@@ -1,1251 +1,1261 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import copy |
|
8 | 8 | import numpy |
|
9 | 9 | import datetime |
|
10 | 10 | |
|
11 | 11 | from jroheaderIO import SystemHeader, RadarControllerHeader |
|
12 | 12 | from schainpy import cSchain |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | def getNumpyDtype(dataTypeCode): |
|
16 | 16 | |
|
17 | 17 | if dataTypeCode == 0: |
|
18 | 18 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
19 | 19 | elif dataTypeCode == 1: |
|
20 | 20 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
21 | 21 | elif dataTypeCode == 2: |
|
22 | 22 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
23 | 23 | elif dataTypeCode == 3: |
|
24 | 24 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
25 | 25 | elif dataTypeCode == 4: |
|
26 | 26 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
27 | 27 | elif dataTypeCode == 5: |
|
28 | 28 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
29 | 29 | else: |
|
30 | 30 | raise ValueError, 'dataTypeCode was not defined' |
|
31 | 31 | |
|
32 | 32 | return numpyDtype |
|
33 | 33 | |
|
34 | 34 | |
|
35 | 35 | def getDataTypeCode(numpyDtype): |
|
36 | 36 | |
|
37 | 37 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
38 | 38 | datatype = 0 |
|
39 | 39 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
40 | 40 | datatype = 1 |
|
41 | 41 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
42 | 42 | datatype = 2 |
|
43 | 43 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
44 | 44 | datatype = 3 |
|
45 | 45 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
46 | 46 | datatype = 4 |
|
47 | 47 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
48 | 48 | datatype = 5 |
|
49 | 49 | else: |
|
50 | 50 | datatype = None |
|
51 | 51 | |
|
52 | 52 | return datatype |
|
53 | 53 | |
|
54 | 54 | |
|
55 | 55 | def hildebrand_sekhon(data, navg): |
|
56 | 56 | """ |
|
57 | 57 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
58 | 58 | implementation technique is based on the fact that the standard deviation of the spectral |
|
59 | 59 | densities is equal to the mean spectral density for white Gaussian noise |
|
60 | 60 | |
|
61 | 61 | Inputs: |
|
62 | 62 | Data : heights |
|
63 | 63 | navg : numbers of averages |
|
64 | 64 | |
|
65 | 65 | Return: |
|
66 | 66 | -1 : any error |
|
67 | 67 | anoise : noise's level |
|
68 | 68 | """ |
|
69 | 69 | |
|
70 | 70 | sortdata = numpy.sort(data, axis=None) |
|
71 | 71 | # lenOfData = len(sortdata) |
|
72 | 72 | # nums_min = lenOfData*0.2 |
|
73 | 73 | # |
|
74 | 74 | # if nums_min <= 5: |
|
75 | 75 | # nums_min = 5 |
|
76 | 76 | # |
|
77 | 77 | # sump = 0. |
|
78 | 78 | # |
|
79 | 79 | # sumq = 0. |
|
80 | 80 | # |
|
81 | 81 | # j = 0 |
|
82 | 82 | # |
|
83 | 83 | # cont = 1 |
|
84 | 84 | # |
|
85 | 85 | # while((cont==1)and(j<lenOfData)): |
|
86 | 86 | # |
|
87 | 87 | # sump += sortdata[j] |
|
88 | 88 | # |
|
89 | 89 | # sumq += sortdata[j]**2 |
|
90 | 90 | # |
|
91 | 91 | # if j > nums_min: |
|
92 | 92 | # rtest = float(j)/(j-1) + 1.0/navg |
|
93 | 93 | # if ((sumq*j) > (rtest*sump**2)): |
|
94 | 94 | # j = j - 1 |
|
95 | 95 | # sump = sump - sortdata[j] |
|
96 | 96 | # sumq = sumq - sortdata[j]**2 |
|
97 | 97 | # cont = 0 |
|
98 | 98 | # |
|
99 | 99 | # j += 1 |
|
100 | 100 | # |
|
101 | 101 | # lnoise = sump /j |
|
102 | 102 | # |
|
103 | 103 | # return lnoise |
|
104 | 104 | |
|
105 | 105 | return cSchain.hildebrand_sekhon(sortdata, navg) |
|
106 | 106 | |
|
107 | 107 | |
|
108 | 108 | class Beam: |
|
109 | 109 | |
|
110 | 110 | def __init__(self): |
|
111 | 111 | self.codeList = [] |
|
112 | 112 | self.azimuthList = [] |
|
113 | 113 | self.zenithList = [] |
|
114 | 114 | |
|
115 | 115 | |
|
116 | 116 | class GenericData(object): |
|
117 | 117 | |
|
118 | 118 | flagNoData = True |
|
119 | 119 | |
|
120 | 120 | def copy(self, inputObj=None): |
|
121 | 121 | |
|
122 | 122 | if inputObj == None: |
|
123 | 123 | return copy.deepcopy(self) |
|
124 | 124 | |
|
125 | 125 | for key in inputObj.__dict__.keys(): |
|
126 | 126 | |
|
127 | 127 | attribute = inputObj.__dict__[key] |
|
128 | 128 | |
|
129 | 129 | # If this attribute is a tuple or list |
|
130 | 130 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
131 | 131 | self.__dict__[key] = attribute[:] |
|
132 | 132 | continue |
|
133 | 133 | |
|
134 | 134 | # If this attribute is another object or instance |
|
135 | 135 | if hasattr(attribute, '__dict__'): |
|
136 | 136 | self.__dict__[key] = attribute.copy() |
|
137 | 137 | continue |
|
138 | 138 | |
|
139 | 139 | self.__dict__[key] = inputObj.__dict__[key] |
|
140 | 140 | |
|
141 | 141 | def deepcopy(self): |
|
142 | 142 | |
|
143 | 143 | return copy.deepcopy(self) |
|
144 | 144 | |
|
145 | 145 | def isEmpty(self): |
|
146 | 146 | |
|
147 | 147 | return self.flagNoData |
|
148 | 148 | |
|
149 | 149 | |
|
150 | 150 | class JROData(GenericData): |
|
151 | 151 | |
|
152 | 152 | # m_BasicHeader = BasicHeader() |
|
153 | 153 | # m_ProcessingHeader = ProcessingHeader() |
|
154 | 154 | |
|
155 | 155 | systemHeaderObj = SystemHeader() |
|
156 | 156 | |
|
157 | 157 | radarControllerHeaderObj = RadarControllerHeader() |
|
158 | 158 | |
|
159 | 159 | # data = None |
|
160 | 160 | |
|
161 | 161 | type = None |
|
162 | 162 | |
|
163 | 163 | datatype = None # dtype but in string |
|
164 | 164 | |
|
165 | 165 | # dtype = None |
|
166 | 166 | |
|
167 | 167 | # nChannels = None |
|
168 | 168 | |
|
169 | 169 | # nHeights = None |
|
170 | 170 | |
|
171 | 171 | nProfiles = None |
|
172 | 172 | |
|
173 | 173 | heightList = None |
|
174 | 174 | |
|
175 | 175 | channelList = None |
|
176 | 176 | |
|
177 | 177 | flagDiscontinuousBlock = False |
|
178 | 178 | |
|
179 | 179 | useLocalTime = False |
|
180 | 180 | |
|
181 | 181 | utctime = None |
|
182 | 182 | |
|
183 | 183 | timeZone = None |
|
184 | 184 | |
|
185 | 185 | dstFlag = None |
|
186 | 186 | |
|
187 | 187 | errorCount = None |
|
188 | 188 | |
|
189 | 189 | blocksize = None |
|
190 | 190 | |
|
191 | 191 | # nCode = None |
|
192 | 192 | # |
|
193 | 193 | # nBaud = None |
|
194 | 194 | # |
|
195 | 195 | # code = None |
|
196 | 196 | |
|
197 | 197 | flagDecodeData = False # asumo q la data no esta decodificada |
|
198 | 198 | |
|
199 | 199 | flagDeflipData = False # asumo q la data no esta sin flip |
|
200 | 200 | |
|
201 | 201 | flagShiftFFT = False |
|
202 | 202 | |
|
203 | 203 | # ippSeconds = None |
|
204 | 204 | |
|
205 | 205 | # timeInterval = None |
|
206 | 206 | |
|
207 | 207 | nCohInt = None |
|
208 | 208 | |
|
209 | 209 | # noise = None |
|
210 | 210 | |
|
211 | 211 | windowOfFilter = 1 |
|
212 | 212 | |
|
213 | 213 | # Speed of ligth |
|
214 | 214 | C = 3e8 |
|
215 | 215 | |
|
216 | 216 | frequency = 49.92e6 |
|
217 | 217 | |
|
218 | 218 | realtime = False |
|
219 | 219 | |
|
220 | 220 | beacon_heiIndexList = None |
|
221 | 221 | |
|
222 | 222 | last_block = None |
|
223 | 223 | |
|
224 | 224 | blocknow = None |
|
225 | 225 | |
|
226 | 226 | azimuth = None |
|
227 | 227 | |
|
228 | 228 | zenith = None |
|
229 | 229 | |
|
230 | 230 | beam = Beam() |
|
231 | 231 | |
|
232 | 232 | profileIndex = None |
|
233 | 233 | |
|
234 | 234 | def getNoise(self): |
|
235 | 235 | |
|
236 | 236 | raise NotImplementedError |
|
237 | 237 | |
|
238 | 238 | def getNChannels(self): |
|
239 | 239 | |
|
240 | 240 | return len(self.channelList) |
|
241 | 241 | |
|
242 | 242 | def getChannelIndexList(self): |
|
243 | 243 | |
|
244 | 244 | return range(self.nChannels) |
|
245 | 245 | |
|
246 | 246 | def getNHeights(self): |
|
247 | 247 | |
|
248 | 248 | return len(self.heightList) |
|
249 | 249 | |
|
250 | 250 | def getHeiRange(self, extrapoints=0): |
|
251 | 251 | |
|
252 | 252 | heis = self.heightList |
|
253 | 253 | # deltah = self.heightList[1] - self.heightList[0] |
|
254 | 254 | # |
|
255 | 255 | # heis.append(self.heightList[-1]) |
|
256 | 256 | |
|
257 | 257 | return heis |
|
258 | 258 | |
|
259 | 259 | def getDeltaH(self): |
|
260 | 260 | |
|
261 | 261 | delta = self.heightList[1] - self.heightList[0] |
|
262 | 262 | |
|
263 | 263 | return delta |
|
264 | 264 | |
|
265 | 265 | def getltctime(self): |
|
266 | 266 | |
|
267 | 267 | if self.useLocalTime: |
|
268 | 268 | return self.utctime - self.timeZone * 60 |
|
269 | 269 | |
|
270 | 270 | return self.utctime |
|
271 | 271 | |
|
272 | 272 | def getDatatime(self): |
|
273 | 273 | |
|
274 | 274 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
275 | 275 | return datatimeValue |
|
276 | 276 | |
|
277 | 277 | def getTimeRange(self): |
|
278 | 278 | |
|
279 | 279 | datatime = [] |
|
280 | 280 | |
|
281 | 281 | datatime.append(self.ltctime) |
|
282 | 282 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
283 | 283 | |
|
284 | 284 | datatime = numpy.array(datatime) |
|
285 | 285 | |
|
286 | 286 | return datatime |
|
287 | 287 | |
|
288 | 288 | def getFmaxTimeResponse(self): |
|
289 | 289 | |
|
290 | 290 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
291 | 291 | |
|
292 | 292 | PRF = 1. / (period * self.nCohInt) |
|
293 | 293 | |
|
294 | 294 | fmax = PRF |
|
295 | 295 | |
|
296 | 296 | return fmax |
|
297 | 297 | |
|
298 | 298 | def getFmax(self): |
|
299 | 299 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
300 | #print "ippSeconds",self.ippSeconds | |
|
301 | #print "nCohInt",self.nIncohInt | |
|
302 | #print PRF | |
|
303 | #import time | |
|
304 | #time.sleep(30) | |
|
300 | 305 | fmax = PRF |
|
301 | 306 | return fmax |
|
302 | 307 | |
|
303 | 308 | def getVmax(self): |
|
304 | 309 | |
|
305 | 310 | _lambda = self.C / self.frequency |
|
306 | 311 | |
|
307 | 312 | vmax = self.getFmax() * _lambda / 2 |
|
308 | 313 | |
|
309 | 314 | return vmax |
|
310 | 315 | |
|
311 | 316 | def get_ippSeconds(self): |
|
312 | 317 | ''' |
|
313 | 318 | ''' |
|
314 | 319 | return self.radarControllerHeaderObj.ippSeconds |
|
315 | 320 | |
|
316 | 321 | def set_ippSeconds(self, ippSeconds): |
|
317 | 322 | ''' |
|
318 | 323 | ''' |
|
319 | 324 | |
|
320 | 325 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
321 | 326 | |
|
322 | 327 | return |
|
323 | 328 | |
|
324 | 329 | def get_dtype(self): |
|
325 | 330 | ''' |
|
326 | 331 | ''' |
|
327 | 332 | return getNumpyDtype(self.datatype) |
|
328 | 333 | |
|
329 | 334 | def set_dtype(self, numpyDtype): |
|
330 | 335 | ''' |
|
331 | 336 | ''' |
|
332 | 337 | |
|
333 | 338 | self.datatype = getDataTypeCode(numpyDtype) |
|
334 | 339 | |
|
335 | 340 | def get_code(self): |
|
336 | 341 | ''' |
|
337 | 342 | ''' |
|
338 | 343 | return self.radarControllerHeaderObj.code |
|
339 | 344 | |
|
340 | 345 | def set_code(self, code): |
|
341 | 346 | ''' |
|
342 | 347 | ''' |
|
343 | 348 | self.radarControllerHeaderObj.code = code |
|
344 | 349 | |
|
345 | 350 | return |
|
346 | 351 | |
|
347 | 352 | def get_ncode(self): |
|
348 | 353 | ''' |
|
349 | 354 | ''' |
|
350 | 355 | return self.radarControllerHeaderObj.nCode |
|
351 | 356 | |
|
352 | 357 | def set_ncode(self, nCode): |
|
353 | 358 | ''' |
|
354 | 359 | ''' |
|
355 | 360 | self.radarControllerHeaderObj.nCode = nCode |
|
356 | 361 | |
|
357 | 362 | return |
|
358 | 363 | |
|
359 | 364 | def get_nbaud(self): |
|
360 | 365 | ''' |
|
361 | 366 | ''' |
|
362 | 367 | return self.radarControllerHeaderObj.nBaud |
|
363 | 368 | |
|
364 | 369 | def set_nbaud(self, nBaud): |
|
365 | 370 | ''' |
|
366 | 371 | ''' |
|
367 | 372 | self.radarControllerHeaderObj.nBaud = nBaud |
|
368 | 373 | |
|
369 | 374 | return |
|
370 | 375 | |
|
371 | 376 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
372 | 377 | channelIndexList = property( |
|
373 | 378 | getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
374 | 379 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
375 | 380 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
376 | 381 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
377 | 382 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
378 | 383 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
379 | 384 | dtype = property(get_dtype, set_dtype) |
|
380 | 385 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
381 | 386 | code = property(get_code, set_code) |
|
382 | 387 | nCode = property(get_ncode, set_ncode) |
|
383 | 388 | nBaud = property(get_nbaud, set_nbaud) |
|
384 | 389 | |
|
385 | 390 | |
|
386 | 391 | class Voltage(JROData): |
|
387 | 392 | |
|
388 | 393 | # data es un numpy array de 2 dmensiones (canales, alturas) |
|
389 | 394 | data = None |
|
390 | 395 | |
|
391 | 396 | def __init__(self): |
|
392 | 397 | ''' |
|
393 | 398 | Constructor |
|
