221 | if timerange != None: |
|
1220 | 1222 | self.timerange = timerange |
|
1221 | 1223 | |
|
1222 | 1224 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1223 | 1225 | |
|
1224 | 1226 | if ymin == None: ymin = 0 |
|
1225 | 1227 | if ymax == None: ymax = 360 |
|
1226 | 1228 | |
|
1227 | 1229 | self.FTP_WEI = ftp_wei |
|
1228 | 1230 | self.EXP_CODE = exp_code |
|
1229 | 1231 | self.SUB_EXP_CODE = sub_exp_code |
|
1230 | 1232 | self.PLOT_POS = plot_pos |
|
1231 | 1233 | |
|
1232 | 1234 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1233 | 1235 | self.isConfig = True |
|
1234 | 1236 | self.figfile = figfile |
|
1235 | 1237 | self.xdata = numpy.array([]) |
|
1236 | 1238 | self.ydata = numpy.array([]) |
|
1237 | 1239 | |
|
1238 | 1240 | update_figfile = True |
|
1239 | 1241 | |
|
1240 | 1242 | #open file beacon phase |
|
1241 | 1243 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1242 | 1244 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1243 | 1245 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1244 | 1246 | #self.save_phase(self.filename_phase) |
|
1245 | 1247 | |
|
1246 | 1248 | |
|
1247 | 1249 | #store data beacon phase |
|
1248 | 1250 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1249 | 1251 | |
|
1250 | 1252 | self.setWinTitle(title) |
|
1251 | 1253 | |
|
1252 | 1254 | |
|
1253 | 1255 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1254 | 1256 | |
|
1255 | 1257 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1256 | 1258 | |
|
1257 | 1259 | axes = self.axesList[0] |
|
1258 | 1260 | |
|
1259 | 1261 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1260 | 1262 | |
|
1261 | 1263 | if len(self.ydata)==0: |
|
1262 | 1264 | self.ydata = phase_beacon.reshape(-1,1) |
|
1263 | 1265 | else: |
|
1264 | 1266 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1265 | 1267 | |
|
1266 | 1268 | |
|
1267 | 1269 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1268 | 1270 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1269 | 1271 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1270 | 1272 | XAxisAsTime=True, grid='both' |
|
1271 | 1273 | ) |
|
1272 | 1274 | |
|
1273 | 1275 | self.draw() |
|
1274 | 1276 | |
|
1275 | 1277 | if dataOut.ltctime >= self.xmax: |
|
1276 | 1278 | self.counter_imagwr = wr_period |
|
1277 | 1279 | self.isConfig = False |
|
1278 | 1280 | update_figfile = True |
|
1279 | 1281 | |
|
1280 | 1282 | self.save(figpath=figpath, |
|
1281 | 1283 | figfile=figfile, |
|
1282 | 1284 | save=save, |
|
1283 | 1285 | ftp=ftp, |
|
1284 | 1286 | wr_period=wr_period, |
|
1285 | 1287 | thisDatetime=thisDatetime, |
|
1286 | 1288 | update_figfile=update_figfile) |
|
1287 | 1289 | |
|
1288 | 1290 | return dataOut |
@@ -1,1287 +1,1285 | |||
|
1 | 1 | |
|
2 | 2 | import os |
|
3 | 3 | import time |
|
4 | 4 | import math |
|
5 | 5 | import datetime |
|
6 | 6 | import numpy |
|
7 | 7 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator #YONG |
|
8 | 8 | |
|
9 | 9 | from .jroplot_spectra import RTIPlot, NoisePlot |
|
10 | 10 | |
|
11 | 11 | from schainpy.utils import log |
|
12 | 12 | from .plotting_codes import * |
|
13 | 13 | |
|
14 | 14 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
15 | 15 | |
|
16 | 16 | import matplotlib.pyplot as plt |
|
17 | 17 | import matplotlib.colors as colors |
|
18 | 18 | from matplotlib.ticker import MultipleLocator |
|
19 | 19 | |
|
20 | 20 | |
|
21 | 21 | class RTIDPPlot(RTIPlot): |
|
22 | 22 | |
|
23 | 23 | '''Plot for RTI Double Pulse Experiment |
|
24 | 24 | ''' |
|
25 | 25 | |
|
26 | 26 | CODE = 'RTIDP' |
|
27 | 27 | colormap = 'jet' |
|
28 | 28 | plot_name = 'RTI' |
|
29 | 29 | plot_type = 'pcolorbuffer' |
|
30 | 30 | |
|
31 | 31 | def setup(self): |
|
32 | 32 | self.xaxis = 'time' |
|
33 | 33 | self.ncols = 1 |
|
34 | 34 | self.nrows = 3 |
|
35 | 35 | self.nplots = self.nrows |
|
36 | 36 | |
|
37 | 37 | self.ylabel = 'Range [km]' |
|
38 | 38 | self.xlabel = 'Time (LT)' |
|
39 | 39 | |
|
40 | 40 | self.cb_label = 'Intensity (dB)' |
|
41 | 41 | |
|
42 | 42 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
43 | 43 | |
|
44 | 44 | self.titles = ['{} Channel {}'.format( |
|
45 | 45 | self.plot_name.upper(), '0x1'),'{} Channel {}'.format( |
|
46 | 46 | self.plot_name.upper(), '0'),'{} Channel {}'.format( |
|
47 | 47 | self.plot_name.upper(), '1')] |
|
48 | 48 | |
|
49 | 49 | def update(self, dataOut): |
|
50 | 50 | |
|
51 | 51 | data = {} |
|
52 | 52 | meta = {} |
|
53 | 53 | data['rti'] = dataOut.data_for_RTI_DP |
|
54 | 54 | data['NDP'] = dataOut.NDP |
|
55 | 55 | |
|
56 | 56 | return data, meta |
|
57 | 57 | |
|
58 | 58 | def plot(self): |
|
59 | 59 | |
|
60 | 60 | NDP = self.data['NDP'][-1] |
|
61 | 61 | self.x = self.data.times |
|
62 | 62 | self.y = self.data.yrange[0:NDP] |
|
63 | 63 | self.z = self.data['rti'] |
|
64 | 64 | self.z = numpy.ma.masked_invalid(self.z) |
|
65 | 65 | |
|
66 | 66 | if self.decimation is None: |
|
67 | 67 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
68 | 68 | else: |
|
69 | 69 | x, y, z = self.fill_gaps(*self.decimate()) |
|
70 | 70 | |
|
71 | 71 | for n, ax in enumerate(self.axes): |
|
72 | 72 | |
|
73 | 73 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
74 | 74 | self.z[1][0,12:40]) |
|
75 | 75 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
76 | 76 | self.z[1][0,12:40]) |
|
77 | 77 | |
|
78 | 78 | if ax.firsttime: |
|
79 | 79 | |
|
80 | 80 | if self.zlimits is not None: |
|
81 | 81 | self.zmin, self.zmax = self.zlimits[n] |
|
82 | 82 | |
|
83 | 83 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
84 | 84 | vmin=self.zmin, |
|
85 | 85 | vmax=self.zmax, |
|
86 | 86 | cmap=plt.get_cmap(self.colormap) |
|
87 | 87 | ) |
|
88 | 88 | else: |
|
89 | 89 | #if self.zlimits is not None: |
|
90 | 90 | #self.zmin, self.zmax = self.zlimits[n] |
|
91 | 91 | ax.collections.remove(ax.collections[0]) |
|
92 | 92 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
93 | 93 | vmin=self.zmin, |
|
94 | 94 | vmax=self.zmax, |
|
95 | 95 | cmap=plt.get_cmap(self.colormap) |
|
96 | 96 | ) |
|
97 | 97 | |
|
98 | 98 | |
|
99 | 99 | class RTILPPlot(RTIPlot): |
|
100 | 100 | |
|
101 | 101 | ''' |
|
102 | 102 | Plot for RTI Long Pulse |
|
103 | 103 | ''' |
|
104 | 104 | |
|
105 | 105 | CODE = 'RTILP' |
|
106 | 106 | colormap = 'jet' |
|
107 | 107 | plot_name = 'RTI LP' |
|
108 | 108 | plot_type = 'pcolorbuffer' |
|
109 | 109 | |
|
110 | 110 | def setup(self): |
|
111 | 111 | self.xaxis = 'time' |
|
112 | 112 | self.ncols = 1 |
|
113 | 113 | self.nrows = 4 |
|
114 | 114 | self.nplots = self.nrows |
|
115 | 115 | |
|
116 | 116 | self.ylabel = 'Range [km]' |
|
117 | 117 | self.xlabel = 'Time (LT)' |
|
118 | 118 | |
|
119 | 119 | self.cb_label = 'Intensity (dB)' |
|
120 | 120 | |
|
121 | 121 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
122 | 122 | |
|
123 | 123 | |
|
124 | 124 | self.titles = ['{} Channel {}'.format( |
|
125 | 125 | self.plot_name.upper(), '0'),'{} Channel {}'.format( |
|
126 | 126 | self.plot_name.upper(), '1'),'{} Channel {}'.format( |
|
127 | 127 | self.plot_name.upper(), '2'),'{} Channel {}'.format( |
|
128 | 128 | self.plot_name.upper(), '3')] |
|
129 | 129 | |
|
130 | 130 | |
|
131 | 131 | def update(self, dataOut): |
|
132 | 132 | |
|
133 | 133 | data = {} |
|
134 | 134 | meta = {} |
|
135 | 135 | data['rti'] = dataOut.data_for_RTI_LP |
|
136 | 136 | data['NRANGE'] = dataOut.NRANGE |
|
137 | 137 | |
|
138 | 138 | return data, meta |
|
139 | 139 | |
|
140 | 140 | def plot(self): |
|
141 | 141 | |
|
142 | 142 | NRANGE = self.data['NRANGE'][-1] |
|
143 | 143 | self.x = self.data.times |
|
144 | 144 | self.y = self.data.yrange[0:NRANGE] |
|
145 | 145 | |
|
146 | 146 | self.z = self.data['rti'] |
|
147 | 147 | |
|
148 | 148 | self.z = numpy.ma.masked_invalid(self.z) |
|
149 | 149 | |
|
150 | 150 | if self.decimation is None: |
|
151 | 151 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
152 | 152 | else: |
|
153 | 153 | x, y, z = self.fill_gaps(*self.decimate()) |
|
154 | 154 | |
|
155 | 155 | for n, ax in enumerate(self.axes): |
|
156 | 156 | |
|
157 | 157 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
158 | 158 | self.z[1][0,12:40]) |
|
159 | 159 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
160 | 160 | self.z[1][0,12:40]) |
|
161 | 161 | |
|
162 | 162 | if ax.firsttime: |
|
163 | 163 | |
|
164 | 164 | if self.zlimits is not None: |
|
165 | 165 | self.zmin, self.zmax = self.zlimits[n] |
|
166 | 166 | |
|
167 | 167 | |
|
168 | 168 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
169 | 169 | vmin=self.zmin, |
|
170 | 170 | vmax=self.zmax, |
|
171 | 171 | cmap=plt.get_cmap(self.colormap) |
|
172 | 172 | ) |
|
173 | 173 | |
|
174 | 174 | else: |
|
175 | 175 | #if self.zlimits is not None: |
|
176 | 176 | #self.zmin, self.zmax = self.zlimits[n] |
|
177 | 177 | ax.collections.remove(ax.collections[0]) |
|
178 | 178 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
179 | 179 | vmin=self.zmin, |
|
180 | 180 | vmax=self.zmax, |
|
181 | 181 | cmap=plt.get_cmap(self.colormap) |
|
182 | 182 | ) |
|
183 | 183 | |
|
184 | 184 | |
|
185 | 185 | class DenRTIPlot(RTIPlot): |
|
186 | 186 | |
|
187 | 187 | ''' |
|
188 | 188 | Plot for Den |
|
189 | 189 | ''' |
|
190 | 190 | |
|
191 | 191 | CODE = 'denrti' |
|
192 | 192 | colormap = 'jet' |
|
193 | 193 | |
|
194 | 194 | def setup(self): |
|
195 | 195 | self.xaxis = 'time' |
|
196 | 196 | self.ncols = 1 |
|
197 | 197 | self.nrows = self.data.shape(self.CODE)[0] |
|
198 | 198 | self.nplots = self.nrows |
|
199 | 199 | |
|
200 | 200 | self.ylabel = 'Range [km]' |
|
201 | 201 | self.xlabel = 'Time (LT)' |
|
202 | 202 | |
|
203 | 203 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
204 | 204 | |
|
205 | 205 | if self.CODE == 'denrti': |
|
206 | 206 | self.cb_label = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' |
|
207 | 207 | |
|
208 | 208 | |
|
209 | 209 | self.titles = ['Electron Density RTI'] |
|
210 | 210 | |
|
211 | 211 | def update(self, dataOut): |
|
212 | 212 | |
|
213 | 213 | data = {} |
|
214 | 214 | meta = {} |
|
215 | 215 | |
|
216 | 216 | data['denrti'] = dataOut.DensityFinal |
|
217 | 217 | |
|
218 | 218 | return data, meta |
|
219 | 219 | |
|
220 | 220 | def plot(self): |
|
221 | 221 | |
|
222 | 222 | self.x = self.data.times |
|
223 | 223 | self.y = self.data.yrange |
|
224 | 224 | |
|
225 | 225 | self.z = self.data[self.CODE] |
|
226 | 226 | |
|
227 | 227 | self.z = numpy.ma.masked_invalid(self.z) |
|
228 | 228 | |
|
229 | 229 | if self.decimation is None: |
|
230 | 230 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
231 | 231 | else: |
|
232 | 232 | x, y, z = self.fill_gaps(*self.decimate()) |
|
233 | 233 | |
|
234 | 234 | for n, ax in enumerate(self.axes): |
|
235 | 235 | |
|
236 | 236 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
237 | 237 | self.z[n]) |
|
238 | 238 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
239 | 239 | self.z[n]) |
|
240 | 240 | |
|
241 | 241 | if ax.firsttime: |
|
242 | 242 | |
|
243 | 243 | if self.zlimits is not None: |
|
244 | 244 | self.zmin, self.zmax = self.zlimits[n] |
|
245 | 245 | if numpy.log10(self.zmin)<0: |
|
246 | 246 | self.zmin=1 |
|
247 | 247 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
248 | 248 | vmin=self.zmin, |
|
249 | 249 | vmax=self.zmax, |
|
250 | 250 | cmap=self.cmaps[n], |
|
251 | 251 | norm=colors.LogNorm() |
|
252 | 252 | ) |
|
253 | 253 | |
|
254 | 254 | else: |
|
255 | 255 | if self.zlimits is not None: |
|
256 | 256 | self.zmin, self.zmax = self.zlimits[n] |
|
257 | 257 | ax.collections.remove(ax.collections[0]) |
|
258 | 258 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
259 | 259 | vmin=self.zmin, |
|
260 | 260 | vmax=self.zmax, |
|
261 | 261 | cmap=self.cmaps[n], |
|
262 | 262 | norm=colors.LogNorm() |
|
263 | 263 | ) |
|
264 | 264 | |
|
265 | 265 | |
|
266 | ||
|
267 | ||
|
268 | 266 | class ETempRTIPlot(RTIPlot): |
|
269 | 267 | |
|
270 | 268 | ''' |
|
271 | 269 | Plot for Electron Temperature |
|
272 | 270 | ''' |
|
273 | 271 | |
|
274 | 272 | CODE = 'ETemp' |
|
275 | 273 | colormap = 'jet' |
|
276 | 274 | |
|
277 | 275 | def setup(self): |
|
278 | 276 | self.xaxis = 'time' |
|
279 | 277 | self.ncols = 1 |
|
280 | 278 | self.nrows = self.data.shape(self.CODE)[0] |
|
281 | 279 | self.nplots = self.nrows |
|
282 | 280 | |
|
283 | 281 | self.ylabel = 'Range [km]' |
|
284 | 282 | self.xlabel = 'Time (LT)' |
|
285 | 283 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
286 | 284 | if self.CODE == 'ETemp': |
|
287 | 285 | self.cb_label = 'Electron Temperature (K)' |
|
288 | 286 | self.titles = ['Electron Temperature RTI'] |
|
289 | 287 | if self.CODE == 'ITemp': |
|
290 | 288 | self.cb_label = 'Ion Temperature (K)' |
|
291 | 289 | self.titles = ['Ion Temperature RTI'] |
|
292 | 290 | if self.CODE == 'HeFracLP': |
|
293 | 291 | self.cb_label='He+ Fraction' |
|
294 | 292 | self.titles = ['He+ Fraction RTI'] |
|
295 | 293 | self.zmax=0.16 |
|
296 | 294 | if self.CODE== 'HFracLP': |
|
297 | 295 | self.cb_label='H+ Fraction' |
|
298 | 296 | self.titles = ['H+ Fraction RTI'] |
|
299 | 297 | |
|
300 | 298 | def update(self, dataOut): |
|
301 | 299 | |
|
302 | 300 | data = {} |
|
303 | 301 | meta = {} |
|
304 | 302 | |
|
305 | 303 | data['ETemp'] = dataOut.ElecTempFinal |
|
306 | 304 | |
|
307 | 305 | return data, meta |
|
308 | 306 | |
|
309 | 307 | def plot(self): |
|
310 | 308 | |
|
311 | 309 | self.x = self.data.times |
|
312 | 310 | self.y = self.data.yrange |
|
313 | 311 | |
|
314 | 312 | |
|
315 | 313 | self.z = self.data[self.CODE] |
|
316 | 314 | |
|
317 | 315 | self.z = numpy.ma.masked_invalid(self.z) |
|
318 | 316 | |
|
319 | 317 | if self.decimation is None: |
|
320 | 318 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
321 | 319 | else: |
|
322 | 320 | x, y, z = self.fill_gaps(*self.decimate()) |
|
323 | 321 | |
|
324 | 322 | for n, ax in enumerate(self.axes): |
|
325 | 323 | |
|
326 | 324 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
327 | 325 | self.z[n]) |
|
328 | 326 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
329 | 327 | self.z[n]) |
|
330 | 328 | |
|
331 | 329 | if ax.firsttime: |
|
332 | 330 | |
|
333 | 331 | if self.zlimits is not None: |
|
334 | 332 | self.zmin, self.zmax = self.zlimits[n] |
|
335 | 333 | |
|
336 | 334 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
337 | 335 | vmin=self.zmin, |
|
338 | 336 | vmax=self.zmax, |
|
339 | 337 | cmap=self.cmaps[n] |
|
340 | 338 | ) |
|
341 | 339 | #plt.tight_layout() |
|
342 | 340 | |
|
343 | 341 | else: |
|
344 | 342 | if self.zlimits is not None: |
|
345 | 343 | self.zmin, self.zmax = self.zlimits[n] |
|
346 | 344 | ax.collections.remove(ax.collections[0]) |
|
347 | 345 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
348 | 346 | vmin=self.zmin, |
|
349 | 347 | vmax=self.zmax, |
|
350 | 348 | cmap=self.cmaps[n] |
|
351 | 349 | ) |
|
352 | 350 | |
|
353 | 351 | |
|
354 | ||
|
355 | 352 | class ITempRTIPlot(ETempRTIPlot): |
|
356 | 353 | |
|
357 | 354 | ''' |
|
358 | 355 | Plot for Ion Temperature |
|
359 | 356 | ''' |
|
360 | 357 | |
|
361 | 358 | CODE = 'ITemp' |
|
362 | 359 | colormap = 'jet' |
|
363 | 360 | plot_name = 'Ion Temperature' |
|
364 | 361 | |
|
365 | 362 | def update(self, dataOut): |
|
366 | 363 | |
|
367 | 364 | data = {} |
|
368 | 365 | meta = {} |
|
369 | 366 | |
|
370 | 367 | data['ITemp'] = dataOut.IonTempFinal |
|
371 | 368 | |
|
372 | 369 | return data, meta |
|
373 | 370 | |
|
374 | 371 | |
|
375 | ||
|
376 | 372 | class HFracRTIPlot(ETempRTIPlot): |
|
377 | 373 | |
|
378 | 374 | ''' |
|
379 | 375 | Plot for H+ LP |
|
380 | 376 | ''' |
|
381 | 377 | |
|
382 | 378 | CODE = 'HFracLP' |
|
383 | 379 | colormap = 'jet' |
|
384 | 380 | plot_name = 'H+ Frac' |
|
385 | 381 | |
|
386 | 382 | def update(self, dataOut): |
