@@ -678,22 +678,23 class WeatherRHIPlot(Plot): | |||||
678 | list1=[] |
|
678 | list1=[] | |
679 | list2=[] |
|
679 | list2=[] | |
680 | for i in reversed(range(len(angulos))): |
|
680 | for i in reversed(range(len(angulos))): | |
681 | diff_ = angulos[i]-angulos[i-1] |
|
681 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante | |
682 | if diff_ >1.5: |
|
682 | diff_ = angulos[i]-angulos[i-1] | |
683 | list1.append(i-1) |
|
683 | if abs(diff_) >1.5: | |
684 |
|
|
684 | list1.append(i-1) | |
|
685 | list2.append(diff_) | |||
685 | return list(reversed(list1)),list(reversed(list2)) |
|
686 | return list(reversed(list1)),list(reversed(list2)) | |
686 |
|
687 | |||
687 |
def fixData |
|
688 | def fixData90(self,list_,ang_): | |
688 | if list_[0]==-1: |
|
689 | if list_[0]==-1: | |
689 | vec = numpy.where(ang_<ang_[0]) |
|
690 | vec = numpy.where(ang_<ang_[0]) | |
690 |
ang_[vec] = ang_[vec]+ |
|
691 | ang_[vec] = ang_[vec]+90 | |
691 | return ang_ |
|
692 | return ang_ | |
692 | return ang_ |
|
693 | return ang_ | |
693 |
|
694 | |||
694 |
def fixData |
|
695 | def fixData90HL(self,angulos): | |
695 |
vec = numpy.where(angulos>= |
|
696 | vec = numpy.where(angulos>=90) | |
696 |
angulos[vec]=angulos[vec]- |
|
697 | angulos[vec]=angulos[vec]-90 | |
697 | return angulos |
|
698 | return angulos | |
698 |
|
699 | |||
699 |
|
700 | |||
@@ -704,11 +705,11 class WeatherRHIPlot(Plot): | |||||
704 | i=None |
|
705 | i=None | |
705 | return False,i |
|
706 | return False,i | |
706 |
|
707 | |||
707 | def fixDataComp(self,ang_,list1_,list2_): |
|
708 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): | |
708 | size = len(ang_) |
|
709 | size = len(ang_) | |
709 | size2 = 0 |
|
710 | size2 = 0 | |
710 | for i in range(len(list2_)): |
|
711 | for i in range(len(list2_)): | |
711 | size2=size2+round(list2_[i])-1 |
|
712 | size2=size2+round(abs(list2_[i]))-1 | |
712 | new_size= size+size2 |
|
713 | new_size= size+size2 | |
713 | ang_new = numpy.zeros(new_size) |
|
714 | ang_new = numpy.zeros(new_size) | |
714 | ang_new2 = numpy.zeros(new_size) |
|
715 | ang_new2 = numpy.zeros(new_size) | |
@@ -721,23 +722,29 class WeatherRHIPlot(Plot): | |||||
721 | condition , value = self.search_pos(i,list1_) |
|
722 | condition , value = self.search_pos(i,list1_) | |
722 | if condition: |
|
723 | if condition: | |
723 | pos = tmp + c + 1 |
|
724 | pos = tmp + c + 1 | |
724 | for k in range(round(list2_[value])-1): |
|
725 | for k in range(round(abs(list2_[value]))-1): | |
725 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
726 | if tipo_case==0 or tipo_case==3:#subida | |
726 |
ang_new |
|
727 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |
|
728 | ang_new2[pos+k] = numpy.nan | |||
|
729 | elif tipo_case==1 or tipo_case==2:#bajada | |||
|
730 | ang_new[pos+k] = ang_new[pos+k-1]-1 | |||
|
731 | ang_new2[pos+k] = numpy.nan | |||
|
732 | ||||
727 | tmp = pos +k |
|
733 | tmp = pos +k | |
728 | c = 0 |
|
734 | c = 0 | |
729 | c=c+1 |
|
735 | c=c+1 | |
730 | return ang_new,ang_new2 |
|
736 | return ang_new,ang_new2 | |
731 |
|
737 | |||
732 | def globalCheckPED(self,angulos): |
|
738 | def globalCheckPED(self,angulos,tipo_case): | |
733 | l1,l2 = self.get2List(angulos) |
|
739 | l1,l2 = self.get2List(angulos) | |
|
740 | print("l1",l1) | |||
|
741 | print("l2",l2) | |||
734 | if len(l1)>0: |
|
742 | if len(l1)>0: | |
735 |
angulos2 = self.fixData |
|
743 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) | |
736 | l1,l2 = self.get2List(angulos2) |
|
744 | #l1,l2 = self.get2List(angulos2) | |
737 |
|
745 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) | ||
