##// END OF EJS Templates
test 2
rflores -
r1633:9640d0603da0
parent child
Show More
@@ -1,571 +1,571
1 1 subroutine lagp(plag,wl,r0,dr,nl,nrange)
2 2 c
3 3 c predict lagged product matrix using state parameters stored
4 4 c as cubic b-splines
5 5 c read weights for numeric integration from a file
6 6 c
7 7 c faster version - assumes samples taken at half-integer lags, ranges
8 8 c
9 9 include 'fitter.h'
10 10 include 'spline.h'
11 11 include 'bfield.h'
12 12 integer nl,nrange
13 13 real plag(nl,nrange),taus(nl)
14 14 parameter(nw=1000)
15 15 integer ilag(nw)
16 16 real weight(nw),dtau(nw),drange(nw)
17 17 logical first
18 18 real store(2*nl,2*nrange,2)
19 19
20 20 character(1024) :: fqual_temp
21 21 character(:), allocatable :: fqual
22 22 character bfmodel_str*8
23 23
24 24 data first/.true./
25 25 c
26 26
27 27 c write(*,*) "dens_before: ",dens
28 28 c call exit
29 29 c zero out array
30 30 c write(*,*) "Starting lagp"
31 31 do i=1,nrange
32 32 do j=1,nl
33 33 plag(j,i)=0.0
34 34 end do
35 35 end do
36 36
37 37 c
38 38 c compute all required acfs
39 39 c
40 40 do i=1,2*nrange
41 41 ii=(i-1)/2+1
42 42 alt=r0+float(i-1)*dr*0.5 ! half integer ranges
43 43 c write(*,*) "dens_before: ",dens
44 44 c call exit
45 45 c write(*,*) "alt: ",alt
46 46 c write(*,*) "dens: ",dens
47 47 c write(*,*) "te: ",te
48 48 c write(*,*) "ti1: ",ti1
49 49 c write(*,*) "hf: ",hf
50 50 c write(*,*) "hef: ",hef
51 51 c call exit
52 52 call get_spline(alt,dens,te,ti1,hf,hef)
53 53 c write(*,*) "dens_after: ",dens
54 54 c call exit
55 55 do k=1,nion
56 56 ti(k)=ti1
57 57 end do
58 58 fi(2)=hf
59 59 fi(3)=hef
60 60 fi(1)=1.0-hf-hef
61 61
62 62 do j=1,2*nl
63 63 tau=float(j-1)*(dr/1.5e5)*0.5 ! half integer lags
64 64
65 65 c just consider a single azimuth angle for now
66 66
67 67 c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
68 68 c & alpha_prof(ii)+1.74e-2,dens,bfld_prof(ii),rho)
69 69 c store(j,i,1)=rho*dens*(100.0/alt)**2
70 70
71 71 c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
72 72 c & alpha_prof(ii)-1.74e-2,dens,bfld_prof(ii),rho)
73 73 c store(j,i,2)=rho*dens*(100.0/alt)**2
74 74
75 75 call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
76 76 & alpha_prof(ii),dens,bfld_prof(ii),rho)
77 77 store(j,i,1)=rho*dens*(100.0/alt)**2
78 78 c write(*,*) "store", store(j,i,1)
79 79 c call exit
80 80 end do
81 81 end do
82 82
83 83 c construct lagged products
84 84 c
85 85 c write(*,*) "before weights"
86 86 c write(*,*) first
87 87 c write(*,*) "weight before: ",weight
88 88 c write(*,*) "BEFORE GET_PATH"
89 89 call get_path(fqual_temp)
90 90 c write(*,*) "L_BEF: ", fqual_temp, "L_BEF_end"
91 91 fqual = TRIM(fqual_temp)
92 92 bfmodel_str = 'bfmodel/'
93 93 write(*,*) "bfmodel_str: ", bfmodel_str
94 94 c fqual(1:len_trim(fqual)-len_trim(bfmodel_str))
95 fqual = fqual(1:index(fqual, bfmodel_str))//'weights.da'
95 fqual = fqual(1:index(fqual, bfmodel_str)-1)//'weights.dat'
96 96 write(*,*) "fqual: ", fqual
97 97 c write(*,*) "Final fqual",fqual,"FINAL"
98 98 c call exit
99 99 if(first) then
100 100 open(unit=25,file=fqual,
101 101 & status='old')
102 102 read (25,*) nwt
103 103 do i=1,nwt
104 104 read(25,*) weight(i),dtau(i),drange(i),ilag(i)
105 105 c write(*,*) "ilag: ",ilag(i)
106 106 end do
107 107 c flush(25)
108 108 close(25)
109 109 c first=.false.
