The requested changes are too big and content was truncated. Show full diff
@@ -1,1159 +1,1159 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Definition of diferent Data objects for different types of data |
|
5 | """Definition of diferent Data objects for different types of data | |
6 |
|
6 | |||
7 | Here you will find the diferent data objects for the different types |
|
7 | Here you will find the diferent data objects for the different types | |
8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
8 | of data, this data objects must be used as dataIn or dataOut objects in | |
9 | processing units and operations. Currently the supported data objects are: |
|
9 | processing units and operations. Currently the supported data objects are: | |
10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters | |
11 | """ |
|
11 | """ | |
12 |
|
12 | |||
13 | import copy |
|
13 | import copy | |
14 | import numpy |
|
14 | import numpy | |
15 | import datetime |
|
15 | import datetime | |
16 | import json |
|
16 | import json | |
17 |
|
17 | |||
18 | import schainpy.admin |
|
18 | import schainpy.admin | |
19 | from schainpy.utils import log |
|
19 | from schainpy.utils import log | |
20 | from .jroheaderIO import SystemHeader, RadarControllerHeader,ProcessingHeader |
|
20 | from .jroheaderIO import SystemHeader, RadarControllerHeader,ProcessingHeader | |
21 | from schainpy.model.data import _noise |
|
21 | from schainpy.model.data import _noise | |
22 | SPEED_OF_LIGHT = 3e8 |
|
22 | SPEED_OF_LIGHT = 3e8 | |
23 |
|
23 | |||
24 | def getNumpyDtype(dataTypeCode): |
|
24 | def getNumpyDtype(dataTypeCode): | |
25 |
|
25 | |||
26 | if dataTypeCode == 0: |
|
26 | if dataTypeCode == 0: | |
27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) | |
28 | elif dataTypeCode == 1: |
|
28 | elif dataTypeCode == 1: | |
29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) | |
30 | elif dataTypeCode == 2: |
|
30 | elif dataTypeCode == 2: | |
31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) | |
32 | elif dataTypeCode == 3: |
|
32 | elif dataTypeCode == 3: | |
33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) | |
34 | elif dataTypeCode == 4: |
|
34 | elif dataTypeCode == 4: | |
35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
36 | elif dataTypeCode == 5: |
|
36 | elif dataTypeCode == 5: | |
37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) | |
38 | else: |
|
38 | else: | |
39 | raise ValueError('dataTypeCode was not defined') |
|
39 | raise ValueError('dataTypeCode was not defined') | |
40 |
|
40 | |||
41 | return numpyDtype |
|
41 | return numpyDtype | |
42 |
|
42 | |||
43 |
|
43 | |||
44 | def getDataTypeCode(numpyDtype): |
|
44 | def getDataTypeCode(numpyDtype): | |
45 |
|
45 | |||
46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): | |
47 | datatype = 0 |
|
47 | datatype = 0 | |
48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): | |
49 | datatype = 1 |
|
49 | datatype = 1 | |
50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): | |
51 | datatype = 2 |
|
51 | datatype = 2 | |
52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): | |
53 | datatype = 3 |
|
53 | datatype = 3 | |
54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): | |
55 | datatype = 4 |
|
55 | datatype = 4 | |
56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): | |
57 | datatype = 5 |
|
57 | datatype = 5 | |
58 | else: |
|
58 | else: | |
59 | datatype = None |
|
59 | datatype = None | |
60 |
|
60 | |||
61 | return datatype |
|
61 | return datatype | |
62 |
|
62 | |||
63 |
|
63 | |||
64 | def hildebrand_sekhon(data, navg): |
|
64 | def hildebrand_sekhon(data, navg): | |
65 | """ |
|
65 | """ | |
66 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
66 | This method is for the objective determination of the noise level in Doppler spectra. This | |
67 | implementation technique is based on the fact that the standard deviation of the spectral |
|
67 | implementation technique is based on the fact that the standard deviation of the spectral | |
68 | densities is equal to the mean spectral density for white Gaussian noise |
|
68 | densities is equal to the mean spectral density for white Gaussian noise | |
69 |
|
69 | |||
70 | Inputs: |
|
70 | Inputs: | |
71 | Data : heights |
|
71 | Data : heights | |
72 | navg : numbers of averages |
|
72 | navg : numbers of averages | |
73 |
|
73 | |||
74 | Return: |
|
74 | Return: | |
75 | mean : noise's level |
|
75 | mean : noise's level | |
76 | """ |
|
76 | """ | |
77 |
|
77 | |||
78 | sortdata = numpy.sort(data, axis=None) |
|
78 | sortdata = numpy.sort(data, axis=None) | |
79 | ''' |
|
79 | ''' | |
80 | lenOfData = len(sortdata) |
|
80 | lenOfData = len(sortdata) | |
81 | nums_min = lenOfData*0.5 |
|
81 | nums_min = lenOfData*0.5 | |
82 |
|
82 | |||
83 | if nums_min <= 5: |
|
83 | if nums_min <= 5: | |
84 |
|
84 | |||
85 | nums_min = 5 |
|
85 | nums_min = 5 | |
86 |
|
86 | |||
87 | sump = 0. |
|
87 | sump = 0. | |
88 | sumq = 0. |
|
88 | sumq = 0. | |
89 |
|
89 | |||
90 | j = 0 |
|
90 | j = 0 | |
91 | cont = 1 |
|
91 | cont = 1 | |
92 |
|
92 | |||
93 | while((cont == 1)and(j < lenOfData)): |
|
93 | while((cont == 1)and(j < lenOfData)): | |
94 |
|
94 | |||
95 | sump += sortdata[j] |
|
95 | sump += sortdata[j] | |
96 | sumq += sortdata[j]**2 |
|
96 | sumq += sortdata[j]**2 | |
97 |
|
97 | |||
98 | if j > nums_min: |
|
98 | if j > nums_min: | |
99 | rtest = float(j)/(j-1) + 1.0/navg |
|
99 | rtest = float(j)/(j-1) + 1.0/navg | |
100 | if ((sumq*j) > (rtest*sump**2)): |
|
100 | if ((sumq*j) > (rtest*sump**2)): | |
101 | j = j - 1 |
|
101 | j = j - 1 | |
102 | sump = sump - sortdata[j] |
|
102 | sump = sump - sortdata[j] | |
103 | sumq = sumq - sortdata[j]**2 |
|
103 | sumq = sumq - sortdata[j]**2 | |
104 | cont = 0 |
|
104 | cont = 0 | |
105 |
|
105 | |||
106 | j += 1 |
|
106 | j += 1 | |
107 |
|
107 | |||
108 | lnoise = sump / j |
|
108 | lnoise = sump / j | |
109 | return lnoise |
|
109 | return lnoise | |
110 | ''' |
|
110 | ''' | |
111 | return _noise.hildebrand_sekhon(sortdata, navg) |
|
111 | return _noise.hildebrand_sekhon(sortdata, navg) | |
112 |
|
112 | |||
113 |
|
113 | |||
114 | class Beam: |
|
114 | class Beam: | |
115 |
|
115 | |||
116 | def __init__(self): |
|
116 | def __init__(self): | |
117 | self.codeList = [] |
|
117 | self.codeList = [] | |
118 | self.azimuthList = [] |
|
118 | self.azimuthList = [] | |
119 | self.zenithList = [] |
|
119 | self.zenithList = [] | |
120 |
|
120 | |||
121 |
|
121 | |||
122 |
|
122 | |||
123 | class GenericData(object): |
|
123 | class GenericData(object): | |
124 |
|
124 | |||
125 | flagNoData = True |
|
125 | flagNoData = True | |
126 |
|
126 | |||
127 | def copy(self, inputObj=None): |
|
127 | def copy(self, inputObj=None): | |
128 |
|
128 | |||
129 | if inputObj == None: |
|
129 | if inputObj == None: | |
130 | return copy.deepcopy(self) |
|
130 | return copy.deepcopy(self) | |
131 |
|
131 | |||
132 | for key in list(inputObj.__dict__.keys()): |
|
132 | for key in list(inputObj.__dict__.keys()): | |
133 |
|
133 | |||
134 | attribute = inputObj.__dict__[key] |
|
134 | attribute = inputObj.__dict__[key] | |
135 |
|
135 | |||
136 | # If this attribute is a tuple or list |
|
136 | # If this attribute is a tuple or list | |
137 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
137 | if type(inputObj.__dict__[key]) in (tuple, list): | |
138 | self.__dict__[key] = attribute[:] |
|
138 | self.__dict__[key] = attribute[:] | |
139 | continue |
|
139 | continue | |
140 |
|
140 | |||
141 | # If this attribute is another object or instance |
|
141 | # If this attribute is another object or instance | |
142 | if hasattr(attribute, '__dict__'): |
|
142 | if hasattr(attribute, '__dict__'): | |
143 | self.__dict__[key] = attribute.copy() |
|
143 | self.__dict__[key] = attribute.copy() | |
144 | continue |
|
144 | continue | |
145 |
|
145 | |||
146 | self.__dict__[key] = inputObj.__dict__[key] |
|
146 | self.__dict__[key] = inputObj.__dict__[key] | |
147 |
|
147 | |||
148 | def deepcopy(self): |
|
148 | def deepcopy(self): | |
149 |
|
149 | |||
150 | return copy.deepcopy(self) |
|
150 | return copy.deepcopy(self) | |
151 |
|
151 | |||
152 | def isEmpty(self): |
|
152 | def isEmpty(self): | |
153 |
|
153 | |||
154 | return self.flagNoData |
|
154 | return self.flagNoData | |
155 |
|
155 | |||
156 | def isReady(self): |
|
156 | def isReady(self): | |
157 |
|
157 | |||
158 | return not self.flagNoData |
|
158 | return not self.flagNoData | |
159 |
|
159 | |||
160 |
|
160 | |||
161 | class JROData(GenericData): |
|
161 | class JROData(GenericData): | |
162 |
|
162 | |||
163 | useInputBuffer = False |
|
163 | useInputBuffer = False | |
164 | buffer_empty = True |
|
164 | buffer_empty = True | |
165 |
|
165 | |||
166 | systemHeaderObj = SystemHeader() |
|
166 | systemHeaderObj = SystemHeader() | |
167 | radarControllerHeaderObj = RadarControllerHeader() |
|
167 | radarControllerHeaderObj = RadarControllerHeader() | |
168 | type = None |
|
168 | type = None | |
169 | datatype = None # dtype but in string |
|
169 | datatype = None # dtype but in string | |
170 | nProfiles = None |
|
170 | nProfiles = None | |
171 | heightList = None |
|
171 | heightList = None | |
172 | channelList = None |
|
172 | channelList = None | |
173 | flagDiscontinuousBlock = False |
|
173 | flagDiscontinuousBlock = False | |
174 | useLocalTime = False |
|
174 | useLocalTime = False | |
175 | utctime = None |
|
175 | utctime = None | |
176 | timeZone = None |
|
176 | timeZone = None | |
177 | dstFlag = None |
|
177 | dstFlag = None | |
178 | errorCount = None |
|
178 | errorCount = None | |
179 | blocksize = None |
|
179 | blocksize = None | |
180 | flagDecodeData = False # asumo q la data no esta decodificada |
|
180 | flagDecodeData = False # asumo q la data no esta decodificada | |
181 | flagDeflipData = False # asumo q la data no esta sin flip |
|
181 | flagDeflipData = False # asumo q la data no esta sin flip | |
182 | flagShiftFFT = False |
|
182 | flagShiftFFT = False | |
183 | nCohInt = None |
|
183 | nCohInt = None | |
184 | windowOfFilter = 1 |
|
184 | windowOfFilter = 1 | |
185 | C = 3e8 |
|
185 | C = 3e8 | |
186 | frequency = 49.92e6 |
|
186 | frequency = 49.92e6 | |
187 | realtime = False |
|
187 | realtime = False | |
188 | beacon_heiIndexList = None |
|
188 | beacon_heiIndexList = None | |
189 | last_block = None |
|
189 | last_block = None | |
190 | blocknow = None |
|
190 | blocknow = None | |
191 | azimuth = None |
|
191 | azimuth = None | |
192 | zenith = None |
|
192 | zenith = None | |
193 |
|
193 | |||
194 | profileIndex = None |
|
194 | profileIndex = None | |
195 | error = None |
|
195 | error = None | |
196 | data = None |
|
196 | data = None | |
197 | nmodes = None |
|
197 | nmodes = None | |
198 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
198 | metadata_list = ['heightList', 'timeZone', 'type'] | |
199 | codeList = [] |
|
199 | codeList = [] | |
200 | azimuthList = [] |
|
200 | azimuthList = [] | |
201 | elevationList = [] |
|
201 | elevationList = [] | |
202 | last_noise = None |
|
202 | last_noise = None | |
203 | __ipp = None |
|
203 | __ipp = None | |
204 | __ippSeconds = None |
|
204 | __ippSeconds = None | |
205 | sampled_heightsFFT = None |
|
205 | sampled_heightsFFT = None | |
206 | pulseLength_TxA = None |
|
206 | pulseLength_TxA = None | |
207 | deltaHeight = None |
|
207 | deltaHeight = None | |
208 | __code = None |
|
208 | __code = None | |
209 | __nCode = None |
|
209 | __nCode = None | |
210 | __nBaud = None |
|
210 | __nBaud = None | |
211 | unitsDescription = "The units of the parameters are according to the International System of units (Seconds, Meter, Hertz, ...), except \ |
|
211 | unitsDescription = "The units of the parameters are according to the International System of units (Seconds, Meter, Hertz, ...), except \ | |
212 | the parameters related to distances such as heightList, or heightResolution wich are in Km" |
|
212 | the parameters related to distances such as heightList, or heightResolution wich are in Km" | |
213 |
|
213 | |||
214 |
|
214 | |||
215 | def __str__(self): |
|
215 | def __str__(self): | |
216 |
|
216 | |||
217 | return '{} - {}'.format(self.type, self.datatime()) |
|
217 | return '{} - {}'.format(self.type, self.datatime()) | |
218 |
|
218 | |||
219 | def getNoise(self): |
|
219 | def getNoise(self): | |
220 |
|
220 | |||
221 | raise NotImplementedError |
|
221 | raise NotImplementedError | |
222 |
|
222 | |||
223 | @property |
|
223 | @property | |
224 | def nChannels(self): |
|
224 | def nChannels(self): | |
225 |
|
225 | |||
226 | return len(self.channelList) |
|
226 | return len(self.channelList) | |
227 |
|
227 | |||
228 | @property |
|
228 | @property | |
229 | def channelIndexList(self): |
|
229 | def channelIndexList(self): | |
230 |
|
230 | |||
231 | return list(range(self.nChannels)) |
|
231 | return list(range(self.nChannels)) | |
232 |
|
232 | |||
233 | @property |
|
233 | @property | |
234 | def nHeights(self): |
|
234 | def nHeights(self): | |
235 |
|
235 | |||
236 | return len(self.heightList) |
|
236 | return len(self.heightList) | |
237 |
|
237 | |||
238 | def getDeltaH(self): |
|
238 | def getDeltaH(self): | |
239 |
|
239 | |||
240 | return self.heightList[1] - self.heightList[0] |
|
240 | return self.heightList[1] - self.heightList[0] | |
241 |
|
241 | |||
242 | @property |
|
242 | @property | |
243 | def ltctime(self): |
|
243 | def ltctime(self): | |
244 |
|
244 | |||
245 | if self.useLocalTime: |
|
245 | if self.useLocalTime: | |
246 | return self.utctime - self.timeZone * 60 |
|
246 | return self.utctime - self.timeZone * 60 | |
247 |
|
247 | |||
248 | return self.utctime |
|
248 | return self.utctime | |
249 |
|
249 | |||
250 | @property |
|
250 | @property | |
251 | def datatime(self): |
|
251 | def datatime(self): | |
252 |
|
252 | |||
253 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
253 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) | |
254 | return datatimeValue |
|
254 | return datatimeValue | |
255 |
|
255 | |||
256 | def getTimeRange(self): |
|
256 | def getTimeRange(self): | |
257 |
|
257 | |||
258 | datatime = [] |
|
258 | datatime = [] | |
259 |
|
259 | |||
260 | datatime.append(self.ltctime) |
|
260 | datatime.append(self.ltctime) | |
261 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
261 | datatime.append(self.ltctime + self.timeInterval + 1) | |
262 |
|
262 | |||
263 | datatime = numpy.array(datatime) |
|
263 | datatime = numpy.array(datatime) | |
264 |
|
264 | |||
265 | return datatime |
|
265 | return datatime | |
266 |
|
266 | |||
267 | def getFmaxTimeResponse(self): |
|
267 | def getFmaxTimeResponse(self): | |
268 |
|
268 | |||
269 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
269 | period = (10**-6) * self.getDeltaH() / (0.15) | |
270 |
|
270 | |||
271 | PRF = 1. / (period * self.nCohInt) |
|
271 | PRF = 1. / (period * self.nCohInt) | |
272 |
|
272 | |||
273 | fmax = PRF |
|
273 | fmax = PRF | |
274 |
|
274 | |||
275 | return fmax |
|
275 | return fmax | |
276 |
|
276 | |||
277 | def getFmax(self): |
|
277 | def getFmax(self): | |
278 | PRF = 1. / (self.__ippSeconds * self.nCohInt) |
|
278 | PRF = 1. / (self.__ippSeconds * self.nCohInt) | |
279 |
|
279 | |||
280 | fmax = PRF |
|
280 | fmax = PRF | |
281 | return fmax |
|
281 | return fmax | |
282 |
|
282 | |||
283 | def getVmax(self): |
|
283 | def getVmax(self): | |
284 |
|
284 | |||
285 | _lambda = self.C / self.frequency |
|
285 | _lambda = self.C / self.frequency | |
286 |
|
286 | |||
287 | vmax = self.getFmax() * _lambda / 2 |
|
287 | vmax = self.getFmax() * _lambda / 2 | |
288 |
|
288 | |||
289 | return vmax |
|
289 | return vmax | |
290 |
|
290 | |||
291 | @property |
|
291 | @property | |
292 | def ippSeconds(self): |
|
292 | def ippSeconds(self): | |
293 | ''' |
|
293 | ''' | |
294 | ''' |
|
294 | ''' | |
295 | #return self.radarControllerHeaderObj.ippSeconds |
|
295 | #return self.radarControllerHeaderObj.ippSeconds | |
296 | return self.__ippSeconds |
|
296 | return self.__ippSeconds | |
297 |
|
297 | |||
298 | @ippSeconds.setter |
|
298 | @ippSeconds.setter | |
299 | def ippSeconds(self, ippSeconds): |
|
299 | def ippSeconds(self, ippSeconds): | |
300 | ''' |
|
300 | ''' | |
301 | ''' |
|
301 | ''' | |
302 | #self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
302 | #self.radarControllerHeaderObj.ippSeconds = ippSeconds | |
303 | self.__ippSeconds = ippSeconds |
|
303 | self.__ippSeconds = ippSeconds | |
304 | self.__ipp = ippSeconds*SPEED_OF_LIGHT/2000.0 |
|
304 | self.__ipp = ippSeconds*SPEED_OF_LIGHT/2000.0 | |
305 |
|
305 | |||
306 |
|
306 | |||
307 | @property |
|
307 | @property | |
308 | def code(self): |
|
308 | def code(self): | |
309 | ''' |
|
309 | ''' | |
310 | ''' |
|
310 | ''' | |
311 | return self.__code |
|
311 | return self.__code | |
312 |
|
312 | |||
313 | @code.setter |
|
313 | @code.setter | |
314 | def code(self, code): |
|
314 | def code(self, code): | |
315 | ''' |
|
315 | ''' | |
316 | ''' |
|
316 | ''' | |
317 | self.__code = code |
|
317 | self.__code = code | |
318 | # |
|
318 | # | |
319 | @property |
|
319 | @property | |
320 | def nCode(self): |
|
320 | def nCode(self): | |
321 | ''' |
|
321 | ''' | |
322 | ''' |
|
322 | ''' | |
323 | return self.__nCode |
|
323 | return self.__nCode | |
324 |
|
324 | |||
325 | @nCode.setter |
|
325 | @nCode.setter | |
326 | def nCode(self, ncode): |
|
326 | def nCode(self, ncode): | |
327 | ''' |
|
327 | ''' | |
328 | ''' |
|
328 | ''' | |
329 | self.__nCode = ncode |
|
329 | self.__nCode = ncode | |
330 |
|
330 | |||
331 | @property |
|
331 | @property | |
332 | def nBaud(self): |
|
332 | def nBaud(self): | |
333 | ''' |
|
333 | ''' | |
334 | ''' |
|
334 | ''' | |
335 | return self.__nBaud |
|
335 | return self.__nBaud | |
336 |
|
336 | |||
337 | @nBaud.setter |
|
337 | @nBaud.setter | |
338 | def nBaud(self, nbaud): |
|
338 | def nBaud(self, nbaud): | |
339 | ''' |
|
339 | ''' | |
340 | ''' |
|
340 | ''' | |
341 | self.__nBaud = nbaud |
|
341 | self.__nBaud = nbaud | |
342 |
|
342 | |||
343 | @property |
|
343 | @property | |
344 | def ipp(self): |
|
344 | def ipp(self): | |
345 | ''' |
|
345 | ''' | |
346 | ''' |
|
346 | ''' | |
347 | return self.__ipp |
|
347 | return self.__ipp | |
348 | #return self.radarControllerHeaderObj.ipp |
|
348 | #return self.radarControllerHeaderObj.ipp | |
349 |
|
349 | |||
350 | @ipp.setter |
|
350 | @ipp.setter | |
351 | def ipp(self, ipp): |
|
351 | def ipp(self, ipp): | |
352 | ''' |
|
352 | ''' | |
353 | ''' |
|
353 | ''' | |
354 | self.__ipp = ipp |
|
354 | self.__ipp = ipp | |
355 | #self.radarControllerHeaderObj.ipp = ipp |
|
355 | #self.radarControllerHeaderObj.ipp = ipp | |
356 |
|
356 | |||
357 | @property |
|
357 | @property | |
358 | def metadata(self): |
|
358 | def metadata(self): | |
359 | ''' |
|
359 | ''' | |
360 | ''' |
|
360 | ''' | |
361 |
|
361 | |||
362 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
362 | return {attr: getattr(self, attr) for attr in self.metadata_list} | |
363 |
|
363 | |||
364 |
|
364 | |||
365 | class Voltage(JROData): |
|
365 | class Voltage(JROData): | |
366 |
|
366 | |||
367 | dataPP_POW = None |
|
367 | dataPP_POW = None | |
368 | dataPP_DOP = None |
|
368 | dataPP_DOP = None | |
369 | dataPP_WIDTH = None |
|
369 | dataPP_WIDTH = None | |
370 | dataPP_SNR = None |
|
370 | dataPP_SNR = None | |
371 | flagProfilesByRange = False |
|
371 | flagProfilesByRange = False | |
372 | nProfilesByRange = None |
|
372 | nProfilesByRange = None | |
373 |
|
373 | |||
374 | def __init__(self): |
|
374 | def __init__(self): | |
375 | ''' |
|
375 | ''' | |
376 | Constructor |
|
376 | Constructor | |
377 | ''' |
|
377 | ''' | |
378 |
|
378 | |||
379 | self.useLocalTime = True |
|
379 | self.useLocalTime = True | |
380 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
380 | self.radarControllerHeaderObj = RadarControllerHeader() | |
381 | self.systemHeaderObj = SystemHeader() |
|
381 | self.systemHeaderObj = SystemHeader() | |
382 | self.processingHeaderObj = ProcessingHeader() |
|
382 | self.processingHeaderObj = ProcessingHeader() | |
383 | self.type = "Voltage" |
|
383 | self.type = "Voltage" | |
384 | self.data = None |
|
384 | self.data = None | |
385 | self.nProfiles = None |
|
385 | self.nProfiles = None | |
386 | self.heightList = None |
|
386 | self.heightList = None | |
387 | self.channelList = None |
|
387 | self.channelList = None | |
388 | self.flagNoData = True |
|
388 | self.flagNoData = True | |
389 | self.flagDiscontinuousBlock = False |
|
389 | self.flagDiscontinuousBlock = False | |
390 | self.utctime = None |
|
390 | self.utctime = None | |
391 | self.timeZone = 0 |
|
391 | self.timeZone = 0 | |
392 | self.dstFlag = None |
|
392 | self.dstFlag = None | |
393 | self.errorCount = None |
|
393 | self.errorCount = None | |
394 | self.nCohInt = None |
|
394 | self.nCohInt = None | |
395 | self.blocksize = None |
|
395 | self.blocksize = None | |
396 | self.flagCohInt = False |
|
396 | self.flagCohInt = False | |
397 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
397 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
398 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
398 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
399 | self.flagShiftFFT = False |
|
399 | self.flagShiftFFT = False | |
400 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
400 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil | |
401 | self.profileIndex = 0 |
|
401 | self.profileIndex = 0 | |
402 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
402 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', | |
403 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
403 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] | |
404 |
|
404 | |||
405 | def getNoisebyHildebrand(self, channel=None, ymin_index=None, ymax_index=None): |
|
405 | def getNoisebyHildebrand(self, channel=None, ymin_index=None, ymax_index=None): | |
406 | """ |
|
406 | """ | |
407 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
407 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
408 |
|
408 | |||
409 | Return: |
|
409 | Return: | |
410 | noiselevel |
|
410 | noiselevel | |
411 | """ |
|
411 | """ | |
412 |
|
412 | |||
413 | if channel != None: |
|
413 | if channel != None: | |
414 | data = self.data[channel,ymin_index:ymax_index] |
|
414 | data = self.data[channel,ymin_index:ymax_index] | |
415 | nChannels = 1 |
|
415 | nChannels = 1 | |
416 | else: |
|
416 | else: | |
417 | data = self.data[:,ymin_index:ymax_index] |
|
417 | data = self.data[:,ymin_index:ymax_index] | |
418 | nChannels = self.nChannels |
|
418 | nChannels = self.nChannels | |
419 |
|
419 | |||
420 | noise = numpy.zeros(nChannels) |
|
420 | noise = numpy.zeros(nChannels) | |
421 | power = data * numpy.conjugate(data) |
|
421 | power = data * numpy.conjugate(data) | |
422 |
|
422 | |||
423 | for thisChannel in range(nChannels): |
|
423 | for thisChannel in range(nChannels): | |
424 | if nChannels == 1: |
|
424 | if nChannels == 1: | |
425 | daux = power[:].real |
|
425 | daux = power[:].real | |
426 | else: |
|
426 | else: | |
427 | daux = power[thisChannel, :].real |
|
427 | daux = power[thisChannel, :].real | |
428 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
428 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) | |
429 |
|
429 | |||
430 | return noise |
|
430 | return noise | |
431 |
|
431 | |||
432 | def getNoise(self, type=1, channel=None,ymin_index=None, ymax_index=None): |
|
432 | def getNoise(self, type=1, channel=None,ymin_index=None, ymax_index=None): | |
433 |
|
433 | |||
434 | if type == 1: |
|
434 | if type == 1: | |
435 | noise = self.getNoisebyHildebrand(channel,ymin_index, ymax_index) |
|
435 | noise = self.getNoisebyHildebrand(channel,ymin_index, ymax_index) | |
436 |
|
436 | |||
437 | return noise |
|
437 | return noise | |
438 |
|
438 | |||
439 | def getPower(self, channel=None): |
|
439 | def getPower(self, channel=None): | |
440 |
|
440 | |||
441 | if channel != None: |
|
441 | if channel != None: | |
442 | data = self.data[channel] |
|
442 | data = self.data[channel] | |
443 | else: |
|
443 | else: | |
444 | data = self.data |
|
444 | data = self.data | |
445 |
|
445 | |||
446 | power = data * numpy.conjugate(data) |
|
446 | power = data * numpy.conjugate(data) | |
447 | powerdB = 10 * numpy.log10(power.real) |
|
447 | powerdB = 10 * numpy.log10(power.real) | |
448 | powerdB = numpy.squeeze(powerdB) |
|
448 | powerdB = numpy.squeeze(powerdB) | |
449 |
|
449 | |||
450 | return powerdB |
|
450 | return powerdB | |
451 |
|
451 | |||
452 | @property |
|
452 | @property | |
453 | def timeInterval(self): |
|
453 | def timeInterval(self): | |
454 |
|
454 | |||
455 | return self.ippSeconds * self.nCohInt |
|
455 | return self.ippSeconds * self.nCohInt | |
456 |
|
456 | |||
457 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
457 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
458 |
|
458 | |||
459 |
|
459 | |||
460 | class Spectra(JROData): |
|
460 | class Spectra(JROData): | |
461 |
|
461 | |||
462 | data_outlier = None |
|
462 | data_outlier = None | |
463 | flagProfilesByRange = False |
|
463 | flagProfilesByRange = False | |
464 | nProfilesByRange = None |
|
464 | nProfilesByRange = None | |
465 |
|
465 | |||
466 | def __init__(self): |
|
466 | def __init__(self): | |
467 | ''' |
|
467 | ''' | |
468 | Constructor |
|
468 | Constructor | |
469 | ''' |
|
469 | ''' | |
470 |
|
470 | |||
471 | self.data_dc = None |
|
471 | self.data_dc = None | |
472 | self.data_spc = None |
|
472 | self.data_spc = None | |
473 | self.data_cspc = None |
|
473 | self.data_cspc = None | |
474 | self.useLocalTime = True |
|
474 | self.useLocalTime = True | |
475 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
475 | self.radarControllerHeaderObj = RadarControllerHeader() | |
476 | self.systemHeaderObj = SystemHeader() |
|
476 | self.systemHeaderObj = SystemHeader() | |
477 | self.processingHeaderObj = ProcessingHeader() |
|
477 | self.processingHeaderObj = ProcessingHeader() | |
478 | self.type = "Spectra" |
|
478 | self.type = "Spectra" | |
479 | self.timeZone = 0 |
|
479 | self.timeZone = 0 | |
480 | self.nProfiles = None |
|
480 | self.nProfiles = None | |
481 | self.heightList = None |
|
481 | self.heightList = None | |
482 | self.channelList = None |
|
482 | self.channelList = None | |
483 | self.pairsList = None |
|
483 | self.pairsList = None | |
484 | self.flagNoData = True |
|
484 | self.flagNoData = True | |
485 | self.flagDiscontinuousBlock = False |
|
485 | self.flagDiscontinuousBlock = False | |
486 | self.utctime = None |
|
486 | self.utctime = None | |
487 | self.nCohInt = None |
|
487 | self.nCohInt = None | |
488 | self.nIncohInt = None |
|
488 | self.nIncohInt = None | |
489 | self.blocksize = None |
|
489 | self.blocksize = None | |
490 | self.nFFTPoints = None |
|
490 | self.nFFTPoints = None | |
491 | self.wavelength = None |
|
491 | self.wavelength = None | |
492 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
492 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
493 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
493 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
494 | self.flagShiftFFT = False |
|
494 | self.flagShiftFFT = False | |
495 | self.ippFactor = 1 |
|
495 | self.ippFactor = 1 | |
496 | self.beacon_heiIndexList = [] |
|
496 | self.beacon_heiIndexList = [] | |
497 | self.noise_estimation = None |
|
497 | self.noise_estimation = None | |
498 | self.codeList = [] |
|
498 | self.codeList = [] | |
499 | self.azimuthList = [] |
|
499 | self.azimuthList = [] | |
500 | self.elevationList = [] |
|
500 | self.elevationList = [] | |
501 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
501 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', | |
502 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] |
|
502 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] | |
503 |
|
503 | |||
504 |
|
504 | |||
505 |
|
505 | |||
506 |
|
506 | |||
507 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
507 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
508 | """ |
|
508 | """ | |
509 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
509 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
510 |
|
510 | |||
511 | Return: |
|
511 | Return: | |
512 | noiselevel |
|
512 | noiselevel | |
513 | """ |
|
513 | """ | |
514 | # if hasattr(self.nIncohInt, "__len__"): #nIncohInt is a matrix |
|
514 | # if hasattr(self.nIncohInt, "__len__"): #nIncohInt is a matrix | |
515 | # |
|
515 | # | |
516 | # heis = self.data_spc.shape[2] |
|
516 | # heis = self.data_spc.shape[2] | |
517 | # |
|
517 | # | |
518 | # noise = numpy.zeros((self.nChannels, heis)) |
|
518 | # noise = numpy.zeros((self.nChannels, heis)) | |
519 | # for hei in range(heis): |
|
519 | # for hei in range(heis): | |
520 | # for channel in range(self.nChannels): |
|
520 | # for channel in range(self.nChannels): | |
521 | # daux = self.data_spc[channel, xmin_index:xmax_index, hei] |
|
521 | # daux = self.data_spc[channel, xmin_index:xmax_index, hei] | |
522 | # |
|
522 | # | |
523 | # noise[channel,hei] = hildebrand_sekhon(daux, self.nIncohInt[channel,hei]) |
|
523 | # noise[channel,hei] = hildebrand_sekhon(daux, self.nIncohInt[channel,hei]) | |
524 | # |
|
524 | # | |
525 | # else: |
|
525 | # else: | |
526 | # noise = numpy.zeros(self.nChannels) |
|
526 | # noise = numpy.zeros(self.nChannels) | |
527 | # for channel in range(self.nChannels): |
|
527 | # for channel in range(self.nChannels): | |
528 | # daux = self.data_spc[channel,xmin_index:xmax_index, ymin_index:ymax_index] |
|
528 | # daux = self.data_spc[channel,xmin_index:xmax_index, ymin_index:ymax_index] | |
529 | # |
|
529 | # | |
530 | # noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
530 | # noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) | |
531 | noise = numpy.zeros(self.nChannels) |
|
531 | noise = numpy.zeros(self.nChannels) | |
532 |
|
532 | |||
533 | for channel in range(self.nChannels): |
|
533 | for channel in range(self.nChannels): | |
534 | daux = self.data_spc[channel,xmin_index:xmax_index, ymin_index:ymax_index] |
|
534 | daux = self.data_spc[channel,xmin_index:xmax_index, ymin_index:ymax_index] | |
535 |
|
535 | |||
536 | noise[channel] = hildebrand_sekhon(daux, self.max_nIncohInt[channel]) |
|
536 | noise[channel] = hildebrand_sekhon(daux, self.max_nIncohInt[channel]) | |
537 |
|
537 | |||
538 | return noise |
|
538 | return noise | |
539 |
|
539 | |||
540 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
540 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
541 |
|
541 | |||
542 | if self.noise_estimation is not None: |
|
542 | if self.noise_estimation is not None: | |
543 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
543 | # this was estimated by getNoise Operation defined in jroproc_spectra.py | |
544 | return self.noise_estimation |
|
544 | return self.noise_estimation | |
545 | else: |
|
545 | else: | |
546 | noise = self.getNoisebyHildebrand( |
|
546 | noise = self.getNoisebyHildebrand( | |
547 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
547 | xmin_index, xmax_index, ymin_index, ymax_index) | |
548 | return noise |
|
548 | return noise | |
549 |
|
549 | |||
550 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
550 | def getFreqRangeTimeResponse(self, extrapoints=0): | |
551 |
|
551 | |||
552 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
552 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) | |
553 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
553 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 | |
554 |
|
554 | |||
555 | return freqrange |
|
555 | return freqrange | |
556 |
|
556 | |||
557 | def getAcfRange(self, extrapoints=0): |
|
557 | def getAcfRange(self, extrapoints=0): | |
558 |
|
558 | |||
559 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
559 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) | |
560 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
560 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 | |
561 |
|
561 | |||
562 | return freqrange |
|
562 | return freqrange | |
563 |
|
563 | |||
564 | def getFreqRange(self, extrapoints=0): |
|
564 | def getFreqRange(self, extrapoints=0): | |
565 |
|
565 | |||
566 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
566 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) | |
567 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
567 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 | |
568 |
|
568 | |||
569 | return freqrange |
|
569 | return freqrange | |
570 |
|
570 | |||
571 | def getVelRange(self, extrapoints=0): |
|
571 | def getVelRange(self, extrapoints=0): | |
572 |
|
572 | |||
573 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
573 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) | |
574 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
574 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) | |
575 |
|
575 | |||
576 | if self.nmodes: |
|
576 | if self.nmodes: | |
577 | return velrange/self.nmodes |
|
577 | return velrange/self.nmodes | |
578 | else: |
|
578 | else: | |
579 | return velrange |
|
579 | return velrange | |
580 |
|
580 | |||
581 | @property |
|
581 | @property | |
582 | def nPairs(self): |
|
582 | def nPairs(self): | |
583 |
|
583 | |||
584 | return len(self.pairsList) |
|
584 | return len(self.pairsList) | |
585 |
|
585 | |||
586 | @property |
|
586 | @property | |
587 | def pairsIndexList(self): |
|
587 | def pairsIndexList(self): | |
588 |
|
588 | |||
589 | return list(range(self.nPairs)) |
|
589 | return list(range(self.nPairs)) | |
590 |
|
590 | |||
591 | @property |
|
591 | @property | |
592 | def normFactor(self): |
|
592 | def normFactor(self): | |
593 |
|
593 | |||
594 | pwcode = 1 |
|
594 | pwcode = 1 | |
595 | if self.flagDecodeData: |
|
595 | if self.flagDecodeData: | |
596 | pwcode = numpy.sum(self.code[0]**2) |
|
596 | pwcode = numpy.sum(self.code[0]**2) | |
597 | #print(self.flagDecodeData, pwcode) |
|
597 | #print(self.flagDecodeData, pwcode) | |
598 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
598 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter | |
599 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
599 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter | |
600 | if self.flagProfilesByRange: |
|
600 | if self.flagProfilesByRange: | |
601 | normFactor *= (self.nProfilesByRange/self.nProfilesByRange.max()) |
|
601 | normFactor *= (self.nProfilesByRange/self.nProfilesByRange.max()) | |
602 |
|
602 | #print("normFactor: ", normFactor) | ||
603 | return normFactor |
|
603 | return normFactor | |
604 |
|
604 | |||
605 | @property |
|
605 | @property | |
606 | def flag_cspc(self): |
|
606 | def flag_cspc(self): | |
607 |
|
607 | |||
608 | if self.data_cspc is None: |
|
608 | if self.data_cspc is None: | |
609 | return True |
|
609 | return True | |
610 |
|
610 | |||
611 | return False |
|
611 | return False | |
612 |
|
612 | |||
613 | @property |
|
613 | @property | |
614 | def flag_dc(self): |
|
614 | def flag_dc(self): | |
615 |
|
615 | |||
616 | if self.data_dc is None: |
|
616 | if self.data_dc is None: | |
617 | return True |
|
617 | return True | |
618 |
|
618 | |||
619 | return False |
|
619 | return False | |
620 |
|
620 | |||
621 | @property |
|
621 | @property | |
622 | def timeInterval(self): |
|
622 | def timeInterval(self): | |
623 |
|
623 | |||
624 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
624 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor | |
625 | if self.nmodes: |
|
625 | if self.nmodes: | |
626 | return self.nmodes*timeInterval |
|
626 | return self.nmodes*timeInterval | |
627 | else: |
|
627 | else: | |
628 | return timeInterval |
|
628 | return timeInterval | |
629 |
|
629 | |||
630 | def getPower(self): |
|
630 | def getPower(self): | |
631 |
|
631 | |||
632 | factor = self.normFactor |
|
632 | factor = self.normFactor | |
633 | power = numpy.zeros( (self.nChannels,self.nHeights) ) |
|
633 | power = numpy.zeros( (self.nChannels,self.nHeights) ) | |
634 | for ch in range(self.nChannels): |
|
634 | for ch in range(self.nChannels): | |
635 | z = None |
|
635 | z = None | |
636 | if hasattr(factor,'shape'): |
|
636 | if hasattr(factor,'shape'): | |
637 | if factor.ndim > 1: |
|
637 | if factor.ndim > 1: | |
638 | z = self.data_spc[ch]/factor[ch] |
|
638 | z = self.data_spc[ch]/factor[ch] | |
639 | else: |
|
639 | else: | |
640 | z = self.data_spc[ch]/factor |
|
640 | z = self.data_spc[ch]/factor | |
641 | else: |
|
641 | else: | |
642 | z = self.data_spc[ch]/factor |
|
642 | z = self.data_spc[ch]/factor | |
643 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
643 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
644 | avg = numpy.average(z, axis=0) |
|
644 | avg = numpy.average(z, axis=0) | |
645 | power[ch] = 10 * numpy.log10(avg) |
|
645 | power[ch] = 10 * numpy.log10(avg) | |
646 | return power |
|
646 | return power | |
647 |
|
647 | |||
648 | @property |
|
648 | @property | |
649 | def max_nIncohInt(self): |
|
649 | def max_nIncohInt(self): | |
650 |
|
650 | |||
651 | ints = numpy.zeros(self.nChannels) |
|
651 | ints = numpy.zeros(self.nChannels) | |
652 | for ch in range(self.nChannels): |
|
652 | for ch in range(self.nChannels): | |
653 | if hasattr(self.nIncohInt,'shape'): |
|
653 | if hasattr(self.nIncohInt,'shape'): | |
654 | if self.nIncohInt.ndim > 1: |
|
654 | if self.nIncohInt.ndim > 1: | |
655 | ints[ch,] = self.nIncohInt[ch].max() |
|
655 | ints[ch,] = self.nIncohInt[ch].max() | |
656 | else: |
|
656 | else: | |
657 | ints[ch,] = self.nIncohInt |
|
657 | ints[ch,] = self.nIncohInt | |
658 | self.nIncohInt = int(self.nIncohInt) |
|
658 | self.nIncohInt = int(self.nIncohInt) | |
659 | else: |
|
659 | else: | |
660 | ints[ch,] = self.nIncohInt |
|
660 | ints[ch,] = self.nIncohInt | |
661 |
|
661 | |||
662 | return ints |
|
662 | return ints | |
663 |
|
663 | |||
664 |
|
664 | |||
665 | def getCoherence(self, pairsList=None, phase=False): |
|
665 | def getCoherence(self, pairsList=None, phase=False): | |
666 |
|
666 | |||
667 | z = [] |
|
667 | z = [] | |
668 | if pairsList is None: |
|
668 | if pairsList is None: | |
669 | pairsIndexList = self.pairsIndexList |
|
669 | pairsIndexList = self.pairsIndexList | |
670 | else: |
|
670 | else: | |
671 | pairsIndexList = [] |
|
671 | pairsIndexList = [] | |
672 | for pair in pairsList: |
|
672 | for pair in pairsList: | |
673 | if pair not in self.pairsList: |
|
673 | if pair not in self.pairsList: | |
674 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
674 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( | |
675 | pair)) |
|
675 | pair)) | |
676 | pairsIndexList.append(self.pairsList.index(pair)) |
|
676 | pairsIndexList.append(self.pairsList.index(pair)) | |
677 | for i in range(len(pairsIndexList)): |
|
677 | for i in range(len(pairsIndexList)): | |
678 | pair = self.pairsList[pairsIndexList[i]] |
|
678 | pair = self.pairsList[pairsIndexList[i]] | |
679 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
679 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) | |
680 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
680 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) | |
681 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
681 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) | |
682 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
682 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) | |
683 | if phase: |
|
683 | if phase: | |
684 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
684 | data = numpy.arctan2(avgcoherenceComplex.imag, | |
685 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
685 | avgcoherenceComplex.real) * 180 / numpy.pi | |
686 | else: |
|
686 | else: | |
687 | data = numpy.abs(avgcoherenceComplex) |
|
687 | data = numpy.abs(avgcoherenceComplex) | |
688 |
|
688 | |||
689 | z.append(data) |
|
689 | z.append(data) | |
690 |
|
690 | |||
691 | return numpy.array(z) |
|
691 | return numpy.array(z) | |
692 |
|
692 | |||
693 | def setValue(self, value): |
|
693 | def setValue(self, value): | |
694 |
|
694 | |||
695 | print("This property should not be initialized", value) |
|
695 | print("This property should not be initialized", value) | |
696 |
|
696 | |||
697 | return |
|
697 | return | |
698 |
|
698 | |||
699 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
699 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") | |
700 |
|
700 | |||
701 |
|
701 | |||
702 | class SpectraHeis(Spectra): |
|
702 | class SpectraHeis(Spectra): | |
703 |
|
703 | |||
704 | def __init__(self): |
|
704 | def __init__(self): | |
705 |
|
705 | |||
706 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
706 | self.radarControllerHeaderObj = RadarControllerHeader() | |
707 | self.systemHeaderObj = SystemHeader() |
|
707 | self.systemHeaderObj = SystemHeader() | |
708 | self.type = "SpectraHeis" |
|
708 | self.type = "SpectraHeis" | |
709 | self.nProfiles = None |
|
709 | self.nProfiles = None | |
710 | self.heightList = None |
|
710 | self.heightList = None | |
711 | self.channelList = None |
|
711 | self.channelList = None | |
712 | self.flagNoData = True |
|
712 | self.flagNoData = True | |
713 | self.flagDiscontinuousBlock = False |
|
