The requested changes are too big and content was truncated. Show full diff
@@ -1,509 +1,517 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | 6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
7 | 7 | from schainpy.utils import log |
|
8 | 8 | # libreria wradlib |
|
9 | 9 | import wradlib as wrl |
|
10 | 10 | |
|
11 | 11 | EARTH_RADIUS = 6.3710e3 |
|
12 | 12 | |
|
13 | 13 | |
|
14 | 14 | def ll2xy(lat1, lon1, lat2, lon2): |
|
15 | 15 | |
|
16 | 16 | p = 0.017453292519943295 |
|
17 | 17 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
18 | 18 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
19 | 19 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
20 | 20 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
21 | 21 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
22 | 22 | theta = -theta + numpy.pi/2 |
|
23 | 23 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
24 | 24 | |
|
25 | 25 | |
|
26 | 26 | def km2deg(km): |
|
27 | 27 | ''' |
|
28 | 28 | Convert distance in km to degrees |
|
29 | 29 | ''' |
|
30 | 30 | |
|
31 | 31 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
32 | 32 | |
|
33 | 33 | |
|
34 | 34 | |
|
35 | 35 | class SpectralMomentsPlot(SpectraPlot): |
|
36 | 36 | ''' |
|
37 | 37 | Plot for Spectral Moments |
|
38 | 38 | ''' |
|
39 | 39 | CODE = 'spc_moments' |
|
40 | 40 | # colormap = 'jet' |
|
41 | 41 | # plot_type = 'pcolor' |
|
42 | 42 | |
|
43 | 43 | class DobleGaussianPlot(SpectraPlot): |
|
44 | 44 | ''' |
|
45 | 45 | Plot for Double Gaussian Plot |
|
46 | 46 | ''' |
|
47 | 47 | CODE = 'gaussian_fit' |
|
48 | 48 | # colormap = 'jet' |
|
49 | 49 | # plot_type = 'pcolor' |
|
50 | 50 | |
|
51 | 51 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
52 | 52 | ''' |
|
53 | 53 | Plot SpectraCut with Double Gaussian Fit |
|
54 | 54 | ''' |
|
55 | 55 | CODE = 'cut_gaussian_fit' |
|
56 | 56 | |
|
57 | 57 | class SnrPlot(RTIPlot): |
|
58 | 58 | ''' |
|
59 | 59 | Plot for SNR Data |
|
60 | 60 | ''' |
|
61 | 61 | |
|
62 | 62 | CODE = 'snr' |
|
63 | 63 | colormap = 'jet' |
|
64 | 64 | |
|
65 | 65 | def update(self, dataOut): |
|
66 | 66 | |
|
67 | 67 | data = { |
|
68 | 68 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
69 | 69 | } |
|
70 | 70 | |
|
71 | 71 | return data, {} |
|
72 | 72 | |
|
73 | 73 | class DopplerPlot(RTIPlot): |
|
74 | 74 | ''' |
|
75 | 75 | Plot for DOPPLER Data (1st moment) |
|
76 | 76 | ''' |
|
77 | 77 | |
|
78 | 78 | CODE = 'dop' |
|
79 | 79 | colormap = 'jet' |
|
80 | 80 | |
|
81 | 81 | def update(self, dataOut): |
|
82 | 82 | |
|
83 | 83 | data = { |
|
84 | 84 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
85 | 85 | } |
|
86 | 86 | |
|
87 | 87 | return data, {} |
|
88 | 88 | |
|
89 | 89 | class PowerPlot(RTIPlot): |
|
90 | 90 | ''' |
|
91 | 91 | Plot for Power Data (0 moment) |
|
92 | 92 | ''' |
|
93 | 93 | |
|
94 | 94 | CODE = 'pow' |
|
95 | 95 | colormap = 'jet' |
|
96 | 96 | |
|
97 | 97 | def update(self, dataOut): |
|
98 | 98 | data = { |
|
99 | 99 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
100 | 100 | } |
|
101 | 101 | return data, {} |
|
102 | 102 | |
|
103 | 103 | class SpectralWidthPlot(RTIPlot): |
|
104 | 104 | ''' |
|
105 | 105 | Plot for Spectral Width Data (2nd moment) |
|
106 | 106 | ''' |
|
107 | 107 | |
|
108 | 108 | CODE = 'width' |
|
109 | 109 | colormap = 'jet' |
|
110 | 110 | |
|
111 | 111 | def update(self, dataOut): |
|
112 | 112 | |
|
113 | 113 | data = { |
|
114 | 114 | 'width': dataOut.data_width |
|
115 | 115 | } |
|
116 | 116 | |
|
117 | 117 | return data, {} |
|
118 | 118 | |
|
119 | 119 | class SkyMapPlot(Plot): |
|
120 | 120 | ''' |
|
121 | 121 | Plot for meteors detection data |
|
122 | 122 | ''' |
|
123 | 123 | |
|
124 | 124 | CODE = 'param' |
|
125 | 125 | |
|
126 | 126 | def setup(self): |
|
127 | 127 | |
|
128 | 128 | self.ncols = 1 |
|
129 | 129 | self.nrows = 1 |
|
130 | 130 | self.width = 7.2 |
|
131 | 131 | self.height = 7.2 |
|
132 | 132 | self.nplots = 1 |
|
133 | 133 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
134 | 134 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
135 | 135 | self.polar = True |
|
136 | 136 | self.ymin = -180 |
|
137 | 137 | self.ymax = 180 |
|
138 | 138 | self.colorbar = False |
|
139 | 139 | |
|
140 | 140 | def plot(self): |
|
141 | 141 | |
|
142 | 142 | arrayParameters = numpy.concatenate(self.data['param']) |
|
143 | 143 | error = arrayParameters[:, -1] |
|
144 | 144 | indValid = numpy.where(error == 0)[0] |
|
145 | 145 | finalMeteor = arrayParameters[indValid, :] |
|
146 | 146 | finalAzimuth = finalMeteor[:, 3] |
|
147 | 147 | finalZenith = finalMeteor[:, 4] |
|
148 | 148 | |
|
149 | 149 | x = finalAzimuth * numpy.pi / 180 |
|
150 | 150 | y = finalZenith |
|
151 | 151 | |
|
152 | 152 | ax = self.axes[0] |
|
153 | 153 | |
|
154 | 154 | if ax.firsttime: |
|
155 | 155 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
156 | 156 | else: |
|
157 | 157 | ax.plot.set_data(x, y) |
|
158 | 158 | |
|
159 | 159 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
160 | 160 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
161 | 161 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
162 | 162 | dt2, |
|
163 | 163 | len(x)) |
|
164 | 164 | self.titles[0] = title |
|
165 | 165 | |
|
166 | 166 | |
|
167 | 167 | class GenericRTIPlot(Plot): |
|
168 | 168 | ''' |
|
169 | 169 | Plot for data_xxxx object |
|
170 | 170 | ''' |
|
171 | 171 | |
|
172 | 172 | CODE = 'param' |
|
173 | 173 | colormap = 'viridis' |
|
174 | 174 | plot_type = 'pcolorbuffer' |
|
175 | 175 | |
|
176 | 176 | def setup(self): |
|
177 | 177 | self.xaxis = 'time' |
|
178 | 178 | self.ncols = 1 |
|
179 | 179 | self.nrows = self.data.shape('param')[0] |
|
180 | 180 | self.nplots = self.nrows |
|
181 | 181 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
182 | 182 | |
|
183 | 183 | if not self.xlabel: |
|
184 | 184 | self.xlabel = 'Time' |
|
185 | 185 | |
|
186 | 186 | self.ylabel = 'Range [km]' |
|
187 | 187 | if not self.titles: |
|
188 | 188 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
189 | 189 | |
|
190 | 190 | def update(self, dataOut): |
|
191 | 191 | |
|
192 | 192 | data = { |
|
193 | 193 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
194 | 194 | } |
|
195 | 195 | |
|
196 | 196 | meta = {} |
|
197 | 197 | |
|
198 | 198 | return data, meta |
|
199 | 199 | |
|
200 | 200 | def plot(self): |
|
201 | 201 | # self.data.normalize_heights() |
|
202 | 202 | self.x = self.data.times |
|
203 | 203 | self.y = self.data.yrange |
|
204 | 204 | self.z = self.data['param'] |
|
205 | 205 | self.z = 10*numpy.log10(self.z) |
|
206 | 206 | self.z = numpy.ma.masked_invalid(self.z) |
|
207 | 207 | |
|
208 | 208 | if self.decimation is None: |
|
209 | 209 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
210 | 210 | else: |
|
211 | 211 | x, y, z = self.fill_gaps(*self.decimate()) |
|
212 | 212 | |
|
213 | 213 | for n, ax in enumerate(self.axes): |
|
214 | 214 | |
|
215 | 215 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
216 | 216 | self.z[n]) |
|
217 | 217 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
218 | 218 | self.z[n]) |
|
219 | 219 | |
|
220 | 220 | if ax.firsttime: |
|
221 | 221 | if self.zlimits is not None: |
|
222 | 222 | self.zmin, self.zmax = self.zlimits[n] |
|
223 | 223 | |
|
224 | 224 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
225 | 225 | vmin=self.zmin, |
|
226 | 226 | vmax=self.zmax, |
|
227 | 227 | cmap=self.cmaps[n] |
|
228 | 228 | ) |
|
229 | 229 | else: |
|
230 | 230 | if self.zlimits is not None: |
|
231 | 231 | self.zmin, self.zmax = self.zlimits[n] |
|
232 | 232 | ax.collections.remove(ax.collections[0]) |
|
233 | 233 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
234 | 234 | vmin=self.zmin, |
|
235 | 235 | vmax=self.zmax, |
|
236 | 236 | cmap=self.cmaps[n] |
|
237 | 237 | ) |
|
238 | 238 | |
|
239 | 239 | |
|
240 | 240 | class PolarMapPlot(Plot): |
|
241 | 241 | ''' |
|
242 | 242 | Plot for weather radar |
|
243 | 243 | ''' |
|
244 | 244 | |
|
245 | 245 | CODE = 'param' |
|
246 | 246 | colormap = 'seismic' |
|
247 | 247 | |
|
248 | 248 | def setup(self): |
|
249 | 249 | self.ncols = 1 |
|
250 | 250 | self.nrows = 1 |
|
251 | 251 | self.width = 9 |
|
252 | 252 | self.height = 8 |
|
253 | 253 | self.mode = self.data.meta['mode'] |
|
254 | 254 | if self.channels is not None: |
|
255 | 255 | self.nplots = len(self.channels) |
|
256 | 256 | self.nrows = len(self.channels) |
|
257 | 257 | else: |
|
258 | 258 | self.nplots = self.data.shape(self.CODE)[0] |
|
259 | 259 | self.nrows = self.nplots |
|
260 | 260 | self.channels = list(range(self.nplots)) |
|
261 | 261 | if self.mode == 'E': |
|
262 | 262 | self.xlabel = 'Longitude' |
|
263 | 263 | self.ylabel = 'Latitude' |
|
264 | 264 | else: |
|
265 | 265 | self.xlabel = 'Range (km)' |
|
266 | 266 | self.ylabel = 'Height (km)' |
|
267 | 267 | self.bgcolor = 'white' |
|
268 | 268 | self.cb_labels = self.data.meta['units'] |
|
269 | 269 | self.lat = self.data.meta['latitude'] |
|
270 | 270 | self.lon = self.data.meta['longitude'] |
|
271 | 271 | self.xmin, self.xmax = float( |
|
272 | 272 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
273 | 273 | self.ymin, self.ymax = float( |
|
274 | 274 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
275 | 275 | # self.polar = True |
|
276 | 276 | |
|
277 | 277 | def plot(self): |
|
278 | 278 | |
|
279 | 279 | for n, ax in enumerate(self.axes): |
|
280 | 280 | data = self.data['param'][self.channels[n]] |
|
281 | 281 | |
|
282 | 282 | zeniths = numpy.linspace( |
|
283 | 283 | 0, self.data.meta['max_range'], data.shape[1]) |
|
284 | 284 | if self.mode == 'E': |
|
285 | 285 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
286 | 286 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
287 | 287 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
288 | 288 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
289 | 289 | x = km2deg(x) + self.lon |
|
290 | 290 | y = km2deg(y) + self.lat |
|
291 | 291 | else: |
|