738 |
ang1 |
|
746 | #ang1_ = self.fixData90HL(ang1_) | |
739 |
|
|
747 | #ang2_ = self.fixData90HL(ang2_) | |
740 | ang2_ = self.fixData180HL(ang2_) |
|
|||
741 | else: |
|
748 | else: | |
742 | ang1_= angulos |
|
749 | ang1_= angulos | |
743 | ang2_= angulos |
|
750 | ang2_= angulos | |
@@ -762,52 +769,112 class WeatherRHIPlot(Plot): | |||||
762 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
769 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
763 | return data_T |
|
770 | return data_T | |
764 |
|
771 | |||
765 | def const_ploteo(self,data_weather,data_ele,step,res): |
|
772 | def check_case(self,data_ele,ang_max,ang_min): | |
|
773 | start = data_ele[0] | |||
|
774 | end = data_ele[-1] | |||
|
775 | number = (end-start) | |||
|
776 | len_ang=len(data_ele) | |||
|
777 | ||||
|
778 | if start<end and round(abs(number)+1)>=len_ang:#caso subida | |||
|
779 | return 0 | |||
|
780 | elif start>end and round(abs(number)+1)>=len_ang:#caso bajada | |||
|
781 | return 1 | |||
|
782 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX | |||
|
783 | return 2 | |||
|
784 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1]:# caso SUBIDA CAMBIO ANG MIN | |||
|
785 | return 3 | |||
|
786 | ||||
|
787 | ||||
|
788 | def const_ploteo(self,data_weather,data_ele,step,res,ang_max,ang_min): | |||
|
789 | ang_max= ang_max | |||
|
790 | ang_min= ang_min | |||
766 | if self.ini==0: |
|
791 | if self.ini==0: | |
767 | #------- |
|
792 | print("**********************************************") | |
768 | n = (180/res)-len(data_ele) |
|
793 | print("**********************************************") | |
|
794 | print("***************ini**************") | |||
|
795 | print("**********************************************") | |||
|
796 | print("**********************************************") | |||
|
797 | print("data_ele",data_ele) | |||
|
798 | #---------------------------------------------------------- | |||
|
799 | tipo_case = self.check_case(data_ele,ang_max,ang_min) | |||
|
800 | print("TIPO DE DATA",tipo_case) | |||
769 | #--------------------- new ------------------------- |
|
801 | #--------------------- new ------------------------- | |
770 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele) |
|
802 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) | |
771 | #------------------------ |
|
803 | print("data_ele_new",data_ele_new) | |
772 | start = data_ele_new[-1] + res |
|
804 | print("data_ele_old",data_ele_old) | |
773 | end = data_ele_new[0] - res |
|
805 | #-------------------------CAMBIOS RHI--------------------------------- | |
|
806 | start= ang_min | |||
|
807 | end = ang_min | |||
|
808 | n= (ang_max-ang_min)/res | |||
774 | #------ new |
|
809 | #------ new | |
775 |
self. |
|
810 | self.start_data_ele = data_ele_new[0] | |
776 | if start>end: |
|
811 | self.end_data_ele = data_ele_new[-1] | |
777 | end = end + 180 |
|
812 | if tipo_case==0 or tipo_case==3: | |
|
813 | n1= round(self.start_data_ele)- start | |||
|
814 | n2= end - round(self.end_data_ele) | |||
|
815 | if n1>0: | |||
|
816 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |||
|
817 | ele1_nan= numpy.ones(n1)*numpy.nan | |||
|
818 | data_ele = numpy.hstack((ele1,data_ele_new)) | |||
|
819 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |||
|
820 | if n2>0: | |||
|
821 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |||
|
822 | ele2_nan= numpy.ones(n2)*numpy.nan | |||
|
823 | data_ele = numpy.hstack((data_ele,ele2)) | |||
|
824 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |||
|
825 | # RADAR | |||
|
826 | val_mean = numpy.mean(data_weather[:,-1]) | |||
