##// END OF EJS Templates
valid en jroproc_parameters
avaldez -
r1394:99588b4ace71
parent child
Show More

The requested changes are too big and content was truncated. Show full diff

@@ -1,509 +1,517
1 1 import os
2 2 import datetime
3 3 import numpy
4 4
5 5 from schainpy.model.graphics.jroplot_base import Plot, plt
6 6 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
7 7 from schainpy.utils import log
8 8 # libreria wradlib
9 9 import wradlib as wrl
10 10
11 11 EARTH_RADIUS = 6.3710e3
12 12
13 13
14 14 def ll2xy(lat1, lon1, lat2, lon2):
15 15
16 16 p = 0.017453292519943295
17 17 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
18 18 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
19 19 r = 12742 * numpy.arcsin(numpy.sqrt(a))
20 20 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
21 21 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
22 22 theta = -theta + numpy.pi/2
23 23 return r*numpy.cos(theta), r*numpy.sin(theta)
24 24
25 25
26 26 def km2deg(km):
27 27 '''
28 28 Convert distance in km to degrees
29 29 '''
30 30
31 31 return numpy.rad2deg(km/EARTH_RADIUS)
32 32
33 33
34 34
35 35 class SpectralMomentsPlot(SpectraPlot):
36 36 '''
37 37 Plot for Spectral Moments
38 38 '''
39 39 CODE = 'spc_moments'
40 40 # colormap = 'jet'
41 41 # plot_type = 'pcolor'
42 42
43 43 class DobleGaussianPlot(SpectraPlot):
44 44 '''
45 45 Plot for Double Gaussian Plot
46 46 '''
47 47 CODE = 'gaussian_fit'
48 48 # colormap = 'jet'
49 49 # plot_type = 'pcolor'
50 50
51 51 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
52 52 '''
53 53 Plot SpectraCut with Double Gaussian Fit
54 54 '''
55 55 CODE = 'cut_gaussian_fit'
56 56
57 57 class SnrPlot(RTIPlot):
58 58 '''
59 59 Plot for SNR Data
60 60 '''
61 61
62 62 CODE = 'snr'
63 63 colormap = 'jet'
64 64
65 65 def update(self, dataOut):
66 66
67 67 data = {
68 68 'snr': 10*numpy.log10(dataOut.data_snr)
69 69 }
70 70
71 71 return data, {}
72 72
73 73 class DopplerPlot(RTIPlot):
74 74 '''
75 75 Plot for DOPPLER Data (1st moment)
76 76 '''
77 77
78 78 CODE = 'dop'
79 79 colormap = 'jet'
80 80
81 81 def update(self, dataOut):
82 82
83 83 data = {
84 84 'dop': 10*numpy.log10(dataOut.data_dop)
85 85 }
86 86
87 87 return data, {}
88 88
89 89 class PowerPlot(RTIPlot):
90 90 '''
91 91 Plot for Power Data (0 moment)
92 92 '''
93 93
94 94 CODE = 'pow'
95 95 colormap = 'jet'
96 96
97 97 def update(self, dataOut):
98 98 data = {
99 99 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
100 100 }
101 101 return data, {}
102 102
103 103 class SpectralWidthPlot(RTIPlot):
104 104 '''
105 105 Plot for Spectral Width Data (2nd moment)
106 106 '''
107 107
108 108 CODE = 'width'
109 109 colormap = 'jet'
110 110
111 111 def update(self, dataOut):
112 112
113 113 data = {
114 114 'width': dataOut.data_width
115 115 }
116 116
117 117 return data, {}
118 118
119 119 class SkyMapPlot(Plot):
120 120 '''
121 121 Plot for meteors detection data
122 122 '''
123 123
124 124 CODE = 'param'
125 125
126 126 def setup(self):
127 127
128 128 self.ncols = 1
129 129 self.nrows = 1
130 130 self.width = 7.2
131 131 self.height = 7.2
132 132 self.nplots = 1
133 133 self.xlabel = 'Zonal Zenith Angle (deg)'
134 134 self.ylabel = 'Meridional Zenith Angle (deg)'
135 135 self.polar = True
136 136 self.ymin = -180
137 137 self.ymax = 180
138 138 self.colorbar = False
139 139
140 140 def plot(self):
141 141
142 142 arrayParameters = numpy.concatenate(self.data['param'])
143 143 error = arrayParameters[:, -1]
144 144 indValid = numpy.where(error == 0)[0]
145 145 finalMeteor = arrayParameters[indValid, :]
146 146 finalAzimuth = finalMeteor[:, 3]
147 147 finalZenith = finalMeteor[:, 4]
148 148
149 149 x = finalAzimuth * numpy.pi / 180
150 150 y = finalZenith
151 151
152 152 ax = self.axes[0]
153 153
154 154 if ax.firsttime:
155 155 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
156 156 else:
157 157 ax.plot.set_data(x, y)
158 158
159 159 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
160 160 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
161 161 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
162 162 dt2,
163 163 len(x))
164 164 self.titles[0] = title
165 165
166 166
167 167 class GenericRTIPlot(Plot):
168 168 '''
169 169 Plot for data_xxxx object
170 170 '''
171 171
172 172 CODE = 'param'
173 173 colormap = 'viridis'
174 174 plot_type = 'pcolorbuffer'
175 175
176 176 def setup(self):
177 177 self.xaxis = 'time'
178 178 self.ncols = 1
179 179 self.nrows = self.data.shape('param')[0]
180 180 self.nplots = self.nrows
181 181 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
