The requested changes are too big and content was truncated. Show full diff
@@ -1,668 +1,669 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """API to create signal chain projects |
|
5 | """API to create signal chain projects | |
6 |
|
6 | |||
7 | The API is provide through class: Project |
|
7 | The API is provide through class: Project | |
8 | """ |
|
8 | """ | |
9 |
|
9 | |||
10 | import re |
|
10 | import re | |
11 | import sys |
|
11 | import sys | |
12 | import ast |
|
12 | import ast | |
13 | import datetime |
|
13 | import datetime | |
14 | import traceback |
|
14 | import traceback | |
15 | import time |
|
15 | import time | |
16 | import multiprocessing |
|
16 | import multiprocessing | |
17 | from multiprocessing import Process, Queue |
|
17 | from multiprocessing import Process, Queue | |
18 | from threading import Thread |
|
18 | from threading import Thread | |
19 | from xml.etree.ElementTree import ElementTree, Element, SubElement |
|
19 | from xml.etree.ElementTree import ElementTree, Element, SubElement | |
20 |
|
20 | |||
21 | from schainpy.admin import Alarm, SchainWarning |
|
21 | from schainpy.admin import Alarm, SchainWarning | |
22 | from schainpy.model import * |
|
22 | from schainpy.model import * | |
23 | from schainpy.utils import log |
|
23 | from schainpy.utils import log | |
24 |
|
24 | |||
25 | if 'darwin' in sys.platform and sys.version_info[0] == 3 and sys.version_info[1] > 7: |
|
25 | if 'darwin' in sys.platform and sys.version_info[0] == 3 and sys.version_info[1] > 7: | |
26 | multiprocessing.set_start_method('fork') |
|
26 | multiprocessing.set_start_method('fork') | |
27 |
|
27 | |||
28 | class ConfBase(): |
|
28 | class ConfBase(): | |
29 |
|
29 | |||
30 | def __init__(self): |
|
30 | def __init__(self): | |
31 |
|
31 | |||
32 | self.id = '0' |
|
32 | self.id = '0' | |
33 | self.name = None |
|
33 | self.name = None | |
34 | self.priority = None |
|
34 | self.priority = None | |
35 | self.parameters = {} |
|
35 | self.parameters = {} | |
36 | self.object = None |
|
36 | self.object = None | |
37 | self.operations = [] |
|
37 | self.operations = [] | |
38 |
|
38 | |||
39 | def getId(self): |
|
39 | def getId(self): | |
40 |
|
40 | |||
41 | return self.id |
|
41 | return self.id | |
42 |
|
42 | |||
43 | def getNewId(self): |
|
43 | def getNewId(self): | |
44 |
|
44 | |||
45 | return int(self.id) * 10 + len(self.operations) + 1 |
|
45 | return int(self.id) * 10 + len(self.operations) + 1 | |
46 |
|
46 | |||
47 | def updateId(self, new_id): |
|
47 | def updateId(self, new_id): | |
48 |
|
48 | |||
49 | self.id = str(new_id) |
|
49 | self.id = str(new_id) | |
50 |
|
50 | |||
51 | n = 1 |
|
51 | n = 1 | |
52 | for conf in self.operations: |
|
52 | for conf in self.operations: | |
53 | conf_id = str(int(new_id) * 10 + n) |
|
53 | conf_id = str(int(new_id) * 10 + n) | |
54 | conf.updateId(conf_id) |
|
54 | conf.updateId(conf_id) | |
55 | n += 1 |
|
55 | n += 1 | |
56 |
|
56 | |||
57 | def getKwargs(self): |
|
57 | def getKwargs(self): | |
58 |
|
58 | |||
59 | params = {} |
|
59 | params = {} | |
60 |
|
60 | |||
61 | for key, value in self.parameters.items(): |
|
61 | for key, value in self.parameters.items(): | |
62 | if value not in (None, '', ' '): |
|
62 | if value not in (None, '', ' '): | |
63 | params[key] = value |
|
63 | params[key] = value | |
64 |
|
64 | |||
65 | return params |
|
65 | return params | |
66 |
|
66 | |||
67 | def update(self, **kwargs): |
|
67 | def update(self, **kwargs): | |
68 |
|
68 | |||
69 | for key, value in kwargs.items(): |
|
69 | for key, value in kwargs.items(): | |
70 | self.addParameter(name=key, value=value) |
|
70 | self.addParameter(name=key, value=value) | |
71 |
|
71 | |||
72 | def addParameter(self, name, value, format=None): |
|
72 | def addParameter(self, name, value, format=None): | |
73 | ''' |
|
73 | ''' | |
74 | ''' |
|
74 | ''' | |
75 |
|
75 | |||
76 | if isinstance(value, str) and re.search(r'(\d+/\d+/\d+)', value): |
|
76 | if isinstance(value, str) and re.search(r'(\d+/\d+/\d+)', value): | |
77 | self.parameters[name] = datetime.date(*[int(x) for x in value.split('/')]) |
|
77 | self.parameters[name] = datetime.date(*[int(x) for x in value.split('/')]) | |
78 | elif isinstance(value, str) and re.search(r'(\d+:\d+:\d+)', value): |
|
78 | elif isinstance(value, str) and re.search(r'(\d+:\d+:\d+)', value): | |
79 | self.parameters[name] = datetime.time(*[int(x) for x in value.split(':')]) |
|
79 | self.parameters[name] = datetime.time(*[int(x) for x in value.split(':')]) | |
80 | else: |
|
80 | else: | |
81 | try: |
|
81 | try: | |
82 | self.parameters[name] = ast.literal_eval(value) |
|
82 | self.parameters[name] = ast.literal_eval(value) | |
83 | except: |
|
83 | except: | |
84 | if isinstance(value, str) and ',' in value: |
|
84 | if isinstance(value, str) and ',' in value: | |
85 | self.parameters[name] = value.split(',') |
|
85 | self.parameters[name] = value.split(',') | |
86 | else: |
|
86 | else: | |
87 | self.parameters[name] = value |
|
87 | self.parameters[name] = value | |
88 |
|
88 | |||
89 | def getParameters(self): |
|
89 | def getParameters(self): | |
90 |
|
90 | |||
91 | params = {} |
|
91 | params = {} | |
92 | for key, value in self.parameters.items(): |
|
92 | for key, value in self.parameters.items(): | |
93 | s = type(value).__name__ |
|
93 | s = type(value).__name__ | |
94 | if s == 'date': |
|
94 | if s == 'date': | |
95 | params[key] = value.strftime('%Y/%m/%d') |
|
95 | params[key] = value.strftime('%Y/%m/%d') | |
96 | elif s == 'time': |
|
96 | elif s == 'time': | |
97 | params[key] = value.strftime('%H:%M:%S') |
|
97 | params[key] = value.strftime('%H:%M:%S') | |
98 | else: |
|
98 | else: | |
99 | params[key] = str(value) |
|
99 | params[key] = str(value) | |
100 |
|
100 | |||
101 | return params |
|
101 | return params | |
102 |
|
102 | |||
103 | def makeXml(self, element): |
|
103 | def makeXml(self, element): | |
104 |
|
104 | |||
105 | xml = SubElement(element, self.ELEMENTNAME) |
|
105 | xml = SubElement(element, self.ELEMENTNAME) | |
106 | for label in self.xml_labels: |
|
106 | for label in self.xml_labels: | |
107 | xml.set(label, str(getattr(self, label))) |
|
107 | xml.set(label, str(getattr(self, label))) | |
108 |
|
108 | |||
109 | for key, value in self.getParameters().items(): |
|
109 | for key, value in self.getParameters().items(): | |
110 | xml_param = SubElement(xml, 'Parameter') |
|
110 | xml_param = SubElement(xml, 'Parameter') | |
111 | xml_param.set('name', key) |
|
111 | xml_param.set('name', key) | |
112 | xml_param.set('value', value) |
|
112 | xml_param.set('value', value) | |
113 |
|
113 | |||
114 | for conf in self.operations: |
|
114 | for conf in self.operations: | |
115 | conf.makeXml(xml) |
|
115 | conf.makeXml(xml) | |
116 |
|
116 | |||
117 | def __str__(self): |
|
117 | def __str__(self): | |
118 |
|
118 | |||
119 | if self.ELEMENTNAME == 'Operation': |
|
119 | if self.ELEMENTNAME == 'Operation': | |
120 | s = ' {}[id={}]\n'.format(self.name, self.id) |
|
120 | s = ' {}[id={}]\n'.format(self.name, self.id) | |
121 | else: |
|
121 | else: | |
122 | s = '{}[id={}, inputId={}]\n'.format(self.name, self.id, self.inputId) |
|
122 | s = '{}[id={}, inputId={}]\n'.format(self.name, self.id, self.inputId) | |
123 |
|
123 | |||
124 | for key, value in self.parameters.items(): |
|
124 | for key, value in self.parameters.items(): | |
125 | if self.ELEMENTNAME == 'Operation': |
|
125 | if self.ELEMENTNAME == 'Operation': | |
126 | s += ' {}: {}\n'.format(key, value) |
|
126 | s += ' {}: {}\n'.format(key, value) | |
127 | else: |
|
127 | else: | |
128 | s += ' {}: {}\n'.format(key, value) |
|
128 | s += ' {}: {}\n'.format(key, value) | |
129 |
|
129 | |||
130 | for conf in self.operations: |
|
130 | for conf in self.operations: | |
131 | s += str(conf) |
|
131 | s += str(conf) | |
132 |
|
132 | |||
133 | return s |
|
133 | return s | |
134 |
|
134 | |||
135 | class OperationConf(ConfBase): |
|
135 | class OperationConf(ConfBase): | |
136 |
|
136 | |||
137 | ELEMENTNAME = 'Operation' |
|
137 | ELEMENTNAME = 'Operation' | |
138 | xml_labels = ['id', 'name'] |
|
138 | xml_labels = ['id', 'name'] | |
139 |
|
139 | |||
140 | def setup(self, id, name, priority, project_id, err_queue): |
|
140 | def setup(self, id, name, priority, project_id, err_queue): | |
141 |
|
141 | |||
142 | self.id = str(id) |
|
142 | self.id = str(id) | |
143 | self.project_id = project_id |
|
143 | self.project_id = project_id | |
144 | self.name = name |
|
144 | self.name = name | |
145 | self.type = 'other' |
|
145 | self.type = 'other' | |
146 | self.err_queue = err_queue |
|
146 | self.err_queue = err_queue | |
147 |
|
147 | |||
148 | def readXml(self, element, project_id, err_queue): |
|
148 | def readXml(self, element, project_id, err_queue): | |
149 |
|
149 | |||
150 | self.id = element.get('id') |
|
150 | self.id = element.get('id') | |
151 | self.name = element.get('name') |
|
151 | self.name = element.get('name') | |
152 | self.type = 'other' |
|
152 | self.type = 'other' | |
153 | self.project_id = str(project_id) |
|
153 | self.project_id = str(project_id) | |
154 | self.err_queue = err_queue |
|
154 | self.err_queue = err_queue | |
155 |
|
155 | |||
156 | for elm in element.iter('Parameter'): |
|
156 | for elm in element.iter('Parameter'): | |
157 | self.addParameter(elm.get('name'), elm.get('value')) |
|
157 | self.addParameter(elm.get('name'), elm.get('value')) | |
158 |
|
158 | |||
159 | def createObject(self): |
|
159 | def createObject(self): | |
160 |
|
160 | |||
161 | className = eval(self.name) |
|
161 | className = eval(self.name) | |
162 |
|
162 | |||
163 | if 'Plot' in self.name or 'Writer' in self.name or 'Send' in self.name or 'print' in self.name: |
|
163 | if 'Plot' in self.name or 'Writer' in self.name or 'Send' in self.name or 'print' in self.name: | |
164 | kwargs = self.getKwargs() |
|
164 | kwargs = self.getKwargs() | |
165 | opObj = className(self.id, self.id, self.project_id, self.err_queue, **kwargs) |
|
165 | opObj = className(self.id, self.id, self.project_id, self.err_queue, **kwargs) | |
166 | opObj.start() |
|
166 | opObj.start() | |
167 | self.type = 'external' |
|
167 | self.type = 'external' | |
168 | else: |
|
168 | else: | |
169 | opObj = className() |
|
169 | opObj = className() | |
170 |
|
170 | |||
171 | self.object = opObj |
|
171 | self.object = opObj | |
172 | return opObj |
|
172 | return opObj | |
173 |
|
173 | |||
174 | class ProcUnitConf(ConfBase): |
|
174 | class ProcUnitConf(ConfBase): | |
175 |
|
175 | |||
176 | ELEMENTNAME = 'ProcUnit' |
|
176 | ELEMENTNAME = 'ProcUnit' | |
177 | xml_labels = ['id', 'inputId', 'name'] |
|
177 | xml_labels = ['id', 'inputId', 'name'] | |
178 |
|
178 | |||
179 | def setup(self, project_id, id, name, datatype, inputId, err_queue): |
|
179 | def setup(self, project_id, id, name, datatype, inputId, err_queue): | |
180 | ''' |
|
180 | ''' | |
181 | ''' |
|
181 | ''' | |
182 |
|
182 | |||
183 | if datatype == None and name == None: |
|
183 | if datatype == None and name == None: | |
184 | raise ValueError('datatype or name should be defined') |
|
184 | raise ValueError('datatype or name should be defined') | |
185 |
|
185 | |||
186 | if name == None: |
|
186 | if name == None: | |
187 | if 'Proc' in datatype: |
|
187 | if 'Proc' in datatype: | |
188 | name = datatype |
|
188 | name = datatype | |
189 | else: |
|
189 | else: | |
190 | name = '%sProc' % (datatype) |
|
190 | name = '%sProc' % (datatype) | |
191 |
|
191 | |||
192 | if datatype == None: |
|
192 | if datatype == None: | |
193 | datatype = name.replace('Proc', '') |
|
193 | datatype = name.replace('Proc', '') | |
194 |
|
194 | |||
195 | self.id = str(id) |
|
195 | self.id = str(id) | |
196 | self.project_id = project_id |
|
196 | self.project_id = project_id | |
197 | self.name = name |
|
197 | self.name = name | |
198 | self.datatype = datatype |
|
198 | self.datatype = datatype | |
199 | self.inputId = inputId |
|
199 | self.inputId = inputId | |
200 | self.err_queue = err_queue |
|
200 | self.err_queue = err_queue | |
201 | self.operations = [] |
|
201 | self.operations = [] | |
202 | self.parameters = {} |
|
202 | self.parameters = {} | |
203 |
|
203 | |||
204 | def removeOperation(self, id): |
|
204 | def removeOperation(self, id): | |
205 |
|
205 | |||
206 | i = [1 if x.id == id else 0 for x in self.operations] |
|
206 | i = [1 if x.id == id else 0 for x in self.operations] | |
207 | self.operations.pop(i.index(1)) |
|
207 | self.operations.pop(i.index(1)) | |
208 |
|
208 | |||
209 | def getOperation(self, id): |
|
209 | def getOperation(self, id): | |
210 |
|
210 | |||
211 | for conf in self.operations: |
|
211 | for conf in self.operations: | |
212 | if conf.id == id: |
|
212 | if conf.id == id: | |
213 | return conf |
|
213 | return conf | |
214 |
|
214 | |||
215 | def addOperation(self, name, optype='self'): |
|
215 | def addOperation(self, name, optype='self'): | |
216 | ''' |
|
216 | ''' | |
217 | ''' |
|
217 | ''' | |
218 |
|
218 | |||
219 | id = self.getNewId() |
|
219 | id = self.getNewId() | |
220 | conf = OperationConf() |
|
220 | conf = OperationConf() | |
221 | conf.setup(id, name=name, priority='0', project_id=self.project_id, err_queue=self.err_queue) |
|
221 | conf.setup(id, name=name, priority='0', project_id=self.project_id, err_queue=self.err_queue) | |
222 | self.operations.append(conf) |
|
222 | self.operations.append(conf) | |
223 |
|
223 | |||
224 | return conf |
|
224 | return conf | |
225 |
|
225 | |||
226 | def readXml(self, element, project_id, err_queue): |
|
226 | def readXml(self, element, project_id, err_queue): | |
227 |
|
227 | |||
228 | self.id = element.get('id') |
|
228 | self.id = element.get('id') | |
229 | self.name = element.get('name') |
|
229 | self.name = element.get('name') | |
230 | self.inputId = None if element.get('inputId') == 'None' else element.get('inputId') |
|
230 | self.inputId = None if element.get('inputId') == 'None' else element.get('inputId') | |
231 | self.datatype = element.get('datatype', self.name.replace(self.ELEMENTNAME.replace('Unit', ''), '')) |
|
231 | self.datatype = element.get('datatype', self.name.replace(self.ELEMENTNAME.replace('Unit', ''), '')) | |
232 | self.project_id = str(project_id) |
|
232 | self.project_id = str(project_id) | |
233 | self.err_queue = err_queue |
|
233 | self.err_queue = err_queue | |
234 | self.operations = [] |
|
234 | self.operations = [] | |
235 | self.parameters = {} |
|
235 | self.parameters = {} | |
236 |
|
236 | |||
237 | for elm in element: |
|
237 | for elm in element: | |
238 | if elm.tag == 'Parameter': |
|
238 | if elm.tag == 'Parameter': | |
239 | self.addParameter(elm.get('name'), elm.get('value')) |
|
239 | self.addParameter(elm.get('name'), elm.get('value')) | |
240 | elif elm.tag == 'Operation': |
|
240 | elif elm.tag == 'Operation': | |
241 | conf = OperationConf() |
|
241 | conf = OperationConf() | |
242 | conf.readXml(elm, project_id, err_queue) |
|
242 | conf.readXml(elm, project_id, err_queue) | |
243 | self.operations.append(conf) |
|
243 | self.operations.append(conf) | |
244 |
|
244 | |||
245 | def createObjects(self): |
|
245 | def createObjects(self): | |
246 | ''' |
|
246 | ''' | |
247 | Instancia de unidades de procesamiento. |
|
247 | Instancia de unidades de procesamiento. | |
248 | ''' |
|
248 | ''' | |
249 |
|
249 | |||
250 | className = eval(self.name) |
|
250 | className = eval(self.name) | |
251 | kwargs = self.getKwargs() |
|
251 | kwargs = self.getKwargs() | |
252 | procUnitObj = className() |
|
252 | procUnitObj = className() | |
253 | procUnitObj.name = self.name |
|
253 | procUnitObj.name = self.name | |
254 | log.success('creating process...', self.name) |
|
254 | log.success('creating process...', self.name) | |
255 |
|
255 | |||
256 | for conf in self.operations: |
|
256 | for conf in self.operations: | |
257 |
|
257 | |||
258 | opObj = conf.createObject() |
|
258 | opObj = conf.createObject() | |
259 |
|
259 | |||
260 | log.success('adding operation: {}, type:{}'.format( |
|
260 | log.success('adding operation: {}, type:{}'.format( | |
261 | conf.name, |
|
261 | conf.name, | |
262 | conf.type), self.name) |
|
262 | conf.type), self.name) | |
263 |
|
263 | |||
264 | procUnitObj.addOperation(conf, opObj) |
|
264 | procUnitObj.addOperation(conf, opObj) | |
265 |
|
265 | |||
266 | self.object = procUnitObj |
|
266 | self.object = procUnitObj | |
267 |
|
267 | |||
268 | def run(self): |
|
268 | def run(self): | |
269 | ''' |
|
269 | ''' | |
270 | ''' |
|
270 | ''' | |
271 | #self.object.call(**self.getKwargs()) |
|
271 | #self.object.call(**self.getKwargs()) | |
272 |
|
272 | |||
273 | return self.object.call(**self.getKwargs()) |
|
273 | return self.object.call(**self.getKwargs()) | |
274 |
|
274 | |||
275 |
|
275 | |||
276 | class ReadUnitConf(ProcUnitConf): |
|
276 | class ReadUnitConf(ProcUnitConf): | |
277 |
|
277 | |||
278 | ELEMENTNAME = 'ReadUnit' |
|
278 | ELEMENTNAME = 'ReadUnit' | |
279 |
|
279 | |||
280 | def __init__(self): |
|
280 | def __init__(self): | |
281 |
|
281 | |||
282 | self.id = None |
|
282 | self.id = None | |
283 | self.datatype = None |
|
283 | self.datatype = None | |
284 | self.name = None |
|
284 | self.name = None | |
285 | self.inputId = None |
|
285 | self.inputId = None | |
286 | self.operations = [] |
|
286 | self.operations = [] | |
287 | self.parameters = {} |
|
287 | self.parameters = {} | |
288 |
|
288 | |||
289 | def setup(self, project_id, id, name, datatype, err_queue, path='', startDate='', endDate='', |
|
289 | def setup(self, project_id, id, name, datatype, err_queue, path='', startDate='', endDate='', | |
290 | startTime='', endTime='', server=None, **kwargs): |
|
290 | startTime='', endTime='', server=None, **kwargs): | |
291 |
|
291 | |||
292 | if datatype == None and name == None: |
|
292 | if datatype == None and name == None: | |
293 | raise ValueError('datatype or name should be defined') |
|
293 | raise ValueError('datatype or name should be defined') | |
294 | if name == None: |
|
294 | if name == None: | |
295 | if 'Reader' in datatype: |
|
295 | if 'Reader' in datatype: | |
296 | name = datatype |
|
296 | name = datatype | |
297 | datatype = name.replace('Reader', '') |
|
297 | datatype = name.replace('Reader', '') | |
298 | else: |
|
298 | else: | |
299 | name = '{}Reader'.format(datatype) |
|
299 | name = '{}Reader'.format(datatype) | |
300 | if datatype == None: |
|
300 | if datatype == None: | |
301 | if 'Reader' in name: |
|
301 | if 'Reader' in name: | |
302 | datatype = name.replace('Reader', '') |
|
302 | datatype = name.replace('Reader', '') | |
303 | else: |
|
303 | else: | |
304 | datatype = name |
|
304 | datatype = name | |
305 | name = '{}Reader'.format(name) |
|
305 | name = '{}Reader'.format(name) | |
306 |
|
306 | |||
307 | self.id = id |
|
307 | self.id = id | |
308 | self.project_id = project_id |
|
308 | self.project_id = project_id | |
309 | self.name = name |
|
309 | self.name = name | |
310 | self.datatype = datatype |
|
310 | self.datatype = datatype | |
311 | self.err_queue = err_queue |
|
311 | self.err_queue = err_queue | |
312 |
|
312 | |||
313 | self.addParameter(name='path', value=path) |
|
313 | self.addParameter(name='path', value=path) | |
314 | self.addParameter(name='startDate', value=startDate) |
|
314 | self.addParameter(name='startDate', value=startDate) | |
315 | self.addParameter(name='endDate', value=endDate) |
|
315 | self.addParameter(name='endDate', value=endDate) | |
316 | self.addParameter(name='startTime', value=startTime) |
|
316 | self.addParameter(name='startTime', value=startTime) | |
317 | self.addParameter(name='endTime', value=endTime) |
|
317 | self.addParameter(name='endTime', value=endTime) | |
318 |
|
318 | |||
319 | for key, value in kwargs.items(): |
|
319 | for key, value in kwargs.items(): | |
320 | self.addParameter(name=key, value=value) |
|
320 | self.addParameter(name=key, value=value) | |
321 |
|
321 | |||
322 |
|
322 | |||
323 | class Project(Process): |
|
323 | class Project(Process): | |
324 | """API to create signal chain projects""" |
|
324 | """API to create signal chain projects""" | |
325 |
|
325 | |||
326 | ELEMENTNAME = 'Project' |
|
326 | ELEMENTNAME = 'Project' | |
327 |
|
327 | |||
328 | def __init__(self, name=''): |
|
328 | def __init__(self, name=''): | |
329 |
|
329 | |||
330 | Process.__init__(self) |
|
330 | Process.__init__(self) | |
331 | self.id = '1' |
|
331 | self.id = '1' | |
332 | if name: |
|
332 | if name: | |
333 | self.name = '{} ({})'.format(Process.__name__, name) |
|
333 | self.name = '{} ({})'.format(Process.__name__, name) | |
334 | self.filename = None |
|
334 | self.filename = None | |
335 | self.description = None |
|
335 | self.description = None | |
336 | self.email = None |
|
336 | self.email = None | |
337 | self.alarm = [] |
|
337 | self.alarm = [] | |
338 | self.configurations = {} |
|
338 | self.configurations = {} | |
339 | # self.err_queue = Queue() |
|
339 | # self.err_queue = Queue() | |
340 | self.err_queue = None |
|
340 | self.err_queue = None | |
341 | self.started = False |
|
341 | self.started = False | |
342 |
|
342 | |||
343 | def getNewId(self): |
|
343 | def getNewId(self): | |
344 |
|
344 | |||
345 | idList = list(self.configurations.keys()) |
|
345 | idList = list(self.configurations.keys()) | |
346 | id = int(self.id) * 10 |
|
346 | id = int(self.id) * 10 | |
347 |
|
347 | |||
348 | while True: |
|
348 | while True: | |
349 | id += 1 |
|
349 | id += 1 | |
350 |
|
350 | |||
351 | if str(id) in idList: |
|
351 | if str(id) in idList: | |
352 | continue |
|
352 | continue | |
353 |
|
353 | |||
354 | break |
|
354 | break | |
355 |
|
355 | |||
356 | return str(id) |
|
356 | return str(id) | |
357 |
|
357 | |||
358 | def updateId(self, new_id): |
|
358 | def updateId(self, new_id): | |
359 |
|
359 | |||
360 | self.id = str(new_id) |
|
360 | self.id = str(new_id) | |
361 |
|
361 | |||
362 | keyList = list(self.configurations.keys()) |
|
362 | keyList = list(self.configurations.keys()) | |
363 | keyList.sort() |
|
363 | keyList.sort() | |
364 |
|
364 | |||
365 | n = 1 |
|
365 | n = 1 | |
366 | new_confs = {} |
|
366 | new_confs = {} | |
367 |
|
367 | |||
368 | for procKey in keyList: |
|
368 | for procKey in keyList: | |
369 |
|
369 | |||
370 | conf = self.configurations[procKey] |
|
370 | conf = self.configurations[procKey] | |
371 | idProcUnit = str(int(self.id) * 10 + n) |
|
371 | idProcUnit = str(int(self.id) * 10 + n) | |
372 | conf.updateId(idProcUnit) |
|
372 | conf.updateId(idProcUnit) | |
373 | new_confs[idProcUnit] = conf |
|
373 | new_confs[idProcUnit] = conf | |
374 | n += 1 |
|
374 | n += 1 | |
375 |
|
375 | |||
376 | self.configurations = new_confs |
|
376 | self.configurations = new_confs | |
377 |
|
377 | |||
378 | def setup(self, id=1, name='', description='', email=None, alarm=[]): |
|
378 | def setup(self, id=1, name='', description='', email=None, alarm=[]): | |
379 |
|
379 | |||
380 | self.id = str(id) |
|
380 | self.id = str(id) | |
381 | self.description = description |
|
381 | self.description = description | |
382 | self.email = email |
|
382 | self.email = email | |
383 | self.alarm = alarm |
|
383 | self.alarm = alarm | |
384 | if name: |
|
384 | if name: | |
385 | self.name = '{} ({})'.format(Process.__name__, name) |
|
385 | self.name = '{} ({})'.format(Process.__name__, name) | |
386 |
|
386 | |||
387 | def update(self, **kwargs): |
|
387 | def update(self, **kwargs): | |
388 |
|
388 | |||
389 | for key, value in kwargs.items(): |
|
389 | for key, value in kwargs.items(): | |
390 | setattr(self, key, value) |
|
390 | setattr(self, key, value) | |
391 |
|
391 | |||
392 | def clone(self): |
|
392 | def clone(self): | |
393 |
|
393 | |||
394 | p = Project() |
|
394 | p = Project() | |
395 | p.id = self.id |
|
395 | p.id = self.id | |
396 | p.name = self.name |
|
396 | p.name = self.name | |
397 | p.description = self.description |
|
397 | p.description = self.description | |
398 | p.configurations = self.configurations.copy() |
|
398 | p.configurations = self.configurations.copy() | |
399 |
|
399 | |||
400 | return p |
|
400 | return p | |
401 |
|
401 | |||
402 | def addReadUnit(self, id=None, datatype=None, name=None, **kwargs): |
|
402 | def addReadUnit(self, id=None, datatype=None, name=None, **kwargs): | |
403 |
|
403 | |||
404 | ''' |
|
404 | ''' | |
405 | ''' |
|
405 | ''' | |
406 |
|
406 | |||
407 | if id is None: |
|
407 | if id is None: | |
408 | idReadUnit = self.getNewId() |
|
408 | idReadUnit = self.getNewId() | |
409 | else: |
|
409 | else: | |
410 | idReadUnit = str(id) |
|
410 | idReadUnit = str(id) | |
411 |
|
411 | |||
412 | conf = ReadUnitConf() |
|
412 | conf = ReadUnitConf() | |
413 | conf.setup(self.id, idReadUnit, name, datatype, self.err_queue, **kwargs) |
|
413 | conf.setup(self.id, idReadUnit, name, datatype, self.err_queue, **kwargs) | |
414 | self.configurations[conf.id] = conf |
|
414 | self.configurations[conf.id] = conf | |
415 |
|
415 | |||
416 | return conf |
|
416 | return conf | |
417 |
|
417 | |||
418 | def addProcUnit(self, id=None, inputId='0', datatype=None, name=None): |
|
418 | def addProcUnit(self, id=None, inputId='0', datatype=None, name=None): | |
419 |
|
419 | |||
420 | ''' |
|
420 | ''' | |
421 | ''' |
|
421 | ''' | |
422 |
|
422 | |||
423 | if id is None: |
|
423 | if id is None: | |
424 | idProcUnit = self.getNewId() |
|
424 | idProcUnit = self.getNewId() | |
425 | else: |
|
425 | else: | |
426 | idProcUnit = id |
|
426 | idProcUnit = id | |
427 |
|
427 | |||
428 | conf = ProcUnitConf() |
|
428 | conf = ProcUnitConf() | |
429 | conf.setup(self.id, idProcUnit, name, datatype, inputId, self.err_queue) |
|
429 | conf.setup(self.id, idProcUnit, name, datatype, inputId, self.err_queue) | |
430 | self.configurations[conf.id] = conf |
|
430 | self.configurations[conf.id] = conf | |
431 |
|
431 | |||
432 | return conf |
|
432 | return conf | |
433 |
|
433 | |||
434 | def removeProcUnit(self, id): |
|
434 | def removeProcUnit(self, id): | |
435 |
|
435 | |||
436 | if id in self.configurations: |
|
436 | if id in self.configurations: | |
437 | self.configurations.pop(id) |
|
437 | self.configurations.pop(id) | |
438 |
|
438 | |||
439 | def getReadUnit(self): |
|
439 | def getReadUnit(self): | |
440 |
|
440 | |||
441 | for obj in list(self.configurations.values()): |
|
441 | for obj in list(self.configurations.values()): | |
442 | if obj.ELEMENTNAME == 'ReadUnit': |
|
442 | if obj.ELEMENTNAME == 'ReadUnit': | |
443 | return obj |
|
443 | return obj | |
444 |
|
444 | |||
445 | return None |
|
445 | return None | |
446 |
|
446 | |||
447 | def getProcUnit(self, id): |
|
447 | def getProcUnit(self, id): | |
448 |
|
448 | |||
449 | return self.configurations[id] |
|
449 | return self.configurations[id] | |
450 |
|
450 | |||
451 | def getUnits(self): |
|
451 | def getUnits(self): | |
452 |
|
452 | |||
453 | keys = list(self.configurations) |
|
453 | keys = list(self.configurations) | |
454 | keys.sort() |
|
454 | keys.sort() | |
455 |
|
455 | |||
456 | for key in keys: |
|
456 | for key in keys: | |
457 | yield self.configurations[key] |
|
457 | yield self.configurations[key] | |
458 |
|
458 | |||
459 | def updateUnit(self, id, **kwargs): |
|
459 | def updateUnit(self, id, **kwargs): | |
460 |
|
460 | |||
461 | conf = self.configurations[id].update(**kwargs) |
|
461 | conf = self.configurations[id].update(**kwargs) | |
462 |
|
462 | |||
463 | def makeXml(self): |
|
463 | def makeXml(self): | |
464 |
|
464 | |||
465 | xml = Element('Project') |
|
465 | xml = Element('Project') | |
466 | xml.set('id', str(self.id)) |
|
466 | xml.set('id', str(self.id)) | |
467 | xml.set('name', self.name) |
|
467 | xml.set('name', self.name) | |
468 | xml.set('description', self.description) |
|
468 | xml.set('description', self.description) | |
469 |
|
469 | |||
470 | for conf in self.configurations.values(): |
|
470 | for conf in self.configurations.values(): | |
471 | conf.makeXml(xml) |
|
471 | conf.makeXml(xml) | |
472 |
|
472 | |||
473 | self.xml = xml |
|
473 | self.xml = xml | |
474 |
|
474 | |||
475 | def writeXml(self, filename=None): |
|
475 | def writeXml(self, filename=None): | |
476 |
|
476 | |||
477 | if filename == None: |
|
477 | if filename == None: | |
478 | if self.filename: |
|
478 | if self.filename: | |
479 | filename = self.filename |
|
479 | filename = self.filename | |
480 | else: |
|
480 | else: | |
481 | filename = 'schain.xml' |
|
481 | filename = 'schain.xml' | |
482 |
|
482 | |||
483 | if not filename: |
|
483 | if not filename: | |
484 | print('filename has not been defined. Use setFilename(filename) for do it.') |
|
484 | print('filename has not been defined. Use setFilename(filename) for do it.') | |
485 | return 0 |
|
485 | return 0 | |
486 |
|
486 | |||
487 | abs_file = os.path.abspath(filename) |
|
487 | abs_file = os.path.abspath(filename) | |
488 |
|
488 | |||
489 | if not os.access(os.path.dirname(abs_file), os.W_OK): |
|
489 | if not os.access(os.path.dirname(abs_file), os.W_OK): | |
490 | print('No write permission on %s' % os.path.dirname(abs_file)) |
|
490 | print('No write permission on %s' % os.path.dirname(abs_file)) | |
491 | return 0 |
|
491 | return 0 | |
492 |
|
492 | |||
493 | if os.path.isfile(abs_file) and not(os.access(abs_file, os.W_OK)): |
|
493 | if os.path.isfile(abs_file) and not(os.access(abs_file, os.W_OK)): | |
494 | print('File %s already exists and it could not be overwriten' % abs_file) |
|
494 | print('File %s already exists and it could not be overwriten' % abs_file) | |
495 | return 0 |
|
495 | return 0 | |
496 |
|
496 | |||
497 | self.makeXml() |
|
497 | self.makeXml() | |
498 |
|
498 | |||
499 | ElementTree(self.xml).write(abs_file, method='xml') |
|
499 | ElementTree(self.xml).write(abs_file, method='xml') | |
500 |
|
500 | |||
501 | self.filename = abs_file |
|
501 | self.filename = abs_file | |
502 |
|
502 | |||
503 | return 1 |
|
503 | return 1 | |
504 |
|
504 | |||
505 | def readXml(self, filename): |
|
505 | def readXml(self, filename): | |
506 |
|
506 | |||
507 | abs_file = os.path.abspath(filename) |
|
507 | abs_file = os.path.abspath(filename) | |
508 |
|
508 | |||
509 | self.configurations = {} |
|
509 | self.configurations = {} | |
510 |
|
510 | |||
511 | try: |
|
511 | try: | |
512 | self.xml = ElementTree().parse(abs_file) |
|
512 | self.xml = ElementTree().parse(abs_file) | |
513 | except: |
|
513 | except: | |
514 | log.error('Error reading %s, verify file format' % filename) |
|
514 | log.error('Error reading %s, verify file format' % filename) | |
515 | return 0 |
|
515 | return 0 | |
516 |
|
516 | |||
517 | self.id = self.xml.get('id') |
|
517 | self.id = self.xml.get('id') | |
518 | self.name = self.xml.get('name') |
|
518 | self.name = self.xml.get('name') | |
519 | self.description = self.xml.get('description') |
|
519 | self.description = self.xml.get('description') | |
520 |
|
520 | |||
521 | for element in self.xml: |
|
521 | for element in self.xml: | |
522 | if element.tag == 'ReadUnit': |
|
522 | if element.tag == 'ReadUnit': | |
523 | conf = ReadUnitConf() |
|
523 | conf = ReadUnitConf() | |
524 | conf.readXml(element, self.id, self.err_queue) |
|
524 | conf.readXml(element, self.id, self.err_queue) | |
525 | self.configurations[conf.id] = conf |
|
525 | self.configurations[conf.id] = conf | |
526 | elif element.tag == 'ProcUnit': |
|
526 | elif element.tag == 'ProcUnit': | |
527 | conf = ProcUnitConf() |
|
527 | conf = ProcUnitConf() | |
528 | input_proc = self.configurations[element.get('inputId')] |
|
528 | input_proc = self.configurations[element.get('inputId')] | |
529 | conf.readXml(element, self.id, self.err_queue) |
|
529 | conf.readXml(element, self.id, self.err_queue) | |
530 | self.configurations[conf.id] = conf |
|
530 | self.configurations[conf.id] = conf | |
531 |
|
531 | |||
532 | self.filename = abs_file |
|
532 | self.filename = abs_file | |
533 |
|
533 | |||
534 | return 1 |
|
534 | return 1 | |
535 |
|
535 | |||
536 | def __str__(self): |
|
536 | def __str__(self): | |
537 |
|
537 | |||
538 | text = '\nProject[id=%s, name=%s, description=%s]\n\n' % ( |
|
538 | text = '\nProject[id=%s, name=%s, description=%s]\n\n' % ( | |
539 | self.id, |
|
539 | self.id, | |
540 | self.name, |
|
540 | self.name, | |
541 | self.description, |
|
541 | self.description, | |
542 | ) |
|
542 | ) | |
543 |
|
543 | |||
544 | for conf in self.configurations.values(): |
|
544 | for conf in self.configurations.values(): | |
545 | text += '{}'.format(conf) |
|
545 | text += '{}'.format(conf) | |
546 |
|
546 | |||
547 | return text |
|
547 | return text | |
548 |
|
548 | |||
549 | def createObjects(self): |
|
549 | def createObjects(self): | |
550 |
|
550 | |||
551 | keys = list(self.configurations.keys()) |
|
551 | keys = list(self.configurations.keys()) | |
552 | keys.sort() |
|
552 | keys.sort() | |
553 | for key in keys: |
|
553 | for key in keys: | |
554 | conf = self.configurations[key] |
|
554 | conf = self.configurations[key] | |
555 | conf.createObjects() |
|
555 | conf.createObjects() | |
556 | if conf.inputId is not None: |
|
556 | if conf.inputId is not None: | |
557 | if isinstance(conf.inputId, list): |
|
557 | if isinstance(conf.inputId, list): | |
558 | conf.object.setInput([self.configurations[x].object for x in conf.inputId]) |
|
558 | conf.object.setInput([self.configurations[x].object for x in conf.inputId]) | |
559 | else: |
|
559 | else: | |
560 | conf.object.setInput([self.configurations[conf.inputId].object]) |
|
560 | conf.object.setInput([self.configurations[conf.inputId].object]) | |
561 |
|
561 | |||
562 | def monitor(self): |
|
562 | def monitor(self): | |
563 |
|
563 | |||
564 | t = Thread(target=self._monitor, args=(self.err_queue, self.ctx)) |
|
564 | t = Thread(target=self._monitor, args=(self.err_queue, self.ctx)) | |
565 | t.start() |
|
565 | t.start() | |
566 |
|
566 | |||
567 | def _monitor(self, queue, ctx): |
|
567 | def _monitor(self, queue, ctx): | |
568 |
|
568 | |||
569 | import socket |
|
569 | import socket | |
570 |
|
570 | |||
571 | procs = 0 |
|
571 | procs = 0 | |
572 | err_msg = '' |
|
572 | err_msg = '' | |
573 |
|
573 | |||
574 | while True: |
|
574 | while True: | |
575 | msg = queue.get() |
|
575 | msg = queue.get() | |
576 | if '#_start_#' in msg: |
|
576 | if '#_start_#' in msg: | |
577 | procs += 1 |
|
577 | procs += 1 | |
578 | elif '#_end_#' in msg: |
|
578 | elif '#_end_#' in msg: | |
579 | procs -= 1 |
|
579 | procs -= 1 | |
580 | else: |
|
580 | else: | |
581 | err_msg = msg |
|
581 | err_msg = msg | |
582 |
|
582 | |||
583 | if procs == 0 or 'Traceback' in err_msg: |
|
583 | if procs == 0 or 'Traceback' in err_msg: | |
584 | break |
|
584 | break | |
585 | time.sleep(0.1) |
|
585 | time.sleep(0.1) | |
586 |
|
586 | |||
587 | if '|' in err_msg: |
|
587 | if '|' in err_msg: | |
588 | name, err = err_msg.split('|') |
|
588 | name, err = err_msg.split('|') | |
589 | if 'SchainWarning' in err: |
|
589 | if 'SchainWarning' in err: | |
590 | log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), name) |
|
590 | log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), name) | |
591 | elif 'SchainError' in err: |
|
591 | elif 'SchainError' in err: | |
592 | log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), name) |
|
592 | log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), name) | |
593 | else: |
|
593 | else: | |
594 | log.error(err, name) |
|
594 | log.error(err, name) | |
595 | else: |
|
595 | else: | |
596 | name, err = self.name, err_msg |
|
596 | name, err = self.name, err_msg | |
597 |
|
597 | |||
598 | time.sleep(1) |
|
598 | time.sleep(1) | |
599 |
|
599 | |||
600 | ctx.term() |
|
600 | ctx.term() | |
601 |
|
601 | |||
602 | message = ''.join(err) |
|
602 | message = ''.join(err) | |
603 |
|
603 | |||
604 | if err_msg: |
|
604 | if err_msg: | |
605 | subject = 'SChain v%s: Error running %s\n' % ( |
|
605 | subject = 'SChain v%s: Error running %s\n' % ( | |
606 | schainpy.__version__, self.name) |
|
606 | schainpy.__version__, self.name) | |
607 |
|
607 | |||
608 | subtitle = 'Hostname: %s\n' % socket.gethostbyname( |
|
608 | subtitle = 'Hostname: %s\n' % socket.gethostbyname( | |
609 | socket.gethostname()) |
|
609 | socket.gethostname()) | |
610 | subtitle += 'Working directory: %s\n' % os.path.abspath('./') |
|
610 | subtitle += 'Working directory: %s\n' % os.path.abspath('./') | |
611 | subtitle += 'Configuration file: %s\n' % self.filename |
|
611 | subtitle += 'Configuration file: %s\n' % self.filename | |
612 | subtitle += 'Time: %s\n' % str(datetime.datetime.now()) |
|
612 | subtitle += 'Time: %s\n' % str(datetime.datetime.now()) | |
613 |
|
613 | |||
614 | readUnitConfObj = self.getReadUnit() |
|
614 | readUnitConfObj = self.getReadUnit() | |
615 | if readUnitConfObj: |
|
615 | if readUnitConfObj: | |
616 | subtitle += '\nInput parameters:\n' |
|
616 | subtitle += '\nInput parameters:\n' | |
617 | subtitle += '[Data path = %s]\n' % readUnitConfObj.parameters['path'] |
|
617 | subtitle += '[Data path = %s]\n' % readUnitConfObj.parameters['path'] | |
618 | subtitle += '[Start date = %s]\n' % readUnitConfObj.parameters['startDate'] |
|
618 | subtitle += '[Start date = %s]\n' % readUnitConfObj.parameters['startDate'] | |
619 | subtitle += '[End date = %s]\n' % readUnitConfObj.parameters['endDate'] |
|
619 | subtitle += '[End date = %s]\n' % readUnitConfObj.parameters['endDate'] | |
620 | subtitle += '[Start time = %s]\n' % readUnitConfObj.parameters['startTime'] |
|
620 | subtitle += '[Start time = %s]\n' % readUnitConfObj.parameters['startTime'] | |
621 | subtitle += '[End time = %s]\n' % readUnitConfObj.parameters['endTime'] |
|
621 | subtitle += '[End time = %s]\n' % readUnitConfObj.parameters['endTime'] | |
622 |
|
622 | |||
623 | a = Alarm( |
|
623 | a = Alarm( | |
624 | modes=self.alarm, |
|
624 | modes=self.alarm, | |
625 | email=self.email, |
|
625 | email=self.email, | |
626 | message=message, |
|
626 | message=message, | |
627 | subject=subject, |
|
627 | subject=subject, | |
628 | subtitle=subtitle, |
|
628 | subtitle=subtitle, | |
629 | filename=self.filename |
|
629 | filename=self.filename | |
630 | ) |
|
630 | ) | |
631 |
|
631 | |||
632 | a.start() |
|
632 | a.start() | |
633 |
|
633 | |||
634 | def setFilename(self, filename): |
|
634 | def setFilename(self, filename): | |
635 |
|
635 | |||
636 | self.filename = filename |
|
636 | self.filename = filename | |
637 |
|
637 | |||
638 | def runProcs(self): |
|
638 | def runProcs(self): | |
639 |
|
639 | |||
640 | err = False |
|
640 | err = False | |
641 | n = len(self.configurations) |
|
641 | n = len(self.configurations) | |
642 | #print(n) |
|
642 | #print(n) | |
643 |
|
643 | |||
644 | while not err: |
|