|
827 | self.val_mean = val_mean | |||
|
828 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |||
|
829 | ''' | |||
778 | ele_vacia = numpy.linspace(start,end,int(n)) |
|
830 | ele_vacia = numpy.linspace(start,end,int(n)) | |
779 | ele_vacia = numpy.where(ele_vacia>180,ele_vacia-180,ele_vacia) |
|
831 | ||
|
832 | ||||
|
833 | ele_vacia = numpy.where(ele_vacia>ang_max,ele_vacia-ang_max,ele_vacia) | |||
780 | data_ele = numpy.hstack((data_ele_new,ele_vacia)) |
|
834 | data_ele = numpy.hstack((data_ele_new,ele_vacia)) | |
781 | # RADAR |
|
835 | # RADAR | |
782 | val_mean = numpy.mean(data_weather[:,-1]) |
|
836 | val_mean = numpy.mean(data_weather[:,-1]) | |
783 | self.val_mean = val_mean |
|
837 | self.val_mean = val_mean | |
784 |
data_weather_cmp = numpy.ones([( |
|
838 | data_weather_cmp = numpy.ones([(ang_max-data_weather.shape[0]),data_weather.shape[1]])*val_mean | |
785 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
839 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
786 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) |
|
840 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) | |
|
841 | ''' | |||
787 | else: |
|
842 | else: | |
788 | # azimuth |
|
843 | print("**********************************************") | |
|
844 | print("**********************************************") | |||
|
845 | print("****************VARIABLE**********************") | |||
|
846 | print("**********************************************") | |||
|
847 | print("**********************************************") | |||
|
848 | #-------------------------CAMBIOS RHI--------------------------------- | |||
|
849 | #--------------------------------------------------------------------- | |||
|
850 | print("INPUT data_ele",data_ele) | |||
789 | flag=0 |
|
851 | flag=0 | |
790 | start_ele = self.res_ele[0] |
|
852 | start_ele = self.res_ele[0] | |
|
853 | tipo_case = self.check_case(data_ele,ang_max,ang_min) | |||
|
854 | print("TIPO DE DATA",tipo_case) | |||
791 | #-----------new------------ |
|
855 | #-----------new------------ | |
792 | data_ele ,data_ele_old= self.globalCheckPED(data_ele) |
|
856 | data_ele ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) | |
|
857 | print("data_ele_new",data_ele) | |||
|
858 | print("data_ele_old",data_ele_old) | |||
793 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
859 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
|
860 | ''' | |||
794 | #-------------------------- |
|
861 | #-------------------------- | |
795 | start = data_ele[0] |
|
862 | start = data_ele[0] | |
796 | end = data_ele[-1] |
|
863 | end = data_ele[-1] | |
797 | self.last_data_ele= end |
|
864 | self.last_data_ele= end | |
798 | if start< start_ele: |
|
865 | if start< start_ele: | |
799 |
start = start + |
|
866 | start = start +ang_max | |
800 | if end <start_ele: |
|
867 | if end <start_ele: | |
801 |
end = end + |
|
868 | end = end +ang_max | |
802 |
|
|
869 | ||
803 | pos_ini = int((start-start_ele)/res) |
|
870 | pos_ini = int((start-start_ele)/res) | |
804 | len_ele = len(data_ele) |
|
871 | len_ele = len(data_ele) | |
805 |
if ( |
|
872 | if (ang_max-pos_ini)<len_ele: | |
806 |
if pos_ini+1== |
|
873 | if pos_ini+1==ang_max: | |
807 | pos_ini=0 |
|
874 | pos_ini=0 | |
808 | else: |
|
875 | else: | |
809 | flag=1 |
|
876 | flag=1 | |
810 |
dif= |
|
877 | dif= ang_max-pos_ini | |
811 | comp= len_ele-dif |
|
878 | comp= len_ele-dif | |
812 | #----------------- |
|
879 | #----------------- | |
813 | if flag==0: |
|
880 | if flag==0: | |
@@ -825,6 +892,8 class WeatherRHIPlot(Plot): | |||||