|
387 | 383 | |
|
388 | 384 | data = {} |
|
389 | 385 | meta = {} |
|
390 | 386 | data['HFracLP'] = dataOut.PhyFinal |
|
391 | 387 | |
|
392 | 388 | return data, meta |
|
393 | 389 | |
|
394 | 390 | |
|
395 | 391 | class HeFracRTIPlot(ETempRTIPlot): |
|
396 | 392 | |
|
397 | 393 | ''' |
|
398 | 394 | Plot for He+ LP |
|
399 | 395 | ''' |
|
400 | 396 | |
|
401 | 397 | CODE = 'HeFracLP' |
|
402 | 398 | colormap = 'jet' |
|
403 | 399 | plot_name = 'He+ Frac' |
|
404 | 400 | |
|
405 | 401 | def update(self, dataOut): |
|
406 | 402 | |
|
407 | 403 | data = {} |
|
408 | 404 | meta = {} |
|
409 | 405 | data['HeFracLP'] = dataOut.PheFinal |
|
410 | 406 | |
|
411 | 407 | return data, meta |
|
412 | 408 | |
|
413 | 409 | |
|
414 | 410 | class TempsDPPlot(Plot): |
|
415 | 411 | ''' |
|
416 | 412 | Plot for Electron - Ion Temperatures |
|
417 | 413 | ''' |
|
418 | 414 | |
|
419 | 415 | CODE = 'tempsDP' |
|
420 | 416 | #plot_name = 'Temperatures' |
|
421 | 417 | plot_type = 'scatterbuffer' |
|
422 | 418 | |
|
423 | 419 | def setup(self): |
|
424 | 420 | |
|
425 | 421 | self.ncols = 1 |
|
426 | 422 | self.nrows = 1 |
|
427 | 423 | self.nplots = 1 |
|
428 | 424 | self.ylabel = 'Range [km]' |
|
429 | 425 | self.xlabel = 'Temperature (K)' |
|
430 | 426 | self.titles = ['Electron/Ion Temperatures'] |
|
431 | 427 | self.width = 3.5 |
|
432 | 428 | self.height = 5.5 |
|
433 | 429 | self.colorbar = False |
|
434 | 430 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
435 | 431 | |
|
436 | 432 | def update(self, dataOut): |
|
437 | 433 | data = {} |
|
438 | 434 | meta = {} |
|
439 | 435 | |
|
440 | 436 | data['Te'] = dataOut.te2 |
|
441 | 437 | data['Ti'] = dataOut.ti2 |
|
442 | 438 | data['Te_error'] = dataOut.ete2 |
|
443 | 439 | data['Ti_error'] = dataOut.eti2 |
|
444 | 440 | |
|
445 | 441 | meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
446 | 442 | |
|
447 | 443 | return data, meta |
|
448 | 444 | |
|
449 | 445 | def plot(self): |
|
450 | 446 | |
|
451 | 447 | y = self.data.yrange |
|
452 | 448 | |
|
453 | 449 | self.xmin = -100 |
|
454 | 450 | self.xmax = 5000 |
|
455 | 451 | |
|
456 | 452 | ax = self.axes[0] |
|
457 | 453 | |
|
458 | 454 | data = self.data[-1] |
|
459 | 455 | |
|
460 | 456 | Te = data['Te'] |
|
461 | 457 | Ti = data['Ti'] |
|
462 | 458 | errTe = data['Te_error'] |
|
463 | 459 | errTi = data['Ti_error'] |
|
464 | 460 | |
|
465 | 461 | if ax.firsttime: |
|
466 | 462 | ax.errorbar(Te, y, xerr=errTe, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') |
|
467 | 463 | ax.errorbar(Ti, y, fmt='k^', xerr=errTi,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') |
|
468 | 464 | plt.legend(loc='lower right') |
|
469 | 465 | self.ystep_given = 50 |
|
470 | 466 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
471 | 467 | ax.grid(which='minor') |
|
472 | 468 | |
|
473 | 469 | else: |
|
474 | 470 | self.clear_figures() |
|
475 | 471 | ax.errorbar(Te, y, xerr=errTe, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') |
|
476 | 472 | ax.errorbar(Ti, y, fmt='k^', xerr=errTi,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') |
|
477 | 473 | plt.legend(loc='lower right') |
|
478 | 474 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
479 | 475 | |
|
480 | 476 | |
|
481 | 477 | class TempsHPPlot(Plot): |
|
482 | 478 | ''' |
|
483 | 479 | Plot for Temperatures Hybrid Experiment |
|
484 | 480 | ''' |
|
485 | 481 | |
|
486 | 482 | CODE = 'temps_LP' |
|
487 | 483 | #plot_name = 'Temperatures' |
|
488 | 484 | plot_type = 'scatterbuffer' |
|
489 | 485 | |
|
490 | 486 | |
|
491 | 487 | def setup(self): |
|
492 | 488 | |
|
493 | 489 | self.ncols = 1 |
|
494 | 490 | self.nrows = 1 |
|
495 | 491 | self.nplots = 1 |
|
496 | 492 | self.ylabel = 'Range [km]' |
|
497 | 493 | self.xlabel = 'Temperature (K)' |
|
498 | 494 | self.titles = ['Electron/Ion Temperatures'] |
|
499 | 495 | self.width = 3.5 |
|
500 | 496 | self.height = 6.5 |
|
501 | 497 | self.colorbar = False |
|
502 | 498 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
503 | 499 | |
|
504 | 500 | def update(self, dataOut): |
|
505 | 501 | data = {} |
|
506 | 502 | meta = {} |
|
507 | 503 | |
|
508 | 504 | |
|
509 | 505 | data['Te'] = numpy.concatenate((dataOut.te2[:dataOut.cut],dataOut.te[dataOut.cut:])) |
|
510 | 506 | data['Ti'] = numpy.concatenate((dataOut.ti2[:dataOut.cut],dataOut.ti[dataOut.cut:])) |
|
511 | 507 | data['Te_error'] = numpy.concatenate((dataOut.ete2[:dataOut.cut],dataOut.ete[dataOut.cut:])) |
|
512 | 508 | data['Ti_error'] = numpy.concatenate((dataOut.eti2[:dataOut.cut],dataOut.eti[dataOut.cut:])) |
|
513 | 509 | |
|
514 | 510 | meta['yrange'] = dataOut.heightList[0:dataOut.NACF] |
|
515 | 511 | |
|
516 | 512 | return data, meta |
|
517 | 513 | |
|
518 | 514 | def plot(self): |
|
519 | 515 | |
|
520 | 516 | |
|
521 | 517 | self.y = self.data.yrange |
|
522 | 518 | self.xmin = -100 |
|
523 | 519 | self.xmax = 4500 |
|
524 | 520 | ax = self.axes[0] |
|
525 | 521 | |
|
526 | 522 | data = self.data[-1] |
|
527 | 523 | |
|
528 | 524 | Te = data['Te'] |
|
529 | 525 | Ti = data['Ti'] |
|
530 | 526 | errTe = data['Te_error'] |
|
531 | 527 | errTi = data['Ti_error'] |
|
532 | 528 | |
|
533 | 529 | if ax.firsttime: |
|
534 | 530 | |
|
535 | 531 | ax.errorbar(Te, self.y, xerr=errTe, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') |
|
536 | 532 | ax.errorbar(Ti, self.y, fmt='k^', xerr=errTi,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') |
|
537 | 533 | plt.legend(loc='lower right') |
|
538 | 534 | self.ystep_given = 200 |
|
539 | 535 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
540 | 536 | ax.grid(which='minor') |
|
541 | 537 | |
|
542 | 538 | else: |
|
543 | 539 | self.clear_figures() |
|
544 | 540 | ax.errorbar(Te, self.y, xerr=errTe, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') |
|
545 | 541 | ax.errorbar(Ti, self.y, fmt='k^', xerr=errTi,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') |
|
546 | 542 | plt.legend(loc='lower right') |
|
547 | 543 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
544 | ax.grid(which='minor') | |
|
545 | ||
|
548 | 546 | |
|
549 | 547 | class FracsHPPlot(Plot): |
|
550 | 548 | ''' |
|
551 | 549 | Plot for Composition LP |
|
552 | 550 | ''' |
|
553 | 551 | |
|
554 | 552 | CODE = 'fracs_LP' |
|
555 | 553 | plot_type = 'scatterbuffer' |
|
556 | 554 | |
|
557 | 555 | |
|
558 | 556 | def setup(self): |
|
559 | 557 | |
|
560 | 558 | self.ncols = 1 |
|
561 | 559 | self.nrows = 1 |
|
562 | 560 | self.nplots = 1 |
|
563 | 561 | self.ylabel = 'Range [km]' |
|
564 | 562 | self.xlabel = 'Frac' |
|
565 | 563 | self.titles = ['Composition'] |
|
566 | 564 | self.width = 3.5 |
|
567 | 565 | self.height = 6.5 |
|
568 | 566 | self.colorbar = False |
|
569 | 567 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
570 | 568 | |
|
571 | 569 | def update(self, dataOut): |
|
572 | 570 | data = {} |
|
573 | 571 | meta = {} |
|
574 | 572 | |
|
575 | 573 | #aux_nan=numpy.zeros(dataOut.cut,'float32') |
|
576 | 574 | #aux_nan[:]=numpy.nan |
|
577 | 575 | #data['ph'] = numpy.concatenate((aux_nan,dataOut.ph[dataOut.cut:])) |
|
578 | 576 | #data['eph'] = numpy.concatenate((aux_nan,dataOut.eph[dataOut.cut:])) |
|
579 | 577 | |
|
580 | 578 | data['ph'] = dataOut.ph[dataOut.cut:] |
|
581 | 579 | data['eph'] = dataOut.eph[dataOut.cut:] |
|
582 | 580 | data['phe'] = dataOut.phe[dataOut.cut:] |
|
583 | 581 | data['ephe'] = dataOut.ephe[dataOut.cut:] |
|
584 | 582 | |
|
585 | 583 | data['cut'] = dataOut.cut |
|
586 | 584 | |
|
587 | 585 | meta['yrange'] = dataOut.heightList[0:dataOut.NACF] |
|
588 | 586 | |
|
589 | 587 | |
|
590 | 588 | return data, meta |
|
591 | 589 | |
|
592 | 590 | def plot(self): |
|
593 | 591 | |
|
594 | 592 | data = self.data[-1] |
|
595 | 593 | |
|
596 | 594 | ph = data['ph'] |
|
597 | 595 | eph = data['eph'] |
|
598 | 596 | phe = data['phe'] |
|
599 | 597 | ephe = data['ephe'] |
|
600 | 598 | cut = data['cut'] |
|
601 | 599 | self.y = self.data.yrange |
|
602 | 600 | |
|
603 | 601 | self.xmin = 0 |
|
604 | 602 | self.xmax = 1 |
|
605 | 603 | ax = self.axes[0] |
|
606 | 604 | |
|
607 | 605 | if ax.firsttime: |
|
608 | 606 | |
|
609 | 607 | ax.errorbar(ph, self.y[cut:], xerr=eph, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='H+') |
|
610 | 608 | ax.errorbar(phe, self.y[cut:], fmt='k^', xerr=ephe,elinewidth=1.0,color='b',linewidth=2.0, label='He+') |
|
611 | 609 | plt.legend(loc='lower right') |
|
612 | 610 | self.xstep_given = 0.2 |
|
613 | 611 | self.ystep_given = 200 |
|
614 | 612 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
615 | 613 | ax.grid(which='minor') |
|
616 | 614 | |
|
617 | 615 | else: |
|
618 | 616 | self.clear_figures() |
|
619 | 617 | ax.errorbar(ph, self.y[cut:], xerr=eph, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='H+') |
|
620 | 618 | ax.errorbar(phe, self.y[cut:], fmt='k^', xerr=ephe,elinewidth=1.0,color='b',linewidth=2.0, label='He+') |
|
621 | 619 | plt.legend(loc='lower right') |
|
622 | 620 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
623 | 621 | |
|
624 | 622 | class EDensityPlot(Plot): |
|
625 | 623 | ''' |
|
626 | 624 | Plot for electron density |
|
627 | 625 | ''' |
|
628 | 626 | |
|
629 | 627 | CODE = 'den' |
|
630 | 628 | #plot_name = 'Electron Density' |
|
631 | 629 | plot_type = 'scatterbuffer' |
|
632 | 630 | |
|
633 | 631 | def setup(self): |
|
634 | 632 | |
|
635 | 633 | self.ncols = 1 |
|
636 | 634 | self.nrows = 1 |
|
637 | 635 | self.nplots = 1 |
|
638 | 636 | self.ylabel = 'Range [km]' |
|
639 | 637 | self.xlabel = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' |
|
640 | 638 | self.titles = ['Electron Density'] |
|
641 | 639 | self.width = 3.5 |
|
642 | 640 | self.height = 5.5 |
|
643 | 641 | self.colorbar = False |
|
644 | 642 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
645 | 643 | |
|
646 | 644 | def update(self, dataOut): |
|
647 | 645 | data = {} |
|
648 | 646 | meta = {} |
|
649 | 647 | |
|
650 | 648 | data['den_power'] = dataOut.ph2[:dataOut.NSHTS] |
|
651 | 649 | data['den_Faraday'] = dataOut.dphi[:dataOut.NSHTS] |
|
652 | 650 | data['den_error'] = dataOut.sdp2[:dataOut.NSHTS] |
|
653 | 651 | #data['err_Faraday'] = dataOut.sdn1[:dataOut.NSHTS] |
|
654 | 652 | |
|
655 | 653 | data['NSHTS'] = dataOut.NSHTS |
|
656 | 654 | |
|
657 | 655 | meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
658 | 656 | |
|
659 | 657 | return data, meta |
|
660 | 658 | |
|
661 | 659 | def plot(self): |
|
662 | 660 | |
|
663 | 661 | y = self.data.yrange |
|
664 | 662 | |
|
665 | 663 | self.xmin = 1e3 |
|
666 | 664 | self.xmax = 1e7 |
|
667 | 665 | |
|
668 | 666 | ax = self.axes[0] |
|
669 | 667 | |
|
670 | 668 | data = self.data[-1] |
|
671 | 669 | |
|
672 | 670 | DenPow = data['den_power'] |
|
673 | 671 | DenFar = data['den_Faraday'] |
|
674 | 672 | errDenPow = data['den_error'] |
|
675 | 673 | #errFaraday = data['err_Faraday'] |
|
676 | 674 | |
|
677 | 675 | NSHTS = data['NSHTS'] |
|
678 | 676 | |
|
679 | 677 | if self.CODE == 'denLP': |
|
680 | 678 | DenPowLP = data['den_LP'] |
|
681 | 679 | errDenPowLP = data['den_LP_error'] |
|
682 | 680 | cut = data['cut'] |
|
683 | 681 | |
|
684 | 682 | if ax.firsttime: |
|
685 | 683 | self.autoxticks=False |
|
686 | 684 | #ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) |
|
687 | 685 | ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday',markersize=2) |
|
688 | 686 | #ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) |
|
689 | 687 | ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power',markersize=2) |
|
690 | 688 | |
|
691 | 689 | if self.CODE=='denLP': |
|
692 | 690 | ax.errorbar(DenPowLP[cut:], y[cut:], xerr=errDenPowLP[cut:], fmt='r^-',elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) |
|
693 | 691 | |
|
694 | 692 | plt.legend(loc='upper left',fontsize=8.5) |
|
695 | 693 | #plt.legend(loc='lower left',fontsize=8.5) |
|
696 | 694 | ax.set_xscale("log", nonposx='clip') |
|
697 | 695 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) |
|
698 | 696 | self.ystep_given=100 |
|
699 | 697 | if self.CODE=='denLP': |
|
700 | 698 | self.ystep_given=200 |
|
701 | 699 | ax.set_yticks(grid_y_ticks,minor=True) |
|
702 | 700 | ax.grid(which='minor') |
|
703 | 701 | |
|
704 | 702 | else: |
|
705 | 703 | dataBefore = self.data[-2] |
|
706 | 704 | DenPowBefore = dataBefore['den_power'] |
|
707 | 705 | self.clear_figures() |
|
708 | 706 | #ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) |
|
709 | 707 | ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday',markersize=2) |
|
710 | 708 | #ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) |
|
711 | 709 | ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power',markersize=2) |
|
712 | 710 | ax.errorbar(DenPowBefore, y[:NSHTS], elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") |
|
713 | 711 | |
|
714 | 712 | if self.CODE=='denLP': |
|
715 | 713 | ax.errorbar(DenPowLP[cut:], y[cut:], fmt='r^-', xerr=errDenPowLP[cut:],elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) |
|
716 | 714 | |
|
717 | 715 | ax.set_xscale("log", nonposx='clip') |
|
718 | 716 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) |
|
719 | 717 | ax.set_yticks(grid_y_ticks,minor=True) |
|
720 | 718 | ax.grid(which='minor') |
|
721 | 719 | plt.legend(loc='upper left',fontsize=8.5) |
|
722 | 720 | #plt.legend(loc='lower left',fontsize=8.5) |
|
723 | 721 | |
|
724 | 722 | class FaradayAnglePlot(Plot): |
|
725 | 723 | ''' |
|
726 | 724 | Plot for electron density |
|
727 | 725 | ''' |
|
728 | 726 | |
|
729 | 727 | CODE = 'angle' |
|
730 | 728 | plot_name = 'Faraday Angle' |
|
731 | 729 | plot_type = 'scatterbuffer' |
|
732 | 730 | |
|
733 | 731 | def setup(self): |
|
734 | 732 | |
|
735 | 733 | self.ncols = 1 |
|
736 | 734 | self.nrows = 1 |
|
737 | 735 | self.nplots = 1 |
|
738 | 736 | self.ylabel = 'Range [km]' |
|
739 | 737 | self.xlabel = 'Faraday Angle (º)' |
|
740 | 738 | self.titles = ['Electron Density'] |
|
741 | 739 | self.width = 3.5 |
|
742 | 740 | self.height = 5.5 |
|
743 | 741 | self.colorbar = False |
|
744 | 742 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
745 | 743 | |
|
746 | 744 | def update(self, dataOut): |
|
747 | 745 | data = {} |
|
748 | 746 | meta = {} |
|
749 | 747 | |
|
750 | 748 | data['angle'] = numpy.degrees(dataOut.phi) |
|
751 | 749 | #''' |
|
752 | 750 | print(dataOut.phi_uwrp) |
|
753 | 751 | print(data['angle']) |
|
754 | 752 | exit(1) |
|
755 | 753 | #''' |
|
756 | 754 | data['dphi'] = dataOut.dphi_uc*10 |
|
757 | 755 | #print(dataOut.dphi) |
|
758 | 756 | |
|
759 | 757 | #data['NSHTS'] = dataOut.NSHTS |
|
760 | 758 | |
|
761 | 759 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
762 | 760 | |
|
763 | 761 | return data, meta |
|
764 | 762 | |
|
765 | 763 | def plot(self): |
|
766 | 764 | |
|
767 | 765 | data = self.data[-1] |
|
768 | 766 | self.x = data[self.CODE] |
|
769 | 767 | dphi = data['dphi'] |
|
770 | 768 | self.y = self.data.yrange |
|
771 | 769 | self.xmin = -360#-180 |
|
772 | 770 | self.xmax = 360#180 |
|
773 | 771 | ax = self.axes[0] |
|
774 | 772 | |
|
775 | 773 | if ax.firsttime: |
|
776 | 774 | self.autoxticks=False |
|
777 | 775 | #if self.CODE=='den': |
|
778 | 776 | ax.plot(self.x, self.y,marker='o',color='g',linewidth=1.0,markersize=2) |
|
779 | 777 | ax.plot(dphi, self.y,marker='o',color='blue',linewidth=1.0,markersize=2) |
|
780 | 778 | |
|
781 | 779 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) |
|
782 | 780 | self.ystep_given=100 |
|
783 | 781 | if self.CODE=='denLP': |
|
784 | 782 | self.ystep_given=200 |
|
785 | 783 | ax.set_yticks(grid_y_ticks,minor=True) |
|
786 | 784 | ax.grid(which='minor') |
|
787 | 785 | #plt.tight_layout() |
|
788 | 786 | else: |
|
789 | 787 | |
|
790 | 788 | self.clear_figures() |
|
791 | 789 | #if self.CODE=='den': |
|