644 | while not err: | |
645 | #print(self.getUnits()) |
|
645 | #print(self.getUnits()) | |
646 | for conf in self.getUnits(): |
|
646 | for conf in self.getUnits(): | |
647 | #print(conf) |
|
647 | #print(conf) | |
648 | ok = conf.run() |
|
648 | ok = conf.run() | |
649 | #print("ok", ok) |
|
649 | #print("ok", ok) | |
650 | if ok == 'Error': |
|
650 | if ok == 'Error': | |
651 | n -= 1 |
|
651 | n -= 1 | |
652 | continue |
|
652 | continue | |
653 | elif not ok: |
|
653 | elif not ok: | |
654 | break |
|
654 | break | |
655 | #print("****************************************************end") |
|
655 | #print("****************************************************end") | |
|
656 | #exit(1) | |||
656 | if n == 0: |
|
657 | if n == 0: | |
657 | err = True |
|
658 | err = True | |
658 |
|
659 | |||
659 | def run(self): |
|
660 | def run(self): | |
660 |
|
661 | |||
661 | log.success('\nStarting Project {} [id={}]'.format(self.name, self.id), tag='') |
|
662 | log.success('\nStarting Project {} [id={}]'.format(self.name, self.id), tag='') | |
662 | self.started = True |
|
663 | self.started = True | |
663 | self.start_time = time.time() |
|
664 | self.start_time = time.time() | |
664 | self.createObjects() |
|
665 | self.createObjects() | |
665 | self.runProcs() |
|
666 | self.runProcs() | |
666 | log.success('{} Done (Time: {:4.2f}s)'.format( |
|
667 | log.success('{} Done (Time: {:4.2f}s)'.format( | |
667 | self.name, |
|
668 | self.name, | |
668 | time.time() - self.start_time), '') |
|
669 | time.time() - self.start_time), '') |
@@ -1,1288 +1,1290 | |||||
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Classes to plot Spectra data |
|
5 | """Classes to plot Spectra data | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import numpy |
|
10 | import numpy | |
11 |
|
11 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
13 |
|
13 | |||
14 | class SpectraPlot(Plot): |
|
14 | class SpectraPlot(Plot): | |
15 | ''' |
|
15 | ''' | |
16 | Plot for Spectra data |
|
16 | Plot for Spectra data | |
17 | ''' |
|
17 | ''' | |
18 |
|
18 | |||
19 | CODE = 'spc' |
|
19 | CODE = 'spc' | |
20 | colormap = 'jet' |
|
20 | colormap = 'jet' | |
21 | plot_type = 'pcolor' |
|
21 | plot_type = 'pcolor' | |
22 | buffering = False |
|
22 | buffering = False | |
23 |
|
23 | |||
24 | def setup(self): |
|
24 | def setup(self): | |
25 |
|
25 | |||
26 | self.nplots = len(self.data.channels) |
|
26 | self.nplots = len(self.data.channels) | |
27 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
27 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
28 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
28 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
29 | self.height = 2.6 * self.nrows |
|
29 | self.height = 2.6 * self.nrows | |
30 | self.cb_label = 'dB' |
|
30 | self.cb_label = 'dB' | |
31 | if self.showprofile: |
|
31 | if self.showprofile: | |
32 | self.width = 4 * self.ncols |
|
32 | self.width = 4 * self.ncols | |
33 | else: |
|
33 | else: | |
34 | self.width = 3.5 * self.ncols |
|
34 | self.width = 3.5 * self.ncols | |
35 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
35 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
36 | self.ylabel = 'Range [km]' |
|
36 | self.ylabel = 'Range [km]' | |
37 |
|
37 | |||
38 | def update(self, dataOut): |
|
38 | def update(self, dataOut): | |
39 |
|
39 | |||
40 | data = {} |
|
40 | data = {} | |
41 | meta = {} |
|
41 | meta = {} | |
42 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
42 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
43 | data['spc'] = spc |
|
43 | data['spc'] = spc | |
44 | data['rti'] = dataOut.getPower() |
|
44 | data['rti'] = dataOut.getPower() | |
|
45 | #print("NormFactor: ",dataOut.normFactor) | |||
45 | #data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
46 | #data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
46 | if hasattr(dataOut, 'LagPlot'): #Double Pulse |
|
47 | if hasattr(dataOut, 'LagPlot'): #Double Pulse | |
47 | max_hei_id = dataOut.nHeights - 2*dataOut.LagPlot |
|
48 | max_hei_id = dataOut.nHeights - 2*dataOut.LagPlot | |
48 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=46,ymax_index=max_hei_id)/dataOut.normFactor) |
|
49 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=46,ymax_index=max_hei_id)/dataOut.normFactor) | |
49 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=40,ymax_index=max_hei_id)/dataOut.normFactor) |
|
50 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=40,ymax_index=max_hei_id)/dataOut.normFactor) | |
50 | data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)/dataOut.normFactor) |
|
51 | data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)/dataOut.normFactor) | |
51 | data['noise'][0] = 10*numpy.log10(dataOut.getNoise(ymin_index=53)[0]/dataOut.normFactor) |
|
52 | data['noise'][0] = 10*numpy.log10(dataOut.getNoise(ymin_index=53)[0]/dataOut.normFactor) | |
52 | #data['noise'][1] = 22.035507 |
|
53 | #data['noise'][1] = 22.035507 | |
53 | else: |
|
54 | else: | |
54 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
55 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
55 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=26,ymax_index=44)/dataOut.normFactor) |
|
56 | #data['noise'] = 10*numpy.log10(dataOut.getNoise(ymin_index=26,ymax_index=44)/dataOut.normFactor) | |
56 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
57 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
57 |
|
58 | |||
58 | if self.CODE == 'spc_moments': |
|
59 | if self.CODE == 'spc_moments': | |
59 | data['moments'] = dataOut.moments |
|
60 | data['moments'] = dataOut.moments | |
60 | if self.CODE == 'gaussian_fit': |
|
61 | if self.CODE == 'gaussian_fit': | |
61 | data['gaussfit'] = dataOut.DGauFitParams |
|
62 | data['gaussfit'] = dataOut.DGauFitParams | |
62 |
|
63 | |||
63 | return data, meta |
|
64 | return data, meta | |
64 |
|
65 | |||
65 | def plot(self): |
|
66 | def plot(self): | |
66 |
|
67 | |||
67 | if self.xaxis == "frequency": |
|
68 | if self.xaxis == "frequency": | |
68 | x = self.data.xrange[0] |
|
69 | x = self.data.xrange[0] | |
69 | self.xlabel = "Frequency (kHz)" |
|
70 | self.xlabel = "Frequency (kHz)" | |
70 | elif self.xaxis == "time": |
|
71 | elif self.xaxis == "time": | |
71 | x = self.data.xrange[1] |
|
72 | x = self.data.xrange[1] | |
72 | self.xlabel = "Time (ms)" |
|
73 | self.xlabel = "Time (ms)" | |
73 | else: |
|
74 | else: | |
74 | x = self.data.xrange[2] |
|
75 | x = self.data.xrange[2] | |
75 | self.xlabel = "Velocity (m/s)" |
|
76 | self.xlabel = "Velocity (m/s)" | |
76 |
|
77 | |||
77 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): |
|
78 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): | |
78 | x = self.data.xrange[2] |
|
79 | x = self.data.xrange[2] | |
79 | self.xlabel = "Velocity (m/s)" |
|
80 | self.xlabel = "Velocity (m/s)" | |
80 |
|
81 | |||
81 | self.titles = [] |
|
82 | self.titles = [] | |
82 |
|
83 | |||
83 | y = self.data.yrange |
|
84 | y = self.data.yrange | |
84 | self.y = y |
|
85 | self.y = y | |
85 |
|
86 | |||
86 | data = self.data[-1] |
|
87 | data = self.data[-1] | |
87 | z = data['spc'] |
|
88 | z = data['spc'] | |
88 |
|
89 | |||
89 | self.CODE2 = 'spc_oblique' |
|
90 | self.CODE2 = 'spc_oblique' | |
90 |
|
91 | |||
91 |
|
92 | |||
92 | for n, ax in enumerate(self.axes): |
|
93 | for n, ax in enumerate(self.axes): | |
93 | noise = data['noise'][n] |
|
94 | noise = data['noise'][n] | |
94 | if self.CODE == 'spc_moments': |
|
95 | if self.CODE == 'spc_moments': | |
95 | mean = data['moments'][n, 1] |
|
96 | mean = data['moments'][n, 1] | |
96 | if self.CODE == 'gaussian_fit': |
|
97 | if self.CODE == 'gaussian_fit': | |
97 | gau0 = data['gaussfit'][n][2,:,0] |
|
98 | gau0 = data['gaussfit'][n][2,:,0] | |
98 | gau1 = data['gaussfit'][n][2,:,1] |
|
99 | gau1 = data['gaussfit'][n][2,:,1] | |
99 | if ax.firsttime: |
|
100 | if ax.firsttime: | |
100 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
101 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
101 | self.xmin = self.xmin if self.xmin else numpy.nanmin(x)#-self.xmax |
|
102 | self.xmin = self.xmin if self.xmin else numpy.nanmin(x)#-self.xmax | |
102 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
103 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
103 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
104 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
|
105 | ||||
104 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
106 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
105 | vmin=self.zmin, |
|
107 | vmin=self.zmin, | |
106 | vmax=self.zmax, |
|
108 | vmax=self.zmax, | |
107 | cmap=plt.get_cmap(self.colormap) |
|
109 | cmap=plt.get_cmap(self.colormap), | |
108 | ) |
|
110 | ) | |
109 |
|
111 | |||
110 | if self.showprofile: |
|
112 | if self.showprofile: | |
111 | ax.plt_profile = self.pf_axes[n].plot( |
|
113 | ax.plt_profile = self.pf_axes[n].plot( | |
112 | data['rti'][n], y)[0] |
|
114 | data['rti'][n], y)[0] | |
113 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
115 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
114 | color="k", linestyle="dashed", lw=1)[0] |
|
116 | color="k", linestyle="dashed", lw=1)[0] | |
115 | if self.CODE == 'spc_moments': |
|
117 | if self.CODE == 'spc_moments': | |
116 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
118 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] | |
117 | if self.CODE == 'gaussian_fit': |
|
119 | if self.CODE == 'gaussian_fit': | |
118 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] |
|
120 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] | |
119 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] |
|
121 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] | |
120 | else: |
|
122 | else: | |
121 | ax.plt.set_array(z[n].T.ravel()) |
|
123 | ax.plt.set_array(z[n].T.ravel()) | |
122 | if self.showprofile: |
|
124 | if self.showprofile: | |
123 | ax.plt_profile.set_data(data['rti'][n], y) |
|
125 | ax.plt_profile.set_data(data['rti'][n], y) | |
124 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
126 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
125 | if self.CODE == 'spc_moments': |
|
127 | if self.CODE == 'spc_moments': | |
126 | ax.plt_mean.set_data(mean, y) |
|
128 | ax.plt_mean.set_data(mean, y) | |
127 | if self.CODE == 'gaussian_fit': |
|
129 | if self.CODE == 'gaussian_fit': | |
128 | ax.plt_gau0.set_data(gau0, y) |
|
130 | ax.plt_gau0.set_data(gau0, y) | |
129 | ax.plt_gau1.set_data(gau1, y) |
|
131 | ax.plt_gau1.set_data(gau1, y) | |
130 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
132 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
131 |
|
133 | |||
132 | class SpectraObliquePlot(Plot): |
|
134 | class SpectraObliquePlot(Plot): | |
133 | ''' |
|
135 | ''' | |
134 | Plot for Spectra data |
|
136 | Plot for Spectra data | |
135 | ''' |
|
137 | ''' | |
136 |
|
138 | |||
137 | CODE = 'spc_oblique' |
|
139 | CODE = 'spc_oblique' | |
138 | colormap = 'jet' |
|
140 | colormap = 'jet' | |
139 | plot_type = 'pcolor' |
|
141 | plot_type = 'pcolor' | |
140 |
|
142 | |||
141 | def setup(self): |
|
143 | def setup(self): | |
142 | self.xaxis = "oblique" |
|
144 | self.xaxis = "oblique" | |
143 | self.nplots = len(self.data.channels) |
|
145 | self.nplots = len(self.data.channels) | |
144 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
146 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
145 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
147 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
146 | self.height = 2.6 * self.nrows |
|
148 | self.height = 2.6 * self.nrows | |
147 | self.cb_label = 'dB' |
|
149 | self.cb_label = 'dB' | |
148 | if self.showprofile: |
|
150 | if self.showprofile: | |
149 | self.width = 4 * self.ncols |
|
151 | self.width = 4 * self.ncols | |
150 | else: |
|
152 | else: | |
151 | self.width = 3.5 * self.ncols |
|
153 | self.width = 3.5 * self.ncols | |
152 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
154 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
153 | self.ylabel = 'Range [km]' |
|
155 | self.ylabel = 'Range [km]' | |
154 |
|
156 | |||
155 | def update(self, dataOut): |
|
157 | def update(self, dataOut): | |
156 |
|
158 | |||
157 | data = {} |
|
159 | data = {} | |
158 | meta = {} |
|
160 | meta = {} | |
159 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
161 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
160 | data['spc'] = spc |
|
162 | data['spc'] = spc | |
161 | data['rti'] = dataOut.getPower() |
|
163 | data['rti'] = dataOut.getPower() | |
162 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
164 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
163 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
165 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
164 |
|
166 | |||
165 | data['shift1'] = dataOut.Oblique_params[0][1] |
|
167 | data['shift1'] = dataOut.Oblique_params[0][1] | |
166 | data['shift2'] = dataOut.Oblique_params[0][4] |
|
168 | data['shift2'] = dataOut.Oblique_params[0][4] | |
167 | data['shift1_error'] = dataOut.Oblique_param_errors[0][1] |
|
169 | data['shift1_error'] = dataOut.Oblique_param_errors[0][1] | |
168 | data['shift2_error'] = dataOut.Oblique_param_errors[0][4] |
|
170 | data['shift2_error'] = dataOut.Oblique_param_errors[0][4] | |
169 |
|
171 | |||
170 | return data, meta |
|
172 | return data, meta | |
171 |
|
173 | |||
172 | def plot(self): |
|
174 | def plot(self): | |
173 |
|
175 | |||
174 | if self.xaxis == "frequency": |
|
176 | if self.xaxis == "frequency": | |
175 | x = self.data.xrange[0] |
|
177 | x = self.data.xrange[0] | |
176 | self.xlabel = "Frequency (kHz)" |
|
178 | self.xlabel = "Frequency (kHz)" | |
177 | elif self.xaxis == "time": |
|
179 | elif self.xaxis == "time": | |
178 | x = self.data.xrange[1] |
|
180 | x = self.data.xrange[1] | |
179 | self.xlabel = "Time (ms)" |
|
181 | self.xlabel = "Time (ms)" | |
180 | else: |
|
182 | else: | |
181 | x = self.data.xrange[2] |
|
183 | x = self.data.xrange[2] | |
182 | self.xlabel = "Velocity (m/s)" |
|
184 | self.xlabel = "Velocity (m/s)" | |
183 |
|
185 | |||
184 | self.titles = [] |
|
186 | self.titles = [] | |
185 |
|
187 | |||
186 | y = self.data.yrange |
|
188 | y = self.data.yrange | |
187 | self.y = y |
|
189 | self.y = y | |
188 | z = self.data['spc'] |
|
190 | z = self.data['spc'] | |
189 |
|
191 | |||
190 | for n, ax in enumerate(self.axes): |
|
192 | for n, ax in enumerate(self.axes): | |
191 | noise = self.data['noise'][n][-1] |
|
193 | noise = self.data['noise'][n][-1] | |
192 | shift1 = self.data['shift1'] |
|
194 | shift1 = self.data['shift1'] | |
193 | shift2 = self.data['shift2'] |
|
195 | shift2 = self.data['shift2'] | |
194 | err1 = self.data['shift1_error'] |
|
196 | err1 = self.data['shift1_error'] | |
195 | err2 = self.data['shift2_error'] |
|
197 | err2 = self.data['shift2_error'] | |
196 | if ax.firsttime: |
|
198 | if ax.firsttime: | |
197 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
199 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
198 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
200 | self.xmin = self.xmin if self.xmin else -self.xmax | |
199 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
201 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
200 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
202 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
201 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
203 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
202 | vmin=self.zmin, |
|
204 | vmin=self.zmin, | |
203 | vmax=self.zmax, |
|
205 | vmax=self.zmax, | |
204 | cmap=plt.get_cmap(self.colormap) |
|
206 | cmap=plt.get_cmap(self.colormap) | |
205 | ) |
|
207 | ) | |
206 |
|
208 | |||
207 | if self.showprofile: |
|
209 | if self.showprofile: | |
208 | ax.plt_profile = self.pf_axes[n].plot( |
|
210 | ax.plt_profile = self.pf_axes[n].plot( | |
209 | self.data['rti'][n][-1], y)[0] |
|
211 | self.data['rti'][n][-1], y)[0] | |
210 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
212 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
211 | color="k", linestyle="dashed", lw=1)[0] |
|
213 | color="k", linestyle="dashed", lw=1)[0] | |
212 |
|
214 | |||
213 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=0.2, marker='x', linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) |
|
215 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=0.2, marker='x', linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) | |
214 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) |
|
216 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) | |
215 | else: |
|
217 | else: | |
216 | self.ploterr1.remove() |
|
218 | self.ploterr1.remove() | |
217 | self.ploterr2.remove() |
|
219 | self.ploterr2.remove() | |
218 | ax.plt.set_array(z[n].T.ravel()) |
|
220 | ax.plt.set_array(z[n].T.ravel()) | |
219 | if self.showprofile: |
|
221 | if self.showprofile: | |
220 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
222 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) | |
221 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
223 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
222 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) |
|
224 | self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) | |
223 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) |
|
225 | self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=0.2,marker='x',linestyle='None',markersize=0.5,capsize=0.3,markeredgewidth=0.2) | |
224 |
|
226 | |||
225 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
227 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
226 |
|
228 | |||
227 |
|
229 | |||
228 | class CrossSpectraPlot(Plot): |
|
230 | class CrossSpectraPlot(Plot): | |
229 |
|
231 | |||
230 | CODE = 'cspc' |
|
232 | CODE = 'cspc' | |
231 | colormap = 'jet' |
|
233 | colormap = 'jet' | |
232 | plot_type = 'pcolor' |
|
234 | plot_type = 'pcolor' | |
233 | zmin_coh = None |
|
235 | zmin_coh = None | |
234 | zmax_coh = None |
|
236 | zmax_coh = None | |
235 | zmin_phase = None |
|
237 | zmin_phase = None | |
236 | zmax_phase = None |
|
238 | zmax_phase = None | |
237 |
|
239 | |||
238 | def setup(self): |
|
240 | def setup(self): | |
239 |
|
241 | |||
240 | self.ncols = 4 |
|
242 | self.ncols = 4 | |
241 | self.nplots = len(self.data.pairs) * 2 |
|
243 | self.nplots = len(self.data.pairs) * 2 | |
242 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
244 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
243 | self.width = 3.1 * self.ncols |
|
245 | self.width = 3.1 * self.ncols | |
244 | self.height = 5 * self.nrows |
|
246 | self.height = 5 * self.nrows | |
245 | self.ylabel = 'Range [km]' |
|
247 | self.ylabel = 'Range [km]' | |
246 | self.showprofile = False |
|
248 | self.showprofile = False | |
247 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
249 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
248 |
|
250 | |||
249 | def update(self, dataOut): |
|
251 | def update(self, dataOut): | |
250 |
|
252 | |||
251 | data = {} |
|
253 | data = {} | |
252 | meta = {} |
|
254 | meta = {} | |
253 |
|
255 | |||
254 | spc = dataOut.data_spc |
|
256 | spc = dataOut.data_spc | |
255 | cspc = dataOut.data_cspc |
|
257 | cspc = dataOut.data_cspc | |
256 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
258 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
257 | meta['pairs'] = dataOut.pairsList |
|
259 | meta['pairs'] = dataOut.pairsList | |
258 |
|
260 | |||
259 | tmp = [] |
|
261 | tmp = [] | |
260 |
|
262 | |||
261 | for n, pair in enumerate(meta['pairs']): |
|
263 | for n, pair in enumerate(meta['pairs']): | |
262 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
264 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
263 | coh = numpy.abs(out) |
|
265 | coh = numpy.abs(out) | |
264 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
266 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
265 | tmp.append(coh) |
|
267 | tmp.append(coh) | |
266 | tmp.append(phase) |
|
268 | tmp.append(phase) | |
267 |
|
269 | |||
268 | data['cspc'] = numpy.array(tmp) |
|
270 | data['cspc'] = numpy.array(tmp) | |
269 |
|
271 | |||
270 | return data, meta |
|
272 | return data, meta | |
271 |
|
273 | |||
272 | def plot(self): |
|
274 | def plot(self): | |
273 |
|
275 | |||
274 | if self.xaxis == "frequency": |
|
276 | if self.xaxis == "frequency": | |
275 | x = self.data.xrange[0] |
|
277 | x = self.data.xrange[0] | |
276 | self.xlabel = "Frequency (kHz)" |
|
278 | self.xlabel = "Frequency (kHz)" | |
277 | elif self.xaxis == "time": |
|
279 | elif self.xaxis == "time": | |
278 | x = self.data.xrange[1] |
|
280 | x = self.data.xrange[1] | |
279 | self.xlabel = "Time (ms)" |
|
281 | self.xlabel = "Time (ms)" | |
280 | else: |
|
282 | else: | |
281 | x = self.data.xrange[2] |
|
283 | x = self.data.xrange[2] | |
282 | self.xlabel = "Velocity (m/s)" |
|
284 | self.xlabel = "Velocity (m/s)" | |
283 |
|
285 | |||
284 | self.titles = [] |
|
286 | self.titles = [] | |
285 |
|
287 | |||
286 | y = self.data.yrange |
|
288 | y = self.data.yrange | |
287 | self.y = y |
|
289 | self.y = y | |
288 |
|
290 | |||
289 | data = self.data[-1] |
|
291 | data = self.data[-1] | |
290 | cspc = data['cspc'] |
|
292 | cspc = data['cspc'] | |
291 |
|
293 | |||
292 | for n in range(len(self.data.pairs)): |
|
294 | for n in range(len(self.data.pairs)): | |
293 | pair = self.data.pairs[n] |
|
295 | pair = self.data.pairs[n] | |
294 | coh = cspc[n*2] |
|
296 | coh = cspc[n*2] | |
295 | phase = cspc[n*2+1] |
|
297 | phase = cspc[n*2+1] | |
296 | ax = self.axes[2 * n] |
|
298 | ax = self.axes[2 * n] | |
297 | if ax.firsttime: |
|
299 | if ax.firsttime: | |
298 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
300 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
299 | vmin=0, |
|
301 | vmin=0, | |
300 | vmax=1, |
|
302 | vmax=1, | |
301 | cmap=plt.get_cmap(self.colormap_coh) |
|
303 | cmap=plt.get_cmap(self.colormap_coh) | |
302 | ) |
|
304 | ) | |
303 | else: |
|
305 | else: | |
304 | ax.plt.set_array(coh.T.ravel()) |
|
306 | ax.plt.set_array(coh.T.ravel()) | |
305 | self.titles.append( |
|
307 | self.titles.append( | |
306 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
308 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
307 |
|
309 | |||
308 | ax = self.axes[2 * n + 1] |
|
310 | ax = self.axes[2 * n + 1] | |
309 | if ax.firsttime: |
|
311 | if ax.firsttime: | |
310 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
312 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
311 | vmin=-180, |
|
313 | vmin=-180, | |
312 | vmax=180, |
|
314 | vmax=180, | |
313 | cmap=plt.get_cmap(self.colormap_phase) |
|
315 | cmap=plt.get_cmap(self.colormap_phase) | |
314 | ) |
|
316 | ) | |
315 | else: |
|
317 | else: | |
316 | ax.plt.set_array(phase.T.ravel()) |
|
318 | ax.plt.set_array(phase.T.ravel()) | |
317 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
319 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
318 |
|
320 | |||
319 |
|
321 | |||
320 | class CrossSpectra4Plot(Plot): |
|
322 | class CrossSpectra4Plot(Plot): | |
321 |
|
323 | |||
322 | CODE = 'cspc' |
|
324 | CODE = 'cspc' | |
323 | colormap = 'jet' |
|
325 | colormap = 'jet' | |
324 | plot_type = 'pcolor' |
|
326 | plot_type = 'pcolor' | |
325 | zmin_coh = None |
|
327 | zmin_coh = None | |
326 | zmax_coh = None |
|
328 | zmax_coh = None | |
327 | zmin_phase = None |
|
329 | zmin_phase = None | |
328 | zmax_phase = None |
|
330 | zmax_phase = None | |
329 |
|
331 | |||
330 | def setup(self): |
|
332 | def setup(self): | |
331 |
|
333 | |||
332 | self.ncols = 4 |
|
334 | self.ncols = 4 | |
333 | self.nrows = len(self.data.pairs) |
|
335 | self.nrows = len(self.data.pairs) | |
334 | self.nplots = self.nrows * 4 |
|
336 | self.nplots = self.nrows * 4 | |
335 | self.width = 3.1 * self.ncols |
|
337 | self.width = 3.1 * self.ncols | |
336 | self.height = 5 * self.nrows |
|
338 | self.height = 5 * self.nrows | |
337 | self.ylabel = 'Range [km]' |
|
339 | self.ylabel = 'Range [km]' | |
338 | self.showprofile = False |
|
340 | self.showprofile = False | |
339 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
341 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
340 |
|
342 | |||
341 | def plot(self): |
|
343 | def plot(self): | |
342 |
|
344 | |||
343 | if self.xaxis == "frequency": |
|
345 | if self.xaxis == "frequency": | |
344 | x = self.data.xrange[0] |
|
346 | x = self.data.xrange[0] | |
345 | self.xlabel = "Frequency (kHz)" |
|
347 | self.xlabel = "Frequency (kHz)" | |
346 | elif self.xaxis == "time": |
|
348 | elif self.xaxis == "time": | |
347 | x = self.data.xrange[1] |
|
349 | x = self.data.xrange[1] | |
348 | self.xlabel = "Time (ms)" |
|
350 | self.xlabel = "Time (ms)" | |
349 | else: |
|
351 | else: | |
350 | x = self.data.xrange[2] |
|
352 | x = self.data.xrange[2] | |
351 | self.xlabel = "Velocity (m/s)" |
|
353 | self.xlabel = "Velocity (m/s)" | |
352 |
|
354 | |||
353 | self.titles = [] |
|
355 | self.titles = [] | |
354 |
|
356 | |||
355 |
|
357 | |||
356 | y = self.data.heights |
|
358 | y = self.data.heights | |
357 | self.y = y |
|
359 | self.y = y | |
358 | nspc = self.data['spc'] |
|
360 | nspc = self.data['spc'] | |
359 | #print(numpy.shape(self.data['spc'])) |
|
361 | #print(numpy.shape(self.data['spc'])) | |
360 | spc = self.data['cspc'][0] |
|
362 | spc = self.data['cspc'][0] | |
361 | #print(numpy.shape(nspc)) |
|
363 | #print(numpy.shape(nspc)) | |
362 | #exit() |
|
364 | #exit() | |
363 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) |
|
365 | #nspc[1,:,:] = numpy.flip(nspc[1,:,:],axis=0) | |
364 | #print(numpy.shape(spc)) |
|
366 | #print(numpy.shape(spc)) | |
365 | #exit() |
|
367 | #exit() | |
366 | cspc = self.data['cspc'][1] |
|
368 | cspc = self.data['cspc'][1] | |
367 |
|
369 | |||
368 | #xflip=numpy.flip(x) |
|
370 | #xflip=numpy.flip(x) | |
369 | #print(numpy.shape(cspc)) |
|
371 | #print(numpy.shape(cspc)) | |
370 | #exit() |
|
372 | #exit() | |
371 |
|
373 | |||
372 | for n in range(self.nrows): |
|
374 | for n in range(self.nrows): | |
373 | noise = self.data['noise'][:,-1] |
|
375 | noise = self.data['noise'][:,-1] | |
374 | pair = self.data.pairs[n] |
|
376 | pair = self.data.pairs[n] | |
375 | #print(pair) |
|
377 | #print(pair) | |
376 | #exit() |
|
378 | #exit() | |
377 | ax = self.axes[4 * n] |
|
379 | ax = self.axes[4 * n] | |
378 | if ax.firsttime: |
|
380 | if ax.firsttime: | |
379 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
381 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
380 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
382 | self.xmin = self.xmin if self.xmin else -self.xmax | |
381 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) |
|
383 | self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc) | |
382 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) |
|
384 | self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc) | |
383 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, |
|
385 | ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T, | |
384 | vmin=self.zmin, |
|
386 | vmin=self.zmin, | |
385 | vmax=self.zmax, |
|
387 | vmax=self.zmax, | |
386 | cmap=plt.get_cmap(self.colormap) |
|
388 | cmap=plt.get_cmap(self.colormap) | |
387 | ) |
|
389 | ) | |
388 | else: |
|
390 | else: | |
389 | #print(numpy.shape(nspc[pair[0]].T)) |
|
391 | #print(numpy.shape(nspc[pair[0]].T)) | |
390 | #exit() |
|
392 | #exit() | |
391 | ax.plt.set_array(nspc[pair[0]].T.ravel()) |
|
393 | ax.plt.set_array(nspc[pair[0]].T.ravel()) | |
392 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) |
|
394 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]])) | |
393 |
|
395 | |||
394 | ax = self.axes[4 * n + 1] |
|
396 | ax = self.axes[4 * n + 1] | |
395 |
|
397 | |||
396 | if ax.firsttime: |
|
398 | if ax.firsttime: | |
397 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, |
|
399 | ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T, | |
398 | vmin=self.zmin, |
|
400 | vmin=self.zmin, | |
399 | vmax=self.zmax, |
|
401 | vmax=self.zmax, | |
400 | cmap=plt.get_cmap(self.colormap) |
|
402 | cmap=plt.get_cmap(self.colormap) | |
401 | ) |
|
403 | ) | |
402 | else: |
|
404 | else: | |
403 |
|
405 | |||
404 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) |
|
406 | ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel()) | |
405 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) |
|
407 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]])) | |
406 |
|
408 | |||
407 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
409 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
408 | coh = numpy.abs(out) |
|
410 | coh = numpy.abs(out) | |
409 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
411 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
410 |
|
412 | |||
411 | ax = self.axes[4 * n + 2] |
|
413 | ax = self.axes[4 * n + 2] | |
412 | if ax.firsttime: |
|
414 | if ax.firsttime: | |
413 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, |
|
415 | ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T, | |
414 | vmin=0, |
|
416 | vmin=0, | |
415 | vmax=1, |
|
417 | vmax=1, | |
416 | cmap=plt.get_cmap(self.colormap_coh) |
|
418 | cmap=plt.get_cmap(self.colormap_coh) | |
417 | ) |
|
419 | ) | |
418 | else: |
|
420 | else: | |
419 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) |
|
421 | ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel()) | |
420 | self.titles.append( |
|
422 | self.titles.append( | |
421 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
423 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
422 |
|
424 | |||
423 | ax = self.axes[4 * n + 3] |
|
425 | ax = self.axes[4 * n + 3] | |
424 | if ax.firsttime: |
|
426 | if ax.firsttime: | |
425 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, |
|
427 | ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T, | |
426 | vmin=-180, |
|
428 | vmin=-180, | |
427 | vmax=180, |
|
429 | vmax=180, | |
428 | cmap=plt.get_cmap(self.colormap_phase) |
|
430 | cmap=plt.get_cmap(self.colormap_phase) | |
429 | ) |
|
431 | ) | |
430 | else: |
|
432 | else: | |
431 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) |
|
433 | ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel()) | |
432 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
434 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
433 |
|
435 | |||
434 |
|
436 | |||
435 | class CrossSpectra2Plot(Plot): |
|
437 | class CrossSpectra2Plot(Plot): | |
436 |
|
438 | |||
437 | CODE = 'cspc' |
|
439 | CODE = 'cspc' | |
438 | colormap = 'jet' |
|
440 | colormap = 'jet' | |
439 | plot_type = 'pcolor' |
|
441 | plot_type = 'pcolor' | |
440 | zmin_coh = None |
|
442 | zmin_coh = None | |
441 | zmax_coh = None |
|
443 | zmax_coh = None | |
442 | zmin_phase = None |
|
444 | zmin_phase = None | |
443 | zmax_phase = None |
|
445 | zmax_phase = None | |
444 |
|
446 | |||
445 | def setup(self): |
|
447 | def setup(self): | |
446 |
|
448 | |||
447 | self.ncols = 1 |
|
449 | self.ncols = 1 | |
448 | self.nrows = len(self.data.pairs) |
|
450 | self.nrows = len(self.data.pairs) | |
449 | self.nplots = self.nrows * 1 |
|
451 | self.nplots = self.nrows * 1 | |
450 | self.width = 3.1 * self.ncols |
|
452 | self.width = 3.1 * self.ncols | |
451 | self.height = 5 * self.nrows |
|
453 | self.height = 5 * self.nrows | |
452 | self.ylabel = 'Range [km]' |
|
454 | self.ylabel = 'Range [km]' | |
453 | self.showprofile = False |
|
455 | self.showprofile = False | |
454 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
456 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
455 |
|
457 | |||
456 | def plot(self): |
|
458 | def plot(self): | |
457 |
|
459 | |||
458 | if self.xaxis == "frequency": |
|
460 | if self.xaxis == "frequency": | |
459 | x = self.data.xrange[0] |
|
461 | x = self.data.xrange[0] | |
460 | self.xlabel = "Frequency (kHz)" |
|
462 | self.xlabel = "Frequency (kHz)" | |
461 | elif self.xaxis == "time": |
|
463 | elif self.xaxis == "time": | |
462 | x = self.data.xrange[1] |
|
464 | x = self.data.xrange[1] | |
463 | self.xlabel = "Time (ms)" |
|
465 | self.xlabel = "Time (ms)" | |
464 | else: |
|
466 | else: | |
465 | x = self.data.xrange[2] |
|
467 | x = self.data.xrange[2] | |
466 | self.xlabel = "Velocity (m/s)" |
|
468 | self.xlabel = "Velocity (m/s)" | |
467 |
|
469 | |||
468 | self.titles = [] |
|
470 | self.titles = [] | |
469 |
|
471 | |||
470 |
|
472 | |||
471 | y = self.data.heights |
|
473 | y = self.data.heights | |
472 | self.y = y |
|
474 | self.y = y | |
473 | #nspc = self.data['spc'] |
|
475 | #nspc = self.data['spc'] | |
474 | #print(numpy.shape(self.data['spc'])) |
|
476 | #print(numpy.shape(self.data['spc'])) | |
475 | #spc = self.data['cspc'][0] |
|
477 | #spc = self.data['cspc'][0] | |
476 | #print(numpy.shape(spc)) |
|
478 | #print(numpy.shape(spc)) | |
477 | #exit() |
|
479 | #exit() | |
478 | cspc = self.data['cspc'][1] |
|
480 | cspc = self.data['cspc'][1] | |
479 | #print(numpy.shape(cspc)) |
|
481 | #print(numpy.shape(cspc)) | |
480 | #exit() |
|
482 | #exit() | |
481 |
|
483 | |||
482 | for n in range(self.nrows): |
|
484 | for n in range(self.nrows): | |
483 | noise = self.data['noise'][:,-1] |
|
485 | noise = self.data['noise'][:,-1] | |
484 | pair = self.data.pairs[n] |
|
486 | pair = self.data.pairs[n] | |
485 | #print(pair) #exit() |
|
487 | #print(pair) #exit() | |
486 |
|
488 | |||
487 |
|
489 | |||
488 |
|
490 | |||
489 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
491 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
490 |
|
492 | |||
491 | #print(out[:,53]) |
|
493 | #print(out[:,53]) | |
492 | #exit() |
|
494 | #exit() | |
493 | cross = numpy.abs(out) |
|
495 | cross = numpy.abs(out) | |
494 | z = cross/self.data.nFactor |
|
496 | z = cross/self.data.nFactor | |
495 | #print("here") |
|
497 | #print("here") | |
496 | #print(dataOut.data_spc[0,0,0]) |
|
498 | #print(dataOut.data_spc[0,0,0]) | |
497 | #exit() |
|
499 | #exit() | |
498 |
|
500 | |||
499 | cross = 10*numpy.log10(z) |
|
501 | cross = 10*numpy.log10(z) | |
500 | #print(numpy.shape(cross)) |
|
502 | #print(numpy.shape(cross)) | |
501 | #print(cross[0,:]) |
|
503 | #print(cross[0,:]) | |
502 | #print(self.data.nFactor) |
|
504 | #print(self.data.nFactor) | |
503 | #exit() |
|
505 | #exit() | |
504 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
506 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
505 |
|
507 | |||
506 | ax = self.axes[1 * n] |
|
508 | ax = self.axes[1 * n] | |
507 | if ax.firsttime: |
|
509 | if ax.firsttime: | |
508 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
510 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
509 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
511 | self.xmin = self.xmin if self.xmin else -self.xmax | |
510 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
512 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
511 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
513 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
512 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
514 | ax.plt = ax.pcolormesh(x, y, cross.T, | |
513 | vmin=self.zmin, |
|
515 | vmin=self.zmin, | |
514 | vmax=self.zmax, |
|
516 | vmax=self.zmax, | |
515 | cmap=plt.get_cmap(self.colormap) |
|
517 | cmap=plt.get_cmap(self.colormap) | |
516 | ) |
|
518 | ) | |
517 | else: |
|
519 | else: | |
518 | ax.plt.set_array(cross.T.ravel()) |
|
520 | ax.plt.set_array(cross.T.ravel()) | |
519 | self.titles.append( |
|
521 | self.titles.append( | |
520 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
522 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) | |
521 |
|
523 | |||
522 |
|
524 | |||
523 | class CrossSpectra3Plot(Plot): |
|
525 | class CrossSpectra3Plot(Plot): | |
524 |
|
526 | |||
525 | CODE = 'cspc' |
|
527 | CODE = 'cspc' | |
526 | colormap = 'jet' |
|
528 | colormap = 'jet' | |
527 | plot_type = 'pcolor' |
|
529 | plot_type = 'pcolor' | |
528 | zmin_coh = None |
|
530 | zmin_coh = None | |
529 | zmax_coh = None |
|
531 | zmax_coh = None | |
530 | zmin_phase = None |
|
532 | zmin_phase = None | |
531 | zmax_phase = None |
|
533 | zmax_phase = None | |
532 |
|
534 | |||
533 | def setup(self): |
|
535 | def setup(self): | |
534 |
|
536 | |||
535 | self.ncols = 3 |
|
537 | self.ncols = 3 | |
536 | self.nrows = len(self.data.pairs) |
|
538 | self.nrows = len(self.data.pairs) | |
537 | self.nplots = self.nrows * 3 |
|
539 | self.nplots = self.nrows * 3 | |
538 | self.width = 3.1 * self.ncols |
|
540 | self.width = 3.1 * self.ncols | |
539 | self.height = 5 * self.nrows |
|
541 | self.height = 5 * self.nrows | |
540 | self.ylabel = 'Range [km]' |
|
542 | self.ylabel = 'Range [km]' | |
541 | self.showprofile = False |
|
543 | self.showprofile = False | |
542 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
544 | self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
543 |
|
545 | |||
544 | def plot(self): |
|
546 | def plot(self): | |
545 |
|
547 | |||
546 | if self.xaxis == "frequency": |
|
548 | if self.xaxis == "frequency": | |
547 | x = self.data.xrange[0] |
|
549 | x = self.data.xrange[0] | |
548 | self.xlabel = "Frequency (kHz)" |
|
550 | self.xlabel = "Frequency (kHz)" | |
549 | elif self.xaxis == "time": |
|
551 | elif self.xaxis == "time": | |
550 | x = self.data.xrange[1] |
|
552 | x = self.data.xrange[1] | |
551 | self.xlabel = "Time (ms)" |
|
553 | self.xlabel = "Time (ms)" | |
552 | else: |
|
554 | else: | |
553 | x = self.data.xrange[2] |
|
555 | x = self.data.xrange[2] | |
554 | self.xlabel = "Velocity (m/s)" |
|
556 | self.xlabel = "Velocity (m/s)" | |
555 |
|
557 | |||
556 | self.titles = [] |
|
558 | self.titles = [] | |
557 |
|
559 | |||
558 |
|
560 | |||
559 | y = self.data.heights |
|
561 | y = self.data.heights | |
560 | self.y = y |
|
562 | self.y = y | |
561 | #nspc = self.data['spc'] |
|
563 | #nspc = self.data['spc'] | |
562 | #print(numpy.shape(self.data['spc'])) |
|
564 | #print(numpy.shape(self.data['spc'])) | |
563 | #spc = self.data['cspc'][0] |
|
565 | #spc = self.data['cspc'][0] | |
564 | #print(numpy.shape(spc)) |
|
566 | #print(numpy.shape(spc)) | |
565 | #exit() |
|
567 | #exit() | |
566 | cspc = self.data['cspc'][1] |
|
568 | cspc = self.data['cspc'][1] | |
567 | #print(numpy.shape(cspc)) |
|
569 | #print(numpy.shape(cspc)) | |
568 | #exit() |
|
570 | #exit() | |
569 |
|
571 | |||
570 | for n in range(self.nrows): |
|
572 | for n in range(self.nrows): | |
571 | noise = self.data['noise'][:,-1] |
|
573 | noise = self.data['noise'][:,-1] | |
572 | pair = self.data.pairs[n] |
|
574 | pair = self.data.pairs[n] | |
573 | #print(pair) #exit() |
|
575 | #print(pair) #exit() | |
574 |
|
576 | |||
575 |
|
577 | |||
576 |
|
578 | |||
577 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