825 | flag=0 |
|
892 | flag=0 | |
826 | data_ele = self.res_ele |
|
893 | data_ele = self.res_ele | |
827 | data_weather = self.res_weather |
|
894 | data_weather = self.res_weather | |
|
895 | ''' | |||
|
896 | print("OUPUT data_ele",data_ele) | |||
828 |
|
897 | |||
829 | return data_weather,data_ele |
|
898 | return data_weather,data_ele | |
830 |
|
899 | |||
@@ -837,6 +906,13 class WeatherRHIPlot(Plot): | |||||
837 | r_mask = numpy.where(r>=0)[0] |
|
906 | r_mask = numpy.where(r>=0)[0] | |
838 | r = numpy.arange(len(r_mask))*delta_height |
|
907 | r = numpy.arange(len(r_mask))*delta_height | |
839 | self.y = 2*r |
|
908 | self.y = 2*r | |
|
909 | res = 1 | |||
|
910 | print("data['weather'].shape[0]",data['weather'].shape[0]) | |||
|
911 | ang_max = 80 | |||
|
912 | ang_min = 0 | |||
|
913 | var_ang =ang_max - ang_min | |||
|
914 | step = (int(var_ang)/(res*data['weather'].shape[0])) | |||
|
915 | print("step",step) | |||
840 | ''' |
|
916 | ''' | |
841 | #------------------------------------------------------------- |
|
917 | #------------------------------------------------------------- | |
842 | # RADAR |
|
918 | # RADAR | |
@@ -846,43 +922,26 class WeatherRHIPlot(Plot): | |||||
846 | res = 1 |
|
922 | res = 1 | |
847 | # STEP |
|
923 | # STEP | |
848 | step = (180/(res*data['weather'].shape[0])) |
|
924 | step = (180/(res*data['weather'].shape[0])) | |
849 |
|
||||
850 |
|
||||
851 | self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res) |
|
925 | self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res) | |
852 | self.res_azi = numpy.mean(data['azi']) |
|
926 | self.res_azi = numpy.mean(data['azi']) | |
853 | print("self.res_ele------------------------------:",self.res_ele) |
|
927 | print("self.res_ele------------------------------:",self.res_ele) | |
854 | ################# PLOTEO ################### |
|
|||
855 |
|
||||
856 | for i,ax in enumerate(self.axes): |
|
|||
857 | if ax.firsttime: |
|
|||
858 | plt.clf() |
|
|||
859 | cgax, pm = wrl.vis.plot_rhi(self.res_weather,r=r,th=self.res_ele,fig=self.figures[0], proj='cg', vmin=8, vmax=35) |
|
|||
860 | else: |
|
|||
861 | plt.clf() |
|
|||
862 | cgax, pm = wrl.vis.plot_rhi(self.res_weather,r=r,th=self.res_ele,fig=self.figures[0], proj='cg', vmin=8, vmax=35) |
|
|||
863 | caax = cgax.parasites[0] |
|
|||
864 | paax = cgax.parasites[1] |
|
|||
865 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
|||
866 | caax.set_xlabel('x_range [km]') |
|
|||
867 | caax.set_ylabel('y_range [km]') |
|
|||
868 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
|||
869 |
|
||||
870 | self.ini= self.ini+1 |
|
|||
871 |
|
||||
872 |
|
||||
873 | ''' |
|
928 | ''' | |
874 | #-------------------------------------------------------- |
|
929 | #-------------------------------------------------------- | |
|
930 | print('weather',data['weather'].shape) | |||
|
931 | print('ele',data['ele'].shape) | |||
875 |
|
932 | |||
876 |
|
|
933 | self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |
877 |
|
|
934 | self.res_azi = numpy.mean(data['azi']) | |
|
935 | print("self.res_ele",self.res_ele) | |||
878 | #------------- |
|
936 | #------------- | |
879 | # 90 angulos en el axis 0 |
|
937 | # 90 angulos en el axis 0 | |
880 | # 1000 step en el axis 1 |
|
938 | # 1000 step en el axis 1 | |
881 | self.res_weather = numpy.ones([120,1000]) |
|
939 | ###self.res_weather = numpy.ones([120,1000]) | |
882 | r = numpy.linspace(0,1999,1000) |
|
940 | ###r = numpy.linspace(0,1999,1000) | |
883 | self.res_ele = numpy.arange(0,120) |
|
941 | ###self.res_ele = numpy.arange(0,120) | |
884 | self.res_azi = 240 |