792 | 790 | #print(numpy.shape(self.x)) |
|
793 | 791 | ax.plot(self.x, self.y, marker='o',color='g',linewidth=1.0, markersize=2) |
|
794 | 792 | ax.plot(dphi, self.y,marker='o',color='blue',linewidth=1.0,markersize=2) |
|
795 | 793 | |
|
796 | 794 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) |
|
797 | 795 | ax.set_yticks(grid_y_ticks,minor=True) |
|
798 | 796 | ax.grid(which='minor') |
|
799 | 797 | |
|
800 | 798 | class EDensityHPPlot(EDensityPlot): |
|
801 | 799 | |
|
802 | 800 | ''' |
|
803 | 801 | Plot for Electron Density Hybrid Experiment |
|
804 | 802 | ''' |
|
805 | 803 | |
|
806 | 804 | CODE = 'denLP' |
|
807 | 805 | plot_name = 'Electron Density' |
|
808 | 806 | plot_type = 'scatterbuffer' |
|
809 | 807 | |
|
810 | 808 | def update(self, dataOut): |
|
811 | 809 | data = {} |
|
812 | 810 | meta = {} |
|
813 | 811 | |
|
814 | 812 | data['den_power'] = dataOut.ph2[:dataOut.NSHTS] |
|
815 | 813 | data['den_Faraday']=dataOut.dphi[:dataOut.NSHTS] |
|
816 | 814 | data['den_error']=dataOut.sdp2[:dataOut.NSHTS] |
|
817 | 815 | data['den_LP']=dataOut.ne[:dataOut.NACF] |
|
818 | 816 | data['den_LP_error']=dataOut.ene[:dataOut.NACF]*dataOut.ne[:dataOut.NACF]*0.434 |
|
819 | 817 | #self.ene=10**dataOut.ene[:dataOut.NACF] |
|
820 | 818 | data['NSHTS']=dataOut.NSHTS |
|
821 | 819 | data['cut']=dataOut.cut |
|
822 | 820 | |
|
823 | 821 | return data, meta |
|
824 | 822 | |
|
825 | 823 | |
|
826 | 824 | class ACFsPlot(Plot): |
|
827 | 825 | ''' |
|
828 | 826 | Plot for ACFs Double Pulse Experiment |
|
829 | 827 | ''' |
|
830 | 828 | |
|
831 | 829 | CODE = 'acfs' |
|
832 | 830 | #plot_name = 'ACF' |
|
833 | 831 | plot_type = 'scatterbuffer' |
|
834 | 832 | |
|
835 | 833 | |
|
836 | 834 | def setup(self): |
|
837 | 835 | self.ncols = 1 |
|
838 | 836 | self.nrows = 1 |
|
839 | 837 | self.nplots = 1 |
|
840 | 838 | self.ylabel = 'Range [km]' |
|
841 | 839 | self.xlabel = 'Lag (ms)' |
|
842 | 840 | self.titles = ['ACFs'] |
|
843 | 841 | self.width = 3.5 |
|
844 | 842 | self.height = 5.5 |
|
845 | 843 | self.colorbar = False |
|
846 | 844 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
847 | 845 | |
|
848 | 846 | def update(self, dataOut): |
|
849 | 847 | data = {} |
|
850 | 848 | meta = {} |
|
851 | 849 | |
|
852 | 850 | data['ACFs'] = dataOut.acfs_to_plot |
|
853 | 851 | data['ACFs_error'] = dataOut.acfs_error_to_plot |
|
854 | 852 | data['lags'] = dataOut.lags_to_plot |
|
855 | 853 | data['Lag_contaminated_1'] = dataOut.x_igcej_to_plot |
|
856 | 854 | data['Lag_contaminated_2'] = dataOut.x_ibad_to_plot |
|
857 | 855 | data['Height_contaminated_1'] = dataOut.y_igcej_to_plot |
|
858 | 856 | data['Height_contaminated_2'] = dataOut.y_ibad_to_plot |
|
859 | 857 | |
|
860 | 858 | meta['yrange'] = numpy.array([]) |
|
861 | 859 | #meta['NSHTS'] = dataOut.NSHTS |
|
862 | 860 | #meta['DPL'] = dataOut.DPL |
|
863 | 861 | data['NSHTS'] = dataOut.NSHTS #This is metadata |
|
864 | 862 | data['DPL'] = dataOut.DPL #This is metadata |
|
865 | 863 | |
|
866 | 864 | return data, meta |
|
867 | 865 | |
|
868 | 866 | def plot(self): |
|
869 | 867 | |
|
870 | 868 | data = self.data[-1] |
|
871 | 869 | #NSHTS = self.meta['NSHTS'] |
|
872 | 870 | #DPL = self.meta['DPL'] |
|
873 | 871 | NSHTS = data['NSHTS'] #This is metadata |
|
874 | 872 | DPL = data['DPL'] #This is metadata |
|
875 | 873 | |
|
876 | 874 | lags = data['lags'] |
|
877 | 875 | ACFs = data['ACFs'] |
|
878 | 876 | errACFs = data['ACFs_error'] |
|
879 | 877 | BadLag1 = data['Lag_contaminated_1'] |
|
880 | 878 | BadLag2 = data['Lag_contaminated_2'] |
|
881 | 879 | BadHei1 = data['Height_contaminated_1'] |
|
882 | 880 | BadHei2 = data['Height_contaminated_2'] |
|
883 | 881 | |
|
884 | 882 | self.xmin = 0.0 |
|
885 | 883 | self.xmax = 2.0 |
|
886 | 884 | self.y = ACFs |
|
887 | 885 | |
|
888 | 886 | ax = self.axes[0] |
|
889 | 887 | |
|
890 | 888 | if ax.firsttime: |
|
891 | 889 | |
|
892 | 890 | for i in range(NSHTS): |
|
893 | 891 | x_aux = numpy.isfinite(lags[i,:]) |
|
894 | 892 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
895 | 893 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
896 | 894 | x_igcej_aux = numpy.isfinite(BadLag1[i,:]) |
|
897 | 895 | y_igcej_aux = numpy.isfinite(BadHei1[i,:]) |
|
898 | 896 | x_ibad_aux = numpy.isfinite(BadLag2[i,:]) |
|
899 | 897 | y_ibad_aux = numpy.isfinite(BadHei2[i,:]) |
|
900 | 898 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
901 | 899 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',marker='o',linewidth=1.0,markersize=2) |
|
902 | 900 | ax.plot(BadLag1[i,x_igcej_aux],BadHei1[i,y_igcej_aux],'x',color='red',markersize=2) |
|
903 | 901 | ax.plot(BadLag2[i,x_ibad_aux],BadHei2[i,y_ibad_aux],'X',color='red',markersize=2) |
|
904 | 902 | |
|
905 | 903 | self.xstep_given = (self.xmax-self.xmin)/(DPL-1) |
|
906 | 904 | self.ystep_given = 50 |
|
907 | 905 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
908 | 906 | ax.grid(which='minor') |
|
909 | 907 | |
|
910 | 908 | else: |
|
911 | 909 | self.clear_figures() |
|
912 | 910 | for i in range(NSHTS): |
|
913 | 911 | x_aux = numpy.isfinite(lags[i,:]) |
|
914 | 912 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
915 | 913 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
916 | 914 | x_igcej_aux = numpy.isfinite(BadLag1[i,:]) |
|
917 | 915 | y_igcej_aux = numpy.isfinite(BadHei1[i,:]) |
|
918 | 916 | x_ibad_aux = numpy.isfinite(BadLag2[i,:]) |
|
919 | 917 | y_ibad_aux = numpy.isfinite(BadHei2[i,:]) |
|
920 | 918 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
921 | 919 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],linewidth=1.0,markersize=2,color='b',marker='o') |
|
922 | 920 | ax.plot(BadLag1[i,x_igcej_aux],BadHei1[i,y_igcej_aux],'x',color='red',markersize=2) |
|
923 | 921 | ax.plot(BadLag2[i,x_ibad_aux],BadHei2[i,y_ibad_aux],'X',color='red',markersize=2) |
|
924 | 922 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
925 | 923 | |
|
926 | 924 | class ACFsLPPlot(Plot): |
|
927 | 925 | ''' |
|
928 | 926 | Plot for ACFs Double Pulse Experiment |
|
929 | 927 | ''' |
|
930 | 928 | |
|
931 | 929 | CODE = 'acfs_LP' |
|
932 | 930 | #plot_name = 'ACF' |
|
933 | 931 | plot_type = 'scatterbuffer' |
|
934 | 932 | |
|
935 | 933 | |
|
936 | 934 | def setup(self): |
|
937 | 935 | self.ncols = 1 |
|
938 | 936 | self.nrows = 1 |
|
939 | 937 | self.nplots = 1 |
|
940 | 938 | self.ylabel = 'Range [km]' |
|
941 | 939 | self.xlabel = 'Lag (ms)' |
|
942 | 940 | self.titles = ['ACFs'] |
|
943 | 941 | self.width = 3.5 |
|
944 | 942 | self.height = 5.5 |
|
945 | 943 | self.colorbar = False |
|
946 | 944 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
947 | 945 | |
|
948 | 946 | def update(self, dataOut): |
|
949 | 947 | data = {} |
|
950 | 948 | meta = {} |
|
951 | 949 | |
|
952 | 950 | aux=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') |
|
953 | 951 | errors=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') |
|
954 | 952 | lags_LP_to_plot=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') |
|
955 | 953 | |
|
956 | 954 | for i in range(dataOut.NACF): |
|
957 | 955 | for j in range(dataOut.IBITS): |
|
958 | 956 | if numpy.abs(dataOut.errors[j,i]/dataOut.output_LP_integrated.real[0,i,0])<1.0: |
|
959 | 957 | aux[i,j]=dataOut.output_LP_integrated.real[j,i,0]/dataOut.output_LP_integrated.real[0,i,0] |
|
960 | 958 | aux[i,j]=max(min(aux[i,j],1.0),-1.0)*dataOut.DH+dataOut.heightList[i] |
|
961 | 959 | lags_LP_to_plot[i,j]=dataOut.lags_LP[j] |
|
962 | 960 | errors[i,j]=dataOut.errors[j,i]/dataOut.output_LP_integrated.real[0,i,0]*dataOut.DH |
|
963 | 961 | else: |
|
964 | 962 | aux[i,j]=numpy.nan |
|
965 | 963 | lags_LP_to_plot[i,j]=numpy.nan |
|
966 | 964 | errors[i,j]=numpy.nan |
|
967 | 965 | |
|
968 | 966 | data['ACFs'] = aux |
|
969 | 967 | data['ACFs_error'] = errors |
|
970 | 968 | data['lags'] = lags_LP_to_plot |
|
971 | 969 | |
|
972 | 970 | meta['yrange'] = numpy.array([]) |
|
973 | 971 | #meta['NACF'] = dataOut.NACF |
|
974 | 972 | #meta['NLAG'] = dataOut.NLAG |
|
975 | 973 | data['NACF'] = dataOut.NACF #This is metadata |
|
976 | 974 | data['NLAG'] = dataOut.NLAG #This is metadata |
|
977 | 975 | |
|
978 | 976 | return data, meta |
|
979 | 977 | |
|
980 | 978 | def plot(self): |
|
981 | 979 | |
|
982 | 980 | data = self.data[-1] |
|
983 | 981 | #NACF = self.meta['NACF'] |
|
984 | 982 | #NLAG = self.meta['NLAG'] |
|
985 | 983 | NACF = data['NACF'] #This is metadata |
|
986 | 984 | NLAG = data['NLAG'] #This is metadata |
|
987 | 985 | |
|
988 | 986 | lags = data['lags'] |
|
989 | 987 | ACFs = data['ACFs'] |
|
990 | 988 | errACFs = data['ACFs_error'] |
|
991 | 989 | |
|
992 | 990 | self.xmin = 0.0 |
|
993 | 991 | self.xmax = 1.5 |
|
994 | 992 | |
|
995 | 993 | self.y = ACFs |
|
996 | 994 | |
|
997 | 995 | ax = self.axes[0] |
|
998 | 996 | |
|
999 | 997 | if ax.firsttime: |
|
1000 | 998 | |
|
1001 | 999 | for i in range(NACF): |
|
1002 | 1000 | x_aux = numpy.isfinite(lags[i,:]) |
|
1003 | 1001 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
1004 | 1002 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
1005 | 1003 | |
|
1006 | 1004 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
1007 | 1005 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') |
|
1008 | 1006 | |
|
1009 | 1007 | #self.xstep_given = (self.xmax-self.xmin)/(self.data.NLAG-1) |
|
1010 | 1008 | self.xstep_given=0.3 |
|
1011 | 1009 | self.ystep_given = 200 |
|
1012 | 1010 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
1013 | 1011 | ax.grid(which='minor') |
|
1014 | 1012 | |
|
1015 | 1013 | else: |
|
1016 | 1014 | self.clear_figures() |
|
1017 | 1015 | |
|
1018 | 1016 | for i in range(NACF): |
|
1019 | 1017 | x_aux = numpy.isfinite(lags[i,:]) |
|
1020 | 1018 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
1021 | 1019 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
1022 | 1020 | |
|
1023 | 1021 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
1024 | 1022 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') |
|
1025 | 1023 | |
|
1026 | 1024 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
1027 | 1025 | |
|
1028 | 1026 | |
|
1029 | 1027 | class CrossProductsPlot(Plot): |
|
1030 | 1028 | ''' |
|
1031 | 1029 | Plot for cross products |
|
1032 | 1030 | ''' |
|
1033 | 1031 | |
|
1034 | 1032 | CODE = 'crossprod' |
|
1035 | 1033 | plot_name = 'Cross Products' |
|
1036 | 1034 | plot_type = 'scatterbuffer' |
|
1037 | 1035 | |
|
1038 | 1036 | def setup(self): |
|
1039 | 1037 | |
|
1040 | 1038 | self.ncols = 3 |
|
1041 | 1039 | self.nrows = 1 |
|
1042 | 1040 | self.nplots = 3 |
|
1043 | 1041 | self.ylabel = 'Range [km]' |
|
1044 | 1042 | self.titles = [] |
|
1045 | 1043 | self.width = 3.5*self.nplots |
|
1046 | 1044 | self.height = 5.5 |
|
1047 | 1045 | self.colorbar = False |
|
1048 | 1046 | self.plots_adjust.update({'wspace':.3, 'left': 0.12, 'right': 0.92, 'bottom': 0.1}) |
|
1049 | 1047 | |
|
1050 | 1048 | |
|
1051 | 1049 | def update(self, dataOut): |
|
1052 | 1050 | |
|
1053 | 1051 | data = {} |
|
1054 | 1052 | meta = {} |
|
1055 | 1053 | |
|
1056 | 1054 | data['crossprod'] = dataOut.crossprods |
|
1057 | 1055 | data['NDP'] = dataOut.NDP |
|
1058 | 1056 | |
|
1059 | 1057 | return data, meta |
|
1060 | 1058 | |
|
1061 | 1059 | def plot(self): |
|
1062 | 1060 | |
|
1063 | 1061 | NDP = self.data['NDP'][-1] |
|
1064 | 1062 | x = self.data['crossprod'][:,-1,:,:,:,:] |
|
1065 | 1063 | y = self.data.yrange[0:NDP] |
|
1066 | 1064 | |
|
1067 | 1065 | for n, ax in enumerate(self.axes): |
|
1068 | 1066 | |
|
1069 | 1067 | self.xmin=numpy.min(numpy.concatenate((x[n][0,20:30,0,0],x[n][1,20:30,0,0],x[n][2,20:30,0,0],x[n][3,20:30,0,0]))) |
|
1070 | 1068 | self.xmax=numpy.max(numpy.concatenate((x[n][0,20:30,0,0],x[n][1,20:30,0,0],x[n][2,20:30,0,0],x[n][3,20:30,0,0]))) |
|
1071 | 1069 | |
|
1072 | 1070 | if ax.firsttime: |
|
1073 | 1071 | |
|
1074 | 1072 | self.autoxticks=False |
|
1075 | 1073 | if n==0: |
|
1076 | 1074 | label1='kax' |
|
1077 | 1075 | label2='kay' |
|
1078 | 1076 | label3='kbx' |
|
1079 | 1077 | label4='kby' |
|
1080 | 1078 | self.xlimits=[(self.xmin,self.xmax)] |
|
1081 | 1079 | elif n==1: |
|
1082 | 1080 | label1='kax2' |
|
1083 | 1081 | label2='kay2' |
|
1084 | 1082 | label3='kbx2' |
|
1085 | 1083 | label4='kby2' |
|
1086 | 1084 | self.xlimits.append((self.xmin,self.xmax)) |
|
1087 | 1085 | elif n==2: |
|
1088 | 1086 | label1='kaxay' |
|
1089 | 1087 | label2='kbxby' |
|
1090 | 1088 | label3='kaxbx' |
|
1091 | 1089 | label4='kaxby' |
|
1092 | 1090 | self.xlimits.append((self.xmin,self.xmax)) |
|
1093 | 1091 | |
|
1094 | 1092 | ax.plotline1 = ax.plot(x[n][0,:,0,0], y, color='r',linewidth=2.0, label=label1) |
|
1095 | 1093 | ax.plotline2 = ax.plot(x[n][1,:,0,0], y, color='k',linewidth=2.0, label=label2) |
|
1096 | 1094 | ax.plotline3 = ax.plot(x[n][2,:,0,0], y, color='b',linewidth=2.0, label=label3) |
|
1097 | 1095 | ax.plotline4 = ax.plot(x[n][3,:,0,0], y, color='m',linewidth=2.0, label=label4) |
|
1098 | 1096 | ax.legend(loc='upper right') |
|
1099 | 1097 | ax.set_xlim(self.xmin, self.xmax) |
|
1100 | 1098 | self.titles.append('{}'.format(self.plot_name.upper())) |
|
1101 | 1099 | |
|
1102 | 1100 | else: |
|
1103 | 1101 | |
|
1104 | 1102 | if n==0: |
|
1105 | 1103 | self.xlimits=[(self.xmin,self.xmax)] |
|
1106 | 1104 | else: |
|
1107 | 1105 | self.xlimits.append((self.xmin,self.xmax)) |
|
1108 | 1106 | |
|
1109 | 1107 | ax.set_xlim(self.xmin, self.xmax) |
|
1110 | 1108 | |
|
1111 | 1109 | ax.plotline1[0].set_data(x[n][0,:,0,0],y) |
|
1112 | 1110 | ax.plotline2[0].set_data(x[n][1,:,0,0],y) |
|
1113 | 1111 | ax.plotline3[0].set_data(x[n][2,:,0,0],y) |
|
1114 | 1112 | ax.plotline4[0].set_data(x[n][3,:,0,0],y) |
|
1115 | 1113 | self.titles.append('{}'.format(self.plot_name.upper())) |
|
1116 | 1114 | |
|
1117 | 1115 | |
|
1118 | 1116 | class CrossProductsLPPlot(Plot): |
|
1119 | 1117 | ''' |
|
1120 | 1118 | Plot for cross products LP |
|
1121 | 1119 | ''' |
|
1122 | 1120 | |
|
1123 | 1121 | CODE = 'crossprodslp' |
|
1124 | 1122 | plot_name = 'Cross Products LP' |
|
1125 | 1123 | plot_type = 'scatterbuffer' |
|
1126 | 1124 | |
|
1127 | 1125 | |
|
1128 | 1126 | def setup(self): |
|
1129 | 1127 | |
|
1130 | 1128 | self.ncols = 2 |
|
1131 | 1129 | self.nrows = 1 |
|
1132 | 1130 | self.nplots = 2 |
|
1133 | 1131 | self.ylabel = 'Range [km]' |
|
1134 | 1132 | self.xlabel = 'dB' |
|
1135 | 1133 | self.width = 3.5*self.nplots |
|
1136 | 1134 | self.height = 5.5 |
|
1137 | 1135 | self.colorbar = False |
|
1138 | 1136 | self.titles = [] |
|
1139 | 1137 | self.plots_adjust.update({'wspace': .8 ,'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
1140 | 1138 | |
|
1141 | 1139 | def update(self, dataOut): |
|
1142 | 1140 | data = {} |
|
1143 | 1141 | meta = {} |
|
1144 | 1142 | |
|
1145 | 1143 | data['crossprodslp'] = 10*numpy.log10(numpy.abs(dataOut.output_LP)) |
|
1146 | 1144 | |
|
1147 | 1145 | data['NRANGE'] = dataOut.NRANGE #This is metadata |
|
1148 | 1146 | data['NLAG'] = dataOut.NLAG #This is metadata |
|
1149 | 1147 | |
|
1150 | 1148 | return data, meta |
|
1151 | 1149 | |
|
1152 | 1150 | def plot(self): |
|
1153 | 1151 | |
|
1154 | 1152 | NRANGE = self.data['NRANGE'][-1] |
|
1155 | 1153 | NLAG = self.data['NLAG'][-1] |
|
1156 | 1154 | |
|
1157 | 1155 | x = self.data[self.CODE][:,-1,:,:] |
|
1158 | 1156 | self.y = self.data.yrange[0:NRANGE] |
|
1159 | 1157 | |
|
1160 | 1158 | label_array=numpy.array(['lag '+ str(x) for x in range(NLAG)]) |
|
1161 | 1159 | color_array=['r','k','g','b','c','m','y','orange','steelblue','purple','peru','darksalmon','grey','limegreen','olive','midnightblue'] |
|
1162 | 1160 | |
|
1163 | 1161 | |
|
1164 | 1162 | for n, ax in enumerate(self.axes): |
|
1165 | 1163 | |
|
1166 | 1164 | self.xmin=28#30 |
|
1167 | 1165 | self.xmax=70#70 |
|