394 | 399 | ''' |
|
395 | 400 | |
|
396 | 401 | self.useLocalTime = True |
|
397 | 402 | |
|
398 | 403 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
399 | 404 | |
|
400 | 405 | self.systemHeaderObj = SystemHeader() |
|
401 | 406 | |
|
402 | 407 | self.type = "Voltage" |
|
403 | 408 | |
|
404 | 409 | self.data = None |
|
405 | 410 | |
|
406 | 411 | # self.dtype = None |
|
407 | 412 | |
|
408 | 413 | # self.nChannels = 0 |
|
409 | 414 | |
|
410 | 415 | # self.nHeights = 0 |
|
411 | 416 | |
|
412 | 417 | self.nProfiles = None |
|
413 | 418 | |
|
414 | 419 | self.heightList = None |
|
415 | 420 | |
|
416 | 421 | self.channelList = None |
|
417 | 422 | |
|
418 | 423 | # self.channelIndexList = None |
|
419 | 424 | |
|
420 | 425 | self.flagNoData = True |
|
421 | 426 | |
|
422 | 427 | self.flagDiscontinuousBlock = False |
|
423 | 428 | |
|
424 | 429 | self.utctime = None |
|
425 | 430 | |
|
426 | 431 | self.timeZone = None |
|
427 | 432 | |
|
428 | 433 | self.dstFlag = None |
|
429 | 434 | |
|
430 | 435 | self.errorCount = None |
|
431 | 436 | |
|
432 | 437 | self.nCohInt = None |
|
433 | 438 | |
|
434 | 439 | self.blocksize = None |
|
435 | 440 | |
|
436 | 441 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
437 | 442 | |
|
438 | 443 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
439 | 444 | |
|
440 | 445 | self.flagShiftFFT = False |
|
441 | 446 | |
|
442 | 447 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
443 | 448 | |
|
444 | 449 | self.profileIndex = 0 |
|
445 | 450 | |
|
446 | 451 | def getNoisebyHildebrand(self, channel=None): |
|
447 | 452 | """ |
|
448 | 453 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
449 | 454 | |
|
450 | 455 | Return: |
|
451 | 456 | noiselevel |
|
452 | 457 | """ |
|
453 | 458 | |
|
454 | 459 | if channel != None: |
|
455 | 460 | data = self.data[channel] |
|
456 | 461 | nChannels = 1 |
|
457 | 462 | else: |
|
458 | 463 | data = self.data |
|
459 | 464 | nChannels = self.nChannels |
|
460 | 465 | |
|
461 | 466 | noise = numpy.zeros(nChannels) |
|
462 | 467 | power = data * numpy.conjugate(data) |
|
463 | 468 | |
|
464 | 469 | for thisChannel in range(nChannels): |
|
465 | 470 | if nChannels == 1: |
|
466 | 471 | daux = power[:].real |
|
467 | 472 | else: |
|
468 | 473 | daux = power[thisChannel, :].real |
|
469 | 474 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
470 | 475 | |
|
471 | 476 | return noise |
|
472 | 477 | |
|
473 | 478 | def getNoise(self, type=1, channel=None): |
|
474 | 479 | |
|
475 | 480 | if type == 1: |
|
476 | 481 | noise = self.getNoisebyHildebrand(channel) |
|
477 | 482 | |
|
478 | 483 | return noise |
|
479 | 484 | |
|
480 | 485 | def getPower(self, channel=None): |
|
481 | 486 | |
|
482 | 487 | if channel != None: |
|
483 | 488 | data = self.data[channel] |
|
484 | 489 | else: |
|
485 | 490 | data = self.data |
|
486 | 491 | |
|
487 | 492 | power = data * numpy.conjugate(data) |
|
488 | 493 | powerdB = 10 * numpy.log10(power.real) |
|
489 | 494 | powerdB = numpy.squeeze(powerdB) |
|
490 | 495 | |
|
491 | 496 | return powerdB |
|
492 | 497 | |
|
493 | 498 | def getTimeInterval(self): |
|
494 | 499 | |
|
495 | 500 | timeInterval = self.ippSeconds * self.nCohInt |
|
496 | 501 | |
|
497 | 502 | return timeInterval |
|
498 | 503 | |
|
499 | 504 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
500 | 505 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
501 | 506 | |
|
502 | 507 | |
|
503 | 508 | class Spectra(JROData): |
|
504 | 509 | |
|
505 | 510 | # data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
506 | 511 | data_spc = None |
|
507 | 512 | |
|
508 | 513 | # data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
509 | 514 | data_cspc = None |
|
510 | 515 | |
|
511 | 516 | # data dc es un numpy array de 2 dmensiones (canales, alturas) |
|
512 | 517 | data_dc = None |
|
513 | 518 | |
|
514 | 519 | # data power |
|
515 | 520 | data_pwr = None |
|
516 | 521 | |
|
517 | 522 | nFFTPoints = None |
|
518 | 523 | |
|
519 | 524 | # nPairs = None |
|
520 | 525 | |
|
521 | 526 | pairsList = None |
|
522 | 527 | |
|
523 | 528 | nIncohInt = None |
|
524 | 529 | |
|
525 | 530 | wavelength = None # Necesario para cacular el rango de velocidad desde la frecuencia |
|
526 | 531 | |
|
527 | 532 | nCohInt = None # se requiere para determinar el valor de timeInterval |
|
528 | 533 | |
|
529 | 534 | ippFactor = None |
|
530 | 535 | |
|
531 | 536 | profileIndex = 0 |
|
532 | 537 | |
|
533 | 538 | plotting = "spectra" |
|
534 | 539 | |
|
535 | 540 | def __init__(self): |
|
536 | 541 | ''' |
|
537 | 542 | Constructor |
|
538 | 543 | ''' |
|
539 | 544 | |
|
540 | 545 | self.useLocalTime = True |
|
541 | 546 | |
|
542 | 547 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
543 | 548 | |
|
544 | 549 | self.systemHeaderObj = SystemHeader() |
|
545 | 550 | |
|
546 | 551 | self.type = "Spectra" |
|
547 | 552 | |
|
548 | 553 | # self.data = None |
|
549 | 554 | |
|
550 | 555 | # self.dtype = None |
|
551 | 556 | |
|
552 | 557 | # self.nChannels = 0 |
|
553 | 558 | |
|
554 | 559 | # self.nHeights = 0 |
|
555 | 560 | |
|
556 | 561 | self.nProfiles = None |
|
557 | 562 | |
|
558 | 563 | self.heightList = None |
|
559 | 564 | |
|
560 | 565 | self.channelList = None |
|
561 | 566 | |
|
562 | 567 | # self.channelIndexList = None |
|
563 | 568 | |
|
564 | 569 | self.pairsList = None |
|
565 | 570 | |
|
566 | 571 | self.flagNoData = True |
|
567 | 572 | |
|
568 | 573 | self.flagDiscontinuousBlock = False |
|
569 | 574 | |
|
570 | 575 | self.utctime = None |
|
571 | 576 | |
|
572 | 577 | self.nCohInt = None |
|
573 | 578 | |
|
574 | 579 | self.nIncohInt = None |
|
575 | 580 | |
|
576 | 581 | self.blocksize = None |
|
577 | 582 | |
|
578 | 583 | self.nFFTPoints = None |
|
579 | 584 | |
|
580 | 585 | self.wavelength = None |
|
581 | 586 | |
|
582 | 587 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
583 | 588 | |
|
584 | 589 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
585 | 590 | |
|
586 | 591 | self.flagShiftFFT = False |
|
587 | 592 | |
|
588 | 593 | self.ippFactor = 1 |
|
589 | 594 | |
|
590 | 595 | #self.noise = None |
|
591 | 596 | |
|
592 | 597 | self.beacon_heiIndexList = [] |
|
593 | 598 | |
|
594 | 599 | self.noise_estimation = None |
|
595 | 600 | |
|
596 | 601 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
597 | 602 | """ |
|
598 | 603 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
599 | 604 | |
|
600 | 605 | Return: |
|
601 | 606 | noiselevel |
|
602 | 607 | """ |
|
603 | 608 | |
|
604 | 609 | noise = numpy.zeros(self.nChannels) |
|
605 | 610 | |
|
606 | 611 | for channel in range(self.nChannels): |
|
607 | 612 | daux = self.data_spc[channel, |
|
608 | 613 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
609 | 614 | |
|
610 | 615 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
611 | 616 | |
|
612 | 617 | return noise |
|
613 | 618 | |
|
614 | 619 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
615 | 620 | |
|
616 | 621 | if self.noise_estimation is not None: |
|
617 | 622 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
618 | 623 | return self.noise_estimation |
|
619 | 624 | else: |
|
620 | 625 | noise = self.getNoisebyHildebrand( |
|
621 | 626 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
622 | 627 | return noise |
|
623 | 628 | |
|
624 | 629 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
625 | 630 | |
|
626 | 631 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
627 | 632 | freqrange = deltafreq * \ |
|
628 | 633 | (numpy.arange(self.nFFTPoints + extrapoints) - |
|
629 | 634 | self.nFFTPoints / 2.) - deltafreq / 2 |
|
630 | 635 | |
|
631 | 636 | return freqrange |
|
632 | 637 | |
|
633 | 638 | def getAcfRange(self, extrapoints=0): |
|
639 | #print "NFFTPoints",self.nFFTPoints | |
|
640 | #print "IPPFactor", self.ippFactor | |
|
634 | 641 | deltafreq = 10. / ( self.getFmax() / (self.nFFTPoints * self.ippFactor) ) |
|
642 | #print "deltafreq",deltafreq | |
|
643 | #import time | |
|
644 | #time.sleep(30) | |
|
635 | 645 | freqrange = deltafreq * \ |
|
636 | 646 | (numpy.arange(self.nFFTPoints + extrapoints) - |
|
637 | 647 | self.nFFTPoints / 2.) - deltafreq / 2 |
|
638 | 648 | |
|
639 | 649 | return freqrange |
|
640 | 650 | |
|
641 | 651 | def getFreqRange(self, extrapoints=0): |
|
642 | 652 | |
|
643 | 653 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
644 | 654 | #print "deltafreq", deltafreq |
|
645 | 655 | freqrange = deltafreq * \ |
|
646 | 656 | (numpy.arange(self.nFFTPoints + extrapoints) - |
|
647 | 657 | self.nFFTPoints / 2.) - deltafreq / 2 |
|
648 | 658 | #print "freqrange",freqrange |
|
649 | 659 | return freqrange |
|
650 | 660 | |
|
651 | 661 | def getVelRange(self, extrapoints=0): |
|
652 | 662 | |
|
653 | 663 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
654 | 664 | velrange = deltav * (numpy.arange(self.nFFTPoints + |
|
655 | 665 | extrapoints) - self.nFFTPoints / 2.) # - deltav/2 |
|
656 | 666 | |
|
657 | 667 | return velrange |
|
658 | 668 | |
|
659 | 669 | def getNPairs(self): |
|
660 | 670 | |
|
661 | 671 | return len(self.pairsList) |
|
662 | 672 | |
|
663 | 673 | def getPairsIndexList(self): |
|
664 | 674 | |
|
665 | 675 | return range(self.nPairs) |
|
666 | 676 | |
|
667 | 677 | def getNormFactor(self): |
|
668 | 678 | |
|
669 | 679 | pwcode = 1 |
|
670 | 680 | |
|
671 | 681 | if self.flagDecodeData: |
|
672 | 682 | pwcode = numpy.sum(self.code[0]**2) |
|
673 | 683 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
674 | 684 | normFactor = self.nProfiles * self.nIncohInt * \ |
|
675 | 685 | self.nCohInt * pwcode * self.windowOfFilter |
|
676 | 686 | |
|
677 | 687 | return normFactor |
|
678 | 688 | |
|
679 | 689 | def getFlagCspc(self): |
|
680 | 690 | |
|
681 | 691 | if self.data_cspc is None: |
|
682 | 692 | return True |
|
683 | 693 | |
|
684 | 694 | return False |
|
685 | 695 | |
|
686 | 696 | def getFlagDc(self): |
|
687 | 697 | |
|
688 | 698 | if self.data_dc is None: |
|
689 | 699 | return True |
|
690 | 700 | |
|
691 | 701 | return False |
|
692 | 702 | |
|
693 | 703 | def getTimeInterval(self): |
|
694 | 704 | |
|
695 | 705 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
696 | 706 | |
|
697 | 707 | return timeInterval |
|
698 | 708 | |
|
699 | 709 | def getPower(self): |
|
700 | 710 | |
|
701 | 711 | factor = self.normFactor |
|
702 | 712 | z = self.data_spc / factor |
|
703 | 713 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
704 | 714 | avg = numpy.average(z, axis=1) |
|
705 | 715 | |
|
706 | 716 | return 10 * numpy.log10(avg) |
|
707 | 717 | |
|
708 | 718 | def getCoherence(self, pairsList=None, phase=False): |
|
709 | 719 | |
|
710 | 720 | z = [] |
|
711 | 721 | if pairsList is None: |
|
712 | 722 | pairsIndexList = self.pairsIndexList |
|
713 | 723 | else: |
|
714 | 724 | pairsIndexList = [] |
|
715 | 725 | for pair in pairsList: |
|
716 | 726 | if pair not in self.pairsList: |
|
717 | 727 | raise ValueError, "Pair %s is not in dataOut.pairsList" % ( |
|
718 | 728 | pair) |
|
719 | 729 | pairsIndexList.append(self.pairsList.index(pair)) |
|
720 | 730 | for i in range(len(pairsIndexList)): |
|
721 | 731 | pair = self.pairsList[pairsIndexList[i]] |
|
722 | 732 | ccf = numpy.average( |
|
723 | 733 | self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
724 | 734 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
725 | 735 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
726 | 736 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
727 | 737 | if phase: |
|
728 | 738 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
729 | 739 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
730 | 740 | else: |
|
731 | 741 | data = numpy.abs(avgcoherenceComplex) |
|
732 | 742 | |
|
733 | 743 | z.append(data) |
|
734 | 744 | |
|
735 | 745 | return numpy.array(z) |
|
736 | 746 | |
|
737 | 747 | def setValue(self, value): |
|
738 | 748 | |
|
739 | 749 | print "This property should not be initialized" |
|
740 | 750 | |
|
741 | 751 | return |
|
742 | 752 | |
|
743 | 753 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
744 | 754 | pairsIndexList = property( |
|
745 | 755 | getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") |
|
746 | 756 | normFactor = property(getNormFactor, setValue, |
|
747 | 757 | "I'm the 'getNormFactor' property.") |
|
748 | 758 | flag_cspc = property(getFlagCspc, setValue) |
|
749 | 759 | flag_dc = property(getFlagDc, setValue) |
|
750 | 760 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
751 | 761 | timeInterval = property(getTimeInterval, setValue, |