182 182
183 183 if not self.xlabel:
184 184 self.xlabel = 'Time'
185 185
186 186 self.ylabel = 'Range [km]'
187 187 if not self.titles:
188 188 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
189 189
190 190 def update(self, dataOut):
191 191
192 192 data = {
193 193 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
194 194 }
195 195
196 196 meta = {}
197 197
198 198 return data, meta
199 199
200 200 def plot(self):
201 201 # self.data.normalize_heights()
202 202 self.x = self.data.times
203 203 self.y = self.data.yrange
204 204 self.z = self.data['param']
205 205 self.z = 10*numpy.log10(self.z)
206 206 self.z = numpy.ma.masked_invalid(self.z)
207 207
208 208 if self.decimation is None:
209 209 x, y, z = self.fill_gaps(self.x, self.y, self.z)
210 210 else:
211 211 x, y, z = self.fill_gaps(*self.decimate())
212 212
213 213 for n, ax in enumerate(self.axes):
214 214
215 215 self.zmax = self.zmax if self.zmax is not None else numpy.max(
216 216 self.z[n])
217 217 self.zmin = self.zmin if self.zmin is not None else numpy.min(
218 218 self.z[n])
219 219
220 220 if ax.firsttime:
221 221 if self.zlimits is not None:
222 222 self.zmin, self.zmax = self.zlimits[n]
223 223
224 224 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
225 225 vmin=self.zmin,
226 226 vmax=self.zmax,
227 227 cmap=self.cmaps[n]
228 228 )
229 229 else:
230 230 if self.zlimits is not None:
231 231 self.zmin, self.zmax = self.zlimits[n]
232 232 ax.collections.remove(ax.collections[0])
233 233 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
234 234 vmin=self.zmin,
235 235 vmax=self.zmax,
236 236 cmap=self.cmaps[n]
237 237 )
238 238
239 239
240 240 class PolarMapPlot(Plot):
241 241 '''
242 242 Plot for weather radar
243 243 '''
244 244
245 245 CODE = 'param'
246 246 colormap = 'seismic'
247 247
248 248 def setup(self):
249 249 self.ncols = 1
250 250 self.nrows = 1
251 251 self.width = 9
252 252 self.height = 8
253 253 self.mode = self.data.meta['mode']
254 254 if self.channels is not None:
255 255 self.nplots = len(self.channels)
256 256 self.nrows = len(self.channels)
257 257 else:
258 258 self.nplots = self.data.shape(self.CODE)[0]
259 259 self.nrows = self.nplots
260 260 self.channels = list(range(self.nplots))
261 261 if self.mode == 'E':
262 262 self.xlabel = 'Longitude'
263 263 self.ylabel = 'Latitude'
264 264 else:
265 265 self.xlabel = 'Range (km)'
266 266 self.ylabel = 'Height (km)'
267 267 self.bgcolor = 'white'
268 268 self.cb_labels = self.data.meta['units']
269 269 self.lat = self.data.meta['latitude']
270 270 self.lon = self.data.meta['longitude']
271 271 self.xmin, self.xmax = float(
272 272 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
273 273 self.ymin, self.ymax = float(
274 274 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
275 275 # self.polar = True
276 276
277 277 def plot(self):
278 278
279 279 for n, ax in enumerate(self.axes):
280 280 data = self.data['param'][self.channels[n]]
281 281
282 282 zeniths = numpy.linspace(
283 283 0, self.data.meta['max_range'], data.shape[1])
284 284 if self.mode == 'E':
285 285 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
286 286 r, theta = numpy.meshgrid(zeniths, azimuths)
287 287 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
288 288 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
289 289 x = km2deg(x) + self.lon
290 290 y = km2deg(y) + self.lat
291 291 else:
292 292 azimuths = numpy.radians(self.data.yrange)
293 293 r, theta = numpy.meshgrid(zeniths, azimuths)
294 294 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
295 295 self.y = zeniths
296 296
297 297 if ax.firsttime:
298 298 if self.zlimits is not None:
299 299 self.zmin, self.zmax = self.zlimits[n]
300 300 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
301 301 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
302 302 vmin=self.zmin,
303 303 vmax=self.zmax,
304 304 cmap=self.cmaps[n])
305 305 else:
306 306 if self.zlimits is not None:
307 307 self.zmin, self.zmax = self.zlimits[n]
308 308 ax.collections.remove(ax.collections[0])
309 309 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
310 310 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
311 311 vmin=self.zmin,
312 312 vmax=self.zmax,
313 313 cmap=self.cmaps[n])
314 314
315 315 if self.mode == 'A':
316 316 continue
317 317
318 318 # plot district names
319 319 f = open('/data/workspace/schain_scripts/distrito.csv')
320 320 for line in f:
321 321 label, lon, lat = [s.strip() for s in line.split(',') if s]
322 322 lat = float(lat)
323 323 lon = float(lon)
324 324 # ax.plot(lon, lat, '.b', ms=2)