1168 | 1166 | #self.xmin=numpy.min(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) |
|
1169 | 1167 | #self.xmax=numpy.max(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) |
|
1170 | 1168 | |
|
1171 | 1169 | if ax.firsttime: |
|
1172 | 1170 | |
|
1173 | 1171 | self.autoxticks=False |
|
1174 | 1172 | if n == 0: |
|
1175 | 1173 | self.plotline_array=numpy.zeros((2,NLAG),dtype=object) |
|
1176 | 1174 | |
|
1177 | 1175 | for i in range(NLAG): |
|
1178 | 1176 | self.plotline_array[n,i], = ax.plot(x[i,:,n], self.y, color=color_array[i],linewidth=1.0, label=label_array[i]) |
|
1179 | 1177 | |
|
1180 | 1178 | ax.legend(loc='upper right') |
|
1181 | 1179 | ax.set_xlim(self.xmin, self.xmax) |
|
1182 | 1180 | if n==0: |
|
1183 | 1181 | self.titles.append('{} CH0'.format(self.plot_name.upper())) |
|
1184 | 1182 | if n==1: |
|
1185 | 1183 | self.titles.append('{} CH1'.format(self.plot_name.upper())) |
|
1186 | 1184 | else: |
|
1187 | 1185 | for i in range(NLAG): |
|
1188 | 1186 | self.plotline_array[n,i].set_data(x[i,:,n],self.y) |
|
1189 | 1187 | |
|
1190 | 1188 | if n==0: |
|
1191 | 1189 | self.titles.append('{} CH0'.format(self.plot_name.upper())) |
|
1192 | 1190 | if n==1: |
|
1193 | 1191 | self.titles.append('{} CH1'.format(self.plot_name.upper())) |
|
1194 | 1192 | |
|
1195 | 1193 | |
|
1196 | 1194 | class NoiseDPPlot(NoisePlot): |
|
1197 | 1195 | ''' |
|
1198 | 1196 | Plot for noise Double Pulse |
|
1199 | 1197 | ''' |
|
1200 | 1198 | |
|
1201 | 1199 | CODE = 'noise' |
|
1202 | 1200 | #plot_name = 'Noise' |
|
1203 | 1201 | #plot_type = 'scatterbuffer' |
|
1204 | 1202 | |
|
1205 | 1203 | def update(self, dataOut): |
|
1206 | 1204 | |
|
1207 | 1205 | data = {} |
|
1208 | 1206 | meta = {} |
|
1209 | 1207 | data['noise'] = 10*numpy.log10(dataOut.noise_final) |
|
1210 | 1208 | |
|
1211 | 1209 | return data, meta |
|
1212 | 1210 | |
|
1213 | 1211 | |
|
1214 | 1212 | class XmitWaveformPlot(Plot): |
|
1215 | 1213 | ''' |
|
1216 | 1214 | Plot for xmit waveform |
|
1217 | 1215 | ''' |
|
1218 | 1216 | |
|
1219 | 1217 | CODE = 'xmit' |
|
1220 | 1218 | plot_name = 'Xmit Waveform' |
|
1221 | 1219 | plot_type = 'scatterbuffer' |
|
1222 | 1220 | |
|
1223 | 1221 | |
|
1224 | 1222 | def setup(self): |
|
1225 | 1223 | |
|
1226 | 1224 | self.ncols = 1 |
|
1227 | 1225 | self.nrows = 1 |
|
1228 | 1226 | self.nplots = 1 |
|
1229 | 1227 | self.ylabel = '' |
|
1230 | 1228 | self.xlabel = 'Number of Lag' |
|
1231 | 1229 | self.width = 5.5 |
|
1232 | 1230 | self.height = 3.5 |
|
1233 | 1231 | self.colorbar = False |
|
1234 | 1232 | self.plots_adjust.update({'right': 0.85 }) |
|
1235 | 1233 | self.titles = [self.plot_name] |
|
1236 | 1234 | #self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
1237 | 1235 | |
|
1238 | 1236 | #if not self.titles: |
|
1239 | 1237 | #self.titles = self.data.parameters \ |
|
1240 | 1238 | #if self.data.parameters else ['{}'.format(self.plot_name.upper())] |
|
1241 | 1239 | |
|
1242 | 1240 | def update(self, dataOut): |
|
1243 | 1241 | |
|
1244 | 1242 | data = {} |
|
1245 | 1243 | meta = {} |
|
1246 | 1244 | |
|
1247 | 1245 | y_1=numpy.arctan2(dataOut.output_LP[:,0,2].imag,dataOut.output_LP[:,0,2].real)* 180 / (numpy.pi*10) |
|
1248 | 1246 | y_2=numpy.abs(dataOut.output_LP[:,0,2]) |
|
1249 | 1247 | norm=numpy.max(y_2) |
|
1250 | 1248 | norm=max(norm,0.1) |
|
1251 | 1249 | y_2=y_2/norm |
|
1252 | 1250 | |
|
1253 | 1251 | meta['yrange'] = numpy.array([]) |
|
1254 | 1252 | |
|
1255 | 1253 | data['xmit'] = numpy.vstack((y_1,y_2)) |
|
1256 | 1254 | data['NLAG'] = dataOut.NLAG |
|
1257 | 1255 | |
|
1258 | 1256 | return data, meta |
|
1259 | 1257 | |
|
1260 | 1258 | def plot(self): |
|
1261 | 1259 | |
|
1262 | 1260 | data = self.data[-1] |
|
1263 | 1261 | NLAG = data['NLAG'] |
|
1264 | 1262 | x = numpy.arange(0,NLAG,1,'float32') |
|
1265 | 1263 | y = data['xmit'] |
|
1266 | 1264 | |
|
1267 | 1265 | self.xmin = 0 |
|
1268 | 1266 | self.xmax = NLAG-1 |
|
1269 | 1267 | self.ymin = -1.0 |
|
1270 | 1268 | self.ymax = 1.0 |
|
1271 | 1269 | ax = self.axes[0] |
|
1272 | 1270 | |
|
1273 | 1271 | if ax.firsttime: |
|
1274 | 1272 | ax.plotline0=ax.plot(x,y[0,:],color='blue') |
|
1275 | 1273 | ax.plotline1=ax.plot(x,y[1,:],color='red') |
|
1276 | 1274 | secax=ax.secondary_xaxis(location=0.5) |
|
1277 | 1275 | secax.xaxis.tick_bottom() |
|
1278 | 1276 | secax.tick_params( labelleft=False, labeltop=False, |
|
1279 | 1277 | labelright=False, labelbottom=False) |
|
1280 | 1278 | |
|
1281 | 1279 | self.xstep_given = 3 |
|
1282 | 1280 | self.ystep_given = .25 |
|
1283 | 1281 | secax.set_xticks(numpy.linspace(self.xmin, self.xmax, 6)) #only works on matplotlib.version>3.2 |
|
1284 | 1282 | |
|
1285 | 1283 | else: |
|
1286 | 1284 | ax.plotline0[0].set_data(x,y[0,:]) |
|
1287 | 1285 | ax.plotline1[0].set_data(x,y[1,:]) |
@@ -1,247 +1,251 | |||
|
1 | 1 | ''' |
|
2 | 2 | Base clases to create Processing units and operations, the MPDecorator |
|
3 | 3 | must be used in plotting and writing operations to allow to run as an |
|
4 | 4 | external process. |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import os |
|
8 | 8 | import inspect |
|
9 | 9 | import zmq |
|
10 | 10 | import time |
|
11 | 11 | import pickle |
|
12 | 12 | import traceback |
|
13 | 13 | from threading import Thread |
|
14 | 14 | from multiprocessing import Process, Queue |
|
15 | 15 | from schainpy.utils import log |
|
16 | 16 | |
|
17 | 17 | import copy |
|
18 | 18 | |
|
19 | 19 | QUEUE_SIZE = int(os.environ.get('QUEUE_MAX_SIZE', '10')) |
|
20 | 20 | |
|
21 | 21 | class ProcessingUnit(object): |
|
22 | 22 | ''' |
|
23 | 23 | Base class to create Signal Chain Units |
|
24 | 24 | ''' |
|
25 | 25 | |
|
26 | 26 | proc_type = 'processing' |
|
27 | 27 | |
|
28 | 28 | def __init__(self): |
|
29 | 29 | |
|
30 | 30 | self.dataIn = None |
|
31 | 31 | self.dataOut = None |
|
32 | 32 | self.isConfig = False |
|
33 | 33 | self.operations = [] |
|
34 | 34 | self.name = 'Test' |
|
35 | 35 | self.inputs = [] |
|
36 | 36 | |
|
37 | 37 | def setInput(self, unit): |
|
38 | 38 | |
|
39 | 39 | attr = 'dataIn' |
|
40 | 40 | for i, u in enumerate(unit): |
|
41 | 41 | if i==0: |
|
42 | 42 | #print(u.dataOut.flagNoData) |
|
43 | 43 | #exit(1) |
|
44 | 44 | self.dataIn = u.dataOut#.copy() |
|
45 | 45 | self.inputs.append('dataIn') |
|
46 | 46 | else: |
|
47 | 47 | setattr(self, 'dataIn{}'.format(i), u.dataOut)#.copy()) |
|
48 | 48 | self.inputs.append('dataIn{}'.format(i)) |
|
49 | 49 | |
|
50 | 50 | |
|
51 | 51 | def getAllowedArgs(self): |
|
52 | 52 | if hasattr(self, '__attrs__'): |
|
53 | 53 | return self.__attrs__ |
|
54 | 54 | else: |
|
55 | 55 | return inspect.getargspec(self.run).args |
|
56 | 56 | |
|
57 | 57 | def addOperation(self, conf, operation): |
|
58 | 58 | ''' |
|
59 | 59 | ''' |
|
60 | 60 | |
|
61 | 61 | self.operations.append((operation, conf.type, conf.getKwargs())) |
|
62 | 62 | |
|
63 | 63 | def getOperationObj(self, objId): |
|
64 | 64 | |
|
65 | 65 | if objId not in list(self.operations.keys()): |
|
66 | 66 | return None |
|
67 | 67 | |
|
68 | 68 | return self.operations[objId] |
|
69 | 69 | |
|
70 | 70 | def call(self, **kwargs): |
|
71 | 71 | ''' |
|
72 | 72 | ''' |
|
73 | ||
|
73 | #print("call") | |
|
74 | 74 | try: |
|
75 | #print("try") | |
|
76 | 75 | if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error: |
|
77 | #print("Try") | |
|
78 |
|
|
|
79 | #print(self.dataIn.flagNoData) | |
|
76 | #if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error and not self.dataIn.runNextUnit: | |
|
77 | if self.dataIn.runNextUnit: | |
|
78 | #print("SUCCESSSSSSS") | |
|
79 | #exit(1) | |
|
80 | return not self.dataIn.isReady() | |
|
81 | else: | |
|
80 | 82 | return self.dataIn.isReady() |
|
81 | 83 | elif self.dataIn is None or not self.dataIn.error: |
|
82 | 84 | #print([getattr(self, at) for at in self.inputs]) |
|
83 | 85 | #print("Elif 1") |
|
84 | 86 | self.run(**kwargs) |
|
85 | 87 | elif self.dataIn.error: |
|
86 | 88 | #print("Elif 2") |
|
87 | 89 | self.dataOut.error = self.dataIn.error |
|
88 | 90 | self.dataOut.flagNoData = True |
|
89 | 91 | except: |
|
90 | 92 | #print("Except") |
|
91 | 93 | err = traceback.format_exc() |
|
92 | 94 | if 'SchainWarning' in err: |
|
93 | 95 | log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name) |
|
94 | 96 | elif 'SchainError' in err: |
|
95 | 97 | log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name) |
|
96 | 98 | else: |
|
97 | 99 | log.error(err, self.name) |
|
98 | 100 | self.dataOut.error = True |
|
99 | 101 | #print("before op") |
|
100 | 102 | for op, optype, opkwargs in self.operations: |
|
101 | 103 | aux = self.dataOut.copy() |
|
102 | 104 | #aux = copy.deepcopy(self.dataOut) |
|
103 | 105 | #print("**********************Before",op) |
|
104 | 106 | if optype == 'other' and not self.dataOut.flagNoData: |
|
105 | 107 | #print("**********************Other",op) |
|
106 | 108 | #print(self.dataOut.flagNoData) |
|
107 | 109 | self.dataOut = op.run(self.dataOut, **opkwargs) |
|
108 | 110 | elif optype == 'external' and not self.dataOut.flagNoData: |
|
109 | 111 | op.queue.put(aux) |
|
110 | 112 | elif optype == 'external' and self.dataOut.error: |
|
111 | 113 | op.queue.put(aux) |
|
112 | 114 | #elif optype == 'external' and self.dataOut.isReady(): |
|
113 | 115 | #op.queue.put(copy.deepcopy(self.dataOut)) |
|
114 | 116 | #print(not self.dataOut.isReady()) |
|
117 | ||
|
115 | 118 | try: |
|
116 | 119 | if self.dataOut.runNextUnit: |
|
117 | 120 | runNextUnit = self.dataOut.runNextUnit |
|
118 | 121 | #print(self.operations) |
|
119 | 122 | #print("Tru") |
|
120 | 123 | |
|
121 | 124 | else: |
|
122 | 125 | runNextUnit = self.dataOut.isReady() |
|
123 | 126 | except: |
|
124 | 127 | runNextUnit = self.dataOut.isReady() |
|
125 | 128 | #if not self.dataOut.isReady(): |
|
126 | 129 | #return 'Error' if self.dataOut.error else input() |
|
127 | 130 | #print("NexT",runNextUnit) |
|
131 | #print("error: ",self.dataOut.error) | |
|
128 | 132 | return 'Error' if self.dataOut.error else runNextUnit# self.dataOut.isReady() |
|
129 | 133 | |
|
130 | 134 | def setup(self): |
|
131 | 135 | |
|
132 | 136 | raise NotImplementedError |
|
133 | 137 | |
|
134 | 138 | def run(self): |
|
135 | 139 | |
|
136 | 140 | raise NotImplementedError |
|
137 | 141 | |
|
138 | 142 | def close(self): |
|
139 | 143 | |
|
140 | 144 | return |
|
141 | 145 | |
|
142 | 146 | |
|
143 | 147 | class Operation(object): |
|
144 | 148 | |
|
145 | 149 | ''' |
|
146 | 150 | ''' |
|
147 | 151 | |
|
148 | 152 | proc_type = 'operation' |
|
149 | 153 | |
|
150 | 154 | def __init__(self): |
|
151 | 155 | |
|
152 | 156 | self.id = None |
|
153 | 157 | self.isConfig = False |
|
154 | 158 | |
|
155 | 159 | if not hasattr(self, 'name'): |
|
156 | 160 | self.name = self.__class__.__name__ |
|
157 | 161 | |
|
158 | 162 | def getAllowedArgs(self): |
|
159 | 163 | if hasattr(self, '__attrs__'): |
|
160 | 164 | return self.__attrs__ |
|
161 | 165 | else: |
|
162 | 166 | return inspect.getargspec(self.run).args |
|
163 | 167 | |
|
164 | 168 | def setup(self): |
|
165 | 169 | |
|
166 | 170 | self.isConfig = True |
|
167 | 171 | |
|
168 | 172 | raise NotImplementedError |
|
169 | 173 | |
|
170 | 174 | def run(self, dataIn, **kwargs): |
|
171 | 175 | """ |
|
172 | 176 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los |
|
173 | 177 | atributos del objeto dataIn. |
|
174 | 178 | |
|
175 | 179 | Input: |
|
176 | 180 | |
|
177 | 181 | dataIn : objeto del tipo JROData |
|
178 | 182 | |
|
179 | 183 | Return: |
|
180 | 184 | |
|
181 | 185 | None |
|
182 | 186 | |
|
183 | 187 | Affected: |
|
184 | 188 | __buffer : buffer de recepcion de datos. |
|
185 | 189 | |
|
186 | 190 | """ |
|
187 | 191 | if not self.isConfig: |
|
188 | 192 | self.setup(**kwargs) |
|
189 | 193 | |
|
190 | 194 | raise NotImplementedError |
|
191 | 195 | |
|
192 | 196 | def close(self): |
|
193 | 197 | |
|
194 | 198 | return |
|
195 | 199 | |
|
196 | 200 | |
|
197 | 201 | def MPDecorator(BaseClass): |
|
198 | 202 | """ |
|
199 | 203 | Multiprocessing class decorator |
|
200 | 204 | |
|
201 | 205 | This function add multiprocessing features to a BaseClass. |
|
202 | 206 | """ |
|
203 | 207 | |
|
204 | 208 | class MPClass(BaseClass, Process): |
|
205 | 209 | |
|
206 | 210 | def __init__(self, *args, **kwargs): |
|
207 | 211 | super(MPClass, self).__init__() |
|
208 | 212 | Process.__init__(self) |
|
209 | 213 | |
|
210 | 214 | self.args = args |
|
211 | 215 | self.kwargs = kwargs |
|
212 | 216 | self.t = time.time() |
|
213 | 217 | self.op_type = 'external' |
|
214 | 218 | self.name = BaseClass.__name__ |
|
215 | 219 | self.__doc__ = BaseClass.__doc__ |
|
216 | 220 | |
|
217 | 221 | if 'plot' in self.name.lower() and not self.name.endswith('_'): |
|
218 | 222 | self.name = '{}{}'.format(self.CODE.upper(), 'Plot') |
|
219 | 223 | |
|
220 | 224 | self.start_time = time.time() |
|
221 | 225 | self.err_queue = args[3] |
|
222 | 226 | self.queue = Queue(maxsize=QUEUE_SIZE) |
|
223 | 227 | self.myrun = BaseClass.run |
|
224 | 228 | |
|
225 | 229 | def run(self): |
|
226 | 230 | |
|
227 | 231 | while True: |
|
228 | 232 | |
|
229 | 233 | dataOut = self.queue.get() |
|
230 | 234 | |
|
231 | 235 | if not dataOut.error: |
|
232 | 236 | try: |
|
233 | 237 | BaseClass.run(self, dataOut, **self.kwargs) |
|
234 | 238 | except: |
|
235 | 239 | err = traceback.format_exc() |
|
236 | 240 | log.error(err, self.name) |
|
237 | 241 | else: |
|
238 | 242 | break |
|
239 | 243 | |
|
240 | 244 | self.close() |
|
241 | 245 | |
|
242 | 246 | def close(self): |
|
243 | 247 | |
|
244 | 248 | BaseClass.close(self) |
|
245 | 249 | log.success('Done...(Time:{:4.2f} secs)'.format(time.time() - self.start_time), self.name) |
|
246 | 250 | |
|
247 | 251 | return MPClass |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
This diff has been collapsed as it changes many lines, (859 lines changed) Show them Hide them | |||
@@ -1,796 +1,1645 | |||
|
1 | 1 | import numpy |
|
2 | 2 | |
|
3 | 3 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation |
|
4 | 4 | from schainpy.model.data.jrodata import Spectra |
|
5 | 5 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
6 | 6 | |
|
7 | class SpectraAFCProc(ProcessingUnit): | |
|
7 | class SpectraAFCProc_V0(ProcessingUnit): | |
|
8 | 8 | |
|
9 | 9 | def __init__(self, **kwargs): |
|
10 | 10 | |
|
11 | 11 | ProcessingUnit.__init__(self, **kwargs) |
|
12 | 12 | |
|
13 | 13 | self.buffer = None |
|
14 | 14 | self.firstdatatime = None |
|
15 | 15 | self.profIndex = 0 |
|
16 | 16 | self.dataOut = Spectra() |
|
17 | 17 | self.id_min = None |
|
18 | 18 | self.id_max = None |
|
19 | 19 | |
|
20 | 20 | def __updateSpecFromVoltage(self): |
|
21 | 21 | |
|
22 | 22 | self.dataOut.plotting = "spectra_acf" |
|
23 | 23 | |
|
24 | 24 | self.dataOut.timeZone = self.dataIn.timeZone |
|
25 | 25 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
26 | 26 | self.dataOut.errorCount = self.dataIn.errorCount |
|
27 | 27 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
28 | 28 | |
|
29 | 29 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
30 | 30 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
31 | 31 | self.dataOut.ippSeconds = self.dataIn.getDeltaH()*(10**-6)/0.15 |
|
32 | 32 | |
|
33 | 33 | self.dataOut.channelList = self.dataIn.channelList |
|
34 | 34 | self.dataOut.heightList = self.dataIn.heightList |
|
35 | 35 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
36 | 36 | |
|
37 | 37 | self.dataOut.nBaud = self.dataIn.nBaud |
|
38 | 38 | self.dataOut.nCode = self.dataIn.nCode |
|
39 | 39 | self.dataOut.code = self.dataIn.code |
|
40 | 40 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
41 | 41 | |
|
42 | 42 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
43 | 43 | self.dataOut.utctime = self.firstdatatime |