713 | self.flagDiscontinuousBlock = False | |
714 | self.utctime = None |
|
714 | self.utctime = None | |
715 | self.blocksize = None |
|
715 | self.blocksize = None | |
716 | self.profileIndex = 0 |
|
716 | self.profileIndex = 0 | |
717 | self.nCohInt = 1 |
|
717 | self.nCohInt = 1 | |
718 | self.nIncohInt = 1 |
|
718 | self.nIncohInt = 1 | |
719 |
|
719 | |||
720 | @property |
|
720 | @property | |
721 | def normFactor(self): |
|
721 | def normFactor(self): | |
722 | pwcode = 1 |
|
722 | pwcode = 1 | |
723 | if self.flagDecodeData: |
|
723 | if self.flagDecodeData: | |
724 | pwcode = numpy.sum(self.code[0]**2) |
|
724 | pwcode = numpy.sum(self.code[0]**2) | |
725 |
|
725 | |||
726 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
726 | normFactor = self.nIncohInt * self.nCohInt * pwcode | |
727 |
|
727 | |||
728 | return normFactor |
|
728 | return normFactor | |
729 |
|
729 | |||
730 | @property |
|
730 | @property | |
731 | def timeInterval(self): |
|
731 | def timeInterval(self): | |
732 |
|
732 | |||
733 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
733 | return self.ippSeconds * self.nCohInt * self.nIncohInt | |
734 |
|
734 | |||
735 |
|
735 | |||
736 | class Fits(JROData): |
|
736 | class Fits(JROData): | |
737 |
|
737 | |||
738 | def __init__(self): |
|
738 | def __init__(self): | |
739 |
|
739 | |||
740 | self.type = "Fits" |
|
740 | self.type = "Fits" | |
741 | self.nProfiles = None |
|
741 | self.nProfiles = None | |
742 | self.heightList = None |
|
742 | self.heightList = None | |
743 | self.channelList = None |
|
743 | self.channelList = None | |
744 | self.flagNoData = True |
|
744 | self.flagNoData = True | |
745 | self.utctime = None |
|
745 | self.utctime = None | |
746 | self.nCohInt = 1 |
|
746 | self.nCohInt = 1 | |
747 | self.nIncohInt = 1 |
|
747 | self.nIncohInt = 1 | |
748 | self.useLocalTime = True |
|
748 | self.useLocalTime = True | |
749 | self.profileIndex = 0 |
|
749 | self.profileIndex = 0 | |
750 | self.timeZone = 0 |
|
750 | self.timeZone = 0 | |
751 |
|
751 | |||
752 | def getTimeRange(self): |
|
752 | def getTimeRange(self): | |
753 |
|
753 | |||
754 | datatime = [] |
|
754 | datatime = [] | |
755 |
|
755 | |||
756 | datatime.append(self.ltctime) |
|
756 | datatime.append(self.ltctime) | |
757 | datatime.append(self.ltctime + self.timeInterval) |
|
757 | datatime.append(self.ltctime + self.timeInterval) | |
758 |
|
758 | |||
759 | datatime = numpy.array(datatime) |
|
759 | datatime = numpy.array(datatime) | |
760 |
|
760 | |||
761 | return datatime |
|
761 | return datatime | |
762 |
|
762 | |||
763 | def getChannelIndexList(self): |
|
763 | def getChannelIndexList(self): | |
764 |
|
764 | |||
765 | return list(range(self.nChannels)) |
|
765 | return list(range(self.nChannels)) | |
766 |
|
766 | |||
767 | def getNoise(self, type=1): |
|
767 | def getNoise(self, type=1): | |
768 |
|
768 | |||
769 |
|
769 | |||
770 | if type == 1: |
|
770 | if type == 1: | |
771 | noise = self.getNoisebyHildebrand() |
|
771 | noise = self.getNoisebyHildebrand() | |
772 |
|
772 | |||
773 | if type == 2: |
|
773 | if type == 2: | |
774 | noise = self.getNoisebySort() |
|
774 | noise = self.getNoisebySort() | |
775 |
|
775 | |||
776 | if type == 3: |
|
776 | if type == 3: | |
777 | noise = self.getNoisebyWindow() |
|
777 | noise = self.getNoisebyWindow() | |
778 |
|
778 | |||
779 | return noise |
|
779 | return noise | |
780 |
|
780 | |||
781 | @property |
|
781 | @property | |
782 | def timeInterval(self): |
|
782 | def timeInterval(self): | |
783 |
|
783 | |||
784 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
784 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt | |
785 |
|
785 | |||
786 | return timeInterval |
|
786 | return timeInterval | |
787 |
|
787 | |||
788 | @property |
|
788 | @property | |
789 | def ippSeconds(self): |
|
789 | def ippSeconds(self): | |
790 | ''' |
|
790 | ''' | |
791 | ''' |
|
791 | ''' | |
792 | return self.ipp_sec |
|
792 | return self.ipp_sec | |
793 |
|
793 | |||
794 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
794 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
795 |
|
795 | |||
796 |
|
796 | |||
797 | class Correlation(JROData): |
|
797 | class Correlation(JROData): | |
798 |
|
798 | |||
799 | def __init__(self): |
|
799 | def __init__(self): | |
800 | ''' |
|
800 | ''' | |
801 | Constructor |
|
801 | Constructor | |
802 | ''' |
|
802 | ''' | |
803 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
803 | self.radarControllerHeaderObj = RadarControllerHeader() | |
804 | self.systemHeaderObj = SystemHeader() |
|
804 | self.systemHeaderObj = SystemHeader() | |
805 | self.type = "Correlation" |
|
805 | self.type = "Correlation" | |
806 | self.data = None |
|
806 | self.data = None | |
807 | self.dtype = None |
|
807 | self.dtype = None | |
808 | self.nProfiles = None |
|
808 | self.nProfiles = None | |
809 | self.heightList = None |
|
809 | self.heightList = None | |
810 | self.channelList = None |
|
810 | self.channelList = None | |
811 | self.flagNoData = True |
|
811 | self.flagNoData = True | |
812 | self.flagDiscontinuousBlock = False |
|
812 | self.flagDiscontinuousBlock = False | |
813 | self.utctime = None |
|
813 | self.utctime = None | |
814 | self.timeZone = 0 |
|
814 | self.timeZone = 0 | |
815 | self.dstFlag = None |
|
815 | self.dstFlag = None | |
816 | self.errorCount = None |
|
816 | self.errorCount = None | |
817 | self.blocksize = None |
|
817 | self.blocksize = None | |
818 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
818 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
819 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
819 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
820 | self.pairsList = None |
|
820 | self.pairsList = None | |
821 | self.nPoints = None |
|
821 | self.nPoints = None | |
822 |
|
822 | |||
823 | def getPairsList(self): |
|
823 | def getPairsList(self): | |
824 |
|
824 | |||
825 | return self.pairsList |
|
825 | return self.pairsList | |
826 |
|
826 | |||
827 | def getNoise(self, mode=2): |
|
827 | def getNoise(self, mode=2): | |
828 |
|
828 | |||
829 | indR = numpy.where(self.lagR == 0)[0][0] |
|
829 | indR = numpy.where(self.lagR == 0)[0][0] | |
830 | indT = numpy.where(self.lagT == 0)[0][0] |
|
830 | indT = numpy.where(self.lagT == 0)[0][0] | |
831 |
|
831 | |||
832 | jspectra0 = self.data_corr[:, :, indR, :] |
|
832 | jspectra0 = self.data_corr[:, :, indR, :] | |
833 | jspectra = copy.copy(jspectra0) |
|
833 | jspectra = copy.copy(jspectra0) | |
834 |
|
834 | |||
835 | num_chan = jspectra.shape[0] |
|
835 | num_chan = jspectra.shape[0] | |
836 | num_hei = jspectra.shape[2] |
|
836 | num_hei = jspectra.shape[2] | |
837 |
|
837 | |||
838 | freq_dc = jspectra.shape[1] / 2 |
|
838 | freq_dc = jspectra.shape[1] / 2 | |
839 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
839 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
840 |
|
840 | |||
841 | if ind_vel[0] < 0: |
|
841 | if ind_vel[0] < 0: | |
842 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
842 | ind_vel[list(range(0, 1))] = ind_vel[list( | |
843 | range(0, 1))] + self.num_prof |
|
843 | range(0, 1))] + self.num_prof | |
844 |
|
844 | |||
845 | if mode == 1: |
|
845 | if mode == 1: | |
846 | jspectra[:, freq_dc, :] = ( |
|
846 | jspectra[:, freq_dc, :] = ( | |
847 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
847 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
848 |
|
848 | |||
849 | if mode == 2: |
|
849 | if mode == 2: | |
850 |
|
850 | |||
851 | vel = numpy.array([-2, -1, 1, 2]) |
|
851 | vel = numpy.array([-2, -1, 1, 2]) | |
852 | xx = numpy.zeros([4, 4]) |
|
852 | xx = numpy.zeros([4, 4]) | |
853 |
|
853 | |||
854 | for fil in range(4): |
|
854 | for fil in range(4): | |
855 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
855 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
856 |
|
856 | |||
857 | xx_inv = numpy.linalg.inv(xx) |
|
857 | xx_inv = numpy.linalg.inv(xx) | |
858 | xx_aux = xx_inv[0, :] |
|
858 | xx_aux = xx_inv[0, :] | |
859 |
|
859 | |||
860 | for ich in range(num_chan): |
|
860 | for ich in range(num_chan): | |
861 | yy = jspectra[ich, ind_vel, :] |
|
861 | yy = jspectra[ich, ind_vel, :] | |
862 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
862 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
863 |
|
863 | |||
864 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
864 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
865 | cjunkid = sum(junkid) |
|
865 | cjunkid = sum(junkid) | |
866 |
|
866 | |||
867 | if cjunkid.any(): |
|
867 | if cjunkid.any(): | |
868 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
868 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
869 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
869 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
870 |
|
870 | |||
871 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
871 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] | |
872 |
|
872 | |||
873 | return noise |
|
873 | return noise | |
874 |
|
874 | |||
875 | @property |
|
875 | @property | |
876 | def timeInterval(self): |
|
876 | def timeInterval(self): | |
877 |
|
877 | |||
878 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
878 | return self.ippSeconds * self.nCohInt * self.nProfiles | |
879 |
|
879 | |||
880 | def splitFunctions(self): |
|
880 | def splitFunctions(self): | |
881 |
|
881 | |||
882 | pairsList = self.pairsList |
|
882 | pairsList = self.pairsList | |
883 | ccf_pairs = [] |
|
883 | ccf_pairs = [] | |
884 | acf_pairs = [] |
|
884 | acf_pairs = [] | |
885 | ccf_ind = [] |
|
885 | ccf_ind = [] | |
886 | acf_ind = [] |
|
886 | acf_ind = [] | |
887 | for l in range(len(pairsList)): |
|
887 | for l in range(len(pairsList)): | |
888 | chan0 = pairsList[l][0] |
|
888 | chan0 = pairsList[l][0] | |
889 | chan1 = pairsList[l][1] |
|
889 | chan1 = pairsList[l][1] | |
890 |
|
890 | |||
891 | # Obteniendo pares de Autocorrelacion |
|
891 | # Obteniendo pares de Autocorrelacion | |
892 | if chan0 == chan1: |
|
892 | if chan0 == chan1: | |
893 | acf_pairs.append(chan0) |
|
893 | acf_pairs.append(chan0) | |
894 | acf_ind.append(l) |
|
894 | acf_ind.append(l) | |
895 | else: |
|
895 | else: | |
896 | ccf_pairs.append(pairsList[l]) |
|
896 | ccf_pairs.append(pairsList[l]) | |
897 | ccf_ind.append(l) |
|
897 | ccf_ind.append(l) | |
898 |
|
898 | |||
899 | data_acf = self.data_cf[acf_ind] |
|
899 | data_acf = self.data_cf[acf_ind] | |
900 | data_ccf = self.data_cf[ccf_ind] |
|
900 | data_ccf = self.data_cf[ccf_ind] | |
901 |
|
901 | |||
902 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
902 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf | |
903 |
|
903 | |||
904 | @property |
|
904 | @property | |
905 | def normFactor(self): |
|
905 | def normFactor(self): | |
906 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
906 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() | |
907 | acf_pairs = numpy.array(acf_pairs) |
|
907 | acf_pairs = numpy.array(acf_pairs) | |
908 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
908 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) | |
909 |
|
909 | |||
910 | for p in range(self.nPairs): |
|
910 | for p in range(self.nPairs): | |
911 | pair = self.pairsList[p] |
|
911 | pair = self.pairsList[p] | |
912 |
|
912 | |||
913 | ch0 = pair[0] |
|
913 | ch0 = pair[0] | |
914 | ch1 = pair[1] |
|
914 | ch1 = pair[1] | |
915 |
|
915 | |||
916 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
916 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) | |
917 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
917 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) | |
918 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
918 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) | |
919 |
|
919 | |||
920 | return normFactor |
|
920 | return normFactor | |
921 |
|
921 | |||
922 |
|
922 | |||
923 | class Parameters(Spectra): |
|
923 | class Parameters(Spectra): | |
924 |
|
924 | |||
925 | radarControllerHeaderTxt=None #header Controller like text |
|
925 | radarControllerHeaderTxt=None #header Controller like text | |
926 | groupList = None # List of Pairs, Groups, etc |
|
926 | groupList = None # List of Pairs, Groups, etc | |
927 | data_param = None # Parameters obtained |
|
927 | data_param = None # Parameters obtained | |
928 | data_pre = None # Data Pre Parametrization |
|
928 | data_pre = None # Data Pre Parametrization | |
929 | data_SNR = None # Signal to Noise Ratio |
|
929 | data_SNR = None # Signal to Noise Ratio | |
930 | data_outlier = None |
|
930 | data_outlier = None | |
931 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
931 | abscissaList = None # Abscissa, can be velocities, lags or time | |
932 | utctimeInit = None # Initial UTC time |
|
932 | utctimeInit = None # Initial UTC time | |
933 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
933 | paramInterval = None # Time interval to calculate Parameters in seconds | |
934 | useLocalTime = True |
|
934 | useLocalTime = True | |
935 | # Fitting |
|
935 | # Fitting | |
936 | data_error = None # Error of the estimation |
|
936 | data_error = None # Error of the estimation | |
937 | constants = None |
|
937 | constants = None | |
938 | library = None |
|
938 | library = None | |
939 | # Output signal |
|
939 | # Output signal | |
940 | outputInterval = None # Time interval to calculate output signal in seconds |
|
940 | outputInterval = None # Time interval to calculate output signal in seconds | |
941 | data_output = None # Out signal |
|
941 | data_output = None # Out signal | |
942 | nAvg = None |
|
942 | nAvg = None | |
943 | noise_estimation = None |
|
943 | noise_estimation = None | |
944 | GauSPC = None # Fit gaussian SPC |
|
944 | GauSPC = None # Fit gaussian SPC | |
945 | txPower = None |
|
945 | txPower = None | |
946 | flagProfilesByRange = False |
|
946 | flagProfilesByRange = False | |
947 | nProfilesByRange = None |
|
947 | nProfilesByRange = None | |
948 |
|
948 | |||
949 | def __init__(self): |
|
949 | def __init__(self): | |
950 | ''' |
|
950 | ''' | |
951 | Constructor |
|
951 | Constructor | |
952 | ''' |
|
952 | ''' | |
953 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
953 | self.radarControllerHeaderObj = RadarControllerHeader() | |
954 | self.systemHeaderObj = SystemHeader() |
|
954 | self.systemHeaderObj = SystemHeader() | |
955 | self.processingHeaderObj = ProcessingHeader() |
|
955 | self.processingHeaderObj = ProcessingHeader() | |
956 | self.type = "Parameters" |
|
956 | self.type = "Parameters" | |
957 | self.timeZone = 0 |
|
957 | self.timeZone = 0 | |
958 |
|
958 | |||
959 | def getTimeRange1(self, interval): |
|
959 | def getTimeRange1(self, interval): | |
960 |
|
960 | |||
961 | datatime = [] |
|
961 | datatime = [] | |
962 |
|
962 | |||
963 | if self.useLocalTime: |
|
963 | if self.useLocalTime: | |
964 | time1 = self.utctimeInit - self.timeZone * 60 |
|
964 | time1 = self.utctimeInit - self.timeZone * 60 | |
965 | else: |
|
965 | else: | |
966 | time1 = self.utctimeInit |
|
966 | time1 = self.utctimeInit | |
967 |
|
967 | |||
968 | datatime.append(time1) |
|
968 | datatime.append(time1) | |
969 | datatime.append(time1 + interval) |
|
969 | datatime.append(time1 + interval) | |
970 | datatime = numpy.array(datatime) |
|
970 | datatime = numpy.array(datatime) | |
971 |
|
971 | |||
972 | return datatime |
|
972 | return datatime | |
973 |
|
973 | |||
974 | @property |
|
974 | @property | |
975 | def timeInterval(self): |
|
975 | def timeInterval(self): | |
976 |
|
976 | |||
977 | if hasattr(self, 'timeInterval1'): |
|
977 | if hasattr(self, 'timeInterval1'): | |
978 | return self.timeInterval1 |
|
978 | return self.timeInterval1 | |
979 | else: |
|
979 | else: | |
980 | return self.paramInterval |
|
980 | return self.paramInterval | |
981 |
|
981 | |||
982 | def setValue(self, value): |
|
982 | def setValue(self, value): | |
983 |
|
983 | |||
984 | print("This property should not be initialized") |
|
984 | print("This property should not be initialized") | |
985 |
|
985 | |||
986 | return |
|
986 | return | |
987 |
|
987 | |||
988 | def getNoise(self): |
|
988 | def getNoise(self): | |
989 |
|
989 | |||
990 | return self.spc_noise |
|
990 | return self.spc_noise | |
991 |
|
991 | |||
992 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
992 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") | |
993 |
|
993 | |||
994 |
|
994 | |||
995 | class PlotterData(object): |
|
995 | class PlotterData(object): | |
996 | ''' |
|
996 | ''' | |
997 | Object to hold data to be plotted |
|
997 | Object to hold data to be plotted | |
998 | ''' |
|
998 | ''' | |
999 |
|
999 | |||
1000 | MAXNUMX = 200 |
|
1000 | MAXNUMX = 200 | |
1001 | MAXNUMY = 200 |
|
1001 | MAXNUMY = 200 | |
1002 |
|
1002 | |||
1003 | def __init__(self, code, exp_code, localtime=True): |
|
1003 | def __init__(self, code, exp_code, localtime=True): | |
1004 |
|
1004 | |||
1005 | self.key = code |
|
1005 | self.key = code | |
1006 | self.exp_code = exp_code |
|
1006 | self.exp_code = exp_code | |
1007 | self.ready = False |
|
1007 | self.ready = False | |
1008 | self.flagNoData = False |
|
1008 | self.flagNoData = False | |
1009 | self.localtime = localtime |
|
1009 | self.localtime = localtime | |
1010 | self.data = {} |
|
1010 | self.data = {} | |
1011 | self.meta = {} |
|
1011 | self.meta = {} | |
1012 | self.__heights = [] |
|
1012 | self.__heights = [] | |
1013 |
|
1013 | |||
1014 | def __str__(self): |
|
1014 | def __str__(self): | |
1015 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
1015 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] | |
1016 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
1016 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) | |
1017 |
|
1017 | |||
1018 | def __len__(self): |
|
1018 | def __len__(self): | |
1019 | return len(self.data) |
|
1019 | return len(self.data) | |
1020 |
|
1020 | |||
1021 | def __getitem__(self, key): |
|
1021 | def __getitem__(self, key): | |
1022 | if isinstance(key, int): |
|
1022 | if isinstance(key, int): | |
1023 | return self.data[self.times[key]] |
|
1023 | return self.data[self.times[key]] | |
1024 | elif isinstance(key, str): |
|
1024 | elif isinstance(key, str): | |
1025 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
1025 | ret = numpy.array([self.data[x][key] for x in self.times]) | |
1026 | if ret.ndim > 1: |
|
1026 | if ret.ndim > 1: | |
1027 | ret = numpy.swapaxes(ret, 0, 1) |
|
1027 | ret = numpy.swapaxes(ret, 0, 1) | |
1028 | return ret |
|
1028 | return ret | |
1029 |
|
1029 | |||
1030 | def __contains__(self, key): |
|
1030 | def __contains__(self, key): | |
1031 | return key in self.data[self.min_time] |
|
1031 | return key in self.data[self.min_time] | |
1032 |
|
1032 | |||
1033 | def setup(self): |
|
1033 | def setup(self): | |
1034 | ''' |
|
1034 | ''' | |
1035 | Configure object |
|
1035 | Configure object | |
1036 | ''' |
|
1036 | ''' | |
1037 | self.type = '' |
|
1037 | self.type = '' | |
1038 | self.ready = False |
|
1038 | self.ready = False | |
1039 | del self.data |
|
1039 | del self.data | |
1040 | self.data = {} |
|
1040 | self.data = {} | |
1041 | self.__heights = [] |
|
1041 | self.__heights = [] | |
1042 | self.__all_heights = set() |
|
1042 | self.__all_heights = set() | |
1043 |
|
1043 | |||
1044 | def shape(self, key): |
|
1044 | def shape(self, key): | |
1045 | ''' |
|
1045 | ''' | |
1046 | Get the shape of the one-element data for the given key |
|
1046 | Get the shape of the one-element data for the given key | |
1047 | ''' |
|
1047 | ''' | |
1048 |
|
1048 | |||
1049 | if len(self.data[self.min_time][key]): |
|
1049 | if len(self.data[self.min_time][key]): | |
1050 | return self.data[self.min_time][key].shape |
|
1050 | return self.data[self.min_time][key].shape | |
1051 | return (0,) |
|
1051 | return (0,) | |
1052 |
|
1052 | |||
1053 | def update(self, data, tm, meta={}): |
|
1053 | def update(self, data, tm, meta={}): | |
1054 | ''' |
|
1054 | ''' | |
1055 | Update data object with new dataOut |
|
1055 | Update data object with new dataOut | |
1056 | ''' |
|
1056 | ''' | |
1057 |
|
1057 | |||
1058 | self.data[tm] = data |
|
1058 | self.data[tm] = data | |
1059 |
|
1059 | |||
1060 | for key, value in meta.items(): |
|
1060 | for key, value in meta.items(): | |
1061 | setattr(self, key, value) |
|
1061 | setattr(self, key, value) | |
1062 |
|
1062 | |||
1063 | def normalize_heights(self): |
|
1063 | def normalize_heights(self): | |
1064 | ''' |
|
1064 | ''' | |
1065 | Ensure same-dimension of the data for different heighList |
|
1065 | Ensure same-dimension of the data for different heighList | |
1066 | ''' |
|
1066 | ''' | |
1067 |
|
1067 | |||
1068 | H = numpy.array(list(self.__all_heights)) |
|
1068 | H = numpy.array(list(self.__all_heights)) | |
1069 | H.sort() |
|
1069 | H.sort() | |
1070 | for key in self.data: |
|
1070 | for key in self.data: | |
1071 | shape = self.shape(key)[:-1] + H.shape |
|
1071 | shape = self.shape(key)[:-1] + H.shape | |
1072 | for tm, obj in list(self.data[key].items()): |
|
1072 | for tm, obj in list(self.data[key].items()): | |
1073 | h = self.__heights[self.times.tolist().index(tm)] |
|
1073 | h = self.__heights[self.times.tolist().index(tm)] | |
1074 | if H.size == h.size: |
|
1074 | if H.size == h.size: | |
1075 | continue |
|
1075 | continue | |
1076 | index = numpy.where(numpy.in1d(H, h))[0] |
|
1076 | index = numpy.where(numpy.in1d(H, h))[0] | |
1077 | dummy = numpy.zeros(shape) + numpy.nan |
|
1077 | dummy = numpy.zeros(shape) + numpy.nan | |
1078 | if len(shape) == 2: |
|
1078 | if len(shape) == 2: | |
1079 | dummy[:, index] = obj |
|
1079 | dummy[:, index] = obj | |
1080 | else: |
|
1080 | else: | |
1081 | dummy[index] = obj |
|
1081 | dummy[index] = obj | |
1082 | self.data[key][tm] = dummy |
|
1082 | self.data[key][tm] = dummy | |
1083 |
|
1083 | |||
1084 | self.__heights = [H for tm in self.times] |
|
1084 | self.__heights = [H for tm in self.times] | |
1085 |
|
1085 | |||
1086 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
1086 | def jsonify(self, tm, plot_name, plot_type, decimate=False): | |
1087 | ''' |
|
1087 | ''' | |
1088 | Convert data to json |
|
1088 | Convert data to json | |
1089 | ''' |
|
1089 | ''' | |
1090 |
|
1090 | |||
1091 | meta = {} |
|
1091 | meta = {} | |
1092 | meta['xrange'] = [] |
|
1092 | meta['xrange'] = [] | |
1093 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 |
|
1093 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 | |
1094 | tmp = self.data[tm][self.key] |
|
1094 | tmp = self.data[tm][self.key] | |
1095 | shape = tmp.shape |
|
1095 | shape = tmp.shape | |
1096 | if len(shape) == 2: |
|
1096 | if len(shape) == 2: | |
1097 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1097 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) | |
1098 | elif len(shape) == 3: |
|
1098 | elif len(shape) == 3: | |
1099 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 |
|
1099 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 | |
1100 | data = self.roundFloats( |
|
1100 | data = self.roundFloats( | |
1101 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1101 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) | |
1102 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1102 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) | |
1103 | else: |
|
1103 | else: | |
1104 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1104 | data = self.roundFloats(self.data[tm][self.key].tolist()) | |
1105 |
|
1105 | |||
1106 | ret = { |
|
1106 | ret = { | |
1107 | 'plot': plot_name, |
|
1107 | 'plot': plot_name, | |
1108 | 'code': self.exp_code, |
|
1108 | 'code': self.exp_code, | |
1109 | 'time': float(tm), |
|
1109 | 'time': float(tm), | |
1110 | 'data': data, |
|
1110 | 'data': data, | |
1111 | } |
|
1111 | } | |
1112 | meta['type'] = plot_type |
|
1112 | meta['type'] = plot_type | |
1113 | meta['interval'] = float(self.interval) |
|
1113 | meta['interval'] = float(self.interval) | |
1114 | meta['localtime'] = self.localtime |
|
1114 | meta['localtime'] = self.localtime | |
1115 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1115 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) | |
1116 | meta.update(self.meta) |
|
1116 | meta.update(self.meta) | |
1117 | ret['metadata'] = meta |
|
1117 | ret['metadata'] = meta | |
1118 | return json.dumps(ret) |
|
1118 | return json.dumps(ret) | |
1119 |
|
1119 | |||
1120 | @property |
|
1120 | @property | |
1121 | def times(self): |
|
1121 | def times(self): | |
1122 | ''' |
|
1122 | ''' | |
1123 | Return the list of times of the current data |
|
1123 | Return the list of times of the current data | |
1124 | ''' |
|
1124 | ''' | |
1125 |
|
1125 | |||
1126 | ret = [t for t in self.data] |
|
1126 | ret = [t for t in self.data] | |
1127 | ret.sort() |
|
1127 | ret.sort() | |
1128 | return numpy.array(ret) |
|
1128 | return numpy.array(ret) | |
1129 |
|
1129 | |||
1130 | @property |
|
1130 | @property | |
1131 | def min_time(self): |
|
1131 | def min_time(self): | |
1132 | ''' |
|
1132 | ''' | |
1133 | Return the minimun time value |
|
1133 | Return the minimun time value | |
1134 | ''' |
|
1134 | ''' | |
1135 |
|
1135 | |||
1136 | return self.times[0] |
|
1136 | return self.times[0] | |
1137 |
|
1137 | |||
1138 | @property |
|
1138 | @property | |
1139 | def max_time(self): |
|
1139 | def max_time(self): | |
1140 | ''' |
|
1140 | ''' | |
1141 | Return the maximun time value |
|
1141 | Return the maximun time value | |
1142 | ''' |
|
1142 | ''' | |
1143 |
|
1143 | |||
1144 | return self.times[-1] |
|
1144 | return self.times[-1] | |
1145 |
|
1145 | |||
1146 | # @property |
|
1146 | # @property | |
1147 | # def heights(self): |
|
1147 | # def heights(self): | |
1148 | # ''' |
|
1148 | # ''' | |
1149 | # Return the list of heights of the current data |
|
1149 | # Return the list of heights of the current data | |
1150 | # ''' |
|
1150 | # ''' | |
1151 |
|
1151 | |||
1152 | # return numpy.array(self.__heights[-1]) |
|
1152 | # return numpy.array(self.__heights[-1]) | |
1153 |
|
1153 | |||
1154 | @staticmethod |
|
1154 | @staticmethod | |
1155 | def roundFloats(obj): |
|
1155 | def roundFloats(obj): | |
1156 | if isinstance(obj, list): |
|
1156 | if isinstance(obj, list): | |
1157 | return list(map(PlotterData.roundFloats, obj)) |
|
1157 | return list(map(PlotterData.roundFloats, obj)) | |
1158 | elif isinstance(obj, float): |
|
1158 | elif isinstance(obj, float): | |
1159 | return round(obj, 2) |
|
1159 | return round(obj, 2) |
@@ -1,1465 +1,1464 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Classes to plot Spectra data |
|
5 | """Classes to plot Spectra data | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import numpy |
|
10 | import numpy | |
11 |
|
11 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
13 | from itertools import combinations |
|
13 | from itertools import combinations | |
14 | from matplotlib.ticker import LinearLocator |
|
14 | from matplotlib.ticker import LinearLocator | |
15 |
|
15 | |||
16 | from matplotlib import __version__ as plt_version |
|
16 | from matplotlib import __version__ as plt_version | |
17 |
|
17 | |||
18 | if plt_version >='3.3.4': |
|
18 | if plt_version >='3.3.4': | |
19 | EXTRA_POINTS = 0 |
|
19 | EXTRA_POINTS = 0 | |
20 | else: |
|
20 | else: | |
21 | EXTRA_POINTS = 1 |
|
21 | EXTRA_POINTS = 1 | |
22 |
|
22 | |||
23 | class SpectraPlot(Plot): |
|
23 | class SpectraPlot(Plot): | |
24 | ''' |
|
24 | ''' | |
25 | Plot for Spectra data |
|
25 | Plot for Spectra data | |
26 | ''' |
|
26 | ''' | |
27 |
|
27 | |||
28 | CODE = 'spc' |
|
28 | CODE = 'spc' | |
29 | colormap = 'jet' |
|
29 | colormap = 'jet' | |
30 | plot_type = 'pcolor' |
|
30 | plot_type = 'pcolor' | |
31 | buffering = False |
|
31 | buffering = False | |
32 | channelList = [] |
|
32 | channelList = [] | |
33 | elevationList = [] |
|
33 | elevationList = [] | |
34 | azimuthList = [] |
|
34 | azimuthList = [] | |
35 |
|
35 | |||
36 | def setup(self): |
|
36 | def setup(self): | |
37 |
|
37 | |||
38 | self.nplots = len(self.data.channels) |
|
38 | self.nplots = len(self.data.channels) | |
39 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
39 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
40 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
40 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
41 | self.height = 3.4 * self.nrows |
|
41 | self.height = 3.4 * self.nrows | |
42 |
|
42 | |||
43 | self.cb_label = 'dB' |
|
43 | self.cb_label = 'dB' | |
44 | if self.showprofile: |
|
44 | if self.showprofile: | |
45 | self.width = 5.2 * self.ncols |
|
45 | self.width = 5.2 * self.ncols | |
46 | else: |
|
46 | else: | |
47 | self.width = 4.2* self.ncols |
|
47 | self.width = 4.2* self.ncols | |
48 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.12}) |
|
48 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.12}) | |
49 | self.ylabel = 'Range [km]' |
|
49 | self.ylabel = 'Range [km]' | |
50 |
|
50 | |||
51 |
|
51 | |||
52 | def update_list(self,dataOut): |
|
52 | def update_list(self,dataOut): | |
53 | if len(self.channelList) == 0: |
|
53 | if len(self.channelList) == 0: | |
54 | self.channelList = dataOut.channelList |
|
54 | self.channelList = dataOut.channelList | |
55 | if len(self.elevationList) == 0: |
|
55 | if len(self.elevationList) == 0: | |
56 | self.elevationList = dataOut.elevationList |
|
56 | self.elevationList = dataOut.elevationList | |
57 | if len(self.azimuthList) == 0: |
|
57 | if len(self.azimuthList) == 0: | |
58 | self.azimuthList = dataOut.azimuthList |
|
58 | self.azimuthList = dataOut.azimuthList | |
59 |
|
59 | |||
60 | def update(self, dataOut): |
|
60 | def update(self, dataOut): | |
61 |
|
61 | |||
62 | self.update_list(dataOut) |
|
62 | self.update_list(dataOut) | |
63 | data = {} |
|
63 | data = {} | |
64 | meta = {} |
|
64 | meta = {} | |
65 |
|
65 | |||
66 | #data['rti'] = dataOut.getPower() |
|
66 | #data['rti'] = dataOut.getPower() | |
67 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
67 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter | |
68 | noise = 10*numpy.log10(dataOut.getNoise()/norm) |
|
68 | noise = 10*numpy.log10(dataOut.getNoise()/norm) | |
69 |
|
69 | |||
70 |
|
70 | |||
71 | z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights)) |
|
71 | z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights)) | |
72 | for ch in range(dataOut.nChannels): |
|
72 | for ch in range(dataOut.nChannels): | |
73 | if hasattr(dataOut.normFactor,'ndim'): |
|
73 | if hasattr(dataOut.normFactor,'ndim'): | |
74 | if dataOut.normFactor.ndim > 1: |
|
74 | if dataOut.normFactor.ndim > 1: | |
75 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) |
|
75 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) | |
76 |
|
76 | |||
77 | else: |
|
77 | else: | |
78 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
78 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) | |
79 | else: |
|
79 | else: | |
80 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
80 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) | |
81 |
|
81 | |||
82 |
|
82 | |||
83 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
83 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
84 | spc = 10*numpy.log10(z) |
|
84 | spc = 10*numpy.log10(z) | |
85 |
|
85 | |||
86 | data['spc'] = spc |
|
86 | data['spc'] = spc | |
87 | #print(spc[0].shape) |
|
87 | #print(spc[0].shape) | |
88 | data['rti'] = spc.mean(axis=1) |
|
88 | data['rti'] = spc.mean(axis=1) | |
89 | data['noise'] = noise |
|
89 | data['noise'] = noise | |
90 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) |
|
90 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
91 | if self.CODE == 'spc_moments': |
|
91 | if self.CODE == 'spc_moments': | |
92 | data['moments'] = dataOut.moments |
|
92 | data['moments'] = dataOut.moments | |
93 |
|
93 | |||
94 | return data, meta |
|
94 | return data, meta | |
95 |
|
95 | |||
96 | def plot(self): |
|
96 | def plot(self): | |
97 | if self.xaxis == "frequency": |
|
97 | if self.xaxis == "frequency": | |
98 | x = self.data.xrange[0] |
|
98 | x = self.data.xrange[0] | |
99 | self.xlabel = "Frequency (kHz)" |
|
99 | self.xlabel = "Frequency (kHz)" | |
100 | elif self.xaxis == "time": |
|
100 | elif self.xaxis == "time": | |
101 | x = self.data.xrange[1] |
|
101 | x = self.data.xrange[1] | |
102 | self.xlabel = "Time (ms)" |
|
102 | self.xlabel = "Time (ms)" | |
103 | else: |
|
103 | else: | |
104 | x = self.data.xrange[2] |
|
104 | x = self.data.xrange[2] | |
105 | self.xlabel = "Velocity (m/s)" |
|
105 | self.xlabel = "Velocity (m/s)" | |
106 |
|
106 | |||
107 | if self.CODE == 'spc_moments': |
|
107 | if self.CODE == 'spc_moments': | |
108 | x = self.data.xrange[2] |
|
108 | x = self.data.xrange[2] | |
109 | self.xlabel = "Velocity (m/s)" |
|
109 | self.xlabel = "Velocity (m/s)" | |
110 |
|
110 | |||
111 | self.titles = [] |
|
111 | self.titles = [] | |
112 | y = self.data.yrange |
|
112 | y = self.data.yrange | |
113 | self.y = y |
|
113 | self.y = y | |
114 |
|
114 | |||
115 | data = self.data[-1] |
|
115 | data = self.data[-1] | |
116 | z = data['spc'] |
|
116 | z = data['spc'] | |
117 | #print(z.shape, x.shape, y.shape) |
|
117 | #print(z.shape, x.shape, y.shape) | |
118 | for n, ax in enumerate(self.axes): |
|
118 | for n, ax in enumerate(self.axes): | |
119 | noise = self.data['noise'][n][0] |
|
119 | noise = self.data['noise'][n][0] | |
120 | #print(noise) |
|
120 | #print(noise) | |
121 | if self.CODE == 'spc_moments': |
|
121 | if self.CODE == 'spc_moments': | |
122 | mean = data['moments'][n, 1] |
|
122 | mean = data['moments'][n, 1] | |
123 | if ax.firsttime: |
|
123 | if ax.firsttime: | |
124 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
124 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
125 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
125 | self.xmin = self.xmin if self.xmin else -self.xmax | |
126 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
126 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
127 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
127 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
128 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
128 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
129 | vmin=self.zmin, |
|
129 | vmin=self.zmin, | |
130 | vmax=self.zmax, |
|
130 | vmax=self.zmax, | |
131 | cmap=plt.get_cmap(self.colormap) |
|
131 | cmap=plt.get_cmap(self.colormap) | |
132 | ) |
|
132 | ) | |
133 |
|
133 | |||
134 | if self.showprofile: |
|
134 | if self.showprofile: | |
135 | ax.plt_profile = self.pf_axes[n].plot( |
|
135 | ax.plt_profile = self.pf_axes[n].plot( | |
136 | data['rti'][n], y)[0] |
|
136 | data['rti'][n], y)[0] | |
137 | # ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
137 | # ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
138 | # color="k", linestyle="dashed", lw=1)[0] |
|
138 | # color="k", linestyle="dashed", lw=1)[0] | |
139 | if self.CODE == 'spc_moments': |
|
139 | if self.CODE == 'spc_moments': | |
140 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
140 | ax.plt_mean = ax.plot(mean, y, color='k')[0] | |
141 | else: |
|
141 | else: | |
142 | ax.plt.set_array(z[n].T.ravel()) |
|
142 | ax.plt.set_array(z[n].T.ravel()) | |
143 | if self.showprofile: |
|
143 | if self.showprofile: | |
144 | ax.plt_profile.set_data(data['rti'][n], y) |
|
144 | ax.plt_profile.set_data(data['rti'][n], y) | |
145 | #ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
145 | #ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
146 | if self.CODE == 'spc_moments': |
|
146 | if self.CODE == 'spc_moments': | |
147 | ax.plt_mean.set_data(mean, y) |
|
147 | ax.plt_mean.set_data(mean, y) | |
148 | if len(self.azimuthList) > 0 and len(self.elevationList) > 0: |
|
148 | if len(self.azimuthList) > 0 and len(self.elevationList) > 0: | |
149 | self.titles.append('CH {}: {:2.1f}elv {:2.1f}az {:3.2f}dB'.format(self.channelList[n], noise, self.elevationList[n], self.azimuthList[n])) |
|
149 | self.titles.append('CH {}: {:2.1f}elv {:2.1f}az {:3.2f}dB'.format(self.channelList[n], noise, self.elevationList[n], self.azimuthList[n])) | |
150 | else: |
|
150 | else: | |
151 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
151 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) | |
152 |
|
152 | |||
153 |
|
153 | |||
154 | class CrossSpectraPlot(Plot): |
|
154 | class CrossSpectraPlot(Plot): | |
155 |
|
155 | |||
156 | CODE = 'cspc' |
|
156 | CODE = 'cspc' | |
157 | colormap = 'jet' |
|
157 | colormap = 'jet' | |
158 | plot_type = 'pcolor' |
|
158 | plot_type = 'pcolor' | |
159 | zmin_coh = None |
|
159 | zmin_coh = None | |
160 | zmax_coh = None |
|
160 | zmax_coh = None | |
161 | zmin_phase = None |
|
161 | zmin_phase = None | |
162 | zmax_phase = None |
|
162 | zmax_phase = None | |
163 | realChannels = None |
|
163 | realChannels = None | |
164 | crossPairs = None |
|
164 | crossPairs = None | |
165 |
|
165 | |||
166 | def setup(self): |
|
166 | def setup(self): | |
167 |
|
167 | |||
168 | self.ncols = 4 |
|
168 | self.ncols = 4 | |
169 | self.nplots = len(self.data.pairs) * 2 |
|
169 | self.nplots = len(self.data.pairs) * 2 | |
170 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
170 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
171 | self.width = 3.1 * self.ncols |
|
171 | self.width = 3.1 * self.ncols | |
172 | self.height = 2.6 * self.nrows |
|
172 | self.height = 2.6 * self.nrows | |
173 | self.ylabel = 'Range [km]' |
|
173 | self.ylabel = 'Range [km]' | |
174 | self.showprofile = False |
|
174 | self.showprofile = False | |
175 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
175 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
176 |
|
176 | |||
177 | def update(self, dataOut): |
|
177 | def update(self, dataOut): | |
178 |
|
178 | |||
179 | data = {} |
|
179 | data = {} | |
180 | meta = {} |
|
180 | meta = {} | |
181 |
|
181 | |||
182 | spc = dataOut.data_spc |
|
182 | spc = dataOut.data_spc | |
183 | cspc = dataOut.data_cspc |
|
183 | cspc = dataOut.data_cspc | |
184 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) |
|
184 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
185 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) |
|
185 | rawPairs = list(combinations(list(range(dataOut.nChannels)), 2)) | |
186 | meta['pairs'] = rawPairs |
|
186 | meta['pairs'] = rawPairs | |
187 |
|
187 | |||
188 | if self.crossPairs == None: |
|
188 | if self.crossPairs == None: | |
189 | self.crossPairs = dataOut.pairsList |
|
189 | self.crossPairs = dataOut.pairsList | |
190 |
|
190 | |||
191 | tmp = [] |
|
191 | tmp = [] | |
192 |
|
192 | |||
193 | for n, pair in enumerate(meta['pairs']): |
|
193 | for n, pair in enumerate(meta['pairs']): | |
194 |
|
194 | |||
195 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
195 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
196 | coh = numpy.abs(out) |
|
196 | coh = numpy.abs(out) | |
197 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
197 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
198 | tmp.append(coh) |
|
198 | tmp.append(coh) | |
199 | tmp.append(phase) |
|
199 | tmp.append(phase) | |
200 |
|
200 | |||
201 | data['cspc'] = numpy.array(tmp) |
|
201 | data['cspc'] = numpy.array(tmp) | |
202 |
|
202 | |||
203 | return data, meta |
|
203 | return data, meta | |
204 |
|
204 | |||
205 | def plot(self): |
|
205 | def plot(self): | |
206 |
|
206 | |||
207 | if self.xaxis == "frequency": |
|
207 | if self.xaxis == "frequency": | |
208 | x = self.data.xrange[0] |
|
208 | x = self.data.xrange[0] | |
209 | self.xlabel = "Frequency (kHz)" |
|
209 | self.xlabel = "Frequency (kHz)" | |
210 | elif self.xaxis == "time": |
|
210 | elif self.xaxis == "time": | |
211 | x = self.data.xrange[1] |
|
211 | x = self.data.xrange[1] | |
212 | self.xlabel = "Time (ms)" |
|
212 | self.xlabel = "Time (ms)" | |
213 | else: |
|
213 | else: | |
214 | x = self.data.xrange[2] |
|
214 | x = self.data.xrange[2] | |
215 | self.xlabel = "Velocity (m/s)" |
|
215 | self.xlabel = "Velocity (m/s)" | |
216 |
|
216 | |||
217 | self.titles = [] |
|
217 | self.titles = [] | |
218 |
|
218 | |||
219 | y = self.data.yrange |
|
219 | y = self.data.yrange | |
220 | self.y = y |
|
220 | self.y = y | |
221 |
|
221 | |||
222 | data = self.data[-1] |
|
222 | data = self.data[-1] | |
223 | cspc = data['cspc'] |
|
223 | cspc = data['cspc'] | |
224 |
|
224 | |||
225 | for n in range(len(self.data.pairs)): |
|
225 | for n in range(len(self.data.pairs)): | |
226 |
|
226 | |||
227 | pair = self.crossPairs[n] |
|
227 | pair = self.crossPairs[n] | |
228 |
|
228 | |||
229 | coh = cspc[n*2] |
|
229 | coh = cspc[n*2] | |
230 | phase = cspc[n*2+1] |
|
230 | phase = cspc[n*2+1] | |
231 | ax = self.axes[2 * n] |
|
231 | ax = self.axes[2 * n] | |
232 |
|
232 | |||
233 | if ax.firsttime: |
|
233 | if ax.firsttime: | |
234 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
234 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
235 | vmin=self.zmin_coh, |
|
235 | vmin=self.zmin_coh, | |
236 | vmax=self.zmax_coh, |
|
236 | vmax=self.zmax_coh, | |
237 | cmap=plt.get_cmap(self.colormap_coh) |
|
237 | cmap=plt.get_cmap(self.colormap_coh) | |
238 | ) |
|
238 | ) | |
239 | else: |
|
239 | else: | |
240 | ax.plt.set_array(coh.T.ravel()) |