292 | 292 | azimuths = numpy.radians(self.data.yrange) |
|
293 | 293 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
294 | 294 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
295 | 295 | self.y = zeniths |
|
296 | 296 | |
|
297 | 297 | if ax.firsttime: |
|
298 | 298 | if self.zlimits is not None: |
|
299 | 299 | self.zmin, self.zmax = self.zlimits[n] |
|
300 | 300 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
301 | 301 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
302 | 302 | vmin=self.zmin, |
|
303 | 303 | vmax=self.zmax, |
|
304 | 304 | cmap=self.cmaps[n]) |
|
305 | 305 | else: |
|
306 | 306 | if self.zlimits is not None: |
|
307 | 307 | self.zmin, self.zmax = self.zlimits[n] |
|
308 | 308 | ax.collections.remove(ax.collections[0]) |
|
309 | 309 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
310 | 310 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
311 | 311 | vmin=self.zmin, |
|
312 | 312 | vmax=self.zmax, |
|
313 | 313 | cmap=self.cmaps[n]) |
|
314 | 314 | |
|
315 | 315 | if self.mode == 'A': |
|
316 | 316 | continue |
|
317 | 317 | |
|
318 | 318 | # plot district names |
|
319 | 319 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
320 | 320 | for line in f: |
|
321 | 321 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
322 | 322 | lat = float(lat) |
|
323 | 323 | lon = float(lon) |
|
324 | 324 | # ax.plot(lon, lat, '.b', ms=2) |
|
325 | 325 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
326 | 326 | va='bottom', size='8', color='black') |
|
327 | 327 | |
|
328 | 328 | # plot limites |
|
329 | 329 | limites = [] |
|
330 | 330 | tmp = [] |
|
331 | 331 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
332 | 332 | if '#' in line: |
|
333 | 333 | if tmp: |
|
334 | 334 | limites.append(tmp) |
|
335 | 335 | tmp = [] |
|
336 | 336 | continue |
|
337 | 337 | values = line.strip().split(',') |
|
338 | 338 | tmp.append((float(values[0]), float(values[1]))) |
|
339 | 339 | for points in limites: |
|
340 | 340 | ax.add_patch( |
|
341 | 341 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
342 | 342 | |
|
343 | 343 | # plot Cuencas |
|
344 | 344 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
345 | 345 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
346 | 346 | values = [line.strip().split(',') for line in f] |
|
347 | 347 | points = [(float(s[0]), float(s[1])) for s in values] |
|
348 | 348 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
349 | 349 | |
|
350 | 350 | # plot grid |
|
351 | 351 | for r in (15, 30, 45, 60): |
|
352 | 352 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
353 | 353 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
354 | 354 | ax.text( |
|
355 | 355 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
356 | 356 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
357 | 357 | '{}km'.format(r), |
|
358 | 358 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
359 | 359 | |
|
360 | 360 | if self.mode == 'E': |
|
361 | 361 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
362 | 362 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
363 | 363 | else: |
|
364 | 364 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
365 | 365 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
366 | 366 | |
|
367 | 367 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
368 | 368 | self.titles = ['{} {}'.format( |
|
369 | 369 | self.data.parameters[x], title) for x in self.channels] |
|
370 | 370 | |
|
371 | 371 | class WeatherPlot(Plot): |
|
372 | 372 | CODE = 'weather' |
|
373 | 373 | plot_name = 'weather' |
|
374 | 374 | plot_type = 'ppistyle' |
|
375 | 375 | buffering = False |
|
376 | 376 | |
|
377 | 377 | def setup(self): |
|
378 | 378 | self.ncols = 1 |
|
379 | 379 | self.nrows = 1 |
|
380 | 380 | self.nplots= 1 |
|
381 | 381 | self.ylabel= 'Range [Km]' |
|
382 | 382 | self.titles= ['Weather'] |
|
383 | 383 | self.colorbar=False |
|
384 | 384 | self.width =8 |
|
385 | 385 | self.height =8 |
|
386 | 386 | self.ini =0 |
|
387 | 387 | self.len_azi =0 |
|
388 | 388 | self.buffer_ini = None |
|
389 | 389 | self.buffer_azi = None |
|
390 | 390 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
391 | 391 | self.flag =0 |
|
392 | 392 | self.indicador= 0 |
|
393 | 393 | |
|
394 | 394 | def update(self, dataOut): |
|
395 | 395 | |
|
396 | 396 | data = {} |
|
397 | 397 | meta = {} |
|
398 | data['weather'] = 10*numpy.log10(dataOut.data_360[0]/(250.0)) | |
|
398 | if hasattr(dataOut, 'dataPP_POWER'): | |
|
399 | factor = 1 | |
|
400 | ||
|
401 | if hasattr(dataOut, 'nFFTPoints'): | |
|
402 | factor = dataOut.normFactor | |
|
403 | ||
|
404 | print("factor",factor) | |
|
405 | data['weather'] = 10*numpy.log10(dataOut.data_360[0]/(factor)) | |
|
406 | print("weather",data['weather']) | |
|
399 | 407 | data['azi'] = dataOut.data_azi |
|
400 | 408 | return data, meta |
|
401 | 409 | |
|
402 | 410 | def const_ploteo(self,data_weather,data_azi,step,res): |
|
403 | 411 | if self.ini==0: |
|
404 | 412 | #------- AZIMUTH |
|
405 | 413 | n = (360/res)-len(data_azi) |
|
406 | 414 | start = data_azi[-1] + res |
|
407 | 415 | end = data_azi[0] - res |
|
408 | 416 | if start>end: |
|
409 | 417 | end = end + 360 |
|
410 | 418 | azi_vacia = numpy.linspace(start,end,int(n)) |
|
411 | 419 | azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) |
|
412 | 420 | data_azi = numpy.hstack((data_azi,azi_vacia)) |
|
413 | 421 | # RADAR |
|
414 | 422 | val_mean = numpy.mean(data_weather[:,0]) |
|
415 | 423 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean |
|
416 | 424 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) |
|
417 | 425 | else: |
|
418 | 426 | # azimuth |
|
419 | 427 | flag=0 |
|
420 | 428 | start_azi = self.res_azi[0] |
|
421 | 429 | start = data_azi[0] |
|
422 | 430 | end = data_azi[-1] |
|
423 | 431 | print("start",start) |
|
424 | 432 | print("end",end) |
|
425 | 433 | if start< start_azi: |
|
426 | 434 | start = start +360 |
|
427 | 435 | if end <start_azi: |
|
428 | 436 | end = end +360 |
|
429 | 437 | |
|
430 | 438 | print("start",start) |
|
431 | 439 | print("end",end) |
|
432 | 440 | #### AQUI SERA LA MAGIA |
|
433 | 441 | pos_ini = int((start-start_azi)/res) |
|
434 | 442 | len_azi = len(data_azi) |
|
435 | 443 | if (360-pos_ini)<len_azi: |
|
436 | 444 | if pos_ini+1==360: |
|
437 | 445 | pos_ini=0 |
|
438 | 446 | else: |
|
439 | 447 | flag=1 |
|
440 | 448 | dif= 360-pos_ini |
|
441 | 449 | comp= len_azi-dif |
|
442 | 450 | |
|
443 | 451 | print(pos_ini) |
|
444 | 452 | print(len_azi) |
|
445 | 453 | print("shape",self.res_azi.shape) |
|
446 | 454 | if flag==0: |
|
447 | 455 | # AZIMUTH |
|
448 | 456 | self.res_azi[pos_ini:pos_ini+len_azi] = data_azi |
|
449 | 457 | # RADAR |
|
450 | 458 | self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather |
|
451 | 459 | else: |
|
452 | 460 | # AZIMUTH |
|
453 | 461 | self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] |
|
454 | 462 | self.res_azi[0:comp] = data_azi[dif:] |
|
455 | 463 | # RADAR |
|
456 | 464 | self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] |
|
457 | 465 | self.res_weather[0:comp,:] = data_weather[dif:,:] |
|
458 | 466 | flag=0 |
|
459 | 467 | data_azi = self.res_azi |
|
460 | 468 | data_weather = self.res_weather |
|
461 | 469 | |
|
462 | 470 | return data_weather,data_azi |
|
463 | 471 | |
|
464 | 472 | def plot(self): |
|
465 | 473 | print("--------------------------------------",self.ini,"-----------------------------------") |
|
466 | 474 | #numpy.set_printoptions(suppress=True) |
|
467 | 475 | #print(self.data.times) |
|
468 | 476 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]) |
|
469 | 477 | data = self.data[-1] |
|
470 | 478 | # ALTURA altura_tmp_h |
|
471 | 479 | altura_h = (data['weather'].shape[1])/10.0 |
|
472 | 480 | stoprange = float(altura_h*1.5)#stoprange = float(33*1.5) por ahora 400 |
|
473 | 481 | rangestep = float(0.15) |
|
474 | 482 | r = numpy.arange(0, stoprange, rangestep) |
|
475 | 483 | self.y = 2*r |
|
476 | 484 | # RADAR |
|
477 | 485 | #data_weather = data['weather'] |
|
478 | 486 | # PEDESTAL |
|
479 | 487 | #data_azi = data['azi'] |
|
480 | 488 | res = 1 |
|
481 | 489 | # STEP |
|
482 | 490 | step = (360/(res*data['weather'].shape[0])) |
|
483 | 491 | #print("shape wr_data", wr_data.shape) |
|
484 | 492 | #print("shape wr_azi",wr_azi.shape) |
|
485 | 493 | #print("step",step) |
|
486 | 494 | print("Time---->",self.data.times[-1],thisDatetime) |
|
487 | 495 | #print("alturas", len(self.y)) |
|
488 | 496 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'],data_azi=data['azi'],step=step,res=res) |
|
489 | 497 | #numpy.set_printoptions(suppress=True) |
|
490 | 498 | #print("resultado",self.res_azi) |
|
491 | 499 | ########################################################## |
|
492 | 500 | ################# PLOTEO ################### |
|
493 | 501 | ########################################################## |
|
494 | 502 | |
|
495 | 503 | for i,ax in enumerate(self.axes): |
|
496 | 504 | if ax.firsttime: |
|
497 | 505 | plt.clf() |
|
498 | 506 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60) |
|
499 | 507 | else: |
|
500 | 508 | plt.clf() |
|
501 |
cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin= |
|
|
509 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60) | |
|
502 | 510 | caax = cgax.parasites[0] |
|
503 | 511 | paax = cgax.parasites[1] |
|
504 | 512 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
505 | 513 | caax.set_xlabel('x_range [km]') |
|
506 | 514 | caax.set_ylabel('y_range [km]') |
|
507 | 515 | plt.text(1.0, 1.05, 'azimuth '+str(thisDatetime)+"step"+str(self.ini), transform=caax.transAxes, va='bottom',ha='right') |
|
508 | 516 | |
|
509 | 517 | self.ini= self.ini+1 |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
@@ -1,898 +1,898 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Spectra processing Unit and operations |
|
6 | 6 | |
|
7 | 7 | Here you will find the processing unit `SpectraProc` and several operations |
|