|
44 | 44 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
45 | 45 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
46 | 46 | self.dataOut.flagShiftFFT = False |
|
47 | 47 | |
|
48 | 48 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
49 | 49 | self.dataOut.nIncohInt = 1 |
|
50 | 50 | |
|
51 | 51 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
52 | 52 | |
|
53 | 53 | self.dataOut.frequency = self.dataIn.frequency |
|
54 | 54 | self.dataOut.realtime = self.dataIn.realtime |
|
55 | 55 | |
|
56 | 56 | self.dataOut.azimuth = self.dataIn.azimuth |
|
57 | 57 | self.dataOut.zenith = self.dataIn.zenith |
|
58 | 58 | |
|
59 | 59 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
60 | 60 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
61 | 61 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
62 | 62 | |
|
63 | 63 | def __decodeData(self, nProfiles, code): |
|
64 | 64 | |
|
65 | 65 | if code is None: |
|
66 | 66 | return |
|
67 | 67 | |
|
68 | 68 | for i in range(nProfiles): |
|
69 | 69 | self.buffer[:,i,:] = self.buffer[:,i,:]*code[0][i] |
|
70 | 70 | |
|
71 | 71 | def __getFft(self): |
|
72 | 72 | """ |
|
73 | 73 | Convierte valores de Voltaje a Spectra |
|
74 | 74 | |
|
75 | 75 | Affected: |
|
76 | 76 | self.dataOut.data_spc |
|
77 | 77 | self.dataOut.data_cspc |
|
78 | 78 | self.dataOut.data_dc |
|
79 | 79 | self.dataOut.heightList |
|
80 | 80 | self.profIndex |
|
81 | 81 | self.buffer |
|
82 | 82 | self.dataOut.flagNoData |
|
83 | 83 | """ |
|
84 | 84 | nsegments = self.dataOut.nHeights |
|
85 | 85 | |
|
86 | 86 | _fft_buffer = numpy.zeros((self.dataOut.nChannels, self.dataOut.nProfiles, nsegments), dtype='complex') |
|
87 | 87 | |
|
88 | 88 | for i in range(nsegments): |
|
89 | 89 | try: |
|
90 | 90 | _fft_buffer[:,:,i] = self.buffer[:,i:i+self.dataOut.nProfiles] |
|
91 | 91 | |
|
92 | 92 | if self.code is not None: |
|
93 | 93 | _fft_buffer[:,:,i] = _fft_buffer[:,:,i]*self.code[0] |
|
94 | 94 | except: |
|
95 | 95 | pass |
|
96 | 96 | |
|
97 | 97 | fft_volt = numpy.fft.fft(_fft_buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
98 | 98 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
99 | 99 | dc = fft_volt[:,0,:] |
|
100 | 100 | |
|
101 | 101 | #calculo de self-spectra |
|
102 | 102 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
103 | 103 | data = numpy.fft.ifft(spc, axis=1) |
|
104 | 104 | data = numpy.fft.fftshift(data, axes=(1,)) |
|
105 | 105 | |
|
106 | 106 | spc = data |
|
107 | 107 | |
|
108 | 108 | blocksize = 0 |
|
109 | 109 | blocksize += dc.size |
|
110 | 110 | blocksize += spc.size |
|
111 | 111 | |
|
112 | 112 | cspc = None |
|
113 | 113 | pairIndex = 0 |
|
114 | 114 | |
|
115 | 115 | if self.dataOut.pairsList != None: |
|
116 | 116 | #calculo de cross-spectra |
|
117 | 117 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
118 | 118 | for pair in self.dataOut.pairsList: |
|
119 | 119 | if pair[0] not in self.dataOut.channelList: |
|
120 | 120 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList))) |
|
121 | 121 | if pair[1] not in self.dataOut.channelList: |
|
122 | 122 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList))) |
|
123 | 123 | |
|
124 | 124 | chan_index0 = self.dataOut.channelList.index(pair[0]) |
|
125 | 125 | chan_index1 = self.dataOut.channelList.index(pair[1]) |
|
126 | 126 | |
|
127 | 127 | cspc[pairIndex,:,:] = fft_volt[chan_index0,:,:] * numpy.conjugate(fft_volt[chan_index1,:,:]) |
|
128 | 128 | pairIndex += 1 |
|
129 | 129 | blocksize += cspc.size |
|
130 | 130 | |
|
131 | 131 | self.dataOut.data_spc = spc |
|
132 | 132 | self.dataOut.data_cspc = cspc |
|
133 | 133 | self.dataOut.data_dc = dc |
|
134 | 134 | self.dataOut.blockSize = blocksize |
|
135 | 135 | self.dataOut.flagShiftFFT = True |
|
136 | 136 | |
|
137 | 137 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], code=None, nCode=1, nBaud=1,real= None, imag=None): |
|
138 | 138 | |
|
139 | 139 | self.dataOut.flagNoData = True |
|
140 | 140 | |
|
141 | 141 | if self.dataIn.type == "Spectra": |
|
142 | 142 | self.dataOut.copy(self.dataIn) |
|
143 | #print(self.dataOut.data.shape) | |
|
144 | #exit(1) | |
|
143 | 145 | spc = self.dataOut.data_spc |
|
144 | 146 | data = numpy.fft.fftshift( spc, axes=(1,)) |
|
145 | 147 | data = numpy.fft.ifft(data, axis=1) |
|
146 |
|
|
|
147 |
|
|
|
148 | acf = data | |
|
148 | data = numpy.fft.fftshift( data, axes=(1,)) | |
|
149 | acf = numpy.abs(data) # Autocorrelacion LLAMAR A ESTE VALOR ACF | |
|
150 | acf = data #Comentarlo? | |
|
151 | print("acf",acf[0,:,150]) | |
|
152 | exit(1) | |
|
149 | 153 | #''' |
|
150 | 154 | if real: |
|
151 | 155 | acf = data.real |
|
152 | 156 | if imag: |
|
153 | 157 | acf = data.imag |
|
154 | 158 | #''' |
|
155 | 159 | shape = acf.shape # nchannels, nprofiles, nsamples //nchannles, lags , alturas |
|
156 | 160 | |
|
157 | 161 | ''' |
|
158 | 162 | for j in range(shape[0]): |
|
159 | 163 | for i in range(shape[2]): |
|
160 | 164 | tmp = int(shape[1]/2) |
|
161 | 165 | #print(i,j,tmp) |
|
162 | 166 | value = (acf[j,:,i][tmp-1]+acf[j,:,i][tmp+1])/2.0 |
|
163 | 167 | acf[j,:,i][tmp] = value |
|
164 | 168 | # Normalizando |
|
165 | 169 | for i in range(shape[0]): |
|
166 | 170 | for j in range(shape[2]): |
|
167 | 171 | acf[i,:,j]= acf[i,:,j] / numpy.max(numpy.abs(acf[i,:,j])) |
|
168 | 172 | ''' |
|
169 | 173 | self.dataOut.data_acf = acf |
|
170 | self.dataOut.data_spc = acf | |
|
174 | self.dataOut.data_spc = acf.real | |
|
171 | 175 | #print(self.dataOut.data_acf[0,:,0]) |
|
172 | 176 | #exit(1) |
|
173 | 177 | ''' |
|
174 | 178 | shape = self.dataOut.data_acf.shape |
|
175 | 179 | resFactor = 5 |
|
176 | 180 | z = self.dataOut.data_acf.copy() |
|
177 | 181 | min = numpy.min(z[0,:,0]) |
|
178 | 182 | max =numpy.max(z[0,:,0]) |
|
179 | 183 | deltaHeight = self.dataOut.heightList[1]-self.dataOut.heightList[0] |
|
180 | 184 | for i in range(shape[0]): |
|
181 | 185 | for j in range(shape[2]): |
|
182 | 186 | z[i,:,j]= (((z[i,:,j]-min)/(max-min))*deltaHeight*resFactor + j*deltaHeight) |
|
183 | 187 | #print(self.dataOut.data_spc.shape) |
|
184 | 188 | #print(self.dataOut.data_acf.shape) |
|
185 | 189 | ''' |
|
190 | ''' | |
|
186 | 191 | import matplotlib.pyplot as plt |
|
187 | 192 | hei = 10 |
|
188 | 193 | #print(self.dataOut.heightList) |
|
189 | 194 | print(self.dataOut.heightList[hei]) |
|
190 | 195 | #plt.plot(z[0,0,:],self.dataOut.heightList) |
|
191 | 196 | aux = self.dataOut.data_acf[0,0,:] |
|
192 | 197 | power = aux*numpy.conjugate(aux) |
|
193 | 198 | print(power) |
|
194 | 199 | powerdb = numpy.log10(power) |
|
195 | 200 | plt.plot(powerdb,self.dataOut.heightList) |
|
196 | 201 | #plt.plot(self.dataOut.data_acf[0,:,1]) |
|
197 | 202 | plt.ylim(0,1000) |
|
198 | 203 | plt.show() |
|
199 | 204 | exit(1) |
|
205 | ''' | |
|
206 | return True | |
|
207 | ||
|
208 | if code is not None: | |
|
209 | self.code = numpy.array(code).reshape(nCode,nBaud) | |
|
210 | else: | |
|
211 | self.code = None | |
|
212 | ||
|
213 | if self.dataIn.type == "Voltage": | |
|
214 | ||
|
215 | if nFFTPoints == None: | |
|
216 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") | |
|
217 | ||
|
218 | if nProfiles == None: | |
|
219 | nProfiles = nFFTPoints | |
|
220 | ||
|
221 | self.dataOut.ippFactor = 1 | |
|
222 | ||
|
223 | self.dataOut.nFFTPoints = nFFTPoints | |
|
224 | self.dataOut.nProfiles = nProfiles | |
|
225 | self.dataOut.pairsList = pairsList | |
|
226 | ||
|
227 | # if self.buffer is None: | |
|
228 | # self.buffer = numpy.zeros( (self.dataIn.nChannels, nProfiles, self.dataIn.nHeights), | |
|
229 | # dtype='complex') | |
|
230 | ||
|
231 | if not self.dataIn.flagDataAsBlock: | |
|
232 | self.buffer = self.dataIn.data.copy() | |
|
233 | ||
|
234 | # for i in range(self.dataIn.nHeights): | |
|
235 | # self.buffer[:, self.profIndex, self.profIndex:] = voltage_data[:,:self.dataIn.nHeights - self.profIndex] | |
|
236 | # | |
|
237 | # self.profIndex += 1 | |
|
238 | ||
|
239 | else: | |
|
240 | raise ValueError("") | |
|
241 | ||
|
242 | self.firstdatatime = self.dataIn.utctime | |
|
243 | ||
|
244 | self.profIndex == nProfiles | |
|
245 | ||
|
246 | self.__updateSpecFromVoltage() | |
|
247 | ||
|
248 | self.__getFft() | |
|
249 | ||
|
250 | self.dataOut.flagNoData = False | |
|
251 | ||
|
252 | return True | |
|
253 | ||
|
254 | raise ValueError("The type of input object '%s' is not valid"%(self.dataIn.type)) | |
|
255 | ||
|
256 | def __selectPairs(self, pairsList): | |
|
257 | ||
|
258 | if channelList == None: | |
|
259 | return | |
|
260 | ||
|
261 | pairsIndexListSelected = [] | |
|
262 | ||
|
263 | for thisPair in pairsList: | |
|
264 | ||
|
265 | if thisPair not in self.dataOut.pairsList: | |
|
266 | continue | |
|
267 | ||
|
268 | pairIndex = self.dataOut.pairsList.index(thisPair) | |
|
269 | ||
|
270 | pairsIndexListSelected.append(pairIndex) | |
|
271 | ||
|
272 | if not pairsIndexListSelected: | |
|
273 | self.dataOut.data_cspc = None | |
|
274 | self.dataOut.pairsList = [] | |
|
275 | return | |
|
276 | ||
|
277 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |
|
278 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] | |
|
279 | ||
|
280 | return | |
|
281 | ||
|
282 | def __selectPairsByChannel(self, channelList=None): | |
|
283 | ||
|
284 | if channelList == None: | |
|
285 | return | |
|
286 | ||
|
287 | pairsIndexListSelected = [] | |
|
288 | for pairIndex in self.dataOut.pairsIndexList: | |
|
289 | #First pair | |
|
290 | if self.dataOut.pairsList[pairIndex][0] not in channelList: | |
|
291 | continue | |
|
292 | #Second pair | |
|
293 | if self.dataOut.pairsList[pairIndex][1] not in channelList: | |
|
294 | continue | |
|
295 | ||
|
296 | pairsIndexListSelected.append(pairIndex) | |
|
297 | ||
|
298 | if not pairsIndexListSelected: | |
|
299 | self.dataOut.data_cspc = None | |
|
300 | self.dataOut.pairsList = [] | |
|
301 | return | |
|
302 | ||
|
303 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |
|
304 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] | |
|
305 | ||
|
306 | return | |
|
307 | ||
|
308 | def selectChannels(self, channelList): | |
|
309 | ||
|
310 | channelIndexList = [] | |
|
311 | ||
|
312 | for channel in channelList: | |
|
313 | if channel not in self.dataOut.channelList: | |
|
314 | raise ValueError("Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" %(channel, str(self.dataOut.channelList))) | |
|
315 | ||
|
316 | index = self.dataOut.channelList.index(channel) | |
|
317 | channelIndexList.append(index) | |
|
318 | ||
|
319 | self.selectChannelsByIndex(channelIndexList) | |
|
320 | ||
|
321 | def selectChannelsByIndex(self, channelIndexList): | |
|
322 | """ | |
|
323 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
|
324 | ||
|
325 | Input: | |
|
326 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
|
200 | 327 |
|
|
328 | Affected: | |
|
329 | self.dataOut.data_spc | |
|
330 | self.dataOut.channelIndexList | |
|
331 | self.dataOut.nChannels | |
|
332 | ||
|
333 | Return: | |
|
334 | None | |
|
335 | """ | |
|
336 | ||
|
337 | for channelIndex in channelIndexList: | |
|
338 | if channelIndex not in self.dataOut.channelIndexList: | |
|
339 | raise ValueError("Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " %(channelIndex, self.dataOut.channelIndexList)) | |
|
340 | ||
|
341 | # nChannels = len(channelIndexList) | |
|
342 | ||
|
343 | data_spc = self.dataOut.data_spc[channelIndexList,:] | |
|
344 | data_dc = self.dataOut.data_dc[channelIndexList,:] | |
|
345 | ||
|
346 | self.dataOut.data_spc = data_spc | |
|
347 | self.dataOut.data_dc = data_dc | |
|
348 | ||
|
349 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
|
350 | # self.dataOut.nChannels = nChannels | |
|
351 | ||
|
352 | self.__selectPairsByChannel(self.dataOut.channelList) | |
|
353 | ||
|
354 | return 1 | |
|
355 | ||
|
356 | def selectHeights(self, minHei, maxHei): | |
|
357 | """ | |
|
358 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
|
359 | minHei <= height <= maxHei | |
|
360 | ||
|
361 | Input: | |
|
362 | minHei : valor minimo de altura a considerar | |
|
363 | maxHei : valor maximo de altura a considerar | |
|
364 | ||
|
365 | Affected: | |
|
366 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |
|
367 | ||
|
368 | Return: | |
|
369 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
|
370 | """ | |
|
371 | ||
|
372 | if (minHei > maxHei): | |
|
373 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei)) | |
|
374 | ||
|
375 | if (minHei < self.dataOut.heightList[0]): | |
|
376 | minHei = self.dataOut.heightList[0] | |
|
377 | ||
|
378 | if (maxHei > self.dataOut.heightList[-1]): | |
|
379 | maxHei = self.dataOut.heightList[-1] | |
|
380 | ||
|
381 | minIndex = 0 | |
|
382 | maxIndex = 0 | |
|
383 | heights = self.dataOut.heightList | |
|
384 | ||
|
385 | inda = numpy.where(heights >= minHei) | |
|
386 | indb = numpy.where(heights <= maxHei) | |
|
387 | ||
|
388 | try: | |
|
389 | minIndex = inda[0][0] | |
|
390 | except: | |
|
391 | minIndex = 0 | |
|
392 | ||
|
393 | try: | |
|
394 | maxIndex = indb[0][-1] | |
|
395 | except: | |
|
396 | maxIndex = len(heights) | |
|
397 | ||
|
398 | self.selectHeightsByIndex(minIndex, maxIndex) | |
|
399 | ||
|
400 | return 1 | |
|
401 | ||
|
402 | def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None): | |
|
403 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
|
404 | ||
|
405 | if hei_ref != None: | |
|
406 | newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
|
407 | ||
|
408 | minIndex = min(newheis[0]) | |
|
409 | maxIndex = max(newheis[0]) | |
|
410 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] | |
|
411 | heightList = self.dataOut.heightList[minIndex:maxIndex+1] | |
|
412 | ||
|
413 | # determina indices | |
|
414 | nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0])) | |
|
415 | avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0)) | |
|
416 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |
|
417 | beacon_heiIndexList = [] | |
|
418 | for val in avg_dB.tolist(): | |
|
419 | if val >= beacon_dB[0]: | |
|
420 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |
|
421 | ||
|
422 | #data_spc = data_spc[:,:,beacon_heiIndexList] | |
|
423 | data_cspc = None | |
|
424 | if self.dataOut.data_cspc is not None: | |
|
425 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] | |
|
426 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] | |
|
427 | ||
|
428 | data_dc = None | |
|
429 | if self.dataOut.data_dc is not None: | |
|
430 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] | |
|
431 | #data_dc = data_dc[:,beacon_heiIndexList] | |
|
432 | ||
|
433 | self.dataOut.data_spc = data_spc | |
|
434 | self.dataOut.data_cspc = data_cspc | |
|
435 | self.dataOut.data_dc = data_dc | |
|
436 | self.dataOut.heightList = heightList | |
|
437 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |
|
438 | ||
|
439 | return 1 | |
|
440 | ||
|
441 | ||
|
442 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
|
443 | """ | |
|
444 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
|
445 | minIndex <= index <= maxIndex | |
|
446 | ||
|
447 | Input: | |
|
448 | minIndex : valor de indice minimo de altura a considerar | |
|
449 | maxIndex : valor de indice maximo de altura a considerar | |
|
450 | ||
|
451 | Affected: | |
|
452 | self.dataOut.data_spc | |
|
453 | self.dataOut.data_cspc | |
|
454 | self.dataOut.data_dc | |
|
455 | self.dataOut.heightList | |
|
456 | ||
|
457 | Return: | |
|
458 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
|
459 | """ | |
|
460 | ||
|
461 | if (minIndex < 0) or (minIndex > maxIndex): | |
|
462 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
|
463 | ||
|
464 | if (maxIndex >= self.dataOut.nHeights): | |
|
465 | maxIndex = self.dataOut.nHeights-1 | |