|
240 | ax.plt.set_array(coh.T.ravel()) | |
241 | self.titles.append( |
|
241 | self.titles.append( | |
242 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
242 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
243 |
|
243 | |||
244 | ax = self.axes[2 * n + 1] |
|
244 | ax = self.axes[2 * n + 1] | |
245 | if ax.firsttime: |
|
245 | if ax.firsttime: | |
246 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
246 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
247 | vmin=-180, |
|
247 | vmin=-180, | |
248 | vmax=180, |
|
248 | vmax=180, | |
249 | cmap=plt.get_cmap(self.colormap_phase) |
|
249 | cmap=plt.get_cmap(self.colormap_phase) | |
250 | ) |
|
250 | ) | |
251 | else: |
|
251 | else: | |
252 | ax.plt.set_array(phase.T.ravel()) |
|
252 | ax.plt.set_array(phase.T.ravel()) | |
253 |
|
253 | |||
254 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
254 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
255 |
|
255 | |||
256 |
|
256 | |||
257 | class RTIPlot(Plot): |
|
257 | class RTIPlot(Plot): | |
258 | ''' |
|
258 | ''' | |
259 | Plot for RTI data |
|
259 | Plot for RTI data | |
260 | ''' |
|
260 | ''' | |
261 |
|
261 | |||
262 | CODE = 'rti' |
|
262 | CODE = 'rti' | |
263 | colormap = 'jet' |
|
263 | colormap = 'jet' | |
264 | plot_type = 'pcolorbuffer' |
|
264 | plot_type = 'pcolorbuffer' | |
265 | titles = None |
|
265 | titles = None | |
266 | channelList = [] |
|
266 | channelList = [] | |
267 | elevationList = [] |
|
267 | elevationList = [] | |
268 | azimuthList = [] |
|
268 | azimuthList = [] | |
269 |
|
269 | |||
270 | def setup(self): |
|
270 | def setup(self): | |
271 | self.xaxis = 'time' |
|
271 | self.xaxis = 'time' | |
272 | self.ncols = 1 |
|
272 | self.ncols = 1 | |
273 | #print("dataChannels ",self.data.channels) |
|
273 | #print("dataChannels ",self.data.channels) | |
274 | self.nrows = len(self.data.channels) |
|
274 | self.nrows = len(self.data.channels) | |
275 | self.nplots = len(self.data.channels) |
|
275 | self.nplots = len(self.data.channels) | |
276 | self.ylabel = 'Range [km]' |
|
276 | self.ylabel = 'Range [km]' | |
277 | self.xlabel = 'Time' |
|
277 | self.xlabel = 'Time' | |
278 | self.cb_label = 'dB' |
|
278 | self.cb_label = 'dB' | |
279 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
279 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) | |
280 | self.titles = ['{} Channel {}'.format( |
|
280 | self.titles = ['{} Channel {}'.format( | |
281 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
281 | self.CODE.upper(), x) for x in range(self.nplots)] | |
282 |
|
282 | |||
283 | def update_list(self,dataOut): |
|
283 | def update_list(self,dataOut): | |
284 |
|
284 | |||
285 | if len(self.channelList) == 0: |
|
285 | if len(self.channelList) == 0: | |
286 | self.channelList = dataOut.channelList |
|
286 | self.channelList = dataOut.channelList | |
287 | if len(self.elevationList) == 0: |
|
287 | if len(self.elevationList) == 0: | |
288 | self.elevationList = dataOut.elevationList |
|
288 | self.elevationList = dataOut.elevationList | |
289 | if len(self.azimuthList) == 0: |
|
289 | if len(self.azimuthList) == 0: | |
290 | self.azimuthList = dataOut.azimuthList |
|
290 | self.azimuthList = dataOut.azimuthList | |
291 |
|
291 | |||
292 |
|
292 | |||
293 | def update(self, dataOut): |
|
293 | def update(self, dataOut): | |
294 | if len(self.channelList) == 0: |
|
294 | if len(self.channelList) == 0: | |
295 | self.update_list(dataOut) |
|
295 | self.update_list(dataOut) | |
296 | data = {} |
|
296 | data = {} | |
297 | meta = {} |
|
297 | meta = {} | |
298 |
|
298 | |||
299 | data['rti'] = dataOut.getPower() |
|
299 | data['rti'] = dataOut.getPower() | |
300 |
|
300 | |||
301 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
301 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter | |
302 | noise = 10*numpy.log10(dataOut.getNoise()/norm) |
|
302 | noise = 10*numpy.log10(dataOut.getNoise()/norm) | |
303 | data['noise'] = noise |
|
303 | data['noise'] = noise | |
304 |
|
304 | |||
305 | return data, meta |
|
305 | return data, meta | |
306 |
|
306 | |||
307 | def plot(self): |
|
307 | def plot(self): | |
308 |
|
308 | |||
309 | self.x = self.data.times |
|
309 | self.x = self.data.times | |
310 | self.y = self.data.yrange |
|
310 | self.y = self.data.yrange | |
311 | #print(" x, y: ",self.x, self.y) |
|
311 | #print(" x, y: ",self.x, self.y) | |
312 | self.z = self.data[self.CODE] |
|
312 | self.z = self.data[self.CODE] | |
313 | self.z = numpy.array(self.z, dtype=float) |
|
313 | self.z = numpy.array(self.z, dtype=float) | |
314 | self.z = numpy.ma.masked_invalid(self.z) |
|
314 | self.z = numpy.ma.masked_invalid(self.z) | |
315 |
|
315 | |||
316 | try: |
|
316 | try: | |
317 | if self.channelList != None: |
|
317 | if self.channelList != None: | |
318 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
318 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: | |
319 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
319 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( | |
320 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
320 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] | |
321 | else: |
|
321 | else: | |
322 | self.titles = ['{} Channel {}'.format( |
|
322 | self.titles = ['{} Channel {}'.format( | |
323 | self.CODE.upper(), x) for x in self.channelList] |
|
323 | self.CODE.upper(), x) for x in self.channelList] | |
324 | except: |
|
324 | except: | |
325 | if self.channelList.any() != None: |
|
325 | if self.channelList.any() != None: | |
326 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
326 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: | |
327 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
327 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( | |
328 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
328 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] | |
329 | else: |
|
329 | else: | |
330 | self.titles = ['{} Channel {}'.format( |
|
330 | self.titles = ['{} Channel {}'.format( | |
331 | self.CODE.upper(), x) for x in self.channelList] |
|
331 | self.CODE.upper(), x) for x in self.channelList] | |
332 |
|
332 | |||
333 | if self.decimation is None: |
|
333 | if self.decimation is None: | |
334 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
334 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
335 | else: |
|
335 | else: | |
336 | x, y, z = self.fill_gaps(*self.decimate()) |
|
336 | x, y, z = self.fill_gaps(*self.decimate()) | |
337 |
|
337 | |||
338 | #dummy_var = self.axes #Extrañamente esto actualiza el valor axes |
|
338 | #dummy_var = self.axes #Extrañamente esto actualiza el valor axes | |
339 | for n, ax in enumerate(self.axes): |
|
339 | for n, ax in enumerate(self.axes): | |
340 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
340 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
341 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
341 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
342 | data = self.data[-1] |
|
342 | data = self.data[-1] | |
343 |
|
343 | |||
344 | if ax.firsttime: |
|
344 | if ax.firsttime: | |
345 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
345 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
346 | vmin=self.zmin, |
|
346 | vmin=self.zmin, | |
347 | vmax=self.zmax, |
|
347 | vmax=self.zmax, | |
348 | cmap=plt.get_cmap(self.colormap) |
|
348 | cmap=plt.get_cmap(self.colormap) | |
349 | ) |
|
349 | ) | |
350 | if self.showprofile: |
|
350 | if self.showprofile: | |
351 | ax.plot_profile = self.pf_axes[n].plot(data[self.CODE][n], self.y)[0] |
|
351 | ax.plot_profile = self.pf_axes[n].plot(data[self.CODE][n], self.y)[0] | |
352 | if "noise" in self.data: |
|
352 | if "noise" in self.data: | |
353 |
|
353 | |||
354 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
354 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, | |
355 | color="k", linestyle="dashed", lw=1)[0] |
|
355 | color="k", linestyle="dashed", lw=1)[0] | |
356 | else: |
|
356 | else: | |
357 | ax.collections.remove(ax.collections[0]) |
|
357 | ax.collections.remove(ax.collections[0]) | |
358 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
358 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
359 | vmin=self.zmin, |
|
359 | vmin=self.zmin, | |
360 | vmax=self.zmax, |
|
360 | vmax=self.zmax, | |
361 | cmap=plt.get_cmap(self.colormap) |
|
361 | cmap=plt.get_cmap(self.colormap) | |
362 | ) |
|
362 | ) | |
363 | if self.showprofile: |
|
363 | if self.showprofile: | |
364 | ax.plot_profile.set_data(data[self.CODE][n], self.y) |
|
364 | ax.plot_profile.set_data(data[self.CODE][n], self.y) | |
365 | if "noise" in self.data: |
|
365 | if "noise" in self.data: | |
366 | ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y) |
|
366 | ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y) | |
367 |
|
367 | |||
368 |
|
368 | |||
369 | class CoherencePlot(RTIPlot): |
|
369 | class CoherencePlot(RTIPlot): | |
370 | ''' |
|
370 | ''' | |
371 | Plot for Coherence data |
|
371 | Plot for Coherence data | |
372 | ''' |
|
372 | ''' | |
373 |
|
373 | |||
374 | CODE = 'coh' |
|
374 | CODE = 'coh' | |
375 | titles = None |
|
375 | titles = None | |
376 |
|
376 | |||
377 | def setup(self): |
|
377 | def setup(self): | |
378 | self.xaxis = 'time' |
|
378 | self.xaxis = 'time' | |
379 | self.ncols = 1 |
|
379 | self.ncols = 1 | |
380 | self.nrows = len(self.data.pairs) |
|
380 | self.nrows = len(self.data.pairs) | |
381 | self.nplots = len(self.data.pairs) |
|
381 | self.nplots = len(self.data.pairs) | |
382 | self.ylabel = 'Range [km]' |
|
382 | self.ylabel = 'Range [km]' | |
383 | self.xlabel = 'Time' |
|
383 | self.xlabel = 'Time' | |
384 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
384 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) | |
385 | if self.CODE == 'coh': |
|
385 | if self.CODE == 'coh': | |
386 | self.cb_label = '' |
|
386 | self.cb_label = '' | |
387 | self.titles = [ |
|
387 | self.titles = [ | |
388 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
388 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
389 | else: |
|
389 | else: | |
390 | self.cb_label = 'Degrees' |
|
390 | self.cb_label = 'Degrees' | |
391 | self.titles = [ |
|
391 | self.titles = [ | |
392 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
392 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
393 |
|
393 | |||
394 |
|
394 | |||
395 | def update(self, dataOut): |
|
395 | def update(self, dataOut): | |
396 |
|
396 | |||
397 | data = {} |
|
397 | data = {} | |
398 | meta = {} |
|
398 | meta = {} | |
399 | data['coh'] = dataOut.getCoherence() |
|
399 | data['coh'] = dataOut.getCoherence() | |
400 | meta['pairs'] = dataOut.pairsList |
|
400 | meta['pairs'] = dataOut.pairsList | |
401 |
|
401 | |||
402 |
|
402 | |||
403 | return data, meta |
|
403 | return data, meta | |
404 |
|
404 | |||
405 | def plot(self): |
|
405 | def plot(self): | |
406 |
|
406 | |||
407 | self.x = self.data.times |
|
407 | self.x = self.data.times | |
408 | self.y = self.data.yrange |
|
408 | self.y = self.data.yrange | |
409 | self.z = self.data[self.CODE] |
|
409 | self.z = self.data[self.CODE] | |
410 |
|
410 | |||
411 | self.z = numpy.ma.masked_invalid(self.z) |
|
411 | self.z = numpy.ma.masked_invalid(self.z) | |
412 |
|
412 | |||
413 | if self.decimation is None: |
|
413 | if self.decimation is None: | |
414 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
414 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
415 | else: |
|
415 | else: | |
416 | x, y, z = self.fill_gaps(*self.decimate()) |
|
416 | x, y, z = self.fill_gaps(*self.decimate()) | |
417 |
|
417 | |||
418 | for n, ax in enumerate(self.axes): |
|
418 | for n, ax in enumerate(self.axes): | |
419 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
419 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
420 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
420 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
421 | if ax.firsttime: |
|
421 | if ax.firsttime: | |
422 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
422 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
423 | vmin=self.zmin, |
|
423 | vmin=self.zmin, | |
424 | vmax=self.zmax, |
|
424 | vmax=self.zmax, | |
425 | cmap=plt.get_cmap(self.colormap) |
|
425 | cmap=plt.get_cmap(self.colormap) | |
426 | ) |
|
426 | ) | |
427 | if self.showprofile: |
|
427 | if self.showprofile: | |
428 | ax.plot_profile = self.pf_axes[n].plot( |
|
428 | ax.plot_profile = self.pf_axes[n].plot( | |
429 | self.data[self.CODE][n][-1], self.y)[0] |
|
429 | self.data[self.CODE][n][-1], self.y)[0] | |
430 | # ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
430 | # ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, | |
431 | # color="k", linestyle="dashed", lw=1)[0] |
|
431 | # color="k", linestyle="dashed", lw=1)[0] | |
432 | else: |
|
432 | else: | |
433 | ax.collections.remove(ax.collections[0]) |
|
433 | ax.collections.remove(ax.collections[0]) | |
434 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
434 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
435 | vmin=self.zmin, |
|
435 | vmin=self.zmin, | |
436 | vmax=self.zmax, |
|
436 | vmax=self.zmax, | |
437 | cmap=plt.get_cmap(self.colormap) |
|
437 | cmap=plt.get_cmap(self.colormap) | |
438 | ) |
|
438 | ) | |
439 | if self.showprofile: |
|
439 | if self.showprofile: | |
440 | ax.plot_profile.set_data(self.data[self.CODE][n][-1], self.y) |
|
440 | ax.plot_profile.set_data(self.data[self.CODE][n][-1], self.y) | |
441 | # ax.plot_noise.set_data(numpy.repeat( |
|
441 | # ax.plot_noise.set_data(numpy.repeat( | |
442 | # self.data['noise'][n][-1], len(self.y)), self.y) |
|
442 | # self.data['noise'][n][-1], len(self.y)), self.y) | |
443 |
|
443 | |||
444 |
|
444 | |||
445 |
|
445 | |||
446 | class PhasePlot(CoherencePlot): |
|
446 | class PhasePlot(CoherencePlot): | |
447 | ''' |
|
447 | ''' | |
448 | Plot for Phase map data |
|
448 | Plot for Phase map data | |
449 | ''' |
|
449 | ''' | |
450 |
|
450 | |||
451 | CODE = 'phase' |
|
451 | CODE = 'phase' | |
452 | colormap = 'seismic' |
|
452 | colormap = 'seismic' | |
453 |
|
453 | |||
454 | def update(self, dataOut): |
|
454 | def update(self, dataOut): | |
455 |
|
455 | |||
456 | data = {} |
|
456 | data = {} | |
457 | meta = {} |
|
457 | meta = {} | |
458 | data['phase'] = dataOut.getCoherence(phase=True) |
|
458 | data['phase'] = dataOut.getCoherence(phase=True) | |
459 | meta['pairs'] = dataOut.pairsList |
|
459 | meta['pairs'] = dataOut.pairsList | |
460 |
|
460 | |||
461 | return data, meta |
|
461 | return data, meta | |
462 |
|
462 | |||
463 | class NoisePlot(Plot): |
|
463 | class NoisePlot(Plot): | |
464 | ''' |
|
464 | ''' | |
465 | Plot for noise |
|
465 | Plot for noise | |
466 | ''' |
|
466 | ''' | |
467 |
|
467 | |||
468 | CODE = 'noise' |
|
468 | CODE = 'noise' | |
469 | plot_type = 'scatterbuffer' |
|
469 | plot_type = 'scatterbuffer' | |
470 |
|
470 | |||
471 | def setup(self): |
|
471 | def setup(self): | |
472 | self.xaxis = 'time' |
|
472 | self.xaxis = 'time' | |
473 | self.ncols = 1 |
|
473 | self.ncols = 1 | |
474 | self.nrows = 1 |
|
474 | self.nrows = 1 | |
475 | self.nplots = 1 |
|
475 | self.nplots = 1 | |
476 | self.ylabel = 'Intensity [dB]' |
|
476 | self.ylabel = 'Intensity [dB]' | |
477 | self.xlabel = 'Time' |
|
477 | self.xlabel = 'Time' | |
478 | self.titles = ['Noise'] |
|
478 | self.titles = ['Noise'] | |
479 | self.colorbar = False |
|
479 | self.colorbar = False | |
480 | self.plots_adjust.update({'right': 0.85 }) |
|
480 | self.plots_adjust.update({'right': 0.85 }) | |
481 | #if not self.titles: |
|
481 | #if not self.titles: | |
482 | self.titles = ['Noise Plot'] |
|
482 | self.titles = ['Noise Plot'] | |
483 |
|
483 | |||
484 | def update(self, dataOut): |
|
484 | def update(self, dataOut): | |
485 |
|
485 | |||
486 | data = {} |
|
486 | data = {} | |
487 | meta = {} |
|
487 | meta = {} | |
488 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
488 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter | |
489 | noise = 10*numpy.log10(dataOut.getNoise()) |
|
489 | noise = 10*numpy.log10(dataOut.getNoise()) | |
490 | noise = noise.reshape(dataOut.nChannels, 1) |
|
490 | noise = noise.reshape(dataOut.nChannels, 1) | |
491 | data['noise'] = noise |
|
491 | data['noise'] = noise | |
492 | meta['yrange'] = numpy.array([]) |
|
492 | meta['yrange'] = numpy.array([]) | |
493 |
|
493 | |||
494 | return data, meta |
|
494 | return data, meta | |
495 |
|
495 | |||
496 | def plot(self): |
|
496 | def plot(self): | |
497 |
|
497 | |||
498 | x = self.data.times |
|
498 | x = self.data.times | |
499 | xmin = self.data.min_time |
|
499 | xmin = self.data.min_time | |
500 | xmax = xmin + self.xrange * 60 * 60 |
|
500 | xmax = xmin + self.xrange * 60 * 60 | |
501 | Y = self.data['noise'] |
|
501 | Y = self.data['noise'] | |
502 |
|
502 | |||
503 | if self.axes[0].firsttime: |
|
503 | if self.axes[0].firsttime: | |
504 | if self.ymin is None: self.ymin = numpy.nanmin(Y) - 5 |
|
504 | if self.ymin is None: self.ymin = numpy.nanmin(Y) - 5 | |
505 | if self.ymax is None: self.ymax = numpy.nanmax(Y) + 5 |
|
505 | if self.ymax is None: self.ymax = numpy.nanmax(Y) + 5 | |
506 | for ch in self.data.channels: |
|
506 | for ch in self.data.channels: | |
507 | y = Y[ch] |
|
507 | y = Y[ch] | |
508 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
508 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
509 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
509 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
510 | else: |
|
510 | else: | |
511 | for ch in self.data.channels: |
|
511 | for ch in self.data.channels: | |
512 | y = Y[ch] |
|
512 | y = Y[ch] | |
513 | self.axes[0].lines[ch].set_data(x, y) |
|
513 | self.axes[0].lines[ch].set_data(x, y) | |
514 |
|
514 | |||
515 |
|
515 | |||
516 | class PowerProfilePlot(Plot): |
|
516 | class PowerProfilePlot(Plot): | |
517 |
|
517 | |||
518 | CODE = 'pow_profile' |
|
518 | CODE = 'pow_profile' | |
519 | plot_type = 'scatter' |
|
519 | plot_type = 'scatter' | |
520 |
|
520 | |||
521 | def setup(self): |
|
521 | def setup(self): | |
522 |
|
522 | |||
523 | self.ncols = 1 |
|
523 | self.ncols = 1 | |
524 | self.nrows = 1 |
|
524 | self.nrows = 1 | |
525 | self.nplots = 1 |
|
525 | self.nplots = 1 | |
526 | self.height = 4 |
|
526 | self.height = 4 | |
527 | self.width = 3 |
|
527 | self.width = 3 | |
528 | self.ylabel = 'Range [km]' |
|
528 | self.ylabel = 'Range [km]' | |
529 | self.xlabel = 'Intensity [dB]' |
|
529 | self.xlabel = 'Intensity [dB]' | |
530 | self.titles = ['Power Profile'] |
|
530 | self.titles = ['Power Profile'] | |
531 | self.colorbar = False |
|
531 | self.colorbar = False | |
532 |
|
532 | |||
533 | def update(self, dataOut): |
|
533 | def update(self, dataOut): | |
534 |
|
534 | |||
535 | data = {} |
|
535 | data = {} | |
536 | meta = {} |
|
536 | meta = {} | |
537 | data[self.CODE] = dataOut.getPower() |
|
537 | data[self.CODE] = dataOut.getPower() | |
538 |
|
538 | |||
539 | return data, meta |
|
539 | return data, meta | |
540 |
|
540 | |||
541 | def plot(self): |
|
541 | def plot(self): | |
542 |
|
542 | |||
543 | y = self.data.yrange |
|
543 | y = self.data.yrange | |
544 | self.y = y |
|
544 | self.y = y | |
545 |
|
545 | |||
546 | x = self.data[-1][self.CODE] |
|
546 | x = self.data[-1][self.CODE] | |
547 |
|
547 | |||
548 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
548 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 | |
549 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
549 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 | |
550 |
|
550 | |||
551 | if self.axes[0].firsttime: |
|
551 | if self.axes[0].firsttime: | |
552 | for ch in self.data.channels: |
|
552 | for ch in self.data.channels: | |
553 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
553 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) | |
554 | plt.legend() |
|
554 | plt.legend() | |
555 | else: |
|
555 | else: | |
556 | for ch in self.data.channels: |
|
556 | for ch in self.data.channels: | |
557 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
557 | self.axes[0].lines[ch].set_data(x[ch], y) | |
558 |
|
558 | |||
559 |
|
559 | |||
560 | class SpectraCutPlot(Plot): |
|
560 | class SpectraCutPlot(Plot): | |
561 |
|
561 | |||
562 | CODE = 'spc_cut' |
|
562 | CODE = 'spc_cut' | |
563 | plot_type = 'scatter' |
|
563 | plot_type = 'scatter' | |
564 | buffering = False |
|
564 | buffering = False | |
565 | heights = [] |
|
565 | heights = [] | |
566 | channelList = [] |
|
566 | channelList = [] | |
567 | maintitle = "Spectra Cuts" |
|
567 | maintitle = "Spectra Cuts" | |
568 | flag_setIndex = False |
|
568 | flag_setIndex = False | |
569 |
|
569 | |||
570 | def setup(self): |
|
570 | def setup(self): | |
571 |
|
571 | |||
572 | self.nplots = len(self.data.channels) |
|
572 | self.nplots = len(self.data.channels) | |
573 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
573 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
574 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
574 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
575 | self.width = 4.5 * self.ncols + 2.5 |
|
575 | self.width = 4.5 * self.ncols + 2.5 | |
576 | self.height = 4.8 * self.nrows |
|
576 | self.height = 4.8 * self.nrows | |
577 | self.ylabel = 'Power [dB]' |
|
577 | self.ylabel = 'Power [dB]' | |
578 | self.colorbar = False |
|
578 | self.colorbar = False | |
579 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.9, 'bottom':0.08}) |
|
579 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.9, 'bottom':0.08}) | |
580 |
|
580 | |||
581 | if len(self.selectedHeightsList) > 0: |
|
581 | if len(self.selectedHeightsList) > 0: | |
582 | self.maintitle = "Spectra Cut"# for %d km " %(int(self.selectedHeight)) |
|
582 | self.maintitle = "Spectra Cut"# for %d km " %(int(self.selectedHeight)) | |
583 |
|
583 | |||
584 |
|
584 | |||
585 |
|
585 | |||
586 | def update(self, dataOut): |
|
586 | def update(self, dataOut): | |
587 | if len(self.channelList) == 0: |
|
587 | if len(self.channelList) == 0: | |
588 | self.channelList = dataOut.channelList |
|
588 | self.channelList = dataOut.channelList | |
589 |
|
589 | |||
590 | self.heights = dataOut.heightList |
|
590 | self.heights = dataOut.heightList | |
591 | #print("sels: ",self.selectedHeightsList) |
|
591 | #print("sels: ",self.selectedHeightsList) | |
592 | if len(self.selectedHeightsList)>0 and not self.flag_setIndex: |
|
592 | if len(self.selectedHeightsList)>0 and not self.flag_setIndex: | |
593 |
|
593 | |||
594 | for sel_height in self.selectedHeightsList: |
|
594 | for sel_height in self.selectedHeightsList: | |
595 | index_list = numpy.where(self.heights >= sel_height) |
|
595 | index_list = numpy.where(self.heights >= sel_height) | |
596 | index_list = index_list[0] |
|
596 | index_list = index_list[0] | |
597 | self.height_index.append(index_list[0]) |
|
597 | self.height_index.append(index_list[0]) | |
598 | #print("sels i:"", self.height_index) |
|
598 | #print("sels i:"", self.height_index) | |
599 | self.flag_setIndex = True |
|
599 | self.flag_setIndex = True | |
600 | #print(self.height_index) |
|
600 | #print(self.height_index) | |
601 | data = {} |
|
601 | data = {} | |
602 | meta = {} |
|
602 | meta = {} | |
603 |
|
603 | |||
604 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter#*dataOut.nFFTPoints |
|
604 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter#*dataOut.nFFTPoints | |
605 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) |
|
605 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) | |
606 | noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights) |
|
606 | noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights) | |
607 |
|
607 | |||
608 |
|
608 | |||
609 | z = [] |
|
609 | z = [] | |
610 | for ch in range(dataOut.nChannels): |
|
610 | for ch in range(dataOut.nChannels): | |
611 | if hasattr(dataOut.normFactor,'shape'): |
|
611 | if hasattr(dataOut.normFactor,'shape'): | |
612 | z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) |
|
612 | z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) | |
613 | else: |
|
613 | else: | |
614 | z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
614 | z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) | |
615 |
|
615 | |||
616 | z = numpy.asarray(z) |
|
616 | z = numpy.asarray(z) | |
617 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
617 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
618 | spc = 10*numpy.log10(z) |
|
618 | spc = 10*numpy.log10(z) | |
619 |
|
619 | |||
620 |
|
620 | |||
621 | data['spc'] = spc - noise |
|
621 | data['spc'] = spc - noise | |
622 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) |
|
622 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
623 |
|
623 | |||
624 | return data, meta |
|
624 | return data, meta | |
625 |
|
625 | |||
626 | def plot(self): |
|
626 | def plot(self): | |
627 | if self.xaxis == "frequency": |
|
627 | if self.xaxis == "frequency": | |
628 | x = self.data.xrange[0][1:] |
|
628 | x = self.data.xrange[0][1:] | |
629 | self.xlabel = "Frequency (kHz)" |
|
629 | self.xlabel = "Frequency (kHz)" | |
630 | elif self.xaxis == "time": |
|
630 | elif self.xaxis == "time": | |
631 | x = self.data.xrange[1] |
|
631 | x = self.data.xrange[1] | |
632 | self.xlabel = "Time (ms)" |
|
632 | self.xlabel = "Time (ms)" | |
633 | else: |
|
633 | else: | |
634 | x = self.data.xrange[2] |
|
634 | x = self.data.xrange[2] | |
635 | self.xlabel = "Velocity (m/s)" |
|
635 | self.xlabel = "Velocity (m/s)" | |
636 |
|
636 | |||
637 | self.titles = [] |
|
637 | self.titles = [] | |
638 |
|
638 | |||
639 | y = self.data.yrange |
|
639 | y = self.data.yrange | |
640 | z = self.data[-1]['spc'] |
|
640 | z = self.data[-1]['spc'] | |
641 | #print(z.shape) |
|
641 | #print(z.shape) | |
642 | if len(self.height_index) > 0: |
|
642 | if len(self.height_index) > 0: | |
643 | index = self.height_index |
|
643 | index = self.height_index | |
644 | else: |
|
644 | else: | |
645 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
645 | index = numpy.arange(0, len(y), int((len(y))/9)) | |
646 | #print("inde x ", index, self.axes) |
|
646 | #print("inde x ", index, self.axes) | |
647 |
|
647 | |||
648 | for n, ax in enumerate(self.axes): |
|
648 | for n, ax in enumerate(self.axes): | |
649 |
|
649 | |||
650 | if ax.firsttime: |
|
650 | if ax.firsttime: | |
651 |
|
651 | |||
652 |
|
652 | |||
653 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
653 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
654 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
654 | self.xmin = self.xmin if self.xmin else -self.xmax | |
655 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
655 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) | |
656 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
656 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) | |
657 |
|
657 | |||
658 |
|
658 | |||
659 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
659 | ax.plt = ax.plot(x, z[n, :, index].T) | |
660 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
660 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] | |
661 | self.figures[0].legend(ax.plt, labels, loc='center right', prop={'size': 8}) |
|
661 | self.figures[0].legend(ax.plt, labels, loc='center right', prop={'size': 8}) | |
662 | ax.minorticks_on() |
|
662 | ax.minorticks_on() | |
663 | ax.grid(which='major', axis='both') |
|
663 | ax.grid(which='major', axis='both') | |
664 | ax.grid(which='minor', axis='x') |
|
664 | ax.grid(which='minor', axis='x') | |
665 | else: |
|
665 | else: | |
666 | for i, line in enumerate(ax.plt): |
|
666 | for i, line in enumerate(ax.plt): | |
667 | line.set_data(x, z[n, :, index[i]]) |
|
667 | line.set_data(x, z[n, :, index[i]]) | |
668 |
|
668 | |||
669 |
|
669 | |||
670 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
670 | self.titles.append('CH {}'.format(self.channelList[n])) | |
671 | plt.suptitle(self.maintitle, fontsize=10) |
|
671 | plt.suptitle(self.maintitle, fontsize=10) | |
672 |
|
672 | |||
673 |
|
673 | |||
674 | class BeaconPhase(Plot): |
|
674 | class BeaconPhase(Plot): | |
675 |
|
675 | |||
676 | __isConfig = None |
|
676 | __isConfig = None | |
677 | __nsubplots = None |
|
677 | __nsubplots = None | |
678 |
|
678 | |||
679 | PREFIX = 'beacon_phase' |
|
679 | PREFIX = 'beacon_phase' | |
680 |
|
680 | |||
681 | def __init__(self): |
|
681 | def __init__(self): | |
682 | Plot.__init__(self) |
|
682 | Plot.__init__(self) | |
683 | self.timerange = 24*60*60 |
|
683 | self.timerange = 24*60*60 | |
684 | self.isConfig = False |
|
684 | self.isConfig = False | |
685 | self.__nsubplots = 1 |
|
685 | self.__nsubplots = 1 | |
686 | self.counter_imagwr = 0 |
|
686 | self.counter_imagwr = 0 | |
687 | self.WIDTH = 800 |
|
687 | self.WIDTH = 800 | |
688 | self.HEIGHT = 400 |
|
688 | self.HEIGHT = 400 | |
689 | self.WIDTHPROF = 120 |
|
689 | self.WIDTHPROF = 120 | |
690 | self.HEIGHTPROF = 0 |
|
690 | self.HEIGHTPROF = 0 | |
691 | self.xdata = None |
|
691 | self.xdata = None | |
692 | self.ydata = None |
|
692 | self.ydata = None | |
693 |
|
693 | |||
694 | self.PLOT_CODE = BEACON_CODE |
|
694 | self.PLOT_CODE = BEACON_CODE | |
695 |
|
695 | |||
696 | self.FTP_WEI = None |
|
696 | self.FTP_WEI = None | |
697 | self.EXP_CODE = None |
|
697 | self.EXP_CODE = None | |
698 | self.SUB_EXP_CODE = None |
|
698 | self.SUB_EXP_CODE = None | |
699 | self.PLOT_POS = None |
|
699 | self.PLOT_POS = None | |
700 |
|
700 | |||
701 | self.filename_phase = None |
|
701 | self.filename_phase = None | |
702 |
|
702 | |||
703 | self.figfile = None |
|
703 | self.figfile = None | |
704 |
|
704 | |||
705 | self.xmin = None |
|
705 | self.xmin = None | |
706 | self.xmax = None |
|
706 | self.xmax = None | |
707 |
|
707 | |||
708 | def getSubplots(self): |
|
708 | def getSubplots(self): | |
709 |
|
709 | |||
710 | ncol = 1 |
|
710 | ncol = 1 | |
711 | nrow = 1 |
|
711 | nrow = 1 | |
712 |
|
712 | |||
713 | return nrow, ncol |
|
713 | return nrow, ncol | |
714 |
|
714 | |||
715 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
715 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
716 |
|
716 | |||
717 | self.__showprofile = showprofile |
|
717 | self.__showprofile = showprofile | |
718 | self.nplots = nplots |
|
718 | self.nplots = nplots | |
719 |
|
719 | |||
720 | ncolspan = 7 |
|
720 | ncolspan = 7 | |
721 | colspan = 6 |
|
721 | colspan = 6 | |
722 | self.__nsubplots = 2 |
|
722 | self.__nsubplots = 2 | |
723 |
|
723 | |||
724 | self.createFigure(id = id, |
|
724 | self.createFigure(id = id, | |
725 | wintitle = wintitle, |
|
725 | wintitle = wintitle, | |
726 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
726 | widthplot = self.WIDTH+self.WIDTHPROF, | |
727 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
727 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
728 | show=show) |
|
728 | show=show) | |
729 |
|
729 | |||
730 | nrow, ncol = self.getSubplots() |
|
730 | nrow, ncol = self.getSubplots() | |
731 |
|
731 | |||
732 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
732 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
733 |
|
733 | |||
734 | def save_phase(self, filename_phase): |
|
734 | def save_phase(self, filename_phase): | |
735 | f = open(filename_phase,'w+') |
|
735 | f = open(filename_phase,'w+') | |
736 | f.write('\n\n') |
|
736 | f.write('\n\n') | |
737 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
737 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
738 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
738 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
739 | f.close() |
|
739 | f.close() | |
740 |
|
740 | |||
741 | def save_data(self, filename_phase, data, data_datetime): |
|
741 | def save_data(self, filename_phase, data, data_datetime): | |
742 | f=open(filename_phase,'a') |
|
742 | f=open(filename_phase,'a') | |
743 | timetuple_data = data_datetime.timetuple() |
|
743 | timetuple_data = data_datetime.timetuple() | |
744 | day = str(timetuple_data.tm_mday) |
|
744 | day = str(timetuple_data.tm_mday) | |
745 | month = str(timetuple_data.tm_mon) |
|
745 | month = str(timetuple_data.tm_mon) | |
746 | year = str(timetuple_data.tm_year) |
|
746 | year = str(timetuple_data.tm_year) | |
747 | hour = str(timetuple_data.tm_hour) |
|
747 | hour = str(timetuple_data.tm_hour) | |
748 | minute = str(timetuple_data.tm_min) |
|
748 | minute = str(timetuple_data.tm_min) | |
749 | second = str(timetuple_data.tm_sec) |
|
749 | second = str(timetuple_data.tm_sec) | |
750 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
750 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
751 | f.close() |
|
751 | f.close() | |
752 |
|
752 | |||
753 | def plot(self): |
|
753 | def plot(self): | |
754 | log.warning('TODO: Not yet implemented...') |
|
754 | log.warning('TODO: Not yet implemented...') | |
755 |
|
755 | |||
756 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
756 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
757 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
757 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
758 | timerange=None, |
|
758 | timerange=None, | |
759 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
759 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
760 | server=None, folder=None, username=None, password=None, |
|
760 | server=None, folder=None, username=None, password=None, | |
761 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
761 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
762 |
|
762 | |||
763 | if dataOut.flagNoData: |
|
763 | if dataOut.flagNoData: | |
764 | return dataOut |
|
764 | return dataOut | |
765 |
|
765 | |||
766 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
766 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
767 | return |
|
767 | return | |
768 |
|
768 | |||
769 | if pairsList == None: |
|
769 | if pairsList == None: | |
770 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
770 | pairsIndexList = dataOut.pairsIndexList[:10] | |
771 | else: |
|
771 | else: | |
772 | pairsIndexList = [] |
|
772 | pairsIndexList = [] | |
773 | for pair in pairsList: |
|
773 | for pair in pairsList: | |
774 | if pair not in dataOut.pairsList: |
|
774 | if pair not in dataOut.pairsList: | |
775 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
775 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) | |
776 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
776 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
777 |
|
777 | |||
778 | if pairsIndexList == []: |
|
778 | if pairsIndexList == []: | |
779 | return |
|
779 | return | |
780 |
|
780 | |||
781 | # if len(pairsIndexList) > 4: |
|
781 | # if len(pairsIndexList) > 4: | |
782 | # pairsIndexList = pairsIndexList[0:4] |
|
782 | # pairsIndexList = pairsIndexList[0:4] | |
783 |
|
783 | |||
784 | hmin_index = None |
|
784 | hmin_index = None | |
785 | hmax_index = None |
|
785 | hmax_index = None | |
786 |
|
786 | |||
787 | if hmin != None and hmax != None: |
|
787 | if hmin != None and hmax != None: | |
788 | indexes = numpy.arange(dataOut.nHeights) |
|
788 | indexes = numpy.arange(dataOut.nHeights) | |
789 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
789 | hmin_list = indexes[dataOut.heightList >= hmin] | |
790 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
790 | hmax_list = indexes[dataOut.heightList <= hmax] | |
791 |
|
791 | |||
792 | if hmin_list.any(): |
|
792 | if hmin_list.any(): | |
793 | hmin_index = hmin_list[0] |
|
793 | hmin_index = hmin_list[0] | |
794 |
|
794 | |||
795 | if hmax_list.any(): |
|
795 | if hmax_list.any(): | |
796 | hmax_index = hmax_list[-1]+1 |
|
796 | hmax_index = hmax_list[-1]+1 | |
797 |
|
797 | |||
798 | x = dataOut.getTimeRange() |
|
798 | x = dataOut.getTimeRange() | |
799 |
|
799 | |||
800 | thisDatetime = dataOut.datatime |
|
800 | thisDatetime = dataOut.datatime | |
801 |
|
801 | |||
802 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
802 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
803 | xlabel = "Local Time" |
|
803 | xlabel = "Local Time" | |
804 | ylabel = "Phase (degrees)" |
|
804 | ylabel = "Phase (degrees)" | |
805 |
|
805 | |||
806 | update_figfile = False |
|
806 | update_figfile = False | |
807 |
|
807 | |||
808 | nplots = len(pairsIndexList) |
|
808 | nplots = len(pairsIndexList) | |
809 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
809 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
810 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
810 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
811 | for i in range(nplots): |
|
811 | for i in range(nplots): | |
812 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
812 | pair = dataOut.pairsList[pairsIndexList[i]] | |
813 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
813 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
814 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
814 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
815 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
815 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
816 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
816 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
817 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
817 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
818 |
|
818 | |||
819 | if dataOut.beacon_heiIndexList: |
|
819 | if dataOut.beacon_heiIndexList: | |
820 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
820 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
821 | else: |
|
821 | else: | |
822 | phase_beacon[i] = numpy.average(phase) |
|
822 | phase_beacon[i] = numpy.average(phase) | |
823 |
|
823 | |||
824 | if not self.isConfig: |
|
824 | if not self.isConfig: | |
825 |
|
825 | |||
826 | nplots = len(pairsIndexList) |
|
826 | nplots = len(pairsIndexList) | |
827 |
|
827 | |||
828 | self.setup(id=id, |
|
828 | self.setup(id=id, | |
829 | nplots=nplots, |
|
829 | nplots=nplots, | |
830 | wintitle=wintitle, |
|
830 | wintitle=wintitle, | |
831 | showprofile=showprofile, |
|
831 | showprofile=showprofile, | |
832 | show=show) |
|
832 | show=show) | |
833 |
|
833 | |||
834 | if timerange != None: |
|
834 | if timerange != None: | |
835 | self.timerange = timerange |
|
835 | self.timerange = timerange | |
836 |
|
836 | |||
837 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
837 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
838 |
|
838 | |||
839 | if ymin == None: ymin = 0 |
|
839 | if ymin == None: ymin = 0 | |
840 | if ymax == None: ymax = 360 |
|
840 | if ymax == None: ymax = 360 | |
841 |
|
841 | |||
842 | self.FTP_WEI = ftp_wei |
|
842 | self.FTP_WEI = ftp_wei | |
843 | self.EXP_CODE = exp_code |
|
843 | self.EXP_CODE = exp_code | |
844 | self.SUB_EXP_CODE = sub_exp_code |
|
844 | self.SUB_EXP_CODE = sub_exp_code | |
845 | self.PLOT_POS = plot_pos |
|
845 | self.PLOT_POS = plot_pos | |
846 |
|
846 | |||
847 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
847 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
848 | self.isConfig = True |
|
848 | self.isConfig = True | |
849 | self.figfile = figfile |
|
849 | self.figfile = figfile | |
850 | self.xdata = numpy.array([]) |
|
850 | self.xdata = numpy.array([]) | |
851 | self.ydata = numpy.array([]) |
|
851 | self.ydata = numpy.array([]) | |
852 |
|
852 | |||
853 | update_figfile = True |
|
853 | update_figfile = True | |
854 |
|
854 | |||
855 | #open file beacon phase |
|
855 | #open file beacon phase | |
856 | path = '%s%03d' %(self.PREFIX, self.id) |
|
856 | path = '%s%03d' %(self.PREFIX, self.id) | |
857 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
857 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
858 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
858 | self.filename_phase = os.path.join(figpath,beacon_file) | |
859 | #self.save_phase(self.filename_phase) |
|
859 | #self.save_phase(self.filename_phase) | |
860 |
|
860 | |||
861 |
|
861 | |||
862 | #store data beacon phase |
|
862 | #store data beacon phase | |
863 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
863 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
864 |
|
864 | |||
865 | self.setWinTitle(title) |
|
865 | self.setWinTitle(title) | |
866 |
|
866 | |||
867 |
|
867 | |||
868 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
868 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
869 |
|
869 | |||
870 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
870 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
871 |
|
871 | |||
872 | axes = self.axesList[0] |
|
872 | axes = self.axesList[0] | |
873 |
|
873 | |||
874 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
874 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
875 |
|
875 | |||
876 | if len(self.ydata)==0: |
|
876 | if len(self.ydata)==0: | |
877 | self.ydata = phase_beacon.reshape(-1,1) |
|
877 | self.ydata = phase_beacon.reshape(-1,1) | |
878 | else: |
|
878 | else: | |
879 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
879 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
880 |
|
880 | |||
881 |
|
881 | |||
882 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
882 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