8 | 8 | to work with Spectra data type |
|
9 | 9 | """ |
|
10 | 10 | |
|
11 | 11 | import time |
|
12 | 12 | import itertools |
|
13 | 13 | |
|
14 | 14 | import numpy |
|
15 | 15 | |
|
16 | 16 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
17 | 17 | from schainpy.model.data.jrodata import Spectra |
|
18 | 18 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
19 | 19 | from schainpy.utils import log |
|
20 | 20 | |
|
21 | 21 | |
|
22 | 22 | class SpectraProc(ProcessingUnit): |
|
23 | 23 | |
|
24 | 24 | def __init__(self): |
|
25 | 25 | |
|
26 | 26 | ProcessingUnit.__init__(self) |
|
27 | 27 | |
|
28 | 28 | self.buffer = None |
|
29 | 29 | self.firstdatatime = None |
|
30 | 30 | self.profIndex = 0 |
|
31 | 31 | self.dataOut = Spectra() |
|
32 | 32 | self.id_min = None |
|
33 | 33 | self.id_max = None |
|
34 | 34 | self.setupReq = False #Agregar a todas las unidades de proc |
|
35 | 35 | |
|
36 | 36 | def __updateSpecFromVoltage(self): |
|
37 | 37 | |
|
38 | 38 | self.dataOut.timeZone = self.dataIn.timeZone |
|
39 | 39 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
40 | 40 | self.dataOut.errorCount = self.dataIn.errorCount |
|
41 | 41 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
42 | 42 | try: |
|
43 | 43 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
44 | 44 | except: |
|
45 | 45 | pass |
|
46 | 46 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
47 | 47 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
48 | 48 | self.dataOut.channelList = self.dataIn.channelList |
|
49 | 49 | self.dataOut.heightList = self.dataIn.heightList |
|
50 | 50 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
51 | 51 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
52 | 52 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
53 | 53 | self.dataOut.utctime = self.firstdatatime |
|
54 | 54 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
55 | 55 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
56 | 56 | self.dataOut.flagShiftFFT = False |
|
57 | 57 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
58 | 58 | self.dataOut.nIncohInt = 1 |
|
59 | 59 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
60 | 60 | self.dataOut.frequency = self.dataIn.frequency |
|
61 | 61 | self.dataOut.realtime = self.dataIn.realtime |
|
62 | 62 | self.dataOut.azimuth = self.dataIn.azimuth |
|
63 | 63 | self.dataOut.zenith = self.dataIn.zenith |
|
64 | 64 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
65 | 65 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
66 | 66 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
67 | 67 | |
|
68 | 68 | def __getFft(self): |
|
69 | 69 | """ |
|
70 | 70 | Convierte valores de Voltaje a Spectra |
|
71 | 71 | |
|
72 | 72 | Affected: |
|
73 | 73 | self.dataOut.data_spc |
|
74 | 74 | self.dataOut.data_cspc |
|
75 | 75 | self.dataOut.data_dc |
|
76 | 76 | self.dataOut.heightList |
|
77 | 77 | self.profIndex |
|
78 | 78 | self.buffer |
|
79 | 79 | self.dataOut.flagNoData |
|
80 | 80 | """ |
|
81 | 81 | fft_volt = numpy.fft.fft( |
|
82 | 82 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
83 | 83 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
84 | 84 | dc = fft_volt[:, 0, :] |
|
85 | 85 | |
|
86 | 86 | # calculo de self-spectra |
|
87 | 87 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
88 | 88 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
89 | 89 | spc = spc.real |
|
90 | 90 | |
|
91 | 91 | blocksize = 0 |
|
92 | 92 | blocksize += dc.size |
|
93 | 93 | blocksize += spc.size |
|
94 | 94 | |
|
95 | 95 | cspc = None |
|
96 | 96 | pairIndex = 0 |
|
97 | 97 | if self.dataOut.pairsList != None: |
|
98 | 98 | # calculo de cross-spectra |
|
99 | 99 | cspc = numpy.zeros( |
|
100 | 100 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
101 | 101 | for pair in self.dataOut.pairsList: |
|
102 | 102 | if pair[0] not in self.dataOut.channelList: |
|
103 | 103 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
104 | 104 | str(pair), str(self.dataOut.channelList))) |
|
105 | 105 | if pair[1] not in self.dataOut.channelList: |
|
106 | 106 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
107 | 107 | str(pair), str(self.dataOut.channelList))) |
|
108 | 108 | |
|
109 | 109 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
110 | 110 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
111 | 111 | pairIndex += 1 |
|
112 | 112 | blocksize += cspc.size |
|
113 | 113 | |
|
114 | 114 | self.dataOut.data_spc = spc |
|
115 | 115 | self.dataOut.data_cspc = cspc |
|
116 | 116 | self.dataOut.data_dc = dc |
|
117 | 117 | self.dataOut.blockSize = blocksize |
|
118 | 118 | self.dataOut.flagShiftFFT = False |
|
119 | 119 | |
|
120 | 120 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): |
|
121 | ||
|
121 | ||
|
122 | 122 | if self.dataIn.type == "Spectra": |
|
123 | 123 | self.dataOut.copy(self.dataIn) |
|
124 | 124 | if shift_fft: |
|
125 | 125 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
126 | 126 | shift = int(self.dataOut.nFFTPoints/2) |
|
127 | 127 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
128 | 128 | |
|
129 | 129 | if self.dataOut.data_cspc is not None: |
|
130 | 130 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
131 | 131 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
132 | 132 | if pairsList: |
|
133 | 133 | self.__selectPairs(pairsList) |
|
134 | 134 | |
|
135 | 135 | elif self.dataIn.type == "Voltage": |
|
136 | 136 | |
|
137 | 137 | self.dataOut.flagNoData = True |
|
138 | 138 | |
|
139 | 139 | if nFFTPoints == None: |
|
140 | 140 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
141 | 141 | |
|
142 | 142 | if nProfiles == None: |
|
143 | 143 | nProfiles = nFFTPoints |
|
144 | 144 | |
|
145 | 145 | if ippFactor == None: |
|
146 | 146 | self.dataOut.ippFactor = 1 |
|
147 | ||
|
147 | ||
|
148 | 148 | self.dataOut.nFFTPoints = nFFTPoints |
|
149 | 149 | |
|
150 | 150 | if self.buffer is None: |
|
151 | 151 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
152 | 152 | nProfiles, |
|
153 | 153 | self.dataIn.nHeights), |
|
154 | 154 | dtype='complex') |
|
155 | 155 | |
|
156 | 156 | if self.dataIn.flagDataAsBlock: |
|
157 | 157 | nVoltProfiles = self.dataIn.data.shape[1] |
|
158 | 158 | |
|
159 | 159 | if nVoltProfiles == nProfiles: |
|
160 | 160 | self.buffer = self.dataIn.data.copy() |
|
161 | 161 | self.profIndex = nVoltProfiles |
|
162 | 162 | |
|
163 | 163 | elif nVoltProfiles < nProfiles: |
|
164 | 164 | |
|
165 | 165 | if self.profIndex == 0: |
|
166 | 166 | self.id_min = 0 |
|
167 | 167 | self.id_max = nVoltProfiles |
|
168 | 168 | |
|
169 | 169 | self.buffer[:, self.id_min:self.id_max, |
|
170 | 170 | :] = self.dataIn.data |
|
171 | 171 | self.profIndex += nVoltProfiles |
|
172 | 172 | self.id_min += nVoltProfiles |
|
173 | 173 | self.id_max += nVoltProfiles |
|
174 | 174 | else: |
|
175 | 175 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
176 | 176 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
177 | 177 | self.dataOut.flagNoData = True |
|
178 | 178 | else: |
|
179 | 179 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
180 | 180 | self.profIndex += 1 |
|
181 | 181 | |
|
182 | 182 | if self.firstdatatime == None: |
|
183 | 183 | self.firstdatatime = self.dataIn.utctime |
|
184 | 184 | |
|
185 | 185 | if self.profIndex == nProfiles: |
|
186 | 186 | self.__updateSpecFromVoltage() |
|
187 | 187 | if pairsList == None: |
|
188 | 188 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
189 | 189 | else: |
|
190 | 190 | self.dataOut.pairsList = pairsList |
|
191 | 191 | self.__getFft() |
|
192 | 192 | self.dataOut.flagNoData = False |
|
193 | 193 | self.firstdatatime = None |
|
194 | 194 | self.profIndex = 0 |
|
195 | 195 | else: |
|
196 | 196 | raise ValueError("The type of input object '%s' is not valid".format( |
|
197 | 197 | self.dataIn.type)) |
|
198 | 198 | |
|
199 | 199 | def __selectPairs(self, pairsList): |
|
200 | 200 | |
|
201 | 201 | if not pairsList: |
|
202 | 202 | return |
|
203 | 203 | |
|
204 | 204 | pairs = [] |
|
205 | 205 | pairsIndex = [] |
|
206 | 206 | |
|
207 | 207 | for pair in pairsList: |
|
208 | 208 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
209 | 209 | continue |
|
210 | 210 | pairs.append(pair) |
|
211 | 211 | pairsIndex.append(pairs.index(pair)) |
|
212 | 212 | |
|
213 | 213 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
214 | 214 | self.dataOut.pairsList = pairs |
|
215 | 215 | |
|
216 | 216 | return |
|
217 | ||
|
217 | ||
|
218 | 218 | def selectFFTs(self, minFFT, maxFFT ): |
|
219 | 219 | """ |
|
220 |
Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
|
220 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |
|
221 | 221 | minFFT<= FFT <= maxFFT |
|
222 | 222 | """ |
|
223 | ||
|
223 | ||
|
224 | 224 | if (minFFT > maxFFT): |
|
225 | 225 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
226 | 226 | |
|
227 | 227 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
228 | 228 | minFFT = self.dataOut.getFreqRange()[0] |
|
229 | 229 | |
|
230 | 230 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
231 | 231 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
232 | 232 | |
|
233 | 233 | minIndex = 0 |
|
234 | 234 | maxIndex = 0 |
|
235 | 235 | FFTs = self.dataOut.getFreqRange() |
|
236 | 236 | |
|
237 | 237 | inda = numpy.where(FFTs >= minFFT) |
|
238 | 238 | indb = numpy.where(FFTs <= maxFFT) |
|
239 | 239 | |
|
240 | 240 | try: |
|
241 | 241 | minIndex = inda[0][0] |
|
242 | 242 | except: |
|
243 | 243 | minIndex = 0 |
|
244 | 244 | |
|
245 | 245 | try: |
|
246 | 246 | maxIndex = indb[0][-1] |
|
247 | 247 | except: |
|
248 | 248 | maxIndex = len(FFTs) |
|
249 | 249 | |
|
250 | 250 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
251 | 251 | |
|
252 | 252 | return 1 |
|
253 | ||
|
253 | ||
|
254 | 254 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
255 | 255 | newheis = numpy.where( |
|
256 | 256 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
257 | 257 | |
|
258 | 258 | if hei_ref != None: |