579 | out = cspc[n]# / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
578 |
|
580 | |||
579 | #print(out[:,53]) |
|
581 | #print(out[:,53]) | |
580 | #exit() |
|
582 | #exit() | |
581 | cross = numpy.abs(out) |
|
583 | cross = numpy.abs(out) | |
582 | z = cross/self.data.nFactor |
|
584 | z = cross/self.data.nFactor | |
583 | cross = 10*numpy.log10(z) |
|
585 | cross = 10*numpy.log10(z) | |
584 |
|
586 | |||
585 | out_r= out.real/self.data.nFactor |
|
587 | out_r= out.real/self.data.nFactor | |
586 | #out_r = 10*numpy.log10(out_r) |
|
588 | #out_r = 10*numpy.log10(out_r) | |
587 |
|
589 | |||
588 | out_i= out.imag/self.data.nFactor |
|
590 | out_i= out.imag/self.data.nFactor | |
589 | #out_i = 10*numpy.log10(out_i) |
|
591 | #out_i = 10*numpy.log10(out_i) | |
590 | #print(numpy.shape(cross)) |
|
592 | #print(numpy.shape(cross)) | |
591 | #print(cross[0,:]) |
|
593 | #print(cross[0,:]) | |
592 | #print(self.data.nFactor) |
|
594 | #print(self.data.nFactor) | |
593 | #exit() |
|
595 | #exit() | |
594 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
596 | #phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
595 |
|
597 | |||
596 | ax = self.axes[3 * n] |
|
598 | ax = self.axes[3 * n] | |
597 | if ax.firsttime: |
|
599 | if ax.firsttime: | |
598 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
600 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
599 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
601 | self.xmin = self.xmin if self.xmin else -self.xmax | |
600 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
602 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
601 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
603 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
602 | ax.plt = ax.pcolormesh(x, y, cross.T, |
|
604 | ax.plt = ax.pcolormesh(x, y, cross.T, | |
603 | vmin=self.zmin, |
|
605 | vmin=self.zmin, | |
604 | vmax=self.zmax, |
|
606 | vmax=self.zmax, | |
605 | cmap=plt.get_cmap(self.colormap) |
|
607 | cmap=plt.get_cmap(self.colormap) | |
606 | ) |
|
608 | ) | |
607 | else: |
|
609 | else: | |
608 | ax.plt.set_array(cross.T.ravel()) |
|
610 | ax.plt.set_array(cross.T.ravel()) | |
609 | self.titles.append( |
|
611 | self.titles.append( | |
610 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
612 | 'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1])) | |
611 |
|
613 | |||
612 | ax = self.axes[3 * n + 1] |
|
614 | ax = self.axes[3 * n + 1] | |
613 | if ax.firsttime: |
|
615 | if ax.firsttime: | |
614 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
616 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
615 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
617 | self.xmin = self.xmin if self.xmin else -self.xmax | |
616 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
618 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
617 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
619 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
618 | ax.plt = ax.pcolormesh(x, y, out_r.T, |
|
620 | ax.plt = ax.pcolormesh(x, y, out_r.T, | |
619 | vmin=-1.e6, |
|
621 | vmin=-1.e6, | |
620 | vmax=0, |
|
622 | vmax=0, | |
621 | cmap=plt.get_cmap(self.colormap) |
|
623 | cmap=plt.get_cmap(self.colormap) | |
622 | ) |
|
624 | ) | |
623 | else: |
|
625 | else: | |
624 | ax.plt.set_array(out_r.T.ravel()) |
|
626 | ax.plt.set_array(out_r.T.ravel()) | |
625 | self.titles.append( |
|
627 | self.titles.append( | |
626 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
628 | 'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1])) | |
627 |
|
629 | |||
628 | ax = self.axes[3 * n + 2] |
|
630 | ax = self.axes[3 * n + 2] | |
629 |
|
631 | |||
630 |
|
632 | |||
631 | if ax.firsttime: |
|
633 | if ax.firsttime: | |
632 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
634 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
633 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
635 | self.xmin = self.xmin if self.xmin else -self.xmax | |
634 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) |
|
636 | self.zmin = self.zmin if self.zmin else numpy.nanmin(cross) | |
635 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) |
|
637 | self.zmax = self.zmax if self.zmax else numpy.nanmax(cross) | |
636 | ax.plt = ax.pcolormesh(x, y, out_i.T, |
|
638 | ax.plt = ax.pcolormesh(x, y, out_i.T, | |
637 | vmin=-1.e6, |
|
639 | vmin=-1.e6, | |
638 | vmax=1.e6, |
|
640 | vmax=1.e6, | |
639 | cmap=plt.get_cmap(self.colormap) |
|
641 | cmap=plt.get_cmap(self.colormap) | |
640 | ) |
|
642 | ) | |
641 | else: |
|
643 | else: | |
642 | ax.plt.set_array(out_i.T.ravel()) |
|
644 | ax.plt.set_array(out_i.T.ravel()) | |
643 | self.titles.append( |
|
645 | self.titles.append( | |
644 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
646 | 'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1])) | |
645 |
|
647 | |||
646 | class RTIPlot(Plot): |
|
648 | class RTIPlot(Plot): | |
647 | ''' |
|
649 | ''' | |
648 | Plot for RTI data |
|
650 | Plot for RTI data | |
649 | ''' |
|
651 | ''' | |
650 |
|
652 | |||
651 | CODE = 'rti' |
|
653 | CODE = 'rti' | |
652 | colormap = 'jet' |
|
654 | colormap = 'jet' | |
653 | plot_type = 'pcolorbuffer' |
|
655 | plot_type = 'pcolorbuffer' | |
654 |
|
656 | |||
655 | def setup(self): |
|
657 | def setup(self): | |
656 | self.xaxis = 'time' |
|
658 | self.xaxis = 'time' | |
657 | self.ncols = 1 |
|
659 | self.ncols = 1 | |
658 | self.nrows = len(self.data.channels) |
|
660 | self.nrows = len(self.data.channels) | |
659 | self.nplots = len(self.data.channels) |
|
661 | self.nplots = len(self.data.channels) | |
660 | self.ylabel = 'Range [km]' |
|
662 | self.ylabel = 'Range [km]' | |
661 | self.xlabel = 'Time' |
|
663 | self.xlabel = 'Time' | |
662 | self.cb_label = 'dB' |
|
664 | self.cb_label = 'dB' | |
663 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
665 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) | |
664 | self.titles = ['{} Channel {}'.format( |
|
666 | self.titles = ['{} Channel {}'.format( | |
665 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
667 | self.CODE.upper(), x) for x in range(self.nrows)] | |
666 |
|
668 | |||
667 | def update(self, dataOut): |
|
669 | def update(self, dataOut): | |
668 |
|
670 | |||
669 | data = {} |
|
671 | data = {} | |
670 | meta = {} |
|
672 | meta = {} | |
671 | data['rti'] = dataOut.getPower() |
|
673 | data['rti'] = dataOut.getPower() | |
672 |
|
674 | |||
673 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
675 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
674 |
|
676 | |||
675 | return data, meta |
|
677 | return data, meta | |
676 |
|
678 | |||
677 | def plot(self): |
|
679 | def plot(self): | |
678 |
|
680 | |||
679 | self.x = self.data.times |
|
681 | self.x = self.data.times | |
680 | self.y = self.data.yrange |
|
682 | self.y = self.data.yrange | |
681 | self.z = self.data[self.CODE] |
|
683 | self.z = self.data[self.CODE] | |
682 |
|
684 | |||
683 | self.z = numpy.ma.masked_invalid(self.z) |
|
685 | self.z = numpy.ma.masked_invalid(self.z) | |
684 |
|
686 | |||
685 | if self.decimation is None: |
|
687 | if self.decimation is None: | |
686 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
688 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
687 | else: |
|
689 | else: | |
688 | x, y, z = self.fill_gaps(*self.decimate()) |
|
690 | x, y, z = self.fill_gaps(*self.decimate()) | |
689 |
|
691 | |||
690 | for n, ax in enumerate(self.axes): |
|
692 | for n, ax in enumerate(self.axes): | |
691 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
693 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
692 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
694 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
693 | if ax.firsttime: |
|
695 | if ax.firsttime: | |
694 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
696 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
695 | vmin=self.zmin, |
|
697 | vmin=self.zmin, | |
696 | vmax=self.zmax, |
|
698 | vmax=self.zmax, | |
697 | cmap=plt.get_cmap(self.colormap) |
|
699 | cmap=plt.get_cmap(self.colormap) | |
698 | ) |
|
700 | ) | |
699 | if self.showprofile: |
|
701 | if self.showprofile: | |
700 | ax.plot_profile = self.pf_axes[n].plot( |
|
702 | ax.plot_profile = self.pf_axes[n].plot( | |
701 | self.data['rti'][n][-1], self.y)[0] |
|
703 | self.data['rti'][n][-1], self.y)[0] | |
702 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
704 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, | |
703 | color="k", linestyle="dashed", lw=1)[0] |
|
705 | color="k", linestyle="dashed", lw=1)[0] | |
704 | else: |
|
706 | else: | |
705 | ax.collections.remove(ax.collections[0]) |
|
707 | ax.collections.remove(ax.collections[0]) | |
706 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
708 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
707 | vmin=self.zmin, |
|
709 | vmin=self.zmin, | |
708 | vmax=self.zmax, |
|
710 | vmax=self.zmax, | |
709 | cmap=plt.get_cmap(self.colormap) |
|
711 | cmap=plt.get_cmap(self.colormap) | |
710 | ) |
|
712 | ) | |
711 | if self.showprofile: |
|
713 | if self.showprofile: | |
712 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
714 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) | |
713 | ax.plot_noise.set_data(numpy.repeat( |
|
715 | ax.plot_noise.set_data(numpy.repeat( | |
714 | self.data['noise'][n][-1], len(self.y)), self.y) |
|
716 | self.data['noise'][n][-1], len(self.y)), self.y) | |
715 |
|
717 | |||
716 |
|
718 | |||
717 | class SpectrogramPlot(Plot): |
|
719 | class SpectrogramPlot(Plot): | |
718 | ''' |
|
720 | ''' | |
719 | Plot for Spectrogram data |
|
721 | Plot for Spectrogram data | |
720 | ''' |
|
722 | ''' | |
721 |
|
723 | |||
722 | CODE = 'Spectrogram_Profile' |
|
724 | CODE = 'Spectrogram_Profile' | |
723 | colormap = 'binary' |
|
725 | colormap = 'binary' | |
724 | plot_type = 'pcolorbuffer' |
|
726 | plot_type = 'pcolorbuffer' | |
725 |
|
727 | |||
726 | def setup(self): |
|
728 | def setup(self): | |
727 | self.xaxis = 'time' |
|
729 | self.xaxis = 'time' | |
728 | self.ncols = 1 |
|
730 | self.ncols = 1 | |
729 | self.nrows = len(self.data.channels) |
|
731 | self.nrows = len(self.data.channels) | |
730 | self.nplots = len(self.data.channels) |
|
732 | self.nplots = len(self.data.channels) | |
731 | self.xlabel = 'Time' |
|
733 | self.xlabel = 'Time' | |
732 | #self.cb_label = 'dB' |
|
734 | #self.cb_label = 'dB' | |
733 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) |
|
735 | self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95}) | |
734 | self.titles = [] |
|
736 | self.titles = [] | |
735 |
|
737 | |||
736 | #self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( |
|
738 | #self.titles = ['{} Channel {} \n H = {} km ({} - {})'.format( | |
737 | #self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] |
|
739 | #self.CODE.upper(), x, self.data.heightList[self.data.hei], self.data.heightList[self.data.hei],self.data.heightList[self.data.hei]+(self.data.DH*self.data.nProfiles)) for x in range(self.nrows)] | |
738 |
|
740 | |||
739 | self.titles = ['{} Channel {}'.format( |
|
741 | self.titles = ['{} Channel {}'.format( | |
740 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
742 | self.CODE.upper(), x) for x in range(self.nrows)] | |
741 |
|
743 | |||
742 |
|
744 | |||
743 | def update(self, dataOut): |
|
745 | def update(self, dataOut): | |
744 | data = {} |
|
746 | data = {} | |
745 | meta = {} |
|
747 | meta = {} | |
746 |
|
748 | |||
747 | maxHei = 1620#+12000 |
|
749 | maxHei = 1620#+12000 | |
748 | indb = numpy.where(dataOut.heightList <= maxHei) |
|
750 | indb = numpy.where(dataOut.heightList <= maxHei) | |
749 | hei = indb[0][-1] |
|
751 | hei = indb[0][-1] | |
750 | #print(dataOut.heightList) |
|
752 | #print(dataOut.heightList) | |
751 |
|
753 | |||
752 | factor = dataOut.nIncohInt |
|
754 | factor = dataOut.nIncohInt | |
753 | z = dataOut.data_spc[:,:,hei] / factor |
|
755 | z = dataOut.data_spc[:,:,hei] / factor | |
754 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
756 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
755 | #buffer = 10 * numpy.log10(z) |
|
757 | #buffer = 10 * numpy.log10(z) | |
756 |
|
758 | |||
757 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
759 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
758 |
|
760 | |||
759 |
|
761 | |||
760 | #self.hei = hei |
|
762 | #self.hei = hei | |
761 | #self.heightList = dataOut.heightList |
|
763 | #self.heightList = dataOut.heightList | |
762 | #self.DH = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
764 | #self.DH = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step | |
763 | #self.nProfiles = dataOut.nProfiles |
|
765 | #self.nProfiles = dataOut.nProfiles | |
764 |
|
766 | |||
765 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) |
|
767 | data['Spectrogram_Profile'] = 10 * numpy.log10(z) | |
766 |
|
768 | |||
767 | data['hei'] = hei |
|
769 | data['hei'] = hei | |
768 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step |
|
770 | data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step | |
769 | data['nProfiles'] = dataOut.nProfiles |
|
771 | data['nProfiles'] = dataOut.nProfiles | |
770 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
772 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] | |
771 | ''' |
|
773 | ''' | |
772 | import matplotlib.pyplot as plt |
|
774 | import matplotlib.pyplot as plt | |
773 | plt.plot(10 * numpy.log10(z[0,:])) |
|
775 | plt.plot(10 * numpy.log10(z[0,:])) | |
774 | plt.show() |
|
776 | plt.show() | |
775 |
|
777 | |||
776 | from time import sleep |
|
778 | from time import sleep | |
777 | sleep(10) |
|
779 | sleep(10) | |
778 | ''' |
|
780 | ''' | |
779 | return data, meta |
|
781 | return data, meta | |
780 |
|
782 | |||
781 | def plot(self): |
|
783 | def plot(self): | |
782 |
|
784 | |||
783 | self.x = self.data.times |
|
785 | self.x = self.data.times | |
784 | self.z = self.data[self.CODE] |
|
786 | self.z = self.data[self.CODE] | |
785 | self.y = self.data.xrange[0] |
|
787 | self.y = self.data.xrange[0] | |
786 |
|
788 | |||
787 | hei = self.data['hei'][-1] |
|
789 | hei = self.data['hei'][-1] | |
788 | DH = self.data['DH'][-1] |
|
790 | DH = self.data['DH'][-1] | |
789 | nProfiles = self.data['nProfiles'][-1] |
|
791 | nProfiles = self.data['nProfiles'][-1] | |
790 |
|
792 | |||
791 | self.ylabel = "Frequency (kHz)" |
|
793 | self.ylabel = "Frequency (kHz)" | |
792 |
|
794 | |||
793 | self.z = numpy.ma.masked_invalid(self.z) |
|
795 | self.z = numpy.ma.masked_invalid(self.z) | |
794 |
|
796 | |||
795 | if self.decimation is None: |
|
797 | if self.decimation is None: | |
796 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
798 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
797 | else: |
|
799 | else: | |
798 | x, y, z = self.fill_gaps(*self.decimate()) |
|
800 | x, y, z = self.fill_gaps(*self.decimate()) | |
799 |
|
801 | |||
800 | for n, ax in enumerate(self.axes): |
|
802 | for n, ax in enumerate(self.axes): | |
801 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
803 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
802 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
804 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
803 | data = self.data[-1] |
|
805 | data = self.data[-1] | |
804 | if ax.firsttime: |
|
806 | if ax.firsttime: | |
805 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
807 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
806 | vmin=self.zmin, |
|
808 | vmin=self.zmin, | |
807 | vmax=self.zmax, |
|
809 | vmax=self.zmax, | |
808 | cmap=plt.get_cmap(self.colormap) |
|
810 | cmap=plt.get_cmap(self.colormap) | |
809 | ) |
|
811 | ) | |
810 | else: |
|
812 | else: | |
811 | ax.collections.remove(ax.collections[0]) |
|
813 | ax.collections.remove(ax.collections[0]) | |
812 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
814 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
813 | vmin=self.zmin, |
|
815 | vmin=self.zmin, | |
814 | vmax=self.zmax, |
|
816 | vmax=self.zmax, | |
815 | cmap=plt.get_cmap(self.colormap) |
|
817 | cmap=plt.get_cmap(self.colormap) | |
816 | ) |
|
818 | ) | |
817 |
|
819 | |||
818 | #self.titles.append('Spectrogram') |
|
820 | #self.titles.append('Spectrogram') | |
819 |
|
821 | |||
820 | #self.titles.append('{} Channel {} \n H = {} km ({} - {})'.format( |
|
822 | #self.titles.append('{} Channel {} \n H = {} km ({} - {})'.format( | |
821 | #self.CODE.upper(), x, y[hei], y[hei],y[hei]+(DH*nProfiles))) |
|
823 | #self.CODE.upper(), x, y[hei], y[hei],y[hei]+(DH*nProfiles))) | |
822 |
|
824 | |||
823 |
|
825 | |||
824 |
|
826 | |||
825 |
|
827 | |||
826 | class CoherencePlot(RTIPlot): |
|
828 | class CoherencePlot(RTIPlot): | |
827 | ''' |
|
829 | ''' | |
828 | Plot for Coherence data |
|
830 | Plot for Coherence data | |
829 | ''' |
|
831 | ''' | |
830 |
|
832 | |||
831 | CODE = 'coh' |
|
833 | CODE = 'coh' | |
832 |
|
834 | |||
833 | def setup(self): |
|
835 | def setup(self): | |
834 | self.xaxis = 'time' |
|
836 | self.xaxis = 'time' | |
835 | self.ncols = 1 |
|
837 | self.ncols = 1 | |
836 | self.nrows = len(self.data.pairs) |
|
838 | self.nrows = len(self.data.pairs) | |
837 | self.nplots = len(self.data.pairs) |
|
839 | self.nplots = len(self.data.pairs) | |
838 | self.ylabel = 'Range [km]' |
|
840 | self.ylabel = 'Range [km]' | |
839 | self.xlabel = 'Time' |
|
841 | self.xlabel = 'Time' | |
840 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
842 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) | |
841 | if self.CODE == 'coh': |
|
843 | if self.CODE == 'coh': | |
842 | self.cb_label = '' |
|
844 | self.cb_label = '' | |
843 | self.titles = [ |
|
845 | self.titles = [ | |
844 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
846 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
845 | else: |
|
847 | else: | |
846 | self.cb_label = 'Degrees' |
|
848 | self.cb_label = 'Degrees' | |
847 | self.titles = [ |
|
849 | self.titles = [ | |
848 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
850 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
849 |
|
851 | |||
850 | def update(self, dataOut): |
|
852 | def update(self, dataOut): | |
851 |
|
853 | |||
852 | data = {} |
|
854 | data = {} | |
853 | meta = {} |
|
855 | meta = {} | |
854 | data['coh'] = dataOut.getCoherence() |
|
856 | data['coh'] = dataOut.getCoherence() | |
855 | meta['pairs'] = dataOut.pairsList |
|
857 | meta['pairs'] = dataOut.pairsList | |
856 |
|
858 | |||
857 | return data, meta |
|
859 | return data, meta | |
858 |
|
860 | |||
859 | class PhasePlot(CoherencePlot): |
|
861 | class PhasePlot(CoherencePlot): | |
860 | ''' |
|
862 | ''' | |
861 | Plot for Phase map data |
|
863 | Plot for Phase map data | |
862 | ''' |
|
864 | ''' | |
863 |
|
865 | |||
864 | CODE = 'phase' |
|
866 | CODE = 'phase' | |
865 | colormap = 'seismic' |
|
867 | colormap = 'seismic' | |
866 |
|
868 | |||
867 | def update(self, dataOut): |
|
869 | def update(self, dataOut): | |
868 |
|
870 | |||
869 | data = {} |
|
871 | data = {} | |
870 | meta = {} |
|
872 | meta = {} | |
871 | data['phase'] = dataOut.getCoherence(phase=True) |
|
873 | data['phase'] = dataOut.getCoherence(phase=True) | |
872 | meta['pairs'] = dataOut.pairsList |
|
874 | meta['pairs'] = dataOut.pairsList | |
873 |
|
875 | |||
874 | return data, meta |
|
876 | return data, meta | |
875 |
|
877 | |||
876 | class NoisePlot(Plot): |
|
878 | class NoisePlot(Plot): | |
877 | ''' |
|
879 | ''' | |
878 | Plot for noise |
|
880 | Plot for noise | |
879 | ''' |
|
881 | ''' | |
880 |
|
882 | |||
881 | CODE = 'noise' |
|
883 | CODE = 'noise' | |
882 | plot_type = 'scatterbuffer' |
|
884 | plot_type = 'scatterbuffer' | |
883 |
|
885 | |||
884 | def setup(self): |
|
886 | def setup(self): | |
885 | self.xaxis = 'time' |
|
887 | self.xaxis = 'time' | |
886 | self.ncols = 1 |
|
888 | self.ncols = 1 | |
887 | self.nrows = 1 |
|
889 | self.nrows = 1 | |
888 | self.nplots = 1 |
|
890 | self.nplots = 1 | |
889 | self.ylabel = 'Intensity [dB]' |
|
891 | self.ylabel = 'Intensity [dB]' | |
890 | self.xlabel = 'Time' |
|
892 | self.xlabel = 'Time' | |
891 | self.titles = ['Noise'] |
|
893 | self.titles = ['Noise'] | |
892 | self.colorbar = False |
|
894 | self.colorbar = False | |
893 | self.plots_adjust.update({'right': 0.85 }) |
|
895 | self.plots_adjust.update({'right': 0.85 }) | |
894 |
|
896 | |||
895 | def update(self, dataOut): |
|
897 | def update(self, dataOut): | |
896 |
|
898 | |||
897 | data = {} |
|
899 | data = {} | |
898 | meta = {} |
|
900 | meta = {} | |
899 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
901 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) | |
900 | meta['yrange'] = numpy.array([]) |
|
902 | meta['yrange'] = numpy.array([]) | |
901 |
|
903 | |||
902 | return data, meta |
|
904 | return data, meta | |
903 |
|
905 | |||
904 | def plot(self): |
|
906 | def plot(self): | |
905 |
|
907 | |||
906 | x = self.data.times |
|
908 | x = self.data.times | |
907 | xmin = self.data.min_time |
|
909 | xmin = self.data.min_time | |
908 | xmax = xmin + self.xrange * 60 * 60 |
|
910 | xmax = xmin + self.xrange * 60 * 60 | |
909 | Y = self.data['noise'] |
|
911 | Y = self.data['noise'] | |
910 |
|
912 | |||
911 | if self.axes[0].firsttime: |
|
913 | if self.axes[0].firsttime: | |
912 | self.ymin = numpy.nanmin(Y) - 5 |
|
914 | self.ymin = numpy.nanmin(Y) - 5 | |
913 | self.ymax = numpy.nanmax(Y) + 5 |
|
915 | self.ymax = numpy.nanmax(Y) + 5 | |
914 | for ch in self.data.channels: |
|
916 | for ch in self.data.channels: | |
915 | y = Y[ch] |
|
917 | y = Y[ch] | |
916 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
918 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
917 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
919 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
918 | else: |
|
920 | else: | |
919 | for ch in self.data.channels: |
|
921 | for ch in self.data.channels: | |
920 | y = Y[ch] |
|
922 | y = Y[ch] | |
921 | self.axes[0].lines[ch].set_data(x, y) |
|
923 | self.axes[0].lines[ch].set_data(x, y) | |
922 |
|
924 | |||
923 | self.ymin = numpy.nanmin(Y) - 5 |
|
925 | self.ymin = numpy.nanmin(Y) - 5 | |
924 | self.ymax = numpy.nanmax(Y) + 10 |
|
926 | self.ymax = numpy.nanmax(Y) + 10 | |
925 |
|
927 | |||
926 |
|
928 | |||
927 | class PowerProfilePlot(Plot): |
|
929 | class PowerProfilePlot(Plot): | |
928 |
|
930 | |||
929 | CODE = 'pow_profile' |
|
931 | CODE = 'pow_profile' | |
930 | plot_type = 'scatter' |
|
932 | plot_type = 'scatter' | |
931 |
|
933 | |||
932 | def setup(self): |
|
934 | def setup(self): | |
933 |
|
935 | |||
934 | self.ncols = 1 |
|
936 | self.ncols = 1 | |
935 | self.nrows = 1 |
|
937 | self.nrows = 1 | |
936 | self.nplots = 1 |
|
938 | self.nplots = 1 | |
937 | self.height = 4 |
|
939 | self.height = 4 | |
938 | self.width = 3 |
|
940 | self.width = 3 | |
939 | self.ylabel = 'Range [km]' |
|
941 | self.ylabel = 'Range [km]' | |
940 | self.xlabel = 'Intensity [dB]' |
|
942 | self.xlabel = 'Intensity [dB]' | |
941 | self.titles = ['Power Profile'] |
|
943 | self.titles = ['Power Profile'] | |
942 | self.colorbar = False |
|
944 | self.colorbar = False | |
943 |
|
945 | |||
944 | def update(self, dataOut): |
|
946 | def update(self, dataOut): | |
945 |
|
947 | |||
946 | data = {} |
|
948 | data = {} | |
947 | meta = {} |
|
949 | meta = {} | |
948 | data[self.CODE] = dataOut.getPower() |
|
950 | data[self.CODE] = dataOut.getPower() | |
949 |
|
951 | |||
950 | return data, meta |
|
952 | return data, meta | |
951 |
|
953 | |||
952 | def plot(self): |
|
954 | def plot(self): | |
953 |
|
955 | |||
954 | y = self.data.yrange |
|
956 | y = self.data.yrange | |
955 | self.y = y |
|
957 | self.y = y | |
956 |
|
958 | |||
957 | x = self.data[-1][self.CODE] |
|
959 | x = self.data[-1][self.CODE] | |
958 |
|
960 | |||
959 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
961 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 | |
960 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
962 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 | |
961 |
|
963 | |||
962 | if self.axes[0].firsttime: |
|
964 | if self.axes[0].firsttime: | |
963 | for ch in self.data.channels: |
|
965 | for ch in self.data.channels: | |
964 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
966 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) | |
965 | plt.legend() |
|
967 | plt.legend() | |
966 | else: |
|
968 | else: | |
967 | for ch in self.data.channels: |
|
969 | for ch in self.data.channels: | |
968 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
970 | self.axes[0].lines[ch].set_data(x[ch], y) | |
969 |
|
971 | |||
970 |
|
972 | |||
971 | class SpectraCutPlot(Plot): |
|
973 | class SpectraCutPlot(Plot): | |
972 |
|
974 | |||
973 | CODE = 'spc_cut' |
|
975 | CODE = 'spc_cut' | |
974 | plot_type = 'scatter' |
|
976 | plot_type = 'scatter' | |
975 | buffering = False |
|
977 | buffering = False | |
976 |
|
978 | |||
977 | def setup(self): |
|
979 | def setup(self): | |
978 |
|
980 | |||
979 | self.nplots = len(self.data.channels) |
|
981 | self.nplots = len(self.data.channels) | |
980 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
982 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
981 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
983 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
982 | self.width = 3.4 * self.ncols + 1.5 |
|
984 | self.width = 3.4 * self.ncols + 1.5 | |
983 | self.height = 3 * self.nrows |
|
985 | self.height = 3 * self.nrows | |
984 | self.ylabel = 'Power [dB]' |
|
986 | self.ylabel = 'Power [dB]' | |
985 | self.colorbar = False |
|
987 | self.colorbar = False | |
986 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
988 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) | |
987 |
|
989 | |||
988 | def update(self, dataOut): |
|
990 | def update(self, dataOut): | |
989 |
|
991 | |||
990 | data = {} |
|
992 | data = {} | |
991 | meta = {} |
|
993 | meta = {} | |
992 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
994 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
993 | data['spc'] = spc |
|
995 | data['spc'] = spc | |
994 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
996 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
995 | if self.CODE == 'cut_gaussian_fit': |
|
997 | if self.CODE == 'cut_gaussian_fit': | |
996 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) |
|
998 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) | |
997 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) |
|
999 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) | |
998 | return data, meta |
|
1000 | return data, meta | |
999 |
|
1001 | |||
1000 | def plot(self): |
|
1002 | def plot(self): | |
1001 | if self.xaxis == "frequency": |
|
1003 | if self.xaxis == "frequency": | |
1002 | x = self.data.xrange[0][1:] |
|
1004 | x = self.data.xrange[0][1:] | |
1003 | self.xlabel = "Frequency (kHz)" |
|
1005 | self.xlabel = "Frequency (kHz)" | |
1004 | elif self.xaxis == "time": |
|
1006 | elif self.xaxis == "time": | |
1005 | x = self.data.xrange[1] |
|
1007 | x = self.data.xrange[1] | |
1006 | self.xlabel = "Time (ms)" |
|
1008 | self.xlabel = "Time (ms)" | |
1007 | else: |
|
1009 | else: | |
1008 | x = self.data.xrange[2][:-1] |
|
1010 | x = self.data.xrange[2][:-1] | |
1009 | self.xlabel = "Velocity (m/s)" |
|
1011 | self.xlabel = "Velocity (m/s)" | |
1010 |
|
1012 | |||
1011 | if self.CODE == 'cut_gaussian_fit': |
|
1013 | if self.CODE == 'cut_gaussian_fit': | |
1012 | x = self.data.xrange[2][:-1] |
|
1014 | x = self.data.xrange[2][:-1] | |
1013 | self.xlabel = "Velocity (m/s)" |
|
1015 | self.xlabel = "Velocity (m/s)" | |
1014 |
|
1016 | |||
1015 | self.titles = [] |
|
1017 | self.titles = [] | |
1016 |
|
1018 | |||
1017 | y = self.data.yrange |
|
1019 | y = self.data.yrange | |
1018 | data = self.data[-1] |
|
1020 | data = self.data[-1] | |
1019 | z = data['spc'] |
|
1021 | z = data['spc'] | |
1020 |
|
1022 | |||
1021 | if self.height_index: |
|
1023 | if self.height_index: | |
1022 | index = numpy.array(self.height_index) |
|
1024 | index = numpy.array(self.height_index) | |
1023 | else: |
|
1025 | else: | |
1024 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
1026 | index = numpy.arange(0, len(y), int((len(y))/9)) | |
1025 |
|
1027 | |||
1026 | for n, ax in enumerate(self.axes): |
|
1028 | for n, ax in enumerate(self.axes): | |
1027 | if self.CODE == 'cut_gaussian_fit': |
|
1029 | if self.CODE == 'cut_gaussian_fit': | |
1028 | gau0 = data['gauss_fit0'] |
|
1030 | gau0 = data['gauss_fit0'] | |
1029 | gau1 = data['gauss_fit1'] |
|
1031 | gau1 = data['gauss_fit1'] | |
1030 | if ax.firsttime: |
|
1032 | if ax.firsttime: | |
1031 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
1033 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
1032 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
1034 | self.xmin = self.xmin if self.xmin else -self.xmax | |
1033 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z[:,:,index]) |
|
1035 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z[:,:,index]) | |
1034 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z[:,:,index]) |
|
1036 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z[:,:,index]) | |
1035 | #print(self.ymax) |
|
1037 | #print(self.ymax) | |
1036 | #print(z[n, :, index]) |
|
1038 | #print(z[n, :, index]) | |
1037 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) |
|
1039 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) | |
1038 | if self.CODE == 'cut_gaussian_fit': |
|
1040 | if self.CODE == 'cut_gaussian_fit': | |
1039 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') |
|
1041 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') | |
1040 | for i, line in enumerate(ax.plt_gau0): |
|
1042 | for i, line in enumerate(ax.plt_gau0): | |
1041 | line.set_color(ax.plt[i].get_color()) |
|
1043 | line.set_color(ax.plt[i].get_color()) | |
1042 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') |
|
1044 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') | |
1043 | for i, line in enumerate(ax.plt_gau1): |
|
1045 | for i, line in enumerate(ax.plt_gau1): | |
1044 | line.set_color(ax.plt[i].get_color()) |
|
1046 | line.set_color(ax.plt[i].get_color()) | |
1045 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
1047 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] | |
1046 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
1048 | self.figures[0].legend(ax.plt, labels, loc='center right') | |
1047 | else: |
|
1049 | else: | |
1048 | for i, line in enumerate(ax.plt): |
|
1050 | for i, line in enumerate(ax.plt): | |
1049 | line.set_data(x, z[n, :, index[i]].T) |
|
1051 | line.set_data(x, z[n, :, index[i]].T) | |
1050 | for i, line in enumerate(ax.plt_gau0): |
|
1052 | for i, line in enumerate(ax.plt_gau0): | |
1051 | line.set_data(x, gau0[n, :, index[i]].T) |
|
1053 | line.set_data(x, gau0[n, :, index[i]].T) | |
1052 | line.set_color(ax.plt[i].get_color()) |
|
1054 | line.set_color(ax.plt[i].get_color()) | |
1053 | for i, line in enumerate(ax.plt_gau1): |
|
1055 | for i, line in enumerate(ax.plt_gau1): | |
1054 | line.set_data(x, gau1[n, :, index[i]].T) |
|
1056 | line.set_data(x, gau1[n, :, index[i]].T) | |
1055 | line.set_color(ax.plt[i].get_color()) |
|
1057 | line.set_color(ax.plt[i].get_color()) | |
1056 | self.titles.append('CH {}'.format(n)) |
|
1058 | self.titles.append('CH {}'.format(n)) | |
1057 |
|
1059 | |||
1058 |
|
1060 | |||
1059 | class BeaconPhase(Plot): |
|
1061 | class BeaconPhase(Plot): | |
1060 |
|
1062 | |||
1061 | __isConfig = None |
|
1063 | __isConfig = None | |
1062 | __nsubplots = None |
|
1064 | __nsubplots = None | |
1063 |
|
1065 | |||
1064 | PREFIX = 'beacon_phase' |
|
1066 | PREFIX = 'beacon_phase' | |
1065 |
|
1067 | |||
1066 | def __init__(self): |
|
1068 | def __init__(self): | |
1067 | Plot.__init__(self) |
|
1069 | Plot.__init__(self) | |
1068 | self.timerange = 24*60*60 |
|
1070 | self.timerange = 24*60*60 | |
1069 | self.isConfig = False |
|
1071 | self.isConfig = False | |
1070 | self.__nsubplots = 1 |
|
1072 | self.__nsubplots = 1 | |
1071 | self.counter_imagwr = 0 |
|
1073 | self.counter_imagwr = 0 | |
1072 | self.WIDTH = 800 |
|
1074 | self.WIDTH = 800 | |
1073 | self.HEIGHT = 400 |
|
1075 | self.HEIGHT = 400 | |
1074 | self.WIDTHPROF = 120 |
|
1076 | self.WIDTHPROF = 120 | |
1075 | self.HEIGHTPROF = 0 |
|
1077 | self.HEIGHTPROF = 0 | |
1076 | self.xdata = None |
|
1078 | self.xdata = None | |
1077 | self.ydata = None |
|
1079 | self.ydata = None | |
1078 |
|
1080 | |||
1079 | self.PLOT_CODE = BEACON_CODE |
|
1081 | self.PLOT_CODE = BEACON_CODE | |
1080 |
|
1082 | |||
1081 | self.FTP_WEI = None |
|
1083 | self.FTP_WEI = None | |
1082 | self.EXP_CODE = None |
|
1084 | self.EXP_CODE = None | |
1083 | self.SUB_EXP_CODE = None |
|
1085 | self.SUB_EXP_CODE = None | |
1084 | self.PLOT_POS = None |
|
1086 | self.PLOT_POS = None | |
1085 |
|
1087 | |||
1086 | self.filename_phase = None |
|
1088 | self.filename_phase = None | |
1087 |
|
1089 | |||
1088 | self.figfile = None |
|
1090 | self.figfile = None | |
1089 |
|
1091 | |||
1090 | self.xmin = None |
|
1092 | self.xmin = None | |
1091 | self.xmax = None |
|
1093 | self.xmax = None | |
1092 |
|
1094 | |||
1093 | def getSubplots(self): |
|
1095 | def getSubplots(self): | |
1094 |
|
1096 | |||
1095 | ncol = 1 |
|
1097 | ncol = 1 | |
1096 | nrow = 1 |
|
1098 | nrow = 1 | |
1097 |
|
1099 | |||
1098 | return nrow, ncol |
|
1100 | return nrow, ncol | |
1099 |
|
1101 | |||
1100 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1102 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
1101 |
|
1103 | |||
1102 | self.__showprofile = showprofile |
|
1104 | self.__showprofile = showprofile | |
1103 | self.nplots = nplots |
|
1105 | self.nplots = nplots | |
1104 |
|
1106 | |||
1105 | ncolspan = 7 |
|
1107 | ncolspan = 7 | |
1106 | colspan = 6 |
|
1108 | colspan = 6 | |
1107 | self.__nsubplots = 2 |
|
1109 | self.__nsubplots = 2 | |
1108 |
|
1110 | |||
1109 | self.createFigure(id = id, |
|
1111 | self.createFigure(id = id, | |
1110 | wintitle = wintitle, |
|
1112 | wintitle = wintitle, | |
1111 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1113 | widthplot = self.WIDTH+self.WIDTHPROF, | |
1112 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1114 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
1113 | show=show) |
|
1115 | show=show) | |
1114 |
|
1116 | |||
1115 | nrow, ncol = self.getSubplots() |
|
1117 | nrow, ncol = self.getSubplots() | |
1116 |
|
1118 | |||
1117 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1119 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
1118 |
|
1120 | |||
1119 | def save_phase(self, filename_phase): |
|
1121 | def save_phase(self, filename_phase): | |
1120 | f = open(filename_phase,'w+') |
|
1122 | f = open(filename_phase,'w+') | |
1121 | f.write('\n\n') |
|
1123 | f.write('\n\n') | |
1122 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1124 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
1123 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1125 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
1124 | f.close() |
|
1126 | f.close() | |
1125 |
|
1127 | |||
1126 | def save_data(self, filename_phase, data, data_datetime): |
|
1128 | def save_data(self, filename_phase, data, data_datetime): | |
1127 | f=open(filename_phase,'a') |
|
1129 | f=open(filename_phase,'a') | |
1128 | timetuple_data = data_datetime.timetuple() |
|
1130 | timetuple_data = data_datetime.timetuple() | |
1129 | day = str(timetuple_data.tm_mday) |
|
1131 | day = str(timetuple_data.tm_mday) | |
1130 | month = str(timetuple_data.tm_mon) |
|
1132 | month = str(timetuple_data.tm_mon) | |
1131 | year = str(timetuple_data.tm_year) |
|
1133 | year = str(timetuple_data.tm_year) | |
1132 | hour = str(timetuple_data.tm_hour) |
|
1134 | hour = str(timetuple_data.tm_hour) | |
1133 | minute = str(timetuple_data.tm_min) |
|
1135 | minute = str(timetuple_data.tm_min) | |
1134 | second = str(timetuple_data.tm_sec) |
|
1136 | second = str(timetuple_data.tm_sec) | |
1135 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1137 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
1136 | f.close() |
|
1138 | f.close() | |
1137 |
|
1139 | |||
1138 | def plot(self): |
|
1140 | def plot(self): | |
1139 | log.warning('TODO: Not yet implemented...') |
|
1141 | log.warning('TODO: Not yet implemented...') | |
1140 |
|
1142 | |||
1141 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1143 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
1142 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1144 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
1143 | timerange=None, |
|
1145 | timerange=None, | |
1144 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1146 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
1145 | server=None, folder=None, username=None, password=None, |
|
1147 | server=None, folder=None, username=None, password=None, | |
1146 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1148 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1147 |
|
1149 | |||
1148 | if dataOut.flagNoData: |
|
1150 | if dataOut.flagNoData: | |
1149 | return dataOut |
|
1151 | return dataOut | |
1150 |
|
1152 | |||
1151 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1153 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
1152 | return |
|
1154 | return | |
1153 |
|
1155 | |||
1154 | if pairsList == None: |
|
1156 | if pairsList == None: | |
1155 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1157 | pairsIndexList = dataOut.pairsIndexList[:10] | |
1156 | else: |
|
1158 | else: | |
1157 | pairsIndexList = [] |
|
1159 | pairsIndexList = [] | |
1158 | for pair in pairsList: |
|
1160 | for pair in pairsList: | |
1159 | if pair not in dataOut.pairsList: |
|
1161 | if pair not in dataOut.pairsList: | |
1160 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
1162 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) | |
1161 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1163 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
1162 |
|
1164 | |||
1163 | if pairsIndexList == []: |
|
1165 | if pairsIndexList == []: | |
1164 | return |
|
1166 | return | |
1165 |
|
1167 | |||
1166 | # if len(pairsIndexList) > 4: |
|
1168 | # if len(pairsIndexList) > 4: | |
1167 | # pairsIndexList = pairsIndexList[0:4] |
|
1169 | # pairsIndexList = pairsIndexList[0:4] | |
1168 |
|
1170 | |||
1169 | hmin_index = None |
|
1171 | hmin_index = None | |
1170 | hmax_index = None |
|
1172 | hmax_index = None | |
1171 |
|
1173 | |||
1172 | if hmin != None and hmax != None: |
|
1174 | if hmin != None and hmax != None: | |
1173 | indexes = numpy.arange(dataOut.nHeights) |
|
1175 | indexes = numpy.arange(dataOut.nHeights) | |