110 110 end if
111 111
112 112 c write(*,*) "after weights"
113 113
114 114 c write(*,*) "weight(3): ",weight(3)
115 115 c call exit
116 116 c write(*,*) "nl: ",nl,"nrange: ",nrange,"nwt: ",nwt
117 117
118 118 do i=1+nl,nrange ! don't worry about redundancy here
119 119
120 120 do j=1,nwt
121 121 c write(*,*) "j: ",j
122 122 alt=r0+(float(i-1)+drange(j))*dr
123 123 tau=abs(dtau(j)*dr/1.5e5)
124 124 lag=ilag(j)+1
125 125 c write(*,*) tau
126 126
127 127 k=1+2.0*(tau/(dr/1.5e5))
128 128 l=1+2.0*(alt-r0)/dr
129 129
130 130 do m=1,1 ! 2
131 131
132 132 c call exit
133 133 c write(*,*) i
134 134 c call exit
135 135 c if (i .eq. nrange) then
136 136 c if (j .eq. 227) then
137 137
138 138 c write(*,*) "lag: ",lag
139 139 c write(*,*) "ilag: ",ilag(j)
140 140 c call exit
141 141 c write(*,*) "plag: ",plag(lag,i)
142 142 c write(*,*) "weight: ",weight
143 143 c
144 144 c write(*,*) "weight: ",weight(j)
145 145 c write(*,*) "store: ",store(k,l,m)
146 146 c call exit
147 147 c end if
148 148 c end if
149 149 plag(lag,i)=plag(lag,i)+weight(j)*store(k,l,m)
150 150 c if (i .eq. nrange) then
151 151 c write(*,*) "lag: ",lag
152 152 c write(*,*) "plag: ",plag(lag,i)
153 153 c write(*,*) "plag: ",plag(lag,i)
154 154 c call exit
155 155 c end if
156 156 end do
157 157 c write(*,*) "plag: ",plag(lag,i)
158 158 c write(*,*) "plag: ",plag(12,72)
159 159 c call exit
160 160 end do
161 161 c call exit
162 162 c write(*,*) "plag: ",plag(12,72)
163 163 end do
164 164 c write(*,*) "plag: ",plag(12,72)
165 165 c call exit
166 166 c write(*,*) "End LAGP"
167 167 return
168 168 end
169 169
170 170 subroutine lagp_old(plag,wl,r0,dr,nl,nrange)
171 171 c
172 172 c predict lagged product matrix using state parameters stored
173 173 c as cubic b-splines
174 174 c read weights for numeric integration from a file
175 175 c
176 176 c general version - samples can be anywhere
177 177 c
178 178 include 'fitter.h'
179 179 include 'spline.h'
180 180 include 'bfield.h'
181 181 integer nl,nrange
182 182 real plag(nl,nrange),taus(nl)
183 183 parameter(nw=1000)
184 184 integer ilag(nw)
185 185 real weight(nw),dtau(nw),drange(nw)
186 186 logical first
187 187 data first/.true./
188 188 c
189 189
190 190 c zero out array
191 191
192 192 do i=1,nrange
193 193 do j=1,nl
194 194 plag(j,i)=0.0
195 195 end do
196 196 end do
197 197
198 198 c
199 199 c construct lagged products
200 200 c
201 201
202 202 if(first) then
203 203 open(unit=25,file='weights.dat',status='old')
204 204 read (25,*) nwt
205 205 do i=1,nwt
206 206 read(25,*) weight(i),dtau(i),drange(i),ilag(i)
207 207 end do
208 208 close(25)
209 209 first=.false.