|
752 | 762 | "I'm the 'timeInterval' property") |
|
753 | 763 | |
|
754 | 764 | |
|
755 | 765 | class SpectraHeis(Spectra): |
|
756 | 766 | |
|
757 | 767 | data_spc = None |
|
758 | 768 | |
|
759 | 769 | data_cspc = None |
|
760 | 770 | |
|
761 | 771 | data_dc = None |
|
762 | 772 | |
|
763 | 773 | nFFTPoints = None |
|
764 | 774 | |
|
765 | 775 | # nPairs = None |
|
766 | 776 | |
|
767 | 777 | pairsList = None |
|
768 | 778 | |
|
769 | 779 | nCohInt = None |
|
770 | 780 | |
|
771 | 781 | nIncohInt = None |
|
772 | 782 | |
|
773 | 783 | def __init__(self): |
|
774 | 784 | |
|
775 | 785 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
776 | 786 | |
|
777 | 787 | self.systemHeaderObj = SystemHeader() |
|
778 | 788 | |
|
779 | 789 | self.type = "SpectraHeis" |
|
780 | 790 | |
|
781 | 791 | # self.dtype = None |
|
782 | 792 | |
|
783 | 793 | # self.nChannels = 0 |
|
784 | 794 | |
|
785 | 795 | # self.nHeights = 0 |
|
786 | 796 | |
|
787 | 797 | self.nProfiles = None |
|
788 | 798 | |
|
789 | 799 | self.heightList = None |
|
790 | 800 | |
|
791 | 801 | self.channelList = None |
|
792 | 802 | |
|
793 | 803 | # self.channelIndexList = None |
|
794 | 804 | |
|
795 | 805 | self.flagNoData = True |
|
796 | 806 | |
|
797 | 807 | self.flagDiscontinuousBlock = False |
|
798 | 808 | |
|
799 | 809 | # self.nPairs = 0 |
|
800 | 810 | |
|
801 | 811 | self.utctime = None |
|
802 | 812 | |
|
803 | 813 | self.blocksize = None |
|
804 | 814 | |
|
805 | 815 | self.profileIndex = 0 |
|
806 | 816 | |
|
807 | 817 | self.nCohInt = 1 |
|
808 | 818 | |
|
809 | 819 | self.nIncohInt = 1 |
|
810 | 820 | |
|
811 | 821 | def getNormFactor(self): |
|
812 | 822 | pwcode = 1 |
|
813 | 823 | if self.flagDecodeData: |
|
814 | 824 | pwcode = numpy.sum(self.code[0]**2) |
|
815 | 825 | |
|
816 | 826 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
817 | 827 | |
|
818 | 828 | return normFactor |
|
819 | 829 | |
|
820 | 830 | def getTimeInterval(self): |
|
821 | 831 | |
|
822 | 832 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
823 | 833 | |
|
824 | 834 | return timeInterval |
|
825 | 835 | |
|
826 | 836 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
827 | 837 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
828 | 838 | |
|
829 | 839 | |
|
830 | 840 | class Fits(JROData): |
|
831 | 841 | |
|
832 | 842 | heightList = None |
|
833 | 843 | |
|
834 | 844 | channelList = None |
|
835 | 845 | |
|
836 | 846 | flagNoData = True |
|
837 | 847 | |
|
838 | 848 | flagDiscontinuousBlock = False |
|
839 | 849 | |
|
840 | 850 | useLocalTime = False |
|
841 | 851 | |
|
842 | 852 | utctime = None |
|
843 | 853 | |
|
844 | 854 | timeZone = None |
|
845 | 855 | |
|
846 | 856 | # ippSeconds = None |
|
847 | 857 | |
|
848 | 858 | # timeInterval = None |
|
849 | 859 | |
|
850 | 860 | nCohInt = None |
|
851 | 861 | |
|
852 | 862 | nIncohInt = None |
|
853 | 863 | |
|
854 | 864 | noise = None |
|
855 | 865 | |
|
856 | 866 | windowOfFilter = 1 |
|
857 | 867 | |
|
858 | 868 | # Speed of ligth |
|
859 | 869 | C = 3e8 |
|
860 | 870 | |
|
861 | 871 | frequency = 49.92e6 |
|
862 | 872 | |
|
863 | 873 | realtime = False |
|
864 | 874 | |
|
865 | 875 | def __init__(self): |
|
866 | 876 | |
|
867 | 877 | self.type = "Fits" |
|
868 | 878 | |
|
869 | 879 | self.nProfiles = None |
|
870 | 880 | |
|
871 | 881 | self.heightList = None |
|
872 | 882 | |
|
873 | 883 | self.channelList = None |
|
874 | 884 | |
|
875 | 885 | # self.channelIndexList = None |
|
876 | 886 | |
|
877 | 887 | self.flagNoData = True |
|
878 | 888 | |
|
879 | 889 | self.utctime = None |
|
880 | 890 | |
|
881 | 891 | self.nCohInt = 1 |
|
882 | 892 | |
|
883 | 893 | self.nIncohInt = 1 |
|
884 | 894 | |
|
885 | 895 | self.useLocalTime = True |
|
886 | 896 | |
|
887 | 897 | self.profileIndex = 0 |
|
888 | 898 | |
|
889 | 899 | # self.utctime = None |
|
890 | 900 | # self.timeZone = None |
|
891 | 901 | # self.ltctime = None |
|
892 | 902 | # self.timeInterval = None |
|
893 | 903 | # self.header = None |
|
894 | 904 | # self.data_header = None |
|
895 | 905 | # self.data = None |
|
896 | 906 | # self.datatime = None |
|
897 | 907 | # self.flagNoData = False |
|
898 | 908 | # self.expName = '' |
|
899 | 909 | # self.nChannels = None |
|
900 | 910 | # self.nSamples = None |
|
901 | 911 | # self.dataBlocksPerFile = None |
|
902 | 912 | # self.comments = '' |
|
903 | 913 | # |
|
904 | 914 | |
|
905 | 915 | def getltctime(self): |
|
906 | 916 | |
|
907 | 917 | if self.useLocalTime: |
|
908 | 918 | return self.utctime - self.timeZone * 60 |
|
909 | 919 | |
|
910 | 920 | return self.utctime |
|
911 | 921 | |
|
912 | 922 | def getDatatime(self): |
|
913 | 923 | |
|
914 | 924 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
915 | 925 | return datatime |
|
916 | 926 | |
|
917 | 927 | def getTimeRange(self): |
|
918 | 928 | |
|
919 | 929 | datatime = [] |
|
920 | 930 | |
|
921 | 931 | datatime.append(self.ltctime) |
|
922 | 932 | datatime.append(self.ltctime + self.timeInterval) |
|
923 | 933 | |
|
924 | 934 | datatime = numpy.array(datatime) |
|
925 | 935 | |
|
926 | 936 | return datatime |
|
927 | 937 | |
|
928 | 938 | def getHeiRange(self): |
|
929 | 939 | |
|
930 | 940 | heis = self.heightList |
|
931 | 941 | |
|
932 | 942 | return heis |
|
933 | 943 | |
|
934 | 944 | def getNHeights(self): |
|
935 | 945 | |
|
936 | 946 | return len(self.heightList) |
|
937 | 947 | |
|
938 | 948 | def getNChannels(self): |
|
939 | 949 | |
|
940 | 950 | return len(self.channelList) |
|
941 | 951 | |
|
942 | 952 | def getChannelIndexList(self): |
|
943 | 953 | |
|
944 | 954 | return range(self.nChannels) |
|
945 | 955 | |
|
946 | 956 | def getNoise(self, type=1): |
|
947 | 957 | |
|
948 | 958 | #noise = numpy.zeros(self.nChannels) |
|
949 | 959 | |
|
950 | 960 | if type == 1: |
|
951 | 961 | noise = self.getNoisebyHildebrand() |
|
952 | 962 | |
|
953 | 963 | if type == 2: |
|
954 | 964 | noise = self.getNoisebySort() |
|
955 | 965 | |
|
956 | 966 | if type == 3: |
|
957 | 967 | noise = self.getNoisebyWindow() |
|
958 | 968 | |
|
959 | 969 | return noise |
|
960 | 970 | |
|
961 | 971 | def getTimeInterval(self): |
|
962 | 972 | |
|
963 | 973 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
964 | 974 | |
|
965 | 975 | return timeInterval |
|
966 | 976 | |
|
967 | 977 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
968 | 978 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
969 | 979 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
970 | 980 | channelIndexList = property( |
|
971 | 981 | getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
972 | 982 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
973 | 983 | |
|
974 | 984 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
975 | 985 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
976 | 986 | |
|
977 | 987 | |
|
978 | 988 | class Correlation(JROData): |
|
979 | 989 | |
|
980 | 990 | noise = None |
|
981 | 991 | |
|
982 | 992 | SNR = None |
|
983 | 993 | |
|
984 | 994 | #-------------------------------------------------- |
|
985 | 995 | |
|
986 | 996 | mode = None |
|
987 | 997 | |
|
988 | 998 | split = False |
|
989 | 999 | |
|
990 | 1000 | data_cf = None |
|
991 | 1001 | |
|
992 | 1002 | lags = None |
|
993 | 1003 | |
|
994 | 1004 | lagRange = None |
|
995 | 1005 | |
|
996 | 1006 | pairsList = None |
|
997 | 1007 | |
|
998 | 1008 | normFactor = None |
|
999 | 1009 | |
|
1000 | 1010 | #-------------------------------------------------- |
|
1001 | 1011 | |
|
1002 | 1012 | # calculateVelocity = None |
|
1003 | 1013 | |
|
1004 | 1014 | nLags = None |
|
1005 | 1015 | |
|
1006 | 1016 | nPairs = None |
|
1007 | 1017 | |
|
1008 | 1018 | nAvg = None |
|
1009 | 1019 | |
|
1010 | 1020 | def __init__(self): |
|
1011 | 1021 | ''' |
|
1012 | 1022 | Constructor |
|
1013 | 1023 | ''' |
|
1014 | 1024 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1015 | 1025 | |
|
1016 | 1026 | self.systemHeaderObj = SystemHeader() |
|
1017 | 1027 | |
|
1018 | 1028 | self.type = "Correlation" |
|
1019 | 1029 | |
|
1020 | 1030 | self.data = None |
|
1021 | 1031 | |
|
1022 | 1032 | self.dtype = None |
|
1023 | 1033 | |
|
1024 | 1034 | self.nProfiles = None |
|
1025 | 1035 | |
|
1026 | 1036 | self.heightList = None |
|
1027 | 1037 | |
|
1028 | 1038 | self.channelList = None |
|
1029 | 1039 | |
|
1030 | 1040 | self.flagNoData = True |
|
1031 | 1041 | |
|
1032 | 1042 | self.flagDiscontinuousBlock = False |
|
1033 | 1043 | |
|
1034 | 1044 | self.utctime = None |
|
1035 | 1045 | |
|
1036 | 1046 | self.timeZone = None |
|
1037 | 1047 | |
|
1038 | 1048 | self.dstFlag = None |
|
1039 | 1049 | |
|
1040 | 1050 | self.errorCount = None |
|
1041 | 1051 | |
|
1042 | 1052 | self.blocksize = None |
|
1043 | 1053 | |
|
1044 | 1054 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
1045 | 1055 | |
|
1046 | 1056 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
1047 | 1057 | |
|
1048 | 1058 | self.pairsList = None |
|
1049 | 1059 | |
|
1050 | 1060 | self.nPoints = None |
|
1051 | 1061 | |
|
1052 | 1062 | def getPairsList(self): |
|
1053 | 1063 | |
|
1054 | 1064 | return self.pairsList |
|
1055 | 1065 | |
|
1056 | 1066 | def getNoise(self, mode=2): |
|
1057 | 1067 | |
|
1058 | 1068 | indR = numpy.where(self.lagR == 0)[0][0] |
|
1059 | 1069 | indT = numpy.where(self.lagT == 0)[0][0] |
|
1060 | 1070 | |
|
1061 | 1071 | jspectra0 = self.data_corr[:, :, indR, :] |
|
1062 | 1072 | jspectra = copy.copy(jspectra0) |
|
1063 | 1073 | |
|
1064 | 1074 | num_chan = jspectra.shape[0] |
|
1065 | 1075 | num_hei = jspectra.shape[2] |
|
1066 | 1076 | |
|
1067 | 1077 | freq_dc = jspectra.shape[1] / 2 |
|
1068 | 1078 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
1069 | 1079 | |
|
1070 | 1080 | if ind_vel[0] < 0: |
|
1071 | 1081 | ind_vel[range(0, 1)] = ind_vel[range(0, 1)] + self.num_prof |
|
1072 | 1082 | |
|
1073 | 1083 | if mode == 1: |
|
1074 | 1084 | jspectra[:, freq_dc, :] = ( |
|
1075 | 1085 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
1076 | 1086 | |
|
1077 | 1087 | if mode == 2: |
|
1078 | 1088 | |
|
1079 | 1089 | vel = numpy.array([-2, -1, 1, 2]) |
|
1080 | 1090 | xx = numpy.zeros([4, 4]) |
|
1081 | 1091 | |
|
1082 | 1092 | for fil in range(4): |
|
1083 | 1093 | xx[fil, :] = vel[fil]**numpy.asarray(range(4)) |
|
1084 | 1094 | |
|
1085 | 1095 | xx_inv = numpy.linalg.inv(xx) |
|
1086 | 1096 | xx_aux = xx_inv[0, :] |
|
1087 | 1097 | |
|
1088 | 1098 | for ich in range(num_chan): |
|
1089 | 1099 | yy = jspectra[ich, ind_vel, :] |
|
1090 | 1100 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
1091 | 1101 | |
|
1092 | 1102 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
1093 | 1103 | cjunkid = sum(junkid) |
|
1094 | 1104 | |
|
1095 | 1105 | if cjunkid.any(): |
|
1096 | 1106 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
1097 | 1107 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
1098 | 1108 | |
|
1099 | 1109 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
1100 | 1110 | |
|
1101 | 1111 | return noise |
|
1102 | 1112 | |
|
1103 | 1113 | def getTimeInterval(self): |
|
1104 | 1114 | |
|
1105 | 1115 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles |
|
1106 | 1116 | |
|
1107 | 1117 | return timeInterval |
|
1108 | 1118 | |
|
1109 | 1119 | def splitFunctions(self): |
|
1110 | 1120 | |
|
1111 | 1121 | pairsList = self.pairsList |
|
1112 | 1122 | ccf_pairs = [] |
|
1113 | 1123 | acf_pairs = [] |
|
1114 | 1124 | ccf_ind = [] |
|
1115 | 1125 | acf_ind = [] |
|
1116 | 1126 | for l in range(len(pairsList)): |
|
1117 | 1127 | chan0 = pairsList[l][0] |
|
1118 | 1128 | chan1 = pairsList[l][1] |
|
1119 | 1129 | |
|
1120 | 1130 | # Obteniendo pares de Autocorrelacion |
|
1121 | 1131 | if chan0 == chan1: |
|
1122 | 1132 | acf_pairs.append(chan0) |
|
1123 | 1133 | acf_ind.append(l) |
|
1124 | 1134 | else: |
|
1125 | 1135 | ccf_pairs.append(pairsList[l]) |
|
1126 | 1136 | ccf_ind.append(l) |
|
1127 | 1137 | |
|
1128 | 1138 | data_acf = self.data_cf[acf_ind] |
|
1129 | 1139 | data_ccf = self.data_cf[ccf_ind] |
|
1130 | 1140 | |
|
1131 | 1141 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
1132 | 1142 | |
|
1133 | 1143 | def getNormFactor(self): |
|
1134 | 1144 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
1135 | 1145 | acf_pairs = numpy.array(acf_pairs) |
|
1136 | 1146 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
1137 | 1147 | |
|
1138 | 1148 | for p in range(self.nPairs): |
|
1139 | 1149 | pair = self.pairsList[p] |
|
1140 | 1150 | |
|
1141 | 1151 | ch0 = pair[0] |
|
1142 | 1152 | ch1 = pair[1] |
|
1143 | 1153 | |