|
259 | 259 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
260 | 260 | |
|
261 | 261 | minIndex = min(newheis[0]) |
|
262 | 262 | maxIndex = max(newheis[0]) |
|
263 | 263 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
264 | 264 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
265 | 265 | |
|
266 | 266 | # determina indices |
|
267 | 267 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
268 | 268 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
269 | 269 | avg_dB = 10 * \ |
|
270 | 270 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
271 | 271 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
272 | 272 | beacon_heiIndexList = [] |
|
273 | 273 | for val in avg_dB.tolist(): |
|
274 | 274 | if val >= beacon_dB[0]: |
|
275 | 275 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
276 | 276 | |
|
277 | 277 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
278 | 278 | data_cspc = None |
|
279 | 279 | if self.dataOut.data_cspc is not None: |
|
280 | 280 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
281 | 281 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
282 | 282 | |
|
283 | 283 | data_dc = None |
|
284 | 284 | if self.dataOut.data_dc is not None: |
|
285 | 285 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
286 | 286 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
287 | 287 | |
|
288 | 288 | self.dataOut.data_spc = data_spc |
|
289 | 289 | self.dataOut.data_cspc = data_cspc |
|
290 | 290 | self.dataOut.data_dc = data_dc |
|
291 | 291 | self.dataOut.heightList = heightList |
|
292 | 292 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
293 | 293 | |
|
294 | 294 | return 1 |
|
295 | 295 | |
|
296 | 296 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
297 | 297 | """ |
|
298 | ||
|
298 | ||
|
299 | 299 | """ |
|
300 | 300 | |
|
301 | 301 | if (minIndex < 0) or (minIndex > maxIndex): |
|
302 | 302 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
303 | 303 | |
|
304 | 304 | if (maxIndex >= self.dataOut.nProfiles): |
|
305 | 305 | maxIndex = self.dataOut.nProfiles-1 |
|
306 | 306 | |
|
307 | 307 | #Spectra |
|
308 | 308 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
309 | 309 | |
|
310 | 310 | data_cspc = None |
|
311 | 311 | if self.dataOut.data_cspc is not None: |
|
312 | 312 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
313 | 313 | |
|
314 | 314 | data_dc = None |
|
315 | 315 | if self.dataOut.data_dc is not None: |
|
316 | 316 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
317 | 317 | |
|
318 | 318 | self.dataOut.data_spc = data_spc |
|
319 | 319 | self.dataOut.data_cspc = data_cspc |
|
320 | 320 | self.dataOut.data_dc = data_dc |
|
321 | ||
|
321 | ||
|
322 | 322 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
323 | 323 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
324 | 324 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
325 | 325 | |
|
326 | 326 | return 1 |
|
327 | 327 | |
|
328 | 328 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
329 | 329 | # validacion de rango |
|
330 | 330 | if minHei == None: |
|
331 | 331 | minHei = self.dataOut.heightList[0] |
|
332 | 332 | |
|
333 | 333 | if maxHei == None: |
|
334 | 334 | maxHei = self.dataOut.heightList[-1] |
|
335 | 335 | |
|
336 | 336 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
337 | 337 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
338 | 338 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
339 | 339 | minHei = self.dataOut.heightList[0] |
|
340 | 340 | |
|
341 | 341 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
342 | 342 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
343 | 343 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
344 | 344 | maxHei = self.dataOut.heightList[-1] |
|
345 | 345 | |
|
346 | 346 | # validacion de velocidades |
|
347 | 347 | velrange = self.dataOut.getVelRange(1) |
|
348 | 348 | |
|
349 | 349 | if minVel == None: |
|
350 | 350 | minVel = velrange[0] |
|
351 | 351 | |
|
352 | 352 | if maxVel == None: |
|
353 | 353 | maxVel = velrange[-1] |
|
354 | 354 | |
|
355 | 355 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
356 | 356 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
357 | 357 | print('minVel is setting to %.2f' % (velrange[0])) |
|
358 | 358 | minVel = velrange[0] |
|
359 | 359 | |
|
360 | 360 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
361 | 361 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
362 | 362 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
363 | 363 | maxVel = velrange[-1] |
|
364 | 364 | |
|
365 | 365 | # seleccion de indices para rango |
|
366 | 366 | minIndex = 0 |
|
367 | 367 | maxIndex = 0 |
|
368 | 368 | heights = self.dataOut.heightList |
|
369 | 369 | |
|
370 | 370 | inda = numpy.where(heights >= minHei) |
|
371 | 371 | indb = numpy.where(heights <= maxHei) |
|
372 | 372 | |
|
373 | 373 | try: |
|
374 | 374 | minIndex = inda[0][0] |
|
375 | 375 | except: |
|
376 | 376 | minIndex = 0 |
|
377 | 377 | |
|
378 | 378 | try: |
|
379 | 379 | maxIndex = indb[0][-1] |
|
380 | 380 | except: |
|
381 | 381 | maxIndex = len(heights) |
|
382 | 382 | |
|
383 | 383 | if (minIndex < 0) or (minIndex > maxIndex): |
|
384 | 384 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
385 | 385 | minIndex, maxIndex)) |
|
386 | 386 | |
|
387 | 387 | if (maxIndex >= self.dataOut.nHeights): |
|
388 | 388 | maxIndex = self.dataOut.nHeights - 1 |
|
389 | 389 | |
|
390 | 390 | # seleccion de indices para velocidades |
|
391 | 391 | indminvel = numpy.where(velrange >= minVel) |
|
392 | 392 | indmaxvel = numpy.where(velrange <= maxVel) |
|
393 | 393 | try: |
|
394 | 394 | minIndexVel = indminvel[0][0] |
|
395 | 395 | except: |
|
396 | 396 | minIndexVel = 0 |
|
397 | 397 | |
|
398 | 398 | try: |
|
399 | 399 | maxIndexVel = indmaxvel[0][-1] |
|
400 | 400 | except: |
|
401 | 401 | maxIndexVel = len(velrange) |
|
402 | 402 | |
|
403 | 403 | # seleccion del espectro |
|
404 | 404 | data_spc = self.dataOut.data_spc[:, |
|
405 | 405 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
406 | 406 | # estimacion de ruido |
|
407 | 407 | noise = numpy.zeros(self.dataOut.nChannels) |
|
408 | 408 | |
|
409 | 409 | for channel in range(self.dataOut.nChannels): |
|
410 | 410 | daux = data_spc[channel, :, :] |
|
411 | 411 | sortdata = numpy.sort(daux, axis=None) |
|
412 | 412 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
413 | 413 | |
|
414 | 414 | self.dataOut.noise_estimation = noise.copy() |
|
415 | 415 | |
|
416 | 416 | return 1 |
|
417 | 417 | |
|
418 | 418 | class removeDC(Operation): |
|
419 | 419 | |
|
420 | 420 | def run(self, dataOut, mode=2): |
|
421 | 421 | self.dataOut = dataOut |
|
422 | 422 | jspectra = self.dataOut.data_spc |
|
423 | 423 | jcspectra = self.dataOut.data_cspc |
|
424 | 424 | |
|
425 | 425 | num_chan = jspectra.shape[0] |
|
426 | 426 | num_hei = jspectra.shape[2] |
|
427 | 427 | |
|
428 | 428 | if jcspectra is not None: |
|
429 | 429 | jcspectraExist = True |
|
430 | 430 | num_pairs = jcspectra.shape[0] |
|
431 | 431 | else: |
|
432 | 432 | jcspectraExist = False |
|
433 | 433 | |
|
434 | 434 | freq_dc = int(jspectra.shape[1] / 2) |
|
435 | 435 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
436 | 436 | ind_vel = ind_vel.astype(int) |
|
437 | 437 | |
|
438 | 438 | if ind_vel[0] < 0: |
|
439 | 439 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
440 | 440 | |
|
441 | 441 | if mode == 1: |
|
442 | 442 | jspectra[:, freq_dc, :] = ( |
|
443 | 443 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
444 | 444 | |
|
445 | 445 | if jcspectraExist: |
|
446 | 446 | jcspectra[:, freq_dc, :] = ( |
|
447 | 447 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
448 | 448 | |
|
449 | 449 | if mode == 2: |
|
450 | 450 | |
|
451 | 451 | vel = numpy.array([-2, -1, 1, 2]) |
|
452 | 452 | xx = numpy.zeros([4, 4]) |
|
453 | 453 | |
|
454 | 454 | for fil in range(4): |
|
455 | 455 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
456 | 456 | |
|
457 | 457 | xx_inv = numpy.linalg.inv(xx) |
|
458 | 458 | xx_aux = xx_inv[0, :] |
|
459 | 459 | |
|
460 |
for ich in range(num_chan): |
|
|
460 | for ich in range(num_chan): | |
|
461 | 461 | yy = jspectra[ich, ind_vel, :] |
|
462 | 462 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
463 | 463 | |
|
464 | 464 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
465 | 465 | cjunkid = sum(junkid) |
|
466 | 466 | |
|
467 | 467 | if cjunkid.any(): |
|
468 | 468 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
469 | 469 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
470 | 470 | |
|
471 | 471 | if jcspectraExist: |
|
472 | 472 | for ip in range(num_pairs): |
|
473 | 473 | yy = jcspectra[ip, ind_vel, :] |
|
474 | 474 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
475 | 475 | |
|
476 | 476 | self.dataOut.data_spc = jspectra |
|
477 | 477 | self.dataOut.data_cspc = jcspectra |
|
478 | 478 | |
|
479 | 479 | return self.dataOut |
|
480 | 480 | |
|
481 | 481 | class removeInterference(Operation): |
|
482 | 482 | |
|
483 | 483 | def removeInterference2(self): |
|
484 | ||
|
484 | ||
|
485 | 485 | cspc = self.dataOut.data_cspc |
|
486 | 486 | spc = self.dataOut.data_spc |
|
487 |
Heights = numpy.arange(cspc.shape[2]) |
|
|
487 | Heights = numpy.arange(cspc.shape[2]) | |
|
488 | 488 | realCspc = numpy.abs(cspc) |
|
489 | ||
|
489 | ||
|
490 | 490 | for i in range(cspc.shape[0]): |
|
491 | 491 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
492 | 492 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
493 | 493 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
494 | 494 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
495 | 495 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
496 | 496 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
497 | ||
|
498 | ||
|
497 | ||
|
498 | ||
|
499 | 499 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
500 | 500 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