325 325 ax.text(lon, lat, label.decode('utf8'), ha='center',
326 326 va='bottom', size='8', color='black')
327 327
328 328 # plot limites
329 329 limites = []
330 330 tmp = []
331 331 for line in open('/data/workspace/schain_scripts/lima.csv'):
332 332 if '#' in line:
333 333 if tmp:
334 334 limites.append(tmp)
335 335 tmp = []
336 336 continue
337 337 values = line.strip().split(',')
338 338 tmp.append((float(values[0]), float(values[1])))
339 339 for points in limites:
340 340 ax.add_patch(
341 341 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
342 342
343 343 # plot Cuencas
344 344 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
345 345 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
346 346 values = [line.strip().split(',') for line in f]
347 347 points = [(float(s[0]), float(s[1])) for s in values]
348 348 ax.add_patch(Polygon(points, ec='b', fc='none'))
349 349
350 350 # plot grid
351 351 for r in (15, 30, 45, 60):
352 352 ax.add_artist(plt.Circle((self.lon, self.lat),
353 353 km2deg(r), color='0.6', fill=False, lw=0.2))
354 354 ax.text(
355 355 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
356 356 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
357 357 '{}km'.format(r),
358 358 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
359 359
360 360 if self.mode == 'E':
361 361 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
362 362 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
363 363 else:
364 364 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
365 365 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
366 366
367 367 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
368 368 self.titles = ['{} {}'.format(
369 369 self.data.parameters[x], title) for x in self.channels]
370 370
371 371 class WeatherPlot(Plot):
372 372 CODE = 'weather'
373 373 plot_name = 'weather'
374 374 plot_type = 'ppistyle'
375 375 buffering = False
376 376
377 377 def setup(self):
378 378 self.ncols = 1
379 379 self.nrows = 1
380 380 self.nplots= 1
381 381 self.ylabel= 'Range [Km]'
382 382 self.titles= ['Weather']
383 383 self.colorbar=False
384 384 self.width =8
385 385 self.height =8
386 386 self.ini =0
387 387 self.len_azi =0
388 388 self.buffer_ini = None
389 389 self.buffer_azi = None
390 390 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
391 391 self.flag =0
392 392 self.indicador= 0
393 393
394 394 def update(self, dataOut):
395 395
396 396 data = {}
397 397 meta = {}
398 data['weather'] = 10*numpy.log10(dataOut.data_360[0]/(250.0))
398 if hasattr(dataOut, 'dataPP_POWER'):
399 factor = 1
400
401 if hasattr(dataOut, 'nFFTPoints'):
402 factor = dataOut.normFactor
403
404 print("factor",factor)
405 data['weather'] = 10*numpy.log10(dataOut.data_360[0]/(factor))
406 print("weather",data['weather'])
399 407 data['azi'] = dataOut.data_azi
400 408 return data, meta
401 409
402 410 def const_ploteo(self,data_weather,data_azi,step,res):
403 411 if self.ini==0:
404 412 #------- AZIMUTH
405 413 n = (360/res)-len(data_azi)
406 414 start = data_azi[-1] + res
407 415 end = data_azi[0] - res
408 416 if start>end:
409 417 end = end + 360
410 418 azi_vacia = numpy.linspace(start,end,int(n))
411 419 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
412 420 data_azi = numpy.hstack((data_azi,azi_vacia))
413 421 # RADAR
414 422 val_mean = numpy.mean(data_weather[:,0])
415 423 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
416 424 data_weather = numpy.vstack((data_weather,data_weather_cmp))
417 425 else:
418 426 # azimuth
419 427 flag=0
420 428 start_azi = self.res_azi[0]
421 429 start = data_azi[0]
422 430 end = data_azi[-1]
423 431 print("start",start)
424 432 print("end",end)
425 433 if start< start_azi:
426 434 start = start +360
427 435 if end <start_azi:
428 436 end = end +360
429 437
430 438 print("start",start)
431 439 print("end",end)
432 440 #### AQUI SERA LA MAGIA
433 441 pos_ini = int((start-start_azi)/res)
434 442 len_azi = len(data_azi)
435 443 if (360-pos_ini)<len_azi:
436 444 if pos_ini+1==360:
437 445 pos_ini=0
438 446 else:
439 447 flag=1
440 448 dif= 360-pos_ini
441 449 comp= len_azi-dif
442 450
443 451 print(pos_ini)
444 452 print(len_azi)
445 453 print("shape",self.res_azi.shape)
446 454 if flag==0:
447 455 # AZIMUTH
448 456 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
449 457 # RADAR
450 458 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
451 459 else:
452 460 # AZIMUTH
453 461 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
454 462 self.res_azi[0:comp] = data_azi[dif:]
455 463 # RADAR
456 464 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