|
1144 | 1154 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
1145 | 1155 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
1146 | 1156 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
1147 | 1157 | |
|
1148 | 1158 | return normFactor |
|
1149 | 1159 | |
|
1150 | 1160 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1151 | 1161 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") |
|
1152 | 1162 | |
|
1153 | 1163 | |
|
1154 | 1164 | class Parameters(Spectra): |
|
1155 | 1165 | |
|
1156 | 1166 | experimentInfo = None # Information about the experiment |
|
1157 | 1167 | |
|
1158 | 1168 | # Information from previous data |
|
1159 | 1169 | |
|
1160 | 1170 | inputUnit = None # Type of data to be processed |
|
1161 | 1171 | |
|
1162 | 1172 | operation = None # Type of operation to parametrize |
|
1163 | 1173 | |
|
1164 | 1174 | # normFactor = None #Normalization Factor |
|
1165 | 1175 | |
|
1166 | 1176 | groupList = None # List of Pairs, Groups, etc |
|
1167 | 1177 | |
|
1168 | 1178 | # Parameters |
|
1169 | 1179 | |
|
1170 | 1180 | data_param = None # Parameters obtained |
|
1171 | 1181 | |
|
1172 | 1182 | data_pre = None # Data Pre Parametrization |
|
1173 | 1183 | |
|
1174 | 1184 | data_SNR = None # Signal to Noise Ratio |
|
1175 | 1185 | |
|
1176 | 1186 | # heightRange = None #Heights |
|
1177 | 1187 | |
|
1178 | 1188 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
1179 | 1189 | |
|
1180 | 1190 | # noise = None #Noise Potency |
|
1181 | 1191 | |
|
1182 | 1192 | utctimeInit = None # Initial UTC time |
|
1183 | 1193 | |
|
1184 | 1194 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
1185 | 1195 | |
|
1186 | 1196 | useLocalTime = True |
|
1187 | 1197 | |
|
1188 | 1198 | # Fitting |
|
1189 | 1199 | |
|
1190 | 1200 | data_error = None # Error of the estimation |
|
1191 | 1201 | |
|
1192 | 1202 | constants = None |
|
1193 | 1203 | |
|
1194 | 1204 | library = None |
|
1195 | 1205 | |
|
1196 | 1206 | # Output signal |
|
1197 | 1207 | |
|
1198 | 1208 | outputInterval = None # Time interval to calculate output signal in seconds |
|
1199 | 1209 | |
|
1200 | 1210 | data_output = None # Out signal |
|
1201 | 1211 | |
|
1202 | 1212 | nAvg = None |
|
1203 | 1213 | |
|
1204 | 1214 | noise_estimation = None |
|
1205 | 1215 | |
|
1206 | 1216 | GauSPC = None # Fit gaussian SPC |
|
1207 | 1217 | |
|
1208 | 1218 | def __init__(self): |
|
1209 | 1219 | ''' |
|
1210 | 1220 | Constructor |
|
1211 | 1221 | ''' |
|
1212 | 1222 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1213 | 1223 | |
|
1214 | 1224 | self.systemHeaderObj = SystemHeader() |
|
1215 | 1225 | |
|
1216 | 1226 | self.type = "Parameters" |
|
1217 | 1227 | |
|
1218 | 1228 | def getTimeRange1(self, interval): |
|
1219 | 1229 | |
|
1220 | 1230 | datatime = [] |
|
1221 | 1231 | |
|
1222 | 1232 | if self.useLocalTime: |
|
1223 | 1233 | time1 = self.utctimeInit - self.timeZone * 60 |
|
1224 | 1234 | else: |
|
1225 | 1235 | time1 = self.utctimeInit |
|
1226 | 1236 | |
|
1227 | 1237 | datatime.append(time1) |
|
1228 | 1238 | datatime.append(time1 + interval) |
|
1229 | 1239 | datatime = numpy.array(datatime) |
|
1230 | 1240 | |
|
1231 | 1241 | return datatime |
|
1232 | 1242 | |
|
1233 | 1243 | def getTimeInterval(self): |
|
1234 | 1244 | |
|
1235 | 1245 | if hasattr(self, 'timeInterval1'): |
|
1236 | 1246 | return self.timeInterval1 |
|
1237 | 1247 | else: |
|
1238 | 1248 | return self.paramInterval |
|
1239 | 1249 | |
|
1240 | 1250 | def setValue(self, value): |
|
1241 | 1251 | |
|
1242 | 1252 | print "This property should not be initialized" |
|
1243 | 1253 | |
|
1244 | 1254 | return |
|
1245 | 1255 | |
|
1246 | 1256 | def getNoise(self): |
|
1247 | 1257 | |
|
1248 | 1258 | return self.spc_noise |
|
1249 | 1259 | |
|
1250 | 1260 | timeInterval = property(getTimeInterval) |
|
1251 | 1261 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
@@ -1,1520 +1,1530 | |||
|
1 | 1 | import sys |
|
2 | 2 | import numpy |
|
3 | 3 | from scipy import interpolate |
|
4 | 4 | from schainpy import cSchain |
|
5 | 5 | from jroproc_base import ProcessingUnit, Operation |
|
6 | 6 | from schainpy.model.data.jrodata import Voltage |
|
7 | 7 | from time import time |
|
8 | 8 | |
|
9 | 9 | import math |
|
10 | 10 | |
|
11 | 11 | def rep_seq(x, rep=10): |
|
12 | 12 | L = len(x) * rep |
|
13 | 13 | res = numpy.zeros(L, dtype=x.dtype) |
|
14 | 14 | idx = numpy.arange(len(x)) * rep |
|
15 | 15 | for i in numpy.arange(rep): |
|
16 | 16 | res[idx + i] = x |
|
17 | 17 | return(res) |
|
18 | 18 | |
|
19 | 19 | |
|
20 | 20 | def create_pseudo_random_code(clen=10000, seed=0): |
|
21 | 21 | """ |
|
22 | 22 | seed is a way of reproducing the random code without |
|
23 | 23 | having to store all actual codes. the seed can then |
|
24 | 24 | act as a sort of station_id. |
|
25 | 25 | |
|
26 | 26 | """ |
|
27 | 27 | numpy.random.seed(seed) |
|
28 | 28 | phases = numpy.array( |
|
29 | 29 | numpy.exp(1.0j * 2.0 * math.pi * numpy.random.random(clen)), |
|
30 | 30 | dtype=numpy.complex64, |
|
31 | 31 | ) |
|
32 | 32 | return(phases) |
|
33 | 33 | |
|
34 | 34 | |
|
35 | 35 | def periodic_convolution_matrix(envelope, rmin=0, rmax=100): |
|
36 | 36 | """ |
|
37 | 37 | we imply that the number of measurements is equal to the number of elements |
|
38 | 38 | in code |
|
39 | 39 | |
|
40 | 40 | """ |
|
41 | 41 | L = len(envelope) |
|
42 | 42 | ridx = numpy.arange(rmin, rmax) |
|
43 | 43 | A = numpy.zeros([L, rmax-rmin], dtype=numpy.complex64) |
|
44 | 44 | for i in numpy.arange(L): |
|
45 | 45 | A[i, :] = envelope[(i-ridx) % L] |
|
46 | 46 | result = {} |
|
47 | 47 | result['A'] = A |
|
48 | 48 | result['ridx'] = ridx |
|
49 | 49 | return(result) |
|
50 | 50 | |
|
51 | 51 | |
|
52 | 52 | B_cache = 0 |
|
53 | 53 | r_cache = 0 |
|
54 | 54 | B_cached = False |
|
55 | 55 | def create_estimation_matrix(code, rmin=0, rmax=1000, cache=True): |
|
56 | 56 | global B_cache |
|
57 | 57 | global r_cache |
|
58 | 58 | global B_cached |
|
59 | 59 | |
|
60 | 60 | if not cache or not B_cached: |
|
61 | 61 | r_cache = periodic_convolution_matrix( |
|
62 | 62 | envelope=code, rmin=rmin, rmax=rmax, |
|
63 | 63 | ) |
|
64 | 64 | A = r_cache['A'] |
|
65 | 65 | Ah = numpy.transpose(numpy.conjugate(A)) |
|
66 | 66 | B_cache = numpy.dot(numpy.linalg.inv(numpy.dot(Ah, A)), Ah) |
|
67 | 67 | r_cache['B'] = B_cache |
|
68 | 68 | B_cached = True |
|
69 | 69 | return(r_cache) |
|
70 | 70 | else: |
|
71 | 71 | return(r_cache) |
|
72 | 72 | |
|
73 | 73 | class VoltageProc(ProcessingUnit): |
|
74 | 74 | |
|
75 | 75 | |
|
76 | 76 | def __init__(self, **kwargs): |
|
77 | 77 | |
|
78 | 78 | ProcessingUnit.__init__(self, **kwargs) |
|
79 | 79 | |
|
80 | 80 | # self.objectDict = {} |
|
81 | 81 | self.dataOut = Voltage() |
|
82 | 82 | self.flip = 1 |
|
83 | 83 | |
|
84 | 84 | def run(self): |
|
85 | 85 | if self.dataIn.type == 'AMISR': |
|
86 | 86 | self.__updateObjFromAmisrInput() |
|
87 | 87 | |
|
88 | 88 | if self.dataIn.type == 'Voltage': |
|
89 | 89 | self.dataOut.copy(self.dataIn) |
|
90 | 90 | |
|
91 | 91 | # self.dataOut.copy(self.dataIn) |
|
92 | 92 | |
|
93 | 93 | def __updateObjFromAmisrInput(self): |
|
94 | 94 | |
|
95 | 95 | self.dataOut.timeZone = self.dataIn.timeZone |
|
96 | 96 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
97 | 97 | self.dataOut.errorCount = self.dataIn.errorCount |
|
98 | 98 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
99 | 99 | |
|
100 | 100 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
101 | 101 | self.dataOut.data = self.dataIn.data |
|
102 | 102 | self.dataOut.utctime = self.dataIn.utctime |
|
103 | 103 | self.dataOut.channelList = self.dataIn.channelList |
|
104 | 104 | # self.dataOut.timeInterval = self.dataIn.timeInterval |
|
105 | 105 | self.dataOut.heightList = self.dataIn.heightList |
|
106 | 106 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
107 | 107 | |
|
108 | 108 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
109 | 109 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
110 | 110 | self.dataOut.frequency = self.dataIn.frequency |
|
111 | 111 | |
|
112 | 112 | self.dataOut.azimuth = self.dataIn.azimuth |
|
113 | 113 | self.dataOut.zenith = self.dataIn.zenith |
|
114 | 114 | |
|
115 | 115 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
116 | 116 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
117 | 117 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
118 | 118 | # |
|
119 | 119 | # pass# |
|
120 | 120 | # |
|
121 | 121 | # def init(self): |
|
122 | 122 | # |
|
123 | 123 | # |
|
124 | 124 | # if self.dataIn.type == 'AMISR': |
|
125 | 125 | # self.__updateObjFromAmisrInput() |
|
126 | 126 | # |
|
127 | 127 | # if self.dataIn.type == 'Voltage': |
|
128 | 128 | # self.dataOut.copy(self.dataIn) |
|
129 | 129 | # # No necesita copiar en cada init() los atributos de dataIn |
|
130 | 130 | # # la copia deberia hacerse por cada nuevo bloque de datos |
|
131 | 131 | |
|
132 | 132 | def selectChannels(self, channelList): |
|
133 | 133 | |
|
134 | 134 | channelIndexList = [] |
|
135 | 135 | |
|
136 | 136 | for channel in channelList: |
|
137 | 137 | if channel not in self.dataOut.channelList: |
|
138 | 138 | raise ValueError, "Channel %d is not in %s" %(channel, str(self.dataOut.channelList)) |
|
139 | 139 | |
|
140 | 140 | index = self.dataOut.channelList.index(channel) |
|
141 | 141 | channelIndexList.append(index) |
|
142 | 142 | |
|
143 | 143 | self.selectChannelsByIndex(channelIndexList) |
|
144 | 144 | |
|
145 | 145 | def selectChannelsByIndex(self, channelIndexList): |
|
146 | 146 | """ |
|
147 | 147 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
148 | 148 | |
|
149 | 149 | Input: |
|
150 | 150 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
151 | 151 | |
|
152 | 152 | Affected: |
|
153 | 153 | self.dataOut.data |
|
154 | 154 | self.dataOut.channelIndexList |
|
155 | 155 | self.dataOut.nChannels |
|
156 | 156 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
157 | 157 | self.dataOut.systemHeaderObj.numChannels |
|
158 | 158 | self.dataOut.m_ProcessingHeader.blockSize |
|
159 | 159 | |
|
160 | 160 | Return: |
|
161 | 161 | None |
|
162 | 162 | """ |
|
163 | 163 | |
|
164 | 164 | for channelIndex in channelIndexList: |
|
165 | 165 | if channelIndex not in self.dataOut.channelIndexList: |
|
166 | 166 | print channelIndexList |
|
167 | 167 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
168 | 168 | |
|
169 | 169 | if self.dataOut.flagDataAsBlock: |
|
170 | 170 | """ |
|
171 | 171 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
172 | 172 | """ |
|
173 | 173 | data = self.dataOut.data[channelIndexList,:,:] |
|
174 | 174 | else: |
|
175 | 175 | data = self.dataOut.data[channelIndexList,:] |
|
176 | 176 | |
|
177 | 177 | self.dataOut.data = data |
|
178 | 178 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
179 | 179 | # self.dataOut.nChannels = nChannels |
|
180 | 180 | |
|
181 | 181 | return 1 |
|
182 | 182 | |
|
183 | 183 | def selectHeights(self, minHei=None, maxHei=None): |
|
184 | 184 | """ |
|
185 | 185 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
186 | 186 | minHei <= height <= maxHei |
|
187 | 187 | |
|
188 | 188 | Input: |
|
189 | 189 | minHei : valor minimo de altura a considerar |
|
190 | 190 | maxHei : valor maximo de altura a considerar |
|
191 | 191 | |
|
192 | 192 | Affected: |
|
193 | 193 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
194 | 194 | |
|
195 | 195 | Return: |
|
196 | 196 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
197 | 197 | """ |
|
198 | 198 | |
|
199 | 199 | if minHei == None: |
|
200 | 200 | minHei = self.dataOut.heightList[0] |
|
201 | 201 | |
|
202 | 202 | if maxHei == None: |
|
203 | 203 | maxHei = self.dataOut.heightList[-1] |
|
204 | 204 | |
|
205 | 205 | if (minHei < self.dataOut.heightList[0]): |
|
206 | 206 | minHei = self.dataOut.heightList[0] |
|
207 | 207 | |
|
208 | 208 | if (maxHei > self.dataOut.heightList[-1]): |
|
209 | 209 | maxHei = self.dataOut.heightList[-1] |
|
210 | 210 | |
|
211 | 211 | minIndex = 0 |
|
212 | 212 | maxIndex = 0 |
|
213 | 213 | heights = self.dataOut.heightList |
|
214 | 214 | |
|
215 | 215 | inda = numpy.where(heights >= minHei) |
|
216 | 216 | indb = numpy.where(heights <= maxHei) |
|
217 | 217 | |
|
218 | 218 | try: |
|
219 | 219 | minIndex = inda[0][0] |
|
220 | 220 | except: |
|
221 | 221 | minIndex = 0 |
|
222 | 222 | |
|
223 | 223 | try: |
|
224 | 224 | maxIndex = indb[0][-1] |
|
225 | 225 | except: |
|
226 | 226 | maxIndex = len(heights) |
|
227 | 227 | |
|