|
466 | ||
|
467 | #Spectra | |
|
468 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] | |
|
469 | ||
|
470 | data_cspc = None | |
|
471 | if self.dataOut.data_cspc is not None: | |
|
472 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] | |
|
473 | ||
|
474 | data_dc = None | |
|
475 | if self.dataOut.data_dc is not None: | |
|
476 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] | |
|
477 | ||
|
478 | self.dataOut.data_spc = data_spc | |
|
479 | self.dataOut.data_cspc = data_cspc | |
|
480 | self.dataOut.data_dc = data_dc | |
|
481 | ||
|
482 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] | |
|
483 | ||
|
484 | return 1 | |
|
485 | ||
|
486 | def removeDC(self, mode = 2): | |
|
487 | jspectra = self.dataOut.data_spc | |
|
488 | jcspectra = self.dataOut.data_cspc | |
|
489 | ||
|
490 | ||
|
491 | num_chan = jspectra.shape[0] | |
|
492 | num_hei = jspectra.shape[2] | |
|
493 | ||
|
494 | if jcspectra is not None: | |
|
495 | jcspectraExist = True | |
|
496 | num_pairs = jcspectra.shape[0] | |
|
497 | else: jcspectraExist = False | |
|
498 | ||
|
499 | freq_dc = jspectra.shape[1]/2 | |
|
500 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc | |
|
501 | ||
|
502 | if ind_vel[0]<0: | |
|
503 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof | |
|
504 | ||
|
505 | if mode == 1: | |
|
506 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION | |
|
507 | ||
|
508 | if jcspectraExist: | |
|
509 | jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2 | |
|
510 | ||
|
511 | if mode == 2: | |
|
512 | ||
|
513 | vel = numpy.array([-2,-1,1,2]) | |
|
514 | xx = numpy.zeros([4,4]) | |
|
515 | ||
|
516 | for fil in range(4): | |
|
517 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) | |
|
518 | ||
|
519 | xx_inv = numpy.linalg.inv(xx) | |
|
520 | xx_aux = xx_inv[0,:] | |
|
521 | ||
|
522 | for ich in range(num_chan): | |
|
523 | yy = jspectra[ich,ind_vel,:] | |
|
524 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) | |
|
525 | ||
|
526 | junkid = jspectra[ich,freq_dc,:]<=0 | |
|
527 | cjunkid = sum(junkid) | |
|
528 | ||
|
529 | if cjunkid.any(): | |
|
530 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 | |
|
531 | ||
|
532 | if jcspectraExist: | |
|
533 | for ip in range(num_pairs): | |
|
534 | yy = jcspectra[ip,ind_vel,:] | |
|
535 | jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy) | |
|
536 | ||
|
537 | ||
|
538 | self.dataOut.data_spc = jspectra | |
|
539 | self.dataOut.data_cspc = jcspectra | |
|
540 | ||
|
541 | return 1 | |
|
542 | ||
|
543 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): | |
|
544 | ||
|
545 | jspectra = self.dataOut.data_spc | |
|
546 | jcspectra = self.dataOut.data_cspc | |
|
547 | jnoise = self.dataOut.getNoise() | |
|
548 | num_incoh = self.dataOut.nIncohInt | |
|
549 | ||
|
550 | num_channel = jspectra.shape[0] | |
|
551 | num_prof = jspectra.shape[1] | |
|
552 | num_hei = jspectra.shape[2] | |
|
553 | ||
|
554 | #hei_interf | |
|
555 | if hei_interf is None: | |
|
556 | count_hei = num_hei/2 #Como es entero no importa | |
|
557 | hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei | |
|
558 | hei_interf = numpy.asarray(hei_interf)[0] | |
|
559 | #nhei_interf | |
|
560 | if (nhei_interf == None): | |
|
561 | nhei_interf = 5 | |
|
562 | if (nhei_interf < 1): | |
|
563 | nhei_interf = 1 | |
|
564 | if (nhei_interf > count_hei): | |
|
565 | nhei_interf = count_hei | |
|
566 | if (offhei_interf == None): | |
|
567 | offhei_interf = 0 | |
|
568 | ||
|
569 | ind_hei = range(num_hei) | |
|
570 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |
|
571 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |
|
572 | mask_prof = numpy.asarray(range(num_prof)) | |
|
573 | num_mask_prof = mask_prof.size | |
|
574 | comp_mask_prof = [0, num_prof/2] | |
|
575 | ||
|
576 | ||
|
577 | #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |
|
578 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |
|
579 | jnoise = numpy.nan | |
|
580 | noise_exist = jnoise[0] < numpy.Inf | |
|
581 | ||
|
582 | #Subrutina de Remocion de la Interferencia | |
|
583 | for ich in range(num_channel): | |
|
584 | #Se ordena los espectros segun su potencia (menor a mayor) | |
|
585 | power = jspectra[ich,mask_prof,:] | |
|
586 | power = power[:,hei_interf] | |
|
587 | power = power.sum(axis = 0) | |
|
588 | psort = power.ravel().argsort() | |
|
589 | ||
|
590 | #Se estima la interferencia promedio en los Espectros de Potencia empleando | |
|
591 | junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]] | |
|
592 | ||
|
593 | if noise_exist: | |
|
594 | # tmp_noise = jnoise[ich] / num_prof | |
|
595 | tmp_noise = jnoise[ich] | |
|
596 | junkspc_interf = junkspc_interf - tmp_noise | |
|
597 | #junkspc_interf[:,comp_mask_prof] = 0 | |
|
598 | ||
|
599 | jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf | |
|
600 | jspc_interf = jspc_interf.transpose() | |
|
601 | #Calculando el espectro de interferencia promedio | |
|
602 | noiseid = numpy.where(jspc_interf <= tmp_noise/ numpy.sqrt(num_incoh)) | |
|
603 | noiseid = noiseid[0] | |
|
604 | cnoiseid = noiseid.size | |
|
605 | interfid = numpy.where(jspc_interf > tmp_noise/ numpy.sqrt(num_incoh)) | |
|
606 | interfid = interfid[0] | |
|
607 | cinterfid = interfid.size | |
|
608 | ||
|
609 | if (cnoiseid > 0): jspc_interf[noiseid] = 0 | |
|
610 | ||
|
611 | #Expandiendo los perfiles a limpiar | |
|
612 | if (cinterfid > 0): | |
|
613 | new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof | |
|
614 | new_interfid = numpy.asarray(new_interfid) | |
|
615 | new_interfid = {x for x in new_interfid} | |
|
616 | new_interfid = numpy.array(list(new_interfid)) | |
|
617 | new_cinterfid = new_interfid.size | |
|
618 | else: new_cinterfid = 0 | |
|
619 | ||
|
620 | for ip in range(new_cinterfid): | |
|
621 | ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort() | |
|
622 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]] | |
|
623 | ||
|
624 | ||
|
625 | jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices | |
|
626 | ||
|
627 | #Removiendo la interferencia del punto de mayor interferencia | |
|
628 | ListAux = jspc_interf[mask_prof].tolist() | |
|
629 | maxid = ListAux.index(max(ListAux)) | |
|
630 | ||
|
631 | ||
|
632 | if cinterfid > 0: | |
|
633 | for ip in range(cinterfid*(interf == 2) - 1): | |
|
634 | ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/numpy.sqrt(num_incoh))).nonzero() | |
|
635 | cind = len(ind) | |
|
636 | ||
|
637 | if (cind > 0): | |
|
638 | jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/numpy.sqrt(num_incoh)) | |
|
639 | ||
|
640 | ind = numpy.array([-2,-1,1,2]) | |
|
641 | xx = numpy.zeros([4,4]) | |
|
642 | ||
|
643 | for id1 in range(4): | |
|
644 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) | |
|
645 | ||
|
646 | xx_inv = numpy.linalg.inv(xx) | |
|
647 | xx = xx_inv[:,0] | |
|
648 | ind = (ind + maxid + num_mask_prof)%num_mask_prof | |
|
649 | yy = jspectra[ich,mask_prof[ind],:] | |
|
650 | jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) | |
|
651 | ||
|
652 | ||
|
653 | indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/numpy.sqrt(num_incoh))).nonzero() | |
|
654 | jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/numpy.sqrt(num_incoh)) | |
|
655 | ||
|
656 | #Remocion de Interferencia en el Cross Spectra | |
|
657 | if jcspectra is None: return jspectra, jcspectra | |
|
658 | num_pairs = jcspectra.size/(num_prof*num_hei) | |
|
659 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |
|
660 | ||
|
661 | for ip in range(num_pairs): | |
|
662 | ||
|
663 | #------------------------------------------- | |
|
664 | ||
|
665 | cspower = numpy.abs(jcspectra[ip,mask_prof,:]) | |
|
666 | cspower = cspower[:,hei_interf] | |
|
667 | cspower = cspower.sum(axis = 0) | |
|
668 | ||
|
669 | cspsort = cspower.ravel().argsort() | |
|
670 | junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]] | |
|
671 | junkcspc_interf = junkcspc_interf.transpose() | |
|
672 | jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf | |
|
673 | ||
|
674 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |
|
675 | ||
|
676 | median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) | |
|
677 | median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) | |
|
678 | junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag) | |
|
679 | ||
|
680 | for iprof in range(num_prof): | |
|
681 | ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort() | |
|
682 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]] | |
|
683 | ||
|
684 | #Removiendo la Interferencia | |
|
685 | jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf | |
|
686 | ||
|
687 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |
|
688 | maxid = ListAux.index(max(ListAux)) | |
|
689 | ||
|
690 | ind = numpy.array([-2,-1,1,2]) | |
|
691 | xx = numpy.zeros([4,4]) | |
|
692 | ||
|
693 | for id1 in range(4): | |
|
694 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) | |
|
695 | ||
|
696 | xx_inv = numpy.linalg.inv(xx) | |
|
697 | xx = xx_inv[:,0] | |
|
698 | ||
|
699 | ind = (ind + maxid + num_mask_prof)%num_mask_prof | |
|
700 | yy = jcspectra[ip,mask_prof[ind],:] | |
|
701 | jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) | |
|
702 | ||
|
703 | #Guardar Resultados | |
|
704 | self.dataOut.data_spc = jspectra | |
|
705 | self.dataOut.data_cspc = jcspectra | |
|
706 | ||
|
707 | return 1 | |
|
708 | ||
|
709 | def setRadarFrequency(self, frequency=None): | |
|
710 | ||
|
711 | if frequency != None: | |
|
712 | self.dataOut.frequency = frequency | |
|
713 | ||
|
714 | return 1 | |
|
715 | ||
|
716 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |
|
717 | #validacion de rango | |
|
718 | if minHei == None: | |
|
719 | minHei = self.dataOut.heightList[0] | |
|
720 | ||
|
721 | if maxHei == None: | |
|
722 | maxHei = self.dataOut.heightList[-1] | |
|
723 | ||
|
724 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
|
725 | print('minHei: %.2f is out of the heights range'%(minHei)) | |
|
726 | print('minHei is setting to %.2f'%(self.dataOut.heightList[0])) | |
|
727 | minHei = self.dataOut.heightList[0] | |
|
728 | ||
|
729 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
|
730 | print('maxHei: %.2f is out of the heights range'%(maxHei)) | |
|
731 | print('maxHei is setting to %.2f'%(self.dataOut.heightList[-1])) | |
|
732 | maxHei = self.dataOut.heightList[-1] | |
|
733 | ||
|
734 | # validacion de velocidades | |
|
735 | velrange = self.dataOut.getVelRange(1) | |
|
736 | ||
|
737 | if minVel == None: | |
|
738 | minVel = velrange[0] | |
|
739 | ||
|
740 | if maxVel == None: | |
|
741 | maxVel = velrange[-1] | |
|
742 | ||
|
743 | if (minVel < velrange[0]) or (minVel > maxVel): | |
|
744 | print('minVel: %.2f is out of the velocity range'%(minVel)) | |
|
745 | print('minVel is setting to %.2f'%(velrange[0])) | |
|
746 | minVel = velrange[0] | |
|
747 | ||
|
748 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
|
749 | print('maxVel: %.2f is out of the velocity range'%(maxVel)) | |
|
750 | print('maxVel is setting to %.2f'%(velrange[-1])) | |
|
751 | maxVel = velrange[-1] | |
|
752 | ||
|
753 | # seleccion de indices para rango | |
|
754 | minIndex = 0 | |
|
755 | maxIndex = 0 | |
|
756 | heights = self.dataOut.heightList | |
|
757 | ||
|
758 | inda = numpy.where(heights >= minHei) | |
|
759 | indb = numpy.where(heights <= maxHei) | |
|
760 | ||
|
761 | try: | |
|
762 | minIndex = inda[0][0] | |
|
763 | except: | |
|
764 | minIndex = 0 | |
|
765 | ||
|
766 | try: | |
|
767 | maxIndex = indb[0][-1] | |
|
768 | except: | |
|
769 | maxIndex = len(heights) | |
|
770 | ||
|
771 | if (minIndex < 0) or (minIndex > maxIndex): | |
|
772 | raise ValueError("some value in (%d,%d) is not valid" % (minIndex, maxIndex)) | |
|
773 | ||
|
774 | if (maxIndex >= self.dataOut.nHeights): | |
|
775 | maxIndex = self.dataOut.nHeights-1 | |
|
776 | ||
|
777 | # seleccion de indices para velocidades | |
|
778 | indminvel = numpy.where(velrange >= minVel) | |
|
779 | indmaxvel = numpy.where(velrange <= maxVel) | |
|
780 | try: | |
|
781 | minIndexVel = indminvel[0][0] | |
|
782 | except: | |
|
783 | minIndexVel = 0 | |
|
784 | ||
|
785 | try: | |
|
786 | maxIndexVel = indmaxvel[0][-1] | |
|
787 | except: | |
|
788 | maxIndexVel = len(velrange) | |
|
789 | ||
|
790 | #seleccion del espectro | |
|
791 | data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1] | |
|
792 | #estimacion de ruido | |
|
793 | noise = numpy.zeros(self.dataOut.nChannels) | |
|
794 | ||
|
795 | for channel in range(self.dataOut.nChannels): | |
|
796 | daux = data_spc[channel,:,:] | |
|
797 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) | |
|
798 | ||
|
799 | self.dataOut.noise_estimation = noise.copy() | |
|
800 | ||
|
801 | return 1 | |
|
802 | ||
|
803 | class SpectraAFCProc(ProcessingUnit): | |
|
804 | ||
|
805 | def __init__(self, **kwargs): | |
|
806 | ||
|
807 | ProcessingUnit.__init__(self, **kwargs) | |
|
808 | ||
|
809 | self.buffer = None | |
|
810 | self.firstdatatime = None | |
|
811 | self.profIndex = 0 | |
|
812 | self.dataOut = Spectra() | |
|
813 | self.id_min = None | |
|
814 | self.id_max = None | |
|
815 | ||
|
816 | def __updateSpecFromVoltage(self): | |
|
817 | ||
|
818 | self.dataOut.plotting = "spectra_acf" | |
|
819 | ||
|
820 | self.dataOut.timeZone = self.dataIn.timeZone | |
|
821 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
|
822 | self.dataOut.errorCount = self.dataIn.errorCount | |
|
823 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
|
824 | ||
|
825 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
|
826 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
|
827 | self.dataOut.ippSeconds = self.dataIn.getDeltaH()*(10**-6)/0.15 | |
|
828 | ||
|
829 | self.dataOut.channelList = self.dataIn.channelList | |
|
830 | self.dataOut.heightList = self.dataIn.heightList | |
|
831 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
|
832 | ||
|
833 | self.dataOut.nBaud = self.dataIn.nBaud | |
|
834 | self.dataOut.nCode = self.dataIn.nCode | |
|
835 | self.dataOut.code = self.dataIn.code | |
|
836 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
|
837 | ||
|
838 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
|
839 | self.dataOut.utctime = self.firstdatatime | |
|
840 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
|
841 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
|
842 | self.dataOut.flagShiftFFT = False | |
|
843 | ||
|
844 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
|
845 | self.dataOut.nIncohInt = 1 | |
|
846 | ||
|
847 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
|
848 | ||
|
849 | self.dataOut.frequency = self.dataIn.frequency | |
|
850 | self.dataOut.realtime = self.dataIn.realtime | |
|
851 | ||
|
852 | self.dataOut.azimuth = self.dataIn.azimuth | |
|
853 | self.dataOut.zenith = self.dataIn.zenith | |
|
854 | ||
|
855 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |
|
856 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |
|
857 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |
|
858 | ||
|
859 | def __decodeData(self, nProfiles, code): | |
|
860 | ||
|
861 | if code is None: | |
|
862 | return | |
|
863 | ||
|
864 | for i in range(nProfiles): | |
|
865 | self.buffer[:,i,:] = self.buffer[:,i,:]*code[0][i] | |
|
866 | ||
|
867 | def __getFft(self): | |
|
868 | """ | |
|
869 | Convierte valores de Voltaje a Spectra | |
|
870 | ||
|
871 | Affected: | |
|
872 | self.dataOut.data_spc | |
|
873 | self.dataOut.data_cspc | |
|
874 | self.dataOut.data_dc | |
|
875 | self.dataOut.heightList | |
|
876 | self.profIndex | |
|
877 | self.buffer | |
|
878 | self.dataOut.flagNoData | |
|
879 | """ | |
|
880 | nsegments = self.dataOut.nHeights | |