|
942 | ###self.res_azi = 240 | |
885 | #------------- |
|
943 | #------------- | |
|
944 | ''' | |||
886 | for i,ax in enumerate(self.axes): |
|
945 | for i,ax in enumerate(self.axes): | |
887 | if ax.firsttime: |
|
946 | if ax.firsttime: | |
888 | plt.clf() |
|
947 | plt.clf() | |
@@ -896,5 +955,6 class WeatherRHIPlot(Plot): | |||||
896 | caax.set_xlabel('x_range [km]') |
|
955 | caax.set_xlabel('x_range [km]') | |
897 | caax.set_ylabel('y_range [km]') |
|
956 | caax.set_ylabel('y_range [km]') | |
898 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
957 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') | |
899 |
|
958 | ''' | ||
|
959 | print("""""""""""""self.ini""""""""""""",self.ini) | |||
900 | self.ini= self.ini+1 |
|
960 | self.ini= self.ini+1 |
@@ -4188,7 +4188,7 class PedestalInformation(Operation): | |||||
4188 | #print(i)# OJO IDENTIFICADOR DE SINCRONISMO |
|
4188 | #print(i)# OJO IDENTIFICADOR DE SINCRONISMO | |
4189 | self.utc_ped_list.append(self.gettimeutcfromDirFilename(path=self.path_ped,file=self.list_pedestal[i])) |
|
4189 | self.utc_ped_list.append(self.gettimeutcfromDirFilename(path=self.path_ped,file=self.list_pedestal[i])) | |
4190 | dataOut.wr_exp = wr_exp |
|
4190 | dataOut.wr_exp = wr_exp | |
4191 | print("SETUP READY") |
|
4191 | #print("SETUP READY") | |
4192 |
|
4192 | |||
4193 |
|
4193 | |||
4194 | def setNextFileP(self,dataOut): |
|
4194 | def setNextFileP(self,dataOut): | |
@@ -4373,13 +4373,13 class Block360(Operation): | |||||
4373 | if self.__dataReady: |
|
4373 | if self.__dataReady: | |
4374 | dataOut.data_360 = data_360 # S |
|
4374 | dataOut.data_360 = data_360 # S | |
4375 | ##print("---------------------------------------------------------------------------------") |
|
4375 | ##print("---------------------------------------------------------------------------------") | |
4376 | print("---------------------------DATAREADY---------------------------------------------") |
|
4376 | ###print("---------------------------DATAREADY---------------------------------------------") | |
4377 | ##print("---------------------------------------------------------------------------------") |
|
4377 | ##print("---------------------------------------------------------------------------------") | |
4378 | ##print("data_360",dataOut.data_360.shape) |
|
4378 | ##print("data_360",dataOut.data_360.shape) | |
4379 | dataOut.data_azi = data_p |
|
4379 | dataOut.data_azi = data_p | |
4380 | dataOut.data_ele = data_e |
|
4380 | dataOut.data_ele = data_e | |
4381 | print("azi: ",dataOut.data_azi) |
|
4381 | ###print("azi: ",dataOut.data_azi) | |
4382 | print("ele: ",dataOut.data_ele) |
|
4382 | ###print("ele: ",dataOut.data_ele) | |
4383 | #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime) |
|
4383 | #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime) | |
4384 | dataOut.utctime = avgdatatime |
|
4384 | dataOut.utctime = avgdatatime | |
4385 | dataOut.flagNoData = False |
|
4385 | dataOut.flagNoData = False |
@@ -156,7 +156,7 opObj11.addParameter(name='save_period', value=1) | |||||
156 | ####################################################################### |
|
156 | ####################################################################### | |
157 |
|
157 | |||
158 | procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) |
|
158 | procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) | |
159 |
procUnitConfObjB.addParameter(name='nFFTPoints', value=' |
|
159 | procUnitConfObjB.addParameter(name='nFFTPoints', value='0', format='int') | |
160 | procUnitConfObjB.addParameter(name='nProfiles', value='250', format='int') |