501 | 501 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
502 | 502 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
503 | ||
|
503 | ||
|
504 | 504 | self.dataOut.data_cspc = cspc |
|
505 | ||
|
505 | ||
|
506 | 506 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
507 | 507 | |
|
508 | 508 | jspectra = self.dataOut.data_spc |
|
509 | 509 | jcspectra = self.dataOut.data_cspc |
|
510 | 510 | jnoise = self.dataOut.getNoise() |
|
511 | 511 | num_incoh = self.dataOut.nIncohInt |
|
512 | 512 | |
|
513 | 513 | num_channel = jspectra.shape[0] |
|
514 | 514 | num_prof = jspectra.shape[1] |
|
515 | 515 | num_hei = jspectra.shape[2] |
|
516 | 516 | |
|
517 | 517 | # hei_interf |
|
518 | 518 | if hei_interf is None: |
|
519 | 519 | count_hei = int(num_hei / 2) |
|
520 | 520 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
521 | 521 | hei_interf = numpy.asarray(hei_interf)[0] |
|
522 | 522 | # nhei_interf |
|
523 | 523 | if (nhei_interf == None): |
|
524 | 524 | nhei_interf = 5 |
|
525 | 525 | if (nhei_interf < 1): |
|
526 | 526 | nhei_interf = 1 |
|
527 | 527 | if (nhei_interf > count_hei): |
|
528 | 528 | nhei_interf = count_hei |
|
529 | 529 | if (offhei_interf == None): |
|
530 | 530 | offhei_interf = 0 |
|
531 | 531 | |
|
532 | 532 | ind_hei = list(range(num_hei)) |
|
533 | 533 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
534 | 534 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
535 | 535 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
536 | 536 | num_mask_prof = mask_prof.size |
|
537 | 537 | comp_mask_prof = [0, num_prof / 2] |
|
538 | 538 | |
|
539 | 539 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
540 | 540 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
541 | 541 | jnoise = numpy.nan |
|
542 | 542 | noise_exist = jnoise[0] < numpy.Inf |
|
543 | 543 | |
|
544 | 544 | # Subrutina de Remocion de la Interferencia |
|
545 | 545 | for ich in range(num_channel): |
|
546 | 546 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
547 | 547 | power = jspectra[ich, mask_prof, :] |
|
548 | 548 | power = power[:, hei_interf] |
|
549 | 549 | power = power.sum(axis=0) |
|
550 | 550 | psort = power.ravel().argsort() |
|
551 | 551 | |
|
552 | 552 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
553 | 553 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
554 | 554 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
555 | 555 | |
|
556 | 556 | if noise_exist: |
|
557 | 557 | # tmp_noise = jnoise[ich] / num_prof |
|
558 | 558 | tmp_noise = jnoise[ich] |
|
559 | 559 | junkspc_interf = junkspc_interf - tmp_noise |
|
560 | 560 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
561 | 561 | |
|
562 | 562 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
563 | 563 | jspc_interf = jspc_interf.transpose() |
|
564 | 564 | # Calculando el espectro de interferencia promedio |
|
565 | 565 | noiseid = numpy.where( |
|
566 | 566 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
567 | 567 | noiseid = noiseid[0] |
|
568 | 568 | cnoiseid = noiseid.size |
|
569 | 569 | interfid = numpy.where( |
|
570 | 570 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
571 | 571 | interfid = interfid[0] |
|
572 | 572 | cinterfid = interfid.size |
|
573 | 573 | |
|
574 | 574 | if (cnoiseid > 0): |
|
575 | 575 | jspc_interf[noiseid] = 0 |
|
576 | 576 | |
|
577 | 577 | # Expandiendo los perfiles a limpiar |
|
578 | 578 | if (cinterfid > 0): |
|
579 | 579 | new_interfid = ( |
|
580 | 580 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
581 | 581 | new_interfid = numpy.asarray(new_interfid) |
|
582 | 582 | new_interfid = {x for x in new_interfid} |
|
583 | 583 | new_interfid = numpy.array(list(new_interfid)) |
|
584 | 584 | new_cinterfid = new_interfid.size |
|
585 | 585 | else: |
|
586 | 586 | new_cinterfid = 0 |
|
587 | 587 | |
|
588 | 588 | for ip in range(new_cinterfid): |
|
589 | 589 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
590 | 590 | jspc_interf[new_interfid[ip] |
|
591 | 591 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
592 | 592 | |
|
593 | 593 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
594 | 594 | ind_hei] - jspc_interf # Corregir indices |
|
595 | 595 | |
|
596 | 596 | # Removiendo la interferencia del punto de mayor interferencia |
|
597 | 597 | ListAux = jspc_interf[mask_prof].tolist() |
|
598 | 598 | maxid = ListAux.index(max(ListAux)) |
|
599 | 599 | |
|
600 | 600 | if cinterfid > 0: |
|
601 | 601 | for ip in range(cinterfid * (interf == 2) - 1): |
|
602 | 602 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
603 | 603 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
604 | 604 | cind = len(ind) |
|
605 | 605 | |
|
606 | 606 | if (cind > 0): |
|
607 | 607 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
608 | 608 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
609 | 609 | numpy.sqrt(num_incoh)) |
|
610 | 610 | |
|
611 | 611 | ind = numpy.array([-2, -1, 1, 2]) |
|
612 | 612 | xx = numpy.zeros([4, 4]) |
|
613 | 613 | |
|
614 | 614 | for id1 in range(4): |
|
615 | 615 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
616 | 616 | |
|
617 | 617 | xx_inv = numpy.linalg.inv(xx) |
|
618 | 618 | xx = xx_inv[:, 0] |
|
619 | 619 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
620 | 620 | yy = jspectra[ich, mask_prof[ind], :] |
|
621 | 621 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
622 | 622 | yy.transpose(), xx) |
|
623 | 623 | |
|
624 | 624 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
625 | 625 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
626 | 626 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
627 | 627 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
628 | 628 | |
|
629 | 629 | # Remocion de Interferencia en el Cross Spectra |
|
630 | 630 | if jcspectra is None: |
|
631 | 631 | return jspectra, jcspectra |
|
632 | 632 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
633 | 633 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
634 | 634 | |
|
635 | 635 | for ip in range(num_pairs): |
|
636 | 636 | |
|
637 | 637 | #------------------------------------------- |
|
638 | 638 | |
|
639 | 639 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
640 | 640 | cspower = cspower[:, hei_interf] |
|
641 | 641 | cspower = cspower.sum(axis=0) |
|
642 | 642 | |
|
643 | 643 | cspsort = cspower.ravel().argsort() |
|
644 | 644 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
645 | 645 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
646 | 646 | junkcspc_interf = junkcspc_interf.transpose() |
|
647 | 647 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
648 | 648 | |
|
649 | 649 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
650 | 650 | |
|
651 | 651 | median_real = int(numpy.median(numpy.real( |
|
652 | 652 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
653 | 653 | median_imag = int(numpy.median(numpy.imag( |
|
654 | 654 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
655 | 655 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
656 | 656 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
657 | 657 | median_real, median_imag) |
|
658 | 658 | |
|
659 | 659 | for iprof in range(num_prof): |
|
660 | 660 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
661 | 661 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
662 | 662 | |
|
663 | 663 | # Removiendo la Interferencia |
|
664 | 664 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
665 | 665 | :, ind_hei] - jcspc_interf |
|
666 | 666 | |
|
667 | 667 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
668 | 668 | maxid = ListAux.index(max(ListAux)) |
|
669 | 669 | |
|
670 | 670 | ind = numpy.array([-2, -1, 1, 2]) |
|
671 | 671 | xx = numpy.zeros([4, 4]) |
|
672 | 672 | |
|
673 | 673 | for id1 in range(4): |
|
674 | 674 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
675 | 675 | |
|
676 | 676 | xx_inv = numpy.linalg.inv(xx) |
|
677 | 677 | xx = xx_inv[:, 0] |
|
678 | 678 | |
|
679 | 679 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
680 | 680 | yy = jcspectra[ip, mask_prof[ind], :] |
|
681 | 681 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
682 | 682 | |
|
683 | 683 | # Guardar Resultados |
|
684 | 684 | self.dataOut.data_spc = jspectra |
|
685 | 685 | self.dataOut.data_cspc = jcspectra |
|
686 | 686 | |
|
687 | 687 | return 1 |
|
688 | 688 | |
|
689 | 689 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): |
|
690 | 690 | |
|
691 | 691 | self.dataOut = dataOut |
|
692 | 692 | |
|
693 | 693 | if mode == 1: |
|
694 | 694 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
695 | 695 | elif mode == 2: |
|
696 | 696 | self.removeInterference2() |
|
697 | 697 | |
|
698 | 698 | return self.dataOut |
|
699 | 699 | |
|
700 | 700 | |
|
701 | 701 | class IncohInt(Operation): |
|
702 | 702 | |
|
703 | 703 | __profIndex = 0 |
|
704 | 704 | __withOverapping = False |
|
705 | 705 | |
|
706 | 706 | __byTime = False |
|
707 | 707 | __initime = None |
|
708 | 708 | __lastdatatime = None |
|
709 | 709 | __integrationtime = None |
|
710 | 710 | |
|
711 | 711 | __buffer_spc = None |
|
712 | 712 | __buffer_cspc = None |
|
713 | 713 | __buffer_dc = None |
|
714 | 714 | |
|
715 | 715 | __dataReady = False |
|
716 | 716 | |
|
717 | 717 | __timeInterval = None |
|
718 | 718 | |
|
719 | 719 | n = None |
|
720 | 720 | |
|
721 | 721 | def __init__(self): |
|
722 | 722 | |
|
723 | 723 | Operation.__init__(self) |
|
724 | 724 | |
|
725 | 725 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
726 | 726 | """ |
|
727 | 727 | Set the parameters of the integration class. |
|
728 | 728 | |
|
729 | 729 | Inputs: |
|
730 | 730 | |
|
731 | 731 | n : Number of coherent integrations |
|
732 | 732 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
733 | 733 | overlapping : |
|
734 | 734 | |
|
735 | 735 | """ |
|
736 | 736 | |
|
737 | 737 | self.__initime = None |
|
738 | 738 | self.__lastdatatime = 0 |
|
739 | 739 | |
|
740 | 740 | self.__buffer_spc = 0 |
|
741 | 741 | self.__buffer_cspc = 0 |
|