210 210 end if
211 211
212 212 c can avoid recalculating splines and/or ACFs when parameters repeat
213 213
214 214 altp=-1.0
215 215 taup=-1.0
216 216
217 217 do i=1+nl,nrange
218 218 do j=1,nwt
219 219 alt=r0+(float(i-1)+drange(j))*dr
220 220 ii=(alt-r0)/dr+1
221 221
222 222 if(alt.ne.altp) then
223 223 call get_spline(alt,dens,te,ti1,hf,hef)
224 224
225 225 c write(*,*) alt,dens,te,ti1,hf,hef
226 226
227 227 do k=1,nion
228 228 ti(k)=ti1
229 229 end do
230 230 fi(2)=hf
231 231 fi(3)=hef
232 232 fi(1)=1.0-hf-hef
233 233 end if
234 234
235 235 tau=abs(dtau(j)*dr/1.5e5)
236 236 lag=ilag(j)+1
237 237
238 238 c write(*,*) i,alpha_prof(i),bfld_prof(i)
239 239
240 240 if(tau.ne.taup.or.alt.ne.altp) then
241 241
242 242 c two- or three- point Gauss Hermite quadrature rule
243 243
244 244 c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
245 245 c & alpha_prof(ii)+1.74e-2,dens,bfld_prof(ii),rho1)
246 246
247 247 c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
248 248 c & alpha_prof(ii)-1.74e-2,dens,bfld_prof(ii),rho2)
249 249
250 250 c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
251 251 c & alpha_prof(ii),dens,bfld_prof(ii),rho1)
252 252
253 253 c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
254 254 c & alpha_prof(ii)+1.9e-2,dens,bfld_prof(ii),rho2)
255 255
256 256 c call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
257 257 c & alpha_prof(ii)-1.9e-2,dens,bfld_prof(ii),rho3)
258 258
259 259 call acf2(wl,tau,te,ti,fi,ven,vin,wi,nion,
260 260 & alpha_prof(ii),dens,bfld_prof(ii),rho)
261 261
262 262 c rho=(rho1+rho2)/2.0
263 263 c rho=(rho2+rho3)*0.29541+rho1*1.18164)/1.77246
264 264
265 265 end if
266 266
267 267 plag(lag,i)=plag(lag,i)+weight(j)*rho*dens*(100.0/alt)**2
268 268
269 269 altp=alt
270 270 taup=tau
271 271
272 272 end do
273 273 end do
274 274
275 275 return
276 276 end
277 277
278 278 function atanh(x)
279 279 c
280 280 real atanh,x
281 281 c
282 282 atanh=log(sqrt((1.+x)/(1.-x)))
283 283 return
284 284 end
285 285
286 286 subroutine get_spline(alt,dens,te,ti,hf,hef)
287 287 c
288 288 c routines for handling cubic b-spline interpolation
289 289 c gets values consistent with stored coefficients
290 290 c
291 291
292 292 include 'spline.h'
293 293
294 294 c
295 295 c bspline values from 200-1500 km in 15-km intervals
296 296 c must specify five knots above ceiling
297 297 c note offset ... start accessing splines above bottom two knots
298 298 c
299 299 c five banks of splines, for Ne, Te, Ti, H+, and He+ versus altitude
300 300 c need to initialize ta somewhere
301 301 c
302 302 c write(*,*) "ta: ",ta
303 303 c write(*,*) "bcoef(1,1): ",bcoef(1,1)
304 304 c write(*,*) "nspline: ",nspline
305 305 c write(*,*) "norder: ",norder
306 306 c write(*,*) "alt: ",alt
307 307 dens=bvalue(ta,bcoef(1,1),nspline,norder,alt,0)
308 308 c write(*,*) "dens_inside_get_spline: ",dens
309 309 c write(*,*) dens
310 310 c call exit
311 311 dens=10.0**MAX(dens,2.0)
312 312 c write(*,*) dens
313 313 c call exit
314 314 te=bvalue(ta,bcoef(1,2),nspline,norder,alt,0)
315 315 te=t0+t1*(1.0+tanh(te))/2.0 ! DLH 10/14 was 3500
316 316 c tr=bvalue(ta,bcoef(1,3),nspline,norder,alt,0)
317 317 c tr=exp(tr)
318 318 c ti=te/tr
319 319 ti=bvalue(ta,bcoef(1,3),nspline,norder,alt,0)
320 320 ti=t0+t1*(1.0+tanh(ti))/2.0 ! DLH 10/14 was 3500
321 321 hf=bvalue(ta,bcoef(1,4),nspline,norder,alt,0)
322 322 hf=(1.0+tanh(hf))/2.0
323 323 hef=bvalue(ta,bcoef(1,5),nspline,norder,alt,0)
324 324 hef=(1.0+tanh(hef))/2.0
325 325 return
326 326 end
327 327
328 328
329 329 real function bvalue ( t, bcoef, n, k, x, jderiv )
330 330 c from * a practical guide to splines * by c. de boor
331 331 calls interv
332 332 c
333 333 calculates value at x of jderiv-th derivative of spline from b-repr.