883 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
883 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
884 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
884 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
885 | XAxisAsTime=True, grid='both' |
|
885 | XAxisAsTime=True, grid='both' | |
886 | ) |
|
886 | ) | |
887 |
|
887 | |||
888 | self.draw() |
|
888 | self.draw() | |
889 |
|
889 | |||
890 | if dataOut.ltctime >= self.xmax: |
|
890 | if dataOut.ltctime >= self.xmax: | |
891 | self.counter_imagwr = wr_period |
|
891 | self.counter_imagwr = wr_period | |
892 | self.isConfig = False |
|
892 | self.isConfig = False | |
893 | update_figfile = True |
|
893 | update_figfile = True | |
894 |
|
894 | |||
895 | self.save(figpath=figpath, |
|
895 | self.save(figpath=figpath, | |
896 | figfile=figfile, |
|
896 | figfile=figfile, | |
897 | save=save, |
|
897 | save=save, | |
898 | ftp=ftp, |
|
898 | ftp=ftp, | |
899 | wr_period=wr_period, |
|
899 | wr_period=wr_period, | |
900 | thisDatetime=thisDatetime, |
|
900 | thisDatetime=thisDatetime, | |
901 | update_figfile=update_figfile) |
|
901 | update_figfile=update_figfile) | |
902 |
|
902 | |||
903 | return dataOut |
|
903 | return dataOut | |
904 |
|
904 | |||
905 | class NoiselessSpectraPlot(Plot): |
|
905 | class NoiselessSpectraPlot(Plot): | |
906 | ''' |
|
906 | ''' | |
907 | Plot for Spectra data, subtracting |
|
907 | Plot for Spectra data, subtracting | |
908 | the noise in all channels, using for |
|
908 | the noise in all channels, using for | |
909 | amisr-14 data |
|
909 | amisr-14 data | |
910 | ''' |
|
910 | ''' | |
911 |
|
911 | |||
912 | CODE = 'noiseless_spc' |
|
912 | CODE = 'noiseless_spc' | |
913 | colormap = 'jet' |
|
913 | colormap = 'jet' | |
914 | plot_type = 'pcolor' |
|
914 | plot_type = 'pcolor' | |
915 | buffering = False |
|
915 | buffering = False | |
916 | channelList = [] |
|
916 | channelList = [] | |
917 | last_noise = None |
|
917 | last_noise = None | |
918 |
|
918 | |||
919 | def setup(self): |
|
919 | def setup(self): | |
920 |
|
920 | |||
921 | self.nplots = len(self.data.channels) |
|
921 | self.nplots = len(self.data.channels) | |
922 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
922 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
923 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
923 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
924 | self.height = 3.5 * self.nrows |
|
924 | self.height = 3.5 * self.nrows | |
925 |
|
925 | |||
926 | self.cb_label = 'dB' |
|
926 | self.cb_label = 'dB' | |
927 | if self.showprofile: |
|
927 | if self.showprofile: | |
928 | self.width = 5.8 * self.ncols |
|
928 | self.width = 5.8 * self.ncols | |
929 | else: |
|
929 | else: | |
930 | self.width = 4.8* self.ncols |
|
930 | self.width = 4.8* self.ncols | |
931 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.92, 'bottom': 0.12}) |
|
931 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.92, 'bottom': 0.12}) | |
932 |
|
932 | |||
933 | self.ylabel = 'Range [km]' |
|
933 | self.ylabel = 'Range [km]' | |
934 |
|
934 | |||
935 |
|
935 | |||
936 | def update_list(self,dataOut): |
|
936 | def update_list(self,dataOut): | |
937 | if len(self.channelList) == 0: |
|
937 | if len(self.channelList) == 0: | |
938 | self.channelList = dataOut.channelList |
|
938 | self.channelList = dataOut.channelList | |
939 |
|
939 | |||
940 | def update(self, dataOut): |
|
940 | def update(self, dataOut): | |
941 |
|
941 | |||
942 | self.update_list(dataOut) |
|
942 | self.update_list(dataOut) | |
943 | data = {} |
|
943 | data = {} | |
944 | meta = {} |
|
944 | meta = {} | |
945 |
|
945 | |||
946 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
946 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter | |
947 | n0 = (dataOut.getNoise()/norm) |
|
947 | n0 = (dataOut.getNoise()/norm) | |
948 | noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights) |
|
948 | noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights) | |
949 | noise = 10*numpy.log10(noise) |
|
949 | noise = 10*numpy.log10(noise) | |
950 |
|
950 | |||
951 | z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights)) |
|
951 | z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights)) | |
952 | for ch in range(dataOut.nChannels): |
|
952 | for ch in range(dataOut.nChannels): | |
953 | if hasattr(dataOut.normFactor,'ndim'): |
|
953 | if hasattr(dataOut.normFactor,'ndim'): | |
954 | if dataOut.normFactor.ndim > 1: |
|
954 | if dataOut.normFactor.ndim > 1: | |
955 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) |
|
955 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch])) | |
956 | else: |
|
956 | else: | |
957 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
957 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) | |
958 | else: |
|
958 | else: | |
959 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) |
|
959 | z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor)) | |
960 |
|
960 | |||
961 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
961 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
962 | spc = 10*numpy.log10(z) |
|
962 | spc = 10*numpy.log10(z) | |
963 |
|
963 | |||
964 |
|
964 | |||
965 | data['spc'] = spc - noise |
|
965 | data['spc'] = spc - noise | |
966 | #print(spc.shape) |
|
966 | #print(spc.shape) | |
967 | data['rti'] = spc.mean(axis=1) |
|
967 | data['rti'] = spc.mean(axis=1) | |
968 | data['noise'] = noise |
|
968 | data['noise'] = noise | |
969 |
|
969 | |||
970 |
|
970 | |||
971 |
|
971 | |||
972 | # data['noise'] = noise |
|
972 | # data['noise'] = noise | |
973 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) |
|
973 | meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS)) | |
974 |
|
974 | |||
975 | return data, meta |
|
975 | return data, meta | |
976 |
|
976 | |||
977 | def plot(self): |
|
977 | def plot(self): | |
978 | if self.xaxis == "frequency": |
|
978 | if self.xaxis == "frequency": | |
979 | x = self.data.xrange[0] |
|
979 | x = self.data.xrange[0] | |
980 | self.xlabel = "Frequency (kHz)" |
|
980 | self.xlabel = "Frequency (kHz)" | |
981 | elif self.xaxis == "time": |
|
981 | elif self.xaxis == "time": | |
982 | x = self.data.xrange[1] |
|
982 | x = self.data.xrange[1] | |
983 | self.xlabel = "Time (ms)" |
|
983 | self.xlabel = "Time (ms)" | |
984 | else: |
|
984 | else: | |
985 | x = self.data.xrange[2] |
|
985 | x = self.data.xrange[2] | |
986 | self.xlabel = "Velocity (m/s)" |
|
986 | self.xlabel = "Velocity (m/s)" | |
987 |
|
987 | |||
988 | self.titles = [] |
|
988 | self.titles = [] | |
989 | y = self.data.yrange |
|
989 | y = self.data.yrange | |
990 | self.y = y |
|
990 | self.y = y | |
991 |
|
991 | |||
992 | data = self.data[-1] |
|
992 | data = self.data[-1] | |
993 | z = data['spc'] |
|
993 | z = data['spc'] | |
994 |
|
994 | |||
995 | for n, ax in enumerate(self.axes): |
|
995 | for n, ax in enumerate(self.axes): | |
996 | #noise = data['noise'][n] |
|
996 | #noise = data['noise'][n] | |
997 |
|
997 | |||
998 | if ax.firsttime: |
|
998 | if ax.firsttime: | |
999 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
999 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
1000 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
1000 | self.xmin = self.xmin if self.xmin else -self.xmax | |
1001 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
1001 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
1002 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
1002 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
1003 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1003 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
1004 | vmin=self.zmin, |
|
1004 | vmin=self.zmin, | |
1005 | vmax=self.zmax, |
|
1005 | vmax=self.zmax, | |
1006 | cmap=plt.get_cmap(self.colormap) |
|
1006 | cmap=plt.get_cmap(self.colormap) | |
1007 | ) |
|
1007 | ) | |
1008 |
|
1008 | |||
1009 | if self.showprofile: |
|
1009 | if self.showprofile: | |
1010 | ax.plt_profile = self.pf_axes[n].plot( |
|
1010 | ax.plt_profile = self.pf_axes[n].plot( | |
1011 | data['rti'][n], y)[0] |
|
1011 | data['rti'][n], y)[0] | |
1012 |
|
1012 | |||
1013 |
|
1013 | |||
1014 | else: |
|
1014 | else: | |
1015 | ax.plt.set_array(z[n].T.ravel()) |
|
1015 | ax.plt.set_array(z[n].T.ravel()) | |
1016 | if self.showprofile: |
|
1016 | if self.showprofile: | |
1017 | ax.plt_profile.set_data(data['rti'][n], y) |
|
1017 | ax.plt_profile.set_data(data['rti'][n], y) | |
1018 |
|
1018 | |||
1019 |
|
1019 | |||
1020 | self.titles.append('CH {}'.format(self.channelList[n])) |
|
1020 | self.titles.append('CH {}'.format(self.channelList[n])) | |
1021 |
|
1021 | |||
1022 |
|
1022 | |||
1023 | class NoiselessRTIPlot(RTIPlot): |
|
1023 | class NoiselessRTIPlot(RTIPlot): | |
1024 | ''' |
|
1024 | ''' | |
1025 | Plot for RTI data |
|
1025 | Plot for RTI data | |
1026 | ''' |
|
1026 | ''' | |
1027 |
|
1027 | |||
1028 | CODE = 'noiseless_rti' |
|
1028 | CODE = 'noiseless_rti' | |
1029 | colormap = 'jet' |
|
1029 | colormap = 'jet' | |
1030 | plot_type = 'pcolorbuffer' |
|
1030 | plot_type = 'pcolorbuffer' | |
1031 | titles = None |
|
1031 | titles = None | |
1032 | channelList = [] |
|
1032 | channelList = [] | |
1033 | elevationList = [] |
|
1033 | elevationList = [] | |
1034 | azimuthList = [] |
|
1034 | azimuthList = [] | |
1035 | last_noise = None |
|
1035 | last_noise = None | |
1036 |
|
1036 | |||
1037 | def setup(self): |
|
1037 | def setup(self): | |
1038 | self.xaxis = 'time' |
|
1038 | self.xaxis = 'time' | |
1039 | self.ncols = 1 |
|
1039 | self.ncols = 1 | |
1040 | #print("dataChannels ",self.data.channels) |
|
1040 | #print("dataChannels ",self.data.channels) | |
1041 | self.nrows = len(self.data.channels) |
|
1041 | self.nrows = len(self.data.channels) | |
1042 | self.nplots = len(self.data.channels) |
|
1042 | self.nplots = len(self.data.channels) | |
1043 | self.ylabel = 'Range [km]' |
|
1043 | self.ylabel = 'Range [km]' | |
1044 | self.xlabel = 'Time' |
|
1044 | self.xlabel = 'Time' | |
1045 | self.cb_label = 'dB' |
|
1045 | self.cb_label = 'dB' | |
1046 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
1046 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) | |
1047 | self.titles = ['{} Channel {}'.format( |
|
1047 | self.titles = ['{} Channel {}'.format( | |
1048 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
1048 | self.CODE.upper(), x) for x in range(self.nplots)] | |
1049 |
|
1049 | |||
1050 | def update_list(self,dataOut): |
|
1050 | def update_list(self,dataOut): | |
1051 | if len(self.channelList) == 0: |
|
1051 | if len(self.channelList) == 0: | |
1052 | self.channelList = dataOut.channelList |
|
1052 | self.channelList = dataOut.channelList | |
1053 | if len(self.elevationList) == 0: |
|
1053 | if len(self.elevationList) == 0: | |
1054 | self.elevationList = dataOut.elevationList |
|
1054 | self.elevationList = dataOut.elevationList | |
1055 | if len(self.azimuthList) == 0: |
|
1055 | if len(self.azimuthList) == 0: | |
1056 | self.azimuthList = dataOut.azimuthList |
|
1056 | self.azimuthList = dataOut.azimuthList | |
1057 |
|
1057 | |||
1058 | def update(self, dataOut): |
|
1058 | def update(self, dataOut): | |
1059 | if len(self.channelList) == 0: |
|
1059 | if len(self.channelList) == 0: | |
1060 | self.update_list(dataOut) |
|
1060 | self.update_list(dataOut) | |
1061 |
|
1061 | |||
1062 | data = {} |
|
1062 | data = {} | |
1063 | meta = {} |
|
1063 | meta = {} | |
1064 | #print(dataOut.max_nIncohInt, dataOut.nIncohInt) |
|
1064 | #print(dataOut.max_nIncohInt, dataOut.nIncohInt) | |
1065 |
#print(dataOut.windowOfFilter,dataOut.nCohInt,dataOut.nProfiles,dataOut.max_nIncohInt,dataOut.nIncohInt |
|
1065 | #print(dataOut.windowOfFilter,dataOut.nCohInt,dataOut.nProfiles,dataOut.max_nIncohInt,dataOut.nIncohInt | |
1066 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
1066 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter | |
1067 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) |
|
1067 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) | |
1068 | data['noise'] = n0 |
|
1068 | data['noise'] = n0 | |
1069 | noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights) |
|
1069 | noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights) | |
1070 | noiseless_data = dataOut.getPower() - noise |
|
1070 | noiseless_data = dataOut.getPower() - noise | |
1071 |
|
1071 | |||
1072 | #print("power, noise:", dataOut.getPower(), n0) |
|
1072 | #print("power, noise:", dataOut.getPower(), n0) | |
1073 | #print(noise) |
|
1073 | #print(noise) | |
1074 | #print(noiseless_data) |
|
1074 | #print(noiseless_data) | |
1075 |
|
1075 | |||
1076 | data['noiseless_rti'] = noiseless_data |
|
1076 | data['noiseless_rti'] = noiseless_data | |
1077 |
|
1077 | |||
1078 | return data, meta |
|
1078 | return data, meta | |
1079 |
|
1079 | |||
1080 | def plot(self): |
|
1080 | def plot(self): | |
1081 | from matplotlib import pyplot as plt |
|
1081 | from matplotlib import pyplot as plt | |
1082 | self.x = self.data.times |
|
1082 | self.x = self.data.times | |
1083 | self.y = self.data.yrange |
|
1083 | self.y = self.data.yrange | |
1084 | self.z = self.data['noiseless_rti'] |
|
1084 | self.z = self.data['noiseless_rti'] | |
1085 | self.z = numpy.array(self.z, dtype=float) |
|
1085 | self.z = numpy.array(self.z, dtype=float) | |
1086 | self.z = numpy.ma.masked_invalid(self.z) |
|
1086 | self.z = numpy.ma.masked_invalid(self.z) | |
1087 |
|
1087 | |||
1088 |
|
1088 | |||
1089 | try: |
|
1089 | try: | |
1090 | if self.channelList != None: |
|
1090 | if self.channelList != None: | |
1091 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
1091 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: | |
1092 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
1092 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( | |
1093 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
1093 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] | |
1094 | else: |
|
1094 | else: | |
1095 | self.titles = ['{} Channel {}'.format( |
|
1095 | self.titles = ['{} Channel {}'.format( | |
1096 | self.CODE.upper(), x) for x in self.channelList] |
|
1096 | self.CODE.upper(), x) for x in self.channelList] | |
1097 | except: |
|
1097 | except: | |
1098 | if self.channelList.any() != None: |
|
1098 | if self.channelList.any() != None: | |
1099 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: |
|
1099 | if len(self.elevationList) > 0 and len(self.azimuthList) > 0: | |
1100 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( |
|
1100 | self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format( | |
1101 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] |
|
1101 | self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList] | |
1102 | else: |
|
1102 | else: | |
1103 | self.titles = ['{} Channel {}'.format( |
|
1103 | self.titles = ['{} Channel {}'.format( | |
1104 | self.CODE.upper(), x) for x in self.channelList] |
|
1104 | self.CODE.upper(), x) for x in self.channelList] | |
1105 |
|
1105 | |||
1106 |
|
1106 | |||
1107 | if self.decimation is None: |
|
1107 | if self.decimation is None: | |
1108 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1108 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
1109 | else: |
|
1109 | else: | |
1110 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1110 | x, y, z = self.fill_gaps(*self.decimate()) | |
1111 |
|
1111 | |||
1112 | dummy_var = self.axes #Extrañamente esto actualiza el valor axes |
|
1112 | dummy_var = self.axes #Extrañamente esto actualiza el valor axes | |
1113 | #print("plot shapes ", z.shape, x.shape, y.shape) |
|
1113 | #print("plot shapes ", z.shape, x.shape, y.shape) | |
1114 | #print(self.axes) |
|
1114 | #print(self.axes) | |
1115 | for n, ax in enumerate(self.axes): |
|
1115 | for n, ax in enumerate(self.axes): | |
1116 |
|
1116 | |||
1117 |
|
1117 | |||
1118 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
1118 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
1119 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
1119 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
1120 | data = self.data[-1] |
|
1120 | data = self.data[-1] | |
1121 | if ax.firsttime: |
|
1121 | if ax.firsttime: | |
1122 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1122 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
1123 | vmin=self.zmin, |
|
1123 | vmin=self.zmin, | |
1124 | vmax=self.zmax, |
|
1124 | vmax=self.zmax, | |
1125 | cmap=plt.get_cmap(self.colormap) |
|
1125 | cmap=plt.get_cmap(self.colormap) | |
1126 | ) |
|
1126 | ) | |
1127 | if self.showprofile: |
|
1127 | if self.showprofile: | |
1128 | ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0] |
|
1128 | ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0] | |
1129 |
|
1129 | |||
1130 | else: |
|
1130 | else: | |
1131 | ax.collections.remove(ax.collections[0]) |
|
1131 | ax.collections.remove(ax.collections[0]) | |
1132 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1132 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
1133 | vmin=self.zmin, |
|
1133 | vmin=self.zmin, | |
1134 | vmax=self.zmax, |
|
1134 | vmax=self.zmax, | |
1135 | cmap=plt.get_cmap(self.colormap) |
|
1135 | cmap=plt.get_cmap(self.colormap) | |
1136 | ) |
|
1136 | ) | |
1137 | if self.showprofile: |
|
1137 | if self.showprofile: | |
1138 | ax.plot_profile.set_data(data['noiseless_rti'][n], self.y) |
|
1138 | ax.plot_profile.set_data(data['noiseless_rti'][n], self.y) | |
1139 | # if "noise" in self.data: |
|
1139 | # if "noise" in self.data: | |
1140 | # #ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y) |
|
1140 | # #ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y) | |
1141 | # ax.plot_noise.set_data(data['noise'][n], self.y) |
|
1141 | # ax.plot_noise.set_data(data['noise'][n], self.y) | |
1142 |
|
1142 | |||
1143 |
|
1143 | |||
1144 | class OutliersRTIPlot(Plot): |
|
1144 | class OutliersRTIPlot(Plot): | |
1145 | ''' |
|
1145 | ''' | |
1146 | Plot for data_xxxx object |
|
1146 | Plot for data_xxxx object | |
1147 | ''' |
|
1147 | ''' | |
1148 |
|
1148 | |||
1149 | CODE = 'outlier_rtc' # Range Time Counts |
|
1149 | CODE = 'outlier_rtc' # Range Time Counts | |
1150 | colormap = 'cool' |
|
1150 | colormap = 'cool' | |
1151 | plot_type = 'pcolorbuffer' |
|
1151 | plot_type = 'pcolorbuffer' | |
1152 |
|
1152 | |||
1153 | def setup(self): |
|
1153 | def setup(self): | |
1154 | self.xaxis = 'time' |
|
1154 | self.xaxis = 'time' | |
1155 | self.ncols = 1 |
|
1155 | self.ncols = 1 | |
1156 | self.nrows = self.data.shape('outlier_rtc')[0] |
|
1156 | self.nrows = self.data.shape('outlier_rtc')[0] | |
1157 | self.nplots = self.nrows |
|
1157 | self.nplots = self.nrows | |
1158 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
1158 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) | |
1159 |
|
1159 | |||
1160 |
|
1160 | |||
1161 | if not self.xlabel: |
|
1161 | if not self.xlabel: | |
1162 | self.xlabel = 'Time' |
|
1162 | self.xlabel = 'Time' | |
1163 |
|
1163 | |||
1164 | self.ylabel = 'Height [km]' |
|
1164 | self.ylabel = 'Height [km]' | |
1165 | if not self.titles: |
|
1165 | if not self.titles: | |
1166 | self.titles = ['Outliers Ch:{}'.format(x) for x in range(self.nrows)] |
|
1166 | self.titles = ['Outliers Ch:{}'.format(x) for x in range(self.nrows)] | |
1167 |
|
1167 | |||
1168 | def update(self, dataOut): |
|
1168 | def update(self, dataOut): | |
1169 |
|
1169 | |||
1170 | data = {} |
|
1170 | data = {} | |
1171 | data['outlier_rtc'] = dataOut.data_outlier |
|
1171 | data['outlier_rtc'] = dataOut.data_outlier | |
1172 |
|
1172 | |||
1173 | meta = {} |
|
1173 | meta = {} | |
1174 |
|
1174 | |||
1175 | return data, meta |
|
1175 | return data, meta | |
1176 |
|
1176 | |||
1177 | def plot(self): |
|
1177 | def plot(self): | |
1178 | # self.data.normalize_heights() |
|
1178 | # self.data.normalize_heights() | |
1179 | self.x = self.data.times |
|
1179 | self.x = self.data.times | |
1180 | self.y = self.data.yrange |
|
1180 | self.y = self.data.yrange | |
1181 | self.z = self.data['outlier_rtc'] |
|
1181 | self.z = self.data['outlier_rtc'] | |
1182 |
|
1182 | |||
1183 | #self.z = numpy.ma.masked_invalid(self.z) |
|
1183 | #self.z = numpy.ma.masked_invalid(self.z) | |
1184 |
|
1184 | |||
1185 | if self.decimation is None: |
|
1185 | if self.decimation is None: | |
1186 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1186 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
1187 | else: |
|
1187 | else: | |
1188 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1188 | x, y, z = self.fill_gaps(*self.decimate()) | |
1189 |
|
1189 | |||
1190 | for n, ax in enumerate(self.axes): |
|
1190 | for n, ax in enumerate(self.axes): | |
1191 |
|
1191 | |||
1192 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
1192 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
1193 | self.z[n]) |
|
1193 | self.z[n]) | |
1194 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
1194 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
1195 | self.z[n]) |
|
1195 | self.z[n]) | |
1196 | data = self.data[-1] |
|
1196 | data = self.data[-1] | |
1197 | if ax.firsttime: |
|
1197 | if ax.firsttime: | |
1198 | if self.zlimits is not None: |
|
1198 | if self.zlimits is not None: | |
1199 | self.zmin, self.zmax = self.zlimits[n] |
|
1199 | self.zmin, self.zmax = self.zlimits[n] | |
1200 |
|
1200 | |||
1201 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1201 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
1202 | vmin=self.zmin, |
|
1202 | vmin=self.zmin, | |
1203 | vmax=self.zmax, |
|
1203 | vmax=self.zmax, | |
1204 | cmap=self.cmaps[n] |
|
1204 | cmap=self.cmaps[n] | |
1205 | ) |
|
1205 | ) | |
1206 | if self.showprofile: |
|
1206 | if self.showprofile: | |
1207 | ax.plot_profile = self.pf_axes[n].plot(data['outlier_rtc'][n], self.y)[0] |
|
1207 | ax.plot_profile = self.pf_axes[n].plot(data['outlier_rtc'][n], self.y)[0] | |
1208 | self.pf_axes[n].set_xlabel('') |
|
1208 | self.pf_axes[n].set_xlabel('') | |
1209 | else: |
|
1209 | else: | |
1210 | if self.zlimits is not None: |
|
1210 | if self.zlimits is not None: | |
1211 | self.zmin, self.zmax = self.zlimits[n] |
|
1211 | self.zmin, self.zmax = self.zlimits[n] | |
1212 | ax.collections.remove(ax.collections[0]) |
|
1212 | ax.collections.remove(ax.collections[0]) | |
1213 | ax.plt = ax.pcolormesh(x, y, z[n].T , |
|
1213 | ax.plt = ax.pcolormesh(x, y, z[n].T , | |
1214 | vmin=self.zmin, |
|
1214 | vmin=self.zmin, | |
1215 | vmax=self.zmax, |
|
1215 | vmax=self.zmax, | |
1216 | cmap=self.cmaps[n] |
|
1216 | cmap=self.cmaps[n] | |
1217 | ) |
|
1217 | ) | |
1218 | if self.showprofile: |
|
1218 | if self.showprofile: | |
1219 | ax.plot_profile.set_data(data['outlier_rtc'][n], self.y) |
|
1219 | ax.plot_profile.set_data(data['outlier_rtc'][n], self.y) | |
1220 | self.pf_axes[n].set_xlabel('') |
|
1220 | self.pf_axes[n].set_xlabel('') | |
1221 |
|
1221 | |||
1222 | class NIncohIntRTIPlot(Plot): |
|
1222 | class NIncohIntRTIPlot(Plot): | |
1223 | ''' |
|
1223 | ''' | |
1224 | Plot for data_xxxx object |
|
1224 | Plot for data_xxxx object | |
1225 | ''' |
|
1225 | ''' | |
1226 |
|
1226 | |||
1227 | CODE = 'integrations_rtc' # Range Time Counts |
|
1227 | CODE = 'integrations_rtc' # Range Time Counts | |
1228 | colormap = 'BuGn' |
|
1228 | colormap = 'BuGn' | |
1229 | plot_type = 'pcolorbuffer' |
|
1229 | plot_type = 'pcolorbuffer' | |
1230 |
|
1230 | |||
1231 | def setup(self): |
|
1231 | def setup(self): | |
1232 | self.xaxis = 'time' |
|
1232 | self.xaxis = 'time' | |
1233 | self.ncols = 1 |
|
1233 | self.ncols = 1 | |
1234 | self.nrows = self.data.shape('integrations_rtc')[0] |
|
1234 | self.nrows = self.data.shape('integrations_rtc')[0] | |
1235 | self.nplots = self.nrows |
|
1235 | self.nplots = self.nrows | |
1236 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) |
|
1236 | self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94}) | |
1237 |
|
1237 | |||
1238 |
|
1238 | |||
1239 | if not self.xlabel: |
|
1239 | if not self.xlabel: | |
1240 | self.xlabel = 'Time' |
|
1240 | self.xlabel = 'Time' | |
1241 |
|
1241 | |||
1242 | self.ylabel = 'Height [km]' |
|
1242 | self.ylabel = 'Height [km]' | |
1243 | if not self.titles: |
|
1243 | if not self.titles: | |
1244 | self.titles = ['Integration Ch:{}'.format(x) for x in range(self.nrows)] |
|
1244 | self.titles = ['Integration Ch:{}'.format(x) for x in range(self.nrows)] | |
1245 |
|
1245 | |||
1246 | def update(self, dataOut): |
|
1246 | def update(self, dataOut): | |
1247 |
|
1247 | |||
1248 | data = {} |
|
1248 | data = {} | |
1249 | data['integrations_rtc'] = dataOut.nIncohInt |
|
1249 | data['integrations_rtc'] = dataOut.nIncohInt | |
1250 |
|
1250 | |||
1251 | meta = {} |
|
1251 | meta = {} | |
1252 |
|
1252 | |||
1253 | return data, meta |
|
1253 | return data, meta | |
1254 |
|
1254 | |||
1255 | def plot(self): |
|
1255 | def plot(self): | |
1256 | # self.data.normalize_heights() |
|
1256 | # self.data.normalize_heights() | |
1257 | self.x = self.data.times |
|
1257 | self.x = self.data.times | |
1258 | self.y = self.data.yrange |
|
1258 | self.y = self.data.yrange | |
1259 | self.z = self.data['integrations_rtc'] |
|
1259 | self.z = self.data['integrations_rtc'] | |
1260 |
|
1260 | |||
1261 | #self.z = numpy.ma.masked_invalid(self.z) |
|
1261 | #self.z = numpy.ma.masked_invalid(self.z) | |
1262 |
|
1262 | |||
1263 | if self.decimation is None: |
|
1263 | if self.decimation is None: | |
1264 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
1264 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
1265 | else: |
|
1265 | else: | |
1266 | x, y, z = self.fill_gaps(*self.decimate()) |
|
1266 | x, y, z = self.fill_gaps(*self.decimate()) | |
1267 |
|
1267 | |||
1268 | for n, ax in enumerate(self.axes): |
|
1268 | for n, ax in enumerate(self.axes): | |
1269 |
|
1269 | |||
1270 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
1270 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
1271 | self.z[n]) |
|
1271 | self.z[n]) | |
1272 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
1272 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
1273 | self.z[n]) |
|
1273 | self.z[n]) | |
1274 | data = self.data[-1] |
|
1274 | data = self.data[-1] | |
1275 | if ax.firsttime: |
|
1275 | if ax.firsttime: | |
1276 | if self.zlimits is not None: |
|
1276 | if self.zlimits is not None: | |
1277 | self.zmin, self.zmax = self.zlimits[n] |
|
1277 | self.zmin, self.zmax = self.zlimits[n] | |
1278 |
|
1278 | |||
1279 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
1279 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
1280 | vmin=self.zmin, |
|
1280 | vmin=self.zmin, | |
1281 | vmax=self.zmax, |
|
1281 | vmax=self.zmax, | |
1282 | cmap=self.cmaps[n] |
|
1282 | cmap=self.cmaps[n] | |
1283 | ) |
|
1283 | ) | |
1284 | if self.showprofile: |
|
1284 | if self.showprofile: | |
1285 | ax.plot_profile = self.pf_axes[n].plot(data['integrations_rtc'][n], self.y)[0] |
|
1285 | ax.plot_profile = self.pf_axes[n].plot(data['integrations_rtc'][n], self.y)[0] | |
1286 | self.pf_axes[n].set_xlabel('') |
|
1286 | self.pf_axes[n].set_xlabel('') | |
1287 | else: |
|
1287 | else: | |
1288 | if self.zlimits is not None: |
|
1288 | if self.zlimits is not None: | |
1289 | self.zmin, self.zmax = self.zlimits[n] |
|
1289 | self.zmin, self.zmax = self.zlimits[n] | |
1290 | ax.collections.remove(ax.collections[0]) |
|
1290 | ax.collections.remove(ax.collections[0]) | |
1291 | ax.plt = ax.pcolormesh(x, y, z[n].T , |
|
1291 | ax.plt = ax.pcolormesh(x, y, z[n].T , | |
1292 | vmin=self.zmin, |
|
1292 | vmin=self.zmin, | |
1293 | vmax=self.zmax, |
|
1293 | vmax=self.zmax, | |
1294 | cmap=self.cmaps[n] |
|
1294 | cmap=self.cmaps[n] | |
1295 | ) |
|
1295 | ) | |
1296 | if self.showprofile: |
|
1296 | if self.showprofile: | |
1297 | ax.plot_profile.set_data(data['integrations_rtc'][n], self.y) |
|
1297 | ax.plot_profile.set_data(data['integrations_rtc'][n], self.y) | |
1298 | self.pf_axes[n].set_xlabel('') |
|
1298 | self.pf_axes[n].set_xlabel('') | |
1299 |
|
1299 | |||
1300 |
|
1300 | |||
1301 | import datetime |
|
1301 | import datetime | |
1302 | class NoiselessRTILinePlot(Plot): |
|
1302 | class NoiselessRTILinePlot(Plot): | |
1303 | ''' |
|
1303 | ''' | |
1304 | Plot for RTI data |
|
1304 | Plot for RTI data | |
1305 | ''' |
|
1305 | ''' | |
1306 |
|
1306 | |||
1307 | CODE = 'noiseless_rtiLine' |
|
1307 | CODE = 'noiseless_rtiLine' | |
1308 |
|
1308 | |||
1309 | plot_type = 'scatter' |
|
1309 | plot_type = 'scatter' | |
1310 | titles = None |
|
1310 | titles = None | |
1311 | channelList = [] |
|
1311 | channelList = [] | |
1312 | elevationList = [] |
|
1312 | elevationList = [] | |
1313 | azimuthList = [] |
|
1313 | azimuthList = [] | |
1314 | last_noise = None |
|
1314 | last_noise = None | |
1315 |
|
1315 | |||
1316 | def setup(self): |
|
1316 | def setup(self): | |
1317 | self.xaxis = 'Range (Km)' |
|
1317 | self.xaxis = 'Range (Km)' | |
1318 | self.nplots = len(self.data.channels) |
|
1318 | self.nplots = len(self.data.channels) | |
1319 | self.nrows = int(numpy.ceil(self.nplots/2)) |
|
1319 | self.nrows = int(numpy.ceil(self.nplots/2)) | |
1320 | self.ncols = int(numpy.ceil(self.nplots/self.nrows)) |
|
1320 | self.ncols = int(numpy.ceil(self.nplots/self.nrows)) | |
1321 | self.ylabel = 'Intensity [dB]' |
|
1321 | self.ylabel = 'Intensity [dB]' | |
1322 | self.titles = ['Channel '+str(self.data.channels[i])+" " for i in self.data.channels] |
|
1322 | self.titles = ['Channel '+str(self.data.channels[i])+" " for i in self.data.channels] | |
1323 | self.colorbar = False |
|
1323 | self.colorbar = False | |
1324 | self.width = 6 |
|
1324 | self.width = 6 | |
1325 | self.height = 4 |
|
1325 | self.height = 4 | |
1326 |
|
1326 | |||
1327 | def update_list(self,dataOut): |
|
1327 | def update_list(self,dataOut): | |
1328 | if len(self.channelList) == 0: |
|
1328 | if len(self.channelList) == 0: | |
1329 | self.channelList = dataOut.channelList |
|
1329 | self.channelList = dataOut.channelList | |
1330 | if len(self.elevationList) == 0: |
|
1330 | if len(self.elevationList) == 0: | |
1331 | self.elevationList = dataOut.elevationList |
|
1331 | self.elevationList = dataOut.elevationList | |
1332 | if len(self.azimuthList) == 0: |
|
1332 | if len(self.azimuthList) == 0: | |
1333 | self.azimuthList = dataOut.azimuthList |
|
1333 | self.azimuthList = dataOut.azimuthList | |
1334 |
|
1334 | |||
1335 | def update(self, dataOut): |
|
1335 | def update(self, dataOut): | |
1336 | if len(self.channelList) == 0: |
|
1336 | if len(self.channelList) == 0: | |
1337 | self.update_list(dataOut) |
|
1337 | self.update_list(dataOut) | |
1338 |
|
1338 | |||
1339 | data = {} |
|
1339 | data = {} | |
1340 | meta = {} |
|
1340 | meta = {} | |
1341 | #print(dataOut.max_nIncohInt, dataOut.nIncohInt) |
|
1341 | #print(dataOut.max_nIncohInt, dataOut.nIncohInt) | |
1342 | #print(dataOut.windowOfFilter,dataOut.nCohInt,dataOut.nProfiles,dataOut.max_nIncohInt,dataOut.nIncohInt) |
|
1342 | #print(dataOut.windowOfFilter,dataOut.nCohInt,dataOut.nProfiles,dataOut.max_nIncohInt,dataOut.nIncohInt) | |
1343 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
1343 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter | |
1344 |
|
1344 | |||
1345 |
|
||||
1346 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) |
|
1345 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) | |
1347 | data['noise'] = n0 |
|
1346 | data['noise'] = n0 | |
1348 |
|
1347 | |||
1349 | noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights) |
|
1348 | noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights) | |
1350 | noiseless_data = dataOut.getPower() - noise |
|
1349 | noiseless_data = dataOut.getPower() - noise | |
1351 |
|
1350 | |||
1352 | #print("power, noise:", dataOut.getPower(), n0) |
|
1351 | #print("power, noise:", dataOut.getPower(), n0) | |
1353 | #print(noise) |
|
1352 | #print(noise) | |
1354 | #print(noiseless_data) |
|
1353 | #print(noiseless_data) | |
1355 |
|
1354 | |||
1356 | data['noiseless_rtiLine'] = noiseless_data |
|
1355 | data['noiseless_rtiLine'] = noiseless_data | |
1357 |
|
1356 | |||
1358 | print(noiseless_data.shape, self.name) |
|
1357 | #print(noiseless_data.shape, self.name) | |
1359 | data['time'] = dataOut.utctime |
|
1358 | data['time'] = dataOut.utctime | |
1360 |
|
1359 | |||
1361 | return data, meta |
|
1360 | return data, meta | |
1362 |
|
1361 | |||
1363 | def plot(self): |
|
1362 | def plot(self): | |
1364 |
|
1363 | |||
1365 | self.x = self.data.times |
|
1364 | self.x = self.data.times | |
1366 | self.y = self.data.yrange |
|
1365 | self.y = self.data.yrange | |
1367 | print(self.data['noiseless_rtiLine'].shape, self.y.shape, self.name) |
|
1366 | #print(self.data['noiseless_rtiLine'].shape, self.y.shape, self.name) | |
1368 | #ts = self.data['time'][0].squeeze() |
|
1367 | #ts = self.data['time'][0].squeeze() | |
1369 | if len(self.data['noiseless_rtiLine'])>2 : |
|
1368 | if len(self.data['noiseless_rtiLine'])>2 : | |
1370 | self.z = self.data['noiseless_rtiLine'][:, -1,:] |
|
1369 | self.z = self.data['noiseless_rtiLine'][:, -1,:] | |
1371 | else: |
|
1370 | else: | |
1372 | self.z = self.data['noiseless_rtiLine'] |
|
1371 | self.z = self.data['noiseless_rtiLine'] | |
1373 | #print(self.z.shape, self.y.shape, ts) |
|
1372 | #print(self.z.shape, self.y.shape, ts) | |
1374 | #thisDatetime = datetime.datetime.utcfromtimestamp(ts) |
|
1373 | #thisDatetime = datetime.datetime.utcfromtimestamp(ts) | |
1375 |
|
1374 | |||
1376 | for i,ax in enumerate(self.axes): |
|
1375 | for i,ax in enumerate(self.axes): | |
1377 | #self.titles[i] = "Channel {} {}".format(i, thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1376 | #self.titles[i] = "Channel {} {}".format(i, thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
1378 |
|
1377 | |||
1379 |
|
1378 | |||
1380 | if ax.firsttime: |
|
1379 | if ax.firsttime: | |
1381 | #self.xmin = min(self.z) |
|
1380 | #self.xmin = min(self.z) | |
1382 | #self.xmax = max(self.z) |
|
1381 | #self.xmax = max(self.z) | |
1383 | ax.plt_r = ax.plot(self.z[i], self.y)[0] |
|
1382 | ax.plt_r = ax.plot(self.z[i], self.y)[0] | |
1384 | else: |
|
1383 | else: | |
1385 | ax.plt_r.set_data(self.z[i], self.y) |
|
1384 | ax.plt_r.set_data(self.z[i], self.y) | |
1386 |
|
1385 | |||
1387 |
|
1386 | |||
1388 |
|
1387 | |||
1389 | class GeneralProfilePlot(Plot): |
|
1388 | class GeneralProfilePlot(Plot): | |
1390 | ''' |
|
1389 | ''' | |
1391 | Plot for RTI data |
|
1390 | Plot for RTI data | |
1392 | ''' |
|
1391 | ''' | |
1393 |
|
1392 | |||
1394 | CODE = 'general_profilePlot' |
|
1393 | CODE = 'general_profilePlot' | |
1395 |
|
1394 | |||
1396 | plot_type = 'scatter' |
|
1395 | plot_type = 'scatter' | |
1397 | titles = None |
|
1396 | titles = None | |
1398 | channelList = [] |
|
1397 | channelList = [] | |
1399 | elevationList = [] |
|
1398 | elevationList = [] | |
1400 | azimuthList = [] |
|
1399 | azimuthList = [] | |
1401 | last_noise = None |
|
1400 | last_noise = None | |
1402 |
|
1401 | |||
1403 | def setup(self): |
|
1402 | def setup(self): | |
1404 | self.xaxis = 'Range (Km)' |
|
1403 | self.xaxis = 'Range (Km)' | |
1405 | self.nplots = len(self.data.channels) |
|
1404 | self.nplots = len(self.data.channels) | |
1406 | self.nrows = int(numpy.ceil(self.nplots/2)) |
|
1405 | self.nrows = int(numpy.ceil(self.nplots/2)) | |
1407 | self.ncols = int(numpy.ceil(self.nplots/self.nrows)) |
|
1406 | self.ncols = int(numpy.ceil(self.nplots/self.nrows)) | |
1408 | self.ylabel = 'Intensity [dB]' |
|
1407 | self.ylabel = 'Intensity [dB]' | |
1409 | self.titles = ['Channel '+str(self.data.channels[i])+" " for i in self.data.channels] |
|
1408 | self.titles = ['Channel '+str(self.data.channels[i])+" " for i in self.data.channels] | |
1410 | self.colorbar = False |
|
1409 | self.colorbar = False | |
1411 | self.width = 6 |
|
1410 | self.width = 6 | |
1412 | self.height = 4 |
|
1411 | self.height = 4 | |
1413 |
|
1412 | |||
1414 | def update_list(self,dataOut): |
|
1413 | def update_list(self,dataOut): | |
1415 | if len(self.channelList) == 0: |
|
1414 | if len(self.channelList) == 0: | |
1416 | self.channelList = dataOut.channelList |
|
1415 | self.channelList = dataOut.channelList | |
1417 | if len(self.elevationList) == 0: |
|
1416 | if len(self.elevationList) == 0: | |
1418 | self.elevationList = dataOut.elevationList |
|
1417 | self.elevationList = dataOut.elevationList | |
1419 | if len(self.azimuthList) == 0: |
|
1418 | if len(self.azimuthList) == 0: | |
1420 | self.azimuthList = dataOut.azimuthList |
|
1419 | self.azimuthList = dataOut.azimuthList | |
1421 |
|
1420 | |||
1422 | def update(self, dataOut): |
|
1421 | def update(self, dataOut): | |
1423 | if len(self.channelList) == 0: |
|
1422 | if len(self.channelList) == 0: | |
1424 | self.update_list(dataOut) |
|
1423 | self.update_list(dataOut) | |
1425 |
|
1424 | |||
1426 | data = {} |
|
1425 | data = {} | |
1427 | meta = {} |
|
1426 | meta = {} | |
1428 |
|
1427 | |||
1429 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter |
|
1428 | norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter | |
1430 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) |
|
1429 | n0 = 10*numpy.log10(dataOut.getNoise()/norm) | |
1431 | data['noise'] = n0 |
|
1430 | data['noise'] = n0 | |
1432 |
|
1431 | |||
1433 | noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights) |
|
1432 | noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights) | |
1434 | noiseless_data = dataOut.getPower() - noise |
|
1433 | noiseless_data = dataOut.getPower() - noise | |
1435 |
|
1434 | |||
1436 | data['noiseless_rtiLine'] = noiseless_data |
|
1435 | data['noiseless_rtiLine'] = noiseless_data | |
1437 |
|
1436 | |||
1438 | print(noiseless_data.shape, self.name) |
|
1437 | #print(noiseless_data.shape, self.name) | |
1439 | data['time'] = dataOut.utctime |
|
1438 | data['time'] = dataOut.utctime | |
1440 |
|
1439 | |||
1441 | return data, meta |
|
1440 | return data, meta | |
1442 |
|
1441 | |||
1443 | def plot(self): |
|
1442 | def plot(self): | |
1444 |
|
1443 | |||
1445 | self.x = self.data.times |
|
1444 | self.x = self.data.times | |
1446 | self.y = self.data.yrange |
|
1445 | self.y = self.data.yrange | |
1447 | print(self.data['noiseless_rtiLine'].shape, self.y.shape, self.name) |
|
1446 | #print(self.data['noiseless_rtiLine'].shape, self.y.shape, self.name) | |
1448 | #ts = self.data['time'][0].squeeze() |
|
1447 | #ts = self.data['time'][0].squeeze() | |
1449 | if len(self.data['noiseless_rtiLine'])>2 : |
|
1448 | if len(self.data['noiseless_rtiLine'])>2 : | |
1450 | self.z = self.data['noiseless_rtiLine'][:, -1,:] |
|
1449 | self.z = self.data['noiseless_rtiLine'][:, -1,:] | |
1451 | else: |
|
1450 | else: | |
1452 | self.z = self.data['noiseless_rtiLine'] |
|
1451 | self.z = self.data['noiseless_rtiLine'] | |
1453 | #print(self.z.shape, self.y.shape, ts) |
|
1452 | #print(self.z.shape, self.y.shape, ts) | |
1454 | #thisDatetime = datetime.datetime.utcfromtimestamp(ts) |
|
1453 | #thisDatetime = datetime.datetime.utcfromtimestamp(ts) | |
1455 |
|
1454 | |||
1456 | for i,ax in enumerate(self.axes): |
|
1455 | for i,ax in enumerate(self.axes): | |
1457 | #self.titles[i] = "Channel {} {}".format(i, thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1456 | #self.titles[i] = "Channel {} {}".format(i, thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
1458 |
|
1457 | |||
1459 |
|
1458 | |||
1460 | if ax.firsttime: |
|
1459 | if ax.firsttime: | |
1461 | #self.xmin = min(self.z) |
|
1460 | #self.xmin = min(self.z) | |
1462 | #self.xmax = max(self.z) |
|
1461 | #self.xmax = max(self.z) | |
1463 | ax.plt_r = ax.plot(self.z[i], self.y)[0] |
|
1462 | ax.plt_r = ax.plot(self.z[i], self.y)[0] | |
1464 | else: |
|
1463 | else: | |
1465 | ax.plt_r.set_data(self.z[i], self.y) No newline at end of file |
|
1464 | ax.plt_r.set_data(self.z[i], self.y) |
@@ -1,2287 +1,2290 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Spectra processing Unit and operations |
|
5 | """Spectra processing Unit and operations | |
6 |
|
6 | |||
7 | Here you will find the processing unit `SpectraProc` and several operations |
|
7 | Here you will find the processing unit `SpectraProc` and several operations | |
8 | to work with Spectra data type |
|
8 | to work with Spectra data type | |
9 | """ |
|
9 | """ | |
10 |
|
10 | |||
11 | import time |
|
11 | import time | |
12 | import itertools |
|
12 | import itertools | |
13 |
|
13 | |||
14 | import numpy |
|
14 | import numpy | |
15 | import math |
|
15 | import math | |
16 |
|
16 | |||
17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation | |
18 | from schainpy.model.data.jrodata import Spectra |
|
18 | from schainpy.model.data.jrodata import Spectra | |
19 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
19 | from schainpy.model.data.jrodata import hildebrand_sekhon | |
20 | from schainpy.model.data import _noise |
|
20 | from schainpy.model.data import _noise | |
21 |
|
21 | |||
22 | from schainpy.utils import log |
|
22 | from schainpy.utils import log | |
23 | import matplotlib.pyplot as plt |
|
23 | import matplotlib.pyplot as plt | |
24 | #from scipy.optimize import curve_fit |
|
24 | #from scipy.optimize import curve_fit | |
25 | from schainpy.model.io.utilsIO import getHei_index |