|
881 | ||
|
882 | _fft_buffer = numpy.zeros((self.dataOut.nChannels, self.dataOut.nProfiles, nsegments), dtype='complex') | |
|
883 | ||
|
884 | for i in range(nsegments): | |
|
885 | try: | |
|
886 | _fft_buffer[:,:,i] = self.buffer[:,i:i+self.dataOut.nProfiles] | |
|
887 | ||
|
888 | if self.code is not None: | |
|
889 | _fft_buffer[:,:,i] = _fft_buffer[:,:,i]*self.code[0] | |
|
890 | except: | |
|
891 | pass | |
|
892 | ||
|
893 | fft_volt = numpy.fft.fft(_fft_buffer, n=self.dataOut.nFFTPoints, axis=1) | |
|
894 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |
|
895 | dc = fft_volt[:,0,:] | |
|
896 | ||
|
897 | #calculo de self-spectra | |
|
898 | spc = fft_volt * numpy.conjugate(fft_volt) | |
|
899 | data = numpy.fft.ifft(spc, axis=1) | |
|
900 | data = numpy.fft.fftshift(data, axes=(1,)) | |
|
901 | ||
|
902 | spc = data | |
|
903 | ||
|
904 | blocksize = 0 | |
|
905 | blocksize += dc.size | |
|
906 | blocksize += spc.size | |
|
907 | ||
|
908 | cspc = None | |
|
909 | pairIndex = 0 | |
|
910 | ||
|
911 | if self.dataOut.pairsList != None: | |
|
912 | #calculo de cross-spectra | |
|
913 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |
|
914 | for pair in self.dataOut.pairsList: | |
|
915 | if pair[0] not in self.dataOut.channelList: | |
|
916 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList))) | |
|
917 | if pair[1] not in self.dataOut.channelList: | |
|
918 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList))) | |
|
919 | ||
|
920 | chan_index0 = self.dataOut.channelList.index(pair[0]) | |
|
921 | chan_index1 = self.dataOut.channelList.index(pair[1]) | |
|
922 | ||
|
923 | cspc[pairIndex,:,:] = fft_volt[chan_index0,:,:] * numpy.conjugate(fft_volt[chan_index1,:,:]) | |
|
924 | pairIndex += 1 | |
|
925 | blocksize += cspc.size | |
|
926 | ||
|
927 | self.dataOut.data_spc = spc | |
|
928 | self.dataOut.data_cspc = cspc | |
|
929 | self.dataOut.data_dc = dc | |
|
930 | self.dataOut.blockSize = blocksize | |
|
931 | self.dataOut.flagShiftFFT = True | |
|
932 | ||
|
933 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], code=None, nCode=1, nBaud=1): | |
|
934 | ||
|
935 | #self.dataOut.flagNoData = True | |
|
936 | ||
|
937 | #self.dataIn.runNextUnit = runNextUnit | |
|
938 | #print("here") | |
|
939 | if self.dataIn.type == "Spectra": | |
|
940 | self.dataOut.copy(self.dataIn) | |
|
941 | ||
|
942 | spc = self.dataOut.data_spc | |
|
943 | data = numpy.fft.fftshift( spc, axes=(1,)) | |
|
944 | data = numpy.fft.ifft(data, axis=1) | |
|
945 | #data = numpy.fft.ifft(data, axis=1, n = 32) | |
|
946 | #data = numpy.fft.fftshift( data, axes=(1,)) | |
|
947 | #acf = numpy.abs(data) | |
|
948 | acf = data[:,:16,:] | |
|
949 | #acf = data[:,16:,:] | |
|
950 | #print("SUM: ",numpy.sum(acf)) | |
|
951 | #print(acf.shape) | |
|
952 | ''' | |
|
953 | hei_id = 35 | |
|
954 | ||
|
955 | aux2 = numpy.fft.fft(self.dataOut.data[0,:,hei_id],n = 16) | |
|
956 | aux2 = numpy.fft.fftshift(aux2) | |
|
957 | aux2 = aux2*numpy.conjugate(aux2) | |
|
958 | aux2 = aux2.real #Este valor es el que da SCh | |
|
959 | print("spc 2: ",numpy.sum(aux2)) | |
|
960 | aux2 = numpy.fft.fftshift(aux2) | |
|
961 | aux2 = numpy.fft.ifft(aux2) | |
|
962 | print("Rate_Right?: ",aux2[0]/corr[0,0,hei_id]) | |
|
963 | ||
|
964 | print("AFC sum: ",numpy.sum(acf[0,:,hei_id])) | |
|
965 | print("aux2 sum: ",numpy.sum(aux2)) | |
|
966 | print("Rate: ",acf[0,0,hei_id]/corr[0,0,hei_id]) | |
|
967 | print("Rate aux: ",acf[0,0,hei_id]/corr_aux[0,-1,hei_id]) | |
|
968 | ''' | |
|
969 | #print(acf[0,:,150]) | |
|
970 | #exit(1) | |
|
971 | ''' | |
|
972 | if real: | |
|
973 | acf = data.real | |
|
974 | if imag: | |
|
975 | acf = data.imag | |
|
976 | ''' | |
|
977 | #shape = acf.shape # nchannels, nprofiles, nsamples //nchannles, lags , alturas | |
|
978 | ''' | |
|
979 | for j in range(shape[0]): | |
|
980 | for i in range(shape[2]): | |
|
981 | tmp = int(shape[1]/2) | |
|
982 | #print(i,j,tmp) | |
|
983 | value = (acf[j,:,i][tmp-1]+acf[j,:,i][tmp+1])/2.0 | |
|
984 | acf[j,:,i][tmp] = value | |
|
985 | ''' | |
|
986 | #acf = numpy.fft.fftshift( acf, axes=(1,)) | |
|
987 | ''' | |
|
988 | # Normalizando | |
|
989 | for i in range(shape[0]): | |
|
990 | for j in range(shape[2]): | |
|
991 | acf[i,:,j]= acf[i,:,j] / numpy.max(numpy.abs(acf[i,:,j])) | |
|
992 | ''' | |
|
993 | ||
|
994 | #self.dataOut.data_acf = acf[:,:16,:]#*2 | |
|
995 | #self.dataOut.data_spc = acf[:,:16,:].real#*2 | |
|
996 | ||
|
997 | self.dataOut.data_acf = acf | |
|
998 | ''' | |
|
999 | self.dataOut.data_spc = data.imag | |
|
1000 | ||
|
1001 | print("Real: ",data[0,:,26].real) | |
|
1002 | print("Real dB:",10*numpy.log10(data[0,:,26].real)) | |
|
1003 | print("Imag: ",data[0,:,26].imag) | |
|
1004 | print("Imag dB:",10*numpy.log10(data[0,:,26].imag)) | |
|
1005 | exit(1) | |
|
1006 | ''' | |
|
1007 | #print("AFC",self.dataOut.flagNoData) | |
|
1008 | #''' | |
|
1009 | #print("acf 0: ", self.dataOut.data_acf[0,0,100]) | |
|
1010 | #print("spc: ",numpy.mean(self.dataOut.data_spc[0,:,100])) | |
|
1011 | #print("spc 0: ",numpy.fft.fftshift(self.dataOut.data_spc[0,:,100])[0]) | |
|
1012 | #exit(1) | |
|
1013 | #self.dataOut.data_spc = acf.real | |
|
1014 | #print(self.dataOut.data_acf[0,:,0]) | |
|
1015 | #exit(1) | |
|
1016 | #''' | |
|
1017 | ''' | |
|
1018 | shape = self.dataOut.data_acf.shape | |
|
1019 | resFactor = 5 | |
|
1020 | z = self.dataOut.data_acf.copy() | |
|
1021 | min = numpy.min(z[0,:,0]) | |
|
1022 | max =numpy.max(z[0,:,0]) | |
|
1023 | deltaHeight = self.dataOut.heightList[1]-self.dataOut.heightList[0] | |
|
1024 | for i in range(shape[0]): | |
|
1025 | for j in range(shape[2]): | |
|
1026 | z[i,:,j]= (((z[i,:,j]-min)/(max-min))*deltaHeight*resFactor + j*deltaHeight) | |
|
1027 | #print(self.dataOut.data_spc.shape) | |
|
1028 | #print(self.dataOut.data_acf.shape) | |
|
1029 | ''' | |
|
1030 | ''' | |
|
1031 | import matplotlib.pyplot as plt | |
|
1032 | #hei = 10 | |
|
1033 | #print(self.dataOut.heightList) | |
|
1034 | #print(self.dataOut.heightList[hei]) | |
|
1035 | #plt.plot(z[0,0,:],self.dataOut.heightList) | |
|
1036 | aux = self.dataOut.data_acf[0,:,100] | |
|
1037 | power = aux*numpy.conjugate(aux) | |
|
1038 | #print(power) | |
|
1039 | powerdb = numpy.log10(power) | |
|
1040 | #plt.plot(powerdb,self.dataOut.heightList) | |
|
1041 | #plt.plot(self.dataOut.data_acf[0,:,33]) | |
|
1042 | #plt.plot(corr) | |
|
1043 | #plt.imshow(corr.real[0]) | |
|
1044 | plt.imshow(self.dataOut.data_acf.real[0]) | |
|
1045 | #plt.ylim(0,1000) | |
|
1046 | plt.grid() | |
|
1047 | plt.show() | |
|
1048 | exit(1) | |
|
1049 | ''' | |
|
201 | 1050 | return True |
|
202 | 1051 | |
|
203 | 1052 | if code is not None: |
|
204 | 1053 | self.code = numpy.array(code).reshape(nCode,nBaud) |
|
205 | 1054 | else: |
|
206 | 1055 | self.code = None |
|
207 | 1056 | |
|
208 | 1057 | if self.dataIn.type == "Voltage": |
|
209 | 1058 | |
|
210 | 1059 | if nFFTPoints == None: |
|
211 | 1060 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
212 | 1061 | |
|
213 | 1062 | if nProfiles == None: |
|
214 | 1063 | nProfiles = nFFTPoints |
|
215 | 1064 | |
|
216 | 1065 | self.dataOut.ippFactor = 1 |
|
217 | 1066 | |
|
218 | 1067 | self.dataOut.nFFTPoints = nFFTPoints |
|
219 | 1068 | self.dataOut.nProfiles = nProfiles |
|
220 | 1069 | self.dataOut.pairsList = pairsList |
|
221 | 1070 | |
|
222 | 1071 | # if self.buffer is None: |
|
223 | 1072 | # self.buffer = numpy.zeros( (self.dataIn.nChannels, nProfiles, self.dataIn.nHeights), |
|
224 | 1073 | # dtype='complex') |
|
225 | 1074 | |
|
226 | 1075 | if not self.dataIn.flagDataAsBlock: |
|
227 | 1076 | self.buffer = self.dataIn.data.copy() |
|
228 | 1077 | |
|
229 | 1078 | # for i in range(self.dataIn.nHeights): |
|
230 | 1079 | # self.buffer[:, self.profIndex, self.profIndex:] = voltage_data[:,:self.dataIn.nHeights - self.profIndex] |
|
231 | 1080 | # |
|
232 | 1081 | # self.profIndex += 1 |
|
233 | 1082 | |
|
234 | 1083 | else: |
|
235 | 1084 | raise ValueError("") |
|
236 | 1085 | |
|
237 | 1086 | self.firstdatatime = self.dataIn.utctime |
|
238 | 1087 | |
|
239 | 1088 | self.profIndex == nProfiles |
|
240 | 1089 | |
|
241 | 1090 | self.__updateSpecFromVoltage() |
|
242 | 1091 | |
|
243 | 1092 | self.__getFft() |
|
244 | 1093 | |
|
245 | 1094 | self.dataOut.flagNoData = False |
|
246 | 1095 | |
|
247 | 1096 | return True |
|
248 | 1097 | |
|
249 | 1098 | raise ValueError("The type of input object '%s' is not valid"%(self.dataIn.type)) |
|
250 | 1099 | |
|
251 | 1100 | def __selectPairs(self, pairsList): |
|
252 | 1101 | |
|
253 | 1102 | if channelList == None: |
|
254 | 1103 | return |
|
255 | 1104 | |
|
256 | 1105 | pairsIndexListSelected = [] |
|
257 | 1106 | |
|
258 | 1107 | for thisPair in pairsList: |
|
259 | 1108 | |
|
260 | 1109 | if thisPair not in self.dataOut.pairsList: |
|
261 | 1110 | continue |
|
262 | 1111 | |
|
263 | 1112 | pairIndex = self.dataOut.pairsList.index(thisPair) |
|
264 | 1113 | |
|
265 | 1114 | pairsIndexListSelected.append(pairIndex) |
|
266 | 1115 | |
|
267 | 1116 | if not pairsIndexListSelected: |
|
268 | 1117 | self.dataOut.data_cspc = None |
|
269 | 1118 | self.dataOut.pairsList = [] |
|
270 | 1119 | return |
|
271 | 1120 | |
|
272 | 1121 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
273 | 1122 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] |
|
274 | 1123 | |
|
275 | 1124 | return |
|
276 | 1125 | |
|
277 | 1126 | def __selectPairsByChannel(self, channelList=None): |
|
278 | 1127 | |
|
279 | 1128 | if channelList == None: |
|
280 | 1129 | return |
|
281 | 1130 | |
|
282 | 1131 | pairsIndexListSelected = [] |
|
283 | 1132 | for pairIndex in self.dataOut.pairsIndexList: |
|
284 | 1133 | #First pair |
|
285 | 1134 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
286 | 1135 | continue |
|
287 | 1136 | #Second pair |
|
288 | 1137 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
289 | 1138 | continue |
|
290 | 1139 | |
|
291 | 1140 | pairsIndexListSelected.append(pairIndex) |
|
292 | 1141 | |
|
293 | 1142 | if not pairsIndexListSelected: |
|
294 | 1143 | self.dataOut.data_cspc = None |
|
295 | 1144 | self.dataOut.pairsList = [] |
|
296 | 1145 | return |
|
297 | 1146 | |
|
298 | 1147 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
299 | 1148 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] |
|
300 | 1149 | |
|
301 | 1150 | return |
|
302 | 1151 | |
|
303 | 1152 | def selectChannels(self, channelList): |
|
304 | 1153 | |
|
305 | 1154 | channelIndexList = [] |
|
306 | 1155 | |
|
307 | 1156 | for channel in channelList: |
|
308 | 1157 | if channel not in self.dataOut.channelList: |
|
309 | 1158 | raise ValueError("Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" %(channel, str(self.dataOut.channelList))) |
|
310 | 1159 | |
|
311 | 1160 | index = self.dataOut.channelList.index(channel) |
|
312 | 1161 | channelIndexList.append(index) |
|
313 | 1162 | |
|
314 | 1163 | self.selectChannelsByIndex(channelIndexList) |
|
315 | 1164 | |
|
316 | 1165 | def selectChannelsByIndex(self, channelIndexList): |
|
317 | 1166 | """ |
|
318 | 1167 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
319 | 1168 | |
|
320 | 1169 | Input: |
|
321 | 1170 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
322 | 1171 | |
|
323 | 1172 | Affected: |
|
324 | 1173 | self.dataOut.data_spc |
|
325 | 1174 | self.dataOut.channelIndexList |
|
326 | 1175 | self.dataOut.nChannels |
|
327 | 1176 | |
|
328 | 1177 | Return: |
|
329 | 1178 | None |
|
330 | 1179 | """ |
|
331 | 1180 | |
|
332 | 1181 | for channelIndex in channelIndexList: |
|
333 | 1182 | if channelIndex not in self.dataOut.channelIndexList: |
|
334 | 1183 | raise ValueError("Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " %(channelIndex, self.dataOut.channelIndexList)) |
|
335 | 1184 | |
|
336 | 1185 | # nChannels = len(channelIndexList) |
|
337 | 1186 | |
|
338 | 1187 | data_spc = self.dataOut.data_spc[channelIndexList,:] |
|
339 | 1188 | data_dc = self.dataOut.data_dc[channelIndexList,:] |
|
340 | 1189 | |
|
341 | 1190 | self.dataOut.data_spc = data_spc |
|
342 | 1191 | self.dataOut.data_dc = data_dc |
|
343 | 1192 | |
|
344 | 1193 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
345 | 1194 | # self.dataOut.nChannels = nChannels |
|
346 | 1195 | |
|
347 | 1196 | self.__selectPairsByChannel(self.dataOut.channelList) |
|
348 | 1197 | |
|
349 | 1198 | return 1 |
|
350 | 1199 | |
|
351 | 1200 | def selectHeights(self, minHei, maxHei): |
|
352 | 1201 | """ |
|
353 | 1202 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
354 | 1203 | minHei <= height <= maxHei |
|
355 | 1204 | |
|
356 | 1205 | Input: |
|
357 | 1206 | minHei : valor minimo de altura a considerar |
|
358 | 1207 | maxHei : valor maximo de altura a considerar |
|
359 | 1208 | |
|
360 | 1209 | Affected: |
|
361 | 1210 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
362 | 1211 | |
|
363 | 1212 | Return: |
|
364 | 1213 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
365 | 1214 | """ |
|
366 | 1215 | |
|
367 | 1216 | if (minHei > maxHei): |
|
368 | 1217 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei)) |
|
369 | 1218 | |
|
370 | 1219 | if (minHei < self.dataOut.heightList[0]): |
|
371 | 1220 | minHei = self.dataOut.heightList[0] |
|
372 | 1221 | |
|
373 | 1222 | if (maxHei > self.dataOut.heightList[-1]): |
|
374 | 1223 | maxHei = self.dataOut.heightList[-1] |
|
375 | 1224 | |
|
376 | 1225 | minIndex = 0 |
|
377 | 1226 | maxIndex = 0 |
|
378 | 1227 | heights = self.dataOut.heightList |
|
379 | 1228 | |
|
380 | 1229 | inda = numpy.where(heights >= minHei) |
|
381 | 1230 | indb = numpy.where(heights <= maxHei) |
|
382 | 1231 | |
|
383 | 1232 | try: |
|
384 | 1233 | minIndex = inda[0][0] |
|
385 | 1234 | except: |
|
386 | 1235 | minIndex = 0 |
|
387 | 1236 | |
|
388 | 1237 | try: |
|
389 | 1238 | maxIndex = indb[0][-1] |
|
390 | 1239 | except: |
|
391 | 1240 | maxIndex = len(heights) |
|
392 | 1241 | |
|
393 | 1242 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
394 | 1243 | |
|
395 | 1244 | return 1 |
|
396 | 1245 | |
|
397 | 1246 | def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None): |
|
398 | 1247 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
399 | 1248 | |
|
400 | 1249 | if hei_ref != None: |
|
401 | 1250 | newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
402 | 1251 | |
|
403 | 1252 | minIndex = min(newheis[0]) |
|
404 | 1253 | maxIndex = max(newheis[0]) |
|
405 | 1254 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] |
|
406 | 1255 | heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
407 | 1256 | |
|
408 | 1257 | # determina indices |
|
409 | 1258 | nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0])) |
|
410 | 1259 | avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0)) |
|
411 | 1260 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
412 | 1261 | beacon_heiIndexList = [] |
|
413 | 1262 | for val in avg_dB.tolist(): |
|
414 | 1263 | if val >= beacon_dB[0]: |
|
415 | 1264 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
416 | 1265 | |
|
417 | 1266 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
418 | 1267 | data_cspc = None |
|
419 | 1268 | if self.dataOut.data_cspc is not None: |
|
420 | 1269 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] |
|
421 | 1270 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
422 | 1271 | |
|
423 | 1272 | data_dc = None |
|
424 | 1273 | if self.dataOut.data_dc is not None: |
|
425 | 1274 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] |
|
426 | 1275 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
427 | 1276 | |
|
428 | 1277 | self.dataOut.data_spc = data_spc |
|
429 | 1278 | self.dataOut.data_cspc = data_cspc |
|
430 | 1279 | self.dataOut.data_dc = data_dc |