742 | 742 | self.__buffer_dc = 0 |
|
743 | 743 | |
|
744 | 744 | self.__profIndex = 0 |
|
745 | 745 | self.__dataReady = False |
|
746 | 746 | self.__byTime = False |
|
747 | 747 | |
|
748 | 748 | if n is None and timeInterval is None: |
|
749 | 749 | raise ValueError("n or timeInterval should be specified ...") |
|
750 | 750 | |
|
751 | 751 | if n is not None: |
|
752 | 752 | self.n = int(n) |
|
753 | 753 | else: |
|
754 | ||
|
754 | ||
|
755 | 755 | self.__integrationtime = int(timeInterval) |
|
756 | 756 | self.n = None |
|
757 | 757 | self.__byTime = True |
|
758 | 758 | |
|
759 | 759 | def putData(self, data_spc, data_cspc, data_dc): |
|
760 | 760 | """ |
|
761 | 761 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
762 | 762 | |
|
763 | 763 | """ |
|
764 | 764 | |
|
765 | 765 | self.__buffer_spc += data_spc |
|
766 | 766 | |
|
767 | 767 | if data_cspc is None: |
|
768 | 768 | self.__buffer_cspc = None |
|
769 | 769 | else: |
|
770 | 770 | self.__buffer_cspc += data_cspc |
|
771 | 771 | |
|
772 | 772 | if data_dc is None: |
|
773 | 773 | self.__buffer_dc = None |
|
774 | 774 | else: |
|
775 | 775 | self.__buffer_dc += data_dc |
|
776 | 776 | |
|
777 | 777 | self.__profIndex += 1 |
|
778 | 778 | |
|
779 | 779 | return |
|
780 | 780 | |
|
781 | 781 | def pushData(self): |
|
782 | 782 | """ |
|
783 | 783 | Return the sum of the last profiles and the profiles used in the sum. |
|
784 | 784 | |
|
785 | 785 | Affected: |
|
786 | 786 | |
|
787 | 787 | self.__profileIndex |
|
788 | 788 | |
|
789 | 789 | """ |
|
790 | 790 | |
|
791 | 791 | data_spc = self.__buffer_spc |
|
792 | 792 | data_cspc = self.__buffer_cspc |
|
793 | 793 | data_dc = self.__buffer_dc |
|
794 | 794 | n = self.__profIndex |
|
795 | 795 | |
|
796 | 796 | self.__buffer_spc = 0 |
|
797 | 797 | self.__buffer_cspc = 0 |
|
798 | 798 | self.__buffer_dc = 0 |
|
799 | 799 | self.__profIndex = 0 |
|
800 | 800 | |
|
801 | 801 | return data_spc, data_cspc, data_dc, n |
|
802 | 802 | |
|
803 | 803 | def byProfiles(self, *args): |
|
804 | 804 | |
|
805 | 805 | self.__dataReady = False |
|
806 | 806 | avgdata_spc = None |
|
807 | 807 | avgdata_cspc = None |
|
808 | 808 | avgdata_dc = None |
|
809 | 809 | |
|
810 | 810 | self.putData(*args) |
|
811 | 811 | |
|
812 | 812 | if self.__profIndex == self.n: |
|
813 | 813 | |
|
814 | 814 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
815 | 815 | self.n = n |
|
816 | 816 | self.__dataReady = True |
|
817 | 817 | |
|
818 | 818 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
819 | 819 | |
|
820 | 820 | def byTime(self, datatime, *args): |
|
821 | 821 | |
|
822 | 822 | self.__dataReady = False |
|
823 | 823 | avgdata_spc = None |
|
824 | 824 | avgdata_cspc = None |
|
825 | 825 | avgdata_dc = None |
|
826 | 826 | |
|
827 | 827 | self.putData(*args) |
|
828 | 828 | |
|
829 | 829 | if (datatime - self.__initime) >= self.__integrationtime: |
|
830 | 830 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
831 | 831 | self.n = n |
|
832 | 832 | self.__dataReady = True |
|
833 | 833 | |
|
834 | 834 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
835 | 835 | |
|
836 | 836 | def integrate(self, datatime, *args): |
|
837 | 837 | |
|
838 | 838 | if self.__profIndex == 0: |
|
839 | 839 | self.__initime = datatime |
|
840 | 840 | |
|
841 | 841 | if self.__byTime: |
|
842 | 842 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
843 | 843 | datatime, *args) |
|
844 | 844 | else: |
|
845 | 845 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
846 | 846 | |
|
847 | 847 | if not self.__dataReady: |
|
848 | 848 | return None, None, None, None |
|
849 | 849 | |
|
850 | 850 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
851 | 851 | |
|
852 | 852 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
853 | 853 | if n == 1: |
|
854 | 854 | return dataOut |
|
855 | ||
|
855 | ||
|
856 | 856 | dataOut.flagNoData = True |
|
857 | 857 | |
|
858 | 858 | if not self.isConfig: |
|
859 | 859 | self.setup(n, timeInterval, overlapping) |
|
860 | 860 | self.isConfig = True |
|
861 | 861 | |
|
862 | 862 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
863 | 863 | dataOut.data_spc, |
|
864 | 864 | dataOut.data_cspc, |
|
865 | 865 | dataOut.data_dc) |
|
866 | 866 | |
|
867 | 867 | if self.__dataReady: |
|
868 | 868 | |
|
869 | 869 | dataOut.data_spc = avgdata_spc |
|
870 | 870 | dataOut.data_cspc = avgdata_cspc |
|
871 |
dataOut.data_dc = avgdata_dc |
|
|
871 | dataOut.data_dc = avgdata_dc | |
|
872 | 872 | dataOut.nIncohInt *= self.n |
|
873 | 873 | dataOut.utctime = avgdatatime |
|
874 | 874 | dataOut.flagNoData = False |
|
875 | 875 | |
|
876 | 876 | return dataOut |
|
877 | 877 | |
|
878 | 878 | class dopplerFlip(Operation): |
|
879 | ||
|
879 | ||
|
880 | 880 | def run(self, dataOut): |
|
881 | 881 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
882 |
self.dataOut = dataOut |
|
|
882 | self.dataOut = dataOut | |
|
883 | 883 | # JULIA-oblicua, indice 2 |
|
884 | 884 | # arreglo 2: (num_profiles, num_heights) |
|
885 | 885 | jspectra = self.dataOut.data_spc[2] |
|
886 | 886 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
887 | 887 | num_profiles = jspectra.shape[0] |
|
888 | 888 | freq_dc = int(num_profiles / 2) |
|
889 | 889 | # Flip con for |
|
890 | 890 | for j in range(num_profiles): |
|
891 | 891 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
892 | 892 | # Intercambio perfil de DC con perfil inmediato anterior |
|
893 | 893 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
894 | 894 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
895 | 895 | # canal modificado es re-escrito en el arreglo de canales |
|
896 | 896 | self.dataOut.data_spc[2] = jspectra_tmp |
|
897 | 897 | |
|
898 | return self.dataOut No newline at end of file | |
|
898 | return self.dataOut |
@@ -1,216 +1,216 | |||
|
1 | 1 | # Ing. AVP |
|
2 | 2 | # 06/10/2021 |
|
3 | 3 | # ARCHIVO DE LECTURA |
|
4 | 4 | import os, sys |
|
5 | 5 | import datetime |
|
6 | 6 | import time |
|
7 | 7 | from schainpy.controller import Project |
|
8 | 8 | #### NOTA########################################### |
|
9 | 9 | # INPUT : |
|
10 | 10 | # VELOCIDAD PARAMETRO : V = 2Β°/seg |
|
11 | 11 | # MODO PULSE PAIR O MOMENTOS: 0 : Pulse Pair ,1 : Momentos |
|
12 | 12 | ###################################################### |
|
13 | 13 | ##### PROCESAMIENTO ################################## |
|
14 | 14 | ##### OJO TENER EN CUENTA EL n= para el Pulse Pair ## |
|
15 | 15 | ##### O EL n= nFFTPoints ### |
|
16 | 16 | ###################################################### |
|
17 | 17 | ######## BUSCAMOS EL numero de IPP equivalente 1Β°##### |
|
18 | 18 | ######## Sea V la velocidad del Pedestal en Β°/seg##### |
|
19 | 19 | ######## 1Β° sera Recorrido en un tiempo de 1/V ###### |
|
20 | 20 | ######## IPP del Radar 400 useg --> 60 Km ############ |
|
21 | 21 | ######## n = 1/(V(Β°/seg)*IPP(Km)) , NUMERO DE IPP ## |
|
22 | 22 | ######## n = 1/(V*IPP) ############################# |
|
23 | 23 | ######## VELOCIDAD DEL PEDESTAL ###################### |
|
24 | 24 | print("SETUP- RADAR METEOROLOGICO") |
|
25 | 25 | V = 10 |
|
26 | 26 | mode = 1 |
|
27 | 27 | #path = '/DATA_RM/23/6v' |
|
28 | 28 | ####path = '/DATA_RM/TEST_INTEGRACION_2M' |
|
29 | 29 | #path = '/DATA_RM/TEST_19OCTUBRE/10MHZ' |
|
30 | 30 | path = '/DATA_RM/WR_20_OCT' |
|
31 | 31 | #### path_ped='/DATA_RM/TEST_PEDESTAL/P20211012-082745' |
|
32 |
#### |
|
|
32 | ####path_ped='/DATA_RM/TEST_PEDESTAL/P20211019-192244' | |
|
33 | 33 | figpath_pp = "/home/soporte/Pictures/TEST_PP" |
|
34 | 34 | figpath_spec = "/home/soporte/Pictures/TEST_MOM" |
|
35 |
plot = |
|
|
36 |
integration = |
|
|
35 | plot = 0 | |
|
36 | integration = 1 | |
|
37 | 37 | save = 0 |
|
38 | 38 | if save == 1: |
|
39 | 39 | if mode==0: |
|
40 | 40 | path_save = '/DATA_RM/TEST_HDF5_PP_23/6v' |
|
41 | 41 | path_save = '/DATA_RM/TEST_HDF5_PP' |
|
42 | 42 | path_save = '/DATA_RM/TEST_HDF5_PP_100' |
|
43 | 43 | else: |
|
44 | 44 | path_save = '/DATA_RM/TEST_HDF5_SPEC_23_V2/6v' |
|
45 | 45 | |
|
46 | 46 | print("* PATH data ADQ :", path) |
|
47 | 47 | print("* Velocidad Pedestal :",V,"Β°/seg") |
|
48 | 48 | ############################ NRO Perfiles PROCESAMIENTO ################### |
|
49 | 49 | V=V |
|
50 | 50 | IPP=400*1e-6 |
|
51 | 51 | n= int(1/(V*IPP)) |
|
52 | 52 | print("* n - NRO Perfiles Proc:", n ) |
|
53 | 53 | ################################## MODE ################################### |
|
54 | 54 | print("* Modo de Operacion :",mode) |
|
55 | 55 | if mode ==0: |
|
56 | 56 | print("* Met. Seleccionado : Pulse Pair") |
|
57 | 57 | else: |
|
58 | 58 | print("* Met. Momentos : Momentos") |
|
59 | 59 | |
|
60 | 60 | ################################## MODE ################################### |
|
61 | 61 | print("* Grabado de datos :",save) |
|
62 | 62 | if save ==1: |
|
63 | 63 | if mode==0: |
|
64 | 64 | ope= "Pulse Pair" |
|
65 | 65 | else: |
|
66 | 66 | ope= "Momentos" |
|
67 | 67 | print("* Path-Save Data -", ope , path_save) |
|
68 | 68 | |
|
69 | 69 | print("* Integracion de datos :",integration) |
|
70 | 70 | |
|
71 | 71 | time.sleep(15) |
|
72 | 72 | #remotefolder = "/home/wmaster/graficos" |
|
73 | 73 | ####################################################################### |
|
74 | 74 | ################# RANGO DE PLOTEO###################################### |
|
75 | 75 | dBmin = '1' |
|
76 | 76 | dBmax = '65' |
|
77 | 77 | xmin = '13.2' |
|
78 | 78 | xmax = '13.5' |
|
79 | 79 | ymin = '0' |
|
80 | 80 | ymax = '60' |
|
81 | 81 | ####################################################################### |
|
82 | 82 | ########################FECHA########################################## |
|
83 | 83 | str = datetime.date.today() |
|
84 | 84 | today = str.strftime("%Y/%m/%d") |
|
85 | 85 | str2 = str - datetime.timedelta(days=1) |
|
86 | 86 | yesterday = str2.strftime("%Y/%m/%d") |
|
87 | 87 | ####################################################################### |
|
88 | 88 | ########################SIGNAL CHAIN ################################## |