|
25 | from schainpy.model.io.utilsIO import getHei_index | |
26 | import datetime |
|
26 | import datetime | |
27 |
|
27 | |||
28 | class SpectraProc(ProcessingUnit): |
|
28 | class SpectraProc(ProcessingUnit): | |
29 |
|
29 | |||
30 | def __init__(self): |
|
30 | def __init__(self): | |
31 |
|
31 | |||
32 | ProcessingUnit.__init__(self) |
|
32 | ProcessingUnit.__init__(self) | |
33 |
|
33 | |||
34 | self.buffer = None |
|
34 | self.buffer = None | |
35 | self.firstdatatime = None |
|
35 | self.firstdatatime = None | |
36 | self.profIndex = 0 |
|
36 | self.profIndex = 0 | |
37 | self.dataOut = Spectra() |
|
37 | self.dataOut = Spectra() | |
38 | self.id_min = None |
|
38 | self.id_min = None | |
39 | self.id_max = None |
|
39 | self.id_max = None | |
40 | self.setupReq = False #Agregar a todas las unidades de proc |
|
40 | self.setupReq = False #Agregar a todas las unidades de proc | |
41 | self.nsamplesFFT = 0 |
|
41 | self.nsamplesFFT = 0 | |
42 |
|
42 | |||
43 | def __updateSpecFromVoltage(self): |
|
43 | def __updateSpecFromVoltage(self): | |
44 |
|
44 | |||
45 |
|
45 | |||
46 |
|
46 | |||
47 | self.dataOut.timeZone = self.dataIn.timeZone |
|
47 | self.dataOut.timeZone = self.dataIn.timeZone | |
48 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
48 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
49 | self.dataOut.errorCount = self.dataIn.errorCount |
|
49 | self.dataOut.errorCount = self.dataIn.errorCount | |
50 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
50 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
51 |
|
51 | |||
52 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
52 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
53 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
53 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
54 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
54 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
55 | self.dataOut.ipp = self.dataIn.ipp |
|
55 | self.dataOut.ipp = self.dataIn.ipp | |
56 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
56 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
57 | self.dataOut.channelList = self.dataIn.channelList |
|
57 | self.dataOut.channelList = self.dataIn.channelList | |
58 | self.dataOut.heightList = self.dataIn.heightList |
|
58 | self.dataOut.heightList = self.dataIn.heightList | |
59 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
59 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
60 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
60 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
61 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
61 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
62 | self.dataOut.utctime = self.firstdatatime |
|
62 | self.dataOut.utctime = self.firstdatatime | |
63 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
63 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData | |
64 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
64 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData | |
65 | self.dataOut.flagShiftFFT = False |
|
65 | self.dataOut.flagShiftFFT = False | |
66 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
66 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
67 | self.dataOut.nIncohInt = 1 |
|
67 | self.dataOut.nIncohInt = 1 | |
68 | self.dataOut.deltaHeight = self.dataIn.deltaHeight |
|
68 | self.dataOut.deltaHeight = self.dataIn.deltaHeight | |
69 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
69 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
70 | self.dataOut.frequency = self.dataIn.frequency |
|
70 | self.dataOut.frequency = self.dataIn.frequency | |
71 | self.dataOut.realtime = self.dataIn.realtime |
|
71 | self.dataOut.realtime = self.dataIn.realtime | |
72 | self.dataOut.azimuth = self.dataIn.azimuth |
|
72 | self.dataOut.azimuth = self.dataIn.azimuth | |
73 | self.dataOut.zenith = self.dataIn.zenith |
|
73 | self.dataOut.zenith = self.dataIn.zenith | |
74 | self.dataOut.codeList = self.dataIn.codeList |
|
74 | self.dataOut.codeList = self.dataIn.codeList | |
75 | self.dataOut.azimuthList = self.dataIn.azimuthList |
|
75 | self.dataOut.azimuthList = self.dataIn.azimuthList | |
76 | self.dataOut.elevationList = self.dataIn.elevationList |
|
76 | self.dataOut.elevationList = self.dataIn.elevationList | |
77 | self.dataOut.code = self.dataIn.code |
|
77 | self.dataOut.code = self.dataIn.code | |
78 | self.dataOut.nCode = self.dataIn.nCode |
|
78 | self.dataOut.nCode = self.dataIn.nCode | |
79 | self.dataOut.flagProfilesByRange = self.dataIn.flagProfilesByRange |
|
79 | self.dataOut.flagProfilesByRange = self.dataIn.flagProfilesByRange | |
80 | self.dataOut.nProfilesByRange = self.dataIn.nProfilesByRange |
|
80 | self.dataOut.nProfilesByRange = self.dataIn.nProfilesByRange | |
81 |
|
81 | |||
82 |
|
82 | |||
83 | def __getFft(self): |
|
83 | def __getFft(self): | |
84 | # print("fft donw") |
|
84 | # print("fft donw") | |
85 | """ |
|
85 | """ | |
86 | Convierte valores de Voltaje a Spectra |
|
86 | Convierte valores de Voltaje a Spectra | |
87 |
|
87 | |||
88 | Affected: |
|
88 | Affected: | |
89 | self.dataOut.data_spc |
|
89 | self.dataOut.data_spc | |
90 | self.dataOut.data_cspc |
|
90 | self.dataOut.data_cspc | |
91 | self.dataOut.data_dc |
|
91 | self.dataOut.data_dc | |
92 | self.dataOut.heightList |
|
92 | self.dataOut.heightList | |
93 | self.profIndex |
|
93 | self.profIndex | |
94 | self.buffer |
|
94 | self.buffer | |
95 | self.dataOut.flagNoData |
|
95 | self.dataOut.flagNoData | |
96 | """ |
|
96 | """ | |
97 | fft_volt = numpy.fft.fft( |
|
97 | fft_volt = numpy.fft.fft( | |
98 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
98 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) | |
99 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
99 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |
100 | dc = fft_volt[:, 0, :] |
|
100 | dc = fft_volt[:, 0, :] | |
101 |
|
101 | |||
102 | # calculo de self-spectra |
|
102 | # calculo de self-spectra | |
103 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
103 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) | |
104 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
104 | spc = fft_volt * numpy.conjugate(fft_volt) | |
105 | spc = spc.real |
|
105 | spc = spc.real | |
106 |
|
106 | |||
107 | blocksize = 0 |
|
107 | blocksize = 0 | |
108 | blocksize += dc.size |
|
108 | blocksize += dc.size | |
109 | blocksize += spc.size |
|
109 | blocksize += spc.size | |
110 |
|
110 | |||
111 | cspc = None |
|
111 | cspc = None | |
112 | pairIndex = 0 |
|
112 | pairIndex = 0 | |
113 | if self.dataOut.pairsList != None: |
|
113 | if self.dataOut.pairsList != None: | |
114 | # calculo de cross-spectra |
|
114 | # calculo de cross-spectra | |
115 | cspc = numpy.zeros( |
|
115 | cspc = numpy.zeros( | |
116 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
116 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |
117 | for pair in self.dataOut.pairsList: |
|
117 | for pair in self.dataOut.pairsList: | |
118 | if pair[0] not in self.dataOut.channelList: |
|
118 | if pair[0] not in self.dataOut.channelList: | |
119 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
119 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( | |
120 | str(pair), str(self.dataOut.channelList))) |
|
120 | str(pair), str(self.dataOut.channelList))) | |
121 | if pair[1] not in self.dataOut.channelList: |
|
121 | if pair[1] not in self.dataOut.channelList: | |
122 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
122 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( | |
123 | str(pair), str(self.dataOut.channelList))) |
|
123 | str(pair), str(self.dataOut.channelList))) | |
124 |
|
124 | |||
125 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
125 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ | |
126 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
126 | numpy.conjugate(fft_volt[pair[1], :, :]) | |
127 | pairIndex += 1 |
|
127 | pairIndex += 1 | |
128 | blocksize += cspc.size |
|
128 | blocksize += cspc.size | |
129 |
|
129 | |||
130 | self.dataOut.data_spc = spc |
|
130 | self.dataOut.data_spc = spc | |
131 | self.dataOut.data_cspc = cspc |
|
131 | self.dataOut.data_cspc = cspc | |
132 | self.dataOut.data_dc = dc |
|
132 | self.dataOut.data_dc = dc | |
133 | self.dataOut.blockSize = blocksize |
|
133 | self.dataOut.blockSize = blocksize | |
134 | self.dataOut.flagShiftFFT = False |
|
134 | self.dataOut.flagShiftFFT = False | |
135 |
|
135 | |||
136 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False, zeroPad=False): |
|
136 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False, zeroPad=False): | |
137 |
|
137 | |||
138 |
|
138 | |||
139 | try: |
|
139 | try: | |
140 | type = self.dataIn.type.decode("utf-8") |
|
140 | type = self.dataIn.type.decode("utf-8") | |
141 | self.dataIn.type = type |
|
141 | self.dataIn.type = type | |
142 | except: |
|
142 | except: | |
143 | pass |
|
143 | pass | |
144 | if self.dataIn.type == "Spectra": |
|
144 | if self.dataIn.type == "Spectra": | |
145 |
|
145 | |||
146 | try: |
|
146 | try: | |
147 | self.dataOut.copy(self.dataIn) |
|
147 | self.dataOut.copy(self.dataIn) | |
148 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
148 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
149 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
149 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
150 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
150 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
151 | #self.dataOut.nHeights = len(self.dataOut.heightList) |
|
151 | #self.dataOut.nHeights = len(self.dataOut.heightList) | |
152 | except Exception as e: |
|
152 | except Exception as e: | |
153 | print("Error dataIn ",e) |
|
153 | print("Error dataIn ",e) | |
154 |
|
154 | |||
155 |
|
155 | |||
156 |
|
156 | |||
157 | if shift_fft: |
|
157 | if shift_fft: | |
158 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
158 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
159 | shift = int(self.dataOut.nFFTPoints/2) |
|
159 | shift = int(self.dataOut.nFFTPoints/2) | |
160 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
160 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) | |
161 |
|
161 | |||
162 | if self.dataOut.data_cspc is not None: |
|
162 | if self.dataOut.data_cspc is not None: | |
163 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
163 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
164 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
164 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) | |
165 | if pairsList: |
|
165 | if pairsList: | |
166 | self.__selectPairs(pairsList) |
|
166 | self.__selectPairs(pairsList) | |
167 |
|
167 | |||
168 |
|
168 | |||
169 | elif self.dataIn.type == "Voltage": |
|
169 | elif self.dataIn.type == "Voltage": | |
170 |
|
170 | |||
171 | self.dataOut.flagNoData = True |
|
171 | self.dataOut.flagNoData = True | |
172 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
172 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
173 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
173 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
174 | if nFFTPoints == None: |
|
174 | if nFFTPoints == None: | |
175 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
175 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") | |
176 |
|
176 | |||
177 | if nProfiles == None: |
|
177 | if nProfiles == None: | |
178 | nProfiles = nFFTPoints |
|
178 | nProfiles = nFFTPoints | |
179 |
|
179 | |||
180 | if ippFactor == None: |
|
180 | if ippFactor == None: | |
181 | self.dataOut.ippFactor = 1 |
|
181 | self.dataOut.ippFactor = 1 | |
182 |
|
182 | |||
183 | self.dataOut.nFFTPoints = nFFTPoints |
|
183 | self.dataOut.nFFTPoints = nFFTPoints | |
184 | #print(" volts ch,prof, h: ", self.dataIn.data.shape) |
|
184 | #print(" volts ch,prof, h: ", self.dataIn.data.shape) | |
185 | if self.buffer is None: |
|
185 | if self.buffer is None: | |
186 | if not zeroPad: |
|
186 | if not zeroPad: | |
187 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
187 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
188 | nProfiles, |
|
188 | nProfiles, | |
189 | self.dataIn.nHeights), |
|
189 | self.dataIn.nHeights), | |
190 | dtype='complex') |
|
190 | dtype='complex') | |
191 | else: |
|
191 | else: | |
192 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
192 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
193 | nFFTPoints, |
|
193 | nFFTPoints, | |
194 | self.dataIn.nHeights), |
|
194 | self.dataIn.nHeights), | |
195 | dtype='complex') |
|
195 | dtype='complex') | |
196 |
|
196 | |||
197 | if self.dataIn.flagDataAsBlock: |
|
197 | if self.dataIn.flagDataAsBlock: | |
198 | nVoltProfiles = self.dataIn.data.shape[1] |
|
198 | nVoltProfiles = self.dataIn.data.shape[1] | |
199 |
|
199 | |||
200 | if nVoltProfiles == nProfiles or zeroPad: |
|
200 | if nVoltProfiles == nProfiles or zeroPad: | |
201 | self.buffer = self.dataIn.data.copy() |
|
201 | self.buffer = self.dataIn.data.copy() | |
202 | self.profIndex = nVoltProfiles |
|
202 | self.profIndex = nVoltProfiles | |
203 |
|
203 | |||
204 | elif nVoltProfiles < nProfiles: |
|
204 | elif nVoltProfiles < nProfiles: | |
205 |
|
205 | |||
206 | if self.profIndex == 0: |
|
206 | if self.profIndex == 0: | |
207 | self.id_min = 0 |
|
207 | self.id_min = 0 | |
208 | self.id_max = nVoltProfiles |
|
208 | self.id_max = nVoltProfiles | |
209 |
|
209 | |||
210 | self.buffer[:, self.id_min:self.id_max, |
|
210 | self.buffer[:, self.id_min:self.id_max, | |
211 | :] = self.dataIn.data |
|
211 | :] = self.dataIn.data | |
212 | self.profIndex += nVoltProfiles |
|
212 | self.profIndex += nVoltProfiles | |
213 | self.id_min += nVoltProfiles |
|
213 | self.id_min += nVoltProfiles | |
214 | self.id_max += nVoltProfiles |
|
214 | self.id_max += nVoltProfiles | |
215 | else: |
|
215 | else: | |
216 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
216 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( | |
217 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
217 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) | |
218 | self.dataOut.flagNoData = True |
|
218 | self.dataOut.flagNoData = True | |
219 | else: |
|
219 | else: | |
220 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
220 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() | |
221 | self.profIndex += 1 |
|
221 | self.profIndex += 1 | |
222 |
|
222 | |||
223 | if self.firstdatatime == None: |
|
223 | if self.firstdatatime == None: | |
224 | self.firstdatatime = self.dataIn.utctime |
|
224 | self.firstdatatime = self.dataIn.utctime | |
225 |
|
225 | |||
226 | if self.profIndex == nProfiles or zeroPad: |
|
226 | if self.profIndex == nProfiles or zeroPad: | |
227 |
|
227 | |||
228 | self.__updateSpecFromVoltage() |
|
228 | self.__updateSpecFromVoltage() | |
229 |
|
229 | |||
230 | if pairsList == None: |
|
230 | if pairsList == None: | |
231 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
231 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] | |
232 | else: |
|
232 | else: | |
233 | self.dataOut.pairsList = pairsList |
|
233 | self.dataOut.pairsList = pairsList | |
234 | self.__getFft() |
|
234 | self.__getFft() | |
235 | self.dataOut.flagNoData = False |
|
235 | self.dataOut.flagNoData = False | |
236 | self.firstdatatime = None |
|
236 | self.firstdatatime = None | |
237 | self.nsamplesFFT = self.profIndex |
|
237 | self.nsamplesFFT = self.profIndex | |
238 | self.profIndex = 0 |
|
238 | self.profIndex = 0 | |
239 |
|
239 | |||
240 | #update Processing Header: |
|
240 | #update Processing Header: | |
241 | self.dataOut.processingHeaderObj.dtype = "Spectra" |
|
241 | self.dataOut.processingHeaderObj.dtype = "Spectra" | |
242 | self.dataOut.processingHeaderObj.nFFTPoints = self.dataOut.nFFTPoints |
|
242 | self.dataOut.processingHeaderObj.nFFTPoints = self.dataOut.nFFTPoints | |
243 | self.dataOut.processingHeaderObj.nSamplesFFT = self.nsamplesFFT |
|
243 | self.dataOut.processingHeaderObj.nSamplesFFT = self.nsamplesFFT | |
244 | self.dataOut.processingHeaderObj.nIncohInt = 1 |
|
244 | self.dataOut.processingHeaderObj.nIncohInt = 1 | |
245 |
|
245 | |||
246 |
|
246 | |||
247 | elif self.dataIn.type == "Parameters": |
|
247 | elif self.dataIn.type == "Parameters": | |
248 |
|
248 | |||
249 | self.dataOut.data_spc = self.dataIn.data_spc |
|
249 | self.dataOut.data_spc = self.dataIn.data_spc | |
250 | self.dataOut.data_cspc = self.dataIn.data_cspc |
|
250 | self.dataOut.data_cspc = self.dataIn.data_cspc | |
251 | self.dataOut.data_outlier = self.dataIn.data_outlier |
|
251 | self.dataOut.data_outlier = self.dataIn.data_outlier | |
252 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
252 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
253 | self.dataOut.nIncohInt = self.dataIn.nIncohInt |
|
253 | self.dataOut.nIncohInt = self.dataIn.nIncohInt | |
254 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints |
|
254 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints | |
255 | self.dataOut.ippFactor = self.dataIn.ippFactor |
|
255 | self.dataOut.ippFactor = self.dataIn.ippFactor | |
256 | self.dataOut.max_nIncohInt = self.dataIn.max_nIncohInt |
|
256 | self.dataOut.max_nIncohInt = self.dataIn.max_nIncohInt | |
257 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
257 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
258 | self.dataOut.ProcessingHeader = self.dataIn.ProcessingHeader.copy() |
|
258 | self.dataOut.ProcessingHeader = self.dataIn.ProcessingHeader.copy() | |
259 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
259 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
260 | self.dataOut.ipp = self.dataIn.ipp |
|
260 | self.dataOut.ipp = self.dataIn.ipp | |
261 | #self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
261 | #self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
262 | #self.dataOut.spc_noise = self.dataIn.getNoise() |
|
262 | #self.dataOut.spc_noise = self.dataIn.getNoise() | |
263 | #self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) |
|
263 | #self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) | |
264 | # self.dataOut.normFactor = self.dataIn.normFactor |
|
264 | # self.dataOut.normFactor = self.dataIn.normFactor | |
265 | if hasattr(self.dataIn, 'channelList'): |
|
265 | if hasattr(self.dataIn, 'channelList'): | |
266 | self.dataOut.channelList = self.dataIn.channelList |
|
266 | self.dataOut.channelList = self.dataIn.channelList | |
267 | if hasattr(self.dataIn, 'pairsList'): |
|
267 | if hasattr(self.dataIn, 'pairsList'): | |
268 | self.dataOut.pairsList = self.dataIn.pairsList |
|
268 | self.dataOut.pairsList = self.dataIn.pairsList | |
269 | self.dataOut.groupList = self.dataIn.pairsList |
|
269 | self.dataOut.groupList = self.dataIn.pairsList | |
270 |
|
270 | |||
271 | self.dataOut.flagNoData = False |
|
271 | self.dataOut.flagNoData = False | |
272 |
|
272 | |||
273 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
273 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels | |
274 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
274 | self.dataOut.ChanDist = self.dataIn.ChanDist | |
275 | else: self.dataOut.ChanDist = None |
|
275 | else: self.dataOut.ChanDist = None | |
276 |
|
276 | |||
277 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
277 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range | |
278 | # self.dataOut.VelRange = self.dataIn.VelRange |
|
278 | # self.dataOut.VelRange = self.dataIn.VelRange | |
279 | #else: self.dataOut.VelRange = None |
|
279 | #else: self.dataOut.VelRange = None | |
280 |
|
280 | |||
281 |
|
281 | |||
282 |
|
282 | |||
283 | else: |
|
283 | else: | |
284 | raise ValueError("The type of input object {} is not valid".format( |
|
284 | raise ValueError("The type of input object {} is not valid".format( | |
285 | self.dataIn.type)) |
|
285 | self.dataIn.type)) | |
286 |
|
286 | |||
287 |
|
287 | |||
288 |
|
288 | |||
289 |
|
289 | |||
290 | #print("spc proc Done", self.dataOut.data_spc.shape) |
|
290 | #print("spc proc Done", self.dataOut.data_spc.shape) | |
291 | #print(self.dataOut.data_spc) |
|
291 | #print(self.dataOut.data_spc) | |
292 | return |
|
292 | return | |
293 |
|
293 | |||
294 | def __selectPairs(self, pairsList): |
|
294 | def __selectPairs(self, pairsList): | |
295 |
|
295 | |||
296 | if not pairsList: |
|
296 | if not pairsList: | |
297 | return |
|
297 | return | |
298 |
|
298 | |||
299 | pairs = [] |
|
299 | pairs = [] | |
300 | pairsIndex = [] |
|
300 | pairsIndex = [] | |
301 |
|
301 | |||
302 | for pair in pairsList: |
|
302 | for pair in pairsList: | |
303 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
303 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: | |
304 | continue |
|
304 | continue | |
305 | pairs.append(pair) |
|
305 | pairs.append(pair) | |
306 | pairsIndex.append(pairs.index(pair)) |
|
306 | pairsIndex.append(pairs.index(pair)) | |
307 |
|
307 | |||
308 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
308 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] | |
309 | self.dataOut.pairsList = pairs |
|
309 | self.dataOut.pairsList = pairs | |
310 |
|
310 | |||
311 | return |
|
311 | return | |
312 |
|
312 | |||
313 | def selectFFTs(self, minFFT, maxFFT ): |
|
313 | def selectFFTs(self, minFFT, maxFFT ): | |
314 | """ |
|
314 | """ | |
315 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
315 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |
316 | minFFT<= FFT <= maxFFT |
|
316 | minFFT<= FFT <= maxFFT | |
317 | """ |
|
317 | """ | |
318 |
|
318 | |||
319 | if (minFFT > maxFFT): |
|
319 | if (minFFT > maxFFT): | |
320 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
320 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) | |
321 |
|
321 | |||
322 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
322 | if (minFFT < self.dataOut.getFreqRange()[0]): | |
323 | minFFT = self.dataOut.getFreqRange()[0] |
|
323 | minFFT = self.dataOut.getFreqRange()[0] | |
324 |
|
324 | |||
325 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
325 | if (maxFFT > self.dataOut.getFreqRange()[-1]): | |
326 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
326 | maxFFT = self.dataOut.getFreqRange()[-1] | |
327 |
|
327 | |||
328 | minIndex = 0 |
|
328 | minIndex = 0 | |
329 | maxIndex = 0 |
|
329 | maxIndex = 0 | |
330 | FFTs = self.dataOut.getFreqRange() |
|
330 | FFTs = self.dataOut.getFreqRange() | |
331 |
|
331 | |||
332 | inda = numpy.where(FFTs >= minFFT) |
|
332 | inda = numpy.where(FFTs >= minFFT) | |
333 | indb = numpy.where(FFTs <= maxFFT) |
|
333 | indb = numpy.where(FFTs <= maxFFT) | |
334 |
|
334 | |||
335 | try: |
|
335 | try: | |
336 | minIndex = inda[0][0] |
|
336 | minIndex = inda[0][0] | |
337 | except: |
|
337 | except: | |
338 | minIndex = 0 |
|
338 | minIndex = 0 | |
339 |
|
339 | |||
340 | try: |
|
340 | try: | |
341 | maxIndex = indb[0][-1] |
|
341 | maxIndex = indb[0][-1] | |
342 | except: |
|
342 | except: | |
343 | maxIndex = len(FFTs) |
|
343 | maxIndex = len(FFTs) | |
344 |
|
344 | |||
345 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
345 | self.selectFFTsByIndex(minIndex, maxIndex) | |
346 |
|
346 | |||
347 | return 1 |
|
347 | return 1 | |
348 |
|
348 | |||
349 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
349 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): | |
350 | newheis = numpy.where( |
|
350 | newheis = numpy.where( | |
351 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
351 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
352 |
|
352 | |||
353 | if hei_ref != None: |
|
353 | if hei_ref != None: | |
354 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
354 | newheis = numpy.where(self.dataOut.heightList > hei_ref) | |
355 |
|
355 | |||
356 | minIndex = min(newheis[0]) |
|
356 | minIndex = min(newheis[0]) | |
357 | maxIndex = max(newheis[0]) |
|
357 | maxIndex = max(newheis[0]) | |
358 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
358 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
359 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
359 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
360 |
|
360 | |||
361 | # determina indices |
|
361 | # determina indices | |
362 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
362 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / | |
363 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
363 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) | |
364 | avg_dB = 10 * \ |
|
364 | avg_dB = 10 * \ | |
365 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
365 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) | |
366 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
366 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |
367 | beacon_heiIndexList = [] |
|
367 | beacon_heiIndexList = [] | |
368 | for val in avg_dB.tolist(): |
|
368 | for val in avg_dB.tolist(): | |
369 | if val >= beacon_dB[0]: |
|
369 | if val >= beacon_dB[0]: | |
370 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
370 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |
371 |
|
371 | |||
372 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
372 | #data_spc = data_spc[:,:,beacon_heiIndexList] | |
373 | data_cspc = None |
|
373 | data_cspc = None | |
374 | if self.dataOut.data_cspc is not None: |
|
374 | if self.dataOut.data_cspc is not None: | |
375 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
375 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
376 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
376 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] | |
377 |
|
377 | |||
378 | data_dc = None |
|
378 | data_dc = None | |
379 | if self.dataOut.data_dc is not None: |
|
379 | if self.dataOut.data_dc is not None: | |
380 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
380 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
381 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
381 | #data_dc = data_dc[:,beacon_heiIndexList] | |
382 |
|
382 | |||
383 | self.dataOut.data_spc = data_spc |
|
383 | self.dataOut.data_spc = data_spc | |
384 | self.dataOut.data_cspc = data_cspc |
|
384 | self.dataOut.data_cspc = data_cspc | |
385 | self.dataOut.data_dc = data_dc |
|
385 | self.dataOut.data_dc = data_dc | |
386 | self.dataOut.heightList = heightList |
|
386 | self.dataOut.heightList = heightList | |
387 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
387 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |
388 |
|
388 | |||
389 | return 1 |
|
389 | return 1 | |
390 |
|
390 | |||
391 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
391 | def selectFFTsByIndex(self, minIndex, maxIndex): | |
392 | """ |
|
392 | """ | |
393 |
|
393 | |||
394 | """ |
|
394 | """ | |
395 |
|
395 | |||
396 | if (minIndex < 0) or (minIndex > maxIndex): |
|
396 | if (minIndex < 0) or (minIndex > maxIndex): | |
397 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
397 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
398 |
|
398 | |||
399 | if (maxIndex >= self.dataOut.nProfiles): |
|
399 | if (maxIndex >= self.dataOut.nProfiles): | |
400 | maxIndex = self.dataOut.nProfiles-1 |
|
400 | maxIndex = self.dataOut.nProfiles-1 | |
401 |
|
401 | |||
402 | #Spectra |
|
402 | #Spectra | |
403 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
403 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] | |
404 |
|
404 | |||
405 | data_cspc = None |
|
405 | data_cspc = None | |
406 | if self.dataOut.data_cspc is not None: |
|
406 | if self.dataOut.data_cspc is not None: | |
407 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
407 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] | |
408 |
|
408 | |||
409 | data_dc = None |
|
409 | data_dc = None | |
410 | if self.dataOut.data_dc is not None: |
|
410 | if self.dataOut.data_dc is not None: | |
411 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
411 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] | |
412 |
|
412 | |||
413 | self.dataOut.data_spc = data_spc |
|
413 | self.dataOut.data_spc = data_spc | |
414 | self.dataOut.data_cspc = data_cspc |
|
414 | self.dataOut.data_cspc = data_cspc | |
415 | self.dataOut.data_dc = data_dc |
|
415 | self.dataOut.data_dc = data_dc | |
416 |
|
416 | |||
417 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
417 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) | |
418 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
418 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] | |
419 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
419 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] | |
420 |
|
420 | |||
421 | return 1 |
|
421 | return 1 | |
422 |
|
422 | |||
423 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
423 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |
424 | # validacion de rango |
|
424 | # validacion de rango | |
425 | if minHei == None: |
|
425 | if minHei == None: | |
426 | minHei = self.dataOut.heightList[0] |
|
426 | minHei = self.dataOut.heightList[0] | |
427 |
|
427 | |||
428 | if maxHei == None: |
|
428 | if maxHei == None: | |
429 | maxHei = self.dataOut.heightList[-1] |
|
429 | maxHei = self.dataOut.heightList[-1] | |
430 |
|
430 | |||
431 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
431 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
432 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
432 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
433 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
433 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
434 | minHei = self.dataOut.heightList[0] |
|
434 | minHei = self.dataOut.heightList[0] | |
435 |
|
435 | |||
436 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
436 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
437 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
437 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
438 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
438 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
439 | maxHei = self.dataOut.heightList[-1] |
|
439 | maxHei = self.dataOut.heightList[-1] | |
440 |
|
440 | |||
441 | # validacion de velocidades |
|
441 | # validacion de velocidades | |
442 | velrange = self.dataOut.getVelRange(1) |
|
442 | velrange = self.dataOut.getVelRange(1) | |
443 |
|
443 | |||
444 | if minVel == None: |
|
444 | if minVel == None: | |
445 | minVel = velrange[0] |
|
445 | minVel = velrange[0] | |
446 |
|
446 | |||
447 | if maxVel == None: |
|
447 | if maxVel == None: | |
448 | maxVel = velrange[-1] |
|
448 | maxVel = velrange[-1] | |
449 |
|
449 | |||
450 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
450 | if (minVel < velrange[0]) or (minVel > maxVel): | |
451 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
451 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |
452 | print('minVel is setting to %.2f' % (velrange[0])) |
|
452 | print('minVel is setting to %.2f' % (velrange[0])) | |
453 | minVel = velrange[0] |
|
453 | minVel = velrange[0] | |
454 |
|
454 | |||
455 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
455 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
456 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
456 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |
457 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
457 | print('maxVel is setting to %.2f' % (velrange[-1])) | |
458 | maxVel = velrange[-1] |
|
458 | maxVel = velrange[-1] | |
459 |
|
459 | |||
460 | # seleccion de indices para rango |
|
460 | # seleccion de indices para rango | |
461 | minIndex = 0 |
|
461 | minIndex = 0 | |
462 | maxIndex = 0 |
|
462 | maxIndex = 0 | |
463 | heights = self.dataOut.heightList |
|
463 | heights = self.dataOut.heightList | |
464 |
|
464 | |||
465 | inda = numpy.where(heights >= minHei) |
|
465 | inda = numpy.where(heights >= minHei) | |
466 | indb = numpy.where(heights <= maxHei) |
|
466 | indb = numpy.where(heights <= maxHei) | |
467 |
|
467 | |||
468 | try: |
|
468 | try: | |
469 | minIndex = inda[0][0] |
|
469 | minIndex = inda[0][0] | |
470 | except: |
|
470 | except: | |
471 | minIndex = 0 |
|
471 | minIndex = 0 | |
472 |
|
472 | |||
473 | try: |
|
473 | try: | |
474 | maxIndex = indb[0][-1] |
|
474 | maxIndex = indb[0][-1] | |
475 | except: |
|
475 | except: | |
476 | maxIndex = len(heights) |
|
476 | maxIndex = len(heights) | |
477 |
|
477 | |||
478 | if (minIndex < 0) or (minIndex > maxIndex): |
|
478 | if (minIndex < 0) or (minIndex > maxIndex): | |
479 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
479 | raise ValueError("some value in (%d,%d) is not valid" % ( | |
480 | minIndex, maxIndex)) |
|
480 | minIndex, maxIndex)) | |
481 |
|
481 | |||
482 | if (maxIndex >= self.dataOut.nHeights): |
|
482 | if (maxIndex >= self.dataOut.nHeights): | |
483 | maxIndex = self.dataOut.nHeights - 1 |
|
483 | maxIndex = self.dataOut.nHeights - 1 | |
484 |
|
484 | |||
485 | # seleccion de indices para velocidades |
|
485 | # seleccion de indices para velocidades | |
486 | indminvel = numpy.where(velrange >= minVel) |
|
486 | indminvel = numpy.where(velrange >= minVel) | |
487 | indmaxvel = numpy.where(velrange <= maxVel) |
|
487 | indmaxvel = numpy.where(velrange <= maxVel) | |
488 | try: |
|
488 | try: | |
489 | minIndexVel = indminvel[0][0] |
|
489 | minIndexVel = indminvel[0][0] | |
490 | except: |
|
490 | except: | |
491 | minIndexVel = 0 |
|
491 | minIndexVel = 0 | |
492 |
|
492 | |||
493 | try: |
|
493 | try: | |
494 | maxIndexVel = indmaxvel[0][-1] |
|
494 | maxIndexVel = indmaxvel[0][-1] | |
495 | except: |
|
495 | except: | |
496 | maxIndexVel = len(velrange) |
|
496 | maxIndexVel = len(velrange) | |
497 |
|
497 | |||
498 | # seleccion del espectro |
|
498 | # seleccion del espectro | |
499 | data_spc = self.dataOut.data_spc[:, |
|
499 | data_spc = self.dataOut.data_spc[:, | |
500 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
500 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] | |
501 | # estimacion de ruido |
|
501 | # estimacion de ruido | |
502 | noise = numpy.zeros(self.dataOut.nChannels) |
|
502 | noise = numpy.zeros(self.dataOut.nChannels) | |
503 |
|
503 | |||
504 | for channel in range(self.dataOut.nChannels): |
|
504 | for channel in range(self.dataOut.nChannels): | |
505 | daux = data_spc[channel, :, :] |
|
505 | daux = data_spc[channel, :, :] | |
506 | sortdata = numpy.sort(daux, axis=None) |
|
506 | sortdata = numpy.sort(daux, axis=None) | |
507 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
507 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) | |
508 |
|
508 | |||
509 | self.dataOut.noise_estimation = noise.copy() |
|
509 | self.dataOut.noise_estimation = noise.copy() | |
510 |
|
510 | |||
511 | return 1 |
|
511 | return 1 | |
512 |
|
512 | |||
513 | class removeDC(Operation): |
|
513 | class removeDC(Operation): | |
514 |
|
514 | |||
515 | def run(self, dataOut, mode=2): |
|
515 | def run(self, dataOut, mode=2): | |
516 | self.dataOut = dataOut |
|
516 | self.dataOut = dataOut | |
517 | jspectra = self.dataOut.data_spc |
|
517 | jspectra = self.dataOut.data_spc | |
518 | jcspectra = self.dataOut.data_cspc |
|
518 | jcspectra = self.dataOut.data_cspc | |
519 |
|
519 | |||
520 | num_chan = jspectra.shape[0] |
|
520 | num_chan = jspectra.shape[0] | |
521 | num_hei = jspectra.shape[2] |
|
521 | num_hei = jspectra.shape[2] | |
522 |
|
522 | |||
523 | if jcspectra is not None: |
|
523 | if jcspectra is not None: | |
524 | jcspectraExist = True |
|
524 | jcspectraExist = True | |
525 | num_pairs = jcspectra.shape[0] |
|
525 | num_pairs = jcspectra.shape[0] | |
526 | else: |
|
526 | else: | |
527 | jcspectraExist = False |
|
527 | jcspectraExist = False | |
528 |
|
528 | |||
529 | freq_dc = int(jspectra.shape[1] / 2) |
|
529 | freq_dc = int(jspectra.shape[1] / 2) | |
530 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
530 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
531 | ind_vel = ind_vel.astype(int) |
|
531 | ind_vel = ind_vel.astype(int) | |
532 |
|
532 | |||
533 | if ind_vel[0] < 0: |
|
533 | if ind_vel[0] < 0: | |
534 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
534 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof | |
535 |
|
535 | |||
536 | if mode == 1: |
|
536 | if mode == 1: | |
537 | jspectra[:, freq_dc, :] = ( |
|
537 | jspectra[:, freq_dc, :] = ( | |
538 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
538 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
539 |
|
539 | |||
540 | if jcspectraExist: |
|
540 | if jcspectraExist: | |
541 | jcspectra[:, freq_dc, :] = ( |
|
541 | jcspectra[:, freq_dc, :] = ( | |
542 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
542 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 | |
543 |
|
543 | |||
544 | if mode == 2: |
|
544 | if mode == 2: | |
545 |
|
545 | |||
546 | vel = numpy.array([-2, -1, 1, 2]) |
|
546 | vel = numpy.array([-2, -1, 1, 2]) | |
547 | xx = numpy.zeros([4, 4]) |
|
547 | xx = numpy.zeros([4, 4]) | |
548 |
|
548 | |||
549 | for fil in range(4): |
|
549 | for fil in range(4): | |
550 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
550 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
551 |
|
551 | |||
552 | xx_inv = numpy.linalg.inv(xx) |
|
552 | xx_inv = numpy.linalg.inv(xx) | |
553 | xx_aux = xx_inv[0, :] |
|
553 | xx_aux = xx_inv[0, :] | |
554 |
|
554 | |||
555 | for ich in range(num_chan): |
|
555 | for ich in range(num_chan): | |
556 | yy = jspectra[ich, ind_vel, :] |
|
556 | yy = jspectra[ich, ind_vel, :] | |
557 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
557 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
558 |
|
558 | |||
559 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
559 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
560 | cjunkid = sum(junkid) |
|
560 | cjunkid = sum(junkid) | |
561 |
|
561 | |||
562 | if cjunkid.any(): |
|
562 | if cjunkid.any(): | |
563 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
563 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
564 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
564 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
565 |
|
565 | |||
566 | if jcspectraExist: |
|
566 | if jcspectraExist: | |
567 | for ip in range(num_pairs): |
|
567 | for ip in range(num_pairs): | |
568 | yy = jcspectra[ip, ind_vel, :] |
|
568 | yy = jcspectra[ip, ind_vel, :] | |
569 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
569 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) | |
570 |
|
570 | |||
571 | self.dataOut.data_spc = jspectra |
|
571 | self.dataOut.data_spc = jspectra | |
572 | self.dataOut.data_cspc = jcspectra |
|
572 | self.dataOut.data_cspc = jcspectra | |
573 |
|
573 | |||
574 | return self.dataOut |
|
574 | return self.dataOut | |
575 |
|
575 | |||
576 | class getNoiseB(Operation): |
|
576 | class getNoiseB(Operation): | |
577 |
|
577 | |||
578 | __slots__ =('offset','warnings', 'isConfig', 'minIndex','maxIndex','minIndexFFT','maxIndexFFT') |
|
578 | __slots__ =('offset','warnings', 'isConfig', 'minIndex','maxIndex','minIndexFFT','maxIndexFFT') | |
579 | def __init__(self): |
|
579 | def __init__(self): | |
580 |
|
580 | |||
581 | Operation.__init__(self) |
|
581 | Operation.__init__(self) | |
582 | self.isConfig = False |
|
582 | self.isConfig = False | |
583 |
|
583 | |||
584 | def setup(self, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): |
|
584 | def setup(self, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): | |
585 |
|
585 | |||
586 | self.warnings = warnings |
|
586 | self.warnings = warnings | |
587 | if minHei == None: |
|
587 | if minHei == None: | |
588 | minHei = self.dataOut.heightList[0] |
|
588 | minHei = self.dataOut.heightList[0] | |
589 |
|
589 | |||
590 | if maxHei == None: |
|
590 | if maxHei == None: | |
591 | maxHei = self.dataOut.heightList[-1] |
|
591 | maxHei = self.dataOut.heightList[-1] | |
592 |
|
592 | |||
593 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
593 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
594 | if self.warnings: |
|
594 | if self.warnings: | |
595 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
595 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
596 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
596 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
597 | minHei = self.dataOut.heightList[0] |
|
597 | minHei = self.dataOut.heightList[0] | |
598 |
|
598 | |||
599 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
599 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
600 | if self.warnings: |
|
600 | if self.warnings: | |
601 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
601 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
602 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
602 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
603 | maxHei = self.dataOut.heightList[-1] |
|
603 | maxHei = self.dataOut.heightList[-1] | |
604 |
|
604 | |||
605 |
|
605 | |||
606 | #indices relativos a los puntos de fft, puede ser de acuerdo a velocidad o frecuencia |
|
606 | #indices relativos a los puntos de fft, puede ser de acuerdo a velocidad o frecuencia | |
607 | minIndexFFT = 0 |
|
607 | minIndexFFT = 0 | |
608 | maxIndexFFT = 0 |
|
608 | maxIndexFFT = 0 | |
609 | # validacion de velocidades |
|