228 | 228 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
229 | 229 | |
|
230 | 230 | return 1 |
|
231 | 231 | |
|
232 | 232 | |
|
233 | 233 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
234 | 234 | """ |
|
235 | 235 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
236 | 236 | minIndex <= index <= maxIndex |
|
237 | 237 | |
|
238 | 238 | Input: |
|
239 | 239 | minIndex : valor de indice minimo de altura a considerar |
|
240 | 240 | maxIndex : valor de indice maximo de altura a considerar |
|
241 | 241 | |
|
242 | 242 | Affected: |
|
243 | 243 | self.dataOut.data |
|
244 | 244 | self.dataOut.heightList |
|
245 | 245 | |
|
246 | 246 | Return: |
|
247 | 247 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
248 | 248 | """ |
|
249 | 249 | |
|
250 | 250 | if (minIndex < 0) or (minIndex > maxIndex): |
|
251 | 251 | raise ValueError, "Height index range (%d,%d) is not valid" % (minIndex, maxIndex) |
|
252 | 252 | |
|
253 | 253 | if (maxIndex >= self.dataOut.nHeights): |
|
254 | 254 | maxIndex = self.dataOut.nHeights |
|
255 | 255 | |
|
256 | 256 | #voltage |
|
257 | 257 | if self.dataOut.flagDataAsBlock: |
|
258 | 258 | """ |
|
259 | 259 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
260 | 260 | """ |
|
261 | 261 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
262 | 262 | else: |
|
263 | 263 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
264 | 264 | |
|
265 | 265 | # firstHeight = self.dataOut.heightList[minIndex] |
|
266 | 266 | |
|
267 | 267 | self.dataOut.data = data |
|
268 | 268 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
269 | 269 | |
|
270 | 270 | if self.dataOut.nHeights <= 1: |
|
271 | 271 | raise ValueError, "selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights) |
|
272 | 272 | |
|
273 | 273 | return 1 |
|
274 | 274 | |
|
275 | 275 | |
|
276 | 276 | def filterByHeights(self, window): |
|
277 | 277 | |
|
278 | 278 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
279 | 279 | |
|
280 | 280 | if window == None: |
|
281 | 281 | window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
282 | 282 | |
|
283 | 283 | newdelta = deltaHeight * window |
|
284 | 284 | r = self.dataOut.nHeights % window |
|
285 | 285 | newheights = (self.dataOut.nHeights-r)/window |
|
286 | 286 | |
|
287 | 287 | if newheights <= 1: |
|
288 | 288 | raise ValueError, "filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(self.dataOut.nHeights, window) |
|
289 | 289 | |
|
290 | 290 | if self.dataOut.flagDataAsBlock: |
|
291 | 291 | """ |
|
292 | 292 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
293 | 293 | """ |
|
294 | 294 | buffer = self.dataOut.data[:, :, 0:self.dataOut.nHeights-r] |
|
295 | 295 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nProfiles,self.dataOut.nHeights/window,window) |
|
296 | 296 | buffer = numpy.sum(buffer,3) |
|
297 | 297 | |
|
298 | 298 | else: |
|
299 | 299 | buffer = self.dataOut.data[:,0:self.dataOut.nHeights-r] |
|
300 | 300 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nHeights/window,window) |
|
301 | 301 | buffer = numpy.sum(buffer,2) |
|
302 | 302 | |
|
303 | 303 | self.dataOut.data = buffer |
|
304 | 304 | self.dataOut.heightList = self.dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
305 | 305 | self.dataOut.windowOfFilter = window |
|
306 | 306 | |
|
307 | 307 | def setH0(self, h0, deltaHeight = None): |
|
308 | 308 | |
|
309 | 309 | if not deltaHeight: |
|
310 | 310 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
311 | 311 | |
|
312 | 312 | nHeights = self.dataOut.nHeights |
|
313 | 313 | |
|
314 | 314 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
315 | 315 | |
|
316 | 316 | self.dataOut.heightList = newHeiRange |
|
317 | 317 | |
|
318 | 318 | def deFlip(self, channelList = []): |
|
319 | 319 | |
|
320 | 320 | data = self.dataOut.data.copy() |
|
321 | 321 | |
|
322 | 322 | if self.dataOut.flagDataAsBlock: |
|
323 | 323 | flip = self.flip |
|
324 | 324 | profileList = range(self.dataOut.nProfiles) |
|
325 | 325 | |
|
326 | 326 | if not channelList: |
|
327 | 327 | for thisProfile in profileList: |
|
328 | 328 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
329 | 329 | flip *= -1.0 |
|
330 | 330 | else: |
|
331 | 331 | for thisChannel in channelList: |
|
332 | 332 | if thisChannel not in self.dataOut.channelList: |
|
333 | 333 | continue |
|
334 | 334 | |
|
335 | 335 | for thisProfile in profileList: |
|
336 | 336 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
337 | 337 | flip *= -1.0 |
|
338 | 338 | |
|
339 | 339 | self.flip = flip |
|
340 | 340 | |
|
341 | 341 | else: |
|
342 | 342 | if not channelList: |
|
343 | 343 | data[:,:] = data[:,:]*self.flip |
|
344 | 344 | else: |
|
345 | 345 | for thisChannel in channelList: |
|
346 | 346 | if thisChannel not in self.dataOut.channelList: |
|
347 | 347 | continue |
|
348 | 348 | |
|
349 | 349 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
350 | 350 | |
|
351 | 351 | self.flip *= -1. |
|
352 | 352 | |
|
353 | 353 | self.dataOut.data = data |
|
354 | 354 | |
|
355 | 355 | def setRadarFrequency(self, frequency=None): |
|
356 | 356 | |
|
357 | 357 | if frequency != None: |
|
358 | 358 | self.dataOut.frequency = frequency |
|
359 | 359 | |
|
360 | 360 | return 1 |
|
361 | 361 | |
|
362 | 362 | def interpolateHeights(self, topLim, botLim): |
|
363 | 363 | #69 al 72 para julia |
|
364 | 364 | #82-84 para meteoros |
|
365 | 365 | if len(numpy.shape(self.dataOut.data))==2: |
|
366 | 366 | sampInterp = (self.dataOut.data[:,botLim-1] + self.dataOut.data[:,topLim+1])/2 |
|
367 | 367 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
368 | 368 | #self.dataOut.data[:,botLim:limSup+1] = sampInterp |
|
369 | 369 | self.dataOut.data[:,botLim:topLim+1] = sampInterp |
|
370 | 370 | else: |
|
371 | 371 | nHeights = self.dataOut.data.shape[2] |
|
372 | 372 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
373 | 373 | y = self.dataOut.data[:,:,range(botLim)+range(topLim+1,nHeights)] |
|
374 | 374 | f = interpolate.interp1d(x, y, axis = 2) |
|
375 | 375 | xnew = numpy.arange(botLim,topLim+1) |
|
376 | 376 | ynew = f(xnew) |
|
377 | 377 | |
|
378 | 378 | self.dataOut.data[:,:,botLim:topLim+1] = ynew |
|
379 | 379 | |
|
380 | 380 | # import collections |
|
381 | 381 | |
|
382 | 382 | class CohInt(Operation): |
|
383 | 383 | |
|
384 | 384 | isConfig = False |
|
385 | 385 | __profIndex = 0 |
|
386 | 386 | __byTime = False |
|
387 | 387 | __initime = None |
|
388 | 388 | __lastdatatime = None |
|
389 | 389 | __integrationtime = None |
|
390 | 390 | __buffer = None |
|
391 | 391 | __bufferStride = [] |
|
392 | 392 | __dataReady = False |
|
393 | 393 | __profIndexStride = 0 |
|
394 | 394 | __dataToPutStride = False |
|
395 | 395 | n = None |
|
396 | 396 | |
|
397 | 397 | def __init__(self, **kwargs): |
|
398 | 398 | |
|
399 | 399 | Operation.__init__(self, **kwargs) |
|
400 | 400 | |
|
401 | 401 | # self.isConfig = False |
|
402 | 402 | |
|
403 | 403 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
404 | 404 | """ |
|
405 | 405 | Set the parameters of the integration class. |
|
406 | 406 | |
|
407 | 407 | Inputs: |
|
408 | 408 | |
|
409 | 409 | n : Number of coherent integrations |
|
410 | 410 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
411 | 411 | overlapping : |
|
412 | 412 | """ |
|
413 | 413 | |
|
414 | 414 | self.__initime = None |
|
415 | 415 | self.__lastdatatime = 0 |
|
416 | 416 | self.__buffer = None |
|
417 | 417 | self.__dataReady = False |
|
418 | 418 | self.byblock = byblock |
|
419 | 419 | self.stride = stride |
|
420 | 420 | |
|
421 | 421 | if n == None and timeInterval == None: |
|
422 | 422 | raise ValueError, "n or timeInterval should be specified ..." |
|
423 | 423 | |
|
424 | 424 | if n != None: |
|
425 | 425 | self.n = n |
|
426 | 426 | self.__byTime = False |
|
427 | 427 | else: |
|
428 | 428 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
429 | 429 | self.n = 9999 |
|
430 | 430 | self.__byTime = True |
|
431 | 431 | |
|
432 | 432 | if overlapping: |
|
433 | 433 | self.__withOverlapping = True |
|
434 | 434 | self.__buffer = None |
|
435 | 435 | else: |
|
436 | 436 | self.__withOverlapping = False |
|
437 | 437 | self.__buffer = 0 |
|
438 | 438 | |
|
439 | 439 | self.__profIndex = 0 |
|
440 | 440 | |
|
441 | 441 | def putData(self, data): |
|
442 | 442 | |
|
443 | 443 | """ |
|
444 | 444 | Add a profile to the __buffer and increase in one the __profileIndex |
|
445 | 445 | |
|
446 | 446 | """ |
|
447 | 447 | |
|
448 | 448 | if not self.__withOverlapping: |
|
449 | 449 | self.__buffer += data.copy() |
|
450 | 450 | self.__profIndex += 1 |
|
451 | 451 | return |
|
452 | 452 | |
|
453 | 453 | #Overlapping data |
|
454 | 454 | nChannels, nHeis = data.shape |
|
455 | 455 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
456 | 456 | |
|
457 | 457 | #If the buffer is empty then it takes the data value |
|
458 | 458 | if self.__buffer is None: |
|
459 | 459 | self.__buffer = data |
|
460 | 460 | self.__profIndex += 1 |
|
461 | 461 | return |
|
462 | 462 | |
|
463 | 463 | #If the buffer length is lower than n then stakcing the data value |
|
464 | 464 | if self.__profIndex < self.n: |
|
465 | 465 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
466 | 466 | self.__profIndex += 1 |
|
467 | 467 | return |
|
468 | 468 | |
|
469 | 469 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
470 | 470 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
471 | 471 | self.__buffer[self.n-1] = data |
|
472 | 472 | self.__profIndex = self.n |
|
473 | 473 | return |
|
474 | 474 | |
|
475 | 475 | |
|
476 | 476 | def pushData(self): |
|
477 | 477 | """ |
|
478 | 478 | Return the sum of the last profiles and the profiles used in the sum. |
|
479 | 479 | |
|
480 | 480 | Affected: |
|
481 | 481 | |
|
482 | 482 | self.__profileIndex |
|
483 | 483 | |
|
484 | 484 | """ |
|
485 | 485 | |
|
486 | 486 | if not self.__withOverlapping: |
|
487 | 487 | data = self.__buffer |
|
488 | 488 | n = self.__profIndex |
|
489 | 489 | |
|
490 | 490 | self.__buffer = 0 |
|
491 | 491 | self.__profIndex = 0 |
|
492 | 492 | |
|
493 | 493 | return data, n |
|
494 | 494 | |
|
495 | 495 | #Integration with Overlapping |
|
496 | 496 | data = numpy.sum(self.__buffer, axis=0) |
|
497 | 497 | # print data |
|
498 | 498 | # raise |
|
499 | 499 | n = self.__profIndex |
|
500 | 500 | |
|
501 | 501 | return data, n |
|
502 | 502 | |
|
503 | 503 | def byProfiles(self, data): |
|
504 | 504 | |
|
505 | 505 | self.__dataReady = False |
|
506 | 506 | avgdata = None |
|
507 | 507 | # n = None |
|
508 | 508 | # print data |
|
509 | 509 | # raise |
|
510 | 510 | self.putData(data) |
|
511 | 511 | |
|
512 | 512 | if self.__profIndex == self.n: |
|
513 | 513 | avgdata, n = self.pushData() |
|
514 | 514 | self.__dataReady = True |
|
515 | 515 | |
|
516 | 516 | return avgdata |
|
517 | 517 | |
|
518 | 518 | def byTime(self, data, datatime): |
|
519 | 519 | |
|
520 | 520 | self.__dataReady = False |
|
521 | 521 | avgdata = None |
|
522 | 522 | n = None |
|
523 | 523 | |
|
524 | 524 | self.putData(data) |
|
525 | 525 | |
|
526 | 526 | if (datatime - self.__initime) >= self.__integrationtime: |
|
527 | 527 | avgdata, n = self.pushData() |
|
528 | 528 | self.n = n |
|
529 | 529 | self.__dataReady = True |
|
530 | 530 | |
|
531 | 531 | return avgdata |
|
532 | 532 | |
|
533 | 533 | def integrateByStride(self, data, datatime): |
|
534 | 534 | # print data |
|
535 | 535 | if self.__profIndex == 0: |
|
536 | 536 | self.__buffer = [[data.copy(), datatime]] |
|
537 | 537 | else: |
|
538 | 538 | self.__buffer.append([data.copy(),datatime]) |
|
539 | 539 | self.__profIndex += 1 |
|
540 | 540 | self.__dataReady = False |
|
541 | 541 | |
|
542 | 542 | if self.__profIndex == self.n * self.stride : |
|
543 | 543 | self.__dataToPutStride = True |
|
544 | 544 | self.__profIndexStride = 0 |
|
545 | 545 | self.__profIndex = 0 |
|
546 | 546 | self.__bufferStride = [] |
|
547 | 547 | for i in range(self.stride): |
|
548 | 548 | current = self.__buffer[i::self.stride] |
|
549 | 549 | data = numpy.sum([t[0] for t in current], axis=0) |
|
550 | 550 | avgdatatime = numpy.average([t[1] for t in current]) |
|
551 | 551 | # print data |
|
552 | 552 | self.__bufferStride.append((data, avgdatatime)) |
|
553 | 553 | |
|
554 | 554 | if self.__dataToPutStride: |
|
555 | 555 | self.__dataReady = True |
|
556 | 556 | self.__profIndexStride += 1 |
|
557 | 557 | if self.__profIndexStride == self.stride: |
|
558 | 558 | self.__dataToPutStride = False |
|
559 | 559 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