334 334 c the spline is taken to be continuous from the right, EXCEPT at the
335 335 c rightmost knot, where it is taken to be continuous from the left.
336 336 c
337 337 c****** i n p u t ******
338 338 c t, bcoef, n, k......forms the b-representation of the spline f to
339 339 c be evaluated. specifically,
340 340 c t.....knot sequence, of length n+k, assumed nondecreasing.
341 341 c bcoef.....b-coefficient sequence, of length n .
342 342 c n.....length of bcoef and dimension of spline(k,t),
343 343 c a s s u m e d positive .
344 344 c k.....order of the spline .
345 345 c
346 346 c w a r n i n g . . . the restriction k .le. kmax (=20) is imposed
347 347 c arbitrarily by the dimension statement for aj, dl, dr below,
348 348 c but is n o w h e r e c h e c k e d for.
349 349 c
350 350 c x.....the point at which to evaluate .
351 351 c jderiv.....integer giving the order of the derivative to be evaluated
352 352 c a s s u m e d to be zero or positive.
353 353 c
354 354 c****** o u t p u t ******
355 355 c bvalue.....the value of the (jderiv)-th derivative of f at x .
356 356 c
357 357 c****** m e t h o d ******
358 358 c The nontrivial knot interval (t(i),t(i+1)) containing x is lo-
359 359 c cated with the aid of interv . The k b-coeffs of f relevant for
360 360 c this interval are then obtained from bcoef (or taken to be zero if
361 361 c not explicitly available) and are then differenced jderiv times to
362 362 c obtain the b-coeffs of (d**jderiv)f relevant for that interval.
363 363 c Precisely, with j = jderiv, we have from x.(12) of the text that
364 364 c
365 365 c (d**j)f = sum ( bcoef(.,j)*b(.,k-j,t) )
366 366 c
367 367 c where
368 368 c / bcoef(.), , j .eq. 0
369 369 c /
370 370 c bcoef(.,j) = / bcoef(.,j-1) - bcoef(.-1,j-1)
371 371 c / ----------------------------- , j .gt. 0
372 372 c / (t(.+k-j) - t(.))/(k-j)
373 373 c
374 374 c Then, we use repeatedly the fact that
375 375 c
376 376 c sum ( a(.)*b(.,m,t)(x) ) = sum ( a(.,x)*b(.,m-1,t)(x) )
377 377 c with
378 378 c (x - t(.))*a(.) + (t(.+m-1) - x)*a(.-1)
379 379 c a(.,x) = ---------------------------------------
380 380 c (x - t(.)) + (t(.+m-1) - x)
381 381 c
382 382 c to write (d**j)f(x) eventually as a linear combination of b-splines
383 383 c of order 1 , and the coefficient for b(i,1,t)(x) must then be the
384 384 c desired number (d**j)f(x). (see x.(17)-(19) of text).
385 385 c
386 386 parameter (kmax = 40)
387 387 integer jderiv,k,n, i,ilo,imk,j,jc,jcmin,jcmax,jj,kmj,km1
388 388 * ,mflag,nmi,jdrvp1
389 389 c integer kmax
390 390 C real bcoef(n),t(1),x, aj(20),dl(20),dr(20),fkmj
391 391 real bcoef(n),x, aj(kmax),dl(kmax),dr(kmax),fkmj
392 392 dimension t(n+k)
393 393 c former fortran standard made it impossible to specify the length of t
394 394 c precisely without the introduction of otherwise superfluous addition-
395 395 c al arguments.
396 396 bvalue = 0.
397 397 if (jderiv .ge. k) go to 99
398 398 c
399 399 c *** Find i s.t. 1 .le. i .lt. n+k and t(i) .lt. t(i+1) and
400 400 c t(i) .le. x .lt. t(i+1) . If no such i can be found, x lies
401 401 c outside the support of the spline f , hence bvalue = 0.