609 | # validacion de velocidades | |
610 | indminPoint = None |
|
610 | indminPoint = None | |
611 | indmaxPoint = None |
|
611 | indmaxPoint = None | |
612 | if self.dataOut.type == 'Spectra': |
|
612 | if self.dataOut.type == 'Spectra': | |
613 | if minVel == None and maxVel == None : |
|
613 | if minVel == None and maxVel == None : | |
614 |
|
614 | |||
615 | freqrange = self.dataOut.getFreqRange(1) |
|
615 | freqrange = self.dataOut.getFreqRange(1) | |
616 |
|
616 | |||
617 | if minFreq == None: |
|
617 | if minFreq == None: | |
618 | minFreq = freqrange[0] |
|
618 | minFreq = freqrange[0] | |
619 |
|
619 | |||
620 | if maxFreq == None: |
|
620 | if maxFreq == None: | |
621 | maxFreq = freqrange[-1] |
|
621 | maxFreq = freqrange[-1] | |
622 |
|
622 | |||
623 | if (minFreq < freqrange[0]) or (minFreq > maxFreq): |
|
623 | if (minFreq < freqrange[0]) or (minFreq > maxFreq): | |
624 | if self.warnings: |
|
624 | if self.warnings: | |
625 | print('minFreq: %.2f is out of the frequency range' % (minFreq)) |
|
625 | print('minFreq: %.2f is out of the frequency range' % (minFreq)) | |
626 | print('minFreq is setting to %.2f' % (freqrange[0])) |
|
626 | print('minFreq is setting to %.2f' % (freqrange[0])) | |
627 | minFreq = freqrange[0] |
|
627 | minFreq = freqrange[0] | |
628 |
|
628 | |||
629 | if (maxFreq > freqrange[-1]) or (maxFreq < minFreq): |
|
629 | if (maxFreq > freqrange[-1]) or (maxFreq < minFreq): | |
630 | if self.warnings: |
|
630 | if self.warnings: | |
631 | print('maxFreq: %.2f is out of the frequency range' % (maxFreq)) |
|
631 | print('maxFreq: %.2f is out of the frequency range' % (maxFreq)) | |
632 | print('maxFreq is setting to %.2f' % (freqrange[-1])) |
|
632 | print('maxFreq is setting to %.2f' % (freqrange[-1])) | |
633 | maxFreq = freqrange[-1] |
|
633 | maxFreq = freqrange[-1] | |
634 |
|
634 | |||
635 | indminPoint = numpy.where(freqrange >= minFreq) |
|
635 | indminPoint = numpy.where(freqrange >= minFreq) | |
636 | indmaxPoint = numpy.where(freqrange <= maxFreq) |
|
636 | indmaxPoint = numpy.where(freqrange <= maxFreq) | |
637 |
|
637 | |||
638 | else: |
|
638 | else: | |
639 |
|
639 | |||
640 | velrange = self.dataOut.getVelRange(1) |
|
640 | velrange = self.dataOut.getVelRange(1) | |
641 |
|
641 | |||
642 | if minVel == None: |
|
642 | if minVel == None: | |
643 | minVel = velrange[0] |
|
643 | minVel = velrange[0] | |
644 |
|
644 | |||
645 | if maxVel == None: |
|
645 | if maxVel == None: | |
646 | maxVel = velrange[-1] |
|
646 | maxVel = velrange[-1] | |
647 |
|
647 | |||
648 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
648 | if (minVel < velrange[0]) or (minVel > maxVel): | |
649 | if self.warnings: |
|
649 | if self.warnings: | |
650 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
650 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |
651 | print('minVel is setting to %.2f' % (velrange[0])) |
|
651 | print('minVel is setting to %.2f' % (velrange[0])) | |
652 | minVel = velrange[0] |
|
652 | minVel = velrange[0] | |
653 |
|
653 | |||
654 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
654 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
655 | if self.warnings: |
|
655 | if self.warnings: | |
656 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
656 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |
657 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
657 | print('maxVel is setting to %.2f' % (velrange[-1])) | |
658 | maxVel = velrange[-1] |
|
658 | maxVel = velrange[-1] | |
659 |
|
659 | |||
660 | indminPoint = numpy.where(velrange >= minVel) |
|
660 | indminPoint = numpy.where(velrange >= minVel) | |
661 | indmaxPoint = numpy.where(velrange <= maxVel) |
|
661 | indmaxPoint = numpy.where(velrange <= maxVel) | |
662 |
|
662 | |||
663 |
|
663 | |||
664 | # seleccion de indices para rango |
|
664 | # seleccion de indices para rango | |
665 | minIndex = 0 |
|
665 | minIndex = 0 | |
666 | maxIndex = 0 |
|
666 | maxIndex = 0 | |
667 | heights = self.dataOut.heightList |
|
667 | heights = self.dataOut.heightList | |
668 |
|
668 | |||
669 | inda = numpy.where(heights >= minHei) |
|
669 | inda = numpy.where(heights >= minHei) | |
670 | indb = numpy.where(heights <= maxHei) |
|
670 | indb = numpy.where(heights <= maxHei) | |
671 |
|
671 | |||
672 | try: |
|
672 | try: | |
673 | minIndex = inda[0][0] |
|
673 | minIndex = inda[0][0] | |
674 | except: |
|
674 | except: | |
675 | minIndex = 0 |
|
675 | minIndex = 0 | |
676 |
|
676 | |||
677 | try: |
|
677 | try: | |
678 | maxIndex = indb[0][-1] |
|
678 | maxIndex = indb[0][-1] | |
679 | except: |
|
679 | except: | |
680 | maxIndex = len(heights) |
|
680 | maxIndex = len(heights) | |
681 |
|
681 | |||
682 | if (minIndex < 0) or (minIndex > maxIndex): |
|
682 | if (minIndex < 0) or (minIndex > maxIndex): | |
683 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
683 | raise ValueError("some value in (%d,%d) is not valid" % ( | |
684 | minIndex, maxIndex)) |
|
684 | minIndex, maxIndex)) | |
685 |
|
685 | |||
686 | if (maxIndex >= self.dataOut.nHeights): |
|
686 | if (maxIndex >= self.dataOut.nHeights): | |
687 | maxIndex = self.dataOut.nHeights - 1 |
|
687 | maxIndex = self.dataOut.nHeights - 1 | |
688 | #############################################################3 |
|
688 | #############################################################3 | |
689 | # seleccion de indices para velocidades |
|
689 | # seleccion de indices para velocidades | |
690 | if self.dataOut.type == 'Spectra': |
|
690 | if self.dataOut.type == 'Spectra': | |
691 | try: |
|
691 | try: | |
692 | minIndexFFT = indminPoint[0][0] |
|
692 | minIndexFFT = indminPoint[0][0] | |
693 | except: |
|
693 | except: | |
694 | minIndexFFT = 0 |
|
694 | minIndexFFT = 0 | |
695 |
|
695 | |||
696 | try: |
|
696 | try: | |
697 | maxIndexFFT = indmaxPoint[0][-1] |
|
697 | maxIndexFFT = indmaxPoint[0][-1] | |
698 | except: |
|
698 | except: | |
699 | maxIndexFFT = len( self.dataOut.getFreqRange(1)) |
|
699 | maxIndexFFT = len( self.dataOut.getFreqRange(1)) | |
700 |
|
700 | |||
701 | self.minIndex, self.maxIndex, self.minIndexFFT, self.maxIndexFFT = minIndex, maxIndex, minIndexFFT, maxIndexFFT |
|
701 | self.minIndex, self.maxIndex, self.minIndexFFT, self.maxIndexFFT = minIndex, maxIndex, minIndexFFT, maxIndexFFT | |
702 | self.isConfig = True |
|
702 | self.isConfig = True | |
703 | self.offset = 1 |
|
703 | self.offset = 1 | |
704 | if offset!=None: |
|
704 | if offset!=None: | |
705 | self.offset = 10**(offset/10) |
|
705 | self.offset = 10**(offset/10) | |
706 | #print("config getNoiseB Done") |
|
706 | #print("config getNoiseB Done") | |
707 |
|
707 | |||
708 | def run(self, dataOut, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): |
|
708 | def run(self, dataOut, offset=None, minHei=None, maxHei=None,minVel=None, maxVel=None, minFreq= None, maxFreq=None, warnings=False): | |
709 | self.dataOut = dataOut |
|
709 | self.dataOut = dataOut | |
710 |
|
710 | |||
711 | if not self.isConfig: |
|
711 | if not self.isConfig: | |
712 | self.setup(offset, minHei, maxHei,minVel, maxVel, minFreq, maxFreq, warnings) |
|
712 | self.setup(offset, minHei, maxHei,minVel, maxVel, minFreq, maxFreq, warnings) | |
713 |
|
713 | |||
714 | self.dataOut.noise_estimation = None |
|
714 | self.dataOut.noise_estimation = None | |
715 | noise = None |
|
715 | noise = None | |
716 | #print("data type: ",self.dataOut.type, self.dataOut.nIncohInt, self.dataOut.max_nIncohInt) |
|
716 | #print("data type: ",self.dataOut.type, self.dataOut.nIncohInt, self.dataOut.max_nIncohInt) | |
717 | if self.dataOut.type == 'Voltage': |
|
717 | if self.dataOut.type == 'Voltage': | |
718 | noise = self.dataOut.getNoise(ymin_index=self.minIndex, ymax_index=self.maxIndex) |
|
718 | noise = self.dataOut.getNoise(ymin_index=self.minIndex, ymax_index=self.maxIndex) | |
719 | #print(minIndex, maxIndex,minIndexVel, maxIndexVel) |
|
719 | #print(minIndex, maxIndex,minIndexVel, maxIndexVel) | |
720 | elif self.dataOut.type == 'Spectra': |
|
720 | elif self.dataOut.type == 'Spectra': | |
721 | #print(self.dataOut.nChannels, self.minIndex, self.maxIndex,self.minIndexFFT, self.maxIndexFFT, self.dataOut.max_nIncohInt, self.dataOut.nIncohInt) |
|
721 | #print(self.dataOut.nChannels, self.minIndex, self.maxIndex,self.minIndexFFT, self.maxIndexFFT, self.dataOut.max_nIncohInt, self.dataOut.nIncohInt) | |
722 | noise = numpy.zeros( self.dataOut.nChannels) |
|
722 | noise = numpy.zeros( self.dataOut.nChannels) | |
723 | norm = 1 |
|
723 | norm = 1 | |
724 |
|
724 | |||
725 | for channel in range( self.dataOut.nChannels): |
|
725 | for channel in range( self.dataOut.nChannels): | |
726 | if not hasattr(self.dataOut.nIncohInt,'__len__'): |
|
726 | if not hasattr(self.dataOut.nIncohInt,'__len__'): | |
727 | norm = 1 |
|
727 | norm = 1 | |
728 | else: |
|
728 | else: | |
729 | norm = self.dataOut.max_nIncohInt[channel]/self.dataOut.nIncohInt[channel, self.minIndex:self.maxIndex] |
|
729 | norm = self.dataOut.max_nIncohInt[channel]/self.dataOut.nIncohInt[channel, self.minIndex:self.maxIndex] | |
|
730 | ||||
730 | #print("norm nIncoh: ", norm ,self.dataOut.data_spc.shape, self.dataOut.max_nIncohInt) |
|
731 | #print("norm nIncoh: ", norm ,self.dataOut.data_spc.shape, self.dataOut.max_nIncohInt) | |
731 | daux = self.dataOut.data_spc[channel,self.minIndexFFT:self.maxIndexFFT, self.minIndex:self.maxIndex] |
|
732 | daux = self.dataOut.data_spc[channel,self.minIndexFFT:self.maxIndexFFT, self.minIndex:self.maxIndex] | |
732 | daux = numpy.multiply(daux, norm) |
|
733 | daux = numpy.multiply(daux, norm) | |
733 | #print("offset: ", self.offset, 10*numpy.log10(self.offset)) |
|
734 | #print("offset: ", self.offset, 10*numpy.log10(self.offset)) | |
734 | # noise[channel] = self.getNoiseByMean(daux)/self.offset |
|
735 | # noise[channel] = self.getNoiseByMean(daux)/self.offset | |
735 | #print(daux.shape, daux) |
|
736 | #print(daux.shape, daux) | |
736 | #noise[channel] = self.getNoiseByHS(daux, self.dataOut.max_nIncohInt)/self.offset |
|
737 | #noise[channel] = self.getNoiseByHS(daux, self.dataOut.max_nIncohInt)/self.offset | |
737 | sortdata = numpy.sort(daux, axis=None) |
|
738 | sortdata = numpy.sort(daux, axis=None) | |
738 |
|
739 | |||
739 | noise[channel] = _noise.hildebrand_sekhon(sortdata, self.dataOut.max_nIncohInt[channel])/self.offset |
|
740 | noise[channel] = _noise.hildebrand_sekhon(sortdata, self.dataOut.max_nIncohInt[channel])/self.offset | |
740 | #print("noise shape", noise[channel], self.name) |
|
741 | #print("noise shape", noise[channel], self.name) | |
741 |
|
742 | |||
742 | #noise = self.dataOut.getNoise(xmin_index=self.minIndexFFT, xmax_index=self.maxIndexFFT, ymin_index=self.minIndex, ymax_index=self.maxIndex) |
|
743 | #noise = self.dataOut.getNoise(xmin_index=self.minIndexFFT, xmax_index=self.maxIndexFFT, ymin_index=self.minIndex, ymax_index=self.maxIndex) | |
743 | else: |
|
744 | else: | |
744 | noise = self.dataOut.getNoise(xmin_index=self.minIndexFFT, xmax_index=self.maxIndexFFT, ymin_index=self.minIndex, ymax_index=self.maxIndex) |
|
745 | noise = self.dataOut.getNoise(xmin_index=self.minIndexFFT, xmax_index=self.maxIndexFFT, ymin_index=self.minIndex, ymax_index=self.maxIndex) | |
|
746 | ||||
745 | self.dataOut.noise_estimation = noise.copy() # dataOut.noise |
|
747 | self.dataOut.noise_estimation = noise.copy() # dataOut.noise | |
746 | #print("2: ",10*numpy.log10(self.dataOut.noise_estimation/64)) |
|
748 | #print("2: ",10*numpy.log10(self.dataOut.noise_estimation/64)) | |
747 | #print("2: ",self.dataOut.noise_estimation) |
|
749 | #print("2: ",self.dataOut.noise_estimation) | |
748 | #print(self.dataOut.flagNoData) |
|
750 | #print(self.dataOut.flagNoData) | |
749 | #print("getNoise Done", noise, self.dataOut.nProfiles ,self.dataOut.ippFactor) |
|
751 | #print("getNoise Done", 10*numpy.log10(noise)) | |
750 | return self.dataOut |
|
752 | return self.dataOut | |
751 |
|
753 | |||
752 | def getNoiseByMean(self,data): |
|
754 | def getNoiseByMean(self,data): | |
753 | #data debe estar ordenado |
|
755 | #data debe estar ordenado | |
754 | data = numpy.mean(data,axis=1) |
|
756 | data = numpy.mean(data,axis=1) | |
755 | sortdata = numpy.sort(data, axis=None) |
|
757 | sortdata = numpy.sort(data, axis=None) | |
756 | #sortID=data.argsort() |
|
758 | #sortID=data.argsort() | |
757 | #print(data.shape) |
|
759 | #print(data.shape) | |
758 |
|
760 | |||
759 | pnoise = None |
|
761 | pnoise = None | |
760 | j = 0 |
|
762 | j = 0 | |
761 |
|
763 | |||
762 | mean = numpy.mean(sortdata) |
|
764 | mean = numpy.mean(sortdata) | |
763 | min = numpy.min(sortdata) |
|
765 | min = numpy.min(sortdata) | |
764 | delta = mean - min |
|
766 | delta = mean - min | |
765 | indexes = numpy.where(sortdata > (mean+delta))[0] #only array of indexes |
|
767 | indexes = numpy.where(sortdata > (mean+delta))[0] #only array of indexes | |
766 | #print(len(indexes)) |
|
768 | #print(len(indexes)) | |
767 | if len(indexes)==0: |
|
769 | if len(indexes)==0: | |
768 | pnoise = numpy.mean(sortdata) |
|
770 | pnoise = numpy.mean(sortdata) | |
769 | else: |
|
771 | else: | |
770 | j = indexes[0] |
|
772 | j = indexes[0] | |
771 | pnoise = numpy.mean(sortdata[0:j]) |
|
773 | pnoise = numpy.mean(sortdata[0:j]) | |
772 |
|
774 | |||
773 | # from matplotlib import pyplot as plt |
|
775 | # from matplotlib import pyplot as plt | |
774 | # plt.plot(sortdata) |
|
776 | # plt.plot(sortdata) | |
775 | # plt.vlines(j,(pnoise-delta),(pnoise+delta), color='r') |
|
777 | # plt.vlines(j,(pnoise-delta),(pnoise+delta), color='r') | |
776 | # plt.show() |
|
778 | # plt.show() | |
777 | #print("noise: ", 10*numpy.log10(pnoise)) |
|
779 | #print("noise: ", 10*numpy.log10(pnoise)) | |
778 | return pnoise |
|
780 | return pnoise | |
779 |
|
781 | |||
780 | def getNoiseByHS(self,data, navg): |
|
782 | def getNoiseByHS(self,data, navg): | |
781 | #data debe estar ordenado |
|
783 | #data debe estar ordenado | |
782 | #data = numpy.mean(data,axis=1) |
|
784 | #data = numpy.mean(data,axis=1) | |
783 | sortdata = numpy.sort(data, axis=None) |
|
785 | sortdata = numpy.sort(data, axis=None) | |
784 |
|
786 | |||
785 | lenOfData = len(sortdata) |
|
787 | lenOfData = len(sortdata) | |
786 | nums_min = lenOfData*0.2 |
|
788 | nums_min = lenOfData*0.2 | |
787 |
|
789 | |||
788 | if nums_min <= 5: |
|
790 | if nums_min <= 5: | |
789 |
|
791 | |||
790 | nums_min = 5 |
|
792 | nums_min = 5 | |
791 |
|
793 | |||
792 | sump = 0. |
|
794 | sump = 0. | |
793 | sumq = 0. |
|
795 | sumq = 0. | |
794 |
|
796 | |||
795 | j = 0 |
|
797 | j = 0 | |
796 | cont = 1 |
|
798 | cont = 1 | |
797 |
|
799 | |||
798 | while((cont == 1)and(j < lenOfData)): |
|
800 | while((cont == 1)and(j < lenOfData)): | |
799 |
|
801 | |||
800 | sump += sortdata[j] |
|
802 | sump += sortdata[j] | |
801 | sumq += sortdata[j]**2 |
|
803 | sumq += sortdata[j]**2 | |
802 | #sumq -= sump**2 |
|
804 | #sumq -= sump**2 | |
803 | if j > nums_min: |
|
805 | if j > nums_min: | |
804 | rtest = float(j)/(j-1) + 1.0/navg |
|
806 | rtest = float(j)/(j-1) + 1.0/navg | |
805 | #if ((sumq*j) > (sump**2)): |
|
807 | #if ((sumq*j) > (sump**2)): | |
806 | if ((sumq*j) > (rtest*sump**2)): |
|
808 | if ((sumq*j) > (rtest*sump**2)): | |
807 | j = j - 1 |
|
809 | j = j - 1 | |
808 | sump = sump - sortdata[j] |
|
810 | sump = sump - sortdata[j] | |
809 | sumq = sumq - sortdata[j]**2 |
|
811 | sumq = sumq - sortdata[j]**2 | |
810 | cont = 0 |
|
812 | cont = 0 | |
811 |
|
813 | |||
812 | j += 1 |
|
814 | j += 1 | |
813 |
|
815 | |||
814 | lnoise = sump / j |
|
816 | lnoise = sump / j | |
815 |
|
817 | |||
816 | return lnoise |
|
818 | return lnoise | |
817 |
|
819 | |||
818 |
|
820 | |||
819 |
|
821 | |||
820 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): |
|
822 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): | |
821 | z = (x - a1) / a2 |
|
823 | z = (x - a1) / a2 | |
822 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 |
|
824 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 | |
823 | return y |
|
825 | return y | |
824 |
|
826 | |||
825 |
|
827 | |||
826 | # class CleanRayleigh(Operation): |
|
828 | # class CleanRayleigh(Operation): | |
827 | # |
|
829 | # | |
828 | # def __init__(self): |
|
830 | # def __init__(self): | |
829 | # |
|
831 | # | |
830 | # Operation.__init__(self) |
|
832 | # Operation.__init__(self) | |
831 | # self.i=0 |
|
833 | # self.i=0 | |
832 | # self.isConfig = False |
|
834 | # self.isConfig = False | |
833 | # self.__dataReady = False |
|
835 | # self.__dataReady = False | |
834 | # self.__profIndex = 0 |
|
836 | # self.__profIndex = 0 | |
835 | # self.byTime = False |
|
837 | # self.byTime = False | |
836 | # self.byProfiles = False |
|
838 | # self.byProfiles = False | |
837 | # |
|
839 | # | |
838 | # self.bloques = None |
|
840 | # self.bloques = None | |
839 | # self.bloque0 = None |
|
841 | # self.bloque0 = None | |
840 | # |
|
842 | # | |
841 | # self.index = 0 |
|
843 | # self.index = 0 | |
842 | # |
|
844 | # | |
843 | # self.buffer = 0 |
|
845 | # self.buffer = 0 | |
844 | # self.buffer2 = 0 |
|
846 | # self.buffer2 = 0 | |
845 | # self.buffer3 = 0 |
|
847 | # self.buffer3 = 0 | |
846 | # |
|
848 | # | |
847 | # |
|
849 | # | |
848 | # def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): |
|
850 | # def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): | |
849 | # |
|
851 | # | |
850 | # self.nChannels = dataOut.nChannels |
|
852 | # self.nChannels = dataOut.nChannels | |
851 | # self.nProf = dataOut.nProfiles |
|
853 | # self.nProf = dataOut.nProfiles | |
852 | # self.nPairs = dataOut.data_cspc.shape[0] |
|
854 | # self.nPairs = dataOut.data_cspc.shape[0] | |
853 | # self.pairsArray = numpy.array(dataOut.pairsList) |
|
855 | # self.pairsArray = numpy.array(dataOut.pairsList) | |
854 | # self.spectra = dataOut.data_spc |
|
856 | # self.spectra = dataOut.data_spc | |
855 | # self.cspectra = dataOut.data_cspc |
|
857 | # self.cspectra = dataOut.data_cspc | |
856 | # self.heights = dataOut.heightList #alturas totales |
|
858 | # self.heights = dataOut.heightList #alturas totales | |
857 | # self.nHeights = len(self.heights) |
|
859 | # self.nHeights = len(self.heights) | |
858 | # self.min_hei = min_hei |
|
860 | # self.min_hei = min_hei | |
859 | # self.max_hei = max_hei |
|
861 | # self.max_hei = max_hei | |
860 | # if (self.min_hei == None): |
|
862 | # if (self.min_hei == None): | |
861 | # self.min_hei = 0 |
|
863 | # self.min_hei = 0 | |
862 | # if (self.max_hei == None): |
|
864 | # if (self.max_hei == None): | |
863 | # self.max_hei = dataOut.heightList[-1] |
|
865 | # self.max_hei = dataOut.heightList[-1] | |
864 | # self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() |
|
866 | # self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() | |
865 | # self.heightsClean = self.heights[self.hval] #alturas filtradas |
|
867 | # self.heightsClean = self.heights[self.hval] #alturas filtradas | |
866 | # self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas |
|
868 | # self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas | |
867 | # self.nHeightsClean = len(self.heightsClean) |
|
869 | # self.nHeightsClean = len(self.heightsClean) | |
868 | # self.channels = dataOut.channelList |
|
870 | # self.channels = dataOut.channelList | |
869 | # self.nChan = len(self.channels) |
|
871 | # self.nChan = len(self.channels) | |
870 | # self.nIncohInt = dataOut.nIncohInt |
|
872 | # self.nIncohInt = dataOut.nIncohInt | |
871 | # self.__initime = dataOut.utctime |
|
873 | # self.__initime = dataOut.utctime | |
872 | # self.maxAltInd = self.hval[-1]+1 |
|
874 | # self.maxAltInd = self.hval[-1]+1 | |
873 | # self.minAltInd = self.hval[0] |
|
875 | # self.minAltInd = self.hval[0] | |
874 | # |
|
876 | # | |
875 | # self.crosspairs = dataOut.pairsList |
|
877 | # self.crosspairs = dataOut.pairsList | |
876 | # self.nPairs = len(self.crosspairs) |
|
878 | # self.nPairs = len(self.crosspairs) | |
877 | # self.normFactor = dataOut.normFactor |
|
879 | # self.normFactor = dataOut.normFactor | |
878 | # self.nFFTPoints = dataOut.nFFTPoints |
|
880 | # self.nFFTPoints = dataOut.nFFTPoints | |
879 | # self.ippSeconds = dataOut.ippSeconds |
|
881 | # self.ippSeconds = dataOut.ippSeconds | |
880 | # self.currentTime = self.__initime |
|
882 | # self.currentTime = self.__initime | |
881 | # self.pairsArray = numpy.array(dataOut.pairsList) |
|
883 | # self.pairsArray = numpy.array(dataOut.pairsList) | |
882 | # self.factor_stdv = factor_stdv |
|
884 | # self.factor_stdv = factor_stdv | |
883 | # |
|
885 | # | |
884 | # if n != None : |
|
886 | # if n != None : | |
885 | # self.byProfiles = True |
|
887 | # self.byProfiles = True | |
886 | # self.nIntProfiles = n |
|
888 | # self.nIntProfiles = n | |
887 | # else: |
|
889 | # else: | |
888 | # self.__integrationtime = timeInterval |
|
890 | # self.__integrationtime = timeInterval | |
889 | # |
|
891 | # | |
890 | # self.__dataReady = False |
|
892 | # self.__dataReady = False | |
891 | # self.isConfig = True |
|
893 | # self.isConfig = True | |
892 | # |
|
894 | # | |
893 | # |
|
895 | # | |
894 | # |
|
896 | # | |
895 | # def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): |
|
897 | # def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): | |
896 | # #print("runing cleanRayleigh") |
|
898 | # #print("runing cleanRayleigh") | |
897 | # if not self.isConfig : |
|
899 | # if not self.isConfig : | |
898 | # |
|
900 | # | |
899 | # self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) |
|
901 | # self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) | |
900 | # |
|
902 | # | |
901 | # tini=dataOut.utctime |
|
903 | # tini=dataOut.utctime | |
902 | # |
|
904 | # | |
903 | # if self.byProfiles: |
|
905 | # if self.byProfiles: | |
904 | # if self.__profIndex == self.nIntProfiles: |
|
906 | # if self.__profIndex == self.nIntProfiles: | |
905 | # self.__dataReady = True |
|
907 | # self.__dataReady = True | |
906 | # else: |
|
908 | # else: | |
907 | # if (tini - self.__initime) >= self.__integrationtime: |
|
909 | # if (tini - self.__initime) >= self.__integrationtime: | |
908 | # |
|
910 | # | |
909 | # self.__dataReady = True |
|
911 | # self.__dataReady = True | |
910 | # self.__initime = tini |
|
912 | # self.__initime = tini | |
911 | # |
|
913 | # | |
912 | # #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): |
|
914 | # #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): | |
913 | # |
|
915 | # | |
914 | # if self.__dataReady: |
|
916 | # if self.__dataReady: | |
915 | # |
|
917 | # | |
916 | # self.__profIndex = 0 |
|
918 | # self.__profIndex = 0 | |
917 | # jspc = self.buffer |
|
919 | # jspc = self.buffer | |
918 | # jcspc = self.buffer2 |
|
920 | # jcspc = self.buffer2 | |
919 | # #jnoise = self.buffer3 |
|
921 | # #jnoise = self.buffer3 | |
920 | # self.buffer = dataOut.data_spc |
|
922 | # self.buffer = dataOut.data_spc | |
921 | # self.buffer2 = dataOut.data_cspc |
|
923 | # self.buffer2 = dataOut.data_cspc | |
922 | # #self.buffer3 = dataOut.noise |
|
924 | # #self.buffer3 = dataOut.noise | |
923 | # self.currentTime = dataOut.utctime |
|
925 | # self.currentTime = dataOut.utctime | |
924 | # if numpy.any(jspc) : |
|
926 | # if numpy.any(jspc) : | |
925 | # #print( jspc.shape, jcspc.shape) |
|
927 | # #print( jspc.shape, jcspc.shape) | |
926 | # jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) |
|
928 | # jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) | |
927 | # try: |
|
929 | # try: | |
928 | # jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) |
|
930 | # jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) | |
929 | # except: |
|
931 | # except: | |
930 | # print("no cspc") |
|
932 | # print("no cspc") | |
931 | # self.__dataReady = False |
|
933 | # self.__dataReady = False | |
932 | # #print( jspc.shape, jcspc.shape) |
|
934 | # #print( jspc.shape, jcspc.shape) | |
933 | # dataOut.flagNoData = False |
|
935 | # dataOut.flagNoData = False | |
934 | # else: |
|
936 | # else: | |
935 | # dataOut.flagNoData = True |
|
937 | # dataOut.flagNoData = True | |
936 | # self.__dataReady = False |
|
938 | # self.__dataReady = False | |
937 | # return dataOut |
|
939 | # return dataOut | |
938 | # else: |
|
940 | # else: | |
939 | # #print( len(self.buffer)) |
|
941 | # #print( len(self.buffer)) | |
940 | # if numpy.any(self.buffer): |
|
942 | # if numpy.any(self.buffer): | |
941 | # self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) |
|
943 | # self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) | |
942 | # try: |
|
944 | # try: | |
943 | # self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) |
|
945 | # self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) | |
944 | # self.buffer3 += dataOut.data_dc |
|
946 | # self.buffer3 += dataOut.data_dc | |
945 | # except: |
|
947 | # except: | |
946 | # pass |
|
948 | # pass | |
947 | # else: |
|
949 | # else: | |
948 | # self.buffer = dataOut.data_spc |
|
950 | # self.buffer = dataOut.data_spc | |
949 | # self.buffer2 = dataOut.data_cspc |
|
951 | # self.buffer2 = dataOut.data_cspc | |
950 | # self.buffer3 = dataOut.data_dc |
|
952 | # self.buffer3 = dataOut.data_dc | |
951 | # #print self.index, self.fint |
|
953 | # #print self.index, self.fint | |
952 | # #print self.buffer2.shape |
|
954 | # #print self.buffer2.shape | |
953 | # dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO |
|
955 | # dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO | |
954 | # self.__profIndex += 1 |
|
956 | # self.__profIndex += 1 | |
955 | # return dataOut ## NOTE: REV |
|
957 | # return dataOut ## NOTE: REV | |
956 | # |
|
958 | # | |
957 | # |
|
959 | # | |
958 | # #index = tini.tm_hour*12+tini.tm_min/5 |
|
960 | # #index = tini.tm_hour*12+tini.tm_min/5 | |
959 | # ''' |
|
961 | # ''' | |
960 | # #REVISAR |
|
962 | # #REVISAR | |
961 | # ''' |
|
963 | # ''' | |
962 | # # jspc = jspc/self.nFFTPoints/self.normFactor |
|
964 | # # jspc = jspc/self.nFFTPoints/self.normFactor | |
963 | # # jcspc = jcspc/self.nFFTPoints/self.normFactor |
|
965 | # # jcspc = jcspc/self.nFFTPoints/self.normFactor | |
964 | # |
|
966 | # | |
965 | # |
|
967 | # | |
966 | # |
|
968 | # | |
967 | # tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
969 | # tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) | |
968 | # dataOut.data_spc = tmp_spectra |
|
970 | # dataOut.data_spc = tmp_spectra | |
969 | # dataOut.data_cspc = tmp_cspectra |
|
971 | # dataOut.data_cspc = tmp_cspectra | |
970 | # |
|
972 | # | |
971 | # #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
973 | # #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) | |
972 | # |
|
974 | # | |
973 | # dataOut.data_dc = self.buffer3 |
|
975 | # dataOut.data_dc = self.buffer3 | |
974 | # dataOut.nIncohInt *= self.nIntProfiles |
|
976 | # dataOut.nIncohInt *= self.nIntProfiles | |
975 | # dataOut.max_nIncohInt = self.nIntProfiles |
|
977 | # dataOut.max_nIncohInt = self.nIntProfiles | |
976 | # dataOut.utctime = self.currentTime #tiempo promediado |
|
978 | # dataOut.utctime = self.currentTime #tiempo promediado | |
977 | # #print("Time: ",time.localtime(dataOut.utctime)) |
|
979 | # #print("Time: ",time.localtime(dataOut.utctime)) | |
978 | # # dataOut.data_spc = sat_spectra |
|
980 | # # dataOut.data_spc = sat_spectra | |
979 | # # dataOut.data_cspc = sat_cspectra |
|
981 | # # dataOut.data_cspc = sat_cspectra | |
980 | # self.buffer = 0 |
|
982 | # self.buffer = 0 | |
981 | # self.buffer2 = 0 |
|
983 | # self.buffer2 = 0 | |
982 | # self.buffer3 = 0 |
|
984 | # self.buffer3 = 0 | |
983 | # |
|
985 | # | |
984 | # return dataOut |
|
986 | # return dataOut | |
985 | # |
|
987 | # | |
986 | # def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): |
|
988 | # def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): | |
987 | # print("OP cleanRayleigh") |
|
989 | # print("OP cleanRayleigh") | |
988 | # #import matplotlib.pyplot as plt |
|
990 | # #import matplotlib.pyplot as plt | |
989 | # #for k in range(149): |
|
991 | # #for k in range(149): | |
990 | # #channelsProcssd = [] |
|
992 | # #channelsProcssd = [] | |
991 | # #channelA_ok = False |
|
993 | # #channelA_ok = False | |
992 | # #rfunc = cspectra.copy() #self.bloques |
|
994 | # #rfunc = cspectra.copy() #self.bloques | |
993 | # rfunc = spectra.copy() |
|
995 | # rfunc = spectra.copy() | |
994 | # #rfunc = cspectra |
|
996 | # #rfunc = cspectra | |
995 | # #val_spc = spectra*0.0 #self.bloque0*0.0 |
|
997 | # #val_spc = spectra*0.0 #self.bloque0*0.0 | |
996 | # #val_cspc = cspectra*0.0 #self.bloques*0.0 |
|
998 | # #val_cspc = cspectra*0.0 #self.bloques*0.0 | |
997 | # #in_sat_spectra = spectra.copy() #self.bloque0 |
|
999 | # #in_sat_spectra = spectra.copy() #self.bloque0 | |
998 | # #in_sat_cspectra = cspectra.copy() #self.bloques |
|
1000 | # #in_sat_cspectra = cspectra.copy() #self.bloques | |
999 | # |
|
1001 | # | |
1000 | # |
|
1002 | # | |
1001 | # ###ONLY FOR TEST: |
|
1003 | # ###ONLY FOR TEST: | |
1002 | # raxs = math.ceil(math.sqrt(self.nPairs)) |
|
1004 | # raxs = math.ceil(math.sqrt(self.nPairs)) | |
1003 | # if raxs == 0: |
|
1005 | # if raxs == 0: | |
1004 | # raxs = 1 |
|
1006 | # raxs = 1 | |
1005 | # caxs = math.ceil(self.nPairs/raxs) |
|
1007 | # caxs = math.ceil(self.nPairs/raxs) | |
1006 | # if self.nPairs <4: |
|
1008 | # if self.nPairs <4: | |
1007 | # raxs = 2 |
|
1009 | # raxs = 2 | |
1008 | # caxs = 2 |
|
1010 | # caxs = 2 | |
1009 | # #print(raxs, caxs) |
|
1011 | # #print(raxs, caxs) | |
1010 | # fft_rev = 14 #nFFT to plot |
|
1012 | # fft_rev = 14 #nFFT to plot | |
1011 | # hei_rev = ((self.heights >= 550) & (self.heights <= 551)).nonzero() #hei to plot |
|
1013 | # hei_rev = ((self.heights >= 550) & (self.heights <= 551)).nonzero() #hei to plot | |
1012 | # hei_rev = hei_rev[0] |
|
1014 | # hei_rev = hei_rev[0] | |
1013 | # #print(hei_rev) |
|
1015 | # #print(hei_rev) | |
1014 | # |
|
1016 | # | |
1015 | # #print numpy.absolute(rfunc[:,0,0,14]) |
|
1017 | # #print numpy.absolute(rfunc[:,0,0,14]) | |
1016 | # |
|
1018 | # | |
1017 | # gauss_fit, covariance = None, None |
|
1019 | # gauss_fit, covariance = None, None | |
1018 | # for ih in range(self.minAltInd,self.maxAltInd): |
|
1020 | # for ih in range(self.minAltInd,self.maxAltInd): | |
1019 | # for ifreq in range(self.nFFTPoints): |
|
1021 | # for ifreq in range(self.nFFTPoints): | |
1020 | # ''' |
|
1022 | # ''' | |
1021 | # ###ONLY FOR TEST: |
|
1023 | # ###ONLY FOR TEST: | |
1022 | # if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
1024 | # if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
1023 | # fig, axs = plt.subplots(raxs, caxs) |
|
1025 | # fig, axs = plt.subplots(raxs, caxs) | |
1024 | # fig2, axs2 = plt.subplots(raxs, caxs) |
|
1026 | # fig2, axs2 = plt.subplots(raxs, caxs) | |
1025 | # col_ax = 0 |
|
1027 | # col_ax = 0 | |
1026 | # row_ax = 0 |
|
1028 | # row_ax = 0 | |
1027 | # ''' |
|
1029 | # ''' | |
1028 | # #print(self.nPairs) |
|
1030 | # #print(self.nPairs) | |
1029 | # for ii in range(self.nChan): #PARES DE CANALES SELF y CROSS |
|
1031 | # for ii in range(self.nChan): #PARES DE CANALES SELF y CROSS | |
1030 | # # if self.crosspairs[ii][1]-self.crosspairs[ii][0] > 1: # APLICAR SOLO EN PARES CONTIGUOS |
|
1032 | # # if self.crosspairs[ii][1]-self.crosspairs[ii][0] > 1: # APLICAR SOLO EN PARES CONTIGUOS | |
1031 | # # continue |
|
1033 | # # continue | |
1032 | # # if not self.crosspairs[ii][0] in channelsProcssd: |
|
1034 | # # if not self.crosspairs[ii][0] in channelsProcssd: | |
1033 | # # channelA_ok = True |
|
1035 | # # channelA_ok = True | |
1034 | # #print("pair: ",self.crosspairs[ii]) |
|
1036 | # #print("pair: ",self.crosspairs[ii]) | |
1035 | # ''' |
|
1037 | # ''' | |
1036 | # ###ONLY FOR TEST: |
|
1038 | # ###ONLY FOR TEST: | |
1037 | # if (col_ax%caxs==0 and col_ax!=0 and self.nPairs !=1): |
|
1039 | # if (col_ax%caxs==0 and col_ax!=0 and self.nPairs !=1): | |
1038 | # col_ax = 0 |
|
1040 | # col_ax = 0 | |
1039 | # row_ax += 1 |
|
1041 | # row_ax += 1 | |
1040 | # ''' |
|
1042 | # ''' | |
1041 | # func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? |
|
1043 | # func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? | |
1042 | # #print(func2clean.shape) |
|
1044 | # #print(func2clean.shape) | |
1043 | # val = (numpy.isfinite(func2clean)==True).nonzero() |
|
1045 | # val = (numpy.isfinite(func2clean)==True).nonzero() | |
1044 | # |
|
1046 | # | |
1045 | # if len(val)>0: #limitador |
|
1047 | # if len(val)>0: #limitador | |
1046 | # min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) |
|
1048 | # min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) | |
1047 | # if min_val <= -40 : |
|
1049 | # if min_val <= -40 : | |
1048 | # min_val = -40 |
|
1050 | # min_val = -40 | |
1049 | # max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 |
|
1051 | # max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 | |
1050 | # if max_val >= 200 : |
|
1052 | # if max_val >= 200 : | |
1051 | # max_val = 200 |
|
1053 | # max_val = 200 | |
1052 | # #print min_val, max_val |
|
1054 | # #print min_val, max_val | |
1053 | # step = 1 |
|
1055 | # step = 1 | |
1054 | # #print("Getting bins and the histogram") |
|
1056 | # #print("Getting bins and the histogram") | |
1055 | # x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step |
|
1057 | # x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step | |
1056 | # y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
1058 | # y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
1057 | # #print(len(y_dist),len(binstep[:-1])) |
|
1059 | # #print(len(y_dist),len(binstep[:-1])) | |
1058 | # #print(row_ax,col_ax, " ..") |
|
1060 | # #print(row_ax,col_ax, " ..") | |
1059 | # #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) |
|
1061 | # #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) | |
1060 | # mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) |
|
1062 | # mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) | |
1061 | # sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) |
|
1063 | # sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) | |
1062 | # parg = [numpy.amax(y_dist),mean,sigma] |
|
1064 | # parg = [numpy.amax(y_dist),mean,sigma] | |
1063 | # |
|
1065 | # | |
1064 | # newY = None |
|
1066 | # newY = None | |
1065 | # |
|
1067 | # | |
1066 | # try : |
|
1068 | # try : | |
1067 | # gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) |
|
1069 | # gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) | |
1068 | # mode = gauss_fit[1] |
|
1070 | # mode = gauss_fit[1] | |
1069 | # stdv = gauss_fit[2] |
|
1071 | # stdv = gauss_fit[2] | |
1070 | # #print(" FIT OK",gauss_fit) |
|
1072 | # #print(" FIT OK",gauss_fit) | |
1071 | # ''' |
|
1073 | # ''' | |
1072 | # ###ONLY FOR TEST: |
|
1074 | # ###ONLY FOR TEST: | |
1073 | # if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
1075 | # if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
1074 | # newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) |
|
1076 | # newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) | |
1075 | # axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
1077 | # axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
1076 | # axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
1078 | # axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
1077 | # axs[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
1079 | # axs[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) | |
1078 | # ''' |
|
1080 | # ''' | |
1079 | # except: |
|
1081 | # except: | |
1080 | # mode = mean |
|
1082 | # mode = mean | |
1081 | # stdv = sigma |
|
1083 | # stdv = sigma | |
1082 | # #print("FIT FAIL") |
|
1084 | # #print("FIT FAIL") | |
1083 | # #continue |
|
1085 | # #continue | |
1084 | # |
|
1086 | # | |
1085 | # |
|
1087 | # | |
1086 | # #print(mode,stdv) |
|
1088 | # #print(mode,stdv) | |
1087 | # #Removing echoes greater than mode + std_factor*stdv |
|
1089 | # #Removing echoes greater than mode + std_factor*stdv | |
1088 | # noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() |
|
1090 | # noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() | |
1089 | # #noval tiene los indices que se van a remover |
|
1091 | # #noval tiene los indices que se van a remover | |
1090 | # #print("Chan ",ii," novals: ",len(noval[0])) |
|
1092 | # #print("Chan ",ii," novals: ",len(noval[0])) | |
1091 | # if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) |
|
1093 | # if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) | |
1092 | # novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() |
|
1094 | # novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() | |
1093 | # #print(novall) |
|
1095 | # #print(novall) | |
1094 | # #print(" ",self.pairsArray[ii]) |
|
1096 | # #print(" ",self.pairsArray[ii]) | |
1095 | # #cross_pairs = self.pairsArray[ii] |
|
1097 | # #cross_pairs = self.pairsArray[ii] | |
1096 | # #Getting coherent echoes which are removed. |
|
1098 | # #Getting coherent echoes which are removed. | |
1097 | # # if len(novall[0]) > 0: |
|
1099 | # # if len(novall[0]) > 0: | |
1098 | # # |
|
1100 | # # | |
1099 | # # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 |
|
1101 | # # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 | |
1100 | # # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 |
|
1102 | # # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 | |
1101 | # # val_cspc[novall[0],ii,ifreq,ih] = 1 |
|
1103 | # # val_cspc[novall[0],ii,ifreq,ih] = 1 | |
1102 | # #print("OUT NOVALL 1") |
|
1104 | # #print("OUT NOVALL 1") | |
1103 | # try: |
|
1105 | # try: | |
1104 | # pair = (self.channels[ii],self.channels[ii + 1]) |
|
1106 | # pair = (self.channels[ii],self.channels[ii + 1]) | |
1105 | # except: |
|
1107 | # except: | |
1106 | # pair = (99,99) |
|
1108 | # pair = (99,99) | |
1107 | # #print("par ", pair) |
|
1109 | # #print("par ", pair) | |
1108 | # if ( pair in self.crosspairs): |
|
1110 | # if ( pair in self.crosspairs): | |
1109 | # q = self.crosspairs.index(pair) |
|
1111 | # q = self.crosspairs.index(pair) | |
1110 | # #print("está aqui: ", q, (ii,ii + 1)) |
|
1112 | # #print("está aqui: ", q, (ii,ii + 1)) | |
1111 | # new_a = numpy.delete(cspectra[:,q,ifreq,ih], noval[0]) |
|
1113 | # new_a = numpy.delete(cspectra[:,q,ifreq,ih], noval[0]) | |
1112 | # cspectra[noval,q,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra |
|
1114 | # cspectra[noval,q,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra | |
1113 | # |
|
1115 | # | |
1114 | # #if channelA_ok: |
|
1116 | # #if channelA_ok: | |
1115 | # #chA = self.channels.index(cross_pairs[0]) |
|
1117 | # #chA = self.channels.index(cross_pairs[0]) | |
1116 | # new_b = numpy.delete(spectra[:,ii,ifreq,ih], noval[0]) |
|
1118 | # new_b = numpy.delete(spectra[:,ii,ifreq,ih], noval[0]) | |
1117 | # spectra[noval,ii,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A |
|
1119 | # spectra[noval,ii,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A | |
1118 | # #channelA_ok = False |
|
1120 | # #channelA_ok = False | |
1119 | # |
|
1121 | # | |
1120 | # # chB = self.channels.index(cross_pairs[1]) |
|
1122 | # # chB = self.channels.index(cross_pairs[1]) | |
1121 | # # new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) |
|
1123 | # # new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) | |
1122 | # # spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B |
|
1124 | # # spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B | |
1123 | # # |
|
1125 | # # | |
1124 | # # channelsProcssd.append(self.crosspairs[ii][0]) # save channel A |
|
1126 | # # channelsProcssd.append(self.crosspairs[ii][0]) # save channel A | |
1125 | # # channelsProcssd.append(self.crosspairs[ii][1]) # save channel B |
|
1127 | # # channelsProcssd.append(self.crosspairs[ii][1]) # save channel B | |
1126 | # ''' |
|
1128 | # ''' | |
1127 | # ###ONLY FOR TEST: |
|
1129 | # ###ONLY FOR TEST: | |
1128 | # if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
1130 | # if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
1129 | # func2clean = 10*numpy.log10(numpy.absolute(spectra[:,ii,ifreq,ih])) |
|
1131 | # func2clean = 10*numpy.log10(numpy.absolute(spectra[:,ii,ifreq,ih])) | |
1130 | # y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
1132 | # y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
1131 | # axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
1133 | # axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
1132 | # axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
1134 | # axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
1133 | # axs2[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) |
|
1135 | # axs2[row_ax,col_ax].set_title("CH "+str(self.channels[ii])) | |
1134 | # ''' |
|
1136 | # ''' | |
1135 | # ''' |
|
1137 | # ''' | |
1136 | # ###ONLY FOR TEST: |
|
1138 | # ###ONLY FOR TEST: | |
1137 | # col_ax += 1 #contador de ploteo columnas |
|
1139 | # col_ax += 1 #contador de ploteo columnas | |
1138 | # ##print(col_ax) |
|
1140 | # ##print(col_ax) | |
1139 | # ###ONLY FOR TEST: |
|
1141 | # ###ONLY FOR TEST: | |
1140 | # if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY |
|
1142 | # if ifreq ==fft_rev and ih==hei_rev: #TO VIEW A SIGNLE FREQUENCY | |
1141 | # title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" |