457 465 self.res_weather[0:comp,:] = data_weather[dif:,:]
458 466 flag=0
459 467 data_azi = self.res_azi
460 468 data_weather = self.res_weather
461 469
462 470 return data_weather,data_azi
463 471
464 472 def plot(self):
465 473 print("--------------------------------------",self.ini,"-----------------------------------")
466 474 #numpy.set_printoptions(suppress=True)
467 475 #print(self.data.times)
468 476 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1])
469 477 data = self.data[-1]
470 478 # ALTURA altura_tmp_h
471 479 altura_h = (data['weather'].shape[1])/10.0
472 480 stoprange = float(altura_h*1.5)#stoprange = float(33*1.5) por ahora 400
473 481 rangestep = float(0.15)
474 482 r = numpy.arange(0, stoprange, rangestep)
475 483 self.y = 2*r
476 484 # RADAR
477 485 #data_weather = data['weather']
478 486 # PEDESTAL
479 487 #data_azi = data['azi']
480 488 res = 1
481 489 # STEP
482 490 step = (360/(res*data['weather'].shape[0]))
483 491 #print("shape wr_data", wr_data.shape)
484 492 #print("shape wr_azi",wr_azi.shape)
485 493 #print("step",step)
486 494 print("Time---->",self.data.times[-1],thisDatetime)
487 495 #print("alturas", len(self.y))
488 496 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'],data_azi=data['azi'],step=step,res=res)
489 497 #numpy.set_printoptions(suppress=True)
490 498 #print("resultado",self.res_azi)
491 499 ##########################################################
492 500 ################# PLOTEO ###################
493 501 ##########################################################
494 502
495 503 for i,ax in enumerate(self.axes):
496 504 if ax.firsttime:
497 505 plt.clf()
498 506 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60)
499 507 else:
500 508 plt.clf()
501 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=0, vmax=60)
509 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60)
502 510 caax = cgax.parasites[0]
503 511 paax = cgax.parasites[1]
504 512 cbar = plt.gcf().colorbar(pm, pad=0.075)
505 513 caax.set_xlabel('x_range [km]')
506 514 caax.set_ylabel('y_range [km]')
507 515 plt.text(1.0, 1.05, 'azimuth '+str(thisDatetime)+"step"+str(self.ini), transform=caax.transAxes, va='bottom',ha='right')
508 516
509 517 self.ini= self.ini+1
1 NO CONTENT: modified file
The requested commit or file is too big and content was truncated. Show full diff
1 NO CONTENT: modified file
@@ -1,216 +1,216
1 1 # Ing. AVP
2 2 # 06/10/2021
3 3 # ARCHIVO DE LECTURA
4 4 import os, sys
5 5 import datetime
6 6 import time
7 7 from schainpy.controller import Project
8 8 #### NOTA###########################################
9 9 # INPUT :
10 10 # VELOCIDAD PARAMETRO : V = 2Β°/seg
11 11 # MODO PULSE PAIR O MOMENTOS: 0 : Pulse Pair ,1 : Momentos
12 12 ######################################################
13 13 ##### PROCESAMIENTO ##################################
14 14 ##### OJO TENER EN CUENTA EL n= para el Pulse Pair ##
15 15 ##### O EL n= nFFTPoints ###
16 16 ######################################################
17 17 ######## BUSCAMOS EL numero de IPP equivalente 1Β°#####
18 18 ######## Sea V la velocidad del Pedestal en Β°/seg#####
19 19 ######## 1Β° sera Recorrido en un tiempo de 1/V ######
20 20 ######## IPP del Radar 400 useg --> 60 Km ############
21 21 ######## n = 1/(V(Β°/seg)*IPP(Km)) , NUMERO DE IPP ##
22 22 ######## n = 1/(V*IPP) #############################
23 23 ######## VELOCIDAD DEL PEDESTAL ######################
24 24 print("SETUP- RADAR METEOROLOGICO")
25 25 V = 10
26 26 mode = 1
27 27 #path = '/DATA_RM/23/6v'
28 28 ####path = '/DATA_RM/TEST_INTEGRACION_2M'
29 29 #path = '/DATA_RM/TEST_19OCTUBRE/10MHZ'
30 30 path = '/DATA_RM/WR_20_OCT'
31 31 #### path_ped='/DATA_RM/TEST_PEDESTAL/P20211012-082745'
32 32 #### path_ped='/DATA_RM/TEST_PEDESTAL/P20211019-192244'
33 33 figpath_pp = "/home/soporte/Pictures/TEST_PP"
34 34 figpath_spec = "/home/soporte/Pictures/TEST_MOM"
35 plot = 1
36 integration = 0
35 plot = 0
36 integration = 1
37 37 save = 0
38 38 if save == 1:
39 39 if mode==0:
40 40 path_save = '/DATA_RM/TEST_HDF5_PP_23/6v'
41 41 path_save = '/DATA_RM/TEST_HDF5_PP'
42 42 path_save = '/DATA_RM/TEST_HDF5_PP_100'
43 43 else:
44 44 path_save = '/DATA_RM/TEST_HDF5_SPEC_23_V2/6v'
45 45
46 46 print("* PATH data ADQ :", path)
47 47 print("* Velocidad Pedestal :",V,"Β°/seg")
48 48 ############################ NRO Perfiles PROCESAMIENTO ###################
49 49 V=V
50 50 IPP=400*1e-6
51 51 n= int(1/(V*IPP))
52 52 print("* n - NRO Perfiles Proc:", n )
53 53 ################################## MODE ###################################