|
160 | procUnitConfObjB.addParameter(name='nProfiles', value='250', format='int') | |
161 |
|
161 | |||
162 | #procUnitConfObjC = controllerObj.addProcUnit(datatype='SpectraHeisProc', inputId=procUnitConfObjA.getId()) |
|
162 | #procUnitConfObjC = controllerObj.addProcUnit(datatype='SpectraHeisProc', inputId=procUnitConfObjA.getId()) |
@@ -24,6 +24,7 import matplotlib.pyplot as plt | |||||
24 | #-------------------------------- |
|
24 | #-------------------------------- | |
25 |
|
25 | |||
26 | path_ped= "/DATA_RM/TEST_PEDESTAL/P20220401-172744" |
|
26 | path_ped= "/DATA_RM/TEST_PEDESTAL/P20220401-172744" | |
|
27 | ||||
27 | # Metodo para verificar numero |
|
28 | # Metodo para verificar numero | |
28 | def isNumber(str): |
|
29 | def isNumber(str): | |
29 | try: |
|
30 | try: | |
@@ -79,9 +80,9 z=0 | |||||
79 | # CONDICION POR LEER EN TIEMPO REAL NO OFFLINE |
|
80 | # CONDICION POR LEER EN TIEMPO REAL NO OFFLINE | |
80 |
|
81 | |||
81 | for filename in LIST: |
|
82 | for filename in LIST: | |
82 | tmp_azi_pos = getDatavaluefromDirFilename(path=path_ped,file=filename,value="azi_pos") |
|
83 | #tmp_azi_pos = getDatavaluefromDirFilename(path=path_ped,file=filename,value="azi_pos") | |
83 | tmp_ele_pos = getDatavaluefromDirFilename(path=path_ped,file=filename,value="ele_pos") |
|
84 | tmp_ele_pos = getDatavaluefromDirFilename(path=path_ped,file=filename,value="ele_pos") | |
84 |
|
|
85 | tmp_azi_pos = getDatavaluefromDirFilename(path=path_ped,file=filename,value="ele_vel") | |
85 | #tmp_ele_pos = getDatavaluefromDirFilename(path=path_ped,file=filename,value="azi_vel") |
|
86 | #tmp_ele_pos = getDatavaluefromDirFilename(path=path_ped,file=filename,value="azi_vel") | |
86 | # CONDICION POR LEER EN TIEMPO REAL NO OFFLINE |
|
87 | # CONDICION POR LEER EN TIEMPO REAL NO OFFLINE | |
87 |
|
88 |
@@ -8,6 +8,8 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter | |||||
8 | warnings.filterwarnings('ignore') |
|
8 | warnings.filterwarnings('ignore') | |
9 | # lectura de gaMIC hdf5 file |
|
9 | # lectura de gaMIC hdf5 file | |
10 | filename = wrl.util.get_wradlib_data_file("/home/soporte/Downloads/2014-06-09--185000.rhi.mvol") |
|
10 | filename = wrl.util.get_wradlib_data_file("/home/soporte/Downloads/2014-06-09--185000.rhi.mvol") | |
|
11 | #filename = wrl.util.get_wradlib_data_file("2014-06-09--185000.rhi.mvol") | |||
|
12 | ||||
11 | data1, metadata = wrl.io.read_gamic_hdf5(filename) |
|
13 | data1, metadata = wrl.io.read_gamic_hdf5(filename) | |
12 | print(data1) |
|
14 | print(data1) | |
13 | data1 = data1['SCAN0']['ZH']['data'] |
|
15 | data1 = data1['SCAN0']['ZH']['data'] | |
@@ -26,11 +28,23 site = (metadata['VOL']['Longitude'], metadata['VOL']['Latitude'], | |||||
26 |
|
28 | |||
27 | print("Longitud,Latitud,Altura",site) |
|
29 | print("Longitud,Latitud,Altura",site) | |
28 | ma1 = np.array(data1) |
|
30 | ma1 = np.array(data1) | |
|
31 | for i in range(3): | |||
|
32 | print("dark",ma1[i]) | |||
29 | ''' |
|
33 | ''' | |
30 | mask_ind = np.where(data1 <= np.nanmin(data1)) |
|
34 | mask_ind = np.where(data1 <= np.nanmin(data1)) | |
31 | data1[mask_ind] = np.nan |
|
35 | data1[mask_ind] = np.nan | |
32 | ma1 = np.ma.array(data1, mask=np.isnan(data1)) |
|
36 | ma1 = np.ma.array(data1, mask=np.isnan(data1)) | |
33 | ''' |
|
37 | ''' | |
|
38 | ####################### test ####################s | |||
|
39 | th=(np.arange(450)/10.0)+5 | |||
|
40 | #th= np.roll(th,-2) | |||
|
41 | #th=np.where(a<7,np.nan,a) | |||
|
42 | ma1=np.roll(ma1,-2,axis=0) | |||
|
43 | for i in range(3): | |||
|
44 | print("green",ma1[i]) | |||
|