|
1143 | # title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" | |
1142 | # title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" |
|
1144 | # title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" | |
1143 | # fig.suptitle(title) |
|
1145 | # fig.suptitle(title) | |
1144 | # fig2.suptitle(title2) |
|
1146 | # fig2.suptitle(title2) | |
1145 | # plt.show() |
|
1147 | # plt.show() | |
1146 | # ''' |
|
1148 | # ''' | |
1147 | # ################################################################################################## |
|
1149 | # ################################################################################################## | |
1148 | # |
|
1150 | # | |
1149 | # #print("Getting average of the spectra and cross-spectra from incoherent echoes.") |
|
1151 | # #print("Getting average of the spectra and cross-spectra from incoherent echoes.") | |
1150 | # out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan |
|
1152 | # out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan | |
1151 | # out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan |
|
1153 | # out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan | |
1152 | # for ih in range(self.nHeights): |
|
1154 | # for ih in range(self.nHeights): | |
1153 | # for ifreq in range(self.nFFTPoints): |
|
1155 | # for ifreq in range(self.nFFTPoints): | |
1154 | # for ich in range(self.nChan): |
|
1156 | # for ich in range(self.nChan): | |
1155 | # tmp = spectra[:,ich,ifreq,ih] |
|
1157 | # tmp = spectra[:,ich,ifreq,ih] | |
1156 | # valid = (numpy.isfinite(tmp[:])==True).nonzero() |
|
1158 | # valid = (numpy.isfinite(tmp[:])==True).nonzero() | |
1157 | # |
|
1159 | # | |
1158 | # if len(valid[0]) >0 : |
|
1160 | # if len(valid[0]) >0 : | |
1159 | # out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
1161 | # out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) | |
1160 | # |
|
1162 | # | |
1161 | # for icr in range(self.nPairs): |
|
1163 | # for icr in range(self.nPairs): | |
1162 | # tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) |
|
1164 | # tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) | |
1163 | # valid = (numpy.isfinite(tmp)==True).nonzero() |
|
1165 | # valid = (numpy.isfinite(tmp)==True).nonzero() | |
1164 | # if len(valid[0]) > 0: |
|
1166 | # if len(valid[0]) > 0: | |
1165 | # out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
1167 | # out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) | |
1166 | # |
|
1168 | # | |
1167 | # return out_spectra, out_cspectra |
|
1169 | # return out_spectra, out_cspectra | |
1168 | # |
|
1170 | # | |
1169 | # def REM_ISOLATED_POINTS(self,array,rth): |
|
1171 | # def REM_ISOLATED_POINTS(self,array,rth): | |
1170 | # # import matplotlib.pyplot as plt |
|
1172 | # # import matplotlib.pyplot as plt | |
1171 | # if rth == None : |
|
1173 | # if rth == None : | |
1172 | # rth = 4 |
|
1174 | # rth = 4 | |
1173 | # #print("REM ISO") |
|
1175 | # #print("REM ISO") | |
1174 | # num_prof = len(array[0,:,0]) |
|
1176 | # num_prof = len(array[0,:,0]) | |
1175 | # num_hei = len(array[0,0,:]) |
|
1177 | # num_hei = len(array[0,0,:]) | |
1176 | # n2d = len(array[:,0,0]) |
|
1178 | # n2d = len(array[:,0,0]) | |
1177 | # |
|
1179 | # | |
1178 | # for ii in range(n2d) : |
|
1180 | # for ii in range(n2d) : | |
1179 | # #print ii,n2d |
|
1181 | # #print ii,n2d | |
1180 | # tmp = array[ii,:,:] |
|
1182 | # tmp = array[ii,:,:] | |
1181 | # #print tmp.shape, array[ii,101,:],array[ii,102,:] |
|
1183 | # #print tmp.shape, array[ii,101,:],array[ii,102,:] | |
1182 | # |
|
1184 | # | |
1183 | # # fig = plt.figure(figsize=(6,5)) |
|
1185 | # # fig = plt.figure(figsize=(6,5)) | |
1184 | # # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
1186 | # # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
1185 | # # ax = fig.add_axes([left, bottom, width, height]) |
|
1187 | # # ax = fig.add_axes([left, bottom, width, height]) | |
1186 | # # x = range(num_prof) |
|
1188 | # # x = range(num_prof) | |
1187 | # # y = range(num_hei) |
|
1189 | # # y = range(num_hei) | |
1188 | # # cp = ax.contour(y,x,tmp) |
|
1190 | # # cp = ax.contour(y,x,tmp) | |
1189 | # # ax.clabel(cp, inline=True,fontsize=10) |
|
1191 | # # ax.clabel(cp, inline=True,fontsize=10) | |
1190 | # # plt.show() |
|
1192 | # # plt.show() | |
1191 | # |
|
1193 | # | |
1192 | # #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) |
|
1194 | # #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) | |
1193 | # tmp = numpy.reshape(tmp,num_prof*num_hei) |
|
1195 | # tmp = numpy.reshape(tmp,num_prof*num_hei) | |
1194 | # indxs1 = (numpy.isfinite(tmp)==True).nonzero() |
|
1196 | # indxs1 = (numpy.isfinite(tmp)==True).nonzero() | |
1195 | # indxs2 = (tmp > 0).nonzero() |
|
1197 | # indxs2 = (tmp > 0).nonzero() | |
1196 | # |
|
1198 | # | |
1197 | # indxs1 = (indxs1[0]) |
|
1199 | # indxs1 = (indxs1[0]) | |
1198 | # indxs2 = indxs2[0] |
|
1200 | # indxs2 = indxs2[0] | |
1199 | # #indxs1 = numpy.array(indxs1[0]) |
|
1201 | # #indxs1 = numpy.array(indxs1[0]) | |
1200 | # #indxs2 = numpy.array(indxs2[0]) |
|
1202 | # #indxs2 = numpy.array(indxs2[0]) | |
1201 | # indxs = None |
|
1203 | # indxs = None | |
1202 | # #print indxs1 , indxs2 |
|
1204 | # #print indxs1 , indxs2 | |
1203 | # for iv in range(len(indxs2)): |
|
1205 | # for iv in range(len(indxs2)): | |
1204 | # indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) |
|
1206 | # indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) | |
1205 | # #print len(indxs2), indv |
|
1207 | # #print len(indxs2), indv | |
1206 | # if len(indv[0]) > 0 : |
|
1208 | # if len(indv[0]) > 0 : | |
1207 | # indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) |
|
1209 | # indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) | |
1208 | # # print indxs |
|
1210 | # # print indxs | |
1209 | # indxs = indxs[1:] |
|
1211 | # indxs = indxs[1:] | |
1210 | # #print(indxs, len(indxs)) |
|
1212 | # #print(indxs, len(indxs)) | |
1211 | # if len(indxs) < 4 : |
|
1213 | # if len(indxs) < 4 : | |
1212 | # array[ii,:,:] = 0. |
|
1214 | # array[ii,:,:] = 0. | |
1213 | # return |
|
1215 | # return | |
1214 | # |
|
1216 | # | |
1215 | # xpos = numpy.mod(indxs ,num_hei) |
|
1217 | # xpos = numpy.mod(indxs ,num_hei) | |
1216 | # ypos = (indxs / num_hei) |
|
1218 | # ypos = (indxs / num_hei) | |
1217 | # sx = numpy.argsort(xpos) # Ordering respect to "x" (time) |
|
1219 | # sx = numpy.argsort(xpos) # Ordering respect to "x" (time) | |
1218 | # #print sx |
|
1220 | # #print sx | |
1219 | # xpos = xpos[sx] |
|
1221 | # xpos = xpos[sx] | |
1220 | # ypos = ypos[sx] |
|
1222 | # ypos = ypos[sx] | |
1221 | # |
|
1223 | # | |
1222 | # # *********************************** Cleaning isolated points ********************************** |
|
1224 | # # *********************************** Cleaning isolated points ********************************** | |
1223 | # ic = 0 |
|
1225 | # ic = 0 | |
1224 | # while True : |
|
1226 | # while True : | |
1225 | # r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) |
|
1227 | # r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) | |
1226 | # #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) |
|
1228 | # #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) | |
1227 | # #plt.plot(r) |
|
1229 | # #plt.plot(r) | |
1228 | # #plt.show() |
|
1230 | # #plt.show() | |
1229 | # no_coh1 = (numpy.isfinite(r)==True).nonzero() |
|
1231 | # no_coh1 = (numpy.isfinite(r)==True).nonzero() | |
1230 | # no_coh2 = (r <= rth).nonzero() |
|
1232 | # no_coh2 = (r <= rth).nonzero() | |
1231 | # #print r, no_coh1, no_coh2 |
|
1233 | # #print r, no_coh1, no_coh2 | |
1232 | # no_coh1 = numpy.array(no_coh1[0]) |
|
1234 | # no_coh1 = numpy.array(no_coh1[0]) | |
1233 | # no_coh2 = numpy.array(no_coh2[0]) |
|
1235 | # no_coh2 = numpy.array(no_coh2[0]) | |
1234 | # no_coh = None |
|
1236 | # no_coh = None | |
1235 | # #print valid1 , valid2 |
|
1237 | # #print valid1 , valid2 | |
1236 | # for iv in range(len(no_coh2)): |
|
1238 | # for iv in range(len(no_coh2)): | |
1237 | # indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) |
|
1239 | # indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) | |
1238 | # if len(indv[0]) > 0 : |
|
1240 | # if len(indv[0]) > 0 : | |
1239 | # no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) |
|
1241 | # no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) | |
1240 | # no_coh = no_coh[1:] |
|
1242 | # no_coh = no_coh[1:] | |
1241 | # #print len(no_coh), no_coh |
|
1243 | # #print len(no_coh), no_coh | |
1242 | # if len(no_coh) < 4 : |
|
1244 | # if len(no_coh) < 4 : | |
1243 | # #print xpos[ic], ypos[ic], ic |
|
1245 | # #print xpos[ic], ypos[ic], ic | |
1244 | # # plt.plot(r) |
|
1246 | # # plt.plot(r) | |
1245 | # # plt.show() |
|
1247 | # # plt.show() | |
1246 | # xpos[ic] = numpy.nan |
|
1248 | # xpos[ic] = numpy.nan | |
1247 | # ypos[ic] = numpy.nan |
|
1249 | # ypos[ic] = numpy.nan | |
1248 | # |
|
1250 | # | |
1249 | # ic = ic + 1 |
|
1251 | # ic = ic + 1 | |
1250 | # if (ic == len(indxs)) : |
|
1252 | # if (ic == len(indxs)) : | |
1251 | # break |
|
1253 | # break | |
1252 | # #print( xpos, ypos) |
|
1254 | # #print( xpos, ypos) | |
1253 | # |
|
1255 | # | |
1254 | # indxs = (numpy.isfinite(list(xpos))==True).nonzero() |
|
1256 | # indxs = (numpy.isfinite(list(xpos))==True).nonzero() | |
1255 | # #print indxs[0] |
|
1257 | # #print indxs[0] | |
1256 | # if len(indxs[0]) < 4 : |
|
1258 | # if len(indxs[0]) < 4 : | |
1257 | # array[ii,:,:] = 0. |
|
1259 | # array[ii,:,:] = 0. | |
1258 | # return |
|
1260 | # return | |
1259 | # |
|
1261 | # | |
1260 | # xpos = xpos[indxs[0]] |
|
1262 | # xpos = xpos[indxs[0]] | |
1261 | # ypos = ypos[indxs[0]] |
|
1263 | # ypos = ypos[indxs[0]] | |
1262 | # for i in range(0,len(ypos)): |
|
1264 | # for i in range(0,len(ypos)): | |
1263 | # ypos[i]=int(ypos[i]) |
|
1265 | # ypos[i]=int(ypos[i]) | |
1264 | # junk = tmp |
|
1266 | # junk = tmp | |
1265 | # tmp = junk*0.0 |
|
1267 | # tmp = junk*0.0 | |
1266 | # |
|
1268 | # | |
1267 | # tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] |
|
1269 | # tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] | |
1268 | # array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1270 | # array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) | |
1269 | # |
|
1271 | # | |
1270 | # #print array.shape |
|
1272 | # #print array.shape | |
1271 | # #tmp = numpy.reshape(tmp,(num_prof,num_hei)) |
|
1273 | # #tmp = numpy.reshape(tmp,(num_prof,num_hei)) | |
1272 | # #print tmp.shape |
|
1274 | # #print tmp.shape | |
1273 | # |
|
1275 | # | |
1274 | # # fig = plt.figure(figsize=(6,5)) |
|
1276 | # # fig = plt.figure(figsize=(6,5)) | |
1275 | # # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
1277 | # # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
1276 | # # ax = fig.add_axes([left, bottom, width, height]) |
|
1278 | # # ax = fig.add_axes([left, bottom, width, height]) | |
1277 | # # x = range(num_prof) |
|
1279 | # # x = range(num_prof) | |
1278 | # # y = range(num_hei) |
|
1280 | # # y = range(num_hei) | |
1279 | # # cp = ax.contour(y,x,array[ii,:,:]) |
|
1281 | # # cp = ax.contour(y,x,array[ii,:,:]) | |
1280 | # # ax.clabel(cp, inline=True,fontsize=10) |
|
1282 | # # ax.clabel(cp, inline=True,fontsize=10) | |
1281 | # # plt.show() |
|
1283 | # # plt.show() | |
1282 | # return array |
|
1284 | # return array | |
1283 | # |
|
1285 | # | |
1284 |
|
1286 | |||
1285 | class IntegrationFaradaySpectra(Operation): |
|
1287 | class IntegrationFaradaySpectra(Operation): | |
1286 |
|
1288 | |||
1287 | __profIndex = 0 |
|
1289 | __profIndex = 0 | |
1288 | __withOverapping = False |
|
1290 | __withOverapping = False | |
1289 |
|
1291 | |||
1290 | __byTime = False |
|
1292 | __byTime = False | |
1291 | __initime = None |
|
1293 | __initime = None | |
1292 | __lastdatatime = None |
|
1294 | __lastdatatime = None | |
1293 | __integrationtime = None |
|
1295 | __integrationtime = None | |
1294 |
|
1296 | |||
1295 | __buffer_spc = None |
|
1297 | __buffer_spc = None | |
1296 | __buffer_cspc = None |
|
1298 | __buffer_cspc = None | |
1297 | __buffer_dc = None |
|
1299 | __buffer_dc = None | |
1298 |
|
1300 | |||
1299 | __dataReady = False |
|
1301 | __dataReady = False | |
1300 |
|
1302 | |||
1301 | __timeInterval = None |
|
1303 | __timeInterval = None | |
1302 | n_ints = None #matriz de numero de integracions (CH,HEI) |
|
1304 | n_ints = None #matriz de numero de integracions (CH,HEI) | |
1303 | n = None |
|
1305 | n = None | |
1304 | minHei_ind = None |
|
1306 | minHei_ind = None | |
1305 | maxHei_ind = None |
|
1307 | maxHei_ind = None | |
1306 | navg = 1.0 |
|
1308 | navg = 1.0 | |
1307 | factor = 0.0 |
|
1309 | factor = 0.0 | |
1308 | dataoutliers = None # (CHANNELS, HEIGHTS) |
|
1310 | dataoutliers = None # (CHANNELS, HEIGHTS) | |
1309 |
|
1311 | |||
1310 | _flagProfilesByRange = False |
|
1312 | _flagProfilesByRange = False | |
1311 | _nProfilesByRange = 0 |
|
1313 | _nProfilesByRange = 0 | |
1312 |
|
1314 | |||
1313 | def __init__(self): |
|
1315 | def __init__(self): | |
1314 |
|
1316 | |||
1315 | Operation.__init__(self) |
|
1317 | Operation.__init__(self) | |
1316 |
|
1318 | |||
1317 | def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None, minHei=None, maxHei=None, avg=1,factor=0.75): |
|
1319 | def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None, minHei=None, maxHei=None, avg=1,factor=0.75): | |
1318 | """ |
|
1320 | """ | |
1319 | Set the parameters of the integration class. |
|
1321 | Set the parameters of the integration class. | |
1320 |
|
1322 | |||
1321 | Inputs: |
|
1323 | Inputs: | |
1322 |
|
1324 | |||
1323 | n : Number of coherent integrations |
|
1325 | n : Number of coherent integrations | |
1324 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1326 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
1325 | overlapping : |
|
1327 | overlapping : | |
1326 |
|
1328 | |||
1327 | """ |
|
1329 | """ | |
1328 |
|
1330 | |||
1329 | self.__initime = None |
|
1331 | self.__initime = None | |
1330 | self.__lastdatatime = 0 |
|
1332 | self.__lastdatatime = 0 | |
1331 |
|
1333 | |||
1332 | self.__buffer_spc = [] |
|
1334 | self.__buffer_spc = [] | |
1333 | self.__buffer_cspc = [] |
|
1335 | self.__buffer_cspc = [] | |
1334 | self.__buffer_dc = 0 |
|
1336 | self.__buffer_dc = 0 | |
1335 |
|
1337 | |||
1336 | self.__profIndex = 0 |
|
1338 | self.__profIndex = 0 | |
1337 | self.__dataReady = False |
|
1339 | self.__dataReady = False | |
1338 | self.__byTime = False |
|
1340 | self.__byTime = False | |
1339 |
|
1341 | |||
1340 | self.factor = factor |
|
1342 | self.factor = factor | |
1341 | self.navg = avg |
|
1343 | self.navg = avg | |
1342 | #self.ByLags = dataOut.ByLags ###REDEFINIR |
|
1344 | #self.ByLags = dataOut.ByLags ###REDEFINIR | |
1343 | self.ByLags = False |
|
1345 | self.ByLags = False | |
1344 | self.maxProfilesInt = 0 |
|
1346 | self.maxProfilesInt = 0 | |
1345 | self.__nChannels = dataOut.nChannels |
|
1347 | self.__nChannels = dataOut.nChannels | |
1346 | if DPL != None: |
|
1348 | if DPL != None: | |
1347 | self.DPL=DPL |
|
1349 | self.DPL=DPL | |
1348 | else: |
|
1350 | else: | |
1349 | #self.DPL=dataOut.DPL ###REDEFINIR |
|
1351 | #self.DPL=dataOut.DPL ###REDEFINIR | |
1350 | self.DPL=0 |
|
1352 | self.DPL=0 | |
1351 |
|
1353 | |||
1352 | if n is None and timeInterval is None: |
|
1354 | if n is None and timeInterval is None: | |
1353 | raise ValueError("n or timeInterval should be specified ...") |
|
1355 | raise ValueError("n or timeInterval should be specified ...") | |
1354 |
|
1356 | |||
1355 | if n is not None: |
|
1357 | if n is not None: | |
1356 | self.n = int(n) |
|
1358 | self.n = int(n) | |
1357 | else: |
|
1359 | else: | |
1358 | self.__integrationtime = int(timeInterval) |
|
1360 | self.__integrationtime = int(timeInterval) | |
1359 | self.n = None |
|
1361 | self.n = None | |
1360 | self.__byTime = True |
|
1362 | self.__byTime = True | |
1361 |
|
1363 | |||
1362 |
|
1364 | |||
1363 | if minHei == None: |
|
1365 | if minHei == None: | |
1364 | minHei = self.dataOut.heightList[0] |
|
1366 | minHei = self.dataOut.heightList[0] | |
1365 |
|
1367 | |||
1366 | if maxHei == None: |
|
1368 | if maxHei == None: | |
1367 | maxHei = self.dataOut.heightList[-1] |
|
1369 | maxHei = self.dataOut.heightList[-1] | |
1368 |
|
1370 | |||
1369 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
1371 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
1370 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
1372 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
1371 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
1373 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
1372 | minHei = self.dataOut.heightList[0] |
|
1374 | minHei = self.dataOut.heightList[0] | |
1373 |
|
1375 | |||
1374 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
1376 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
1375 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
1377 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
1376 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
1378 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
1377 | maxHei = self.dataOut.heightList[-1] |
|
1379 | maxHei = self.dataOut.heightList[-1] | |
1378 |
|
1380 | |||
1379 | ind_list1 = numpy.where(self.dataOut.heightList >= minHei) |
|
1381 | ind_list1 = numpy.where(self.dataOut.heightList >= minHei) | |
1380 | ind_list2 = numpy.where(self.dataOut.heightList <= maxHei) |
|
1382 | ind_list2 = numpy.where(self.dataOut.heightList <= maxHei) | |
1381 | self.minHei_ind = ind_list1[0][0] |
|
1383 | self.minHei_ind = ind_list1[0][0] | |
1382 | self.maxHei_ind = ind_list2[0][-1] |
|
1384 | self.maxHei_ind = ind_list2[0][-1] | |
1383 |
|
1385 | |||
1384 |
|
||||
1385 | def putData(self, data_spc, data_cspc, data_dc): |
|
1386 | def putData(self, data_spc, data_cspc, data_dc): | |
1386 | """ |
|
1387 | """ | |
1387 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1388 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
1388 |
|
1389 | |||
1389 | """ |
|
1390 | """ | |
1390 |
|
1391 | |||
1391 | self.__buffer_spc.append(data_spc) |
|
1392 | self.__buffer_spc.append(data_spc) | |
1392 |
|
1393 | |||
1393 | if self.__nChannels < 2: |
|
1394 | if self.__nChannels < 2: | |
1394 | self.__buffer_cspc = None |
|
1395 | self.__buffer_cspc = None | |
1395 | else: |
|
1396 | else: | |
1396 | self.__buffer_cspc.append(data_cspc) |
|
1397 | self.__buffer_cspc.append(data_cspc) | |
1397 |
|
1398 | |||
1398 | if data_dc is None: |
|
1399 | if data_dc is None: | |
1399 | self.__buffer_dc = None |
|
1400 | self.__buffer_dc = None | |
1400 | else: |
|
1401 | else: | |
1401 | self.__buffer_dc += data_dc |
|
1402 | self.__buffer_dc += data_dc | |
1402 |
|
1403 | |||
1403 | self.__profIndex += 1 |
|
1404 | self.__profIndex += 1 | |
1404 |
|
1405 | |||
1405 | return |
|
1406 | return | |
1406 |
|
1407 | |||
1407 | def hildebrand_sekhon_Integration(self,sortdata,navg, factor): |
|
1408 | def hildebrand_sekhon_Integration(self,sortdata,navg, factor): | |
1408 | #data debe estar ordenado |
|
1409 | #data debe estar ordenado | |
1409 | #sortdata = numpy.sort(data, axis=None) |
|
1410 | #sortdata = numpy.sort(data, axis=None) | |
1410 | #sortID=data.argsort() |
|
1411 | #sortID=data.argsort() | |
1411 | lenOfData = len(sortdata) |
|
1412 | lenOfData = len(sortdata) | |
1412 | nums_min = lenOfData*factor |
|
1413 | nums_min = lenOfData*factor | |
1413 | if nums_min <= 5: |
|
1414 | if nums_min <= 5: | |
1414 | nums_min = 5 |
|
1415 | nums_min = 5 | |
1415 | sump = 0. |
|
1416 | sump = 0. | |
1416 | sumq = 0. |
|
1417 | sumq = 0. | |
1417 | j = 0 |
|
1418 | j = 0 | |
1418 | cont = 1 |
|
1419 | cont = 1 | |
1419 | while((cont == 1)and(j < lenOfData)): |
|
1420 | while((cont == 1)and(j < lenOfData)): | |
1420 | sump += sortdata[j] |
|
1421 | sump += sortdata[j] | |
1421 | sumq += sortdata[j]**2 |
|
1422 | sumq += sortdata[j]**2 | |
1422 | if j > nums_min: |
|
1423 | if j > nums_min: | |
1423 | rtest = float(j)/(j-1) + 1.0/navg |
|
1424 | rtest = float(j)/(j-1) + 1.0/navg | |
1424 | if ((sumq*j) > (rtest*sump**2)): |
|
1425 | if ((sumq*j) > (rtest*sump**2)): | |
1425 | j = j - 1 |
|
1426 | j = j - 1 | |
1426 | sump = sump - sortdata[j] |
|
1427 | sump = sump - sortdata[j] | |
1427 | sumq = sumq - sortdata[j]**2 |
|
1428 | sumq = sumq - sortdata[j]**2 | |
1428 | cont = 0 |
|
1429 | cont = 0 | |
1429 | j += 1 |
|
1430 | j += 1 | |
1430 | #lnoise = sump / j |
|
1431 | #lnoise = sump / j | |
1431 | #print("H S done") |
|
1432 | #print("H S done") | |
1432 | #return j,sortID |
|
1433 | #return j,sortID | |
1433 | return j |
|
1434 | return j | |
1434 |
|
1435 | |||
1435 |
|
1436 | |||
1436 | def pushData(self): |
|
1437 | def pushData(self): | |
1437 | """ |
|
1438 | """ | |
1438 | Return the sum of the last profiles and the profiles used in the sum. |
|
1439 | Return the sum of the last profiles and the profiles used in the sum. | |
1439 |
|
1440 | |||
1440 | Affected: |
|
1441 | Affected: | |
1441 |
|
1442 | |||
1442 | self.__profileIndex |
|
1443 | self.__profileIndex | |
1443 |
|
1444 | |||
1444 | """ |
|
1445 | """ | |
1445 | bufferH=None |
|
1446 | bufferH=None | |
1446 | buffer=None |
|
1447 | buffer=None | |
1447 | buffer1=None |
|
1448 | buffer1=None | |
1448 | buffer_cspc=None |
|
1449 | buffer_cspc=None | |
1449 | #print("aes: ", self.__buffer_cspc) |
|
1450 | #print("aes: ", self.__buffer_cspc) | |
1450 | self.__buffer_spc=numpy.array(self.__buffer_spc) |
|
1451 | self.__buffer_spc=numpy.array(self.__buffer_spc) | |
1451 | if self.__nChannels > 1 : |
|
1452 | if self.__nChannels > 1 : | |
1452 | self.__buffer_cspc=numpy.array(self.__buffer_cspc) |
|
1453 | self.__buffer_cspc=numpy.array(self.__buffer_cspc) | |
1453 |
|
1454 | |||
1454 | #print("FREQ_DC",self.__buffer_spc.shape,self.__buffer_cspc.shape) |
|
1455 | #print("FREQ_DC",self.__buffer_spc.shape,self.__buffer_cspc.shape) | |
1455 |
|
1456 | |||
1456 | freq_dc = int(self.__buffer_spc.shape[2] / 2) |
|
1457 | freq_dc = int(self.__buffer_spc.shape[2] / 2) | |
1457 | #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) |
|
1458 | #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) | |
1458 |
|
1459 | |||
1459 | self.dataOutliers = numpy.zeros((self.nChannels,self.nHeights)) # --> almacen de outliers |
|
1460 | self.dataOutliers = numpy.zeros((self.nChannels,self.nHeights)) # --> almacen de outliers | |
1460 |
|
1461 | |||
1461 | for k in range(self.minHei_ind,self.maxHei_ind): |
|
1462 | for k in range(self.minHei_ind,self.maxHei_ind): | |
1462 | if self.__nChannels > 1: |
|
1463 | if self.__nChannels > 1: | |
1463 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) |
|
1464 | buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) | |
1464 |
|
1465 | |||
1465 | outliers_IDs_cspc=[] |
|
1466 | outliers_IDs_cspc=[] | |
1466 | cspc_outliers_exist=False |
|
1467 | cspc_outliers_exist=False | |
1467 | for i in range(self.nChannels):#dataOut.nChannels): |
|
1468 | for i in range(self.nChannels):#dataOut.nChannels): | |
1468 |
|
1469 | |||
1469 | buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) |
|
1470 | buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) | |
1470 | indexes=[] |
|
1471 | indexes=[] | |
1471 | #sortIDs=[] |
|
1472 | #sortIDs=[] | |
1472 | outliers_IDs=[] |
|
1473 | outliers_IDs=[] | |
1473 |
|
1474 | |||
1474 | for j in range(self.nProfiles): #frecuencias en el tiempo |
|
1475 | for j in range(self.nProfiles): #frecuencias en el tiempo | |
1475 | # if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 |
|
1476 | # if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 | |
1476 | # continue |
|
1477 | # continue | |
1477 | # if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 |
|
1478 | # if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 | |
1478 | # continue |
|
1479 | # continue | |
1479 | buffer=buffer1[:,j] |
|
1480 | buffer=buffer1[:,j] | |
1480 | sortdata = numpy.sort(buffer, axis=None) |
|
1481 | sortdata = numpy.sort(buffer, axis=None) | |
1481 |
|
1482 | |||
1482 | sortID=buffer.argsort() |
|
1483 | sortID=buffer.argsort() | |
1483 | index = _noise.hildebrand_sekhon2(sortdata,self.navg) |
|
1484 | index = _noise.hildebrand_sekhon2(sortdata,self.navg) | |
1484 |
|
1485 | |||
1485 | #index,sortID=self.hildebrand_sekhon_Integration(buffer,1,self.factor) |
|
1486 | #index,sortID=self.hildebrand_sekhon_Integration(buffer,1,self.factor) | |
1486 |
|
1487 | |||
1487 | # fig,ax = plt.subplots() |
|
1488 | # fig,ax = plt.subplots() | |
1488 | # ax.set_title(str(k)+" "+str(j)) |
|
1489 | # ax.set_title(str(k)+" "+str(j)) | |
1489 | # x=range(len(sortdata)) |
|
1490 | # x=range(len(sortdata)) | |
1490 | # ax.scatter(x,sortdata) |
|
1491 | # ax.scatter(x,sortdata) | |
1491 | # ax.axvline(index) |
|
1492 | # ax.axvline(index) | |
1492 | # plt.show() |
|
1493 | # plt.show() | |
1493 |
|
1494 | |||
1494 | indexes.append(index) |
|
1495 | indexes.append(index) | |
1495 | #sortIDs.append(sortID) |
|
1496 | #sortIDs.append(sortID) | |
1496 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) |
|
1497 | outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) | |
1497 |
|
1498 | |||
1498 | #print("Outliers: ",outliers_IDs) |
|
1499 | #print("Outliers: ",outliers_IDs) | |
1499 | outliers_IDs=numpy.array(outliers_IDs) |
|
1500 | outliers_IDs=numpy.array(outliers_IDs) | |
1500 | outliers_IDs=outliers_IDs.ravel() |
|
1501 | outliers_IDs=outliers_IDs.ravel() | |
1501 | outliers_IDs=numpy.unique(outliers_IDs) |
|
1502 | outliers_IDs=numpy.unique(outliers_IDs) | |
1502 | outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) |
|
1503 | outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) | |
1503 | indexes=numpy.array(indexes) |
|
1504 | indexes=numpy.array(indexes) | |
1504 | indexmin=numpy.min(indexes) |
|
1505 | indexmin=numpy.min(indexes) | |
1505 |
|
1506 | |||
1506 |
|
1507 | |||
1507 | #print(indexmin,buffer1.shape[0], k) |
|
1508 | #print(indexmin,buffer1.shape[0], k) | |
1508 |
|
1509 | |||
1509 | # fig,ax = plt.subplots() |
|
1510 | # fig,ax = plt.subplots() | |
1510 | # ax.plot(sortdata) |
|
1511 | # ax.plot(sortdata) | |
1511 | # ax2 = ax.twinx() |
|
1512 | # ax2 = ax.twinx() | |
1512 | # x=range(len(indexes)) |
|
1513 | # x=range(len(indexes)) | |
1513 | # #plt.scatter(x,indexes) |
|
1514 | # #plt.scatter(x,indexes) | |
1514 | # ax2.scatter(x,indexes) |
|
1515 | # ax2.scatter(x,indexes) | |
1515 | # plt.show() |
|
1516 | # plt.show() | |
1516 |
|
1517 | |||
1517 | if indexmin != buffer1.shape[0]: |
|
1518 | if indexmin != buffer1.shape[0]: | |
1518 | if self.__nChannels > 1: |
|
1519 | if self.__nChannels > 1: | |
1519 | cspc_outliers_exist= True |
|
1520 | cspc_outliers_exist= True | |
1520 |
|
1521 | |||
1521 | lt=outliers_IDs |
|
1522 | lt=outliers_IDs | |
1522 | #avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) |
|
1523 | #avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) | |
1523 |
|
1524 | |||
1524 | for p in list(outliers_IDs): |
|
1525 | for p in list(outliers_IDs): | |
1525 | #buffer1[p,:]=avg |
|
1526 | #buffer1[p,:]=avg | |
1526 | buffer1[p,:] = numpy.NaN |
|
1527 | buffer1[p,:] = numpy.NaN | |
1527 |
|
1528 | |||
1528 | self.dataOutliers[i,k] = len(outliers_IDs) |
|
1529 | self.dataOutliers[i,k] = len(outliers_IDs) | |
1529 |
|
1530 | |||
1530 |
|
1531 | |||
1531 | self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) |
|
1532 | self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) | |
1532 |
|
1533 | |||
1533 |
|
1534 | |||
1534 | if self.__nChannels > 1: |
|
1535 | if self.__nChannels > 1: | |
1535 | outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) |
|
1536 | outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) | |
1536 |
|
1537 | |||
1537 |
|
1538 | |||
1538 | if self.__nChannels > 1: |
|
1539 | if self.__nChannels > 1: | |
1539 | outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) |
|
1540 | outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) | |
1540 | if cspc_outliers_exist: |
|
1541 | if cspc_outliers_exist: | |
1541 |
|
1542 | |||
1542 | lt=outliers_IDs_cspc |
|
1543 | lt=outliers_IDs_cspc | |
1543 |
|
1544 | |||
1544 | #avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) |
|
1545 | #avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) | |
1545 | for p in list(outliers_IDs_cspc): |
|
1546 | for p in list(outliers_IDs_cspc): | |
1546 | #buffer_cspc[p,:]=avg |
|
1547 | #buffer_cspc[p,:]=avg | |
1547 | buffer_cspc[p,:] = numpy.NaN |
|
1548 | buffer_cspc[p,:] = numpy.NaN | |
1548 |
|
1549 | |||
1549 | if self.__nChannels > 1: |
|
1550 | if self.__nChannels > 1: | |
1550 | self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) |
|
1551 | self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) | |
1551 |
|
1552 | |||
1552 |
|
1553 | |||
1553 |
|
1554 | |||
1554 |
|
1555 | |||
1555 | nOutliers = len(outliers_IDs) |
|
1556 | nOutliers = len(outliers_IDs) | |
1556 | #print("Outliers n: ",self.dataOutliers,nOutliers) |
|
1557 | #print("Outliers n: ",self.dataOutliers,nOutliers) | |
1557 | buffer=None |
|
1558 | buffer=None | |
1558 | bufferH=None |
|
1559 | bufferH=None | |
1559 | buffer1=None |
|
1560 | buffer1=None | |
1560 | buffer_cspc=None |
|
1561 | buffer_cspc=None | |
1561 |
|
1562 | |||
1562 |
|
1563 | |||
1563 | buffer=None |
|
1564 | buffer=None | |
1564 |
|
1565 | |||
1565 | #data_spc = numpy.sum(self.__buffer_spc,axis=0) |
|
1566 | #data_spc = numpy.sum(self.__buffer_spc,axis=0) | |
1566 | data_spc = numpy.nansum(self.__buffer_spc,axis=0) |
|
1567 | data_spc = numpy.nansum(self.__buffer_spc,axis=0) | |
1567 | if self.__nChannels > 1: |
|
1568 | if self.__nChannels > 1: | |
1568 | #data_cspc = numpy.sum(self.__buffer_cspc,axis=0) |
|
1569 | #data_cspc = numpy.sum(self.__buffer_cspc,axis=0) | |
1569 | data_cspc = numpy.nansum(self.__buffer_cspc,axis=0) |
|
1570 | data_cspc = numpy.nansum(self.__buffer_cspc,axis=0) | |
1570 | else: |
|
1571 | else: | |
1571 | data_cspc = None |
|
1572 | data_cspc = None | |
1572 | data_dc = self.__buffer_dc |
|
1573 | data_dc = self.__buffer_dc | |
1573 | #(CH, HEIGH) |
|
1574 | #(CH, HEIGH) | |
1574 | self.maxProfilesInt = self.__profIndex - 1 |
|
1575 | self.maxProfilesInt = self.__profIndex - 1 | |
1575 | n = self.__profIndex - self.dataOutliers # n becomes a matrix |
|
1576 | n = self.__profIndex - self.dataOutliers # n becomes a matrix | |
1576 |
|
1577 | |||
1577 | self.__buffer_spc = [] |
|
1578 | self.__buffer_spc = [] | |
1578 | self.__buffer_cspc = [] |
|
1579 | self.__buffer_cspc = [] | |
1579 | self.__buffer_dc = 0 |
|
1580 | self.__buffer_dc = 0 | |
1580 | self.__profIndex = 0 |
|
1581 | self.__profIndex = 0 | |
1581 | #print("cleaned ",data_cspc) |
|
1582 | #print("cleaned ",data_cspc) | |
1582 | return data_spc, data_cspc, data_dc, n |
|
1583 | return data_spc, data_cspc, data_dc, n | |
1583 |
|
1584 | |||
1584 | def byProfiles(self, *args): |
|
1585 | def byProfiles(self, *args): | |
1585 |
|
1586 | |||
1586 | self.__dataReady = False |
|
1587 | self.__dataReady = False | |
1587 | avgdata_spc = None |
|
1588 | avgdata_spc = None | |
1588 | avgdata_cspc = None |
|
1589 | avgdata_cspc = None | |
1589 | avgdata_dc = None |
|
1590 | avgdata_dc = None | |
1590 |
|
1591 | |||
1591 | self.putData(*args) |
|
1592 | self.putData(*args) | |
1592 |
|
1593 | |||
1593 | if self.__profIndex == self.n: |
|
1594 | if self.__profIndex == self.n: | |
1594 |
|
1595 | |||
1595 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1596 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1596 | self.n_ints = n |
|
1597 | self.n_ints = n | |
1597 | self.__dataReady = True |
|
1598 | self.__dataReady = True | |
1598 |
|
1599 | |||
1599 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1600 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1600 |
|
1601 | |||
1601 | def byTime(self, datatime, *args): |
|
1602 | def byTime(self, datatime, *args): | |
1602 |
|
1603 | |||
1603 | self.__dataReady = False |
|
1604 | self.__dataReady = False | |
1604 | avgdata_spc = None |
|
1605 | avgdata_spc = None | |
1605 | avgdata_cspc = None |
|
1606 | avgdata_cspc = None | |
1606 | avgdata_dc = None |
|
1607 | avgdata_dc = None | |
1607 |
|
1608 | |||
1608 | self.putData(*args) |
|
1609 | self.putData(*args) | |
1609 |
|
1610 | |||
1610 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1611 | if (datatime - self.__initime) >= self.__integrationtime: | |
1611 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1612 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1612 | self.n_ints = n |
|
1613 | self.n_ints = n | |
1613 | self.__dataReady = True |
|
1614 | self.__dataReady = True | |
1614 |
|
1615 | |||
1615 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1616 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1616 |
|
1617 | |||
1617 | def integrate(self, datatime, *args): |
|
1618 | def integrate(self, datatime, *args): | |
1618 |
|
1619 | |||
1619 | if self.__profIndex == 0: |
|
1620 | if self.__profIndex == 0: | |
1620 | self.__initime = datatime |
|
1621 | self.__initime = datatime | |
1621 |
|
1622 | |||
1622 | if self.__byTime: |
|
1623 | if self.__byTime: | |
1623 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1624 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |
1624 | datatime, *args) |
|
1625 | datatime, *args) | |
1625 | else: |
|
1626 | else: | |
1626 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1627 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
1627 |
|
1628 | |||
1628 | if not self.__dataReady: |
|
1629 | if not self.__dataReady: | |
1629 | return None, None, None, None |
|
1630 | return None, None, None, None | |
1630 |
|
1631 | |||
1631 | #print("integrate", avgdata_cspc) |
|
1632 | #print("integrate", avgdata_cspc) | |
1632 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1633 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |
1633 |
|
1634 | |||
1634 | def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False, minHei=None, maxHei=None, avg=1, factor=0.75): |
|
1635 | def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False, minHei=None, maxHei=None, avg=1, factor=0.75): | |
1635 | self.dataOut = dataOut |
|
1636 | self.dataOut = dataOut | |
1636 | if n == 1: |
|
1637 | if n == 1: | |
1637 | return self.dataOut |
|
1638 | return self.dataOut | |
1638 | self.dataOut.processingHeaderObj.timeIncohInt = timeInterval |
|
1639 | self.dataOut.processingHeaderObj.timeIncohInt = timeInterval | |
1639 |
|
1640 | |||
1640 |
if dataOut.flagProfilesByRange |
|
1641 | if dataOut.flagProfilesByRange: | |
1641 | self._flagProfilesByRange = True |
|
1642 | self._flagProfilesByRange = True | |
1642 |
|
1643 | |||
1643 | if self.dataOut.nChannels == 1: |
|
1644 | if self.dataOut.nChannels == 1: | |
1644 | self.dataOut.data_cspc = None #si es un solo canal no vale la pena acumular DATOS |
|
1645 | self.dataOut.data_cspc = None #si es un solo canal no vale la pena acumular DATOS | |
1645 | #print("IN spc:", self.dataOut.data_spc.shape, self.dataOut.data_cspc) |
|
1646 | #print("IN spc:", self.dataOut.data_spc.shape, self.dataOut.data_cspc) | |
1646 | if not self.isConfig: |
|
1647 | if not self.isConfig: | |
1647 | self.setup(self.dataOut, n, timeInterval, overlapping,DPL ,minHei, maxHei, avg, factor) |
|
1648 | self.setup(self.dataOut, n, timeInterval, overlapping,DPL ,minHei, maxHei, avg, factor) | |
1648 | self.isConfig = True |
|
1649 | self.isConfig = True | |
1649 |
|
1650 | |||
1650 | if not self.ByLags: |
|
1651 | if not self.ByLags: | |
1651 | self.nProfiles=self.dataOut.nProfiles |
|
1652 | self.nProfiles=self.dataOut.nProfiles | |
1652 | self.nChannels=self.dataOut.nChannels |
|
1653 | self.nChannels=self.dataOut.nChannels | |
1653 | self.nHeights=self.dataOut.nHeights |
|
1654 | self.nHeights=self.dataOut.nHeights | |
1654 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, |
|
1655 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, | |
1655 | self.dataOut.data_spc, |
|
1656 | self.dataOut.data_spc, | |
1656 | self.dataOut.data_cspc, |
|
1657 | self.dataOut.data_cspc, | |
1657 | self.dataOut.data_dc) |
|
1658 | self.dataOut.data_dc) | |
1658 | else: |
|
1659 | else: | |
1659 | self.nProfiles=self.dataOut.nProfiles |
|
1660 | self.nProfiles=self.dataOut.nProfiles | |
1660 | self.nChannels=self.dataOut.nChannels |
|
1661 | self.nChannels=self.dataOut.nChannels | |
1661 | self.nHeights=self.dataOut.nHeights |
|
1662 | self.nHeights=self.dataOut.nHeights | |
1662 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, |
|
1663 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(self.dataOut.utctime, | |
1663 | self.dataOut.dataLag_spc, |
|
1664 | self.dataOut.dataLag_spc, | |
1664 | self.dataOut.dataLag_cspc, |
|
1665 | self.dataOut.dataLag_cspc, | |
1665 | self.dataOut.dataLag_dc) |
|
1666 | self.dataOut.dataLag_dc) | |
1666 | self.dataOut.flagNoData = True |
|
1667 | self.dataOut.flagNoData = True | |
1667 |
|
1668 | |||
1668 | if self._flagProfilesByRange: |
|
1669 | if self._flagProfilesByRange: | |
1669 | dataOut.flagProfilesByRange = True |
|
1670 | dataOut.flagProfilesByRange = True | |
1670 | self._nProfilesByRange += dataOut.nProfilesByRange |
|
1671 | self._nProfilesByRange += dataOut.nProfilesByRange | |
1671 |
|
1672 | |||
1672 | if self.__dataReady: |
|
1673 | if self.__dataReady: | |
1673 |
|
1674 | |||
1674 | if not self.ByLags: |
|
1675 | if not self.ByLags: | |
1675 | if self.nChannels == 1: |
|
1676 | if self.nChannels == 1: | |
1676 | #print("f int", avgdata_spc.shape) |
|
1677 | #print("f int", avgdata_spc.shape) | |
1677 | self.dataOut.data_spc = avgdata_spc |
|
1678 | self.dataOut.data_spc = avgdata_spc | |
1678 | self.dataOut.data_cspc = None |
|
1679 | self.dataOut.data_cspc = None | |
1679 | else: |
|
1680 | else: | |
1680 | self.dataOut.data_spc = numpy.squeeze(avgdata_spc) |
|
1681 | self.dataOut.data_spc = numpy.squeeze(avgdata_spc) | |
1681 | self.dataOut.data_cspc = numpy.squeeze(avgdata_cspc) |
|
1682 | self.dataOut.data_cspc = numpy.squeeze(avgdata_cspc) | |
1682 | self.dataOut.data_dc = avgdata_dc |
|
1683 | self.dataOut.data_dc = avgdata_dc | |
1683 | self.dataOut.data_outlier = self.dataOutliers |
|
1684 | self.dataOut.data_outlier = self.dataOutliers | |
1684 |
|
1685 | |||
1685 |
|
1686 | |||
1686 | else: |
|
1687 | else: | |
1687 | self.dataOut.dataLag_spc = avgdata_spc |
|
1688 | self.dataOut.dataLag_spc = avgdata_spc | |
1688 | self.dataOut.dataLag_cspc = avgdata_cspc |
|
1689 | self.dataOut.dataLag_cspc = avgdata_cspc | |
1689 | self.dataOut.dataLag_dc = avgdata_dc |
|
1690 | self.dataOut.dataLag_dc = avgdata_dc | |
1690 |
|
1691 | |||
1691 | self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot] |
|
1692 | self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot] | |
1692 | self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] |
|
1693 | self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] | |
1693 | self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] |
|
1694 | self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] | |
1694 |
|
1695 | |||
1695 |
|
1696 | |||
1696 | self.dataOut.nIncohInt *= self.n_ints |
|
1697 | self.dataOut.nIncohInt *= self.n_ints | |
1697 | #print("maxProfilesInt: ",self.maxProfilesInt) |
|
1698 | #print("maxProfilesInt: ",self.maxProfilesInt) | |
1698 |
|
1699 | |||
1699 | self.dataOut.utctime = avgdatatime |
|
1700 | self.dataOut.utctime = avgdatatime | |
1700 | self.dataOut.flagNoData = False |
|
1701 | self.dataOut.flagNoData = False | |
1701 |
|
1702 | |||
1702 | dataOut.nProfilesByRange = self._nProfilesByRange |
|
1703 | dataOut.nProfilesByRange = self._nProfilesByRange | |
1703 |
self._nProfilesByRange = |
|
1704 | self._nProfilesByRange = numpy.zeros(len(dataOut.heightList)) | |
1704 | self._flagProfilesByRange = False |
|
1705 | self._flagProfilesByRange = False | |
1705 |
|
1706 | |||
1706 | # #update Processing Header: |
|
1707 | # #update Processing Header: | |
1707 | # self.dataOut.processingHeaderObj.nIncohInt = |
|
1708 | # self.dataOut.processingHeaderObj.nIncohInt = | |
1708 | # self.dataOut.processingHeaderObj.nFFTPoints = self.dataOut.nFFTPoints |
|
1709 | # self.dataOut.processingHeaderObj.nFFTPoints = self.dataOut.nFFTPoints | |
1709 |
|
1710 | |||
1710 | #print("Faraday Integration DONE...", self.dataOut.data_cspc) |
|
1711 | #print("Faraday Integration DONE...", self.dataOut.data_cspc) | |
1711 | #print(self.dataOut.flagNoData) |
|
1712 | #print(self.dataOut.flagNoData) | |
1712 | return self.dataOut |
|
1713 | return self.dataOut | |
1713 |
|
1714 | |||
1714 |
|
1715 | |||
1715 |
|
1716 | |||
1716 | class removeInterference(Operation): |
|
1717 | class removeInterference(Operation): | |
1717 |
|
1718 | |||
1718 | def removeInterference3(self, min_hei = None, max_hei = None): |
|
1719 | def removeInterference3(self, min_hei = None, max_hei = None): | |
1719 |
|
1720 | |||
1720 | jspectra = self.dataOut.data_spc |
|
1721 | jspectra = self.dataOut.data_spc | |
1721 | #jcspectra = self.dataOut.data_cspc |
|
1722 | #jcspectra = self.dataOut.data_cspc | |
1722 | jnoise = self.dataOut.getNoise() |
|
1723 | jnoise = self.dataOut.getNoise() | |
1723 | num_incoh = self.dataOut.max_nIncohInt |
|
1724 | num_incoh = self.dataOut.max_nIncohInt | |
1724 | #print(jspectra.shape) |