402 402 c (The asymmetry in this choice of i makes f rightcontinuous, except
403 403 c at t(n+k) where it is leftcontinuous.)
404 404 call interv ( t, n+k, x, i, mflag )
405 405 if (mflag .ne. 0) go to 99
406 406 c *** if k = 1 (and jderiv = 0), bvalue = bcoef(i).
407 407 km1 = k - 1
408 408 if (km1 .gt. 0) go to 1
409 409 bvalue = bcoef(i)
410 410 go to 99
411 411 c
412 412 c *** store the k b-spline coefficients relevant for the knot interval
413 413 c (t(i),t(i+1)) in aj(1),...,aj(k) and compute dl(j) = x - t(i+1-j),
414 414 c dr(j) = t(i+j) - x, j=1,...,k-1 . set any of the aj not obtainable
415 415 c from input to zero. set any t.s not obtainable equal to t(1) or
416 416 c to t(n+k) appropriately.
417 417 1 jcmin = 1
418 418 imk = i - k
419 419 if (imk .ge. 0) go to 8
420 420 jcmin = 1 - imk
421 421 do 5 j=1,i
422 422 5 dl(j) = x - t(i+1-j)
423 423 do 6 j=i,km1
424 424 aj(k-j) = 0.
425 425 6 dl(j) = dl(i)
426 426 go to 10
427 427 8 do 9 j=1,km1
428 428 9 dl(j) = x - t(i+1-j)
429 429 c
430 430 10 jcmax = k
431 431 nmi = n - i
432 432 if (nmi .ge. 0) go to 18
433 433 jcmax = k + nmi
434 434 do 15 j=1,jcmax
435 435 15 dr(j) = t(i+j) - x
436 436 do 16 j=jcmax,km1
437 437 aj(j+1) = 0.
438 438 16 dr(j) = dr(jcmax)
439 439 go to 20
440 440 18 do 19 j=1,km1
441 441 19 dr(j) = t(i+j) - x
442 442 c
443 443 20 do 21 jc=jcmin,jcmax
444 444 21 aj(jc) = bcoef(imk + jc)
445 445 c
446 446 c *** difference the coefficients jderiv times.
447 447 if (jderiv .eq. 0) go to 30
448 448 do 23 j=1,jderiv
449 449 kmj = k-j
450 450 fkmj = float(kmj)
451 451 ilo = kmj
452 452 do 23 jj=1,kmj
453 453 aj(jj) = ((aj(jj+1) - aj(jj))/(dl(ilo) + dr(jj)))*fkmj
454 454 23 ilo = ilo - 1
455 455 c
456 456 c *** compute value at x in (t(i),t(i+1)) of jderiv-th derivative,
457 457 c given its relevant b-spline coeffs in aj(1),...,aj(k-jderiv).
458 458 30 if (jderiv .eq. km1) go to 39
459 459 jdrvp1 = jderiv + 1
460 460 do 33 j=jdrvp1,km1
461 461 kmj = k-j
462 462 ilo = kmj
463 463 do 33 jj=1,kmj
464 464 aj(jj) = (aj(jj+1)*dl(ilo) + aj(jj)*dr(jj))/(dl(ilo)+dr(jj))
465 465 33 ilo = ilo - 1
466 466 39 bvalue = aj(1)
467 467 c
468 468 99 return
469 469 end
470 470 subroutine interv ( xt, lxt, x, left, mflag )
471 471 c from * a practical guide to splines * by C. de Boor
472 472 computes left = max( i : xt(i) .lt. xt(lxt) .and. xt(i) .le. x ) .
473 473 c
474 474 c****** i n p u t ******
475 475 c xt.....a real sequence, of length lxt , assumed to be nondecreasing
476 476 c lxt.....number of terms in the sequence xt .
477 477 c x.....the point whose location with respect to the sequence xt is
478 478 c to be determined.