45 | print("a",th) | |||
|
46 | #th = [i for i in reversed(a)] | |||
|
47 | ######################### test | |||
34 | #cgax, pm = wrl.vis.plot_rhi(ma1,r=r,th=th,rf=1e3) |
|
48 | #cgax, pm = wrl.vis.plot_rhi(ma1,r=r,th=th,rf=1e3) | |
35 | fig = plt.figure(figsize=(10,8)) |
|
49 | fig = plt.figure(figsize=(10,8)) | |
36 | cgax, pm = wrl.vis.plot_rhi(ma1,r=r,th=th,rf=1e3,fig=fig, ax=111,proj='cg') |
|
50 | cgax, pm = wrl.vis.plot_rhi(ma1,r=r,th=th,rf=1e3,fig=fig, ax=111,proj='cg') |
@@ -39,17 +39,23 mode_proc = 0 | |||||
39 | #path_ped = "/DATA_RM/TEST_PEDESTAL/P20220322-171722" |
|
39 | #path_ped = "/DATA_RM/TEST_PEDESTAL/P20220322-171722" | |
40 | #path = "/DATA_RM/DRONE01ABRIL1701" |
|
40 | #path = "/DATA_RM/DRONE01ABRIL1701" | |
41 | path = "/DATA_RM/DATA/Torre_con_bola_1649092242/rawdata" |
|
41 | path = "/DATA_RM/DATA/Torre_con_bola_1649092242/rawdata" | |
42 |
|
42 | path="/DATA_RM/DRONE01ABRIL1727" | ||
43 | path_ped = "/DATA_RM/DRONE01ABRIL1450" |
|
43 | #path_ped = "/DATA_RM/DRONE01ABRIL1450" | |
|
44 | path_ped="/DATA_RM/TEST_PEDESTAL/P20220401-172744" | |||
|
45 | #path_ped = "/DATA_RM/DATA/Torre_con_bola_1649092242/position/2022-04-04T17-00-00" | |||
44 | #------------------------------------------------------------------------------- |
|
46 | #------------------------------------------------------------------------------- | |
45 | figpath_pp = "/home/soporte/Pictures/Torre_con_bola_1649092242" |
|
47 | figpath_pp = "/home/soporte/Pictures/Torre_con_bola_1649092242" | |
46 | #figpath_pp = "/home/soporte/Pictures/MARTES_22_PP_1M_1us" |
|
48 | #figpath_pp = "/home/soporte/Pictures/MARTES_22_PP_1M_1us" | |
47 | figpath_spec = "/home/soporte/Pictures/MARTES_22_1M_1us" |
|
49 | figpath_spec = "/home/soporte/Pictures/MARTES_22_1M_1us" | |
48 | figpath_pp_ppi = "/home/soporte/Pictures/MARTES_22_1M_1us_PPI" |
|
50 | figpath_pp_ppi = "/home/soporte/Pictures/MARTES_22_1M_1us_PPI" | |
|
51 | ||||
|
52 | ||||
|
53 | figpath_pp_rhi = "/DATA_RM/LUNES04ABRIL_1200_RHI" | |||
49 | #--------------------------OPCIONES--------------------------------------------- |
|
54 | #--------------------------OPCIONES--------------------------------------------- | |
50 | plot = 1 |
|
|||
51 | plot_ppi = 0 |
|
55 | plot_ppi = 0 | |
52 | integration = 0 |
|
56 | plot = 0 | |
|
57 | plot_rhi = 1 | |||
|
58 | integration = 1 | |||
53 | save = 0 |
|
59 | save = 0 | |
54 | plot_spec = 0 |
|
60 | plot_spec = 0 | |
55 | #---------------------------SAVE HDF5 PROCESADO/-------------------------------- |
|
61 | #---------------------------SAVE HDF5 PROCESADO/-------------------------------- | |
@@ -122,9 +128,9 controllerObj.setup(id = '191', name='Test_USRP', description=desc) | |||||
122 | #------------------------ UNIDAD DE LECTURA------------------------------------- |
|
128 | #------------------------ UNIDAD DE LECTURA------------------------------------- | |
123 | readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader', |
|
129 | readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader', | |
124 | path=path, |
|
130 | path=path, | |
125 |
startDate="2022/04/0 |
|
131 | startDate="2022/04/01",#today, | |
126 |
endDate="2022/04/0 |
|
132 | endDate="2022/04/01",#today, | |
127 |
startTime=' |
|
133 | startTime='00:10:05',#'17:39:25', | |
128 | endTime='23:59:59',#23:59:59', |
|
134 | endTime='23:59:59',#23:59:59', | |
129 | delay=0, |
|
135 | delay=0, | |
130 | #set=0, |
|
136 | #set=0, | |
@@ -159,7 +165,7 opObj11.addParameter(name='maxIndex', value=str(int(num_alturas/20.0)), format=' | |||||
159 | # CUARTA PARTE de 60 Km POR ESO ENTRE 20 - 3 Km |
|