1174 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1176 | hmin_list = indexes[dataOut.heightList >= hmin] | |
1175 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1177 | hmax_list = indexes[dataOut.heightList <= hmax] | |
1176 |
|
1178 | |||
1177 | if hmin_list.any(): |
|
1179 | if hmin_list.any(): | |
1178 | hmin_index = hmin_list[0] |
|
1180 | hmin_index = hmin_list[0] | |
1179 |
|
1181 | |||
1180 | if hmax_list.any(): |
|
1182 | if hmax_list.any(): | |
1181 | hmax_index = hmax_list[-1]+1 |
|
1183 | hmax_index = hmax_list[-1]+1 | |
1182 |
|
1184 | |||
1183 | x = dataOut.getTimeRange() |
|
1185 | x = dataOut.getTimeRange() | |
1184 |
|
1186 | |||
1185 | thisDatetime = dataOut.datatime |
|
1187 | thisDatetime = dataOut.datatime | |
1186 |
|
1188 | |||
1187 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1189 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1188 | xlabel = "Local Time" |
|
1190 | xlabel = "Local Time" | |
1189 | ylabel = "Phase (degrees)" |
|
1191 | ylabel = "Phase (degrees)" | |
1190 |
|
1192 | |||
1191 | update_figfile = False |
|
1193 | update_figfile = False | |
1192 |
|
1194 | |||
1193 | nplots = len(pairsIndexList) |
|
1195 | nplots = len(pairsIndexList) | |
1194 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1196 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
1195 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1197 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
1196 | for i in range(nplots): |
|
1198 | for i in range(nplots): | |
1197 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1199 | pair = dataOut.pairsList[pairsIndexList[i]] | |
1198 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1200 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
1199 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1201 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
1200 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1202 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
1201 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1203 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
1202 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1204 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
1203 |
|
1205 | |||
1204 | if dataOut.beacon_heiIndexList: |
|
1206 | if dataOut.beacon_heiIndexList: | |
1205 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1207 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
1206 | else: |
|
1208 | else: | |
1207 | phase_beacon[i] = numpy.average(phase) |
|
1209 | phase_beacon[i] = numpy.average(phase) | |
1208 |
|
1210 | |||
1209 | if not self.isConfig: |
|
1211 | if not self.isConfig: | |
1210 |
|
1212 | |||
1211 | nplots = len(pairsIndexList) |
|
1213 | nplots = len(pairsIndexList) | |
1212 |
|
1214 | |||
1213 | self.setup(id=id, |
|
1215 | self.setup(id=id, | |
1214 | nplots=nplots, |
|
1216 | nplots=nplots, | |
1215 | wintitle=wintitle, |
|
1217 | wintitle=wintitle, | |
1216 | showprofile=showprofile, |
|
1218 | showprofile=showprofile, | |
1217 | show=show) |
|
1219 | show=show) | |
1218 |
|
1220 | |||
1219 | if timerange != None: |
|
1221 | if timerange != None: | |
1220 | self.timerange = timerange |
|
1222 | self.timerange = timerange | |
1221 |
|
1223 | |||
1222 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1224 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1223 |
|
1225 | |||
1224 | if ymin == None: ymin = 0 |
|
1226 | if ymin == None: ymin = 0 | |
1225 | if ymax == None: ymax = 360 |
|
1227 | if ymax == None: ymax = 360 | |
1226 |
|
1228 | |||
1227 | self.FTP_WEI = ftp_wei |
|
1229 | self.FTP_WEI = ftp_wei | |
1228 | self.EXP_CODE = exp_code |
|
1230 | self.EXP_CODE = exp_code | |
1229 | self.SUB_EXP_CODE = sub_exp_code |
|
1231 | self.SUB_EXP_CODE = sub_exp_code | |
1230 | self.PLOT_POS = plot_pos |
|
1232 | self.PLOT_POS = plot_pos | |
1231 |
|
1233 | |||
1232 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1234 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1233 | self.isConfig = True |
|
1235 | self.isConfig = True | |
1234 | self.figfile = figfile |
|
1236 | self.figfile = figfile | |
1235 | self.xdata = numpy.array([]) |
|
1237 | self.xdata = numpy.array([]) | |
1236 | self.ydata = numpy.array([]) |
|
1238 | self.ydata = numpy.array([]) | |
1237 |
|
1239 | |||
1238 | update_figfile = True |
|
1240 | update_figfile = True | |
1239 |
|
1241 | |||
1240 | #open file beacon phase |
|
1242 | #open file beacon phase | |
1241 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1243 | path = '%s%03d' %(self.PREFIX, self.id) | |
1242 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1244 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
1243 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1245 | self.filename_phase = os.path.join(figpath,beacon_file) | |
1244 | #self.save_phase(self.filename_phase) |
|
1246 | #self.save_phase(self.filename_phase) | |
1245 |
|
1247 | |||
1246 |
|
1248 | |||
1247 | #store data beacon phase |
|
1249 | #store data beacon phase | |
1248 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1250 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
1249 |
|
1251 | |||
1250 | self.setWinTitle(title) |
|
1252 | self.setWinTitle(title) | |
1251 |
|
1253 | |||
1252 |
|
1254 | |||
1253 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1255 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1254 |
|
1256 | |||
1255 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1257 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
1256 |
|
1258 | |||
1257 | axes = self.axesList[0] |
|
1259 | axes = self.axesList[0] | |
1258 |
|
1260 | |||
1259 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1261 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
1260 |
|
1262 | |||
1261 | if len(self.ydata)==0: |
|
1263 | if len(self.ydata)==0: | |
1262 | self.ydata = phase_beacon.reshape(-1,1) |
|
1264 | self.ydata = phase_beacon.reshape(-1,1) | |
1263 | else: |
|
1265 | else: | |
1264 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1266 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
1265 |
|
1267 | |||
1266 |
|
1268 | |||
1267 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1269 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
1268 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1270 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
1269 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1271 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
1270 | XAxisAsTime=True, grid='both' |
|
1272 | XAxisAsTime=True, grid='both' | |
1271 | ) |
|
1273 | ) | |
1272 |
|
1274 | |||
1273 | self.draw() |
|
1275 | self.draw() | |
1274 |
|
1276 | |||
1275 | if dataOut.ltctime >= self.xmax: |
|
1277 | if dataOut.ltctime >= self.xmax: | |
1276 | self.counter_imagwr = wr_period |
|
1278 | self.counter_imagwr = wr_period | |
1277 | self.isConfig = False |
|
1279 | self.isConfig = False | |
1278 | update_figfile = True |
|
1280 | update_figfile = True | |
1279 |
|
1281 | |||
1280 | self.save(figpath=figpath, |
|
1282 | self.save(figpath=figpath, | |
1281 | figfile=figfile, |
|
1283 | figfile=figfile, | |
1282 | save=save, |
|
1284 | save=save, | |
1283 | ftp=ftp, |
|
1285 | ftp=ftp, | |
1284 | wr_period=wr_period, |
|
1286 | wr_period=wr_period, | |
1285 | thisDatetime=thisDatetime, |
|
1287 | thisDatetime=thisDatetime, | |
1286 | update_figfile=update_figfile) |
|
1288 | update_figfile=update_figfile) | |
1287 |
|
1289 | |||
1288 | return dataOut |
|
1290 | return dataOut |
@@ -1,1287 +1,1285 | |||||
1 |
|
1 | |||
2 | import os |
|
2 | import os | |
3 | import time |
|
3 | import time | |
4 | import math |
|
4 | import math | |
5 | import datetime |
|
5 | import datetime | |
6 | import numpy |
|
6 | import numpy | |
7 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator #YONG |
|
7 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator #YONG | |
8 |
|
8 | |||
9 | from .jroplot_spectra import RTIPlot, NoisePlot |
|
9 | from .jroplot_spectra import RTIPlot, NoisePlot | |
10 |
|
10 | |||
11 | from schainpy.utils import log |
|
11 | from schainpy.utils import log | |
12 | from .plotting_codes import * |
|
12 | from .plotting_codes import * | |
13 |
|
13 | |||
14 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
14 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
15 |
|
15 | |||
16 | import matplotlib.pyplot as plt |
|
16 | import matplotlib.pyplot as plt | |
17 | import matplotlib.colors as colors |
|
17 | import matplotlib.colors as colors | |
18 | from matplotlib.ticker import MultipleLocator |
|
18 | from matplotlib.ticker import MultipleLocator | |
19 |
|
19 | |||
20 |
|
20 | |||
21 | class RTIDPPlot(RTIPlot): |
|
21 | class RTIDPPlot(RTIPlot): | |
22 |
|
22 | |||
23 | '''Plot for RTI Double Pulse Experiment |
|
23 | '''Plot for RTI Double Pulse Experiment | |
24 | ''' |
|
24 | ''' | |
25 |
|
25 | |||
26 | CODE = 'RTIDP' |
|
26 | CODE = 'RTIDP' | |
27 | colormap = 'jet' |
|
27 | colormap = 'jet' | |
28 | plot_name = 'RTI' |
|
28 | plot_name = 'RTI' | |
29 | plot_type = 'pcolorbuffer' |
|
29 | plot_type = 'pcolorbuffer' | |
30 |
|
30 | |||
31 | def setup(self): |
|
31 | def setup(self): | |
32 | self.xaxis = 'time' |
|
32 | self.xaxis = 'time' | |
33 | self.ncols = 1 |
|
33 | self.ncols = 1 | |
34 | self.nrows = 3 |
|
34 | self.nrows = 3 | |
35 | self.nplots = self.nrows |
|
35 | self.nplots = self.nrows | |
36 |
|
36 | |||
37 | self.ylabel = 'Range [km]' |
|
37 | self.ylabel = 'Range [km]' | |
38 | self.xlabel = 'Time (LT)' |
|
38 | self.xlabel = 'Time (LT)' | |
39 |
|
39 | |||
40 | self.cb_label = 'Intensity (dB)' |
|
40 | self.cb_label = 'Intensity (dB)' | |
41 |
|
41 | |||
42 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
42 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) | |
43 |
|
43 | |||
44 | self.titles = ['{} Channel {}'.format( |
|
44 | self.titles = ['{} Channel {}'.format( | |
45 | self.plot_name.upper(), '0x1'),'{} Channel {}'.format( |
|
45 | self.plot_name.upper(), '0x1'),'{} Channel {}'.format( | |
46 | self.plot_name.upper(), '0'),'{} Channel {}'.format( |
|
46 | self.plot_name.upper(), '0'),'{} Channel {}'.format( | |
47 | self.plot_name.upper(), '1')] |
|
47 | self.plot_name.upper(), '1')] | |
48 |
|
48 | |||
49 | def update(self, dataOut): |
|
49 | def update(self, dataOut): | |
50 |
|
50 | |||
51 | data = {} |
|
51 | data = {} | |
52 | meta = {} |
|
52 | meta = {} | |
53 | data['rti'] = dataOut.data_for_RTI_DP |
|
53 | data['rti'] = dataOut.data_for_RTI_DP | |
54 | data['NDP'] = dataOut.NDP |
|
54 | data['NDP'] = dataOut.NDP | |
55 |
|
55 | |||
56 | return data, meta |
|
56 | return data, meta | |
57 |
|
57 | |||
58 | def plot(self): |
|
58 | def plot(self): | |
59 |
|
59 | |||
60 | NDP = self.data['NDP'][-1] |
|
60 | NDP = self.data['NDP'][-1] | |
61 | self.x = self.data.times |
|
61 | self.x = self.data.times | |
62 | self.y = self.data.yrange[0:NDP] |
|
62 | self.y = self.data.yrange[0:NDP] | |
63 | self.z = self.data['rti'] |
|
63 | self.z = self.data['rti'] | |
64 | self.z = numpy.ma.masked_invalid(self.z) |
|
64 | self.z = numpy.ma.masked_invalid(self.z) | |
65 |
|
65 | |||
66 | if self.decimation is None: |
|
66 | if self.decimation is None: | |
67 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
67 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
68 | else: |
|
68 | else: | |
69 | x, y, z = self.fill_gaps(*self.decimate()) |
|
69 | x, y, z = self.fill_gaps(*self.decimate()) | |
70 |
|
70 | |||
71 | for n, ax in enumerate(self.axes): |
|
71 | for n, ax in enumerate(self.axes): | |
72 |
|
72 | |||
73 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
73 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
74 | self.z[1][0,12:40]) |
|
74 | self.z[1][0,12:40]) | |
75 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
75 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
76 | self.z[1][0,12:40]) |
|
76 | self.z[1][0,12:40]) | |
77 |
|
77 | |||
78 | if ax.firsttime: |
|
78 | if ax.firsttime: | |
79 |
|
79 | |||
80 | if self.zlimits is not None: |
|
80 | if self.zlimits is not None: | |
81 | self.zmin, self.zmax = self.zlimits[n] |
|
81 | self.zmin, self.zmax = self.zlimits[n] | |
82 |
|
82 | |||
83 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
83 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
84 | vmin=self.zmin, |
|
84 | vmin=self.zmin, | |
85 | vmax=self.zmax, |
|
85 | vmax=self.zmax, | |
86 | cmap=plt.get_cmap(self.colormap) |
|
86 | cmap=plt.get_cmap(self.colormap) | |
87 | ) |
|
87 | ) | |
88 | else: |
|
88 | else: | |
89 | #if self.zlimits is not None: |
|
89 | #if self.zlimits is not None: | |
90 | #self.zmin, self.zmax = self.zlimits[n] |
|
90 | #self.zmin, self.zmax = self.zlimits[n] | |
91 | ax.collections.remove(ax.collections[0]) |
|
91 | ax.collections.remove(ax.collections[0]) | |
92 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
92 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
93 | vmin=self.zmin, |
|
93 | vmin=self.zmin, | |
94 | vmax=self.zmax, |
|
94 | vmax=self.zmax, | |
95 | cmap=plt.get_cmap(self.colormap) |
|
95 | cmap=plt.get_cmap(self.colormap) | |
96 | ) |
|
96 | ) | |
97 |
|
97 | |||
98 |
|
98 | |||
99 | class RTILPPlot(RTIPlot): |
|
99 | class RTILPPlot(RTIPlot): | |
100 |
|
100 | |||
101 | ''' |
|
101 | ''' | |
102 | Plot for RTI Long Pulse |
|
102 | Plot for RTI Long Pulse | |
103 | ''' |
|
103 | ''' | |
104 |
|
104 | |||
105 | CODE = 'RTILP' |
|
105 | CODE = 'RTILP' | |
106 | colormap = 'jet' |
|
106 | colormap = 'jet' | |
107 | plot_name = 'RTI LP' |
|
107 | plot_name = 'RTI LP' | |
108 | plot_type = 'pcolorbuffer' |
|
108 | plot_type = 'pcolorbuffer' | |
109 |
|
109 | |||
110 | def setup(self): |
|
110 | def setup(self): | |
111 | self.xaxis = 'time' |
|
111 | self.xaxis = 'time' | |
112 | self.ncols = 1 |
|
112 | self.ncols = 1 | |
113 | self.nrows = 4 |
|
113 | self.nrows = 4 | |
114 | self.nplots = self.nrows |
|
114 | self.nplots = self.nrows | |
115 |
|
115 | |||
116 | self.ylabel = 'Range [km]' |
|
116 | self.ylabel = 'Range [km]' | |
117 | self.xlabel = 'Time (LT)' |
|
117 | self.xlabel = 'Time (LT)' | |
118 |
|
118 | |||
119 | self.cb_label = 'Intensity (dB)' |
|
119 | self.cb_label = 'Intensity (dB)' | |
120 |
|
120 | |||
121 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) |
|
121 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95}) | |
122 |
|
122 | |||
123 |
|
123 | |||
124 | self.titles = ['{} Channel {}'.format( |
|
124 | self.titles = ['{} Channel {}'.format( | |
125 | self.plot_name.upper(), '0'),'{} Channel {}'.format( |
|
125 | self.plot_name.upper(), '0'),'{} Channel {}'.format( | |
126 | self.plot_name.upper(), '1'),'{} Channel {}'.format( |
|
126 | self.plot_name.upper(), '1'),'{} Channel {}'.format( | |
127 | self.plot_name.upper(), '2'),'{} Channel {}'.format( |
|
127 | self.plot_name.upper(), '2'),'{} Channel {}'.format( | |
128 | self.plot_name.upper(), '3')] |
|
128 | self.plot_name.upper(), '3')] | |
129 |
|
129 | |||
130 |
|
130 | |||
131 | def update(self, dataOut): |
|
131 | def update(self, dataOut): | |
132 |
|
132 | |||
133 | data = {} |
|
133 | data = {} | |
134 | meta = {} |
|
134 | meta = {} | |
135 | data['rti'] = dataOut.data_for_RTI_LP |
|
135 | data['rti'] = dataOut.data_for_RTI_LP | |
136 | data['NRANGE'] = dataOut.NRANGE |
|
136 | data['NRANGE'] = dataOut.NRANGE | |
137 |
|
137 | |||
138 | return data, meta |
|
138 | return data, meta | |
139 |
|
139 | |||
140 | def plot(self): |
|
140 | def plot(self): | |
141 |
|
141 | |||
142 | NRANGE = self.data['NRANGE'][-1] |
|
142 | NRANGE = self.data['NRANGE'][-1] | |
143 | self.x = self.data.times |
|
143 | self.x = self.data.times | |
144 | self.y = self.data.yrange[0:NRANGE] |
|
144 | self.y = self.data.yrange[0:NRANGE] | |
145 |
|
145 | |||
146 | self.z = self.data['rti'] |
|
146 | self.z = self.data['rti'] | |
147 |
|
147 | |||
148 | self.z = numpy.ma.masked_invalid(self.z) |
|
148 | self.z = numpy.ma.masked_invalid(self.z) | |
149 |
|
149 | |||
150 | if self.decimation is None: |
|
150 | if self.decimation is None: | |
151 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
151 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
152 | else: |
|
152 | else: | |
153 | x, y, z = self.fill_gaps(*self.decimate()) |
|
153 | x, y, z = self.fill_gaps(*self.decimate()) | |
154 |
|
154 | |||
155 | for n, ax in enumerate(self.axes): |
|
155 | for n, ax in enumerate(self.axes): | |
156 |
|
156 | |||
157 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
157 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
158 | self.z[1][0,12:40]) |
|
158 | self.z[1][0,12:40]) | |
159 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
159 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
160 | self.z[1][0,12:40]) |
|
160 | self.z[1][0,12:40]) | |
161 |
|
161 | |||
162 | if ax.firsttime: |
|
162 | if ax.firsttime: | |
163 |
|
163 | |||
164 | if self.zlimits is not None: |
|
164 | if self.zlimits is not None: | |
165 | self.zmin, self.zmax = self.zlimits[n] |
|
165 | self.zmin, self.zmax = self.zlimits[n] | |
166 |
|
166 | |||
167 |
|
167 | |||
168 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
168 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
169 | vmin=self.zmin, |
|
169 | vmin=self.zmin, | |
170 | vmax=self.zmax, |
|
170 | vmax=self.zmax, | |
171 | cmap=plt.get_cmap(self.colormap) |
|
171 | cmap=plt.get_cmap(self.colormap) | |
172 | ) |
|
172 | ) | |
173 |
|
173 | |||
174 | else: |
|
174 | else: | |
175 | #if self.zlimits is not None: |
|
175 | #if self.zlimits is not None: | |
176 | #self.zmin, self.zmax = self.zlimits[n] |
|
176 | #self.zmin, self.zmax = self.zlimits[n] | |
177 | ax.collections.remove(ax.collections[0]) |
|
177 | ax.collections.remove(ax.collections[0]) | |
178 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
178 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
179 | vmin=self.zmin, |
|
179 | vmin=self.zmin, | |
180 | vmax=self.zmax, |
|
180 | vmax=self.zmax, | |
181 | cmap=plt.get_cmap(self.colormap) |
|
181 | cmap=plt.get_cmap(self.colormap) | |
182 | ) |
|
182 | ) | |
183 |
|
183 | |||
184 |
|
184 | |||
185 | class DenRTIPlot(RTIPlot): |
|
185 | class DenRTIPlot(RTIPlot): | |
186 |
|
186 | |||
187 | ''' |
|
187 | ''' | |
188 | Plot for Den |
|
188 | Plot for Den | |
189 | ''' |
|
189 | ''' | |
190 |
|
190 | |||
191 | CODE = 'denrti' |
|
191 | CODE = 'denrti' | |
192 | colormap = 'jet' |
|
192 | colormap = 'jet' | |
193 |
|
193 | |||
194 | def setup(self): |
|
194 | def setup(self): | |
195 | self.xaxis = 'time' |
|
195 | self.xaxis = 'time' | |
196 | self.ncols = 1 |
|
196 | self.ncols = 1 | |
197 | self.nrows = self.data.shape(self.CODE)[0] |
|
197 | self.nrows = self.data.shape(self.CODE)[0] | |
198 | self.nplots = self.nrows |
|
198 | self.nplots = self.nrows | |
199 |
|
199 | |||
200 | self.ylabel = 'Range [km]' |
|
200 | self.ylabel = 'Range [km]' | |
201 | self.xlabel = 'Time (LT)' |
|
201 | self.xlabel = 'Time (LT)' | |
202 |
|
202 | |||
203 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
203 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
204 |
|
204 | |||
205 | if self.CODE == 'denrti': |
|
205 | if self.CODE == 'denrti': | |
206 | self.cb_label = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' |
|
206 | self.cb_label = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' | |
207 |
|
207 | |||
208 |
|
208 | |||
209 | self.titles = ['Electron Density RTI'] |
|
209 | self.titles = ['Electron Density RTI'] | |
210 |
|
210 | |||
211 | def update(self, dataOut): |
|
211 | def update(self, dataOut): | |
212 |
|
212 | |||
213 | data = {} |
|
213 | data = {} | |
214 | meta = {} |
|
214 | meta = {} | |
215 |
|
215 | |||
216 | data['denrti'] = dataOut.DensityFinal |
|
216 | data['denrti'] = dataOut.DensityFinal | |
217 |
|
217 | |||
218 | return data, meta |
|
218 | return data, meta | |
219 |
|
219 | |||
220 | def plot(self): |
|
220 | def plot(self): | |
221 |
|
221 | |||
222 | self.x = self.data.times |
|
222 | self.x = self.data.times | |
223 | self.y = self.data.yrange |
|
223 | self.y = self.data.yrange | |
224 |
|
224 | |||
225 | self.z = self.data[self.CODE] |
|
225 | self.z = self.data[self.CODE] | |
226 |
|
226 | |||
227 | self.z = numpy.ma.masked_invalid(self.z) |
|
227 | self.z = numpy.ma.masked_invalid(self.z) | |
228 |
|
228 | |||
229 | if self.decimation is None: |
|
229 | if self.decimation is None: | |
230 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
230 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
231 | else: |
|
231 | else: | |
232 | x, y, z = self.fill_gaps(*self.decimate()) |
|
232 | x, y, z = self.fill_gaps(*self.decimate()) | |
233 |
|
233 | |||
234 | for n, ax in enumerate(self.axes): |
|
234 | for n, ax in enumerate(self.axes): | |
235 |
|
235 | |||
236 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
236 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
237 | self.z[n]) |
|
237 | self.z[n]) | |
238 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
238 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
239 | self.z[n]) |
|
239 | self.z[n]) | |
240 |
|
240 | |||
241 | if ax.firsttime: |
|
241 | if ax.firsttime: | |
242 |
|
242 | |||
243 | if self.zlimits is not None: |
|
243 | if self.zlimits is not None: | |
244 | self.zmin, self.zmax = self.zlimits[n] |
|
244 | self.zmin, self.zmax = self.zlimits[n] | |
245 | if numpy.log10(self.zmin)<0: |
|
245 | if numpy.log10(self.zmin)<0: | |
246 | self.zmin=1 |
|
246 | self.zmin=1 | |
247 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
247 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
248 | vmin=self.zmin, |
|
248 | vmin=self.zmin, | |
249 | vmax=self.zmax, |
|
249 | vmax=self.zmax, | |
250 | cmap=self.cmaps[n], |
|
250 | cmap=self.cmaps[n], | |
251 | norm=colors.LogNorm() |
|
251 | norm=colors.LogNorm() | |
252 | ) |
|
252 | ) | |
253 |
|
253 | |||
254 | else: |
|
254 | else: | |
255 | if self.zlimits is not None: |
|
255 | if self.zlimits is not None: | |
256 | self.zmin, self.zmax = self.zlimits[n] |
|
256 | self.zmin, self.zmax = self.zlimits[n] | |
257 | ax.collections.remove(ax.collections[0]) |
|
257 | ax.collections.remove(ax.collections[0]) | |
258 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
258 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
259 | vmin=self.zmin, |
|
259 | vmin=self.zmin, | |
260 | vmax=self.zmax, |
|
260 | vmax=self.zmax, | |
261 | cmap=self.cmaps[n], |
|
261 | cmap=self.cmaps[n], | |
262 | norm=colors.LogNorm() |
|
262 | norm=colors.LogNorm() | |
263 | ) |
|
263 | ) | |
264 |
|
264 | |||
265 |
|
265 | |||
266 |
|
||||
267 |
|
||||
268 | class ETempRTIPlot(RTIPlot): |
|
266 | class ETempRTIPlot(RTIPlot): | |
269 |
|
267 | |||
270 | ''' |
|
268 | ''' | |
271 | Plot for Electron Temperature |
|
269 | Plot for Electron Temperature | |
272 | ''' |
|
270 | ''' | |
273 |
|
271 | |||
274 | CODE = 'ETemp' |
|
272 | CODE = 'ETemp' | |
275 | colormap = 'jet' |
|
273 | colormap = 'jet' | |
276 |
|
274 | |||
277 | def setup(self): |
|
275 | def setup(self): | |
278 | self.xaxis = 'time' |
|
276 | self.xaxis = 'time' | |
279 | self.ncols = 1 |
|
277 | self.ncols = 1 | |
280 | self.nrows = self.data.shape(self.CODE)[0] |
|
278 | self.nrows = self.data.shape(self.CODE)[0] | |
281 | self.nplots = self.nrows |
|
279 | self.nplots = self.nrows | |
282 |
|
280 | |||
283 | self.ylabel = 'Range [km]' |
|
281 | self.ylabel = 'Range [km]' | |
284 | self.xlabel = 'Time (LT)' |
|
282 | self.xlabel = 'Time (LT)' | |
285 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) |
|
283 | self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18}) | |
286 | if self.CODE == 'ETemp': |
|
284 | if self.CODE == 'ETemp': | |
287 | self.cb_label = 'Electron Temperature (K)' |
|
285 | self.cb_label = 'Electron Temperature (K)' | |
288 | self.titles = ['Electron Temperature RTI'] |
|
286 | self.titles = ['Electron Temperature RTI'] | |
289 | if self.CODE == 'ITemp': |
|
287 | if self.CODE == 'ITemp': | |
290 | self.cb_label = 'Ion Temperature (K)' |
|
288 | self.cb_label = 'Ion Temperature (K)' | |
291 | self.titles = ['Ion Temperature RTI'] |
|
289 | self.titles = ['Ion Temperature RTI'] | |
292 | if self.CODE == 'HeFracLP': |
|
290 | if self.CODE == 'HeFracLP': | |
293 | self.cb_label='He+ Fraction' |
|
291 | self.cb_label='He+ Fraction' | |
294 | self.titles = ['He+ Fraction RTI'] |
|
292 | self.titles = ['He+ Fraction RTI'] | |
295 | self.zmax=0.16 |
|
293 | self.zmax=0.16 | |
296 | if self.CODE== 'HFracLP': |
|
294 | if self.CODE== 'HFracLP': | |
297 | self.cb_label='H+ Fraction' |
|
295 | self.cb_label='H+ Fraction' | |
298 | self.titles = ['H+ Fraction RTI'] |
|
296 | self.titles = ['H+ Fraction RTI'] | |
299 |
|
297 | |||
300 | def update(self, dataOut): |
|
298 | def update(self, dataOut): | |
301 |
|
299 | |||
302 | data = {} |
|
300 | data = {} | |
303 | meta = {} |
|
301 | meta = {} | |
304 |
|
302 | |||
305 | data['ETemp'] = dataOut.ElecTempFinal |
|
303 | data['ETemp'] = dataOut.ElecTempFinal | |
306 |
|
304 | |||
307 | return data, meta |
|
305 | return data, meta | |
308 |
|
306 | |||
309 | def plot(self): |
|
307 | def plot(self): | |
310 |
|
308 | |||
311 | self.x = self.data.times |
|
309 | self.x = self.data.times | |
312 | self.y = self.data.yrange |
|
310 | self.y = self.data.yrange | |
313 |
|
311 | |||
314 |
|
312 | |||
315 | self.z = self.data[self.CODE] |
|
313 | self.z = self.data[self.CODE] | |
316 |
|
314 | |||
317 | self.z = numpy.ma.masked_invalid(self.z) |
|
315 | self.z = numpy.ma.masked_invalid(self.z) | |
318 |
|
316 | |||
319 | if self.decimation is None: |
|
317 | if self.decimation is None: | |
320 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
318 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
321 | else: |
|
319 | else: | |
322 | x, y, z = self.fill_gaps(*self.decimate()) |
|
320 | x, y, z = self.fill_gaps(*self.decimate()) | |
323 |
|
321 | |||
324 | for n, ax in enumerate(self.axes): |
|
322 | for n, ax in enumerate(self.axes): | |
325 |
|
323 | |||
326 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
324 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
327 | self.z[n]) |
|
325 | self.z[n]) | |
328 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
326 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
329 | self.z[n]) |
|
327 | self.z[n]) | |
330 |
|
328 | |||
331 | if ax.firsttime: |
|
329 | if ax.firsttime: | |
332 |
|
330 | |||
333 | if self.zlimits is not None: |
|
331 | if self.zlimits is not None: | |
334 | self.zmin, self.zmax = self.zlimits[n] |
|
332 | self.zmin, self.zmax = self.zlimits[n] | |
335 |
|
333 | |||
336 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
334 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
337 | vmin=self.zmin, |
|
335 | vmin=self.zmin, | |
338 | vmax=self.zmax, |
|
336 | vmax=self.zmax, | |
339 | cmap=self.cmaps[n] |
|
337 | cmap=self.cmaps[n] | |
340 | ) |
|
338 | ) | |
341 | #plt.tight_layout() |
|
339 | #plt.tight_layout() | |
342 |
|
340 | |||
343 | else: |
|
341 | else: | |
344 | if self.zlimits is not None: |
|
342 | if self.zlimits is not None: | |
345 | self.zmin, self.zmax = self.zlimits[n] |
|
343 | self.zmin, self.zmax = self.zlimits[n] | |
346 | ax.collections.remove(ax.collections[0]) |
|
344 | ax.collections.remove(ax.collections[0]) | |
347 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
345 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
348 | vmin=self.zmin, |
|
346 | vmin=self.zmin, | |
349 | vmax=self.zmax, |
|
347 | vmax=self.zmax, | |
350 | cmap=self.cmaps[n] |
|
348 | cmap=self.cmaps[n] | |
351 | ) |
|
349 | ) | |
352 |
|
350 | |||
353 |
|
351 | |||
354 |
|
||||
355 | class ITempRTIPlot(ETempRTIPlot): |
|
352 | class ITempRTIPlot(ETempRTIPlot): | |
356 |
|
353 | |||
357 | ''' |
|
354 | ''' | |
358 | Plot for Ion Temperature |
|
355 | Plot for Ion Temperature | |
359 | ''' |
|
356 | ''' | |
360 |
|
357 | |||
361 | CODE = 'ITemp' |
|
358 | CODE = 'ITemp' | |
362 | colormap = 'jet' |
|
359 | colormap = 'jet' | |
363 | plot_name = 'Ion Temperature' |
|
360 | plot_name = 'Ion Temperature' | |
364 |
|
361 | |||
365 | def update(self, dataOut): |
|
362 | def update(self, dataOut): | |
366 |
|
363 | |||
367 | data = {} |
|
364 | data = {} | |
368 | meta = {} |
|
365 | meta = {} | |
369 |
|
366 | |||
370 | data['ITemp'] = dataOut.IonTempFinal |
|
367 | data['ITemp'] = dataOut.IonTempFinal | |
371 |
|
368 | |||
372 | return data, meta |
|
369 | return data, meta | |
373 |
|
370 | |||
374 |
|
371 | |||
375 |
|
||||
376 | class HFracRTIPlot(ETempRTIPlot): |
|
372 | class HFracRTIPlot(ETempRTIPlot): | |
377 |
|
373 | |||
378 | ''' |
|
374 | ''' | |
379 | Plot for H+ LP |
|
375 | Plot for H+ LP | |
380 | ''' |
|
376 | ''' | |
381 |
|
377 | |||
382 | CODE = 'HFracLP' |
|
378 | CODE = 'HFracLP' | |
383 | colormap = 'jet' |
|
379 | colormap = 'jet' | |
384 | plot_name = 'H+ Frac' |
|
380 | plot_name = 'H+ Frac' | |
385 |
|
381 | |||
386 | def update(self, dataOut): |
|
382 | def update(self, dataOut): | |
387 |
|
383 | |||
388 | data = {} |
|
384 | data = {} | |
389 | meta = {} |
|
385 | meta = {} | |
390 | data['HFracLP'] = dataOut.PhyFinal |
|
386 | data['HFracLP'] = dataOut.PhyFinal | |
391 |
|
387 | |||
392 | return data, meta |
|
388 | return data, meta | |
393 |
|
389 | |||
394 |
|
390 | |||
395 | class HeFracRTIPlot(ETempRTIPlot): |
|
391 | class HeFracRTIPlot(ETempRTIPlot): | |
396 |
|
392 | |||
397 | ''' |
|
393 | ''' | |
398 | Plot for He+ LP |
|
394 | Plot for He+ LP | |
399 | ''' |
|
395 | ''' | |
400 |
|
396 | |||
401 | CODE = 'HeFracLP' |
|
397 | CODE = 'HeFracLP' | |
402 | colormap = 'jet' |
|
398 | colormap = 'jet' | |
403 | plot_name = 'He+ Frac' |
|
399 | plot_name = 'He+ Frac' | |
404 |
|
400 | |||
405 | def update(self, dataOut): |
|
401 | def update(self, dataOut): | |
406 |
|
402 | |||
407 | data = {} |
|
403 | data = {} | |
408 | meta = {} |
|
404 | meta = {} | |
409 | data['HeFracLP'] = dataOut.PheFinal |
|
405 | data['HeFracLP'] = dataOut.PheFinal | |
410 |
|
406 | |||
411 | return data, meta |
|
407 | return data, meta | |
412 |
|
408 | |||
413 |
|
409 | |||
414 | class TempsDPPlot(Plot): |
|
410 | class TempsDPPlot(Plot): | |
415 | ''' |
|
411 | ''' | |
416 | Plot for Electron - Ion Temperatures |
|
412 | Plot for Electron - Ion Temperatures | |
417 | ''' |
|
413 | ''' | |
418 |
|
414 | |||
419 | CODE = 'tempsDP' |
|
415 | CODE = 'tempsDP' | |
420 | #plot_name = 'Temperatures' |
|
416 | #plot_name = 'Temperatures' | |
421 | plot_type = 'scatterbuffer' |
|
417 | plot_type = 'scatterbuffer' | |
422 |
|
418 | |||
423 | def setup(self): |
|
419 | def setup(self): | |
424 |
|
420 | |||
425 | self.ncols = 1 |
|
421 | self.ncols = 1 | |
426 | self.nrows = 1 |
|
422 | self.nrows = 1 | |
427 | self.nplots = 1 |
|
423 | self.nplots = 1 | |
428 | self.ylabel = 'Range [km]' |
|
424 | self.ylabel = 'Range [km]' | |
429 | self.xlabel = 'Temperature (K)' |
|
425 | self.xlabel = 'Temperature (K)' | |
430 | self.titles = ['Electron/Ion Temperatures'] |
|
426 | self.titles = ['Electron/Ion Temperatures'] | |
431 | self.width = 3.5 |
|
427 | self.width = 3.5 | |
432 | self.height = 5.5 |
|
428 | self.height = 5.5 | |
433 | self.colorbar = False |
|
429 | self.colorbar = False | |
434 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
430 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
435 |
|
431 | |||
436 | def update(self, dataOut): |
|
432 | def update(self, dataOut): | |
437 | data = {} |
|
433 | data = {} | |
438 | meta = {} |
|
434 | meta = {} | |
439 |
|
435 | |||
440 | data['Te'] = dataOut.te2 |
|
436 | data['Te'] = dataOut.te2 | |
441 | data['Ti'] = dataOut.ti2 |
|
437 | data['Ti'] = dataOut.ti2 | |
442 | data['Te_error'] = dataOut.ete2 |
|
438 | data['Te_error'] = dataOut.ete2 | |
443 | data['Ti_error'] = dataOut.eti2 |
|
439 | data['Ti_error'] = dataOut.eti2 | |
444 |
|
440 | |||
445 | meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
441 | meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] | |
446 |
|
442 | |||
447 | return data, meta |
|
443 | return data, meta | |
448 |
|
444 | |||
449 | def plot(self): |
|
445 | def plot(self): | |
450 |
|
446 | |||
451 | y = self.data.yrange |
|
447 | y = self.data.yrange | |
452 |
|
448 | |||
453 | self.xmin = -100 |
|
449 | self.xmin = -100 | |
454 | self.xmax = 5000 |
|
450 | self.xmax = 5000 | |
455 |
|
451 | |||
456 | ax = self.axes[0] |
|
452 | ax = self.axes[0] | |
457 |
|
453 | |||
458 | data = self.data[-1] |
|
454 | data = self.data[-1] | |
459 |
|
455 | |||
460 | Te = data['Te'] |
|
456 | Te = data['Te'] | |
461 | Ti = data['Ti'] |
|
457 | Ti = data['Ti'] | |
462 | errTe = data['Te_error'] |
|
458 | errTe = data['Te_error'] | |
463 | errTi = data['Ti_error'] |
|
459 | errTi = data['Ti_error'] | |
464 |
|
460 | |||
465 | if ax.firsttime: |
|
461 | if ax.firsttime: | |
466 | ax.errorbar(Te, y, xerr=errTe, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') |
|
462 | ax.errorbar(Te, y, xerr=errTe, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') | |
467 | ax.errorbar(Ti, y, fmt='k^', xerr=errTi,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') |
|
463 | ax.errorbar(Ti, y, fmt='k^', xerr=errTi,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') | |
468 | plt.legend(loc='lower right') |
|
464 | plt.legend(loc='lower right') | |
469 | self.ystep_given = 50 |
|
465 | self.ystep_given = 50 | |
470 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
466 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
471 | ax.grid(which='minor') |
|
467 | ax.grid(which='minor') | |
472 |
|
468 | |||
473 | else: |
|
469 | else: | |
474 | self.clear_figures() |
|
470 | self.clear_figures() | |
475 | ax.errorbar(Te, y, xerr=errTe, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') |
|
471 | ax.errorbar(Te, y, xerr=errTe, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') | |
476 | ax.errorbar(Ti, y, fmt='k^', xerr=errTi,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') |
|
472 | ax.errorbar(Ti, y, fmt='k^', xerr=errTi,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') | |
477 | plt.legend(loc='lower right') |
|
473 | plt.legend(loc='lower right') | |
478 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
474 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
479 |
|
475 | |||
480 |
|
476 | |||
481 | class TempsHPPlot(Plot): |
|
477 | class TempsHPPlot(Plot): | |
482 | ''' |
|
478 | ''' | |
483 | Plot for Temperatures Hybrid Experiment |
|
479 | Plot for Temperatures Hybrid Experiment | |
484 | ''' |
|
480 | ''' | |
485 |
|
481 | |||
486 | CODE = 'temps_LP' |
|
482 | CODE = 'temps_LP' | |
487 | #plot_name = 'Temperatures' |
|
483 | #plot_name = 'Temperatures' | |
488 | plot_type = 'scatterbuffer' |
|
484 | plot_type = 'scatterbuffer' | |
489 |
|
485 | |||
490 |
|
486 | |||
491 | def setup(self): |
|
487 | def setup(self): | |
492 |
|
488 | |||
493 | self.ncols = 1 |
|
489 | self.ncols = 1 | |
494 | self.nrows = 1 |
|
490 | self.nrows = 1 | |
495 | self.nplots = 1 |
|
491 | self.nplots = 1 | |
496 | self.ylabel = 'Range [km]' |
|
492 | self.ylabel = 'Range [km]' | |
497 | self.xlabel = 'Temperature (K)' |
|
493 | self.xlabel = 'Temperature (K)' | |
498 | self.titles = ['Electron/Ion Temperatures'] |
|
494 | self.titles = ['Electron/Ion Temperatures'] | |
499 | self.width = 3.5 |
|
495 | self.width = 3.5 | |
500 | self.height = 6.5 |
|
496 | self.height = 6.5 | |
501 | self.colorbar = False |
|
497 | self.colorbar = False | |
502 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
498 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
503 |
|
499 | |||
504 | def update(self, dataOut): |
|
500 | def update(self, dataOut): | |
505 | data = {} |
|
501 | data = {} | |
506 | meta = {} |
|
502 | meta = {} | |
507 |
|
503 | |||
508 |
|
504 | |||
509 | data['Te'] = numpy.concatenate((dataOut.te2[:dataOut.cut],dataOut.te[dataOut.cut:])) |
|
505 | data['Te'] = numpy.concatenate((dataOut.te2[:dataOut.cut],dataOut.te[dataOut.cut:])) | |
510 | data['Ti'] = numpy.concatenate((dataOut.ti2[:dataOut.cut],dataOut.ti[dataOut.cut:])) |
|
506 | data['Ti'] = numpy.concatenate((dataOut.ti2[:dataOut.cut],dataOut.ti[dataOut.cut:])) | |
511 | data['Te_error'] = numpy.concatenate((dataOut.ete2[:dataOut.cut],dataOut.ete[dataOut.cut:])) |
|
507 | data['Te_error'] = numpy.concatenate((dataOut.ete2[:dataOut.cut],dataOut.ete[dataOut.cut:])) | |
512 | data['Ti_error'] = numpy.concatenate((dataOut.eti2[:dataOut.cut],dataOut.eti[dataOut.cut:])) |
|
508 | data['Ti_error'] = numpy.concatenate((dataOut.eti2[:dataOut.cut],dataOut.eti[dataOut.cut:])) | |
513 |
|
509 | |||
514 | meta['yrange'] = dataOut.heightList[0:dataOut.NACF] |
|
510 | meta['yrange'] = dataOut.heightList[0:dataOut.NACF] | |
515 |
|
511 | |||
516 | return data, meta |
|
512 | return data, meta | |
517 |
|
513 | |||
518 | def plot(self): |
|
514 | def plot(self): | |
519 |
|
515 | |||
520 |
|
516 | |||
521 | self.y = self.data.yrange |
|
517 | self.y = self.data.yrange | |
522 | self.xmin = -100 |
|
518 | self.xmin = -100 | |
523 | self.xmax = 4500 |
|
519 | self.xmax = 4500 | |
524 | ax = self.axes[0] |
|
520 | ax = self.axes[0] | |
525 |
|
521 | |||
526 | data = self.data[-1] |
|
522 | data = self.data[-1] | |
527 |
|
523 | |||
528 | Te = data['Te'] |
|
524 | Te = data['Te'] | |
529 | Ti = data['Ti'] |
|
525 | Ti = data['Ti'] | |
530 | errTe = data['Te_error'] |
|
526 | errTe = data['Te_error'] | |
531 | errTi = data['Ti_error'] |
|
527 | errTi = data['Ti_error'] | |
532 |
|
528 | |||
533 | if ax.firsttime: |
|
529 | if ax.firsttime: | |
534 |
|
530 | |||
535 | ax.errorbar(Te, self.y, xerr=errTe, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') |
|
531 | ax.errorbar(Te, self.y, xerr=errTe, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') | |
536 | ax.errorbar(Ti, self.y, fmt='k^', xerr=errTi,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') |
|
532 | ax.errorbar(Ti, self.y, fmt='k^', xerr=errTi,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') | |
537 | plt.legend(loc='lower right') |
|
533 | plt.legend(loc='lower right') | |
538 | self.ystep_given = 200 |
|
534 | self.ystep_given = 200 | |
539 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
535 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
540 | ax.grid(which='minor') |
|
536 | ax.grid(which='minor') | |
541 |
|
537 | |||
542 | else: |
|
538 | else: | |
543 | self.clear_figures() |
|
539 | self.clear_figures() | |
544 | ax.errorbar(Te, self.y, xerr=errTe, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') |
|
540 | ax.errorbar(Te, self.y, xerr=errTe, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='Te') | |
545 | ax.errorbar(Ti, self.y, fmt='k^', xerr=errTi,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') |
|