|
89 | 89 | ####################################################################### |
|
90 | 90 | desc = "USRP_test" |
|
91 | 91 | filename = "USRP_processing.xml" |
|
92 | 92 | controllerObj = Project() |
|
93 | 93 | controllerObj.setup(id = '191', name='Test_USRP', description=desc) |
|
94 | 94 | ####################################################################### |
|
95 | 95 | ######################## UNIDAD DE LECTURA############################# |
|
96 | 96 | ####################################################################### |
|
97 | 97 | readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader', |
|
98 | 98 | path=path, |
|
99 | 99 | startDate="2021/01/01",#today, |
|
100 | 100 | endDate="2021/12/30",#today, |
|
101 | 101 | startTime='00:00:00', |
|
102 | 102 | endTime='23:59:59', |
|
103 | 103 | delay=0, |
|
104 | 104 | #set=0, |
|
105 | 105 | online=0, |
|
106 | 106 | walk=1, |
|
107 | 107 | ippKm = 60) |
|
108 | 108 | |
|
109 | 109 | opObj11 = readUnitConfObj.addOperation(name='printInfo') |
|
110 | 110 | |
|
111 | 111 | procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) |
|
112 | 112 | |
|
113 | 113 | if mode ==0: |
|
114 | 114 | ####################### METODO PULSE PAIR ###################################################################### |
|
115 | 115 | opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other') |
|
116 | 116 | opObj11.addParameter(name='n', value=int(n), format='int')#10 VOY A USAR 250 DADO QUE LA VELOCIDAD ES 10 GRADOS |
|
117 | 117 | #opObj11.addParameter(name='removeDC', value=1, format='int') |
|
118 | 118 | ####################### METODO Parametros ###################################################################### |
|
119 | 119 | procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId()) |
|
120 | 120 | if plot==1: |
|
121 | 121 | opObj11 = procUnitConfObjB.addOperation(name='GenericRTIPlot',optype='external') |
|
122 | 122 | opObj11.addParameter(name='attr_data', value='dataPP_POWER') |
|
123 | 123 | opObj11.addParameter(name='colormap', value='jet') |
|
124 | 124 | opObj11.addParameter(name='xmin', value=xmin) |
|
125 | 125 | opObj11.addParameter(name='xmax', value=xmax) |
|
126 | 126 | opObj11.addParameter(name='zmin', value=dBmin) |
|
127 | 127 | opObj11.addParameter(name='zmax', value=dBmax) |
|
128 | 128 | opObj11.addParameter(name='save', value=figpath_pp) |
|
129 | 129 | opObj11.addParameter(name='showprofile', value=0) |
|
130 | 130 | opObj11.addParameter(name='save_period', value=10) |
|
131 | 131 | |
|
132 | 132 | ####################### METODO ESCRITURA ####################################################################### |
|
133 | 133 | if save==1: |
|
134 | 134 | opObj10 = procUnitConfObjB.addOperation(name='HDFWriter') |
|
135 | 135 | opObj10.addParameter(name='path',value=path_save) |
|
136 | 136 | #opObj10.addParameter(name='mode',value=0) |
|
137 | 137 | opObj10.addParameter(name='blocksPerFile',value='100',format='int') |
|
138 | 138 | opObj10.addParameter(name='metadataList',value='utctimeInit,timeZone,paramInterval,profileIndex,channelList,heightList,flagDataAsBlock',format='list') |
|
139 | 139 | opObj10.addParameter(name='dataList',value='dataPP_POWER,dataPP_DOP,utctime',format='list')#,format='list' |
|
140 | 140 | if integration==1: |
|
141 | 141 | V=10 |
|
142 | 142 | blocksPerfile=360 |
|
143 | 143 | print("* Velocidad del Pedestal:",V) |
|
144 | 144 | tmp_blocksPerfile = 100 |
|
145 | 145 | f_a_p= int(tmp_blocksPerfile/V) |
|
146 | 146 | |
|
147 | 147 | opObj11 = procUnitConfObjB.addOperation(name='PedestalInformation') |
|
148 | 148 | opObj11.addParameter(name='path_ped', value=path_ped) |
|
149 | 149 | #opObj11.addParameter(name='path_adq', value=path_adq) |
|
150 | 150 | opObj11.addParameter(name='t_Interval_p', value='0.01', format='float') |
|
151 | 151 | opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int') |
|
152 | 152 | opObj11.addParameter(name='n_Muestras_p', value='100', format='float') |
|
153 | 153 | opObj11.addParameter(name='f_a_p', value=f_a_p, format='int') |
|
154 | 154 | opObj11.addParameter(name='online', value='0', format='int') |
|
155 | 155 | |
|
156 | 156 | opObj11 = procUnitConfObjB.addOperation(name='Block360') |
|
157 | 157 | opObj11.addParameter(name='n', value='10', format='int') |
|
158 | 158 | opObj11.addParameter(name='mode', value=mode, format='int') |
|
159 | 159 | |
|
160 | 160 | # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180 |
|
161 | 161 | |
|
162 | 162 | opObj11= procUnitConfObjB.addOperation(name='WeatherPlot',optype='other') |
|
163 | 163 | |
|
164 | 164 | |
|
165 | 165 | else: |
|
166 | 166 | ####################### METODO SPECTROS ###################################################################### |
|
167 | 167 | procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) |
|
168 | 168 | procUnitConfObjB.addParameter(name='nFFTPoints', value=n, format='int') |
|
169 | 169 | procUnitConfObjB.addParameter(name='nProfiles' , value=n, format='int') |
|
170 | 170 | |
|
171 | 171 | procUnitConfObjC = controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjB.getId()) |
|
172 | 172 | procUnitConfObjC.addOperation(name='SpectralMoments') |
|
173 | 173 | if plot==1: |
|
174 | 174 | dBmin = '1' |
|
175 | 175 | dBmax = '65' |
|
176 | 176 | opObj11 = procUnitConfObjC.addOperation(name='PowerPlot',optype='external') |
|
177 | 177 | opObj11.addParameter(name='xmin', value=xmin) |
|
178 | 178 | opObj11.addParameter(name='xmax', value=xmax) |
|
179 | 179 | opObj11.addParameter(name='zmin', value=dBmin) |
|
180 | 180 | opObj11.addParameter(name='zmax', value=dBmax) |
|
181 | 181 | opObj11.addParameter(name='save', value=figpath_spec) |
|
182 | 182 | opObj11.addParameter(name='showprofile', value=0) |
|
183 | 183 | opObj11.addParameter(name='save_period', value=10) |
|
184 | 184 | |
|
185 | 185 | if save==1: |
|
186 | 186 | opObj10 = procUnitConfObjC.addOperation(name='HDFWriter') |
|
187 | 187 | opObj10.addParameter(name='path',value=path_save) |
|
188 | 188 | #opObj10.addParameter(name='mode',value=0) |
|
189 | 189 | opObj10.addParameter(name='blocksPerFile',value='360',format='int') |
|
190 | 190 | #opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex |
|
191 | 191 | opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex |
|
192 | 192 | opObj10.addParameter(name='dataList',value='data_pow,data_dop,utctime',format='list')#,format='list' |
|
193 | 193 | |
|
194 | 194 | if integration==1: |
|
195 | 195 | V=10 |
|
196 | 196 | blocksPerfile=360 |
|
197 | 197 | print("* Velocidad del Pedestal:",V) |
|
198 | 198 | tmp_blocksPerfile = 100 |
|
199 | 199 | f_a_p= int(tmp_blocksPerfile/V) |
|
200 | 200 | |
|
201 | 201 | opObj11 = procUnitConfObjC.addOperation(name='PedestalInformation') |
|
202 | 202 | opObj11.addParameter(name='path_ped', value=path_ped) |
|
203 | 203 | #opObj11.addParameter(name='path_adq', value=path_adq) |
|
204 | 204 | opObj11.addParameter(name='t_Interval_p', value='0.01', format='float') |
|
205 | 205 | opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int') |
|
206 | 206 | opObj11.addParameter(name='n_Muestras_p', value='100', format='float') |
|
207 | 207 | opObj11.addParameter(name='f_a_p', value=f_a_p, format='int') |
|
208 | 208 | opObj11.addParameter(name='online', value='0', format='int') |
|
209 | 209 | |
|
210 | 210 | opObj11 = procUnitConfObjC.addOperation(name='Block360') |
|
211 | 211 | opObj11.addParameter(name='n', value='10', format='int') |
|
212 | 212 | opObj11.addParameter(name='mode', value=mode, format='int') |
|
213 | 213 | |
|
214 | 214 | # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180 |
|
215 | 215 | opObj11= procUnitConfObjC.addOperation(name='WeatherPlot',optype='other') |
|
216 | 216 | controllerObj.start() |
@@ -1,217 +1,217 | |||
|
1 | 1 | # Ing. AVP |
|
2 | 2 | # 06/10/2021 |
|
3 | 3 | # ARCHIVO DE LECTURA |
|
4 | 4 | import os, sys |
|
5 | 5 | import datetime |
|
6 | 6 | import time |
|
7 | 7 | from schainpy.controller import Project |
|
8 | 8 | #### NOTA########################################### |
|
9 | 9 | # INPUT : |
|
10 | 10 | # VELOCIDAD PARAMETRO : V = 2Β°/seg |
|
11 | 11 | # MODO PULSE PAIR O MOMENTOS: 0 : Pulse Pair ,1 : Momentos |
|
12 | 12 | ###################################################### |
|
13 | 13 | ##### PROCESAMIENTO ################################## |
|
14 | 14 | ##### OJO TENER EN CUENTA EL n= para el Pulse Pair ## |
|
15 | 15 | ##### O EL n= nFFTPoints ### |
|
16 | 16 | ###################################################### |
|
17 | 17 | ######## BUSCAMOS EL numero de IPP equivalente 1Β°##### |
|
18 | 18 | ######## Sea V la velocidad del Pedestal en Β°/seg##### |
|
19 | 19 | ######## 1Β° sera Recorrido en un tiempo de 1/V ###### |
|
20 | 20 | ######## IPP del Radar 400 useg --> 60 Km ############ |
|
21 | 21 | ######## n = 1/(V(Β°/seg)*IPP(Km)) , NUMERO DE IPP ## |
|
22 | 22 | ######## n = 1/(V*IPP) ############################# |
|
23 | 23 | ######## VELOCIDAD DEL PEDESTAL ###################### |
|
24 | 24 | print("SETUP- RADAR METEOROLOGICO") |
|
25 | 25 | V = 10 |
|
26 | 26 | mode = 1 |
|
27 | 27 | #path = '/DATA_RM/23/6v' |
|
28 | 28 | #path = '/DATA_RM/TEST_INTEGRACION_2M' |
|
29 | 29 | path = '/DATA_RM/WR_20_OCT' |
|
30 | 30 | |
|
31 | 31 | #path_ped='/DATA_RM/TEST_PEDESTAL/P20211012-082745' |
|
32 | 32 | path_ped='/DATA_RM/TEST_PEDESTAL/P20211020-131248' |
|
33 | 33 | |
|
34 | 34 | figpath_pp = "/home/soporte/Pictures/TEST_PP" |
|
35 | 35 | figpath_mom = "/home/soporte/Pictures/TEST_MOM" |
|
36 | 36 | plot = 0 |
|
37 | 37 | integration = 1 |
|
38 | 38 | save = 0 |
|
39 | 39 | if save == 1: |
|
40 | 40 | if mode==0: |
|
41 | 41 | path_save = '/DATA_RM/TEST_HDF5_PP_23/6v' |
|
42 | 42 | path_save = '/DATA_RM/TEST_HDF5_PP' |
|
43 | 43 | path_save = '/DATA_RM/TEST_HDF5_PP_100' |
|
44 | 44 | else: |
|
45 | 45 | path_save = '/DATA_RM/TEST_HDF5_SPEC_23_V2/6v' |
|
46 | 46 | |
|
47 | 47 | print("* PATH data ADQ :", path) |
|