54 54 print("* Modo de Operacion :",mode)
55 55 if mode ==0:
56 56 print("* Met. Seleccionado : Pulse Pair")
57 57 else:
58 58 print("* Met. Momentos : Momentos")
59 59
60 60 ################################## MODE ###################################
61 61 print("* Grabado de datos :",save)
62 62 if save ==1:
63 63 if mode==0:
64 64 ope= "Pulse Pair"
65 65 else:
66 66 ope= "Momentos"
67 67 print("* Path-Save Data -", ope , path_save)
68 68
69 69 print("* Integracion de datos :",integration)
70 70
71 71 time.sleep(15)
72 72 #remotefolder = "/home/wmaster/graficos"
73 73 #######################################################################
74 74 ################# RANGO DE PLOTEO######################################
75 75 dBmin = '1'
76 76 dBmax = '65'
77 77 xmin = '13.2'
78 78 xmax = '13.5'
79 79 ymin = '0'
80 80 ymax = '60'
81 81 #######################################################################
82 82 ########################FECHA##########################################
83 83 str = datetime.date.today()
84 84 today = str.strftime("%Y/%m/%d")
85 85 str2 = str - datetime.timedelta(days=1)
86 86 yesterday = str2.strftime("%Y/%m/%d")
87 87 #######################################################################
88 88 ########################SIGNAL CHAIN ##################################
89 89 #######################################################################
90 90 desc = "USRP_test"
91 91 filename = "USRP_processing.xml"
92 92 controllerObj = Project()
93 93 controllerObj.setup(id = '191', name='Test_USRP', description=desc)
94 94 #######################################################################
95 95 ######################## UNIDAD DE LECTURA#############################
96 96 #######################################################################
97 97 readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader',
98 98 path=path,
99 99 startDate="2021/01/01",#today,
100 100 endDate="2021/12/30",#today,
101 101 startTime='00:00:00',
102 102 endTime='23:59:59',
103 103 delay=0,
104 104 #set=0,
105 105 online=0,
106 106 walk=1,
107 107 ippKm = 60)
108 108
109 109 opObj11 = readUnitConfObj.addOperation(name='printInfo')
110 110
111 111 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
112 112
113 113 if mode ==0:
114 114 ####################### METODO PULSE PAIR ######################################################################
115 115 opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other')
116 116 opObj11.addParameter(name='n', value=int(n), format='int')#10 VOY A USAR 250 DADO QUE LA VELOCIDAD ES 10 GRADOS
117 117 #opObj11.addParameter(name='removeDC', value=1, format='int')
118 118 ####################### METODO Parametros ######################################################################
119 119 procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId())
120 120 if plot==1:
121 121 opObj11 = procUnitConfObjB.addOperation(name='GenericRTIPlot',optype='external')
122 122 opObj11.addParameter(name='attr_data', value='dataPP_POWER')
123 123 opObj11.addParameter(name='colormap', value='jet')
124 124 opObj11.addParameter(name='xmin', value=xmin)
125 125 opObj11.addParameter(name='xmax', value=xmax)
126 126 opObj11.addParameter(name='zmin', value=dBmin)
127 127 opObj11.addParameter(name='zmax', value=dBmax)
128 128 opObj11.addParameter(name='save', value=figpath_pp)
129 129 opObj11.addParameter(name='showprofile', value=0)
130 130 opObj11.addParameter(name='save_period', value=10)
131 131
132 132 ####################### METODO ESCRITURA #######################################################################
133 133 if save==1:
134 134 opObj10 = procUnitConfObjB.addOperation(name='HDFWriter')
135 135 opObj10.addParameter(name='path',value=path_save)
136 136 #opObj10.addParameter(name='mode',value=0)
137 137 opObj10.addParameter(name='blocksPerFile',value='100',format='int')
138 138 opObj10.addParameter(name='metadataList',value='utctimeInit,timeZone,paramInterval,profileIndex,channelList,heightList,flagDataAsBlock',format='list')
139 139 opObj10.addParameter(name='dataList',value='dataPP_POWER,dataPP_DOP,utctime',format='list')#,format='list'
140 140 if integration==1:
141 141 V=10
142 142 blocksPerfile=360
143 143 print("* Velocidad del Pedestal:",V)
144 144 tmp_blocksPerfile = 100
145 145 f_a_p= int(tmp_blocksPerfile/V)
146 146
147 147 opObj11 = procUnitConfObjB.addOperation(name='PedestalInformation')
148 148 opObj11.addParameter(name='path_ped', value=path_ped)
149 149 #opObj11.addParameter(name='path_adq', value=path_adq)
150 150 opObj11.addParameter(name='t_Interval_p', value='0.01', format='float')