|
431 | 1280 | self.dataOut.heightList = heightList |
|
432 | 1281 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
433 | 1282 | |
|
434 | 1283 | return 1 |
|
435 | 1284 | |
|
436 | 1285 | |
|
437 | 1286 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
438 | 1287 | """ |
|
439 | 1288 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
440 | 1289 | minIndex <= index <= maxIndex |
|
441 | 1290 | |
|
442 | 1291 | Input: |
|
443 | 1292 | minIndex : valor de indice minimo de altura a considerar |
|
444 | 1293 | maxIndex : valor de indice maximo de altura a considerar |
|
445 | 1294 | |
|
446 | 1295 | Affected: |
|
447 | 1296 | self.dataOut.data_spc |
|
448 | 1297 | self.dataOut.data_cspc |
|
449 | 1298 | self.dataOut.data_dc |
|
450 | 1299 | self.dataOut.heightList |
|
451 | 1300 | |
|
452 | 1301 | Return: |
|
453 | 1302 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
454 | 1303 | """ |
|
455 | 1304 | |
|
456 | 1305 | if (minIndex < 0) or (minIndex > maxIndex): |
|
457 | 1306 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
458 | 1307 | |
|
459 | 1308 | if (maxIndex >= self.dataOut.nHeights): |
|
460 | 1309 | maxIndex = self.dataOut.nHeights-1 |
|
461 | 1310 | |
|
462 | 1311 | #Spectra |
|
463 | 1312 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] |
|
464 | 1313 | |
|
465 | 1314 | data_cspc = None |
|
466 | 1315 | if self.dataOut.data_cspc is not None: |
|
467 | 1316 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] |
|
468 | 1317 | |
|
469 | 1318 | data_dc = None |
|
470 | 1319 | if self.dataOut.data_dc is not None: |
|
471 | 1320 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] |
|
472 | 1321 | |
|
473 | 1322 | self.dataOut.data_spc = data_spc |
|
474 | 1323 | self.dataOut.data_cspc = data_cspc |
|
475 | 1324 | self.dataOut.data_dc = data_dc |
|
476 | 1325 | |
|
477 | 1326 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
478 | 1327 | |
|
479 | 1328 | return 1 |
|
480 | 1329 | |
|
481 | 1330 | def removeDC(self, mode = 2): |
|
482 | 1331 | jspectra = self.dataOut.data_spc |
|
483 | 1332 | jcspectra = self.dataOut.data_cspc |
|
484 | 1333 | |
|
485 | 1334 | |
|
486 | 1335 | num_chan = jspectra.shape[0] |
|
487 | 1336 | num_hei = jspectra.shape[2] |
|
488 | 1337 | |
|
489 | 1338 | if jcspectra is not None: |
|
490 | 1339 | jcspectraExist = True |
|
491 | 1340 | num_pairs = jcspectra.shape[0] |
|
492 | 1341 | else: jcspectraExist = False |
|
493 | 1342 | |
|
494 | 1343 | freq_dc = jspectra.shape[1]/2 |
|
495 | 1344 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
496 | 1345 | |
|
497 | 1346 | if ind_vel[0]<0: |
|
498 | 1347 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
499 | 1348 | |
|
500 | 1349 | if mode == 1: |
|
501 | 1350 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
502 | 1351 | |
|
503 | 1352 | if jcspectraExist: |
|
504 | 1353 | jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2 |
|
505 | 1354 | |
|
506 | 1355 | if mode == 2: |
|
507 | 1356 | |
|
508 | 1357 | vel = numpy.array([-2,-1,1,2]) |
|
509 | 1358 | xx = numpy.zeros([4,4]) |
|
510 | 1359 | |
|
511 | 1360 | for fil in range(4): |
|
512 | 1361 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
513 | 1362 | |
|
514 | 1363 | xx_inv = numpy.linalg.inv(xx) |
|
515 | 1364 | xx_aux = xx_inv[0,:] |
|
516 | 1365 | |
|
517 | 1366 | for ich in range(num_chan): |
|
518 | 1367 | yy = jspectra[ich,ind_vel,:] |
|
519 | 1368 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
520 | 1369 | |
|
521 | 1370 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
522 | 1371 | cjunkid = sum(junkid) |
|
523 | 1372 | |
|
524 | 1373 | if cjunkid.any(): |
|
525 | 1374 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
526 | 1375 | |
|
527 | 1376 | if jcspectraExist: |
|
528 | 1377 | for ip in range(num_pairs): |
|
529 | 1378 | yy = jcspectra[ip,ind_vel,:] |
|
530 | 1379 | jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
531 | 1380 | |
|
532 | 1381 | |
|
533 | 1382 | self.dataOut.data_spc = jspectra |
|
534 | 1383 | self.dataOut.data_cspc = jcspectra |
|
535 | 1384 | |
|
536 | 1385 | return 1 |
|
537 | 1386 | |
|
538 | 1387 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
539 | 1388 | |
|
540 | 1389 | jspectra = self.dataOut.data_spc |
|
541 | 1390 | jcspectra = self.dataOut.data_cspc |
|
542 | 1391 | jnoise = self.dataOut.getNoise() |
|
543 | 1392 | num_incoh = self.dataOut.nIncohInt |
|
544 | 1393 | |
|
545 | 1394 | num_channel = jspectra.shape[0] |
|
546 | 1395 | num_prof = jspectra.shape[1] |
|
547 | 1396 | num_hei = jspectra.shape[2] |
|
548 | 1397 | |
|
549 | 1398 | #hei_interf |
|
550 | 1399 | if hei_interf is None: |
|
551 | 1400 | count_hei = num_hei/2 #Como es entero no importa |
|
552 | 1401 | hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei |
|
553 | 1402 | hei_interf = numpy.asarray(hei_interf)[0] |
|
554 | 1403 | #nhei_interf |
|
555 | 1404 | if (nhei_interf == None): |
|
556 | 1405 | nhei_interf = 5 |
|
557 | 1406 | if (nhei_interf < 1): |
|
558 | 1407 | nhei_interf = 1 |
|
559 | 1408 | if (nhei_interf > count_hei): |
|
560 | 1409 | nhei_interf = count_hei |
|
561 | 1410 | if (offhei_interf == None): |
|
562 | 1411 | offhei_interf = 0 |
|
563 | 1412 | |
|
564 | 1413 | ind_hei = range(num_hei) |
|
565 | 1414 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
566 | 1415 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
567 | 1416 | mask_prof = numpy.asarray(range(num_prof)) |
|
568 | 1417 | num_mask_prof = mask_prof.size |
|
569 | 1418 | comp_mask_prof = [0, num_prof/2] |
|
570 | 1419 | |
|
571 | 1420 | |
|
572 | 1421 | #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
573 | 1422 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
574 | 1423 | jnoise = numpy.nan |
|
575 | 1424 | noise_exist = jnoise[0] < numpy.Inf |
|
576 | 1425 | |
|
577 | 1426 | #Subrutina de Remocion de la Interferencia |
|
578 | 1427 | for ich in range(num_channel): |
|
579 | 1428 | #Se ordena los espectros segun su potencia (menor a mayor) |
|
580 | 1429 | power = jspectra[ich,mask_prof,:] |
|
581 | 1430 | power = power[:,hei_interf] |
|
582 | 1431 | power = power.sum(axis = 0) |
|
583 | 1432 | psort = power.ravel().argsort() |
|
584 | 1433 | |
|
585 | 1434 | #Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
586 | 1435 | junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]] |
|
587 | 1436 | |
|
588 | 1437 | if noise_exist: |
|
589 | 1438 | # tmp_noise = jnoise[ich] / num_prof |
|
590 | 1439 | tmp_noise = jnoise[ich] |
|
591 | 1440 | junkspc_interf = junkspc_interf - tmp_noise |
|
592 | 1441 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
593 | 1442 | |
|
594 | 1443 | jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf |
|
595 | 1444 | jspc_interf = jspc_interf.transpose() |
|
596 | 1445 | #Calculando el espectro de interferencia promedio |
|
597 | 1446 | noiseid = numpy.where(jspc_interf <= tmp_noise/ numpy.sqrt(num_incoh)) |
|
598 | 1447 | noiseid = noiseid[0] |
|
599 | 1448 | cnoiseid = noiseid.size |
|
600 | 1449 | interfid = numpy.where(jspc_interf > tmp_noise/ numpy.sqrt(num_incoh)) |
|
601 | 1450 | interfid = interfid[0] |
|
602 | 1451 | cinterfid = interfid.size |
|
603 | 1452 | |
|
604 | 1453 | if (cnoiseid > 0): jspc_interf[noiseid] = 0 |
|
605 | 1454 | |
|
606 | 1455 | #Expandiendo los perfiles a limpiar |
|
607 | 1456 | if (cinterfid > 0): |
|
608 | 1457 | new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof |
|
609 | 1458 | new_interfid = numpy.asarray(new_interfid) |
|
610 | 1459 | new_interfid = {x for x in new_interfid} |
|
611 | 1460 | new_interfid = numpy.array(list(new_interfid)) |
|
612 | 1461 | new_cinterfid = new_interfid.size |
|
613 | 1462 | else: new_cinterfid = 0 |
|
614 | 1463 | |
|
615 | 1464 | for ip in range(new_cinterfid): |
|
616 | 1465 | ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort() |
|
617 | 1466 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]] |
|
618 | 1467 | |
|
619 | 1468 | |
|
620 | 1469 | jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices |
|
621 | 1470 | |
|
622 | 1471 | #Removiendo la interferencia del punto de mayor interferencia |
|
623 | 1472 | ListAux = jspc_interf[mask_prof].tolist() |
|
624 | 1473 | maxid = ListAux.index(max(ListAux)) |
|
625 | 1474 | |
|
626 | 1475 | |
|
627 | 1476 | if cinterfid > 0: |
|
628 | 1477 | for ip in range(cinterfid*(interf == 2) - 1): |
|
629 | 1478 | ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/numpy.sqrt(num_incoh))).nonzero() |
|
630 | 1479 | cind = len(ind) |
|
631 | 1480 | |
|
632 | 1481 | if (cind > 0): |
|
633 | 1482 | jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/numpy.sqrt(num_incoh)) |
|
634 | 1483 | |
|
635 | 1484 | ind = numpy.array([-2,-1,1,2]) |
|
636 | 1485 | xx = numpy.zeros([4,4]) |
|
637 | 1486 | |
|
638 | 1487 | for id1 in range(4): |
|
639 | 1488 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) |
|
640 | 1489 | |
|
641 | 1490 | xx_inv = numpy.linalg.inv(xx) |
|
642 | 1491 | xx = xx_inv[:,0] |
|
643 | 1492 | ind = (ind + maxid + num_mask_prof)%num_mask_prof |
|
644 | 1493 | yy = jspectra[ich,mask_prof[ind],:] |
|
645 | 1494 | jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) |
|
646 | 1495 | |
|
647 | 1496 | |
|
648 | 1497 | indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/numpy.sqrt(num_incoh))).nonzero() |
|
649 | 1498 | jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/numpy.sqrt(num_incoh)) |
|
650 | 1499 | |
|
651 | 1500 | #Remocion de Interferencia en el Cross Spectra |
|
652 | 1501 | if jcspectra is None: return jspectra, jcspectra |
|
653 | 1502 | num_pairs = jcspectra.size/(num_prof*num_hei) |
|
654 | 1503 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
655 | 1504 | |
|
656 | 1505 | for ip in range(num_pairs): |
|
657 | 1506 | |
|
658 | 1507 | #------------------------------------------- |
|
659 | 1508 | |
|
660 | 1509 | cspower = numpy.abs(jcspectra[ip,mask_prof,:]) |
|
661 | 1510 | cspower = cspower[:,hei_interf] |
|
662 | 1511 | cspower = cspower.sum(axis = 0) |
|
663 | 1512 | |
|
664 | 1513 | cspsort = cspower.ravel().argsort() |
|
665 | 1514 | junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]] |
|
666 | 1515 | junkcspc_interf = junkcspc_interf.transpose() |
|
667 | 1516 | jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf |
|
668 | 1517 | |
|
669 | 1518 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
670 | 1519 | |
|
671 | 1520 | median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) |
|
672 | 1521 | median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) |
|
673 | 1522 | junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag) |
|
674 | 1523 | |
|
675 | 1524 | for iprof in range(num_prof): |
|
676 | 1525 | ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort() |
|
677 | 1526 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]] |
|
678 | 1527 | |
|
679 | 1528 | #Removiendo la Interferencia |
|
680 | 1529 | jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf |
|
681 | 1530 | |
|
682 | 1531 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
683 | 1532 | maxid = ListAux.index(max(ListAux)) |
|
684 | 1533 | |
|
685 | 1534 | ind = numpy.array([-2,-1,1,2]) |
|
686 | 1535 | xx = numpy.zeros([4,4]) |
|
687 | 1536 | |
|
688 | 1537 | for id1 in range(4): |
|
689 | 1538 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) |
|
690 | 1539 | |
|
691 | 1540 | xx_inv = numpy.linalg.inv(xx) |
|
692 | 1541 | xx = xx_inv[:,0] |
|
693 | 1542 | |
|
694 | 1543 | ind = (ind + maxid + num_mask_prof)%num_mask_prof |
|
695 | 1544 | yy = jcspectra[ip,mask_prof[ind],:] |
|
696 | 1545 | jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) |
|
697 | 1546 | |
|
698 | 1547 | #Guardar Resultados |
|
699 | 1548 | self.dataOut.data_spc = jspectra |
|
700 | 1549 | self.dataOut.data_cspc = jcspectra |
|
701 | 1550 | |
|
702 | 1551 | return 1 |
|
703 | 1552 | |
|
704 | 1553 | def setRadarFrequency(self, frequency=None): |
|
705 | 1554 | |
|
706 | 1555 | if frequency != None: |
|
707 | 1556 | self.dataOut.frequency = frequency |
|
708 | 1557 | |
|
709 | 1558 | return 1 |
|
710 | 1559 | |
|
711 | 1560 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
712 | 1561 | #validacion de rango |
|
713 | 1562 | if minHei == None: |
|
714 | 1563 | minHei = self.dataOut.heightList[0] |
|
715 | 1564 | |
|
716 | 1565 | if maxHei == None: |
|
717 | 1566 | maxHei = self.dataOut.heightList[-1] |
|
718 | 1567 | |
|
719 | 1568 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
720 | 1569 | print('minHei: %.2f is out of the heights range'%(minHei)) |
|
721 | 1570 | print('minHei is setting to %.2f'%(self.dataOut.heightList[0])) |
|
722 | 1571 | minHei = self.dataOut.heightList[0] |
|
723 | 1572 | |
|
724 | 1573 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
725 | 1574 | print('maxHei: %.2f is out of the heights range'%(maxHei)) |
|
726 | 1575 | print('maxHei is setting to %.2f'%(self.dataOut.heightList[-1])) |
|
727 | 1576 | maxHei = self.dataOut.heightList[-1] |
|
728 | 1577 | |
|
729 | 1578 | # validacion de velocidades |
|
730 | 1579 | velrange = self.dataOut.getVelRange(1) |
|
731 | 1580 | |
|
732 | 1581 | if minVel == None: |
|
733 | 1582 | minVel = velrange[0] |
|
734 | 1583 | |
|
735 | 1584 | if maxVel == None: |
|
736 | 1585 | maxVel = velrange[-1] |
|
737 | 1586 | |
|
738 | 1587 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
739 | 1588 | print('minVel: %.2f is out of the velocity range'%(minVel)) |
|
740 | 1589 | print('minVel is setting to %.2f'%(velrange[0])) |
|
741 | 1590 | minVel = velrange[0] |
|
742 | 1591 | |
|
743 | 1592 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
744 | 1593 | print('maxVel: %.2f is out of the velocity range'%(maxVel)) |
|
745 | 1594 | print('maxVel is setting to %.2f'%(velrange[-1])) |
|
746 | 1595 | maxVel = velrange[-1] |
|
747 | 1596 | |
|
748 | 1597 | # seleccion de indices para rango |
|
749 | 1598 | minIndex = 0 |
|
750 | 1599 | maxIndex = 0 |
|
751 | 1600 | heights = self.dataOut.heightList |
|
752 | 1601 | |
|
753 | 1602 | inda = numpy.where(heights >= minHei) |
|
754 | 1603 | indb = numpy.where(heights <= maxHei) |
|
755 | 1604 | |
|
756 | 1605 | try: |
|
757 | 1606 | minIndex = inda[0][0] |
|
758 | 1607 | except: |
|
759 | 1608 | minIndex = 0 |
|
760 | 1609 | |
|
761 | 1610 | try: |
|
762 | 1611 | maxIndex = indb[0][-1] |
|
763 | 1612 | except: |
|
764 | 1613 | maxIndex = len(heights) |
|
765 | 1614 | |
|
766 | 1615 | if (minIndex < 0) or (minIndex > maxIndex): |
|
767 | 1616 | raise ValueError("some value in (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
768 | 1617 | |
|
769 | 1618 | if (maxIndex >= self.dataOut.nHeights): |
|
770 | 1619 | maxIndex = self.dataOut.nHeights-1 |
|
771 | 1620 | |
|
772 | 1621 | # seleccion de indices para velocidades |
|
773 | 1622 | indminvel = numpy.where(velrange >= minVel) |
|
774 | 1623 | indmaxvel = numpy.where(velrange <= maxVel) |
|
775 | 1624 | try: |
|
776 | 1625 | minIndexVel = indminvel[0][0] |
|
777 | 1626 | except: |
|
778 | 1627 | minIndexVel = 0 |
|
779 | 1628 | |
|
780 | 1629 | try: |
|
781 | 1630 | maxIndexVel = indmaxvel[0][-1] |
|
782 | 1631 | except: |
|
783 | 1632 | maxIndexVel = len(velrange) |
|
784 | 1633 | |
|
785 | 1634 | #seleccion del espectro |
|
786 | 1635 | data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1] |
|
787 | 1636 | #estimacion de ruido |
|
788 | 1637 | noise = numpy.zeros(self.dataOut.nChannels) |
|
789 | 1638 | |
|
790 | 1639 | for channel in range(self.dataOut.nChannels): |
|
791 | 1640 | daux = data_spc[channel,:,:] |
|
792 | 1641 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) |
|
793 | 1642 | |
|
794 | 1643 | self.dataOut.noise_estimation = noise.copy() |
|
795 | 1644 | |
|
796 | 1645 | return 1 |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now