541 | ax.errorbar(Ti, self.y, fmt='k^', xerr=errTi,elinewidth=1.0,color='b',linewidth=2.0, label='Ti') | |
546 | plt.legend(loc='lower right') |
|
542 | plt.legend(loc='lower right') | |
547 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
543 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
|
544 | ax.grid(which='minor') | |||
|
545 | ||||
548 |
|
546 | |||
549 | class FracsHPPlot(Plot): |
|
547 | class FracsHPPlot(Plot): | |
550 | ''' |
|
548 | ''' | |
551 | Plot for Composition LP |
|
549 | Plot for Composition LP | |
552 | ''' |
|
550 | ''' | |
553 |
|
551 | |||
554 | CODE = 'fracs_LP' |
|
552 | CODE = 'fracs_LP' | |
555 | plot_type = 'scatterbuffer' |
|
553 | plot_type = 'scatterbuffer' | |
556 |
|
554 | |||
557 |
|
555 | |||
558 | def setup(self): |
|
556 | def setup(self): | |
559 |
|
557 | |||
560 | self.ncols = 1 |
|
558 | self.ncols = 1 | |
561 | self.nrows = 1 |
|
559 | self.nrows = 1 | |
562 | self.nplots = 1 |
|
560 | self.nplots = 1 | |
563 | self.ylabel = 'Range [km]' |
|
561 | self.ylabel = 'Range [km]' | |
564 | self.xlabel = 'Frac' |
|
562 | self.xlabel = 'Frac' | |
565 | self.titles = ['Composition'] |
|
563 | self.titles = ['Composition'] | |
566 | self.width = 3.5 |
|
564 | self.width = 3.5 | |
567 | self.height = 6.5 |
|
565 | self.height = 6.5 | |
568 | self.colorbar = False |
|
566 | self.colorbar = False | |
569 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
567 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
570 |
|
568 | |||
571 | def update(self, dataOut): |
|
569 | def update(self, dataOut): | |
572 | data = {} |
|
570 | data = {} | |
573 | meta = {} |
|
571 | meta = {} | |
574 |
|
572 | |||
575 | #aux_nan=numpy.zeros(dataOut.cut,'float32') |
|
573 | #aux_nan=numpy.zeros(dataOut.cut,'float32') | |
576 | #aux_nan[:]=numpy.nan |
|
574 | #aux_nan[:]=numpy.nan | |
577 | #data['ph'] = numpy.concatenate((aux_nan,dataOut.ph[dataOut.cut:])) |
|
575 | #data['ph'] = numpy.concatenate((aux_nan,dataOut.ph[dataOut.cut:])) | |
578 | #data['eph'] = numpy.concatenate((aux_nan,dataOut.eph[dataOut.cut:])) |
|
576 | #data['eph'] = numpy.concatenate((aux_nan,dataOut.eph[dataOut.cut:])) | |
579 |
|
577 | |||
580 | data['ph'] = dataOut.ph[dataOut.cut:] |
|
578 | data['ph'] = dataOut.ph[dataOut.cut:] | |
581 | data['eph'] = dataOut.eph[dataOut.cut:] |
|
579 | data['eph'] = dataOut.eph[dataOut.cut:] | |
582 | data['phe'] = dataOut.phe[dataOut.cut:] |
|
580 | data['phe'] = dataOut.phe[dataOut.cut:] | |
583 | data['ephe'] = dataOut.ephe[dataOut.cut:] |
|
581 | data['ephe'] = dataOut.ephe[dataOut.cut:] | |
584 |
|
582 | |||
585 | data['cut'] = dataOut.cut |
|
583 | data['cut'] = dataOut.cut | |
586 |
|
584 | |||
587 | meta['yrange'] = dataOut.heightList[0:dataOut.NACF] |
|
585 | meta['yrange'] = dataOut.heightList[0:dataOut.NACF] | |
588 |
|
586 | |||
589 |
|
587 | |||
590 | return data, meta |
|
588 | return data, meta | |
591 |
|
589 | |||
592 | def plot(self): |
|
590 | def plot(self): | |
593 |
|
591 | |||
594 | data = self.data[-1] |
|
592 | data = self.data[-1] | |
595 |
|
593 | |||
596 | ph = data['ph'] |
|
594 | ph = data['ph'] | |
597 | eph = data['eph'] |
|
595 | eph = data['eph'] | |
598 | phe = data['phe'] |
|
596 | phe = data['phe'] | |
599 | ephe = data['ephe'] |
|
597 | ephe = data['ephe'] | |
600 | cut = data['cut'] |
|
598 | cut = data['cut'] | |
601 | self.y = self.data.yrange |
|
599 | self.y = self.data.yrange | |
602 |
|
600 | |||
603 | self.xmin = 0 |
|
601 | self.xmin = 0 | |
604 | self.xmax = 1 |
|
602 | self.xmax = 1 | |
605 | ax = self.axes[0] |
|
603 | ax = self.axes[0] | |
606 |
|
604 | |||
607 | if ax.firsttime: |
|
605 | if ax.firsttime: | |
608 |
|
606 | |||
609 | ax.errorbar(ph, self.y[cut:], xerr=eph, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='H+') |
|
607 | ax.errorbar(ph, self.y[cut:], xerr=eph, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='H+') | |
610 | ax.errorbar(phe, self.y[cut:], fmt='k^', xerr=ephe,elinewidth=1.0,color='b',linewidth=2.0, label='He+') |
|
608 | ax.errorbar(phe, self.y[cut:], fmt='k^', xerr=ephe,elinewidth=1.0,color='b',linewidth=2.0, label='He+') | |
611 | plt.legend(loc='lower right') |
|
609 | plt.legend(loc='lower right') | |
612 | self.xstep_given = 0.2 |
|
610 | self.xstep_given = 0.2 | |
613 | self.ystep_given = 200 |
|
611 | self.ystep_given = 200 | |
614 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
612 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
615 | ax.grid(which='minor') |
|
613 | ax.grid(which='minor') | |
616 |
|
614 | |||
617 | else: |
|
615 | else: | |
618 | self.clear_figures() |
|
616 | self.clear_figures() | |
619 | ax.errorbar(ph, self.y[cut:], xerr=eph, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='H+') |
|
617 | ax.errorbar(ph, self.y[cut:], xerr=eph, fmt='r^',elinewidth=1.0,color='b',linewidth=2.0, label='H+') | |
620 | ax.errorbar(phe, self.y[cut:], fmt='k^', xerr=ephe,elinewidth=1.0,color='b',linewidth=2.0, label='He+') |
|
618 | ax.errorbar(phe, self.y[cut:], fmt='k^', xerr=ephe,elinewidth=1.0,color='b',linewidth=2.0, label='He+') | |
621 | plt.legend(loc='lower right') |
|
619 | plt.legend(loc='lower right') | |
622 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
620 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
623 |
|
621 | |||
624 | class EDensityPlot(Plot): |
|
622 | class EDensityPlot(Plot): | |
625 | ''' |
|
623 | ''' | |
626 | Plot for electron density |
|
624 | Plot for electron density | |
627 | ''' |
|
625 | ''' | |
628 |
|
626 | |||
629 | CODE = 'den' |
|
627 | CODE = 'den' | |
630 | #plot_name = 'Electron Density' |
|
628 | #plot_name = 'Electron Density' | |
631 | plot_type = 'scatterbuffer' |
|
629 | plot_type = 'scatterbuffer' | |
632 |
|
630 | |||
633 | def setup(self): |
|
631 | def setup(self): | |
634 |
|
632 | |||
635 | self.ncols = 1 |
|
633 | self.ncols = 1 | |
636 | self.nrows = 1 |
|
634 | self.nrows = 1 | |
637 | self.nplots = 1 |
|
635 | self.nplots = 1 | |
638 | self.ylabel = 'Range [km]' |
|
636 | self.ylabel = 'Range [km]' | |
639 | self.xlabel = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' |
|
637 | self.xlabel = r'$\mathrm{N_e}$ Electron Density ($\mathrm{1/cm^3}$)' | |
640 | self.titles = ['Electron Density'] |
|
638 | self.titles = ['Electron Density'] | |
641 | self.width = 3.5 |
|
639 | self.width = 3.5 | |
642 | self.height = 5.5 |
|
640 | self.height = 5.5 | |
643 | self.colorbar = False |
|
641 | self.colorbar = False | |
644 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
642 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
645 |
|
643 | |||
646 | def update(self, dataOut): |
|
644 | def update(self, dataOut): | |
647 | data = {} |
|
645 | data = {} | |
648 | meta = {} |
|
646 | meta = {} | |
649 |
|
647 | |||
650 | data['den_power'] = dataOut.ph2[:dataOut.NSHTS] |
|
648 | data['den_power'] = dataOut.ph2[:dataOut.NSHTS] | |
651 | data['den_Faraday'] = dataOut.dphi[:dataOut.NSHTS] |
|
649 | data['den_Faraday'] = dataOut.dphi[:dataOut.NSHTS] | |
652 | data['den_error'] = dataOut.sdp2[:dataOut.NSHTS] |
|
650 | data['den_error'] = dataOut.sdp2[:dataOut.NSHTS] | |
653 | #data['err_Faraday'] = dataOut.sdn1[:dataOut.NSHTS] |
|
651 | #data['err_Faraday'] = dataOut.sdn1[:dataOut.NSHTS] | |
654 |
|
652 | |||
655 | data['NSHTS'] = dataOut.NSHTS |
|
653 | data['NSHTS'] = dataOut.NSHTS | |
656 |
|
654 | |||
657 | meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
655 | meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] | |
658 |
|
656 | |||
659 | return data, meta |
|
657 | return data, meta | |
660 |
|
658 | |||
661 | def plot(self): |
|
659 | def plot(self): | |
662 |
|
660 | |||
663 | y = self.data.yrange |
|
661 | y = self.data.yrange | |
664 |
|
662 | |||
665 | self.xmin = 1e3 |
|
663 | self.xmin = 1e3 | |
666 | self.xmax = 1e7 |
|
664 | self.xmax = 1e7 | |
667 |
|
665 | |||
668 | ax = self.axes[0] |
|
666 | ax = self.axes[0] | |
669 |
|
667 | |||
670 | data = self.data[-1] |
|
668 | data = self.data[-1] | |
671 |
|
669 | |||
672 | DenPow = data['den_power'] |
|
670 | DenPow = data['den_power'] | |
673 | DenFar = data['den_Faraday'] |
|
671 | DenFar = data['den_Faraday'] | |
674 | errDenPow = data['den_error'] |
|
672 | errDenPow = data['den_error'] | |
675 | #errFaraday = data['err_Faraday'] |
|
673 | #errFaraday = data['err_Faraday'] | |
676 |
|
674 | |||
677 | NSHTS = data['NSHTS'] |
|
675 | NSHTS = data['NSHTS'] | |
678 |
|
676 | |||
679 | if self.CODE == 'denLP': |
|
677 | if self.CODE == 'denLP': | |
680 | DenPowLP = data['den_LP'] |
|
678 | DenPowLP = data['den_LP'] | |
681 | errDenPowLP = data['den_LP_error'] |
|
679 | errDenPowLP = data['den_LP_error'] | |
682 | cut = data['cut'] |
|
680 | cut = data['cut'] | |
683 |
|
681 | |||
684 | if ax.firsttime: |
|
682 | if ax.firsttime: | |
685 | self.autoxticks=False |
|
683 | self.autoxticks=False | |
686 | #ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) |
|
684 | #ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) | |
687 | ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday',markersize=2) |
|
685 | ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday',markersize=2) | |
688 | #ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) |
|
686 | #ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) | |
689 | ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power',markersize=2) |
|
687 | ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power',markersize=2) | |
690 |
|
688 | |||
691 | if self.CODE=='denLP': |
|
689 | if self.CODE=='denLP': | |
692 | ax.errorbar(DenPowLP[cut:], y[cut:], xerr=errDenPowLP[cut:], fmt='r^-',elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) |
|
690 | ax.errorbar(DenPowLP[cut:], y[cut:], xerr=errDenPowLP[cut:], fmt='r^-',elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) | |
693 |
|
691 | |||
694 | plt.legend(loc='upper left',fontsize=8.5) |
|
692 | plt.legend(loc='upper left',fontsize=8.5) | |
695 | #plt.legend(loc='lower left',fontsize=8.5) |
|
693 | #plt.legend(loc='lower left',fontsize=8.5) | |
696 | ax.set_xscale("log", nonposx='clip') |
|
694 | ax.set_xscale("log", nonposx='clip') | |
697 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) |
|
695 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) | |
698 | self.ystep_given=100 |
|
696 | self.ystep_given=100 | |
699 | if self.CODE=='denLP': |
|
697 | if self.CODE=='denLP': | |
700 | self.ystep_given=200 |
|
698 | self.ystep_given=200 | |
701 | ax.set_yticks(grid_y_ticks,minor=True) |
|
699 | ax.set_yticks(grid_y_ticks,minor=True) | |
702 | ax.grid(which='minor') |
|
700 | ax.grid(which='minor') | |
703 |
|
701 | |||
704 | else: |
|
702 | else: | |
705 | dataBefore = self.data[-2] |
|
703 | dataBefore = self.data[-2] | |
706 | DenPowBefore = dataBefore['den_power'] |
|
704 | DenPowBefore = dataBefore['den_power'] | |
707 | self.clear_figures() |
|
705 | self.clear_figures() | |
708 | #ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) |
|
706 | #ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday Profile',markersize=2) | |
709 | ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday',markersize=2) |
|
707 | ax.errorbar(DenFar, y[:NSHTS], xerr=1, fmt='h-',elinewidth=1.0,color='g',linewidth=1.0, label='Faraday',markersize=2) | |
710 | #ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) |
|
708 | #ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power Profile',markersize=2) | |
711 | ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power',markersize=2) |
|
709 | ax.errorbar(DenPow, y[:NSHTS], fmt='k^-', xerr=errDenPow,elinewidth=1.0,color='b',linewidth=1.0, label='Power',markersize=2) | |
712 | ax.errorbar(DenPowBefore, y[:NSHTS], elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") |
|
710 | ax.errorbar(DenPowBefore, y[:NSHTS], elinewidth=1.0,color='r',linewidth=0.5,linestyle="dashed") | |
713 |
|
711 | |||
714 | if self.CODE=='denLP': |
|
712 | if self.CODE=='denLP': | |
715 | ax.errorbar(DenPowLP[cut:], y[cut:], fmt='r^-', xerr=errDenPowLP[cut:],elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) |
|
713 | ax.errorbar(DenPowLP[cut:], y[cut:], fmt='r^-', xerr=errDenPowLP[cut:],elinewidth=1.0,color='r',linewidth=1.0, label='LP Profile',markersize=2) | |
716 |
|
714 | |||
717 | ax.set_xscale("log", nonposx='clip') |
|
715 | ax.set_xscale("log", nonposx='clip') | |
718 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) |
|
716 | grid_y_ticks=numpy.arange(numpy.nanmin(y),numpy.nanmax(y),50) | |
719 | ax.set_yticks(grid_y_ticks,minor=True) |
|
717 | ax.set_yticks(grid_y_ticks,minor=True) | |
720 | ax.grid(which='minor') |
|
718 | ax.grid(which='minor') | |
721 | plt.legend(loc='upper left',fontsize=8.5) |
|
719 | plt.legend(loc='upper left',fontsize=8.5) | |
722 | #plt.legend(loc='lower left',fontsize=8.5) |
|
720 | #plt.legend(loc='lower left',fontsize=8.5) | |
723 |
|
721 | |||
724 | class FaradayAnglePlot(Plot): |
|
722 | class FaradayAnglePlot(Plot): | |
725 | ''' |
|
723 | ''' | |
726 | Plot for electron density |
|
724 | Plot for electron density | |
727 | ''' |
|
725 | ''' | |
728 |
|
726 | |||
729 | CODE = 'angle' |
|
727 | CODE = 'angle' | |
730 | plot_name = 'Faraday Angle' |
|
728 | plot_name = 'Faraday Angle' | |
731 | plot_type = 'scatterbuffer' |
|
729 | plot_type = 'scatterbuffer' | |
732 |
|
730 | |||
733 | def setup(self): |
|
731 | def setup(self): | |
734 |
|
732 | |||
735 | self.ncols = 1 |
|
733 | self.ncols = 1 | |
736 | self.nrows = 1 |
|
734 | self.nrows = 1 | |
737 | self.nplots = 1 |
|
735 | self.nplots = 1 | |
738 | self.ylabel = 'Range [km]' |
|
736 | self.ylabel = 'Range [km]' | |
739 | self.xlabel = 'Faraday Angle (º)' |
|
737 | self.xlabel = 'Faraday Angle (º)' | |
740 | self.titles = ['Electron Density'] |
|
738 | self.titles = ['Electron Density'] | |
741 | self.width = 3.5 |
|
739 | self.width = 3.5 | |
742 | self.height = 5.5 |
|
740 | self.height = 5.5 | |
743 | self.colorbar = False |
|
741 | self.colorbar = False | |
744 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
742 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
745 |
|
743 | |||
746 | def update(self, dataOut): |
|
744 | def update(self, dataOut): | |
747 | data = {} |
|
745 | data = {} | |
748 | meta = {} |
|
746 | meta = {} | |
749 |
|
747 | |||
750 | data['angle'] = numpy.degrees(dataOut.phi) |
|
748 | data['angle'] = numpy.degrees(dataOut.phi) | |
751 | #''' |
|
749 | #''' | |
752 | print(dataOut.phi_uwrp) |
|
750 | print(dataOut.phi_uwrp) | |
753 | print(data['angle']) |
|
751 | print(data['angle']) | |
754 | exit(1) |
|
752 | exit(1) | |
755 | #''' |
|
753 | #''' | |
756 | data['dphi'] = dataOut.dphi_uc*10 |
|
754 | data['dphi'] = dataOut.dphi_uc*10 | |
757 | #print(dataOut.dphi) |
|
755 | #print(dataOut.dphi) | |
758 |
|
756 | |||
759 | #data['NSHTS'] = dataOut.NSHTS |
|
757 | #data['NSHTS'] = dataOut.NSHTS | |
760 |
|
758 | |||
761 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] |
|
759 | #meta['yrange'] = dataOut.heightList[0:dataOut.NSHTS] | |
762 |
|
760 | |||
763 | return data, meta |
|
761 | return data, meta | |
764 |
|
762 | |||
765 | def plot(self): |
|
763 | def plot(self): | |
766 |
|
764 | |||
767 | data = self.data[-1] |
|
765 | data = self.data[-1] | |
768 | self.x = data[self.CODE] |
|
766 | self.x = data[self.CODE] | |
769 | dphi = data['dphi'] |
|
767 | dphi = data['dphi'] | |
770 | self.y = self.data.yrange |
|
768 | self.y = self.data.yrange | |
771 | self.xmin = -360#-180 |
|
769 | self.xmin = -360#-180 | |
772 | self.xmax = 360#180 |
|
770 | self.xmax = 360#180 | |
773 | ax = self.axes[0] |
|
771 | ax = self.axes[0] | |
774 |
|
772 | |||
775 | if ax.firsttime: |
|
773 | if ax.firsttime: | |
776 | self.autoxticks=False |
|
774 | self.autoxticks=False | |
777 | #if self.CODE=='den': |
|
775 | #if self.CODE=='den': | |
778 | ax.plot(self.x, self.y,marker='o',color='g',linewidth=1.0,markersize=2) |
|
776 | ax.plot(self.x, self.y,marker='o',color='g',linewidth=1.0,markersize=2) | |
779 | ax.plot(dphi, self.y,marker='o',color='blue',linewidth=1.0,markersize=2) |
|
777 | ax.plot(dphi, self.y,marker='o',color='blue',linewidth=1.0,markersize=2) | |
780 |
|
778 | |||
781 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) |
|
779 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) | |
782 | self.ystep_given=100 |
|
780 | self.ystep_given=100 | |
783 | if self.CODE=='denLP': |
|
781 | if self.CODE=='denLP': | |
784 | self.ystep_given=200 |
|
782 | self.ystep_given=200 | |
785 | ax.set_yticks(grid_y_ticks,minor=True) |
|
783 | ax.set_yticks(grid_y_ticks,minor=True) | |
786 | ax.grid(which='minor') |
|
784 | ax.grid(which='minor') | |
787 | #plt.tight_layout() |
|
785 | #plt.tight_layout() | |
788 | else: |
|
786 | else: | |
789 |
|
787 | |||
790 | self.clear_figures() |
|
788 | self.clear_figures() | |
791 | #if self.CODE=='den': |
|
789 | #if self.CODE=='den': | |
792 | #print(numpy.shape(self.x)) |
|
790 | #print(numpy.shape(self.x)) | |
793 | ax.plot(self.x, self.y, marker='o',color='g',linewidth=1.0, markersize=2) |
|
791 | ax.plot(self.x, self.y, marker='o',color='g',linewidth=1.0, markersize=2) | |
794 | ax.plot(dphi, self.y,marker='o',color='blue',linewidth=1.0,markersize=2) |
|
792 | ax.plot(dphi, self.y,marker='o',color='blue',linewidth=1.0,markersize=2) | |
795 |
|
793 | |||
796 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) |
|
794 | grid_y_ticks=numpy.arange(numpy.nanmin(self.y),numpy.nanmax(self.y),50) | |
797 | ax.set_yticks(grid_y_ticks,minor=True) |
|
795 | ax.set_yticks(grid_y_ticks,minor=True) | |
798 | ax.grid(which='minor') |
|
796 | ax.grid(which='minor') | |
799 |
|
797 | |||
800 | class EDensityHPPlot(EDensityPlot): |
|
798 | class EDensityHPPlot(EDensityPlot): | |
801 |
|
799 | |||
802 | ''' |
|
800 | ''' | |
803 | Plot for Electron Density Hybrid Experiment |
|
801 | Plot for Electron Density Hybrid Experiment | |
804 | ''' |
|
802 | ''' | |
805 |
|
803 | |||
806 | CODE = 'denLP' |
|
804 | CODE = 'denLP' | |
807 | plot_name = 'Electron Density' |
|
805 | plot_name = 'Electron Density' | |
808 | plot_type = 'scatterbuffer' |
|
806 | plot_type = 'scatterbuffer' | |
809 |
|
807 | |||
810 | def update(self, dataOut): |
|
808 | def update(self, dataOut): | |
811 | data = {} |
|
809 | data = {} | |
812 | meta = {} |
|
810 | meta = {} | |
813 |
|
811 | |||
814 | data['den_power'] = dataOut.ph2[:dataOut.NSHTS] |
|
812 | data['den_power'] = dataOut.ph2[:dataOut.NSHTS] | |
815 | data['den_Faraday']=dataOut.dphi[:dataOut.NSHTS] |
|
813 | data['den_Faraday']=dataOut.dphi[:dataOut.NSHTS] | |
816 | data['den_error']=dataOut.sdp2[:dataOut.NSHTS] |
|
814 | data['den_error']=dataOut.sdp2[:dataOut.NSHTS] | |
817 | data['den_LP']=dataOut.ne[:dataOut.NACF] |
|
815 | data['den_LP']=dataOut.ne[:dataOut.NACF] | |
818 | data['den_LP_error']=dataOut.ene[:dataOut.NACF]*dataOut.ne[:dataOut.NACF]*0.434 |
|
816 | data['den_LP_error']=dataOut.ene[:dataOut.NACF]*dataOut.ne[:dataOut.NACF]*0.434 | |
819 | #self.ene=10**dataOut.ene[:dataOut.NACF] |
|
817 | #self.ene=10**dataOut.ene[:dataOut.NACF] | |
820 | data['NSHTS']=dataOut.NSHTS |
|
818 | data['NSHTS']=dataOut.NSHTS | |
821 | data['cut']=dataOut.cut |
|
819 | data['cut']=dataOut.cut | |
822 |
|
820 | |||
823 | return data, meta |
|
821 | return data, meta | |
824 |
|
822 | |||
825 |
|
823 | |||
826 | class ACFsPlot(Plot): |
|
824 | class ACFsPlot(Plot): | |
827 | ''' |
|
825 | ''' | |
828 | Plot for ACFs Double Pulse Experiment |
|
826 | Plot for ACFs Double Pulse Experiment | |
829 | ''' |
|
827 | ''' | |
830 |
|
828 | |||
831 | CODE = 'acfs' |
|
829 | CODE = 'acfs' | |
832 | #plot_name = 'ACF' |
|
830 | #plot_name = 'ACF' | |
833 | plot_type = 'scatterbuffer' |
|
831 | plot_type = 'scatterbuffer' | |
834 |
|
832 | |||
835 |
|
833 | |||
836 | def setup(self): |
|
834 | def setup(self): | |
837 | self.ncols = 1 |
|
835 | self.ncols = 1 | |
838 | self.nrows = 1 |
|
836 | self.nrows = 1 | |
839 | self.nplots = 1 |
|
837 | self.nplots = 1 | |
840 | self.ylabel = 'Range [km]' |
|
838 | self.ylabel = 'Range [km]' | |
841 | self.xlabel = 'Lag (ms)' |
|
839 | self.xlabel = 'Lag (ms)' | |
842 | self.titles = ['ACFs'] |
|
840 | self.titles = ['ACFs'] | |
843 | self.width = 3.5 |
|
841 | self.width = 3.5 | |
844 | self.height = 5.5 |
|
842 | self.height = 5.5 | |
845 | self.colorbar = False |
|
843 | self.colorbar = False | |
846 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
844 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
847 |
|
845 | |||
848 | def update(self, dataOut): |
|
846 | def update(self, dataOut): | |
849 | data = {} |
|
847 | data = {} | |
850 | meta = {} |
|
848 | meta = {} | |
851 |
|
849 | |||
852 | data['ACFs'] = dataOut.acfs_to_plot |
|
850 | data['ACFs'] = dataOut.acfs_to_plot | |
853 | data['ACFs_error'] = dataOut.acfs_error_to_plot |
|
851 | data['ACFs_error'] = dataOut.acfs_error_to_plot | |
854 | data['lags'] = dataOut.lags_to_plot |
|
852 | data['lags'] = dataOut.lags_to_plot | |
855 | data['Lag_contaminated_1'] = dataOut.x_igcej_to_plot |
|
853 | data['Lag_contaminated_1'] = dataOut.x_igcej_to_plot | |
856 | data['Lag_contaminated_2'] = dataOut.x_ibad_to_plot |
|
854 | data['Lag_contaminated_2'] = dataOut.x_ibad_to_plot | |
857 | data['Height_contaminated_1'] = dataOut.y_igcej_to_plot |
|
855 | data['Height_contaminated_1'] = dataOut.y_igcej_to_plot | |
858 | data['Height_contaminated_2'] = dataOut.y_ibad_to_plot |
|
856 | data['Height_contaminated_2'] = dataOut.y_ibad_to_plot | |
859 |
|
857 | |||
860 | meta['yrange'] = numpy.array([]) |
|
858 | meta['yrange'] = numpy.array([]) | |
861 | #meta['NSHTS'] = dataOut.NSHTS |
|
859 | #meta['NSHTS'] = dataOut.NSHTS | |
862 | #meta['DPL'] = dataOut.DPL |
|
860 | #meta['DPL'] = dataOut.DPL | |
863 | data['NSHTS'] = dataOut.NSHTS #This is metadata |
|
861 | data['NSHTS'] = dataOut.NSHTS #This is metadata | |
864 | data['DPL'] = dataOut.DPL #This is metadata |
|
862 | data['DPL'] = dataOut.DPL #This is metadata | |
865 |
|
863 | |||
866 | return data, meta |
|
864 | return data, meta | |
867 |
|
865 | |||
868 | def plot(self): |
|
866 | def plot(self): | |
869 |
|
867 | |||
870 | data = self.data[-1] |
|
868 | data = self.data[-1] | |
871 | #NSHTS = self.meta['NSHTS'] |
|
869 | #NSHTS = self.meta['NSHTS'] | |
872 | #DPL = self.meta['DPL'] |
|
870 | #DPL = self.meta['DPL'] | |
873 | NSHTS = data['NSHTS'] #This is metadata |
|
871 | NSHTS = data['NSHTS'] #This is metadata | |
874 | DPL = data['DPL'] #This is metadata |
|
872 | DPL = data['DPL'] #This is metadata | |
875 |
|
873 | |||
876 | lags = data['lags'] |
|
874 | lags = data['lags'] | |
877 | ACFs = data['ACFs'] |
|
875 | ACFs = data['ACFs'] | |
878 | errACFs = data['ACFs_error'] |
|
876 | errACFs = data['ACFs_error'] | |
879 | BadLag1 = data['Lag_contaminated_1'] |
|
877 | BadLag1 = data['Lag_contaminated_1'] | |
880 | BadLag2 = data['Lag_contaminated_2'] |
|
878 | BadLag2 = data['Lag_contaminated_2'] | |
881 | BadHei1 = data['Height_contaminated_1'] |
|
879 | BadHei1 = data['Height_contaminated_1'] | |
882 | BadHei2 = data['Height_contaminated_2'] |
|
880 | BadHei2 = data['Height_contaminated_2'] | |
883 |
|
881 | |||
884 | self.xmin = 0.0 |
|
882 | self.xmin = 0.0 | |
885 | self.xmax = 2.0 |
|
883 | self.xmax = 2.0 | |
886 | self.y = ACFs |
|
884 | self.y = ACFs | |
887 |
|
885 | |||
888 | ax = self.axes[0] |
|
886 | ax = self.axes[0] | |
889 |
|
887 | |||
890 | if ax.firsttime: |
|
888 | if ax.firsttime: | |
891 |
|
889 | |||
892 | for i in range(NSHTS): |
|
890 | for i in range(NSHTS): | |
893 | x_aux = numpy.isfinite(lags[i,:]) |
|
891 | x_aux = numpy.isfinite(lags[i,:]) | |
894 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
892 | y_aux = numpy.isfinite(ACFs[i,:]) | |
895 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
893 | yerr_aux = numpy.isfinite(errACFs[i,:]) | |
896 | x_igcej_aux = numpy.isfinite(BadLag1[i,:]) |
|
894 | x_igcej_aux = numpy.isfinite(BadLag1[i,:]) | |
897 | y_igcej_aux = numpy.isfinite(BadHei1[i,:]) |
|
895 | y_igcej_aux = numpy.isfinite(BadHei1[i,:]) | |
898 | x_ibad_aux = numpy.isfinite(BadLag2[i,:]) |
|
896 | x_ibad_aux = numpy.isfinite(BadLag2[i,:]) | |
899 | y_ibad_aux = numpy.isfinite(BadHei2[i,:]) |
|
897 | y_ibad_aux = numpy.isfinite(BadHei2[i,:]) | |
900 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
898 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: | |
901 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',marker='o',linewidth=1.0,markersize=2) |
|
899 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',marker='o',linewidth=1.0,markersize=2) | |
902 | ax.plot(BadLag1[i,x_igcej_aux],BadHei1[i,y_igcej_aux],'x',color='red',markersize=2) |
|
900 | ax.plot(BadLag1[i,x_igcej_aux],BadHei1[i,y_igcej_aux],'x',color='red',markersize=2) | |
903 | ax.plot(BadLag2[i,x_ibad_aux],BadHei2[i,y_ibad_aux],'X',color='red',markersize=2) |
|
901 | ax.plot(BadLag2[i,x_ibad_aux],BadHei2[i,y_ibad_aux],'X',color='red',markersize=2) | |
904 |
|
902 | |||
905 | self.xstep_given = (self.xmax-self.xmin)/(DPL-1) |
|
903 | self.xstep_given = (self.xmax-self.xmin)/(DPL-1) | |
906 | self.ystep_given = 50 |
|
904 | self.ystep_given = 50 | |
907 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
905 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
908 | ax.grid(which='minor') |
|
906 | ax.grid(which='minor') | |
909 |
|
907 | |||
910 | else: |
|
908 | else: | |
911 | self.clear_figures() |
|
909 | self.clear_figures() | |
912 | for i in range(NSHTS): |
|
910 | for i in range(NSHTS): | |
913 | x_aux = numpy.isfinite(lags[i,:]) |
|
911 | x_aux = numpy.isfinite(lags[i,:]) | |
914 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
912 | y_aux = numpy.isfinite(ACFs[i,:]) | |
915 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
913 | yerr_aux = numpy.isfinite(errACFs[i,:]) | |
916 | x_igcej_aux = numpy.isfinite(BadLag1[i,:]) |
|
914 | x_igcej_aux = numpy.isfinite(BadLag1[i,:]) | |
917 | y_igcej_aux = numpy.isfinite(BadHei1[i,:]) |
|
915 | y_igcej_aux = numpy.isfinite(BadHei1[i,:]) | |
918 | x_ibad_aux = numpy.isfinite(BadLag2[i,:]) |
|
916 | x_ibad_aux = numpy.isfinite(BadLag2[i,:]) | |
919 | y_ibad_aux = numpy.isfinite(BadHei2[i,:]) |
|
917 | y_ibad_aux = numpy.isfinite(BadHei2[i,:]) | |
920 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
918 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: | |
921 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],linewidth=1.0,markersize=2,color='b',marker='o') |
|
919 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],linewidth=1.0,markersize=2,color='b',marker='o') | |
922 | ax.plot(BadLag1[i,x_igcej_aux],BadHei1[i,y_igcej_aux],'x',color='red',markersize=2) |
|
920 | ax.plot(BadLag1[i,x_igcej_aux],BadHei1[i,y_igcej_aux],'x',color='red',markersize=2) | |
923 | ax.plot(BadLag2[i,x_ibad_aux],BadHei2[i,y_ibad_aux],'X',color='red',markersize=2) |
|
921 | ax.plot(BadLag2[i,x_ibad_aux],BadHei2[i,y_ibad_aux],'X',color='red',markersize=2) | |
924 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
922 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
925 |
|
923 | |||
926 | class ACFsLPPlot(Plot): |
|
924 | class ACFsLPPlot(Plot): | |
927 | ''' |
|
925 | ''' | |
928 | Plot for ACFs Double Pulse Experiment |
|
926 | Plot for ACFs Double Pulse Experiment | |
929 | ''' |
|
927 | ''' | |
930 |
|
928 | |||
931 | CODE = 'acfs_LP' |
|
929 | CODE = 'acfs_LP' | |
932 | #plot_name = 'ACF' |
|
930 | #plot_name = 'ACF' | |
933 | plot_type = 'scatterbuffer' |
|
931 | plot_type = 'scatterbuffer' | |
934 |
|
932 | |||
935 |
|
933 | |||
936 | def setup(self): |
|
934 | def setup(self): | |
937 | self.ncols = 1 |
|
935 | self.ncols = 1 | |
938 | self.nrows = 1 |
|
936 | self.nrows = 1 | |
939 | self.nplots = 1 |
|
937 | self.nplots = 1 | |
940 | self.ylabel = 'Range [km]' |
|
938 | self.ylabel = 'Range [km]' | |
941 | self.xlabel = 'Lag (ms)' |
|
939 | self.xlabel = 'Lag (ms)' | |
942 | self.titles = ['ACFs'] |
|
940 | self.titles = ['ACFs'] | |
943 | self.width = 3.5 |
|
941 | self.width = 3.5 | |
944 | self.height = 5.5 |
|
942 | self.height = 5.5 | |
945 | self.colorbar = False |
|
943 | self.colorbar = False | |
946 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
944 | self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
947 |
|
945 | |||
948 | def update(self, dataOut): |
|
946 | def update(self, dataOut): | |
949 | data = {} |
|
947 | data = {} | |
950 | meta = {} |
|
948 | meta = {} | |
951 |
|
949 | |||
952 | aux=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') |
|
950 | aux=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') | |
953 | errors=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') |
|
951 | errors=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') | |
954 | lags_LP_to_plot=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') |
|
952 | lags_LP_to_plot=numpy.zeros((dataOut.NACF,dataOut.IBITS),'float32') | |
955 |
|
953 | |||
956 | for i in range(dataOut.NACF): |
|
954 | for i in range(dataOut.NACF): | |
957 | for j in range(dataOut.IBITS): |
|
955 | for j in range(dataOut.IBITS): | |
958 | if numpy.abs(dataOut.errors[j,i]/dataOut.output_LP_integrated.real[0,i,0])<1.0: |
|
956 | if numpy.abs(dataOut.errors[j,i]/dataOut.output_LP_integrated.real[0,i,0])<1.0: | |
959 | aux[i,j]=dataOut.output_LP_integrated.real[j,i,0]/dataOut.output_LP_integrated.real[0,i,0] |
|
957 | aux[i,j]=dataOut.output_LP_integrated.real[j,i,0]/dataOut.output_LP_integrated.real[0,i,0] | |
960 | aux[i,j]=max(min(aux[i,j],1.0),-1.0)*dataOut.DH+dataOut.heightList[i] |
|
958 | aux[i,j]=max(min(aux[i,j],1.0),-1.0)*dataOut.DH+dataOut.heightList[i] | |
961 | lags_LP_to_plot[i,j]=dataOut.lags_LP[j] |
|
959 | lags_LP_to_plot[i,j]=dataOut.lags_LP[j] | |
962 | errors[i,j]=dataOut.errors[j,i]/dataOut.output_LP_integrated.real[0,i,0]*dataOut.DH |
|
960 | errors[i,j]=dataOut.errors[j,i]/dataOut.output_LP_integrated.real[0,i,0]*dataOut.DH | |
963 | else: |
|
961 | else: | |
964 | aux[i,j]=numpy.nan |
|
962 | aux[i,j]=numpy.nan | |
965 | lags_LP_to_plot[i,j]=numpy.nan |
|
963 | lags_LP_to_plot[i,j]=numpy.nan | |
966 | errors[i,j]=numpy.nan |
|
964 | errors[i,j]=numpy.nan | |
967 |
|
965 | |||
968 | data['ACFs'] = aux |
|
966 | data['ACFs'] = aux | |
969 | data['ACFs_error'] = errors |
|
967 | data['ACFs_error'] = errors | |
970 | data['lags'] = lags_LP_to_plot |
|
968 | data['lags'] = lags_LP_to_plot | |
971 |
|
969 | |||
972 | meta['yrange'] = numpy.array([]) |
|
970 | meta['yrange'] = numpy.array([]) | |
973 | #meta['NACF'] = dataOut.NACF |
|
971 | #meta['NACF'] = dataOut.NACF | |
974 | #meta['NLAG'] = dataOut.NLAG |
|
972 | #meta['NLAG'] = dataOut.NLAG | |
975 | data['NACF'] = dataOut.NACF #This is metadata |
|
973 | data['NACF'] = dataOut.NACF #This is metadata | |
976 | data['NLAG'] = dataOut.NLAG #This is metadata |
|
974 | data['NLAG'] = dataOut.NLAG #This is metadata | |
977 |
|
975 | |||
978 | return data, meta |
|
976 | return data, meta | |
979 |
|
977 | |||
980 | def plot(self): |
|
978 | def plot(self): | |
981 |
|
979 | |||
982 | data = self.data[-1] |
|
980 | data = self.data[-1] | |
983 | #NACF = self.meta['NACF'] |
|
981 | #NACF = self.meta['NACF'] | |
984 | #NLAG = self.meta['NLAG'] |
|
982 | #NLAG = self.meta['NLAG'] | |
985 | NACF = data['NACF'] #This is metadata |
|
983 | NACF = data['NACF'] #This is metadata | |
986 | NLAG = data['NLAG'] #This is metadata |
|
984 | NLAG = data['NLAG'] #This is metadata | |
987 |
|
985 | |||
988 | lags = data['lags'] |
|
986 | lags = data['lags'] | |
989 | ACFs = data['ACFs'] |
|
987 | ACFs = data['ACFs'] | |
990 | errACFs = data['ACFs_error'] |
|
988 | errACFs = data['ACFs_error'] | |
991 |
|
989 | |||
992 | self.xmin = 0.0 |
|
990 | self.xmin = 0.0 | |
993 | self.xmax = 1.5 |
|
991 | self.xmax = 1.5 | |
994 |
|
992 | |||
995 | self.y = ACFs |
|
993 | self.y = ACFs | |
996 |
|
994 | |||
997 | ax = self.axes[0] |
|
995 | ax = self.axes[0] | |
998 |
|
996 | |||
999 | if ax.firsttime: |
|
997 | if ax.firsttime: | |
1000 |
|
998 | |||
1001 | for i in range(NACF): |
|
999 | for i in range(NACF): | |
1002 | x_aux = numpy.isfinite(lags[i,:]) |
|
1000 | x_aux = numpy.isfinite(lags[i,:]) | |
1003 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
1001 | y_aux = numpy.isfinite(ACFs[i,:]) | |
1004 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
1002 | yerr_aux = numpy.isfinite(errACFs[i,:]) | |
1005 |
|
1003 | |||
1006 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
1004 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: | |
1007 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') |
|
1005 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') | |
1008 |
|
1006 | |||
1009 | #self.xstep_given = (self.xmax-self.xmin)/(self.data.NLAG-1) |
|
1007 | #self.xstep_given = (self.xmax-self.xmin)/(self.data.NLAG-1) | |
1010 | self.xstep_given=0.3 |
|
1008 | self.xstep_given=0.3 | |
1011 | self.ystep_given = 200 |
|
1009 | self.ystep_given = 200 | |
1012 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
1010 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
1013 | ax.grid(which='minor') |
|
1011 | ax.grid(which='minor') | |
1014 |
|
1012 | |||
1015 | else: |
|
1013 | else: | |
1016 | self.clear_figures() |
|
1014 | self.clear_figures() | |
1017 |
|
1015 | |||
1018 | for i in range(NACF): |
|
1016 | for i in range(NACF): | |
1019 | x_aux = numpy.isfinite(lags[i,:]) |
|
1017 | x_aux = numpy.isfinite(lags[i,:]) | |
1020 | y_aux = numpy.isfinite(ACFs[i,:]) |
|
1018 | y_aux = numpy.isfinite(ACFs[i,:]) | |
1021 | yerr_aux = numpy.isfinite(errACFs[i,:]) |
|
1019 | yerr_aux = numpy.isfinite(errACFs[i,:]) | |
1022 |
|
1020 | |||
1023 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: |
|
1021 | if lags[i,:][~numpy.isnan(lags[i,:])].shape[0]>2: | |
1024 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') |
|
1022 | ax.errorbar(lags[i,x_aux], ACFs[i,y_aux], yerr=errACFs[i,x_aux],color='b',linewidth=1.0,markersize=2,ecolor='r') | |
1025 |
|
1023 | |||
1026 | ax.yaxis.set_minor_locator(MultipleLocator(15)) |
|
1024 | ax.yaxis.set_minor_locator(MultipleLocator(15)) | |
1027 |
|
1025 | |||
1028 |
|
1026 | |||
1029 | class CrossProductsPlot(Plot): |
|
1027 | class CrossProductsPlot(Plot): | |
1030 | ''' |
|
1028 | ''' | |
1031 | Plot for cross products |
|
1029 | Plot for cross products | |
1032 | ''' |
|
1030 | ''' | |
1033 |
|
1031 | |||
1034 | CODE = 'crossprod' |
|
1032 | CODE = 'crossprod' | |
1035 | plot_name = 'Cross Products' |
|
1033 | plot_name = 'Cross Products' | |
1036 | plot_type = 'scatterbuffer' |
|
1034 | plot_type = 'scatterbuffer' | |
1037 |
|
1035 | |||
1038 | def setup(self): |
|
1036 | def setup(self): | |
1039 |
|
1037 | |||
1040 | self.ncols = 3 |
|
1038 | self.ncols = 3 | |
1041 | self.nrows = 1 |
|
1039 | self.nrows = 1 | |
1042 | self.nplots = 3 |
|
1040 | self.nplots = 3 | |
1043 | self.ylabel = 'Range [km]' |
|
1041 | self.ylabel = 'Range [km]' | |
1044 | self.titles = [] |
|
1042 | self.titles = [] | |
1045 | self.width = 3.5*self.nplots |
|
1043 | self.width = 3.5*self.nplots | |
1046 | self.height = 5.5 |
|
1044 | self.height = 5.5 | |
1047 | self.colorbar = False |
|
1045 | self.colorbar = False | |
1048 | self.plots_adjust.update({'wspace':.3, 'left': 0.12, 'right': 0.92, 'bottom': 0.1}) |
|
1046 | self.plots_adjust.update({'wspace':.3, 'left': 0.12, 'right': 0.92, 'bottom': 0.1}) | |
1049 |
|
1047 | |||
1050 |
|
1048 | |||
1051 | def update(self, dataOut): |
|
1049 | def update(self, dataOut): | |
1052 |
|
1050 | |||
1053 | data = {} |
|
1051 | data = {} | |
1054 | meta = {} |
|
1052 | meta = {} | |
1055 |
|
1053 | |||
1056 | data['crossprod'] = dataOut.crossprods |
|
1054 | data['crossprod'] = dataOut.crossprods | |
1057 | data['NDP'] = dataOut.NDP |
|
1055 | data['NDP'] = dataOut.NDP | |
1058 |
|
1056 | |||
1059 | return data, meta |
|
1057 | return data, meta | |
1060 |
|
1058 | |||
1061 | def plot(self): |
|
1059 | def plot(self): | |
1062 |
|
1060 | |||
1063 | NDP = self.data['NDP'][-1] |
|
1061 | NDP = self.data['NDP'][-1] | |
1064 | x = self.data['crossprod'][:,-1,:,:,:,:] |
|
1062 | x = self.data['crossprod'][:,-1,:,:,:,:] | |
1065 | y = self.data.yrange[0:NDP] |
|
1063 | y = self.data.yrange[0:NDP] | |
1066 |
|
1064 | |||
1067 | for n, ax in enumerate(self.axes): |
|
1065 | for n, ax in enumerate(self.axes): | |
1068 |
|
1066 | |||
1069 | self.xmin=numpy.min(numpy.concatenate((x[n][0,20:30,0,0],x[n][1,20:30,0,0],x[n][2,20:30,0,0],x[n][3,20:30,0,0]))) |
|
1067 | self.xmin=numpy.min(numpy.concatenate((x[n][0,20:30,0,0],x[n][1,20:30,0,0],x[n][2,20:30,0,0],x[n][3,20:30,0,0]))) | |
1070 | self.xmax=numpy.max(numpy.concatenate((x[n][0,20:30,0,0],x[n][1,20:30,0,0],x[n][2,20:30,0,0],x[n][3,20:30,0,0]))) |
|
1068 | self.xmax=numpy.max(numpy.concatenate((x[n][0,20:30,0,0],x[n][1,20:30,0,0],x[n][2,20:30,0,0],x[n][3,20:30,0,0]))) | |
1071 |
|
1069 | |||
1072 | if ax.firsttime: |
|
1070 | if ax.firsttime: | |
1073 |
|
1071 | |||
1074 | self.autoxticks=False |
|
1072 | self.autoxticks=False | |
1075 | if n==0: |
|
1073 | if n==0: | |
1076 | label1='kax' |
|
1074 | label1='kax' | |
1077 | label2='kay' |
|
1075 | label2='kay' | |
1078 | label3='kbx' |
|
1076 | label3='kbx' | |
1079 | label4='kby' |
|
1077 | label4='kby' | |
1080 | self.xlimits=[(self.xmin,self.xmax)] |
|
1078 | self.xlimits=[(self.xmin,self.xmax)] | |
1081 | elif n==1: |
|
1079 | elif n==1: | |
1082 | label1='kax2' |
|
1080 | label1='kax2' | |
1083 | label2='kay2' |
|
1081 | label2='kay2' | |
1084 | label3='kbx2' |
|
1082 | label3='kbx2' | |
1085 | label4='kby2' |
|
1083 | label4='kby2' | |
1086 | self.xlimits.append((self.xmin,self.xmax)) |
|
1084 | self.xlimits.append((self.xmin,self.xmax)) | |
1087 | elif n==2: |
|
1085 | elif n==2: | |
1088 | label1='kaxay' |
|
1086 | label1='kaxay' | |
1089 | label2='kbxby' |
|
1087 | label2='kbxby' | |
1090 | label3='kaxbx' |
|
1088 | label3='kaxbx' | |
1091 | label4='kaxby' |
|
1089 | label4='kaxby' | |
1092 | self.xlimits.append((self.xmin,self.xmax)) |
|
1090 | self.xlimits.append((self.xmin,self.xmax)) | |
1093 |
|
1091 | |||
1094 | ax.plotline1 = ax.plot(x[n][0,:,0,0], y, color='r',linewidth=2.0, label=label1) |
|
1092 | ax.plotline1 = ax.plot(x[n][0,:,0,0], y, color='r',linewidth=2.0, label=label1) | |
1095 | ax.plotline2 = ax.plot(x[n][1,:,0,0], y, color='k',linewidth=2.0, label=label2) |
|
1093 | ax.plotline2 = ax.plot(x[n][1,:,0,0], y, color='k',linewidth=2.0, label=label2) | |
1096 | ax.plotline3 = ax.plot(x[n][2,:,0,0], y, color='b',linewidth=2.0, label=label3) |
|
1094 | ax.plotline3 = ax.plot(x[n][2,:,0,0], y, color='b',linewidth=2.0, label=label3) | |
1097 | ax.plotline4 = ax.plot(x[n][3,:,0,0], y, color='m',linewidth=2.0, label=label4) |
|
1095 | ax.plotline4 = ax.plot(x[n][3,:,0,0], y, color='m',linewidth=2.0, label=label4) | |
1098 | ax.legend(loc='upper right') |
|
1096 | ax.legend(loc='upper right') | |
1099 | ax.set_xlim(self.xmin, self.xmax) |
|
