##// END OF EJS Templates
comentario e identacion
Alexander Valdez -
r1705:9e4b98696352
parent child
Show More
@@ -3392,6 +3392,7 class SpectralFitting(Operation):
3392 incoh_aver[pair[1],incoh_echoes]=1
3392 incoh_aver[pair[1],incoh_echoes]=1
3393 return my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver
3393 return my_incoh_spectra ,my_incoh_cspectra,my_incoh_aver,my_coh_aver, incoh_spectra, coh_spectra, incoh_cspectra, coh_cspectra, incoh_aver, coh_aver
3394
3394
3395
3395 def __CleanCoherent(self,snrth, spectra, cspectra, coh_aver,dataOut, noise,clean_coh_echoes,index):
3396 def __CleanCoherent(self,snrth, spectra, cspectra, coh_aver,dataOut, noise,clean_coh_echoes,index):
3396
3397
3397 nProf = dataOut.nProfiles
3398 nProf = dataOut.nProfiles
@@ -3718,14 +3719,6 class SpectralFitting(Operation):
3718 dataOut.clean_num_aver = clean_num_aver
3719 dataOut.clean_num_aver = clean_num_aver
3719 dataOut.coh_num_aver = coh_num_aver
3720 dataOut.coh_num_aver = coh_num_aver
3720
3721
3721 #List of possible combinations
3722 #listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
3723 #indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
3724 #if getSNR:
3725 # listChannels = groupArray.reshape((groupArray.size))
3726 # listChannels.sort()
3727 # print("AQUI ESTOY")
3728 # dataOut.data_SNR = self.__getSNR(dataOut.data_spc[listChannels,:,:], noise[listChannels])
3729 else:
3722 else:
3730 clean_num_aver = dataOut.clean_num_aver
3723 clean_num_aver = dataOut.clean_num_aver
3731 coh_num_aver = dataOut.coh_num_aver
3724 coh_num_aver = dataOut.coh_num_aver
@@ -3940,13 +3933,12 class SpectralFitting(Operation):
3940 dataOut.spc_noise = my_noises*self.nProf*self.M
3933 dataOut.spc_noise = my_noises*self.nProf*self.M
3941 if numpy.any(proc): dataOut.spc_noise = my_noises*self.nProf*self.M
3934 if numpy.any(proc): dataOut.spc_noise = my_noises*self.nProf*self.M
3942 if getSNR:
3935 if getSNR:
3943 print("self.groupArray",self.groupArray.size,self.groupArray)
3944 listChannels = self.groupArray.reshape((self.groupArray.size))
3936 listChannels = self.groupArray.reshape((self.groupArray.size))
3945 listChannels.sort()
3937 listChannels.sort()
3946 # TEST
3938 # TEST
3947 noise_C = numpy.zeros(self.nChannels)
3939 noise_C = numpy.zeros(self.nChannels)
3948 noise_C = dataOut.getNoise()
3940 noise_C = dataOut.getNoise()
3949 print("noise_C",noise_C)
3941 #print("noise_C",noise_C)
3950 dataOut.data_snr = self.__getSNR(dataOut.data_spc[listChannels,:,:],noise_C/(600.0*1.15))# PRUEBA *nProf*M
3942 dataOut.data_snr = self.__getSNR(dataOut.data_spc[listChannels,:,:],noise_C/(600.0*1.15))# PRUEBA *nProf*M
3951 #dataOut.data_snr = self.__getSNR(dataOut.data_spc[listChannels,:,:], noise_C[listChannels])# PRUEBA *nProf*M
3943 #dataOut.data_snr = self.__getSNR(dataOut.data_spc[listChannels,:,:], noise_C[listChannels])# PRUEBA *nProf*M
3952 dataOut.flagNoData = False
3944 dataOut.flagNoData = False
@@ -3962,11 +3954,6 class SpectralFitting(Operation):
3962
3954
3963 avg = numpy.average(z, axis=1)
3955 avg = numpy.average(z, axis=1)
3964 SNR = (avg.T-noise)/noise
3956 SNR = (avg.T-noise)/noise
3965 print("------------------------------------------------------")
3966 print("T - Noise", noise.shape)
3967 print("T - Noise", 10*numpy.log10(noise[0]))
3968 print("T - avg.T" , avg.T.shape)
3969 print("T - avg.T" , 10*numpy.log10(avg.T[:,0]))
3970 SNR = SNR.T
3957 SNR = SNR.T
3971 return SNR
3958 return SNR
3972
3959
@@ -4736,7 +4723,7 class EWDriftsEstimation(Operation):
4736 dataOut.data_output = winds
4723 dataOut.data_output = winds
4737 #snr1 = 10*numpy.log10(SNR1[0])# estaba comentado
4724 #snr1 = 10*numpy.log10(SNR1[0])# estaba comentado
4738 dataOut.data_snr1 = numpy.reshape(snr1,(1,snr1.shape[0]))
4725 dataOut.data_snr1 = numpy.reshape(snr1,(1,snr1.shape[0]))
4739 print("data_snr1",dataOut.data_snr1)
4726 #print("data_snr1",dataOut.data_snr1)
4740 dataOut.utctimeInit = dataOut.utctime
4727 dataOut.utctimeInit = dataOut.utctime
4741 dataOut.outputInterval = dataOut.timeInterval
4728 dataOut.outputInterval = dataOut.timeInterval
4742
4729
General Comments 0
You need to be logged in to leave comments. Login now