151 151 opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int')
152 152 opObj11.addParameter(name='n_Muestras_p', value='100', format='float')
153 153 opObj11.addParameter(name='f_a_p', value=f_a_p, format='int')
154 154 opObj11.addParameter(name='online', value='0', format='int')
155 155
156 156 opObj11 = procUnitConfObjB.addOperation(name='Block360')
157 157 opObj11.addParameter(name='n', value='10', format='int')
158 158 opObj11.addParameter(name='mode', value=mode, format='int')
159 159
160 160 # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180
161 161
162 162 opObj11= procUnitConfObjB.addOperation(name='WeatherPlot',optype='other')
163 163
164 164
165 165 else:
166 166 ####################### METODO SPECTROS ######################################################################
167 167 procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId())
168 168 procUnitConfObjB.addParameter(name='nFFTPoints', value=n, format='int')
169 169 procUnitConfObjB.addParameter(name='nProfiles' , value=n, format='int')
170 170
171 171 procUnitConfObjC = controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjB.getId())
172 172 procUnitConfObjC.addOperation(name='SpectralMoments')
173 173 if plot==1:
174 174 dBmin = '1'
175 175 dBmax = '65'
176 176 opObj11 = procUnitConfObjC.addOperation(name='PowerPlot',optype='external')
177 177 opObj11.addParameter(name='xmin', value=xmin)
178 178 opObj11.addParameter(name='xmax', value=xmax)
179 179 opObj11.addParameter(name='zmin', value=dBmin)
180 180 opObj11.addParameter(name='zmax', value=dBmax)
181 181 opObj11.addParameter(name='save', value=figpath_spec)
182 182 opObj11.addParameter(name='showprofile', value=0)
183 183 opObj11.addParameter(name='save_period', value=10)
184 184
185 185 if save==1:
186 186 opObj10 = procUnitConfObjC.addOperation(name='HDFWriter')
187 187 opObj10.addParameter(name='path',value=path_save)
188 188 #opObj10.addParameter(name='mode',value=0)
189 189 opObj10.addParameter(name='blocksPerFile',value='360',format='int')
190 190 #opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex
191 191 opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex
192 192 opObj10.addParameter(name='dataList',value='data_pow,data_dop,utctime',format='list')#,format='list'
193 193
194 194 if integration==1:
195 195 V=10
196 196 blocksPerfile=360
197 197 print("* Velocidad del Pedestal:",V)
198 198 tmp_blocksPerfile = 100
199 199 f_a_p= int(tmp_blocksPerfile/V)
200 200
201 201 opObj11 = procUnitConfObjC.addOperation(name='PedestalInformation')
202 202 opObj11.addParameter(name='path_ped', value=path_ped)
203 203 #opObj11.addParameter(name='path_adq', value=path_adq)
204 204 opObj11.addParameter(name='t_Interval_p', value='0.01', format='float')
205 205 opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int')
206 206 opObj11.addParameter(name='n_Muestras_p', value='100', format='float')
207 207 opObj11.addParameter(name='f_a_p', value=f_a_p, format='int')
208 208 opObj11.addParameter(name='online', value='0', format='int')
209 209
210 210 opObj11 = procUnitConfObjC.addOperation(name='Block360')
211 211 opObj11.addParameter(name='n', value='10', format='int')
212 212 opObj11.addParameter(name='mode', value=mode, format='int')
213 213
214 214 # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180
215 215 opObj11= procUnitConfObjC.addOperation(name='WeatherPlot',optype='other')
216 216 controllerObj.start()
@@ -1,217 +1,217
1 1 # Ing. AVP
2 2 # 06/10/2021
3 3 # ARCHIVO DE LECTURA
4 4 import os, sys
5 5 import datetime
6 6 import time
7 7 from schainpy.controller import Project
8 8 #### NOTA###########################################
9 9 # INPUT :
10 10 # VELOCIDAD PARAMETRO : V = 2Β°/seg
11 11 # MODO PULSE PAIR O MOMENTOS: 0 : Pulse Pair ,1 : Momentos
12 12 ######################################################
13 13 ##### PROCESAMIENTO ##################################
14 14 ##### OJO TENER EN CUENTA EL n= para el Pulse Pair ##
15 15 ##### O EL n= nFFTPoints ###
16 16 ######################################################
17 17 ######## BUSCAMOS EL numero de IPP equivalente 1Β°#####
18 18 ######## Sea V la velocidad del Pedestal en Β°/seg#####
19 19 ######## 1Β° sera Recorrido en un tiempo de 1/V ######
20 20 ######## IPP del Radar 400 useg --> 60 Km ############
21 21 ######## n = 1/(V(Β°/seg)*IPP(Km)) , NUMERO DE IPP ##
22 22 ######## n = 1/(V*IPP) #############################
23 23 ######## VELOCIDAD DEL PEDESTAL ######################
24 24 print("SETUP- RADAR METEOROLOGICO")
25 25 V = 10
26 26 mode = 1