1097 | ax.set_xlim(self.xmin, self.xmax) | |
1100 | self.titles.append('{}'.format(self.plot_name.upper())) |
|
1098 | self.titles.append('{}'.format(self.plot_name.upper())) | |
1101 |
|
1099 | |||
1102 | else: |
|
1100 | else: | |
1103 |
|
1101 | |||
1104 | if n==0: |
|
1102 | if n==0: | |
1105 | self.xlimits=[(self.xmin,self.xmax)] |
|
1103 | self.xlimits=[(self.xmin,self.xmax)] | |
1106 | else: |
|
1104 | else: | |
1107 | self.xlimits.append((self.xmin,self.xmax)) |
|
1105 | self.xlimits.append((self.xmin,self.xmax)) | |
1108 |
|
1106 | |||
1109 | ax.set_xlim(self.xmin, self.xmax) |
|
1107 | ax.set_xlim(self.xmin, self.xmax) | |
1110 |
|
1108 | |||
1111 | ax.plotline1[0].set_data(x[n][0,:,0,0],y) |
|
1109 | ax.plotline1[0].set_data(x[n][0,:,0,0],y) | |
1112 | ax.plotline2[0].set_data(x[n][1,:,0,0],y) |
|
1110 | ax.plotline2[0].set_data(x[n][1,:,0,0],y) | |
1113 | ax.plotline3[0].set_data(x[n][2,:,0,0],y) |
|
1111 | ax.plotline3[0].set_data(x[n][2,:,0,0],y) | |
1114 | ax.plotline4[0].set_data(x[n][3,:,0,0],y) |
|
1112 | ax.plotline4[0].set_data(x[n][3,:,0,0],y) | |
1115 | self.titles.append('{}'.format(self.plot_name.upper())) |
|
1113 | self.titles.append('{}'.format(self.plot_name.upper())) | |
1116 |
|
1114 | |||
1117 |
|
1115 | |||
1118 | class CrossProductsLPPlot(Plot): |
|
1116 | class CrossProductsLPPlot(Plot): | |
1119 | ''' |
|
1117 | ''' | |
1120 | Plot for cross products LP |
|
1118 | Plot for cross products LP | |
1121 | ''' |
|
1119 | ''' | |
1122 |
|
1120 | |||
1123 | CODE = 'crossprodslp' |
|
1121 | CODE = 'crossprodslp' | |
1124 | plot_name = 'Cross Products LP' |
|
1122 | plot_name = 'Cross Products LP' | |
1125 | plot_type = 'scatterbuffer' |
|
1123 | plot_type = 'scatterbuffer' | |
1126 |
|
1124 | |||
1127 |
|
1125 | |||
1128 | def setup(self): |
|
1126 | def setup(self): | |
1129 |
|
1127 | |||
1130 | self.ncols = 2 |
|
1128 | self.ncols = 2 | |
1131 | self.nrows = 1 |
|
1129 | self.nrows = 1 | |
1132 | self.nplots = 2 |
|
1130 | self.nplots = 2 | |
1133 | self.ylabel = 'Range [km]' |
|
1131 | self.ylabel = 'Range [km]' | |
1134 | self.xlabel = 'dB' |
|
1132 | self.xlabel = 'dB' | |
1135 | self.width = 3.5*self.nplots |
|
1133 | self.width = 3.5*self.nplots | |
1136 | self.height = 5.5 |
|
1134 | self.height = 5.5 | |
1137 | self.colorbar = False |
|
1135 | self.colorbar = False | |
1138 | self.titles = [] |
|
1136 | self.titles = [] | |
1139 | self.plots_adjust.update({'wspace': .8 ,'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
1137 | self.plots_adjust.update({'wspace': .8 ,'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
1140 |
|
1138 | |||
1141 | def update(self, dataOut): |
|
1139 | def update(self, dataOut): | |
1142 | data = {} |
|
1140 | data = {} | |
1143 | meta = {} |
|
1141 | meta = {} | |
1144 |
|
1142 | |||
1145 | data['crossprodslp'] = 10*numpy.log10(numpy.abs(dataOut.output_LP)) |
|
1143 | data['crossprodslp'] = 10*numpy.log10(numpy.abs(dataOut.output_LP)) | |
1146 |
|
1144 | |||
1147 | data['NRANGE'] = dataOut.NRANGE #This is metadata |
|
1145 | data['NRANGE'] = dataOut.NRANGE #This is metadata | |
1148 | data['NLAG'] = dataOut.NLAG #This is metadata |
|
1146 | data['NLAG'] = dataOut.NLAG #This is metadata | |
1149 |
|
1147 | |||
1150 | return data, meta |
|
1148 | return data, meta | |
1151 |
|
1149 | |||
1152 | def plot(self): |
|
1150 | def plot(self): | |
1153 |
|
1151 | |||
1154 | NRANGE = self.data['NRANGE'][-1] |
|
1152 | NRANGE = self.data['NRANGE'][-1] | |
1155 | NLAG = self.data['NLAG'][-1] |
|
1153 | NLAG = self.data['NLAG'][-1] | |
1156 |
|
1154 | |||
1157 | x = self.data[self.CODE][:,-1,:,:] |
|
1155 | x = self.data[self.CODE][:,-1,:,:] | |
1158 | self.y = self.data.yrange[0:NRANGE] |
|
1156 | self.y = self.data.yrange[0:NRANGE] | |
1159 |
|
1157 | |||
1160 | label_array=numpy.array(['lag '+ str(x) for x in range(NLAG)]) |
|
1158 | label_array=numpy.array(['lag '+ str(x) for x in range(NLAG)]) | |
1161 | color_array=['r','k','g','b','c','m','y','orange','steelblue','purple','peru','darksalmon','grey','limegreen','olive','midnightblue'] |
|
1159 | color_array=['r','k','g','b','c','m','y','orange','steelblue','purple','peru','darksalmon','grey','limegreen','olive','midnightblue'] | |
1162 |
|
1160 | |||
1163 |
|
1161 | |||
1164 | for n, ax in enumerate(self.axes): |
|
1162 | for n, ax in enumerate(self.axes): | |
1165 |
|
1163 | |||
1166 | self.xmin=28#30 |
|
1164 | self.xmin=28#30 | |
1167 | self.xmax=70#70 |
|
1165 | self.xmax=70#70 | |
1168 | #self.xmin=numpy.min(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) |
|
1166 | #self.xmin=numpy.min(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) | |
1169 | #self.xmax=numpy.max(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) |
|
1167 | #self.xmax=numpy.max(numpy.concatenate((self.x[0,:,n],self.x[1,:,n]))) | |
1170 |
|
1168 | |||
1171 | if ax.firsttime: |
|
1169 | if ax.firsttime: | |
1172 |
|
1170 | |||
1173 | self.autoxticks=False |
|
1171 | self.autoxticks=False | |
1174 | if n == 0: |
|
1172 | if n == 0: | |
1175 | self.plotline_array=numpy.zeros((2,NLAG),dtype=object) |
|
1173 | self.plotline_array=numpy.zeros((2,NLAG),dtype=object) | |
1176 |
|
1174 | |||
1177 | for i in range(NLAG): |
|
1175 | for i in range(NLAG): | |
1178 | self.plotline_array[n,i], = ax.plot(x[i,:,n], self.y, color=color_array[i],linewidth=1.0, label=label_array[i]) |
|
1176 | self.plotline_array[n,i], = ax.plot(x[i,:,n], self.y, color=color_array[i],linewidth=1.0, label=label_array[i]) | |
1179 |
|
1177 | |||
1180 | ax.legend(loc='upper right') |
|
1178 | ax.legend(loc='upper right') | |
1181 | ax.set_xlim(self.xmin, self.xmax) |
|
1179 | ax.set_xlim(self.xmin, self.xmax) | |
1182 | if n==0: |
|
1180 | if n==0: | |
1183 | self.titles.append('{} CH0'.format(self.plot_name.upper())) |
|
1181 | self.titles.append('{} CH0'.format(self.plot_name.upper())) | |
1184 | if n==1: |
|
1182 | if n==1: | |
1185 | self.titles.append('{} CH1'.format(self.plot_name.upper())) |
|
1183 | self.titles.append('{} CH1'.format(self.plot_name.upper())) | |
1186 | else: |
|
1184 | else: | |
1187 | for i in range(NLAG): |
|
1185 | for i in range(NLAG): | |
1188 | self.plotline_array[n,i].set_data(x[i,:,n],self.y) |
|
1186 | self.plotline_array[n,i].set_data(x[i,:,n],self.y) | |
1189 |
|
1187 | |||
1190 | if n==0: |
|
1188 | if n==0: | |
1191 | self.titles.append('{} CH0'.format(self.plot_name.upper())) |
|
1189 | self.titles.append('{} CH0'.format(self.plot_name.upper())) | |
1192 | if n==1: |
|
1190 | if n==1: | |
1193 | self.titles.append('{} CH1'.format(self.plot_name.upper())) |
|
1191 | self.titles.append('{} CH1'.format(self.plot_name.upper())) | |
1194 |
|
1192 | |||
1195 |
|
1193 | |||
1196 | class NoiseDPPlot(NoisePlot): |
|
1194 | class NoiseDPPlot(NoisePlot): | |
1197 | ''' |
|
1195 | ''' | |
1198 | Plot for noise Double Pulse |
|
1196 | Plot for noise Double Pulse | |
1199 | ''' |
|
1197 | ''' | |
1200 |
|
1198 | |||
1201 | CODE = 'noise' |
|
1199 | CODE = 'noise' | |
1202 | #plot_name = 'Noise' |
|
1200 | #plot_name = 'Noise' | |
1203 | #plot_type = 'scatterbuffer' |
|
1201 | #plot_type = 'scatterbuffer' | |
1204 |
|
1202 | |||
1205 | def update(self, dataOut): |
|
1203 | def update(self, dataOut): | |
1206 |
|
1204 | |||
1207 | data = {} |
|
1205 | data = {} | |
1208 | meta = {} |
|
1206 | meta = {} | |
1209 | data['noise'] = 10*numpy.log10(dataOut.noise_final) |
|
1207 | data['noise'] = 10*numpy.log10(dataOut.noise_final) | |
1210 |
|
1208 | |||
1211 | return data, meta |
|
1209 | return data, meta | |
1212 |
|
1210 | |||
1213 |
|
1211 | |||
1214 | class XmitWaveformPlot(Plot): |
|
1212 | class XmitWaveformPlot(Plot): | |
1215 | ''' |
|
1213 | ''' | |
1216 | Plot for xmit waveform |
|
1214 | Plot for xmit waveform | |
1217 | ''' |
|
1215 | ''' | |
1218 |
|
1216 | |||
1219 | CODE = 'xmit' |
|
1217 | CODE = 'xmit' | |
1220 | plot_name = 'Xmit Waveform' |
|
1218 | plot_name = 'Xmit Waveform' | |
1221 | plot_type = 'scatterbuffer' |
|
1219 | plot_type = 'scatterbuffer' | |
1222 |
|
1220 | |||
1223 |
|
1221 | |||
1224 | def setup(self): |
|
1222 | def setup(self): | |
1225 |
|
1223 | |||
1226 | self.ncols = 1 |
|
1224 | self.ncols = 1 | |
1227 | self.nrows = 1 |
|
1225 | self.nrows = 1 | |
1228 | self.nplots = 1 |
|
1226 | self.nplots = 1 | |
1229 | self.ylabel = '' |
|
1227 | self.ylabel = '' | |
1230 | self.xlabel = 'Number of Lag' |
|
1228 | self.xlabel = 'Number of Lag' | |
1231 | self.width = 5.5 |
|
1229 | self.width = 5.5 | |
1232 | self.height = 3.5 |
|
1230 | self.height = 3.5 | |
1233 | self.colorbar = False |
|
1231 | self.colorbar = False | |
1234 | self.plots_adjust.update({'right': 0.85 }) |
|
1232 | self.plots_adjust.update({'right': 0.85 }) | |
1235 | self.titles = [self.plot_name] |
|
1233 | self.titles = [self.plot_name] | |
1236 | #self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) |
|
1234 | #self.plots_adjust.update({'left': 0.17, 'right': 0.88, 'bottom': 0.1}) | |
1237 |
|
1235 | |||
1238 | #if not self.titles: |
|
1236 | #if not self.titles: | |
1239 | #self.titles = self.data.parameters \ |
|
1237 | #self.titles = self.data.parameters \ | |
1240 | #if self.data.parameters else ['{}'.format(self.plot_name.upper())] |
|
1238 | #if self.data.parameters else ['{}'.format(self.plot_name.upper())] | |
1241 |
|
1239 | |||
1242 | def update(self, dataOut): |
|
1240 | def update(self, dataOut): | |
1243 |
|
1241 | |||
1244 | data = {} |
|
1242 | data = {} | |
1245 | meta = {} |
|
1243 | meta = {} | |
1246 |
|
1244 | |||
1247 | y_1=numpy.arctan2(dataOut.output_LP[:,0,2].imag,dataOut.output_LP[:,0,2].real)* 180 / (numpy.pi*10) |
|
1245 | y_1=numpy.arctan2(dataOut.output_LP[:,0,2].imag,dataOut.output_LP[:,0,2].real)* 180 / (numpy.pi*10) | |
1248 | y_2=numpy.abs(dataOut.output_LP[:,0,2]) |
|
1246 | y_2=numpy.abs(dataOut.output_LP[:,0,2]) | |
1249 | norm=numpy.max(y_2) |
|
1247 | norm=numpy.max(y_2) | |
1250 | norm=max(norm,0.1) |
|
1248 | norm=max(norm,0.1) | |
1251 | y_2=y_2/norm |
|
1249 | y_2=y_2/norm | |
1252 |
|
1250 | |||
1253 | meta['yrange'] = numpy.array([]) |
|
1251 | meta['yrange'] = numpy.array([]) | |
1254 |
|
1252 | |||
1255 | data['xmit'] = numpy.vstack((y_1,y_2)) |
|
1253 | data['xmit'] = numpy.vstack((y_1,y_2)) | |
1256 | data['NLAG'] = dataOut.NLAG |
|
1254 | data['NLAG'] = dataOut.NLAG | |
1257 |
|
1255 | |||
1258 | return data, meta |
|
1256 | return data, meta | |
1259 |
|
1257 | |||
1260 | def plot(self): |
|
1258 | def plot(self): | |
1261 |
|
1259 | |||
1262 | data = self.data[-1] |
|
1260 | data = self.data[-1] | |
1263 | NLAG = data['NLAG'] |
|
1261 | NLAG = data['NLAG'] | |
1264 | x = numpy.arange(0,NLAG,1,'float32') |
|
1262 | x = numpy.arange(0,NLAG,1,'float32') | |
1265 | y = data['xmit'] |
|
1263 | y = data['xmit'] | |
1266 |
|
1264 | |||
1267 | self.xmin = 0 |
|
1265 | self.xmin = 0 | |
1268 | self.xmax = NLAG-1 |
|
1266 | self.xmax = NLAG-1 | |
1269 | self.ymin = -1.0 |
|
1267 | self.ymin = -1.0 | |
1270 | self.ymax = 1.0 |
|
1268 | self.ymax = 1.0 | |
1271 | ax = self.axes[0] |
|
1269 | ax = self.axes[0] | |
1272 |
|
1270 | |||
1273 | if ax.firsttime: |
|
1271 | if ax.firsttime: | |
1274 | ax.plotline0=ax.plot(x,y[0,:],color='blue') |
|
1272 | ax.plotline0=ax.plot(x,y[0,:],color='blue') | |
1275 | ax.plotline1=ax.plot(x,y[1,:],color='red') |
|
1273 | ax.plotline1=ax.plot(x,y[1,:],color='red') | |
1276 | secax=ax.secondary_xaxis(location=0.5) |
|
1274 | secax=ax.secondary_xaxis(location=0.5) | |
1277 | secax.xaxis.tick_bottom() |
|
1275 | secax.xaxis.tick_bottom() | |
1278 | secax.tick_params( labelleft=False, labeltop=False, |
|
1276 | secax.tick_params( labelleft=False, labeltop=False, | |
1279 | labelright=False, labelbottom=False) |
|
1277 | labelright=False, labelbottom=False) | |
1280 |
|
1278 | |||
1281 | self.xstep_given = 3 |
|
1279 | self.xstep_given = 3 | |
1282 | self.ystep_given = .25 |
|
1280 | self.ystep_given = .25 | |
1283 | secax.set_xticks(numpy.linspace(self.xmin, self.xmax, 6)) #only works on matplotlib.version>3.2 |
|
1281 | secax.set_xticks(numpy.linspace(self.xmin, self.xmax, 6)) #only works on matplotlib.version>3.2 | |
1284 |
|
1282 | |||
1285 | else: |
|
1283 | else: | |
1286 | ax.plotline0[0].set_data(x,y[0,:]) |
|
1284 | ax.plotline0[0].set_data(x,y[0,:]) | |
1287 | ax.plotline1[0].set_data(x,y[1,:]) |
|
1285 | ax.plotline1[0].set_data(x,y[1,:]) |
@@ -1,247 +1,251 | |||||
1 | ''' |
|
1 | ''' | |
2 | Base clases to create Processing units and operations, the MPDecorator |
|
2 | Base clases to create Processing units and operations, the MPDecorator | |
3 | must be used in plotting and writing operations to allow to run as an |
|
3 | must be used in plotting and writing operations to allow to run as an | |
4 | external process. |
|
4 | external process. | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | import os |
|
7 | import os | |
8 | import inspect |
|
8 | import inspect | |
9 | import zmq |
|
9 | import zmq | |
10 | import time |
|
10 | import time | |
11 | import pickle |
|
11 | import pickle | |
12 | import traceback |
|
12 | import traceback | |
13 | from threading import Thread |
|
13 | from threading import Thread | |
14 | from multiprocessing import Process, Queue |
|
14 | from multiprocessing import Process, Queue | |
15 | from schainpy.utils import log |
|
15 | from schainpy.utils import log | |
16 |
|
16 | |||
17 | import copy |
|
17 | import copy | |
18 |
|
18 | |||
19 | QUEUE_SIZE = int(os.environ.get('QUEUE_MAX_SIZE', '10')) |
|
19 | QUEUE_SIZE = int(os.environ.get('QUEUE_MAX_SIZE', '10')) | |
20 |
|
20 | |||
21 | class ProcessingUnit(object): |
|
21 | class ProcessingUnit(object): | |
22 | ''' |
|
22 | ''' | |
23 | Base class to create Signal Chain Units |
|
23 | Base class to create Signal Chain Units | |
24 | ''' |
|
24 | ''' | |
25 |
|
25 | |||
26 | proc_type = 'processing' |
|
26 | proc_type = 'processing' | |
27 |
|
27 | |||
28 | def __init__(self): |
|
28 | def __init__(self): | |
29 |
|
29 | |||
30 | self.dataIn = None |
|
30 | self.dataIn = None | |
31 | self.dataOut = None |
|
31 | self.dataOut = None | |
32 | self.isConfig = False |
|
32 | self.isConfig = False | |
33 | self.operations = [] |
|
33 | self.operations = [] | |
34 | self.name = 'Test' |
|
34 | self.name = 'Test' | |
35 | self.inputs = [] |
|
35 | self.inputs = [] | |
36 |
|
36 | |||
37 | def setInput(self, unit): |
|
37 | def setInput(self, unit): | |
38 |
|
38 | |||
39 | attr = 'dataIn' |
|
39 | attr = 'dataIn' | |
40 | for i, u in enumerate(unit): |
|
40 | for i, u in enumerate(unit): | |
41 | if i==0: |
|
41 | if i==0: | |
42 | #print(u.dataOut.flagNoData) |
|
42 | #print(u.dataOut.flagNoData) | |
43 | #exit(1) |
|
43 | #exit(1) | |
44 | self.dataIn = u.dataOut#.copy() |
|
44 | self.dataIn = u.dataOut#.copy() | |
45 | self.inputs.append('dataIn') |
|
45 | self.inputs.append('dataIn') | |
46 | else: |
|
46 | else: | |
47 | setattr(self, 'dataIn{}'.format(i), u.dataOut)#.copy()) |
|
47 | setattr(self, 'dataIn{}'.format(i), u.dataOut)#.copy()) | |
48 | self.inputs.append('dataIn{}'.format(i)) |
|
48 | self.inputs.append('dataIn{}'.format(i)) | |
49 |
|
49 | |||
50 |
|
50 | |||
51 | def getAllowedArgs(self): |
|
51 | def getAllowedArgs(self): | |
52 | if hasattr(self, '__attrs__'): |
|
52 | if hasattr(self, '__attrs__'): | |
53 | return self.__attrs__ |
|
53 | return self.__attrs__ | |
54 | else: |
|
54 | else: | |
55 | return inspect.getargspec(self.run).args |
|
55 | return inspect.getargspec(self.run).args | |
56 |
|
56 | |||
57 | def addOperation(self, conf, operation): |
|
57 | def addOperation(self, conf, operation): | |
58 | ''' |
|
58 | ''' | |
59 | ''' |
|
59 | ''' | |
60 |
|
60 | |||
61 | self.operations.append((operation, conf.type, conf.getKwargs())) |
|
61 | self.operations.append((operation, conf.type, conf.getKwargs())) | |
62 |
|
62 | |||
63 | def getOperationObj(self, objId): |
|
63 | def getOperationObj(self, objId): | |
64 |
|
64 | |||
65 | if objId not in list(self.operations.keys()): |
|
65 | if objId not in list(self.operations.keys()): | |
66 | return None |
|
66 | return None | |
67 |
|
67 | |||
68 | return self.operations[objId] |
|
68 | return self.operations[objId] | |
69 |
|
69 | |||
70 | def call(self, **kwargs): |
|
70 | def call(self, **kwargs): | |
71 | ''' |
|
71 | ''' | |
72 | ''' |
|
72 | ''' | |
73 |
|
73 | #print("call") | ||
74 | try: |
|
74 | try: | |
75 | #print("try") |
|
|||
76 | if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error: |
|
75 | if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error: | |
77 | #print("Try") |
|
76 | #if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error and not self.dataIn.runNextUnit: | |
78 |
|
|
77 | if self.dataIn.runNextUnit: | |
79 | #print(self.dataIn.flagNoData) |
|
78 | #print("SUCCESSSSSSS") | |
80 | return self.dataIn.isReady() |
|
79 | #exit(1) | |
|
80 | return not self.dataIn.isReady() | |||
|
81 | else: | |||
|
82 | return self.dataIn.isReady() | |||
81 | elif self.dataIn is None or not self.dataIn.error: |
|
83 | elif self.dataIn is None or not self.dataIn.error: | |
82 | #print([getattr(self, at) for at in self.inputs]) |
|
84 | #print([getattr(self, at) for at in self.inputs]) | |
83 | #print("Elif 1") |
|
85 | #print("Elif 1") | |
84 | self.run(**kwargs) |
|
86 | self.run(**kwargs) | |
85 | elif self.dataIn.error: |
|
87 | elif self.dataIn.error: | |
86 | #print("Elif 2") |
|
88 | #print("Elif 2") | |
87 | self.dataOut.error = self.dataIn.error |
|
89 | self.dataOut.error = self.dataIn.error | |
88 | self.dataOut.flagNoData = True |
|
90 | self.dataOut.flagNoData = True | |
89 | except: |
|
91 | except: | |
90 | #print("Except") |
|
92 | #print("Except") | |
91 | err = traceback.format_exc() |
|
93 | err = traceback.format_exc() | |
92 | if 'SchainWarning' in err: |
|
94 | if 'SchainWarning' in err: | |
93 | log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name) |
|
95 | log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name) | |
94 | elif 'SchainError' in err: |
|
96 | elif 'SchainError' in err: | |
95 | log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name) |
|
97 | log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name) | |
96 | else: |
|
98 | else: | |
97 | log.error(err, self.name) |
|
99 | log.error(err, self.name) | |
98 | self.dataOut.error = True |
|
100 | self.dataOut.error = True | |
99 | #print("before op") |
|
101 | #print("before op") | |
100 | for op, optype, opkwargs in self.operations: |
|
102 | for op, optype, opkwargs in self.operations: | |
101 | aux = self.dataOut.copy() |
|
103 | aux = self.dataOut.copy() | |
102 | #aux = copy.deepcopy(self.dataOut) |
|
104 | #aux = copy.deepcopy(self.dataOut) | |
103 | #print("**********************Before",op) |
|
105 | #print("**********************Before",op) | |
104 | if optype == 'other' and not self.dataOut.flagNoData: |
|
106 | if optype == 'other' and not self.dataOut.flagNoData: | |
105 | #print("**********************Other",op) |
|
107 | #print("**********************Other",op) | |
106 | #print(self.dataOut.flagNoData) |
|
108 | #print(self.dataOut.flagNoData) | |
107 | self.dataOut = op.run(self.dataOut, **opkwargs) |
|
109 | self.dataOut = op.run(self.dataOut, **opkwargs) | |
108 | elif optype == 'external' and not self.dataOut.flagNoData: |
|
110 | elif optype == 'external' and not self.dataOut.flagNoData: | |
109 | op.queue.put(aux) |
|
111 | op.queue.put(aux) | |
110 | elif optype == 'external' and self.dataOut.error: |
|
112 | elif optype == 'external' and self.dataOut.error: | |
111 | op.queue.put(aux) |
|
113 | op.queue.put(aux) | |
112 | #elif optype == 'external' and self.dataOut.isReady(): |
|
114 | #elif optype == 'external' and self.dataOut.isReady(): | |
113 | #op.queue.put(copy.deepcopy(self.dataOut)) |
|
115 | #op.queue.put(copy.deepcopy(self.dataOut)) | |
114 | #print(not self.dataOut.isReady()) |
|
116 | #print(not self.dataOut.isReady()) | |
|
117 | ||||
115 | try: |
|
118 | try: | |
116 | if self.dataOut.runNextUnit: |
|
119 | if self.dataOut.runNextUnit: | |
117 | runNextUnit = self.dataOut.runNextUnit |
|
120 | runNextUnit = self.dataOut.runNextUnit | |
118 | #print(self.operations) |
|
121 | #print(self.operations) | |
119 | #print("Tru") |
|
122 | #print("Tru") | |
120 |
|
123 | |||
121 | else: |
|
124 | else: | |
122 | runNextUnit = self.dataOut.isReady() |
|
125 | runNextUnit = self.dataOut.isReady() | |
123 | except: |
|
126 | except: | |
124 | runNextUnit = self.dataOut.isReady() |
|
127 | runNextUnit = self.dataOut.isReady() | |
125 | #if not self.dataOut.isReady(): |
|
128 | #if not self.dataOut.isReady(): | |
126 | #return 'Error' if self.dataOut.error else input() |
|
129 | #return 'Error' if self.dataOut.error else input() | |
127 | #print("NexT",runNextUnit) |
|
130 | #print("NexT",runNextUnit) | |
|
131 | #print("error: ",self.dataOut.error) | |||
128 | return 'Error' if self.dataOut.error else runNextUnit# self.dataOut.isReady() |
|
132 | return 'Error' if self.dataOut.error else runNextUnit# self.dataOut.isReady() | |
129 |
|
133 | |||
130 | def setup(self): |
|
134 | def setup(self): | |
131 |
|
135 | |||
132 | raise NotImplementedError |
|
136 | raise NotImplementedError | |
133 |
|
137 | |||
134 | def run(self): |
|
138 | def run(self): | |
135 |
|
139 | |||
136 | raise NotImplementedError |
|
140 | raise NotImplementedError | |
137 |
|
141 | |||
138 | def close(self): |
|
142 | def close(self): | |
139 |
|
143 | |||
140 | return |
|
144 | return | |
141 |
|
145 | |||
142 |
|
146 | |||
143 | class Operation(object): |
|
147 | class Operation(object): | |
144 |
|
148 | |||
145 | ''' |
|
149 | ''' | |
146 | ''' |
|
150 | ''' | |
147 |
|
151 | |||
148 | proc_type = 'operation' |
|
152 | proc_type = 'operation' | |
149 |
|
153 | |||
150 | def __init__(self): |
|
154 | def __init__(self): | |
151 |
|
155 | |||
152 | self.id = None |
|
156 | self.id = None | |
153 | self.isConfig = False |
|
157 | self.isConfig = False | |
154 |
|
158 | |||
155 | if not hasattr(self, 'name'): |
|
159 | if not hasattr(self, 'name'): | |
156 | self.name = self.__class__.__name__ |
|
160 | self.name = self.__class__.__name__ | |
157 |
|
161 | |||
158 | def getAllowedArgs(self): |
|
162 | def getAllowedArgs(self): | |
159 | if hasattr(self, '__attrs__'): |
|
163 | if hasattr(self, '__attrs__'): | |
160 | return self.__attrs__ |
|
164 | return self.__attrs__ | |
161 | else: |
|
165 | else: | |
162 | return inspect.getargspec(self.run).args |
|
166 | return inspect.getargspec(self.run).args | |
163 |
|
167 | |||
164 | def setup(self): |
|
168 | def setup(self): | |
165 |
|
169 | |||
166 | self.isConfig = True |
|
170 | self.isConfig = True | |
167 |
|
171 | |||
168 | raise NotImplementedError |
|
172 | raise NotImplementedError | |
169 |
|
173 | |||
170 | def run(self, dataIn, **kwargs): |
|
174 | def run(self, dataIn, **kwargs): | |
171 | """ |
|
175 | """ | |
172 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los |
|
176 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los | |
173 | atributos del objeto dataIn. |
|
177 | atributos del objeto dataIn. | |
174 |
|
178 | |||
175 | Input: |
|
179 | Input: | |
176 |
|
180 | |||
177 | dataIn : objeto del tipo JROData |
|
181 | dataIn : objeto del tipo JROData | |
178 |
|
182 | |||
179 | Return: |
|
183 | Return: | |
180 |
|
184 | |||
181 | None |
|
185 | None | |
182 |
|
186 | |||
183 | Affected: |
|
187 | Affected: | |
184 | __buffer : buffer de recepcion de datos. |
|
188 | __buffer : buffer de recepcion de datos. | |
185 |
|
189 | |||
186 | """ |
|
190 | """ | |
187 | if not self.isConfig: |
|
191 | if not self.isConfig: | |
188 | self.setup(**kwargs) |
|
192 | self.setup(**kwargs) | |
189 |
|
193 | |||
190 | raise NotImplementedError |
|
194 | raise NotImplementedError | |
191 |
|
195 | |||
192 | def close(self): |
|
196 | def close(self): | |
193 |
|
197 | |||
194 | return |
|
198 | return | |
195 |
|
199 | |||
196 |
|
200 | |||
197 | def MPDecorator(BaseClass): |
|
201 | def MPDecorator(BaseClass): | |
198 | """ |
|
202 | """ | |
199 | Multiprocessing class decorator |
|
203 | Multiprocessing class decorator | |
200 |
|
204 | |||
201 | This function add multiprocessing features to a BaseClass. |
|
205 | This function add multiprocessing features to a BaseClass. | |
202 | """ |
|
206 | """ | |
203 |
|
207 | |||
204 | class MPClass(BaseClass, Process): |
|
208 | class MPClass(BaseClass, Process): | |
205 |
|
209 | |||
206 | def __init__(self, *args, **kwargs): |
|
210 | def __init__(self, *args, **kwargs): | |
207 | super(MPClass, self).__init__() |
|
211 | super(MPClass, self).__init__() | |
208 | Process.__init__(self) |
|
212 | Process.__init__(self) | |
209 |
|
213 | |||
210 | self.args = args |
|
214 | self.args = args | |
211 | self.kwargs = kwargs |
|
215 | self.kwargs = kwargs | |
212 | self.t = time.time() |
|
216 | self.t = time.time() | |
213 | self.op_type = 'external' |
|
217 | self.op_type = 'external' | |
214 | self.name = BaseClass.__name__ |
|
218 | self.name = BaseClass.__name__ | |
215 | self.__doc__ = BaseClass.__doc__ |
|
219 | self.__doc__ = BaseClass.__doc__ | |
216 |
|
220 | |||
217 | if 'plot' in self.name.lower() and not self.name.endswith('_'): |
|
221 | if 'plot' in self.name.lower() and not self.name.endswith('_'): | |
218 | self.name = '{}{}'.format(self.CODE.upper(), 'Plot') |
|
222 | self.name = '{}{}'.format(self.CODE.upper(), 'Plot') | |
219 |
|
223 | |||
220 | self.start_time = time.time() |
|
224 | self.start_time = time.time() | |
221 | self.err_queue = args[3] |
|
225 | self.err_queue = args[3] | |
222 | self.queue = Queue(maxsize=QUEUE_SIZE) |
|
226 | self.queue = Queue(maxsize=QUEUE_SIZE) | |
223 | self.myrun = BaseClass.run |
|
227 | self.myrun = BaseClass.run | |
224 |
|
228 | |||
225 | def run(self): |
|
229 | def run(self): | |
226 |
|
230 | |||
227 | while True: |
|
231 | while True: | |
228 |
|
232 | |||
229 | dataOut = self.queue.get() |
|
233 | dataOut = self.queue.get() | |
230 |
|
234 | |||
231 | if not dataOut.error: |
|
235 | if not dataOut.error: | |
232 | try: |
|
236 | try: | |
233 | BaseClass.run(self, dataOut, **self.kwargs) |
|
237 | BaseClass.run(self, dataOut, **self.kwargs) | |
234 | except: |
|
238 | except: | |
235 | err = traceback.format_exc() |
|
239 | err = traceback.format_exc() | |
236 | log.error(err, self.name) |
|
240 | log.error(err, self.name) | |
237 | else: |
|
241 | else: | |
238 | break |
|
242 | break | |
239 |
|
243 | |||
240 | self.close() |
|
244 | self.close() | |
241 |
|
245 | |||
242 | def close(self): |
|
246 | def close(self): | |
243 |
|
247 | |||
244 | BaseClass.close(self) |
|
248 | BaseClass.close(self) | |
245 | log.success('Done...(Time:{:4.2f} secs)'.format(time.time() - self.start_time), self.name) |
|
249 | log.success('Done...(Time:{:4.2f} secs)'.format(time.time() - self.start_time), self.name) | |
246 |
|
250 | |||
247 | return MPClass |
|
251 | return MPClass |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
This diff has been collapsed as it changes many lines, (859 lines changed) Show them Hide them | |||||
@@ -1,796 +1,1645 | |||||
1 | import numpy |
|
1 | import numpy | |
2 |
|
2 | |||
3 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation |
|
3 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation | |
4 | from schainpy.model.data.jrodata import Spectra |
|
4 | from schainpy.model.data.jrodata import Spectra | |
5 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
5 | from schainpy.model.data.jrodata import hildebrand_sekhon | |
6 |
|
6 | |||
7 | class SpectraAFCProc(ProcessingUnit): |
|
7 | class SpectraAFCProc_V0(ProcessingUnit): | |
8 |
|
8 | |||
9 | def __init__(self, **kwargs): |
|
9 | def __init__(self, **kwargs): | |
10 |
|
10 | |||
11 | ProcessingUnit.__init__(self, **kwargs) |
|
11 | ProcessingUnit.__init__(self, **kwargs) | |
12 |
|
12 | |||
13 | self.buffer = None |
|
13 | self.buffer = None | |
14 | self.firstdatatime = None |
|
14 | self.firstdatatime = None | |
15 | self.profIndex = 0 |
|
15 | self.profIndex = 0 | |
16 | self.dataOut = Spectra() |
|
16 | self.dataOut = Spectra() | |
17 | self.id_min = None |
|
17 | self.id_min = None | |
18 | self.id_max = None |
|
18 | self.id_max = None | |
19 |
|
19 | |||
20 | def __updateSpecFromVoltage(self): |
|
20 | def __updateSpecFromVoltage(self): | |
21 |
|
21 | |||
22 | self.dataOut.plotting = "spectra_acf" |
|
22 | self.dataOut.plotting = "spectra_acf" | |
23 |
|
23 | |||
24 | self.dataOut.timeZone = self.dataIn.timeZone |
|
24 | self.dataOut.timeZone = self.dataIn.timeZone | |
25 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
25 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
26 | self.dataOut.errorCount = self.dataIn.errorCount |
|
26 | self.dataOut.errorCount = self.dataIn.errorCount | |
27 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
27 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
28 |
|
28 | |||
29 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
29 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
30 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
30 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
31 | self.dataOut.ippSeconds = self.dataIn.getDeltaH()*(10**-6)/0.15 |
|
31 | self.dataOut.ippSeconds = self.dataIn.getDeltaH()*(10**-6)/0.15 | |
32 |
|
32 | |||
33 | self.dataOut.channelList = self.dataIn.channelList |
|
33 | self.dataOut.channelList = self.dataIn.channelList | |
34 | self.dataOut.heightList = self.dataIn.heightList |
|
34 | self.dataOut.heightList = self.dataIn.heightList | |
35 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
35 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
36 |
|
36 | |||
37 | self.dataOut.nBaud = self.dataIn.nBaud |
|
37 | self.dataOut.nBaud = self.dataIn.nBaud | |
38 | self.dataOut.nCode = self.dataIn.nCode |
|
38 | self.dataOut.nCode = self.dataIn.nCode | |
39 | self.dataOut.code = self.dataIn.code |
|
39 | self.dataOut.code = self.dataIn.code | |
40 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
40 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
41 |
|
41 | |||
42 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
42 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
43 | self.dataOut.utctime = self.firstdatatime |
|
43 | self.dataOut.utctime = self.firstdatatime | |
44 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
44 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
45 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
45 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
46 | self.dataOut.flagShiftFFT = False |
|
46 | self.dataOut.flagShiftFFT = False | |
47 |
|
47 | |||
48 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
48 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
49 | self.dataOut.nIncohInt = 1 |
|
49 | self.dataOut.nIncohInt = 1 | |
50 |
|
50 | |||
51 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
51 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
52 |
|
52 | |||
53 | self.dataOut.frequency = self.dataIn.frequency |
|
53 | self.dataOut.frequency = self.dataIn.frequency | |
54 | self.dataOut.realtime = self.dataIn.realtime |
|
54 | self.dataOut.realtime = self.dataIn.realtime | |
55 |
|
55 | |||
56 | self.dataOut.azimuth = self.dataIn.azimuth |
|
56 | self.dataOut.azimuth = self.dataIn.azimuth | |
57 | self.dataOut.zenith = self.dataIn.zenith |
|
57 | self.dataOut.zenith = self.dataIn.zenith | |
58 |
|
58 | |||
59 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
59 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |
60 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
60 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |
61 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
61 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |
62 |
|
62 | |||
63 | def __decodeData(self, nProfiles, code): |
|
63 | def __decodeData(self, nProfiles, code): | |
64 |
|
64 | |||
65 | if code is None: |
|
65 | if code is None: | |
66 | return |
|
66 | return | |
67 |
|
67 | |||
68 | for i in range(nProfiles): |
|
68 | for i in range(nProfiles): | |
69 | self.buffer[:,i,:] = self.buffer[:,i,:]*code[0][i] |
|
69 | self.buffer[:,i,:] = self.buffer[:,i,:]*code[0][i] | |
70 |
|
70 | |||
71 | def __getFft(self): |
|
71 | def __getFft(self): | |
72 | """ |
|
72 | """ | |
73 | Convierte valores de Voltaje a Spectra |
|
73 | Convierte valores de Voltaje a Spectra | |
74 |
|
74 | |||
75 | Affected: |
|
75 | Affected: | |
76 | self.dataOut.data_spc |
|
76 | self.dataOut.data_spc | |
77 | self.dataOut.data_cspc |
|
77 | self.dataOut.data_cspc | |
78 | self.dataOut.data_dc |
|
78 | self.dataOut.data_dc | |
79 | self.dataOut.heightList |
|
79 | self.dataOut.heightList | |
80 | self.profIndex |
|
80 | self.profIndex | |
81 | self.buffer |
|
81 | self.buffer | |
82 | self.dataOut.flagNoData |
|
82 | self.dataOut.flagNoData | |
83 | """ |
|
83 | """ | |
84 | nsegments = self.dataOut.nHeights |
|
84 | nsegments = self.dataOut.nHeights | |
85 |
|
85 | |||
86 | _fft_buffer = numpy.zeros((self.dataOut.nChannels, self.dataOut.nProfiles, nsegments), dtype='complex') |
|
86 | _fft_buffer = numpy.zeros((self.dataOut.nChannels, self.dataOut.nProfiles, nsegments), dtype='complex') | |
87 |
|
87 | |||
88 | for i in range(nsegments): |
|
88 | for i in range(nsegments): | |
89 | try: |
|
89 | try: | |
90 | _fft_buffer[:,:,i] = self.buffer[:,i:i+self.dataOut.nProfiles] |
|
90 | _fft_buffer[:,:,i] = self.buffer[:,i:i+self.dataOut.nProfiles] | |
91 |
|
91 | |||
92 | if self.code is not None: |
|
92 | if self.code is not None: | |
93 | _fft_buffer[:,:,i] = _fft_buffer[:,:,i]*self.code[0] |
|
93 | _fft_buffer[:,:,i] = _fft_buffer[:,:,i]*self.code[0] | |
94 | except: |
|
94 | except: | |
95 | pass |
|
95 | pass | |
96 |
|
96 | |||
97 | fft_volt = numpy.fft.fft(_fft_buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
97 | fft_volt = numpy.fft.fft(_fft_buffer, n=self.dataOut.nFFTPoints, axis=1) | |
98 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
98 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |
99 | dc = fft_volt[:,0,:] |
|
99 | dc = fft_volt[:,0,:] | |
100 |
|
100 | |||
101 | #calculo de self-spectra |
|
101 | #calculo de self-spectra | |
102 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
102 | spc = fft_volt * numpy.conjugate(fft_volt) | |
103 | data = numpy.fft.ifft(spc, axis=1) |
|
103 | data = numpy.fft.ifft(spc, axis=1) | |
104 | data = numpy.fft.fftshift(data, axes=(1,)) |
|
104 | data = numpy.fft.fftshift(data, axes=(1,)) | |
105 |
|
105 | |||
106 | spc = data |
|
106 | spc = data | |
107 |
|
107 | |||
108 | blocksize = 0 |
|
108 | blocksize = 0 | |
109 | blocksize += dc.size |
|
109 | blocksize += dc.size | |
110 | blocksize += spc.size |
|
110 | blocksize += spc.size | |
111 |
|
111 | |||
112 | cspc = None |
|
112 | cspc = None | |
113 | pairIndex = 0 |
|
113 | pairIndex = 0 | |
114 |
|
114 | |||
115 | if self.dataOut.pairsList != None: |
|
115 | if self.dataOut.pairsList != None: | |
116 | #calculo de cross-spectra |
|
116 | #calculo de cross-spectra | |
117 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
117 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |
118 | for pair in self.dataOut.pairsList: |
|
118 | for pair in self.dataOut.pairsList: | |
119 | if pair[0] not in self.dataOut.channelList: |
|
119 | if pair[0] not in self.dataOut.channelList: | |
120 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList))) |
|
120 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList))) | |
121 | if pair[1] not in self.dataOut.channelList: |
|
121 | if pair[1] not in self.dataOut.channelList: | |
122 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList))) |
|
122 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList))) | |
123 |
|
123 | |||
124 | chan_index0 = self.dataOut.channelList.index(pair[0]) |
|
124 | chan_index0 = self.dataOut.channelList.index(pair[0]) | |
125 | chan_index1 = self.dataOut.channelList.index(pair[1]) |
|
125 | chan_index1 = self.dataOut.channelList.index(pair[1]) | |
126 |
|
126 | |||
127 | cspc[pairIndex,:,:] = fft_volt[chan_index0,:,:] * numpy.conjugate(fft_volt[chan_index1,:,:]) |
|
127 | cspc[pairIndex,:,:] = fft_volt[chan_index0,:,:] * numpy.conjugate(fft_volt[chan_index1,:,:]) | |
128 | pairIndex += 1 |
|
128 | pairIndex += 1 | |
129 | blocksize += cspc.size |
|
129 | blocksize += cspc.size | |
130 |
|
130 | |||
131 | self.dataOut.data_spc = spc |
|
131 | self.dataOut.data_spc = spc | |
132 | self.dataOut.data_cspc = cspc |
|
132 | self.dataOut.data_cspc = cspc | |
133 | self.dataOut.data_dc = dc |
|
133 | self.dataOut.data_dc = dc | |
134 | self.dataOut.blockSize = blocksize |
|
134 | self.dataOut.blockSize = blocksize | |
135 | self.dataOut.flagShiftFFT = True |
|
135 | self.dataOut.flagShiftFFT = True | |
136 |
|
136 | |||
137 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], code=None, nCode=1, nBaud=1,real= None, imag=None): |
|
137 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], code=None, nCode=1, nBaud=1,real= None, imag=None): | |
138 |
|
138 | |||
139 | self.dataOut.flagNoData = True |
|
139 | self.dataOut.flagNoData = True | |
140 |
|
140 | |||
141 | if self.dataIn.type == "Spectra": |
|
141 | if self.dataIn.type == "Spectra": | |
142 | self.dataOut.copy(self.dataIn) |
|
142 | self.dataOut.copy(self.dataIn) | |
|
143 | #print(self.dataOut.data.shape) | |||
|
144 | #exit(1) | |||
143 | spc = self.dataOut.data_spc |
|
145 | spc = self.dataOut.data_spc | |
144 | data = numpy.fft.fftshift( spc, axes=(1,)) |
|
146 | data = numpy.fft.fftshift( spc, axes=(1,)) | |
145 | data = numpy.fft.ifft(data, axis=1) |
|
147 | data = numpy.fft.ifft(data, axis=1) | |
146 |
|
|
148 | data = numpy.fft.fftshift( data, axes=(1,)) | |
147 |
|
|
149 | acf = numpy.abs(data) # Autocorrelacion LLAMAR A ESTE VALOR ACF | |
148 | acf = data |
|
150 | acf = data #Comentarlo? | |
|
151 | print("acf",acf[0,:,150]) | |||
|
152 | exit(1) | |||
149 | #''' |
|
153 | #''' | |
150 | if real: |
|
154 | if real: | |
151 | acf = data.real |
|
155 | acf = data.real | |
152 | if imag: |
|
156 | if imag: | |
153 | acf = data.imag |
|
157 | acf = data.imag | |
154 | #''' |
|
158 | #''' | |
155 | shape = acf.shape # nchannels, nprofiles, nsamples //nchannles, lags , alturas |
|
159 | shape = acf.shape # nchannels, nprofiles, nsamples //nchannles, lags , alturas | |
156 |
|
160 | |||
157 | ''' |
|
161 | ''' | |
158 | for j in range(shape[0]): |
|
162 | for j in range(shape[0]): | |
159 | for i in range(shape[2]): |
|
163 | for i in range(shape[2]): | |
160 | tmp = int(shape[1]/2) |
|
164 | tmp = int(shape[1]/2) | |
161 | #print(i,j,tmp) |
|
165 | #print(i,j,tmp) | |
162 | value = (acf[j,:,i][tmp-1]+acf[j,:,i][tmp+1])/2.0 |
|
166 | value = (acf[j,:,i][tmp-1]+acf[j,:,i][tmp+1])/2.0 | |
163 | acf[j,:,i][tmp] = value |
|
167 | acf[j,:,i][tmp] = value | |