48 | 48 | print("* Velocidad Pedestal :",V,"Β°/seg") |
|
49 | 49 | ############################ NRO Perfiles PROCESAMIENTO ################### |
|
50 | 50 | V=V |
|
51 | 51 | IPP=400*1e-6 |
|
52 | 52 | n= int(1/(V*IPP)) |
|
53 | 53 | print("* n - NRO Perfiles Proc:", n ) |
|
54 | 54 | ################################## MODE ################################### |
|
55 | 55 | print("* Modo de Operacion :",mode) |
|
56 | 56 | if mode ==0: |
|
57 | 57 | print("* Met. Seleccionado : Pulse Pair") |
|
58 | 58 | else: |
|
59 | 59 | print("* Met. Momentos : Momentos") |
|
60 | 60 | |
|
61 | 61 | ################################## MODE ################################### |
|
62 | 62 | print("* Grabado de datos :",save) |
|
63 | 63 | if save ==1: |
|
64 | 64 | if mode==0: |
|
65 | 65 | ope= "Pulse Pair" |
|
66 | 66 | else: |
|
67 | 67 | ope= "Momentos" |
|
68 | 68 | print("* Path-Save Data -", ope , path_save) |
|
69 | 69 | |
|
70 | 70 | print("* Integracion de datos :",integration) |
|
71 | 71 | |
|
72 |
time.sleep( |
|
|
72 | time.sleep(5) | |
|
73 | 73 | #remotefolder = "/home/wmaster/graficos" |
|
74 | 74 | ####################################################################### |
|
75 | 75 | ################# RANGO DE PLOTEO###################################### |
|
76 | 76 | dBmin = '1' |
|
77 | 77 | dBmax = '85' |
|
78 | 78 | xmin = '15' |
|
79 | 79 | xmax = '15.25' |
|
80 | 80 | ymin = '0' |
|
81 | 81 | ymax = '600' |
|
82 | 82 | ####################################################################### |
|
83 | 83 | ########################FECHA########################################## |
|
84 | 84 | str = datetime.date.today() |
|
85 | 85 | today = str.strftime("%Y/%m/%d") |
|
86 | 86 | str2 = str - datetime.timedelta(days=1) |
|
87 | 87 | yesterday = str2.strftime("%Y/%m/%d") |
|
88 | 88 | ####################################################################### |
|
89 | 89 | ########################SIGNAL CHAIN ################################## |
|
90 | 90 | ####################################################################### |
|
91 | 91 | desc = "USRP_test" |
|
92 | 92 | filename = "USRP_processing.xml" |
|
93 | 93 | controllerObj = Project() |
|
94 | 94 | controllerObj.setup(id = '191', name='Test_USRP', description=desc) |
|
95 | 95 | ####################################################################### |
|
96 | 96 | ######################## UNIDAD DE LECTURA############################# |
|
97 | 97 | ####################################################################### |
|
98 | 98 | readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader', |
|
99 | 99 | path=path, |
|
100 | 100 | startDate="2021/01/01",#today, |
|
101 | 101 | endDate="2021/12/30",#today, |
|
102 | 102 | startTime='00:00:00', |
|
103 | 103 | endTime='23:59:59', |
|
104 | 104 | delay=0, |
|
105 | 105 | #set=0, |
|
106 | 106 | online=0, |
|
107 | 107 | walk=1, |
|
108 | 108 | ippKm = 60) |
|
109 | 109 | |
|
110 | 110 | opObj11 = readUnitConfObj.addOperation(name='printInfo') |
|
111 | 111 | |
|
112 | 112 | procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) |
|
113 | 113 | |
|
114 | 114 | if mode ==0: |
|
115 | 115 | ####################### METODO PULSE PAIR ###################################################################### |
|
116 | 116 | opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other') |
|
117 | 117 | opObj11.addParameter(name='n', value=int(n), format='int')#10 VOY A USAR 250 DADO QUE LA VELOCIDAD ES 10 GRADOS |
|
118 | 118 | #opObj11.addParameter(name='removeDC', value=1, format='int') |
|
119 | 119 | ####################### METODO Parametros ###################################################################### |
|
120 | 120 | procUnitConfObjB= controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjA.getId()) |
|
121 | 121 | if plot==1: |
|
122 | 122 | opObj11 = procUnitConfObjB.addOperation(name='GenericRTIPlot',optype='external') |
|
123 | 123 | opObj11.addParameter(name='attr_data', value='dataPP_POW') |
|
124 | 124 | opObj11.addParameter(name='colormap', value='jet') |
|
125 | 125 | opObj11.addParameter(name='xmin', value=xmin) |
|
126 | 126 | opObj11.addParameter(name='xmax', value=xmax) |
|
127 | 127 | opObj11.addParameter(name='zmin', value=dBmin) |
|
128 | 128 | opObj11.addParameter(name='zmax', value=dBmax) |
|
129 | 129 | opObj11.addParameter(name='save', value=figpath_pp) |
|
130 | 130 | opObj11.addParameter(name='showprofile', value=0) |
|
131 | 131 | opObj11.addParameter(name='save_period', value=50) |
|
132 | 132 | |
|
133 | 133 | ####################### METODO ESCRITURA ####################################################################### |
|
134 | 134 | if save==1: |
|
135 | 135 | opObj10 = procUnitConfObjB.addOperation(name='HDFWriter') |
|
136 | 136 | opObj10.addParameter(name='path',value=path_save) |
|
137 | 137 | #opObj10.addParameter(name='mode',value=0) |
|
138 | 138 | opObj10.addParameter(name='blocksPerFile',value='100',format='int') |
|
139 | 139 | opObj10.addParameter(name='metadataList',value='utctimeInit,timeZone,paramInterval,profileIndex,channelList,heightList,flagDataAsBlock',format='list') |
|
140 | 140 | opObj10.addParameter(name='dataList',value='dataPP_POW,dataPP_DOP,utctime',format='list')#,format='list' |
|
141 | 141 | if integration==1: |
|
142 | 142 | V=10 |
|
143 | 143 | blocksPerfile=360 |
|
144 | 144 | print("* Velocidad del Pedestal:",V) |
|
145 | 145 | tmp_blocksPerfile = 100 |
|
146 | 146 | f_a_p= int(tmp_blocksPerfile/V) |
|
147 | 147 | |
|
148 | 148 | opObj11 = procUnitConfObjB.addOperation(name='PedestalInformation') |
|
149 | 149 | opObj11.addParameter(name='path_ped', value=path_ped) |
|
150 | 150 | #opObj11.addParameter(name='path_adq', value=path_adq) |
|
151 | 151 | opObj11.addParameter(name='t_Interval_p', value='0.01', format='float') |
|
152 | 152 | opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int') |
|
153 | 153 | opObj11.addParameter(name='n_Muestras_p', value='100', format='float') |
|
154 | 154 | opObj11.addParameter(name='f_a_p', value=f_a_p, format='int') |
|
155 | 155 | opObj11.addParameter(name='online', value='0', format='int') |
|
156 | 156 | |
|
157 | 157 | opObj11 = procUnitConfObjB.addOperation(name='Block360') |
|
158 | 158 | opObj11.addParameter(name='n', value='10', format='int') |
|
159 | 159 | opObj11.addParameter(name='mode', value=mode, format='int') |
|
160 | 160 | |
|
161 | 161 | # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180 |
|
162 | 162 | |
|
163 | 163 | opObj11= procUnitConfObjB.addOperation(name='WeatherPlot',optype='other') |
|
164 | 164 | |
|
165 | 165 | |
|
166 | 166 | else: |
|
167 | 167 | ####################### METODO SPECTROS ###################################################################### |
|
168 | 168 | procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) |
|
169 | 169 | procUnitConfObjB.addParameter(name='nFFTPoints', value=n, format='int') |
|
170 | 170 | procUnitConfObjB.addParameter(name='nProfiles' , value=n, format='int') |
|
171 | 171 | |
|
172 | 172 | procUnitConfObjC = controllerObj.addProcUnit(datatype='ParametersProc',inputId=procUnitConfObjB.getId()) |
|
173 | 173 | procUnitConfObjC.addOperation(name='SpectralMoments') |
|
174 | 174 | if plot==1: |
|
175 | 175 | dBmin = '1' |
|
176 | 176 | dBmax = '65' |
|
177 | 177 | opObj11 = procUnitConfObjC.addOperation(name='PowerPlot',optype='external') |
|
178 | 178 | opObj11.addParameter(name='xmin', value=xmin) |
|
179 | 179 | opObj11.addParameter(name='xmax', value=xmax) |
|
180 | 180 | opObj11.addParameter(name='zmin', value=dBmin) |
|
181 | 181 | opObj11.addParameter(name='zmax', value=dBmax) |
|
182 | 182 | opObj11.addParameter(name='save', value=figpath_mom) |
|
183 | 183 | opObj11.addParameter(name='showprofile', value=0) |
|
184 | 184 | opObj11.addParameter(name='save_period', value=100) |
|
185 | 185 | |
|
186 | 186 | if save==1: |
|
187 | 187 | opObj10 = procUnitConfObjC.addOperation(name='HDFWriter') |
|
188 | 188 | opObj10.addParameter(name='path',value=path_save) |
|
189 | 189 | #opObj10.addParameter(name='mode',value=0) |
|
190 | 190 | opObj10.addParameter(name='blocksPerFile',value='360',format='int') |
|
191 | 191 | #opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex |
|
192 | 192 | opObj10.addParameter(name='metadataList',value='utctimeInit,heightList,nIncohInt,nCohInt,nProfiles,channelList',format='list')#profileIndex |
|
193 | 193 | opObj10.addParameter(name='dataList',value='data_pow,data_dop,utctime',format='list')#,format='list' |
|
194 | 194 | |
|
195 | 195 | if integration==1: |
|
196 | 196 | V=10 |
|
197 | 197 | blocksPerfile=360 |
|
198 | 198 | print("* Velocidad del Pedestal:",V) |
|
199 | 199 | tmp_blocksPerfile = 100 |
|
200 | 200 | f_a_p= int(tmp_blocksPerfile/V) |
|
201 | 201 | |
|
202 | 202 | opObj11 = procUnitConfObjC.addOperation(name='PedestalInformation') |
|
203 | 203 | opObj11.addParameter(name='path_ped', value=path_ped) |
|
204 | 204 | #opObj11.addParameter(name='path_adq', value=path_adq) |
|
205 | 205 | opObj11.addParameter(name='t_Interval_p', value='0.01', format='float') |
|
206 | 206 | opObj11.addParameter(name='blocksPerfile', value=blocksPerfile, format='int') |
|
207 | 207 | opObj11.addParameter(name='n_Muestras_p', value='100', format='float') |
|
208 | 208 | opObj11.addParameter(name='f_a_p', value=f_a_p, format='int') |
|
209 | 209 | opObj11.addParameter(name='online', value='0', format='int') |
|
210 | 210 | |
|
211 | 211 | opObj11 = procUnitConfObjC.addOperation(name='Block360') |
|
212 |
opObj11.addParameter(name='n', value=' |
|
|
212 | opObj11.addParameter(name='n', value='10', format='int') | |
|
213 | 213 | opObj11.addParameter(name='mode', value=mode, format='int') |
|
214 | 214 | |
|
215 | 215 | # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180 |
|
216 | 216 | opObj11= procUnitConfObjC.addOperation(name='WeatherPlot',optype='other') |
|
217 | 217 | controllerObj.start() |
General Comments 0
You need to be logged in to leave comments.
Login now