27 27 #path = '/DATA_RM/23/6v'
28 28 #path = '/DATA_RM/TEST_INTEGRACION_2M'
29 29 path = '/DATA_RM/WR_20_OCT'
30 30
31 31 #path_ped='/DATA_RM/TEST_PEDESTAL/P20211012-082745'
32 32 path_ped='/DATA_RM/TEST_PEDESTAL/P20211020-131248'
33 33
34 34 figpath_pp = "/home/soporte/Pictures/TEST_PP"
35 35 figpath_mom = "/home/soporte/Pictures/TEST_MOM"
36 36 plot = 0
37 37 integration = 1
38 38 save = 0
39 39 if save == 1:
40 40 if mode==0:
41 41 path_save = '/DATA_RM/TEST_HDF5_PP_23/6v'
42 42 path_save = '/DATA_RM/TEST_HDF5_PP'
43 43 path_save = '/DATA_RM/TEST_HDF5_PP_100'
44 44 else:
45 45 path_save = '/DATA_RM/TEST_HDF5_SPEC_23_V2/6v'
46 46
47 47 print("* PATH data ADQ :", path)
48 48 print("* Velocidad Pedestal :",V,"Β°/seg")
49 49 ############################ NRO Perfiles PROCESAMIENTO ###################
50 50 V=V
51 51 IPP=400*1e-6
52 52 n= int(1/(V*IPP))
53 53 print("* n - NRO Perfiles Proc:", n )
54 54 ################################## MODE ###################################
55 55 print("* Modo de Operacion :",mode)
56 56 if mode ==0:
57 57 print("* Met. Seleccionado : Pulse Pair")
58 58 else:
59 59 print("* Met. Momentos : Momentos")
60 60
61 61 ################################## MODE ###################################
62 62 print("* Grabado de datos :",save)
63 63 if save ==1:
64 64 if mode==0:
65 65 ope= "Pulse Pair"
66 66 else:
67 67 ope= "Momentos"
68 68 print("* Path-Save Data -", ope , path_save)
69 69
70 70 print("* Integracion de datos :",integration)
71 71
72 time.sleep(15)
72 time.sleep(5)
73 73 #remotefolder = "/home/wmaster/graficos"
74 74 #######################################################################
75 75 ################# RANGO DE PLOTEO######################################
76 76 dBmin = '1'
77 77 dBmax = '85'
78 78 xmin = '15'
79 79 xmax = '15.25'
80 80 ymin = '0'
81 81 ymax = '600'
82 82 #######################################################################
83 83 ########################FECHA##########################################
84 84 str = datetime.date.today()
85 85 today = str.strftime("%Y/%m/%d")
86 86 str2 = str - datetime.timedelta(days=1)
87 87 yesterday = str2.strftime("%Y/%m/%d")
88 88 #######################################################################
89 89 ########################SIGNAL CHAIN ##################################
90 90 #######################################################################
91 91 desc = "USRP_test"
92 92 filename = "USRP_processing.xml"
93 93 controllerObj = Project()
94 94 controllerObj.setup(id = '191', name='Test_USRP', description=desc)
95 95 #######################################################################
96 96 ######################## UNIDAD DE LECTURA#############################
97 97 #######################################################################
98 98 readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader',
99 99 path=path,
100 100 startDate="2021/01/01",#today,
101 101 endDate="2021/12/30",#today,
102 102 startTime='00:00:00',
103 103 endTime='23:59:59',
104 104 delay=0,
105 105 #set=0,
106 106 online=0,
107 107 walk=1,
108 108 ippKm = 60)
109 109
110 110 opObj11 = readUnitConfObj.addOperation(name='printInfo')
111 111
112 112 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
113 113
114 114 if mode ==0:
115 115 ####################### METODO PULSE PAIR ######################################################################
116 116 opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other')
117 117 opObj11.addParameter(name='n', value=int(n), format='int')#10 VOY A USAR 250 DADO QUE LA VELOCIDAD ES 10 GRADOS
118 118 #opObj11.addParameter(name='removeDC', value=1, format='int')
119 119 ####################### METODO Parametros ######################################################################
120 120 procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId())
121 121 if plot==1:
122 122 opObj11 = procUnitConfObjB.addOperation(name='GenericRTIPlot',optype='external')
123 123 opObj11.addParameter(name='attr_data', value='dataPP_POW')
124 124 opObj11.addParameter(name='colormap', value='jet')
125 125 opObj11.addParameter(name='xmin', value=xmin)
126 126 opObj11.addParameter(name='xmax', value=xmax)
127 127 opObj11.addParameter(name='zmin', value=dBmin)
128 128 opObj11.addParameter(name='zmax', value=dBmax)
129 129 opObj11.addParameter(name='save', value=figpath_pp)
130 130 opObj11.addParameter(name='showprofile', value=0)
131 131 opObj11.addParameter(name='save_period', value=50)
132 132
133 133 ####################### METODO ESCRITURA #######################################################################