560 | 560 | # raise |
|
561 | 561 | return self.__bufferStride[self.__profIndexStride - 1] |
|
562 | 562 | |
|
563 | 563 | |
|
564 | 564 | return None, None |
|
565 | 565 | |
|
566 | 566 | def integrate(self, data, datatime=None): |
|
567 | 567 | |
|
568 | 568 | if self.__initime == None: |
|
569 | 569 | self.__initime = datatime |
|
570 | 570 | |
|
571 | 571 | if self.__byTime: |
|
572 | 572 | avgdata = self.byTime(data, datatime) |
|
573 | 573 | else: |
|
574 | 574 | avgdata = self.byProfiles(data) |
|
575 | 575 | |
|
576 | 576 | |
|
577 | 577 | self.__lastdatatime = datatime |
|
578 | 578 | |
|
579 | 579 | if avgdata is None: |
|
580 | 580 | return None, None |
|
581 | 581 | |
|
582 | 582 | avgdatatime = self.__initime |
|
583 | 583 | |
|
584 | 584 | deltatime = datatime - self.__lastdatatime |
|
585 | 585 | |
|
586 | 586 | if not self.__withOverlapping: |
|
587 | 587 | self.__initime = datatime |
|
588 | 588 | else: |
|
589 | 589 | self.__initime += deltatime |
|
590 | 590 | |
|
591 | 591 | return avgdata, avgdatatime |
|
592 | 592 | |
|
593 | 593 | def integrateByBlock(self, dataOut): |
|
594 | 594 | |
|
595 | 595 | times = int(dataOut.data.shape[1]/self.n) |
|
596 | 596 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
597 | 597 | |
|
598 | 598 | id_min = 0 |
|
599 | 599 | id_max = self.n |
|
600 | 600 | |
|
601 | 601 | for i in range(times): |
|
602 | 602 | junk = dataOut.data[:,id_min:id_max,:] |
|
603 | 603 | avgdata[:,i,:] = junk.sum(axis=1) |
|
604 | 604 | id_min += self.n |
|
605 | 605 | id_max += self.n |
|
606 | 606 | |
|
607 | 607 | timeInterval = dataOut.ippSeconds*self.n |
|
608 | 608 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
609 | 609 | self.__dataReady = True |
|
610 | 610 | return avgdata, avgdatatime |
|
611 | 611 | |
|
612 | 612 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
613 | 613 | if not self.isConfig: |
|
614 | 614 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
615 | 615 | self.isConfig = True |
|
616 | 616 | |
|
617 | 617 | if dataOut.flagDataAsBlock: |
|
618 | 618 | """ |
|
619 | 619 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
620 | 620 | """ |
|
621 | 621 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
622 | 622 | dataOut.nProfiles /= self.n |
|
623 | 623 | else: |
|
624 | 624 | if stride is None: |
|
625 | 625 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
626 | 626 | else: |
|
627 | 627 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
628 | 628 | |
|
629 | 629 | |
|
630 | 630 | # dataOut.timeInterval *= n |
|
631 | 631 | dataOut.flagNoData = True |
|
632 | 632 | |
|
633 | 633 | if self.__dataReady: |
|
634 | 634 | dataOut.data = avgdata |
|
635 | 635 | dataOut.nCohInt *= self.n |
|
636 | 636 | dataOut.utctime = avgdatatime |
|
637 | 637 | # print avgdata, avgdatatime |
|
638 | 638 | # raise |
|
639 | 639 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
640 | 640 | dataOut.flagNoData = False |
|
641 | 641 | |
|
642 | 642 | class Decoder(Operation): |
|
643 | 643 | |
|
644 | 644 | isConfig = False |
|
645 | 645 | __profIndex = 0 |
|
646 | 646 | |
|
647 | 647 | code = None |
|
648 | 648 | |
|
649 | 649 | nCode = None |
|
650 | 650 | nBaud = None |
|
651 | 651 | |
|
652 | 652 | def __init__(self, **kwargs): |
|
653 | 653 | |
|
654 | 654 | Operation.__init__(self, **kwargs) |
|
655 | 655 | |
|
656 | 656 | self.times = None |
|
657 | 657 | self.osamp = None |
|
658 | 658 | # self.__setValues = False |
|
659 | 659 | self.isConfig = False |
|
660 | 660 | |
|
661 | 661 | def setup(self, code, osamp, dataOut): |
|
662 | 662 | |
|
663 | 663 | self.__profIndex = 0 |
|
664 | 664 | |
|
665 | 665 | self.code = code |
|
666 | 666 | |
|
667 | 667 | self.nCode = len(code) |
|
668 | 668 | self.nBaud = len(code[0]) |
|
669 | 669 | |
|
670 | 670 | if (osamp != None) and (osamp >1): |
|
671 | 671 | self.osamp = osamp |
|
672 | 672 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
673 | 673 | self.nBaud = self.nBaud*self.osamp |
|
674 | 674 | |
|
675 | 675 | self.__nChannels = dataOut.nChannels |
|
676 | 676 | self.__nProfiles = dataOut.nProfiles |
|
677 | 677 | self.__nHeis = dataOut.nHeights |
|
678 | 678 | |
|
679 | 679 | if self.__nHeis < self.nBaud: |
|
680 | 680 | raise ValueError, 'Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud) |
|
681 | 681 | |
|
682 | 682 | #Frequency |
|
683 | 683 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
684 | 684 | |
|
685 | 685 | __codeBuffer[:,0:self.nBaud] = self.code |
|
686 | 686 | |
|
687 | 687 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
688 | 688 | |
|
689 | 689 | if dataOut.flagDataAsBlock: |
|
690 | 690 | |
|
691 | 691 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
692 | 692 | |
|
693 | 693 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
694 | 694 | |
|
695 | 695 | else: |
|
696 | 696 | |
|
697 | 697 | #Time |
|
698 | 698 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
699 | 699 | |
|
700 | 700 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
701 | 701 | |
|
702 | 702 | def __convolutionInFreq(self, data): |
|
703 | 703 | |
|
704 | 704 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
705 | 705 | |
|
706 | 706 | fft_data = numpy.fft.fft(data, axis=1) |
|
707 | 707 | |
|
708 | 708 | conv = fft_data*fft_code |
|
709 | 709 | |
|
710 | 710 | data = numpy.fft.ifft(conv,axis=1) |
|
711 | 711 | |
|
712 | 712 | return data |
|
713 | 713 | |
|
714 | 714 | def __convolutionInFreqOpt(self, data): |
|
715 | 715 | |
|
716 | 716 | raise NotImplementedError |
|
717 | 717 | |
|
718 | 718 | def __convolutionInTime(self, data): |
|
719 | 719 | |
|
720 | 720 | code = self.code[self.__profIndex] |
|
721 | 721 | for i in range(self.__nChannels): |
|
722 | 722 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
723 | 723 | |
|
724 | 724 | return self.datadecTime |
|
725 | 725 | |
|
726 | 726 | def __convolutionByBlockInTime(self, data): |
|
727 | 727 | |
|
728 | 728 | repetitions = self.__nProfiles / self.nCode |
|
729 | 729 | |
|
730 | 730 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
731 | 731 | junk = junk.flatten() |
|
732 | 732 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
733 | 733 | profilesList = xrange(self.__nProfiles) |
|
734 | 734 | |
|
735 | 735 | for i in range(self.__nChannels): |
|
736 | 736 | for j in profilesList: |
|
737 | 737 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
738 | 738 | return self.datadecTime |
|
739 | 739 | |
|
740 | 740 | def __convolutionByBlockInFreq(self, data): |
|
741 | 741 | |
|
742 | 742 | raise NotImplementedError, "Decoder by frequency fro Blocks not implemented" |
|
743 | 743 | |
|
744 | 744 | |
|
745 | 745 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
746 | 746 | |
|
747 | 747 | fft_data = numpy.fft.fft(data, axis=2) |
|
748 | 748 | |
|
749 | 749 | conv = fft_data*fft_code |
|
750 | 750 | |
|
751 | 751 | data = numpy.fft.ifft(conv,axis=2) |
|
752 | 752 | |
|
753 | 753 | return data |
|
754 | 754 | |
|
755 | 755 | |
|
756 | 756 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
757 | 757 | |
|
758 | 758 | if dataOut.flagDecodeData: |
|
759 | 759 | print "This data is already decoded, recoding again ..." |
|
760 | 760 | |
|
761 | 761 | if not self.isConfig: |
|
762 | 762 | |
|
763 | 763 | if code is None: |
|
764 | 764 | if dataOut.code is None: |
|
765 | 765 | raise ValueError, "Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type |
|
766 | 766 | |
|
767 | 767 | code = dataOut.code |
|
768 | 768 | else: |
|
769 | 769 | code = numpy.array(code).reshape(nCode,nBaud) |
|
770 | 770 | self.setup(code, osamp, dataOut) |
|
771 | 771 | |
|
772 | 772 | self.isConfig = True |
|
773 | 773 | |
|
774 | 774 | if mode == 3: |
|
775 | 775 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
776 | 776 | |
|
777 | 777 | if times != None: |
|
778 | 778 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
779 | 779 | |
|
780 | 780 | if self.code is None: |
|
781 | 781 | print "Fail decoding: Code is not defined." |
|
782 | 782 | return |
|
783 | 783 | |
|
784 | 784 | self.__nProfiles = dataOut.nProfiles |
|
785 | 785 | datadec = None |
|
786 | 786 | |
|
787 | 787 | if mode == 3: |
|
788 | 788 | mode = 0 |
|
789 | 789 | |
|
790 | 790 | if dataOut.flagDataAsBlock: |
|
791 | 791 | """ |
|
792 | 792 | Decoding when data have been read as block, |
|
793 | 793 | """ |
|
794 | 794 | |
|
795 | 795 | if mode == 0: |
|
796 | 796 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
797 | 797 | if mode == 1: |
|
798 | 798 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
799 | 799 | else: |
|
800 | 800 | """ |
|
801 | 801 | Decoding when data have been read profile by profile |
|
802 | 802 | """ |
|
803 | 803 | if mode == 0: |
|
804 | 804 | datadec = self.__convolutionInTime(dataOut.data) |
|
805 | 805 | |
|
806 | 806 | if mode == 1: |
|
807 | 807 | datadec = self.__convolutionInFreq(dataOut.data) |
|
808 | 808 | |
|
809 | 809 | if mode == 2: |
|
810 | 810 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
811 | 811 | |
|
812 | 812 | if datadec is None: |
|
813 | 813 | raise ValueError, "Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode |
|
814 | 814 | |
|
815 | 815 | dataOut.code = self.code |
|
816 | 816 | dataOut.nCode = self.nCode |
|
817 | 817 | dataOut.nBaud = self.nBaud |
|
818 | 818 | |
|
819 | 819 | dataOut.data = datadec |
|
820 | 820 | |
|
821 | 821 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
822 | 822 | |
|
823 | 823 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
824 | 824 | |
|
825 | 825 | if self.__profIndex == self.nCode-1: |
|
826 | 826 | self.__profIndex = 0 |
|
827 | 827 | return 1 |
|
828 | 828 | |
|
829 | 829 | self.__profIndex += 1 |
|
830 | 830 | |
|
831 | 831 | return 1 |
|
832 | 832 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
833 | 833 | |
|
834 | 834 | |
|
835 | 835 | class ProfileConcat(Operation): |
|
836 | 836 | |
|
837 | 837 | isConfig = False |
|
838 | 838 | buffer = None |
|
839 | concat_m =None | |
|
839 | 840 | |
|
840 | 841 | def __init__(self, **kwargs): |
|
841 | 842 | |
|
842 | 843 | Operation.__init__(self, **kwargs) |
|
843 | 844 | self.profileIndex = 0 |
|
844 | 845 | |
|
845 | 846 | def reset(self): |
|
846 | 847 | self.buffer = numpy.zeros_like(self.buffer) |
|
847 | 848 | self.start_index = 0 |
|
848 | 849 | self.times = 1 |
|
849 | 850 | |
|
850 | 851 | def setup(self, data, m, n=1): |
|
851 | 852 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
852 | 853 | self.nHeights = data.shape[1]#.nHeights |
|
853 | 854 | self.start_index = 0 |
|
854 | 855 | self.times = 1 |
|
855 | 856 | |
|
856 | 857 | def concat(self, data): |
|
857 | 858 | |
|
858 | 859 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
859 | 860 | self.start_index = self.start_index + self.nHeights |
|
860 | 861 | |
|
861 | 862 | def run(self, dataOut, m): |
|
862 | 863 | |
|
864 | self.concat_m= m | |
|
863 | 865 | dataOut.flagNoData = True |
|
864 | 866 | |
|
865 | 867 | if not self.isConfig: |
|
866 | 868 | self.setup(dataOut.data, m, 1) |
|
867 | 869 | self.isConfig = True |
|
868 | 870 | |
|
869 | 871 | if dataOut.flagDataAsBlock: |
|
870 | 872 | raise ValueError, "ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False" |
|
871 | 873 | |
|
872 | 874 | else: |
|
873 | 875 | self.concat(dataOut.data) |
|
874 | 876 | self.times += 1 |
|
875 | 877 | if self.times > m: |
|
876 | 878 | dataOut.data = self.buffer |
|
877 | 879 | self.reset() |
|
878 | 880 | dataOut.flagNoData = False |
|
879 | 881 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
880 | 882 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
881 | 883 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
882 | 884 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
883 | 885 | dataOut.ippSeconds *= m |
|
886 | dataOut.concat_m = int(m) | |
|
884 | 887 | |
|
885 | 888 | class ProfileSelector(Operation): |
|
886 | 889 | |
|
887 | 890 | profileIndex = None |
|
888 | 891 | # Tamanho total de los perfiles |
|
889 | 892 | nProfiles = None |
|
890 | 893 | |
|
891 | 894 | def __init__(self, **kwargs): |
|
892 | 895 | |
|
893 | 896 | Operation.__init__(self, **kwargs) |
|
894 | 897 | self.profileIndex = 0 |
|
895 | 898 | |
|
896 | 899 | def incProfileIndex(self): |
|
897 | 900 | |
|
898 | 901 | self.profileIndex += 1 |
|
899 | 902 | |
|
900 | 903 | if self.profileIndex >= self.nProfiles: |
|
901 | 904 | self.profileIndex = 0 |
|
902 | 905 | |
|
903 | 906 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
904 | 907 | |
|
905 | 908 | if profileIndex < minIndex: |
|