164 | # Normalizando |
|
168 | # Normalizando | |
165 | for i in range(shape[0]): |
|
169 | for i in range(shape[0]): | |
166 | for j in range(shape[2]): |
|
170 | for j in range(shape[2]): | |
167 | acf[i,:,j]= acf[i,:,j] / numpy.max(numpy.abs(acf[i,:,j])) |
|
171 | acf[i,:,j]= acf[i,:,j] / numpy.max(numpy.abs(acf[i,:,j])) | |
168 | ''' |
|
172 | ''' | |
169 | self.dataOut.data_acf = acf |
|
173 | self.dataOut.data_acf = acf | |
170 | self.dataOut.data_spc = acf |
|
174 | self.dataOut.data_spc = acf.real | |
171 | #print(self.dataOut.data_acf[0,:,0]) |
|
175 | #print(self.dataOut.data_acf[0,:,0]) | |
172 | #exit(1) |
|
176 | #exit(1) | |
173 | ''' |
|
177 | ''' | |
174 | shape = self.dataOut.data_acf.shape |
|
178 | shape = self.dataOut.data_acf.shape | |
175 | resFactor = 5 |
|
179 | resFactor = 5 | |
176 | z = self.dataOut.data_acf.copy() |
|
180 | z = self.dataOut.data_acf.copy() | |
177 | min = numpy.min(z[0,:,0]) |
|
181 | min = numpy.min(z[0,:,0]) | |
178 | max =numpy.max(z[0,:,0]) |
|
182 | max =numpy.max(z[0,:,0]) | |
179 | deltaHeight = self.dataOut.heightList[1]-self.dataOut.heightList[0] |
|
183 | deltaHeight = self.dataOut.heightList[1]-self.dataOut.heightList[0] | |
180 | for i in range(shape[0]): |
|
184 | for i in range(shape[0]): | |
181 | for j in range(shape[2]): |
|
185 | for j in range(shape[2]): | |
182 | z[i,:,j]= (((z[i,:,j]-min)/(max-min))*deltaHeight*resFactor + j*deltaHeight) |
|
186 | z[i,:,j]= (((z[i,:,j]-min)/(max-min))*deltaHeight*resFactor + j*deltaHeight) | |
183 | #print(self.dataOut.data_spc.shape) |
|
187 | #print(self.dataOut.data_spc.shape) | |
184 | #print(self.dataOut.data_acf.shape) |
|
188 | #print(self.dataOut.data_acf.shape) | |
185 | ''' |
|
189 | ''' | |
|
190 | ''' | |||
186 | import matplotlib.pyplot as plt |
|
191 | import matplotlib.pyplot as plt | |
187 | hei = 10 |
|
192 | hei = 10 | |
188 | #print(self.dataOut.heightList) |
|
193 | #print(self.dataOut.heightList) | |
189 | print(self.dataOut.heightList[hei]) |
|
194 | print(self.dataOut.heightList[hei]) | |
190 | #plt.plot(z[0,0,:],self.dataOut.heightList) |
|
195 | #plt.plot(z[0,0,:],self.dataOut.heightList) | |
191 | aux = self.dataOut.data_acf[0,0,:] |
|
196 | aux = self.dataOut.data_acf[0,0,:] | |
192 | power = aux*numpy.conjugate(aux) |
|
197 | power = aux*numpy.conjugate(aux) | |
193 | print(power) |
|
198 | print(power) | |
194 | powerdb = numpy.log10(power) |
|
199 | powerdb = numpy.log10(power) | |
195 | plt.plot(powerdb,self.dataOut.heightList) |
|
200 | plt.plot(powerdb,self.dataOut.heightList) | |
196 | #plt.plot(self.dataOut.data_acf[0,:,1]) |
|
201 | #plt.plot(self.dataOut.data_acf[0,:,1]) | |
197 | plt.ylim(0,1000) |
|
202 | plt.ylim(0,1000) | |
198 | plt.show() |
|
203 | plt.show() | |
199 | exit(1) |
|
204 | exit(1) | |
|
205 | ''' | |||
|
206 | return True | |||
|
207 | ||||
|
208 | if code is not None: | |||
|
209 | self.code = numpy.array(code).reshape(nCode,nBaud) | |||
|
210 | else: | |||
|
211 | self.code = None | |||
|
212 | ||||
|
213 | if self.dataIn.type == "Voltage": | |||
|
214 | ||||
|
215 | if nFFTPoints == None: | |||
|
216 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") | |||
|
217 | ||||
|
218 | if nProfiles == None: | |||
|
219 | nProfiles = nFFTPoints | |||
|
220 | ||||
|
221 | self.dataOut.ippFactor = 1 | |||
|
222 | ||||
|
223 | self.dataOut.nFFTPoints = nFFTPoints | |||
|
224 | self.dataOut.nProfiles = nProfiles | |||
|
225 | self.dataOut.pairsList = pairsList | |||
|
226 | ||||
|
227 | # if self.buffer is None: | |||
|
228 | # self.buffer = numpy.zeros( (self.dataIn.nChannels, nProfiles, self.dataIn.nHeights), | |||
|
229 | # dtype='complex') | |||
|
230 | ||||
|
231 | if not self.dataIn.flagDataAsBlock: | |||
|
232 | self.buffer = self.dataIn.data.copy() | |||
|
233 | ||||
|
234 | # for i in range(self.dataIn.nHeights): | |||
|
235 | # self.buffer[:, self.profIndex, self.profIndex:] = voltage_data[:,:self.dataIn.nHeights - self.profIndex] | |||
|
236 | # | |||
|
237 | # self.profIndex += 1 | |||
|
238 | ||||
|
239 | else: | |||
|
240 | raise ValueError("") | |||
|
241 | ||||
|
242 | self.firstdatatime = self.dataIn.utctime | |||
|
243 | ||||
|
244 | self.profIndex == nProfiles | |||
|
245 | ||||
|
246 | self.__updateSpecFromVoltage() | |||
|
247 | ||||
|
248 | self.__getFft() | |||
|
249 | ||||
|
250 | self.dataOut.flagNoData = False | |||
|
251 | ||||
|
252 | return True | |||
|
253 | ||||
|
254 | raise ValueError("The type of input object '%s' is not valid"%(self.dataIn.type)) | |||
|
255 | ||||
|
256 | def __selectPairs(self, pairsList): | |||
|
257 | ||||
|
258 | if channelList == None: | |||
|
259 | return | |||
|
260 | ||||
|
261 | pairsIndexListSelected = [] | |||
|
262 | ||||
|
263 | for thisPair in pairsList: | |||
|
264 | ||||
|
265 | if thisPair not in self.dataOut.pairsList: | |||
|
266 | continue | |||
|
267 | ||||
|
268 | pairIndex = self.dataOut.pairsList.index(thisPair) | |||
|
269 | ||||
|
270 | pairsIndexListSelected.append(pairIndex) | |||
|
271 | ||||
|
272 | if not pairsIndexListSelected: | |||
|
273 | self.dataOut.data_cspc = None | |||
|
274 | self.dataOut.pairsList = [] | |||
|
275 | return | |||
|
276 | ||||
|
277 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |||
|
278 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] | |||
|
279 | ||||
|
280 | return | |||
|
281 | ||||
|
282 | def __selectPairsByChannel(self, channelList=None): | |||
|
283 | ||||
|
284 | if channelList == None: | |||
|
285 | return | |||
|
286 | ||||
|
287 | pairsIndexListSelected = [] | |||
|
288 | for pairIndex in self.dataOut.pairsIndexList: | |||
|
289 | #First pair | |||
|
290 | if self.dataOut.pairsList[pairIndex][0] not in channelList: | |||
|
291 | continue | |||
|
292 | #Second pair | |||
|
293 | if self.dataOut.pairsList[pairIndex][1] not in channelList: | |||
|
294 | continue | |||
|
295 | ||||
|
296 | pairsIndexListSelected.append(pairIndex) | |||
|
297 | ||||
|
298 | if not pairsIndexListSelected: | |||
|
299 | self.dataOut.data_cspc = None | |||
|
300 | self.dataOut.pairsList = [] | |||
|
301 | return | |||
|
302 | ||||
|
303 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |||
|
304 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] | |||
|
305 | ||||
|
306 | return | |||
|
307 | ||||
|
308 | def selectChannels(self, channelList): | |||
|
309 | ||||
|
310 | channelIndexList = [] | |||
|
311 | ||||
|
312 | for channel in channelList: | |||
|
313 | if channel not in self.dataOut.channelList: | |||
|
314 | raise ValueError("Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" %(channel, str(self.dataOut.channelList))) | |||
|
315 | ||||
|
316 | index = self.dataOut.channelList.index(channel) | |||
|
317 | channelIndexList.append(index) | |||
|
318 | ||||
|
319 | self.selectChannelsByIndex(channelIndexList) | |||
|
320 | ||||
|
321 | def selectChannelsByIndex(self, channelIndexList): | |||
|
322 | """ | |||
|
323 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |||
|
324 | ||||
|
325 | Input: | |||
|
326 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |||
|
327 | ||||
|
328 | Affected: | |||
|
329 | self.dataOut.data_spc | |||
|
330 | self.dataOut.channelIndexList | |||
|
331 | self.dataOut.nChannels | |||
|
332 | ||||
|
333 | Return: | |||
|
334 | None | |||
|
335 | """ | |||
|
336 | ||||
|
337 | for channelIndex in channelIndexList: | |||
|
338 | if channelIndex not in self.dataOut.channelIndexList: | |||
|
339 | raise ValueError("Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " %(channelIndex, self.dataOut.channelIndexList)) | |||
|
340 | ||||
|
341 | # nChannels = len(channelIndexList) | |||
|
342 | ||||
|
343 | data_spc = self.dataOut.data_spc[channelIndexList,:] | |||
|
344 | data_dc = self.dataOut.data_dc[channelIndexList,:] | |||
|
345 | ||||
|
346 | self.dataOut.data_spc = data_spc | |||
|
347 | self.dataOut.data_dc = data_dc | |||
|
348 | ||||
|
349 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |||
|
350 | # self.dataOut.nChannels = nChannels | |||
|
351 | ||||
|
352 | self.__selectPairsByChannel(self.dataOut.channelList) | |||
|
353 | ||||
|
354 | return 1 | |||
|
355 | ||||
|
356 | def selectHeights(self, minHei, maxHei): | |||
|
357 | """ | |||
|
358 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |||
|
359 | minHei <= height <= maxHei | |||
|
360 | ||||
|
361 | Input: | |||
|
362 | minHei : valor minimo de altura a considerar | |||
|
363 | maxHei : valor maximo de altura a considerar | |||
|
364 | ||||
|
365 | Affected: | |||
|
366 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |||
|
367 | ||||
|
368 | Return: | |||
|
369 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |||
|
370 | """ | |||
|
371 | ||||
|
372 | if (minHei > maxHei): | |||
|
373 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei)) | |||
|
374 | ||||
|
375 | if (minHei < self.dataOut.heightList[0]): | |||
|
376 | minHei = self.dataOut.heightList[0] | |||
|
377 | ||||
|
378 | if (maxHei > self.dataOut.heightList[-1]): | |||
|
379 | maxHei = self.dataOut.heightList[-1] | |||
|
380 | ||||
|
381 | minIndex = 0 | |||
|
382 | maxIndex = 0 | |||
|
383 | heights = self.dataOut.heightList | |||
|
384 | ||||
|
385 | inda = numpy.where(heights >= minHei) | |||
|
386 | indb = numpy.where(heights <= maxHei) | |||
|
387 | ||||
|
388 | try: | |||
|
389 | minIndex = inda[0][0] | |||
|
390 | except: | |||
|
391 | minIndex = 0 | |||
|
392 | ||||
|
393 | try: | |||
|
394 | maxIndex = indb[0][-1] | |||
|
395 | except: | |||
|
396 | maxIndex = len(heights) | |||
|
397 | ||||
|
398 | self.selectHeightsByIndex(minIndex, maxIndex) | |||
|
399 | ||||
|
400 | return 1 | |||
|
401 | ||||
|
402 | def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None): | |||
|
403 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |||
|
404 | ||||
|
405 | if hei_ref != None: | |||
|
406 | newheis = numpy.where(self.dataOut.heightList>hei_ref) | |||
|
407 | ||||
|
408 | minIndex = min(newheis[0]) | |||
|
409 | maxIndex = max(newheis[0]) | |||
|
410 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] | |||
|
411 | heightList = self.dataOut.heightList[minIndex:maxIndex+1] | |||
|
412 | ||||
|
413 | # determina indices | |||
|
414 | nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0])) | |||
|
415 | avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0)) | |||
|
416 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |||
|
417 | beacon_heiIndexList = [] | |||
|
418 | for val in avg_dB.tolist(): | |||
|
419 | if val >= beacon_dB[0]: | |||
|
420 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |||
|
421 | ||||
|
422 | #data_spc = data_spc[:,:,beacon_heiIndexList] | |||
|
423 | data_cspc = None | |||
|
424 | if self.dataOut.data_cspc is not None: | |||
|
425 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] | |||
|
426 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] | |||
|
427 | ||||
|
428 | data_dc = None | |||
|
429 | if self.dataOut.data_dc is not None: | |||
|
430 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] | |||
|
431 | #data_dc = data_dc[:,beacon_heiIndexList] | |||
|
432 | ||||
|
433 | self.dataOut.data_spc = data_spc | |||
|
434 | self.dataOut.data_cspc = data_cspc | |||
|
435 | self.dataOut.data_dc = data_dc | |||
|
436 | self.dataOut.heightList = heightList | |||
|
437 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |||
|
438 | ||||
|
439 | return 1 | |||
|
440 | ||||
|
441 | ||||
|
442 | def selectHeightsByIndex(self, minIndex, maxIndex): | |||
|
443 | """ | |||
|
444 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |||
|
445 | minIndex <= index <= maxIndex | |||
|
446 | ||||
|
447 | Input: | |||
|
448 | minIndex : valor de indice minimo de altura a considerar | |||
|
449 | maxIndex : valor de indice maximo de altura a considerar | |||
|
450 | ||||
|
451 | Affected: | |||
|
452 | self.dataOut.data_spc | |||
|
453 | self.dataOut.data_cspc | |||
|
454 | self.dataOut.data_dc | |||
|
455 | self.dataOut.heightList | |||
200 |
|
|
456 | ||
|
457 | Return: | |||
|
458 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |||
|
459 | """ | |||
|
460 | ||||
|
461 | if (minIndex < 0) or (minIndex > maxIndex): | |||
|
462 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |||
|
463 | ||||
|
464 | if (maxIndex >= self.dataOut.nHeights): | |||
|
465 | maxIndex = self.dataOut.nHeights-1 | |||
|
466 | ||||
|
467 | #Spectra | |||
|
468 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] | |||
|
469 | ||||
|
470 | data_cspc = None | |||
|
471 | if self.dataOut.data_cspc is not None: | |||
|
472 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] | |||
|
473 | ||||
|
474 | data_dc = None | |||
|
475 | if self.dataOut.data_dc is not None: | |||
|
476 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] | |||
|
477 | ||||
|
478 | self.dataOut.data_spc = data_spc | |||
|
479 | self.dataOut.data_cspc = data_cspc | |||
|
480 | self.dataOut.data_dc = data_dc | |||
|
481 | ||||
|
482 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] | |||
|
483 | ||||
|
484 | return 1 | |||
|
485 | ||||
|
486 | def removeDC(self, mode = 2): | |||
|
487 | jspectra = self.dataOut.data_spc | |||
|
488 | jcspectra = self.dataOut.data_cspc | |||
|
489 | ||||
|
490 | ||||
|
491 | num_chan = jspectra.shape[0] | |||
|
492 | num_hei = jspectra.shape[2] | |||
|
493 | ||||
|
494 | if jcspectra is not None: | |||
|
495 | jcspectraExist = True | |||
|
496 | num_pairs = jcspectra.shape[0] | |||
|
497 | else: jcspectraExist = False | |||
|
498 | ||||
|
499 | freq_dc = jspectra.shape[1]/2 | |||
|
500 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc | |||
|
501 | ||||
|
502 | if ind_vel[0]<0: | |||
|
503 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof | |||
|
504 | ||||
|
505 | if mode == 1: | |||
|
506 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION | |||
|
507 | ||||
|
508 | if jcspectraExist: | |||
|
509 | jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2 | |||
|
510 | ||||
|
511 | if mode == 2: | |||
|
512 | ||||
|
513 | vel = numpy.array([-2,-1,1,2]) | |||
|
514 | xx = numpy.zeros([4,4]) | |||
|
515 | ||||
|
516 | for fil in range(4): | |||
|
517 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) | |||
|
518 | ||||
|
519 | xx_inv = numpy.linalg.inv(xx) | |||
|
520 | xx_aux = xx_inv[0,:] | |||
|
521 | ||||
|
522 | for ich in range(num_chan): | |||
|
523 | yy = jspectra[ich,ind_vel,:] | |||
|
524 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) | |||
|
525 | ||||
|
526 | junkid = jspectra[ich,freq_dc,:]<=0 | |||
|
527 | cjunkid = sum(junkid) | |||
|
528 | ||||
|
529 | if cjunkid.any(): | |||
|
530 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 | |||
|
531 | ||||
|
532 | if jcspectraExist: | |||
|
533 | for ip in range(num_pairs): | |||
|
534 | yy = jcspectra[ip,ind_vel,:] | |||
|
535 | jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy) | |||
|
536 | ||||
|
537 | ||||
|
538 | self.dataOut.data_spc = jspectra | |||
|
539 | self.dataOut.data_cspc = jcspectra | |||
|
540 | ||||
|
541 | return 1 | |||
|
542 | ||||
|
543 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): | |||
|
544 | ||||
|
545 | jspectra = self.dataOut.data_spc | |||
|
546 | jcspectra = self.dataOut.data_cspc | |||
|
547 | jnoise = self.dataOut.getNoise() | |||
|
548 | num_incoh = self.dataOut.nIncohInt | |||
|
549 | ||||
|
550 | num_channel = jspectra.shape[0] | |||
|
551 | num_prof = jspectra.shape[1] | |||
|
552 | num_hei = jspectra.shape[2] | |||
|
553 | ||||
|
554 | #hei_interf | |||
|
555 | if hei_interf is None: | |||
|
556 | count_hei = num_hei/2 #Como es entero no importa | |||
|
557 | hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei | |||
|
558 | hei_interf = numpy.asarray(hei_interf)[0] | |||
|
559 | #nhei_interf | |||
|
560 | if (nhei_interf == None): | |||
|
561 | nhei_interf = 5 | |||
|
562 | if (nhei_interf < 1): | |||
|
563 | nhei_interf = 1 | |||
|
564 | if (nhei_interf > count_hei): | |||
|
565 | nhei_interf = count_hei | |||
|
566 | if (offhei_interf == None): | |||
|
567 | offhei_interf = 0 | |||
|
568 | ||||
|
569 | ind_hei = range(num_hei) | |||
|
570 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |||
|
571 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |||
|
572 | mask_prof = numpy.asarray(range(num_prof)) | |||
|
573 | num_mask_prof = mask_prof.size | |||
|
574 | comp_mask_prof = [0, num_prof/2] | |||
|
575 | ||||
|
576 | ||||
|
577 | #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |||
|
578 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |||
|
579 | jnoise = numpy.nan | |||
|
580 | noise_exist = jnoise[0] < numpy.Inf | |||
|
581 | ||||
|
582 | #Subrutina de Remocion de la Interferencia | |||
|
583 | for ich in range(num_channel): | |||
|
584 | #Se ordena los espectros segun su potencia (menor a mayor) | |||
|
585 | power = jspectra[ich,mask_prof,:] | |||
|
586 | power = power[:,hei_interf] | |||
|
587 | power = power.sum(axis = 0) | |||
|
588 | psort = power.ravel().argsort() | |||
|
589 | ||||
|
590 | #Se estima la interferencia promedio en los Espectros de Potencia empleando | |||
|
591 | junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]] | |||
|
592 | ||||
|
593 | if noise_exist: | |||
|
594 | # tmp_noise = jnoise[ich] / num_prof | |||
|
595 | tmp_noise = jnoise[ich] | |||
|
596 | junkspc_interf = junkspc_interf - tmp_noise | |||
|
597 | #junkspc_interf[:,comp_mask_prof] = 0 | |||
|
598 | ||||
|
599 | jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf | |||
|
600 | jspc_interf = jspc_interf.transpose() | |||
|
601 | #Calculando el espectro de interferencia promedio | |||
|
602 | noiseid = numpy.where(jspc_interf <= tmp_noise/ numpy.sqrt(num_incoh)) | |||
|
603 | noiseid = noiseid[0] | |||
|
604 | cnoiseid = noiseid.size | |||
|
605 | interfid = numpy.where(jspc_interf > tmp_noise/ numpy.sqrt(num_incoh)) | |||
|
606 | interfid = interfid[0] | |||
|
607 | cinterfid = interfid.size | |||
|
608 | ||||
|
609 | if (cnoiseid > 0): jspc_interf[noiseid] = 0 | |||
|
610 | ||||
|
611 | #Expandiendo los perfiles a limpiar | |||
|
612 | if (cinterfid > 0): | |||
|
613 | new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof | |||
|
614 | new_interfid = numpy.asarray(new_interfid) | |||
|
615 | new_interfid = {x for x in new_interfid} | |||
|
616 | new_interfid = numpy.array(list(new_interfid)) | |||
|
617 | new_cinterfid = new_interfid.size | |||
|
618 | else: new_cinterfid = 0 | |||
|
619 | ||||
|
620 | for ip in range(new_cinterfid): | |||
|
621 | ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort() | |||
|
622 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]] | |||
|
623 | ||||
|
624 | ||||
|
625 | jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices | |||
|
626 | ||||
|
627 | #Removiendo la interferencia del punto de mayor interferencia | |||
|
628 | ListAux = jspc_interf[mask_prof].tolist() | |||
|
629 | maxid = ListAux.index(max(ListAux)) | |||
|
630 | ||||
|
631 | ||||
|
632 | if cinterfid > 0: | |||
|
633 | for ip in range(cinterfid*(interf == 2) - 1): | |||
|
634 | ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/numpy.sqrt(num_incoh))).nonzero() | |||
|
635 | cind = len(ind) | |||
|
636 | ||||
|
637 | if (cind > 0): | |||
|
638 | jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/numpy.sqrt(num_incoh)) | |||
|
639 | ||||
|
640 | ind = numpy.array([-2,-1,1,2]) | |||
|
641 | xx = numpy.zeros([4,4]) | |||
|
642 | ||||
|
643 | for id1 in range(4): | |||
|
644 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) | |||
|
645 | ||||
|
646 | xx_inv = numpy.linalg.inv(xx) | |||
|
647 | xx = xx_inv[:,0] | |||
|
648 | ind = (ind + maxid + num_mask_prof)%num_mask_prof | |||
|
649 | yy = jspectra[ich,mask_prof[ind],:] | |||
|
650 | jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) | |||
|
651 | ||||
|
652 | ||||
|
653 | indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/numpy.sqrt(num_incoh))).nonzero() | |||
|
654 | jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/numpy.sqrt(num_incoh)) | |||
|
655 | ||||
|
656 | #Remocion de Interferencia en el Cross Spectra | |||
|
657 | if jcspectra is None: return jspectra, jcspectra | |||
|
658 | num_pairs = jcspectra.size/(num_prof*num_hei) | |||
|
659 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |||
|
660 | ||||
|
661 | for ip in range(num_pairs): | |||
|
662 | ||||
|
663 | #------------------------------------------- | |||
|
664 | ||||
|
665 | cspower = numpy.abs(jcspectra[ip,mask_prof,:]) | |||
|
666 | cspower = cspower[:,hei_interf] | |||
|
667 | cspower = cspower.sum(axis = 0) | |||
|
668 | ||||
|
669 | cspsort = cspower.ravel().argsort() | |||
|
670 | junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]] | |||
|
671 | junkcspc_interf = junkcspc_interf.transpose() | |||
|
672 | jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf | |||
|
673 | ||||
|
674 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |||
|
675 | ||||
|
676 | median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) | |||
|
677 | median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) | |||
|
678 | junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag) | |||
|
679 | ||||
|
680 | for iprof in range(num_prof): | |||
|
681 | ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort() | |||
|
682 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]] | |||
|
683 | ||||
|
684 | #Removiendo la Interferencia | |||
|
685 | jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf | |||
|
686 | ||||
|
687 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |||
|
688 | maxid = ListAux.index(max(ListAux)) | |||
|
689 | ||||
|
690 | ind = numpy.array([-2,-1,1,2]) | |||
|
691 | xx = numpy.zeros([4,4]) | |||
|
692 | ||||
|
693 | for id1 in range(4): | |||
|
694 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) | |||
|
695 | ||||
|
696 | xx_inv = numpy.linalg.inv(xx) | |||
|
697 | xx = xx_inv[:,0] | |||
|
698 | ||||
|
699 | ind = (ind + maxid + num_mask_prof)%num_mask_prof | |||
|
700 | yy = jcspectra[ip,mask_prof[ind],:] | |||
|
701 | jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) | |||
|
702 | ||||
|
703 | #Guardar Resultados | |||
|
704 | self.dataOut.data_spc = jspectra | |||
|
705 | self.dataOut.data_cspc = jcspectra | |||
|
706 | ||||
|
707 | return 1 | |||
|
708 | ||||
|
709 | def setRadarFrequency(self, frequency=None): | |||
|
710 | ||||
|
711 | if frequency != None: | |||
|
712 | self.dataOut.frequency = frequency | |||
|
713 | ||||
|
714 | return 1 | |||
|
715 | ||||
|
716 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |||
|
717 | #validacion de rango | |||
|
718 | if minHei == None: | |||
|
719 | minHei = self.dataOut.heightList[0] | |||
|
720 | ||||
|
721 | if maxHei == None: | |||
|
722 | maxHei = self.dataOut.heightList[-1] | |||
|
723 | ||||
|
724 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |||
|
725 | print('minHei: %.2f is out of the heights range'%(minHei)) | |||
|
726 | print('minHei is setting to %.2f'%(self.dataOut.heightList[0])) | |||
|
727 | minHei = self.dataOut.heightList[0] | |||
|
728 | ||||
|
729 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |||
|
730 | print('maxHei: %.2f is out of the heights range'%(maxHei)) | |||
|
731 | print('maxHei is setting to %.2f'%(self.dataOut.heightList[-1])) | |||
|
732 | maxHei = self.dataOut.heightList[-1] | |||
|
733 | ||||
|
734 | # validacion de velocidades | |||
|
735 | velrange = self.dataOut.getVelRange(1) | |||
|
736 | ||||
|
737 | if minVel == None: | |||
|
738 | minVel = velrange[0] | |||
|
739 | ||||
|
740 | if maxVel == None: | |||
|
741 | maxVel = velrange[-1] | |||
|
742 | ||||
|
743 | if (minVel < velrange[0]) or (minVel > maxVel): | |||
|
744 | print('minVel: %.2f is out of the velocity range'%(minVel)) | |||
|
745 | print('minVel is setting to %.2f'%(velrange[0])) | |||
|
746 | minVel = velrange[0] | |||
|
747 | ||||
|
748 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |||
|
749 | print('maxVel: %.2f is out of the velocity range'%(maxVel)) | |||
|
750 | print('maxVel is setting to %.2f'%(velrange[-1])) | |||
|
751 | maxVel = velrange[-1] | |||
|
752 | ||||
|
753 | # seleccion de indices para rango | |||
|
754 | minIndex = 0 | |||
|
755 | maxIndex = 0 | |||
|
756 | heights = self.dataOut.heightList | |||
|
757 | ||||
|
758 | inda = numpy.where(heights >= minHei) | |||
|
759 | indb = numpy.where(heights <= maxHei) | |||
|
760 | ||||
|
761 | try: | |||
|
762 | minIndex = inda[0][0] | |||
|
763 | except: | |||
|
764 | minIndex = 0 | |||
|
765 | ||||
|
766 | try: | |||
|
767 | maxIndex = indb[0][-1] | |||
|
768 | except: | |||
|
769 | maxIndex = len(heights) | |||
|
770 | ||||
|
771 | if (minIndex < 0) or (minIndex > maxIndex): | |||
|
772 | raise ValueError("some value in (%d,%d) is not valid" % (minIndex, maxIndex)) | |||
|
773 | ||||
|
774 | if (maxIndex >= self.dataOut.nHeights): | |||
|
775 | maxIndex = self.dataOut.nHeights-1 | |||
|
776 | ||||
|
777 | # seleccion de indices para velocidades | |||
|
778 | indminvel = numpy.where(velrange >= minVel) | |||
|
779 | indmaxvel = numpy.where(velrange <= maxVel) | |||
|
780 | try: | |||
|
781 | minIndexVel = indminvel[0][0] | |||
|
782 | except: | |||
|
783 | minIndexVel = 0 | |||
|
784 | ||||
|
785 | try: | |||
|
786 | maxIndexVel = indmaxvel[0][-1] | |||
|
787 | except: | |||
|
788 | maxIndexVel = len(velrange) | |||
|
789 | ||||
|
790 | #seleccion del espectro | |||
|
791 | data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1] | |||
|
792 | #estimacion de ruido | |||
|
793 | noise = numpy.zeros(self.dataOut.nChannels) | |||
|
794 | ||||
|
795 | for channel in range(self.dataOut.nChannels): | |||
|
796 | daux = data_spc[channel,:,:] | |||
|
797 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) | |||
|
798 | ||||
|
799 | self.dataOut.noise_estimation = noise.copy() | |||
|
800 | ||||
|
801 | return 1 | |||
|
802 | ||||
|
803 | class SpectraAFCProc(ProcessingUnit): | |||
|
804 | ||||
|
805 | def __init__(self, **kwargs): | |||
|
806 | ||||
|
807 | ProcessingUnit.__init__(self, **kwargs) | |||
|
808 | ||||
|
809 | self.buffer = None | |||
|
810 | self.firstdatatime = None | |||
|
811 | self.profIndex = 0 | |||
|
812 | self.dataOut = Spectra() | |||
|
813 | self.id_min = None | |||
|
814 | self.id_max = None | |||
|
815 | ||||
|
816 | def __updateSpecFromVoltage(self): | |||
|
817 | ||||
|
818 | self.dataOut.plotting = "spectra_acf" | |||
|
819 | ||||
|
820 | self.dataOut.timeZone = self.dataIn.timeZone | |||
|
821 | self.dataOut.dstFlag = self.dataIn.dstFlag | |||
|
822 | self.dataOut.errorCount = self.dataIn.errorCount | |||
|
823 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |||
|
824 | ||||
|
825 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |||
|
826 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |||
|
827 | self.dataOut.ippSeconds = self.dataIn.getDeltaH()*(10**-6)/0.15 | |||
|
828 | ||||
|
829 | self.dataOut.channelList = self.dataIn.channelList | |||
|
830 | self.dataOut.heightList = self.dataIn.heightList | |||
|
831 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |||
|
832 | ||||
|
833 | self.dataOut.nBaud = self.dataIn.nBaud | |||
|
834 | self.dataOut.nCode = self.dataIn.nCode | |||
|
835 | self.dataOut.code = self.dataIn.code | |||
|
836 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |||
|
837 | ||||
|
838 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |||
|
839 | self.dataOut.utctime = self.firstdatatime | |||
|
840 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |||
|
841 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |||
|
842 | self.dataOut.flagShiftFFT = False | |||
|
843 | ||||
|
844 | self.dataOut.nCohInt = self.dataIn.nCohInt | |||
|
845 | self.dataOut.nIncohInt = 1 | |||
|
846 | ||||
|
847 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |||
|
848 | ||||
|
849 | self.dataOut.frequency = self.dataIn.frequency | |||
|
850 | self.dataOut.realtime = self.dataIn.realtime | |||
|
851 | ||||
|
852 | self.dataOut.azimuth = self.dataIn.azimuth | |||
|
853 | self.dataOut.zenith = self.dataIn.zenith | |||
|
854 | ||||
|
855 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |||
|
856 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |||
|
857 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |||
|
858 | ||||
|
859 | def __decodeData(self, nProfiles, code): | |||
|
860 | ||||
|
861 | if code is None: | |||
|
862 | return | |||
|
863 | ||||
|
864 | for i in range(nProfiles): | |||
|
865 | self.buffer[:,i,:] = self.buffer[:,i,:]*code[0][i] | |||
|
866 | ||||
|
867 | def __getFft(self): | |||
|
868 | """ | |||
|
869 | Convierte valores de Voltaje a Spectra | |||
|
870 | ||||
|
871 | Affected: | |||
|
872 | self.dataOut.data_spc | |||
|
873 | self.dataOut.data_cspc | |||
|
874 | self.dataOut.data_dc | |||
|
875 | self.dataOut.heightList | |||
|
876 | self.profIndex | |||
|
877 | self.buffer | |||
|
878 | self.dataOut.flagNoData | |||
|
879 | """ | |||
|
880 | nsegments = self.dataOut.nHeights | |||
|
881 | ||||
|
882 | _fft_buffer = numpy.zeros((self.dataOut.nChannels, self.dataOut.nProfiles, nsegments), dtype='complex') | |||
|
883 | ||||
|
884 | for i in range(nsegments): | |||
|
885 | try: | |||
|
886 | _fft_buffer[:,:,i] = self.buffer[:,i:i+self.dataOut.nProfiles] | |||
|
887 | ||||
|
888 | if self.code is not None: | |||
|
889 | _fft_buffer[:,:,i] = _fft_buffer[:,:,i]*self.code[0] | |||
|
890 | except: | |||
|
891 | pass | |||
|
892 | ||||
|
893 | fft_volt = numpy.fft.fft(_fft_buffer, n=self.dataOut.nFFTPoints, axis=1) | |||
|
894 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |||
|
895 | dc = fft_volt[:,0,:] | |||
|
896 | ||||
|
897 | #calculo de self-spectra | |||
|
898 | spc = fft_volt * numpy.conjugate(fft_volt) | |||
|
899 | data = numpy.fft.ifft(spc, axis=1) | |||
|
900 | data = numpy.fft.fftshift(data, axes=(1,)) | |||
|
901 | ||||
|
902 | spc = data | |||
|
903 | ||||
|
904 | blocksize = 0 | |||
|
905 | blocksize += dc.size | |||
|
906 | blocksize += spc.size | |||
|
907 | ||||
|
908 | cspc = None | |||
|
909 | pairIndex = 0 | |||
|
910 | ||||
|
911 | if self.dataOut.pairsList != None: | |||
|
912 | #calculo de cross-spectra | |||
|
913 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |||
|
914 | for pair in self.dataOut.pairsList: | |||
|
915 | if pair[0] not in self.dataOut.channelList: | |||
|
916 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList))) | |||
|
917 | if pair[1] not in self.dataOut.channelList: | |||
|
918 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList))) | |||
|
919 | ||||
|
920 | chan_index0 = self.dataOut.channelList.index(pair[0]) | |||
|
921 | chan_index1 = self.dataOut.channelList.index(pair[1]) | |||
|
922 | ||||
|
923 | cspc[pairIndex,:,:] = fft_volt[chan_index0,:,:] * numpy.conjugate(fft_volt[chan_index1,:,:]) | |||
|
924 | pairIndex += 1 | |||
|
925 | blocksize += cspc.size | |||
|
926 | ||||
|
927 | self.dataOut.data_spc = spc | |||
|
928 | self.dataOut.data_cspc = cspc | |||
|
929 | self.dataOut.data_dc = dc | |||
|
930 | self.dataOut.blockSize = blocksize | |||
|
931 | self.dataOut.flagShiftFFT = True | |||
|
932 | ||||
|
933 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], code=None, nCode=1, nBaud=1): | |||
|
934 | ||||
|
935 | #self.dataOut.flagNoData = True | |||
|
936 | ||||
|
937 | #self.dataIn.runNextUnit = runNextUnit | |||
|
938 | #print("here") | |||
|
939 | if self.dataIn.type == "Spectra": | |||
|
940 | self.dataOut.copy(self.dataIn) | |||
|
941 | ||||
|
942 | spc = self.dataOut.data_spc | |||
|
943 | data = numpy.fft.fftshift( spc, axes=(1,)) | |||
|
944 | data = numpy.fft.ifft(data, axis=1) | |||
|
945 | #data = numpy.fft.ifft(data, axis=1, n = 32) | |||
|
946 | #data = numpy.fft.fftshift( data, axes=(1,)) | |||
|
947 | #acf = numpy.abs(data) | |||
|
948 | acf = data[:,:16,:] | |||
|
949 | #acf = data[:,16:,:] | |||
|
950 | #print("SUM: ",numpy.sum(acf)) | |||
|
951 | #print(acf.shape) | |||
|
952 | ''' | |||
|
953 | hei_id = 35 | |||
|
954 | ||||
|
955 | aux2 = numpy.fft.fft(self.dataOut.data[0,:,hei_id],n = 16) | |||
|
956 | aux2 = numpy.fft.fftshift(aux2) | |||
|
957 | aux2 = aux2*numpy.conjugate(aux2) | |||
|
958 | aux2 = aux2.real #Este valor es el que da SCh | |||
|
959 | print("spc 2: ",numpy.sum(aux2)) | |||
|
960 | aux2 = numpy.fft.fftshift(aux2) | |||
|
961 | aux2 = numpy.fft.ifft(aux2) | |||
|
962 | print("Rate_Right?: ",aux2[0]/corr[0,0,hei_id]) | |||
|
963 | ||||
|
964 | print("AFC sum: ",numpy.sum(acf[0,:,hei_id])) | |||
|
965 | print("aux2 sum: ",numpy.sum(aux2)) | |||
|
966 | print("Rate: ",acf[0,0,hei_id]/corr[0,0,hei_id]) | |||
|
967 | print("Rate aux: ",acf[0,0,hei_id]/corr_aux[0,-1,hei_id]) | |||
|
968 | ''' | |||
|
969 | #print(acf[0,:,150]) | |||
|
970 | #exit(1) | |||
|
971 | ''' | |||
|
972 | if real: | |||
|
973 | acf = data.real | |||
|
974 | if imag: | |||
|
975 | acf = data.imag | |||
|
976 | ''' | |||
|
977 | #shape = acf.shape # nchannels, nprofiles, nsamples //nchannles, lags , alturas | |||
|
978 | ''' | |||
|
979 | for j in range(shape[0]): | |||
|
980 | for i in range(shape[2]): | |||
|
981 | tmp = int(shape[1]/2) | |||
|
982 | #print(i,j,tmp) | |||
|
983 | value = (acf[j,:,i][tmp-1]+acf[j,:,i][tmp+1])/2.0 | |||
|
984 | acf[j,:,i][tmp] = value | |||
|
985 | ''' | |||
|
986 | #acf = numpy.fft.fftshift( acf, axes=(1,)) | |||
|
987 | ''' | |||
|
988 | # Normalizando | |||
|
989 | for i in range(shape[0]): | |||
|
990 | for j in range(shape[2]): | |||
|
991 | acf[i,:,j]= acf[i,:,j] / numpy.max(numpy.abs(acf[i,:,j])) | |||
|
992 | ''' | |||
|
993 | ||||
|
994 | #self.dataOut.data_acf = acf[:,:16,:]#*2 | |||
|
995 | #self.dataOut.data_spc = acf[:,:16,:].real#*2 | |||
|
996 | ||||
|
997 | self.dataOut.data_acf = acf | |||
|
998 | ''' | |||
|
999 | self.dataOut.data_spc = data.imag | |||
|
1000 | ||||
|
1001 | print("Real: ",data[0,:,26].real) | |||
|
1002 | print("Real dB:",10*numpy.log10(data[0,:,26].real)) | |||
|
1003 | print("Imag: ",data[0,:,26].imag) | |||
|
1004 | print("Imag dB:",10*numpy.log10(data[0,:,26].imag)) | |||
|
1005 | exit(1) | |||
|
1006 | ''' | |||
|
1007 | #print("AFC",self.dataOut.flagNoData) | |||
|
1008 | #''' | |||
|
1009 | #print("acf 0: ", self.dataOut.data_acf[0,0,100]) | |||
|
1010 | #print("spc: ",numpy.mean(self.dataOut.data_spc[0,:,100])) | |||
|
1011 | #print("spc 0: ",numpy.fft.fftshift(self.dataOut.data_spc[0,:,100])[0]) | |||
|
1012 | #exit(1) | |||
|
1013 | #self.dataOut.data_spc = acf.real | |||
|
1014 | #print(self.dataOut.data_acf[0,:,0]) | |||
|
1015 | #exit(1) | |||
|
1016 | #''' | |||
|
1017 | ''' | |||
|
1018 | shape = self.dataOut.data_acf.shape | |||
|
1019 | resFactor = 5 | |||
|
1020 | z = self.dataOut.data_acf.copy() | |||
|
1021 | min = numpy.min(z[0,:,0]) | |||
|
1022 | max =numpy.max(z[0,:,0]) | |||
|
1023 | deltaHeight = self.dataOut.heightList[1]-self.dataOut.heightList[0] | |||
|
1024 | for i in range(shape[0]): | |||
|
1025 | for j in range(shape[2]): | |||
|
1026 | z[i,:,j]= (((z[i,:,j]-min)/(max-min))*deltaHeight*resFactor + j*deltaHeight) | |||
|
1027 | #print(self.dataOut.data_spc.shape) | |||
|
1028 | #print(self.dataOut.data_acf.shape) | |||
|
1029 | ''' | |||
|
1030 | ''' | |||
|
1031 | import matplotlib.pyplot as plt | |||
|
1032 | #hei = 10 | |||
|
1033 | #print(self.dataOut.heightList) | |||
|
1034 | #print(self.dataOut.heightList[hei]) | |||
|
1035 | #plt.plot(z[0,0,:],self.dataOut.heightList) | |||
|
1036 | aux = self.dataOut.data_acf[0,:,100] | |||
|
1037 | power = aux*numpy.conjugate(aux) | |||
|
1038 | #print(power) | |||
|
1039 | powerdb = numpy.log10(power) | |||
|
1040 | #plt.plot(powerdb,self.dataOut.heightList) | |||
|
1041 | #plt.plot(self.dataOut.data_acf[0,:,33]) | |||
|
1042 | #plt.plot(corr) | |||
|
1043 | #plt.imshow(corr.real[0]) | |||
|
1044 | plt.imshow(self.dataOut.data_acf.real[0]) | |||
|
1045 | #plt.ylim(0,1000) | |||
|
1046 | plt.grid() | |||
|
1047 | plt.show() | |||
|
1048 | exit(1) | |||
|
1049 | ''' | |||
201 | return True |
|
1050 | return True | |
202 |
|
1051 | |||
203 | if code is not None: |
|
1052 | if code is not None: | |
204 | self.code = numpy.array(code).reshape(nCode,nBaud) |
|
1053 | self.code = numpy.array(code).reshape(nCode,nBaud) | |
205 | else: |
|
1054 | else: | |
206 | self.code = None |
|
1055 | self.code = None | |
207 |
|
1056 | |||
208 | if self.dataIn.type == "Voltage": |
|
1057 | if self.dataIn.type == "Voltage": | |
209 |
|
1058 | |||
210 | if nFFTPoints == None: |
|
1059 | if nFFTPoints == None: | |
211 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
1060 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") | |
212 |
|
1061 | |||
213 | if nProfiles == None: |
|
1062 | if nProfiles == None: | |
214 | nProfiles = nFFTPoints |
|
1063 | nProfiles = nFFTPoints | |
215 |
|
1064 | |||
216 | self.dataOut.ippFactor = 1 |
|
1065 | self.dataOut.ippFactor = 1 | |
217 |
|
1066 | |||
218 | self.dataOut.nFFTPoints = nFFTPoints |
|
1067 | self.dataOut.nFFTPoints = nFFTPoints | |
219 | self.dataOut.nProfiles = nProfiles |
|
1068 | self.dataOut.nProfiles = nProfiles | |
220 | self.dataOut.pairsList = pairsList |
|
1069 | self.dataOut.pairsList = pairsList | |
221 |
|
1070 | |||
222 | # if self.buffer is None: |
|
1071 | # if self.buffer is None: | |
223 | # self.buffer = numpy.zeros( (self.dataIn.nChannels, nProfiles, self.dataIn.nHeights), |
|
1072 | # self.buffer = numpy.zeros( (self.dataIn.nChannels, nProfiles, self.dataIn.nHeights), | |
224 | # dtype='complex') |
|
1073 | # dtype='complex') | |
225 |
|
1074 | |||
226 | if not self.dataIn.flagDataAsBlock: |
|
1075 | if not self.dataIn.flagDataAsBlock: | |
227 | self.buffer = self.dataIn.data.copy() |
|
1076 | self.buffer = self.dataIn.data.copy() | |
228 |
|
1077 | |||
229 | # for i in range(self.dataIn.nHeights): |
|
1078 | # for i in range(self.dataIn.nHeights): | |
230 | # self.buffer[:, self.profIndex, self.profIndex:] = voltage_data[:,:self.dataIn.nHeights - self.profIndex] |
|
1079 | # self.buffer[:, self.profIndex, self.profIndex:] = voltage_data[:,:self.dataIn.nHeights - self.profIndex] | |
231 | # |
|
1080 | # | |
232 | # self.profIndex += 1 |
|
1081 | # self.profIndex += 1 | |
233 |
|
1082 | |||
234 | else: |
|
1083 | else: | |
235 | raise ValueError("") |
|
1084 | raise ValueError("") | |
236 |
|
1085 | |||
237 | self.firstdatatime = self.dataIn.utctime |
|
1086 | self.firstdatatime = self.dataIn.utctime | |
238 |
|
1087 | |||
239 | self.profIndex == nProfiles |
|
1088 | self.profIndex == nProfiles | |
240 |
|
1089 | |||
241 | self.__updateSpecFromVoltage() |
|
1090 | self.__updateSpecFromVoltage() | |
242 |
|
1091 | |||
243 | self.__getFft() |
|
1092 | self.__getFft() | |
244 |
|
1093 | |||
245 | self.dataOut.flagNoData = False |
|
1094 | self.dataOut.flagNoData = False | |
246 |
|
1095 | |||
247 | return True |
|
1096 | return True | |
248 |
|
1097 | |||