479 479 c
480 480 c****** o u t p u t ******
481 481 c left, mflag.....both integers, whose value is
482 482 c
483 483 c 1 -1 if x .lt. xt(1)
484 484 c i 0 if xt(i) .le. x .lt. xt(i+1)
485 485 c i 0 if xt(i) .lt. x .eq. xt(i+1) .eq. xt(lxt)
486 486 c i 1 if xt(i) .lt. xt(i+1) .eq. xt(lxt) .lt. x
487 487 c
488 488 c In particular, mflag = 0 is the 'usual' case. mflag .ne. 0
489 489 c indicates that x lies outside the CLOSED interval
490 490 c xt(1) .le. y .le. xt(lxt) . The asymmetric treatment of the
491 491 c intervals is due to the decision to make all pp functions cont-
492 492 c inuous from the right, but, by returning mflag = 0 even if
493 493 C x = xt(lxt), there is the option of having the computed pp function
494 494 c continuous from the left at xt(lxt) .
495 495 c
496 496 c****** m e t h o d ******
497 497 c The program is designed to be efficient in the common situation that
498 498 c it is called repeatedly, with x taken from an increasing or decrea-
499 499 c sing sequence. This will happen, e.g., when a pp function is to be
500 500 c graphed. The first guess for left is therefore taken to be the val-
501 501 c ue returned at the previous call and stored in the l o c a l varia-
502 502 c ble ilo . A first check ascertains that ilo .lt. lxt (this is nec-
503 503 c essary since the present call may have nothing to do with the previ-
504 504 c ous call). Then, if xt(ilo) .le. x .lt. xt(ilo+1), we set left =
505 505 c ilo and are done after just three comparisons.
506 506 c Otherwise, we repeatedly double the difference istep = ihi - ilo
507 507 c while also moving ilo and ihi in the direction of x , until
508 508 c xt(ilo) .le. x .lt. xt(ihi) ,
509 509 c after which we use bisection to get, in addition, ilo+1 = ihi .
510 510 c left = ilo is then returned.
511 511 c
512 512 integer left,lxt,mflag, ihi,ilo,istep,middle
513 513 real x,xt(lxt)
514 514 data ilo /1/
515 515 save ilo
516 516 ihi = ilo + 1
517 517 if (ihi .lt. lxt) go to 20
518 518 if (x .ge. xt(lxt)) go to 110
519 519 if (lxt .le. 1) go to 90
520 520 ilo = lxt - 1
521 521 ihi = lxt
522 522 c
523 523 20 if (x .ge. xt(ihi)) go to 40
524 524 if (x .ge. xt(ilo)) go to 100
525 525 c
526 526 c **** now x .lt. xt(ilo) . decrease ilo to capture x .
527 527 istep = 1
528 528 31 ihi = ilo
529 529 ilo = ihi - istep
530 530 if (ilo .le. 1) go to 35
531 531 if (x .ge. xt(ilo)) go to 50
532 532 istep = istep*2
533 533 go to 31
534 534 35 ilo = 1
535 535 if (x .lt. xt(1)) go to 90
536 536 go to 50
537 537 c **** now x .ge. xt(ihi) . increase ihi to capture x .
538 538 40 istep = 1
539 539 41 ilo = ihi
540 540 ihi = ilo + istep
541 541 if (ihi .ge. lxt) go to 45
542 542 if (x .lt. xt(ihi)) go to 50
543 543 istep = istep*2
544 544 go to 41
545 545 45 if (x .ge. xt(lxt)) go to 110
546 546 ihi = lxt
547 547 c
548 548 c **** now xt(ilo) .le. x .lt. xt(ihi) . narrow the interval.
549 549 50 middle = (ilo + ihi)/2
550 550 if (middle .eq. ilo) go to 100
551 551 c note. it is assumed that middle = ilo in case ihi = ilo+1 .
552 552 if (x .lt. xt(middle)) go to 53
553 553 ilo = middle
554 554 go to 50
555 555 53 ihi = middle
556 556 go to 50
557 557 c**** set output and return.
558 558 90 mflag = -1
559 559 left = 1
560 560 return
561 561 100 mflag = 0
562 562 left = ilo
563 563 return
564 564 110 mflag = 1
565 565 if (x .eq. xt(lxt)) mflag = 0
566 566 left = lxt
567 567 111 if (left .eq. 1) return
568 568 left = left - 1
569 569 if (xt(left) .lt. xt(lxt)) return
570 570 go to 111
571 571 end
General Comments 0
You need to be logged in to leave comments. Login now