906 | 909 | return False |
|
907 | 910 | |
|
908 | 911 | if profileIndex > maxIndex: |
|
909 | 912 | return False |
|
910 | 913 | |
|
911 | 914 | return True |
|
912 | 915 | |
|
913 | 916 | def isThisProfileInList(self, profileIndex, profileList): |
|
914 | 917 | |
|
915 | 918 | if profileIndex not in profileList: |
|
916 | 919 | return False |
|
917 | 920 | |
|
918 | 921 | return True |
|
919 | 922 | |
|
920 | 923 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
921 | 924 | |
|
922 | 925 | """ |
|
923 | 926 | ProfileSelector: |
|
924 | 927 | |
|
925 | 928 | Inputs: |
|
926 | 929 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
927 | 930 | |
|
928 | 931 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
929 | 932 | |
|
930 | 933 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
931 | 934 | |
|
932 | 935 | """ |
|
933 | 936 | |
|
934 | 937 | if rangeList is not None: |
|
935 | 938 | if type(rangeList[0]) not in (tuple, list): |
|
936 | 939 | rangeList = [rangeList] |
|
937 | 940 | |
|
938 | 941 | dataOut.flagNoData = True |
|
939 | 942 | |
|
940 | 943 | if dataOut.flagDataAsBlock: |
|
941 | 944 | """ |
|
942 | 945 | data dimension = [nChannels, nProfiles, nHeis] |
|
943 | 946 | """ |
|
944 | 947 | if profileList != None: |
|
945 | 948 | dataOut.data = dataOut.data[:,profileList,:] |
|
946 | 949 | |
|
947 | 950 | if profileRangeList != None: |
|
948 | 951 | minIndex = profileRangeList[0] |
|
949 | 952 | maxIndex = profileRangeList[1] |
|
950 | 953 | profileList = range(minIndex, maxIndex+1) |
|
951 | 954 | |
|
952 | 955 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
953 | 956 | |
|
954 | 957 | if rangeList != None: |
|
955 | 958 | |
|
956 | 959 | profileList = [] |
|
957 | 960 | |
|
958 | 961 | for thisRange in rangeList: |
|
959 | 962 | minIndex = thisRange[0] |
|
960 | 963 | maxIndex = thisRange[1] |
|
961 | 964 | |
|
962 | 965 | profileList.extend(range(minIndex, maxIndex+1)) |
|
963 | 966 | |
|
964 | 967 | dataOut.data = dataOut.data[:,profileList,:] |
|
965 | 968 | |
|
966 | 969 | dataOut.nProfiles = len(profileList) |
|
967 | 970 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
968 | 971 | dataOut.flagNoData = False |
|
969 | 972 | |
|
970 | 973 | return True |
|
971 | 974 | |
|
972 | 975 | """ |
|
973 | 976 | data dimension = [nChannels, nHeis] |
|
974 | 977 | """ |
|
975 | 978 | |
|
976 | 979 | if profileList != None: |
|
977 | 980 | |
|
978 | 981 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
979 | 982 | |
|
980 | 983 | self.nProfiles = len(profileList) |
|
981 | 984 | dataOut.nProfiles = self.nProfiles |
|
982 | 985 | dataOut.profileIndex = self.profileIndex |
|
983 | 986 | dataOut.flagNoData = False |
|
984 | 987 | |
|
985 | 988 | self.incProfileIndex() |
|
986 | 989 | return True |
|
987 | 990 | |
|
988 | 991 | if profileRangeList != None: |
|
989 | 992 | |
|
990 | 993 | minIndex = profileRangeList[0] |
|
991 | 994 | maxIndex = profileRangeList[1] |
|
992 | 995 | |
|
993 | 996 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
994 | 997 | |
|
995 | 998 | self.nProfiles = maxIndex - minIndex + 1 |
|
996 | 999 | dataOut.nProfiles = self.nProfiles |
|
997 | 1000 | dataOut.profileIndex = self.profileIndex |
|
998 | 1001 | dataOut.flagNoData = False |
|
999 | 1002 | |
|
1000 | 1003 | self.incProfileIndex() |
|
1001 | 1004 | return True |
|
1002 | 1005 | |
|
1003 | 1006 | if rangeList != None: |
|
1004 | 1007 | |
|
1005 | 1008 | nProfiles = 0 |
|
1006 | 1009 | |
|
1007 | 1010 | for thisRange in rangeList: |
|
1008 | 1011 | minIndex = thisRange[0] |
|
1009 | 1012 | maxIndex = thisRange[1] |
|
1010 | 1013 | |
|
1011 | 1014 | nProfiles += maxIndex - minIndex + 1 |
|
1012 | 1015 | |
|
1013 | 1016 | for thisRange in rangeList: |
|
1014 | 1017 | |
|
1015 | 1018 | minIndex = thisRange[0] |
|
1016 | 1019 | maxIndex = thisRange[1] |
|
1017 | 1020 | |
|
1018 | 1021 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1019 | 1022 | |
|
1020 | 1023 | self.nProfiles = nProfiles |
|
1021 | 1024 | dataOut.nProfiles = self.nProfiles |
|
1022 | 1025 | dataOut.profileIndex = self.profileIndex |
|
1023 | 1026 | dataOut.flagNoData = False |
|
1024 | 1027 | |
|
1025 | 1028 | self.incProfileIndex() |
|
1026 | 1029 | |
|
1027 | 1030 | break |
|
1028 | 1031 | |
|
1029 | 1032 | return True |
|
1030 | 1033 | |
|
1031 | 1034 | |
|
1032 | 1035 | if beam != None: #beam is only for AMISR data |
|
1033 | 1036 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
1034 | 1037 | dataOut.flagNoData = False |
|
1035 | 1038 | dataOut.profileIndex = self.profileIndex |
|
1036 | 1039 | |
|
1037 | 1040 | self.incProfileIndex() |
|
1038 | 1041 | |
|
1039 | 1042 | return True |
|
1040 | 1043 | |
|
1041 | 1044 | raise ValueError, "ProfileSelector needs profileList, profileRangeList or rangeList parameter" |
|
1042 | 1045 | |
|
1043 | 1046 | return False |
|
1044 | 1047 | |
|
1045 | 1048 | class Reshaper(Operation): |
|
1046 | 1049 | |
|
1047 | 1050 | def __init__(self, **kwargs): |
|
1048 | 1051 | |
|
1049 | 1052 | Operation.__init__(self, **kwargs) |
|
1050 | 1053 | |
|
1051 | 1054 | self.__buffer = None |
|
1052 | 1055 | self.__nitems = 0 |
|
1053 | 1056 | |
|
1054 | 1057 | def __appendProfile(self, dataOut, nTxs): |
|
1055 | 1058 | |
|
1056 | 1059 | if self.__buffer is None: |
|
1057 | 1060 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
1058 | 1061 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
1059 | 1062 | |
|
1060 | 1063 | ini = dataOut.nHeights * self.__nitems |
|
1061 | 1064 | end = ini + dataOut.nHeights |
|
1062 | 1065 | |
|
1063 | 1066 | self.__buffer[:, ini:end] = dataOut.data |
|
1064 | 1067 | |
|
1065 | 1068 | self.__nitems += 1 |
|
1066 | 1069 | |
|
1067 | 1070 | return int(self.__nitems*nTxs) |
|
1068 | 1071 | |
|
1069 | 1072 | def __getBuffer(self): |
|
1070 | 1073 | |
|
1071 | 1074 | if self.__nitems == int(1./self.__nTxs): |
|
1072 | 1075 | |
|
1073 | 1076 | self.__nitems = 0 |
|
1074 | 1077 | |
|
1075 | 1078 | return self.__buffer.copy() |
|
1076 | 1079 | |
|
1077 | 1080 | return None |
|
1078 | 1081 | |
|
1079 | 1082 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1080 | 1083 | |
|
1081 | 1084 | if shape is None and nTxs is None: |
|
1082 | 1085 | raise ValueError, "Reshaper: shape of factor should be defined" |
|
1083 | 1086 | |
|
1084 | 1087 | if nTxs: |
|
1085 | 1088 | if nTxs < 0: |
|
1086 | 1089 | raise ValueError, "nTxs should be greater than 0" |
|
1087 | 1090 | |
|
1088 | 1091 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1089 | 1092 | raise ValueError, "nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs)) |
|
1090 | 1093 | |
|
1091 | 1094 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1092 | 1095 | |
|
1093 | 1096 | return shape, nTxs |
|
1094 | 1097 | |
|
1095 | 1098 | if len(shape) != 2 and len(shape) != 3: |
|
1096 | 1099 | raise ValueError, "shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights) |
|
1097 | 1100 | |
|
1098 | 1101 | if len(shape) == 2: |
|
1099 | 1102 | shape_tuple = [dataOut.nChannels] |
|
1100 | 1103 | shape_tuple.extend(shape) |
|
1101 | 1104 | else: |
|
1102 | 1105 | shape_tuple = list(shape) |
|
1103 | 1106 | |
|
1104 | 1107 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1105 | 1108 | |
|
1106 | 1109 | return shape_tuple, nTxs |
|
1107 | 1110 | |
|
1108 | 1111 | def run(self, dataOut, shape=None, nTxs=None): |
|
1109 | 1112 | |
|
1110 | 1113 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1111 | 1114 | |
|
1112 | 1115 | dataOut.flagNoData = True |
|
1113 | 1116 | profileIndex = None |
|
1114 | 1117 | |
|
1115 | 1118 | if dataOut.flagDataAsBlock: |
|
1116 | 1119 | |
|
1117 | 1120 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1118 | 1121 | dataOut.flagNoData = False |
|
1119 | 1122 | |
|
1120 | 1123 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1121 | 1124 | |
|
1122 | 1125 | else: |
|
1123 | 1126 | |
|
1124 | 1127 | if self.__nTxs < 1: |
|
1125 | 1128 | |
|
1126 | 1129 | self.__appendProfile(dataOut, self.__nTxs) |
|
1127 | 1130 | new_data = self.__getBuffer() |
|
1128 | 1131 | |
|
1129 | 1132 | if new_data is not None: |
|
1130 | 1133 | dataOut.data = new_data |
|
1131 | 1134 | dataOut.flagNoData = False |
|
1132 | 1135 | |
|
1133 | 1136 | profileIndex = dataOut.profileIndex*nTxs |
|
1134 | 1137 | |
|
1135 | 1138 | else: |
|
1136 | 1139 | raise ValueError, "nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)" |
|
1137 | 1140 | |
|
1138 | 1141 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1139 | 1142 | |
|
1140 | 1143 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1141 | 1144 | |
|
1142 | 1145 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1143 | 1146 | |
|
1144 | 1147 | dataOut.profileIndex = profileIndex |
|
1145 | 1148 | |
|
1146 | 1149 | dataOut.ippSeconds /= self.__nTxs |
|
1147 | 1150 | |
|
1148 | 1151 | class SplitProfiles(Operation): |
|
1149 | 1152 | |
|
1150 | 1153 | def __init__(self, **kwargs): |
|
1151 | 1154 | |
|
1152 | 1155 | Operation.__init__(self, **kwargs) |
|
1153 | 1156 | |
|
1154 | 1157 | def run(self, dataOut, n): |
|
1155 | 1158 | |
|
1156 | 1159 | dataOut.flagNoData = True |
|
1157 | 1160 | profileIndex = None |
|
1158 | 1161 | |
|
1159 | 1162 | if dataOut.flagDataAsBlock: |
|
1160 | 1163 | |
|
1161 | 1164 | #nchannels, nprofiles, nsamples |
|
1162 | 1165 | shape = dataOut.data.shape |
|
1163 | 1166 | |
|
1164 | 1167 | if shape[2] % n != 0: |
|
1165 | 1168 | raise ValueError, "Could not split the data, n=%d has to be multiple of %d" %(n, shape[2]) |
|
1166 | 1169 | |
|
1167 | 1170 | new_shape = shape[0], shape[1]*n, shape[2]/n |
|
1168 | 1171 | |
|
1169 | 1172 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1170 | 1173 | dataOut.flagNoData = False |
|
1171 | 1174 | |
|
1172 | 1175 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1173 | 1176 | |
|
1174 | 1177 | else: |
|
1175 | 1178 | |
|
1176 | 1179 | raise ValueError, "Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)" |
|
1177 | 1180 | |
|
1178 | 1181 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1179 | 1182 | |
|
1180 | 1183 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1181 | 1184 | |
|
1182 | 1185 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1183 | 1186 | |
|
1184 | 1187 | dataOut.profileIndex = profileIndex |
|
1185 | 1188 | |
|
1186 | 1189 | dataOut.ippSeconds /= n |
|
1187 | 1190 | |
|
1188 | 1191 | class CombineProfiles(Operation): |
|
1189 | 1192 | |
|
1190 | 1193 | def __init__(self, **kwargs): |
|
1191 | 1194 | |
|
1192 | 1195 | Operation.__init__(self, **kwargs) |
|
1193 | 1196 | |
|
1194 | 1197 | self.__remData = None |
|
1195 | 1198 | self.__profileIndex = 0 |
|
1196 | 1199 | |
|
1197 | 1200 | def run(self, dataOut, n): |
|
1198 | 1201 | |
|
1199 | 1202 | dataOut.flagNoData = True |
|
1200 | 1203 | profileIndex = None |
|
1201 | 1204 | |
|
1202 | 1205 | if dataOut.flagDataAsBlock: |
|
1203 | 1206 | |
|
1204 | 1207 | #nchannels, nprofiles, nsamples |
|
1205 | 1208 | shape = dataOut.data.shape |
|
1206 | 1209 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1207 | 1210 | |
|
1208 | 1211 | if shape[1] % n != 0: |
|
1209 | 1212 | raise ValueError, "Could not split the data, n=%d has to be multiple of %d" %(n, shape[1]) |
|
1210 | 1213 | |
|
1211 | 1214 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1212 | 1215 | dataOut.flagNoData = False |
|
1213 | 1216 | |
|
1214 | 1217 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1215 | 1218 | |
|
1216 | 1219 | else: |
|
1217 | 1220 | |
|
1218 | 1221 | #nchannels, nsamples |
|
1219 | 1222 | if self.__remData is None: |
|
1220 | 1223 | newData = dataOut.data |
|
1221 | 1224 | else: |
|
1222 | 1225 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1223 | 1226 | |
|
1224 | 1227 | self.__profileIndex += 1 |
|
1225 | 1228 | |
|
1226 | 1229 | if self.__profileIndex < n: |
|
1227 | 1230 | self.__remData = newData |
|
1228 | 1231 | #continue |
|
1229 | 1232 | return |
|
1230 | 1233 | |
|
1231 | 1234 | self.__profileIndex = 0 |
|
1232 | 1235 | self.__remData = None |
|
1233 | 1236 | |
|
1234 | 1237 | dataOut.data = newData |
|
1235 | 1238 | dataOut.flagNoData = False |
|
1236 | 1239 | |
|
1237 | 1240 | profileIndex = dataOut.profileIndex/n |
|
1238 | 1241 | |
|
1239 | 1242 | |
|
1240 | 1243 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1241 | 1244 | |
|
1242 | 1245 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1243 | 1246 | |
|
1244 | 1247 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1245 | 1248 | |
|
1246 | 1249 | dataOut.profileIndex = profileIndex |
|
1247 | 1250 | |
|