249 | raise ValueError("The type of input object '%s' is not valid"%(self.dataIn.type)) |
|
1098 | raise ValueError("The type of input object '%s' is not valid"%(self.dataIn.type)) | |
250 |
|
1099 | |||
251 | def __selectPairs(self, pairsList): |
|
1100 | def __selectPairs(self, pairsList): | |
252 |
|
1101 | |||
253 | if channelList == None: |
|
1102 | if channelList == None: | |
254 | return |
|
1103 | return | |
255 |
|
1104 | |||
256 | pairsIndexListSelected = [] |
|
1105 | pairsIndexListSelected = [] | |
257 |
|
1106 | |||
258 | for thisPair in pairsList: |
|
1107 | for thisPair in pairsList: | |
259 |
|
1108 | |||
260 | if thisPair not in self.dataOut.pairsList: |
|
1109 | if thisPair not in self.dataOut.pairsList: | |
261 | continue |
|
1110 | continue | |
262 |
|
1111 | |||
263 | pairIndex = self.dataOut.pairsList.index(thisPair) |
|
1112 | pairIndex = self.dataOut.pairsList.index(thisPair) | |
264 |
|
1113 | |||
265 | pairsIndexListSelected.append(pairIndex) |
|
1114 | pairsIndexListSelected.append(pairIndex) | |
266 |
|
1115 | |||
267 | if not pairsIndexListSelected: |
|
1116 | if not pairsIndexListSelected: | |
268 | self.dataOut.data_cspc = None |
|
1117 | self.dataOut.data_cspc = None | |
269 | self.dataOut.pairsList = [] |
|
1118 | self.dataOut.pairsList = [] | |
270 | return |
|
1119 | return | |
271 |
|
1120 | |||
272 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
1121 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |
273 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] |
|
1122 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] | |
274 |
|
1123 | |||
275 | return |
|
1124 | return | |
276 |
|
1125 | |||
277 | def __selectPairsByChannel(self, channelList=None): |
|
1126 | def __selectPairsByChannel(self, channelList=None): | |
278 |
|
1127 | |||
279 | if channelList == None: |
|
1128 | if channelList == None: | |
280 | return |
|
1129 | return | |
281 |
|
1130 | |||
282 | pairsIndexListSelected = [] |
|
1131 | pairsIndexListSelected = [] | |
283 | for pairIndex in self.dataOut.pairsIndexList: |
|
1132 | for pairIndex in self.dataOut.pairsIndexList: | |
284 | #First pair |
|
1133 | #First pair | |
285 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
1134 | if self.dataOut.pairsList[pairIndex][0] not in channelList: | |
286 | continue |
|
1135 | continue | |
287 | #Second pair |
|
1136 | #Second pair | |
288 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
1137 | if self.dataOut.pairsList[pairIndex][1] not in channelList: | |
289 | continue |
|
1138 | continue | |
290 |
|
1139 | |||
291 | pairsIndexListSelected.append(pairIndex) |
|
1140 | pairsIndexListSelected.append(pairIndex) | |
292 |
|
1141 | |||
293 | if not pairsIndexListSelected: |
|
1142 | if not pairsIndexListSelected: | |
294 | self.dataOut.data_cspc = None |
|
1143 | self.dataOut.data_cspc = None | |
295 | self.dataOut.pairsList = [] |
|
1144 | self.dataOut.pairsList = [] | |
296 | return |
|
1145 | return | |
297 |
|
1146 | |||
298 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
1147 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |
299 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] |
|
1148 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] | |
300 |
|
1149 | |||
301 | return |
|
1150 | return | |
302 |
|
1151 | |||
303 | def selectChannels(self, channelList): |
|
1152 | def selectChannels(self, channelList): | |
304 |
|
1153 | |||
305 | channelIndexList = [] |
|
1154 | channelIndexList = [] | |
306 |
|
1155 | |||
307 | for channel in channelList: |
|
1156 | for channel in channelList: | |
308 | if channel not in self.dataOut.channelList: |
|
1157 | if channel not in self.dataOut.channelList: | |
309 | raise ValueError("Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" %(channel, str(self.dataOut.channelList))) |
|
1158 | raise ValueError("Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" %(channel, str(self.dataOut.channelList))) | |
310 |
|
1159 | |||
311 | index = self.dataOut.channelList.index(channel) |
|
1160 | index = self.dataOut.channelList.index(channel) | |
312 | channelIndexList.append(index) |
|
1161 | channelIndexList.append(index) | |
313 |
|
1162 | |||
314 | self.selectChannelsByIndex(channelIndexList) |
|
1163 | self.selectChannelsByIndex(channelIndexList) | |
315 |
|
1164 | |||
316 | def selectChannelsByIndex(self, channelIndexList): |
|
1165 | def selectChannelsByIndex(self, channelIndexList): | |
317 | """ |
|
1166 | """ | |
318 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
1167 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
319 |
|
1168 | |||
320 | Input: |
|
1169 | Input: | |
321 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
1170 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
322 |
|
1171 | |||
323 | Affected: |
|
1172 | Affected: | |
324 | self.dataOut.data_spc |
|
1173 | self.dataOut.data_spc | |
325 | self.dataOut.channelIndexList |
|
1174 | self.dataOut.channelIndexList | |
326 | self.dataOut.nChannels |
|
1175 | self.dataOut.nChannels | |
327 |
|
1176 | |||
328 | Return: |
|
1177 | Return: | |
329 | None |
|
1178 | None | |
330 | """ |
|
1179 | """ | |
331 |
|
1180 | |||
332 | for channelIndex in channelIndexList: |
|
1181 | for channelIndex in channelIndexList: | |
333 | if channelIndex not in self.dataOut.channelIndexList: |
|
1182 | if channelIndex not in self.dataOut.channelIndexList: | |
334 | raise ValueError("Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " %(channelIndex, self.dataOut.channelIndexList)) |
|
1183 | raise ValueError("Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " %(channelIndex, self.dataOut.channelIndexList)) | |
335 |
|
1184 | |||
336 | # nChannels = len(channelIndexList) |
|
1185 | # nChannels = len(channelIndexList) | |
337 |
|
1186 | |||
338 | data_spc = self.dataOut.data_spc[channelIndexList,:] |
|
1187 | data_spc = self.dataOut.data_spc[channelIndexList,:] | |
339 | data_dc = self.dataOut.data_dc[channelIndexList,:] |
|
1188 | data_dc = self.dataOut.data_dc[channelIndexList,:] | |
340 |
|
1189 | |||
341 | self.dataOut.data_spc = data_spc |
|
1190 | self.dataOut.data_spc = data_spc | |
342 | self.dataOut.data_dc = data_dc |
|
1191 | self.dataOut.data_dc = data_dc | |
343 |
|
1192 | |||
344 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
1193 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
345 | # self.dataOut.nChannels = nChannels |
|
1194 | # self.dataOut.nChannels = nChannels | |
346 |
|
1195 | |||
347 | self.__selectPairsByChannel(self.dataOut.channelList) |
|
1196 | self.__selectPairsByChannel(self.dataOut.channelList) | |
348 |
|
1197 | |||
349 | return 1 |
|
1198 | return 1 | |
350 |
|
1199 | |||
351 | def selectHeights(self, minHei, maxHei): |
|
1200 | def selectHeights(self, minHei, maxHei): | |
352 | """ |
|
1201 | """ | |
353 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
1202 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
354 | minHei <= height <= maxHei |
|
1203 | minHei <= height <= maxHei | |
355 |
|
1204 | |||
356 | Input: |
|
1205 | Input: | |
357 | minHei : valor minimo de altura a considerar |
|
1206 | minHei : valor minimo de altura a considerar | |
358 | maxHei : valor maximo de altura a considerar |
|
1207 | maxHei : valor maximo de altura a considerar | |
359 |
|
1208 | |||
360 | Affected: |
|
1209 | Affected: | |
361 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
1210 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |
362 |
|
1211 | |||
363 | Return: |
|
1212 | Return: | |
364 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
1213 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
365 | """ |
|
1214 | """ | |
366 |
|
1215 | |||
367 | if (minHei > maxHei): |
|
1216 | if (minHei > maxHei): | |
368 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei)) |
|
1217 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei)) | |
369 |
|
1218 | |||
370 | if (minHei < self.dataOut.heightList[0]): |
|
1219 | if (minHei < self.dataOut.heightList[0]): | |
371 | minHei = self.dataOut.heightList[0] |
|
1220 | minHei = self.dataOut.heightList[0] | |
372 |
|
1221 | |||
373 | if (maxHei > self.dataOut.heightList[-1]): |
|
1222 | if (maxHei > self.dataOut.heightList[-1]): | |
374 | maxHei = self.dataOut.heightList[-1] |
|
1223 | maxHei = self.dataOut.heightList[-1] | |
375 |
|
1224 | |||
376 | minIndex = 0 |
|
1225 | minIndex = 0 | |
377 | maxIndex = 0 |
|
1226 | maxIndex = 0 | |
378 | heights = self.dataOut.heightList |
|
1227 | heights = self.dataOut.heightList | |
379 |
|
1228 | |||
380 | inda = numpy.where(heights >= minHei) |
|
1229 | inda = numpy.where(heights >= minHei) | |
381 | indb = numpy.where(heights <= maxHei) |
|
1230 | indb = numpy.where(heights <= maxHei) | |
382 |
|
1231 | |||
383 | try: |
|
1232 | try: | |
384 | minIndex = inda[0][0] |
|
1233 | minIndex = inda[0][0] | |
385 | except: |
|
1234 | except: | |
386 | minIndex = 0 |
|
1235 | minIndex = 0 | |
387 |
|
1236 | |||
388 | try: |
|
1237 | try: | |
389 | maxIndex = indb[0][-1] |
|
1238 | maxIndex = indb[0][-1] | |
390 | except: |
|
1239 | except: | |
391 | maxIndex = len(heights) |
|
1240 | maxIndex = len(heights) | |
392 |
|
1241 | |||
393 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
1242 | self.selectHeightsByIndex(minIndex, maxIndex) | |
394 |
|
1243 | |||
395 | return 1 |
|
1244 | return 1 | |
396 |
|
1245 | |||
397 | def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None): |
|
1246 | def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None): | |
398 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
1247 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
399 |
|
1248 | |||
400 | if hei_ref != None: |
|
1249 | if hei_ref != None: | |
401 | newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
1250 | newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
402 |
|
1251 | |||
403 | minIndex = min(newheis[0]) |
|
1252 | minIndex = min(newheis[0]) | |
404 | maxIndex = max(newheis[0]) |
|
1253 | maxIndex = max(newheis[0]) | |
405 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] |
|
1254 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] | |
406 | heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
1255 | heightList = self.dataOut.heightList[minIndex:maxIndex+1] | |
407 |
|
1256 | |||
408 | # determina indices |
|
1257 | # determina indices | |
409 | nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0])) |
|
1258 | nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0])) | |
410 | avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0)) |
|
1259 | avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0)) | |
411 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
1260 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |
412 | beacon_heiIndexList = [] |
|
1261 | beacon_heiIndexList = [] | |
413 | for val in avg_dB.tolist(): |
|
1262 | for val in avg_dB.tolist(): | |
414 | if val >= beacon_dB[0]: |
|
1263 | if val >= beacon_dB[0]: | |
415 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
1264 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |
416 |
|
1265 | |||
417 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
1266 | #data_spc = data_spc[:,:,beacon_heiIndexList] | |
418 | data_cspc = None |
|
1267 | data_cspc = None | |
419 | if self.dataOut.data_cspc is not None: |
|
1268 | if self.dataOut.data_cspc is not None: | |
420 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] |
|
1269 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] | |
421 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
1270 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] | |
422 |
|
1271 | |||
423 | data_dc = None |
|
1272 | data_dc = None | |
424 | if self.dataOut.data_dc is not None: |
|
1273 | if self.dataOut.data_dc is not None: | |
425 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] |
|
1274 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] | |
426 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
1275 | #data_dc = data_dc[:,beacon_heiIndexList] | |
427 |
|
1276 | |||
428 | self.dataOut.data_spc = data_spc |
|
1277 | self.dataOut.data_spc = data_spc | |
429 | self.dataOut.data_cspc = data_cspc |
|
1278 | self.dataOut.data_cspc = data_cspc | |
430 | self.dataOut.data_dc = data_dc |
|
1279 | self.dataOut.data_dc = data_dc | |
431 | self.dataOut.heightList = heightList |
|
1280 | self.dataOut.heightList = heightList | |
432 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
1281 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |
433 |
|
1282 | |||
434 | return 1 |
|
1283 | return 1 | |
435 |
|
1284 | |||
436 |
|
1285 | |||
437 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
1286 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
438 | """ |
|
1287 | """ | |
439 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
1288 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
440 | minIndex <= index <= maxIndex |
|
1289 | minIndex <= index <= maxIndex | |
441 |
|
1290 | |||
442 | Input: |
|
1291 | Input: | |
443 | minIndex : valor de indice minimo de altura a considerar |
|
1292 | minIndex : valor de indice minimo de altura a considerar | |
444 | maxIndex : valor de indice maximo de altura a considerar |
|
1293 | maxIndex : valor de indice maximo de altura a considerar | |
445 |
|
1294 | |||
446 | Affected: |
|
1295 | Affected: | |
447 | self.dataOut.data_spc |
|
1296 | self.dataOut.data_spc | |
448 | self.dataOut.data_cspc |
|
1297 | self.dataOut.data_cspc | |
449 | self.dataOut.data_dc |
|
1298 | self.dataOut.data_dc | |
450 | self.dataOut.heightList |
|
1299 | self.dataOut.heightList | |
451 |
|
1300 | |||
452 | Return: |
|
1301 | Return: | |
453 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
1302 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
454 | """ |
|
1303 | """ | |
455 |
|
1304 | |||
456 | if (minIndex < 0) or (minIndex > maxIndex): |
|
1305 | if (minIndex < 0) or (minIndex > maxIndex): | |
457 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
1306 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
458 |
|
1307 | |||
459 | if (maxIndex >= self.dataOut.nHeights): |
|
1308 | if (maxIndex >= self.dataOut.nHeights): | |
460 | maxIndex = self.dataOut.nHeights-1 |
|
1309 | maxIndex = self.dataOut.nHeights-1 | |
461 |
|
1310 | |||
462 | #Spectra |
|
1311 | #Spectra | |
463 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] |
|
1312 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] | |
464 |
|
1313 | |||
465 | data_cspc = None |
|
1314 | data_cspc = None | |
466 | if self.dataOut.data_cspc is not None: |
|
1315 | if self.dataOut.data_cspc is not None: | |
467 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] |
|
1316 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] | |
468 |
|
1317 | |||
469 | data_dc = None |
|
1318 | data_dc = None | |
470 | if self.dataOut.data_dc is not None: |
|
1319 | if self.dataOut.data_dc is not None: | |
471 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] |
|
1320 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] | |
472 |
|
1321 | |||
473 | self.dataOut.data_spc = data_spc |
|
1322 | self.dataOut.data_spc = data_spc | |
474 | self.dataOut.data_cspc = data_cspc |
|
1323 | self.dataOut.data_cspc = data_cspc | |
475 | self.dataOut.data_dc = data_dc |
|
1324 | self.dataOut.data_dc = data_dc | |
476 |
|
1325 | |||
477 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
1326 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] | |
478 |
|
1327 | |||
479 | return 1 |
|
1328 | return 1 | |
480 |
|
1329 | |||
481 | def removeDC(self, mode = 2): |
|
1330 | def removeDC(self, mode = 2): | |
482 | jspectra = self.dataOut.data_spc |
|
1331 | jspectra = self.dataOut.data_spc | |
483 | jcspectra = self.dataOut.data_cspc |
|
1332 | jcspectra = self.dataOut.data_cspc | |
484 |
|
1333 | |||
485 |
|
1334 | |||
486 | num_chan = jspectra.shape[0] |
|
1335 | num_chan = jspectra.shape[0] | |
487 | num_hei = jspectra.shape[2] |
|
1336 | num_hei = jspectra.shape[2] | |
488 |
|
1337 | |||
489 | if jcspectra is not None: |
|
1338 | if jcspectra is not None: | |
490 | jcspectraExist = True |
|
1339 | jcspectraExist = True | |
491 | num_pairs = jcspectra.shape[0] |
|
1340 | num_pairs = jcspectra.shape[0] | |
492 | else: jcspectraExist = False |
|
1341 | else: jcspectraExist = False | |
493 |
|
1342 | |||
494 | freq_dc = jspectra.shape[1]/2 |
|
1343 | freq_dc = jspectra.shape[1]/2 | |
495 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
1344 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc | |
496 |
|
1345 | |||
497 | if ind_vel[0]<0: |
|
1346 | if ind_vel[0]<0: | |
498 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
1347 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof | |
499 |
|
1348 | |||
500 | if mode == 1: |
|
1349 | if mode == 1: | |
501 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
1350 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION | |
502 |
|
1351 | |||
503 | if jcspectraExist: |
|
1352 | if jcspectraExist: | |
504 | jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2 |
|
1353 | jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2 | |
505 |
|
1354 | |||
506 | if mode == 2: |
|
1355 | if mode == 2: | |
507 |
|
1356 | |||
508 | vel = numpy.array([-2,-1,1,2]) |
|
1357 | vel = numpy.array([-2,-1,1,2]) | |
509 | xx = numpy.zeros([4,4]) |
|
1358 | xx = numpy.zeros([4,4]) | |
510 |
|
1359 | |||
511 | for fil in range(4): |
|
1360 | for fil in range(4): | |
512 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
1361 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) | |
513 |
|
1362 | |||
514 | xx_inv = numpy.linalg.inv(xx) |
|
1363 | xx_inv = numpy.linalg.inv(xx) | |
515 | xx_aux = xx_inv[0,:] |
|
1364 | xx_aux = xx_inv[0,:] | |
516 |
|
1365 | |||
517 | for ich in range(num_chan): |
|
1366 | for ich in range(num_chan): | |
518 | yy = jspectra[ich,ind_vel,:] |
|
1367 | yy = jspectra[ich,ind_vel,:] | |
519 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
1368 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) | |
520 |
|
1369 | |||
521 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
1370 | junkid = jspectra[ich,freq_dc,:]<=0 | |
522 | cjunkid = sum(junkid) |
|
1371 | cjunkid = sum(junkid) | |
523 |
|
1372 | |||
524 | if cjunkid.any(): |
|
1373 | if cjunkid.any(): | |
525 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
1374 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 | |
526 |
|
1375 | |||
527 | if jcspectraExist: |
|
1376 | if jcspectraExist: | |
528 | for ip in range(num_pairs): |
|
1377 | for ip in range(num_pairs): | |
529 | yy = jcspectra[ip,ind_vel,:] |
|
1378 | yy = jcspectra[ip,ind_vel,:] | |
530 | jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
1379 | jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy) | |
531 |
|
1380 | |||
532 |
|
1381 | |||
533 | self.dataOut.data_spc = jspectra |
|
1382 | self.dataOut.data_spc = jspectra | |
534 | self.dataOut.data_cspc = jcspectra |
|
1383 | self.dataOut.data_cspc = jcspectra | |
535 |
|
1384 | |||
536 | return 1 |
|
1385 | return 1 | |
537 |
|
1386 | |||
538 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
1387 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): | |
539 |
|
1388 | |||
540 | jspectra = self.dataOut.data_spc |
|
1389 | jspectra = self.dataOut.data_spc | |
541 | jcspectra = self.dataOut.data_cspc |
|
1390 | jcspectra = self.dataOut.data_cspc | |
542 | jnoise = self.dataOut.getNoise() |
|
1391 | jnoise = self.dataOut.getNoise() | |
543 | num_incoh = self.dataOut.nIncohInt |
|
1392 | num_incoh = self.dataOut.nIncohInt | |
544 |
|
1393 | |||
545 | num_channel = jspectra.shape[0] |
|
1394 | num_channel = jspectra.shape[0] | |
546 | num_prof = jspectra.shape[1] |
|
1395 | num_prof = jspectra.shape[1] | |
547 | num_hei = jspectra.shape[2] |
|
1396 | num_hei = jspectra.shape[2] | |
548 |
|
1397 | |||
549 | #hei_interf |
|
1398 | #hei_interf | |
550 | if hei_interf is None: |
|
1399 | if hei_interf is None: | |
551 | count_hei = num_hei/2 #Como es entero no importa |
|
1400 | count_hei = num_hei/2 #Como es entero no importa | |
552 | hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei |
|
1401 | hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei | |
553 | hei_interf = numpy.asarray(hei_interf)[0] |
|
1402 | hei_interf = numpy.asarray(hei_interf)[0] | |
554 | #nhei_interf |
|
1403 | #nhei_interf | |
555 | if (nhei_interf == None): |
|
1404 | if (nhei_interf == None): | |
556 | nhei_interf = 5 |
|
1405 | nhei_interf = 5 | |
557 | if (nhei_interf < 1): |
|
1406 | if (nhei_interf < 1): | |
558 | nhei_interf = 1 |
|
1407 | nhei_interf = 1 | |
559 | if (nhei_interf > count_hei): |
|
1408 | if (nhei_interf > count_hei): | |
560 | nhei_interf = count_hei |
|
1409 | nhei_interf = count_hei | |
561 | if (offhei_interf == None): |
|
1410 | if (offhei_interf == None): | |
562 | offhei_interf = 0 |
|
1411 | offhei_interf = 0 | |
563 |
|
1412 | |||
564 | ind_hei = range(num_hei) |
|
1413 | ind_hei = range(num_hei) | |
565 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
1414 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |
566 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
1415 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |
567 | mask_prof = numpy.asarray(range(num_prof)) |
|
1416 | mask_prof = numpy.asarray(range(num_prof)) | |
568 | num_mask_prof = mask_prof.size |
|
1417 | num_mask_prof = mask_prof.size | |
569 | comp_mask_prof = [0, num_prof/2] |
|
1418 | comp_mask_prof = [0, num_prof/2] | |
570 |
|
1419 | |||
571 |
|
1420 | |||
572 | #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
1421 | #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |
573 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
1422 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |
574 | jnoise = numpy.nan |
|
1423 | jnoise = numpy.nan | |
575 | noise_exist = jnoise[0] < numpy.Inf |
|
1424 | noise_exist = jnoise[0] < numpy.Inf | |
576 |
|
1425 | |||
577 | #Subrutina de Remocion de la Interferencia |
|
1426 | #Subrutina de Remocion de la Interferencia | |
578 | for ich in range(num_channel): |
|
1427 | for ich in range(num_channel): | |
579 | #Se ordena los espectros segun su potencia (menor a mayor) |
|
1428 | #Se ordena los espectros segun su potencia (menor a mayor) | |
580 | power = jspectra[ich,mask_prof,:] |
|
1429 | power = jspectra[ich,mask_prof,:] | |
581 | power = power[:,hei_interf] |
|
1430 | power = power[:,hei_interf] | |
582 | power = power.sum(axis = 0) |
|
1431 | power = power.sum(axis = 0) | |
583 | psort = power.ravel().argsort() |
|
1432 | psort = power.ravel().argsort() | |
584 |
|
1433 | |||
585 | #Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
1434 | #Se estima la interferencia promedio en los Espectros de Potencia empleando | |
586 | junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]] |
|
1435 | junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]] | |
587 |
|
1436 | |||
588 | if noise_exist: |
|
1437 | if noise_exist: | |
589 | # tmp_noise = jnoise[ich] / num_prof |
|
1438 | # tmp_noise = jnoise[ich] / num_prof | |
590 | tmp_noise = jnoise[ich] |
|
1439 | tmp_noise = jnoise[ich] | |
591 | junkspc_interf = junkspc_interf - tmp_noise |
|
1440 | junkspc_interf = junkspc_interf - tmp_noise | |
592 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
1441 | #junkspc_interf[:,comp_mask_prof] = 0 | |
593 |
|
1442 | |||
594 | jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf |
|
1443 | jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf | |
595 | jspc_interf = jspc_interf.transpose() |
|
1444 | jspc_interf = jspc_interf.transpose() | |
596 | #Calculando el espectro de interferencia promedio |
|
1445 | #Calculando el espectro de interferencia promedio | |
597 | noiseid = numpy.where(jspc_interf <= tmp_noise/ numpy.sqrt(num_incoh)) |
|
1446 | noiseid = numpy.where(jspc_interf <= tmp_noise/ numpy.sqrt(num_incoh)) | |
598 | noiseid = noiseid[0] |
|
1447 | noiseid = noiseid[0] | |
599 | cnoiseid = noiseid.size |
|
1448 | cnoiseid = noiseid.size | |
600 | interfid = numpy.where(jspc_interf > tmp_noise/ numpy.sqrt(num_incoh)) |
|
1449 | interfid = numpy.where(jspc_interf > tmp_noise/ numpy.sqrt(num_incoh)) | |
601 | interfid = interfid[0] |
|
1450 | interfid = interfid[0] | |
602 | cinterfid = interfid.size |
|
1451 | cinterfid = interfid.size | |
603 |
|
1452 | |||
604 | if (cnoiseid > 0): jspc_interf[noiseid] = 0 |
|
1453 | if (cnoiseid > 0): jspc_interf[noiseid] = 0 | |
605 |
|
1454 | |||
606 | #Expandiendo los perfiles a limpiar |
|
1455 | #Expandiendo los perfiles a limpiar | |
607 | if (cinterfid > 0): |
|
1456 | if (cinterfid > 0): | |
608 | new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof |
|
1457 | new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof | |
609 | new_interfid = numpy.asarray(new_interfid) |
|
1458 | new_interfid = numpy.asarray(new_interfid) | |
610 | new_interfid = {x for x in new_interfid} |
|
1459 | new_interfid = {x for x in new_interfid} | |
611 | new_interfid = numpy.array(list(new_interfid)) |
|
1460 | new_interfid = numpy.array(list(new_interfid)) | |
612 | new_cinterfid = new_interfid.size |
|
1461 | new_cinterfid = new_interfid.size | |
613 | else: new_cinterfid = 0 |
|
1462 | else: new_cinterfid = 0 | |
614 |
|
1463 | |||
615 | for ip in range(new_cinterfid): |
|
1464 | for ip in range(new_cinterfid): | |
616 | ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort() |
|
1465 | ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort() | |
617 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]] |
|
1466 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]] | |
618 |
|
1467 | |||
619 |
|
1468 | |||
620 | jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices |
|
1469 | jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices | |
621 |
|
1470 | |||
622 | #Removiendo la interferencia del punto de mayor interferencia |
|
1471 | #Removiendo la interferencia del punto de mayor interferencia | |
623 | ListAux = jspc_interf[mask_prof].tolist() |
|
1472 | ListAux = jspc_interf[mask_prof].tolist() | |
624 | maxid = ListAux.index(max(ListAux)) |
|
1473 | maxid = ListAux.index(max(ListAux)) | |
625 |
|
1474 | |||
626 |
|
1475 | |||
627 | if cinterfid > 0: |
|
1476 | if cinterfid > 0: | |
628 | for ip in range(cinterfid*(interf == 2) - 1): |
|
1477 | for ip in range(cinterfid*(interf == 2) - 1): | |
629 | ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/numpy.sqrt(num_incoh))).nonzero() |
|
1478 | ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/numpy.sqrt(num_incoh))).nonzero() | |
630 | cind = len(ind) |
|
1479 | cind = len(ind) | |
631 |
|
1480 | |||
632 | if (cind > 0): |
|
1481 | if (cind > 0): | |
633 | jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/numpy.sqrt(num_incoh)) |
|
1482 | jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/numpy.sqrt(num_incoh)) | |
634 |
|
1483 | |||
635 | ind = numpy.array([-2,-1,1,2]) |
|
1484 | ind = numpy.array([-2,-1,1,2]) | |
636 | xx = numpy.zeros([4,4]) |
|
1485 | xx = numpy.zeros([4,4]) | |
637 |
|
1486 | |||
638 | for id1 in range(4): |
|
1487 | for id1 in range(4): | |
639 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) |
|
1488 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) | |
640 |
|
1489 | |||
641 | xx_inv = numpy.linalg.inv(xx) |
|
1490 | xx_inv = numpy.linalg.inv(xx) | |
642 | xx = xx_inv[:,0] |
|
1491 | xx = xx_inv[:,0] | |
643 | ind = (ind + maxid + num_mask_prof)%num_mask_prof |
|
1492 | ind = (ind + maxid + num_mask_prof)%num_mask_prof | |
644 | yy = jspectra[ich,mask_prof[ind],:] |
|
1493 | yy = jspectra[ich,mask_prof[ind],:] | |
645 | jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) |
|
1494 | jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) | |
646 |
|
1495 | |||
647 |
|
1496 | |||
648 | indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/numpy.sqrt(num_incoh))).nonzero() |
|
1497 | indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/numpy.sqrt(num_incoh))).nonzero() | |
649 | jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/numpy.sqrt(num_incoh)) |
|
1498 | jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/numpy.sqrt(num_incoh)) | |
650 |
|
1499 | |||
651 | #Remocion de Interferencia en el Cross Spectra |
|
1500 | #Remocion de Interferencia en el Cross Spectra | |
652 | if jcspectra is None: return jspectra, jcspectra |
|
1501 | if jcspectra is None: return jspectra, jcspectra | |
653 | num_pairs = jcspectra.size/(num_prof*num_hei) |
|
1502 | num_pairs = jcspectra.size/(num_prof*num_hei) | |
654 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
1503 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |
655 |
|
1504 | |||
656 | for ip in range(num_pairs): |
|
1505 | for ip in range(num_pairs): | |
657 |
|
1506 | |||
658 | #------------------------------------------- |
|
1507 | #------------------------------------------- | |
659 |
|
1508 | |||
660 | cspower = numpy.abs(jcspectra[ip,mask_prof,:]) |
|
1509 | cspower = numpy.abs(jcspectra[ip,mask_prof,:]) | |
661 | cspower = cspower[:,hei_interf] |
|
1510 | cspower = cspower[:,hei_interf] | |
662 | cspower = cspower.sum(axis = 0) |
|
1511 | cspower = cspower.sum(axis = 0) | |
663 |
|
1512 | |||
664 | cspsort = cspower.ravel().argsort() |
|
1513 | cspsort = cspower.ravel().argsort() | |
665 | junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]] |
|
1514 | junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]] | |
666 | junkcspc_interf = junkcspc_interf.transpose() |
|
1515 | junkcspc_interf = junkcspc_interf.transpose() | |
667 | jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf |
|
1516 | jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf | |
668 |
|
1517 | |||
669 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1518 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |
670 |
|
1519 | |||
671 | median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) |
|
1520 | median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) | |
672 | median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) |
|
1521 | median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) | |
673 | junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag) |
|
1522 | junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag) | |
674 |
|
1523 | |||
675 | for iprof in range(num_prof): |
|
1524 | for iprof in range(num_prof): | |
676 | ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort() |
|
1525 | ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort() | |
677 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]] |
|
1526 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]] | |
678 |
|
1527 | |||
679 | #Removiendo la Interferencia |
|
1528 | #Removiendo la Interferencia | |
680 | jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf |
|
1529 | jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf | |
681 |
|
1530 | |||
682 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1531 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |
683 | maxid = ListAux.index(max(ListAux)) |
|
1532 | maxid = ListAux.index(max(ListAux)) | |
684 |
|
1533 | |||
685 | ind = numpy.array([-2,-1,1,2]) |
|
1534 | ind = numpy.array([-2,-1,1,2]) | |
686 | xx = numpy.zeros([4,4]) |
|
1535 | xx = numpy.zeros([4,4]) | |
687 |
|
1536 | |||
688 | for id1 in range(4): |
|
1537 | for id1 in range(4): | |
689 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) |
|
1538 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) | |
690 |
|
1539 | |||
691 | xx_inv = numpy.linalg.inv(xx) |
|
1540 | xx_inv = numpy.linalg.inv(xx) | |
692 | xx = xx_inv[:,0] |
|
1541 | xx = xx_inv[:,0] | |
693 |
|
1542 | |||
694 | ind = (ind + maxid + num_mask_prof)%num_mask_prof |
|
1543 | ind = (ind + maxid + num_mask_prof)%num_mask_prof | |
695 | yy = jcspectra[ip,mask_prof[ind],:] |
|
1544 | yy = jcspectra[ip,mask_prof[ind],:] | |
696 | jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) |
|
1545 | jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) | |
697 |
|
1546 | |||
698 | #Guardar Resultados |
|
1547 | #Guardar Resultados | |
699 | self.dataOut.data_spc = jspectra |
|
1548 | self.dataOut.data_spc = jspectra | |
700 | self.dataOut.data_cspc = jcspectra |
|
1549 | self.dataOut.data_cspc = jcspectra | |
701 |
|
1550 | |||
702 | return 1 |
|
1551 | return 1 | |
703 |
|
1552 | |||
704 | def setRadarFrequency(self, frequency=None): |
|
1553 | def setRadarFrequency(self, frequency=None): | |
705 |
|
1554 | |||
706 | if frequency != None: |
|
1555 | if frequency != None: | |
707 | self.dataOut.frequency = frequency |
|
1556 | self.dataOut.frequency = frequency | |
708 |
|
1557 | |||
709 | return 1 |
|
1558 | return 1 | |
710 |
|
1559 | |||
711 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
1560 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |
712 | #validacion de rango |
|
1561 | #validacion de rango | |
713 | if minHei == None: |
|
1562 | if minHei == None: | |
714 | minHei = self.dataOut.heightList[0] |
|
1563 | minHei = self.dataOut.heightList[0] | |
715 |
|
1564 | |||
716 | if maxHei == None: |
|
1565 | if maxHei == None: | |
717 | maxHei = self.dataOut.heightList[-1] |
|
1566 | maxHei = self.dataOut.heightList[-1] | |
718 |
|
1567 | |||
719 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
1568 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
720 | print('minHei: %.2f is out of the heights range'%(minHei)) |
|
1569 | print('minHei: %.2f is out of the heights range'%(minHei)) | |
721 | print('minHei is setting to %.2f'%(self.dataOut.heightList[0])) |
|
1570 | print('minHei is setting to %.2f'%(self.dataOut.heightList[0])) | |
722 | minHei = self.dataOut.heightList[0] |
|
1571 | minHei = self.dataOut.heightList[0] | |
723 |
|
1572 | |||
724 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
1573 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
725 | print('maxHei: %.2f is out of the heights range'%(maxHei)) |
|
1574 | print('maxHei: %.2f is out of the heights range'%(maxHei)) | |
726 | print('maxHei is setting to %.2f'%(self.dataOut.heightList[-1])) |
|
1575 | print('maxHei is setting to %.2f'%(self.dataOut.heightList[-1])) | |
727 | maxHei = self.dataOut.heightList[-1] |
|
1576 | maxHei = self.dataOut.heightList[-1] | |
728 |
|
1577 | |||
729 | # validacion de velocidades |
|
1578 | # validacion de velocidades | |
730 | velrange = self.dataOut.getVelRange(1) |
|
1579 | velrange = self.dataOut.getVelRange(1) | |
731 |
|
1580 | |||
732 | if minVel == None: |
|
1581 | if minVel == None: | |
733 | minVel = velrange[0] |
|
1582 | minVel = velrange[0] | |
734 |
|
1583 | |||
735 | if maxVel == None: |
|
1584 | if maxVel == None: | |
736 | maxVel = velrange[-1] |
|
1585 | maxVel = velrange[-1] | |
737 |
|
1586 | |||
738 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
1587 | if (minVel < velrange[0]) or (minVel > maxVel): | |
739 | print('minVel: %.2f is out of the velocity range'%(minVel)) |
|
1588 | print('minVel: %.2f is out of the velocity range'%(minVel)) | |
740 | print('minVel is setting to %.2f'%(velrange[0])) |
|
1589 | print('minVel is setting to %.2f'%(velrange[0])) | |
741 | minVel = velrange[0] |
|
1590 | minVel = velrange[0] | |
742 |
|
1591 | |||
743 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
1592 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
744 | print('maxVel: %.2f is out of the velocity range'%(maxVel)) |
|
1593 | print('maxVel: %.2f is out of the velocity range'%(maxVel)) | |
745 | print('maxVel is setting to %.2f'%(velrange[-1])) |
|
1594 | print('maxVel is setting to %.2f'%(velrange[-1])) | |
746 | maxVel = velrange[-1] |
|
1595 | maxVel = velrange[-1] | |
747 |
|
1596 | |||
748 | # seleccion de indices para rango |
|
1597 | # seleccion de indices para rango | |
749 | minIndex = 0 |
|
1598 | minIndex = 0 | |
750 | maxIndex = 0 |
|
1599 | maxIndex = 0 | |
751 | heights = self.dataOut.heightList |
|
1600 | heights = self.dataOut.heightList | |
752 |
|
1601 | |||
753 | inda = numpy.where(heights >= minHei) |
|
1602 | inda = numpy.where(heights >= minHei) | |
754 | indb = numpy.where(heights <= maxHei) |
|
1603 | indb = numpy.where(heights <= maxHei) | |
755 |
|
1604 | |||
756 | try: |
|
1605 | try: | |
757 | minIndex = inda[0][0] |
|
1606 | minIndex = inda[0][0] | |
758 | except: |
|
1607 | except: | |
759 | minIndex = 0 |
|
1608 | minIndex = 0 | |
760 |
|
1609 | |||
761 | try: |
|
1610 | try: | |
762 | maxIndex = indb[0][-1] |
|
1611 | maxIndex = indb[0][-1] | |
763 | except: |
|
1612 | except: | |
764 | maxIndex = len(heights) |
|
1613 | maxIndex = len(heights) | |
765 |
|
1614 | |||
766 | if (minIndex < 0) or (minIndex > maxIndex): |
|
1615 | if (minIndex < 0) or (minIndex > maxIndex): | |
767 | raise ValueError("some value in (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
1616 | raise ValueError("some value in (%d,%d) is not valid" % (minIndex, maxIndex)) | |
768 |
|
1617 | |||
769 | if (maxIndex >= self.dataOut.nHeights): |
|
1618 | if (maxIndex >= self.dataOut.nHeights): | |
770 | maxIndex = self.dataOut.nHeights-1 |
|
1619 | maxIndex = self.dataOut.nHeights-1 | |
771 |
|
1620 | |||
772 | # seleccion de indices para velocidades |
|
1621 | # seleccion de indices para velocidades | |
773 | indminvel = numpy.where(velrange >= minVel) |
|
1622 | indminvel = numpy.where(velrange >= minVel) | |
774 | indmaxvel = numpy.where(velrange <= maxVel) |
|
1623 | indmaxvel = numpy.where(velrange <= maxVel) | |
775 | try: |
|
1624 | try: | |
776 | minIndexVel = indminvel[0][0] |
|
1625 | minIndexVel = indminvel[0][0] | |
777 | except: |
|
1626 | except: | |
778 | minIndexVel = 0 |
|
1627 | minIndexVel = 0 | |
779 |
|
1628 | |||
780 | try: |
|
1629 | try: | |
781 | maxIndexVel = indmaxvel[0][-1] |
|
1630 | maxIndexVel = indmaxvel[0][-1] | |
782 | except: |
|
1631 | except: | |
783 | maxIndexVel = len(velrange) |
|
1632 | maxIndexVel = len(velrange) | |
784 |
|
1633 | |||
785 | #seleccion del espectro |
|
1634 | #seleccion del espectro | |
786 | data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1] |
|
1635 | data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1] | |
787 | #estimacion de ruido |
|
1636 | #estimacion de ruido | |
788 | noise = numpy.zeros(self.dataOut.nChannels) |
|
1637 | noise = numpy.zeros(self.dataOut.nChannels) | |
789 |
|
1638 | |||
790 | for channel in range(self.dataOut.nChannels): |
|
1639 | for channel in range(self.dataOut.nChannels): | |
791 | daux = data_spc[channel,:,:] |
|
1640 | daux = data_spc[channel,:,:] | |
792 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) |
|
1641 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) | |
793 |
|
1642 | |||
794 | self.dataOut.noise_estimation = noise.copy() |
|
1643 | self.dataOut.noise_estimation = noise.copy() | |
795 |
|
1644 | |||
796 | return 1 |
|
1645 | return 1 |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now