|
1725 | #print(jspectra.shape) | |
1725 | num_channel, num_prof, num_hei = jspectra.shape |
|
1726 | num_channel, num_prof, num_hei = jspectra.shape | |
1726 | minHei = min_hei |
|
1727 | minHei = min_hei | |
1727 | maxHei = max_hei |
|
1728 | maxHei = max_hei | |
1728 | ######################################################################## |
|
1729 | ######################################################################## | |
1729 | if minHei == None or (minHei < self.dataOut.heightList[0]): |
|
1730 | if minHei == None or (minHei < self.dataOut.heightList[0]): | |
1730 | minHei = self.dataOut.heightList[0] |
|
1731 | minHei = self.dataOut.heightList[0] | |
1731 |
|
1732 | |||
1732 | if maxHei == None or (maxHei > self.dataOut.heightList[-1]): |
|
1733 | if maxHei == None or (maxHei > self.dataOut.heightList[-1]): | |
1733 | maxHei = self.dataOut.heightList[-1] |
|
1734 | maxHei = self.dataOut.heightList[-1] | |
1734 | minIndex = 0 |
|
1735 | minIndex = 0 | |
1735 | maxIndex = 0 |
|
1736 | maxIndex = 0 | |
1736 | heights = self.dataOut.heightList |
|
1737 | heights = self.dataOut.heightList | |
1737 |
|
1738 | |||
1738 | inda = numpy.where(heights >= minHei) |
|
1739 | inda = numpy.where(heights >= minHei) | |
1739 | indb = numpy.where(heights <= maxHei) |
|
1740 | indb = numpy.where(heights <= maxHei) | |
1740 |
|
1741 | |||
1741 | try: |
|
1742 | try: | |
1742 | minIndex = inda[0][0] |
|
1743 | minIndex = inda[0][0] | |
1743 | except: |
|
1744 | except: | |
1744 | minIndex = 0 |
|
1745 | minIndex = 0 | |
1745 | try: |
|
1746 | try: | |
1746 | maxIndex = indb[0][-1] |
|
1747 | maxIndex = indb[0][-1] | |
1747 | except: |
|
1748 | except: | |
1748 | maxIndex = len(heights) |
|
1749 | maxIndex = len(heights) | |
1749 |
|
1750 | |||
1750 | if (minIndex < 0) or (minIndex > maxIndex): |
|
1751 | if (minIndex < 0) or (minIndex > maxIndex): | |
1751 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
1752 | raise ValueError("some value in (%d,%d) is not valid" % ( | |
1752 | minIndex, maxIndex)) |
|
1753 | minIndex, maxIndex)) | |
1753 | if (maxIndex >= self.dataOut.nHeights): |
|
1754 | if (maxIndex >= self.dataOut.nHeights): | |
1754 | maxIndex = self.dataOut.nHeights - 1 |
|
1755 | maxIndex = self.dataOut.nHeights - 1 | |
1755 |
|
1756 | |||
1756 | ######################################################################## |
|
1757 | ######################################################################## | |
1757 |
|
1758 | |||
1758 |
|
1759 | |||
1759 | #dataOut.max_nIncohInt * dataOut.nCohInt |
|
1760 | #dataOut.max_nIncohInt * dataOut.nCohInt | |
1760 | norm = self.dataOut.nIncohInt /self.dataOut.max_nIncohInt |
|
1761 | norm = self.dataOut.nIncohInt /self.dataOut.max_nIncohInt | |
1761 | #print(norm.shape) |
|
1762 | #print(norm.shape) | |
1762 | # Subrutina de Remocion de la Interferencia |
|
1763 | # Subrutina de Remocion de la Interferencia | |
1763 | for ich in range(num_channel): |
|
1764 | for ich in range(num_channel): | |
1764 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1765 | # Se ordena los espectros segun su potencia (menor a mayor) | |
1765 | #power = jspectra[ich, mask_prof, :] |
|
1766 | #power = jspectra[ich, mask_prof, :] | |
1766 | interf = jspectra[ich, :, minIndex:maxIndex] |
|
1767 | interf = jspectra[ich, :, minIndex:maxIndex] | |
1767 | #print(interf.shape) |
|
1768 | #print(interf.shape) | |
1768 | inttef = interf.mean(axis=1) |
|
1769 | inttef = interf.mean(axis=1) | |
1769 |
|
1770 | |||
1770 | for hei in range(num_hei): |
|
1771 | for hei in range(num_hei): | |
1771 | temp = jspectra[ich,:, hei] |
|
1772 | temp = jspectra[ich,:, hei] | |
1772 | temp -= inttef |
|
1773 | temp -= inttef | |
1773 | temp += jnoise[ich]*norm[ich,hei] |
|
1774 | temp += jnoise[ich]*norm[ich,hei] | |
1774 | jspectra[ich,:, hei] = temp |
|
1775 | jspectra[ich,:, hei] = temp | |
1775 |
|
1776 | |||
1776 | # Guardar Resultados |
|
1777 | # Guardar Resultados | |
1777 | self.dataOut.data_spc = jspectra |
|
1778 | self.dataOut.data_spc = jspectra | |
1778 | #self.dataOut.data_cspc = jcspectra |
|
1779 | #self.dataOut.data_cspc = jcspectra | |
1779 |
|
1780 | |||
1780 | return 1 |
|
1781 | return 1 | |
1781 |
|
1782 | |||
1782 | def removeInterference2(self): |
|
1783 | def removeInterference2(self): | |
1783 |
|
1784 | |||
1784 | cspc = self.dataOut.data_cspc |
|
1785 | cspc = self.dataOut.data_cspc | |
1785 | spc = self.dataOut.data_spc |
|
1786 | spc = self.dataOut.data_spc | |
1786 | Heights = numpy.arange(cspc.shape[2]) |
|
1787 | Heights = numpy.arange(cspc.shape[2]) | |
1787 | realCspc = numpy.abs(cspc) |
|
1788 | realCspc = numpy.abs(cspc) | |
1788 |
|
1789 | |||
1789 | for i in range(cspc.shape[0]): |
|
1790 | for i in range(cspc.shape[0]): | |
1790 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
1791 | LinePower= numpy.sum(realCspc[i], axis=0) | |
1791 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
1792 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] | |
1792 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
1793 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] | |
1793 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
1794 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) | |
1794 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
1795 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] | |
1795 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
1796 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] | |
1796 |
|
1797 | |||
1797 |
|
1798 | |||
1798 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
1799 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) | |
1799 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
1800 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) | |
1800 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
1801 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): | |
1801 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
1802 | cspc[i,InterferenceRange,:] = numpy.NaN | |
1802 |
|
1803 | |||
1803 | self.dataOut.data_cspc = cspc |
|
1804 | self.dataOut.data_cspc = cspc | |
1804 |
|
1805 | |||
1805 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
1806 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): | |
1806 |
|
1807 | |||
1807 | jspectra = self.dataOut.data_spc |
|
1808 | jspectra = self.dataOut.data_spc | |
1808 | jcspectra = self.dataOut.data_cspc |
|
1809 | jcspectra = self.dataOut.data_cspc | |
1809 | jnoise = self.dataOut.getNoise() |
|
1810 | jnoise = self.dataOut.getNoise() | |
1810 | #num_incoh = self.dataOut.nIncohInt |
|
1811 | #num_incoh = self.dataOut.nIncohInt | |
1811 | num_incoh = self.dataOut.max_nIncohInt |
|
1812 | num_incoh = self.dataOut.max_nIncohInt | |
1812 | #print("spc: ", jspectra.shape, jcspectra) |
|
1813 | #print("spc: ", jspectra.shape, jcspectra) | |
1813 | num_channel = jspectra.shape[0] |
|
1814 | num_channel = jspectra.shape[0] | |
1814 | num_prof = jspectra.shape[1] |
|
1815 | num_prof = jspectra.shape[1] | |
1815 | num_hei = jspectra.shape[2] |
|
1816 | num_hei = jspectra.shape[2] | |
1816 |
|
1817 | |||
1817 | # hei_interf |
|
1818 | # hei_interf | |
1818 | if hei_interf is None: |
|
1819 | if hei_interf is None: | |
1819 | count_hei = int(num_hei / 2) # a half of total ranges |
|
1820 | count_hei = int(num_hei / 2) # a half of total ranges | |
1820 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
1821 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei | |
1821 | hei_interf = numpy.asarray(hei_interf)[0] |
|
1822 | hei_interf = numpy.asarray(hei_interf)[0] | |
1822 | #print(hei_interf) |
|
1823 | #print(hei_interf) | |
1823 | # nhei_interf |
|
1824 | # nhei_interf | |
1824 | if (nhei_interf == None): |
|
1825 | if (nhei_interf == None): | |
1825 | nhei_interf = 5 |
|
1826 | nhei_interf = 5 | |
1826 | if (nhei_interf < 1): |
|
1827 | if (nhei_interf < 1): | |
1827 | nhei_interf = 1 |
|
1828 | nhei_interf = 1 | |
1828 | if (nhei_interf > count_hei): |
|
1829 | if (nhei_interf > count_hei): | |
1829 | nhei_interf = count_hei |
|
1830 | nhei_interf = count_hei | |
1830 | if (offhei_interf == None): |
|
1831 | if (offhei_interf == None): | |
1831 | offhei_interf = 0 |
|
1832 | offhei_interf = 0 | |
1832 |
|
1833 | |||
1833 | ind_hei = list(range(num_hei)) |
|
1834 | ind_hei = list(range(num_hei)) | |
1834 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
1835 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |
1835 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
1836 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |
1836 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
1837 | mask_prof = numpy.asarray(list(range(num_prof))) | |
1837 | num_mask_prof = mask_prof.size |
|
1838 | num_mask_prof = mask_prof.size | |
1838 | comp_mask_prof = [0, num_prof / 2] |
|
1839 | comp_mask_prof = [0, num_prof / 2] | |
1839 |
|
1840 | |||
1840 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
1841 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |
1841 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
1842 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |
1842 | jnoise = numpy.nan |
|
1843 | jnoise = numpy.nan | |
1843 | noise_exist = jnoise[0] < numpy.Inf |
|
1844 | noise_exist = jnoise[0] < numpy.Inf | |
1844 |
|
1845 | |||
1845 | # Subrutina de Remocion de la Interferencia |
|
1846 | # Subrutina de Remocion de la Interferencia | |
1846 | for ich in range(num_channel): |
|
1847 | for ich in range(num_channel): | |
1847 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1848 | # Se ordena los espectros segun su potencia (menor a mayor) | |
1848 | power = jspectra[ich, mask_prof, :] |
|
1849 | power = jspectra[ich, mask_prof, :] | |
1849 | power = power[:, hei_interf] |
|
1850 | power = power[:, hei_interf] | |
1850 | power = power.sum(axis=0) |
|
1851 | power = power.sum(axis=0) | |
1851 | psort = power.ravel().argsort() |
|
1852 | psort = power.ravel().argsort() | |
1852 | print(hei_interf[psort[list(range(offhei_interf, nhei_interf + offhei_interf))]]) |
|
1853 | #print(hei_interf[psort[list(range(offhei_interf, nhei_interf + offhei_interf))]]) | |
1853 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
1854 | # Se estima la interferencia promedio en los Espectros de Potencia empleando | |
1854 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
1855 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( | |
1855 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1856 | offhei_interf, nhei_interf + offhei_interf))]]] | |
1856 |
|
1857 | |||
1857 | if noise_exist: |
|
1858 | if noise_exist: | |
1858 | # tmp_noise = jnoise[ich] / num_prof |
|
1859 | # tmp_noise = jnoise[ich] / num_prof | |
1859 | tmp_noise = jnoise[ich] |
|
1860 | tmp_noise = jnoise[ich] | |
1860 | junkspc_interf = junkspc_interf - tmp_noise |
|
1861 | junkspc_interf = junkspc_interf - tmp_noise | |
1861 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
1862 | #junkspc_interf[:,comp_mask_prof] = 0 | |
1862 | print(junkspc_interf.shape) |
|
1863 | #print(junkspc_interf.shape) | |
1863 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
1864 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf | |
1864 | jspc_interf = jspc_interf.transpose() |
|
1865 | jspc_interf = jspc_interf.transpose() | |
1865 | # Calculando el espectro de interferencia promedio |
|
1866 | # Calculando el espectro de interferencia promedio | |
1866 | noiseid = numpy.where(jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
1867 | noiseid = numpy.where(jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) | |
1867 | noiseid = noiseid[0] |
|
1868 | noiseid = noiseid[0] | |
1868 | cnoiseid = noiseid.size |
|
1869 | cnoiseid = noiseid.size | |
1869 | interfid = numpy.where(jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
1870 | interfid = numpy.where(jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) | |
1870 | interfid = interfid[0] |
|
1871 | interfid = interfid[0] | |
1871 | cinterfid = interfid.size |
|
1872 | cinterfid = interfid.size | |
1872 |
|
1873 | |||
1873 | if (cnoiseid > 0): |
|
1874 | if (cnoiseid > 0): | |
1874 | jspc_interf[noiseid] = 0 |
|
1875 | jspc_interf[noiseid] = 0 | |
1875 | # Expandiendo los perfiles a limpiar |
|
1876 | # Expandiendo los perfiles a limpiar | |
1876 | if (cinterfid > 0): |
|
1877 | if (cinterfid > 0): | |
1877 | new_interfid = ( |
|
1878 | new_interfid = ( | |
1878 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
1879 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof | |
1879 | new_interfid = numpy.asarray(new_interfid) |
|
1880 | new_interfid = numpy.asarray(new_interfid) | |
1880 | new_interfid = {x for x in new_interfid} |
|
1881 | new_interfid = {x for x in new_interfid} | |
1881 | new_interfid = numpy.array(list(new_interfid)) |
|
1882 | new_interfid = numpy.array(list(new_interfid)) | |
1882 | new_cinterfid = new_interfid.size |
|
1883 | new_cinterfid = new_interfid.size | |
1883 | else: |
|
1884 | else: | |
1884 | new_cinterfid = 0 |
|
1885 | new_cinterfid = 0 | |
1885 |
|
1886 | |||
1886 | for ip in range(new_cinterfid): |
|
1887 | for ip in range(new_cinterfid): | |
1887 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
1888 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() | |
1888 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
1889 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] | |
1889 |
|
1890 | |||
1890 | jspectra[ich, :, ind_hei] = jspectra[ich, :,ind_hei] - jspc_interf # Corregir indices |
|
1891 | jspectra[ich, :, ind_hei] = jspectra[ich, :,ind_hei] - jspc_interf # Corregir indices | |
1891 |
|
1892 | |||
1892 | # Removiendo la interferencia del punto de mayor interferencia |
|
1893 | # Removiendo la interferencia del punto de mayor interferencia | |
1893 | ListAux = jspc_interf[mask_prof].tolist() |
|
1894 | ListAux = jspc_interf[mask_prof].tolist() | |
1894 | maxid = ListAux.index(max(ListAux)) |
|
1895 | maxid = ListAux.index(max(ListAux)) | |
1895 | print(cinterfid) |
|
1896 | #print(cinterfid) | |
1896 | if cinterfid > 0: |
|
1897 | if cinterfid > 0: | |
1897 | for ip in range(cinterfid * (interf == 2) - 1): |
|
1898 | for ip in range(cinterfid * (interf == 2) - 1): | |
1898 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
1899 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * | |
1899 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1900 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() | |
1900 | cind = len(ind) |
|
1901 | cind = len(ind) | |
1901 |
|
1902 | |||
1902 | if (cind > 0): |
|
1903 | if (cind > 0): | |
1903 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
1904 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ | |
1904 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
1905 | (1 + (numpy.random.uniform(cind) - 0.5) / | |
1905 | numpy.sqrt(num_incoh)) |
|
1906 | numpy.sqrt(num_incoh)) | |
1906 |
|
1907 | |||
1907 | ind = numpy.array([-2, -1, 1, 2]) |
|
1908 | ind = numpy.array([-2, -1, 1, 2]) | |
1908 | xx = numpy.zeros([4, 4]) |
|
1909 | xx = numpy.zeros([4, 4]) | |
1909 |
|
1910 | |||
1910 | for id1 in range(4): |
|
1911 | for id1 in range(4): | |
1911 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1912 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
1912 | xx_inv = numpy.linalg.inv(xx) |
|
1913 | xx_inv = numpy.linalg.inv(xx) | |
1913 | xx = xx_inv[:, 0] |
|
1914 | xx = xx_inv[:, 0] | |
1914 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1915 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
1915 | yy = jspectra[ich, mask_prof[ind], :] |
|
1916 | yy = jspectra[ich, mask_prof[ind], :] | |
1916 | jspectra[ich, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1917 | jspectra[ich, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) | |
1917 |
|
1918 | |||
1918 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
1919 | indAux = (jspectra[ich, :, :] < tmp_noise * | |
1919 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1920 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() | |
1920 | print(indAux) |
|
1921 | #print(indAux) | |
1921 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
1922 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ | |
1922 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
1923 | (1 - 1 / numpy.sqrt(num_incoh)) | |
1923 |
|
1924 | |||
1924 | # Remocion de Interferencia en el Cross Spectra |
|
1925 | # Remocion de Interferencia en el Cross Spectra | |
1925 | if jcspectra is None: |
|
1926 | if jcspectra is None: | |
1926 | return jspectra, jcspectra |
|
1927 | return jspectra, jcspectra | |
1927 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
1928 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) | |
1928 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
1929 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |
1929 |
|
1930 | |||
1930 | for ip in range(num_pairs): |
|
1931 | for ip in range(num_pairs): | |
1931 |
|
1932 | |||
1932 | #------------------------------------------- |
|
1933 | #------------------------------------------- | |
1933 |
|
1934 | |||
1934 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
1935 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) | |
1935 | cspower = cspower[:, hei_interf] |
|
1936 | cspower = cspower[:, hei_interf] | |
1936 | cspower = cspower.sum(axis=0) |
|
1937 | cspower = cspower.sum(axis=0) | |
1937 |
|
1938 | |||
1938 | cspsort = cspower.ravel().argsort() |
|
1939 | cspsort = cspower.ravel().argsort() | |
1939 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
1940 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( | |
1940 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1941 | offhei_interf, nhei_interf + offhei_interf))]]] | |
1941 | junkcspc_interf = junkcspc_interf.transpose() |
|
1942 | junkcspc_interf = junkcspc_interf.transpose() | |
1942 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
1943 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf | |
1943 |
|
1944 | |||
1944 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1945 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |
1945 |
|
1946 | |||
1946 | median_real = int(numpy.median(numpy.real( |
|
1947 | median_real = int(numpy.median(numpy.real( | |
1947 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1948 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
1948 | median_imag = int(numpy.median(numpy.imag( |
|
1949 | median_imag = int(numpy.median(numpy.imag( | |
1949 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1950 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
1950 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
1951 | comp_mask_prof = [int(e) for e in comp_mask_prof] | |
1951 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
1952 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( | |
1952 | median_real, median_imag) |
|
1953 | median_real, median_imag) | |
1953 |
|
1954 | |||
1954 | for iprof in range(num_prof): |
|
1955 | for iprof in range(num_prof): | |
1955 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
1956 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() | |
1956 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
1957 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] | |
1957 |
|
1958 | |||
1958 | # Removiendo la Interferencia |
|
1959 | # Removiendo la Interferencia | |
1959 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
1960 | jcspectra[ip, :, ind_hei] = jcspectra[ip, | |
1960 | :, ind_hei] - jcspc_interf |
|
1961 | :, ind_hei] - jcspc_interf | |
1961 |
|
1962 | |||
1962 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1963 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |
1963 | maxid = ListAux.index(max(ListAux)) |
|
1964 | maxid = ListAux.index(max(ListAux)) | |
1964 |
|
1965 | |||
1965 | ind = numpy.array([-2, -1, 1, 2]) |
|
1966 | ind = numpy.array([-2, -1, 1, 2]) | |
1966 | xx = numpy.zeros([4, 4]) |
|
1967 | xx = numpy.zeros([4, 4]) | |
1967 |
|
1968 | |||
1968 | for id1 in range(4): |
|
1969 | for id1 in range(4): | |
1969 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1970 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
1970 |
|
1971 | |||
1971 | xx_inv = numpy.linalg.inv(xx) |
|
1972 | xx_inv = numpy.linalg.inv(xx) | |
1972 | xx = xx_inv[:, 0] |
|
1973 | xx = xx_inv[:, 0] | |
1973 |
|
1974 | |||
1974 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1975 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
1975 | yy = jcspectra[ip, mask_prof[ind], :] |
|
1976 | yy = jcspectra[ip, mask_prof[ind], :] | |
1976 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1977 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) | |
1977 |
|
1978 | |||
1978 | # Guardar Resultados |
|
1979 | # Guardar Resultados | |
1979 | self.dataOut.data_spc = jspectra |
|
1980 | self.dataOut.data_spc = jspectra | |
1980 | self.dataOut.data_cspc = jcspectra |
|
1981 | self.dataOut.data_cspc = jcspectra | |
1981 |
|
1982 | |||
1982 | return 1 |
|
1983 | return 1 | |
1983 |
|
1984 | |||
1984 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1, minHei=None, maxHei=None): |
|
1985 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1, minHei=None, maxHei=None): | |
1985 |
|
1986 | |||
1986 | self.dataOut = dataOut |
|
1987 | self.dataOut = dataOut | |
1987 |
|
1988 | |||
1988 | if mode == 1: |
|
1989 | if mode == 1: | |
1989 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
1990 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) | |
1990 | elif mode == 2: |
|
1991 | elif mode == 2: | |
1991 | self.removeInterference2() |
|
1992 | self.removeInterference2() | |
1992 | elif mode == 3: |
|
1993 | elif mode == 3: | |
1993 | self.removeInterference3(min_hei=minHei, max_hei=maxHei) |
|
1994 | self.removeInterference3(min_hei=minHei, max_hei=maxHei) | |
1994 | return self.dataOut |
|
1995 | return self.dataOut | |
1995 |
|
1996 | |||
1996 |
|
1997 | |||
1997 | class IncohInt(Operation): |
|
1998 | class IncohInt(Operation): | |
1998 |
|
1999 | |||
1999 | __profIndex = 0 |
|
2000 | __profIndex = 0 | |
2000 | __withOverapping = False |
|
2001 | __withOverapping = False | |
2001 |
|
2002 | |||
2002 | __byTime = False |
|
2003 | __byTime = False | |
2003 | __initime = None |
|
2004 | __initime = None | |
2004 | __lastdatatime = None |
|
2005 | __lastdatatime = None | |
2005 | __integrationtime = None |
|
2006 | __integrationtime = None | |
2006 |
|
2007 | |||
2007 | __buffer_spc = None |
|
2008 | __buffer_spc = None | |
2008 | __buffer_cspc = None |
|
2009 | __buffer_cspc = None | |
2009 | __buffer_dc = None |
|
2010 | __buffer_dc = None | |
2010 |
|
2011 | |||
2011 | __dataReady = False |
|
2012 | __dataReady = False | |
2012 |
|
2013 | |||
2013 | __timeInterval = None |
|
2014 | __timeInterval = None | |
2014 | incohInt = 0 |
|
2015 | incohInt = 0 | |
2015 | nOutliers = 0 |
|
2016 | nOutliers = 0 | |
2016 | n = None |
|
2017 | n = None | |
2017 |
|
2018 | |||
2018 | _flagProfilesByRange = False |
|
2019 | _flagProfilesByRange = False | |
2019 | _nProfilesByRange = 0 |
|
2020 | _nProfilesByRange = 0 | |
2020 | def __init__(self): |
|
2021 | def __init__(self): | |
2021 |
|
2022 | |||
2022 | Operation.__init__(self) |
|
2023 | Operation.__init__(self) | |
2023 |
|
2024 | |||
2024 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
2025 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
2025 | """ |
|
2026 | """ | |
2026 | Set the parameters of the integration class. |
|
2027 | Set the parameters of the integration class. | |
2027 |
|
2028 | |||
2028 | Inputs: |
|
2029 | Inputs: | |
2029 |
|
2030 | |||
2030 | n : Number of coherent integrations |
|
2031 | n : Number of coherent integrations | |
2031 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
2032 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
2032 | overlapping : |
|
2033 | overlapping : | |
2033 |
|
2034 | |||
2034 | """ |
|
2035 | """ | |
2035 |
|
2036 | |||
2036 | self.__initime = None |
|
2037 | self.__initime = None | |
2037 | self.__lastdatatime = 0 |
|
2038 | self.__lastdatatime = 0 | |
2038 |
|
2039 | |||
2039 | self.__buffer_spc = 0 |
|
2040 | self.__buffer_spc = 0 | |
2040 | self.__buffer_cspc = 0 |
|
2041 | self.__buffer_cspc = 0 | |
2041 | self.__buffer_dc = 0 |
|
2042 | self.__buffer_dc = 0 | |
2042 |
|
2043 | |||
2043 | self.__profIndex = 0 |
|
2044 | self.__profIndex = 0 | |
2044 | self.__dataReady = False |
|
2045 | self.__dataReady = False | |
2045 | self.__byTime = False |
|
2046 | self.__byTime = False | |
2046 | self.incohInt = 0 |
|
2047 | self.incohInt = 0 | |
2047 | self.nOutliers = 0 |
|
2048 | self.nOutliers = 0 | |
2048 | if n is None and timeInterval is None: |
|
2049 | if n is None and timeInterval is None: | |
2049 | raise ValueError("n or timeInterval should be specified ...") |
|
2050 | raise ValueError("n or timeInterval should be specified ...") | |
2050 |
|
2051 | |||
2051 | if n is not None: |
|
2052 | if n is not None: | |
2052 | self.n = int(n) |
|
2053 | self.n = int(n) | |
2053 | else: |
|
2054 | else: | |
2054 |
|
2055 | |||
2055 | self.__integrationtime = int(timeInterval) |
|
2056 | self.__integrationtime = int(timeInterval) | |
2056 | self.n = None |
|
2057 | self.n = None | |
2057 | self.__byTime = True |
|
2058 | self.__byTime = True | |
2058 |
|
2059 | |||
2059 |
|
2060 | |||
|
2061 | ||||
2060 | def putData(self, data_spc, data_cspc, data_dc): |
|
2062 | def putData(self, data_spc, data_cspc, data_dc): | |
2061 | """ |
|
2063 | """ | |
2062 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
2064 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
2063 |
|
2065 | |||
2064 | """ |
|
2066 | """ | |
2065 | if data_spc.all() == numpy.nan : |
|
2067 | if data_spc.all() == numpy.nan : | |
2066 | print("nan ") |
|
2068 | print("nan ") | |
2067 | return |
|
2069 | return | |
2068 | self.__buffer_spc += data_spc |
|
2070 | self.__buffer_spc += data_spc | |
2069 |
|
2071 | |||
2070 | if data_cspc is None: |
|
2072 | if data_cspc is None: | |
2071 | self.__buffer_cspc = None |
|
2073 | self.__buffer_cspc = None | |
2072 | else: |
|
2074 | else: | |
2073 | self.__buffer_cspc += data_cspc |
|
2075 | self.__buffer_cspc += data_cspc | |
2074 |
|
2076 | |||
2075 | if data_dc is None: |
|
2077 | if data_dc is None: | |
2076 | self.__buffer_dc = None |
|
2078 | self.__buffer_dc = None | |
2077 | else: |
|
2079 | else: | |
2078 | self.__buffer_dc += data_dc |
|
2080 | self.__buffer_dc += data_dc | |
2079 |
|
2081 | |||
2080 | self.__profIndex += 1 |
|
2082 | self.__profIndex += 1 | |
2081 |
|
2083 | |||
2082 | return |
|
2084 | return | |
2083 |
|
2085 | |||
2084 | def pushData(self): |
|
2086 | def pushData(self): | |
2085 | """ |
|
2087 | """ | |
2086 | Return the sum of the last profiles and the profiles used in the sum. |
|
2088 | Return the sum of the last profiles and the profiles used in the sum. | |
2087 |
|
2089 | |||
2088 | Affected: |
|
2090 | Affected: | |
2089 |
|
2091 | |||
2090 | self.__profileIndex |
|
2092 | self.__profileIndex | |
2091 |
|
2093 | |||
2092 | """ |
|
2094 | """ | |
2093 |
|
2095 | |||
2094 | data_spc = self.__buffer_spc |
|
2096 | data_spc = self.__buffer_spc | |
2095 | data_cspc = self.__buffer_cspc |
|
2097 | data_cspc = self.__buffer_cspc | |
2096 | data_dc = self.__buffer_dc |
|
2098 | data_dc = self.__buffer_dc | |
2097 | n = self.__profIndex |
|
2099 | n = self.__profIndex | |
2098 |
|
2100 | |||
2099 | self.__buffer_spc = 0 |
|
2101 | self.__buffer_spc = 0 | |
2100 | self.__buffer_cspc = 0 |
|
2102 | self.__buffer_cspc = 0 | |
2101 | self.__buffer_dc = 0 |
|
2103 | self.__buffer_dc = 0 | |
2102 |
|
2104 | |||
2103 |
|
2105 | |||
2104 | return data_spc, data_cspc, data_dc, n |
|
2106 | return data_spc, data_cspc, data_dc, n | |
2105 |
|
2107 | |||
2106 | def byProfiles(self, *args): |
|
2108 | def byProfiles(self, *args): | |
2107 |
|
2109 | |||
2108 | self.__dataReady = False |
|
2110 | self.__dataReady = False | |
2109 | avgdata_spc = None |
|
2111 | avgdata_spc = None | |
2110 | avgdata_cspc = None |
|
2112 | avgdata_cspc = None | |
2111 | avgdata_dc = None |
|
2113 | avgdata_dc = None | |
2112 |
|
2114 | |||
2113 | self.putData(*args) |
|
2115 | self.putData(*args) | |
2114 |
|
2116 | |||
2115 | if self.__profIndex == self.n: |
|
2117 | if self.__profIndex == self.n: | |
2116 |
|
2118 | |||
2117 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
2119 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
2118 | self.n = n |
|
2120 | self.n = n | |
2119 | self.__dataReady = True |
|
2121 | self.__dataReady = True | |
2120 |
|
2122 | |||
2121 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
2123 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
2122 |
|
2124 | |||
2123 | def byTime(self, datatime, *args): |
|
2125 | def byTime(self, datatime, *args): | |
2124 |
|
2126 | |||
2125 | self.__dataReady = False |
|
2127 | self.__dataReady = False | |
2126 | avgdata_spc = None |
|
2128 | avgdata_spc = None | |
2127 | avgdata_cspc = None |
|
2129 | avgdata_cspc = None | |
2128 | avgdata_dc = None |
|
2130 | avgdata_dc = None | |
2129 |
|
2131 | |||
2130 | self.putData(*args) |
|
2132 | self.putData(*args) | |
2131 |
|
2133 | |||
2132 | if (datatime - self.__initime) >= self.__integrationtime: |
|
2134 | if (datatime - self.__initime) >= self.__integrationtime: | |
2133 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
2135 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
2134 | self.n = n |
|
2136 | self.n = n | |
2135 | self.__dataReady = True |
|
2137 | self.__dataReady = True | |
2136 |
|
2138 | |||
2137 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
2139 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
2138 |
|
2140 | |||
2139 | def integrate(self, datatime, *args): |
|
2141 | def integrate(self, datatime, *args): | |
2140 |
|
2142 | |||
2141 | if self.__profIndex == 0: |
|
2143 | if self.__profIndex == 0: | |
2142 | self.__initime = datatime |
|
2144 | self.__initime = datatime | |
2143 |
|
2145 | |||
2144 | if self.__byTime: |
|
2146 | if self.__byTime: | |
2145 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
2147 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |
2146 | datatime, *args) |
|
2148 | datatime, *args) | |
2147 | else: |
|
2149 | else: | |
2148 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
2150 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
2149 |
|
2151 | |||
2150 | if not self.__dataReady: |
|
2152 | if not self.__dataReady: | |
2151 | return None, None, None, None |
|
2153 | return None, None, None, None | |
2152 |
|
2154 | |||
2153 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
2155 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |
2154 |
|
2156 | |||
2155 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
2157 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | |
2156 | if n == 1: |
|
2158 | if n == 1: | |
2157 | return dataOut |
|
2159 | return dataOut | |
2158 |
|
2160 | |||
2159 | if dataOut.flagNoData == True: |
|
2161 | if dataOut.flagNoData == True: | |
2160 | return dataOut |
|
2162 | return dataOut | |
2161 |
|
2163 | |||
2162 | if dataOut.flagProfilesByRange == True: |
|
2164 | if dataOut.flagProfilesByRange == True: | |
2163 | self._flagProfilesByRange = True |
|
2165 | self._flagProfilesByRange = True | |
2164 |
|
2166 | |||
2165 | dataOut.flagNoData = True |
|
2167 | dataOut.flagNoData = True | |
2166 | dataOut.processingHeaderObj.timeIncohInt = timeInterval |
|
2168 | dataOut.processingHeaderObj.timeIncohInt = timeInterval | |
2167 | if not self.isConfig: |
|
2169 | if not self.isConfig: | |
|
2170 | self._nProfilesByRange = numpy.zeros(len(dataOut.heightList)) | |||
2168 | self.setup(n, timeInterval, overlapping) |
|
2171 | self.setup(n, timeInterval, overlapping) | |
2169 | self.isConfig = True |
|
2172 | self.isConfig = True | |
2170 |
|
2173 | |||
2171 |
|
2174 | |||
2172 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
2175 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |
2173 | dataOut.data_spc, |
|
2176 | dataOut.data_spc, | |
2174 | dataOut.data_cspc, |
|
2177 | dataOut.data_cspc, | |
2175 | dataOut.data_dc) |
|
2178 | dataOut.data_dc) | |
2176 |
|
2179 | |||
2177 | self.incohInt += dataOut.nIncohInt |
|
2180 | self.incohInt += dataOut.nIncohInt | |
2178 |
|
2181 | |||
2179 |
|
2182 | |||
2180 | if isinstance(dataOut.data_outlier,numpy.ndarray) or isinstance(dataOut.data_outlier,int) or isinstance(dataOut.data_outlier, float): |
|
2183 | if isinstance(dataOut.data_outlier,numpy.ndarray) or isinstance(dataOut.data_outlier,int) or isinstance(dataOut.data_outlier, float): | |
2181 | self.nOutliers += dataOut.data_outlier |
|
2184 | self.nOutliers += dataOut.data_outlier | |
2182 |
|
2185 | |||
2183 | if self._flagProfilesByRange: |
|
2186 | if self._flagProfilesByRange: | |
2184 | dataOut.flagProfilesByRange = True |
|
2187 | dataOut.flagProfilesByRange = True | |
2185 | self._nProfilesByRange += dataOut.nProfilesByRange |
|
2188 | self._nProfilesByRange += dataOut.nProfilesByRange | |
2186 |
|
2189 | |||
2187 | if self.__dataReady: |
|
2190 | if self.__dataReady: | |
2188 | #print("prof: ",dataOut.max_nIncohInt,self.__profIndex) |
|
2191 | #print("prof: ",dataOut.max_nIncohInt,self.__profIndex) | |
2189 | dataOut.data_spc = avgdata_spc |
|
2192 | dataOut.data_spc = avgdata_spc | |
2190 | dataOut.data_cspc = avgdata_cspc |
|
2193 | dataOut.data_cspc = avgdata_cspc | |
2191 | dataOut.data_dc = avgdata_dc |
|
2194 | dataOut.data_dc = avgdata_dc | |
2192 | dataOut.nIncohInt = self.incohInt |
|
2195 | dataOut.nIncohInt = self.incohInt | |
2193 | dataOut.data_outlier = self.nOutliers |
|
2196 | dataOut.data_outlier = self.nOutliers | |
2194 | dataOut.utctime = avgdatatime |
|
2197 | dataOut.utctime = avgdatatime | |
2195 | dataOut.flagNoData = False |
|
2198 | dataOut.flagNoData = False | |
2196 | self.incohInt = 0 |
|
2199 | self.incohInt = 0 | |
2197 | self.nOutliers = 0 |
|
2200 | self.nOutliers = 0 | |
2198 | self.__profIndex = 0 |
|
2201 | self.__profIndex = 0 | |
2199 | dataOut.nProfilesByRange = self._nProfilesByRange |
|
2202 | dataOut.nProfilesByRange = self._nProfilesByRange | |
2200 |
self._nProfilesByRange = |
|
2203 | self._nProfilesByRange = numpy.zeros(len(dataOut.heightList)) | |
2201 | self._flagProfilesByRange = False |
|
2204 | self._flagProfilesByRange = False | |
2202 | #print("IncohInt Done") |
|
2205 | #print("IncohInt Done") | |
2203 | return dataOut |
|
2206 | return dataOut | |
2204 |
|
2207 | |||
2205 | class dopplerFlip(Operation): |
|
2208 | class dopplerFlip(Operation): | |
2206 |
|
2209 | |||
2207 | def run(self, dataOut): |
|
2210 | def run(self, dataOut): | |
2208 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
2211 | # arreglo 1: (num_chan, num_profiles, num_heights) | |
2209 | self.dataOut = dataOut |
|
2212 | self.dataOut = dataOut | |
2210 | # JULIA-oblicua, indice 2 |
|
2213 | # JULIA-oblicua, indice 2 | |
2211 | # arreglo 2: (num_profiles, num_heights) |
|
2214 | # arreglo 2: (num_profiles, num_heights) | |
2212 | jspectra = self.dataOut.data_spc[2] |
|
2215 | jspectra = self.dataOut.data_spc[2] | |
2213 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
2216 | jspectra_tmp = numpy.zeros(jspectra.shape) | |
2214 | num_profiles = jspectra.shape[0] |
|
2217 | num_profiles = jspectra.shape[0] | |
2215 | freq_dc = int(num_profiles / 2) |
|
2218 | freq_dc = int(num_profiles / 2) | |
2216 | # Flip con for |
|
2219 | # Flip con for | |
2217 | for j in range(num_profiles): |
|
2220 | for j in range(num_profiles): | |
2218 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
2221 | jspectra_tmp[num_profiles-j-1]= jspectra[j] | |
2219 | # Intercambio perfil de DC con perfil inmediato anterior |
|
2222 | # Intercambio perfil de DC con perfil inmediato anterior | |
2220 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
2223 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] | |
2221 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
2224 | jspectra_tmp[freq_dc]= jspectra[freq_dc] | |
2222 | # canal modificado es re-escrito en el arreglo de canales |
|
2225 | # canal modificado es re-escrito en el arreglo de canales | |
2223 | self.dataOut.data_spc[2] = jspectra_tmp |
|
2226 | self.dataOut.data_spc[2] = jspectra_tmp | |
2224 |
|
2227 | |||
2225 | return self.dataOut |
|
2228 | return self.dataOut | |
2226 |
|
2229 | |||
2227 |
|
2230 | |||
2228 |
|
2231 | |||
2229 |
|
2232 | |||
2230 |
|
2233 | |||
2231 |
|
2234 | |||
2232 | class cleanJULIAInterf(Operation): |
|
2235 | class cleanJULIAInterf(Operation): | |
2233 | """ |
|
2236 | """ | |
2234 | Operación de prueba |
|
2237 | Operación de prueba | |
2235 | """ |
|
2238 | """ | |
2236 | __slots__ =('heights_indx', 'repeats','span' ,'step', 'factor', 'idate', 'idxs','isConfig','minHrefN', 'maxHrefN') |
|
2239 | __slots__ =('heights_indx', 'repeats','span' ,'step', 'factor', 'idate', 'idxs','isConfig','minHrefN', 'maxHrefN') | |
2237 | def __init__(self): |
|
2240 | def __init__(self): | |
2238 | self.repeats = 0 |
|
2241 | self.repeats = 0 | |
2239 | self.factor=1 |
|
2242 | self.factor=1 | |
2240 | self.isConfig = False |
|
2243 | self.isConfig = False | |
2241 | self.idxs = None |
|
2244 | self.idxs = None | |
2242 | self.heights_indx = None |
|
2245 | self.heights_indx = None | |
2243 |
|
2246 | |||
2244 | def setup(self, dataOutHeightsList, heightsList, span=10, repeats=0, step=0, idate=None, startH=None, endH=None, minHref=None, maxHref=None): |
|
2247 | def setup(self, dataOutHeightsList, heightsList, span=10, repeats=0, step=0, idate=None, startH=None, endH=None, minHref=None, maxHref=None): | |
2245 | totalHeihtList = dataOutHeightsList |
|
2248 | totalHeihtList = dataOutHeightsList | |
2246 | heights = [float(hei) for hei in heightsList] |
|
2249 | heights = [float(hei) for hei in heightsList] | |
2247 | for r in range(repeats): |
|
2250 | for r in range(repeats): | |
2248 | heights += [ (h+(step*(r+1))) for h in heights] |
|
2251 | heights += [ (h+(step*(r+1))) for h in heights] | |
2249 | #print(heights) |
|
2252 | #print(heights) | |
2250 | self.heights_indx = [getHei_index(h,h,totalHeihtList)[0] for h in heights] |
|
2253 | self.heights_indx = [getHei_index(h,h,totalHeihtList)[0] for h in heights] | |
2251 |
|
2254 | |||
2252 | self.minHrefN, self.maxHrefN = getHei_index(minHref,maxHref,totalHeihtList) |
|
2255 | self.minHrefN, self.maxHrefN = getHei_index(minHref,maxHref,totalHeihtList) | |
2253 |
|
2256 | |||
2254 |
|
2257 | |||
2255 | self.config = True |
|
2258 | self.config = True | |
2256 | self.span = span |
|
2259 | self.span = span | |
2257 |
|
2260 | |||
2258 | def run(self, dataOut, heightsList, span=10, repeats=0, step=0, idate=None, startH=None, endH=None, minHref=None, maxHref=None): |
|
2261 | def run(self, dataOut, heightsList, span=10, repeats=0, step=0, idate=None, startH=None, endH=None, minHref=None, maxHref=None): | |
2259 |
|
2262 | |||
2260 |
|
2263 | |||
2261 | self.dataOut = dataOut |
|
2264 | self.dataOut = dataOut | |
2262 | startTime = datetime.datetime.combine(idate,startH) |
|
2265 | startTime = datetime.datetime.combine(idate,startH) | |
2263 | endTime = datetime.datetime.combine(idate,endH) |
|
2266 | endTime = datetime.datetime.combine(idate,endH) | |
2264 | currentTime = datetime.datetime.fromtimestamp(self.dataOut.utctime) |
|
2267 | currentTime = datetime.datetime.fromtimestamp(self.dataOut.utctime) | |
2265 |
|
2268 | |||
2266 | if currentTime < startTime or currentTime > endTime: |
|
2269 | if currentTime < startTime or currentTime > endTime: | |
2267 | return self.dataOut |
|
2270 | return self.dataOut | |
2268 |
|
2271 | |||
2269 | if not self.isConfig: |
|
2272 | if not self.isConfig: | |
2270 | self.setup(self.dataOut.heightList,heightsList, span=span, repeats=repeats, step=step, idate=idate, startH=startH, endH=endH, minHref=minHref, maxHref=maxHref ) |
|
2273 | self.setup(self.dataOut.heightList,heightsList, span=span, repeats=repeats, step=step, idate=idate, startH=startH, endH=endH, minHref=minHref, maxHref=maxHref ) | |
2271 |
|
2274 | |||
2272 | for ch in range(self.dataOut.data_spc.shape[0]): |
|
2275 | for ch in range(self.dataOut.data_spc.shape[0]): | |
2273 | i = 0 |
|
2276 | i = 0 | |
2274 | N_ref = self.dataOut.data_spc[ch, :, self.minHrefN: self.maxHrefN].mean() |
|
2277 | N_ref = self.dataOut.data_spc[ch, :, self.minHrefN: self.maxHrefN].mean() | |
2275 | mn = self.heights_indx[-1] - self.span/2 |
|
2278 | mn = self.heights_indx[-1] - self.span/2 | |
2276 | mx = self.heights_indx[-1] + self.span/2 |
|
2279 | mx = self.heights_indx[-1] + self.span/2 | |
2277 | J_lev = self.dataOut.data_spc[ch, :, mn: mx].mean() - N_ref |
|
2280 | J_lev = self.dataOut.data_spc[ch, :, mn: mx].mean() - N_ref | |
2278 |
|
2281 | |||
2279 | for hei in self.heights_indx: |
|
2282 | for hei in self.heights_indx: | |
2280 | h = hei - 1 |
|
2283 | h = hei - 1 | |
2281 | mn_i = hei - self.span/2 |
|
2284 | mn_i = hei - self.span/2 | |
2282 | mx_i = hei + self.span/2 |
|
2285 | mx_i = hei + self.span/2 | |
2283 | self.dataOut.data_spc[ch, :,mn_i:mx_i ] -= J_lev |
|
2286 | self.dataOut.data_spc[ch, :,mn_i:mx_i ] -= J_lev | |
2284 | i += 1 |
|
2287 | i += 1 | |
2285 |
|
2288 | |||
2286 |
|
2289 | |||
2287 | return self.dataOut No newline at end of file |
|
2290 | return self.dataOut |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now