1248 | 1251 | dataOut.ippSeconds *= n |
|
1249 | 1252 | |
|
1250 | 1253 | |
|
1251 | 1254 | class SSheightProfiles(Operation): |
|
1252 | 1255 | |
|
1253 | 1256 | step = None |
|
1254 | 1257 | nsamples = None |
|
1255 | 1258 | bufferShape = None |
|
1256 | 1259 | profileShape = None |
|
1257 | 1260 | sshProfiles = None |
|
1258 | 1261 | profileIndex = None |
|
1259 | 1262 | |
|
1260 | 1263 | def __init__(self, **kwargs): |
|
1261 | 1264 | |
|
1262 | 1265 | Operation.__init__(self, **kwargs) |
|
1263 | 1266 | self.isConfig = False |
|
1264 | 1267 | |
|
1265 | 1268 | def setup(self,dataOut ,step = None , nsamples = None): |
|
1266 | 1269 | |
|
1267 | 1270 | if step == None and nsamples == None: |
|
1268 | 1271 | raise ValueError, "step or nheights should be specified ..." |
|
1269 | 1272 | |
|
1270 | 1273 | self.step = step |
|
1271 | 1274 | self.nsamples = nsamples |
|
1272 | 1275 | self.__nChannels = dataOut.nChannels |
|
1273 | 1276 | self.__nProfiles = dataOut.nProfiles |
|
1274 | 1277 | self.__nHeis = dataOut.nHeights |
|
1275 | 1278 | shape = dataOut.data.shape #nchannels, nprofiles, nsamples |
|
1276 | 1279 | |
|
1277 | 1280 | |
|
1278 | 1281 | residue = (shape[1] - self.nsamples) % self.step |
|
1279 | 1282 | if residue != 0: |
|
1280 | 1283 | print "The residue is %d, step=%d should be multiple of %d to avoid loss of %d samples"%(residue,step,shape[1] - self.nsamples,residue) |
|
1281 | 1284 | |
|
1282 | 1285 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1283 | 1286 | numberProfile = self.nsamples |
|
1284 | 1287 | numberSamples = (shape[1] - self.nsamples)/self.step |
|
1285 | 1288 | |
|
1286 | 1289 | print "New number of profile: %d, number of height: %d, Resolution %d Km"%(numberProfile,numberSamples,deltaHeight*self.step) |
|
1287 | 1290 | |
|
1288 | 1291 | self.bufferShape = shape[0], numberSamples, numberProfile # nchannels, nsamples , nprofiles |
|
1289 | 1292 | self.profileShape = shape[0], numberProfile, numberSamples # nchannels, nprofiles, nsamples |
|
1290 | 1293 | |
|
1291 | 1294 | self.buffer = numpy.zeros(self.bufferShape , dtype=numpy.complex) |
|
1292 | 1295 | self.sshProfiles = numpy.zeros(self.profileShape, dtype=numpy.complex) |
|
1293 | 1296 | |
|
1294 | 1297 | def run(self, dataOut, step, nsamples): |
|
1295 | 1298 | |
|
1296 | 1299 | dataOut.flagNoData = True |
|
1297 | 1300 | dataOut.flagDataAsBlock = False |
|
1298 | 1301 | profileIndex = None |
|
1299 | 1302 | |
|
1303 | ||
|
1300 | 1304 | if not self.isConfig: |
|
1301 | 1305 | self.setup(dataOut, step=step , nsamples=nsamples) |
|
1302 | 1306 | self.isConfig = True |
|
1303 | 1307 | |
|
1304 | 1308 | for i in range(self.buffer.shape[1]): |
|
1305 | 1309 | self.buffer[:,i] = numpy.flip(dataOut.data[:,i*self.step:i*self.step + self.nsamples]) |
|
1306 | 1310 | #self.buffer[:,j,self.__nHeis-j*self.step - self.nheights:self.__nHeis-j*self.step] = numpy.flip(dataOut.data[:,j*self.step:j*self.step + self.nheights]) |
|
1307 | 1311 | |
|
1308 | 1312 | for j in range(self.buffer.shape[0]): |
|
1309 | 1313 | self.sshProfiles[j] = numpy.transpose(self.buffer[j]) |
|
1310 | 1314 | |
|
1311 | 1315 | profileIndex = self.nsamples |
|
1312 | 1316 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1313 | 1317 | ippSeconds = (deltaHeight*1.0e-6)/(0.15) |
|
1318 | try: | |
|
1319 | if dataOut.concat_m is not None: | |
|
1320 | ippSeconds= ippSeconds/float(dataOut.concat_m) | |
|
1321 | #print "Profile concat %d"%dataOut.concat_m | |
|
1322 | except: | |
|
1323 | pass | |
|
1314 | 1324 | |
|
1315 | 1325 | dataOut.data = self.sshProfiles |
|
1316 | 1326 | dataOut.flagNoData = False |
|
1317 | 1327 | dataOut.heightList = numpy.arange(self.buffer.shape[1]) *self.step*deltaHeight + dataOut.heightList[0] |
|
1318 | 1328 | dataOut.nProfiles = int(dataOut.nProfiles*self.nsamples) |
|
1319 | 1329 | dataOut.profileIndex = profileIndex |
|
1320 | 1330 | dataOut.flagDataAsBlock = True |
|
1321 | 1331 | dataOut.ippSeconds = ippSeconds |
|
1322 | 1332 | dataOut.step = self.step |
|
1323 | 1333 | |
|
1324 | 1334 | |
|
1325 | 1335 | import time |
|
1326 | 1336 | ################################################# |
|
1327 | 1337 | |
|
1328 | 1338 | class decoPseudorandom(Operation): |
|
1329 | 1339 | |
|
1330 | 1340 | nProfiles= 0 |
|
1331 | 1341 | buffer= None |
|
1332 | 1342 | isConfig = False |
|
1333 | 1343 | |
|
1334 | 1344 | def setup(self, clen= 10000,seed= 0,Nranges= 1000,oversample=1): |
|
1335 | 1345 | #code = create_pseudo_random_code(clen=clen, seed=seed) |
|
1336 | 1346 | code= rep_seq(create_pseudo_random_code(clen=clen, seed=seed),rep=oversample) |
|
1337 | 1347 | #print ("code_rx", code.shape) |
|
1338 | 1348 | #N = int(an_len/clen) # 100 |
|
1339 | 1349 | B_cache = 0 |
|
1340 | 1350 | r_cache = 0 |
|
1341 | 1351 | B_cached = False |
|
1342 | 1352 | r = create_estimation_matrix(code=code, cache=True, rmax=Nranges) |
|
1343 | 1353 | #print ("code shape", code.shape) |
|
1344 | 1354 | #print ("seed",seed) |
|
1345 | 1355 | #print ("Code", code[0:10]) |
|
1346 | 1356 | self.B = r['B'] |
|
1347 | 1357 | |
|
1348 | 1358 | |
|
1349 | 1359 | def run (self,dataOut,length_code= 10000,seed= 0,Nranges= 1000,oversample=1): |
|
1350 | 1360 | #print((dataOut.data.shape)) |
|
1351 | 1361 | if not self.isConfig: |
|
1352 | 1362 | self.setup(clen= length_code,seed= seed,Nranges= Nranges,oversample=oversample) |
|
1353 | 1363 | self.isConfig = True |
|
1354 | 1364 | |
|
1355 | 1365 | dataOut.flagNoData = True |
|
1356 | 1366 | data =dataOut.data |
|
1357 | 1367 | #print "length_CODE",length_code |
|
1358 | 1368 | data_shape = (data.shape[1]) |
|
1359 | 1369 | #print "data_shape",data_shape |
|
1360 | 1370 | n = (length_code /data_shape) |
|
1361 | 1371 | #print "we need this number of sample",n |
|
1362 | 1372 | |
|
1363 | 1373 | if n>0 and self.buffer is None: |
|
1364 | 1374 | self.buffer = numpy.zeros([1, length_code], dtype=numpy.complex64) |
|
1365 | 1375 | self.buffer[0][0:data_shape] = data[0] |
|
1366 | 1376 | #print "FIRST CREATION",self.buffer.shape |
|
1367 | 1377 | |
|
1368 | 1378 | else: |
|
1369 | 1379 | self.buffer[0][self.nProfiles*data_shape:(self.nProfiles+1)*data_shape]=data[0] |
|
1370 | 1380 | |
|
1371 | 1381 | #print "buffer_shape",(self.buffer.shape) |
|
1372 | 1382 | self.nProfiles += 1 |
|
1373 | 1383 | #print "count",self.nProfiles |
|
1374 | 1384 | |
|
1375 | 1385 | if self.nProfiles== n: |
|
1376 | 1386 | temporal = numpy.dot(self.B, numpy.transpose(self.buffer)) |
|
1377 | 1387 | #print temporal.shape |
|
1378 | 1388 | #import time |
|
1379 | 1389 | #time.sleep(40) |
|
1380 | 1390 | dataOut.data=numpy.transpose(temporal) |
|
1381 | 1391 | |
|
1382 | 1392 | dataOut.flagNoData = False |
|
1383 | 1393 | self.buffer= None |
|
1384 | 1394 | self.nProfiles = 0 |
|
1385 | 1395 | |
|
1386 | 1396 | # import collections |
|
1387 | 1397 | # from scipy.stats import mode |
|
1388 | 1398 | # |
|
1389 | 1399 | # class Synchronize(Operation): |
|
1390 | 1400 | # |
|
1391 | 1401 | # isConfig = False |
|
1392 | 1402 | # __profIndex = 0 |
|
1393 | 1403 | # |
|
1394 | 1404 | # def __init__(self, **kwargs): |
|
1395 | 1405 | # |
|
1396 | 1406 | # Operation.__init__(self, **kwargs) |
|
1397 | 1407 | # # self.isConfig = False |
|
1398 | 1408 | # self.__powBuffer = None |
|
1399 | 1409 | # self.__startIndex = 0 |
|
1400 | 1410 | # self.__pulseFound = False |
|
1401 | 1411 | # |
|
1402 | 1412 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1403 | 1413 | # |
|
1404 | 1414 | # #Read data |
|
1405 | 1415 | # |
|
1406 | 1416 | # powerdB = dataOut.getPower(channel = channel) |
|
1407 | 1417 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1408 | 1418 | # |
|
1409 | 1419 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1410 | 1420 | # |
|
1411 | 1421 | # dataArray = numpy.array(self.__powBuffer) |
|
1412 | 1422 | # |
|
1413 | 1423 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1414 | 1424 | # |
|
1415 | 1425 | # maxValue = numpy.nanmax(filteredPower) |
|
1416 | 1426 | # |
|
1417 | 1427 | # if maxValue < noisedB + 10: |
|
1418 | 1428 | # #No se encuentra ningun pulso de transmision |
|
1419 | 1429 | # return None |
|
1420 | 1430 | # |
|
1421 | 1431 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1422 | 1432 | # |
|
1423 | 1433 | # if len(maxValuesIndex) < 2: |
|
1424 | 1434 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1425 | 1435 | # return None |
|
1426 | 1436 | # |
|
1427 | 1437 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1428 | 1438 | # |
|
1429 | 1439 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1430 | 1440 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1431 | 1441 | # |
|
1432 | 1442 | # if len(pulseIndex) < 2: |
|
1433 | 1443 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1434 | 1444 | # return None |
|
1435 | 1445 | # |
|
1436 | 1446 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1437 | 1447 | # |
|
1438 | 1448 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1439 | 1449 | # #(No deberian existir IPP menor a 10 unidades) |
|
1440 | 1450 | # |
|
1441 | 1451 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1442 | 1452 | # |
|
1443 | 1453 | # if len(realIndex) < 2: |
|
1444 | 1454 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1445 | 1455 | # return None |
|
1446 | 1456 | # |
|
1447 | 1457 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1448 | 1458 | # realPulseIndex = pulseIndex[realIndex] |
|
1449 | 1459 | # |
|
1450 | 1460 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1451 | 1461 | # |
|
1452 | 1462 | # print "IPP = %d samples" %period |
|
1453 | 1463 | # |
|
1454 | 1464 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1455 | 1465 | # self.__startIndex = int(realPulseIndex[0]) |
|
1456 | 1466 | # |
|
1457 | 1467 | # return 1 |
|
1458 | 1468 | # |
|
1459 | 1469 | # |
|
1460 | 1470 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1461 | 1471 | # |
|
1462 | 1472 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1463 | 1473 | # maxlen = buffer_size*nSamples) |
|
1464 | 1474 | # |
|
1465 | 1475 | # bufferList = [] |
|
1466 | 1476 | # |
|
1467 | 1477 | # for i in range(nChannels): |
|
1468 | 1478 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1469 | 1479 | # maxlen = buffer_size*nSamples) |
|
1470 | 1480 | # |
|
1471 | 1481 | # bufferList.append(bufferByChannel) |
|
1472 | 1482 | # |
|
1473 | 1483 | # self.__nSamples = nSamples |
|
1474 | 1484 | # self.__nChannels = nChannels |
|
1475 | 1485 | # self.__bufferList = bufferList |
|
1476 | 1486 | # |
|
1477 | 1487 | # def run(self, dataOut, channel = 0): |
|
1478 | 1488 | # |
|
1479 | 1489 | # if not self.isConfig: |
|
1480 | 1490 | # nSamples = dataOut.nHeights |
|
1481 | 1491 | # nChannels = dataOut.nChannels |
|
1482 | 1492 | # self.setup(nSamples, nChannels) |
|
1483 | 1493 | # self.isConfig = True |
|
1484 | 1494 | # |
|
1485 | 1495 | # #Append new data to internal buffer |
|
1486 | 1496 | # for thisChannel in range(self.__nChannels): |
|
1487 | 1497 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1488 | 1498 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1489 | 1499 | # |
|
1490 | 1500 | # if self.__pulseFound: |
|
1491 | 1501 | # self.__startIndex -= self.__nSamples |
|
1492 | 1502 | # |
|
1493 | 1503 | # #Finding Tx Pulse |
|
1494 | 1504 | # if not self.__pulseFound: |
|
1495 | 1505 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1496 | 1506 | # |
|
1497 | 1507 | # if indexFound == None: |
|
1498 | 1508 | # dataOut.flagNoData = True |
|
1499 | 1509 | # return |
|
1500 | 1510 | # |
|
1501 | 1511 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1502 | 1512 | # self.__pulseFound = True |
|
1503 | 1513 | # self.__startIndex = indexFound |
|
1504 | 1514 | # |
|
1505 | 1515 | # #If pulse was found ... |
|
1506 | 1516 | # for thisChannel in range(self.__nChannels): |
|
1507 | 1517 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1508 | 1518 | # #print self.__startIndex |
|
1509 | 1519 | # x = numpy.array(bufferByChannel) |
|
1510 | 1520 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1511 | 1521 | # |
|
1512 | 1522 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1513 | 1523 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1514 | 1524 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1515 | 1525 | # |
|
1516 | 1526 | # dataOut.data = self.__arrayBuffer |
|
1517 | 1527 | # |
|
1518 | 1528 | # self.__startIndex += self.__newNSamples |
|
1519 | 1529 | # |
|
1520 | 1530 | # return |
General Comments 0
You need to be logged in to leave comments.
Login now