134 134 if save==1:
135 135 opObj10 = procUnitConfObjB.addOperation(name='HDFWriter')
136 136 opObj10.addParameter(name='path',value=path_save)
137 137 #opObj10.addParameter(name='mode',value=0)
138 138 opObj10.addParameter(name='blocksPerFile',value='100',format='int')
139 139 opObj10.addParameter(name='metadataList',value='utctimeInit,timeZone,paramInterval,profileIndex,channelList,heightList,flagDataAsBlock',format='list')
140 140 opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,utctime',format='list')#,format='list'
141 141 if integration==1:
142 142 V=10
143 143 blocksPerfile=360
144 144 print("* Velocidad del Pedestal:",V)
145 145 tmp_blocksPerfile = 100
146 146 f_a_p= int(tmp_blocksPerfile/V)
147 147
148 148 opObj11 = procUnitConfObjB.addOperation(name='PedestalInformation')
149 149 opObj11.addParameter(name='path_ped', value=path_ped)
150 150 #opObj11.addParameter(name='path_adq', value=path_adq)
151 151 opObj11.addParameter(name='t_Interval_p', value='0.01', format='float')
152 152 opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int')
153 153 opObj11.addParameter(name='n_Muestras_p', value='100', format='float')
154 154 opObj11.addParameter(name='f_a_p', value=f_a_p, format='int')
155 155 opObj11.addParameter(name='online', value='0', format='int')
156 156
157 157 opObj11 = procUnitConfObjB.addOperation(name='Block360')
158 158 opObj11.addParameter(name='n', value='10', format='int')
159 159 opObj11.addParameter(name='mode', value=mode, format='int')
160 160
161 161 # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180
162 162
163 163 opObj11= procUnitConfObjB.addOperation(name='WeatherPlot',optype='other')
164 164
165 165
166 166 else:
167 167 ####################### METODO SPECTROS ######################################################################
168 168 procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId())
169 169 procUnitConfObjB.addParameter(name='nFFTPoints', value=n, format='int')
170 170 procUnitConfObjB.addParameter(name='nProfiles' , value=n, format='int')
171 171
172 172 procUnitConfObjC = controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjB.getId())
173 173 procUnitConfObjC.addOperation(name='SpectralMoments')
174 174 if plot==1:
175 175 dBmin = '1'
176 176 dBmax = '65'
177 177 opObj11 = procUnitConfObjC.addOperation(name='PowerPlot',optype='external')
178 178 opObj11.addParameter(name='xmin', value=xmin)
179 179 opObj11.addParameter(name='xmax', value=xmax)
180 180 opObj11.addParameter(name='zmin', value=dBmin)
181 181 opObj11.addParameter(name='zmax', value=dBmax)
182 182 opObj11.addParameter(name='save', value=figpath_mom)
183 183 opObj11.addParameter(name='showprofile', value=0)
184 184 opObj11.addParameter(name='save_period', value=100)
185 185
186 186 if save==1:
187 187 opObj10 = procUnitConfObjC.addOperation(name='HDFWriter')
188 188 opObj10.addParameter(name='path',value=path_save)
189 189 #opObj10.addParameter(name='mode',value=0)
190 190 opObj10.addParameter(name='blocksPerFile',value='360',format='int')
191 191 #opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex
192 192 opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex
193 193 opObj10.addParameter(name='dataList',value='data_pow,data_dop,utctime',format='list')#,format='list'
194 194
195 195 if integration==1:
196 196 V=10
197 197 blocksPerfile=360
198 198 print("* Velocidad del Pedestal:",V)
199 199 tmp_blocksPerfile = 100
200 200 f_a_p= int(tmp_blocksPerfile/V)
201 201
202 202 opObj11 = procUnitConfObjC.addOperation(name='PedestalInformation')
203 203 opObj11.addParameter(name='path_ped', value=path_ped)
204 204 #opObj11.addParameter(name='path_adq', value=path_adq)
205 205 opObj11.addParameter(name='t_Interval_p', value='0.01', format='float')
206 206 opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int')
207 207 opObj11.addParameter(name='n_Muestras_p', value='100', format='float')
208 208 opObj11.addParameter(name='f_a_p', value=f_a_p, format='int')
209 209 opObj11.addParameter(name='online', value='0', format='int')
210 210
211 211 opObj11 = procUnitConfObjC.addOperation(name='Block360')
212 opObj11.addParameter(name='n', value='30', format='int')
212 opObj11.addParameter(name='n', value='10', format='int')
213 213 opObj11.addParameter(name='mode', value=mode, format='int')
214 214
215 215 # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180
216 216 opObj11= procUnitConfObjC.addOperation(name='WeatherPlot',optype='other')
217 217 controllerObj.start()
General Comments 0
You need to be logged in to leave comments. Login now