165 | # CUARTA PARTE de 60 Km POR ESO ENTRE 20 - 3 Km | |
160 |
|
166 | |||
161 |
|
167 | |||
162 |
|
168 | ''' | ||
163 | procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) |
|
169 | procUnitConfObjB = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) | |
164 | procUnitConfObjB.addParameter(name='nFFTPoints', value='32', format='int') |
|
170 | procUnitConfObjB.addParameter(name='nFFTPoints', value='32', format='int') | |
165 | procUnitConfObjB.addParameter(name='nProfiles', value='32', format='int') |
|
171 | procUnitConfObjB.addParameter(name='nProfiles', value='32', format='int') | |
@@ -179,7 +185,7 opObj11.addParameter(name='ymax', value=ymax, format='int') | |||||
179 | opObj11.addParameter(name='showprofile', value='1', format='int') |
|
185 | opObj11.addParameter(name='showprofile', value='1', format='int') | |
180 |
|
|
186 | #opObj11.addParameter(name='save', value=figpath, format='str') | |
181 | opObj11.addParameter(name='save_period', value=10, format='int') |
|
187 | opObj11.addParameter(name='save_period', value=10, format='int') | |
182 |
|
188 | ''' | ||
183 |
|
189 | |||
184 | if mode_proc ==0: |
|
190 | if mode_proc ==0: | |
185 | ####################### METODO PULSE PAIR ###################################################################### |
|
191 | ####################### METODO PULSE PAIR ###################################################################### | |
@@ -213,7 +219,9 if mode_proc ==0: | |||||
213 | opObj11 = procUnitConfObjB.addOperation(name='PedestalInformation') |
|
219 | opObj11 = procUnitConfObjB.addOperation(name='PedestalInformation') | |
214 | opObj11.addParameter(name='path_ped', value=path_ped) |
|
220 | opObj11.addParameter(name='path_ped', value=path_ped) | |
215 | opObj11.addParameter(name='t_Interval_p', value='0.01', format='float') |
|
221 | opObj11.addParameter(name='t_Interval_p', value='0.01', format='float') | |
216 | opObj11.addParameter(name='wr_exp', value='PPI') |
|
222 | #opObj11.addParameter(name='wr_exp', value='PPI') | |
|
223 | opObj11.addParameter(name='wr_exp', value='RHI') | |||
|
224 | ||||
217 | if plot_ppi==1: |
|
225 | if plot_ppi==1: | |
218 | opObj11 = procUnitConfObjB.addOperation(name='Block360') |
|
226 | opObj11 = procUnitConfObjB.addOperation(name='Block360') | |
219 | opObj11.addParameter(name='n', value='10', format='int') |
|
227 | opObj11.addParameter(name='n', value='10', format='int') | |
@@ -222,5 +230,13 if mode_proc ==0: | |||||
222 | opObj11= procUnitConfObjB.addOperation(name='WeatherPlot',optype='other') |
|
230 | opObj11= procUnitConfObjB.addOperation(name='WeatherPlot',optype='other') | |
223 | opObj11.addParameter(name='save', value=figpath_pp_ppi) |
|
231 | opObj11.addParameter(name='save', value=figpath_pp_ppi) | |
224 | opObj11.addParameter(name='save_period', value=1) |
|
232 | opObj11.addParameter(name='save_period', value=1) | |
|
233 | if plot_rhi==1: | |||
|
234 | opObj11 = procUnitConfObjB.addOperation(name='Block360') | |||
|
235 | opObj11.addParameter(name='n', value='10', format='int') | |||
|
236 | opObj11.addParameter(name='mode', value=mode_proc, format='int') | |||
|
237 | # este bloque funciona bien con divisores de 360 no olvidar 0 10 20 30 40 60 90 120 180 | |||
|
238 | opObj11= procUnitConfObjB.addOperation(name='WeatherRHIPlot',optype='other') | |||
|
239 | opObj11.addParameter(name='save', value=figpath_pp_rhi) | |||
|
240 | opObj11.addParameter(name='save_period', value=1) | |||
225 |
|
241 | |||
226 | controllerObj.start() |
|
242 | controllerObj.start() |
General Comments 0
You need to be logged in to leave comments.
Login now